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Abstract. With the development of image acquisition technology, gi-
gapixel images are easily produced and widely used in modern society.
How to efficiently compile these gigapixel images within gradient domain
is the research focus in the community of image processing and computer
graphics. To solve Poisson equations involving large-scale unknowns is
crucial for gigapixel image editing in gradient domain. Traditional multi-
grid approach separately performs iteration, restriction and interpola-
tion, bears heavy communication costs between RAM and
external memory. In the paper, a parallel multigrid Poisson solver for
gigapixel image editing is proposed, which exploits the locality and rele-
vance of memory accessing and updating among the iteration, restriction
and interpolation for parallel performing the iteration, restriction and in-
terpolation in the sweeping window. Image stitching experiments show
that the presented method exhibits the higher efficiency than the Poisson
solver of successive overrelaxation, gauss-seider iteration and traditional
multigrid.

Keywords: Poisson PDE solver, parallel multigrid, gigapixel image
editing.

1 Introduction

Poisson partial differential equation (PDE) is one kind of elliptic PDE which is
widely used in community of science and engineering, such as machinery, physics,
information, etc. Since the introduction of Poisson PDE to the image editing by
Prez [1], image editing within gradient domain based on Poisson PDE becomes
the research focus of image editing, such as, image cloning and composition [2,8],
photo montage [3], matting [4], all achieved the photorealistic editing effect.
However, with the development of digital acquisition technology, the resolution
of acquired images have been increasing, so the space and time complexity in
image editing based on Poisson PDE becomes more and more higher. Therefore,
the investigation of fast Poisson solver is very significant.

Iterative Poisson PDE solver converges fast in the high frequency region but
slow in the low frequency region which easily leads to the solution to fall into
the local smooth region, therefore, it is unsuitable for solving Poisson PDE with
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large-scale unknowns. Multigrid Poisson solver respectively smoothes the error
residual in different frequency levels, and has better efficiency than iteration ap-
proach, hence is widely used in gigapixel images editing within gradient domain.
But the traditional multigrid approach separately performs iteration, restriction
and interpolation, not fully exploits the relevance among data in different stages,
bears heavy communication load between RAM and external memory.

A parallel [7] multigrid Poisson solver [6] is proposed which exploits the local-
ity and relevance of memory accessing and updating among the stage of iteration,
restriction and interpolation. The presented method in [6] parallel performs the
iteration, restriction and interpolation in the sweeping window which effectively
reduce the communication load between RAM and external memory and in-
crease the processing efficiency. In the paper a parallel multigrid Poisson PDE
solver is presented, which has better performance in solving Poisson equations
with large-scale unknowns. The proposed method is testified in gigapixel im-
age editing within gradient domain and demonstrates the high efficiency than
iterative Poisson solver.

2 Poisson PDE Solver

The general form of binary Laplace PDE U(x, y) : R2 → R2(R is the real set) is
as the follows.

� U(x, y) = � · �U(x, y) = f(x, y) (1)

Where � is Laplace operator, � is partial derivative operator, and f(x, y) is the
boundary condition. Eq.(1) is the Poisson PDE with Neuman boundary when
f(x, y) = 0 holds, and it is the Poisson PDE with Dirichlet boundary when
f(x, y) = c (c is a constant) is satisfied.

In the domainΩ = R×R, the purpose of image editing within gradient domain

is to make U(x, y) best close to the gradient field
−→
G(x, y), it is equivalent to the

functional min ‖ U − −→
G ‖, and the Poisson solver is able to be derived and

expressed as Eq (2).

� = � · �−→G = div
−→
G (2)

where div is the divergence operator.
The numerical solver of Eq. (2) is firstly converted to the discrete represen-

tation. There exists many discretization schema, the five-point discretization is
represented as the follows.

U(x+ 1, y) + U(x, y + 1) + U(x− 1, y) + U(x, y − 1)− 4U(x, y) = div
−→
G(x, y)

For each pixel (x, y) within the image domain Ω, there is a linear equation. The
equations of all pixels form an linear equations, which is denoted by LU = B, in
which L = (aij)n×n, U = (ui)n×1 and B = (bi)n×1 are separately the Laplace
matrix, unknowns matrix and boundary matrix.

There are many numerical solving methods for Poisson equation such as itera-
tion [5] (including gauss-seider iteration, Jacobi iteration and conjugate gradient
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Fig. 1. Five-point discretization

iteration), multigrid [5] and discrete cosine transform, etc. When the number of
unknowns in domain reaches 104, the size of L is 104 × 104. For the large-scale
image(the number of unknowns are greater than 106), L is 106 × 106. Though
L is the banded matrix, and generally it is sparse, the large-scale unknowns still
deteriorates the iteration speed and convergence performance.

3 Multigrid Poisson PDE Solver

Multigrid Poisson PDE solver acquires the solution in hierarchical manner, which
iterates and smoothes the high-frequency error residual in current level and con-
tinually smoothes the low-frequency residual in the next low-resolution level.
The error residual is restricted from the higher resolution level to the next lower
resolution one. The essence of the multigrid Poisson PDE solver is that smooth-
ing and iterating the high-frequency error residual in the low-resolution level
which are again restricted to the lower resolution level, repeats the process un-
til the error residual is sufficiently smooth. Each iteration at a low-resolution
level provides a more accurate calibration result for the next high-resolution
level. Multigrid Poisson Solver could quickly smooth the high-frequency resid-
ual existing in different frequency spectrums, hence it efficiently accelerates the
convergence procedure.

Let h be the discretization length. Linear equations discretized from Poisson
PDE at h level is expressed as the follow.

LhUh = Bh (3)

Let Uh and Uh separately be the accurate solution and approximate solution of
Eq. (3), Vh and dh separately be be the error quantity between Uh and Uh and
error residual, which are defined as Vh = Uh−Uh and dh = LhUh, respectively.

Multigrid Poisson solver performs in V-cycle manner, includes approxima-
tion, restriction and interpolation three procedures. It covers the following steps,
solving the approximate solution Uh, restricting the error residual dh to the
lower resolution level H by Eq. (4), acquiring VH by LHVH = −dH , returning
the calibration to the higher resolution level h by interpolation, finally, solving
the approximate solution at the highest resolution level, that is U

new

h (Vh is the
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approximation of Vh). The restriction operator R and interpolation operator P
used in multigrid solver are defined as Eq. (4) and Eq. (5) respectively.

dH = Rdh (4)

Vh = PVH (5)

The V-cycle in mulitigrid Poisson solver includes two procedures, one is a coars-
ening process from a high resolution level to the low resolution one, and the other
is a refining process from the low resolution to the high resolution. Coarsening
begins with the highest resolution level, restricts the error residual d to the next
low-resolution level. Coarsening polishes the error level by level. When the lowest
resolution level is reached, the linear equations with the minimal number of un-
knowns is solved. Refining begins with the lowest resolution level and returns the
calibration result from lower resolution level to higher resolution level via inter-
polation until the solution within the highest resolution level Unew is achieved.
Coarsening and refining separately correspond to the process of restriction and
interpolation in the figure 2.

Fig. 2. The procedure of multigrid V-cycle

Both restriction and interpolation in V-cycle process need iteration, which
gradually polishes the error. The iteration which performs before the restriction
is named pre-smooth, and which does after the interpolation are called post-
smooth.

3.1 Multigrid Poisson PDE Solver

Traditional multigrid Poisson solver acquires the solution of linear equations dis-
cretized from Poisson PDE in V-cycle manner. In the left half V-cycle of Figure
2, it solves the approximate solution after the fixed number of iteration, mean-
while restricts the error residual d of each level to the lower resolution level
through operator R. In the right half V-cycle of Figure 2, the algorithm returns
the calibration result to the high resolution level through operator P by inter-
polation. The algorithm of traditional multigrid Poisson solver is as algorithm 1
depiction.
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Algorithm 1. Multigrid Poisson PDE Solver

Input: k, N
Output: U

1. Approximately solving LU = B, and acquiring Uold.
2. Restriction

Do h = N − 1,· · · , 2, 1
2a. Approximately solving LhUh = Bh after k iterations, producing Uh.
2b. Vh ← Uh −Uh, dh ← LhUh −Bh.
2c. dh = Rdh+1

End Do
3. Solving L0V0 = d0

4. Interpolation
Do h = 2, · · · , N − 1,N
4a. Approximately solving LhVh = dh after k iterations.
Vh = PVh−1

If h = 1, Uh ← Uold +Vh

End Do

Where k is the number of iterations and N is the number of multigrid levels.

4 Parallel Multigrid Poisson PDE Solver

The conventional multigrid poisson solver separately performs the process of
approximation, restriction and interpolation. The data V and d at each level in
the RAM need to be loaded twice, one is used for restriction, the other is for
interpolation. Due to the limited capability of memory, only part of data could
be loaded into RAM, the rest of data are gradually loaded into RAM according
to the computation requirement. Therefore, for solving Poisson PDE with large-
scale unknowns, traditional multigrid Poisson solver bears heavy communication
between RAM and external memory, increases the operation time and reduces
the computation efficiency.

Fig. 3. The discretization point relationship between low-resolution and high-resolution
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The figure 3 demonstrates the discretization points relationship between the
neighbouring low-resolution and high-resolution level. When solver runs, matrix
L, B, U and U load only one time in RAM, the elements in them could be
indexed only according to the grid position when they are used in different
resolution level. At each level, V and d are produced and used for transferring
the linkage among different resolution level. d evaluated in restriction is used for
interpolation stage, therefore, V and d need to be resided in RAM. The total
number of elements in V and d with N level is expressed as Eq. (6), where ‖ · ‖
is for counting the number of elements in matrix. For the gigapixel image editing
within gradient domain, the number elements in V and d are 2 × 107, the sum
of elements in L, V and d would be 5× 107 when the multigrid level N is 5.

N∑

h=1

‖Vh‖ =

N∑

h=1

‖dh‖ ≈ 107 × (2 − 21−N) (6)

Most of operations in multigrid V-cycle belong to the operation of matrix-matrix
multiplication or matrix-vector multiplication which is suitable for parallelized.
In this paper, by full exploitation the local accessing coherence of memory data
in Uh, Vh and dh, the current accessed data is constructed a working set W ,
and then W is shifted along the image column direction for updating need of Vh

and dh. The shifting of working set is for making use of the data having been
loaded in RAM.

The parallelization of parallel multigrid Poisson solver proposed in this paper
embodies in two aspect, on one hand, the restriction and interpolation across dif-
ferent resolution level transfer with each other, on the other hand, the elements
is maximally shared between the restriction and interpolation. The paralleliza-
tion among different resolution level shows that, in the iteration, the updating
is able to be executed when the required elements be ready. The parallelization
between restriction and interpolation presents that, after finishing the restric-
tion, when the required data get ready, interpolation could be performed. The
solution could be achieved when the interpolation is accomplished at the highest
resolution level.

Fig. 4. The parallelization of parallel multigrid Poisson solver
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In figure 4, suppose k = 2 and N = 2, when the 6th and 7th execution cycle
perform the restriction of d1 → d0, the 4th and 5th execution cycle implement
restriction of d2 → d1. When the data in the first execution cycle of interpolation
is updated, V0 starts to be calculated and the 2nd and 3rd execution cycle could
interpolate V1 → V0.

Row of pixels is used as the operation unit for constructing working set W ,
which consists in the current processing row i, adjacent processed row and to be
processed row. The processed row is utilized for updating the current row data,
and the introduction of adjacent processed row is to calculate the error residual
and calibration after updating the current row data.

Table 1. Data Window

restriction

ih−1 + 2k + 1 < �(ih − 1)/2�
data window [ih − 3, ih + 2k + 1]

restriction from the resolution level of h− 1 [ih + 2k + 1]

pre-smooth [ih − 1, ih + 2k + 1]

error residual [ih − 3, ih + 1]

interpolation

ih+1 + 2k + 1 < 2ih − 1

data window [ih − 1, ih + 2k + 1]

interpolation to the resolution level of h+ 1 [ih + 2k + 1]

post-smooth [ih − 1, ih + 2k + 1]

Table 1 gives the data windows size in restriction and interpolation. Taking
the restriction as an example, set ih as the present processing line, when the
2k+1 line of ih in the h− 1 level is finished updating, the h level could perform
pre-smooth, therefore, the pre-smooth window is [ih − 1, ih + 2k + 1]. Since the
smoothed line could be used for evaluating the error residual, the error residual
window is [ih − 3, ih + 1]. The data window setting in interpolation is similar to
the restriction.

The algorithm of parallel multigrid Poisson Solver is as the follow.

Algorithm 2. Parallel multigrid Poisson solver

Input: K, N , L(the number image rows)
Output: U

1. Evaluating the k − 1 lines of Uh as the pre-processing data..
2. Do l = K, K + 1,· · · , L−K

2a. Evaluating Uh within [il − 3, il + 2k + 1].
2b. Calculating dh within [il − 3, il + 1].
2c. Acquiring Vh within [il − 3, il + 1]

End Do
3. Calculating VN on each level of l (l = K + 1, · · · , L) and then updating U.
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The algorithm 2, parallel performs the iteration, restriction and interpolation
which make good use of locality and relevance of memory accessing.

5 Experiment

The paper implements the parallel multigrid Poisson solver on dual-core PC
computer of TongFang E2180 with 2G RAM. The presented method is used for
image composition with a resolution of 1280× 720 or 1024× 768.

Fig. 5. Image Composition (Data 1)

Fig. 6. Image Composition (Data 2)
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The configurations of P andR exploited in the experiment are as the following,
which are set by bilinear interpolation.

P =

⎡
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⎤

⎦

In parallel multigrid Poisson solver, the resolution at low resolution level is 2
times to the neighbouring the high resolution level, that is to say, H = 2h, and
the highest resolution is the size of source image.

The figure 5 and figure 6 are the composed image within gradient domain by
the presented method in the paper. The registration [8] of all images is performed
before composition. Figure 5 is a panorama with 8100× 3680 which is composed
by 5 pieces of image with size 1280 × 720. Figure 6 is another panorama with
7963 × 3580 which is composed by 5 pieces of image with size of 1024 × 768.
The RAM usage, I/O Communication, iterations as well as operation time of
the figure 5 and figure 6 are listed in the table 2.

Table 2. Comparison of different Poisson solver

Algorithm
RAM I/O Comm- Itera- Time

usage(M) unication(M) tions (s)

Over-relaxation SOR
Data1 56 7.53 676 9.656
Data2 51 7.3 615 8.433

Jaccobi
Data1 56 7.52 1365 19.499
Data2 51 7.34 1127 15.451

Multigrid
Data1 224 5.95 232 3.315
Data2 204 5.53 209 2.866

Parallel Multigrid
Data1 184 3.53 165 2.357
Data2 180 3.36 160 2.194

In table 2, the parallel multigrid Poisson solver is superior to the traditional
algorithm on RAM usage, and is obviously superior to the overrelaxation itera-
tion, Jacobi iteration and traditional multigrid algorithm.

6 Conclusion

Poisson PDE is a commonly used partial differential equation in the simulation
and image processing. How to efficiently compile the gigapixel images within
gradient domain is the research focus in recent years. Gigapixel image editing
in gradient domain needs solving Poisson equation with large-scale unknowns.
Traditional multigrid solver is not highly efficient on PC. Therefore, a parallel
multigrid Poisson solver for gigapixel image editing within gradient domain is
proposed, which exploits the locality and relevance of memory accessing and
updating among the stages of iteration, restriction and interpolation for paral-
lel performing. The approach could efficiently accomplish the gigapixel image
editing within gradient domain on the PC machine.
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Traditional multigrid Poisson solver separately performs iteration, restriction
and interpolation which could not make good use of the locality and relevance
of memory data. The presented method of parallel multigrid Poisson solver for
gigapixel image editing has the higher efficiency, it better utilizes the locality
and relevance of memory accessing and updating for parallel performing the
iteration, restriction and interpolation.

The proposed approach of parallel multigrid Poisson solver is suitable for Pois-
son equation with Neumann boundary condition and structured data. Expanding
the proposed approach for gigiapixel image editing with complex gradient do-
main, namely for solving Poisson equation with Dirichlet boundry condition is
our future work.
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