
123

Weixia Xu Liquan Xiao Chengyi Zhang
Jinwen Li Liyan Yu (Eds.)

17th CCF Conference, NCCET 2013
Xining, China, July 2013
Revised Selected Papers

Computer Engineering
and Technology

Communications in Computer and Information Science 396

Communications
in Computer and Information Science 396

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Weixia Xu Liquan Xiao Chengyi Zhang
Jinwen Li Liyan Yu (Eds.)

Computer Engineering
and Technology

17th CCF Conference, NCCET 2013
Xining, China, July 20-22, 2013
Revised Selected Papers

13

Volume Editors

Weixia Xu
Liquan Xiao
Chengyi Zhang
Jinwen Li
Liyan Yu

National University of Defense Technology
School of Computer Science
Changsha, Hunan, P.R. China

E-mail:
weixia_xu@263.net
marshell.xiao@gmail.com
chengyizhang@nudt.edu.cn
lijinwen@sina.com
happyfish1988@126.com

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-41634-7 e-ISBN 978-3-642-41635-4
DOI 10.1007/978-3-642-41635-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013951048

CR Subject Classification (1998): C.1.2, C.1.4, B.7.1, B.4.3, B.3.2, B.2.4, B.8.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased to present the proceedings of the 17th Annual Conference on
Computer Engineering and Technology (NCCET 2013). Over its short 17-year
history, NCCET has established itself as one of the major national
conferences dedicated to the important and emerging challenges in the field of
computer engineering and technology. Following the previous successful events,
NCCET 2013 provided a forum to bring together researchers and practition-
ers from academia and industry to discuss cutting-edge research on computer
engineering and technology.

We are delighted that the conference continues to attract high-quality sub-
missions from a diverse and national group of researchers. This year, we received
234 paper submissions, of which 26 papers were accepted. Each paper received
three or four peer reviews from our Technical Program Committee (TPC) com-
prising 61 TPC members from academia, government, and industry.

The pages of this volume represent only the end result of an enormous en-
deavor involving hundreds of people. Almost all of this work is voluntary, with
some individuals contributing hundreds of hours of their time to the effort. To-
gether, the 61 members of the TPC, the 16 members of the external review
committee (ERC), and the 13 other individual reviewers consulted for their ex-
pertise wrote nearly 500 reviews.

Every paper received at least two reviews and many had three or more.
With the exception of submissions by the TPC, each paper had at least two
reviews from the TPC and at least one review from an outside expert. For the
second year running, most of the external reviews were done by the ERC, which
was selected in advance, and additional external reviews beyond the ERC were
requested whenever appropriate or necessary. Reviewing was “first read double-
blind,” meaning that author identities were withheld from reviewers until they
submitted a review. Revealing author names after initial reviews were written
allowed reviewers to find related and previous material by the same authors,
which helped greatly in many cases in understanding the context of the work,
and also ensured that the author feedback and discussions at the PC meeting
could be frank and direct. For the first time in many years, we allowed PC
members to submit papers to the conference. Submissions co-authored by a TPC
member were reviewed exclusively by the ERC and other outside reviewers, and
these same reviewers decided whether to accept the PC papers; no PC member
reviewed a TPC paper, and no TPC papers were discussed at the TPC meeting.

After the reviewing was complete, the PC met at the National University of
Defense Technology, Changsha, during May 25–28 to select the program. Sepa-
rately, the ERC decided on the PC papers via email and phone discussions. In
the end, 26 of the 234 submissions (11%) were accepted for the conference.

VI Preface

First of all, we would like to thank all researchers who submitted manuscripts.
Without these submissions, it would be impossible to provide such an interesting
technical program. We thank all PC members for helping to organize the confer-
ence program. We thank all TPC members for their tremendous time and efforts
during the paper review and selection process. The efforts of these individuals
were crucial in constructing our successful technical program. Last but not least,
we would like to thank the organizations and sponsors that supported NCCET
2013. Finally, we thank all the participants of the conference and hope they had
a truly memorable NCCET 2013 in Xining, China.

Xu Weixia
Zhao Haixing

Zhang Minxuan
Xiao Liquan

Organizing Committee

General Co-chairs

Xu Weixia National University of Defense Technology,
Changsha, China

Zhao Haixing Qinghai Normal University, Xining, China
Zhang Minxuan National University of Defense Technology,

Changsha, China

Program Chair

Xiao Liquan National University of Defense Technology,
Changsha, China

Publicity Co-chairs

Zhang Chengyi National University of Defense Technology,
Changsha, China

Li Jinwen National University of Defense Technology,
Changsha, China

Yu Liyan National University of Defense Technology,
Changsha, China

Local Arrangements Co-chairs

Zhao Haixing Qinghai Normal University, Xining, China
Li Jinwen National University of Defense Technology,

Changsha, China
Wang Qinghai Qinghai Normal University, Xining, China

Registration and Finance Co-chairs

Geng Shengling Qinghai Normal University, Xining, China
Wang Yongwen National University of Defense Technology,

Changsha, China
Li Yuanshan National University of Defense Technology,

Changsha, China
Zhang Junying National University of Defense Technology,

Changsha, China

VIII Organizing Committee

Program Committee

Han Wei 631 Institute of AVIC, Xi’an, China
Jin Lifeng Jiangnan Institute of Computing Technology,

Wuxi, China
Xiong Tinggang 709 Institute of China Shipbuilding Industry,

Wuhan, China
Zhao Xiaofang Institute of Computing Technology Chinese

Academy of Sciences, Beijing, China
Yang Yintang Xi Dian University, Xi’an, China
Dou Qiang National University of Defense Technology,

Changsha, China
Li Jinwen National University of Defense Technology,

Changsha, China
Zhang Chengyi National University of Defense Technology,

Changsha, China

Technical Program Committee

Chen Shuming National University of Defense Technology,
Changsha, China

Chen Yueyue Hunan Changsha DIGIT Company,
Changsha, China

Dou Qiang National University of Defense Technology,
Changsha, China

Du Huimin Xi’an University of Posts &
Telecommunications, Xi’an, China

Fan Dongrui Institute of Computing Technology Chinese
Academy of Sciences, Beijing, China

Fan Xiaoya Northwestern Polytechnical University, Xi’an,
China

Fang Xing Jiangnan Institute of Computing Technology,
Wuxi, China

Gu Tianlong Guilin University of Electronic Technology,
Guilin, China

Guo Donghui Xiamen University, Xiamen, China
Guo Wei Tianjin University, Tianjin, China
Hou Jianru Institute of Computing Technology Chinese

Academy of Sciences, Beijing, China
Huang Jin Xi Dian University, Xi’an, China
Ji Liqiang Cesller Company, Shenzhen, China
Jin Jie Hunan Changsha Fusion Company, Changsha,

China
Li Ping University of Electronic Science and

Technology of China, Chengdu, China

Organizing Committee IX

Li Qiong Inspur Information Technology Co. Ltd.,
Beijing, China

Li Yuanshan Inspur Information Technology Co. Ltd.,
Beijing, China

Li Yun Yangzhou University, Yangzhou, China
Lin Kaizhi Inspur Information Technology Co. Ltd.,

Beijing, China
Li Zhenghao Tongji University, Shanghai, China
Sun Haibo Inspur Information Technology Co. Ltd.,

Wuhan, China
Sun Yongjie Hunan Changsha DIGIT Company, Changsha,

China
Tian Ze 631 Institute of AVIC, Xi’an, China
Wang Dong National University of Defense Technology,

Changsha, China
Wang Yaonan Hunan University, Changsha, China
Wang Yiwen University of Electronic Science and

Technology of China, Chengdu, China
Xing Zuocheng Hunan Changsha DIGIT Company, Changsha,

China
Xue Chengqi Southeast University, Nanjing, China
Yang Peihe Jiangnan Institute of Computing Technology,

Wuxi, China
Yang Xiaojun Institute of Computing Technology Chinese

Academy of Sciences, Beijing, China
Yin Luosheng Synopsys Company, Shenzhen, China
Yu Mingyan Harbin Institute of Technology, Harbin, China
Yu Zongguang China Electronics Technology Group

Corporation No. 58 Research Institute,
Wuxi, China

Zeng Tian 709 Institute of China Shipbuilding Industry,
Wuhan, China

Zeng Xifang Hunan Great Wall Information Technology
Co. Ltd., Changsha, China

Zeng Yu Sugon Company, Beijing, China
Zeng Yun Hunan University, Changsha, China
Zhang Jianyun PLA Electronic Engineering Institute, Hefei,

China
Zhang Lixin Institute of Computing Technology Chinese

Academy of Sciences, Beijing, China
Zhang Shengbing Northwestern Polytechnical University, Xi’an,

China
Zhang Xu Jiangnan Institute of Computing Technology,

Wuxi, China

X Organizing Committee

Zhang Yiwei 709 Institute of China Shipbuilding Industry,
Wuhan, China

Zhao Yuelong South China University of Technology,
Guangzhou, China

Zhou Ya Guilin University of Electronic Technology,
Guilin, China

Table of Contents

Session 1: Application Specific Processors

Design and Implementation of a Novel Entirely Covered K2

CORDIC . 1
Jianfeng Zhang, Wei Ding, and Hengzhu Liu

The Analysis of Generic SIMT Scheduling Model Extracted from
GPU . 9

Yuanxu Xu, Mingyan Yu, Chao Zhang, and Bing Yang

A Unified Cryptographic Processor for RSA and ECC in RNS 19
Jizeng Wei, Wei Guo, Hao Liu, and Ya Tan

Real-Time Implementation of 4x4 MIMO-OFDM System for
3GPP-LTE Based on a Programmable Processor . 33

Ting Chen, Hengzhu Liu, and Jianghua Wan

A Market Data Feeds Processing Accelerator Based on FPGA 44
Xiaoyang Shen, Jiang Jiang, Liyuan Zhou, Tianyi Yang, and Li Chen

The Design of Video Accelerator Bus Wrapper . 53
Yan Xu, Longmei Nan, Pengfei Guo, and Jinfu Xu

Design and Implementation of Novel Flexible Crypto Coprocessor and
Its Application in Security Protocol . 61

Shice Ni, Yong Dou, Kai Chen, and Lin Deng

Session 2: Communication Architecture

Wormhole Bubble in Torus Networks . 73
Yongqing Wang and Minxuan Zhang

Self-adaptive Scheme to Adjust Redundancy for Network Coding with
TCP . 81

Hongyun Zhang, Wanrong Yu, Chunqing Wu, Xiaofeng Hu,
Liang Zhao, and Xiangdong Cui

Research on Shifter Based on iButterfly Network . 92
Zhongxiang Chang, Jinshan Hu, Chengwei Zheng, and Chao Ma

A Highly-Efficient Approach to Adaptive Load Balance for Scalable
TBGP . 101

Lei Gao, Mingche Lai, Kefei Wang, and Zhengbin Pang

XII Table of Contents

Session 3: Computer Application and Software
Optimization

OpenACC to Intel Offload: Automatic Translation and Optimization . . . 111
Cheng Chen, Canqun Yang, Tao Tang, Qiang Wu, and Pengfei Zhang

Applying Variable Neighborhood Search Algorithm to Multicore Task
Scheduling Problem . 121

Chang Wang, Jiang Jiang, Xianbin Xu, Xing Han, and Qiang Cao

Empirical Analysis of Human Behavior Patterns in BBS 131
Guirong Chen, Wandong Cai, Huijie Xu, and Jianping Wang

Performance Evaluation and Scalability Analysis of NPB-MZ on Intel
Xeon Phi Coprocessor . 143

Yuqian Li, Yonggang Che, and Zhenghua Wang

An Effective Framework of Program Optimization for High Performance
Computing . 153

Pingjing Lu, Bao Li, Zhengbin Pang, Ying Zhang, Shaogang Wang,
Jinbo Xu, and Yan Liu

Session 4: IC Design and Test

A Constant Loop Bandwidth Fraction-N Frequency Synthesizer for
GNSS Receivers . 163

Dun Yan, Jiancheng Li, Xiaochen Gu, Songting Li, and
Chong Huang

Investigation of Reproducibility and Repeatability Issue on EFT Test
at IC Level to Microcontrollers . 171

Jianwei Su, Jiancheng Li, Jianfei Wu, and Chunming Wang

A Scan Chain Based SEU Test Method for Microprocessors 180
Yaqing Chi, Yibai He, Bin Liang, and Chunmei Hu

Session 5: Processor Architecture

Achieving Predictable Performance in SMT Processors by Instruction
Fetch Policy . 186

Caixia Sun, Yongwen Wang, and Jinbo Xu

Reconfigurable Many-Core Processor with Cache Coherence 198
Xing Han, Jiang Jiang, Yuzhuo Fu, and Chang Wang

Backhaul-Route Pre-Configuration Mechanism for Delay Optimization
in NoCs . 208

Xiantuo Tang, Feng Wang, Zuocheng Xing, and Qinglin Wang

Table of Contents XIII

A Novel CGRA Architecture and Mapping Algorithm for Application
Acceleration . 218

Li Zhou, Hengzhu Liu, and Dongpei Liu

Session 6: Technology on the Horizon

Tunable Negative Differential Resistance of Single-Electron Transistor
Controlled by Capacitance . 228

Xiaobao Chen, Zuocheng Xing, and Bingcai Sui

Modeling and Electrical Simulations of Thin-Film Gated SOI Lateral
PIN Photodetectors for High Sensitivity and Speed Performances 235

Guoli Li, Yun Zeng, Wei Hu, Yu Xia, and Wei Peng

A Full Adder Based on Hybrid Single-Electron Transistors and
MOSFETs at Room Temperature . 244

Xiaobao Chen, Zuocheng Xing, and Bingcai Sui

Author Index . 251

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 1–8, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Design and Implementation
of a Novel Entirely Covered K2 CORDIC

Jianfeng Zhang1,*, Wei Ding2,1, and Hengzhu Liu1,2

1 Institute of Microelectronics and Microprocessor,
School of Computer National University of Defense Technology

Changsha HN, P.R. of China
jianfengzhang@nudt.edu.cn

2 China Defense Science and Technology Information Center
Beijing, P.R. of China

1988dingwei2827@sina.com

Abstract. The conventional Coordinate Rotation Digital Computer (CORDIC)
algorithm has been widely applied in many aspects, whereas it is restricted by
the convergence range of the rotation angle, which need use pre-processing and
post-processing units to control the quadrant of the angle. This paper proposes a
novel CORDIC architecture which covers the entire coordinate space, no
further more pre-processing and post-processing modules will be required.
Compared with the conventional CORDIC, the Bit Error Position (BEP) of the
proposed architecture has been improved, which exceeds the conventional
CORDIC 2 bits. In the mean time, both of the mean errors and the hardware
overhead are reduced, and the speed accelerates 35%. The proposed k2
CORDIC architecture has been validated on the Xilinx ML505 FPGA
development platform, which has been well applied in Direct Digital Frequency
Synthesizer (DDS) and Fast Fourier Transform (FFT).

Keywords: Coordinate Rotation Digital Computer (CORDIC), bit error
position (BEP), FPGA, Direct Digital Frequency Synthesizer (DDS), Fast
Fourier Transform (FFT).

1 Introduction

The conventional Coordinate Rotation Digital Computer (CORDIC) algorithm is first
presented by J. Volder [1], which uses a series of constant and associated with the
radix angles to and fro to approach the assigned angle. The corresponding hardware
can be implemented in very economic fashion, which is executed merely by shift and
adders. Therefore, the algorithm has been applied in many fields, such as replacing the
Table Look-up in Direct Digital Frequency Synthesizer (DDS) to implement the
trigonometric transformation [2], demanding applications in digital signal processing
(DSP) [3], video technology and image processing like Fast Fourier Transform
(FFT) [4].

* Corresponding author.

2 J. Zhang, W. Ding, and H. Liu

In essence, CORDIC can be operated in two different modes: rotation and vector.
The rotation mode, given a vector with the initial coordinate (x0, y0) and the target

rotation angle (0θ), aims to compute the final coordinate ('x , 'y) through a series of

backward and forward rotation in an iterative manner. While in vector mode, the
magnitude and the phase angle of the vector are computed by initial and final
coordinates [5]. However, despite these advantages, the conventional CORDIC has
some drawbacks, such as excessive rotation times, the scaling compensation and the
limited convergence range. The convergence range of the conventional CORDIC
is[9 9 .8 , 9 9 .8]° °− , which just covers the first and fourth quadrants.

Owing to the limited convergence range of the rotation angle, many researchers
have done some incremental research work to improve the conventional CORDIC
algorithm, such as repeating the first iteration of the conventional CORDIC [6],
domain folding technology proposed in the Scaling-Free (SF) CORDIC [7], reduced z-
datapath CORDIC [8] and enhanced scaling free CORDIC [9]. However, all of them
need pre-processing and post-processing units, and the required iteration times do not
be reduced. Therefore, we propose a novel CORDIC architecture which based on the
rotation mode, the convergence range of which will be improved to[,]π π− . Compared
with the conventional CORDIC, the proposed one eliminates the pre-processing and
post-processing units, and the performance, the Bit Error Position (BEP) and the mean
error are all improved significantly. The proposed k2 architecture of CORDIC
algorithm has been validated on the FPGA development kit, and applied in Direct
Digital Frequency Synthesizer (DDS) and Fast Fourier Transform (FFT).

The following paper is organized as follows. Section II describes the theoretical
background of the proposed algorithm, and the architecture of the k2 CORDIC is
illustrated in section III. In section IV, we present the simulation results and give some
discussions. Conclusions are discussed in section V.

2 Principle of k2 CORDIC Algorithm

2.1 Conventional CORDIC

The primary rotation matrix of the Conventional CORDIC can be described as
(considering anti-clockwise rotation)

0

0

' cos sin

' sin cos

xx

yy

θ θ
θ θ

−
= ⋅

 (1)

In equation (1), θ is the target angle of the rotation. In the conventional CORDIC

algorithm, θ is the summation of a decreasing series of elementary angles iα .

1

0

b

i i
i

θ σ α
−

=
= (2)

arctan 2 i
iα −= (3)

 Design and Implementation of a Novel Entirely Covered K2 CORDIC 3

In expression (2), b is the word length of the machine. iσ belongs to {-1, 1},

which is the sign of the residual angle of the (i-1)th iteration, and indicates the direction
of the ith iteration. When it is positive, the next iteration is anti-clockwise; on the
contrary, the next iteration is clockwise.

1

0

()
i

i j j
j

signσ θ σ α
−

=

= − (4)

Then substituting (2) into (1) by using (3), we can get

0

0

' 1 2

' 2 1

i
i

i
i

xx
k

yy

σ
σ

−

−

 −
= ⋅ −

 (5)

1

0

cos
b

i
i

k α
−

=

= ∏ (6)

Where k is the scale factor and the range of the rotation angle is[99.8 , 99.8]° °− .
From the hardware implementation, the algorithm only needs shift and addition
operations.

2.2 k2 CORDIC Algorithm

Despite the attractiveness, conventional CORDIC has some drawbacks, especially the
limited convergence range. We propose a novel CORDIC architecture in this section.
As sine and cosine functions can be expressed as follows

2 2cos cos sin
2 2

sin 2cos sin
2 2

θ θθ

θ θθ

 = −

 =

 (7)

Then substituting expressions (7) into (1)

2 2

0

2 2 0

cos sin 2cos sin' 2 2 2 2
'

2cos sin cos sin
2 2 2 2

xx

yy

θ θ θ θ

θ θ θ θ

 − −
= ⋅

 −

 (8)

In which we can extract the 2cos
2

θ
 factor, the expression will be described as

2

02

2 0

1 tan 2 tan' 2 2cos
' 2

2 tan 1 tan
2 2

xx

yy

θ θ
θ

θ θ

 − −
= ⋅

 −

 (9)

Assigning that θ is the summation of a decreasing series of elementary angle iα , so

that

4 J. Zhang, W. Ding, and H. Liu

 tan tan 2
2

i
i

θ α −= = (10)

When substituting equation (10) into (9)

2 11
02

1 2
0 0

' 1 2 2
cos

' 2 1 2

i ib
i

i i i
i i

xx

yy

σα
σ

− − +−

− + −
=

 − −
= ⋅ −
∏ (11)

The expression (11) illustrates that the implementation of the expression will only
requires shift and adders. As every proposed rotation angle can be described as

2arctan2 (0,1, , 1)i
i i bθ −= = ⋅⋅⋅ − (12)

Compared with the conventional CORDIC, the convergence range of the proposed
architecture can cover the whole coordinate space, which eliminates the pre-processing
and post-processing units. However, the scale factor of the proposed one is changed

into
1

2

0

(cos)
b

i
i

α
−

=
∏ , which is the square of the conventional one. Therefore, we name

the proposed algorithm k2 CORDIC algorithm. If using the same bits to represent it,
the truncation error would be decreased [10].

3 Architecture of k2 CORDIC Algorithm

In the architecture of the k2 CORDIC algorithm, b is the word length of the machine,
which is configurable. More specifically, the implementation of a 16 bits CORDIC
rotator is described here as an example. All of the discussions presented in this section
are suitable for any n bits CORDIC rotator as well.

For the proposed architecture, we assume that the decimal 1 is represented as
16’h4000, the most significant bit is the sign of the data. When right shifting a data
more than 14 bits, it would only leave the sign bits and mean no operation, which can
be regarded as the machine zero.

In the expression (11), i denotes the ith iteration. If i is larger than decimal 7, the
element 2-2i will be regarded as the machine zero, then the element (1-2-2i) approaches
the decimal 1. The corresponding expression is

115

02

1
8 0

' 1 2
cos

' 2 1

i
i

i i
i i

xx

yy

σα
σ

− +

− +
=

 −
= ⋅

∏ (13)

While if i=0, the expression (11) can be described as

0 02

0
0 0

0 2'
cos

2 0'

xx

yy

σ
α

σ
−

= ⋅

 (14)

When i=1, the expression (11) will be changed into

2

02 1
1 2

01

' 1 2
cos

' 1 2

xx

yy

σα
σ

−

−

 − −
= ⋅ −

 (15)

 Design and Implementation of a Novel Entirely Covered K2 CORDIC 5

Finally, if the value of i fluctuates between decimal 2 and decimal 7, the expression
(11) will be

2 17
02

1 2
2 0

' 1 2 2
cos

' 2 1 2

i i
i

i i i
i i

xx

yy

σ
α

σ

− − +

− + −
=

 − − = ⋅ −
∏ (16)

Analyzing these expressions (13)~(16), the architecture of the expression (14) is the
simplest, the longest data path of which is one shift, and the expression (13) is one shift
and one addition. However, the longest data path of the expression (15) and (16) is one
shift and two additions. In the meantime, all of the architecture of the expressions can’t
work normally without the angle path adder. In order to balance the logic of every
stage of the architecture, we put the i=0 and i=1 modules in the same stage. When i is
bigger than 8, we synthesize the next two bits in the same stage. The logic of the
proposed architecture is shown in Fig.1.

x y

<<1 <<1

inx
iny

outx outy

 (a) i=0

x y

>>2

inx
iny

outx outy

(b) i=1

>>2

- -

+/- +/-

x y

>>2i

inx
iny

outx outy

>>2i

- -

+/- +/-

(c) 2 7i≤ ≤

>>i-1 >>i-1

x y

inx
iny

outx outy

+/- +/-

(d) 8 i≤

>>i-1 >>i-1

+/- +/-

z

+/-

2arctan(2)i−

inz

0 0

outz

_z sign

_z sign _z sign

z

+/-

2arctan(2)i−

inz

outz

_z sign

_z sign_z sign

z

+/-

2 arctan(2)i−

inz

outz

_z sign

_z sign _z sign

z

+/-

2arctan(2)i−

inz

outz

_z sign

_z sign _z sign

Fig. 1. The architecture of proposed k2 CORDIC algorithm

Firstly, the initial values of x, y and the rotation angle are sent to the first stage (i=0
and i=1 modules). According to the sign of the input angle to judge the direction of the
rotation, when it is positive, the iteration is anti-clockwise; on the contrary, the next
iteration is clockwise. Secondly, the signals are handled by the third module (1<i<8)
which will execute six times. Finally, the fourth module (i>7) will receive the data
streams. Different from the former steps, it will repeat four times.

6 J. Zhang, W. Ding, and H. Liu

4 Performance Evaluation and Comparison

In order to evaluate the performance of the proposed k2 algorithm, we mainly
concentrate on three issues: the calculation accuracy of the results, the area
consumption and the computation speed.

4.1 Error Analysis

There are two different error sources during the CORDIC algorithm operation [10]:

• Quantization error due to the quantified representation of a rotation angle of
the CORDIC by the finite number.

• The truncation or cut-off rounding error due to the word length of arithmetic
operations.

The truncation error plays a key role in the error of CORDIC hardware
implementation. We analyze the error of the proposed algorithm in terms of the BEP,
the expression of which is described as

2log c rBEP x x= − − (17)

In which, cx is computed by the machine, and rx is the real value of the

trigonometric function.

(a) The conventional CORDIC architecture

(b) The k2 CORDIC architecture

Fig. 2. Accuracy errors of Cosine for CORDIC architectures

 Design and Implementation of a Novel Entirely Covered K2 CORDIC 7

We generate a pseudorandom sequence of angles lying within the convergence
range [0,]8

π . Using these angles as the input, the corresponding BEP is shown in

Fig.2. It is apparent that the maximum error of the conventional CORDIC locates at
about the 11th bit position, while the proposed architecture locates at about the 13th,
which exceeds conventional CORDIC two bits.

Simultaneously, we analyze the mean error of these architectures, which is shown in
Table.1. The mean error of the proposed architecture is the smaller, which means that
the value calculated by the proposed one is the more precise.

Table 1. Comparison of Mean Error

Comparison X mean error Y mean error Stages
Conventional 11.261 e-005 5.1572e-005 17

K2 Architecture 2.1686 e-005 4.4345 e-005 11

Simultaneously, we analyze the mean error of these architectures, which is shown in

Table.1. The mean error of the proposed architecture is the smaller, which means that
the value calculated by the proposed one is the more precise.

4.2 Area Comparison

We synthesize the proposed architecture and the conventional CORDIC on FPGA
XC5VL110T, the hardware overhead is shown in Table2.

Table 2. Comparison of Hardware Overhead

Comparison Conventional CORDIC K2 architecture
Slice Registers 1079 1147

Slice LUTs 1968 894
LUT-FF pairs 840 886

Compared with the conventional CORDIC, the proposed one uses 6% more

registers and 5.5% more LUT-FF pairs, but reduces 55% required LUTs. The proposed
one is verified on Xilinx FPGA ML505 development platform. Fig.3 shows the
chipscope snapshots of the proposed CORDIC. According to the chipscope snapshots,
the proposed architecture works normally.

Fig. 3. Chipscope evaluation on Xilinx ML505 development platform

8 J. Zhang, W. Ding, and H. Liu

4.3 Speed Comparison

The required stages of varied architectures are also shown in Table.1. The complete
pipeline of proposed K2 architecture contains 11 stages and is 6 cycles less than
conventional CORDIC structure, which means that the speed of the proposed one
accelerates 35%.

5 Conclusion

In this paper, we present a novel k2 CORDIC architecture. Compared with
conventional CORDIC, the proposed architecture covers the entire coordinate space
without pre-processing and post-pressing units. Based on the algorithm, an area-
efficient pipeline-balancing architecture is designed. The proposed architecture has
been implemented with Verilog HDL, and evaluated by FPGA. The results show the
proposed CORDIC exceeds the conventional CORIDC in terms of the computation
accuracy, the consumed area and the iteration speed.

Acknowledgments. This work is supported by Research Fund for the Doctoral
Program of Higher Education of China (No. 20114307130003).

References

1. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Transactions
Electron. Computer EC-8(3), 330–334 (1959)

2. Jridi, M.: Direct Digital Frequency Synthesizer with CORDIC Algorithm and Taylor
Series Approximatation for Digital Receivers. European Journal of Scientific
Research 30(4), 542–553 (2009)

3. Zhou, L., Liu, H., Zhang, B.: Flexible and High-Efficiency Turbo Product Code Decoder
Design. IEICE Electornics Express 9(12), 1044–1050 (2012)

4. Oruklu, E., Xiao, X., Saniie, J.: Reduced Memory and Low Power Architectures for
CORDIC-based FFT Processors. Journal of Signal Processing Systems, 1–6 (2011)

5. WaIther, J.S.: A unified aIgorithm for eIementary functions. In: AFIPS Spring Joint
Computer Conference, pp. 379–385 (1971)

6. Hu, X., Harber, R.G.: Expending the range of convergence of the CORDIC algorithm.
IEEE Transactions on Computers 40 (1991)

7. Maharatna, K., Banerjee, S., Grass, E., Krstic, M., Troya, A.: Modified virtually scaling-
free adaptive CORDIC rotator algorithm and architecture. IEEE Trans. Circuits Syst.
Video Technol. 15(11), 1463–1474 (2005)

8. Maharatna, K., Shabrawy, K.E., Hashimi, B.A.: Reduced z-datapath CORDIC rotator. In:
IEEE Int. Symp. for Circuits and System, pp. 3374–3377 (2008)

9. Jaime Francisco, J., Sanchez Miguel, A., Hormigo, J., Villalba, J., Zapata Emilio, L.:
Enhanced Scaling-Free CORDIC. IEEE Transactions on Circuits and Systems 57(7),
1654–1662 (2010)

10. Hu, Y.H.: The quantization effects of the CORDIC algorithm. IEEE Transactions Signal
Process. 40(4), 834–844 (1992)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 9–18, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Analysis of Generic SIMT Scheduling Model
Extracted from GPU

Yuanxu Xu, Mingyan Yu, Chao Zhang, and Bing Yang

Department of Electronic Information and Technology, Harbin Institute of Technology,
Harbin 150001, China

xuyuanxu_2008@sina.com

Abstract. To improve the performance of processor, more and more companies
during the industrial circle put the single instruction multi-threads (SIMT)
scheduling technology into the processor architecture now, which can develop
the multicore processor multi-thread parallel performance through promote the
ability of processor multi-thread parallel processing. In order to research and
develop the technology of SIMT, this article extracts a generic SIMT schedul-
ing model from Graphic Processing Unit (GPU) which is a kind of processor
that used in the field of high performance computing. Through analyzing the
performance of this scheduling model, this article shows the attributes of this
model and can be an important reference for the use and optimizing of this
model in other processors.

Keywords: Multicore processor, Multi-thread parallel processing, Single in-
struction multi-threads, Scheduling model, Performance analysis.

1 Introduction

The world is coming into the information era when there are many digital information
need to process, which makes the high performance computing develop quickly. More
and more fields, such as digital signal processing and graphics’ visual, have mass of
data and throughput computing applications[1] whose distinguishing feature is that
they have plenty of data level parallelism and the data can be processed independently
and in any order on different processing elements for a similar set of operations such
as filtering, aggregating, ranking,etc. In order to adapt the era developing, the com-
puter processor architecture is turning into the thread level parallelism (TLP) from
instruction level parallelism (ILP). The TLP brings a kind of new energy for the de-
velopment of processors and promotes the whole of computer field.

During the research of TLP, the efficient scheduling and executing of parallel
threads are the most important parts of TLP. The single instruction multi-thread
(SIMT) technology is a hot selection of achieving the multi-thread parallel
processing, specially the Graphic Processing Unit (GPU) of NVIDIA company which
uses the SIMT scheduling technology perfectly[2]. The SIMT scheduling is the thread
organization and management in the SIMT technology. The SIMT technology in GPU

10 Y. Xu et al.

has its unique thread scheduling architecture which makes its performance exceed
many traditional many-core processors[1][3]. So if the SIMT scheduling technology
of GPU could be transplanted into other processors, the performance of current pro-
cessors would be improved greatly.

Before transplanting the SIMT technology of GPU into other architectures, we
must understand the SIMT scheduling principle in the GPU and its attribute. In order
to research and develop the technology of SIMT in GPU, this article extracts a generic
SIMT scheduling model from GPU and shows the attribute of this model which can
be an important reference for the use and optimizing of SIMT scheduling technology
in other processors through analyzing the performance of this scheduling model.

2 SIMT Scheduling Model of GPU

The SIMT scheduling technology of NVIDIA GPU is based on the CUDA plat-
form[4], which is complex but efficient. The program on the CUDA platform mainly
includes the serial part working on the CPU and the parallel part working on the
GPU[5]. The parallel part is called kernel core, which will produce many parallel
thread groups before issued into the GPU hardware on where the parallel threads ex-
ecute. The kernel needs to be programed explicitly by the programmer who also needs
programing some other preparing programs which include distributing memory space,
transmitting data between CPU and GPU, programing the number of threads and di-
viding the thread blocks. All of the parallel threads formed by the kernel have the
same executing code and are scheduled and managed uniformly.

In order to analyze the SIMT scheduling technology of GPU conveniently, this ar-
ticle extracts the SIMT scheduling model from the GPU showing in the figure 1. The
SIMT scheduling model has been divided into two parts which are the software sche-
duling part above the dotted line and the hardware scheduling part below the dotted
line.

Fig. 1. The Model of Single Instruction Multi-threads scheduling

 The Analysis of Generic SIMT Scheduling Model Extracted from GPU 11

The software scheduling puts the parallel threads into block groups, each one of
which has a number of threads. The threads in every block are divided into many
warp groups which are the basic unit of the parallel threads scheduling and executing
in the hardware[6]. During the software scheduling, there are three key data structures
which are the important parameters of organizing the multi-thread parallelism and
will be put into the special memory units of the hardware. The three data structures
are the kernel information (figure 2(a)), the thread information (figure 2(b)) and the
warp information (figure 2(c)).

Next PC

Block ID

warp ID

Warp dimension

Completion
thread number

Warp completion

(a)Kernel Information (b)Thread Information (c)Warp Information

Fig. 2. Key Data Structures of SIMT Software Scheduling (This figure includes the most im-
portant parameters during the software scheduling of the SIMT scheduling model. In the thread
information figure, the reconvergence PC is a special parameter used for managing the multi-
threads branch [7].)

After the software scheduling producing the warp groups, the model puts all the
threads in the warp into the hardware scheduling step in warps. There exists six-level-
pipeline in the hardware scheduling step of the SIMT scheduling model: 1) The fetch
step. The fetch unit fetches the instructions from the instruction cache. 2) The decode
step. The decode unit has some instruction buffers for buffering every warp’s instruc-
tions. Each warp has its own buffer and each buffer has two instruction entries. 3) The
issue step. A round robin arbiter chooses a warp to issue from the buffer to rest of the
pipeline. Memory instructions are issued to the memory pipeline. The SIMT stack is
used for handling control flow of the warp next pc. The score board is in charge of
detecting the WAW and RAW hazards. 4) The read operands step. After an instruc-
tion is decoded, the operand collector register unit is allocated to buffer the source

12 Y. Xu et al.

operands of the instruction. 5) The execute step. Every thread is executed in each
ALU. The SIMT scheduling model has an special memory called shared memory
which be shared by threads in the same block. 6) The write back step. This is the last
step which writes the results into the registers. This step marks that the current thread
has completed the execution.

3 Analysis of the SIMT Scheduling Model Attribute

3.1 Influencing Factors of SIMT Scheduling Performance

The major function of SIMT scheduling model is parallel threads executing efficient-
ly. This model has an important attribute, which, using abundant threads number, can
hide the delay of the pipeline brought by the memory access and the other problem
product by some threads. When threads execution in one of warps stall by some
reasons, threads in other warps will fill into the pipeline to make the SIMT model
pipeline continue to execute. So it will influence the model performance that the or-
ganization and management of the parallel threads change the current executing
threads number in the SIMT scheduling model pipeline. During the process of orga-
nizing and managing threads, there are three factors that will impact the executing
parallel threads in pipeline, which are thread block size, warp size and the number of
current thread array (cta). These three factors are relative to each other and together
affect the performance of this model.

Thread block size is the number of threads that one block includes, which the pro-
grammer designs when programing the workloads. When the model schedules and
executes, it issues the threads into the model hardware in each thread-block-unit
which affects the number of threads issued on the model hardware. Warp size is the
group size of threads divided from each thread block. The model executes the SIMT
scheduling and fetching the threads’ instructions in each warp-unit, and it has the
same executing unit number as the warp size. So the warp size impact the number of
threads in the SIMT executing units. What’s more, block size and warp size together
affect the number of warps, which influences the state of SIMT scheduling and ex-
ecuting. The number of cta is that of thread blocks which the SIMT hardware allows
to issue most. The change of cta number will affect the number of parallel threads in
the current SIMT hardware and then affect the SIMT scheduling and executing per-
formance. At the same time, the variations of threads number in the hardware are
coupled to the register source of hardware, and the latter affects the former behavior
to influence the performance of SIMT scheduling model.

In the second section, this article has shown that there exists a shared memory in
this model. The shared memory is a special memory shared by all the threads in one
block, whose use depends on programmers when they program a workload. It will
affect the memory access characteristics of parallel threads in the blocks that whether
or not the model uses it.

 The Analysis of Generic SIMT Scheduling Model Extracted from GPU 13

3.2 Benchmarks

This article uses some general but typical multi-thread programs to test and analyze
the SIMT scheduling model. These programs are AES (AES Encryption) [8], LIB
(LIBOR Monte Carlo) [9], LPS (3D Laplace Solver) [10], RAY (Ray Tracing) [11]
and STO (Store GPU) [12]. The attributes of these programs are shown in table 1, in
where the results of three numbers in the kernel dimensions multiplying are the num-
ber of thread blocks and those in the thread dimensions multiplying are the number of
threads in each thread block. In order to research the influence of SIMT model per-
formance under different memory using strategies, this article uses the typical multi-
thread parallel representative program, the matrix multiplication, to test the use of the
shared memory. This matrix multiplication program has two factors. The multiplicand
is a matrix with 64 lines and 32 columns, and the multiplicator is one with 32 lines
and 32 columns. This matrix multiplication workload totally has 2048 threads. This
article uses the IPC as the performance index, because the SIMT scheduling is multi-
thread technology which means the number of parallel executing instructions in one
cycle is an important performance attribute.

Table 1. General Benchmarks

Benchmark
Kernel

dimensions
Block

dimensions
Thread
number

Instruction
number

Shared
Memory

using

AES (257,1,1) (256,1,1) 65792 28M Yes

LIB (64,1,1) (64,1,1) 4096 907M No

LPS (4,25,1) (32,4,1) 12800 82M Yes

RAY (16,32,1) (16,8,1) 65536 71M No

STO (384,1,1) (128,1,1) 49152 134M Yes

3.3 Analysis of Model Attribute Results

With the cta size changing, the result of executing the benchmark on the SIMT sche-
duling model is shown in the figure 3. When the size of cta expands from small to big,
the IPC of all of the workloads firstly rise and then begin to flatten. The reason of this
trend can be explained as follows. Increasing the size of cta makes the number of
parallel threads in the model hardware grow, which leads a lot of parallel threads to
fill into the SIMT pipeline. Following the parallel threads increasing, the stall of some
threads’ pipelines, which is caused by the memory access delay and exception in
some threads, are hidden. The source of hardware has a rising high utilization and the
SIMT scheduling model tends to be saturated.

14 Y. Xu et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100

150

200

250

300

350

400

450

500

550

600

650

700

IP
C

CTA

 AES
 LIB
 LPS
 RAY
 STO

Fig. 3. Changing CTA of General Benchmarks

With the warp size changing, the result of executing the benchmark on the SIMT
scheduling model is shown in the figure 4. When the size of warp expands from small
to big, the IPC of all of the workloads firstly rise and then begin to drop. The reason
of this trend is that the model schedules and executes in each warp-unit and that the
warp size has the same number as the executing units in the SIMT hardware.

8 16 32 64 128 256 512
0

100

200

300

400

500

600

700

800

900

1000

IP
C

warp_size

 AES
 LIB
 LPS
 RAY
 STO

Fig. 4. Changing Warp of General Benchmarks

When the warp size increases, the parallel executing threads grow in quantity,
which makes so many threads hide the pipeline stall caused by some threads that the
utilization of the hardware source increases leading to reduce the number of appearing

 The Analysis of Generic SIMT Scheduling Model Extracted from GPU 15

the idle state of pipeline executing. However, as more and more threads in a warp, the
number of SIMT model executing units is bigger and bigger. When the size of the
warp becomes large enough with the total number of threads in the workload so stay-
ing the same that making the sum of all the threads issued on the model not increas-
ing, the number of hardware source exceeds that all of the threads needing. So the
hardware source is beyond the requirements and is wasted. Its utilization is down to
increase the number of appearing the idle state of pipeline executing. The perfor-
mance of the SIMT scheduling model reduces.

In the SIMT scheduling model the shared memory is another special performance
influence factor besides the register in the memory system which can decide this
model scheduling and executing efficiency. This article compares the result of using
shared memory with that of not using it at the change of thread block size, warp size
and cta size. The results are shown at the figure 5 (a), figure 5 (b) and the figure 5 (c).

The figure 5 announces that at the situation of little threads, the performance of us-
ing the shared memory is better than that of not using shared memory. That is because
the shared memory on chip can keep the threads in blocks from accessing the global
memory off the chip too often, which spares the band of memory access and makes
full use of the data principle of locality to accelerate the speed of threads accessing
the data from the memory and then to improve the performance of the SIMT schedul-
ing model. With the number of threads becoming large, the curvilinear trend, howev-
er, changes.

1 2 4 8 16 32 64 128 256 512 1024
0

5

10

15

20

25

30

35

IP
C

block_size

 shared, cta=1
 noshared, cta=1
 shared, cta=8
 noshared, cta=8

(a) Comparison of Changing Thread Block Sizes

Fig. 5. Performance Comparison of using shared memory

16 Y. Xu et al.

8 16 32 64 128 256 512
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

IP
C

warp_size

 cta=1,shared
 cta=1,no_shared
 cta=8,shared
 cta=8,no_shared

(b) Comparison of Changing Warp Sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

3

6

9

12

15

18

21

24

27

30

33

IP
C

CTA

 shared
 no_shared

(c) Comparison of Changing CTA Sizes

Fig. 5. (continued)

When there are a lot of threads executing, the threads conceal the delay caused by
some threads’ pipeline stalling, so that the performance rising. After the number of
threads is enough to totally hide the delay of threads memory access, the performance
of using the shared memory is almost the same as that of not using it. The figure 3-3
has also shown that if the hardware source increased too much that the number of
threads is not enough to use hardware sources, the parallel executing threads could

 The Analysis of Generic SIMT Scheduling Model Extracted from GPU 17

not conceal completely the delay caused by the pipeline of some threads stalling, and
so the performance falls. Nevertheless, the workloads’ performance of using the
shared memory decreases more slowly than that of not using it, because that the delay
time of former memory access is so less that it has small pipeline stalling time, which
makes the demand of the threads hiding the delay time smaller under the use of shared
memory.

4 Conclusion

This article extracts a generic SIMT scheduling model from GPU and shows the
attribute of this model through analyzing the performance of it, so as to research and
develop the technology of SIMT in GPU. Though research the model with bench-
marks, this article finds that the workloads having much more threads can take advan-
tage of the SIMT technology better. The sufficient number of threads has the ability to
hide the problems existing in threads and makes the source utilization saturation by
filling the hardware sources in the SIMT model pipeline. What’s more, the program-
ing of workloads must be considered with the executing way of the hardware sources
which should be accord with the attribute of the SIMT model to exploit the advantag-
es of it. The architecture of the SIMT model also needs to adapt the program. When
someone uses the SIMT architecture, he must consider all of the software and the
hardware parts. Only changing one characteristic cannot make a better effect or may-
be bring the worse effect with the waste of sources. So a different workload should
match its own best fit SIMT hardware structure in order to make full use of its per-
formance. Besides, the special memory technology in SIMT scheduling model leads
to a special attribute. When programing the workloads, someone should be as possible
as he can to utilize the shared memory source to develop the ability of it for decreas-
ing the pressure of the bandwidth of memory and increasing the speed of data access.
In conclusion, the SIMT scheduling model and the results analyzed by this article can
be important references for the use and optimizing of SIMT scheduling technology in
other processor architectures.

References

[1] Lee, V.W.: Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU. In: The 37th International Symposium on Computer Ar-
chitecture, ISCA 2010, Saint-Malo, France, pp. 451–460 (2010)

[2] Luebke, D., Humphreys, G.: How GPUs work. Computer 40(2), 96–100 (2007)
[3] John, N., Dally, W.J.: The GPU Computing Era. Annals Through the Year, pp. 56–69.

The IEEE Computer Society (2010)
[4] NVIDIA CUDA: Compute Unified Device Architecture, NVIDIA Corp. (2007)
[5] NVIDIA CUDA C Programming Guide Version 3.2 (M/OL). NVIDIA (2010),

http://developer.download.nvidia.com/compute/cuda/3_2/toolki
t/docs/CUDA_C_Program-ming_Guide.pdf

18 Y. Xu et al.

[6] Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic Warp Formation and Sche-
duling for Efficient GPU Control Flow. In: 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pp. 407–420. IEEE Press (2007)

[7] Meng, J., Tarjan, D., Skadron, K.: Skadron: Dynamic Warp Subdivision for Integrated
Branch and Memory Divergence Tolerance. In: 37th Annual International Symposium on
Computer Architecture, ISCA 2010 (June 2010)

[8] Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for AES
cryptography. In: ICSPC 2007: Proc. of IEEE Int’l Conf. on Signal Processing and
Communication, pp. 65–68 (2007)

[9] Giles, M., Xiaoke, S.: Notes on using the NVIDIA 8800 GTX graphics card,
http://people.maths.ox.ac.uk/~gilesm/hpc/

[10] Giles, M.: Jacobi iteration for a Laplace discretisation on a 3D structured grid,
http://people.maths.ox.ac.uk/~gilesm/hpc/NVIDIA/laplace3d.pdf

[11] Maxime Ray tracing, http://www.nvidia.com/cuda
[12] Al-Kiswany, S., Gharaibeh, A., Santos-Neto, E., Yuan, G., Ripeanu, M.: StoreGPU: ex-

ploiting graphics processing units to accelerate distributed storage systems. In: Proc. 17th
Int’l Symp. on High Performance Distributed Computing, pp. 165–174 (2008)

A Unified Cryptographic Processor

for RSA and ECC in RNS

Jizeng Wei�, Wei Guo, Hao Liu, and Ya Tan

School of Computer Science and Technology,
Tianjin Key Laboratory of Cognitive Computing and Application,

Tianjin University, Tianjin, China
{weijizeng,weiguo,liuhao8901,tanya}@tju.edu.cn

Abstract. This paper proposes a unified and programmable crypto-
processor with coarse-grained reconfigurable datapath to perform ei-
ther RSA or elliptic curve cryptosystems (ECC) over prime field GF(p),
which uses Residue Number System (RNS) as basic arithmetic to ex-
ploit data-level parallelism and Transport Triggered Architecture to im-
prove instruction-level parallelism. The reconfigurable datapath provides
three configuration modes to accelerate the RNS Montgomery multipli-
cation(RNSMM). An efficient RNS base, 2n− ci, is chosen to reduce the
multiplication complexity of RNSMM. Experimental results show that
the proposed processor has better tradeoff among algorithm flexibility,
performance and area than other related works.

Keywords: Public-Key Cryptosystems, RSA, ECC, Residue Number
System, Transport Triggered Architecture, Reconfigurable Architecture.

1 Introduction

Considering security as well as cost-efficiency, various unified and programmable
processors for Public Key Cryptosystems (PKC) such as RSA and Elliptic curve
cryptography (ECC) have caused wide concern[2][3][4][5]. For PKC, Montgomery
Multiplication (MM) is the foremost cornerstone. Copious literatures have pro-
posed many optimized MM designs, for example, Radix-2 MM[1], systolic array
[6] and word-based MM [7]. Nevertheless, above methods do not bridge the gap
between the key size of RSA and ECC, producing the low performance/cost ratio
in the unified architecture. In this context, residue number system (RNS) has
been employed to implement MM called RNSMM. In this way, a large integer
can be decomposed into several small and dependent elements with the same
width. As a result, RNS owns the attractive ability to execute modular arith-
metic in parallel and make the operands of RSA and ECC have the same size. For
RSA, A fast parallel RNSMM and the prototype architecture called Cox-Rower

� This work is supported by the Natural Science Foundation of Tianjin (No.
11JCZDJC15800), and the National Natural Science Foundation of China (No.
61003306).

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 19–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 J. Wei et al.

is designed[8]. For ECC, [9] and [11] proposed hardware architecture of point
multiplier that exploited RNS to speed up elliptic curve point calculations and
minimize the area. [10] presented a FPGA implementation of RNS-based ECC,
which is resistant against side channel attacks. But there is not yet a RNS-based
unified architecture to support both RSA and ECC to the best of our knowl-
edge. Furthermore, above architectures are all based on ASIC, in other words,
it must bring the extra area cost for the numbering system conversion between
the binary and RNS [9].

In this paper a unified and programmable crypto-processor with coarse-grained
reconfigurable datapath is proposed to perform either RSA or ECC over GF(p),
which uses RNS as basic arithmetic to exploit data-level parallelism (DLP) and
Transport Triggered Architecture to improve instruction-level parallelism (ILP).
The reconfigurable datapath provides three configuration modes to accelerate
the RNSMM. Moreover, an efficient RNS base, 2n − ci, is chosen to reduce the
multiplication complexity of RNSMM.

2 RNS Montgomery Multiplication and Base Selection

2.1 Residue Number System

RNS is defined through a set of co-prime integers (m1,m2, ...,mk), called the

base. Any integer X, 0 ≤ X < M =
k∏

i=1

mi, has a unique representation, given

by the n-tuple [X]RNS = (x1, x2, ..., xk), where xi = 〈X〉mi = X mod mi. In
formula (1), residue can also be converted back to binary representation[8][9].

x =

k∑
i=1

xiMi〈M−1
i 〉mi mod M =

k∑
i=1

εiMi − βM

where Mi =
M

mi
and εi = (xi〈M−1

i 〉mi) mod mi (1)

Assuming two integers X and Y in RNS representation, i.e.X = (x1, x2, ..., xk)
and Y = (y1, y2, ..., yk), then all the operations ⊗ = (+,−,×) can be performed
in parallel, as indicated byX⊗Y = (〈x1⊗y1〉m1 , 〈x2⊗y2〉m2 , ..., 〈xk⊗yk〉mk

). The
parallelism of RNS will greatly accelerate the execution of modular arithmetic
in PKC,including modular multiplication.

2.2 RNS Montgomery Multiplication and Data Level Parallelism
Analysis

In the form of RNS, almost all operations of RSA and ECC are RNSMM. The
only difference is the control flow of invoking RNSMM. So, the data level par-
allelism of RNSMM will eventually produce a significant impact on the parallel
processing capability of proposed crypto-processor. In this paper,a fast parallel

A Unified Cryptographic Processor for RSA and ECC in RNS 21

Algorithm 1. RNS Montgomery Multiplication

Input: [X]a
⋃

b, [Y]a
⋃

b(X,Y < 2N)

Output: [R]a⋃
b, (R = XY A−1 mod N,R < 2N and A =

k∏

i=1

ai)

for i = 1 to k do
/*k is the number of base elements*/
step1: zi = (xi × yi) mod ai

step2: qi = (zi × 〈−N−1
i 〉ai) mod ai

end for
step3: [Q]b = BT ([Q]a, 0)
/*[Q]a = (q1, q2, ..., qi, ..., qk) and [Q]b = (q1, q2, ..., qj , ..., qk)*/
for j = 1 to k do

step4: zj = (xj × yj) mod bj
step5: wj = (zj + qj ×Nj) mod bj
step6: rj = (wi × 〈A−1

i 〉bj) mod bj
end for
step7: [R]a = BT ([R]b, 0.5)
/*[R]a = (r1, r2, ..., ri, ..., rk) and [R]b = (r1, r2, ..., rj , ..., rk)*/
return ([R]a∪b)

Algorithm 2. Base Transformation Algorithm BT ([X]a, μ)

Input: [X]a, μ = 0 or 0.5
Output: [X]b
δ0 = μ
for i = 1 to k do

/*k is the number of base elements*/
step1: εi = xi〈A−1

i 〉ai mod ai

step2: δi = δi−1 + trunc(εi)/2
r

/*trunc(εi) = εi ∧ (1...1︸︷︷︸
g

0...0︸︷︷︸
r−g

) and r is the bit length of base*/

end for
for j = 1 to k do

xj(0) = 0
for i = 1 to k do

step3: xji = (xj(i−1) + εi〈Ai〉bj) mod bj
end for
step4: xj(k+1) = (xjk + (bj − δk〈A〉bj) mod bj

end for
return xj(k+1)

RNSMM in Algorithm 1, proposed by [8], is adopted. Two sets of RNS bases, ai
and bj, are introduced and A is chosen as Montgomery constant. Except for ai
and bj, the other variables with subscript i and j are the representations on base
ai and bj. ”<>” stands for modulus operation. step 3 and step 7 in Algorithm 1
are the base transformation (BT) between different base representations, further
detailed in Algorithm 2. Another input of Algorithm 2 is correction factor μ for
the approximate conversion from RNS to binary. It can be seen that modular
multiplication (MM) and modular multiplication-and-accumulation(MMAC) are
two main operations in RNSMM. The data dependence graph(DDG) of RNSMM
from step 1 to step 3 in Algorithm 1 is shown in Fig.1. Fig.1 (a) illustrates the

22 J. Wei et al.

1

-1
1 a

-A

1

-1
1 a

-N

2

-1
2 a

-A

2

-1
2 a

-N

3

-1
3 a

-A

3

-1
3 a

-N

k

-1
k a

-A

k

-1

a
-Nk

(a) Pipeline Pattern

11 b
A

12 b
A

1bkA

1b
A

2
1 b
A

2
2 b
A

2bkA

2b
A

31 b
A

32 b
A

3bkA

3b
A

k
1 b
A

k
2 b
A

kbkA

kb
A

(b) Parallel Pattern

Fig. 1. The DDG of RNSMM

data dependency of step 1 and step 2 in Algorithm 1 and 2, respectively. step
3 and step 4 in Algorithm 2 are included in Fig.1 (b). Each circle, denoted by
PE, indicates a type of operation in RNSMM such as MM and MMAC.

In Fig.1(a), the ith column completes the ith loop to calculate εi and δi used
by the next loop. Each PE performs one time in the loop. From loop 1 to k, data
generated from previous PE is processed by the next PE in pipeline pattern in
which four sets of data can be executed concurrently. Therefore, at least four
PEs must be designed to meet the requirement in parallel, and each PE is time
sharing. The operation time is approximately E = k + p, where k is the loop
length and p is the pipeline stages. In Fig.1(b), a nested-looping for step 3 and
step 4 in Algorithm 2 should be performed after εi and δi are produced. Each
column represents one outer loop completing k + 1 operations, where k is the
loop length of step 3, namely inner loop, and ”1” expresses step 4. Each PE
processes one time inner loop or step 4. In this way, all the PEs are column-
sharing and independent each other. This means that the sets of data belonged
to the same row can be fully paralleled as long as enough PEs are equipped. The
operation time of Fig.1 (b) is about k × (k + 1)/N , where N is the number of
PEs. The DDG of step 4 to step 7 in Algorithm 1 is almost similar to Fig.1.
The only difference is that step 4 and step 5 completes one time modular
multiplication-and-accumulation instead of modular multiplication of step 1.

So the RNSMM should consume 2(k + p) + 2k(k+1)
N + 1 operation times.

Stated thus, the RNSMM can be divided into two patterns: pipeline and par-
allel , which demands that the connection among PEs can be dynamic changed.
A coarse-grained reconfigurable datapath will be introduced in Section 4.

2.3 Base Selection and Efficient Arithmetic Implementation

In RNSMM, MM and MMAC are the most costly operations and MMAC can
be further decomposed into MM and modular addition. So, how to implement
MM efficiently is a priority. For RNS, the form of base directly determines the

A Unified Cryptographic Processor for RSA and ECC in RNS 23

computation complexity of MM. In this paper, a highly efficient RNS base is
chosen in the form of 2n − ci, where n is the length of RNS base.

Algorithm 3. Modular Multiplication Algorithm mulmod(a, b,mi)

Input: a, b,mi, 0 ≤ a, b < m with mi = 2n − ci and ci < 2t and 1 < t < (n− 1)/2
Output: r = ab mod mi

step1: y = a× b
step2: y1 = y ÷ 2n; y0 = y mod 2n

step3: y′ = ciy1 + y0
step4: y′

1 = y′ ÷ 2n; y′
0 = y′mod2n

step5: y′′ = ciy
′
1 + y′

0

step6: y′′′ = y′′ + ci
step7:
if y′′′ ≥ 2n then

r ← y′′′ mod 2n

else
r ← y′′

end if

Generally, the computation complexity of traditional MM based on Barrett
Reduction(BR) algorithm is

2n2M + S + eA+ kS + 4T (e = 0 or 1, k ≥ 0) (2)

where M is multiplication of two n bits integer, and S, A and T represent
subtraction, addition and shifting operation, respectively. The value of e and
k depends on the result of mod operation, which is not fixed. Using RNS base
like 2n − ci, the MM is converted into Algorithm 3. BR is given from step 2
to step 7, in which the division and mod operations can be easily implemented
by simple shift operation. As ci is less than 2t, the complexity of multiplication
in step 3 is ntM. In step 5, ci and y

′
1 are all less than 2t, so the complexity

of multiplication in this step is ttM. Comparison with formula (2), the whole
computation complexity of BR-based MM is decreased to

ntM + ttM + 3A+ 5T

= (δ2 + δ)n2M + 3A+ 5T < 0.75n2M + 3A+ 5T (δ =
t

n
and δ < 0.5). (3)

So the considerable reduction of computation complexity of MM, because of
specifically selected base, will result in higher performance/cost ratio for the
RNSMM hardware implementation.

3 Proposed Cryptographic Processor for RSA and ECC
over GF(p)

3.1 Transport Triggered Architecture

Transport Triggered Architecture (TTA) is statically programmed ILP architec-
ture with high resemblance to VLIW at the point of instruction format. It is

24 J. Wei et al.

TTA Instruction Format

src dst src dst src dst
slot 1 slot nslot 2

VLIW Instruction Format
slot 1 slot nslot 2

src1 src2 dst op src1 src2 dstop src1 src2 dstop

add r1, r2, r3 r2->alu_o, r3->alu_t_add

Fig. 2. Instruction Format and Programming Method Difference in VLIWs and TTAs.
op: operation code. src: source operand register address. dst: destination register ad-
dress.

organized as a set of functional units (FUs) and register files (RFs) which are
connected together with an interconnection network composed of move buses and
sockets. Unlike VLIW architectures programmed by specifying the RISC-like op-
erations to trigger data transports, TTAs specify the required data transports of
FUs to trigger operations as side effect implicitly. Fig.2 shows the difference of
instruction format and programming method between VLIWs and TTAs. In this
way, data transports of TTAs are visible at the architecture level, which allows
to remove many redundant data hazards, such as write after read (WAR) and
write after write (WAW). This characteristic is very important to the pipeline
pattern of RNSMM in which strong data hazard exits.

3.2 The Architecture Overview of Proposed Cryptographic
Processor

As illustrated in Fig.3, the unified and reconfigurable RSA/ECC processor based
on RNS and TTA consists of three key modules: FUs, interconnection network
and flow control unit. The data width, depending on the RNS base, is 32-bit.
In the view of programmability, there are three levels in the proposed processor.

Instruction
Decode

Instruction
Fetch

Branch

Instruction
Memory

Modular Function
Unit

GPR

Memory Unit

Reconfigurable
MMAC Array

CONF
REG DMEM2 DMEM1 MMAC

Unified and Reconfigurable
RSA/ECC Cryptograph Processor operand port

triggered port
result port

control signal

Interconnection
Network

BASE LUT

Program Flow
Control Unit

.

8N Result Port 4N Triggered Port12N Operand Port

direct data path

MAU2MAU1

.

.

Fig. 3. The Unified and Reconfigurable RSA/ECC Cryptographic Processor

A Unified Cryptographic Processor for RSA and ECC in RNS 25

The highest level is RSA modular exponentiation and ECC point multiplication.
The middle level is point double and point addition in ECC. And the lowest level
is RNSMM associated with the FUs, for example, the modular arithmetic unit
(MAU), the coarse-grained reconfigurable MMAC array and the memory units
including DMEM1, DMEM2 and BASE LUT.

Coarse-grained MMAC array includes multiple versatile MMAC units, every
of which can complete multiplication, MM and MMAC. In MMAC array, four
MMAC units compose one group and the MMAC array consists of m groups.
Because the pipeline pattern of RNSMM requires at least four PEs to run full-
load, every four MMAC units will be configured to cascade connection to process
data in pipeline. When getting into parallel patternthe N (N = 4m) MMAC
units in all groups can be arranged in the parallel connection to achieve N times
(N ≤ k) outer loop simultaneously in the Algorithm 2. The look-up table, BASE
LUT, stores all the pre-computed operands related to the selected base. It is
divided into multiple banks in order to access multiple 32-bit data in parallel.
The details of reconfigurable MMAC array will be discussed in the next section.
A configuration register (CONF REG) is adopted to dynamically change the
connection of MMAC array. Two on-chip memories, DMEM1 and DMEM2, store
the input data of [X]a∪b and [Y]a∪b respectively so as to avoid the access conflict.
Based on the above FUs.

Instruction Level Parallelism of Proposed Cryptographic Processor.
Different from other crypto-processors only concerning the DLP, TTA is adopted
as the top architecture to exploit higher ILP. Based on TTA, many redundant
data moves, very common in the pipeline pattern of RNSMM, can be avoided by
bypass datapath. Fig.4 presents a part of instructions in RNSMM. Instruction 1
and 3 have output dependency on the same destination register which prevents
execution in parallel. So these two instructions in the VLIW architecture cannot
be issued at a time. It also affects the parallel execution of Instruction 2 and 4,
which finally results in a sequential processing. Since the processed results are
not required to be written back in TTA-like architecture, the dependency can
be ignored and the four instructions can be executed in parallel in two TTA-like
instructions. With the help of TTA, the proposed crypto-processor owns higher
performance and resource utilization.

4 Coarse-Grained Reconfigurable MMAC Array

4.1 Coarse-Grained Reconfigurable Datapath

Asmentioned, the coarse-grained reconfigurableMMAC array is built on the algo-
rithm level instead of operation level, reducing the overheadbrought from frequent
datapath switching. TheMMAC array provides three configurationmodes includ-
ing cascade, parallel and normal. For describing clearly, theMMACarraywith only
one group is as an example shown in Fig.5. The blue lines stand for the triggered
port to keep connecting all the while. The red lines are reconfigurable datapaths
that can be switched to transport data in a particular mode.

26 J. Wei et al.

Fig. 4. ILP Exploitation in Proposed Cryptographic Processor

Cascade Configuration Mode:
For the pipeline pattern of RNSMM, four MMAC units are connected one by

one, i.e.cascade configuration mode as Fig.5(a). The operands of the first MMAC
unit, corresponding to the step 1 in Algorithm 1, are accessed from BASE LUT
and DMEM1. From the 2nd to the 4th MMAC unit that complete the step 2 in
Algorithm 1 and step 1 and step 2 in Algorithm 2, the operands are directly
provided by the previous one. Furthermore, other operands of MMAC units are
fetched from interconnection network. So this configuration mode is suitable to
the pipeline pattern of RNSMM in which the atom operations of four steps are
executed step by step and each step needs the result of the previous operation.

Parallel Configuration Mode:
As shown in Fig.5(b), operands, such as 〈Ai〉bj and 〈A〉bj in Algorithm 2, are

accessed from the multi-bank BASE LUT to accommodate the parallel pattern of
RNSMM. Each MMAC unit finishes one outer-loop to produce an accumulated
result that is the representation of the input data in another selected base.
Modular operands bj also provided by BASE LUT are not changed. As a result,
only one data move instruction is needed at the beginning. The four MMAC
units can be seen as fully independent and operands are provided in parallel
by BASE LUT default. Like Fig.5(a), other operands, εi and δi, are transferred
from DMEM1 by interconnection network to trigger corresponding operations.

Normal Configuration Mode:
In this mode, all the operands are supplied only by the interconnection net-

work shown in Fig.5(c). So, the MMAC array can be seen as multiple duplicated
functional units. This configuration mode is not used in the RNSMM algorithm,
but rather in some other sporadic multiplications in RSA or ECC over GF(p),
such as the conversion of binary representation and RNS.

For the cascade and parallel mode, the most of operands can be accessed from
the direct datapath. In this way, only one start instruction is needed if the data
source is not changed. And only specific data is necessary to be moved into the
trigger register to make the MMAC array execute as shown in Fig.5. Thereby,

A Unified Cryptographic Processor for RSA and ECC in RNS 27

connection with
transport network

from DMEM1

connection with
transport network

connection with
transport network

Coarse-grained
Reconfigurable

MMAC Array

(a) Cascade Configuration Mode

connection with
transport network

from DMEM1

connection with
transport network

connection with
transport network

Coarse-grained
Reconfigurable

MMAC Array

(b) Non-cascade Configuration Mode

connection with
transport network

from DMEM1

connection with
transport network

connection with
transport network

Coarse-grained
Reconfigurable

MMAC Array

(c) Normal Configuration Mode

Fig. 5. The Configuration Modes of Coarse-grained Reconfigurable MMAC Array

only N buses are required to hold N = 4m data simultaneously in one cycle,
which is enough to drive N MMAC units running at full capacity.

4.2 Versatile MMAC Unit

Versatile MMAC unit, shown in Fig.6, is the kernel of MMAC array, which can
execute three types of operations including multiplication, MM and MMAC. The
macmod r high reg saves the high 32-bit of multiplication. The macmod r reg is
for the result of MM, MMAC or the low 32-bit of multiplication. The modulus
passing to the next MMAC can be accessed from the macmod r mod reg directly.

Three-stage pipeline is applied in the MMAC unit. The first two pipeline
stages realize the MM in Algorithm 3, in which there are three multipliers. The
multiplier in the first stage is 32-bit because of 32-bit operands in step 1. For the
multiplication in step 3, the ci is modulus that is less than 14-bit in the selected
base and y1 is the high 32-bit of multiplication result in step 1. Therefore, the
first multiplier in the second stage is 32-bit × 14-bit. step 5 contains another
multiplication in which ci is less than 14-bit and y,1 is the high 15-bit of the
multiplication result of step 3, resulting in another 15-bit × 14-bit multiplier
set in the second stage. Comparing with three 32-bit × 32-bit multipliers used
in BR, the different width multipliers based on the selected base reduce the
design complexity of MMAC unit greatly and derive better performance. The
third stage of MMAC unit implements the accumulation operation.

28 J. Wei et al.

macmod_o_mul_reg 32

32

macmod_t_reg 32

32

macmod_o_mod_reg 14

14

5

5

trg_typ_reg

typ_sel

DE Q
DE Q

DE Q
DE Q

product_h_reg 32

32

DE Q

product_l_reg 32

32

DE Q

64
[64:32] [31:0]

+
46

DE Q

14

mod_reg_a
DE Q

5

typ_reg_a

[46:32]

[31:0]

15
32

+
29

+

33
1 0

32[31:0] [31:0]
32

[32]
high_reg

DE Q

low_reg
DE Q

mulmod_reg
DE Q

DE Q
DE Q

64

[64:32] [31:0]
mod_reg_b typ_reg_b

+

32

+

32
[31:0]

[32]

33
14

32 32 32 32 32
[31:0]

[31:0]

DE Q
DE Q

macmod_r_high_reg macmod_r_reg

DE Q

macmod_r_mod_reg

sel_logic

5

3

[32]

14

sign

typ_dat[4:0]

mux_sel[2:0]

Multiplication Operation

Modular Operation

Accumulation Operation

1:step y a b

1 0

1 0

1 0

1 0

2 : 2 ; mod 2
3 :
4 : 2 ; mod 2
5 :

n n

i
n n

i

step y y y y
step y c y y
step y y y y
step y c y y

6 : ;
7 : 2

 mod 2 ;

 ;

i
n

n

step y y c
step if y then

r y
else
r y

8 : ;
9 : ;
10 : 2

 mod 2 ;

 ;

i
n

n

step P a b
step Q P c
step if Q then

r Q
else
r P

Fig. 6. The Architecture of MMAC Unit

5 Performance Evaluation and Implementation Results

5.1 Performance Evaluation

In this paper, four architecture candidates that are 4MMAC, 8MMAC, 12MMAC
and 16MMAC are chosen to be efficiently evaluated. The processing time of
RNSMM consists of computation and data preparing time. Upon the DLP anal-

ysis, the cycles of RNSMM are approximately equal to 2(k+p)+ 2k(k+1)
N +1. As

the delay of DMEM is four cycles and there are 2k times loop in the RNSMM,
the data preparing time is 4 × 2k cycles. Therefore, the RNSMM consumes

2(k + p) + 2k(k+1)
N + 1+ 2× 4k cycles, where N is the number of MMAC units,

k is the number of base elements decided by the key size and p is the number of
pipeline stages in the pipeline pattern, which is ”4” in this paper.

Upon above formula, Fig.7 plots the impact of different architecture candi-
dates and key sizes on the RNSMM processing time for RSA and ECC. It can
be seen that the processing time is reduced with the increase of the number of
MMAC units, and when the key size is larger, the downward trend is faster.
The decline seems more dramatically for 4096-bit RSA and 384-bit ECC, which
can attain 65% and 39% reduction from 4MMAC to 16MMAC. Because, for the
parallel pattern, more MMAC units mean that the more parallelism can be of-
fered. Thus, the proposed crypto-processor owns strong scalability. From 512 to
2048-bit key RSA, the reduction of cycles of RNSMM is not significant, when the
number of MMAC units is larger than 8. It is also evident for ECC from 160-bit

A Unified Cryptographic Processor for RSA and ECC in RNS 29

0

2000

4000

6000

8000

10000

12000

4MMAC 8MMAC 12MMAC 16MMAC

cy
cl

es

architecture candidate

512 1024 2048 4096

(a) RSA

0

50

100

150

200

250

4MMAC 8MMAC 12MMAC 16MMAC

cy
cl

es

architecture candidate

160 192 256 384

(b) ECC over GF(p)

Fig. 7. RNSMMComputation Cycles for Different Architecture Candidates and Cipher
Key Length

to 256-bit key. The time of ECC with 256-bit key on 12MMAC and 16MMAC
are, respectively, only 7 and 11 cycles less than 8MMAC. This is because the
number of base elements of 256-bit key is only 9 so that 8MMAC has provided
adequate throughput rate. Moreover, as the number of MMAC units increases,
more buses are demanded to ensure the MMAC array running at full-load. In
TTA, the more buses means the wider instruction word, which results in larger
instruction memory. Therefore, the number of MMAC units must be kept within
modest bounds. So, 4MMAC and 8MMAC are the better candidates.

5.2 Comparison to Related Works and Implementation Results

Table 1 shows the comparison among different crypto-processers in RNS, in
which our design is the only one that adopts the programmable processor so-
lution. So, it breaks the application limits in the ASIC solutions and become
the first RNS-based architecture supporting both RSA and ECC over GF(p) of
our knowledge to date, which is the biggest advantage of this design. The to-
tal area of 4MMAC and 8MMAC are 306kgates and 396kgates, respectively, in
which the logic area are 106kgates and 296kgates. Upon 4MMAC architecture,
the computation time of 2048-bit RSA and 256-bit ECC can achieve 26.1ms and
3.2ms. When the number of MMAC units increases to 8, the computation time
of above to will be reduced to 13.5ms and 2.2ms.

The data in this table may not be compared directly because the implemented
platforms are different. [8] has less execution cycles of RSA than ours. The
reason is that it equips 11 computation units, while only 8 MMAC units with
similar functionality are included in ours. But, because of the programmability,
an instruction memory has to be appended, which leads to the area increasing.
And more than 8 MMAC units is also a waste to the speed and area of ECC

30 J. Wei et al.

Table 1. Comparison with Related Cryptographic Processor in RNS

Reference Year Technology
Freq.

Area Func.
Key Tspeed

(MHZ) Length cycles ms

[8] 2001 0.25μm 80

221kgates

RSA
1024 336,000 4.2

(logic)
57KB ROM

2048 2,336,000 29.2
12KB RAM

[9] 2009 - -
66.7kgates

ECC GF(p)
160 - 1.77

78.9kgates 192 - 2.97
103kgates 256 - 3.95

[10] 2010

165.5
5,896ALM

ECC GF(p)

160 52,960 0.32
74DSP

Stratix
160.5

6,203ALM
192 70,620 0.44

EP2S30F484C3 92DSP

157.2
9,177ALM

256 106,896 0.68
96DSP

2012 0.13μm 250

306kgates
RSA

512 183,708 0.73
(total) 1024 1,003,440 4

This Work 106kgates 2048 6,519,840 26.1
(4MMAC) (logic) ROM

ECC GF(p)
160 318,203 1.2

24KB ROM 192 536,343 2.1
2KB RAM 256 791,130 3.2
396kgates

RSA
512 113,400 0.45

(total) 1024 531,100 2.1
This Work 196kgates 2048 3,384,000 13.5
(8MMAC) (logic)

ECC GF(p)
160 294,705 1.1

24KB ROM 192 347,142 1.4
2KB RAM 256 544,322 2.2

1 the area of data memory used to store parameters of ECC is not included

due to the limitation of the number of base. So it is worth that our design
sacrifices some DLP in return for the tradeoff among processing speed and area.
The size of ROM and RAM of Kawamura’s design is larger than ours. This
is because that it supports RNS-based RSA as well as RSA with CRT, which
causes it storing many parameters related to base in the CRT mode. [9] and
[10] are all the implementation of RNS-based ECC. Because the optimization
goal of [9] is area reduction, it only consists of two RNS operation units, which
results in slower speed than our design. Moreover, logic area of [9] becomes
larger and larger with the increase of key length and is almost close to the
area of 4MMAC when the key length is equal to 256-bit. The reason is that
there is one RNS-to-binary unit in this solution, increasing the area burden.
While, in the this paper, the programmability guarantees the logic area not
increasing with the key size increasing and the conversion between RNS and
binary can reuse the existing hardware resource as shown in Section 2.3. [10]
improves the Cox-Rower architecture, which makes it suitable for ECC over
GF(p) and leads to faster speed of scalar multiplication. But it cannot support
RSA. In conclusion, the proposed crypto-processor performs a kind of better
tradeoff among performance, area and flexibility.

A Unified Cryptographic Processor for RSA and ECC in RNS 31

Fig. 8. The Layout and Feature of Proposed Cryptographic Processor with Four MM-
MAC Units

With the architecture of 4MMAC, for example, Fig.8 shows the chip layout
of the proposed crypto-processor and its features. It is designed with a 0.13μm
SIMC CMOS technology and its area is 2.5 × 2.5mm2 which includes 106K
logic gates and 26KB on-chip SRAM. The operating frequency is 250MHZ. Its
peak performance can reach to 266Kbps for 1024-bit RSA and 490 times scalar
multiplication for 192-bit ECC.

6 Conclusion

An programmable crypto-processor that supports both RSA and ECC over
GF(p) using RNS and a coarse-grained reconfigurable datapath was presented.
The processor can handle RSA and ECC with arbitrary key size and conversion
between binary and RNS by programmability without modifying hardware. RNS
and TTA successfully exploited the DLP and ILP of our design. On the selected
RNS base, 2n − ci, the reconfigurable datapath composed by MMAC units can
complete the RNSMM more efficiently on the level of algorithm. Experimental
results show that our design exhibits competitive processing speed, area and
flexibility advantages in comparison with related works.

References

1. Hutter, M., Wenger, E.: Fast Multi-precision Multiplication for Public-key Cryp-
tography on Embedded Microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011)

2. Zeng, X.-Y., et al.: A Reconfigurable Public-key Cryptography Coprocessor. In:
IEEE Asia-Pacific Conf. on Advanced System Integrated Circuits (AP-ASIC 2004),
pp. 172–175 (2004)

3. Mentens, N., Sakiyama, K., et al.: A Side-channel Attack Resistant Programmable
PKC Coprocessor for Embedded Applications. In: Int. Conf. on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS-7), pp. 194–200
(2007)

32 J. Wei et al.

4. Chen, J.-H., Shieh, M.-D., et al.: A High-performance Unified-field Reconfigurable
Cryptographic Processor. IEEE Tran. VLSI. 18(8), 1145–1158 (2010)

5. Smyth, N., et al.: An Adaptable And Scalable Asymmetric Cryptographic Pro-
cessor. In: IEEE Int. Conf. on Application-Specific Systems, Architectures and
Processors (ASAP-17), pp. 341–346 (2006)

6. Wang, Z., Fan, S.-Q.: Efficient Montgomery-Based Semi-Systolic Multiplier for
Even-Type GNB of GF(2m). IEEE Tran. Comp. 61(3), 415–419 (2012)

7. Huang, M.-Q., Gaj, K., et al.: New Hardware Architectures for Montgomery Mod-
ular Multiplication Algorithm. IEEE Tran. Comp. 60(7), 923–936 (2011)

8. Kawamura, S.-i., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for
fast parallel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 523–538. Springer, Heidelberg (2000)

9. Schinianakis, D.M., et al.: An RNS Implementation of an Fp Elliptic Curve Point
Multiplier. IEEE Tran. Circ. Syst. 56(6), 1202–1213 (2009)

10. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010)

11. Schinianakis, et al.: A RNS Montgomery Multiplication Architecture. In: IEEE
Int. Symp. on Circuits and Systems (ISCAS), pp.1167–1170 (2011)

Real-Time Implementation of 4x4

MIMO-OFDM System for 3GPP-LTE
Based on a Programmable Processor

Ting Chen�, Hengzhu Liu, and Jianghua Wan

Microelectronics and Microprocessor Institute, School of Computer,
National University of Defense Technology,

Changsha 410073, China
{tingchen,hengzhuliu}@nudt.edu.cn

Abstract. MIMO-OFDM is currently being considered as a promising
technology for future wideband wireless systems. Meanwhile, the detec-
tion of MIMO-OFDM system forms one of the most intensive tasks in
baseband signal processing. There have been a great number of algo-
rithms proposed for MIMO-OFDM detection. This paper investigates the
real-time implementation of MIMO OFDM systems using programmable
multi-SIMD (single instruction multiple data) processor targeting for
software defined radio. We analyze the computational characteristic and
cost of major algorithms of LPF, symbol synchronization, OFDM modu-
lation, channel estimation and MIMO detection of a 4x4 MIMO-OFDM
system based on 3GPP-LTE R-12 standard. The evaluation and imple-
mentation results show that our SDR architecture supports 300Mbps
LTE system with 20MHz bandwidth. Finally, we discuss the architec-
ture perspective of our SDR processor for future wireless communication
standards with higher throughput.

Keywords: MIMO-OFDM, Multi-SIMD, SDR, 3GPP-LTE.

1 Introduction

Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division
Multiplexing (OFDM) have been adopted to increasing the spectrum efficiency
by emerging wireless broadband standards, such as the 3rd generation partner-
ship project long term evolution (3GPP-LTE) and WiMax [1]. However, the new
techniques bringing the enhancement of data rate in wireless communication al-
ways have high computational complexity, a large number of algorithms about
OFDM modulation, channel estimation (CE) and MIMO equalization have been
proposed [2][3]. Unfortunately, some of them are too complicated to implement in
the state-of-the-art digital signal processors (DSP) in real-time though they can
provide excellent performance. Consequently, trade-off must be made between
performance and complexity for practical and efficient implementation.

� Corresponding author.

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 33–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 T. Chen, H. Liu, and J. Wan

Many works have been carried out to implement the MIMO-OFDM physical
layer by ASIC and VLSI [4][5]. However, they are difficult to be upgraded for the
evolving communication standards. Recently, a lot of programmable processor is
proposed, e.g., MSC8156 [6], PC205 [7] and TMS320TCI6618 [8]. But they still
rely on some accelerators to offload parts of the wireless standard processing
to achieve high throughputs. Data movement between accelerators and main
memory may push these platforms toward inflexible solutions.

This paper investigates the real-time and hardware-efficient implementation of
low pass filter (LPF), symbol synchronization, OFDM modulation, channel esti-
mation andMIMOdetection forMIMO-OFDMsystems using fully programmable
hardware aimed for software defined radio (SDR). A real-time 4x4MIMO-OFDM
system of 3GPP-LTE standard is implemented on a programmable multi-SIMD
SDR processor. The remainder of this paper is structured in the following way.
In section II, the MIMO-OFDM system is outlined. Then, some algorithms and
their complexity for the system are covered in section III. Next in section IV, we
describe the architecture of QMBase SDR processor and implementation results.
Section V summarizes the challenge and architecture perspective of future wire-
less communication for SDR processor. In the last section we summarize themajor
conclusions obtained from this work and future work.

2 Radio System Structure

The system model under consideration is depicted in Fig. 1, which shows the ba-
sic function blocks of MIMO-OFDM system with four Tx antennas and four Rx
antennas. LTE supports up to 4x4 multi-user MIMO (MU-MIMO) configurations
with a maximum bandwidth of 20MHz and 1200 subcarriers per OFDM symbol.
The length of every radio frame is 10ms, and one frame consists of 10 subframes.
Every subframe contains 14 OFDM symbols with two training sequences (pilot)
deployed on the fourth and eleventh OFDM symbols. Transmission and process-
ing are done upon subframe basis within 1ms TTI (Transmission Time Interval)

Fig. 1. 4x4 MIMO-OFDM system model

Real-Time Implementation of 4x4 MIMO-OFDM System 35

Fig. 2. Radio frame structure

and the throughput is up to 300Mbps. Fig. 2 illustrates the frame structure, the
pilot symbols are used for channel estimation and then recovering the data in
data symbols.

3 Algorithms Analysis

Since the receiver is much more complex than the transmitter, we focus our dis-
cussion on the symbol operations in the receiver. Assuming the frame is perfectly
synchronized, so the main operations in receiver include: 1) Low pass filtering
(LPF). 2) Symbol synchronization. 3) FFT after removing the cyclic prefixes
(CP). 4) MIMO channel estimation. 5) MIMO detection.

3.1 Low Pass Filtering

Finite impulsive response (FIR) low-pass-filter is used for waveform shaping at
both transmitter and receiver. An N-point FIR filter with L taps is defined as

FIR out[n] =

L−1∑
l=0

data[n+ l] ∗ cof [l] (1)

Where data[n] and cof[l] are input data and filter coefficient where multipli-
cation and accumulation (MAC) are the primary operations. Every result needs
L-1 MACs.

3.2 Symbol Synchronization

CP is the prefixing of OFDM symbol with a repetition of the end. It serves as
a guard interval against intersymbol interference from the previous symbol in

36 T. Chen, H. Liu, and J. Wan

Fig. 3. Symbol synchronization using CP

multi-path channel. The length of CP must be at least equal to the length of
the multi-path channel. In the receiver, it makes use of CP to extract the non-
interfered symbols and sends them to OFDM demodulation. Fig. 3 shows the
primary operations of symbol synchronization are multiplication, accumulation
and maximal number searching.

3.3 OFMD (De)modulation

OFDM (de)modulation can be implemented by using discrete Fourier transform
(DFT), an N-point DFT is defined as

X(k) =

N−1∑
n=0

e−j2πnk/N (2)

Where X(k) and x(n) are all complex values. As the literal description, the
computational complexity of (2) is O(N2). The computational complexity can be
reduced to O(NlogNr) by using radix-r FFT algorithm [9] which has logNr stages
with N/r parallelizable radix-r butterfly operations in every stage. Fig. 4 shows
the structure of radix-2 butterfly, it implements one complex multiplication and
two complex additions.

Fig. 4. radix-2 butterfly

Real-Time Implementation of 4x4 MIMO-OFDM System 37

3.4 MIMO Channel Estimation

For the OFDM system with transmitter diversity, channel estimation becomes
complicated because signals transmitted from different antennas interfere with
each other. LTE uplink uses shift-orthogonal training sequence for MIMO chan-
nel estimation. The received pilot OFDM symbol first takes advantage of FFT to
construct frequency-domain estimator. Then the outputs of the estimator mul-
tiply original pilot sequence carrier by carrier and transfer back to time-domain
by using inverse FFT (IFFT). A rectangular window is introduced to cut off the
time-domain channel taps to obtain the time-domain channel of different users.
After being filled with zero in the high delay taps, every channel of users per-
forms FFT to generate frequency-domain channel estimates [10]. Fig. 5 shows
the estimation process on one receiving antenna. After estimation of channel ma-
trix on pilot carriers, we use linear interpolation to acquire the channel matrix
of data carriers. the primary operations in channel estimation are FFT, IFFT
and multiplications.

Fig. 5. MIMO channel estimation

3.5 MIMO Detection

The issue of signal detection for MIMOmultiplexing systems has been widely dis-
cussed with different space-time-frequency-coding (STFC) styles, such as STBC,
SFBC and VBLAST encodes [11], of which the VBLAST encode is commonly
used for very high data rate communications. A number of detection methods
have been proposed based on it, e.g., zero forcing (ZF), minimum mean square
estimation (MMSE) and maximum likelihood (ML) methods. Among them, ML
method is the optimal detector, but its complexity of full search process grows ex-
ponentially with the number of transmit antennas and modulation order. MMSE
is one of the most straightforward detection schemes with moderate implementa-
tion complexity for channel equalization. It outperforms Zero-Forcing detection
by taking noise into consideration [12]. The MMSE detection can be written as

38 T. Chen, H. Liu, and J. Wan

X = (HHH + σ2I)HHY (3)

Where H, σ2 and Y are channel parameter, variance of additive Gaussian noise
and vector signal from the receiver, respectively. Quite a few matrix manipula-
tions such as matrix multiplication and inversion are involved in the MMSE
detection which are implemented tone by tone in data symbols.

3.6 Algorithms Summary

According to the analysis above, the main operations at the MIMO-OFDM
transceiver are cross- or auto-correlation for waveform shaping and symbol syn-
chronization, FFT/IFFT for OFDM (de)modulation and channel estimation,
matrix multiplication and inversion for MIMO detector. All of the data pro-
cessed is complex number. Besides, these operations have rich inherent task,
data parallelism and data access is always linear. Table 1 shows the data paral-
lelism of different algorithms. For example, a 2048-point radix-2 FFT has 1024
parallel butterflies at every stage and MIMO detection is implemented on a tone
by tone basis, so the detections of data in 1200 tones can be executed in parallel.
The data and task parallelism can always be exchanged in some circumstance.
So they are suitable for multi-core system with vector processing.

Table 1. Parallelism analysis of algorithms

algorithms task parallelism data parallelism

FIR filter 4× 14 L (tap number)

OFDM modulation 4× 14 1024(radix-2, 2048-point FFT)

Channel estimation 8 1024(radix-2, 2048-point FFT)

MIMO detector 12 1200

4 Architecture of SDR Processor

The QMBase (Quad Matrix cores for Base station) architecture targets highly
parallel application and provides acceleration for wireless communication do-
main. As shown in Fig. 4. It consists of four vector DSP cores, namely Matrix,
with a 1-MB SRAM in each core. There are two inter-core networks on chip.
A DMA based QLink [13] which transfers data into packages and sent them to
destination cores through a 4x4 crossbar is capable of moving large blocks of
data between DSP cores without CPU interference. It can easily extend the sys-
tem to 8x8 or 16x16 configurations. The fast shared data pool (FSDP) [13] has
four groups of memory and control registers, each of which is proprietary to only
one core to write but can be read by other cores. Reading will be blocked if the
control register corresponded to the read memory is not set. The reading and
writing operation is implemented by load and store instructions respectively, so
if reading blocked, the entire pipeline of reading core will be stalled to wait until

Real-Time Implementation of 4x4 MIMO-OFDM System 39

Fig. 6. QMBase architecture

Fig. 7. Micrograph and top photographs

other cores finish what they do and set the control register. Compared to periodic
query and interruption methods, FSDP is faster and more power-efficient in data
sharing and synchronizations. Besides, some peripherals like external memory in-
terface (EMI) with DDR2 and asynchronous memory control, two 4x3.125Gbps
RapidIO interfaces supporting radio remote unit (RRU) are also integrated on
the system to provide a complete solution of wireless communication in base
station. Fig. 7 shows the micrograph and top photographs of QMBase which
was Fabricated in 2011, the processor is clocked at 500MHz with a die size of
168mm2 by using 65nm technology.

4.1 Matrix Architecure

Each of Matrix core has a scale processing unit (SPU) and a 16-width SIMD vec-
tor processing unit (VPU). It can issue up to ten instructions per cycle, five scale
instructions for SPU and five vector instructions for VPU. SPU is responsible
for instruction flow control and system configuration. One vector instruction can
trigger the 16 vector processing elements (VPE) to do the same operations. Every
VPE supports both fixed- and floating-point arithmetic operations. The VPU
can deliver sixty four 16-bit fixed-point multiplications or sixteen 32-bit floating
MACs simultaneously every cycle. The sixty four fixed-point multiplications can
be reconfigured to directly support sixteen complex-value multiplications, which
will be of great benefit to FIR, convolution and FFT algorithms. Since matrix

40 T. Chen, H. Liu, and J. Wan

operations in MIMO detection are very susceptible to precision limits, causing
16- and even 32-bit fixed-point operations to suffer in performance or simply
not work well. The floating-point supporting VPU delivers an efficient MIMO
equalizer, with low power consumption, high performance and throughput for
the base station.

Every core of QMBase has 1MB SRAM which can be access directly by VPU
and SPU. In order to support continuous data flow, the SRAM is divided into
two blocks for concurrent data preparation and processing. Every block is further
divided into 16 memory banks to support parallel data access and processing in
VPU. With dual 512-bit load/store units, every clock 1024 bit Data could be
transferred between SRAM and VPU. Data exchange between VPEs can be con-
ducted by SRAM-based 16x16 crossbar shuffle network, with special instructions
supporting data reorder operations of FFT calculation. Considering the frequent
convolution operation in FIR and symbol synchronization, a reduction tree that
sums 16 complex elements from each of VPEs and stores the result into one of
them in every clock is accommodated in the VPU.

4.2 System Mapping Scheme

We map the radio system with minimum data movement to reduce data buffer in
every processing stage. The map and implementation of MIMO-OFDM system
is depicted in Fig. 8. Data is processed in units of TTI with all DSP cores
synchronized to start calculation of a new TTI simultaneously. Our hardware
system is powerful enough to implement one data stream in one DSP core. Four
DSP cores implement LPF, frame synchronization, OFDM demodulation and
channel estimation independently at the beginning until MIMO detecting. Before
that data and channel state information (CSI) should be relocated in different
cores. We cut the 12 data symbols of every antenna into four equal parts in terms
of frequency and send three of them to other three cores respectively, same as
the channel matrix of pilot carriers. So every core only decodes 300 carriers of 48
data symbol from all the antennas. There are 2x16x300 CSIs deployed in every
DSP core in one TTI, if we calculate all the channel matrix of the data symbol
first, it needs a large memory to store the CSIs in every core. An alternative way
is to calculate them when needed. Since the MIMO detector is performed tone by
tone, so we can just exchange part of CSIs and compute the MIMO detecting,
the movement of rest of CSIs can be overlapped with prior MIMO detecting.
Fig. 8 also shows the execution time of the functional blocks of the system, total
processing delay is about 669us, which is much less than the maximum 1ms delay
constraints. Because of its massive and irregular data processing that is inefficient
for the processor, we don’t implement channel coding on the processor. But the
remained time is adequate for its implementation on the outside accelerator.

Fig. 9 depicts the uncoded Symbol-Error-Rate (USER) of a 4x4 spatial mul-
tiplexing system for different modulation patterns. Frequency-selective fading
channels are chosen as channel parameters. In fact, the uncoded SER=10−1

performance in different modulations is considered to be acceptable in practice
for wireless data communication.

Real-Time Implementation of 4x4 MIMO-OFDM System 41

Fig. 8. Mapping scheme on QMBase

Fig. 9. Uncoded SER of 4x4 MIMO system

5 Opportunities and Challenges

5.1 Fully Programmable Architecure

The QMBase architecture provides a fully programmable SDR platform that
implements the complete 3GPP-LTE layer 1 PHY (not including the channel
coding) in real time. Multi-core and wide SIMD of the processor takes advan-
tage of the highly task and data parallel nature of the algorithms. And opti-
mized function unit can support direct operation on complex number. In the
FIR example, complex multiplication and reduction tree deliver one result ev-
ery cycle. The auto-correlation operation in symbol synchronization also benefit
too. FFT implementation is based on Pease’s algorithm for parallel computa-
tion. Data alignment is accomplished through dedicate shuffle network. Then
each VPE calculate one radix-2 butterfly, eight butterflies are executed in par-
allel in the VPU. For instance, a 2048-point fixed-point FFT executes in about
2900 cycles in one Matrix core. Similarly in MIMO detecting, implementing one
4x4 MMSE detection depicted in equation 3 takes about 900 cycles per VPE.

42 T. Chen, H. Liu, and J. Wan

Because there is little data movement between VPE within MIMO detecting
we can expect gains equal to the width of SIMD. In comparison to the state
of-the-art DSP solutions [4][6], our simulation-based performance estimation of
different algorithms is 2.5 to 5.3 times higher, for the same clock frequency. Even
more, QMBase processor is fully software programmable, thus system operation
can be modified post-silicon to adapt to changes and evolutions in the LTE
standard, or to support related standards

5.2 Challenges

Many issues remain undissolved regarding the SDR approach for future stan-
dards. These challenges are:

Compiler support vectorization-the wide SIMD architecture proposed in this
work poses an additional challenge to the programmer. It is impossible to
efficiently parallelize all the application automatically from C code. QMBase
compiler only supports vectorization of some simple applications like FIR and
accumulation. Parallelization of applications with data shuffle is especially diffi-
cult, such as FFT algorithm. Besides, the shuffle network is configured explicitly.
So the processor is not suitable for the applications with undefined shuffle pat-
tern.

Power efficiency- the entire processor is about 8W when run the FFT applica-
tion under 1V voltage. Pure-software implementation of all baseband algorithms
and large on-chip memory degrade the power efficiency of the processor. This
paper is intended as a starting point for us to design an optimized architecture
implementing the LTE baseband systems. Wider SIMD, heterogeneous archi-
tecture with more specialized function units and streamlined operation may be
beneficial not only in performance but also power, which is our next work.

6 Conclusions

The evolving wireless communication standards bring new challenges regarding
the huge amount of computation and flexibility required by base station. In this
paper, a real-time implementation of 4 × 4 MIMO-OFDM system with LTE
parameters on a programmable processor has been presented. The multi-core
and SIMD architecture with optimized function unit deliver a high throughput
and flexible solution for future wireless communications. Besides, Potential ex-
tensions to exploit the throughput computation capabilities and efficiency are
concluded for our next work.

Acknowledgment. The research is supported by the National Science and
Technology Major Project of the Ministry of Science and Technology of China
under Grant No.2009ZX01034-001-001-006.

Real-Time Implementation of 4x4 MIMO-OFDM System 43

References

1. Sampath, H., Talwar, S., Tellado, J., Erceg, V., Paulraj, A.: A Fourth-Generation
MIMO-OFDM Broadband Wireless System: Design, Performance, and Field Trial
Results. IEEE Communications Magazine 40(9), 143–149 (2002)

2. Li, Y.: Pilot-symbol-aided channel estimation for OFDM in wireless systems. IEEE
Trans. Vehicular Technol. 49(4) (2000)

3. Burg, A., Haene, S., Perels, D., Luethi, P., Felber, N., Fichtner, W.: Algorithm and
VLSI architecture for linear MMSE detection in MIMO-OFDM systems. In: IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 4102–4105 (2006)

4. Perels, D., Haene, S., Luethi, P., Burg, A., Felber, N., Fichtner, W., Bolcskei,
H.: ASIC Implementation of a MIMO-OFDM Transceiver for 192 Mbps WLANs.
In: Proceedings of the 31st European Solid-State Circuits Conference (ESSCIRC),
pp. 215–218 (2005)

5. Yoshizawa, S., Yamauchi, Y., Miyanaga, Y.: A complete pipelined MMSE detection
architecture in a 4x4 MIMO-OFDM receiver. In: IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1248–1251 (2008)

6. MSC8156 product brief (Freescale 2011),
http://cache.freescale.com/files/dsp/doc/prodbrief/MSC8156PB.pdf

7. PC205 product brief, (picoChip 2010),
http://www.picochip.com/page/76/

8. tms320tci6618, http://www.ti.com/product/tms320tci6618&DCMP=
tci6618 110214&HQS=Other+PR+tci6618prpf

9. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Computat. 19, 297–301 (1965)

10. Li, Y.: Simplified Channel Estimation for OFDM Systems with Multiple Transmit
Antennas. IEEE Transactions on Wireless Communications 1(1), 67–75 (2002)

11. Wolniansky, P., Foschini, G., Golden, G., Valenzuela, R.: V-BLAST: An architec-
ture for realizing very high data rates over the rich scattering wireless channel. In:
Proc. ISSSE (1998)

12. Eilert, J., Wu, D., Liu, D.: Implementation of a programmable linear MMSE de-
tector for MIMO-OFDM. In: Proc. IEEE ICASSP, pp. 5396–5399 (2008)

13. Chen, S.M., Wan, J.H., Lu, J.Z., et al.: YHFT-QDSP: High-performance heteroge-
neous multicore DSP. Journal of Computer Science and Technology 25(2), 214–224
(2010)

http://cache.freescale.com/files/dsp/doc/prodbrief/MSC8156PB.pdf
http://www.picochip.com/page/76/
http://www.ti.com/product/tms320tci6618&DCMP=tci6618_110214&HQS=Other+PR+tci6618prpf
http://www.ti.com/product/tms320tci6618&DCMP=tci6618_110214&HQS=Other+PR+tci6618prpf

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 44–52, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Market Data Feeds Processing Accelerator
Based on FPGA

Xiaoyang Shen, Jiang Jiang, Liyuan Zhou, Tianyi Yang, and Li Chen

School of Microelectronics, Shanghai Jiao Tong University, No.800, Dongchuan Road,
200240 Shanghai, China

idwm98@hotmail.com, jiangjiang@ic.sjtu.edu.cn,

zhouliyuan@sjtu.edu.cn, {unremem,woozyqueen}@gmail.com

Abstract. Market data feeds present the current state of the financial market to
the customers, with the demand of fast transmission and instant response. The
OPRA format with the FAST protocol is one of the most widely-used formats
of the market data feeds. This paper provides an accelerator based on FPGA for
processing the market data feeds in OPRA format. The accelerator focuses on
encoding and decoding the data feeds concerning five of the most important
categories, namely categories a, d, k, q and N. Since each OPRA block may
have various possibilities of components, which have different lengths, so the
latency of our design varies. Under extreme conditions, the encoder portion has
the minimum latency of 72 ns and the maximum latency of 424 ns, while the
decoder portion has the minimum latency of 48 ns and the maximum latency of
344 ns.

Keywords: FPGA-based, market data feeds handler, low-latency.

1 Introduction

Financial market data feeds refer to the messages of financial market current state that
the exchanges provided for customers, which include stock prices, trades, and other
related information.

In modern society, the amount, sphere and speed of various financial products are
increasing evidently. Meanwhile, the customers would be in superior positions when
making critical decisions if they could receive those financial messages in time, and
better for earlier. As the consequence, to process the financial data in an efficient way
is of great significance. A low-latency market data feeds handler is desired.

Today, the feeds handler are mainly based on software systems. In early 2012, the
primary architectures of 55% handlers are based on software, those of 36% are based
on hardware and those of 9% are hybrid.[1]

However, the speed of such handler based on software system is highly influenced
by the hardware that it runs on. Usually, it takes a relatively longer period of time for
software-based market data feeds handler to process these data. So, pure software-
based handler will not be a solution for the desire of low-latency.

 A Market Data Feeds Processing Accelerator Based on FPGA 45

As for the hardware, there are typically 3 kinds of techniques used for accelerators.
One is Field Programmable Gate Array (FPGA), another is Graphics Processing Unit
(GPU), and the rest is Application Specific Integrated Circuit (ASIC).

FPGA is a very attractive choice for accelerators. It is easy to reprogram an FPGA
and to reconstruct a hardware system. The low power and space requirements are also
advantages of the FPGA. To construct a system on FPGA, people should write the
program in Hardware Description Language (HDL). The sophistication of such
program in HDL is the main disadvantage of FPGA.

GPU pays attention to the calculations of floating-point numbers. It has remarkable
performance in the task with abundant such calculations.

ASIC has many similar advantages as FPGA in many aspects, such as high speed,
low power consumption and small space requirements. Compared with FPGA, ASIC
usually could provide a system with better performance with respect to speed and
space requirements. However, the reconfiguration of ASIC-based designs will cost
more time and expenses than FPGA-based ones.

As for the market data feeds, the format and protocol are changing in a relatively
more frequent trend. The long time cycle and expensive cost of the reconfiguration of
an ASIC-based design lead to the inappropriateness to design a market data feeds
accelerator based on ASIC. Furthermore, the accelerator has few floating-point
numbers calculations. Therefore, FPGA may be the most appropriate solution to the
requirement of low-latency market data feeds accelerator.

OPRA is the abbreviation of Option Prices Reporting Authority, it is also the name
of the data feed format of this authority. It is one of the most widely-used market data
feeds formats. The current participants of OPRA include NASDAQ, AMEX, ARCA
and so on.[2] At present, OPRA format uses FAST protocol for information
exchange. FAST is the abbreviation of FIX Adapted to Streaming.

This paper proposes a hardware design based on FPGA for low-latency market
data feeds accelerator. And the data are in the format of OPRA with FAST protocol.
The key points of our design are the followings:

We select some OPRA data which have specific categories to be processed with
acceleration. It would be superfluous to process the OPRA data of all categories with
acceleration. For example, OPRA data of category f is “equity and index end of day
summary”[3], and the exchanges will be closed soon after this message.

We mainly design the encoder portion and decoder portion. Most related work only
design for the decoder portion of the whole market data feeds handler system.
However, both the acceleration of the encoder portion and the one of the decoder
portion are of significance. Our design has 2 core function modules for the 2 portions.

Our design has the combination of both serial and parallel structures. In order to
balance the requirements of low-latency, the limitation of the device resources
utilization and the maximum speed of data transfer of the given FPGA, we have made
the trade-off and design the accelerator with the proper combination of both serial and
parallel structures.

There are several related works have been done by others.
An accelerator is designed based on FPGA by Gareth W. Morris, David B. Thomas

and Wayne Luk.[4] It eliminates the networking stack of the operating system.

46 X. Shen et al.

By applying message processing and filtering in FPGA, it could push messages
directly into the memory space of software threads. The accelerator uses Xilinx Virtex
5 LX110T FPGA board.

An accelerator is designed based on the novel IBM PowerEN “Edge of Network”
processor.[5] The processor integrates network interfaces with functional accelerators
and multi-threaded cores. The main decoder function of this design has 3 parts. They
are streaming decoder setup, decoding one message and message normalization.
Furthermore, it can also run application software on the same platform while
processing a message.

Another accelerator based on FPGA is designed by Christian Leber, Benjamin
Geib and Heiner Litz.[6] The accelerator uses a Xilinx Virtex-4 FX100 FPGA board.
In the paper, 3 systems are realized are compared: the baseline system, the system
with Kernel Bypass and the systemwith Kernel Bypass and FASTFix Offloading.
Obviously, the last one has reached the best performance.

2 Design and Implements

2.1 Overview

As shown in Fig. 1, our design has 2 main portions, which are the encoder and the
decoder.

Fig. 1. Overview of the entire system module

The encoder portion is composed of 3 functional modules. The original data
generator module generator the original data of OPRA market data feeds and outputs
these data in a particular order to the encoder core module through DDR2 memory
interaction. The encoder core module receives these data sequently and creates OPRA
market data feeds according to FAST protocol. The transmission module sends the
mentioned OPRA market data feeds to the Ethernet.

The decoder portion is also composed of 3 functional modules. The reception
module receives the OPRA market data feeds from the Ethernet. It also segments the

 A Market Data Feeds Processing Accelerator Based on FPGA 47

market data feeds in the order of fields. The decoder core module acquires every field
value in order according OPRA and FAST protocol. The user memory module writes
the field value received into memory through DDR2 memory interaction.

2.2 Original Data Generator

To provide equitable data flow testing the validity of encoding and decoding systems
in simulation, abundant original data according to OPRA format is required. We
create the original data by designing in a C program due to the fact that available data
are scarce in document. The C program is written according to the OPRA field
definitions and it writes binary data representing random financial information into
file which, read directly into the memory of FPGA in EDK simulation, serves as the
data input. Binary data consists of various blocks each containing several messages of
different types. Fields is aligned to 64 bits for the convenient of transmitting. The
number of fields in one block is limited to 16.

DDR2 memory on Xilinx Virtex-5 XC5VLX50T board is used to store the original
data, message sending module functions as reading memory and updating output ports
at every clock cycle positive edge. Due to various reasons (Redundant DDR2 control
methods in ISE IP core) we practice memory control wrapping the system in EDK
project, sending message by PLB connection under software commands. A pack of
PLB registers is defined in EDK custom peripheral, when it has downloaded the RTL
design onto board, C code in EDK access memory to fetch 32 bits width data then
write to register, ready signal is asserted when enough data needed has filled the PLB
registers and then activates the system sending message to following module 8 bytes
per clock cycle. Process of sending message from memory is predicted to be
accelerated and optimized by implementing DMA in EDK, updating registers faster
as well as freeing Micro blaze core for other modules.

2.3 Encoder Core Module

The encoder core module is composed of several functional modules as shown in
Fig. 2. This section describes the most important modules.

The category control module has the function similar to register. It stores the value
of field “Message Category” while processing the very message of an OPRA market
data feeds block. Each OPRA market data feeds block has probably two or more
messages. According to our design, at each clock cycle, only one field of a particular
message is received by the encoder core module. Therefore, should match at first the
particular field being processed in each clock cycle. Then, this module stores the
value if the current field is “Message Category”.

The type control module is extremely similar to the category control module, but it
pays attention to the field “Message Type” instead.

The field control module provides the critical control signal to some other
modules. The control signal implies which field is being processed. This signal
contributes greatly to the following process: to calculate the effective length of
current field data, to update the total length of current message, to choose the right

48 X. Shen et al.

input of field register, etc. This signal is decided mainly according to the value of the
field “Message Category” and the one of the field “Message Type”. Due to the fact
that the first three fields of any messages are the same while the second field and the
third field are just the field deciding this control signal, there is no additional problem
about the sequence.

Fig. 2. Overview of the encoder portion

The field register module is critical for FAST protocol encoding. One of the most
important parts of FAST protocol is that the value of current field is abridged if the
value is exactly the same to the last value of the same field. This module is used for
storing the last value of every field. There is no possibility that two sequential fields

 A Market Data Feeds Processing Accelerator Based on FPGA 49

received are the same field. Therefore, at each positive edge of clock signal, this
module outputs the value of every field calculated at last clock cycle. As for the
encoder portion, even the input field data of the encoder core module are the same to
the value stored in field register, we could just store the input data into the register, in
which way we could simplify the logic structure of this module. Because the field
control module provides the signal implying which field is the current field, we only
need store the input data into the proper field register according to the control signal.

The compare module is also used for FAST protocol. According to the field control
signal, this module compares the value in the very field register and the one of the
input field data of the encoder core module, and it feedbacks the identity between the
two values being compared. This result decides whether the current data should be
abridged and how to update the total length of the current message.

The Pmap module is of great importance. The lengths of all the fields are not the
same, while some fields in one message could be abridged according to FAST
protocol. Sometimes we don’t know which field is abridged without Pmap. For
example, if there are 3 sequential fields whose lengths are all 4 bytes and the second
one of them is abridged by the encoder. Then the decoder doesn’t know which field is
abridged because it receives 2 data both of 4 bytes, which could also happen when the
first or the third field is abridged. Each bit of Pmap implies whether one field is
abridged, and it could solve the problem mentioned above. At each clock cycle when
the encoder core module process a field data, the Pmap will be updated based on the
value at the last clock cycle. The value of the Pmap won’t be correct until the last
clock cycle of current message.

The length module has the similar function to the Pmap module, but it pays
attention to the value of the length of current message. In addition, this module should
determine the new length according the field control signal due to the different
lengths of various fields.

2.4 Decoder Core Module

As shown in Fig. 3, the decoder core module has several functional modules similar
to the ones of the encoder core module. Therefore, this section describes the overall
function briefly, and then introduces the modules different with the ones of the
encoder core module.

The decoder core module acquires the category data and the type data prior, and then
creates several control signals in order to decoder OPRA market data feeds with FAST
protocol and to update the data of field register module. For sake of subsequent functions,
the decoder core module also provides some signals for the user memory module.

The compare module gets the result directly from the input Pmap data. According
to the outputs of the compare module and the data stored in field register, the decoded
data module provides the restored data of current field if such data was abridged in
the encoder portion, otherwise it provides exactly the data of input.

The category data module assumes that the current field is “Message Category”,
and then provides the unabridged data or restores the field data if it was abridged. The
output of this module is used by the category control module.

50 X. Shen et al.

The type data module is similar to the category data module, but it pays attention to
the field “Message Type” and provides data used by the type control module.

The field register module chooses the input of the current field according to the
result of the compare module, instead of always storing the current input data because
such data probably was abridged. In such case, it keeps the value of the very register
the same.

Fig. 3. Overview of the decoder portion

The message end module provides the signal implying whether this clock cycle is
the last one of a message. The data length module provides the effective length of
current field data. Those signals contribute to subsequent functions in the user
memory module.

2.5 Latency Monitor

This module is designed for testing the latency of the encoder portion or the one of
the decoder portion. It has a counter with the 125MHz clock signal. The counter
begins to work when the very portion begin to encode or to decode data. The counter
stops when a signal implying that the process of encoding or decoding has finished.
The latency could be calculated by the frequency of the clock signal and the value of
the counter.

 A Market Data Feeds Processing Accelerator Based on FPGA 51

2.6 Others

The transmission module and reception module use EDK tool to deliver the market
data feeds. In addition, the 2 modules are also responsible for reconstructing the data
received from the encoder core module or the Ethernet in a correct order by using a
series of FIFOs.

3 Experiment Results

To verify the functionality and acceleration performance of our design, we implement
the design on FPGA aboard.

3.1 Experiment Environment

A Xilinx Virtex5 XC5VLX50T FPGA board was used for performance test. The
clock signal provided by the FPGA board is 125MHz. In addition, we use Xilinx ISE
Design Suite 13.2.

3.2 Experiment Results

All modules of our accelerator are designed for such clock period, including the
memory control and the Ethernet part. Under several timing constraints, our design
meets the requirement of the 8ns clock period.

During active test of the encoder, the latency monitor counts the clock cycles used
for encoding the market data feeds. It calculates from the instant when the original
data stored in blocks begin to be sorted in the original data generator module to the
instant when the encoded data have been reconstructed in a correct order in the
transmission module. Because of the different numbers of fields that every OPRA
block may contain, the minimum latency of encoder is 72 ns and the maximum is 424
ns. One OPRA block usually contains as many fields as possible if there is enough
data waiting to be encoded. Therefore the latency of 424 ns is the more meaningful
and representative.

As for the decoder portion, the latency monitor calculates from the instant when
the data have been received and wait to be reconstructed to the instant when the
decoded data is written into the blocks. The minimum latency of decoder is 48 ns and
the maximum one is 344 ns. The more meaningful and representative value is 344 ns.

3.3 Results Comparison

Table 1 shows the comparison of our design and the related works. The reason why
we could reach the higher speed is that our design has the reasonable combination of
serial and parallel structure. The accelerator takes full advantage of the clock period
provided by FPGA board. The latency of the critical path is designed for 8ns, which is
appropriate for the FPGA board that we used.

52 X. Shen et al.

Table 1. Comparison with the related work

Design Latency Remarks

Ours 424 ns for the encoder and 344 ns for the decoder maximum value
[4] 4 μs constant value
[5] 1.32 μs decoder portion
[6] 2.6 μs reception portion included

4 Conclusion

This paper presents an accelerator for processing market data feeds in OPRA format
with FAST protocol, which focuses on the encoder and the decoder of the market data
feeds of the most resourceful categories, namely categories a, d, k, q and N.

The original data are generated first and stored in the blocks. Then, these data are
sorted in a particular order and delivered to the encoder core module. After being
encoded, the data of an OPRA block are reconstructed again in order to be in a correct
order. Afterwards, the data are delivered out though the Ethernet. The decoder portion
receives, sorts and decodes these data. After that, the data are restored and written into
memory.

The latency of the encoder portion is 424 ns and the one of decoder portion is 344
ns, irrespective of parts of memory and Ethernet function.

Acknowledgment. This work was supported by a grant of the key project of National
High-tech R&D Program of China. The grant number is 2009AA012201.

References

1. Aite Group, http://www.aitegroup.com/Reports/ReportDetail.aspx?
recordItemID=901

2. Options Price Reporting Authority, http://www.opradata.com
3. OPRA_Binary_Part_Spec_1.1_091912, http://www.opradata.com/specs/
 OPRA_Binary_Part_Spec_1.1_091912.pdf

4. Morris, G.W., Thomas, D.B., Luk, W.: FPGA accelerated low-latency market data feed
processing. In: 17th IEEE Symposium on High Performance Interconnects, pp. 83–89.
IEEE Press, New York (2009)

5. Pasetto, D., Lynch, K., Tucker, R., Maguire, B., Petrini, F., Franke, H.: Ultra low latency
market data feed on IBM PowerENTM. J. Computer Science-Research and
Development 26(3-4), 307–315 (2011)

6. Leber, C., Geib, B., Litz, H.: High Frequency Trading Acceleration Using FPGAs. In: 2011
International Conference on Field Programmable Logic and Applications, pp. 317–322. IEEE
Press, New York (2011)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 53–60, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Design of Video Accelerator Bus Wrapper

Yan Xu, Longmei Nan, Pengfei Guo, and Jinfu Xu

Zhengzhou Institute of Information Technology
Zhengzhou 450004, China
xy.mail@me.com

Abstract. Novel wrapper implementation technique is used to improve the data
communication for video processing accelerator. The wrapper provided the
function of flow control, data buffers and protocol analysis. It can reduce video
data transfer time up to 50% compared with the conventional CPU based data
transfer method. At the same time, the wrapper’s area is 9278 µm2 and the
operation clock frequency is 1GHz implemented using 0.13µm CMOS
technologies.

Keywords: wrapper, bus, accelerator.

1 Introduction

It is an efficient way to improve the performance for specific applications through
adding dedicate accelerators in SoC [1,2]. However, since the accelerators are
designed for specific application, they have heavy and non-uniform communication
traffic. These properties lead to low communication efficiency between the
accelerator and other units.

Usually, the data supplements in SoC are done by CPU or DMA [3,4]. CPU is
suitable for small amount of data while DMA for large amount of data [5]. But the
non-uniform traffic of custom accelerator is not suitable for the DMA, so designer can
only use CPU which leads to low efficiency.

To solve this problem, this paper presents a method to improve the accelerator data
supplement. We add a wrapper between bus and the accelerator improved the
performance of the accelerator.

2 Background

The accelerator in this paper is designed for the acceleration of video processing. The
ports of video accelerator are shown in Table 1.

Following words will describe the working flow of video processing accelerator.
Before the accelerator starting to process video data, it needs to be configured. The
config_start signal is used to start the configuration of accelerator, the configuration
data is feed into accelerator through the config_data port. And the config_end signal
is used to info the ending of the configuration data. After the configuration,

54 Y. Xu et al.

accelerator is ready for processing video data and the outside world feed the video
data into the data_in0 (or data_in1, or data_in2) port. The port width is 32 bits and
length varies from 1 to 16. After the video processing, the accelerator enables the
ready signal, and then the result is read from the data_out port. The work flow are
shown in Figure 1.

Table 1. Video processing accelerator ports

Port name Direction Function
Clk In Clock input
Rst_n In Accelerator reset
Wen In Write enable
Ren In Read enable
Config_start In Start configuration signal
Config_end In Finish configuration signal
Config_data[31:0] In Configuration data input signal
Data_in0[31:0] In Data input 0
Data_in1[31:0] In Data input 1
Data_in2[31:0] In Data input 2
Ready Out Data processing ready signal
Data_out[31:0] Out Data output signal

Start

Configuratio
n

Data Input？ No

Yes

Data0 Input Data2 Input

Finish？
No

Yes

Data Output

Data1 Input

Fig. 1. The connection between the inFIFO and the interface

 The Design of Video Accelerator Bus Wrapper 55

The length of the accelerator configuration data varies from 1kB to 4kB, and the
configuration data is transferred into accelerator only once, so, the configuration data
transfer time do not affect the overall SoC performance.

Then we talk about the video data. Suppose the bus is 32 bits and the accelerator
only handle 1 to 16 blocks (32 bits each block) video data. If we use DMA to transfer
the video data, it only need 2 clock cycles to transfer 1 block data, but the DMA
configuration process need about 240 clock cycles, so it is not suitable to use DMA to
transfer video data (takes too much time to configure before transfer small mount of
data). We can only use CPU to feed the accelerator, and this means 4 to 5 bus cycles
per data block which lead to low transfer efficiency.

To solve this problem, we designed a low-cost wrapper between bus and video
accelerator, which provide an FIFO to buffer the data from bus.

3 Accelerator Bus Wrapper Structure

Since there is no data buffer in the video accelerator, DMA can not move redundant
data to it. If we add a FIFO between bus and the accelerator, it can buffer the extra
data. And there is a microcontroller in the wrapper which feed the accelerator with the
data stored in the FIFO. It will dramatically improve the performance.

3.1 Wrapper Architecture

As shown in Figure 2, the bus wrapper consists of 8 parts: bus_interface,
accelerator_interface, config_unit, FSM, status, controller, inFIFO, outFIFO.
Bus_interface module transfers the bus interface signal into inside world. FSM
module is used to implement the finite state machine of the wrapper and the status of
the wrapper is stored in the status module. Based on the output of the FSM module,
controller module generates the accelerator interface signal, inFIFO and outFIFo
control signal. And the inFIFO and outFIFO are both asynchronous FIFO.

bus_interface

accelerator_interface

Fig. 2. The architecture of the Accelerator bus wrapper

56 Y. Xu et al.

3.2 The Structure of Data Stored in FIFO

Since the accelerator has 4 different ports (data_in0, data_in1, data_in2, config_data),
we buffer the data with the port index into FIFO simultaneously, as shown in
Figure 3.

Fig. 3. The structure of the data stored in FIFO

When the wrapper handles the FIFO data, it first needs to analyze the header of the
data, determine which port to feed the data. Since the width of SoC data and address
bus are both 32 bits, when connected to the bus, the 34 bits input port of the FIFO is
connected to the lower 2 bits of the address and all the 32 bits of the data bus, as
shown in Figure 4. This method avoids transferring the data and address using two
bus cycles.

bus_data[31:0]

bus_addr[1:0]

2

32

34
datain[33:0]

inFIFO

Fig. 4. The connection between the inFIFO and the interface

3.3 FSM Module Design

In our FSM module, there are two finite state machines, one for input control and one
for output control.

The input control FSM is shown in Figure 5 (a). When the system starts, the input
FSM goes into the idle state. In the idle state, FSM probes whether the FIFO is empty.
If not, FSM enter the config_start state, which generates the start signal for the
accelerator. Then it enters the configuration state, and the wrapper configure the
accelerator using the data stored in the FIFO, if there is not enough data in the FIFO,
it will enter the wait_in state. Once there is data in the FIFO, it will go into
configuration state again. When the configuration finishes, FSM will go to the
config_end state to issue the config_end signal to the accelerator.

 The Design of Video Accelerator Bus Wrapper 57

When the FSM is in the check_addr state, it will check whether the FIFO is empty,
if not, it will pick the data in the FIFO and dispatch the data into different ports
depending on the port info stored in the first two bits of the data stored in FIFO.

Fig. 5. FSM state diagram

The output control FSM is shown in Figure 5 (b).There are three states in the
output control FSM: check_ready, output and wait. When the system starts, the output
FSM goes into the check_ready state and check if the computation is completed. If
yes, the output FSM will goes into the output state and the wrapper will read the result
and transfer it into the outFIFO. When the transfer completed, the FSM will go back
to the check_ready state. When the transfer is taking and the outFIFO is full, the FSM
will goes to the wait state.

4 Performance Analyzing

4.1 Evaluation Metric and Platform

The wrapper is designed to improve the video data transfer performance. So, the
evaluation metric is set to be the video data transfer time. And since the wrapper is
used to feed data into accelerator, the total data processing time will affect user
experience, so, we compare the data processing time of with and without the wrapper.

Figure 6 shows the platform we used to evaluate our wrapper. There are one CPU
and one DMA controller which can transfer data to accelerator. In the platform, there
are two uniform video accelerators, one is directly connected to SoC bus and another
is connected to SoC bus through the wrapper. The depth of the inFIFO and outFIFO
are both 128. The width of inFIFO is 34 bits and the width of outFIFO is 32bits.

An important thing need to explain here is the clock frequency for accelerator A
and B is different, since there are FIFOs in wrapper, the input and output of wrapper
can be asynchronous, we let accelerator A working at 200MHz, the same frequency as
the bus, and accelerator B working at 400MHz.

58 Y. Xu et al.

CPU
DMA

BUS

RAM

accelerator

A

wrapper

accelerator

B

Fig. 6. Wrapper evaluation platform

4.2 Evaluation Result

First comparison is the data transfer time. One transfer time is measured for the time
used by CPU transferring data to accelerator A, and the other transfer time is
measured for the time used by DMA transferring data to accelerator B.

Figure 7 shows the comparison result. From the result, we can see that: for small
amount of data, DMA + wrapper structure shows slight benefit while for large amount
of data, DMA + wrapper structure is much better than CPU method. This is because
we need to configure DMA before using it to transfer data, and the DMA
configuration time is 244 bus cycles per transfer, which is a large number compared
with data transfer time. And this is the reason for the low efficiency when DMA
directly transfer data to accelerator. The wrapper can provide a buffer that hold large
amount of data, and then the DMA can be used to transfer large amount of data.

Fig. 7. Data transfer time comparison

 The Design of Video Accelerator Bus Wrapper 59

Second comparison is the video data processing time. One processing time is
measured for the time used by accelerator A to process data plus the data transfer
time, and the other processing time is measured for the time used by accelerator B
plus the data transfer time.

Figure 8 shows the comparison result. From the result, we can see the DMA +
wrapper structure is much faster than the simple CPU structure.

Fig. 8. Data processing time comparison

4.3 Result Analyzing

As shown in Figure 7 and Figure 8, the proposed wrapper improves the performance
dramatically. For the original method, we use CPU to transfer data. Since CPU [6, 7]
is optimized for general data processing, it uses pipeline technology to enhance
performance. The execution of each instruction is divided into several stages, such as
IF (instruction fetch), ID (instruction decoder), etc. When CPU moves a data from
one location to another, it executes a load instruction, followed by a store instruction.
The pipelined execution of load and store instruction lead to low interaction with bus,
and will take about 10 ~ 20 clock cycles to transfer 32 bit data from memory to video
process accelerator.

DMA [8, 9] is designed for large amount of data transfer. DMA takes about 2
clock cycles to transfer 32 bit data without disturbing CPU. Obviously it saves much
more time. But there is a disadvantage that when we transfer a small amount of data,
it cannot save much time. This is because we must configure the DMA before we use
it. When we transfer a small amount of data, the time consumed to configure DMA
cannot be ignored. The warm up time effect is shown in Figure 7 for small amount of
data transfer (128 bit), the speed up ratio is smaller than large amount of data transfer
(1024 bit).

The asynchronous FIFOs provide the opportunity of using different clock domain
on both sides of the wrapper. Then we could let the accelerator working at very high
frequency. This improves the performance dramatically, as shown in Figure 8.

60 Y. Xu et al.

4.4 Synthesis Result

To estimate the area cost and the critical path delay of the wrapper, we synthesize it
using CMOS 0.13µm technology. Since the size of FIFO varies for different design,
we just give the area for the other logics here. Synthesis results show our wrapper can
operate at the frequency of 1GHz and occupy the area of 9278 µm2 without FIFO.

5 Conclusion

This paper presents the design of a wrapper used to improve the data transfer
performance for custom video processing accelerator. This design can provide a
buffer to hold the data transferred from DMA, which can benefit from the high data
transfer rate with small area cost. While the asynchronous FIFO can be used to
separate two different clock domain, which provide the opportunity to use high
frequency accelerator. Although this wrapper is designed for our video processing
SoC, the architecture can be applied to the wrapper for other application.

References

1. van der Wolf, P., Henriksson, T.: Video processing requirements on SoC infrastructures. In:
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1124–1125.
ACM, Munich (2008)

2. Ristimaki, T., Nurmi, J.: Reconfigurable IP blocks: A survey [SoC]. In: Proceedings of
International Symposium on System-on-Chip (2004)

3. Anjo, K., Okamura, A., Motomura, M.: Wrapper-based bus implementation techniques for
performance improvement and cost reduction. IEEE Journal of Solid-State Circuits 39(5),
804–817 (2004)

4. Nikolic, et al.: Wrapper design for a CDMA bus in SOC. In: 2010 IEEE 13th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)
(2010)

5. Anjo, K., et al.: NECoBus: A high-end SOC bus with a portable and low-latency wrapper-
based interface mechanism. In: Proceedings of the IEEE 2002 Custom Integrated Circuits
Conference (2002)

6. Ma, H., Wang, D.: The design of five-stage pipeline CPU based on MIPS. In: 2011
International Conference on Electrical and Control Engineering (ICECE) (2011)

7. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd
edn. Morgan Kaufmann Publishers, Inc. (2003)

8. Prokin, M.: DMA transfer method for wide-range speed and frequency measurement.
IEEE Transactions on Instrumentation and Measurement 42(4), 842–846

9. Pan, S., Guan, Q., Xu, S.: Optimizing video processing algorithm with multidimensional
DMA based on multimedia DSP. In: 2010 International Conference on Computational
Problem-Solving, ICCP (2010)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 61–72, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Design and Implementation of Novel Flexible Crypto
Coprocessor and Its Application in Security Protocol

Shice Ni, Yong Dou, Kai Chen, and Lin Deng

National Laboratory for Parallel and Distribution Processing,
National University of Defense Technology,

Deya Road, 109#, Changsha, 410073, P.R. China
{nishice,yongdou,chenkai,denglin}@nudt.edu.cn

Abstract. Cryptography is an essential component in modern electronic com-
merce. Accelerating security protocols is a great challenge in general-purpose
processor due to the complexity of crypto algorithms. The ultimate solution to
this problem would be an adaptive processor that can provide software-like
flexibility with hardware-like performance. After analyzing the characteristics
of security protocols, we discover that most crypto algorithms are employed at
the function level among different security protocols, and propose a novel flex-
ible crypto coprocessor (FC Coprocessor) architecture that rely on Reconfigur-
able Cryptographic Blocks (RCBs) to achieve a balance between high
performance and flexibility and implement a flexible architecture for security
protocols on FPGA. Within the RCBs, the pipelining technique is adopted to
realize parallel data and reduce the cost of the host and the coprocessor. We
consider several crypto algorithms as examples to illustrate the design of RCB
in the FC Coprocessor. Finally, we implement the prototype of the FC copro-
cessor on Xilinx XC5VLX330 FPGA chip. The experiment results show that
the coprocessor, running at 189 MHz, outperforms the software-based Secure
Sockets Layer protocol running on an Intel Core i3 530 CPU at 2.93 GHz by a
factor of 4.8X for typical crypto algorithm blocks.

Keywords: flexible crypto coprocessor, reconfigurable crypto block, security
protocol, accelerator.

1 Introduction

Cryptography is an essential component in modern electronic commerce. With in-
creasing transactions conducted over the Internet, ensuring security of data transfer is
critically important. Considerable amounts of money are being exchanged over the
network, either through e-commerce sites (e.g., Amazon and Buy.com), auction sites
(e.g., eBay), on-line banking (e.g., Citibank and Chase), stock trading (e.g., Schwab),
and even governments (e.g., irs.gov). Therefore, many security protocols have been
employed to guarantee data privacy and communication channel security, such as
virtual private networks [1] and secure IP (IPSec) [2]. Security-related processing can
consume the processing capacities of many servers.

62 S. Ni et al.

Accelerating security protocols is a great challenge in the general-purpose proces-
sor due to the complexity of crypto algorithms. In general, ciphers use large arithmet-
ic and algebraic modifications, which are not adequate for software implementation.
Thus, cipher implementations allocate many system resources in terms of hardware to
integrate as components. Additionally, security protocol implementation must also
support different algorithms and be upgradeable in the field; otherwise, interoperabili-
ty among different systems cannot be realized, and any upgrade results in excessive
cost. However, most hardware implementations suffer from drawback from the diffi-
culty in the programming model, resulting in upgrading difficulty.

The ultimate solution to this problem would be an adaptive processor that can pro-
vide software-like flexibility with hardware-like performance. FPGA chips, which
operate at the bit level and serve as custom hardware for different crypto applications,
have been considered as a likely option to support efficiently a wide range of crypto-
graphic algorithms and procedures.

After analyzing the characteristics of security protocols, we discovered that most
crypto algorithms are employed at the function level among different security proto-
cols. By utilizing the reconfigure feature of FPGA, we propose a novel flexible crypto
coprocessor (FC Coprocessor) architecture, which rely on Reconfigurable Crypto-
graphic Blocks (RCBs) to achieve a balance between high performance and flexibility
and implement a flexible architecture for security protocols on FPGA. The RCBs are
pipeline implementations of crypto algorithms on the reconfigurable chip, with uni-
fied interface ports to the host computer and each other. For a specific security proto-
col, we can adapt the coprocessor architecture and select several correspondent blocks
from the module library to realize the entire security protocol on a reconfigurable
device.

This paper is organized as follows; Section 2 introduces the related works. Section
3 describes in details the flexible architecture of our proposed coprocessor; Section 4
shows the performance of the crypto blocks and their application to security protocol
on FPGA; Section 5 presents the conclusion.

2 Relative Work

Our work encompasses many aspects of cryptographic algorithm accelerations [3–8].
In the following, we summarize some representative works and explain how our paper
differs from these.

Many studies focused on the hardware structure to reconfigure unit of ciphers. The
Cryptographic Optimized for Block Ciphers Reconfigurable Architecture (COBRA)
[9] proposed specialized cryptographic elements (named as reconfigurable crypto-
graphic elements) to construct the COBRA architecture and a methodology to design
general-purpose reconfigurable cryptographic elements optimized for block cipher
implementation by analyzing the functional requirements of the block ciphers. The
Cryptobooster [10] processor adopted modules to implement the IDEA algorithm.
The Adaptive Cryptographic Engine (ACE) [11] was proposed to provide the speed
and flexibility required by IPSec. ACE consists of an FPGA device, a cryptographic

 Design and Implementation of Novel Flexible Crypto Coprocessor and Its Application 63

library, and a configuration controller. Using the cryptographic library, the FPGA can
be configured at run-time using the configuration controller. Various configuration
files are available for selection, similar to COBRA; however, only one crypto algo-
rithm is chosen in the meantime.

Most of the times, security protocol needs more than one crypto algorithm block at
once, and integrating all crypto blocks needed by the protocols on a chip can decrease
the overhead of communications between the host and the accelerator. Therefore, this
paper proposes the novel FC Coprocessor architecture that balances high performance
and flexibility.

3 Implementation of the Coprocessor

3.1 Architecture

The crypto coprocessor accelerator comprises one FPGA chip, two SDRAM modules,
and an I/O channel interface. The interface channel is responsible for transferring the
computed data and results between the accelerator and the host. Figure 1 shows the
computation platform consisting of the coprocessor accelerator.

The core of the FC Coprocessor mainly consists of memory controller, register
files, a data-path controller, and reconfigurable integrity blocks for the crypto algo-
rithms. The data-path controller controls the dedicated crypto block and performs the
interface operations using external devices such as the memory and an I/O bus inter-
face controller. RCB executes various crypto algorithms such as MD5 and SHA-256
(hash algorithms) and other application programs such as the user authentication and
IC card interface programs.

The structure of RCB is shown in Figure 2. The input data, e.g., plain text, are
transmitted via FIFO, as well as the cipher text. We chose 128 bits as the data width
in our implementation because the width of the operands in most crypto algorithms is
128 bits or higher. Through FIFO_I and FIFO_O, different blocks with different ope-
rand widths can work synchronously.

Fig. 1. Block diagram of the hardware design of FC Coprocessor

64 S. Ni et al.

Fig. 2. Block diagram of the hardware design of RCB

A controller module is provided to handle the control signal from the data-path
controller. When a start signal is received from the top controller, the module orders
the RCB to read the data from FIFO_I sequentially and start the pipeline of RCBs.
When the pipeline result is ready, the module produces the control signal to write data
back to FIFO_O.

LocalMem is used to store the local parameters of the symmetric algorithms, such
as the S-boxes of AES, RC4, and DES. The S-box design is an important work in
progress of these algorithms. RCBs are the pipeline implementations of crypto algo-
rithms, described in details in following section.

3.2 Implementations of RCB

RSA

RSA [14] is one of the most popular public-key crypto algorithms. This algorithm is a
type of modular exponentiation: modeC M N= . Here, e and N refer to the public-key
cryptography, M refers to the plaintext, and C is the calculated cipher text. N, e, and
M are large numbers. The width of the operands in the RSA can reach 1,024 bits or
higher, indicating that the throughput of the system is too difficult to achieve.

The Montgomery algorithm is used to speed up the modular multiplication and
modular exponentiation. The radix-2 Montgomery algorithm without subtraction is
presented in [12]. The difficulties of the Montgomery algorithm lie in solving qi and
the large-number additions. We propose the following methods to solve these prob-
lems:

Solving qi: Before Y is input, we can shift Y to the left of N bits; thus, the calcula-
tion of qi would be

0× mod 2r
i iq S n= ′ , where n0′ is decided by input X. We can truncate

the high part of Si because of the mode operation. Then, we can easily and quickly
obtain qi.

Large-number additions: Using the CSA contracture, we can split X into Xc and
Xs, which indicate the carry of X and the result of X, respectively. Furthermore, the
same process with Y can be performed, splitting Y into Yc and Ys. Therefore, the
Montgomery algorithm can be modified as shown in Figure 3.

 Design and Implementation of Novel Flexible Crypto Coprocessor and Its Application 65

Fig. 3. Modified algorithm of the general radix-2r Montgomery algorithm without subtraction
from the radix-2 Montgomery algorithm

Figure 4(a) shows that after X and Ys are input and width_N cycles carry the save
addition in the CSA tree, Sc and Ss are sent to the add module to complete the entire
addition. Finally, we can derive the result. The whole Montgomery system requires (n
+ r)/r + n/w cycles (w is the width of the data processing in the Adder module).

The full Adder (FA) module completes the final summation operation of the out-
puts Ss and Sc in the improved Montgomery algorithm. Figure 4(b) shows its construc-
tion. The results of the CSA (Ss and Sc) are sent to Registers A and B, respectively.
Subsequently, we derive w bits from A and B to send them to the FA, and the result-
ing w bits are sent to the lower w bit in the result register. The one-bit carry is sent to
C_in to prepare for the next w-bit addition. The result register shifts the w bits to the
right following the addition of every w bit.

 (a) (b)

Fig. 4. (a) Montgomery multiplier module. (b) Construction of the FA module.

MD5

MD5 is a hash algorithm for message digesting, introduced in 1992 by Rivest; it con-
sists of five steps (for more details, please refer to [13]). The core of MD5 is the algo-
rithm used for processing the message. The algorithm consists of four rounds, each of
which comprises 16 steps.

The algorithm is performed as follows: first, the values of A, B, C, and D are stored
as temporary variables. Then, every step operation is performed for 64 rounds. For

66 S. Ni et al.

each round, a corresponding nonlinear function exists. Finally, the values of the tem-
porary variables are added to the values obtained from the algorithm, and the results
are stored in Registers A, B, C, and D. When all message blocks have been processed,
the message digest of M is stored in Registers A, B, C, and D.

Message M is divided into 512-bit blocks, which are processed separately. Data de-
pendence does not exist among the pieces of input data. Hence, we can pipeline the
data path in 64 cycles.

A one-round process of MD5 is shown in Figure 5. The Const Unit keeps the data of
MD5 constant. The registers store the input message block, and a selection module is
available that chooses the response corresponding to the value of Xk in every round.
FU is a combinational logic consisting of rotate left, adder, and nonlinear functions.

Fig. 5. One round of MD5 algorithm

SHA256

SHA256 15 is another widely used message-digesting algorithm. The SHA-256 algo-
rithm takes a message length of less than 264 bits and outputs a 256-bit long message
digest. The digest serves as a concise representation of the message and has the prop-
erty that any change in the message is very likely to result in a change in the corres-
ponding digest. Initially, we need to initiate several parameters, such as from a to h, as
shown in Figure 6, to be used as starting points for the rounds. In the design, parame-
ters a to h are implemented through eight registers whose width are all 32 bits. Subse-
quently, the message should be scheduled. The next step is an iterative process. Final-
ly, the hash value is updated; the data in registers a to h represent the final result.

Fig. 6. Iterative progress of SHA256 algorithm

 Design and Implementation of Novel Flexible Crypto Coprocessor and Its Application 67

AES

AES [16] was accepted as a FIPS standard in November 2001. The algorithm is com-
posed of four different steps, namely, byte substitution, shift row, mix column, and key
addition. The number of rounds Nr that the algorithm is repeated is related to the key
size that the algorithm used. When a key size of 128 bits is used, the number of
rounds is equal to 10. Figure 7 shows the unrolled and fully pipelined implementation
of the AES algorithm. The shift row step is only for interconnection, and the key addi-
tion is the XORing of the round data and the round key. The mix column step consists
of a chain of XORs to permute the elements of the data in each column. The arithmet-
ic of these three stages can be combined in one pipeline stage for each round.

The byte substitution is performed on each byte of the state using a substitution ta-
ble (S-box). In this phase, the input is considered as an element of GF(28). First, the
multiplicative inverse of GF(28) is calculated. Then, an affine transformation over
GF(2) is applied. Here, either all substitute values are calculated in advance and
stored in the block RAMs or on-the-fly calculation of the values is logically imple-
mented. We implemented the SubBytes block (S-box) with a block RAM, instead of
calculating the multiplicative inverse and affine transform, for simplicity and high
performance. We used a 1-kbyte block RAM for the S-box, and S-box was used in the
implementation of the AES crypto block.

Fig. 7. AES round structure

DES

DES [17] is a block cipher that uses a 64-bit key and operates on 64-bit blocks of
data. Because every 8th bit of the 64-bit key is used for parity checking, DES has a 56-
bit key. The DES algorithm has 16 rounds of identical operations such as non-linear
substitutions and permutations. In each round, 48-bit sub keys are generated, and
substitutions using S-box, bitwise shift, and XOR operations are performed.

The 56-bit key length is relatively small by today’s standards. For increased securi-
ty, the DES operation can be performed by three consecutive times, which expands
the effective key length to 112 bits. Using DES in this manner is referred to as triple-
DES. In this section, we only describe the DES crypto block because the expansion to
triple-DES is trivial.

68 S. Ni et al.

Figure 8 shows one round of the DES algorithm. The left and right halves of each
64-bit input data operand are treated as separate 32-bit data operands Li-1 and Ri-1 .
The 32-bit right halves of the data are passed to the next left halves of the data. The
left and right halves of each 64-bit input data operand are treated as separate 32-bit
data operands Li-1 and R i 1. The 32-bit right halves of the data are passed to the next
left halves of the data.

Fig. 8. Structure of one round in DES

RC5

RC5 [18] is a variable key-size stream cipher developed by Ron Rivest for RSA Data
Security, Inc. For real-time encrypting, stream cipher is the best choice. Therefore,
RC5 is employed in several popular security protocols.

RC5 consists of three components: a key expansion algorithm, an encryption algo-
rithm, and a decryption algorithm. The plain text input to RC5 consists of two words
A and B. The algorithm uses an expanded key table S[0,t-1] consisting of t=2(r+1)
w-bit words. The key-expansion algorithm initializes S from the user’s given secret-
key parameter K. (S is not a user, in contrast to that of the DES S-box).

We assume that the input block is given in the two w-bit registers A and B. We as-
sume standard little-endian conventions for packing the bytes into input/output
blocks: the first byte goes into the low-order bit position of register A, and so on. We
also assume that key expansion has already been performed. The decryption routine is
easily derived from the encryption routine.

We implemented RC5 algorithms on FPGA; Figure. 9 shows the structure of RC5,
which is composed of three units: Key Setup and Encrypt are the combinational logic,
and S-Table is a block RAM that stores in the S-box.

Fig. 9. Structure of RC5

 Design and Implementation of Novel Flexible Crypto Coprocessor and Its Application 69

4 Experimental Results

We implemented the crypto coprocessor on a development board and verified the
designs on FPGA. The board was composed of one large-scale FPGA chip, Virtex5
XC5VLX330 from Xilinx, two 4 GB DDRII SODIMM modules, and a PCI-E × 8
interface to the host computer.

Our designed target is the FPGA at its fastest speed grade (-2) using ISE 10.1i.03
implementation flow by Xilinx Synthesis Technology. We used the Mentor Graphics
ModelSim 6.5a for the behavioral simulation. The software platform included a host
PC with Intel Dual-Core i3 530 CPU at 2.93 GHz and 8.0 GB DDR3 1333 memory at
level O3 compiler optimization [19].

4.1 Performance of RCB

In this section, we present and analyze the performance of the FC Coprocessor. We
compared the representative operation mode of the algorithms in the test. By the term
“performance,” we mean the throughput of the blocks measured by the minimum time
that elapsed between the completions of two independent encrypting operations,
which is smaller than the instruction latency because the circuit is pipelined.

 Performance of the RCB
Table 1 shows the details of the FPGA synthesis results for the basic RCBs. The AES
crypto block was implemented with full pipelined-based architecture, and its S-boxes
were implemented with FPGA’s block RAM. We also chose the pipelining technique
for the MD5, SHA256, and DES crypto blocks. Resource cost is usually related to the
width of the operand, such as RSA. Because of the mode of operation, the RC4 algo-
rithm block was selected to exploit the sub-pipelining technique.

The achievable maximum frequency of the RCBs is 214.34 MHz. Compared with
the same circuit implemented directly on silicon (ASIC), the FPGA implementation,
emulated with a very large number of configurable elementary blocks and network of
wires, is typically one order of magnitude slower. However, the performance of the
FPGAs improved using custom hardware for applications equipped with multiple
RCBs working in parallel.

Table 1. Resource and frequency of the algorithms on FPGA

Algorithms Slice LUT BRAM Freq.(MHz) Perf.(Gbps)
AES 128 14833 32 307.89 39.4

RC5 915 1 353.78 0.91
SHA-256 11,047 55 214.34 10.9

MD5 12,662 20 248.08 53.3

RSA-1024 24,996 1 308.36 2.2×10-3

70 S. Ni et al.

 Performance comparison with an i3 core
Table 2 shows that we can obtain better performance compared with the parallel pro-
grams running on Intel multi-core processor. We compare the performance of the
RCBs with the corresponding parallel program of the multi-core processor. The spee-
dup factor for the RCBs is between 2 and 72. The DES hardware implementation
achieves 20.2 Gbps, a factor of 72 times better than the general processor. The AES in
the CBC mode results in a performance of 39.4 Gbps and achieves a speedup of 15.8
times. The throughput of the 1,024-bit RSA encryption is 2.2 Mbps.

Table 2. Performance (gigabit per second) comparison with the general processor

Algorithms Ours (Gbps) CPU (Gbps) Speedup
AES-128 39.4 1.16 15.8

RC5 5.6 0.08 66.7
SHA256 10.9 0.12 68.3

MD5 53.3 2.24 29.2
RSA-1024(Sign) 2.2×10-3 1.2×10-3 2.1

 Performance comparison with related works
In Table 3, we compare the performance of our design with existing designs. From
the result, we obtain a better throughput in most algorithms. The performance of AES
and SHA256 in our design is approximately the same. For RC5 and MD5 algorithms,
the frequency of our design is higher; therefore, the throughput is higher than that of
the related works.

Table 3. Performance comparisons with other designs

Algorithms Implements chips Area(slice) Freq.(Mhz) Perf.(Gbps)

AES-128
Ours XC5VLX330 14,833 307.89 39.4
[20] XC5vlx30 1,223 289.79 3.71

RC5
Ours XC5VLX330 915 353.78 5.6
[21] XC2V1000 3,618 35 0.05

SHA256
Ours XC5VLX330 11,047 214.34 10.9
[22] Virtex II 3,077 85.9 5.4

MD5
Ours XC5VLX330 12,662 248.08 53.3
[23] EP2SGx90 26,758 66.48 32.0

RSA-1024 (Sign)
Ours XC5VLX330 24,996 308.36 2.2×10-3
[24] XC2V6000 4,956 50 0.3×10-3

4.2 Coprocessor Application in SSL Protocol

To test and verify the method and architecture proposed in this paper, we used the
processor to implement SSL ciphered communication in the Virtex5 FPGA. In addi-
tion, we evaluated the feasibility of the SSL accelerator based on one-chip architec-
ture using FPGA.

First, we designed RSA by the parallel processing described above. Next, we se-
lected the shared-key cryptography algorithm AES and hash algorithm SHA256 using

 Design and Implementation of Novel Flexible Crypto Coprocessor and Its Application 71

a shared circuit in sending and receiving and evaluated the efficiency of the area re-
duction. The circuit area of each algorithm the three algorithms are shown in Table 3.

From these simulation evaluation results, we confirmed the feasibility of SSL acce-
lerator based on the architecture that implements all processes into one chip using
FPGA. Finally, we create a prototype of the FC coprocessor on Xilinx Virtex5
XC5VLX330 FPGA chip. The experiment results show that the coprocessor, running
at 189 MHz, outperforms the software-based Secure Sockets Layer protocol running
on an Intel Core i3 530 CPU at 2.93 GHz by a factor of 4.8X for typical crypto algo-
rithm blocks.

Table 4. Performance comparison of SSL protocol

Sign/ms Cipher/ms Other Total
/ms

Speedup
Modules RSA1024 AES128 SHA256 Setup

Avg. time on CPU 0.92 2.3 1.18 0 4.4
4.8

Avg. time on FPGA 0.51 0.15 0.21 0.04 0.91

5 Conclusion and Future Work

In this paper, we have presented the design and implementation of a novel crypto
coprocessor with flexible architecture and reconfigurable crypto blocks. The RCBs of
the crypto processor accelerate the private- and public-key crypto algorithms. The
crypto processor was evaluated by constructing an acceleration system for SSL proto-
col. The high performance and flexibility of the crypto processor design enables it for
various security applications.

For future work, we plan to develop additional high-performance public-key crypto
blocks. To facilitate our crypto processor, we will exploit the high-level synthesis
toolchain based on existing architecture for security protocols.

Acknowledgments. This work was supported by the National Science Foundation of
China (61125201 and 60921062).

References

1. Freier, A.O., Karlton, P., Kocher, P.C.: Introduction to SSL. IETF draft (1996),
https://developer.mozilla.org/zh-
CN/docs/Introduction_to_SSL#The_SSL_Protocol

2. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. RFC 2401 (Novem-
ber 1998)

3. Taylor, R.R., Goldstein, S.C.: A High-Performance Flexible Architecture for Cryptogra-
phy. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, p. 231. Springer, Hei-
delberg (1999)

4. Antão, S., Chaves, R., Sousa, L.: AES and ECC Cryptography Processor with Runtime
Configuration. In: Proceedings of ADCOM (2009)

72 S. Ni et al.

5. Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s Fully Pipelined AES Processor on FPGA. In:
Proc. FCCM 2004 (2004)

6. Mazzeo, A., Romano, L., Saggese, G.P., et al.: FPGA-based Implementation of a serial
RSA processor. In: Proc. DATE 2003 (2003)

7. Michail, H.E., Athanasios, P., et al.: Top-Down Design Methodology for Ultrahigh-
Performance Hashing Cores. IEEE Transactions on Dependable and Secure Compu-
ting 6(4), 255–268 (2009)

8. Kakarountas, A.P., Michail, H. (eds.): High-Speed FPGA Implementation of Secure Hash
Algorithm for IPSec and VPN Applications. The Journal of Supercomputing 37, 179–195
(2006)

9. Elbirt, A.J., Paar, C.: An Instruction-Level Distributed Processor for Symmetric-Key
Cryptography. IEEE Transactions on Parallel and Distributed Systems 16(5) (2005)

10. Mosanya, E., Teuscher, C., Restrepo, H.F., Galley, P., Sánchez, E.: CryptoBooster: A Re-
configurable and Modular Cryptographic Coprocessor. In: Koç, Ç.K., Paar, C. (eds.)
CHES 1999. LNCS, vol. 1717, pp. 246–256. Springer, Heidelberg (1999)

11. Prasanna, V.K., Dandalis, A.: FPGA-based Cryptography for Internet Security. In: Online
Symposium for Electronic Engineers (2000)

12. Li, M., Ji, X., Liu, B.: Analysing and Researching Montgomery Algorithm. Science Tech-
nology and Engineering 6, 1628–1631 (2006)

13. Rivest, R.L.: The MD5 Message-Digest Algorithm. RFC 1321, MIT Laboratory for Com-
puter Science and RSA Data Security, Inc. (April 1992)

14. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Pub-
lic-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)

15. NIST Federal Information Processing Standards Publication, FIPS PUB 180-2 (2002)
16. National Institute of Standards and Technology. Advanced Encryption Standard (AES).

Federal Information Processing Standards Publications – FIPS 197 (2001)
17. FIPS PUB 46-3, Data Encryption Standard (DES), Reaffirmed (1977)
18. Rivest, R.L.: The RC5 Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS,

vol. 1008, pp. 86–96. Springer, Heidelberg (1995)
19. OProfile. OProfile Website (2012), http://oprofile.sourceforge.net/news/
20. Bouhraous, A.: Design feasibility study for a 500Gbits/s advanced encryption standard ci-

pher/decipher engine. IET Computers & Digital Techniques 4(4), 334–348 (2010)
21. de Dormale, G.M., et al.: On Solving RC5 Challenges with FPGAs. In: Proceedings of

FCCM (2007)
22. Michail, H.E., et al.: On the Exploitation of a High-Throughput SHA-256 FPGA Design

for HMACACM. Transactions on Reconfigurable Technology and Systems 5(1) (2012)
23. Wang, Y., Zhao, Q., Jiang, L., Shao, Y.: Ultra-High Throughput Implementations for MD5

Hash Algorithm on FPGA. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds.) HPCA
2009. LNCS, vol. 5938, pp. 433–441. Springer, Heidelberg (2010)

24. Paar, T.B.C.: High-Radix Montgomery Modular Exponentiation on Reconfigurable Hard-
ware. IEEE Transaction on Computer 50(7) (2001)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 73–80, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Wormhole Bubble in Torus Networks

Yongqing Wang and Minxuan Zhang

College of Computer, National University of Defense Technology,
410073 Changsha, China

{yqwang,mxzhang}@nudt.edu.cn

Abstract. Typical bubble schemes are flow control algorithms based on virtual
cut-through switching. It can avoid deadlock problems without using virtual
channels. In this paper, we extend bubble mechanism to wormhole flow control
in torus networks, design a non-blocking moveable bubble scheme combined
with a false packet protocol. The minimum buffer space required for each input
channel is one maximum-sized packet. We compare the performance of various
bubble-based schemes with simulation. The results show that moveable bubble
scheme can achieve higher throughput and lower latency than existing bubble
schemes, and be comparable with dateline technique with two virtual channels.
When buffer size is limited and packet-size is fixed, it even has some advantage
over dateline, improving accepted rates at saturation more than 10%.

Keywords: bubble scheme, k-ary n-cube, wormhole flow control, deadlock-
free, interconnection network.

1 Introduction

Different flow control techniques have been proposed to control the flow of
information in the area of interconnection network. Virtual cut-through (VCT) and
wormhole (WH) are the most well-known flow control mechanisms among others.
The main difference between VCT and WH routers is the size of their flow control
unit. VCT performs flow control at the packet level instead of the smaller data units
employed in WH.

Flow control mechanisms can also be classified as being either locally-aware or
globally-aware. Locally-aware flow control mechanisms allocate network resources to
packets based solely on information local to router nodes. In the contrast, globally-
aware flow control mechanisms make resource allocation decisions based on global
network conditions that include local status information [1].

Along with routing, network flow control aims to maximize resource utilization. If
the routing algorithm and the flow control are not carefully designed, message
deadlock can arise. One of the critical issues in the design of large-scale
interconnection network is to efficiently handle deadlock anomalies. Deadlocks occur
as a result of circular dependencies on network resources by in-flight messages (or
packets).

74 Y. Wang and M. Zhang

2 Related Works

In a full-duplex torus network, the set of unidirectional links along a given direction
in a dimension form a unidirectional ring, and intra-dimensional deadlock can occur.
A classic solution to this problem is to use a dateline technique where two virtual
channels are associated with each physical channel [2]. A drawback of this approach,
however, is the requirement of two virtual channels and the corresponding buffer
resources.

Carrion [3] first proposed a flow control policy called “bubble” to get rid of the
deadlock caused by wraparound links in the virtual cut-through network, reducing the
required number of virtual channels under deterministic routing from two down to one.

Puente [4] gave a design of adaptive virtual cut-through router with a combination
of adaptive virtual channel and bubble scheme. Bubble flow control (BFC) was
adopted in IBM Blue Gene/L [5].

Critical Bubble Scheme (CBS) [1] was proposed as a way to implement globally-
aware BFC including special bubble information within the ring, which can reduce
the minimum number of channel buffers needed to avoid deadlock to minimal one-
packet size as opposed to two of localized version. The principle behind the Critical
Bubble Scheme is to mark and track as critical at least one bubble in each directional
ring of a network and restrict the use of critical bubble only to packets traveling
within dimensions.

MBS[6] was proposed to relieve the potential blocks introduced in CBS. It
presented a false packet protocol to make the critical bubble moveable. But like all the
other bubble schemes, it works under virtual cut-through switching.

3 Bubble Scheme for Wormhole

In wormhole switching, the unit of flow control is flit. Thus, channel buffer space is
multiple of flit size and packet is composed of one or more flits. Also in what follows,
a bubble refers to a free flit-sized buffer.

Critical bubble scheme needs to mark and track as “critical” a certain number of
free flit-sized buffers (minimally, one per network dimension) and use them correctly
to restrict packet injection for preventing deadlock. Thus, free buffers are separated
into two classes, normal ones and critical ones. Normal free buffers are those without
mark, and critical buffers are those with mark.

Critical bubbles flow within and are confined to certain directional rings.
There are three simple rules when injecting and forwarding of packets across

dimensions under wormhole flow control, which are similar to VCT,
1) Forwarding of flit along the same dimension is allowed if the receiving channel

buffer has at least one free slot.
2) Injection of a new packet of size S into a dimension is only allowed if the

receiving channel buffer has at least S normal free slots and there is at least one
additional free buffer located anywhere in the set of queues corresponding to that
directional ring.

3) Forwarding of a packet from one dimension to another is treated as a packet
injection.

 Wormhole Bubble in Torus Networks 75

According to rule 1), a flit entering into downstream router generates a bubble at
current router. And with rule 2) and 3), the absence of the critical bubble at the
immediate destination indicates the existence of a free buffer elsewhere in the ring,
ensuring bubble condition.

But just as what was presented in paper [6], using the rules straightforward had a
risk of blocking some channel forever, if the critical bubble stayed at some place
permanently. This blocking is not a kind of deadlock with resource dependence, but
results from the flow control function itself. So we adapt the false packet protocol
(FPP) to BUB-WH, and get a moveable bubble scheme for wormhole, named MBS-
WH.

The key idea is to assure the transferability of critical bubbles, especially when
such kind of buffers doesn’t move for a long time. The transfer of critical bubble
needs the help from upstream router. If there is any packet from upstream, critical
bubble moves automatically. If there is no such flow, a free buffer can also help. A
free buffer in upstream can replace the critical bubble in current router.

FPP is used for communications by two neighboring ports connected with a direct
link, such as e and w connected in Fig. 1. It includes two phases, request (REQ) and
acknowledgement (ACK). During the first phase, a REQ packet is sent and received,
and during the second phase, an ACK packet is interchanged. A REQ packet is some
kind of control signal and consumes no credit. It can be consumed directly after
reception. Whereas the ACK packet acts as a normal data packet of one flit. Credit of
one flit buffer is needed to send and receive. At the receiver, it is processed
immediately, and there is no further transmitting. Above all, the FPP protocol can
generate a temporary data packet to make the critical bubble transfer possible.

Fig. 1. A 4x4 torus network

In the following, we give the description of the MBS-WH,

76 Y. Wang and M. Zhang

1) Initialization: Assume a k-ary n-cube network with bidirectional links. Every
dimension is composed of two opposite unidirectional rings. For each unidirectional
ring, one or more free flit buffers from any one or more router channels belonging to
this direction can be marked as the critical bubbles. The other free buffers operate as
normal buffers.

2) Forward rules: In MBS-WH, two rules are defined for the flow control of
packets to avoid deadlock. When the flit advances in the same dimension, at least one
free slot is needed in the receiving channel, no matter whether it is a normal one or a
critical one.

When a packet consisting of S flits is injected to the network or forwarded to a
channel belongs to a different dimension, at least S normal slots are needed in the
receiving channel. It is prohibited to forward if the size of remaining normal slots is
less than S.

3) Migration of Critical Bubble: The primary requirement of the MBS-WH is
always to maintain a certain number of free buffers in each unidirectional ring and
assure no blocking caused by critical bubbles. For ease of explanation, we take the
case in Fig. 1, but assume a general input channel (w in R23) of n free slots and there
are m critical bubbles among them, with m <= n. And According to the types of
packet forwarding in upstream input channel (w in R22) and the current channel state,
there are four cases.

i) When n –m >=Smax (the number of flits belonging to one maximum-sized
packet), there is enough normal free space to accept a maximum-sized packet, and
any packet toward this channel is allowed. The critical bubble remains untouched.

ii) When n –m <Smax, and a flit is forwarded from router R22 to R23 along the same
dimension, the critical bubble in router R23 transfer backward to router R22.

iii) When n –m <Smax, and the flit in input channel w of R22 is not destined for R23,
after forwarding, a critical bubble is transfered from R23 to R22. Router R21 is notified
of this change when a credit is returned, and at the same time, the number of critical
bubbles in channel e of R23 is reduced by one. On the other hand, the normal buffer
size is increased by one.

iv) When n –m <Smax, and there is no flit in input channel w of R22, there is a risk
of blocking in channel w of R23. So, a timer is set in each output. If n –m >=Smax, the
timer is cleared. Otherwise the timer is started. When the timer counts to a threshold,
the FPP scheme is triggered. After the ACK packet is processed, the free buffer will
be marked as critical and information is sent to R21. Then, the critical bubble count in
channel e of R22 is reduced by one, avoiding the potential blocking.

4 Evaluation

In this section, we evaluate the proposed wormhole bubble scheme and compare its
performance with other techniques. Network throughput and latency are typical
metrics used to measure the performance of an interconnection network, so we
modify the cycle-accurate simulator, Booksim [2], to model related flow controls and
measure the average latency of packets and throughput over a long period, after a
sufficient network warm-up. Each point in the plots shows the measured value for a
given offered load in flits/node/cycle. The plots present the average packet latency (in
clock cycles) and accepted flit rate as a function of offered rate, respectively.

 Wormhole Bubble in Torus Networks 77

We consider a small network size with bidirectional physical channels, a 16-node
(4x4) torus network. Each router node has one injection channel. For our analysis, we
consider synthetic traffic patterns, including uniform random and shuffle traffic
patterns.

In the following, we assume fixed packet size with 4 flits, while variable packet
size from 1 to 4 flits.

For all the figures below, the number of input buffer slots is appended to each
scheme, forming a whole name for comparing.

In all cases deterministic (XY) routing is employed.

4.1 Performance with Less Than Two Packet-Sized Buffers

Our simulation exploration starts with a latency and throughput comparison between a
locally-aware wormhole bubble (BUB-WH) and the MBS implementation. We first
set buffer with least requirements, 4 flits, and then assume that both designs have
equal-sized buffers; specifically, 5-flit buffers and 6-flit buffers per input port.

With buffer set to one packet size, MBS passes our test, validating the correctness
of MBS-WH.

Fig. 2 depicts how the latency and throughput of MBS change at various buffer
sizes. It is evident from the graphs that buffer depth is crucial to performance. As
buffer size increasing, the network is able to reach higher throughput. We can also
observe from this figure, when packet injection rate is low (< 0.15 flit/cycle), which
means the network is empty, their performance is almost the same.

As the flit injection rate increases, network congestion happens, and the packet
latency rises dramatically, but the time that congestion happens in MBS is later than
BUB-WH. Under uniform traffic pattern, MBS performs a little better than BUB-WH
when the packet injection rate is the same. This is because MBS gets more
opportunity to forward packets when the network load is heavy.

Under shuffle pattern, curves of MBS-WH-4 and BUB-WH-5 are almost
superposed, suggesting that MBS-WH can achieve similar performance with fewer
buffers. With equal-sized buffers of 5, MBS-WH-5 substantially outperforms BUB-
WH-5.

(a)Uniform latency (b)Uniform throughput

Fig. 2. Performance with Less than eight slots

78 Y. Wang and M. Zhang

(c)Shuffle latency (d)Shuffle throughput

Fig. 2. (continued)

4.2 Performance with Two Packet-Sized Buffers

Next, we evaluate network performance with the buffer depth set to 8 slots. In the
generic dateline design, 8 buffer slots are arranged as 2 VCs, each with a 4-flit depth.
Fig. 3 gives the results.

When the applied load rate is low, buffer occupancy is also low in all schemes and
the performance is not much different.

In all cases of heavy load, BUB-VCT performs worse than the others, due to its
inefficient at moving flits through the router, adopting local bubble scheme with
virtual cut-through switching.

Under uniform pattern, MBS-WH and dateline are almost identical with each
other. While under shuffle, which are apt to congestion, we can observe MBS-WH
provides a competitive latency under load 0.3~0.4 and saturates at higher accepted
rates by 15%. The difference comes mainly from the highly efficient buffer utilization
of MBS-WH.

This is of profound importance, since dateline is equipped with two virtual
channels, while MBS-WH has no virtual channel support. It seems that the use of
virtual channels does not make a significant improve under limited buffers.

For bubble schemes with equal-sized configurations, MBS-WH obtains, by far, the
best result. It performs clearly better than BUB-WH and BUB-VCT. More
importantly, though, MBS-WH saturates at higher injection rates than the generic
cases. It shows the benefit of global-awareness.

 Wormhole Bubble in Torus Networks 79

5 Conclusions

Networks-on-Chip (NoC) have surfaced as a possible solution to escalating wiring
delays in future multi-core chips. It is known that router buffers are instrumental in
the overall operation of the on-chip network. However, buffers are the largest leakage
power and area consumers. It is of great importance to architecting high performance
and energy efficient on-chip interconnect with less buffers.

(a)Uniform latency (b)Uniform throughput

(c)Shuffle latency (d)Shuffle throughput

Fig. 3. Performance with up to eight slots

It is known that wormhole switching can improve network performance over
virtual cut-through. We extend bubble scheme and false packet protocol to wormhole,
and present moveable bubble scheme to provide a way to correctly and efficiently
implement globally-aware wormhole flow control. The results confirm the benefit of
globally-aware wormhole switching. MBS-WH can achieve higher throughput and
lower latency than existing bubble schemes, and be comparable with dateline. When
buffer size is limited and packet-size is fixed, MBS-WH has some advantage over
dateline, improving accepted rates at saturation by 15% for shuffle. Comparing to
typical VCT bubble, the accepted rate at saturation can have an increase up to 43%.

80 Y. Wang and M. Zhang

Acknowledgements. This work is partly supported by the 863 Project of China under
contract 2013AA014301, 2012AA01A301, and National Science Foundation under
Contract 61003301.

References

1. Chen, L., Wang, R., Pinkston, T.M.: Critical Bubble Scheme: An Efficient Implementation
of Globally Aware Network Flow Control. In: Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, pp. 592–603. IEEE Computer Society,
Washington, DC (2011)

2. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan
Kaufmann, San Francisco (2003)

3. Carrion, C., Beivide, R., Gregorio, J.A.: A Flow Control Mechanism to Avoid Message
Deadlock in k-ary n-cube Networks. In: Proceedings of the Fourth International
Conference on High-Performance Computing, pp. 322–329. IEEE Computer Society,
Washington, DC (1997)

4. Puente, V., Izu, C., Beivide, R.: The Adaptive Bubble Router. J. Parallel Distrib.
Comput. 61, 1180–1208 (2001)

5. Adiga, N.R., Blumrich, M.A., Chen, D.: Blue Gene/l Torus Interconnection Network. IBM
J. Res. Dev. 49, 265–276 (2005)

6. Wang, Y.Q., Zhang, M.X.: Moveable Bubble Flow Control in k-ary n-cube. Journal of
National University of Defense Technology 34(6), 34–38 (2012)

Self-adaptive Scheme to Adjust Redundancy

for Network Coding with TCP

Hongyun Zhang�, Wanrong Yu, Chunqing Wu, Xiaofeng Hu,
Liang Zhao, and Xiangdong Cui

School of Computer, The National University of Defense Technology,
410073, Changsha, Hunan, China

{grandcloud88,wangrongyu}@gmail.com

Abstract. Network coding has emerged as an important potential ap-
proach to improve the robustness and efficiency of data transmission over
lossy wireless network. TPC/NC protocol proposed by Sundararajan et
al incorporating network coding into TCP by online coding, TCP/NC
has the advantage of naturally adding network coding to current network
systems and masking non-congestion packet losses from the congestion
control algorithm, However, in TCP/NC the values of redundancy fac-
tor R can’t be adapted based on the characteristics of the underlying
channel.

In this paper we propose a novel self-adaptive scheme to dynamically
adjust R based on the collective feedback information of ACKs, which
contain the information of sinks decoding matrix. Since the scale of de-
coding matrix is indicators of the lossy channel condition, the source
adjusts R based on the channel conditions, avoiding unnecessary TCP
rate reduction and preventing the network from entering in a congestion
state. The TCP/NC with our self-adaptive scheme is realized in OM-
NET++. Simulation results over realistic network scenarios show that
our scheme in conjunction with the standard TCP/NC significantly out-
performs the previous redundancy approach in reducing size of decod-
ing matrix , and produces better TCP-throughputs than the standard
TCP/NC, TCP-Reno.

Keywords: network coding, TCP, packet loss, redundancy packet.

1 Introduction

It is well known that TCP protocol has an awful performance in the lossy wireless
network[2][3][4]. It is because that each loss is interpreted as a congestion signal
in TCP. Network Coding allows nodes of a network to send packets that are
linear combinations of previously received information, instead of delivering the
information to their destination in the standard store-and-forward-manner[1][2].

� The work described in this paper is partially supported by the project of National Sci-
ence Foundation of China under grant No. 61103182; the National High Technology
Research and Development Program of China (863 Program) No. 2011AA01A103.

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 81–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 H. Zhang et al.

Network coding has emerged as an important potential approach in the operation
of communication networks [1].The main benefits of network coding are the
potential throughput improvements and a high degree of robustness to packet
losses[7]. Despite this potential of network coding, we still seem far from seeing
widespread implementation of network coding across networks[5][6].

In [5] Sundararajan et al. propose a new TCP-friendly protocol that suc-
cessfully implemented the network coding into TCP with minor changes to the
protocol stack. The key idea was introducing a new network coding layer between
the transport layer and IP layer in TCP/IP stack, which masks non-congestion
packet losses from congestion control algorithm. In this layer TCP segments
are encoded at the sender and decoded at the receiver. In[6]Sundararajan et
al. present a real-world implementation of this protocol that addresses several
important practical aspects of incorporating network coding and decoding with
TCP’s window management mechanism. For every packet that arrives from TCP,
R(>= 1)linear combinations are sent to the IP layer on average, These packets
are used by the receiver to counteract non-congestion losses .

The ideal level of redundancy is to keep R equal to the reciprocal of the
probability of successful reception[5]. In TCP/NC, the redundancy factor R is
constant. However, when the system is under lossy wireless network where the
loss rate is hart to acquire and not constant, the constant R may cause problems,
on the one hand, when R is too low to match TCP’s sending rate to the rate
at which data is received at the receiver, it will lead to the increase of decoding
delay and TCP time outs. On the other hand, if R is too large, too many linear
combinations are sent to sink, leading to a TCP throughput decrease. Both will
impair the performance of the network.

we propose a new scheme which makes use of the implicit collective feedback
information of sinks decoding matrix to adjust R adaptively to the real system,
aiming to better mask non-congestion packet losses from congestion control al-
gorithm and reducing the size of decoding matrix while increasing throughput.

The remainder of the paper is organized as follows. The TCP/NC protocol
is briefly described in Section 2, details about the adaptive algorithm are given
in Section 3, simulation results are described in Section 4, and some conclusions
and future research directions are drawn in Section 5.

2 TCP/NC Protocol

TCP/NC protocol was presented in 2009[6] which successfully implemented the
network coding into TCP with minor changes to the protocol stack. TCP/NC
designed with respect to a single source that generates a stream of packets to one
sink. It embeds the network coding operations in a separate layer below TCP and
above IP in the protocol stack on two end nodes, which masks non-congestion
losses from congestion control algorithm. In fact, masking losses from TCP was
considered earlier by using link layer retransmission[8]. Yet it has been noted in
[9] and [10] that the interaction between link layer retransmission and TCP re-
transmission is complicated and the performance may suffer due to independent

Self-adaptive Scheme to Adjust Redundancy for Network Coding with TCP 83

retransmission protocols at different layers. But in TCP/NC, it incorporates the
seen scheme which modifies the ACK echo system with congestion control to
naturally add network coding to current TCP/IP stack.

Before explain how TCP/NC works, we introduce a definition see packets[11]
that will be useful throughout the paper. In TCP/NC, packets are treated as
vectors over a finite field Fq of size q. All the discussion here is with respect to a
single source that generates a stream of packets. The Kth packet that the source
generates is said to have an index k and is denoted as Pk . As a result, a node is
said to have seen a packet Pk. if it has enough information to compute a linear
combination of the form (Pk +Q), where Q =

∑
l>k αlPl, with αl ∈ Fq for all

l > k. Thus, Q is a linear combination involving packets with indices larger than
k.

In the implementation of TCP/NC, the source side buffers packets generated
by TCP in the coding buffer, and for every segment arriving from TCP, R random
linear combinations of the most W recently arrived packets in the network coding
buffer are sent to IP layer on average, where R is the constant redundancy
factor. To convey the combination requires an additional network coding header
(contain coding coefficients et al.) that is added to the coded packet.

On the receiver side, upon receiving a linear combination from the sender
side, it first retrieves the coding coefficients from the packet header and appends
them to the basis matrix of its knowledge space. Then the Gaussian elimination
method is adopted to find the newly seen packet and decoded packet. The newly
seen packet can be ACKed and the newly decoded packet can be submitted to
TCP layer. Fig.1 illustrates an example of encoding and decoding. In addition,
any ACK generated by the receiver TCP is suppressed and not sent to the sender.
These ACKs may be used for managing the decoding buffer. An important point
is that the new NC layer is invisible to the transport layer and IP layer. For more
details, the reader is referred to [6].

Fig. 1. TCP/NC

84 H. Zhang et al.

3 Self-adaptive TCP/NC Protocol

3.1 Self-adaptive Redundancy Factor

The heart of TCP/NC is that the sink acknowledges every new seen packet
even if it does not reveal an original packet immediately. Such heart enables a
TCP-compatible sliding-window approach to network coding. It more easy and
efficiency add redundant packets by make use of the ability of network coding to
mix data across segment. So the redundancy factor R is the key point of masking
non-congestion packet losses from congestion control algorithm. If R is too little
redundancy, the receiver will not receive enough linear combinations to decode
(losses are not masked from TCP), leading to time outs and consequently low
throughput. On the other hand, if R is too large, losses are recovered, but at the
price of an increased congestion in the network, leading to a TCP throughput
decrease. For a loss rate of pe, with an infinite window W and using TCP Vegas,
the theoretically optimal value of R is 1/(1−pe), In TCP/NC redundancy factor
R is constantit is impractical to setup R as a constant. Firstly, it is hard to get
loss rate of packet in some network scene; secondly, the probability of loss changes
over time due to changes on channel conditions.

In this paper we aim to adjust dynamically R to an optimal rate based on
the collective feedback information decoding matrix, which indicate the actual
network conditions. Our target is to dynamically adjust R in such a way that the
losses are effectively masked from the TCP layer, when lost packets are due to the
noisy channel, and congestion control algorithm works when a really congestion
happened. When the loss rate pe goes up we increase the redundancy to mask
the channel losses from TCP. We decrease the redundancy when congestion is
present, allowing TCP to sense the congestion and reduce its rate to reduce
congestion.

To fulfill our target, we adding a variable to the ACK header, we named it by
Gap. Before introduce Gap, we first expatiate four state of uncoded segment in
the receiver side buffer, Fig. 2 shows a typical situation.

Fig. 2. Four state of segment in receiver buffer

It is easy to understand seen and decoded state, we mainly focus on involved
and uninvolved state. When a packet is in involved state means some linear
combinations that contain this packet has been receive, but still cant been seen.
As for uninvolved state, a packet is in uninvolved state when none linear com-
binations in receiver side contain this packet.

Self-adaptive Scheme to Adjust Redundancy for Network Coding with TCP 85

At the receiver, the difference between First Byte Uninvolved and
First Byte Unseen is called Gap. When the channel state is stability and R is
suited to loss rate, the value of Gap keep stable at the decoding matrix. When
channel condition change or R is not suited to loss rate, the value of Gap will
also vary. The crux of our scheme is dynamically adjusting R according to the
Gap change. Fig. 3 shows a typical situation in the decoding matrix.

Fig. 3. Typical situation in the decoding matrix

It is safe to assume that the essence of coding packet is a linear combinations
of three original segment. The meanings of this mark or symbol on Fig. 3 are
are as Table 1:

Table 1. meanings of marks or symbols

Mark/Symbol Meaning

Si The ith segment that the source TCP generates

Ci The ith linear combinations that the source NC layer generates

RCi A redundant combinations of Ci
⊕

This segment is contained in Ci or RCi and Si has been seen

© This segment is contained in Ci or RCi and Si still cant been seen

� This segment has been seen or decoded before receive Ci or RCi

Actually, the number of © is the value of Gap when receive Ci of this course.
We find when C3 is lost, Gap go up to 2, so we should increase the value of R
to send more redundant packet for compensation. C6 is a effective redundant
packet for compensation. When R is too large, just like receiver side find RC10
is a redundant packet, at this time receiver side set Gap to -1 to acknowledge
send side R is too large.

86 H. Zhang et al.

3.2 Self-adaptation Algorithm for R

In our scheme we perceive the change of loss rate by comparingGap onNC ACK
(add Gap to the ACK header) with SGap on source side, and thereby dynam-
ically adjust the redundancy factor R. If acked Gap is below SGap which in-
dicates redundancy packet is effective repair packets dropped by the channel
impairments, so R should be remain unchanged. On the other hand, if acked
Gap is up SGap, R should increase (below the upper limit(UL)) to counterbal-
ance channel loss . If acked Gap equals -1, some DUPACKS must have been
received, R is decreased until the lower limit(LL). Initially R is set to a value
R0 that takes into account the losses in throughput due to the finiteness of the
field. The improved algorithm is specified in Algorithm 1 using pseudo-code.

Algorithm 1. Adaptive alg

1: Initialization: SGap = 0, R0 = 1.05, R = R0 , UL = 2, LL = 1.05
2: Each time an NC ACK is received: Pick up Gap in NC ACK header
3: if Gap == −1 then
4: if R > LL then
5: R = R − 0.1
6: end if
7: SGap = 0
8: else
9: if Gap! = SGap then
10: if Gap > SGap then
11: if R < UL then
12: R = R+ (Gap− SGap) ∗ 0.1
13: end if
14: SGap = Gap
15: else
16: R remain unchanged
17: SGap = Gap
18: end if
19: else
20: R remain unchanged
21: SGap remain unchanged
22: end if
23: end if

The reasons for set LL and UL is that R should not below 1, and also R cant
be to infinite. What more, if we know much about the network condition or we
have some specific requirements on redundancy factor. To implement Algorithm
1 in the network coding layer of source, we make some minor changes to the
standard TCP/NC protocol. The changes algorithm is specified below:

Self-adaptive Scheme to Adjust Redundancy for Network Coding with TCP 87

Source Side :

NC ACK arrives from receiver
1) Call Algorithm1
2) Remove the ACKed packet from the coding buffer
3) Generate a new ACK by the NC ACK and send it to the TCP layer

Sink Side :

Packet arrives from source side:
1) Performs Gaussian elimination to update the decoding matrix.
2) Update First Byte Uninvolved and and First Byte Unseen
3) Generate a new NC ACK, consisting of the value of Gap which is the
difference between First Byte Uninvolved and First Byte Unseen

4 Simulation Results

The Implementation of TCP with self-adaptive is base on discrete event simula-
tion environment OMNET++ and the open source TCP/IP protocol framework
INET. We also use OMNET++ to evaluate and compare the performance of
different protocol in network. The topology for the simulations is a tandem net-
work consisting of 7 nodes, three router and 4 host,shown in Fig. 4. The source
and sink nodes are at opposite ends of the chain.

Fig. 4. Topology of network

4.1 Simulation Environment Setup

In this scenario the network carries two flows generated by two FTP applications,
the app type of sender side is TCPSessionApp and receiver side is TCPSinkApp.
One flow is from Client1 to Server1, and the other is from Client to Server2. They
will compete for the intermediate channels. The queue type of wire interface is
DropTailQueue which the first item stored is the first item output. The frame
capacity of DropTailQueue is 150. All the channels have a bandwidth of 1 Mbps,
and the propagation delay between host to router is 10ms, between routers is

88 H. Zhang et al.

50ms. The TCP receive NC layer buffer size is set to 200, and the IP packet size is
556 bytes. TCP-Reno is chosen for the transport layer protocol. The goodput is
measured using outputhook(a kind of measure class in INET framework). Each
point is averaged over 4 or more iterations of such session, depending on the
variability.

4.2 Simulation Results

In order to evaluate the effect of our medication of our simulate protocol on
fairness, we first study the fairness of the standard TCP and TCP/NC with
our self-adaptive scheme. By fairness, we mean that if two similar flows com-
pete for the same link, they must receive an approximately equal share of the
link bandwidth[5]. We figure out the fairness characteristic under three different
situation:

Situation1: a TCP-Reno flow competes with another flow running TCP/NC
with self-adaptive scheme.

Situation2: a standard TCP/NC flow competes with another flow running
TCP/NC with self-adaptive scheme.

Situation3: two TCP/NC flows with self-adaptive scheme compete with each
other.

In three cases, the loss rate is set to 0% and the redundancy parameter is set
to 1.05 for a fair comparison. The current throughput is calculated at intervals of
1s. TCP/NC with self-adaptive scheme flow start at t=0.1s, the second flow start
at t=30s. In situation 1, the second flow is TCP-Reno flow, and it is standard
TCP/NC flow in simulation 2, TCP/NC with self-adaptive scheme in simulation
3. Three simulation is all over in 120s. The plot for both three simulation is
essentially identical to Fig. 5 (and hence is not shown each simulations respective
figure). Both the three simulations show that when the second flow joins in the
channel, it quickly shares an equal amount of bandwidth of the channel with the
previous TCP/NC with self-adaptive scheme flows, thus proving the fairness of
new scheme with TCP/NC.

Next, we try to prove that our new self-adaptive scheme has a better through-
put rate and lower decoding delay under lossy channels with variational packet
error rate(PER). Packets in the network are subject to these losses in the for-
ward and the reverse direction. The PER can been calculated by a equivalence
bit error rate(BER), since the size of packet is stable. We study the variation
of receive Seq with time. PER vary over time: 0-50s: 5% PER, PER is set to
40% after 50s. Only flow from client1 to server1 is choose and the size of this
flow is 5MB. Fig. 6 shows the evolution of the Seqs sent by the Servers NC layer
as a function of time for different values of R, as well as when R is dynamically
updated.

We can observe that R plays an important role in TCP/NC. For standard
TCP/NC, The peak average throughput achieved is 0.338Mbps(5MB*8/121.02)
when R is 1.85, but TCP/NC with our self-adaptive can achieve
0.397Mbps(5MB*8/105.56). We clearly appreciate the improvement obtained
in goodput with our scheme.

Self-adaptive Scheme to Adjust Redundancy for Network Coding with TCP 89

Fig. 5. A TCP/NC compete another TCP flow

Fig. 6. Revd Seqs vs Time

Fig. 7. Decoding Buffer vs Coding Windows

90 H. Zhang et al.

All previous simulations results are get by set coding window as 3. Fig. 7
shows that when PER is 5%, R have been chosen the optimization by trial and
error, the maxsize of decoding matrix grows rapidly as coding window increase.
In contrast, our scheme also keeps quite a small size and the value does not
increase as the coding window increases. Whats more, the decoding delay mainly
rests with the size of decoding matrix, a small decoding matrix can achieve a
small decoding delay.

5 Conclusions and Future Works

TCP/NC works much better than TCP for loss channels. However, due to the
different PER in different period of time in lossy networks, the TCP/NC with
constant redundancy factor R cannot effectively solve the non-congestion losses
problem.

In this paper, we proposes an approach to dynamically adjust the redundancy
factor R in the TCP/NC protocol based on the collective feedback information
of sinks decoding matrix, As R is no longer constant, we can update it according
to the real current circumstance.

Simulation results show that our scheme significantly outperforms the stan-
dard TCP protocol and standard TPC/NC protocol in reducing size of decoding
matrix and goodput. In future work, realizations in Linux kernel, scheme of ad-
just coding window, as well as a study of relation between PER, coding window,
R and available computer/memory resource.

References

1. Ahlswede, R., Cai, N., RobertLi, S.Y., Yeung, R.W.: Network information flow.
IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)

2. Li, S.R., Yeung, R.W., Cai, N.: Linear Network Coding. IEEE Transactions on
Information Theory 49, 371–381 (2003)

3. Polyzos, G.C., Xylomenos, G.: Internet Protocols over Wireless Networks. In: Gib-
son, J.D. (ed.) Multimedia Communications: Directions and Innovations. Academic
Press (2000)

4. Lefevre, F., Vibier, G.: Understanding TCPs behavior over wireless links. In: Proc.
IEEE Symposium on Computers and Communications (June 2000)

5. Sundararajan, J.K., Shah, D., Medard, M., Mitzenmacher, M., Barros, J.: Network
coding meets TCP. In: Proceedings of IEEE INFOCOM, pp. 280–288 (April 2009)

6. Sundararajan, J.K., Jakubcza, S., Medard, M., Mitzenmacher, M., Barros, J.: In-
terfacing network coding with TCP: An implementation. In: Proceedings of IEEE
INFOCOM, pp. 280–288 (April 2009)

7. Fragouli, C., Le Boudec, J.-Y., Widmer, J.: Network coding: an in-
stant primer. SIGCOMM Comput. Commun. Rev. 36(1), 63–68 (2006),
http://doi.acm.org/10.1145/1111322.1111337

8. Paul, S., Ayanoglu, E., Porta, T.F.L., Chen, K.-W.H., Sabnani, K.E., Gitlin, R.D.:
An asymmetric protocol for digital cellular communications. In: Proceedings of
INFOCOM (1995)

http://doi.acm.org/10.1145/1111322.1111337

Self-adaptive Scheme to Adjust Redundancy for Network Coding with TCP 91

9. DeSimone, A., Chuah, M.C., Yue, O.-C.: Throughput performance of transport-
layer protocols over wireless LANs. In: IEEE Global Telecommunications Confer-
ence (GLOBECOM 1993), vol. 1, pp. 542–549 (1993)

10. Balakrishnan, H., Seshan, S., Katz, R.H.: Improving reliable transport and handoff
performance in cellular wireless networks. ACM Wireless Networks 1(4), 469–481
(1995)

11. Sundararajan, J.K., Shah, D., Medard, M.: ARQ for network coding. In: IEEE
ISIT 2008, Toronto, Canada (July 2008)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 92–100, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Research on Shifter Based on iButterfly Network

Zhongxiang Chang1, Jinshan Hu 2, Chengwei Zheng 1, and Chao Ma1

1 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004
2 The Air Force Institute of Electronic Technology, Beijing 100195

changzhongxiang0@126.com

Abstract. This paper combines the character of the iButterfly network and the
shifter, and study the framework of shifters based on the iButterfly network.
Aiming at the circuit of generating route information, the paper put forward a
kind of arithmetic to generate the special route information. Through the
function simulation and the performance evaluation, we come to a conclusion
that the framework of shifters designed in our paper is of important significance
and useful value. At last, the paper gives some other research ideas based on
interconnection network to construct shifters.

Keywords: iButterfly Network, Route Arithmetic, Shifter.

1 Introduction

Usually, the shifter is integrated into the processor to generate the address and
perform arithmetic and logical operations. In addition, it is widely applied in floating
point arithmetic, multimedia digital signal processing, encryption and decryption,
conversion between serial and parallel data, generation and verification of random
data, and so on. Shifter operation is both arithmetic operation and logical operation,
and exists in any kind of computers. It can be executed not only independently as a
kind of an instruction, but dependently with other instructions as a kind of
micro-operation. The shifter instructions and operations are mainly include arithmetic
shift left and right, logic shift left and right and circular shift left and right. The forms
of the shifter are various, such as barrel shifter, logarithmic shifter, funnel shifter, data
flipping shifter based on select switch, data flipping shifter based on mask, shifter
based on interconnection network. Among them, logarithmic shifter, funnel shifter
and shifter based on interconnection network are typical ones [1–3].

Logarithmic shifter is mainly used for the common cyclic shift left and right
operation, and it is not well supported logical shift left logical shift right, short words
cyclic shift left, short word cyclic shift right. The funnel shifter needs to extend the
initial input data, to ensure the realization of the corresponding function. Although the
circuit can achieve various types of shift operation, but the wiring resources are a little
bit too large to achieve short word replacement. For shifters based on the
interconnection network, the typical one is achieved with the iButterfly network by

 Research on Shifter Based on iButterfly Network 93

Princeton University (Hilewitz Yedidya), but it doesn’t make full use of the
interconnection function and topology structure of the iButterfly network. Its routing
information generation algorithm implemented in hardware is more complex, so the
hardware resource consumption is a little too large and the critical path delay is
relatively long.

To solve the problems above, this paper combines the features of interconnection
functions and topology characteristics of the iButterfly network, then puts forward a
special routing information generation algorithm to change the routing information in
real time and support multi-step cyclic shift left/right. We add a special
post-processing circuit to implement the logical shift left/right operation and the
arithmetic shift left/ right operation.

2 The Design of Shifter Architecture

The dynamic interconnection network changes the link status of switches dynamically
by setting the active switches and examining the link needs [4–6] As a result, it
achieves the connections between different connections and makes the system obtain
the ability of self-reconfiguration. Because the interconnection function and the
topologies are various, different network has different ability and applies to different
occasion, which has become a hot topic.

Dynamic interconnection network is divided into dynamic multi-level blocking
network and dynamic multi-level non-blocking network by replacement capacity. The
dynamic blocking network can sort the input data partly. With less level and small
delay, it’s also suitable for the shift operation. What’s more, the structure of the
dynamic blocking network is simple, and the detachable capacity of it is strong, so it
has become the preferred network to achieve a shifter.

2.1 Analysis of the Shifter Based on iButterfly Network

M.C.Pease proposed a multistage interconnection network in 1977, which indirectly
used the structure of the cube to achieve the connection between CPUs, making the
the number of ports of the processor and have nothing to do with the scale of the
system [4–6].

Fig. 1. 8-8 ibutterfly network

94 Z. Chang et al.

As shown in Figure 1, they are successively first grade, second grade and third
grade from left to right. The stages are all cube replacements, each of whom is
sub-butterfly transformation, and the output ports are the uniform inverse shuffle
transform. A N×N network consists of n=log2N two-function switches. The network
is a dynamic multi-level blocking network, so it supports many kinds of replacement
operations, including cyclic shift, and the routing information of each operation is
unique.

The network is detachable and iterative. While removing the outermost layer of a
N-N Butterfly network, it can be seen as two (N/2)-(N/2) Butterfly sub-networks. The
input and output of the network have a good relationship. For example, when all
routing switches are through-state, the state of each level is the same as the initial
input. If you want to implement a operation which bit wide is N / 2, you just need to
set the outermost layer of the input to be through-state, and configure the other control
information properly.

Based on the iButterfly network, the paper studies the shifter architecture. At the
same time, we seek a kind of routing information generation algorithm, which support
the configuration of the network routing information and the shift function in
real-time.

2.2 Shifter Architecture Based on iButterfly Network

The cyclic shift can be supported if the data goes through the iButterfly network one
time. Based on it, the paper puts forward the basic architecture of the shifter based on
iButterfly network.

Fig. 2. Basic shifter

As shown in Figure 2, the architecture consists of the circuit of iButterfly network
and the circuit of routing information generation. Specifically, the circuit of iButterfly
network is responsible for the transmission of data; the circuit of routing information
generation determines what mode the data works and whether the cyclic shift
operation is supported.

The operation that the data goes through the iButterfly network one time only
supports the cyclic shift. In order to support the logical shift operation and the
arithmetic shift operation, the paper improves the basic architecture of shifters to
propose an enhanced one, which can support both cyclic shift and logical shift.

 Research on Shifter Based on iButterfly Network 95

Fig. 3. Enhancement shiter

As shown in Figure 3, we add a post-processing module to the enhanced
architecture to post-process the results, so that the logical shift left/right operation and
the arithmetic shift left/right operation can be supported.

In shifter architecture, the iButterfly network is achieved by using data selectors. It
is too simple, so we needn’t give the necessary details. The post-processing circuit has
a relatively easy principle, so we just need to analyze it simply. The routing
information generating circuit need to generate the routing information according to
different types of shift operations in real-time, so it has a higher demand to routing
algorithms and hardware circuit. Therefore, we propose a specialized routing
algorithm and its implementation in hardware.

3 Design of Key Module

3.1 Extract of Routing Algorithm and Map of Hardware

In order to study effectively, we use figures to indicate the iButterfly network. As
shown in figure 4, in a 8-8 iButterfly network, Cij is the switch of every input in each
level, uij is the switch in each level, i is the stage of switch, j is the place of the switch
in every stage. when 0 means pass through directly, and 1 means cross through.

In the iButterfly network, the routing information corresponding to different shift
results is unique. Based on this, we study the routing algorithm achieved in iButterfly
network. Assume that each switch has a control signal, which value is generated from
the values of the corresponding switches at the previous stage by a certain Boolean
operation.

uij= Ci(2 j) ●Ci(2j+1)

For example, u20 is generated from C20 and C21 by a certain Boolean operation; u21
is generated from C22 and C23 by a certain Boolean operation;

96 Z. Chang et al.

Fig. 4. 8-8 iButterlfy network

There is no previous network before the first network, so the control information of
the first network is generated by a dedicated circuit which is called the initial
condition. Considering the routing information of shift operation generated by the
iButterfly network, the switches at the first stage are straight-through status (namely
0) when the number of the shift steps is even, while the switches at the first stage are
cross-through status (namely 1) when the number of the shift steps is odd.

Generally, the interconnection relationship between the switches of different stages
is determined, so we just need to consider the relationship between switches at two
adjacent stages. We can find the law of Boolean operations in Equation. We seek
right and left routing information generation algorithm.

1) right routing information generation algorithm:

)])0:2[,(~^()2/(},...,,{

)])0:2[,(^()2/(},...,,{

)0]1[(
2/,...,0

log,...,2

)12()2(10

)12()2(10

1

1

2

2

2

+

+

−=

−=
=−

=
=

−

−

jiji
i

ijii

jiji
i

ijii

CixreverseRCmuuu

else
CixreverseRCmuuu

ixif
mjfor

mifor

i

i

2) left routing information generation algorithm.

)])0:2[,(~^()2/(},...,,{

)])0:2[,(^)(2/(},...,,{

)0]1[(
2/,...,0

log,...,2

)12()2(10

)12()2(10

1

1

2

2

2

+

+

−=

−=
=−

=
=

−

−

jiji
i

ijii

jiji
i

ijii

CixreverseLCmuuu

else
CixreverseLCmuuu

ixif
mjfor

mifor

i

i

If we implement the cyclic shift left operation and the cyclic shift left operation in
iButterfly network, we need implement two algorithm in hardware respectively,
which will result in a sharp increase in resources. Through the analysis of the two
algorithm, we find that reverseR and reverseL are mirror images of each other.
Therefore, we integrate the two algorithm above, and put forward a new Boolean
operation algorithm supporting cyclic shift left and right.

 Research on Shifter Based on iButterfly Network 97

)])0:2[,(^(~)2/(:

)])0:2[,(^()2/(?},...,,{

)])0:2[,(^(~)2/(:

)])0:2[,(^)(2/(?},...,,{

)0]1[(
2/,...,0

log,...,2

)12(
12

)2(

)12(
12

)2(10

)12(
12

)2(

)12(
12

)2(10

2

+
−

+
−

+
−

+
−

−

−=

−

−=
=−

=
=

ji
i

ji

ji
i

ji
i

ijii

ji
i

ji

ji
i

ji
i

ijii

CixreverseLCm

CixreverseLCmLuuu

else
CixreverseRCm

CixreverseRCmLuuu

ixif
mjfor

mifor

i

i

Note: x: expressed as binary in shift; m: the width of the network;

12^

−i
: 2i-1 continuous XOR operations, which respectively correspond to the

switches from top to bottom in figure 4;
 1: the first stage; log2m: the last stage; ~: mirror image;

reverseR：the right of array
12^

−i
or

12~^
−i

 change contrary with x[i-1:0]，

j=0,1,2,…,m/2 is correspond the reverseR from left to right。

reverseL：the right of array
12^

−i
or

12~^
−i

 change contrary with x[i-1:0]，

j=0,1,2,…,m/2 is correspond the reverseL from left to right。
According to the Boolean operation law proposed, the routing information

generation algorithm is achieved in high-speed hardware circuit. As is shown in
Figure 4, the routing information of the shift left operation circuit and the shift right
operation circuit is mirror images of each other, so we just need to calculate one
operation. For example, the shift left operation is shown as below.

The routing information at the first stage:

u10= u11= u12= u13=x[0]

The routing information at the first stage:

u20= u22=x[1](u10^ u11) | !x[1](u12~^ u13)
u21= u23=(x[1]^x[0])(u10~^ u11) | !(x[1]^x[0])(u12^ u13)

The routing information at the first stage:

u30=x[2] (u20^ u21) | !x[2](u20~^ u21)
u31= (!x[2] !x[1] | x[1] (x[2]~^ x[0]))(u20^ u21) |

!(!x[2] !x[1] | x[1] (x[2]~^ x[0])) (u20~^ u21)
u32= (x[2]~^ x[1]) (u22^ u23) | !(x[2]~^ x[1]) (u22~^ u23)
u33=(x[2] x[1] | !x[1] (x[2]~^ x[0]))(u22^ u23) |

!(x[2] x[1] | !x[1] (x[2]~^ x[0])) (u22~^ u23)
The minimum delay time of Butterfly network is the delay of the network, which

means the time of routing information must short. We calculate the routing
information with parallel computing for reducing delay time. Routing information can
be achieved by the simplified Boolean function expression. In the expression, the
hardware circuits to generate the switches can be multiplexed, reducing the
consumption of the hardware circuit effectively.

98 Z. Chang et al.

3.2 Post-processing Circuit and Hardware Implementation

The post-processing circuit uses the data selector to select the results of cyclic shift
and the input data outside, achieving the arithmetic shift operation and the logical
shift operation.

Table 1. encoder

Steps(x) Left encoder
sel[m-1:0]

Right encoder
sel[m-1:0]

0 1m 1m
1 1m-1||01 01||1m-1
2 1m-2||02 02||1m-2
3 1m-3||04 03||1m-3
4 1m-4|04 04||1m-4
5 1m-5||05 05||1m-5
6 1m-6||06 06||1m-6

… … …
m 0m 0 m

right encoder is the mirror as left encoder
0m
：m continuous 0；1m

：m continuous 0；.

What is shown in Figure 5 is a post-processing circuit. There are encoder circuit
and selector circuit. The encoder circuit generates control signal for selector circuit;
Selector circuit selects the final result. A has two value, namely 0 or 1, wherein 0
stands for arithmetic shift right operation and 1 stands for arithmetic shift left
operation. Mode has two value, namely 0 or 1, wherein 0 stands for shift right and 1
stands for shift left. m-1, …, 0 stands for the outputs of iButterfly.

4 Performance Evaluation

In order to promise the function and performance of the framework of our design, the
paper has achieved the codes and logic synthesis. Now, the cyclic shift operations
achieved in references are mostly designed on the basis of 0.18um CMOS process in
64-bit. In order to make the performance comparison more objective, the section
completes the functional simulation and the logic synthesis in the bit-width and
process.

In Figure 6 and Figure 7, the test_data signal is the standard test data generated in
the arithmetic of the software; the odata signal is the output data of the circuit; the
shamt signal is the number of the steps in logical shift operation; the L_R signal
controls the direction of the logical shift operation, wherein “1”stands for the logical
shift left operation and “0” stands for logical shift right operation. The error signal is
the XOR result of the test_data signal and the odata signal, so it means the value of
circuit’s output data (namely odata) is right when error=0. We can see that the value
of the error signal is 0, which means the function of the circuit is completely right.

 Research on Shifter Based on iButterfly Network 99

Fig. 5. Post-processing circuit

Fig. 6. Rotate left(64-bit)

Fig. 7. Rotate right(64-bit)

Table 2. Performance comparison

Method Area(NAND gates) Latency(ns) Technology(nm)
Barrel shift 1.79K 0.76 180

Funnel shifter 1.75K 0.61 180
 References[1]* 3.4K 0.72 180

References [2] 5.8K 0.58 90
References [7] 3.3K 1.3 180

Our(R) 2.32K 0.95 180
Our (R_L) 2.7K 1.01 180

Our(R_L & Logic) 3.2K 1.12 180
Note:* means the width is 128-bit；R means the design only support rotate right；R_L
means the design supports rotate right/left；R_L & Logic means the design supports
rotate right/left and logical shift right/left；

100 Z. Chang et al.

As shown in Table 2, the funnel-shaped shifter has the fastest speed and the
smallest area, which is 19.8% faster than the barrel shifter in speed, while 2.2%
smaller in area. The funnel shifter uses nearly a double wiring resource to achieve the
high-performance requirement. However, it gets the good results without calculating
the Interconnect delay and the area. What’s more, its flexibility is low because its
structure cannot support the short word cyclic shift operation and the parallel insertion
and extraction operations.

The reconfigurable shift unit proposed in the reference [1] can support the shift
operation of 8~128 bit-wide. In addition, it has a flexible structure and a fast speed.
However, it can only shift 31 bits. If the data is more than 64 bits and the number of
bits shifted greater than 32, the operation cannot be adapted well.

In the reference [2], the reconfigurable shift unit designed by the PALMS
laboratory in Plymouth Princeton University has a similar function with our design.
However, it isn’t objective to compare their delays with different process. What’s
more, its control information generation algorithm is more complicated, resulting in
difficult hardware implementation and great resource consumption (the scale of the
equivalent gates).

The similar route generation algorithm was proposed in the reference [7], but
because the complex initial information, which increases the routing information
generation time and resources.

5 Summary and Outlook

The paper proposes a architecture of shifter based on iButterfly network, and analyzes
the functionality and performance of it. The result shows that, this design has an
advantage in shift function which provides a new idea on the interconnection network.
So it has reference significances and useful values.

In this paper, routing information generation algorithm use simple adaptation
information and complex generation circuit. With the increase of the bits wide in
networks, the generation of the network routing information is more complex, and the
critical path is much longer. Therefore, we will study the parallel computing routing
information of it in next step.

References

[1] Yang, S.: Research of Design Technology of Reconfigurable Shift Unit Based on Multilevel
Interconnection. In: 2012 Intelligent System and Applied Material, Advanced Materials
Research (March 2012)

[2] Yedidya, H.: Advanced Bit Manipulation Instructions: Architecture, Implementation And
Applications. Princeton University, New Jersey (2008)

[3] Ren, X.: The design optimization of Integer arithmetic logic operation components with
64bit at GHz level. National University of Defense Technology, Chang sha (2007)

[4] Pease, M.C.: The Indirect Binary nCube Microprocessor Array. IEEE Trans. on
Computers C-26(5) (1977)

[5] Intel Corporation, IA-64 Application Developers’ Architecture Guide. Intel Corporation
(May 1999)

[6] Lee, R.B.: Precision Architecture. IEEE Computer 22(1), 78–91 (1989)
[7] Lang, T., Stone, H.S.: A Shuffle-Exchange Network with Simplified Control. IEEE Trans.

On Computers C-25(1) (January 1976)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 101–110, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Highly-Efficient Approach to Adaptive Load Balance
for Scalable TBGP∗

Lei Gao, Mingche Lai, Kefei Wang, and Zhengbin Pang

College of Computer, National University of Defense Technology, Changsha 410073, China
{gaolei,mingchelai}@nudt.edu.cn

Abstract. Multi-threading technique used in BGP protocol empowers the
remarkable performance enhancement, but load imbalance on different threads
could also become the bottleneck of performance and scalability especially on
occurrence of route instability such as route outburst update. To resolve this
issue, an effective adaptive route load partition (ARLP) algorithm for TBGP is
proposed to provide load balance on different threads and alleviate the influence
of route instability. The ARLP algorithm dynamically dispatches sessions on
different threads by the statistical number of route update from each neighbor
session, and distributes sessions with high load over different threads, to
maximize the computing resources and ensure the minimum load difference on
threads. Experimental results on dual quad-core Xeon sever show that ARLP
algorithm could achieve steady load balance ratio ranging from 0.11 to 0.14
under four thread configurations. We also derive MUTPT as the metric to
evaluate the route update performance of TBGP, and the MUTPT samples with
ARLP are averagely reduced by 46.2%, 51.8%, 63.2% and 70.3% compared to
those with static load-distribution method, yielding good performance
improvement and session scalability for TBGP.

Keywords: BGP, multi-threaded, load balance, performance, scalability.

1 Introduction

Border Gateway Protocol (BGP) is widely viewed as the de-facto inter-domain
routing criterion, which determines the performance and usability of Internet. In the
lifetime of BGP, the routing domain has presented the characteristics of finer-
granularity information and denser interconnection, and Internet has grown more than
380,000 routing entries by far[1]. This brings a large number of transient and
superfluous update messages produced by BGP to increase the unnecessarily high
computing loads imposed on BGP speakers[2]. Furthermore, it also extends the
convergence time of routing system and even makes message loss and network
congestion, which is unacceptable for the delay-sensitive and real-time applications,

∗ This work was supported by NSFC (No. 61103188 and No. 61070199) and the Specialized

Research Fund for the Doctoral Program of Higher Education of China (No.
20114307120011).

102 L. Gao et al.

e.g. multimedia, E-commerce, network gaming. Apparently, all these issues above
have imposed more stringent requirements for higher performance and scalability on
the underlying Internet routing system[3].

With the strongly emerging multicore architecture for mainstream as well as high-
performance computing, there is an increasing interest for efficient multithreaded
BGP architecture that allows maximal exploitation of the available parallelism on
multicore platform. We have originally developed on multicore system the TBGP
(Threaded BGP) architecture [4] which empowered multiple threads processing in
parallel with the decoupled executions among different peer sessions, to efficiently
improve BGP performance. Many studies have also presented similar ideas with
TBGP to improve BGP computing ability, like [5-7]. However, with the expansion of
network scale, BGP route updates on Internet core routers represent obvious
instability such as BGP outburst update[8], route oscillations[9], etc., which would
lead to great load difference among peer sessions. If sessions are averagely or
arbitrarily distributed to threads, it will cause load imbalance on threads and make
some threads overload or even crash, decreasing the efficiency of TBGP. Thus, we
could find that highly-efficient and scalable TBGP architecture also relies on effective
strategies for load balance especially as confronting route instability. Most researches
on BGP distributed and parallel processing had adopted static load partition
methods[5,6], which were favorable for improving route computation, but still could
not adapt to achieving expected performance enhancement when occurring
paroxysmal route update or route jitters. Previous researches have provided load-
balance alternations for resolving system bottleneck caused by large load difference
among nodes. Liu[10] proposed a prediction-based load balancing mechanism to
estimate the volume of the inbound traffic that would come to network using
outbound traffic and the historical data of inbound traffic, and then assigned links to
outbound traffic and the predicted inbound traffic by scheduler. This method still was
a static approach which could not provide load balance in a more precision and
flexible way. Tong[11] combined static and dynamic balance strategy to reduce the
load dispatching time, preventing server skew and improving cluster system
performance. Based on the advantage and shortage of load-balance methods with
packet-level, connection-level, host-level and AS-level analyzed by [12], Hiroshi [13]
proposed a packet-level load balance strategy that dynamically balanced network
traffic with MHLB/I protocol which was used to discover multiple BGP paths and set
them up while payload traffic was being transmitted through the default BGP path.
[14] also proposed a similar approach that used multiple paths to achieve load
balance. Load balancing has been shown to significantly improve the guaranteed
traffic loads in the networks with regular topologies [15-18]. Kodialam [19] proposed
to use two-phase routing in an arbitrary network but it was rather complex since it
optimizes the balancing coefficients using linear program with O(MN2) variables and
constraints. To decrease the complexity, [20] also implemented two phase load-
balanced routing in OSPF with a LB-SPR protocol that balanced load across the
intermediate routers and optimized balancing coefficients to maximize throughput.
Although the above researches could reach good load balance effect, they only
considered the cases of normal stream on networks but not abnormal cases e.g.
unexpected route outburst.

 A Highly-Efficient Approach to Adaptive Load Balance for Scalable TBGP 103

In this paper, an effective adaptive route load partition (ARLP) algorithm for
TBGP is proposed to provide load balance of route update packet on different threads,
so as to improve performance and scalability even in the case of encountering route
instability. The target of the algorithm is designed to ensure the least load difference
on threads and make fast load migration among threads. The ARLP algorithm
dynamically reconstructs the sessions on different threads by the statistical number of
route update from each neighbor session, and distributes sessions with high load over
different threads. Experimental results on dual quad-core Xeon sever show that ARLP
algorithm could reach steady load balance ratio ranging from 0.11 to 0.14 under four
thread configurations. We also derive MUTPT as the metric to evaluate the route
update performance of TBGP, and the MUTPT samples with ARLP are averagely
reduced 46.2%, 51.8%, 63.2% and 70.3% compared with those of static load-
distribution method, yielding good performance improvement and session scalability
for TBGP.

2 TBGP Architecture

The router connecting to multiple peer neighbors is always exchanging information
through BGP, which represents the decoupled characteristic that the messages from
different neighbors can be processed in parallel for their weaker correlations and the
ones from the same neighbor have to be processed orderly due to their close
correlations. Thus, as the routers shift to multi-core systems, we firstly propose the
TBGP protocol to exploit the potential parallelism by dispatching multiple neighbor
sessions on different parallelized threads, thereby improving the protocol efficiency.
In general, the TBGP is composed of one master thread and multiple slave threads
just as shown in Fig.1. The master thread has the responsibility of initializing process,
creating slave threads, answering and evenly distributing peer sessions among
different slave threads. It monitors and answers the connection requests from
neighbor sessions, dispatches a slave thread for the new session, and assigns the
socket address to the specified slave thread. The relationship between neighbor
sessions and slave threads is recorded in neighbor-thread mapping table. Then, the
slave thread is the actual execution entity for a cluster of sessions. For each slave
thread, it is responsible for maintaining the Finite State Machine (FSM) operations,
keeping session connectivity, processing update messages and managing protocol
behaviors by itself. Also, it has its own event queue, so that the multiple sessions
triggered by events of different threads may work in parallel. In Fig.1, each thread
receives the routes from its corresponding neighbor sessions, and filters them
according to the input/output policies from BGP Routing Information Base (RIB).
When routes have been processed by local slave thread, they also need to be
propagated to other slave threads for announcing to all neighbor sessions, maintaining
the behavior consistency with BGP. Then, TBGP deploys a shared routing table to
keep the consistent route view for all threads, ensuring to make the correct route
decisions and advertise the globally optimal routes. With multi-core systems, the
access to the shared routing table supports for the high-bandwidth communication and
fast synchronization, thereby addressing the synchronization problem of distributed
route storage and providing a better aggregated performance.

104 L. Gao et al.

…

…

Fig. 1. Architecture of TBGP

Two-level packet pool is adopted in receiving and sending packets among master
thread and slave threads, as shown in Fig.2. The first-level packet pool is configured
in master thread and maintains a set of packet transfer queues that are used for
buffering update packets communicating with neighbor sessions. Each slave thread
has a second-level packet pool for receiving or sending update packets with master
thread, and different sessions processed on the same slave thread have separate packet
transfer queues. As receiving update packets from a neighbor session, master thread
puts the packets into the corresponding transfer queues of first-level pool according to
neighbor session id. And then it looks up slave thread id in neighbor-thread mapping
table by session id and transfers packets to designated slave thread. Packets enter in
corresponding transfer queue after reaching the second-level pool in slave thread,
waiting to be processed. Similarly with receiving process, slave thread puts local
update packets into the sending queues of sessions in second-level pool, where master
thread could get into first-level pool the update packets that are to be advertised.

In above multi-threaded structure, each slave thread takes charge a cluster of
neighbor sessions, and the update packets will be buffered in two-level packet pool.
According to the mapping relationship of neighbor sessions and slave threads, update
packets will be dispensed to the transfer queues of designated sessions. As
considering the underlying parallelism in BGP, our proposed TBGP architecture
implements the parallel computing of update packets on different slave threads, and
could also ensure the processing order of packets from the same session, providing
route computing acceleration. However, TBGP with traditional session-based load
distributing method could not efficiently improve the performance and scalability in
actual network environment, especially in case that large load diversity on different
sessions incurred by route instability, which could rebate the acceleration effect of
multi-threaded parallelism. That’s because route outburst update always increases the
update packet number sharply in short period on a small fraction of sessions, and

 A Highly-Efficient Approach to Adaptive Load Balance for Scalable TBGP 105

leads to the overload of slave thread, which could become the bottleneck of TBGP
and prevent the further performance improvement in spite of extending session and
slave thread numbers.

Fig. 2. Structure of two-level packet pool

3 ARLP Algorithm

To resolve load imbalance on slave threads caused by route instability, we propose a
highly-efficient load balance algorithm ARLP to dynamically adjust route update
number by redistribute neighbor sessions on each slave thread to adaptively regulate
load. In general, the ARLP algorithm is triggered in particular intervals by master
thread, and in order to ensure the fast load repartition, ARLP algorithm must be
completed in a short period.

Therefore, ARLP adopts heuristic-based partition strategy, in which the neighbor
sessions are partitioned into multiple session sets according to the route update
number of each session, and all session sets reach the least load difference to balance
route update number on slave threads.

The ARLP detail is shown in algorithm 1. In step 1-2, the sessions are sorted by the
descending order according to the statistical route update number of each session,
where fi denotes route update number by ith session, n is total session number, F(Qk)
denotes the total number of route update by thread Qk, M is thread number, ri[pi] is
used to record the location of session in slave thread, and the sort result is
demonstrated with

n
ss

ff ,,

1

 . Then, step 3-4 compute the total number of route

update by M threads, then functions Min_IDX, Max_IDX indicate the lower index of
minimum and maximum F(Qk)(0≤k≤M-1), as represented with Qα and Qβ.

106 L. Gao et al.

Algorithm 1: Adaptive Route Load Partition

1 Sort nfff ,...,, 21
 by the descending order according to the statistical route

update number of each session, and the reorder result is

≥≥ ;

2 F(Qk) 0(k=1,…,M), i 1; p1=…=pM=0; r1[0]=…=rM[0]=0; //ri[pi]

denotes the array of neighbor session set

3 Min_IDX (F(Q1),…, F(QM)), 0< M; //compute the minimal F(Qk)

4 Max_IDX (F(Q1),…, F(QM)), 0< M; //compute the maximal F(Qk)

5 if ()()(][αβ ββ
QFfQF pr >−) {

// if Q removes its top session r [p], and its update number is still bigger

than F(Q)

6
 ββααββββ +←+−←

 //exchange operation

7

←←+← ββββαααα

8 if (
]1[−αα prf <

][αα prf)

9 { tmpprprprprtmp ←−−←←]1[],1[][],[αααααααα
}}

 // always put the session with minimal update number on top of Q

10 else { +←+← αααα }

// otherwise, the current session is put into Q

The main idea in ARLP algorithm is to put the current session into the set with

minimal F(Qk), thereby limiting the increment of the difference between F(Qβ) and
F(Qα) and balancing the update number in each session set. Thus, step 5 first checks

the condition)()(][αβ ββ
QFfQF pr >− before dispatching each session, and the

exchange operation in step 6-7 is performed between sets Qα and Qβ) if the above
condition is satisfied, e.g. rβ[pβ] and the current session are respectively dispatched to
Qα and Qβ, to further reduce the difference between the maximal and minimal of
F(Qk). Since the route update number of arbitrary session in Qβ is bigger than that of
the current session, the algorithm selects the session with minimal update number to
exchange with the current session, and performs step 8-9 to put the session on top of
Qβ, so that the total update number difference is always the minimum. This
conclusion can be confirmed as follows, assuming that the two sets after the exchange
are respectively Qα

* and Qβ
*. Repeat above process until all sessions have been put

into session sets, and the algorithm finishes.

 A Highly-Efficient Approach to Adaptive Load Balance for Scalable TBGP 107

Proof: | *)(*)(αβ QFQF − | = |
ββββ αβ +−+− |

= |
ββββ αβ −+−− |

< |)())((][αβ ββ
QFfQF pr −− |+|

ββ
− |

=)())((][αβ ββ
QFfQF pr −− +][ββ prf -

4 Performance Evaluation

We configure the TBGP on Quagga 0.99.9 first and implement the ARLP algorithm
as well as load migration. Through adjusting the number of threads, peer sessions and
advertised routes, we use the AX4000 series to verify the correctness of proposed
load-balance approach by comparing the load balance ratio and route update
efficiency with traditional static load distributing method. In this section, with TBGP
platform, the performance of ARLP algorithm is measured with prefix database of
routing table snapshots extracted from RouteViews[22]. All the experiments are
performed on dual quad-core Xeon server with Linux 2.6.18-8AX operation system.

4.1 Load Balance Ratio

The efficiency of our proposed ARLP algorithm is mainly evaluated by the load
balance ratio, which represents the load distribution of each slave thread in a period,
and could be calculated as equation (1), where U(t) denotes load balance ratio at time
interval t, M denotes slave thread number, PNi(t) records the total route update
number of slave thread i at time interval t.

()
=

=−=

(1)

Besides, focusing on the influence of algorithm to TBGP as encountering route
outburst update, we also present load difference ratio to evaluate the diversity of route
update number among different sessions, and it could be calculated as equation (2):

()
() ()

=

==

(2)

Where, L(t) denotes the load difference ratio at time interval t, SNi(t) denotes the

route update number of session i at time interval t, n is neighbor session number, and

())(max
,..,1

tSN
i

ni =
 represents the maximal route update number of all sessions at time

interval t.

108 L. Gao et al.

In this experiment, we use AX4000 series to construct network environment and
inject route stream. 100 neighbor sessions are triggered at most and averagely
distributed on multiple slave threads at initial, and we select 10% of all sessions as
route outburst sources to generate paroxysmal route, the number of which satisfies the
load difference ratio could change from 5 to 100. Besides, the trigger interval of
ARLP algorithm is set to be 30 minutes. The statistical load balance ratios under four
scenarios with configuring 4, 8, 12, 16 slave threads are collected in Fig.3. In all
scenarios, it could be observed that the load balance ratios grow slightly with the
increase of load difference ratio and slave thread number, and they range from 0.11 to
0.14. That is to say, the ARLP algorithm is not sensitive to load difference and slave
thread number, and could yield good load balance effect as well as scalability even
occurring strong rout outburst.

0

0.05

0.1

0.15

5 10 20 30 40 50 60 70 80 90 100

L
oa

d
 b

al
an

ce
 r

at
io

Load difference ratio

M=4 M=8 M=12 M=16

Fig. 3. Results for load balance ratio

4.2 Performance for Route Update

In this section, the performance of route update is experimented and evaluated in
terms of Maximal Update Time Per Thread (MUTPT). Following the experiment
scenarios in above section, the MUTPT samples are collected with VtuneTM toolkit by
regulating routes number from one million to ten millions under 4, 8, 12, 16 slave
threads, as shown in Fig.4. In four scenarios, it is observed that the MUTPT samples
in the case of not using ARLP algorithm increase greatly with the increasing route
number, and they are also not obviously reduced with the increase of slave thread
number. Although the increase of slave thread number could decrease the load of
single slave thread, it still could not effectively resolve the large load difference
caused by route outburst on a fraction of sessions. On the other side, those MUTPT
samples using ARLP algorithm grows slightly with the increasing route number under
four thread configurations, and they have remarkable reductions with the incremental
slave thread number, decreased by 46.2%, 51.8%, 63.2% and 70.3% averagely. At the
same time, the samples with 16 slave threads are reduced to 78% compared to the
ones with 12 slave threads, representing better thread scalability than that not using
ARLP algorithm.

 A Highly-Efficient Approach to Adaptive Load Balance for Scalable TBGP 109

(a) n=4 (b) n=8

(c) n=12 (d) n=16

Fig. 4. MUTPT samples under four thread configurations

5 Conclusion

Exploiting thread level parallelism helps in improving the performance of BGP to
satisfy the explosive demands on Internet. Our key insight is to resolve load balance
issue in TBGP when occurring route instability, such as update outburst, route
oscillations, etc., which hinders the performance and scalability improvement of
TBGP. In this paper, we originally present a heuristic-based load balance algorithm
ARLP to dynamically adjust the load on slave threads according to statistical route
update number on each neighbor session. Experimental results on dual quad-core
Xeon server show that ARLP algorithm could get good load balance ratio under
different thread configurations and MUTPTs with ARLP are averagely reduced by
46.2%, 51.8%, 63.2% and 70.3% compared with that of traditionally static load-
distribution method, yielding good performance improvement and session scalability
for TBGP.

Acknowledgements. This work was supported by NSFC (No. 61103188 and No.
61070199) and the Specialized Research Fund for the Doctoral Program of Higher
Education of China (No. 20114307120011).

110 L. Gao et al.

References

1. Huston G.: The BGP Report for 2005(EB/OL), http://www.potaroo.net/
papers/isoc/2006-06/bgpupds.html, 2006-06-01/2007-05-01

2. Nguyen, K.-K., Jaumard, B.: A scalable and distributed architecture for bgp in next
generation routers. In: Proc. of ICC Communications Workshops, pp. 1–5 (2009)

3. Taft, N.: The basics of bgp routing and its performance in today’s internet. In: Proc. of
RHDM High-speed Networks and Multimedia Workshop, France, pp. 35–42 (2001)

4. Wang, K., Gao, L., et al.: A scalable multithreaded BGP architecture for next generation
router. In: EMC 2011, vol. (102), pp. 395–404 (2011)

5. Xu, K., He, H.: BGP parallel computing model based on the iteration tree. Journal of
China Universities of Posts and Telcommunications 15(suppl.), 1–8 (2008)

6. Liu, Y., Zhang, S., Wang, B.: MR-PBGP: A multi-root tree model for parallel bgp. In:
Proc. of High Performance Computing and Communications, pp. 1211–1218 (2012)

7. Zhang, X., Lu, X., Su, J., et al.: SDBGP: A Scalable, Distributed BGP Routing Protocol
Implementation. In: Proc. of the 12th IEEE International Conference on High Performance
Switching and Routing, pp. 191–196 (2011)

8. Griffin, T., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdomain
routing. IEEE/ACM Transactions on Networking 10(1), 232–234 (2002)

9. Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations in inter-domain
routing. Computer Networks 32(1), 1–16 (2000)

10. Liu, X., Xiao, L.: Inbound traffic load balancing in BGP multi-homed stub networks. In:
Proc. of International Conference on Distributed Computing Systems, pp. 369–376 (2008)

11. Tong, R., Zhu, X.: A Load Balancing Strategy Based on the Combination of Static and
Dynamic. In: Proc. of Database Technology and Applications, pp. 1–4 (2011)

12. Guo, F., Chen, J., Li, W., Chiueh, T.: Experiences in Building A Multihoming Load
Balancing System. In: Proceedings of IEEE INFOCOM, pp. 1241–1251 (2004)

13. Fujinoki, H.: Improving Reliability for Multi-Home Inbound Traffic: MHLB/I Packet-
Level Inter-Domain Load-Balancing. In: Proc. of International Conference on Availability,
Reliability and Security, pp. 248–256 (2009)

14. Zhou, S., Chen, J., et al.: Approximate load balance based on id/locator split routing
architecture. In: World Congress on Information and Communication Technologies,
pp. 981–986 (2012)

15. Smiljanić, A.: Rate and Delay Guarantees Provided by Clos Packet Switches with Load
Balancing. IEEE Trans. Netw., 170–181 (February 2008)

16. Antić, M., Smiljanić, A.: Oblivious Routing Scheme Using Load Balancing Over Shortest
Paths. In: Proc. ICC 2008 (2008)

17. Antić, M., Smiljanić, A.: Routing with Load Balancing: Increasing the Guaranteed Node
Traffics. IEEE Commun. Lett., 450–452 (June 2009)

18. Kostic-Ljubisavljevic, A., Radonjic, V., et al.: Load Balance Routing for Interconnected
Next Generation Networks Performances Improvement, pp.42–46 (2011)

19. Kodialam, M., Lakshman, T.V., Sengupta, S.: Traffic-Oblivious Routing for Guaranteed
Bandwidth Performance. IEEE Commun. Mag. 45(4), 46–51 (2007)

20. Antić, M., Maksic, N., et al.: Two phase load balanced routing using OSPF. IEEE Journal
of Selected Areas in Communications 28(1), 51–59 (2010)

21. Lei, G., Lai, M., Gong, Z.: A practical non-blocking route propagation technology for
threaded BGP. In: ICSCC 2010, pp. 206–211 (2010)

22. RouteViews project, http://archive.route-views.org/bgpdata

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 111–120, 2013.
© Springer-Verlag Berlin Heidelberg 2013

OpenACC to Intel Offload:
Automatic Translation and Optimization

Cheng Chen, Canqun Yang, Tao Tang, Qiang Wu, and Pengfei Zhang

School of Computer Science
National University of Defense Technology

Changsha, Hunan 410073, China
gaoye23@126.com, {canqun,taotang84}@nudt.edu.cn,

qiangwu.cs.nudt@gmail.com, zhangpengfeii@foxmail.com

Abstract. Heterogeneous architectures with both conventional CPUs and
coprocessors become popular in the design of High Performance Computing
systems. The programming problems on such architectures are frequently
studied. OpenACC standard is proposed to tackle the problem by employing
directive-based high-level programming for coprocessors. In this paper, we take
advantage of OpenACC to program on the newly Intel MIC coprocessor. We
achieve this by automatically translating the OpenACC source code to Intel
Offload code. Two optimizations including communication and SIMD
optimization are employed. Two kernels i.e. the matrix multiplication and
JACOBI, are studied on the MIC-based platform (one knight Corner card) and
the GPU-based platform (one NVIDIA Tesla k20c card). Performance
evaluation shows that both kernels delivers a speedup of approximately 3 on
one knight Corner card than on one Intel Xeon E5-2670 octal-core CPU.
Moreover, the two kernels gain better performance on MIC-based platform than
on the GPU-based one.

Keywords: OpenACC, Intel Offload, Source to Source, MIC, GPU.

1 Introduction

Nowadays, heterogeneous architecture is a leading candidate under consideration for
the design of High Performance Computing (HPC) systems [1]. Such systems
typically consist of coprocessors such as GPU, FPGA, and newly Intel MIC
coprocessor connecting to hosts. These coprocessors can offer relatively high
floating-point rates and memory bandwidth with lower relative power footprints than
general-purpose computation platforms [2]. But these coprocessors (e.g. the GPUs)
commonly require special programming constructs (e.g. NVIDIA's CUDA [3]
language) which poses a significant challenge for developers. There has been growing
research and industry interest in lowering the barrier of programming these
coprocessors. OpenACC [4], an API consisting of compiler directives to offload loops
and regions of C/C++ and Fortran code to coprocessors, is unveiled to support
directive-based high-level programming for heterogeneous systems. The simplicity of

112 C. Chen et al.

the model, the ease of adoption by non-expert users and the support received from the
leading companies (PGI, NVDIA and Cray) in this field make us believe that
OpenACC is a long-term standard [5]. However, recent OpenACC specification like
PGI is mainly designed and optimized for GPUs, which narrows its applying.

In this paper, we take advantage of OpenACC to program on the newly Intel MIC
coprocessor. We achieve this by automatically translating the OpenACC source code
to Intel Offload code. Our contributions can be concluded as follows:

1) Mapping task-level and data-level parallelisms of OpenACC to Intel Offload;
2) Translating OpenACC source code to native Intel Offload source code;
3) Optimizing the translated code by employing communication optimization

and SIMD optimization.

The paper is organized as follows. Section 2 introduces OpenACC and the MIC
coprocessor. Section 3 reviews the related work. Section 4 presents our
implementation. Section 5 describes our optimization methods. Section 6 gives the
experimental results. Conclusion is drawn in Section 7.

2 Overview of OpenACC and the MIC Coprocessor

2.1 OpenACC

The OpenACC standard defines the Application Programming Interface (OpenACC
API) for offloading code in C, C++ and Fortran programs from a Host CPU to an
attached Device coprocessor. The method provides a model for coprocessor
programming that is portable across operating systems and various types of CPUs and
coprocessors. In the following we will show more about the execution and memory
model.

The execution model targeted by OpenACC API-enabled compilers is Host-
directed execution with attached coprocessors [4]. The bulk of a user application
executes on the host while the compute intensive regions are offloaded to the
coprocessors under control of the host. Most current coprocessors support two or
three levels of parallelism. That is coarse-grain parallelism (parallel execution across
execution units), fine-grain parallelism (multi threads) and SIMD or vector
operations. These multiple levels of parallelism on the coprocessor are exposed to the
programmer, who is required to understand the difference and use it effectively.

The memory model of heterogeneous architecture is that the memory on the
coprocessor may be completely separate from the host memory. Memory on the
coprocessor is not mapped into the host’s virtual memory space, so the host may not
be able to read or write directly. In OpenACC, the host control data movement
between host and coprocessor through runtime library calls which are defined in data
transfer directives from the programmer and are managed by the compiler.

2.2 Intel MIC

The Many Integrated Core (MIC) Processor is a new generation of the Intel
Architecture (IA), thus supports traditional programming languages such as C, C++,

 OpenACC to Intel Offload: Automatic Translation and Optimization 113

and Fortran. An attractive feature is its support for standard parallel programming
models like OpenMP [6] and MPI [7]. By packing up to 60 cores with 512 bits vector
unit, a single MIC coprocessor can deliver double precision performance over Tflops.
Xeon Phi [8] is the latest generation. When used as a coprocessor, there are two
programming models: Co-processor-only Model and Offload Model [9] (Offload for
short).

In Co-processor-only Model, the processes reside solely inside the coprocessor.
Applications can be launched from the host to the coprocessor with needed libraries.
It is usually used for quick development and testing of key kernels [10]. In Offload
Model, the MIC acts as GPU, where the code execution begins on the host CPU, and
the computing intensive region marked with offload directives are automatically
offloaded to MIC. Data transfer via the PCIe bus is also controlled by directives.

3 Related Work

A plenty of researchers have been working on source to source compiler, leading to
significant performance boosting on heterogeneous computing. Reyes presents
accULL, a novel implementation of the OpenACC standard, based on the
combination of a source to source compiler and a runtime library et.al [11]. Dave
presents a compiler framework for automatic source-to-source translation of standard
OpenMP applications into CUDA-based GPGPU applications et.al [12]. Wei presents
a source to source OpenMP compiler framework which translates the program with
OpenMP directives to the necessary codes to exploit the parallelism of a sequential
program through the different processing elements of the Cell [13]. The Cetus project
[14] proposes a source to source compiler framework for automatic translation and
optimization. A set of extensions over OpenMP enable it to automatically generate
and tune CUDA code. However all these works were done based on GPU and
OpenMP, and there is no previous work for MIC. Our work is to achieve the
OpenACC source code to native Offload code translation, so that the programmer can
use OpenACC API to program on the newly Intel MIC.

4 Automatic Translation of OpenACC to Offload

As OpenACC and Offload are both compiler directives programming API, for
effective translation, we should map the OpenACC directives into Offload directives,
and then translate OpenACC source code to native Offload source code according to
the mapping relationship.

4.1 Mapping OpenACC Directives into Offload Directives

The directives of OpenACC can be divided into three parts: task, data and parallelism
management. In this section, we will explain the function of these directives and map
them into Offload directives respectively.

114 C. Chen et al.

(1) Task Management
The Parallel Construct and Kernel Construct define a region of the program that is

to be compiled into a sequence of kernels for execution on the accelerator device.
These two OpenACC constructs can map into “#pragma offload target()”, which
direct to compile the code region offloading to MIC in Offload.

(2) Parallelism Management
In OpenACC standard, when the program encounters an accelerator Parallel

Construct or Kernel Construct gangs of workers are created to execute the
coprocessor parallel region. Each worker in gangs begins executing the code in the
structured block of the construct. Within each worker of the gangs, the vector clause
is also allowed. The value of the parameter defines the vector length to use for vector
or SIMD operations.

As mentioned in Section 2, the MIC supports OpenMP standard and the Offload
modifies OpenMP in parallelism management, so the parallelism management
directives from OpenACC can be mapped into OpenMP directives. Table 1 shows
congruent relationship of parallelism clause.

Table 1. Congruent relationship of Parallelism clause

OpenACC collapse() gang/worker vector private reduction async

Offload loop count num_threads() vector private reduction nowait

In addition, the Loop directive from OpenACC can describe what type of
parallelism to use to execute the loop and declare loop-private variables and arrays
and reduction operations. The Loop directives can map into “#pragma omp parallel
for”.

(3) Data Management
The data construct defines scalars, arrays and subarrays to be allocated in the

device memory for the duration of the region, whether data should be copied from the
host to the device memory upon region entry, and copied from the device to host
memory upon region exit.

In Offload Model, we can use “#pragma offload_transfer target()” to achieve
asynchronous data transfer, or add data transfer clause behind “#pragma offload
target()” to achieve synchronous data transfer. The details of congruent relationship of
data clause are shown in table 2.

 OpenACC to Intel Offload: Automatic Translation and Optimization 115

Table 2. Congruent relationship of data clause

OpenACC Offload Semantic
if if When If condition is true, start

transfer
deviceptr __attribute__ ((target (mic))) Declare the data point is to

coprocessor

copy inout Copy data from CPU to coprocessor
copyin in Copy data from coprocessor to CPU
copyout out Copy both ways
create nocopy Data is local to target
present

Test whether data is already present
in the coprocessor memory before
copy data from the host to the
coprocessor. If the condition is true,
the data will be reused.

present_or_copy

present_or_copyin
present_or_copyou
t
present_or_create
 align() Specify minimum data slignment

[m:n] length(n-m) Specify pointer length

4.2 OpenACC to Offload Baseline Translation

The Offload execution model is to offload structured block of the construct to MIC
and then parallelize it through OpenMP. To address this, we propose OpenACC
source code to native Offload code baseline translation system with two phases:
Offload pragma translation and OpenMP pragma translation, shown in Figure 1. At
first, it translates the OpenACC program into Intermediate Representation (IR): C +
Offload API + parallel label. During this phase the communication optimization is
carried out. Then, translates the parallel label into OpenMP directives, and the SIMD
optimization is carried out. The communication optimization mainly refers to reduce
data transfer via coarse-grain parallelism, and the SIMD optimization refers to the use
of 512 bits vector operation based on MIC, which will be discussed in Section 5.

Noted that, data management involves in data transfer between CPU and MIC and
data dependence on MIC, we scatter them into the twice translation respectively.

Fig. 1. Two-phase OpenACC-to-Offload translation system

116 C. Chen et al.

5 Optimization

5.1 Communication Optimization

Data transfer bandwidth between CPU and GPU is about 8GB/s, but the actual
measurement of transfer bandwidth between CPU and MIC is about 6GB/s. To fill
data transfer bandwidth gap and data ruse on MIC, we carry communication
optimization via coarse-grain parallelism, which can reduce data transfer between
CPU and MIC.

We use a length of iteration pseudo-code to show the communication optimization.
As the synchronous of threads in different block need huge expense, we adopt the
strategy of twice iteration correct on GPU while reduction on CPU, the OpenACC
source code is shown in Figure 2. If map that kind of code into Offload directly, the
twice data transfer will be bottleneck. In our translation, to address the X86
architecture of MIC, we map the iterations into two Parallel Constructs instead of two
Kernels, thus cut down data transfer once. The optimized pseudo-code is shown in
Figure 3.

Fig. 2. OpenACC source code Fig. 3. Translated Offload source code

5.2 SIMD Optimization

The compilers (like PGI) support OpenACC standard translate OpenACC source code
into CUDA or OpenCL source code; then generate the target code with native
compilers like nvcc. We take CUDA as an example to show our optimization. CUDA
uses SIMT (Single Instruction Multi Threads) execution model, and GPU can spread
a great mount of light weighted thread. For example, the Tesla k20c, a kind of GPU,
owns more than 2400 SM (Stream Multiprocessors). As shown in Figure 4, in the
OpenACC source code, nested gangs of workers are created to execute the accelerator
parallel region.

A Xeon Phi consists of 60 cores. Each core has 4 hardware threads, and is
augmented with a Vector processor (VPU) and Vector register (Zmm register) with 8

 OpenACC to Intel Offload: Automatic Translation and Optimization 117

64-bit (double precision floating-point) vector lanes. To fully utilize the 8-way SIMD
as well as the high thread density of parallel computing technology on Xeon Phi, as
shown in Figure 5, we introduce a SIMD optimism: spawning a new team of OpenMP
threads to run on all other Xeon Phi cores in outer loop; then inserting the Offload
directives “#pragma simd” to automatically vectorize the inner loop by native
compilers.

Fig. 4. OpenACC source code Fig. 5. Translated Offload source code

6 Experiments

6.1 Experiments Environment

As the PGI and accULL compilers which support OpenACC Specification cannot
compile MIC target code. In order to evaluate our implementation of OpenACC to
Offload translation, we have annotated matrix multiplication and JACOBI
applications and tested them on CPU+MIC and CPU+GPU platforms. The
configurations are listed in Table 3.

Table 3. The configurations of CPU+MIC and CPU+GPU platforms

Setup

Platform

Host Coprocessor

Version Frequency Compiler Version Frequency Cores Peak Performance

CPU+MIC E5-2670 2.2GHz icc Xeon Phi 1.10GHz 60 1.1Tflops

CPU+GPU E5-2680 2.7GHz nvcc k20c 0.71GHz 2496 1.6Tflops

6.2 Experiment Case and Result

In this section we compares the performance of the presented OpenACC source code
running on GPU system with the transformed and optimized Offload source code
running on MIC system. Figure 6 and Figure 7 show performance of matrix
multiplication and JACOBI on GPU and MIC systems.

(1) Matrix Multiplication
Matrix multiplication (MxM) is a basic kernel frequently used to show the peak

performance of GPU computing [15]. Here we use MxM to show the translation

118 C. Chen et al.

efficiency. The OpenACC codes are running on GPU system compiled by PGI; and
the translated Offload codes are running on MIC system compiled by native icc. We
test the OpenMP version of MxM on CPU to show the peak performance of the two
kinds of source code.

Figure 6 shows the performance of different scale of MxM on CPU+MIC and
CPU+GPU platform. From Figure 6, we can find that the peak performance of the
MxM on MIC is up to 170 Gflops while on GPU is up to 69 Gflops, and the program
running on CPU only achieves about 51 Gflops for a 7168×7168 matrix. This simple
example demonstrates that with our work the programmer can use OpenACC API to
program on the newly Intel MIC. The following experiment will show the efficiency
of our optimizations.

Fig. 6. Performance of MxM in different scales

(2) JACOBI
JACOBI is a widely used kernel containing the main loop of an iterative solver for

regular scientific applications [16]. We precede the same test steps like MxM besides
that we carry out the communication and SIMD optimization during the translation.
Comparing the translated code running on MIC with and without optimization, as
shown in Figure 7, the average speedup of the communication optimization is 2.9, and
the average speedup of SIMD optimization is 3.9. As the data transfer latency, the
MIC base system even get worse performance than CPU without optimization. After
both optimizations, the Offload codes achieve better performance than the OpenACC
codes on GPU, and get speedup of 3.0 to the octal-core CPU with the same problem.

 OpenACC to Intel Offload: Automatic Translation and Optimization 119

Fig. 7. Performance of JACOBI in different scales

7 Conclusion

In this paper, we take advantage of OpenACC to program on the newly Intel MIC
coprocessor by automatically translating the OpenACC source code to Intel Offload
code. Two optimizations including communication and SIMD optimization are
employed. Performance evaluation shows that, after both optimizations, the Offload
codes achieve better performance than the OpenACC codes on GPU, and get speedup
of 3.0 to the octal-core CPU running the same problem.

Acknowledgments. This work is supported by the National High Technology
Research and Development Program of China (863 Program) No. 2012AA010903,
the National Science and Technology Major Project of the Ministry of Science and
Technology of China (No.2009ZX01036-001-003), and the National Natural Science
Foundation of China (NSFC) NO.61170049.

References

1. Koesterke, L., Boisseau, J., Cazes, J., Milfeld, K., Stanzione, D.: Early Experiences with
the Intel Many Integrated Cores Accelerated Computing Technology. In: TeraGrid 2011
(July 2011)

2. Elgar, T.: Intel Many Integrated Core (MIC) Architecture. In: 2nd UK GPU Computing
Conference (December 2010)

3. NVIDIA, CUDA programming guide 2.1 (2009), http://developer.download.
nvidia.com/compute/cuda/2.1/toolkit/do-cs/NVIDIA_CUDA_
Programming_Guide_2.1.pdf

4. The OpenACC Application Programming Interface, Version 1.0 (November 2011)

120 C. Chen et al.

5. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC — first experiences with
real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012)

6. OpenMP: The OpenMP API Specication for Parallel Programming,
http://openmp.org/wp/openmp-specications/

7. MPI-2: Extensions to the Message-Passing Interface, Message Passing Interface Forum
(July 1997)

8. I. Corporation. The Intel Xeon phi coprocessor: Parallel processing, unparalleled discover.
Intel’ Software Network (2007)

9. Knights Corner Software Developers Guide, revision 1.03 (April 27, 2012)
10. Wu, Q., Yang, C., Tang, T., Xiao, L.: MIC Acceleration of Short-Range Molecular

Dynamics Simulations. In: CGOW (January 2013)
11. Reyes, R., Lopez, I., Fumero, J.J., de Sande, F.: Sande.accULL: A User-directed Approach

to Heterogeneous Programming (2012)
12. Lee, S., Min, S., Eigenmann, R.: OpenMP to GPGPU: A compiler framework for

automatic translation and optimization. SIGPLANNot. (February 2009)
13. Wei, H., Yu, J.: Loading OpenMP to Cell: An Effective Compiler Framework for

Heterogeneous Multi-core Chip
14. Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: A source-to-

source compiler infrastructure for multicores. Computer 42(12) (2009)
15. Reyes, R., López-Rodríguez, I., Fumero, J.J., de Sande, F.: accULL: An OpenACC

Implementation with CUDA and OpenCL Support. In: Kaklamanis, C., Papatheodorou, T.,
Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 871–882. Springer, Heidelberg
(2012)

16. Reyes, R., de Sande, F.: Automatic code generation for GPUs in llc. The Journal of
Supercomputing 58(3) (March 2011)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 121–130, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Applying Variable Neighborhood Search Algorithm
to Multicore Task Scheduling Problem

 Chang Wang1, Jiang Jiang1, Xianbin Xu2, Xing Han1, and Qiang Cao1

1 School of Microelectronics, Shanghai Jiao Tong University
Shanghai, China

{wangchang,jiangjiang,hanxing,caoqiang}@ic.sjtu.edu.cn
2 School of Computer, Wuhan University

Wuhan, China
xbxu@whu.edu.cn

Abstract. The emergence of multicore processors makes multicore task
scheduling a focus of researchers. Since the multicore task scheduling problem
is NP-hard, in most cases only approximate algorithms can be adopted to
resolve it. This paper provides a detail analysis of the four aspects of applying
variable neighborhood search algorithm (VNSA) to the multicore task
scheduling problem. We further give a solution: (1) we propose a general
solution model named task assignment matrix (TAM) (2) and define relevant
element swap operations between the TAM instances; (3) then we present a
construction method of the neighborhood and the neighborhood set; (4) finally
we introduce a local search strategy for the neighborhood set. We have proved
the effectiveness of this scheme through experiments. The results show that the
scheduled tasks with different communication to computation ratio have a
1.079-4.258 times performance improvement.

Keywords: VNSA, multicore processor, task scheduling.

1 Introduction

A lot of physical constraints such as the serious heat dissipation problem, the
relatively growing transistor interconnect delay and the extremely complex chip
design technology results in an insurmountable obstacle for a further performance
improvement on uniprocessor. Under this circumstance, multicore processors become
very popular. That the multicore processor can better utilize the thread-level
parallelism of the applications provides a chance to enhance the performance of the
entire computer system.

According to Amdahl's law, the speedup of a program depends on the proportion of
the parallel program fraction[1]. The objective of task scheduling on the multicore
platform is to make full use of the parallelizable program fraction thus sufficiently
utilize processor hardware resources. In order to achieve this goal, applications must
be divided into many subtasks and then scheduled to different processor core to
execute.

122 C. Wang et al.

Many algorithms have been proposed such as HEFT(Heterogonous Earliest
Finished Time) and HCNF(Heterogonous Critical Node First) since this problem has
arisen from distributed computing system [2] where lots of tasks are to be dispatched
to different processors to execute in an appropriate way. Xiaozhong Geng et al. [3]
propose a task scheduling algorithm for CMP based on task duplication which consist
of changing task graph from DAG to join structure, generating scheduling set and
adjusting scheduling set three steps to minimize communications between different
tasks and balance execution costs between different cores. Fengguang Song et al. [4]
present a task scheduling approach which put fine-grained computational tasks in a
DAG and schedule them dynamically to execute dense linear algebra algorithms on
both distributed-memory and shared-memory multicore system. Weimei Chen et al.
[5] introduce an energy-efficient algorithm to schedule periodic real-time tasks on
multicore system and at the same time this algorithm can preserve system reliability.

As a metaheuristic algorithm, variable neighborhood search algorithm (VNSA)
was first proposed by Hansen and Mladenovic in 1997 [6]. By addressing some of the
classic combinatorial and global optimization problems, VNSA proves a good
performance [2]. We first analyze the four aspects of applying neighborhood search
algorithm to the task scheduling problem on the multicore platform. Then we give a
solution. Finally we prove its effectiveness through experiments.

The organization of this paper is as follows. Section 2 introduces the basic
principle of VNSA. Section 3 is a discussion about the tasks scheduling problem
including the tasks graph model and the multicore platform model. Section 4 analyzes
applying VNSA to the multicore tasks scheduling problem and presents a solution.
Experiment conditions and results are provided in section 5. A conclusion is made in
section 6.

2 The Variable Neighborhood Search Algorithm

The combinatorial optimization problem is very common in real world. Multicore
task scheduling problem is one of them. Generally, all algorithms developed to solve
this problem are either complete or approximate [7]. The complete algorithms can
find a global optimal solution by searching the entire solution space. But for the NP-
hard problems, the solution space will become large with an exponential rate when
the problem size increases. This often leads the problems to unsolvable. On the
contrary, the approximate algorithms such as VNSA only searches part of the solution
space by using some learning mechanisms thus can find a near-optimal solution in a
reasonable amount of time.

The basic idea of VNSA is to change the neighborhood systematically during the
search process to expand the search space and find the local optimal solution, and
then systematically change the neighborhood based on the obtained local optimal
solution to re-expand the search space to find another local optimal solution, and
finally find a global optimal solution.

Hansen and Mladenovic have given the rules of basic VNSA [8]. Here we
reinterpret some items. x is a solution for the target problem and ()kN x stands for

 Applying Variable Neighborhood Search Algorithm 123

the k-th neighborhood of x . A neighborhood of solution x is a set of solutions that has
the same properties which can be described by a generalized distance function ρ . So
the neighborhood structure ()kN x can be defined as () { ' | (, ') }kN x x x x kρ= = in

which k is a natural number. For the basic VNSA, its process is illustrated in Fig. 1.

max

max

;

();

{ ()}, 1,2,...,

1;
(){

"

() '
k

K

k

x

generate an initial solution x and neighborhood set N x k k

set k
while k k and termiination condition is not met

randomly generate a solution x in N

explore neighborhood N x to find a local optimal x

=
=

≤

()

" ;

('){
';

{ } ;
1;

} { 1;}
}

;

k x

with x as the initial solution

if x is better than x
set x x
construct a new neighborhood set N with this new x

set k

else set k k

return x

=

=
= +

Fig. 1. Process of the Basic VNSA

3 The Multicore Task Scheduling Problem

The essence of multicore task scheduling is to establish a map from a subtask set to a
processor core set. The domain is the subtask set and the range is a set of ordered pair
which contains a processor core id and the task execution time. If we denote
with T the set of subtask, with MC the set of processor core, then this map
function f can be described as : [0,)f T MC→ × ∞ . A complete multicore task
scheduling system consists of three parts: the task graph model, the scheduling
algorithm and the multicore platform.

3.1 The Task Graph Model

The DAG model is widely used in the researches of multicore task scheduling
[3][4][9][10][11]. In order to describe the execution cost of each subtask and the
communication overhead between subtasks, weights are added to subtask nodes and
edges.

The weighted DAG can be described by a quaternion (, , ,)G V E W M= ,
where 0 1 2 1{ , , ,..., }nV v v v v −= stands for the set of subtask nodes and | |V n= is the

quantity of the subtask set. ,{ }(0 1,0 1)i jE e i n j n= ≤ ≤ − ≤ ≤ − stands for the set of

communication edges between subtasks. 0 1 2 1{ , , ,..., }nW w w w w −= is a set of subtask

weight which represents the execution cost of the subtasks. ,{ }i jM m=

(0 1,0 1i n j n≤ ≤ − ≤ ≤ −) is a set of communication cost between subtasks in which

,i jm stands for the communication cost from subtask iv to subtask jv .

124 C. Wang et al.

There are two types of cost between subtasks. One is the communication cost and
the other is the task execution cost. Applications running on computers are either
communication-intensive which means there is more communication cost than
computation cost or computation-intensive which means the opposite. We use
communication to computation ratio (CCR) to indicate this property. Equation (1)
illustrates the definition of CCR. The denominator is the execution cost sum of all
subtasks and the numerator is the sum of all communication cost.

1 1

,
0 0

1

0

n n

i j
i j

n

i
i

m
CCR

w

− −

= =
−

=

=
∑∑

∑

 (1)

3.2 The Multicore Platform Model

The multicore platform model can be described by a triple (, ,)MC C L R=
where 0 1 2 1{ , , ,..., }mC c c c c −= stands for the set of processor cores and | |C m= is the

quantity of processor core set; ,{ }(0 1,0 1)i jL l i m j m= ≤ ≤ − ≤ ≤ − is a set of

communication rate in which ,i jl stands for the communication speed between

processor core ic and jc . 0 1 2 1{ , , ,..., }mR r r r r −= is a set of processor core execution

speed. In homogeneous system, the speed of every processor core is the same, that is
to say , , (,0 1,0 1)i j i jc c C r r i j i m j m∀ ∈ = ≠ ≤ ≤ − ≤ ≤ − . In real world the multicore

processor mostly are fully-connected. We can use communication cost between
different subtasks to measure the impact caused by the communication limit. So here
we just simplify this triple multicore model to a set of processor cores which
is 0 1 2 1' { , , ,..., }mMC c c c c −= .

4 Applying VNSA to Multicore Task Scheduling Problem

There are several issues to be tackled when applying VNSA to the multicore task
scheduling problem. First, it must be a one-to-one mapping between the formalized
solutions and practical solutions, and the formalized solutions should not cause a
deadlock. Second, there must be some measures to change a formalized solution to a
different one in order to construct a neighborhood and neighborhood set. Finally,
when the algorithm searches a neighborhood, a local search strategy is needed and the
opportunity to terminate the algorithm is to be determined as well.

4.1 Formalization of the Solution

Assigning a subtask to a processor core is to designate this core to execute this
subtask with a priority. We propose a solution model named task assignment matrix
(TAM) ,(),0 1,0 1m n i jA a i m j n× ≤ ≤ − ≤ ≤ − illustrated by Fig. 2. In TAM, the row order

stands for the core number and the column order stands for the priority of a subtask.
Every valid matrix element is a subtask number and the invalid element is represented

 Applying Variable Neighborhood Search Algorithm 125

by σ . By saying ,i j ka t= we mean subtask kt is assigned to the i-th core with a

priority jw . Here we assume 0w is the highest priority and 1nw − is the lowest priority.

0 1

0

,

1

j n

i i j

m

w w w

c

c a

c

−

−

Fig. 2. Task Assignment Matrix

Some notations we used are as follows:
()kPred t : a set of predecessor subtask of kt .

()kH t : the height of subtask kt .

()E h : the height interval of h which actually is a set of subtasks with the same
 height value h .

()W j : the priority of subtask jt , 0 1 2 1() { , , ,..., }nW j w w w w −∈ .

()C j : the processor core number of subtask jt , 0 1 2 1() { , , ,..., }mC j c c c c −∈ .

The height of a subtask in TAM is defined by (2)

0, ()
()

1 { ()}, ()
k

k
j j k

if Pred t
H t

max H t else if t Pred t

⎧⎪
⎨
⎪⎩

= ∅
=

+ ∈
 (2)

In (2) we in fact use the partial order relation of the subtask height to represent the
communication dependence of subtasks. For example, if () ()k jH t H t< , then subtask

kt must have been executed before jt begin to execute, or it will cause a deadlock.

When kt and jt are in different processor core, before subtask jt begin to execute,

the communication from kt to jt must be accomplished. If () ()k jH t H t= , it means

there is no communication dependence between them. So these two subtasks can be
scheduled to different processor core to execute simultaneously.

Because of the communication dependence, some solutions may cause a deadlock.
For eliminating this uncertainty, height interval is introduced in TAM. A height
interval is a set of subtasks with the same height value. A subtask in a height interval
can't be assigned to a processor core in a different height interval to avoid a deadlock.

4.2 Transformation of the Solution

There are two types of operations in the scheduling process. One is scheduling a
subtask from a core to another and the other is changing the priority of a subtask. All
other complex operations are composite of these two simple operations. Based on this
we define vertical swap operation and horizontal swap operation.

126 C. Wang et al.

The vertical swap operation is used to schedule a subtask from one processor core
to another. In TAM, the vertical swap operation only occurs in the same column. In
order to keep the validity of the solution, the operation must be performed between a
valid element and an invalid element. Before the swap, if

1 1 2, ,,i j k i ja t a σ= = , and after

that
1 2 1, ,,i j i j ka a tσ= = . Fig. 3 shows the process.

1 1 1

2 2 1

0 1 0 1

0 0

1 1

j n j n

i k i

i i k

m m

w w w w w w

c c

c t c

c c t

c c

σ

σ

− −

− −

⇒

Fig. 3. Process of Vertical Swap Operation

1 2 1 2

1 2 2 1

0 1 0 1

0 0

1 1

j j n j j n

i k k i k k

m m

w w w w w w w w

c c

c t t c t t

c c

− −

− −

⇒
↔

Fig. 4. Process of Horizontal Swap Operation

The horizontal swap operation is used to swap the priorities of two valid elements
in the same row and the same height interval. When more than one subtask priority
changed, it can be regarded as a composite of some horizontal swap operations. The
swap process is illustrated by Fig. 4. Before the swap,

1 1 2 2, ,,i j k i j ka t a t= = and after

that
1 2 2 1, ,,i j k i j ka t a t= = .

4.3 Generating the Initial Solution

On the basis of swap operations, we give a method of generating the initial solution.
This method takes turns assigning subtask to different processor core. Subtasks with
lower height are assigned to the processor core with a higher priority which means the
initial solution will not cause a deadlock because the priority relation represented by
the weight and the communication dependence represented by the height are
consistent. Fig. 5 shows it.

 Applying Variable Neighborhood Search Algorithm 127

0 1 2 10, 0, { , , ,..., };

(){

, ;

ninitialize the core number c subtask weight p subtask set T t t t t

while T

select a subtask t with the lowest height if more than one then randomly select one

assign the selected subtask to processor core c wit

−= = =
≠ ∅

;

(1)% ;

(1)% ;

{ };

}

ph priority w

c c m

p p n

T T t

= +
= +
= −

Fig. 5. Steps of Generating the Initial Solution

4.4 Generating the Neighborhood and the Neighborhood Set

The key to construct a neighborhood is to construct a generalized distance function ρ .
Different TAM instance represents different task scheduling solution. In different
instances, not all valid element positions are the same. So we can construct a
generalized distance function based on the numbers of valid elements in different
positions between different instances. Equation (4) is the definition.

,', ' ', '(, ') |{ (')| () (') , ' ',0 ' 1,0 ' 1}|i ji j i jx x a x a x a x i i or j j i i m j j nρ σ= = ≠ ≠ ≠ ≤ ≤ − ≤ ≤ − (3)

The maximum of the function (, ')x xρ is n because there are at most n valid
elements in different positions. If n is too big, the entire neighborhood set will be so
huge that the algorithms cannot converge to a solution in a proper time. It's necessary
choose some representative neighborhoods to construct the neighborhood set.

One horizontal swap operation will cause one valid element position changed and
one vertical operation will cause two. The neighborhood sets showed below are
constructed by the representative operation combinations. These neighborhood sets
are the whole solution space which the algorithm will search.
• 1() { ' | (, ') 1}N x x x xρ= = : composed of solutions generated by performing one

horizontal swap operation of solution x .
• 2 () { ' | (, ') 2}N x x x xρ= = : composed of solutions generated by performing one

vertical swap operation or performing two different horizontal swap operations
of solution x .

• 3() { ' | (, ') 3}N x x x xρ= = : composed of solutions generated by performing one
horizontal swap operation and one vertical swap operation of solution x .

• 4 () { ' | (, ') 4}N x x x xρ= = : composed of solutions generated by performing two
different vertical swap operations of solution x .

4.5 Local Search Strategy and Termination Conditions

The simplest local search strategy in VNSA is to randomly select a solution in the
current neighborhood as the local optimal solution. A more optimized measure is to
apply an exhaustive search strategy. Random search strategy is too simple and the

128 C. Wang et al.

exhaustive search strategy is too time-consuming. Moreover, these two algorithms are
more likely to converge to a not good enough local optimal solution in most cases.

To prevent the algorithm from trapping into a bad local optimal solution, it’s
necessary to permit searching a direction which looks not so good. A way is to
introduce a probabilistic strategy to determine whether the algorithm should search
this new direction when a suboptimal solution yields. We propose a relative
probability transition strategy by comparing the difference between the current local
optimal solution and the current global optimal solution with the difference between
the current local optimal and the previous global optimal solution. If the current local
optimal solution is not better than the current global optimal solution, the algorithm
will determine whether moving to the new direction based on to what extent the
current local optimal solution goes bad. The probability P is calculated by a formula
showed in (5). In this formula, '

localx is the current local optimal solution, '
globalx is the

current global optimal solution and ''
globalx is the previous global optimal solution.

' ''
' ' ''

' '

| |
(, ,)

| |
global global

local global global
global local

x x
P x x x

x x

−
=

−
 (4)

For approximate algorithms, no direct criteria can be used to judge whether the
current global optimal solution is the de facto global optimal solution. A common
indirect criterion is the maximum iterations between two consecutive improvements
[2] based on the cognition that if an algorithm can’t find a better solution in a long
enough time, then it’s appropriate to regard the current optimal solution as the final
global optimal solution. We use the maximum iterations between the two consecutive
improvements as the termination condition.

5 Experiments and Results Analysis

Among the proposed algorithms, HCNF and HEFT show better performance than
others[9]. We compare the performance of our algorithm with these two algorithms.
We both use random task graphs and real application task graphs. The random task
graphs are generated with the method in [12]. The pseudo-code is illustrated in Fig. 6.
1. [0,..., 1] ;

2. [2,78],

_ ;

3. (0; 1;) {

initializethe subtasks array Nodes n and CCR

generate the executioncost of each subtask using auniformdistribution

caculatetheaverageexecution time avg exc

for i i n i

generatethe succss

−

= <= − + +
[] [0,0.1*];

[]

[0, * _];

}

ivenodenumber of subtask Nodes i using auniform distribution n

generatethecommunicationcost between subtask Nodes i and

eachof its successorsusing uniformdistribution CCR avg exc

Fig. 6. Pseudo-code for the process of generating the random task graphs

 Applying Variable Neighborhood Search Algorithm 129

We choose three types of real application task graphs include the fast Fourier
transform (FFT) graph, the gauss elimination graph and the stencil graph [13]. Detail
information is in Table 1. We totally test 9450 task graphs with different CCR value
in which the random task graphs and the real application task graphs accounted for
55% and 45%, respectively. With bigger CCR, the applications are more
communication-intensive. On the contrary the applications are computation-intensive.
LCP stands for the length of critical path of task graph and SL is the execution time
after the task graph has been scheduled. NSL is defined as /NSL LCP SL= which
reflects the speedup effects of the algorithm. In order to reduce the negative effect of
accidental factors, all results are arithmetic means of a series of experimental data.

Table 1. Detail Information of the Experiment Parameters

Task Graph Type CCR Processor Core
Number

Subtask
Number

Task Graph
Number

Random 0.1,0.25,0.5,0.75,1,
2.5,5,7.5,
10,15,20

2~32

10~100

5200
FFT 1100
GE 1650
SA 1500

Fig. 7. Speedup with Different CCR Fig. 8. Comparison of algorithms

Fig. 7 illustrates the speedup of task graphs with different CCR. The average

speedup of task graphs with bigger CCR is more obvious than task graphs with small
CCR. This result shows the algorithm have a good performance improvement for
communication-sensitive applications. As CCR value decreases, the performance of
the algorithm decreases. Especially when CCR is 0.1, the average speedup of the
tasks is less than 10%.

Fig. 8 is the comparison of our algorithm with other two algorithms. We can see,
both of HEFT and HCNF have a performance advantage on our algorithm when CCR
is small. But when CCR is more than 10, our algorithm has a more obvious
performance improvement.

In fact, multicore task scheduling is a balance between tasks communication
overhead and tasks execution cost. Putting two tasks with communications on the
same processor core can eliminate the communication overhead. But this will lead to
an unbalance of tasks execution. The unbalanced tasks execution will directly result
the whole tasks execution time become longer. Our algorithm features a good
performance for the communication-intensive applications.

130 C. Wang et al.

6 Conclusion

This paper analyzes the four aspects of applying VNSA to the multicore task
scheduling problem and further realizes an algorithm. We (1)use TAM with height
interval as the solution model, (2)define relevant element swap operations between
different TAM instances, (3)then construct the neighborhood and neighborhood set
based on the number of positions of different valid element, (4) and finally prove the
effectiveness of our algorithm through experiments. The experiment results show that
task graphs with bigger CCR have a performance improvement more than 4 times.
When comparing with HEFT and HCNF, our algorithm has a performance advantage
when CCR is more than 10.

References

1. Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. Computer 41, 33–38 (2008)
2. Lusa, A., Potts, C.A.: Variable Neighbourhood Search Algorithm for the Constrained Task

Allocation Problem. Journal of the Operational Research Society 59, 812–822 (2007)
3. Geng, X., Xu, G., Wang, D.: A Task Scheduling Algorithm Based on Multicore

Processors. In: 2011 International Conference on Mechatronic Science, Electric
Engineering and Computer (MEC), pp. 942–945 (2011)

4. Song, F., YarKhan, A., Dongarra, J.: Dynamic Task Scheduling for Linear Algebra
Algorithms on Distributed-Memory Multicore Systems. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis (2009)

5. Chen, W., Hung, H.: Energy-efficient Scheduling of Periodic Real-time Tasks for Reliable
Multicore Systems. In: Electrical and Control Engineering (ICECE), pp. 5887–5890
(2011)

6. Mladenovic, N., Hansen, P.: Variable Neighborhood Search. Computers & Operations
Research 24, 1097–1100 (1997)

7. Blum, C.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison. ACM Computing Surveys (CSUR) 35, 268–308 (2003)

8. Hansen, P., Mladenović, N.: Variable Neighborhood Search: Principles and Applications.
European Journal of Operational Research 130, 449–467 (2001)

9. Cheng, H.: A High Efficient Task Scheduling Algorithm Based on Heterogeneous Multi-
Core Processor. In: 2010 2nd Database Technology and Applications (DBTA), pp. 26–29
(2010)

10. Ilavarasan, E., Thambidurai, P.: Low Complexity Performance Effective Task Scheduling
Algorithm for Heterogeneous Computing Environments. Journal of Computer Sciences 3,
94–103 (2007)

11. Kwok, Y.-K., Ahmad, I.: Efficient Scheduling of Arbitrary Task Graphs to
Multiprocessors Using a Parallel Genetic Algorithm. Journal of Parallel and Distributed
Computing 47, 58–77 (1997)

12. Kwok, Y.: Benchmarking the Task Graph Scheduling Algorithms. In: Parallel Processing
Symposium, IPPS/SPDP 1998, pp. 531–537 (1998)

13. Olteanu, A., Marin, A.: Generation and Evaluation of Scheduling DAGs: How to Provide
Similar Evaluation 1, 57–66 (2011)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 131–142, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Empirical Analysis of Human Behavior Patterns in BBS

Guirong Chen, Wandong Cai, Huijie Xu, and Jianping Wang

School of Computer Science, Northwestern Polytechnical University
 710077 Xi,an, People’s Republic of China

{guirongchen315,peipei_xiaowu}@163.com,
caiwd@nwpu.edu.cn, xhj004@gmail.com

Abstract. Patterns of human actions have attracted increasing attention, since
the quantitative understanding of human behavior has important social and
economic significance. This paper focuses on behavior patterns of BBS users
by conduct analysis on real data of a famous BBS in China. The results show
that the reply number of posts and the post number, reply number of users both
follow power-law distribution. We further confirm that the one-day reply
number of all the users follows power-law distribution at the population level
within a certain range. According to the inflection point of the curve, we find
out 100 abnormal reply behaviors. Further analysis to the time and space
characteristics of the abnormal reply behaviors, we identify 8 artificial hot
posts. We find that they have high time similarity, content similarity, structure
similarity and show significant signs of human intervention. We infer that the 8
hot posts are the results of network hypes made by online water army. Our
findings are meaningful to network public opinion monitoring and may enable a
fast detecting of network hypes and online water army.

Keywords: Human dynamics, User behavior, Power-law distribution, Network
hypes, Online water army.

1 Introduction

Understanding human behaviors is helpful to uncover the origins of many
socioeconomic phenomena ranging from resource management, transportation
control, epidemic prediction, personalized recommendation to public opinion
analysis. Thanks to the rapid development of communication and database
techniques, most human behaviors with time stamp have been recorded and we can
conduct statistical analysis based on real data. Previous studies showed that users’
activities follow the heavy-tailed distribution and can be well fitted by a power-law
form. Examples of empirical studies include surface mail and email communication
[1,2], mobile phone communication [3,4], short message communication [5,6], library
loans [7], online activities [8–12], and so on.

With the rapid development of Web2.0, more and more people are interested in
online communication. Bulletin Board System (BBS), in which all the registered
people can share their opinions freely and anonymously, gets more and more public

132 G. Chen et al.

attention, and has become one of the most important platforms for public opinions.
While people enjoy their online life in BBS, some problems have appeared.
Companies which make money by making network hypes are founded, and they
employ online water army, who has registered many user names in BBS, to make
artificial hot topics (called network hypes) by submitting a huge number of posts or
replies in a short period of time. It is more and more different to distinguish true
public opinions from false ones. Public opinions are affected seriously.

Because network hypes are newly emerging phenomena and online water army is
very clandestine, people know very little about them. To the best of our knowledge,
detection of network hypes and online water army has not been addressed in the
current literature. While some studies have been done on the detection of sockpuppet
[13,14]. Sockpuppet is an online identity used for purposes of deception [15], which
means people use different fake identities pretending to be different persons to praise
or create the illusion of support for the product. Although online water army and
sockpuppet have some similarities, they are different in many aspects. Firstly, online
water army usually means huge number of people; secondly, online water army make
network hypes by submitting huge number of posts or replies; thirdly, network hypes
are formed in a very short period of time(1-2 days). So the detection algorithms of
sockpuppets can’t be used to detect network hypes and online water army directly.
This motivates us to carry out an in-depth analysis to gain insights on user behavior
patterns, and find out network hypes hidden in huge number of posts and online water
army hidden in normal users.

In this paper, we report an empirical analysis on real data of a famous BBS. The
findings will provide a deep understanding on real human behaviors and give clues to
the detection of network hypes and online water army.

The paper is organized as follows. In Section 2, we describe the basic statistical
characteristics of the dataset used in our empirical analysis. In Section 3, we show our
analysis results of the dataset, and present the method to find network hypes and
online water army. In Section 4, we summarize our work and close the paper with
concluding remarks.

2 Data Set Description

Before the introduction of the dataset used in this paper, we should give some
definitions on a few of basic elements of BBS. Usually, content submitted to BBS by
a user is called a post. All the posts from the same discussion form a thread. If a post
is the first post of a thread, it is called root post, which headline represents the topic of
the thread. A thread just has a root post, and all the other posts are replies to the root
post. In this paper, we use post to represent the root post of a thread, and reply to
represent the other posts of a thread.

Sina is a famous website in China, and Sina Forum (http://bbs.sina.com.cn/) is very
popular. Our data is collected from Sina Entertainment Forum which is a sub forum of
Sina Forum. The dataset consists of 9079 posts and 100751 replies submitted by
22537 users over a period of 12 months (between 2010/1/1 and 2010/12/31).

 Empirical Analysis of Human Behavior Patterns in BBS 133

Each record of posts consists of seven elements: post ID, post time, post user ID,
headline, content, clicked counts, reply counts, which show the ID of the post, the
time when the post is submitted, the user’s ID who submits the post, the title of the
post, the content of the post, the number that the post has been clicked or browsed, the
number that the post has been replied respectively. Each record of replies consists of
five elements: reply ID, reply user ID, reply time, content, post ID, which show the
reply post’s ID, the user’s ID who submits the reply, the time when the reply is
submitted, the content of the reply, and the root post’s ID of the reply respectively.
Here, the reply ID of a reply means the ID of the reply post itself and the post ID
means the root post to which this reply is submitted to reply. Users who didn’t submit
a post or a reply during the period of time are excluded from our analyses.

3 Empirical Analysis of Actual Data

3.1 Distribution of the Click Number and Reply Number of Posts

Here, we analyze the click number and reply number of all the posts in the dataset.
Fig.1 shows the statistical results. Fig.1 (a) and Fig.1 (b) are both the distributions of
click number, and Fig.1 (a) is in semilog coordinate, and Fig.1 (b) is in double
logarithmic coordinates. As can be seen in Fig.1 (a) and Fig.1 (b), the distribution
doesn’t follow Poisson-like or Power law-like distribution. This is consistent with
Ref. [16-17], but different with Ref. [18] which shows that the views of posts follow
power-law distribution.

The values of the click number focus on 100 and 1000. Further, We find that there
are only 5 posts be clicked less than 100 times, 0.05% of the total, and 7650 posts be
clicked between 100 and 1000 times, 84.2% of the total, and 1424 posts be clicked
more than 1000 times, 15.68% of the total. That is to say more than 99.95% of the
posts are browsed more than 100 times, which means that almost all the posts have a
certain influence, but the number of posts which are browsed more than 1000 times is
not large.

Fig.1 (c) and Fig.1 (d) are both the distribution of reply number in double
logarithmic coordinates. For both cases, X-axis represents the distribution we focus
on, while ()p X x= in Fig.1 (c) is the distribution function and ()p X x≥ in Fig.1

(d) is the cumulative distribution function. As can be seen in Fig. 1 (c), part of the

distribution (1-80) can be fitted by a power-law form ()p αλ λ −= with exponent 2.06.

The exponent is estimated by using the method in Ref. [19]. All the power-law
exponents reported in this paper are obtained by such a method. We find that there are
8962 posts be replied less than 80 times, 98.71% of the total, and there are 117 post
be replied more than 80 times, 1.29% of the total, which means that most posts have
few replies, and only a very few of posts have a very large replies.

134 G. Chen et al.

(a) (b)

(c) (d)

Fig. 1. Distributions of click number and reply number of all the posts. In (a) and (b), X-axis
represents click number and Y-axis represents the distribution function. (a) is in semilog
coordinate and (b) is in double logarithmic coordinates. (c) is the distribution of reply number,
and in (c) X-axis represents reply number, and Y-axis represents the distribution function. (d) is
the accumulation distribution function. (c) and (d) are all in double logarithmic coordinates.

3.2 Distribution of the Post Number and Reply Number of Users

In this section, we mainly focus on the distribution of action numbers of users. Since
the user’s browse behaviors in online forums are not recorded, we can not analyze the
browse behavior directly. Here, we analyze the distributions of the post number and
reply number submitted by users. Fig. 2 shows the results.

As we can see in Fig.2 (a) and (b), the distribution of post number follow Power-
law distribution, and the exponent is 2.48. This means that most users submit few
posts and very few users submit a large number of posts. Fig.2 (c) and (d) illustrate
the distribution of reply number of all the users. The distribution shows Power-law
characteristics, but as Fig. 2(d) shows the curve is not a straight line, when the values
are larger than 100, the tail deviates downward, which means that most users rarely
reply, and a small part of the users reply more, and users who submitted more than
100 replies are very few. According to Fig. 2(d), users can be divided into two
categories, one is less active and one is more active.

 Empirical Analysis of Human Behavior Patterns in BBS 135

 (a) (b)

(c) (d)

Fig. 2. Distributions of post number and reply number of the users. (a) is the distribution of
post number of the users and in (a) X-axis represents the number of posts and Y-axis represents
the distribution function. (b) is the accumulation distribution function. (c) is the distribution of
reply number of the users and in (c) X-axis represents the number of replies and Y-axis
represents the distribution function. (d) is the accumulation distribution function. All of them
are all in double logarithmic coordinates.

3.3 Distribution of the One-Day One-User Reply Number on Population Level

We conduct a statistics of one-day reply number of each user, and find that the
maximum of one-day reply number is 549, which means that some user has submitted
549 replies in one day, and the minimum of one-day reply number is 0, which means
that a user did not submit any reply in that day.

Fig.3 reports the cumulative distribution of one-day one-user reply number on
population level. As we see, the distribution shows power law characteristics, which
means that most users submit very few replies on most of the days, and a few of users
submit a large number of replies on very few days. But as Fig.3 (a) illustrates, the tail
of the curve has a downward deviation, which means the phenomenon of one-day
reply number exceeds a certain value (the inflection point of the curve) is very rare.
That is to say, the behavior submitting a large number of replies (exceeding the
inflection point of the curve) is abnormal user behavior which does not comply with
the Sina forum user behavioral patterns.

136 G. Chen et al.

Generally, online water army makes network hypes by submitting a large number
of replies in a short period of time. Therefore, we are mainly concerned with the
behaviors with large reply numbers. We sort all the records according to the replies
submitted on one day, then top n records mean the first n records in the sorted record
set. Fig.3 (b) and (c) are the distributions of the top 4000 and top 1000 reply
behaviors on population level. We can see that they exhibit similar characteristics
with Fig.1 (a). To identify the abnormal user behavior, we should determine the
inflection point of the curve firstly. We suppose curve deviation occurs when x is
equal to r. In order to determine the value of r, we remove the records greater than r,
using the maximum likelihood estimation method [19] for power-law curve fitting,
estimate the fitting errors. Several experiments found that when r is equal to 67, the
fitting errors is smallest. Fig.3 (d) is the cumulative distribution of one-day reply
number of top 1000 (removing the records larger than 67) on population level. As
Fig.3 (d) shows, it follows a power law form strictly in a range. So we set r as 67,
what means if some one submits more than 67 replies on one day, we think the
behavior is abnormal. Further analysis to the whole dataset, we find that there are 100
abnormal behaviors.

(a) all (b) top 4000

 (c) top 1000 (d) removing the records larger than 67

Fig. 3. Distribution of one-day one-user reply number on population level. (a) All the users. (b)
Top 4000. (c) Top 1000. (d) Remove the records larger than 67 from top 1000.

 Empirical Analysis of Human Behavior Patterns in BBS 137

3.4 Distribution of the Abnormal One-Day Reply Behaviors

In this section, we analyze the time and space distributions of the abnormal reply
behaviors found in last section. Fig.4 (a) presents the time distribution of the 100
abnormal daily reply behaviors. We find that there are 81 abnormal daily reply
behaviors on December 3, 2010, and there are 12 abnormal daily reply behaviors on
December 6, 2010, accounting for 93% of the total number. So we suspect that there
are network hypes in the Sina Entertainment Forum on that two days.

Further analysis of the dataset, we find that there are 18824 replies on December 3,
2010, and all the replies were submitted to reply 21 different posts. Fig.4 (b) shows
the distribution of the replies in different posts. We can see that there are 4 hot posts,
which post ID are respectively 774916,775150,775151,775152, and the numbers of
replies are respectively 4666, 4686, 4670 and 4687, accounting for a total of 18709,
99.39 % of the total replies of the day. We suspect that the 4 hot posts were network
hypes made by online water army.

1%1%1%2%1%1%

81%

12%

2009.3.2 2009.4.16 2010.9.1 2010.11.12

2010.11.19 2010.12.2 2010.12.3 2010.12.6

1134

4687

4670

2133257

4686

1121311

4666

1

772729 771150 776761 776609 775152 775151 482681

765979 771982 774144 776043 775150 771298 772458

777059 777024 777041 772726 770320 774916 777069
 (a) (b)

Fig. 4. Distributions of the abnormal behaviors. (a) The time distribution of the 100 abnormal
behaviors. (b) The space distribution of the replies on December 3, 2010.

In order to confirm whether the 4 posts are network hypes or not, we conduct further
analysis to them. Table 1 is the basic information of the 4 hot posts on December 3, 2010.
Firstly we analyze the time correlation between these 4 posts, and find that they were all
submitted on December 1, 2010, and the difference of the submission time of the last 3
posts were just 2 minutes. Meanwhile, we find that post 775150 and post 775151 were
submitted by the same user. So we can suspect that the 3 posts were submitted by the
same people, who logged on the BBS with different user names.

We define the life cycle of a post as how many days the post last. Then we analyze
the life cycles of the 4 posts, and find that the life cycles of 3 of them are 3 days, that
is December 1, 2010, December 2, 2010 and December 3, 2010. They all have no
replies on the first day, a lot of replies on the next day, a large number of replies on
the third day, and then no replies for ever, which shows burst characteristics such as
“short time”, “a large number of replies” and so on. The life cycle of post 775150,
which is 25 days, does not show burst characteristic. But further analysis of this post
shows that the number of replies submitted on the next and third day is 5360, 99.9 %
of the total replies. During the next 22 days, there were only 3 replies, which should

138 G. Chen et al.

be submitted by normal users. So we can see that post 775150 shows same burst
characteristics with the other 3 posts.

Table 1. The basic information of the 4 hot posts on December 3, 2010

Post ID User ID Headline Submit
time

Life
Cycle(d)

Reply
Number

Click
Number

User
Number

774916 1883898872 Love art, not
money!
Kaige Chen was
Under the pain
behind<The
orphan of
Zhao>

2010-12-
01
14:12:00

3 5335 23964 516

775150 1834813957 <The orphan of
Zhao> Kaige
Chen’s new
explain to
revenge

2010-12-
01
18:52:00

25 5363 26507 521

775151 1834813957 Remodel classic
with
personality,
Kaige Chen
give you a new
interpretation of
the naked
human nature

2010-12-
01
18:54:00

3 5341 24074 519

775152 1847440812 Does “Black”
person get the
world in
Chinese movie
world?

2010-12-
01
18:56:00

3 5359 23786 517

Fig.5 (a) reports the time distribution of replies of the 4 abnormal hot posts. We
conduct a manual inspection to post 671195 which is a normal hot post and confirm
that it does not contain network hype. Fig.5 (b) reports the time distribution of replies
of post 671195. As Fig.5 shows, the differences between the time distributions of
replies of the 4 hot posts on December 3, 2010 and the real hot posts are big.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2010.12.1 2010.12.2 2010.12.3

Date

N
u
m
b
e
r

o
f

R
e
p
l
i
e
s

帖子774916 帖子775150 帖子775151 帖子775152

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27

n days

N
u
m
b
e
r

o
f

R
e
p
l
i
e
s

 (a) （b）

Fig. 5. Time distribution of replies. (a) Four abnormal hot posts. (b) A real hot post.

 Empirical Analysis of Human Behavior Patterns in BBS 139

We analyze the content of these 4 hot posts, and find that the 4 posts are all about
“Kaige Chen” who is a famous director in China and “The orphan of Zhao” which
was Zhao’s new film in that time.

In the same way, we analyze the posts and replies submitted on December 6, 2010
deeply. We find that there are 3513 replies on December 6, 2010, and all the replies
were submitted to reply 50 different posts. Fig.6 (a) shows the distribution of the
replies in the posts. We can see that there are 4 hot posts, which post ID are
respectively 777914, 777961, 778102, 778103, the numbers of replies are respectively
1344, 1345, 1204 and 1209, accounting for a total of 3429, 97.61% of the total replies
of that day. We suspect that the 4 hot posts were network hypes by online water army.

In order to confirm whether the 4 posts are network hypes or not, we conducted
further analysis to them. Table 2 is the basic information of the 4 hot posts on
December 6, 2010. As table 2 shows, the 4 posts were all submitted on December 5,
2010, the difference of the submission time of post 777914 and post 777961 is 20
minutes. Post 778102 and Post 778103 were submitted by the same user in two
minutes. So we can suspect that the 3 posts were submitted by the same people, who
logged on the BBS with different user names. Fig. 6 (b) shows the distribution of the
daily replies of the 4 hot posts on December 6, 2010. As we see, the replies of the 4
posts focus on 2 days, accounting for 99.9%, 100%, 100% and100% of the total,
which shows burst characteristics.

2

638

11111

933

933

612221122311211212
123142111113111211

925

22111

778689 778103 771535 771150 729070 771190 753837 777961 777914

777115 752071 778945 344808 684489 778424 724388 778728 778985

769615 752271 776154 778883 779168 778159 778842 752426 778650

771258 775150 770274 760337 775968 777059 746180 771973 778750

759251 777579 777790 771230 771387 707227 752086 758455 778102

777041 778785 770320 772380 777735

0

100

200

300

400

500

600

700

800

900

1000

2010.12.5 2010.12.6

Date

N
u
m
b
e
r

o
f

R
e
p
l
i
e
s

PostID 777914 PostID777961 PostID 778102 PostID 778103

 （a） （b）

Fig. 6. Distribution of the 4 hot posts on December 6, 2010. (a) The space distribution of the
replies on December 6, 2010. (b) Reply number of the 4 posts.

Similarly, we analyze the content of the 4 posts, and find that the 4 posts are all
about “Kaige Chen” and “The orphan of Zhao”. Therefore, we infer that the 4 hot
posts on December 3, 2010 and the 4 hot posts on December 6, 2010 are all network
hypes conducted by online water army. The content of the two network hypes is
Kaige Chen’s new film < The orphan of Zhao >. The first network hype was
conducted on December 3, 2010, which aim is to make 4 hot posts, each of which
having more than 5000 replies, and the second network hype was conducted on
December 6, 2010, which aim is to make 4 hot posts, each of which having more than
1200 replies.

In short, the 100 abnormal reply behaviors distributed on 8 days, 93% of which
focused on 2 days, when we suspect that there were network hypes. Further analysis

140 G. Chen et al.

on the posts and replies on the 2 days, we find that the replies focus on 8 posts, which
have high time, content and structure similarity. Obviously, the 8 posts are network
hypes made by online water army. And the users who replied abnormal on the 2 days
must be online water army.

Table 2. The basic information of the 4 hot posts on December 6, 2010

Post
ID

User ID Headline Submit
time

Life
Cycle(d)

Reply
Number

Click
Number

User
Number

777914 1882937535 On the first
day of release
<The orphan
of Zhao > gets
a lot of praise

2010-12-
05
12:15:00

19 1344 16229 380

777961 1832901995 <The orphan
of Zhao >
celebrates the
new year as
the overlord
style

2010-12-
05
12:35:00

2 1345 15823 378

778102 1705258735 Cheng Ying
who has
walked down
from the altar

2010-12-
05
17:55:00

2 1204 14474 342

778103 1705258735 <The orphan
of Zhao >:
no enemy but
you and me

2010-12-
05
17:57:00

2 1209 16434 210

In order to confirm the difference between network hypes and real network hot

posts, we compared the 8 artificial hot posts with a real hot post we got by manual
analysis from reply count, clicked count, life cycle, user count, average reply number
per day, average reply number per user and the ratio of clicked count and reply count.

Fig.7 shows the results, in which post 671195 is a real hot post and other posts are
network hypes. We can see that network hypes and real hot posts both have a large
number of replies, but the replies of the same network hypes are very close which
depends on the tasks of the online water army. The clicked counts of the network
hypes are lower than what of the real hot posts having the same number of replies.
Network hypes have burst characteristics, so their life cycles are very short, generally
only 2-3 days, while real hot posts replied spontaneously by users last longer. The
number of different users involved in network hypes is smaller than that of a real hot
post having the same number of replies, because in network hypes online water army
submit a lot of replies using the same user name. The one-day average replies and
one-user average replies of network hypes are much larger that of real hot posts. The
ratio of clicked count and reply count reflect the average number of users who have
browsed the post will reply the post, and this indicator is very important to identify

 Empirical Analysis of Human Behavior Patterns in BBS 141

the network hype. As Fig.7 shows the ratio of network hypes is much smaller than
that of real hot posts, which shows that there are many replies are not submitted by
users who have browsed the post and wanted to give his or her ideas about it, but
submitted by online water army to make a artificial hot post or network hypes, having
obvious traces of human intervention.

0 5 10 15 20 25 30

Clicked

Counts/Total

Replies

Avg Rep Per User

Avg Rep Per

Day/100

User Counts/100

Life Time(d)

Clicked

Counts/10000

Total

Replies/1000

PostID 774916 PostID 775150 PostID 775151

PostID 775152 PostID 777914 PostID 777961

PostID 778102 PostID 778103 PostID 671195

Fig. 7. Compare of the 8 artificial hot posts and a real hot post

4 Discussion and Conclusions

The main contribution of this paper is reflected in two aspects. Firstly, we confirm that
the reply number of posts, the post number, reply number, one-day reply number of users
all follow power-law distributions. This is meaningful to the modeling the online user
behavior, whether what the model is, the post behaviors and reply behaviors should
follow power-law distributions. Secondly, we propose a method of detecting network
hypes and online water army. The method includes 3 steps, firstly analyze the one-day
one-user reply behavior on population level to find abnormal user behaviors, then find
out the network hypes by locating the time and the posts the abnormal behaviors focus
on, finally identify the online water army by find out the users who have abnormal
behaviors during the time when the network hypes occur. The results of empirical
analysis to the dataset prove that our method is effective and efficient.

Our method can identify network hype phenomenon which was formed by online
water army using extreme measures such as submitting a large number of replies in a
short period of time. But sometimes online water army makes network hypes by
submitting a large number of replies using a large number of user names in a short
time, which means they just reply several times using one user name. On this

142 G. Chen et al.

situation, they masquerade as normal users and we can not find the abnormal
behaviors using our method. Because the cost of this speculation mode is too high,
needing to spend too much time and effort, so generally online water army does not
use it. Even so, we also need to study the network user behavior characteristics more
deeply, and constantly improve the accuracy and efficient of the detection of network
hypes and online water army.

References

1. Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–
211 (2005)

2. Oliveira, J.G., Barabási, A.L.: Human dynamics: Darwin and Einstein correspondence
patterns. Nature 437, 1251–1251 (2005)

3. Candia, J., González, M.C., Wang, P.: Uncovering individual and collective human
dynamics from mobile phone records. J. Phys. A: Math. Theor. 41, 224015-1–224015-11
(2008)

4. Jiang, Z.Q., Xie, W.J., Li, M.X.: Calling patterns in human communication dynamics. J.
PLNA 110, 1600–1605 (2013)

5. Zhao, Z.D., Xia, H., Shang, M.S., Zhou, T.: Empirical analysis on the human dynamics of
a large-scale short message communication system. Chin. Phys. Lett. 28, 068901-1–
068901-3 (2011)

6. Hong, W., Han, X.P., Zhou, T., Wang, B.H.: Heavy-tailed statistics in short-message
communication. Chin. Phys. Lett. 26, 028902-1–028902-3 (2009)

7. Fan, C., Guo, J.L., Zha, Y.L.: Fractal analysis on human dynamics of library loans.
Physica A: Statistical Mechanics and its Applications 391, 6617–6625 (2012)

8. Zhou, T., Kiet, H.A.T., Kim, B.J.: Role of activity in human dynamics. EPL. 82, 28002-
p1–28002-p5 (2008)

9. Dezsö, Z., Almaas, E., Lukács, A.: Dynamics of information access on the web. Phys. Rev.
E. 73, 066132-1–066132-6 (2006)

10. Zhao, Z.D., Zhou, T.: Empirical analysis of online human dynamics. Physica A: Statistical
Mechanics and its Applications 391, 3308–3315 (2012)

11. Zhao, Z.D., Cai, S.M., Huang, J.: Scaling behavior of online human activity. EPL. 100,
48004-p1–48004-p6 (2012)

12. Xiong, F., Liu, Y.: Empirical Analysis and Modeling of Users’ Topic Interests in Online
Forums. PloS One. 7, e50912-1– e50912-7 (2012)

13. Bu, Z., Xia, Z., Wang, J.: A sock puppet detection algorithm on virtual spaces.
Knowledge-Based Systems. 37, 366–377 (2013)

14. Zheng, X., Lai, Y.M., Chow, K.P.: Sockpuppet detection in online discussion forums. In:
2011 Seventh International Conference on Intelligent Information Hiding and Multimedia
Signal Processing (IIH-MSP), pp. 374–377. IEEE (2011)

15. http://en.wikipedia.org/wiki/Sockpuppet_(Internet)
16. Si, X.M., Liu, Y.: Empirical analysis of interpersonal interacting behavior in virtual

community. Acta Phys. Sin. 60, 859–866 (2011)
17. Ding, F., Liu, Y., Cheng, H.: Read and reply behaviors in a BBS social network. Advanced

Computer Control (ICACC) 4, 571–576 (2010)
18. Yu, J., Hu, Y., Yu, M.: Analyzing netizens’ view and reply behaviors on the forum.

Physica A: Statistical Mechanics and its Applications 389, 3267–3273 (2010)
19. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data.

SIAM Review 51, 661–703 (2009)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 143–152, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Performance Evaluation and Scalability Analysis
of NPB-MZ on Intel Xeon Phi Coprocessor

Yuqian Li, Yonggang Che, and Zhenghua Wang

National Laboratory of Parallel and Distributed Processing
National University of Defense Technology, Changsha 410073, China

{liyuqian11,ygche,zhhwang}@nudt.edu.cn

Abstract. Intel Many Integrated Cores (Intel MIC) is a novel architecture for
high performance computing (HPC). It features large thread parallelism and wide
vector processing units, targeting highly parallel applications. The HPC
communities are faced with the problem of porting their applications to the MIC
platforms. But it is still an open question that how current HPC applications can
exploit the capabilities of MIC. This paper evaluates the performance of
NPB-MZ programs which are derived from real world Computational Fluid
Dynamics (CFD) applications on Intel Xeon Phi coprocessor, the first MIC
product. The strong scaling behaviors of the applications with different
process-thread combinations are investigated. The performance obtained on the
Intel Xeon Phi coprocessors is compared against that obtained on Sandy Bridge
CPU based computer nodes. The results show that these programs can achieve
good parallel scalability when running with appropriate combinations of
processes and threads. But their absolute performance on Intel Xeon Phi
coprocessor is significantly lower than that on CPU node, due primarily to the
much lower single thread performance. The findings of this paper are of help to
the performance optimization of other applications on MIC.

Keywords: Intel MIC, NPB-MZ, performance evaluation, scalability, single
thread performance.

1 Introduction

Power is a great challenge for HPC systems in the future. Since the many-core
architecture has a high power-to-performance ratio, it is a way to achieve power
efficiency for supercomputer [1]. Intel has published the Intel Many Integrated Core
(Intel MIC) architecture and recently released the first MIC product, the Intel Xeon Phi
coprocessor (Knights Conner). The MIC architecture is designed specifically for high
performance computer with the goal to accelerate highly parallel computing tasks.
Another outstanding characteristic of MIC is the x86 instruction set, which means there
is no need to rewrite codes when running on MIC. In the latest TOP500 supercomputer
list, several supercomputers utilized the hybrid CPU + MIC heterogeneous
architecture, such as the TACC Stampede (ranked seventh on December 2012), Intel's
DISCOVERY, etc [2]. As it provides high computing performance with traditional

144 Y. Li, Y. Che, and Z. Wang

programming models, the Intel MIC architecture will be a better choice to accelerate
HPC applications.

As a typical application field of HPC, CFD (computational fluid dynamics)
applications are challenging for today’s high-end architectures. It makes great sense to
transplant the CFD programs to the MIC platform. NPB (NAS Parallel Benchmark),
which was developed by NASA Ames Research Center, is extracted from real world
CFD applications. It has become the CFD performance testing standard of
high-performance computers. NPB Multi-Zone is the multi-zone version of three
applications derived from the NPB benchmark suite. It includes the benchmark
programs LU (Lower-Upper symmetric Gauss-Seidel), BT (Block Tri-diagonal) and
SP (Scalar Penta-diagonal). These programs solve the fluid problems on several
collections of loosely coupled discretization meshes [3]. This paper evaluates the
performance of NPB-MZ on the newly released Intel Xeon Phi coprocessor, with an
intention of understanding the performance characteristics of CFD applications on the
MIC architecture. The strong scaling behaviors with different process-thread
combinations are investigated. After that, we compared the performance obtained on
the Intel Xeon Phi coprocessors with that obtained on Sandy Bridge CPU based
computer nodes. The results will give some hints for how to optimize CFD applications
on MIC.

The reminder of this article is organized as follows. Section 2 briefly describes the
architecture and execution mode of MIC. In Section 3, the performance results of the
NPB-MZ benchmarks on MIC in native mode under various process-thread
combinations for different problem sizes are presented. We draw our conclusions in
the last section.

2 Intel MIC Architecture and Execution Modes

2.1 Intel MIC Architecture

Based on Intel MIC architecture, the Intel Xeon Phi comprises of more than 50 cores
interconnected by a high-speed bidirectional ring(shown in Figure1).

The cores are in-order dual issue x86 processor cores. Each MIC core has a 512KB
L2 cache locally with high-speed access to all other L2 caches, making the collective
size over 25M. Also, each core has a 32KB L1 data cache and a 32KB L2 instruction
cache. More than 50 cores and four threads on each core result in more than 200
hardware threads available on a single device. With the large number of cores, the
512-bit wide SIMD vectors of each core contribute to the peak double-precision
performance of more than 1 TFLOPS [4,6]. As such, it is more important that
applications use these multiple hardware threads on Intel Xeon Phi coprocessors than
they use hyper-threads on Intel Xeon processors.

 Performance Evaluation and Scalability Analysis of NPB-MZ 145

Fig. 1. Intel MIC Architecture

2.2 Execution Modes for Intel Xeon Phi

There are two approaches to involve the Intel Xoen Phi coprocessors in an application,
a processor-centric “offload” mode and “native” mode [7]. For offload mode, the
highly-parallel phases of the application may be offloaded from the Intel Xeon host
processor to the Intel Xeon Phi coprocessor. In this mode, input data and code are sent
to the coprocessor from the host, and output data is sent back to the host when offloaded
computation completes [9]. Execution may be concurrent on host and coprocessor. For
native mode, program runs natively on processors or coprocessors and communicates
with each other by various methods.

A key attribute of the MIC architecture is that it provides a general-purpose
programming environment similar to that of the Intel Xeon processor. It runs
applications written in industry-standard programming languages (FORTRAN, C,
C++, etc) and standard parallel programming models (MPI, OpenMP and pthreads). So
MPI and OpenMP parallel applications ran on x86CPU can be reused on the Intel
Xeon Phi coprocessor in native mode without code modification. What need to be
done is just recompilation before it runs. Native mode is the simplest and fastest way
to run applications on the Intel Xeon Phi coprocessor.

For developers, the assessment and analysis of application performance in Native
mode is important to give full play to the usage of MIC. That’s why we study the
performance of CFD benchmarks running in native mode. We believe it will be great
guidance for accelerating CFD applications with MIC.

146 Y. Li, Y. Che, and Z. Wang

3 Experiment Results and Analysis

3.1 Experiment Setup

NPB is a well-known benchmark suite for testing the capabilities of parallel computers
and parallelization tools. So we choose the programs from the hybrid MPI+OpenMP
version of NPB-MZ to evaluate the performance of programs on MIC. These programs
exhibit mostly fine-grain exploitable parallelism and are almost all iterative, requiring
multiple data exchanges between processes within each iteration. The hybrid MPI +
OpenMP version of NPB-MZ takes advantage of such fine-grain parallelism with a
two-level parallelism approach: a coarse grained parallelization among zones and a
fine grained parallelization within each zone [5,8]. It uses MPI standard to
communicate data related to overlap regions of zones, and OpenMP to parallelize
loops within each zone. In detail, the NZ zones need to be clustered into NG groups,
where NG is equal to the total number of processes, NP. Each zone group is then
assigned to a process for parallel execution. OpenMP threads are then used to parallel
loops within each zone [5].

There are a series of sequentially increasing problem classes in NPB benchmark, S,
W, A, B, C, D, E, F [3]. The differences between the eight problem classes are the
number of blocks and the size of each block. Among them, S Class and W Class are
too small to have a reference value, while D Class can’t run on the Xeon Phi
coprocessor in Native mode because the memory requirement exceeds the available
memory size on a Xeon card. The Class A, B and C are evaluated in our experiments.

For investigating the scalability of NPB-MZ on one Xeon Phi card, we run the
benchmark in two types of processor nodes: one Xeon Phi coprocessor and one CPU
node. The main performance characteristics of each processor node are summarized
in Table 1.

Table 1. Architectural specification of two types of processors

Processor types Sandy Bridge Xeon Phi

Cores/nodes 16 57

Treads/cores 2 4

 Clock (GHz) 2.59 1.1

Peak FP (Gflops/s) 166.4 1003.2

Peak BW (GB/s) 51.2 352

L1 (KB) 32 32

 L2 (KB) 256 512

L3 (MB) 20 None

TDP (W) 115 275

 Performance Evaluation and Scalability Analysis of NPB-MZ 147

3.2 Experimental Results and Performance Analysis

To investigate the scalability of NPB-MZ on one MIC card, we run the benchmark in
two ways：single-process + multi-threads and multi-processes + multi-threads, i.e.,
pure OpenMP mode and hybrid MPI/OpenMP mode. We also compare the
performance on MIC with that on CPU.

3.2.1 Single-Process + Multi-Threads
The MIC card we used in our test has 57 cores, and each with 4 hardware threads.
According to that, we set up the threads number with 1, 2, 4, 32, 57, 114 and 228. We
use the KMP_AFFINITY environment variable to bind the threads to cores. Thread
affinity restricts execution of certain threads (virtual execution units) to a subset of the
physical processing units in a multiprocessor computer. In our test, each core runs 1
thread, 2 threads, 4 threads when there is less than 57 threads, 114 threads, 228 threads
respectively.

Figure 2, Figure 3, Figure 4 respectively shows the parallel speedup of BT-MZ,
LU-MZ, SP-MZ on MIC.

Fig. 2. Speedup of CLASS A, B ,C of BT-MZ on MIC

Fig. 3. Speedup of CLASS A, B, C of LU-MZ on MIC

148 Y. Li, Y. Che, and Z. Wang

Fig. 4. Speedup of CLASS A, B, C of SP-MZ on MIC

From the above figures, it can be seen that BT-MZ and SP-MZ for Class A, B, C
problem size and LU-MZ for Class A, B problem size reach their highest speedup with
57 threads, while LU-MZ for Class C problem size with 114 threads. Beyond that
thread number, the speedup decrease slightly. BT-MZ achieves a highest speedup of
about 20, while SP-MZ about 17 and LU-MZ about 30. All the three application reach
their highest speedup when problem size is CLASS C.

We observed a speedup decrease with the increase of threads number relates to the
two-level parallelism approach of NPB-MZ. As all zones are assigned to only one
process, there is no parallel execution among zones and no sufficient computing tasks
for each thread within each zone. Besides, the threading overhead and memory access
conflicts surpass the parallel performance gains of multi-threading when too much
threads are used. As a result, the scalability is not so good as we expect. So it’s
important to balance the number of processes and threads to get the best performance
gain.

3.2.2 Multi-processes + Multi-threads
For NPB multi-zone benchmarks, the computation amount of each thread is limited for
single process. When the number of threads for single process exceeds 57, the memory
access performance is a limited factor for exploiting the MIC performance. Based on
the characteristics of NPB programs and MIC architecture, we will investigate the
scalability in two steps in this section.

 Performance Evaluation and Scalability Analysis of NPB-MZ 149

Fig. 5. Speedup of BT-MZ with fixed numbers
of threads

Fig. 6. Speedup of BT-MZ with fixed numbers
of process

For BT-MZ, we firstly choose process numbers from 1 to 57 with a fixed thread
number 4 and plot the speedup of BT-MZ in Figure 5. The curve shows that 57
processes make BT-MZ reaching its highest speedup for Class C and 28 processes for
Class B. Next, we set up NPROCS=57 for Class C and NPROCS=28 for Class B and
vary threads number from 1 to 4. As shown in Figure 6, the speedup increase linearly as
the number of thread increase.

Fig. 7. Speedup of SP-MZ with fixed numbers
of threads

Fig. 8. Speedup of SP-MZ with fixed numbers
of process

The same test was performed for SP-MZ and Figure 7 and Figure 8 give us a direct
impression of the speedup behavior of SP-MZ on MIC. As shown in Figure 3.6 and
Figure 3.7, SP-MZ achieves its highest speedup running with 57 processes for Class C
and 40 processes for Class B. In the case of best processes number, the speedup
increase linearly when traverse the number of threads from 1-4.

The speedup behavior of BT-MZ and SP-MZ match greatly with the architecture
features of MIC. The combination of 57 processes with 4 threads per process can
exploit the potential of MIC performance for NPB-MZ programs when application size
and problem size are large enough. When problem size is smaller, a appropriate number
of processes with four threads per process are still the best choice for good performance
behavior on MIC.

150 Y. Li, Y. Che, and Z. Wang

When NPB-MZ runs with multi-processes and multi-threads, different zone groups
are assigned to different processes. Each thread within each process deals with an
appropriate amount of tasks to obtain the expected parallel gains. Therefore, good
combination of processes and threads makes the performance of the applications scale
well on MIC.

3.2.3 Comparison with the CPU Performance
In this section, we compared the performance of NPB-MZ on MIC and that on
traditional CPU to obtain a better understanding of how applications behave on MIC.
Three column charts Figure 9, Figure 10, Figure 11 show respectively the execution
time with single-process + single-thread, the shortest execution time, and the best
speedup. We can see from the figures that, the many cores and threads make
extraordinary speedup for MIC than traditional CPU. But the actual execution time of
application is much longer for MIC than CPU. Considering the Intel MIC architecture,
we speculate that the wide performance gap between MIC and CPU is that a single
process with a single thread on MIC cannot use the wide vector processing unit(VPU)
efficiently, and the memory access performance is worse than that of CPU. To use the
wide VPU and optimize the memory access performance are key factors for improving
the performance of NPB-MZ programs on MIC.

Fig. 9. The execution time for MIC and CPU using a process with a thread

 Performance Evaluation and Scalability Analysis of NPB-MZ 151

Fig. 10. The best performance of applications on MIC and CPU

Fig. 11. The highest speedup of applications on MIC and CPU

4 Conclusions and Future Work

In this paper, we evaluated the performance and scalability of NPB-MZ on the Intel
MIC architecture. A series of tests are made for the speedup of NPB-MZ under various
process-thread combinations and different problem classes. Finally, we compare the
results with measurements on CPU nodes. The results show that the program can obtain
good scalability when running with a appropriate combination of processes and threads.
However, although the many cores and threads make extraordinary speedup for MIC
than traditional CPU, the actual execution time of application is much longer for MIC.
We attribute the wide performance gap to the poor single-process + single-thread
performance on MIC.

For additional performance improvement, we should take into account of vector
level parallelism and memory access problem. The Intel Xeon Phi coprocessor is
designed with uniquely wide 512-bit SIMD units which contribute a lot to the peak DP
performance. How to development vector level parallelism within processes and

152 Y. Li, Y. Che, and Z. Wang

threads are key factors for improving the performance and scalability of programs on
MIC. Furthermore, it’s of great significance to investigate how to hide memory access
latencies implicit by using concurrent threads.

What’s more, when to choose to use an offload model vs. a native execution model
relates to the application features. Native model is good for programs that are largely
doing operations that map to parallelism either in threads or vectors and are without
significant amounts of serial executions. So CFD programs which cannot be made
highly parallel consistently throughout most of the application are more appropriate for
offload model. Therefore, when porting CFD programs to the MIC platform, offload
model is clearly a critical direction for future work.

References

1. Heinecke, A., Klemm, M., Bungartz, H.: From GPGPU to Many-Core: Nvidia Fermi and
Intel Many Integrated Core Architecture. Computing in Science & Engineering 14(2),
78–83 (2012)

2. Top500 supercomputer sites (December 2012), http://www.top500.org
3. NASA Advanced Supercomputing Division,
 http://www.nas.nasa.gov/publications/npb.html

4. Intel: Intel Xeon Phi Coprocessor System Software Development Guide (2012)
5. Van der, W., Jin, H.: Nas parallel benchmarks, multi-zone versions. NASA Ames

Research Center, Tech. Rep. NAS-03-010 (2003)
6. Intel@ Xeon PhiTM Coprocessor,
 http://software.intel.com/mic-developer

7. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming.
Morgan Kaufmann (2013)

8. Jin, H., Van der, W.: Performance characteristics of the multi-zone NAS parallel
benchmarks. J. Parallel and Distributed Computing 66(5), 674–685(2006)

9. Newburn, C.J., Deodhar, R., Dmitriev, S.: Offload Compiler Runtime for the Intel® Xeon
PhiTM Coprocessor

An Effective Framework of Program

Optimization for High Performance Computing

Pingjing Lu, Bao Li, Zhengbin Pang, Ying Zhang, Shaogang Wang,
Jinbo Xu, and Yan Liu

School of Computer, National University of Defense Technology
Changsha 410073, China

{pingjinglu,sibaoli,zhbpang,zhying,shgwang,xujinbo,yliu}@nudt.edu.cn

Abstract. The increasing complexity of modern architectures and
memory models challenges the design of optimizing compilers. It is
mandatory to perform several optimizing transformations of the origi-
nal program to exploit the machine to its best, especially for scientific,
computational intensive codes. Aiming at investigating the best trans-
formation sequence and the best transformation parameters simultane-
ously, this paper combines polyhedral model and empirical search to
create a powerful optimization framework that is capable of fully auto-
mated non-parametric transformations and automatic parameter search.
The framework employs polyhedral model to facilitate the search of non-
parametric code transformation composition, and designs uses Genetic
Algorithms to find the optimal parameters. The framework is demon-
strated on three typical computational kernels for code transformations
to achieve performance that greatly exceeds the native compiler, and
is significantly better than state-of-the-art polyhedral model based loop
transformations and iterative compilation, generating efficient code on
complex loop nests.

Keywords: program optimization, loop transformation, polyhedral
model, empirical search.

1 Introduction

Although loop transformationshave been applied by compilers formany years, cer-
tain problems with the application of transformations have yet to be addressed,
including when, where and in what order to apply transformations to get the most
benefit, as well as the selection of optimal transformation parameters.

Existing compilers are ill-equipped to address these challenges, because of
improper program representations and inappropriate conditioning of the search
space structure. They are based on static analysis and a hardwired compilation
strategy; therefore they only uncover a fraction of the peak performance on typ-
ical benchmarks. Iterative compilation [1] is a maturing framework to address
these limitations, but so far, it was not successfully applied because present day
iterative compilation approaches select the optimal transformation parameters

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 153–162, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

154 P. Lu et al.

at a predefined transformation sequence, and because of the high cost due to
multiple, costly “runs” and the combinatorics of the optimization space. The
ability to perform numerous compositions of program transformations is key
to the extension of iterative optimizations to finding the appropriate program
transformations instead of just the appropriate program transformation param-
eters. The polyhedral model is a well studied, powerful mathematical framework
to represent loop nests and their transformations [2][3][5], facilitating compilers
to compose complex loop transformations in a mathematically rigorous way to
insure code correctness. However existing polyhedral frameworks are often too
limited in supporting a wide array of loop transformations required to achieve
high performance on today’s computer architecture, and they don’t allow explor-
ing jointly the best sequence of transformations and the best value of transfor-
mation parameters. Usually, the community tries to find the “best” parameter
combination when the transformation sequence is fixed [4]. Clearly, there is a
need for the infrastructure that can apply long compositions of transformations
and find the best transformation parameters in a rich, structured search space.

This paper presents a optimization framework to simultaneously explore the
best sequence of transformations and the best value of transformations parame-
ters. It integrates polyhedral model and Genetic Algorithm (GA) based empirical
search to create a powerful framework that is capable of fully automated non-
parametric code transformations and automatic parameter search. Experimental
results validate the effectiveness of our framework.

2 Formal Description

Let P be the source program, τ an arbitrary performance evaluation function
(not limited to program execution time, it can be cache miss rate etc.), Ψ a
finite set of loop transformations, including l parametric transformation mod-
ules ϕi ∈ Ψ(i = 1, 2, . . . , l). Denote ◦ the transformation joint symbol, then
applying a finite sequence ϕ1, . . . , ϕn of transformation modules to P can be
represented as φ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1, and all the sequences form optimiza-
tion sequence space Φ. Parametric module ϕi contains mi transformation pa-
rameters: pik ∈ Z(k = 1, 2, . . . ,mi), and its upper bound upik ∈ Z and lower
bound lowik ∈ Z can be achieved based on domain-specific information. Denote

v =
l∑

i=1

mi, then the optimization parameters (p11, · · · , p1m1 , · · · , pl1, · · · , plml
) of

all parametric transformation modules constitute optimization parameter vector−→
K ∈ Zv. Applying transformation sequence φ to P and adopting optimization
parameter vector

−→
K results in the program P ′ = φ(P,

−→
K), and the correspond-

ing test result is τ(P, φ,
−→
K). Then the optimal loop transformations problem

converts to a combinational optimization problem: having a program P and a
set of loop transformation modules Ψ , how to select the optimal transformation
sequence φ∗ and the optimal parameter vector

−→
K , such that the performance of

the final generated program P ∗ is “optimal” i.e.

An Effective Framework of Program Optimization for HPC 155

(φ∗,−→K∗
) = argmin τ(P, φ,

−→
K)

subject to

{
φ ∈ Φ−→
K ∈ Zv

(1)

Where argmin means that (φ∗,−→K∗
) are the optimal value of parameters φ and−→

K that minimize the object function τ(P, φ,
−→
K), and subject to introduces the

requirements that φ and
−→
K have to satisfy.

3 Polyhedral Model

The polyhedral model is a unified mathematical framework to represent loop
nests and their transformations. It represents the code through the iteration
domain, affine schedules, and array access functions [3]. We will briefly introduce
polyhedral model through matrix multiplication program.

for (i = 0; i <= M; i++) {
for (j = 0; j <= M; j++) {
S1: C[i][j] = 0;

for (k = 0; k <= M; k++) {
S2: C[i][j]=C[i][j]+A[i][k]* B[k][j];}}}

Fig. 1. Code for matrix multiplication program

3.1 Iteration Domain

Iteration domain is a geometrical abstraction of loop bounds and strides shap-
ing loop structures. The loop control statements surrounding statement S form
iteration domain DS . It can be defined through a set of affine inequalities, which
form the parametric polyhedra. Each point in the polyhedra stands for one ex-
ecution instance. Iteration domain depends on surrounding loop counters and
global parameters (e.g. loop bounds). E.g., in Fig.1, surrounding loop counters
of statement S2 is i, j and k, and the scope of loop is bounded by (M,M,M) ,
therefore, the iteration domain of S2 can be represented as Eq. (2), where (i, j, k)
is called an iteration vector, and (M) is called a global parameter.

DS2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
−1 0 0 1 0
0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

i
j
k
M
1

⎞
⎟⎟⎟⎟⎠ ≥ −→

0 (2)

Where
−→
0 is a vector, and in Formulae (2)

−→
0 = (0, 0, 0, 0, 0)t.

156 P. Lu et al.

3.2 Array Access Functions

Array access functions capture the data locations on which a statement operates.
In polyhedral model, memory accesses are performed through array references (a
variable being a particular case of an array).We restrict ourselves to subscripts of
the form of affine expressions which may depend on surrounding loop counters
(e.g., i, j and k for statement S2) and global parameters. Each Array access
functions is linked to an array that represents a read or a write access.

LS and RS are sets of polyhedral representations of array references, describ-
ing array references written by S (left-hand side) or read by S (right-hand side),
respectively; it is a set of pairs (A, f) where A is an array variable and f is the
access function mapping iterations in DS to locations in A. E.g., in Fig. 1, S2

reads A[i][k], B[k][j] and C[i][j], and writes the result to C[i][j], so the array access
functions of S2 are:

RS2 = {(A,
[
10000
00100

]
), (B,

[
00100
01000

]
), (C,

[
10000
01000

]
)} (3)

LS2 = {(C,
[
10000
01000

]
)} (4)

3.3 Affine Scheduling

θS is the Affine schedule of S; it is another geometrical abstraction of the or-
dering of iterations and statements which maps iterations in DS to multidimen-
sional time stamps, i.e., logical execution dates. Multidimensional time stamps
are compared through the lexicographic ordering over vectors, denoted by �:

iteration
−→
i of S is executed before iteration

−→
i
′
of S′ if and only if θS(

−→
i) �

θS
′
(
−→
i
′
). In Fig. 1 the affine schedule of S1 and S2 are θS1(

−→
i) = (0, i, 0, j, 0),

θS2(
−→
i) = (0, i, 0, j, 1, k, 0). θS1(

−→
i) � θS2(

−→
i), therefore, S1 executes before S2.

Assume the loop nest includes d statements, the schedule dimension is s, the
iteration vector is −→x , the global parameter is −→n , then each program version can
be represented as one point in the optimization space through schedule matrix
Θ [5]:

Θ−→x =

⎛
⎜⎜⎝
−→
i
1

1 · · · −→i
1

d
−→p 1

1 · · · −→p 1
dc

1
1 · · · c1d

...
...−→

i
s

1 · · · −→i
s

d
−→p s

1 · · · −→p s
dc

s
1 · · · csd

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→x 1

...−→x d−→n 1

...−→n d

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

We can see that in polyhedral model each loop transformation corresponds to
a set of matrix operation. An arbitrary complex loop transformation sequence

An Effective Framework of Program Optimization for HPC 157

can be applied within one step. Searching the compositions of transformations
is equivalent to searching the matrix parameters, therefore, polyhedral model
avoids the typical code complexity explosion of long compositions of program
transformations, facilitating the composition of complex loop transformations in
a mathematically rigorous way.

4 Genetic Algorithm Based Empirical Search

High level program transformations are critical in optimizing the performance
of compiled code. Many of these transformations need numerical parameters,
which should be carefully selected. Determining the best value of parameter has
been a long standing problem in compilers. Iterative compilation approach is a
practical means to implement architecture-aware optimizations for high perfor-
mance applications, outperforming static compilation approaches significantly.
Iterative compilation approach generates different program versions, and selects
the one that gives the best performance by actually running them on target
hardware and using certain search strategies. However, because the optimiza-
tion spaces (set of all possible program transformations) are large, non-linear
with many local minima, finding a good solution may be long and non-trivial,
making iterative method quite time consuming.

Genetic algorithm is a class of heuristic biased sampling approach to searching
large spaces, which searches only a small portion of the optimization space. This
paper utilizes GA to search for the best value for parameterized transformation.
GA was invented by John Holland in 1975 [8], which is based on Darwin’s prin-
ciple of evolution and survival of the fittest. GA firstly randomly initializes some
number of individual solutions to form an initial population, and then evalu-
ate the fitness value of each chromosome. And then GA performs crossover and
mutation to generate a new population from the current chromosomes. The al-
gorithm terminates when some pre-determined termination condition is reached,
and outputs the best solution found during the algorithm. The GA based em-
pirical search algorithm is as follows.

Step 1: Initialization. Read the input parameter, and randomly initialize in-
dividual solutions to form the initial population Pop0.

Step 2: Evaluation. For each individual S in the population, take its integral
encoding as the parameter and generate the parameter file paraF ile, run the
program, and obtain the execution time T (S).

Step 3: Selection. We use roulette wheel selection scheme and elitists reserved
policy for selection. First, a small proportion of individuals, namely elitists, are
selected from current population, and are put to the next generation directly.
And then select the other individuals based on roulette wheel selection scheme.
The proportion of elitists to population size is noted as Elitist

Step 4: Reproduction. Perform Arithmetical crossover and mutation to gen-
erate a new population from the current chromosomes. For the new generated
individual, take its integral encoding as the parameter and generate the param-
eter file paraF ile, run the program, and obtain the execution time.

158 P. Lu et al.

Step 5: Check Termination. Terminating conditions include: the desired per-
formance is reached, or maximum generation of GA is elapsed. If terminating
conditions is conformed, turn to Step 6; otherwise, turn to Step 3.

Step 6: Output. Output the best individual the best solution found during
the algorithm.

5 Performance Evaluation

5.1 Environmental Setup

We test matrix multiplication program (mm) with matrix sizes 512 and 1024.
Experiments are performed on platform Intel Pentium D 820 listed in Tab.1.
Parameter settings for GA are as follows: population size is 50 and the maximum
generation is 30, selection pressure is 1.6, Elitist is 0.05, crossover probability is
0.2, and mutation probability is 0.05.

Table 1. Experimental platform

CPU Intel Pentium D 820 2.8 GHz

L1Data cache 2×16(KB)

L1 Instruction cache 2×12 (KB)

L2 cache 2×1024 (KB)

Memory DDR2 1G

OS Ubuntu kernel 2.6.15-23-386

Compiler gcc 4.2.1 -O3 -Dtest malloc -lm

5.2 Experimental Results

Performance Result after Optimization with Polyhedral Model. This
paper makes use of polyhedral transformation tools LeTSeE [6] to apply iterative
compilation based on polyhedral model and find the best non-parametric trans-
formation sequence. LeTSeE first builds a search space encompassing legal and
distinct program versions, thanks to its algebraic representation, and then tra-
verses the search space, where each point represents a different program version.
For each tested point in the search space, it (1) generates the kernel C code with
CLooG [7] (2) then integrates this kernel in the original benchmark along with
instrumentation to measure running time (3) compiles this code with the native
compiler and appropriate options (4) finally run the program on the target ar-
chitecture and gather performance results, use the information collected to drive
the exploration according to user objectives. The transformations implemented
in LeTSeE include statement reordering, loop reversal, loop skewing, loop in-
terchange, loop peeling, index-set splitting, loop pipelining/shifting, loop fusion
and loop distribution. LeTSeE will generate the best non-parametric transfor-
mation sequence. The codes for best transformation with polyhedral mode of
mm512 and mm1024 are shown in Fig. 2, from which we can see that by using
polyhedral model programs are applied various complex transformations.

An Effective Framework of Program Optimization for HPC 159

for (i=0;i<=N;i++) {
 for (j=0;j<=N;j++) {
 S1(i,j) ; } }
 for (c1=N+1;c1<=2*N+1;c1++) {
 for (i=0;i<=N;i++) {
 for (j=0;j<=N;j++) {
 S2(i,j,c1-N-1) ; } } }

for (c1=-1;c1<=M-1;c1++) {
 for (j=0;j<=M;j++) {
 S1(c1+1,j) ; } }
 for (c1=M;c1<=2*M;c1++) {
 for (i=0;i<=M;i++) {
 for (j=0;j<=M;j++) {
 S2(i,j,c1-M) ; } } }

(b) mm1024 (a) mm512

Fig. 2. The code for best transformation with polyhedral model

Fig. 3. mm512 performance result with LetSee

Fig.3 and Fig. 4 demonstrate the performance result with LetSee of mm512
and mm1024 respectively, from which we can see that by using polyhedral model
the best code version is selected from huge optimization space and the perfor-
mance of best transformation can greatly improve programs’ performance.

Performance Result after Optimization with GA Based Empirical
Search. After optimizing programs with polyhedral model, we further employs
GA to select the optimal transformation parameters, and finally achieves the
best transformation parameters in the best transformation sequence. Fig.5 shows
the code for best transformation by combining polyhedral model and empirical
search.

Fig.6 compares the performance of original program, optimized program with
polyhedral model, and optimized program by combining polyhedral model and
empirical search. From Fig.6, we can see that by combining polyhedral model
and empirical search, the performance is greatly improved.

160 P. Lu et al.

Fig. 4. mm1024 performance result with LetSee

for (i=0;i<=N;i++) {
 for (j=0;j<=N;j++) {
 S1(i,j) ; } }
for (ii=0;ii<=N;ii+=ct1){

for (jj=0;jj<=N;jj+=ct2){
 for (c1=N+1;c1<=2*N+1;c1++){
 for (i=ii;i<=min(ii+ct1-1,N);i++){

 for (j=jj;j<=min(jj+ct2-1,N);j++){
 S2(i,j,c1-N-1) ;}}}}}

(b) mm1024 (a) mm512

for (c1=-1;c1<=N-1;c1++) {
 for (j=0;j<=N;j++) {
 S1(c1+1,j) ; } }
for (ii=0;ii<=N;ii+=ct1){
 for (jj=0;jj<=N;jj+=ct2){
 for (c1=N;c1<=2*N;c1++){
 for (i=ii;i<=min(ii+ct1-1,N);i++){
 for (j=jj;j<=min(jj+ct2-1,N);j++){
 S2(i,j,c1-N) ;}}}}}

Fig. 5. The code for best transformation by combining polyhedral model and empirical
search

Fig. 6. Performance comparision

An Effective Framework of Program Optimization for HPC 161

6 Related Work and Conclusions

This paper describes a general and robust framework for composing loop trans-
formations for program optimization. We demonstrate the effectiveness of this
framework for matrix multiply program that require complex transformations
to achieve high performance. As we are developing a framework that supports
composition of transformations, the research most closely related to ours is Petit
[10], WRaP-IT [7], Pluto [11], CHiLL [9] and LeTSeE. These frameworks all use
a polyhedral representation. The main difference of our framework with them
is that our work considers a much broader range of loop transformations, and
allows exploring the best transformation sequence and best parameter values.
By applying this framework to matrix multiply program, we demonstrate that
the resulting code quality is quite high than original program and that by only
using polyhedral model. These results show that, with a systematic framework,
it has now become feasible for compiler-generated code to achieve performance
comparable to manually-tuned, even for more complex code constructs than have
been previously demonstrated, which makes it a practical and portable means to
implement architecture-aware optimizations for high-performance applications.

Acknowledgement. This work was partially supported by the National Nat-
ural Science Foundation of China under Grant No. 61103014, No.61003075,
No.61202124, and No.61202126, the National High Technology Development 863
Program of China under Grant No. 2012AA01A301.

References

1. Fursin, G.: Iterative Compilation and Performance Prediction for Numerical Ap-
plications. Ph.D. Thesis, School of Informatics, The University of Edinburgh, pp.
67–82 (2005)

2. Ananta, T., Chun, C., et al.: Scalable Autotuning Framework for Compiler Opti-
mization. In: Proceedings of the IEEE IPDPS 2009, pp. 1–12 (2009)

3. Feautrier, P.: LCPC, Keynote Speech II: The Polytope Model Past, Present, Fu-
ture. In: Proceedings of the 22nd International Workshop on Languages and Com-
pilers for Parallel Computing, pp. 4–5 (2009)

4. Sid, T., Denis, B.: On the Decidability of Phase Ordering Problem in Optimiz-
ing Compilation. In: Proceedings of the International Conference on Computing
Frontiers, pp. 147–156 (2006)

5. Louis, P., Cedric, B., Albert, C., Nicolas, V.: Iterative optimization in the polyhe-
dral model: Part I, one-dimensional time. In: Proceedings of ACM Conf. on Code
Generation and Optimization, pp. 144–156 (2007)

6. Louis, P., Cedric, B., Albert, C., Nicolas, V.: Iterative optimization in the poly-
hedral model: Part II, multidimensional time. In: Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 90–100
(2008)

7. Sylvain, G., Nicolas, V., Cedric, B., Albert, C., David, P., March, S., Olivier, T.:
Semi-automatic composition of loop transformations for deep parallelism and mem-
ory hierarchies. Int. J. of Parallel Programming. 34, 261–317 (2006)

162 P. Lu et al.

8. Jaume, A., Antonio, G., Josep, L., et al.: Near-Optimal Loop Tiling by means of
Cache Miss Equations and Genetic Algorithms. In: Proceedings of Workshop on
Compile/Runtime Techniques for Parallel Computing, pp. 568–580 (2002)

9. Chun, C., Jacqueline, C., Mary, H.: CHiLL: A Framework for Composing High-
Level Loop Transformations. Technical report, University of Southern California
(2008)

10. Kelly, W., Pugh, W.: A framework for unifying reordering transformations. Tech
report, College Park, MD, USA, CS-TR-2995, pp. 1–23 (1993)

11. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral program optimization system. In: Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pp. 101–113 (2008)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 163–170, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Constant Loop Bandwidth Fraction-N Frequency
Synthesizer for GNSS Receivers

Dun Yan, Jiancheng Li, Xiaochen Gu, Songting Li, and Chong Huang

School of Electronic Science and Engineering, National University of Defense Technology,
410073 Changsha, China

Abstract. A fully integrated 2.8 GHz to 3.4 GHz frequency synthesizer for
satellite navigation RF resciever is implemented in 0.18-μm CMOS process and
its area is 0.4 mm2. A constant and low tuning Gain (KVCO) is achieved by an
improved voltage-controlled oscillator (VCO) architecture. The constant loop
bandwidth, which is designed to 60 kHz, is implemented by making charge
pump current (ICP) match the division ratio N. The synthesizer exhibits phase
noise of -85.62 dBc/Hz at 10 KHz offset and -92.78 dBc/Hz at 100 kHz offset,
while consuming 18 mW from a 1.8 V supply.

Keywords: Frequency synthesizer, voltage-controlled oscillator (VCO), phase
noise, bandwidth.

1 Introduction

As Compass-II provides civil navigational services for Asia-Pacific region since Dec.
2012, multi-constellation Global navigation satellite systems (GNSS) have been
achieved formally and the services can be shared through compatible and
interoperable collaboration. The growing GNSS market demands lower power and
lower cost solutions for integrated receivers. As an essential block of RF receiver, the
wideband frequency synthesizer is desired for low power and high performance.

Loop bandwidth affects the capability of GNSS receivers by determining the
parameter of the PLL frequency synthesizer, which are phase noise, reference spur
and settling time. The system stipulates consistent and stringent phase noise
performance over the whole frequency range. However, when output frequency
changes to a new frequency or the process, temperature and supply voltage (PVT)
bring an offset to the wideband PLL, the bandwidth will lose the optimized state.
Until now, the most popular way to get an optimized loop bandwidth is to adopt
adaptive [1] and constant loop bandwidth [2]. It is difficult to get the optimized loop
bandwidth which limits the use of adaptive loop bandwidth method. Otherwise, A
solutions to achieve constant bandwidth is to change charge pump current (ICP) to
meet the ratio of VCO tuning gain (KVCO) and division ratio N [3]. The other one is to
hold VCO tuning gain (KVCO) overall the output frequency and make ICP to match N
[4]. The previous is complicated to achieve due to the difficult to make ICP meet
KVCO/N under the influence of PVT. On the contrary it is easy to make ICP match N

164 D. Yan et al.

and the constant KVCO contribute to the complexity of AFC [5]. Although the constant
VCO tuning gain has been achieved in [4], but this method is limited by the process,
higher output frequency and lower tuning gain due to particle of varactor.

In this work, a constant loop bandwidth in fraction-N PLL frequency synthesizer is
proposed and shown in Fig. 1, which consists of a phase-frequency detector(PFD), a
programmable charge pump, a passive loop filter, a constant tuning gain LC-VCO, a
programmable divider, an automatic frequency calibration (AFC) block and a 24-bits
ΣΔ modulator. Section 2 presents solutions; Section 3 presents the proposed solutions
and section 4 show experimental results; Conclusions are in section 5.

Fig. 1. Architecture of the frequency synthesizer

2 Design Considerations

The PLL loop bandwidth is a very important parameter for loop stability as the PLL
system is a closed-loop system, it also affects phase-noise performance variation. So a
constant loop bandwidth is demanded in order to minimize the phase-noise variation
and stabilize the system over all the wide output frequency range. Generally the open-
loop cut-off frequency is selected as bandwidth. For typical forth-order PLL, loop
bandwidth is in direct proportion to sink or source current of charge pump (ICP), VCO
tuning gain (KVCO) and division ratio N:

.
2 N

KI vcocp

c π
ω ∝ (1)

As discussed previous, the simple way to keep the bandwidth constant is to keep
the variety of Icp/N and Kvco down.

LC voltage-controlled oscillator is usually employed in frequency synthesizers for
RF receivers. The most common way to get wideband output frequency is to achieve
closely-spaced multiple frequency tuning curves by employing a switched capacitor
bank as shown in Fig. 2(a). Binary weighted capacitor array is switched to shift the
output frequency band coarsely while the varactor CV is controlled by the control
voltage to change output frequency continuously.

 A Constant Loop Bandwidth Fraction-N Frequency Synthesizer for GNSS Receivers 165

Fig. 2(b) illustrates typical frequency tuning characteristics of a wideband VCO.
VCO tuning gain KVCO is variable for different tuning curves, VCO tuning gain KVCO
and frequency spacing ƒspacing is related to the VCO tuning rang as following [6]:

.

3

min,

max,

min.

max,

min,

max.

==

o

o

spacing

spacing

vco

vco

f

f

f

f

K

K
 (2)

where ƒo is the VCO output frequency. Such large variation of ƒspacing will increase the
complexity of structure of AFC.

Fig. 2. Conventional topology (a) VCO (b)F-V curve with large variations of KVCO

An improved VCO architecture is presented in [4] to minimize the variations of
both the VCO tuning gain and frequency spacing for wideband applications, as shown
in fig. 3(a). Instead of using one fixed varactor and a switched capacitor bank, a
switched varactor bank and a switched capacitor bank are adopted. At lower
frequency bands, more switched capacitor units and more switched varactor are
connected into the LC-tank, at the same time, the rest of varactor units are connected
to the power supply to get minimum fixed capacitance and the rest of capacitance
units are disconnected. The other way round, at higher frequency band, less switched
capacitor units and less switched varactor are connected into LC-tank. If ai
(i=1,2,···,15) is the ratio of capacitor array units and bi (i=1,2,···,15) is the ratio of
varactor array units, so total capacitance Ctot,n across the tank at center frequency of
the nth sub-band can be expressed as

(3)

In which Cp is the parasitic capacitance and Cv,min is minimum capacitance of the
varactor, the VCO gain KVCO,n of the nth sub-band can be calculated as

166 D. Yan et al.

.

)15,,2(n

4

1)(n

4

1

3
,

1

3
,

,

=
∂

∂++

=
∂

∂

=

−

−

−

centerunet

centerunet

V

tune

v

ntot

ni

V

tune

v

ntot

nVCO

V

C

LC

bb

V

C

LC

K

π

π

(4)

But as VCO gain KVCO,n is too small or the required center frequency is too high, the
varactor units biCV is less than 1 or 2 fF which is too small to be achieved by process.
In other words this topology is limited by processes.

3 Circuits Implementations

3.1 Wideband VCO

In order to minimize the VCO tuning gain KVCO and frequency spacing between two
adjacent frequency band and to eliminate the limited by processes, a proposed
topology is shown in Fig. 3(b). The idea is to use both the switched capacitor bank
and switched varactor bank, the varactor CV1, which is the least varactor can be
achieved by process, is separated from fixed varactor CV, and CVi (i=1,2,···,15)can be
calculated by formula:

1 .Vi Va i VC C b C-= + (5)

Fig. 3. Improved topology (a) architecture of [4] (b) proposed of this paper

 A Constant Loop Bandwidth Fraction-N Frequency Synthesizer for GNSS Receivers 167

The switched capacitor bank operates as the same with previous architecture and
some differences between the switched varactor bank. In this way, only the fixed
varactor CVa and switched varactor CVi are connected to the control voltage, and the
rest are connected to the power supply to get minimum sixed capacitance. So total
capacitance Ctot,n across the tank at the center frequency of the nth sub-band can be
expressed as:

 (6)

Similarly the tuning gain KVCO,n of the nth sub-band can be computed by

(7)

Accordingly, formula and is used to calculate coefficient bi, then CV1 is chose to meet
the minimize varactor value of the process and the rest of switched varactor is
calculated by expression 7. Coefficient bi can be got due to expression. By this way,
the VCO tuning gain KVCO and frequency spacing ƒspacing variations can be greatly
reduced immune from the process simultaneously.

3.2 Charge Pump

Due to constant frequency tuning gain, the offset brought by PVT induce no variation
of bandwidth. When the output frequency changes to a new frequency by
reconfiguring the divider ratio N, the charge pump current will change to match the
divider ratio, which indicates the target frequency. So a constant loop bandwidth is
achieved by programing the charge pump current (ICP) to make the ratio ICP/N
constant.

Fig. 4. Schematic of the charge pump

168 D. Yan et al.

As shown in Fig. 4, some transistor banks can be in parallel with the major current
sources and sinks to calibrate the total charging and discharging current via the
4MSBs output of the AFC. Furthermore, the op-amp 1 working as a voltage follower
is applied to settle the charge sharing problem [7]. The voltages on parasitic
capacitors at nodes A and B are clamped so no charge transfer would occur. To
remove current mismatches, the PMOS current sources are biased by op-amp 2 using
the self-bias technique to force them to copy the NMOS sink currents precisely [8].

3.3 AFC

AFC is integrated to find an optimal sub-band tuning curve among the curves. Due to
the switched capacitor array and switched varactor array, the frequency spacing
change ultrafine during the entire output frequency. So the easy way to sense the
VCO output center frequency of each tuning curve is to count the output frequency’s
periodicity per reference period and compare it with the division ratio N, which is
indicate the target frequency. The AFC is composed of a frequency detector (PD) and
a finite state machine (FSM) as shown in fig. 5.

As the calibration operation starts, the target frequency is represented by
multiplying the division ratio N.ƒ and k, which indicates how many reference periods
are used to count the VCO frequency. The VCO output frequency is accepted and
divided down to fvco/4 by a pre-divider. Then the divided signal is counted during k
reference periods and a subtractor calculates the frequency error by comparing the
count of counter and target frequency k* N.ƒ. Consequently the sign bit indicates
whether the frequency of VCO is higher of lower than target frequency. The binary
search algorithm simply use the sign bit to adjust the cap code accordingly by the
FSM. At the same time, the magnitude of frequency error is compared with the
previously stored frequency error to find the min-error code. The least-error code,
which represents the optimized code, can be stored by FSM after binary search
process. Finally the optimized code is sent to VCO and the PLL loop is closed to
achieve phase locking, and AFC is turned off.

Fig. 5. Diagram of AFC

 A Constant Loop Bandwidth Fraction-N Frequency Synthesizer for GNSS Receivers 169

4 Implementation Results

The fractional-N PLL is fabricated in 0.18-μm CMOS process. The chip micrograph
is shown in Fig. 7(b) and the whole frequency synthesizer is 0.4 mm2. It has been
integrated in a GNSS receiver.

The measured VCO tuning rang is 2790 MHz-3480 MHz, which divided by 2 to
get 4-phase LO signals for the quadrature mixer to cover the GNSS signal, and
closed-loop output frequency is shown in Fig. 6(a). The tuning gain varies from 82
MHz/V to 90 MHz/V, of which the variation is less than 10%.

(a) (b)

Fig. 6. Measured PLL results (a) VCO tuning characteristics (b) Phase noise

The measured phase noise at oscillation frequency of 3130.38 MHz is -85.62
dBc/Hz at 10 kHz offset and -92.8dBc/Hz at 100 KHz offset as shown in Fig. 6(b).
The measured bandwidth is shown in Fig. 7(a) which is designed to 60 kHz with a
phase margin of 60°. Table I lists the performance comparison of the proposed with
other related frequency synthesizers.

Fig. 7. (a) Measured phase noise and bandwidth and (b) Chip micrograph

170 D. Yan et al.

Table 1. Comparison of frequency synthesizer

Parameter This work Ref. [3] Ref. [9] Ref. [10]

Technology CMOS 180 nm CMOS 130 nm CMOS 130 nm CMOS 130 nm
Center frequency 3.14 GHz 1.48 GHz 3.5 GHz 1.58 GHz

Tuning range 21.7 % 50 % 22.8 % 25 %
Phase noise
(dBc/Hz)

-85.62 @ 10 kHz
-112 @ 1 MHz

-93 @ 10 kHz
-118 @ 1 MHz

-82.2@ 10 kHz
-116 @ 1 MHz

-70 @ 100 kHz
-110 @ 1 MHz

Power (mW) 18 4.5 48 1.2

5 Conclusion

A constant loop bandwidth fractional-N frequency synthesizer for GNSS receivers is
reported in this paper, and was fabricated in 0.18-μm CMOS process. A wideband
VCO is improved with constant tuning gain which contributes to achieve constant
bandwidth. A configurable charge pump with charge sharing and mismatch
cancellation is designed to match division ratio to achieve constant bandwidth overall
the output frequency and reduces spurs. The frequency synthesizer has been
successfully integrated in GNSS RF receivers.

Reference

1. Salvatore, L., Carlo, S., Andrea, B., et al.: Frequency dependence on bias current in 5-GHz
CMOS VCOs: Impact on tuning range and flicker noise upconversion. IEEE J. Solid-State
Circuits 37(8), 1003–1011 (2002)

2. Kim, J., Horowitz, M.A., Wei, G.Y.: Design of CMOS adaptive bandwidth PLL/DLLs:A
general approach. IEEE J. Solid-State Circuits 50, 860 (2003)

3. Xizhen, Y., Shimao, X., Yuhua, J., Qiwu, W., Chengyan, M., Tianchun, Y.: A constant
loop bandwidth fractional- frequency synthesizer for GNSS receivers. JournaI of
Semiconductors 33(4) (2012)

4. Lei, L., Jinghong, C., Yuan, L., Hao, M., Zhangwen, T.: An 18-mW 1.175–2-GHz
Frequency Synthesizer with Constant Bandwidth for DVB-T Tuners. IEEE Transactions
on Microwave Theory and Techniques 57(4) (April 2009)

5. Jaewook, S., Hyunchol, S.: A fast and high-precision VCO frequency calibration technique
for wideband ΔΣ fractional-N frequency synthesizers. IEEE Transactions on Circuits and
Systems-I: Regular Papers 57(7) (July 2010)

6. Jongsik, K., Jaewook, S., Seungsoo, K., Hyunchol, S.: A wideband CMOS LC-VCO with
linearized coarse tuning characteristics. IEEE Transactions Circuits and Systems-II:
Express Briefs 55(5), 399–403 (2008)

7. Rhee, W.: Design of high-performance CMOS charge pumps in phase-locked loops. In:
IEEE Int Circuits Syst. Symp., vol. 2, pp. 545–548 (1999)

8. Lee, J., Keel, M., Lim, S., et al.: Charge pump with perfect current matching
characteristics in phase-locked loops. Electronics Letters 36, 1907–1908 (2000)

9. Wu, T., Hanumolu, P.K., Mayaram, K.: Method for a constant loop bandwidth in LC．
VCO PLL frequency synthesizers. IEEE J. Solid-State Circuits 44, 427 (2009)

10. Cheng, K.W., Natarajan, K., Allstot, D.J.: A current reuse quadrature GPS receiver in
0.13μm CMOS. IEEE J. Solid-State Circuits 45, 510 (2010)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 171–179, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Investigation of Reproducibility and Repeatability Issue
on EFT Test at IC Level to Microcontrollers

Jianwei Su1, Jiancheng Li2, Jianfei Wu2, and Chunming Wang3

1 P.O.box 9010 Xiangtan University, 411105 Xiangtan, Hunan, China
2 National University of Defense Technology, 410073 Changsha, Hunan, China

3 Freescale Semiconductor Inc., 300457 TEDA, TianJin, China
{away1988,lijc_hh,wujianfei990243}@126.com,

b21150@freescale.com

Abstract. As an important part of EMC, EFT performance at IC level is
drawing more and more attentions from IC designers and product engineers.
But there is no EFT test standard at IC level exist. CIIM is an influential
method proposed for EFT test at IC level and is introduced in this paper.
However, this test method is not so perfect and still needs to be improved. Two
probes with different internal resistance are tested on a microcontroller to
investigate the reproducibility and repeatability issue of the test. It can be very
beneficial to the improvement of CIIM test method and the progress of
standardization on EFT test at IC level.

Keywords: Microcontroller, EFT, Reproducibility, Repeatability.

1 Introduction

With the widespread usage of modern electronic and electric equipment, the space
electromagnetic environment becomes increasingly complex. Electronic and electric
devices are suffering from the internal and external electromagnetic interference
(EMI). EMC issue is increasingly serious.

At present, EMC research at board level and system level is somewhat mature. A
set or test standards are established and EMC approaches such as grounding and
shielding are applied. But they are not enough to satisfy the growing concerning of
EMC issues. As a key part of modern electronic and electric equipment, ICs are often
the source, as well as the victim, of electromagnetic interference. For the continuous
decreasing of operation voltage, ICs can withstand less and less noise margin and are
more and more susceptible to EMI. Moreover, higher density of IC leads towards
higher switch current when IC is working, though the IC’s operation voltage is
decreased. That is to say ICs get stronger electromagnetic emission ability. So IC’s
EMC performance has important effects on the EMC of electronic and electric
equipment. It is believed that EMC should be focused early at IC level.

Nowadays, EMC performance is becoming another important quality indicator of
IC products. Some test standards have been established to quantify the EMC
performance at IC level. Methods are specified in IEC 61967 [1] to evaluate the

172 J. Su et al.

electromagnetic emissions (EME) of ICs and in IEC 62132 [2] to evaluate the
electromagnetic susceptibility (EMS) of ICs. The frequency range of those test
methods is mostly 150 KHz to 1 GHz while some methods’ frequency range can be
extended. For example, the measurement range of GTEM cell can extend up to 18
GHz. But there is no test standard exist to evaluate the ICs’ transient immunity such
as electrostatic discharges (ESD) and electrical fast transient (EFT). A strong demand
exists to close this gap and some methods have been proposed in [3-5]. But those
methods proposed are not so perfect and little comparability can be found among
those test methods.

So far, the evaluation of EMC performance can only rely on EMC testing.
However, it is well known that all EMC tests suffer from reproducibility and
repeatability problems. A test result uncertainty can be calculated for emission tests
while there is no effective method to evaluate the reproducibility or repeatability of
the transient immunity tests. In the transient immunity test, the test results may repeat
badly if different generators or probes are used, even though the generators or probes
all meet the specification of the test standard.

So, an experiment is conducted to investigate the repeatability and reproducibility
issue of the CIIM test method [4], a test method proposed to characterize the EFT
performance of the ICs. Two probes with different internal resistance are used in this
experiment and a further analysis of the two probe’s test results is presented in this
paper. It can be either beneficial to the improvement of CIIM test method or helpful
to the progress of standardization on EFT test method at IC level.

The CIIM test method is briefly introduced in section 2. Section 3 gives a
disruption of the experiment and the results. The analysis of the results is presented in
section 5 and conclusions are given in section 6.

2 EFT Test Method at IC Level

Electrical fast transient (EFT) test is an important part of the transient immunity test
and is a main concern of the EMC problem at system level. EFT is a test that difficult
to pass. During system level EFT tests or a real EFT event occurs, disturbance signal
can couple into the power supply pins or signal pins of the ICs in the system through
different coupling mode (magnetic coupling and electric coupling mode) [6]. They
may affect the ICs’ normal function which can cause temporary malfunctions or even
permanent damages to the ICs. And eventually leads to the fail of the test. Therefore,
the system engineers request IC manufacturers to provide the IC level EFT
performance of the ICs they used in the system, so that they can estimate the final
EFT performance of the system and get their products easier to pass the system level
EFT test.

Conducted impulse injection method (CIIM) is an important test method proposed
by Günther Auderer to characterize the EFT performance of ICs [4]. This test method
can be realized by the Langer IC EFT testing platform [7] which designed by Langer
EMV - Technik GmbH from Germany. The block diagram of Langer IC EFT testing
platform is shown in figure 1.

 Investigation of Reproducibility and Repeatability Issue on EFT Test 173

Fig. 1. Block diagram of Langer IC EFT test platform

In this test platform, the device under test (DUT), the IC to be tested, is soldered on
a multilayer test board. The test board is embedded in a massive ground plane. The
probe tip contacts with the pin of the IC to be tested directly and the probe gets well
contacted with the massive ground plane by the magnet in the bottom side of the
probe to minimize the current loop-back area. All this guarantees an excellent ground
connection which can provide a correct measurement up to the GHz range. The probe
is powered by the burst power station BPS201. A host-PC is connected with the
BPS201 and can control the parameters of the disturbance signal such as disturbance
voltage level, disturbance polarity and burst frequency. During the test, the DUT gets
supplied by an external power supply and the test code is operated to detect the
software error when the disturbance is injected. The operation status or the software
error can be monitored by the different blink combination of the LEDs on the monitor
board. Increasing the disturbance voltage level step by step until the voltage limit of
the probe or permanent damage occurs on the DUT.

Langer IC EFT provides two series of probes: P200 series and P300 series. P201
and P211 probe from P200 series are current injection probes to simulate the magnetic
coupling disturbance to an IC pin. Those two probes have the characteristics of low
internal resistance and high coupling capacitance. As to P301 and P311 probe from
P300 series, they are voltage injection probes to simulate the electric coupling
disturbance to an IC pin. Contrary to P200 series, those two probes have the
characteristics of lower coupling capacitance but higher internal resistance. The
technical characteristics of those four probes are shown as table 1.

Table 1. Technical characteristics of the four probes

Probe
Pulse shape (rise

time/duration)
Coupling

capacitance
Internal

resistance
Pulse voltage

P201 1.5/5 ns 1.2μF 1Ω ±4.5~36
P211 1.5/5 ns 1.2μF 1Ω ±0.5~5
P301 1.5/20 ns 18pF 100Ω ±140~480
P311 1.5/20 ns 18pF 100Ω ±5~140

174 J. Su et al.

In this paper, two P201 probe with different internal resistance are chosen to
generate this experiment. The typical waveforms of a single burst of P201 are shown
in figure 2.

Fig. 2. Waveform of P201 with different load

The waveform of this test method is in accordance with waveform characteristics
in system level, which is defined in test standard IEC 61000-4-4 [8]. So the test
results of this method can gain high correlation with the results in final system level.
For the EFT test with P201, we set a voltage step size of 2V. The burst repetition
frequency is 10 KHz and the pulse number is 65535 for each test level, namely the
interference burst duration is 6.5525s.

3 Experiment and the Results

We got two P201 probes provided by Langer for this experiment. From the
information Langer provided, those 2 probes only have about 16% difference in their
internal resistance, which is within the technical specification. We marked the probe
with higher internal resistance as P1, while marked the other one as P2.

To analysis the influence of the two probes on the test results, we got them
experimented on a microcontroller. The microcontroller we used in the test is
designed in 90 nm process with 64 pin LQFP package. The I/Os of this
microcontroller use a distributed boosted ESD power rail active MOSFET clamp
protection structure, which is widely used in modern I/O protection design. We tested
5 samples (S1 to S5) for each tested pin per polarity.

In terms of the loss of function or degradation of performance of the IC under test,
the test results are classified into five grades: A, B, C, D, E. We use different colors to
distinguish the five type failures. The representing color and the description of the
five grades are shown in table 2.

 Investigation of Reproducibility and Repeatability Issue on EFT Test 175

Table 2. Results representing and description

Result Color Description

A

DUT performs as designed during and after exposure of EFT-Burst

B

DUT doesn’t perform as designed during exposure, but can return to normal
operation after EFT-Burst exposure is removed

C

DUT doesn’t perform as designed during exposure. DUT doesn’t return to
normal until exposure is removed and reset pin is asserted

D

DUT doesn’t perform as designed during exposure. DUT doesn’t return to
normal until exposure is removed and power to DUT is cycled

E

DUT doesn’t perform as designed during exposure and can’t return to
normal due to physical damage or other permanent performance degradation

We picked out the test results listed, such as pin VREFL negative injection shown
in figure 3, pin RESET positive injection shown in figure 4 and pin VDD positive
injection shown in figure 5.

Fig. 3. Results of pin VREFL, negative injection

Fig. 4. Results of pin RESET, positive injection

176 J. Su et al.

Fig. 5. Results of pin VDD, positive injection

For the analysis of the experiment, we should figure out the final results from the
five samples with a certain criterion. Take E as the key consideration, a principle is
established for how to figure out the final results as follows:

a.) For the results contains E failure: group the five results by the E failure level
within the range of 1 step, and ensure that as much as possible the results can be
contained in one group. If five results within one group, the lowest level of this group
is the final result. If four results fall in one group and the 5th sample results is defined
as outlier, the final result should be the lowest level of the group with four results. If
the three results grouped within a range while the rest results grouped in another
range, and the maximum voltage level and the minimum voltage level differs with 3
steps, the lowest voltage level of the five results should be reported as the final result.
Other cases besides that mentioned above, an in-depth analysis such as check the test
configuration or confirm with the designer is needed.

b.) For the results doesn’t contain E failure: the worst case should be reported as
the final result for each voltage level with the priority of D, C, B, A.

The final results figured out are shown in figure 6.

Fig. 6. Results of tested pins, positive and negative injection

 Investigation of Reproducibility and Repeatability Issue on EFT Test 177

4 Discussion and Analysis

From the results we got above, we find that the failure level of P2’ is worse than P1’s
in general. Especially E type failure level on pin RESET positive injection and pin
VREFL negative injection, D type failure level on pin VDD positive injection, C type
failure on VDD negative injection. That meets our original imagine: lower probe
internal resistance lead to worse failure level because of the higher injection current.
While there are also some results that don’t meet our original imagine. For example,
C type failure on pin RESET negative injection.

Also, reproducibility and repeatability issue can be easily found. They are
discussed and analyzed as follows:

4.1 Poor Repeatability of B, C, D Type Failure on Each Probe

Repeatability issue can be easily found from figure 3, 4 and 5 on each probe. For E
type failure level, the variation range is within 2 steps, which is acceptable. But for D
type failure on pin VDD positive injection and C type failure on pin VREFL negative
injection, the variation range can be up to 6 steps and 4 steps respectively. And even
some B and C type failure occurs occasionally in the five tested samples, such as the
results of pin RESET positive injection and pin VDD positive injection. That means
B, C, and D type failure get poor repeatability. But what is the root cause?

Many factors can influence the repeatability of the test during EMC testing. In this
experiment, what we want to test is the probe, instead of the DUT. So the main
influencing factor can be listed as follows: ambient conditions, test equipment, DUT
and test method.

The ambient conditions of the lab ate strictly controlled during the test. And every
the five samples can be tested in a very short period of time so that the ambient
conditions cannot change too much to influence the test. All the test equipments used
in the test are also well calibrated at regular intervals. Though slightly difference of
the DUT is acceptable for the imperfect of the process, the factor of DUT can be
removed because of the acceptable repeatability of E type failure can be found in the
test. So the root cause may lay in the test method.

After further analysis, we find that the defined B, C and D type failure are related
to the software. They are software failure. CIIM test method operates in asynchronous
mode: the execution of test code is asynchronous with the injection of the disturbance
signal. During each test, the executed instructions are different when disturbance
pulse injects. So the asynchronous operation mode of the test may be the root cause of
the poor repeatability of B, C and D type failure.

But for the condition is not permit to conduct an experiment with synchronous
mode at present, so we cannot verify it. It would remain to be a part of our later study.

4.2 Bad Reproducibility of E Type Failure Level of the Two Probes

We can get an overview of the results first from figure 6. Disappointedly, bad
reproducibility can be found from the results.

178 J. Su et al.

For E type failure gets a good repeatability and E type failure is our main concern
in the five type failures, we shall figure out the correlation between the two probes’ E
type failure level. The E type failure level of P2 dropped 1 step by 7.7% on pin
RESET positive injection while dropped 4 steps by 12.5% on pin VREFL negative
injection compared to P1’s. That means no correlations can be found between the two
probes’ E type failure level. But what should be responsible for it?

As we analyzed above, the test ambient and the test equipment have little influence
to the test results in this test. So we should find the answer from DUT and the test
method. Different to B, C, and D type failure, E type failure is mainly caused by the
electrical over stress (EOS) of I/O protection structure of the tested IC. So the poor
correlation may have something to do with the I/O protection circuit of the tested IC.
The I/O protection structure of the tested IC is shown in figure 7.

I /O
PAD1

Trigger
Circuit

I/O
PAD2

Trigger
Circuit

BOOST_BUS

VDD_BUS

TRIGGER_BUS

I/O
PAD3

Trigger
Circuit

Fig. 7. I/O protection structure of the tested IC

This kind of distributed protection structure is widely used in modern I/O design.
Each I/O protection unit contains a trigger circuit and an active MOSFET clamp and
they are connected by four whole chip buses forming a pad ring. The design of the
pad ring has important influence on the transient immunity performance.

In fact, when EFT event occurs on an I/O PAD, not only the protection unit of this
I/O works but the entire protection structure works together. However, only several
protection units beside the pin encounter EFT event involved because of the parasitic
resistance, capacitance and inductance on the buses. That means different location of
the I/O in the pad ring get different current path for the disturbance signal, so their
response to the change of the probe’s internal resistance may be nonlinear.
Sequentially, little correlation can be found between different probes.

So a conclusion can be drawn that bad reproducibility we get when probes with
different internal resistance are used in the test. Moreover, poor correlation can be
found between the results of the two probes for the reason of the I/O protection
structure.

 Investigation of Reproducibility and Repeatability Issue on EFT Test 179

5 Conclusion

An EFT test method at IC level is introduced and two probes with different internal
resistance are tested to study the reproducibility and repeatability issue of this test
method in this paper. For each probe, only E type failure gets good repeatability while
B, C, and D type failure get poor repeatability. A root cause of asynchronous
operation mode of the test method is analyzed for the poor repeatability of B, C, D
type failure. Besides, bad reproducibility the test gets when different probe is used for
the decrease of probe’s internal resistance leads to lower failure voltage level. But
little correlation can be found between the two probes and a relationship with the I/O
protection structure is analyzed.

The research in this paper would be constructive to the standardization of EFT test
method at IC level. Also it can be helpful in the I/O protection design.

References

1. IEC 61967: Integrated circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1
GHz. Standard, International Electro-Technical Commission (2004)

2. IEC 62132: Integrated circuits - Measurement of Electromagnetic Immunity, 150 kHz to 1
GHz. Standard, International Electro-Technical Commission (2004)

3. IEC 62215: Integrated circuits - Measurement of Impulse Immunity. Standard Proposal,
International Electro-Technical Commission (2005)

4. Auderer, G.: Conducted Impulse Injection Method (CIIM). In: Proceedings of the 5th
International Workshop on Electromagnetic Compatibility of Integrated Circuits (2005)

5. Musolino, F., Fiori, F.: Investigation on the susceptibility of microcontrollers to EFT
interference. In: IEEE International Symposium on Electromagnetic Compatibility,
pp. 410–413. IEEE Press, Chicago (2005)

6. Deutschmann, B., Langer, G., Auderer, G.: Characterizing the Immunity of Integrated
Circuits against Electrical Fast Transient Disturbances, http://www.langer-
emv.de

7. Guideline IC EFT test, http://www.langer-emv.de
8. IEC 61000-4-4, Electromagnetic Compatibility (EMC)-Part 4-4: Testing and Measurement

Techniques - Electrical Fast Transient/Burst Immunity Test. Standard, International
Electro-technical Commission (2001)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 180–185, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Scan Chain Based SEU Test Method
for Microprocessors

Yaqing Chi1,2,*, Yibai He1, Bin Liang1, and Chunmei Hu1

1 College of Computer, National University of Defense Technology,
Deya Str. 109, Changsha, 410073, P.R. China

2 National Key Laboratory of Science and Technology
on Reliability Physics and Application Technology of Electrical Component,

Dongguanzhuang Str. 110, Guanzhou, 510610, P.R. China
yqchi@nudt.edu.cn

Abstract. A test method based on the scan chain technique is proposed to
evaluate the single event upset performance for all the flip-flops in the
microprocessors. The single event upset (SEU) performance of a digital signal
processor is evaluated using the proposed method and program test method with
different working frequencies. Heavy ion irradiation experiment results show
that this method is able to capture all the SEUs in the whole chip with no escape
and has few infections from the single event transients, which is helpful to
study the SEUs precisely in the complicated processors.

Keywords: single event upset, scan chain, microprocessor, heavy ion.

1 Introduction

Single Event effect (SEE) induced by heavy ion irradiation has become a terrible soft
error problem for the advanced processors working in the outer space, such as the
PowerPC 750 CPU driving the Mars Curiosity Rover. Among all the radiation effects,
the single event upset (SEU) is considered to make a major contribution to the global
soft error[1]. So the SEU susceptibility evaluation is an essential task for the
processors used in space to determine their applied environments before launch.

Usually, the SEU susceptibility evaluation experiments of the complicated
processors are carried out by specific test programs, which repeat running calculation
processes and reading the results, or reading the data stored in the internal memories
to identify the SEU occurred in the calculation units and memories [2-4]. However,
only limited flip-flops (FFs) and memories in the processors are accessed and a lot of
upsets in the sequential logic cannot be captured directly by the test programs, leading
to a reduced SEU cross-section. Design of dedicated test chips for irradiation test is
commonly adopted as an additional strategy to evaluate the SEU performance of
internal FFs [5-6]. Unfortunately, enormous amount of the same FFs should be

* Corresponding author.

 A Scan Chain Based SEU Test Method for Microprocessors 181

implemented in the test chip to improve the statistical accuracy, resulting in extra
budget and design time. Furthermore, the distribution and relative distances of the FFs
arranged in the test chip are obviously different from the ones placed in the realized
processor, which may affect the irradiation test results different between the test chip
and realized processor.

In this paper, a test method based on the scan chain technique is proposed to
evaluate the SEU performance for the microprocessors. In the scan mode, all the FFs
in a processor are configured as several shift register chains, so that all the defects of
the transistors in the processor can be detected according to the output data. Under
this mode, we captured all the SEU events of the FFs in a microprocessor during the
ground heavy ion irradiation test.

2 Scan Chain Based Method

Scan chain is a widely adopted design-for-test (DFT) technique for the processors.
This technique facilitates the defect detection by interconnecting nearly all of the flip-
flops into one or multiple shift register chains when the scan mode is configured.

Fig. 1 illustrates the schematic diagram of the scan chain design. By setting the
signal SCAN_EN high, the circuit operates in the scan mode, and the FFs with
multiplexer and some drive buffers are organized into scan chains between ports
SCANIN and SCANOUT. A data pattern, such as “static-0” or “static-1”, can be
loaded into the shift register from port SCANIN. The data sequence will propagate
through the chain under the control of CLK until reaching the port SCANOUT. When
the heavy ion irradiation upsets a FF, the upset value will also be shifted to the port
SCANOUT. So the number of SEUs occurring in the FF chain can be obtained by
comparing the data observed at the port SCANOUT with the original ones loaded into
port SCANIN.

Fig. 1. Schematic diagram of the scan chain design. Bold regions correspond to the data path in
the scan mode.

3 Experimental Setup and Procedure

A 32-bit radiation hardened digital signal processor (DSP) was chosen for the SEU
performance test, which was manufactured in a 0.18um six-level metal CMOS
process. It contains 128KB internal SRAM and 20,200 D-flip-flops (DFFs). The SEU
performance of the SRAM can be directly evaluated by some test programs, while the
SEU performance of DFFs remains unknown because of their inaccessibility by the
test program.

182 Y. Chi et al.

The DSP is tested on a Printed Circuit Board (PCB) at room temperature, which
equipped a field-programmable gate array (FPGA) as Fig.2 shows. All the signal pins
of the DSP are connected to the FPGA, so the FPGA can control the DSP and monitor
its outputs. By setting several specific pin signals to LOW or HIGH, the DSP is
configured as the scan mode, and all the DFFs in the DSP are organized into 76 shift
register chains, with each containing almost 270 DFFs. The DSP can also be
configured as the user mode to execute any programs provided by the FPGA. Fig. 3
illustrates a block diagram of the test system.

Fig. 2. The Photograph of the test board of DSP

For the scan mode test, the SCANIN signal is fixed to static “0” or static “1”
during the irradiation with the CLK port stimulated by a 40MHz clock signal. 10MHz
and 2.5MHz are also used to investigate the frequency dependence of the SEU rate.
The FPGA always monitors all the SCANOUT ports. Once one stage of the scan
chain is upset by the heavy ion, the sequent ones in the chain will propagate the upset
value until it is read by the FPGA at the SCANOUT port of the chain and recorded as
a SEU event.

Setting the same DSP to the user mode, a program test is performed as reference. A
specific test program is repeatedly executed to predict the SEU rate of the FFs, which
contains the whole instructions set of the DSP to use all the internal components as
often as possible but the internal SRAM. The outputs of each iteration are monitored
by the FPGA during the irradiation. We assume that a SEU of a DFF will induce
wrong results of a running iteration or disturb the instruction flow, then when the
outputs are not correct or no output is captured in a specific period, a SEU is recorded
and the program reboots.

Heavy-ion irradiation was performed at the HI-13 Tandem Accelerator in China
Institute of Atomic Energy. The characteristics of the three ions used in the test are
listed in Table I. A fluence of 1E7 ions/cm2 for every test configuration with the flux
about 1000 ions·cm-2·s-1. During the irradiation test, the device currents were
constantly monitored in case of potential Single Event Latchup (SEL). Fig. 3
illustrates a block diagram of the heavy ion irradiation test system.

 A Scan Chain Based SEU Test Method for Microprocessors 183

Fig. 3. Heavy ion irradiation test setup of the DSP

Table 1. Heavy Ions used in the irradiation test

Ion Energy at the Silicon
Surface (MeV)

Efficient LET
(MeV-cm2/mg)

Incident
Angle

Range
(um)

Br 225 41.9 0° 31
Ti 175 21.6 0° 36
Cl 145 13.6 0° 41

4 Results and Discussion

The test results in the scan mode with various heavy ion LET values are shown in Fig.
4. In this figure, the cross-section is defined as the average of the static “0” and static
“1” test mode for the reason that the data pattern has 50% duty cycle during normal
operation. No upsets were observed at the lowest tested LET of 13.6 MeV-cm2/mg
though we tested to a fluence of 1E7 ions/cm2, so the LET threshold (LETth) of upset
in FFs is expected to be larger than 13.6 MeV-cm2/mg. in order to mark the no upset
result at the logarithmic coordinate system of Fig. 4, 0.1 errors are assumed to the
LET of 13.6 MeV-cm2/mg, which has no impact on the SEU performance analysis. At
higher LET (21.6 and 41.9 MeV-cm2/mg), the SEU cross-section shows a clear
frequency dependence. The measured cross-section is the sum of the upsets of FFs
and the single event transients (SETs) occurring in the multiplexers or drive buffers of
the scan chains. With higher frequency, the SETs can be more easily latched by the
FFs, leading to an increased SEU cross-section. Meanwhile, SETs with larger pulse
width can strengthen this effect. In other words, the frequency dependence can be
stronger with higher LET value, which can be seen from the Fig. 5.

A comparison of SEU cross-sections of the same DSP measured by the scan mode
test at 40MHz and the program test at 160MHz is shown in Fig. 6.The cross-section
measured during the program test is much higher than that in scan mode with LET of
13.6 MeV-cm2/mg. This difference is primarily due to the SETs occurred in the
combined circuits used in the program test. However, the experimental data measured
at high LETs show that the SEU performance under program test and scan mode test
are almost at the same level. This behavior attributes to two contrary effects on the

184 Y. Chi et al.

SEU performance for the program test. In the one hand, the higher frequency and
larger combined circuits induced more SET induced soft errors for the program test
than for the scan mode test; in the other hand, not all the components in the DSP are
working simultaneously during the program test, so the soft errors in the free
components cannot change the program results or disturb the instruction flow, which
results in lower soft errors. According to the balance of the contrary effects above, the
SEU performance under program test and scan mode test are almost at the same level
at high LETs. However, the cross-section consistence between the program test and
the scan mode test is just coincidence, a lot of complicated factors dominate the test
results of the program test, while the scan mode test captured all the SEUs in the
whole chip and has few infections from the SETs, which is helpful to study the SEUs
precisely in the complicated processors.

Fig. 4. Cross-section versus LET in the scan mode test

Fig. 5. Cross-section versus frequency in the scan mode test

Fig. 6. SEU Cross-sections measured by the scan mode test at 40MHz and program test at
160MHz.

 A Scan Chain Based SEU Test Method for Microprocessors 185

5 Conclusion

Based on the DFT technique of processor-like component, a SEU test method for
sequential logic is proposed. Heavy ion data show that this scan chain based method
is able to captured all the SEUs in the whole chip and has few infections from the
SETs, which is helpful to study the SEUs precisely in the complicated processors.
Furthermore, the proposed method is not limited to apply for the processors but could
be widely adopted in most processor-like components which realize scan chain
techniques.

Acknowledgments. This work supported by the Opening Project of National Key
Laboratory of Science and Technology on Reliability Physics and Application
Technology of Electrical Component (Grant No. ZHD201202). The authors would
like to acknowledge Prof. Guo Gang and members of the HI-13 Tandem Accelerator
Group for their long and patient heavy-ion test support.

References

1. Baumann, R.C.: Single event effects in advanced CMOS technology. IEEE NSREC Short
Course Text (2005)

2. Joshi, R., Daniels, R., Shoga, M., Gauthier, M.: Radiation Hardness Evaluation of a Class
V 32-Bit Floating-Point Digital Signal Processor. In: IEEE Radiation Effects Data
Workshop, pp. 70–78 (2005)

3. Lintz, J.P., Hoffmann, L.F., Smith, M.J., Cizmarik, R.R.: Single Event Effects Hardening
and Characterization of Honeywell’s Pass 3 RHPPC Processor Integrated Circuit. In:
IEEE Radiation Effects Data Workshop, pp. 162–166 (2007)

4. Hafer, C., Griffith, S., Guertin, S., Nagy, J., Sievert, F., Gaisler, J., Habinc, S.: LEON 3FT
Processor Radiation Effects Data. In: IEEE Radiation Effects Data Workshop, pp. 148–151
(2009)

5. Heijmen, T., Roche, P., Gasiot, G., Forbes, K.R., Giot, D.: A Comprehensive Study on the
Soft-Error Rate of Flip-Flops From 90-nm Production Libraries. IEEE Trans. Device and
Materials Reliability 7, 84–96 (2007)

6. Warren, K.M., Sternberg, A.L., Black, J.D., et al.: Heavy Ion Testing and Single Event
Upset Rate Prediction Considerations for a DICE Flip-Flop. IEEE Trans. Nucl. Sci. 56,
3130–3137 (2009)

Achieving Predictable Performance

in SMT Processors by Instruction Fetch Policy

Caixia Sun, Yongwen Wang, and Jinbo Xu

School of Computer, National University of Defense Technology,
Changsha 410073, Hunan, P.R. China

cxsun@nudt.edu.cn

Abstract. With the applications in embedded systems increasingly com-
plex, future embedded processors will resemble current high performance
general purpose processors. Simultaneous multithreading (SMT) is a
good choice in embedded processors for its good cost-performance trade-
off. However, in SMT processors, the execute time of a thread is un-
predictable. The unpredictability is an undesirable feature in embedded
systems. In order to apply SMT architecture to embedded processors,
the problem of performance unpredictability must be addressed. Among
the current researches, a noted one is done by Cazorla et al (we call it Ca-
zorla policy). However, Cazorla policy achieves predictable performance
for a time critical thread by shared resources reservation, which weakens
the advantage of resources sharing in SMT processors.

In this paper, we propose a novel instruction fetch policy called APP
(Achieving Predictable Performance) to control the performance of a
time critical thread in SMT processors. Simulation results show that
APP can achieve predictable performance for the time critical thread as
effectively as Cazorla policy does. Furthermore, APP can make full use
of shared resources more effectively to optimize the performance of other
co-scheduled threads and overall throughput. Compared with Cazorla
policy, overall throughput obtained by APP is increased by 4.9% on
average and the performance of other co-scheduled threads is increased
by 17.6%.

Keywords: Simultaneous Multithreading, Instruction Fetch Policy, Pre-
dictable Performance.

1 Introduction

Applications in embedded systems are increasingly complex, which places an
increasingly demand on the performance of embedded processors. To meet these
growing demands, future embedded processors will resemble current high per-
formance general purpose processors. How to make general purpose processors
suitable for the embedded systems are studying [1–5].

Embedded processors differ from general purpose processors in their concen-
tration on low cost. That is, embedded processors hope to obtain as much per-
formance as possible from each resource. Hence, simultaneous multithreading

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 186–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Achieving Predictable Performance in SMT Processors 187

(SMT) [6–8] architecture is a good option for embedded processors. In SMT pro-
cessors, multiple threads share hardware resources, and a good cost-performance
trade-off can be achieved.

However, co-scheduled threads in SMT processors compete for shared re-
sources. Different threads have different competition abilities. When a thread
is co-scheduled with different threads, its performance will be varied.

Figure 1 shows IPC (Instructions Per Cycle) of crafty (a benchmark from
SPEC2000) when it runs alone and is co-scheduled with different threads. For
multithreaded workloads, ICOUNT [7] fetch policy is used. We can see that the
performance of crafty varies with the workload it is executed in.

Fig. 1. IPC of crafty for different workloads

As a consequence, in SMT processors, the execute time of a thread is unpre-
dictable. The unpredictability is an undesirable feature in embedded systems.
In order to apply SMT architecture to embedded processors, the problem of
performance unpredictability must be addressed.

There are few researches that address this problem. Among the current re-
searches, a noted one is done by Cazorla et al. [9–13]. They proposed a hardware
mechanism to run a given thread at a desired speed. We call this mechanism
Cazorla policy. In Cazorla policy, shared resources are reserved for the time
critical thread, and other co-scheduled threads can not occupy the reserved re-
sources, consequently guaranteeing the time critical thread can achieve desired
performance. In Cazorla policy, shared resources are allocated explicitly and
co-scheduled threads can not compete for resources freely, leading to that the
performance of other threads and overall throughput are affected. We will discuss
it in detail in section 2.

In this paper, we propose a novel instruction fetch policy to control the per-
formance of a time critical thread in SMT processors. Different from Cazorla
policy, our policy allocates shared resources implicitly by fetch control. The goal

188 C. Sun, Y. Wang, and J. Xu

of our policy is to ensure that the time critical thread can achieve desired per-
formance regardless of the workload it is executed in, at the same time to make
full use of shared resources to maximize the performance of other threads and
overall throughput.

The rest of the paper is organized as follows. Section 2 introduces Cazorla
policy, and discusses it. In Section 3, we detail our new fetch policy and describe
how to implement predictable performance for a particular thread by fetch con-
trol. Section 4 presents the methodology and Section 5 illustrates the results.
Finally, concluding remarks are given in Section 6.

2 Cazorla Policy

Give a workload of N threads and a time critical thread in this workload. The
time critical thread is called High Priority Thread (HPT) and other threads are
called Low Priority Threads (LPTs) [12]. The goal of Cazorla policy is to ensure
that HPT runs at a given target IPC that represents X% of IPCalone. IPCalone

is the IPC of HPT when it would run alone on the machine [12].
Cazorla policy is a dynamic resources allocation mechanism, which dynami-

cally adjusts the reserved resources for HPT according to its real performance.
Cazorla policy employs two phases:

During the first phase, the sample phase, the processor runs in single-thread
mode. HPT runs alone for a certain time. As a result, IPCalone of HPT can be
obtained. The target IPC would be achieved correspondingly.

During the second phase, the tune phase, the amount of shared resources
dedicated to HPT is varied according to the real IPC of HPT. If the real IPC is
lower than the target one, increase the amount of resources deserved for HPT.
Otherwise, the amount of resources given to HPT is decreased.

Cazorla policy can implement predictable performance for HPT. However,
there are two problems.

– Firstly, HPT achieves the desired performance by shared resources reserva-
tion. The reserved resources can only be used by HPT. Co-scheduled threads
cannot compete for resources freely. Consequently, the advantage of resources
sharing in SMT processors is weakened.

– Secondly, when Cazorla policy adjusts resources allocation every time, the
amount of physical registers (integer and floating point) and issue queues
(integer, floating point and load/store) given to HPT is changed at the same
time. For example, if the real IPC of HPT is lower than the target one,
physical registers and issue queues are all increased by a certain amount.
In fact, the reason that HPT is incapable of achieving desired performance
maybe lack integer registers and integer issue queue, and there is no need
to increase the amount of other resources. As a result, resource under-use
exists in Cazorla policy.

Achieving Predictable Performance in SMT Processors 189

3 Achieving Predictable Performance by Instruction
Fetch Policy

In this section, we introduce our instruction fetch policy. To be simple, in the
next of our paper, we call the proposed policy APP (Achieving Predictable
Performance). Same to Cazorla policy, the goal of APP is also to ensure that
HPT achieves the target IPC, and to implement performance predictability. At
the same time, APP tries to make full use of shared resources to maximize the
performance of other co-scheduled threads and overall throughput.

3.1 Basic Idea

The basic idea of our policy is to compare the real IPC and the target IPC for
HPT, and to adjust the fetch priority of HPT based on the comparison result.

We use ICOUNT2.8 as the default fetch policy. That is, co-scheduled threads
are ordered by ICOUNT, the number of threads that can fetch in one cycle is 2,
and the maximum number of instructions fetched per thread in one cycle is 8.
Furthermore, we define two new policies: PHPT and PLPT.

– PHPT: Prioritizing HPT. That is to say, the HPT has the highest fetch
priority, and LPTs are ordered by ICOUNT.

– PLPT: Prioritizing LPTs. That is to say, the HPT has the lowest fetch
priority, and LPTs are ordered by ICOUNT.

Let IPCdsr denote the target IPC of HPT, IPCreal denote the real IPC of
HPT, and DIPC denote the difference between IPCdsr and IPCreal. DIPC is
given by equation (1).

DIPC =
IPCreal − IPCdsr

IPCdsr
× 100% (1)

Our policy switches between PHPT2.8, ICOUNT2.8 and PLPT2.8 according
to the value of DIPC . If DIPC is smaller that a threshold defined as ThPHPT2.8,
which means that the HPT has not achieved its desired performance, we use
PHPT2.8 to accelerate the execution of HPT. If DIPC is bigger than a threshold
defined as ThPLPT2.8, PLPT2.8 is used to maximize the performance of LPTs.
Otherwise, if DIPC is between ThPHPT2.8 and ThPLPT2.8, ICOUNT2.8 is used,
allowing all co-scheduled threads to compete for shared resources freely and
increasing overall throughput.

When PHPT2.8 is used to accelerate the execution of HPT, HPT may not
obtain desired performance yet, especially when the target IPC is very high.
The reason is that PHPT2.8 fetches instructions from two threads in one cycle.
Although HPT has the highest priority, LPTs can still fetch instructions and
occupy shared resources, which may cause that HPT has not enough resources
to achieve desired performance. So we define a new threshold ThPHPT1.8. When
DIPC is smaller than ThPHPT1.8, PHPT1.8 is used to prevent LPTs from occu-
pying more resources. PHPT1.8 means that only one thread (that is, HPT) can
fetch instructions in a cycle.

Figure 2 shows how APP adjusts fetch policy according to the value of DIPC .

190 C. Sun, Y. Wang, and J. Xu

0 ThPLPT2.8ThPHPT2.8ThPHPT1.8

Fetch Policy

DIPC

ICOUNT2.8

PLPT2.8

PHPT2.8

PHPT1.8

Needed when only two
threads are co-scheduled

Fig. 2. The relationship between fetch
policy and DIPC in APP

Sample phase 1 Tune phase 1

Sampling results

Warmup
Actual
Sample

Sample phase 2 Tune phase 2

Warmup
Actual
Sample

Sampling Results

Fig. 3. Sample phase and tune phase in
an alternate fashion

3.2 Implementation

To switch between different fetch policies and adjust the fetch priority of the
HPT, DIPC must be known, that is, IPCdsr and IPCreal are needed. Just as
done in [12], we represent IPCdsr as X% of IPC when the HPT runs alone on
the machine. Assume that the OS has some goals and decides X% for the HPT.
So the hardware needs to know IPC of the HPT when it runs alone, that is,
IPCalone. To get IPCalone dynamically, we employ two phases: sample phase
and tune phase, just as done in [12].

During the sample phase, HPT runs alone for a certain time. The sample phase
is divided two periods: the first period is called warm up period, which is used
to remove the pollution by the LPTs from the shared resources and to increase
the accuracy of IPCalone. During the second period, IPCalone is measured and
IPCdsr is achieved correspondingly.

During the tune phase, all threads are co-scheduled. Each cycle, IPCreal

and DIPC is re-calculated for HPT. The fetch priority of the HPT is adjusted
according to the value of DIPC .

A key point must be considered. Programs experience different phases in their
execution in which their IPC varies significantly [14]. Hence, if we want to realize
X% of the overall IPC for HPT, we need take into account this variable IPC.
Our solution is to execute sample phase and tune phase in an alternate fashion,
just as shown in Figure 3.

From the description above, other than switching threshold, three additional
parameters are needed to be defined, which are: Lwarm-up, Lactual-sample and
Ltune.

– Lwarm−up: the length of the warm up period in the sample phase.
– Lactual−sample: the length of the actual sample phase.
– Ltune: the length of the tune phase.

4 Methodology

In this section, we give the simulator and benchmarks used in our experiments,
the metrics employed to evaluate APP, and the values of parameters defined in
APP.

Achieving Predictable Performance in SMT Processors 191

4.1 Simulator

Execution is simulated on an out-of-order superscalar processor model derived
from SMTSIM [15]. The simulator models all typical sources of latency, including
caches, branch mispredictions, TLBmisses, etc. It also carefully models execution
down the wrong path between branch misprediction and branch misprediction re-
covery. The baseline configuration of our simulator is shown in Table 1.

Table 1. Baseline Configuration of the Simulator

Parameter Value

Fetch Width 8 instructions per cycle

Instruction Queues 64 int, 64 fp

Functional Units 6 int (4 load/store), 3 fp

Renaming Registers 100 int, 100 fp

Active List Entries 256 entries per thread

Branch Predictor 2K gshare

Branch Target Buffer 256 entries, 4-way associative

L1I cache, L1D cache 64KB, 2-way, 64-bytes lines, 1 cycle access

L2 cache 512KB, 2-way, 64-bytes lines, 10 cycles latency

L3 cache 4MB, 2-way, 64-bytes lines, 20 cycles latency

Main Memory Latency 100 cycles

4.2 Benchmarks

Table 2 summarizes the benchmarks used in our simulations. Generally, HPT
would be multimedia applications. So we use MediaBench [16] (Denoted as B) as
HPT. LPTs are still taken from the SPEC2000 suite [17]. SPEC2000 benchmarks
are divided into two groups based on their cache behaviors: those experiencing
more than 0.01 L2 cache misses per instruction, on average, over the simulated
portion of the code are considered memory-intensive applications, called MEM
(denoted as M), and the rest are called ILP (denoted as I), which have lower
miss rates and higher inherent ILP (Instruction Level Parallelism).

Two kinds of workloads are simulated: BI and BM. In BI workloads, LPTs are
all taken form ILP benchmarks. In BM workloads, LPTs are all MEM bench-
marks. The number of threads included in a workload may be 2, 3 or 4. The
simulation ends when HPT is finished.

4.3 Metrics

To quantify the efficiency of APP in achieving predictable performance, we use
two metrics: Success Rate (SR) and Maximum Performance Variance (MPV).

If the real IPC of HPT is not less than the target one, APP is successful
in achieving predictable performance. Otherwise, it fails. Success Rate is the
proportion of success cases to all measured cases.

192 C. Sun, Y. Wang, and J. Xu

Table 2. Benchmarks

HPT LPTs

adpcm-encode, ILP 1 gzip, gap, eon, fma3d, mesa
adpcm-decode, 2 {crafty, eon}, {crafty, gzip}, {gzip, fma3d},
epic-encode, {eon, mesa}, {fma3d, mesa}
epic-decode, 3 {gzip, eon, gap}, {crafty, fma3d, gap}, {eon, fma3d,
mpeg2- mesa}, {mesa, gap, crafty}, {gap, fma3d, mesa}
encode, MEM 1 twolf, vpr, swim, applu, lucas
mpeg2-decode 2 twolf, vpr, {twolf, swim}, {applu, lucas},

{vpr, lucas}, {equake, applu}
3 {twolf, vpr, lucas}, {applu, swim, equake}, {twolf,

lucas, swim}, {vpr, equake, applu}, {lucas, swim,
applu}

Maximum Performance Variance is a metric for the failed cases. Supposed
that Xreal is the percentage of real IPC with respect to IPCalone, and X is the
target percentage. Define Performance Variance as equation (2):

VHPT = X −Xreal (2)

For all failed cases, the maximum of VHPT is Maximum Performance Vari-
ance. If a policy has a Success Rate of 1, Maximum Performance Variance will
be 0.

In addition, we will evaluate the performance of LPTs and overall throughput.
IPC is used as the metric.

4.4 Choosing Parameter

Same to Cazorla policy, APP also employs two phases: sample phase and tune
phase. When evaluating these two policies, the same length is used, as shown in
Table 3.

Table 3. The Values of Phase Length

Parameter Lwarm−up Lactual−sample Ltune

Value 216 cycles 214 cycles 222 cycles

Table 4. The Values of Switching Thresh-
old

Parameter ThPHPT1.8 ThPHPT2.8 ThPLPT2.8

Value -3% -0.1% 0.1%

In APP policy, there are three parameters deciding when to switch fetch
policy. Their values are shown in Table 4. These values are determined from
plenty of experiments.

5 Results

We first show efficiency of APP in achieving predictable performance. Next, the
total throughput and the performance of LPTs obtained by APP are compared
to those under ICOUNT. At last, we compare APP policy with Cazorla policy.

Achieving Predictable Performance in SMT Processors 193

5.1 Efficiency in Achieving Predictable Performance

Figure 4 shows SR and MPV results achieved by APP. On the x-axis, the target
percentage of HPT is given, ranging from 10% to 90%. For each size of the
workload (2, 3, or 4 threads), SR result is given on the left y-axis and MPV
result is given on the right y-axis.

0

20

40

60

80

100

120

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

SR
 (

%
)

0

2

4

6

8

10

12

M
PV

 (
%

)

50% 40% 30% 20% 90% 80% 70% 60% 10%

Fig. 4. SR and MPV results of APP

When the target percentage is not more than 70%, for all kinds of workloads,
SR is very high, reaching 95% at worst case, and MPV is not more than 5%.
However, after the target percentage reaches 80%, SR declines rapidly, and MPV
reaches 9.6% for the worst case. The main reason is IPCalone achieved during the
actual sample phase can not exactly represent the IPC during the tune phase. If
IPCalone sampled is smaller than that of the tune phase, the real performance
achieved in the tune phase will be lower than the target one. If IPCalone is
bigger, the real IPC will not always exceed the target IPC. For example, assume
that IPCalone is 4 and during the tune phase, the IPC of the HPT when it
is runs alone is only 3.5. If the percentage is 90%, the desired IPC is 3.6. It is
impossible that real IPC reaches 3.6 during the tune phase. But if the percentage
is low, the real IPC can exceed the target one, and the final performance meets
the target by the complementary effect.

SR is high when the target percentage is lower than 70%, but it does not
reach 100%. Fortunately, from the further experiments, we found that using a
target percentage higher than actually desired one by 5%, a success rate of 1 can
always be achieved. This method is only effective when the target percentage
is lower than 70%. When the target percentage is higher than 80%, to ensure
that HPT can always achieve desired performance, running HPT alone may be
a simple and effective way.

5.2 The Performance of LPTs and Overall Throughput Results

Figure 5 depicts the IPC of LPTs relative to ICOUNT and Figure 6 depicts
the total IPC achieved by APP relative to ICOUNT. ICOUNT is a representa-
tive fetch policy orienting towards throughput maximization. The performance
of LPTs and overall throughput are given as the percentage of those under
ICOUNT.

194 C. Sun, Y. Wang, and J. Xu

0

25

50

75

100

125

150

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

Pe
rf

or
m

an
ce

 o
f

L
PT

s
(%

)

BI BM

50% 40% 30% 20% 90%80%70%60%10% Average

Fig. 5. Performance of LPTs relative to ICOUNT

0

25

50

75

100

125

150

2 4 3 2 4 3 2 4 3 2 4 3 2 4 3

O
ve

ra
ll

T
hr

ou
gh

pu
t (

%
)

BI BM

50% 40% 30% 20% 90%80%70%60%10% Average

Fig. 6. Overall throughput relative to ICOUNT

For the workload of type BI, the total IPC achieved by APP is always lower
than that achieved by ICOUNT. Especially, when the percentage is very slow or
very high, the degradation is more severe. The main reason is ICOUNT orients
towards throughput optimization of ILP workloads. However, in our policy, to
achieve desired performance for the HPT, the fetch priority of HPT is forced
to the highest or the lowest sometimes regardless of its real execution state. In
fact, if HPT has the highest priority and occupies many resources, resources
clogging may occur; if HPT can make forward progress by using the resources
not required by LPTs but the HPT has the lowest priority, resources under-use
happens. Compared to ICOUNT, the average degradation of overall throughput
is not more then 7%.

For the workload of type BM, the total IPC becomes higher as the target
percentage increases. When the percentage is very high, APP even outperforms
ICOUNT. But for different sizes of workloads, the point at which APP begins to
outperform ICOUNT is different. For BM2, BM3 and BM4, the points are 50%,
40% and 30%, respectively. That is to say, the smaller the size of workload is,
the higher the percentage is. Now let us give the explanation. When ICOUNT
is used, IPC of HPT in BM4 is the lowest, because the competition for shared
resources is the most severe. By simulations, we find IPC of the HPT in BM4
under ICOUNT is only 28% of its full speed. However, for BM3 and BM2, the
respective values are 33% and 45%. When the target percentage exceeds these
values, IPC of the HPT achieved by APP will be higher than that obtained
under ICOUNT. The increase of HPT in throughput will lead to the decrease of

Achieving Predictable Performance in SMT Processors 195

LPTs in throughput. But HPT has higher inherent IPC, resulting in the total
throughput is increased eventually. Compared to ICOUNT, overall throughput
achieved by APP is increased by 10.5% on average.

As a whole, compared to ICOUNT, the performance of LPTs is decreased by
not more than 15%, and overall throughput is even increased by 1.8% on average.
It can be concluded that to achieve predictable performance for HPT, APP does
not sacrifice the performance of LPTs and overall throughput severely.

5.3 Compared with Cazorla Policy

APP is same with Cazorla policy for that they all obtain the target IPC of HPT
in sample phase and implement desired performance in tune phase. The differ-
ence is the way how to allocate shared resources to ensure that HPT achieves
desired performance. Cazorla policy allocates shared resources explicitly by re-
sources reservation for HPT, and APP allocates shared resources implicitly by
instruction fetch policy.

In Figure 7, APP is compared with Cazorla policy in success rate and max-
imum performance variance. Whether in SR or MPV, the results of APP and
Cazorla policy are very close. It is concluded that APP can achieve predictable
performance for HPT as effectively as Cazorla policy does.

0

20

40

60

80

100

120

10% 20% 30% 40% 50% 60% 70% 80% 90%

(a) SR results

SR
(%

)

APP Cazorla

0

2

4

6

8

10

12

10% 20% 30% 40% 50% 60% 70% 80% 90%

(b) MPV results

M
PV

(%
)

APP Cazorla

Fig. 7. SR and MPV results of APP and Cazorla policy

0

20

40

60

80

100

10% 20% 30% 40% 50% 60% 70% 80% 90%

(a) The performance of LPTs

In
cr

em
en

t(
%

)

2-thread
3-thread
4-thread

0

3

6

9

12

15

10% 20% 30% 40% 50% 60% 70% 80% 90%

(b) Overall throughput results

In
cr

em
en

t(
%

)

2-thread
3-thread
4-thread

Fig. 8. The increment of APP in the performance of LPTs and overall throughput
relative to Cazorla policy

196 C. Sun, Y. Wang, and J. Xu

Figure 8 shows the increment of APP in the performance of LPTs and overall
throughput relative to Cazorla policy. Overall throughput is increased by 4.9%
on average and the performance of LPTs is increased by 17.6%. The increment
becomes higher as the target percentage increases. When the target percentage is
90%, for two-thread, three-thread and four-thread workloads, the performance of
LPTs is increased by 57.7%, 74.5% and 97.7% respectively. Compared to Cazorla
policy, APP can more effectively make full use of shared resources to optimize
the performance of LPTs and overall throughput.

6 Conclusions

SMT processor is a good option in embedded systems for its good cost-
performance trade-off. However, in SMT processors, the execute time of a thread
is unpredictable. The unpredictability is an undesirable feature in embedded sys-
tems. In order to apply SMT architecture to embedded processors, the problem
of performance unpredictability must be addressed.

In this paper, we propose a fetch policy called APP to control the performance
of HPT in SMT processors. APP switches between PHPT, ICOUNT and PLPT
according to the execution state of HPT, and implements predictable perfor-
mance for HPT. Simulation results show that when the target percentage is not
more than 70%, APP obtains a success rate of over 95%. For the failed cases,
maximum performance variance is less than 5%. After the target percentage
reaches 80%, SR will decline and MPV is 9.6% for the worst case.

APP is also compared with Cazorla policy, a noted mechanism to address the
problem of performance unpredictability in SMT processors. APP can achieve
predictable performance for HPT as effectively as Cazorla policy does. Further-
more, APP can more effectively make full use of shared resources to optimize
the performance of LPTs and overall throughput. Compared with Cazorla pol-
icy, overall throughput is increased by 4.9% on average and the performance of
LPTs is increased by 17.6%.

Acknowledgments. This work was supported by Natural Science Foundation
of China under grant number 61103011, 61170045 and 61202126.

References

1. Dehnavi, M.M., Hassanein, W.: A Clustered SMT Architecture for Scalable Em-
bedded Processors. In: Proc. PRWT 2006(2006)

2. Berekovic, M., Moch, S., Pirsch, P.: A scalable, clustered SMT processor for digital
signal processing. SIGARCH Computer Architecture News 32(3), 62–69

3. Radojkovic, P., Girbal, S., et al.: On the Evaluation of the Impact of Shared Re-
sources in Multithreaded COTS Processors in Time-Critical Environments. In: 7th
International Conference on High-Performance Embedded Architectures and Com-
pilers, Paris, France, January 23-25 (2012)

Achieving Predictable Performance in SMT Processors 197

4. Paolieri, M., Quiones, E., et al.: Hardware support for WCET analysis of hard
real-time multicore systems. In: ISCA 2009, pp. 57–68 (2009)

5. Ungerer, T., Cazorla, F.J., et al.: Multicore Execution of Hard Real-Time Appli-
cations Supporting Analyzability. IEEE Micro 30(5), 66–75 (2010)

6. Tullsen, D., Eggers, S., Levy, H.: Simultaneous multithreading: Maximizing on-
chip parallelism. In: Proceedings of the 22nd Annual International Symposium on
Computer Architecture, Santa Margherita Ligure, Italy, pp. 392–403 (June 1995)

7. Tullsen, D., Eggers, S., et al.: Exploiting choice: Instruction fetch and issue on
an implementable simultaneous multithreading processor. In: Proceedings of the
23rd Annual International Symposium on Computer Architecture, PA, USA, pp.
191–202 (May 1996)

8. Eggers, S.J., Emer, J., et al.: Simultaneous Multithreading: A Platform for next-
generation processors. IEEE Micro, 12–19 (September-October 1997)

9. Cazorla, F., Knijnenburg, P., et al.: QoS for high-performance SMT processors in
embedded systems. IEEE Micro. Special Issue on Embedded Systems 24(4), 24–31
(2004)

10. Cazorla, F., Knijnenburg, P., et al.: Architectural support for real-time task
scheduling in SMT processors. In: Proceedings of International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems, California, USA, pp.
166–176 (September 2005)

11. Cazorla, F.J., Knijnenburg, P.M.W., Sakellariou, R., Fernández, E., Ramı́rez,
A., Valero, M.: Feasibility of QoS for SMT. In: Danelutto, M., Vanneschi, M.,
Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 535–540. Springer, Hei-
delberg (2004)

12. Cazorla, F., Knijnenburg, P., et al.: Predictable performance in SMT processors.
In: Proceedings of ACM International Conference on Computing Frontiers, pp.
171–182 (April 2004)

13. Cazorla, F., et al.: Enabling SMT for Real-Time Embedded Systems. In: Proceed-
ings of the 12th European Signal Processing Conference (September 2004)

14. Sherwood, T., Calder, B.: Time varying behavior of programs, Tech. Report
UCSDCS99-630, University. of California (August 1999)

15. Tullsen, D.: Simulation and modeling of a simultaneous multithreading processor.
In: Proceedings of the 22nd Annual Computer Measurement Group Conference,
San Diego, CA, USA, pp. 819–828 (December 1996)

16. MediaBench II Benchmark, http://euler.slu.edu/~fritts/mediabench
17. The standard performance evaluation corporation, WWW cite:

http://www.specbench.org

http://euler.slu.edu/~fritts/mediabench
http://www.specbench.org

Reconfigurable Many-Core Processor

with Cache Coherence

Xing Han, Jiang Jiang, Yuzhuo Fu, and Chang Wang

School of Microelectronics, Shanghai Jiao Tong University
http://icat.sjtu.edu.cn

Abstract. As the number of cores integrated on one processor increases,
the cost of on-chip communication becomes more expensive, includ-
ing the latency and the load on links. This also limits the utilization
of the many-core processor. This paper describes a virtual computing
group(VCG) model to improve the utilization of the computing resources
on NoC-based many-core processor. Each VCG can be reconfigured into
different size and topology before the program starts. The token protocol
for cache coherence is adopted to improve the performance of memory
accessing. Modifications to Token protocol are made to support cache
coherence in the local VCG only, which lightens the communication
penalty on a large NoC. We implement this reconfigurable system in
Gem5 simulator, and the simulation result proves the improvement of
the performance.

Keywords: Reconfiguration, Many-core, Cache Coherence, VCG, Par-
allel Library.

1 Introduction

A current trend for microprocessor is the many-core processor which integrates
a great quantity of cores onto one single chip to supply high parallel computing
ability. Tilera announced its first many-core processor Tile64[4] in 2007, followed
by the Single-chip Cloud Computer(SCC)[1] from Intel in 2009. These serials
of processors contains tens to hundreds of cores, using network-on-chip(NoC)
as their interconnection. The report of ITRS2011[7] shows that the number of
cores per chip increases at the speed of 1.4x each year, and predicts that more
than one hundred cores will be integrated on one processor by the year 2016 in
SoC design. Although some researches, such as TRIPS[13], put a lot of efforts
in processing element(PE) design to make the best use of each computing com-
ponents, the researches on many-core processors nowadays usually focus on two
aspects: interconnection and memory hierarchy.

In the single-core and even some multi-core processors, bus is the most com-
monly used interconnection among processing cores. However, as the number of
cores increases, the exclusive accessing to bus becomes the bottleneck for data
exchanging. Some other interconnections are designed to reduce communica-
tion latency, such as crossbar and NoC. Compared to crossbar, NoC has higher

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 198–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://icat.sjtu.edu.cn

Reconfigurable Many-Core Processor with Cache Coherence 199

accessing latency, but it need fewer physical links and is much easier for extend-
ing. A lot of researches are made to improve the performance of NoC in the
past two decades, which cover topology designing and link optimization, such
as application-specific NoC design from Xu[16], 3D NoC from Xie[17], and link
addition and removal from Jiao[8]. Some other researches focused on avoiding
deadlock for some specified NoC topology, which are mainly based on the theory
of William Dally[3], such as routing algorithms on Torus[15]. For NoC, the Mesh
topology is the most used in research.

Memory hierarch is another aspect to be considered in many-core processors.
In multi-core processors, cache is widely used to reduce the penalty for mem-
ory accessing. Using of cache introduces the coherence problem, which could be
easily solved in the system using bus as inter-core connection. Protocols, snoopy
for example, could work effectively and correctly under this situation. However,
in the environment of NUMA architecture, coherence protocols like Directory
Protocol or Token Protocol are more complex. More interactions should be done
to keep the cache data synchronized. And also, while the number of core in-
creases, the performance of coherence protocol decreases dramatically, which is
called Coherence Wall[9]. Tilera modified the Directory protocol, allowing to mi-
grate the cache data to the nearby directory controller[4], and Ros introduced
a Di-Co protocol[12] to reduce the latency in directory querying. SCC uses a
genius cache tactic to avoid this problem, dividing memory space into private
and shared one[1].

With such a great quantity of cores on chip, how to improve the utilization of
many-core processor is a sharp problem due to the reasons mentioned above. In
fact, many parallel programs require different computing resources in each pe-
riod, such like Fork-Join and Map-Reduce Model. Partitioning, which is widely
used in MPP system, is now introduced into many-core gradually. Computing
resources in TRIPS[13] are divided into four parts statically, and SCC can run
like a MPP on chip with hardware support of MPI[1]. Tile64 introduced the Mul-
ticore Hardwall[4] to supply protection domains on the network, which disallow
the outbound traffics and an interrupt will be generated to the system software
once outbound transmission happens. Any way, partitioning from the traditional
MPP system provides a new way to make good use of many-core processor.

In this paper, we introduce the reconfigurable Virtual Computing Group(VCG)
to improve the utilization of many-core processor. A adapted cache protocol
based on Token Protocol could supply cache coherence in the local VCG only.
This mechanism could reduce both the penalty of memory accessing and the
load on links, as showed in our simulation with Gem5.

2 Motivation and Background

2.1 Phase in Parallel Programs

As mentioned above, many parallel programs have different phases while run-
ning. A further example is the Strassen Matrix Multiplication algorithm[5], as
is shown in Figure 1 taken from Vydyanathan’s work[14]. Each cycle marked

200 X. Han et al.

with + or * stands for a ADD or MULTI operation to the sub-matrix and could
be design as one single thread. The arrows stands for the control dependency
between two threads. Any threads with control dependency satisfied could run
in parallel.

+

SOURCE

- - + + +

*

- + - +

* * * * * *

+ + + + + +

- -

SINK

Fig. 1. Strassen Matrix Multiplication(From Vydyanathan)

Generally speaking, we could group all the threads into several phases ac-
cording to the control dependency among them. However, the threads without
control dependency may have shared data accessing, and we call this communi-
cation dependency. We could use the communication dependency as directives to
map the threads onto many-core processor for a better performance. In another
word, the communication dependency could, somehow, impact the positions of
each thread on the chip.

Finally, the parallel program could be reorganized into phases, and each phase
contains different number of threads. When we map one phase onto the many-
core processor, it forms a VCG. VCG is the basic unit of computing resources
in our reconfigurable many-core architecture.

2.2 Reconfiguration in Many-Core Processors

In the typical many-core architecture shown in Figure 2, different processes could
run on the many-core processor at the same time. The bolded gray boxes are
the VCGs in section 2.1. The cache coherence messages and the communications
among the cores may be broadcasted to all the nodes on Mesh. This will intro-
duce unnecessary communication and latency, which will enlarge the penalty of
memory accessing. For this, partitioning becomes necessary for a large many-core
processor. However, statically partitioning, as is used in TRIPS, is less flexible
to fit different applications, especially our VCGs. To satisfy different kinds of
VCGs, the reconfigurable many-core processor should supply separated comput-
ing resources to each VCG, either in a logical or in a physical way. For NoC,
using subnet could solve this problem. Blocking the communications on some
specified links will make the VCG separated from any other. However, for some
irregular topology, it is difficult to implement a dead-lock free routing algorithm

Reconfigurable Many-Core Processor with Cache Coherence 201

PE

PE

PE

PE

R

R

R

R

PE PE PE

PEPE PE

PE PE PE

PE PE PE

PE

PE

PE

PE

R R R

R

R

RRR

R R

RR

R

R

R

R

PE

R

PE PE PE PE

R R R R

Fig. 2. VCGs on Many-Core Processor

supplying the shortest path, so supply subnet in a logical way is much more
reasonable.

If we want to break the Coherence Wall on the many-core processor, we have
to reduce the penalty in synchronizing the data in each cache controller. The
mechanism of sharing memory without cache in Intel SCC shows us a reasonable
way to solve this. We could supply cache coherence in the VCG only, for one
process will never exceed the range of its VCG. Due to this, we have to imple-
ment a reconfigurable cache coherence for a dynamic region on the many-core
processor. In a small region, such as one separated VCG or a small Mesh, Token
protocol has higher performance than Directory protocol[11], and its character
of using broadcasting makes reconfiguration much more convenient.

3 Reconfigurable Design for Many-Core

3.1 Overview

The structure of reconfigurable many-core processor covers both software library
and hardware support, as is shown in Figure 3. The library is an interface for
the upper programmers to reconfigure the hardware, and also maps each VCG
onto one subnet.

The software library is wrapped from the parallel library pthread with our
thread scheduler. It supplies a programming model which takes the threads and
dependency information as input and generates phases of the program. Then
the library requests the computing resources needed and maps the first phase
onto these cores, according to the data dependency, of course. At the end of
each phase, the scheduler adjusts the resources and maps a new phase. In this
way, all the phases executes in order. In order to speedup the phase switching,
any thread in the following phase could be executed if and only if all the control
dependencies are satisfied.

Another important job for the scheduler is configuring the hardware including
NoC and cache coherence protocol. While mapping a phase, a VCG is generated.
The computing resources specified for the VCG will be organized into one subnet,

202 X. Han et al.

Software

Hardware

User
Code

ViMaC
Lib

VCG VCG VCG

NoC

SubNet SubNet SubNet

Cache

Fig. 3. Structure of Reconfigurable Many-Core Processor

on which the cache coherence protocol will be set to work locally. This means the
information of subnet should be passed to the hardware. And the cache protocol
running on the local region also takes much less penalties. These mechanisms
will be introduced in the following sections.

3.2 Reconfigurable Subnet Design

The idea of separating a subnet is not novel. We just cut off the traffics at
the edge of the subnet. However, considering the design of deadlock-free rout-
ing algorithm, as mentioned in section 2.2, we use a physical subnet to cover
the logical one. The logical subnet is a subnet managing the same computing
resources with its VCG. According to the requirement of the application, the
logical subnet may have different topologies , even not a regular mesh.

Let us consider about the VCG at bottom right in Figure 2. It seems rea-
sonable to divide the subnet directly from the whole mesh, but the XY routing
can’t work on such an irregular topology. Using Turning Model or virtual chan-
nels does work, but we make a tradeoff under this situation. We use a regular
mesh to cover the logical subnet, which is called physical subnet and is used to
supply routing path for the logical subnet. We do leak some communications to
the other VCGs, but we can make XY routing work with irregular subnet.

Another aspect to consider is the broadcast, which is used a lot in Token
protocol. When any device, such as a cache controller, sends a broadcast request,
the message should pass the Network Interface(NI) before going into the router.
A set of configuration registers in NI, which could be reconfigured, stores the
nodes belonging to the same subnet in the form of bitmap. When a broadcast
message comes in, the address in this message will be masked with this register.
The destinations not in the same subnet will be discarded. And then, the message
will be routed as it used to be. In each router on its journey, the router computes
whether it need to be duplicated according to the destinations. If yes, the flit
will be duplicated into several copies and be sent to correct directions.

By now, we restrict the network messages into the local subnet. However, if
we simply use the Token protocol on it, some caches may never finish their cache
request because of lacking of tokens.

Reconfigurable Many-Core Processor with Cache Coherence 203

3.3 Reconfigurable Cache Coherence Protocol Design

Cache coherence protocol is an important component in our works. For the rea-
son we mentioned in section 2.2, we will build our cache protocol based on Token
protocol. Based on Token protocol, we make the necessary modifications so that
the protocol could work locally on a reconfigurable Mesh topology. We maintain
the cache coherence in the VCG, because the VCG belongs to one process only.
The synchronization between two processes should work in a explicit way, under
the programmer’s control.

The typical Token protocol[11] maintains the coherence according to the num-
ber of tokens possessed. For a many-core processor with N tokens for each cache
line, there is one among these N tokens called OWNER token, and the others
are SHARER tokens. Only the node possessing all the tokens has permission
to write data to cache line. The nodes having no token could not write or read
the cache line. And so, if one node wants to update the data in its cache, it
must broadcast a request GETX to get all the token for this cache line. Then
any other node could send a broadcast GETS to get a SHARED token from the
node possessing more than one token.

The cache in our many-core system contains private L1 cache, shared L2 cache
and shared directory controller, which is also the basic structure in Gem5 simu-
lator. With the help of subnet, we could avoid the modifications to the broadcast
mechanism in L1 cache controller. In order to supply separated cache coherence
in different VCG or subnet, the shared L2 cache and directory controller should
distinguish the entries according to the subnet id. We extended the cache lines
in L2 and directory, adding a subnet domain in it to distinguish one subnet from
the other, which means we maintain one set of tokens for each subnet. In this
way, each subnet maintains its own coherence protocol.

NoC

Directory
Controller

L2
Cache

L1
Cache

NI NI

NI

L1
Cache

NI

L1
Cache

NI

L1
Cache

NI

Set
SubNetID

OUT

IN

Remove
SubNetID

CPU CPU CPU CPU

Memory
Controller

Fig. 4. Reconfigurable Cache Coherence Protocol

As shown in Figure 4, when one L1 cache controller broadcast a GETX, the
address of this message will be masked in NI, so the broadcast will be restricted
into the local VCG. A tag will also be attached in this NI, which stores the sub-
net id. If the right copy of the requested data exists in another L1 cache, that L1

204 X. Han et al.

cache will send its data with all the tokens to the requestor. The subnet id will be
removed before entering the requestor. So far, one cache request succeeds. Under
this situation, caches works the way it used to be.

However, if any of the L2 cache and directory controller, which are shared by
all the L1 cache, having the requested data, things become different. Taking L2
cache controller for example, when the message GETX from subnet A arrives,

– if L2 cache has no cache line marked as subnet A for requested address, it
forward the request to directory controller. The subnet id tag in the request
message will be reserved so that the directory controller could return the
data and token to the requestor correctly. Then directory controller will lose
the tokens of subnet A only.

– if L2 cache has the cache line for requested address and it is marked with
subnet A, L2 cache will send all the tokens and switch the cache line state into
INVALID. Other cache lines not marked as subnet A will not be influenced,
even the cache line address matches the request message.

In any of these two cases, the requestor could get the tokens it need, and so the
cache request succeeds.

We shows one possible cache request above, and all the cache controllers works
in a similar way for any other requests. The key point is that the subnet id tag
in the request should be reserved in L2 cache controller and directory controller,
so that the shared components could know which subnet the current request is
in and which cache line it should operate on.

When the VCG is reconfigured, the new cache protocol may crash because
nodes newly added bring in some tokens and the nodes removed also carry out
some. So when one VCG need to be reconfigured, a message will be broadcasted
to the whole subnet and all the cache lines are locked. Then all the tokens will
be returned back to the shared nodes such as L2 cache controller and directory
controller, depending on which has the OWNER token for each cache line. For
the cache data in the same VCG keep synchronized all the time, cache data is
not necessary to be sent back in most cases, except the cache data marked with
dirty on the L1 cache. So the L1 cache could write back the dirty data only.

4 Simulation

4.1 Simulation Platform

We verify our reconfigurable many-core system on the Gem5 simulator[2]. Gem5
has a cycle-accurate components for memory hierarchy simulation called Ruby,
which is also one popular plugin for memory system in SIMICS with GEMS.
Gem5 also supply the SLICC language to describe the cache coherence proto-
col and a well designed Token protocol. Ruby supplies the Mesh topology we
need, with two kinds of router architecture which are fixed-pipeline and flexible-
pipeline.

Reconfigurable Many-Core Processor with Cache Coherence 205

In our works, we modified the structure of NI in Gem5 to support subnet
with fixed-pipelined Mesh topology. The broadcast packet will be duplicated
into multiple copies in NI and then be sent to each node in original Gem5. We
modified this mechanism and implement this in a multicast way. The flits are
duplicated when needed only. Because the duplication of flits happens in the
router, the pipeline in the router should be stalled while duplicating. And also,
the deadlock should be avoid during the broadcast, which is deeply discussed in
Lin’s works[10].

For the cache coherence protocol, we modified the structure of cache entry as
described above, and some necessary messages such as token collecting message
during the reconfiguration.

4.2 Simulation Results

In our simulation, we take MiBench[6] form University of Michigan. MiBench has
five serials of benchmarks, including automotive, consumers, security, telecom
and network. The programs we select from the MiBench are listed below, covering
the situations with the character of either computing or memory accessing. The
inputs of these benchmarks are supplied with the source code.

– fft: Discrete fast fourier transforms on an long array;
– dijakstra Find the shortest path for each node on a graphic with 100 nodes;
– qsort: Quicksort on the strings, stored in a 1536KB file;
– sha: A hashing algorithm on a 3172KB file;
– jpeg: The image compressing algorithm on a 192KB picture.

In order to get the real performance of each kind of benchmarks, we run each
programon the many-core system to get the latency of memory accessing and
the network load, with the simulation parameters listed in Table 1. We choose
ALPHA because it has a simple architecture and has a better simulating speed.
The latencies of accessing memory controller and directory controller are default
values in Gem5.

Table 1. Simulation Parameters

Parameters Values

Topology 4 × 4 Mesh

CPU Type ALPHA

System clock 2GHz

L1 Cache 16KB for data cache and
instruction cache each

L2 Cache 2MB with 8-way set associate

Cache Line 64 Bytes

Memory controller Latency of 5 Cycles

Directory controller Latency of 12 Cycles

206 X. Han et al.

-0.001
0.004
0.009
0.014
0.019
0.024
0.029
0.034
0.039

dijakstra jpeg qsort sha fft
Original Many-core Reconfigurable Many-core

Fig. 5. Average Link Utilization(flits per cycle)

In our experiments, we aim to evaluate the average link utilization and the
cache request latency for the five benchmarks.

The average link utilization results are listed in Figure 5. The statistics show
that link loads on the many-core drop 50% because VCGs on many-core could
reduce a lot of broadcast messages of Token coherence protocol. The SHA bench-
mark has the lowest link load, which are 0.000375677 flits per cycle for original
and 0.000155677 flits per cycle for reconfigurable many-core, because the com-
puting of hashing takes much more CPU cycles for each memory access, and the
cache miss happens about only once for each block of size. Benchmarks such as
fft and qsort have much heavier link loads because little computing is needed for
each memory access.

Table 2. Latency for each stage on the many-core(in Cycles)

Benchmarks Network NI Queueing Average

dijakstra 21.1538 10.754 31.9077

dijakstra(VCG) 19.7205 3.13783 22.8584

jpeg 21.2268 10.8176 32.0444

jpeg(VCG) 19.7669 3.08165 22.8486

qsort 21.0818 10.5155 31.5973

qsort(VCG) 19.5559 2.9968 22.5527

sha 20.8703 10.808 31.6783

sha(VCG) 19.3075 2.87522 22.1827

fft 21.4747 10.7725 32.2472

fft(VCG) 20.108 3.10057 23.2086

The results of cache request latency do not drops so much as the average link
utilization. From Table 2, we could find out that the latency for queueing at NI
drops a lot, while the network latency drops less. Using the VCGs on many-core
processor restricts range of broadcasting and this reduced a lot of flit copying.
This introduces much less stalls in the pipeline of the NoC, which means that
the flits queueing at NI will be sent in time. The average network latency drops

Reconfigurable Many-Core Processor with Cache Coherence 207

because VCGs restrict the broadcast into a local subnet on Mesh and a request
over the whole chip never happens.

5 Conclusion

In this paper, we proposed a reconfigurable many-core system with a reconfig-
urable cache coherence in it. VCGs in the many-core system could partition a
large many-core into small ones dynamically, according to the requirements of
the applications. Each process is mapped to one single VCG, so we do not need
to maintain the cache coherence among the VCGs. However, the area of a VCG
is variable, so we design a cache coherence protocol over a dynamic subnet, based
on the Token protocol. The simulation result on the Gem5 simulator shows that
the reconfigurable many-core system could reduce the latency of cache request
and the load on the links.

References

1. Baron, M.: The single-chip cloud computer - intel networks 48 pentiums on a chip.
Microprocessor Report (2010)

2. Binkert, N.: The gem5 simulator. SIGARCH Computer Architecture News 39(2)
(2011)

3. Dally, W., Seitz, C.: Deadlock free message routing in multiprocessor interconnec-
tion networks (1985)

4. David, W.: On-chip interconnection architecture of the tile processor. Micro 27(5)
(2007)

5. Golub, G.H., Loan, C.F.V.: Matrix computations, 3rd edn. Johns Hopkins Univer-
sity Press (1996)

6. Guthaus, M.R.: MiBench: A free, commercially representative embedded bench-
mark suite. In: IEEE 4th Annual Workshop on Workload Characterization (2001)

7. ITRS2011, International technology roadmap for semiconductors: System drivers
(2011)

8. Jiao, J., Fu, Y.: Multi-application specified link removal strategy for network on
chip. In: Fourth International Joint Conference (2011)

9. Kumar, R., Mattson, T., Pokam, G., van der Wijngaart, R.: The case for message
passing on many-core chips

10. Lin, X., McKinley, P.K., Ni, L.M.: Deadlock-free multicast wormhole routing in 2d
mesh multicomputers (1992)

11. Martin, M.: Token Coherence. University of Wisconsin-Madison (2003)
12. Ros, A.: A direct coherence protocol for many-core chip multiprocessors. IEEE

Transactions on Parallel and Distributed Systems 21(12) (2010)
13. Sankaralingam, K.: The distributed microarchitecture of the trips prototype pro-

cessor. In: 39th International Symposium on Microarchitecture (2006)
14. Vydyanathan, N., Krishnamoorthy, S., Sabin, G.: An integrated approach for pro-

cessor allocation and scheduling of mixed-parallel applications. In: ICPP (2006)
15. Wu, C.: Design and simulation of a torus structure and route algorithm for network

on chip. In: 7th International Conference (2007)
16. Xu, J., Wolf, W.: A design methodology for application-specific network-on-chip.

ACM Transaction on Embedded Computing System 5(2) (2005)
17. Ye, Y., Xie, Y.: 3d optical networks-on-chip (noc) for multiprocessor systems-on-

chip (mpsoc). In: 3D System Integration 2009, 3 DIC (2009)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 208–217, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Backhaul-Route Pre-Configuration Mechanism
for Delay Optimization in NoCs

Xiantuo Tang, Feng Wang, Zuocheng Xing, and Qinglin Wang

School of Computer, National University of Defense Technology,
410073, Changsha, Hunan, China
tangxiantuo@nudt.edu.cn

Abstract. The paper proposes a backhaul-route pre-configuration mechanism
(BRPCM) for the round-trip communication pattern, which is suited for the
backhaul packets traversal. With previous communication patterns, BRPCM
pre-configures a converse crossbar connection creating backhaul-route within a
single router during the previous flits traversal. Combining with appropriate
route reuse and termination mechanism, the subsequent packets satisfied with
the comparative conditions are expected to reuse the backhaul-route and
directly forward to crossbar without SA stage, and hence to reduce the average
latency for packets traversal. Our evaluation with traces from Splash-2
Benchmark shows the average performance improvement for BRPCM can be
achieved by up to 53.5%, 40.1% and 16.4% respectively compared to the
BASE 、 BASE_LR 、 BASE_LR_SPC routers. Evaluated with synthetic
workload traffic, BRPCM shows performance improvement by up to 51.5%,
36.3% and 10.2% at most while compared to the BASE, BASE_LR and
BASE_LR_SPC router under the Uniform-random, Bit-reverse, Shuffle and
Transpose traffic mode at the low-load traffic.

Keywords: backhaul-route, round-trip communication, BRPCM, routing
transform mechanism.

1 Introduction

The rapid development of semiconductor technology has driven the chip design into
multi-core era, the constantly increasing number of cores on a single chip results in
the exacerbation of inter-core communication delay, which has become a dominated
performance bottleneck for multi-core system-on-chip. Aimed to such bottleneck, on-
chip networks (NoCs) is proposed and became an appealing solution for multi-core
system-on-chip [1][2][6][9]. Currently, multi-core system-on-chip must adopt
corresponding coherence protocol to maintain the consistency of shared data, on chip
communication is mostly responsible for the miss of reading and writing of shared
data, as well as maintaining the coherence protocol. When a node in multi-core
system-on-chip fails to read or write a shared data, the node must sends a read-request
or write-request packet to an appropriate node according to the coherence protocol
adopted. After the requested node receives the request packet, it performs the

 Backhaul-Route Pre-Configuration Mechanism for Delay Optimization in NoCs 209

requested operation and sends a corresponding read-reply or write-reply packet to the
original node in a certain probability, showing a round-trip communication pattern
between the request nodes and response nodes. Under such a kind of communication
pattern, a response packet is usually preceded by a request packet [3]. In this paper,
we assume that the request packets due to miss of reading or writing of shared data
are named source packets, while the response packets are called backhaul packets.

According to the coherence protocol adopted, source packets and backhaul packets
exist in pairs with a certain probability. Given certain Coherence protocol, the
proportion of backhaul packets is mainly determined by actual applications. Fig.1
shows the proportion of backhaul communication for eight actual applications in the
splash-2 [5] benchmark. Among these applications, the average proportion for
backhaul packets and backhaul flits is up to 22.7% and 59% respectively. Inspired by
it, the paper proposes a backhaul-route pre-configuration mechanism, i.e. BRPCM,
which is specially optimized for backhaul communication based on the original
optimization principles and trying to improve the backhaul communication
performance as well as the overall communication performance.

Fig. 1. Backhaul communication

2 Related Works

Traditionally, source packets and backhaul packets belonging to the round trip
communication pattern are regarded as a separate network traffic, which means that
such two packets can’t utilize related routing and arbitration information of each other
as they traverse on the network. Their average delay mainly depends on the average
number of hops for packets traversal and per-hop router delay.

The average number of hops mainly depends on router’s radix and the topology of
network as the scale of network is constant. Many researchers and organizations have
carried out a lot of works and proposed some effective techniques for on-chip networks
to reduce the average number of hops, such as high-radix router [7] and novel network
topology [8] for specific applications. Once the network scale and its topology have been
chosen, the average latency for packets traversal is mainly determined by per-hop router
delay. Several prior techniques have been proposed to reduce per-hop router delay. A
speculative virtual-channel router architecture [9] is introduced which optimistically
arbitrates for the crossbar switch in parallel with allocating an output virtual channel to
reduces 1 pipeline stage. Pseudo-Circuit [10] has proposed to bypass switch arbitration
by reusing the previous arbitration information to accelerate communication under

210 X. Tang et al.

repeated communication patterns. Hiroki Matsutani et al proposes a Prediction router
architecture [11] that predicts the output channel to be used by the next packet transfer
and speculatively completes the switch arbitration to reduce communication latency.
Robert Mullins et al presents a low-latency on-chip network router [12] which removes
control overheads (routing and arbitration logic) from the critical path in order to
minimize cycle-time and latency. Token flow control [13] allows packets to use tokens to
find routes along which intermediate nodes can be bypassed, and hence make the packets
bypass all nodes between their source and destination in the best case. Express Virtual
Channel (EVC) [14] enable packets to virtually bypass intermediate routers by forming
an express channel within a single dimension using latches in the intermediate routers,
thus minimizing per-hop router delay when packets keep traversing in the same
dimension.

3 Backhaul-Route Pre-Configuration Mechanism

As yet other low-latency router architecture, the key design goal of the proposed
BRPCM is to reduce communication delay by reusing backhaul-route preconfigured
in previous packets traversal. In this section, we firstly describe several general router
architectures widely used in on-chip interconnection networks, and then present our
BRPCM which enable the subsequent packets satisfied with the comparative
conditions to reuse partial intermediate route, and hence to improve communication
performance.

3.1 General Router Architecture

Fig.2 [6] illustrates a classical virtual-channel router, which includes five input ports
and five output ports respectively, supporting 4 VCs per input port. Each router is
composed of input VC buffers, routing unit, VC allocator, switch arbiter and 5*5
cross switch and so on. When a packet arrives at an input VC buffer of the router,

Fig. 2. Classical virtual-channel router

 Backhaul-Route Pre-Configuration Mechanism for Delay Optimization in NoCs 211

they must firstly perform the route computation to determine the output port to which
the packet can be forwarded. After the route computation, the packet requests an
available VC from the VC allocator. Once a route has been determined and a VC
allocated, each flit of the packet is forwarded over the VC by allocating a time slot on
the switch using the switch allocator and forwarding the flit to the appropriate output
unit during this time slot[6]. Finally, the output unit forwards the flit to the
downstream router, as shown in fig5(a).

A lookahead routing technique is introduced in [9], which removes the serialization
delay due to routing computation by determining the route of a packet one hop in
advance, and hence removing the control dependency between the routing
computation and VC allocation in order to perform them in parallel, as shown in
fig.5(b). Another well-known technique to reduce the number of pipeline stages in a
router is the speculative transfer, which optimistically arbitrates for the crossbar
switch in parallel with allocating an output virtual channel to reduce 1 pipeline stage.
Combined with the lookahead techniques, the router pipeline stage can be reduced to
only two cycles, as shown in fig.5(c).

3.2 Backhaul-Route Pre-Configuration

The main consideration of our proposed BRPCM is to trigger a converse connection
from an input port to an output port of crossbar within a single router as previous flits
traversal, which is expected to be reused by the subsequent backhaul packets and
other packets satisfied with the comparative conditions in the near future.

Fig. 3. Backhaul-route pre-configuration

A backhaul-route is defined as a converse crossbar connection from an input port
to an output port within a single router made by the switch arbiter using related
arbitration information of previous flits. Each flit traversal in a router can create a
backhaul-route after its switch arbitration, as shown in fig.3. To realize the backhaul-
route pre-configuration, we consider to setting up a backhaul-route registry at each
input port, which is used to hold the essential information of backhaul-route and
provide some necessary information for a simple comparison between the backhaul-
route and the routing information of incoming packets, as fig.4 shows.

Each backhaul-route registry contains three ingredients. backhaul_outport indicates the
output port of backhaul-route, which is corresponding to the input port of the crossbar
connection created by previous flits. When a flit establish a crossbar connection from an
input port to an output port by switch arbiter, put the number of input port write into the
backhaul_outport register at the corresponding input port. Since the first part of the switch
arbiter arbitrates the input VCs, each backhaul-route should hold an input VC number for
route pre-configuration. For simplicity, we consider to select a fixed VC, such as VC0,

212 X. Tang et al.

and put its number write into the backhaul_vc register of backhaul-route registry, so the
subsequent flits are expected to come to the VC0 in order to reuse the backhaul-route.
Meanwhile, the available VC0 has the higher priority to be allotted to incoming packets in
the VA stage. backhaul-valid is used to indicate whether the backhaul-route preconfigured
is valid currently.

Once a backhaul-route is pre-configured, the backhaul-route remains connected
unless there is another recent backhaul-route conflicting with the backhaul-route. If
the backhaul-route is connected, it is ready to send flits directly to the crossbar switch
without SA stage.

3.3 Backhaul-Route Reuse

In order to judge whether the flit can traverse the backhaul-route, the router needs to
compare the routing information of incoming flit with the backhaul-route information.
To implement it, we plan to setup a simple comparator combined with backhaul-route
registry at each input port, as shown in fig.4.

Fig. 4. Backhaul-route Comparator logic

The comparator performs a simple comparison between the routing information of
incoming flits and the backhaul-route. If it asserts a matching signal, the flit can
traverse the backhaul-route, and hence to bypass SA stage, as shown in fig.5(d).
Otherwise, the flit must experience the original pipeline stages as fig.5(c) shows. It is
well-known that the routing information is always carried by header flits, once the
header flit has matching routing information with the backhaul-route, the following
flits coming to the same VC can bypass SA until the backhaul-route is terminated.

Since the comparison of backhaul-route reuse is in parallel with the VC allocation,
no additional delay is required in VA for current flit traversal. Therefore, BRPCM has
no additional overhead in delay analysis. Meanwhile, the area overhead of the logic is
very small compared to the other router control logical, we assume the hardware
overhead of BRPCM is negligible.

3.4 Backhaul-Route Termination

In order to avoid negative influences to the communication performance, it is
necessary to build a corresponding termination mechanism to terminate partial
backhaul-route in real time. There are three conditions for backhaul-route termination:

 Backhaul-Route Pre-Configuration Mechanism for Delay Optimization in NoCs 213

(1) If either the input port or the output port of backhaul-route is assigned to
another backhaul-route, the previous backhaul-route must be terminated because one
input or output port cannot have more than one backhaul-route.

(2) If another flit at the different input port claims the same output port with the
current backhaul-route, a new backhaul-route is created and the previous backhaul-
route must be terminated.

(3) If the downstream router connected to the output port is congested, the previous
backhaul-route must be terminated. Since the switch arbiter performs arbitration
based on the credit availability in the downstream routers, the backhaul-route
existence must guarantee credit availability of the corresponding output port.

As the updating and termination of backhaul-route is in parallel with crossbar
switch setup after switch allocation of previous flits, no additional delay is required in
SA for the current flit traversal. Meanwhile, backhaul-route termination does not need
any performance overhead on the network, which only disconnects crossbar switch
while clearing the valid bit at the corresponding backhaul-route registry. Once the
backhaul-route is terminated, no flit is accepted for the terminated backhaul-route
without SA because there is no backhaul-route.

Fig. 5. Router pipeline Stages

3.5 Routing Transform Mechanism

In order to reuse the backhaul-route for backhaul packets, we propose a routing
transform mechanism (RTM) to guarantee that a pairs of source packets and backhaul
packets take the same route if one packet’s destination is the other’s source, which
adopts different routing strategy according to the different type of packets. For
simplicity, if the incoming packet belongs to a source packet, adopts XY routing
strategy; while the incoming packet affiliates to a backhaul packet, the packet must
transform its routing strategy to ensure the backhaul packet to enter the same router as
source packet traversal, as shown in fig.6.

214 X. Tang et al.

Fig. 6. RTM

Fig.7 shows the influence of RTM on the communication performance normalizes
to XY routing strategy based on baseline router. As shown in figure, the average
variability of communication performance is less than 0.3% and can be negligible in
quantitative description, which implied that RTM has little impacts on the application
communication performance.

Fig. 7. The performance variability for RTM

4 Experiment and Performance Evaluation

In order to evaluate the communication performance of BRPCM, we implement the
proposed router architecture based on HS [15], as well as the classical virtual-channel
router (BASE), Look-ahead router (BASE_LR) and speculative router
(BASE_LR_SPC) architecture for comparison. Both routers are connected as an 8*8
2D mesh network in our simulation. To have a fair comparison, each routers have five
input/output ports, and adopt the deadlock-free XY routing strategy except for RTM.
In our simulation, we provide eight communication traces extracted from actual
applications by using the full system simulator GEMS. We also adopt the Uniform-
random, Bit-reverse, Shuffle and Transpose traffic mode for synthetic workloads.

Fig. 8. Backhaul-route reusability

 Backhaul-Route Pre-Configuration Mechanism for Delay Optimization in NoCs 215

Fig.8 shows the backhaul-route reusability in eight benchmark applications.
Backhaul-route reusability is defined as the percentage of flits reusing backhaul-route.
Among these applications, the application fmm shows the biggest reusability by up to
45.93%, and the average backhaul-route reusability is about 42.7%. Generally, the
higher backhaul-route reusability is, the greater communication performance
improvement is expected.

Fig.9 shows the average latency for packets traversal normalized to the BASE router.
As we can see from the figure, BRPCM router has the lowest latency compared to the
other three routers in all cases. Among these applications, the application fmm shows the
highest improvement by up to 54.7%, 41.6% and 18.1% due to the highest reusability
compared to BASE, BASE_LR and BASE_LR_SPC routers, while the average
communication performance improvement can be achieved up to 53.5%, 40.1% and
16.4%, respectively. The communication performance improvement of BRPCM is
mainly determined by the backhaul-route reusability of actual applications, which is very
sensitive to the backhaul communication characteristics of applications as well as the
injection rate of networks. BRPCM hardly reduces communication latency in high-load
traffic due to contentions between flits.

Fig. 9. Normalized latency comparison

Fig.10 shows the communication performance comparison for four kinds of router
architectures in the synthetic workload traffic. As shown in the figure, BRPCM router
performs better than other three routers at any traffic load before saturation in all
synthetic workload. At the low-load traffic, BRPCM router can achieved performance
improvement by up to 10.2%, 7.1%, 7.3% and 6% respectively under the Uniform-
random, Bit-reverse, Shuffle and Transpose traffic mode while compared to
BASE_LR_SPC router. When compared to the BASE and BASE_LR routers,
BRPCM router can achieved performance improvement by up to 51.5%, 48.3%,
49.2%, 47.9% and 36.3%, 32.5%, 33.5%, 31.4% respectively. It is expected that
uniform-random has less round-trip communication because the next packet can be
destined to any random destination. However, these two consecutive communications
may have a common path with the backhaul-route in dimension order routing
algorithms. Since BRPCM exploits backhaul-route reusability within a single router,
it can improve performance within the common path.

216 X. Tang et al.

(a)Uniform-random (b) Bit-reverse

(c) shuffle

(d) Transpose

Fig. 10. Performance comparison with synthetic workload traffic

5 Conclusion

The paper proposes a novel flow control mechanism, i.e. BRPCM which pre-
configures a corresponding backhaul-route as previous packets traversal to enable the
subsequent packets satisfied with the comparative conditions to bypass the SA stages,
and hence to improve communication performance. Our evaluation with traces from
Splash-2 Benchmark shows the average performance improvement for BRPCM can
be achieved up to 53.5%, 40.1% and 16.4% respectively compared to the BASE、
BASE_LR、BASE_LR_SPC routers. Evaluated with synthetic workload traffic,
BRPCM shows performance improvement by up to 51.5%, 36.3% and 10.2% at most
while compared to the BASE, BASE_LR and BASE_LR_SPC router under the
Uniform-random, Bit-reverse, Shuffle and Transpose traffic mode at the low-load
traffic. Note that, as the premise of backhaul-route pre-configuration and reuse is the
route of packets traversal without shifting with the network communication status,

 Backhaul-Route Pre-Configuration Mechanism for Delay Optimization in NoCs 217

BRPCM only applies to the deterministic routing strategy. Meanwhile, BRPCM can
hardly achieve communication performance improvement in high-load traffic due to
contentions between flits.

Acknowledgment. This paper is supported by the National High-Tech 863 Project of
China (2009AAOIZ102) and the National Natural Science Foundation of China
(60873016, 61170083).

References

1. Benini, L., de Micheli, G.: Networks on chips: A new SoC paradigm. IEEE
Computer 35(1), 70–78 (2002)

2. Goossens, K., et al.: Æthereal network on chip: Concepts, architectures, and
implementations. In: IEEE Des. and Test of Comp. (2005)

3. Fang, Z., Hallnor, E.G., et al.: Boomerang: Reducing Power Consumption of Response
Packets in NoCs with Minimal Performance Impact. IEEE Computer Architecture
Letters 9(2) (2010)

4. Martin, M.M.K., et al.: Multifacet’s general execution-driven multiprocessor simulator
(gems) toolset. SIGARCH Comput. Archit. News 33, 92–99 (2005)

5. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The Splash2 Programs:
Characterization and Methodological Considerations. In: Proceedings of the 22nd Annual
International Symposium on Computer Architecture, ISCA 1995 (1995)

6. Dally, W.J., Towles, B.: Principles and Practices of Interconnection Network. Morgan
Kaufmann, San Francisco (2004)

7. Kim, J., Dally, W.J., Towles, B., Gupta, A.K.: Microarchitecture of a High Radix Router.
In: 32nd Annual International Symposium on Computer Architecture, ISCA (2005)

8. Grot, B., Hestness, J., Keckler, S.W., Mutlu, O.: Express Cube Topologies for on-Chip
Interconnects. In: IEEE 15th International Symposium on High Performance Computer
Architecture, HPCA (2009)

9. Peh, L.-S., Dally, W.J.: A Delay Model and Speculative Architecture for Pipelined
Routers. In: Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, HPCA (2001)

10. Ahn, M., Kim, E.J.: Pseudo-Circuit: Accelerating Communication for On-Chip
Interconnection Networks. In: Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO (2010)

11. Matsutani, H., et al.: Prediction Router: A Low-Latency On-Chip Router Architecture with
Multiple Predictors. IEEE Transactions on Computers 60(6) (June 2011)

12. Mullins, R., West, A., Moore, S.: Low-Delay Virtual-Channel Routers for on-Chip
Networks. In: Proceedings of the 31st Annual International Symposium on Computer
Architecture, ISCA 2004 (2004)

13. Kumar, Peh, L.S., Jha, N.K.: Token Flow Control. In: 41st IEEE/ACM International
Symposium on Microarchitecture, MICRO 2008 (2008)

14. Kumar, Peh, L.-S., Kundu, P., Jha, N.K.: Express Virtual Channels: Towards the Ideal
Interconnection Fabric. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture, ISCA 2007 (2007)

15. Chen, Y., Xie, L., Li, J., Shi, Z., Zhang, M., Chen, X., Lu, Z.: A trace-driven hardware-
level simulator for the design and verification of network-on-chips. In: Proceedings of
International Conference on Computers, Communications, Control and Automation,
CCCA 2011 (2011)

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 218–227, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Novel CGRA Architecture and Mapping Algorithm
for Application Acceleration

Li Zhou, Hengzhu Liu, and Dongpei Liu

Institute of Microporcessor and Microelectronics, School of Computer,

National University of Defense Technology
410073 Changsha, Hunan, China

{zhouli06,hengzhuliu,liudongpei}@nudt.edu.cn

Abstract. Coarse grained reconfigurable array (CGRA) is an architecture which
offers hardware like high performance and software like flexibility. The two
characteristics make CGRA an effective candidate for computational intensive
applications. In this paper, we propose a novel cluster base CGRA architecture
which achieves high efficiency of CGRA. The reconfigurable processing
elements in CGRA clusters share complex function units and registers. Area is
reduced due to the resource sharing and the performance is improved. Besides,
an ant colony based mapping algorithm is proposed. Experiments show that the
cluster base CGRA outperforms some existing architectures in the efficiency;
the proposed mapping algorithm also outperforms other mapping heuristics.

Keywords: CGRA, cluster based architecture, resource sharing.

1 Introduction

As the rapid development of modern microelectronics, the number of transistors in a
microprocessor is increasing rapidly in recent years. Although the performance of
microprocessor has been improved, there are still some challenges for microprocessor
executing computational intensive applications. The microprocessor’s architecture
ensures the adequate flexibility for different tasks, but it has relative lower
performance than the application specific integrated circuit (ASIC). Due to
specialization of hardware unit, ASIC usually is more suitable for dedicated task.
However, the flexibility support of ASIC is poor. In some application domain such as
software defined radio (SDR), high performance is necessary because of complex
digital signal processing. Moreover, hardware platform requires a certain kind of
flexibility to sustain multiple wireless protocols. Neither microprocessor nor ASIC
can meet these requirements efficiently in the same time.

The coarse grained reconfigurable array (CGRA) is an architecture which the
function unit in it can be configured each cycle. Thus, CGRA can change its operation
to be performed easily. CGRA is a kind of reconfigurable computing, just like field
programmable gate array (FPGA). The context controlled function unit makes it

 A Novel CGRA Architecture and Mapping Algorithm for Application Acceleration 219

flexible enough for different applications. In another aspect, the configuration
granularity of CGRA is word level where FPGA is bit level. The coarse grained
characteristic improves the efficiency (both in computation capability and power) of
CGRA which lead to much higher performance than FPGA for executing operations.
The hardware like performance and software like flexibility in CGRA make it a
effective platform for SDR and other applications which require these two features.
However, there are still a gap between ASIC and CGRA. Design an efficient
architecture and adapt CGRA to a dedicated application is the key factor to improve
its performance.

In this paper, we present a novel cluster based CGRA architecture and a heuristic
mapping algorithm. The cluster based architecture has a better utilization of hardware
resource and more efficient. We also use heuristic based algorithm to explore
parallelism. The rest of this paper is organized as follows. Section 2 gives related
work of CGRA research. Section 3 shows the detailed cluster based CGRA
architecture. Section 4 describes the ant colony algorithm for CGRA mapping.
Section 5 presents the experimental evaluations, and Section 6 concludes the paper.

2 Related Work

The CGRA architecture becomes popular in about 10 years [1]. Several architectures
and techniques for CGRA have been studied. ADRES [2] is 2D mesh array tightly
coupled with VLIW processor. It uses share register for data communication.
However, the application running on the VLIW processor and the code accelerated on
CGRA can not be execute concurrently. DRRA [3] is an array of reconfigurable data
path units which connected by bus. Each data path unit has its own register file and to
minimize the movement of data. The bus in DRRA is locally connected and cannot be
used out of the range of 3 hops; this makes data communication inefficient and hard
to manage. SmartCell [4] is a CGRA for stream based application. It tiles many
simple microprocessors in single chip with multi-layered communication. The nodes
in SmartCell are microprocessors with instruction pipeline whose efficiency is lower
compared with function unit, similar to a many core architecture. EGRA [5] is a
template so that its function unit can be customized according to a dedicated
application. The specification of function unit will eventually loose flexibility in some
extent.

These CGRA architectures all have some drawbacks either in the data
communication or the efficiency of hardware. But they do have some inspiration for
us to design a new architecture. First, the shared register file for data communication
is more suitable than bus in the CGRA. It has less constraint when transferring data.
Second, the locally connected architecture has the benefit of minimized the movement
of data, which is an important factor for achieving high performance. Third, the
specification of function unit and processor like node are still a trade off between
performance and flexibility in CGRA, which need carefully consideration. The
aroused cluster based architecture we designed turned out to be a highly efficient
CGRA with performance improved. The novelty will be described in the following
section.

220 L. Zhou, H. Liu, and D. Liu

3 Cluster Base CGRA

3.1 Overview

The cluster based CGRA is composed of a number of reconfigurable clusters as
showed in Figure 1. A reconfigurable cluster consists of 4 generic PEs and 1 shared
PE. It is connected with neighboring clusters in 8 dimensions. Generic PE (GPE)
implements ordinary arithmetic and logic operations, it is a common PE which can be
used by all applications. GPE only have data communication within the cluster. The
shared PE (SPE) contains register file and LD/ST unit to retain intermediate result and
exchange data with external RAM. The most important feature of SPE is that the
function unit in SPE is usually complex and area consuming. Some special function
unit for application domain can also be place in SPE. The interconnection network of
intra cluster is managed by SPE.

PE PE

PE PE

SPE

PE PE

PE PE

SPE

PE PE

PE PE

SPE

PE PE

PE PE

SPE

...

...

...

...

Fig. 1. CGRA constructed by reconfigurable clusters

A SPE shared by several GPEs is appropriate for acceleration applications for two

reasons. First, a number of function units in CGRA are inactivated during execution.
Thus, some function units in the array are not necessary for all PEs. The hardware
overhead will be huge if complex hardware was added in all PEs. The hardware share
technique will lead to more efficient PE utilization. Second, the SPE ensures local
connectivity which is very important to enhance performance.

3.2 GPE Architecture

In our design, 4 generic PEs and 1 SPE construct a reconfigurable cluster. The GPE in
cluster is similar to most PE in existed CGRA. Figure 2 shows the detail architecture
of generic PE. A GPE is only connected to SPE inside the cluster. It gets data for

 A Novel CGRA Architecture and Mapping Algorithm for Application Acceleration 221

computing from SPE (port IN1 and IN2). Only ALU is enclosed in the generic PE's
function unit. All operations performed on ALU cost single cycle and the data path
width is 16 bit. Config word stored in SPE determines which operation to be executed
and where the 2 source operands from. Communication of GPE within the cluster is
done by shared register file in the SPE. Thus, there are no registers inside the GPE
and the connection network between GPE is not needed.

M1 M2

IN1
IN2

ALUConfig word
from SPE

Data to
SPE

Fig. 2. GPE architecture

3.3 SPE Architecture

Unlike GPE, complex operation units such as multiplier and other customized special
function unit can be implemented in the SPE. Detailed architecture of SPE is depicted
in Figure 3. MUL in SPE is fully pipelined so that we can start an operation at each
cycle. In order to exchange data with external RAM, LD/ST unit is also necessary for
SPE. This is distributed memory structure makes CGRA scalable and reduces
workload in the interconnect network.

Fig. 3. SPE architecture

SPE has a 64×16 register file for the intermediate storage. The input port for the
register file includes 7 parts: 4 data from generic PEs, input from other cluster, results
from MUL(2X16 bits) and LD/ST. Accordingly, the register file is divided into 7
subsets. Each subset can only be written by its corresponding data source in order to

222 L. Zhou, H. Liu, and D. Liu

avoid complex data permutation. Thus, there are 8 write ports for register file. Write
enable signals are generated according to all the destination operands indicated in
config word. The configuration register loads config word from context cache each
cycle which defines the behavior of whole reconfigurable cluster.

3.4 Configuration of CGRA

Table 1 lists the structure of config word for GPE. 19 bits are used to config a GPE.
ALU supports 16 types of arithmetic and logic operations including shift. The control
signal for multiplexer M1 and M2 choose source operands from 64 registers so that it
is 6 bit width. The destination register of ALU’s result is 3 bits; therefore each GPE
owns 8 registers in SPE which is sufficient for local intermediate storage.

Table 1. GPE configuration structure

Field Number of bits Meaning

OPR 2×6 Operand 1 and operands 2 selection
OPC 4 Operation to be executed
DST 3 Destination register index

Table 2 presents the structure of config word for SPE. 3 bits FUEN field indicates

whether to perform the multiply, load or store operation. There is 8-to-1 multiplexer
M5 to choose the input data from 8 neighboring clusters. Other multiplexers in SPE
all have 6 bit width control signal. Note that the output of MUL maybe more than
others so that there is 1 more bit in DST field for registers indexing.

Table 2. SPE configuration structure

Field Number of bits Meaning

OPR 4×6 Operands selection, 2 for MUL 2 for LD/ST
FUEN 3 Function units enable for MUL, LD and ST
IN 3 Input data selection
OUT 6 Output data selection
DST 4+3 Destination register index 4 bits for MUL, 3 bits for LD/ST

4 Mapping Algorithm for Cluster Based CGRA

4.1 Problem Definition

A kernel of applications is represented by the data acyclic graph (DAG):
G V E=< , > , where vertices v V∈ represent operations in the kernel. Each vertex

has an attribute ’type’ which indicates the category it belongs to (ALU or multiply
operation etc). The edge

1 2e v v E=< , >∈ represents the fact that operation
1v is

data-dependent on
1v . Given a target CGRA, we use a directed graph C P L=< , > to

 A Novel CGRA Architecture and Mapping Algorithm for Application Acceleration 223

represent the computation resource it contains. P is the set of PEs and the type of
operations which can be executed on PE p is denote by the set .p type . The edge

1 2l p p L=< , >∈ represents that
2p can use the result of

1p directly either through

connection network or register files. ()t v p, denotes the execution cycles of

operation v on PE p . We assume that the multi cycle PE is pipelined so that we can

start an operation each cycle. When mapping a DAG onto CGRA, the placement and
execution time of operations is concerned. So, two functions

vM V P: → ,

tM V N +: → is defined to represent the location and start time of operations. In

addition, intermediate PEs for routing an edge
1 2e v v E=< , >∈ are needed if

1 2() ()v vM v M v L< , >∈/ .

Given the definition of temporal mapping problems, ILP emerges as the preferred
method in obtaining the optimal answer. However, the mapping time is intolerable.
The technique used in loop pipelining on CGRA limits operations in a certain initial
interval and can not be applied to mapping DAG directly. So, a heuristic temporal
mapping algorithm is urgently needed for the problem.

4.2 Methodology

Ant colony optimization (ACO) is proved to be superior to genetic algorithms and
simulated annealing in scheduling problem. In the algorithm, ants are placed at start
point to construct their solutions step by step. At each step, there is a set of candidate
decisions which is ’visible’ to the ant, and one will be chosen according to
the ’visibility’ of these decisions. The measurement of ’visibility’ for a decision is
related to how good the decision can get. The more benefit a decision can get, the
higher probability will be defined for selecting the decision. This is the local heuristic.
Ants release pheromones after decision was made, which are used in the next
iteration. Pheromone is the global heuristic which prevents algorithm from falling into
local optimized result. The min-max ant colony system (MMAS) is a modification of
ant colony optimization. It only allows the ant which finds the best solution to release
pheromone in order to speed up the convergence procedure. It also limits the
pheromone within []min maxτ τ, to ensure enough exploration of algorithm.

In the CGRA mapping problems, the candidate decisions are denoted by a set
{ () }S s v p v V p P v type p type= = , | ∈ , ∈ , . ∈ . . Each ()i i is v p S= , ∈ means mapping

operation
iv onto PE

ip . The initial candidate set S is defined as:

{ () }S s v p v V v v E′ ′= = , | ∀ ∈ ,< , >∈/ (1)

Once a decision
is is selected, the candidate set will change accordingly. Equation

(1) shows that if all parents of an operation are mapped yet, then the operation and its
possible location should be added into candidate set. The set D denotes the decisions
that have been selected. D is initialized with Φ and updated by { }iD D s= ∪ each

time after
is is selected.

224 L. Zhou, H. Liu, and D. Liu

({ }) { () () }iS S s u v p v V v v E p P v p D′ ′ ′ ′ ′= / ∪ = , | ∀ ∈ ,< , >∈ ∃ ∈ , , ∈ (2)

At the d th step, the probability of choosing
is can be calculated by:

i i

i

j j

j

d s d s
d s

d s d s
s S

p
α β

α β

τ η
τ η

, ,
,

, ,
∈

⋅
=

⋅

(3)

where

id sτ , is the information left by ants in previous iterations,
id sη , is the

expectation of taking
is as decision at this step. α and β indicate the importance

of the global heuristic and local heuristic. After all ants end exploring, the
pheromones left on the road are updated by:

(1) ()
i i id s d s d st tτ ρτ τ, , ,+ = + Δ (4)

i i i i

min min max max
d s d s d s d sif ifτ τ τ τ τ τ τ τ, , , ,= < , = > (5)

where ρ indicates the evaporation factor of pheromone and 0

id sτ ,Δ ≠ only if the

choice of
is is included in the best solution.

The local heuristic
id sη , for a decision ()i i is v p= , is related to the earliest time

that
iv can be executed on

ip . The earlier it can be executed, the higher id sη , it will

get. It is calculated by the formula

1

()id s
istartTime s

η , = (6)

() max { () () (() ())}
i

i t v t i
v v E

startTime s M v t v p route M v M v p
′< , >∈

′ ′ ′ ′ ′= + , + , , (7)

The ()istartTime s is estimated according its parent operations’ execution time

()t v p′ ′, and the routing latency for delivering data from producer PE to ip . The

function (() ())v t iroute M v M v p′ ′, , finds routing PEs by maze route technique and

returns the path’s latency according to PE reservation table. It starts the breath first
search from the slot (() () () 1)v tM v M v t v p′ ′ ′ ′, + , − until a free slot of

ip is reached.

There may be conflicts for PEs when maze routing more than one data dependency of

iv . Thus, we ensure that the longer path is prior in using routing PEs when conflict

occurs to balance the length of paths as much as possible. The entire procedure is
depict in Algorithm 1

 A Novel CGRA Architecture and Mapping Algorithm for Application Acceleration 225

Algorithm1: MMAS for CGRA mapping

Initialize pheromones;
while exploration is not terminated
 for each ant
 Initialize PE occupy table;
 Initialize candidate set S using Eq.(1);
 while S is not empty
 for each node s in S
 Calculate the earliest start time of s using Eq.(7);

 end for
 Select a node to move onto according to Eq.(3);
 Update PE occupy table;
 Update candidate set S by Eq.(2);

end while
end for

Update pheromones and only the ant who found the best
solution release pheromone according to Eq.(4) and Eq.(5);
end while

All pheromones are initialized with a certain value. Then the algorithm takes

several iterations for exploration. In each step of the algorithm, ants in colony make
decisions step by step through local heuristic

id sη , and pheromones left by the ants of

last iteration. When a decision is selected, it is deemed as assigning an operation to a
certain PE. The routing PEs for data transfer is found while calculating the local
heuristic. Thus, each ant will construct a feasible mapping. After updating
pheromones several times, the algorithm will gradually converge to an optimized
solution. This methodology can be applied to optimize other metric of application
mapping such as power consumption by adjusting the way of estimation of local
heuristic.

5 Evaluation

We describe the CGRA in Verilog HDL and utilize Synopsys design compiler for
logical synthesis of the whole CGRA, Chartered 90nm CMOS technology was used
for standard cells. The total area of the array (without SRAM) composed of 4
reconfigurable clusters (16 PEs with 4 SPEs) is 1.82 mm2. If synthesized separately, a
single PE costs 0.056 mm2 and SPE costs 0.235 mm2. The maximal frequency of
CGRA is 667 MHz, note that the MUL is divided into 4 stages for pipelining so that
higher clock rate is achieved.

5.1 Experimental Setup

We choose the SDR as our target application domain to implements the CGRA.
Several frequently appeared kernels in various wireless digital signal processing

226 L. Zhou, H. Liu, and D. Liu

programmes were extracted for analysis. Number of operations in these kernels varies
from 78 to 1258. We also use the ant colony base algorithm to map data acyclic graph
of a kernel to the CGRA designed in section.

5.2 Results

Table 3 gives the comparison of cluster base CGRA with other existing architectures.
Hardware overhead and the execution performance of SDR kernels are concerned. We
can conclude from the results that cluster based CGRA architecture offers a good
computational performance with higher utilization of hardware resource. In the means
of efficiency, our architecture outperforms the other 2 CGRA because of the function
units sharing is sufficient for most applications. The shared register file in clusters
structure can reduce communication workload due to the locality of application which
will improve the performance of execution.

Table 3. Compare the cluster base CGRA to others

Architecture Description
Clock

frequency
(MHz)

Cycle
count

Area
(mm2)
SRAM

included

Efficiency
1/(latency×area)

Proposed
4 clusters, 16 GPE,

4 SPE
667 10021 2.05 32.5

SmartCell

64 PE connected in
mesh grid each PE

contains one
multiplier

295 2066 5 28.5

EGRA

A heterogeneous
customizable

CGRA template, 9
ALU , 4 multipliers,

2 memory access
unit

495 14180 1.14 30.6

Table 4. Compare the proposed mapping algorithm to other heuristics

Algorithm
Mapping
time (sec)

Cycle
count

Variance

Proposed 9663 5621 9.41
SA 10491 6037 9.63
GA 10537 5904 9.52

Table 4 shows the comparison of proposed mapping algorithm with other heuristic

method. The genetic algorithm (GA) and the simulated annealing (SA) are chosen for
comparison. The kernel we used is 1024-point fast Fourier transformation (FFT). To
evaluate them, we give the average cycle count each algorithm get and the variance
when the 3 algorithms runs 50 times.

Table 4 shows that proposed mapping algorithm has the least mapping time and
more robust compared with SA and GA. The better average cycle count indicates that

 A Novel CGRA Architecture and Mapping Algorithm for Application Acceleration 227

the proposed algorithm achieves a globally optimal result in more cases than SA and
GA. It is also more stable since it obtains a lower variance.

6 Conclusion

In the paper, cluster based CGRA architecture is presented with an ant colony based
mapping algorithm. This novel architecture is constructed by reconfigurable clusters.
It is highly efficient because of the sharing of complex function units which reduces
area while performance can be improved by utilization of locality to avoid long path
communication. This architecture is suitable for accelerating computational intensive
applications such as SDR and multi media. The cluster based CGRA outperforms
some existing CGRA architecture and shows better efficiency; the proposed mapping
algorithm also outperforms other mapping heuristics.

Acknowledgments. This work is supported by Research Fund for the Doctoral
Program of Higher Education of China (No. 20114307130003).

References

1. Compton, K., Hauck, S.: Reconfigurable computing: A survey of systems and software.
ACM Computing Surveys 34(2), 171–210 (2002)

2. Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.: ADRES: An Architecture
with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix. In:
Cheung, P.Y.K., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 61–67.
Springer, Heidelberg (2003)

3. Shami, M.A., Hemani, A.: Partially reconfigurable interconnection network for
dynamically reprogrammable resource array. In: IEEE 8th International Conference on
ASIC, pp. 122–125. IEEE Press, New York (2009)

4. Liang, C., Huang, X.: Mapping Parallel FFT Algorithm onto Smart-Cell Coarse-Grained
Reconfigurable Architecture. IEICE Transactions on Electronics E93-C(3), 407–415
(2010)

5. Ansaloni, G., Bonzini, P., Pozzi, L.: EGRA: A Coarse Grained Reconfigurable
Architectural Template. IEEE Transactions on Very Large Scale Intergration (VLSI)
Systems 19(6), 1062–1074 (2011)

Tunable Negative Differential Resistance

of Single-Electron Transistor Controlled
by Capacitance

Xiaobao Chen�, Zuocheng Xing, and Bingcai Sui

Institute of Microelectronics, School of Computer,
National University of Defense Technology, Changsha, Hunan, 410073, P.R. China

chenxb@nudt.edu.cn

Abstract. The characteristic of specifically tunable negative differen-
tial resistance (NDR) of single-electron transistor (SET) controlled by
capacitance which is noted accidentally in our experiment is studied in
this paper. Tunable NDR of SET controlled by single source, drain and
gate capacitances are simulated, respectively, then it is also done by con-
trolling more than one capacitance. From the simulation results, it is seen
that NDR of SET can be modulated by changing the value of capaci-
tance of SET. Moreover, the cause of the phenomenon of tunable NDR
of SET controlled by capacitance is given a qualitative analysis based on
macro model.

Keywords: tunable negative differential resistance, controlled by ca-
pacitance, tunneling rate, single-electron transistor.

1 Introduction

Single-electron transistor (SET) is a promising candidate owing to ultra-low
power and ultra-high density [1], and there is a very important phenomenon
which is negative differential resistance (NDR) in SET. Since C. P. Heij et al.
found the NDR characteristic in double-island SET for the first time in the year
of 1999 [2], there already exist many reports concerning exhibiting NDR in SET
[3,4,5]. In addition, Kousuke Miyaji et al. and Sejoon Lee et al. reported NDR in
SET with discrete quantum energy levels at room temperature, respectively [6,7].
At the same time, theoretical investigation about origin of NDR attracted some
attention, too [8,9]. However, there is scarcely any affecting factor investigation
and special utilization of NDR of SET and SET circuit, which is different from
a lot of characteristic researches and applications about NDR of metal-oxide-
semiconductor field-effect transistor (MOSFET) circuit [10,11].

In this paper, The specifically tunable NDR of SET controlled by capacitance
which is noted accidentally in our experiment is studied. Based on the existed
NDR characteristic in SET, tunable NDR of SET is investigated by adjusting the
value of capacitance of SET. Above all, the NDR of SET will show tremendous

� Corresponding author.

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 228–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Tunable NDR of SET Controlled by Capacitance 229

change when the value of the source, drain and gate capacitances is adjusted
seperately, and the NDR of SET shows prodigious variety when the value of
the source, drain and gate capacitance are adjusted at the same time, in a
word, it can be seen that NDR will be modulated by controlling capacitance in
SET. Then, the phenomenon of tunable NDR of SET controlled capacitance is
analyzed and discussed based on macro model. Finally, the conclusions of the
whole paper is given, and it is deduced that the tunable NDR of SET controlled
by capacitance can be very useful for fabrication and special application of SET.

(a) NDR of SET. Parameters are
CD=CS=CG=1aF, RS=RD =1MΩ,
T=4.2K, VGS=5.5VDS.

(b) Tunable NDR of SET controlled by
source capacitance.

(c) Tunable NDR of SET controlled by
drain capacitance.

(d) Tunable NDR of SET controlled by
gate capacitance.

Fig. 1. Tunable NDR of SET controlled by single capacitance

230 X. Chen, Z. Xing, and B. Sui

2 Tunable NDR of SET Controlled by Capacitance

We note that NDR of SET can be modulated specifically by changing the value
of capacitance of SET accidentally in our experiment. Based on the notice, we
study the phenomenon by changing the value of single source, drain or gate ca-
pacitance, respectively, and by changing two or all of these three capacitances
together. We study three ports SET, namely, back gate capacitance and resis-
tance are ignored to accord with general form of SET.

Fig. 1a shows NDR characteristic of pure SET in which the parameters are
CD=CS=CG=1aF, RS=RD =1MΩ, T=4.2K, VGS=5.5VDS according to our
preview research [9], where CD, CS , CG denote drain, source, gate capacitance,
RD, RS denote drain, source resistance, T denotes the temperature (in Kelvin),
VGS denotes the voltage between gate and source, VDS denotes voltage between
drain and soure, respectively. In this chart, there are two obvious segments of
NDR in the IDS − VDS line. Fig. 1b, fig. 1c and fig1. d show NDR can be
modulated by changing the value of single source, drain or gate capacitance
of SET, respectively. For the sake of convenience of comparison, all external
conditions except capacitance are invariable, namely, RS=RD =1MΩ, T=4.2K,
VGS=5.5VDS in the latter experiment, and the line with blcak solid circle denotes
drain source current IDS of SET which varies along with drain source voltage
VDS when CD=CS=CG=1aF in all charts.

Fig. 1b shows the change of NDR when source capacitance is adjusted solely. If
CS=0.5aF, the first NDR segment keep steadiness and the second NDR segment
become more obvious than that at CS=1aF. If CS=2aF, the first NDR segment
keep invariability and the second NDR segment disappears. If CS=4aF, the first
and second NDR segments vanish synchronously. In all, it is seen that NDR can
be modulated by changing the value of the source capacitance in SET.

The change of NDR is shown from Fig. 1c when drain capacitance is adjusted
solely. If CD=0.5aF, the first NDR segment keep steadiness and the second NDR
segment become more obvious than that at CD=1aF. If CD=2aF, the first NDR
segment keep invariability and the second NDR segment almost disappears. If
CD=4a, the first NDR segment keeps the shape all the same, while the sec-
ond NDR segment vanishes completely. Obviously, it is seen that NDR can be
modulated by changing the value of the source capacitance in SET, too.

In the same way, fig. 1d shows the change of NDR when gate capacitance is
modulated solely, If CG=0.5aF, these two NDR segments keep the same shape
while the region that they stand zoom in according to the same rate with the
value of 2. If CG=2aF and If CG=4aF, these two NDR segments also keep the
same shape while the region that they stand zoom in according to the same rate
with the value of 0.5, 0.25, respectively. It is shown from the chart that NDR
can be modulated by changing the value of the source capacitance in SET.

Fig. 2 shows NDR can be modulated when more than one of source, drain
and gate capacitances are adjusted synchronously. We simulate it with several
typical condition, in the figure, the open up-triangle line denotes the NDR of
SET when CS=CD=0.5aF,CG=1aF, the open square line denotes the NDR of
SET when CS=2aF,CD=0.5aF,CG=1aF, the open circle line denotes the NDR

Tunable NDR of SET Controlled by Capacitance 231

Fig. 2. Tunable NDR of SET controlled by more than one capacitance

of SET when CS=2aF,CD=1aF,CG=2aF, the open down-triangle line denotes
the NDR of SET when CS=4aF, CD=0.5aF,CG=1aF. The fore lines show that
the NDR of SET changes when more than one of capacitances alter. In all, it is
seen from Fig.1 and Fig.2 that NDR can be modulated by changing one of or
more than one of the source, drain and gate capacitances in SET.

3 Analysis and Discussion

Which factors do NDR of SET decide? Johann See et al. made theoretical in-
vestigation about origin of NDR and drew a conclusion that the tunneling rate
of electron leads to NDR in SET completely [8], he began with Schrodinger
equation and got to tunneling rate equation as follows:{

Γelec→Dot =
∑

εDot

2π
�
|M |2ρ(εDot)lεDot f(εDot)

ΓDot→elec =
∑

εDot

2π
�
|M |2ρ(εDot)gεDot

[1− f(εDot)]
(1)

However, the eq. (1) can not explain how the capacitance affects the NDR of
SET concretely. Therefore, we try to calculate the tunneling rate of electron in
SET and explain the phenomenon based on macro model of SET. The equivalent
circuit and macro model of SET are shown in the Fig. 3, according to orthodox
theory, namely, quantum kinetic energy and co-tunneling are ignored, a single-
electron tunneling in SET can happen only if a transition produces a negative
change in electrostatic energy, The tunneling rate Γ (ΔE) given by Eq. (2) [12]

Γ (ΔE) =
ΔE

e2RT (exp(ΔE/kβT)− 1)
(2)

232 X. Chen, Z. Xing, and B. Sui

(a) Equivalent circuit of SET. (b) Macro model of SET.

Fig. 3. Equivalent circuit and macro model of SET

where ΔE is free energy of electron tunnel, e, RT , kB and T are the electron
charge, junction resistance of SET, Boltzmann constant and the temperature
(in Kelvin), respectively. In these parameters, e, RT , kB and T are constants
generally and only ΔE is a variable, therefore, the tunneling rate Γ (ΔE) is
decided just by free energy of electron tunnel ΔE.

In the macro model of SET as Fig. 3b, free energy of four tunnel events can
be obtained (Eq. s (3)-(6)) based on orthodox theory of single electronics

Edi =
e

CΣ
[−(CS + CG)VDS + CGVGS − ne− e

2
] (3)

Eid =
e

CΣ
[(CS + CG)VDS − CGVGS + ne− e

2
] (4)

Eis =
e

CΣ
[−CDVDS − CGVGS + ne− e

2
] (5)

Esi =
e

CΣ
[CDVDS + CGVGS − ne− e

2
] (6)

where e is the electron charge, CΣ is the total capacitance of SET and CΣ =
CD +CS + CG(CB = 0), the initial electrons in island is Q0 = ne, and s, d and
i denote source, drain and island, respectively. From eq.s (3)-(6), it can be seen
that capacitances which include source, drain and gate capacitance is one of the
decision factors of free energy of electron tunnel ΔE.

Thus, it will be draw a conclusion that NDR can be modulated by changing
the value of capacitance in SET associated the proposition of Johann See with
our deduction. Furthermore, the fabrication of SET will be guided by the char-
acteristic of tunable NDR of SET controlled capacitance if it is necessary, and
the characteristic will be useful at special application such as multiple-valued
logic.

Tunable NDR of SET Controlled by Capacitance 233

4 Conclusion

This paper notes, simulates and analyzes tunable NDR of SET controlled by
capacitance, which is a new phenomenon of NDR of SET and noted accidentally
in our experiment. Tunable NDR of SET controlled by source, drain and gate
capacitance is simulated, respectively, then it is also done by controlling more
than one capacitance, the simulation results show that NDR of SET can be
modulated by changing the value of capacitance of SET. Based on these, we
explain and analyze the cause of the phenomenon elementarily based on macro
model . The simulation and analysis results indicate that NDR of SET can be
modulated by changing the value of capacitance of SET, which will be very
useful for the fabrication and special application such as multiple-valued logic of
SET.

Acknowledgments. This work was supported in part by the National Natural
Science Foundation of China (Grant No. 61170083), in part by the National
Science Foundation for Young Scientists of China (Grant No. 61106084), and
in part by the Ph.D. Programs Foundation of Ministry of Education of China
(Grant No. 20114307110001).

References

1. Likharev, K.K.: Single-Electron Devices and Their Applications. Proceedings of
the IEEE 87(4), 606–632 (1999)

2. Heij, C.P., Dixon, D.C., Hadley, P., Mooij, J.E.: Negative differential re-sistance
due to single-electron switching. Appl. Phys. Lett. 74, 1042–1044 (1999)

3. Lee, B.H., Jeong, Y.F.: A novel SET/MOSFET hybrid static memory cell design.
IEEE Trans. Nanotechnol. 3, 377–382 (2003)

4. George, H.C., Pierre, M., Jeh, X., Orlov, A.O., Sanquer, M., Snider, G.L.: Appli-
cation of negative differential conductance in Al/AlOX single-electron transistors
for background charge characterization. Appl. Phys. Lett. 96(4), 042114 (2010)

5. Kaasbjerg, K., Flensberg, K.: Image charge effects in single-molecule junctions:
Breaking of symmetries and negative-differential resistance in a benzene single-
electron transistor. Phys. Rev. B 84(11), 115457 (2011)

6. Miyaji, K., Saitoh, M.: Compact Analytical Model for Room-Temperature-
Operating Silicon Single-Electron Transistors With Discrete Quantum Energy Lev-
els. IEEE Trans. Nanotechnol. 5(1), 167–173 (2006)

7. Lee, S., Miyaji, K., Kobayashi, M., Hiramoto, T.: Extremely high flexibilities
of Coulomb blockade and negative differential conductance oscillations in room-
temperature-operating silicon single hole transistor. Appl. Phys. Lett. 92(7),
073502 (2008)

8. See, J., Dollfus, P., Galdin, S.: Theoretical Investigation of Negative Differential
Conductance Regime of Silicon Nanocrystal Single-Electron Devices. IEEE Trans.
on Electron Devices 53(5), 1268–1273 (2006)

9. Sui, B., Fang, L., Chi, Y., Zhang, C.: Analysis of negative differential conductance
of single-island single-electron transistors owing to Coulomb oscillations. IET Cir-
cuits Devices Syst. 4(5), 425–432 (2010)

234 X. Chen, Z. Xing, and B. Sui

10. Chen, S.L., Griffin, P.B., Plummer, J.D.: Negative Differential Resistance Circuit
Design and Memory Applications. IEEE Trans. on Electron Devices 56(4), 634–640
(2009)

11. Ramesh, A., Park, S.Y., Berger, P.R.: 90 nm 32×32 bit Tunneling SRAM Memory
Array With 0.5 ns Write Access Time, 1 ns Read Access Time and 0.5 V Operation.
IEEE Trans. on Electron Devices 58(10), 2432–2445 (2011)

12. Wasshuber, C.: Computational Single-electronics. Springer, New York (2001)
13. Mahapatra, S., Ionescu, A.M.: Realization of Multiple Valued Logic and Memory

by Hybrid SETMOS Architecture. IEEE Trans. Nanotechnol. 4(6), 705–714 (2005)
14. Gan, K.J., Tsai, C.S., Chen, Y.W., Yeh, W.K.: Voltage-controlled multiple-

valued logic design using negative differential resistance devices. Solid State Elec-
tron. 54(6), 1637–1640 (2010)

Modeling and Electrical Simulations of Thin-Film

Gated SOI Lateral PIN Photodetectors for High
Sensitivity and Speed Performances

Guoli Li, Yun Zeng�, Wei Hu, Yu Xia, and Wei Peng

School of Physics and Microelectronics Science, Hunan University,
Changsha 410082, People’s Republic of China

{yunzeng}@hnu.edu.cn

Abstract. Thin-film gated SOI lateral PIN (LPIN) photodetectors was
proposed, with ITO deposited on topside as transparent gate electrode.
This paper investigates performances of the photodetectors versus the
P-doping level in the intrinsic region (I-region), with gate voltage ap-
plied. We present analytical model and two-dimensional Atlas simula-
tions of the current characteristics, sensitivity and speed performance.
At a 400nm wavelength, the output photocurrent approximately reaches
the available photocurrent, the internal quantum efficiencies yield over
90%, even nearly 100% with various dopings. In terms of speed perfor-
mances, the total -3dB frequencies of the photodetectors are up to a few
tens of MHz with the intrinsic length of 8um. And dark currents as low
as 10−14A can give a high ratio of more than 107 between illuminated to
dark currents under low-voltage operation. With such advantageous elec-
trical characteristics, thin-film gated SOI LPIN photodetectros appear
highly suitable for optical storage systems and blue DVD applications.

Keywords: lateral PIN photodetector, SOI, intrinsic region, fully de-
pleted, P-doping.

1 Introduction

Fast and efficient photodetectors, with high sensitivity, responsivity, speed per-
formance and low dark current are increasingly required for short distance opti-
cal communications[1] and optical storage systems [2]. Thanks to the particular
silicon-on-insulator (SOI) structure and its advantages such as high-speed opera-
tion and low-power consumption, thin-film SOI integrated detectors are excellent
candidates to cope with these specifications. In 2005, Afzalian and Flander pro-
posed lateral PIN (LPIN) photodiodes fabricated on SOI structure in Ref.[3].
These diodes are indeed capable of high interest for short distance optical com-
munications [4], and achieve high responsivity and sensitivity with low dark

� This work has been supported by the National Natural Science Foundation of China
(No. 61040061), and Hunan Provincial Innovation Foundation for Postgraduate Stu-
dents of China (No. 11JJ2034).

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 235–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

236 G. Li et al.

current, low capacitance at short wavelengths [5][6]. However, photodetection
in PIN photodiodes is usually modeled considering pn junction with extended
depletion region thanks to the low doped region sandwiched between the highly
P- and N- doped regions. Under low-voltage operation and device parameters
of actual SOI CMOS processes, the intrinsic region (I-region), corresponding in
fact to a body P-doping, is not fully depleted and other phenomena have to be
taken into account like volume recombination and surface recombination. High
reverse voltage must be applied to make the I-region fully depleted, which is not
propitious to low-voltage operation, low-power consumption or microelectronic
integration for the small input resistance.

In order to address this issue, novel thin-film gated SOI LPIN photodetector
has firstly been proposed by Zeng et al., 2011 [7]. Based on standard SOI tech-
nology and CMOS process, the photodetector structure resembles lateral PIN
photodiode, but only with ITO deposited on the topside as transparent gate
electrode. In such device, voltage applied to the gate is assumed to make the
I-region fully depleted, achieve low carriers recombinations and efficient collec-
tion of photogenerated carriers. The device performances are optimized under
low-voltage operation. Practically, photodetectors are fabricated in different SOI
materials such as UNIBOND, SIMOX, ZMR, the I-region corresponds to var-
ious P-doping levels [8]. Here, the present paper investigates the influence of
P-doping in I-region on the ultimate performances of thin-film gated SOI LPIN
photodetectors, with gate voltage applied topside.

2 Model Description and Electrical Simulations

In our model, we consider the device parameters of 0.18um SOI CMOS pro-
cess, as the schematic cross-section of a thin-film gated SOI LPIN photodetector
shown in Fig.1. dSi, dox2 and dox1 are, respectively, the thin silicon film, the top
oxide and the buried oxide thicknesses, equal to 800nm, 30nm and 400nm. LPN ,

Fig. 1. Schematic cross-sectional view of a thin-film gated SOI LPIN photodetector

Electrical Simulations of Thin-Film Gated SOI Lateral PIN Photodetectors 237

the length of the contact N+ and P+ regions, is equal to 1um. There N+ and P+
dopings are both about 1020cm−3. Li, the length of the I-region, is equal to 8um.
Here, we consider photodetectors made on different SOI materials, the I-regions
correspond to various P-doping levels: 6×1014, 8×1014, 1×1015, 2×1015, 5×1015

and 1×1016cm−3. The dopings can greatly influence photocurrent and dark cur-
rent characteristics, sensitivity, and speed performances of the devices.

2.1 Phorocurrent

With a steady flow of photons incident on surface of the photodetector, the
source photocurrent, IS , can be given by [3]

IS = qΦ = q
Poptλ

�c
(1)

where Φ is the photon flux (= Poptλ/�c), Popt is the optical power, λ is the
incident wavelength.

Within the depletion region, we assume the quantum efficiency is unity. The
electron-hole generation rate along the y direction is:

G(y) = Φ0α exp(−αy) (2)

where α is the optical absorption coefficient, Φ0 is the incident photon flux per
unit area, given by (1 − R)Poptλ/A�c, R is the reflection coefficient, A is the
device area.

The available photocurrent for a monochromatic source can be obtained by

IA = −qW

∫ Li

0

∫ dSi

0

G(y)dydx (3)

Under steady-state conditions, the total photocurrent through the device is
given by

Itot = Idr + Idiff (4)

where Idr is the drift current due to carriers generated within the depletion
region and Idiff is the diffusion current due to carriers generated outside the
depletion region then diffusing and contributing to the total current. Here, the
total photocurrent Itot equals to the cathode current (Itot = Ik), related to the
carriers transport and dependent on the condition of the I-region.

Without gate voltage (VG), the I-region is partially depleted, carriers diffuse
with significant volume recombination outside the depletion region, and surface
recombination at the front and back oxide interfaces cannot be negligible. The
total photocurrent of Equ.(4) can be rewritten as

Itot(Li) = Idr(Lzd) + Idiff (L) � Idiff (L)− qW

∫ Lzd

0

∫ dSi

0

G(y)dydx (5)

238 G. Li et al.

where the current item Idiff (L) can be calculated in Ref.[4], and Lzd is the
length of the depletion region under reverse cathode voltage VK ,

Lzd =

√
2εSi

q
· (V0 + VK) · (NA +ND)

NA ·ND
�

√
2εSi

q
· (V0 + VK)

NA
(6)

where V0 is the built-in contact potential, NA, ND are the doping levels of the
I-region and the N+ region, respectively.

Fig. 2. Photocurrent versus gate voltage at λ = 400nm, Pin = 5W/cm2 and
VK = 0.1, 1.0V for the photodetectors corresponding to various P-doping levels: (a)
6× 1014, 8× 1014, 1× 1015cm−3; (b) 2× 1015, 5× 1015, 1× 1016cm−3.

Electrical Simulations of Thin-Film Gated SOI Lateral PIN Photodetectors 239

The depletion region widens with gate voltage applied. Until the I-region is
fully depleted, carriers drift across the whole I-region accelerated by the lateral
reverse-biased electric field. In this condition, the carriers recombinations can be
totally negligible, Idiff ≈ 0. Therefore the total photocurrent is dominated by
the drift current Idr and approximately equal to IA(Li).

Itot(Li) � Idr = IA(Li) = −qW

∫ Li

0

∫ dSi

0

G(y)dydx (7)

Two-dimensional (2-D) Atlas numerical measurements and electrical simula-
tions are performed to validate this model [10]. As shown in Fig.2, we present the
photocurrent characteristics with gate voltage for the photodetectors related to
different doping levels in the I-region. Since the carriers recombination term can
be very small for low doping levels, the majority of the photogenerated carriers
can be collected with VG = 0V , and a high value of the electrode photocur-
rent can be obtained as shown in Fig.2a. In comparison, there exists significant
carriers recombinations especially recombination in volume with doping levels
increasing, which leads to sharp decrease in the photocurrent under partially-
depleted conditions in Fig.2b.

Increasing with gate voltage, the output photocurrents of photodetectors can
achieve the maximum, approximately the value of the available photocurrent,
when the I-region is fully depleted and the carriers drift across the whole I-
region with the perfect collection. Also, it can be observed on the Atlas simu-
lation curves, the effect of cathode voltage on the photocurrent decreases with
doping level. Even for doping levels of 2× 1015, 5× 1015, and 1× 1016cm−3, the
photocurrent curves present obvious gate-controlled characteristics, with totally
negligible influence of the cathode.

2.2 Quantum Efficiency

One factor of merit for sensitivity is the quantum efficiency (QE). It is the
product of the internal quantum efficiency (QI) by the ratio of absorbed power
Pabs to total impinging power Pin

QE = QI · Pabs

Pin
(8)

the ratio(η = Pabs/Pin) strongly depends on dSi and the wavelenfth λ, represents
the maximum QE under reach.

For λ = 400nm and dSi greater than 1/α, all the light transmitted in thin
silicon film is almost absorbed before reaching the buried oxide layer, there is
no resonant cavity effect (RCE) in the SOI photodetectors [11]. Therefore, the
losses due to the reflection at the device surface dominate, we can get

η = (1−R) · (1− e−αdSi) (9)

Here, QI is defined as the ratio of the cathode photocurrent to the available
photocurrent. We perform measurements of QI between thin-film gated SOI

240 G. Li et al.

Fig. 3. Comparison of QI measured on gated and ungated SOI LPIN photodetectors
at VK = 0.1, 1.0V for P-doping levels of 6× 1014, 8× 1014, 1× 1015, 2× 1015, 5× 1015,
and 1× 1016cm−3.

LPIN photodetectors and the ungated, the evolution is illustrated in Fig.3. To
thin-film gated SOI LPIN photodetectors, the I-region can be fully depleted
with gate voltage applied to reduce carriers recombinations and make all the
charges collected. At VK = 0.1V and 1.0V , QI can both yield in excess of
90%, even approximately 100%. Contrastingly, the carriers recombinations of
the ungated photodetectors can significantly increase with doping level, which
makes QI decrease sharply, achieving just around 40% for doping of 1×1016cm−3

as shown.

2.3 Speed Performance

The speed performances depend on a trade-off between carriers transit time
frequency, ftr, and RC cut-off frequency, fRC .

Under partially-depleted condition, carriers transit is dominated by a slow
diffusion mechanism in the I-region, the related -3dB frequency is fdiff . As long
as the entire I-region is fully depleted with proper gate voltage applied, the
transit time limit is due to fast drift, with the related -3dB frequency, fdrift.
The -3dB frequency related to the total transit time (drift and diffusion) can be
obtained as [12]

ftr = (
1

fdrift
+

1

fdiff
)−1 (10)

Combined with the input impedance of the readout circuit, the photodetectors
also exhibit a capacitor which leads to a RC -3dB frequency, fRC . The capacitive

Electrical Simulations of Thin-Film Gated SOI Lateral PIN Photodetectors 241

component involved in fRC is mainly due to the depletion capacitance of the PIN
photodetectors, with much lower value for thin film SOI than in bulk [13].

Fig. 4. Evolution of the total -3dB frequency with P-doping levels for λ =
400nm, Pin = 1mW/cm2 and VK = 0.1V , at VG = 0.4, 0.6, 1.0V .

Speed response to a small signal optical source of 1mW/cm2 can be obtained
by 2-D Atlas simulations, as the results can be viewed in Fig.4. With gate voltage
applied to form the fully-depleted condition, carriers drift through the I-region
accelerated by the reverse-biased electric field cause by cathode voltage. With
intrinsic length Li = 8um, the total -3dB frequencies of thin-film gated SOI
LPIN photodetectors all can reach a few tens of MHz at VK = 1.0V operation,
also decrease with doping levels as seen in Fig.4.

2.4 Dark Current

The device dark current is originated from the thermionic emission of carriers,
dependent on the carriers concentration in I-region, and related to their trans-
port process, recombination and generation. We finally analyze the photodetec-
tors dark current as a function of gate voltage for various P-doping levels at
VK = 1.0V . As can be seen in Fig.5, dark currents in thin-film gated SOI LPIN
photodetectors are just in the order of 10−14A and increase with gate voltage.
When gate voltage exceeds 0.3V , the version charges occur in the I-region, cor-
responding to relatively low P-doping levels (6 × 1014, 8 × 1014, 1 × 1015cm−3),
which leads to higher value of dark currents. Seen from Fig.2 and Fig.5, the
results can yield a high ratio of more than 107 between illuminated to dark
currents under low-voltage operation.

242 G. Li et al.

Fig. 5. Dark current versus gate voltage arranging from 0.0V to 1.0V at VK = 1.0V for
various P-doping levels of 6×1014, 8×1014, 1×1015, 2×1015, 5×1015, and 1×1016cm−3.

3 Conclusions

Thin-film gated SOI LPIN photodetectors realized in 0.18um SOI CMOS tech-
nology with ITO deposited on topside as transparent gate electrode. Gate voltage
can be applied to control the depleted condition in the I-region, which corre-
sponds to various P-doping levels. Under fully-depleted condition, carriers drift
across the whole I-region with negligible recombinations, the device can achieve
advantageous electrical characteristics and benefits.

Photocurrent and dark current characteristics, sensitivity, and speed perfor-
mance of thin-film gated SOI LPIN photodetectors have been investigated versus
doping levels in the I-region. The device shows a net improvement of its sensi-
tivity and speed performance, being one of the best results ever reported in
the literature. At the incident wavelength λ = 400nm, the output photocur-
rent maximum approximately reaches the value of the available photocurrent,
and the internal quantum efficiencies yield over 90%, even nearly 100% for vari-
ous doping levels. Meanwhile, the total -3dB frequencies for the intrinsic length
Li = 8um, all can reach a few tens of MHz with gate voltage applied. And the
dark currents of the photodetectors are very low, just in the order of 10−14A,
which can lead to a high ratio of more than 107 between illuminated to dark
currents under low-voltage operation.

With optimized device performances, the photodetectors have potential ap-
plications in optical storage systems, and appear highly suitable for blue DVD
applications.

Electrical Simulations of Thin-Film Gated SOI Lateral PIN Photodetectors 243

References

1. Mueller, T., Xia, F.N., Avouris, P.: Graphene photodetecors for high-speed optical
communications. Nature Photon. 4, 297–301 (2010)

2. Nemecek, A., Zach, G., Swodboda, R., Oberhauser, K., Zimmermann, H.: Inte-
grated BiCMOS p-i-n photodetectors with high bandwidth and high responsivity.
IEEE J. Select. Top. Quantum Electron. 12(6), 1469–1475 (2006)

3. Afzalian, A., Flander, D.: Physical modeling and design of thin-film SOI lateral
PIN photodetectors. IEEE Trans. Electron Dev. 52(6), 1116–1122 (2005)

4. Afzalian, A., Flander, D.: Characterization of quantum efficiency, effective life-
time and mobility in thin film ungated SOI lateral PIN photodetectors. Solie-State
Electron. 51(2), 337–342 (2007)

5. Bulteel, O., Flander, D.: Optimization of blue/UV sensors using p-i-n photodiodes
in thin-film SOI technology. In: 215th Electrochemical Society (ECS) Meeting, San
Francisco (2009)

6. Navo, C., Giacomini, R., Afzalian, A., Flander, D.: Operation of lateral SOI photo-
diodes with back-gated bias and intrinsic length variation. In: 223th Electrochem-
ical Society (ECS) Meeting. Toronto (2013)

7. Xie, H.Q., Zeng, Y., Zeng, J.P., Wang, T.H.: Analysis and simulation of lateral
PIN photodiode gated by transparent electrode fabricated on fully-depleted SOI
film. J. Cent. South Univ. Technol. 18, 744–748 (2011)

8. Rudenko, T., Rudenko, A., Kilchytska, V., Critaloveatu, S., Ernst, T., Colinge,
J.P., Dessard, V., Flander, D.: Determination of film and surface recombination in
thin-film SOI devices using gated-diode technique. Solie-State Electron. 48, 389–399
(2004)

9. Sze, S.M., Ng, K.K.: Physics of semiconductor devices. Wiley Interscience Press,
New Jersey (2007)

10. ATLAS User’s Manual Device Simulation Software. Silvaco Inc., Santa Clara (2010)
11. Kinshino, K., Unlu, M.S., Chyi, J.I., Reed, J., Arsenault, L., Morkoc, H.: Reso-

nant cavity-enhanced (RCE) photodetectors. IEEE J. Quantum Electron. 27(8),
2025–2034 (1991)

12. Afzalian, A., Flander, D.: Speed performances of thin-film lateral SOI PIN photodi-
odes up to tens of GHz. In: 2006 IEEE International SOI Conference Proceedings,
New York, pp. 99–100 (2006)

13. Zimmermann, H.: Integrated Silicon Opto-electronics. Springer Press, Berlin (2010)

A Full Adder Based on Hybrid Single-Electron

Transistors and MOSFETs
at Room Temperature

Xiaobao Chen�, Zuocheng Xing, and Bingcai Sui

Institute of Microelectronics, School of Computer,
National University of Defense Technology, Changsha, Hunan, 410073, P.R. China

chenxb@nudt.edu.cn

Abstract. A full adder based on hybrid single-electron transistors (SET)
and MOSFETs (SETMOS) at room temperature is proposed in this pa-
per. Because the SET can play the same role as compensatory MOS-
FETs, we design a fuller adder with hybrid SETMOS. Further more, we
simulate the logic element by HSPIC and the simulation result shows that
the logic element implements the function of a full adder. To compare
our work with conventional CMOS logics, which significantly reduces
area and power consumption.

Keywords: full adder, hybrid single-electron transistors andMOSFETs,
single-electron transistor, room temperature.

1 Introduction

Semiconductor industry has closely followed the trend predicted by Moores law
which states that the number of transistors per chip doubles roughly every 2
years. This trend has been achieved by continuously shrinking the minimum
physical dimensions of the device. With this trend in the miniaturization of
transistor sizes towards the nanometer scale, it is obvious that we would hit a
point in the near future when it would be impossible for further shrinkage. It
is generally accepted that, sooner or later, it will become impossible to reduce
MOSFET-based circuits further in (feature) size due to fundamental physical
restrictions. Therefore, many researchers have begun to investigate other tech-
nologies that will replace MOSFET devices. Single-electron transistor (SET) is
a promising candidate owing to ultra-low power and ultra-high density [1].

However, because the SET fabricated by the current technology cannot avoid
the problems at room temperature, a hybrid solution based on SET and MOS-
FET is the key to the practical application of the SET for the IC industry
[2]. As the most attractive candidate for post-CMOS era, hybrid SETMOS can
potentially deliver high device density and power efficiency at a good speed
[3]. The solution of hybrid SETMOS technology [4] has attracted much atten-
tion [5,6] as such integration can offer new functionalities [7,8], which are very

� Corresponding author.

W. Xu et al. (Eds.): NCCET 2013, CCIS 396, pp. 244–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Full Adder Based on Hybrid SETMOS at Room Temperature 245

difficult to achieve either by pure CMOS or pure SET approaches. In recent
years, new architectures based on hybrid circuits consisting of SET and MOS-
FET transistors are developed to efficiently exploit the unique functionality of
room-temperature-operating SETs. Representative examples include the hybrid
SETMOS multivalue logic circuits [9], analog pattern matching circuits [10],
multiband filtering circuits [11], reconfigurable threshold logic circuits[12], etc.
In the CMOS field, pseudo-NMOS logic [13,14] is an attempt to reduce the
number of transistors required to implement a given logic function, often at the
expense of reducing robustness and extra power dissipation, which prevents it
from very large scale application. Based on the technology of hybrid SETMOS,
can it vary the state?

In this paper, we design a full adder based on hybrid SETMOS and simulate
the circuit by HSPICE. From the simulation results, the design accords with the
expect that is the logic element implements the function of a full adder. Finally,
the conclusions of the whole paper is given, and it is deduced that the logics
based on hybrid SETMOS can be very useful for reducing logic-gate density and
power consumption significantly.

2 Full Adder with Hybrid SETMOS

Figure 1 shows a SET, where electrons are manipulated one by one through two
junctions under the control of bias and gate voltages applied to the coulomb
island, the left and right terminals are denoted as source and drain, respectively.
SET by an island connected to two tunnel junction composed of the gate elec-
trode through the coupling capacitor and the island phase, with a dual-gate SET
structure shown in figure 1, where CG is the gate capacitance, RD, RS are the
junction resistance, and CD, CS are junction capacitance, respectively.

Fig. 1. Sketch of SET

246 X. Chen, Z. Xing, and B. Sui

A full adder adds binary numbers and accounts for values carried in as well
as out. A 2-input full adder often written as A, B, and Cin; A and B are the
operands, and Ci is a bit carried in from the next less significant stage. The full-
adder is usually a component in a cascade of adders, which add 8, 16, 32, etc.
bit wide binary numbers. The circuit produces a two-bit output, output carry
and sum typically represented by the signals Co and S.

Fig. 2. Structure of a bit full adder

A full adder can be implemented in many different ways such as with a custom
transistor-level circuit or composed of other gates. 2-input full adder implemen-
tation is with

Co = AB +BCi +ACi (1)

and

S = A⊕B ⊕ Ci

= AB̄C̄i + ĀBC̄i + ĀB̄Ci +ABCi

= ABCi + C̄o(A+B + Ci). (2)

Based on these, 2-input full adder based on hybrid SETMOS is shown as Fig. 2.

A Full Adder Based on Hybrid SETMOS at Room Temperature 247

3 Experiments and Discussion

SET-based circuits are normally simulated using the Monte Carlo-based method
such as SIMON [15] and SECS [16], however, these methods are extremely time
consuming for large circuit simulations, and they do not offer a cosimulation envi-
ronment with MOSFET devices. Several SPICE simulation methods for the SET
have been reported [17]-[19], and the compact macromodel [17] based on SPICE
method, whose correctness and precision have been verified by both MONTE
CARLO simulator SIMON [15] and experiments [20,21], can be used to co-
simulate the hybrid SETMOS circuit effectively. Thus, throughout this letter,
the compact macromodel is used for SETs and the BSIM4.0 model is used for
MOSFETs, and all simulations are conducted using SPICE simulator of Syn-
opsys Inc based on the 16-nm CMOS technology. Moreover, since there is only
current model and no voltage model for SET in the compact macromodel, we
make slight modifications and insert voltage model for the simulation of the
serial logic of SET.

Table 1. Parameters of The Devices of The Full Adder

Device Parameter Value

Cs,Cd 0.09aF
SET Rs,Rd 90KΩ

Cg 0.1aF

Wp 16nm
Lp 48nm
toxe 0.95nm
toxp 0.7nm

PMOS
Cgdo,Cgso 50pF/m
Cgbo 2.56pF/m
Cgdl,Cgsl 265.3pF/m
Vth -0.43V

Wn 16nm
Ln 24nm
toxe 0.95nm
toxp 0.7nm

NMOS
Cgdo,Cgso 50pF/m
Cgbo 2.56pF/m
Cgdl,Cgsl 265.3pF/m
Vth 0.48V

Vdd 0.8V
Vpg 0.4V

Bias Voltages
Vng 0.4V
Vin1...Vinn 0(’0’), 0.8V(’1’)

Temperature T 300K

248 X. Chen, Z. Xing, and B. Sui

Fig. 3. Simulation of the a bit full adder

In this paper, we use a 16-nm MOSFET transistor to simulate the behavior of
the MOSFET transistors. The W/L ratio of the MOSFET is set to 1/3 or 2/3,
which is completely different from conventional digital practice. The parameters
of the PMOS are W = 16nm, L = 48nm, Vpg = 0.4V and Vdd = 0.8V. The
parameters of the NMOS are W = 16nm, L = 24nm and Vng = 0.4V. The
SET is a completely symmetrical one, its parameters are Cd = Cs = 0.09aF,
Cg = 0.1aF and Rd = Rs = 90KΩ. The simulation temperature is 300K. All
experimental parameters is shown in Table 1. Further more, all parameters keep
constant in the whole paper except separate one that will be asserted in concrete
simulation.

Fig. 3 shows the detailed timing diagram of the 2-input full adder. The top
three panels indicate time variation of the input signals A, B and Ci, the 4th and
5th panel indicates time variation of the output signals S and Co. The simulation
results show that the element achieves the function of 2-input full adder. From
Fig. 3, it is obvious that the simulation result is consistent with the analysis in
section 2. Therefore, the function of the logic gate based on hybrid SETMOS is
completely the same to the one based on pure CMOS.

To compare our work with compensatory MOSFETs logic based on pure
MOSFET, we investigate the key performance parameters in terms of power
dissipation, the worst delay, voltage swing and area. We use the same techni-
cal MOSFETs, namely, a 16-nm MOSFET transistor to simulate the behavior
of the MOSFET transistors of 2-input full adder. The technics parameters of
the MOSFETs and the size of the SETs are as shown in table 1. We simulate

A Full Adder Based on Hybrid SETMOS at Room Temperature 249

Sum, Sum, Carry, Carry of 2-input full adder based on hybrid SETMOS, and
Sum, Carry of 2-input full adder based on conventional CMOS, respectively.
All logics are simulated at the same condition as that in section 2. To implement
correct function and make the performance close to the optimal according to
the optimization principle of the power-delay product (PDP) which is a quality
measures for a logic gate [14], we adjust the size of MOSFETs of compensatory
MOSFETs logic. The concrete size of CMOS are W = 32nm and L = 16nm.

Table 2. Comparison of Performance of CMOS Logic And Hybrid SETMOS Logic.
Simulation Temperature Is 300K.

Delay(ns) Vo Swing(mV) Area
Type Signal Vo/Vi(%) No. of No. of Power

tpHL tpLH tp VoH VoL
MOSFETs SETs

Sum 0.205 0.975 0.59 786 23 95.38
Hybrid

Sum 0.981 0.213 0.60 799.5 0.6 99.86
SETMOS

Carry 0.202 0.814 0.51 789 23 95.75
8 12 58.83

logic
Carry 0.824 0.215 0.52 799.5 0.6 99.86

CMOS Sum 0.014 0.016 0.015 799.5 0.6 99.86
logic Carry 0.008 0.006 0.007 799.5 0.6 99.86

28 0 195.10

4 Conclusion

This paper proposes a full adder based on hybrid SETMOS at room temperature.
Because the SET can play the same role as compensatory MOSFETs, we design
a fuller adder with hybrid SETMOS. Further more, we simulate the logic element
by HSPIC and the simulation result shows that the logic element implements
the function of a full adder. To compare our work with conventional CMOS
logic based on pure MOSFET, we investigate the key performance parameters
in terms of power dissipation, the worst delay, voltage swing and area, and it is
deduced that the logics based on hybrid SETMOS can be very useful for reducing
logic-gate density and power consumption significantly. Additions, the full-adder
is usually a component in a cascade of adders, which add 8, 16, 32, etc. bit wide
binary numbers.

Acknowledgments. This work was supported in part by the National Natural
Science Foundation of China (Grant No. 61170083), in part by the National
Science Foundation for Young Scientists of China (Grant No. 61106084), and
in part by the Ph.D. Programs Foundation of Ministry of Education of China
(Grant No. 20114307110001).

References

1. Likharev, K.K.: Single-Electron Devices and Their Applications. Proceedings of
the IEEE 87(4), 606–632 (1999)

2. Wang, W., Liu, M., Hsu, A.: Hybrid nanoelectronics: Future of computer technol-
ogy. J. Comput. Sci. Technol. 21(6), 871–886 (2006)

250 X. Chen, Z. Xing, and B. Sui

3. Ionescu, A.M., Declercq, M.J., Mahapatra, S., Banerjee, K., Gautier, J.: Few Elec-
tron Devices: Towards Hybrid CMOS-SET Integrated Circuits. In: Proceedings of
39th Design Automation Conference, pp. 323–328 (June 2002)

4. Mahapatra, S., Ionescu, A.M.: Hybrid CMOS Single Electron Transistor Device
and Circuit Design. Artech House Publication (2006)

5. Venkataratnam, A., Goel, A.K.: Design and simulation of logic circuits with hybrid
architectures of single-electron transistors and conventional MOS devices at room
temperature. Microelectronics Journal 39, 1461–1468 (2008)

6. Parekh, R., Beaumont, A., Beauvais, J., Drouin, D.: Simulation and De-
sign Methodology for Hybrid SET-CMOS Integrated Logic at 22-nm Room-
Temperature Operation. IEEE Trans. Electron Devices 59(4), 918–923 (2012)

7. Uchida, K., Koga, J., Ohba, R., Toriumi, A.: Programmable singleelectron tran-
sistor logic for future low-power intelligent LSI: Proposal and room-temperature
operation. IEEE Trans. Electron Devices 50(7), 1623–1630 (2003)

8. Sui, B.C., Chi, L.F.Y.Q., Zhang, C.: Nano-Reconfigurable Cells With Hybrid Cir-
cuits of Single-Electron Transistors and MOSFETs. IEEE Trans. on Electron De-
vices 57(9), 2251–2257 (2010)

9. Inokawa, H., Fujiwara, A., Takahashi, Y.: A multiple-valued logic and memory with
combined single-electron and metal-oxide-semiconductor transistors. IEEE Trans.
Electron Devices 50(2), 462–470 (2003)

10. Saitoh, M., Harata, H., Hiramoto, T.: Room-temperature demonstration of inte-
grated silicon single-electron transistor circuits for current switching and analog
pattern matching. In: IEDM Tech. Dig., San Francisco, CA, pp. 187–190 (2004)

11. Song, K.W., Lee, Y.K., Sim, J.S., Jeoung, H., Lee, J.D., Park, B.G., Jin, Y.S.,
Kim, Y.W.: SET/CMOS Hybrid Process and Multiband Filtering Circuits. IEEE
Trans. Electron Devices 52(8), 1845–1850 (2005)

12. Wei, R.S., Chen, J.F., Chen, S.C., He, M.H.: Reconfigurable Threshold Logic Ele-
ment with SET and MOS Transistors. Chin. Phys. Lett. 29(2), 028502 (2012)

13. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-Power CMOS Digital De-
sign. IEEE Journal of Solid State Circuits 27(4), 473–484 (1992)

14. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits: A Design
Perspective, 2nd edn. Pearson Education (2003)

15. Wasshuber, C., Kosina, H., Selberherr, S.: SIMON-a simulator for single-electron
tunnel devices and circuits. IEEE Trans. Comput. Aided Design 16, 937–944 (1997)

16. Zardalidis, G., Karafyllidis, I.G.: SECS: A New Single-Electron-Circuit Simulator.
IEEE Trans. Circuits Syst. I, Reg. Papers 55(9), 2774–2784 (2008)

17. Inokawa, H., Takahashi, Y.: A compact analytical model for asymmetric single-
electron tunneling transistors. IEEE Trans. Electron Devices 50(2), 455–461 (2003)

18. Mahapatra, S., Vaish, V., Wasshuber, C., Banerjee, K., Ionescu, A.M.: Analytical
modeling of single electron transistor for hybrid CMOSSET analog IC design. IEEE
Trans. Electron Devices 51(11), 1772–1782 (2004)

19. Zhang, F., Tang, R., Kim, Y.-B.: SET-based nano-circuit simulation and design
method using HSPICE. Microelectron. J. 36(8), 741–748 (2005)

20. Inokawa, H., Takahashi, Y.: Experimental and simulation studies of single-electron-
transistor-based multiple-valued logic. In: Proc. 33rd Int. Symp. Multiple-Valued
Logic, pp. 259–266 (May 2003)

21. Zhang, W., Wu, N.J., Hashizume, T., Kasai, S.: Novel Hybrid Voltage Controlled
Ring Oscillators Using Single Electron and MOS Transistors. IEEE Trans. Nan-
otechnol. 6(2), 146–157 (2007)

Author Index

Cai, Wandong 131
Cao, Qiang 121
Chang, Zhongxiang 92
Che, Yonggang 143
Chen, Cheng 111
Chen, Guirong 131
Chen, Kai 61
Chen, Li 44
Chen, Ting 33
Chen, Xiaobao 228, 244
Chi, Yaqing 180
Cui, Xiangdong 81

Deng, Lin 61
Ding, Wei 1
Dou, Yong 61

Fu, Yuzhuo 198

Gao, Lei 101
Gu, Xiaochen 163
Guo, Pengfei 53
Guo, Wei 19

Han, Xing 121, 198
He, Yibai 180
Hu, Chunmei 180
Hu, Jinshan 92
Hu, Wei 235
Hu, Xiaofeng 81
Huang, Chong 163

Jiang, Jiang 44, 121, 198

Lai, Mingche 101
Li, Bao 153
Li, Guoli 235
Li, Jiancheng 163, 171
Li, Songting 163
Li, Yuqian 143
Liang, Bin 180
Liu, Dongpei 218
Liu, Hao 19
Liu, Hengzhu 1, 33, 218
Liu, Yan 153
Lu, Pingjing 153

Ma, Chao 92

Nan, Longmei 53
Ni, Shice 61

Pang, Zhengbin 101, 153
Peng, Wei 235

Shen, Xiaoyang 44
Su, Jianwei 171
Sui, Bingcai 228, 244
Sun, Caixia 186

Tan, Ya 19
Tang, Tao 111
Tang, Xiantuo 208

Wan, Jianghua 33
Wang, Chang 121, 198
Wang, Chunming 171
Wang, Feng 208
Wang, Jianping 131
Wang, Kefei 101
Wang, Qinglin 208
Wang, Shaogang 153
Wang, Yongqing 73
Wang, Yongwen 186
Wang, Zhenghua 143
Wei, Jizeng 19
Wu, Chunqing 81
Wu, Jianfei 171
Wu, Qiang 111

Xia, Yu 235
Xing, Zuocheng 208, 228, 244
Xu, Huijie 131
Xu, Jinbo 153, 186
Xu, Jinfu 53
Xu, Xianbin 121
Xu, Yan 53
Xu, Yuanxu 9

Yan, Dun 163
Yang, Bing 9
Yang, Canqun 111
Yang, Tianyi 44

252 Author Index

Yu, Mingyan 9
Yu, Wanrong 81

Zeng, Yun 235
Zhang, Chao 9
Zhang, Hongyun 81
Zhang, Jianfeng 1

Zhang, Minxuan 73
Zhang, Pengfei 111
Zhang, Ying 153
Zhao, Liang 81
Zheng, Chengwei 92
Zhou, Li 218
Zhou, Liyuan 44

	Preface
	Organizing Committee
	Table of Contents
	Session 1: Application Specific Processors
	Design and Implementationof a Novel Entirely Covered K2 CORDIC
	1 Introduction
	2 Principle of k2 CORDIC Algorithm
	2.1 Conventional CORDIC
	2.2 k2 CORDIC Algorithm

	3 Architecture of k2 CORDIC Algorithm
	4 Performance Evaluation and Comparison
	4.1 Error Analysis
	4.2 Area Comparison
	4.3 Speed Comparison

	5 Conclusion
	References

	The Analysis of Generic SIMT Scheduling Model Extracted from GPU
	1 Introduction
	2 SIMT Scheduling Model of GPU
	3 Analysis of the SIMT Scheduling Model Attribute
	3.1 Influencing Factors of SIMT Scheduling Performance
	3.2 Benchmarks
	3.3 Analysis of Model Attribute Results

	4 Conclusion
	References

	A Unified Cryptographic Processor for RSA and ECC in RNS
	1 Introduction
	2 RNS Montgomery Multiplication and Base Selection
	2.1 Residue Number System
	2.2 RNS Montgomery Multiplication and Data Level Parallelism Analysis
	2.3 Base Selection and Efficient Arithmetic Implementation

	3 Proposed Cryptographic Processor for RSA and ECC over GF(p)
	3.1 Transport Triggered Architecture
	3.2 The Architecture Overview of Proposed Cryptographic Processor

	4 Coarse-Grained Reconfigurable MMAC Array
	4.1 Coarse-Grained Reconfigurable Datapath
	4.2 Versatile MMAC Unit

	5 Performance Evaluation and Implementation Results
	5.1 Performance Evaluation
	5.2 Comparison to Related Works and Implementation Results

	6 Conclusion
	References

	Real-Time Implementation of 4x4MIMO-OFDM System for 3GPP-LTE Based on a Programmable Processor
	1 Introduction
	2 Radio System Structure
	3 Algorithms Analysis
	3.1 Low Pass Filtering
	3.2 Symbol Synchronization
	3.3 OFMD (De)modulation
	3.4 MIMO Channel Estimation
	3.5 MIMO Detection
	3.6 Algorithms Summary

	4 Architecture of SDR Processor
	4.1 Matrix Architecure
	4.2 System Mapping Scheme

	5 Opportunities and Challenges
	5.1 Fully Programmable Architecure
	5.2 Challenges

	6 Conclusions
	References

	A Market Data Feeds Processing Accelerator Based on FPGA
	1 Introduction
	2 Design and Implements
	2.1 Overview
	2.2 Original Data Generator
	2.3 Encoder Core Module
	2.4 Decoder Core Module
	2.5 Latency Monitor
	2.6 Others

	3 Experiment Results
	3.1 Experiment Environment
	3.2 Experiment Results
	3.3 Results Comparison

	4 Conclusion
	References

	The Design of Video Accelerator Bus Wrapper
	1 Introduction
	2 Background
	3 Accelerator Bus Wrapper Structure
	3.1 Wrapper Architecture
	3.2 The Structure of Data Stored in FIFO
	3.3 FSM Module Design

	4 Performance Analyzing
	4.1 Evaluation Metric and Platform
	4.2 Evaluation Result
	4.3 Result Analyzing
	4.4 Synthesis Result

	5 Conclusion
	References

	Design and Implementation of Novel Flexible Crypto Coprocessor and Its Application in Security Protocol
	1 Introduction
	2 Relative Work
	3 Implementation of the Coprocessor
	3.1 Architecture
	3.2 Implementations of RCB

	4 Experimental Results
	4.1 Performance of RCB
	4.2 Coprocessor Application in SSL Protocol

	5 Conclusion and Future Work
	References

	Session 2: Communication Architecture
	Wormhole Bubble in Torus Networks
	1 Introduction
	2 Related Works
	3 Bubble Scheme for Wormhole
	4 Evaluation
	4.1 Performance with Less Than Two Packet-Sized Buffers
	4.2 Performance with Two Packet-Sized Buffers

	5 Conclusions
	References

	Self-adaptive Scheme to Adjust Redundancy for Network Coding with TCP
	1 Introduction
	2 TCP/NCProtocol
	3 Self-adaptive TCP/NC Protocol
	3.1 Self-adaptive Redundancy Factor
	3.2 Self-adaptation Algorithm for R

	4 Simulation Results
	4.1 Simulation Environment Setup
	4.2 Simulation Results

	5 Conclusions and Future Works
	References

	Research on Shifter Based on iButterfly Network
	1 Introduction
	2 The Design of Shifter Architecture
	2.1 Analysis of the Shifter Based on iButterfly Network
	2.2 Shifter Architecture Based on iButterfly Network

	3 Design of Key Module
	3.1 Extract of Routing Algorithm and Map of Hardware
	3.2 Post-processing Circuit and Hardware Implementation

	4 Performance Evaluation
	5 Summary and Outlook
	References

	A Highly-Efficient Approach to Adaptive Load Balance for Scalable TBGP
	1 Introduction
	2 TBGP Architecture
	3 ARLP Algorithm
	4 Performance Evaluation
	4.1 Load Balance Ratio
	4.2 Performance for Route Update

	5 Conclusion
	References

	Session 3: Computer Application and Software Optimization
	OpenACC to Intel Offload: Automatic Translation and Optimization
	1 Introduction
	2 Overview of OpenACC and the MIC Coprocessor
	2.1 OpenACC
	2.2 Intel MIC

	3 Related Work
	4 Automatic Translation of OpenACC to Offload
	4.1 Mapping OpenACC Directives into Offload Directives
	4.2 OpenACC to Offload Baseline Translation

	5 Optimization
	5.1 Communication Optimization
	5.2 SIMD Optimization

	6 Experiments
	6.1 Experiments Environment
	6.2 Experiment Case and Result

	7 Conclusion
	References

	Applying Variable Neighborhood Search Algorithm to Multicore Task Scheduling Problem
	1 Introduction
	2 The Variable Neighborhood Search Algorithm
	3 The Multicore Task Scheduling Problem
	3.1 The Task Graph Model
	3.2 The Multicore Platform Model

	4 Applying VNSA to Multicore Task Scheduling Problem
	4.1 Formalization of the Solution
	4.2 Transformation of the Solution
	4.3 Generating the Initial Solution
	4.4 Generating the Neighborhood and the Neighborhood Set
	4.5 Local Search Strategy and Termination Conditions

	5 Experiments and Results Analysis
	6 Conclusion
	References

	Empirical Analysis of Human Behavior Patterns in BBS
	1 Introduction
	2 Data Set Description
	3 Empirical Analysis of Actual Data
	3.1 Distribution of the Click Number and Reply Number of Posts
	3.2 Distribution of the Post Number and Reply Number of Users
	3.3 Distribution of the One-Day One-User Reply Number on Population Level
	3.4 Distribution of the Abnormal One-Day Reply Behaviors

	4 Discussion and Conclusions
	References

	Performance Evaluation and Scalability Analysis of NPB-MZ on Intel Xeon Phi Coprocessor
	1 Introduction
	2 Intel MIC Architecture and Execution Modes
	2.1 Intel MIC Architecture
	2.2 Execution Modes for Intel Xeon Phi

	3 Experiment Results and Analysis
	3.1 Experiment Setup
	3.2 Experimental Results and Performance Analysis

	4 Conclusions and Future Work
	References

	An Effective Framework of Program Optimization for High Performance Computing
	1 Introduction
	2 Formal Description
	3 Polyhedral Model
	3.1 Iteration Domain
	3.2 Array Access Functions
	3.3 Affine Scheduling

	4 Genetic Algorithm Based Empirical Search
	5 Performance Evaluation
	5.1 Environmental Setup
	5.2 Experimental Results

	6 Related Work and Conclusions
	References

	Session 4: IC Design and Test
	A Constant Loop Bandwidth Fraction-N Frequency Synthesizer for GNSS Receivers
	1 Introduction
	2 Design Considerations
	3 Circuits Implementations
	3.1 Wideband VCO
	3.2 Charge Pump
	3.3 AFC

	4 Implementation Results
	5 Conclusion
	Reference

	Investigation of Reproducibility and Repeatability Issue on EFT Test at IC Level to Microcontrollers
	1 Introduction
	2 EFT Test Method at IC Level
	3 Experiment and the Results
	4 Discussion and Analysis
	4.1 Poor Repeatability of B, C, D Type Failure on Each Probe
	4.2 Bad Reproducibility of E Type Failure Level of the Two Probes

	5 Conclusion
	References

	A Scan Chain Based SEU Test Method for Microprocessors
	1 Introduction
	2 Scan Chain Based Method
	3 Experimental Setup and Procedure
	4 Results and Discussion
	5 Conclusion
	References

	Session 5: Processor Architecture
	Achieving Predictable Performance in SMT Processors by Instruction Fetch Policy
	1 Introduction
	2 Cazorla Policy
	3 Achieving Predictable Performance by Instruction Fetch Policy
	3.1 Basic Idea
	3.2 Implementation

	4 Methodology
	4.1 Simulator
	4.2 Benchmarks
	4.3 Metrics
	4.4 Choosing Parameter

	5 Results
	5.1 Efficiency in Achieving Predictable Performance
	5.2 The Performance of LPTs and Overall Throughput Results
	5.3 Compared with Cazorla Policy

	6 Conclusions
	References

	Reconfigurable Many-Core Processor with Cache Coherence
	1 Introduction
	2 Motivation and Background
	2.1 Phase in Parallel Programs
	2.2 Reconfiguration in Many-Core Processors

	3 Reconfigurable Design for Many-Core
	3.1 Overview
	3.2 Reconfigurable Subnet Design
	3.3 Reconfigurable Cache Coherence Protocol Design

	4 Simulation
	4.1 Simulation Platform
	4.2 Simulation Results

	5 Conclusion
	References

	Backhaul-Route Pre-Configuration Mechanism for Delay Optimization in NoCs
	1 Introduction
	2 Related Works
	3 Backhaul-Route Pre-Configuration Mechanism
	3.1 General Router Architecture
	3.2 Backhaul-Route Pre-Configuration
	3.3 Backhaul-Route Reuse
	3.4 Backhaul-Route Termination
	3.5 Routing Transform Mechanism

	4 Experiment and Performance Evaluation
	5 Conclusion
	References

	A Novel CGRA Architecture and Mapping Algorithm for Application Acceleration
	1 Introduction
	2 Related Work
	3 Cluster Base CGRA
	3.1 Overview
	3.2 GPE Architecture
	3.3 SPE Architecture
	3.4 Configuration of CGRA

	4 Mapping Algorithm for Cluster Based CGRA
	4.1 Problem Definition
	4.2 Methodology

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

	Session 6: Technology on the Horizon
	Tunable Negative Differential Resistance of Single-Electron Transistor Controlledby Capacitance
	1 Introduction
	2 Tunable NDR of SET Controlled by Capacitance
	3 Analysis and Discussion
	4 Conclusion
	References

	Modeling and Electrical Simulations of Thin-Film Gated SOI Lateral PIN Photodetectors for High Sensitivity and Speed Performances
	1 Introduction
	2 Model Description and Electrical Simulations
	2.1 Phorocurrent
	2.2 Quantum Efficiency
	2.3 Speed Performance
	2.4 Dark Current

	3 Conclusions
	References

	A Full Adder Based on Hybrid Single-ElectronTransistors and MOSFETs at Room Temperature
	1 Introduction
	2 Full Adder with Hybrid SETMOS
	3 Experiments and Discussion
	4 Conclusion
	References

	Author Index

