
Scheduling Model of Virtual Machine Base

on Task Type in Multi-core System

Hui-Xing Chen, Kenli Li, and Lin Shi

School of Information Science and Engineering, Hunan University,
Changsha 410082, China

{celine,lkl,shilin}@hnu.edu.cn
http://www.hnu.edu.cn

Abstract. The traditional virtual machine scheduling algorithm does
not fully consider the execution efficiency of parallel applications. When
multiple virtual machines cooperate to execute the parallel computing
tasks, the virtual machine monitor still allocates the physical CPUs by
the time-division multiplexing method. That will lead the parallel tasks
to be serialized and the efficiency degraded greatly. The modern chip
multiprocessors platform involves several available computing cores, to
meet the need of the concurrent execution of multiple virtual machines.
In this paper, we proposed a dynamic scheduling strategy –CON-Credit
scheduler, which helps to speed up the parallel applications in virtual
environment with multi-cores or many cores system. The main feature
of CON-Credit is to map the virtual CPU to the physical CPU directly,
so the virtual machines involves parallel tasks can take fully advantage
of the underlying hardware resources. More precisely, the CON-Credit
algorithm dynamically allocated processor cores to the virtual domains
according to the type of the application. For the parallel applications,
CON-Credit chooses to schedule a bulk of physical CPUs at the same
time to avoid the extra makespan of discrete dispatch in traditional vir-
tual machine scheduling algorithm. The experimental results show that
the CON-Credit algorithm improved the execution efficiency of the par-
allel application and optimized the overall performance of the virtual
machine system.

Keywords: multi-core, scheduler, parallel, VMM, MapReduce.

1 Introduction

System virtualization technology once had a great vogue in the mainframe era.
But it fades out as the descent of the computer hardware price and the popular
use of the Personal Computer. At the beginning of the 21st century, the pros-
perity of server consolidation market and the proposition of cloud computing
concept offer the opportunity of resuscitation to system virtualization technol-
ogy. Nowadays the system virtualization technology has become an important
infrastructure of cloud computing platforms, and there are more than one hun-
dred affiliated companies and platforms, for instance, KVM, XEN, VMware,

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 26–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.hnu.edu.cn

Scheduling Model of Virtual Machine Base on TTMS 27

Virtual PC, Hyper-V, and a large number of mature virtual machine platforms
have been widely deployed and applied.

Just as the role of process scheduling algorithm in the operating system, the
virtual machine scheduling algorithm is a key factor which affecting the overall
performance of system virtualization. The virtual machine scheduling is imple-
mented by the VMM(Virtual Machine Manager).At present, the popular VMM
scheduling algorithm directly absorbed the essential idea of the operating sys-
tem scheduler. It cant reflect the characteristics of the virtual machine platform:
the virtual machine is a set of hardware and software, and it is far greater in
granularity than the traditional process or thread on scheduling. The virtual
machine contains an additional scheduling layer, thus forms a double-layer and
two-dimensional scheduling architecture. Because the OS of virtual machine may
be heterogeneous, uncooperative, and unfriendly to virtualization, the schedul-
ing optimization only in the virtual machine manager layer may be not enough.
Therefore, it is important to design a multi-dimension scheduling algorithm for
virtualized multi-core processor system according to the very varied types of ap-
plication. And the most important factor is to design the scheduling algorithm.
In the single-core computer system, VMM, Domain0 and Domain U all run in
a processor core. But the multi-core platform has the capability to simultane-
ously run multiple virtual machines.The traditional time-division multiplexing
scheduling algorithm should transit to the hybrid schedule mode which com-
bines both the time-division multiplexing and space-division multiplexing.All in
all, traditional VMM scheduling algorithms mainly focus on the fairness of pro-
cessor resources among the virtual machines, but havent considered multipath
parallel features of the multi-core processors. Therefore, it leads to the decline
in the execution efficiency of the parallel tasks, when request tasks contains
some parallel tasks, the default scheduling algorithm in VMM cant fit to the
characteristic of the underlying hardware, and fully utilize the hardware.

In this work, we take the virtual machine monitor XEN as an example, design
a virtual machine schedule algorithmCON-Credit for the parallel environment.
The CON-Credit exploits the virtual machine requests-assign mechanism, and
dynamically adjusts the resource allocation pattern; the CPU resources are al-
located to the different tasks, according to the current resource status and task
characteristics. Without enforce a serious impact on other tasks, it ensures the
distribution execution in space and concurrent execution in time of the parallel
tasks, and improves the overall performance of the multi-core platform.

2 Background

2.1 Xen’s Credit Scheduler

Xen[1] is a virtual machine monitor based on the open source Linux kernel, it
comprises two parts: the hypervisor which located in the highest privilege level
management monitor and the frontend/backend driver in the virtual domain.
On recent versions of Xen, the Credit scheduler[2] is used by default. For this

28 H.-X. Chen, K. Li, and L. Shi

scheduler, each domain has two properties associated with it, a weight and a
cap. The weight determines the share of the PCPU time that the domain gets,
whereas the cap represents the maximum that the domain can get. In contrast,
the cap is an absolute value, representing a proportion of the total CPU that can
be used. The credit scheduler manages multiple PCPUs and distributes CPUs
time to each VCPU equally, which in order to realize the load balance. However,
it focus mainly on the fairness, ignores the specific characteristics of different
tasks, which leads to the inefficiency for the collaborative workload in the multi-
core system.

2.2 MapReduce

MapReduce is a distributed computing model by Google. It is simply represented
in two functions: Map and Reduce. Map function was written by the user, pro-
cesses a key-value pair to generate a set of intermediate key/value pairs. Reduce
function was written by the user too, which merges all intermediate values asso-
ciated with the same intermediate key. The Map usually contains independent
operation adapt to the characteristics of the large-scale parallel and distributed
computation. In MapReduce clusters consist of a large number of nodes for re-
dundancy and fault tolerance, each node in the cluster is assigned a certain
number of data chunks, which are in turn duplicated on several nodes based on
a distributed file system[3][4]. In the Map and Reduce operations, the Map is a
highly parallel, and Reduce is dependent on the result of Map operations. The
parallelism and balance of the Map operation determine the overall efficiency
of the MapReduce program.The MapReduce isalso widely used in the system-
level virtual machine platform, such as CLOUDLET [5] and Cloud BLAST [6]
and other projects. They combined the flexibility of the virtual machine and the
distributed parallelism of MapReduce framework, so the MapReduce can easily
be deploied in the cloud platform. It is important for cloud platform to support
this kind of parallel computing.

3 Scheduling Strategies and Analysis

3.1 Motivations and Modeling

In this paper, we take the MapReduce structure model for an example, which
is shown in the figure 1, where nodes V = V11, V12, · · ·, V21, V22, · · ·, Vi1, · · ·, Vij

denote the set of different tasks. Assume that the computation time of all the
nodes at the same level is the same. The processing time of the i− thlevel task
is T (Vi), T (Vi) = T (Vi1) = T (Vi2) = · · · = T (Vij), i = 1, 2, 3, · · ·, I.Assume there
are 4 cores available to execute this task. If a node Vij has already started in
the core, we define the node can occupy the processor core resources until its
processing completed. The target of scheduling is to find out a dispatch scheme
to guarantee the minimum of total execution time.

Scheduling Model of Virtual Machine Base on TTMS 29

Fig. 1. The Structure model of MapReduce

The main drawbacks of the existing default credit scheduler when applied to
MapReduce workloads are as follows. Figure 2(a) shows the scheduling time of
the nodes on the 4 cores physical machine under MapReduce workloads. The
total execute time is T = 4 · T (V1) + 2 · T (V2) + T (V3) + T (V4).

�

Core1

Core2

Core3

Core4

T(V1) T(V1) T(V1) T(V1) T(V2) T(V2) T(V3) T(V4) T

V11

V12

V13

V14 V15�

V17

V16

V21

V31

V41

V32 V22

V23

Core1

Core2

Core3

Core4

T(V1) T(V1) T(V2) T(V3) T(V4) T

V11 V31 V41

V12

V21

V23 V17 V14

V16 V13 V22

V15

V32

(a) (b)

Fig. 2. (a)A possible order distribution of the MapReduce workloads with Credit al-
gorithm.(b)A possible order distribution of the MapReduce workloads with concurrent
scheduling algorithm.

The concurrent scheduling algorithm uses a novel mechanism to optimize
the Credit algorithm. For a node, the tasks of next level must wait for all the
tasks of the previous level were disposed, before it is implemented. To make
full use of processor resources, a core can be adopted to maximize the parallel
process the various tasks of the same level.The total timeT = 2 ·T (V1)+T (V2)+
T (V3)+T (V4).A order distribution of theMapReduce workloads with concurrent
scheduling algorithm base on this idea is as shown in the figure 2(b).

Further we will discuss the situation that hybrid types of tasks run simultane-
ously. Assuming that the MapReduce model above and the other five common
tasks send request at the same time, there are six physical processor cores avail-
able and fix 3 processor cores to each type of task before execute. The total
timeT = 3 · T (V1) + T (V2) + T (V3) + T (V4), a possible schedule order distribu-
tion of the hybrid tasks as shown in the figure 3(a).

30 H.-X. Chen, K. Li, and L. Shi

�

Core1(Credit)

Core2(Credit)

Core3(Credit)

Core4(CON-Credit)

Core5(CON-Credit)

Core6(CON-Credit)

T(V1) T(V1) T(V1) T(V2) T(V3) T(V4) T

V11 V14 V17

V12 V15 V22

V23

V32

V31 V41

V16 V13

V21

J3

J5

J4 J1

J2

Core1(Credit)

Core2(Credit)

Core3

Core4(CON-Credit)

Core5(CON-Credit)

Core6(CON-Credit)

T(V1) T(V1) T(V2) T(V3) T(V4) T

V11 V14

V17

V23

V31

V16 V13

V12

J4

V15

V41 V21

V22 V32

J3

J2

J1

J5

(a) (b)

Fig. 3. (a)A possible order distribution of the MapReduce workloads and common
tasks with Credit schedule.(b)A possible order distribution of the MapReduce work-
loads and common tasks with concurrent scheduling algorithm.

If we design a mechanism to adjust the allocation of resources dynamically
according to the number of tasks for the different types of tasks, this allows us
to make full use of the resources, improve the overall real-time and throughput,
and reduce the total execution time. At this point, due to the core3 has been idle
after performing task J3, if its resources assigned to V17 dynamically, the total
timeT = 2 · T (V1) + T (V2) + T (V3) + T (V4). Now, a schedule order distribution
of the hybrid tasks as shown in the figure 3(b).

From the above scheduling situation, we can see that the default credit al-
gorithm for parallel tasks has obvious defects, but the concurrent scheduling
algorithm in multi-core system show better performance. In addition, the anal-
ysis of the hybrid tasks shows that dynamic scheduling give more conducive to
improve the resource utilization and application performance than static schedul-
ing, thereby enhancing the throughput of the entire system, reducing the mini-
mum total execution time the event(MAKESPAN).

3.2 Scheduling Framework

Based on the above analysis, this paper proposes CON-Credit scheduling
model(concurrent credit scheduler) that according to the types of the tasks to di-
vide multi-core processor core dynamically. The task status monitoring and
scheduling decision-making module are added in this model on the basis of the
original VMM scheduler structure. The former collect time and task status infor-
mation in the process of device access by reading the data in the event channel,
while the latter process the information that have collected in real-time, and dis-
patch cores resources to each VCPU dynamically to deal with the tasks of corre-
sponding types, make a scheduling decision when some conditions are satisfied.

The four main parts to realize this scheduling model are as follows:1) Cores
are divided into the COM-Core and CON-Core dynamically, COM-Core corre-
sponding to ordinary task and CON-Core corresponding parallel tasks; 2) The
VMM scheduler dispatch tasks according to the application type in the different
sets; 3) Task status monitoring and real-time decision-making. 4) Scheduling
virtual machine in parallel and collaboratively. The separation of CON-core and

Scheduling Model of Virtual Machine Base on TTMS 31

Domain 0

NB Driver

BB Driver

�������

Hardware

Xen VMM
Credit Scheduler

�������

�������

Event Channel

Domain U

Com-App

VCPU

Scheduling Decision

Making Module

CON-Credit

Scheduler

COM-Core

Core
�������

CON-Core

Core Core Core

Domain U

Coo-App

VCPU

Domain U

Coo-App

VCPU

Fig. 4. The overall structure of the scheduling strategy model in VMM

COM-Core is used to reduce the time of the physical CPU resource allocation
and to respond events request quickly. The task of condition monitoring and
dynamic division of decision-making are used to reduce the performance penalty
of context switching of the different task types. Parallel and collaboration of the
virtual machine are conducive to the separation between the parallel tasks, and
the implementation of the synchronous collaboration to achieve the task parallel
processing. The overall structure of the scheduling model was shown as figure 4.

3.3 CON-Credit Strategy Analysis

Taking into account |P | processor cores system, useP = P1, P2, · · ·, P|P | to rep-
resent all the multi-core processors. LetJ = J1, J2, · · ·, Jn means be the set of
the common tasks which have n tasks. For each taskJi ∈ J, T (Ji)means the pro-
cessing time of task i. Besides, with V = V11, V12, · · ·, V21, V22, · · ·, Vi1, · · ·, Vij

denotes the set of the nodes of parallel tasks, and m nodes. T (Vij) denotes the
process time of node i, and let W = J ∪ Vt. Assume the set of the |D| VC-
PUs is D = D1, D2, · · ·, D|D|. For a running time, there is |WR| ≤ |DR| ≤ |PR|,
and|WR|, |DR|, |PR| denotes the number of tasks are running at the moment, VC-
PUs and cores respectively. In the multi-core virtual machine monitor system,
the task scheduling includes allocation of the tasks in VCPUs to the domainU ,
denoted by Dk = λ(Wi), and the VMM allocate the cores to the each domainU ,
denoted by Pj = μ(Dk). So Pj = μ (λ(Wi)) denotes that allocate the processor
core j to the node i. ((((()))))We make the weight of PCPU process the com-
mon types of task is�(PJ), and the parallel types of task is�(PV) respectively,
then�(PJ) +�(PV) = 1. Of course, the cores that perform two types of tasks
can interconversion according to the value of�(PJ), �(PV).

When the event request, allocate processor core resources to the various VC-
PUs dynamically depending on the value of�(PJ), �(PV) to. Among the|P |
processor cores system, we assume that each half of the processor cores are as-
signed to the two types of tasks. In operation, record the number of two types of
tasks and the processing time required to be processed within a time unit in real-
time by state monitoring mechanism. We assume the number of common tasks is

32 H.-X. Chen, K. Li, and L. Shi

C1, then the total processing time can express as
∑C1

1 T (JK1), k = 1, 2, 3, · · ·, C1.
At the same time, we assume the numbers of parallel tasks type are C2, then
the total processing time can expressed as

∑C2

1 T (VK2) , k = 1, 2, 3, · · ·, C2.

So, the ratio of the task duration is denoted by R =
∑C1

1 T(JK1)
∑C2

1 T(VK2)
, and let

�(PJ)
�(PV) = R =

∑C1
1 T(JK1)

∑C2
1 T(VK2)

, �(PJ) + �(PV) = 1. As a result, the number of

processor cores are assigned to the type of the common tasks can be defined

as:RJ = ��(PJ) · |P |� =

⌊ ∑C1
1 T(JK1)

∑C1
1 T(JK1)+

∑C2
1 T(VK2)

· |P |
⌋

.The number of pro-

cessor cores are assigned to the type of the parallel tasks can be defined as:

RV = ��(PV) · |P |� =
⌈ ∑C2

1 T(VK2)
∑C1

1 T(JK1)+
∑C2

1 T(VK2)
· |P |

⌉

.Here |P | = RJ +RV .

In the CON-Credit algorithm, when a task node Wi has begun executed in
the processor core, it will occupy the core until it finished. The question is how
to find out a task scheduling strategy that has minimum total execution time for
the request event so as to improve the real-time performance and throughput.
When an event sends a request, each task nodes are assigned to each processor

core according to μ (λ(Wi)), T
(
μ
Pj

Wi

)
denote the process time of the task Wi

that assigned to the processor core Pj . If the total number of tasks that has
already completed is K within the time T , then the throughput is:ϕ = K

T , and:

T = max

{
∑

J

T (Ji),
∑

V

T (Vi)

}

+

n+m∑

i=1

T
(
μ
Pj

Wi

)
. (1)

When the parallel task comes, each node is scheduled according to their level or
their sequential dependencies. The tasks at the same level are allocated to each
virtual machine in accordance with theλ(Vi), and corresponds to the processor
core for concurrent processing in accordance with theμ(λ(Vi)). Then allocate
the appropriate number of processors to process the task nodes at each level
according to the value of�(PJ), �(PV), and disposed of these tasks in a period
of time as much as possible to maximize concurrent processing of parallel tasks.
WhenRV < |Vi|, the processor cores resources are not enough. At this time, as-
sign theRV processor cores toRV nodes in accordance with the functionμ (λ(Vi)),
and detect dynamically if the task on the virtual machine completed or not. If
finished, transfer to the other node at the same level that waiting for process-
ing. When all the nodes at the same level have finished, then execute the tasks
of each node of the next level. The events the total execution time T (V) is as

follow:T (V) =
∑I

i=1 ki · T (Vi) +
∑I

i=1

∑
j T

(
μPn

Vij

)
=

∑I
i=1

⌈
ji
RV

⌉
· T (Vi) +

∑I
i=1

∑
j T

(
μPn

Vij

)
; Where ki =

⌈
ji
RV

⌉
, ki denotes the task allocate to the

i− thlevel, times of T (Vi) time period on a processor cores is needed to complete
all of the tasks in the i− thlevel. So the total execution time for such events is

as follows:minT (V) = min
∑I

i=1

⌈
ji
RV

⌉
· T (Vi) + min

∑I
i=1

∑
j T

(
μPn

Vij

)
.

Scheduling Model of Virtual Machine Base on TTMS 33

Therefore, when the hybrid tasks request, the objective function is to minimize
the execution time:

minT = max

(

minT (V),
∑

J

T (Ji) + min

n∑

i=1

T
(
μPn

Ji

)
)

. (2)

Subject to:The time that task node Vij obtained is decided by �(Vij), the k −
level task nodes scheduled before the r − level task nodes; here k < r, and
inequality|WR| ≤ |DR| ≤ |PR|must be established.

3.4 The Algorithm Flow

The CON-Credit algorithm flow chart was shown as figure 5. In the multi-core
processors virtual environment monitor system, the algorithm take VCPU for
scheduling unit, each VCPU associated with the corresponding virtual machine.
At the initial stage of this scheduling algorithm, it check the target VCPUs
running state and the queue position, judge the request event type and obtain
the proportion of the R value through the state decision module, and assign
the core number of various types that needed according to the R value. During
the operation, the state decision module monitor the ratio of the time required
for each task type in dynamically, and generate the corresponding distribution
value, reduce or increase the core number of the concurrent events needed ac-
cording to the value to make more common tasks or concurrent events can be
operated. In operation, if a new task request, the functionμ (λ(Wi)) will generate
a new allocated valueRj , Rv, reallocate processor resources to each virtual CPU.
Meanwhile, the scheduling decision module should judge the type of event and
select scheduling strategy. For the concurrent event, the CON-Core is selected.
Otherwise, the default COM-Core is assigned.

Start

Decision

Credit

schedule

Con-Module

Com-App

N

Cpu assign

Schedule task-node�

Assign

the Cpu

End

Con-App

Y

Y

N

Return

Fig. 5. The model flow chart

34 H.-X. Chen, K. Li, and L. Shi

4 Performance Evaluation

4.1 Experiment Environment

The hardware configuration of the experimental platform is Intel eight-core Xeon
7550 processors, the Seagate 1TB IDE hard disk, DDRII-800 8GB memory, and
the RTL 8139D 200Mbps Ethernet card. All experiments used Xen 4.1.2 on the
Fedora16 operating system with Linux 64bit 3.10.17 kernel. All virtual machines
are running with Fedora 16 with kernel 3.10.17. At the same time we build
a executable parallel programming environment with the virtual machines. To
study the performance comprehensively, we analyze the performance of CON-
Credit scheduling algorithm in three ways:Efficiency: What is the performance
profit CON-Credit algorithm can get comparing with the traditional Credit al-
gorithms.Adaptability: How the CON-Credit algorithm work in the hybrid task
mode.Scalability: How the number of virtual machine will give an influence on
the CON-Credit scheduling performance.

4.2 Benchmarks

Now, there are fourMapReduce benchmarks(Dot product, π Computation,RC4
Key Search and N − body problem)[7]have been constructed to demonstrate
the applicability of CON-Credit schedule framework.Dot product:We perform
the multiplications in the Map function and additions in the Reduce function.π
Computation: The classic Monte Carlo simulation is used to approximate the
value of π. For N paths, the output of the Map function is a stream of binary
values∈ 0, 1. The Reduce function is the addition and π is computed by mul-
tiplying the reduced value by 4

N on the host computer.RC4 Key Search: The
Map function input is an index indicating the position to start the search. The
reduce function, implemented on the host, checks the return value and outputs
the correct key if found.N − body:In our test, the input to the Map function
is the current information for the n particles and the particle index. It is the
reduce functions responsibility to fresh each particle new state according to the
formula associated[8].

4.3 Performance Measurement and Analysis

Now, we take the above 4 typicalMapReduce programs and serial program (such
as Rank sorting algorithm and gcc compile test in SPEC CPU2000) as the ex-
ample to verify our proposed virtual machine scheduling algorithm and compare
its performance with traditional one.

The first experiment tests per the formance of the distributed MapReduce
applications which ran in eight virtual machines. Each domain is configured
with 4 VCPUs and only one MapReduce task runs on each of them. The re-
sult is depicted in Figure 6. Compare with the traditional scheduler the total
execution time of four benchmarks reduced by 28.17%, 25.86%, 30.47%, 30.39%
respectively under the CON-Credit algorithm.

Scheduling Model of Virtual Machine Base on TTMS 35

0

200

400

600

800

1000

1200

Dot Dot π π RC4 RC4 N-Body N-Body
R

u
n

 t
im

e
(s

)
(D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8)

Benchmarks on doma ins

Credit CON-Credit

Fig. 6. The MapReduce benchmarks run simultaneously on 8 domains, respectively

The second experiment measures the overall performance of CON-Credit with
hybrid workload, server the parallel and serial task at the same time. In this
test, eight domains are created on XEN, and each domain is configured with 4
VCPUs. The figure 7 show the case then 4 domains run the MapReduce pro-
grams while the others involve only serial programs. According to Figure 9, the
proposed CON-Credit algorithm show better performance than traditional algo-
rithm, the execution time of dot product is decreased by 25.61%,π Computation
is decreased by 23.06%,RC4 Key Search is decreased by 28.60%, N − body is
decreased by 26.27%.However, the execution time of serial programs Rank is
increased by 5.33%, and 176.gcc is increased by 9.07%. Because the improved
VMM scheduler has added a scheduling decision module, all the tasks need the
scheduling decision module to allocate physical processor resources. That leads
to the time of serial tasks has a slight increase. This is acceptable in the large
environment.

The figure 8 show the another case, up to 6 domains are configured to run
MapReduce programs and the other 2 domains severed for the serial programs.
The overall execution time of the benchmarks with two schedulers is depicted.
According to Figure 10, the CON-Credit algorithm speeds up the dot product,

0

500

1000

1500

2000

2500

Dot π RC4 N-Body 176.gcc 176.gcc Rank Rank

R
u
n

 t
im

e
(s
)

(D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8)

Benchmark on domains

Credit CON-Credit

Fig. 7. Benchmarks run simultaneously on 8domains respectively, 4domains are used
to MapReduce programs and the others are used to serial programs, and the iterations
are set to 109

36 H.-X. Chen, K. Li, and L. Shi

0

200

400

600

800

1000

1200

Dot Dot π π RC4 RC4 176.gcc Rank

R
u
n

 t
im

e
(D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8)

Benchmarks on domains

Credit CON-Credit

Fig. 8. The benchmarks run simultaneously on 8domains respectively, 6domains are
used to MapReduce programs and the other 2domains are used to serial programs,
and the iterations are set to 109

π Computation, and RC4 Key Search by 26.23%, 24.94%, 29.70% respectively.
However, the execution time of Rank serial programs is increased by 5.25%, and
176.gcc is increased by 6.20%. It is also acceptable in the large environment as
the same reason of before said.

In the 3rd experiment, we create several virtual machines to stimulate the
cluster environment which be used to test the hybrid scheduling performance,
and the MapReduce parallel tasks and ordinary serial tasks are scheduled simul-
taneously. In order to find out how the number of domains influences the overall
performance of scheduling algorithm, we test the result with different cores and
domains. Each domain is equipped two VCPU, and the test cases are set to the
4 MapReduce benchmarks and two serial tasks. In this test, the CON-Credit
algorithm show better performance than the traditional scheduling algorithms
for parallel tasks, and adapt to the hybrid mode which involves both the parallel
and serial tasks.

The results of the experiment show that the total execution time changed
with the growing number of domains, and the average time of all tasks with
the corresponding number of domains are all shown on figure 9. The experiment
demonstrates the relative advantage of CON-Credit algorithm for MapRrduce
tasks than the default scheduling algorithm. With the number of virtual ma-
chines increased, the execution time of dot product is decreased by9.18%, 18.03%,
13.62%, 12.75%, 13.08%, 14.81%; the execution time of π Computation is de-
creased by 9.31%, 16.82%, 9.98%, 12.18%, 13.43%, 15.43%; the execution time
of RC4 Key Search is decreased by 10.08%, 13.55%, 10.74%, 9.81%, 10.71%,
11.99%; the execution time of N − body is decreased by 9.68%, 14.01%, 9.81%,
9.79%, 10.55%, 11.40%. However, the execution time of rank serial programs
increased by 1.19%, 5.45%, 4.42%, 3.62%, 3,37%, 2.94% in proper order, and
176.gcc increased by 2.79%,1.97%,2.43%,3.60%,5.18%,7.91% in proper order.

As the Figure 9 shows the whole system get the maximum performance when
the number of domains is configured to 4. The reason is there are only 8 physical
cores in the testbed, when 4 domains are running on top of the systemthere are
eight VCPUs on XEN in total because two VCPUs are set to each domain.

Scheduling Model of Virtual Machine Base on TTMS 37

0

500

1000

1500

2000

2500

2 4 6 8 10 12

T
h
e
 a
v
e
ra
g
e
 r
u
n
 t
im

e
(s
)

The number of domains

Dot product(CON-C) π Computation(CON-C)
RC4 Key Search(CON-C) N-body(CON-C)
176.gcc Dot(C)
π Computation(C) RC4(C)
N-Body(C) 176.gcc(C)
Rank Rank(C)

Fig. 9. 4 MapReduce benchmarks and 2 common tasks are run simultaneously on
domains, and the MapReduce benchmarks iterations set to 109

The communication overhead among domains in the Reduce process is smaller
relative to more domains. When the number of VCPUs is equal to the number
of physical processor cores, the execution time of Map process is reduced, and
system reach a balance point. When the number of VCPUs is great than 8,
the extra communication overhead will increase dynamically and fade out the
benefit of more VCPUs. Besides, with the increase of domains, the increase
velocity of the time of CON-Credit is gentle and trends to a steady value, but
the default algorithm still keep in an increasing trend. For serial task, when four
VCPUs in two virtual machines are created, the efficiency gets its peak value.
However, when the number of domains increases, the time spend in scheduling
make decision module also grow. The scalability experiment shown on the figure
9 shows that even take this element into account, the CON-Credit algorithm
still exhibit good scalability in large scale system.

5 Related Work

In this section, we present the related work on scheduling in the XEN VMM.
Several extensions to Xens Credit scheduler are proposed to improve I/O per-
formance, by adding a highest priority status named BOOST. The BOOST
related credit scheduler sort the RUN queue based on their remaining credits,
and tickling the scheduler when events are sent. The [9] has largely focused on
improving the efficiency of I/O operations and has not explored the impact of
the scheduler on I/O unrelated task. Scheduler improvements for I/O are likely
to also benefit these innovative I/O designs. Kim et al[10] proposed a task-aware
virtual machine scheduling mechanism based on inference techniques using gray-
box knowledge. The proposed mechanism infers the I/O-boundless of guest-level
tasks and correlates incoming events with I/O-bound tasks. Chuliang Weng et
al[11] analyzed the CPU scheduling problem and presented a hybrid schedul-
ing framework for the CPU scheduling in the virtual machine monitor. Lee et
al[12] have identified the area of soft real-time application domains and the per-
formance problems they encounter in virtualized environments. L Shi et al [13]

38 H.-X. Chen, K. Li, and L. Shi

proposed vCUDA, a general-purpose graphics processing unit computing solu-
tion for virtual machines. vCUDA allows applications executing within VMs to
leverage hardware acceleration, which can be beneficial to the performance of a
class of HPC applications. Philip M. Wells et al. [14] proposed a simple hardware
technique to detect when a VCPU is spinning, without requiring any software
modification, and preempt that VCPU in favor of one which is making forward
progress. Hui Kang et al. [15] designed and implemented the MRG scheduler,
a new Xen scheduler for VMs running MapReduce workloads. The scheduler
facilities MapReduce job fairness by introducing a two-level group credit based
scheduling policy. Chuliang Weng et al [16] proposed an adaptive dynamic co
scheduling method to mitigate the problem, while avoiding unnecessary over-
head for co scheduling, and implement a prototype ASMan. Neither of above
work combines the strength of MapReduce framework with the flexibility of vir-
tual machine technology. We propose a schedule algorithm, CON-Credit , which
is a fundamental approach for adapting to the diversity of VMs in the cloud
platform, to decide when and how to map VCPUs to cores wisely. Moreover, the
hybrid scheduling framework supports distributing core resources among VCPUs
based on demand, as well as distributing equally.

6 Conclusion

More and more parallel computing tasks have been deployed in the cloud com-
puting and virtualization platform. In this paper, we designed and implemented
a scheduling algorithm named CON-Credit that make full use of the inherent
characteristics of multi-core architecture, since the traditional virtual machine
scheduling algorithm does not adapt to the parallel task scheduling. The CON-
Credit achieved the dynamic classification and matching of the physical CPUs,
and improved the execution efficiency of the MapReduce task through coop-
erative scheduling between the ordinary tasks and parallel tasks. The experi-
ments prove that the algorithm worked well for the parallel task scheduling and
mixed task scheduling, and have strong adaptability and scalability. For now the
CON-Credit algorithm is only implemented in XEN virtual machine platform.
In future it will be ported to other VMM platform like KVM and Hyper-V. In
addition, the cloud computing platform may involved a large number of hetero-
geneous cores, that is a good candidate to exhibit the flexibility and scalability
of CON-Credit. How to combine the parallel computing tasks and heterogeneous
virtual computing environment, and design a more adaptable virtual machine
scheduling algorithm is still a topic worth further studying.

References

1. Chisnall, D.: The definitive guide to the Xen hypervisor, pp. 222–224 (November
2007)

2. Credit Scheduler, http://wiki.xensource.com/xenwiki/creditscheduler

http://wiki.xensource.com/xenwiki/creditscheduler

Scheduling Model of Virtual Machine Base on TTMS 39

3. Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., Shi, X.: Evaluating MapReduce on
Virtual Machines: The Hadoop Case. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.)
CloudCom 2009. LNCS, vol. 5931, pp. 519–528. Springer, Heidelberg (2009)

4. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: SOSP, pp.
29–43 (2003)

5. Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications. In:
Proceedings of the 2008 Fourth IEEE International Conference on eScience, pp.
222–229 (2008)

6. Ibrahim, S., Jin, H., Cheng, B., Cao, H., Wu, S., Qi, L.: CLOUDLET: towards
MapReduce implementation on virtual machines. In: Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing, pp. 65–66
(2009)

7. Yeung, J.H.C., Tsang, C.C., Tsoi, K.H., et al.: Map-reduce as a Programming
Model for Custom Computing Machines. In: 16th International Symposium on
Field-Programmable Custom Computing Machines, pp. 149–159 (2008)

8. Tsoi, K.H., Ho, C.H., Yeung, H.C., Leong, P.H.W.: An arithmetic library and
its application to the n-body problem. In: Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 68–78 (2004)

9. Kim, H., Lim, H., Jeong, J., Jo, H., et al.: Task-aware Virtual Machine Scheduling
for I/O Performance. In: Proceedings of the 4th International Conference on Virtual
Execution Environments (VEE), pp. 101–111 (2009)

10. Weng, C., Wang, Z., Li, M., Lu, X.: The Hybrid Scheduling Framework for Virtual
Machine Systems. In: Proceedings of the 4th International Conference on Virtual
Execution Environments (VEE), pp. 111–120 (2009)

11. Ongaro, D., Cox, A., Rixner, S.: Scheduling I/O in virtual machine monitors. In:
Proceedings of the 4th International Conference on Virtual Execution Environ-
ments (VEE), pp. 1–10 (2008)

12. Lee, M., Krishnakumar, A., Krishnan, P., Singh, N., Yajnik, S.: Supporting soft
real-time tasks in the XEN hypervisor. In: Proceedings of the 6th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, pp.
97–108. ACM (2010)

13. Shi, L., Chen, H., Sun, J.H., Li, K.L.: vCUDA: GPU-Accelerated High-
Performance Computing in Virtual Machines. IEEE Transaction on Computers,
doi:10.1109/TC.2011.112

14. Wells, P.M., Chakraborty, K., Sohi, G.S.: Hardware support for spin management
in overcommitted virtual machines. In: Proc. of the 15th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT 2006), Seattle,
Washington, USA, September 16-20 (2006)

15. Kang, H., Chen, Y., Wong, J.L., Wu, J., Sion, R.: Enhancement of Xen’s Scheduler
for MapReduce Workloads. In: HPDC 2011, San Jose, California, USA, June 8-11
(2011)

16. Weng, C., Liu, Q., Yu, L., et al.: Dynamic Adaptive Scheduling for Virtual Ma-
chines. In: HPDC 2011, San Jose, California, USA, June 8-11 (2011)

	Scheduling Model of Virtual Machine Base
on Task Type in Multi-core System
	1 Introduction
	2 Background
	2.1 Xen’s Credit Scheduler
	2.2 MapReduce

	3 Scheduling Strategies and Analysis
	3.1 Motivations and Modeling
	3.2 Scheduling Framework
	3.3 CON-Credit Strategy Analysis
	3.4 The Algorithm Flow

	4 Performance Evaluation
	4.1 Experiment Environment
	4.2 Benchmarks
	4.3 Performance Measurement and Analysis

	5 Related Work
	6 Conclusion
	References

