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Abstract. With the applications in embedded systems increasingly com-
plex, future embedded processors will resemble current high performance
general purpose processors. Simultaneous multithreading (SMT) is a
good choice in embedded processors for its good cost-performance trade-
off. However, in SMT processors, the execute time of a thread is un-
predictable. The unpredictability is an undesirable feature in embedded
systems. In order to apply SMT architecture to embedded processors,
the problem of performance unpredictability must be addressed. Among
the current researches, a noted one is done by Cazorla et al (we call it Ca-
zorla policy). However, Cazorla policy achieves predictable performance
for a time critical thread by shared resources reservation, which weakens
the advantage of resources sharing in SMT processors.

In this paper, we propose a novel instruction fetch policy called APP
(Achieving Predictable Performance) to control the performance of a
time critical thread in SMT processors. Simulation results show that
APP can achieve predictable performance for the time critical thread as
effectively as Cazorla policy does. Furthermore, APP can make full use
of shared resources more effectively to optimize the performance of other
co-scheduled threads and overall throughput. Compared with Cazorla
policy, overall throughput obtained by APP is increased by 4.9% on
average and the performance of other co-scheduled threads is increased
by 17.6%.

Keywords: Simultaneous Multithreading, Instruction Fetch Policy, Pre-
dictable Performance.

1 Introduction

Applications in embedded systems are increasingly complex, which places an
increasingly demand on the performance of embedded processors. To meet these
growing demands, future embedded processors will resemble current high per-
formance general purpose processors. How to make general purpose processors
suitable for the embedded systems are studying [1–5].

Embedded processors differ from general purpose processors in their concen-
tration on low cost. That is, embedded processors hope to obtain as much per-
formance as possible from each resource. Hence, simultaneous multithreading
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(SMT) [6–8] architecture is a good option for embedded processors. In SMT pro-
cessors, multiple threads share hardware resources, and a good cost-performance
trade-off can be achieved.

However, co-scheduled threads in SMT processors compete for shared re-
sources. Different threads have different competition abilities. When a thread
is co-scheduled with different threads, its performance will be varied.

Figure 1 shows IPC (Instructions Per Cycle) of crafty (a benchmark from
SPEC2000) when it runs alone and is co-scheduled with different threads. For
multithreaded workloads, ICOUNT [7] fetch policy is used. We can see that the
performance of crafty varies with the workload it is executed in.

Fig. 1. IPC of crafty for different workloads

As a consequence, in SMT processors, the execute time of a thread is unpre-
dictable. The unpredictability is an undesirable feature in embedded systems.
In order to apply SMT architecture to embedded processors, the problem of
performance unpredictability must be addressed.

There are few researches that address this problem. Among the current re-
searches, a noted one is done by Cazorla et al. [9–13]. They proposed a hardware
mechanism to run a given thread at a desired speed. We call this mechanism
Cazorla policy. In Cazorla policy, shared resources are reserved for the time
critical thread, and other co-scheduled threads can not occupy the reserved re-
sources, consequently guaranteeing the time critical thread can achieve desired
performance. In Cazorla policy, shared resources are allocated explicitly and
co-scheduled threads can not compete for resources freely, leading to that the
performance of other threads and overall throughput are affected. We will discuss
it in detail in section 2.

In this paper, we propose a novel instruction fetch policy to control the per-
formance of a time critical thread in SMT processors. Different from Cazorla
policy, our policy allocates shared resources implicitly by fetch control. The goal
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of our policy is to ensure that the time critical thread can achieve desired per-
formance regardless of the workload it is executed in, at the same time to make
full use of shared resources to maximize the performance of other threads and
overall throughput.

The rest of the paper is organized as follows. Section 2 introduces Cazorla
policy, and discusses it. In Section 3, we detail our new fetch policy and describe
how to implement predictable performance for a particular thread by fetch con-
trol. Section 4 presents the methodology and Section 5 illustrates the results.
Finally, concluding remarks are given in Section 6.

2 Cazorla Policy

Give a workload of N threads and a time critical thread in this workload. The
time critical thread is called High Priority Thread (HPT) and other threads are
called Low Priority Threads (LPTs) [12]. The goal of Cazorla policy is to ensure
that HPT runs at a given target IPC that represents X% of IPCalone. IPCalone

is the IPC of HPT when it would run alone on the machine [12].
Cazorla policy is a dynamic resources allocation mechanism, which dynami-

cally adjusts the reserved resources for HPT according to its real performance.
Cazorla policy employs two phases:

During the first phase, the sample phase, the processor runs in single-thread
mode. HPT runs alone for a certain time. As a result, IPCalone of HPT can be
obtained. The target IPC would be achieved correspondingly.

During the second phase, the tune phase, the amount of shared resources
dedicated to HPT is varied according to the real IPC of HPT. If the real IPC is
lower than the target one, increase the amount of resources deserved for HPT.
Otherwise, the amount of resources given to HPT is decreased.

Cazorla policy can implement predictable performance for HPT. However,
there are two problems.

– Firstly, HPT achieves the desired performance by shared resources reserva-
tion. The reserved resources can only be used by HPT. Co-scheduled threads
cannot compete for resources freely. Consequently, the advantage of resources
sharing in SMT processors is weakened.

– Secondly, when Cazorla policy adjusts resources allocation every time, the
amount of physical registers (integer and floating point) and issue queues
(integer, floating point and load/store) given to HPT is changed at the same
time. For example, if the real IPC of HPT is lower than the target one,
physical registers and issue queues are all increased by a certain amount.
In fact, the reason that HPT is incapable of achieving desired performance
maybe lack integer registers and integer issue queue, and there is no need
to increase the amount of other resources. As a result, resource under-use
exists in Cazorla policy.
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3 Achieving Predictable Performance by Instruction
Fetch Policy

In this section, we introduce our instruction fetch policy. To be simple, in the
next of our paper, we call the proposed policy APP (Achieving Predictable
Performance). Same to Cazorla policy, the goal of APP is also to ensure that
HPT achieves the target IPC, and to implement performance predictability. At
the same time, APP tries to make full use of shared resources to maximize the
performance of other co-scheduled threads and overall throughput.

3.1 Basic Idea

The basic idea of our policy is to compare the real IPC and the target IPC for
HPT, and to adjust the fetch priority of HPT based on the comparison result.

We use ICOUNT2.8 as the default fetch policy. That is, co-scheduled threads
are ordered by ICOUNT, the number of threads that can fetch in one cycle is 2,
and the maximum number of instructions fetched per thread in one cycle is 8.
Furthermore, we define two new policies: PHPT and PLPT.

– PHPT: Prioritizing HPT. That is to say, the HPT has the highest fetch
priority, and LPTs are ordered by ICOUNT.

– PLPT: Prioritizing LPTs. That is to say, the HPT has the lowest fetch
priority, and LPTs are ordered by ICOUNT.

Let IPCdsr denote the target IPC of HPT, IPCreal denote the real IPC of
HPT, and DIPC denote the difference between IPCdsr and IPCreal. DIPC is
given by equation (1).

DIPC =
IPCreal − IPCdsr

IPCdsr
× 100% (1)

Our policy switches between PHPT2.8, ICOUNT2.8 and PLPT2.8 according
to the value of DIPC . If DIPC is smaller that a threshold defined as ThPHPT2.8,
which means that the HPT has not achieved its desired performance, we use
PHPT2.8 to accelerate the execution of HPT. If DIPC is bigger than a threshold
defined as ThPLPT2.8, PLPT2.8 is used to maximize the performance of LPTs.
Otherwise, if DIPC is between ThPHPT2.8 and ThPLPT2.8, ICOUNT2.8 is used,
allowing all co-scheduled threads to compete for shared resources freely and
increasing overall throughput.

When PHPT2.8 is used to accelerate the execution of HPT, HPT may not
obtain desired performance yet, especially when the target IPC is very high.
The reason is that PHPT2.8 fetches instructions from two threads in one cycle.
Although HPT has the highest priority, LPTs can still fetch instructions and
occupy shared resources, which may cause that HPT has not enough resources
to achieve desired performance. So we define a new threshold ThPHPT1.8. When
DIPC is smaller than ThPHPT1.8, PHPT1.8 is used to prevent LPTs from occu-
pying more resources. PHPT1.8 means that only one thread (that is, HPT) can
fetch instructions in a cycle.

Figure 2 shows how APP adjusts fetch policy according to the value of DIPC .
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3.2 Implementation

To switch between different fetch policies and adjust the fetch priority of the
HPT, DIPC must be known, that is, IPCdsr and IPCreal are needed. Just as
done in [12], we represent IPCdsr as X% of IPC when the HPT runs alone on
the machine. Assume that the OS has some goals and decides X% for the HPT.
So the hardware needs to know IPC of the HPT when it runs alone, that is,
IPCalone. To get IPCalone dynamically, we employ two phases: sample phase
and tune phase, just as done in [12].

During the sample phase, HPT runs alone for a certain time. The sample phase
is divided two periods: the first period is called warm up period, which is used
to remove the pollution by the LPTs from the shared resources and to increase
the accuracy of IPCalone. During the second period, IPCalone is measured and
IPCdsr is achieved correspondingly.

During the tune phase, all threads are co-scheduled. Each cycle, IPCreal

and DIPC is re-calculated for HPT. The fetch priority of the HPT is adjusted
according to the value of DIPC .

A key point must be considered. Programs experience different phases in their
execution in which their IPC varies significantly [14]. Hence, if we want to realize
X% of the overall IPC for HPT, we need take into account this variable IPC.
Our solution is to execute sample phase and tune phase in an alternate fashion,
just as shown in Figure 3.

From the description above, other than switching threshold, three additional
parameters are needed to be defined, which are: Lwarm-up, Lactual-sample and
Ltune.

– Lwarm−up: the length of the warm up period in the sample phase.
– Lactual−sample: the length of the actual sample phase.
– Ltune: the length of the tune phase.

4 Methodology

In this section, we give the simulator and benchmarks used in our experiments,
the metrics employed to evaluate APP, and the values of parameters defined in
APP.
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4.1 Simulator

Execution is simulated on an out-of-order superscalar processor model derived
from SMTSIM [15]. The simulator models all typical sources of latency, including
caches, branch mispredictions, TLBmisses, etc. It also carefully models execution
down the wrong path between branch misprediction and branch misprediction re-
covery. The baseline configuration of our simulator is shown in Table 1.

Table 1. Baseline Configuration of the Simulator

Parameter Value

Fetch Width 8 instructions per cycle

Instruction Queues 64 int, 64 fp

Functional Units 6 int (4 load/store), 3 fp

Renaming Registers 100 int, 100 fp

Active List Entries 256 entries per thread

Branch Predictor 2K gshare

Branch Target Buffer 256 entries, 4-way associative

L1I cache, L1D cache 64KB, 2-way, 64-bytes lines, 1 cycle access

L2 cache 512KB, 2-way, 64-bytes lines, 10 cycles latency

L3 cache 4MB, 2-way, 64-bytes lines, 20 cycles latency

Main Memory Latency 100 cycles

4.2 Benchmarks

Table 2 summarizes the benchmarks used in our simulations. Generally, HPT
would be multimedia applications. So we use MediaBench [16] (Denoted as B) as
HPT. LPTs are still taken from the SPEC2000 suite [17]. SPEC2000 benchmarks
are divided into two groups based on their cache behaviors: those experiencing
more than 0.01 L2 cache misses per instruction, on average, over the simulated
portion of the code are considered memory-intensive applications, called MEM
(denoted as M), and the rest are called ILP (denoted as I), which have lower
miss rates and higher inherent ILP (Instruction Level Parallelism).

Two kinds of workloads are simulated: BI and BM. In BI workloads, LPTs are
all taken form ILP benchmarks. In BM workloads, LPTs are all MEM bench-
marks. The number of threads included in a workload may be 2, 3 or 4. The
simulation ends when HPT is finished.

4.3 Metrics

To quantify the efficiency of APP in achieving predictable performance, we use
two metrics: Success Rate (SR) and Maximum Performance Variance (MPV).

If the real IPC of HPT is not less than the target one, APP is successful
in achieving predictable performance. Otherwise, it fails. Success Rate is the
proportion of success cases to all measured cases.
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Table 2. Benchmarks

HPT LPTs

adpcm-encode, ILP 1 gzip, gap, eon, fma3d, mesa
adpcm-decode, 2 {crafty, eon}, {crafty, gzip}, {gzip, fma3d},
epic-encode, {eon, mesa}, {fma3d, mesa}
epic-decode, 3 {gzip, eon, gap}, {crafty, fma3d, gap}, {eon, fma3d,
mpeg2- mesa}, {mesa, gap, crafty}, {gap, fma3d, mesa}
encode, MEM 1 twolf, vpr, swim, applu, lucas
mpeg2-decode 2 twolf, vpr, {twolf, swim}, {applu, lucas},

{vpr, lucas}, {equake, applu}
3 {twolf, vpr, lucas}, {applu, swim, equake}, {twolf,

lucas, swim}, {vpr, equake, applu}, {lucas, swim,
applu}

Maximum Performance Variance is a metric for the failed cases. Supposed
that Xreal is the percentage of real IPC with respect to IPCalone, and X is the
target percentage. Define Performance Variance as equation (2):

VHPT = X −Xreal (2)

For all failed cases, the maximum of VHPT is Maximum Performance Vari-
ance. If a policy has a Success Rate of 1, Maximum Performance Variance will
be 0.

In addition, we will evaluate the performance of LPTs and overall throughput.
IPC is used as the metric.

4.4 Choosing Parameter

Same to Cazorla policy, APP also employs two phases: sample phase and tune
phase. When evaluating these two policies, the same length is used, as shown in
Table 3.

Table 3. The Values of Phase Length

Parameter Lwarm−up Lactual−sample Ltune

Value 216 cycles 214 cycles 222 cycles

Table 4. The Values of Switching Thresh-
old

Parameter ThPHPT1.8 ThPHPT2.8 ThPLPT2.8

Value -3% -0.1% 0.1%

In APP policy, there are three parameters deciding when to switch fetch
policy. Their values are shown in Table 4. These values are determined from
plenty of experiments.

5 Results

We first show efficiency of APP in achieving predictable performance. Next, the
total throughput and the performance of LPTs obtained by APP are compared
to those under ICOUNT. At last, we compare APP policy with Cazorla policy.
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5.1 Efficiency in Achieving Predictable Performance

Figure 4 shows SR and MPV results achieved by APP. On the x-axis, the target
percentage of HPT is given, ranging from 10% to 90%. For each size of the
workload (2, 3, or 4 threads), SR result is given on the left y-axis and MPV
result is given on the right y-axis.
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Fig. 4. SR and MPV results of APP

When the target percentage is not more than 70%, for all kinds of workloads,
SR is very high, reaching 95% at worst case, and MPV is not more than 5%.
However, after the target percentage reaches 80%, SR declines rapidly, and MPV
reaches 9.6% for the worst case. The main reason is IPCalone achieved during the
actual sample phase can not exactly represent the IPC during the tune phase. If
IPCalone sampled is smaller than that of the tune phase, the real performance
achieved in the tune phase will be lower than the target one. If IPCalone is
bigger, the real IPC will not always exceed the target IPC. For example, assume
that IPCalone is 4 and during the tune phase, the IPC of the HPT when it
is runs alone is only 3.5. If the percentage is 90%, the desired IPC is 3.6. It is
impossible that real IPC reaches 3.6 during the tune phase. But if the percentage
is low, the real IPC can exceed the target one, and the final performance meets
the target by the complementary effect.

SR is high when the target percentage is lower than 70%, but it does not
reach 100%. Fortunately, from the further experiments, we found that using a
target percentage higher than actually desired one by 5%, a success rate of 1 can
always be achieved. This method is only effective when the target percentage
is lower than 70%. When the target percentage is higher than 80%, to ensure
that HPT can always achieve desired performance, running HPT alone may be
a simple and effective way.

5.2 The Performance of LPTs and Overall Throughput Results

Figure 5 depicts the IPC of LPTs relative to ICOUNT and Figure 6 depicts
the total IPC achieved by APP relative to ICOUNT. ICOUNT is a representa-
tive fetch policy orienting towards throughput maximization. The performance
of LPTs and overall throughput are given as the percentage of those under
ICOUNT.
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For the workload of type BI, the total IPC achieved by APP is always lower
than that achieved by ICOUNT. Especially, when the percentage is very slow or
very high, the degradation is more severe. The main reason is ICOUNT orients
towards throughput optimization of ILP workloads. However, in our policy, to
achieve desired performance for the HPT, the fetch priority of HPT is forced
to the highest or the lowest sometimes regardless of its real execution state. In
fact, if HPT has the highest priority and occupies many resources, resources
clogging may occur; if HPT can make forward progress by using the resources
not required by LPTs but the HPT has the lowest priority, resources under-use
happens. Compared to ICOUNT, the average degradation of overall throughput
is not more then 7%.

For the workload of type BM, the total IPC becomes higher as the target
percentage increases. When the percentage is very high, APP even outperforms
ICOUNT. But for different sizes of workloads, the point at which APP begins to
outperform ICOUNT is different. For BM2, BM3 and BM4, the points are 50%,
40% and 30%, respectively. That is to say, the smaller the size of workload is,
the higher the percentage is. Now let us give the explanation. When ICOUNT
is used, IPC of HPT in BM4 is the lowest, because the competition for shared
resources is the most severe. By simulations, we find IPC of the HPT in BM4
under ICOUNT is only 28% of its full speed. However, for BM3 and BM2, the
respective values are 33% and 45%. When the target percentage exceeds these
values, IPC of the HPT achieved by APP will be higher than that obtained
under ICOUNT. The increase of HPT in throughput will lead to the decrease of
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LPTs in throughput. But HPT has higher inherent IPC, resulting in the total
throughput is increased eventually. Compared to ICOUNT, overall throughput
achieved by APP is increased by 10.5% on average.

As a whole, compared to ICOUNT, the performance of LPTs is decreased by
not more than 15%, and overall throughput is even increased by 1.8% on average.
It can be concluded that to achieve predictable performance for HPT, APP does
not sacrifice the performance of LPTs and overall throughput severely.

5.3 Compared with Cazorla Policy

APP is same with Cazorla policy for that they all obtain the target IPC of HPT
in sample phase and implement desired performance in tune phase. The differ-
ence is the way how to allocate shared resources to ensure that HPT achieves
desired performance. Cazorla policy allocates shared resources explicitly by re-
sources reservation for HPT, and APP allocates shared resources implicitly by
instruction fetch policy.

In Figure 7, APP is compared with Cazorla policy in success rate and max-
imum performance variance. Whether in SR or MPV, the results of APP and
Cazorla policy are very close. It is concluded that APP can achieve predictable
performance for HPT as effectively as Cazorla policy does.
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Figure 8 shows the increment of APP in the performance of LPTs and overall
throughput relative to Cazorla policy. Overall throughput is increased by 4.9%
on average and the performance of LPTs is increased by 17.6%. The increment
becomes higher as the target percentage increases. When the target percentage is
90%, for two-thread, three-thread and four-thread workloads, the performance of
LPTs is increased by 57.7%, 74.5% and 97.7% respectively. Compared to Cazorla
policy, APP can more effectively make full use of shared resources to optimize
the performance of LPTs and overall throughput.

6 Conclusions

SMT processor is a good option in embedded systems for its good cost-
performance trade-off. However, in SMT processors, the execute time of a thread
is unpredictable. The unpredictability is an undesirable feature in embedded sys-
tems. In order to apply SMT architecture to embedded processors, the problem
of performance unpredictability must be addressed.

In this paper, we propose a fetch policy called APP to control the performance
of HPT in SMT processors. APP switches between PHPT, ICOUNT and PLPT
according to the execution state of HPT, and implements predictable perfor-
mance for HPT. Simulation results show that when the target percentage is not
more than 70%, APP obtains a success rate of over 95%. For the failed cases,
maximum performance variance is less than 5%. After the target percentage
reaches 80%, SR will decline and MPV is 9.6% for the worst case.

APP is also compared with Cazorla policy, a noted mechanism to address the
problem of performance unpredictability in SMT processors. APP can achieve
predictable performance for HPT as effectively as Cazorla policy does. Further-
more, APP can more effectively make full use of shared resources to optimize
the performance of LPTs and overall throughput. Compared with Cazorla pol-
icy, overall throughput is increased by 4.9% on average and the performance of
LPTs is increased by 17.6%.
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