
123

Yunquan Zhang
Kenli Li
Zheng Xiao (Eds.)

8th CCF Conference, HPC 2012
Zhangjiajie, China, October 2012
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 207

Communications
in Computer and Information Science 207

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Yunquan Zhang Kenli Li Zheng Xiao (Eds.)

High Performance
Computing
8th CCF Conference, HPC 2012
Zhangjiajie, China, October 29-31, 2012
Revised Selected Papers

13

Volume Editors

Yunquan Zhang
Chinese Academy of Sciences
Beijing 100190, P.R. China
E-mail: yunquan.cas@gmail.com

Kenli Li
Hunan University
Changsha 410082, P.R. China,
E-mail: lkl510@263.net

Zheng Xiao
Hunan University
Changsha 410082, P.R. China
E-mail: xiaozheng206@163.com

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-41590-6 e-ISBN 978-3-642-41591-3
DOI 10.1007/978-3-642-41591-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013951269

CR Subject Classification (1998): B.2.4, B.3.2, C.1-2, C.4, C.5.1

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Computational science, the use of advanced computing capabilities to understand
and verify complex problems, has become crucial to scientific research, economic
competiveness, and national security. Parallel computing is one of the most im-
portant fields in computational science, including parallel hardware system such
as supercomputers and their large-scale parallel software. Currently, almost all
of the fields of fundamental research in physics, chemistry, biology, astronomy,
earth science, areas of national economy in the automotive, steel, aerospace,
biomedicine, and new energy sectors, as well as related fields of national security
such as information security and nuclear weapons are highly dependent on the
development of computational science. Besides, the demand of computational sci-
ence in the above-mentioned areas is increasing every day. Computational science
plays an indispensible role in the process toward an innovation-oriented country.
Except for theory and experiments, computational science has become the third
most important tool for scientific exploration and engineering studies. Hence,
the U.S. President’s Information Technology Advisory Committee (PITAC) in
the report submitted to President George W. Bush in June 2005, entitled “Com-
putational Science: To Ensure the Competitive Advantage of the United States,”
suggested the U.S. government develop long-term plans and provide long-term
funding for computational science, to ensure the competitive advantage and na-
tional security of the United States. The committee agrees that computational
science is one of the most important technical fields of the twenty-first century,
because it is indispensable to the progress of the entire society.

For a long time, China and the world’s major developed countries attached
great importance to the development and application of high-performance com-
puting, and they made numerous achievements in this area.“TianHe 1A,”ranked
first in the world recently, and the world’s second supercomputer system“Dawn-
ing Nebulae” are the representative achievements after years of investment of
our country. Meanwhile, such high-performance domestic processors as Shen-
Wei, Loongson, and FeiTeng are also beginning to take shape, and the petaflop
supercomputer system “ShenWei BlueLight” that uses domestic processors was
developed successfully, opening the way for the application of domestic proces-
sors in the field of supercomputers. In the next 5–10 years, the development of
exascale supercomputer systems will be the common goal of China, the United
States, Europe, Japan, and other major developed countries and regions.

So far, heterogeneous parallel computing that can take advantage of all the
petaflop supercomputer processors and acceleration components has barely made
any breakthroughs. The development of parallel application software faces bot-
tlenecks and needs to progress.

The National Annual Conference on High-Performance Computing (HPC
China 2012) is a national conference on all aspects of high-performance

VI Preface

computing. It serves as a forum to present current work by researchers from
around the country as well as to highlight activities in China in the high-
performance computing area. HPC China 2013 was held during October 29–31,
2013, at Guilin, Guangxi. The conference received more than 260 papers, and
each paper was carefully reviewed by the Technical Program Committee mem-
bers. Finally, fewer than 100 papers were selected. This volume comprises 14
excellent papers recommended by the Program Committee members, including
parallel architecture, GPU computing, resource scheduling, parallel algorithm,
and performance evaluation.

This was the first attempt for this conference to cooperate with the inter-
national academic journal and organization on the HPC’s special issue. In the
process of the organization, it is inevitable that omissions were made. We hope
the readers provide valuable advice and suggestions so that we can improve fu-
ture editions. On behalf of the Organizing Committee, we thank all the experts
of the Program Committee for their work in reviewing the articles.

March 2013 Yunquan Zhang
Kenli Li

Zheng Xiao

Conference Organization

The National Annual Conference on High-Performance Computing (HPC China
2012) was organized by The Specialty Association of Mathematical and Scien-
tific Software of China Software Industry Association, Technical Committee of
High-Performance Computing of China Computer Federation, National Super-
computing Center in Changsha, and Hunan University. It was partly funded by
PARATERA, Intel, AMD, and Nvidia, among others.

General Chair

Guoliang Chen University of Science and Technology of China
Xuejun Yang National University of Defense Technology

Program Chair

Ninghui Sun Institute of Computing Technology, Chinese
Academy of Sciences

Program Committee

Fengbin Qi Jiangnan Institute of Computing Technology
Xuebin Chi Computer Network Information Center,

Chinese Academy of Sciences
Yunquan Zhang Institute of Software, Chinese Academy of

Sciences
Qingfeng Hu National University of Defense Technology
Zeyao Mo Beijing Institute of Applied Physics and

Computational Mathematics
Renfa Li Hunan University

Conference Executive Chair

Jing Zhang Hunan University
Xiangke Liao National University of Defense Technology

Organizing Committee

Liya Deng Hunan University
Nan Li National University of Defense Technology
Yaping Lin Hunan University
Lijun Cai Hunan University
Kenli Li Hunan University

VIII Conference Organization

Sponsors

Table of Contents

An Improvement to the OpenMP Version of BoomerAMG 1
Chunsheng Feng, Shi Shu, and Xiaoqiang Yue

Dynamic Partitioning of Scalable Cache Memory for SMT
Architectures . 12

Wu Jun-Min, Zhu Xiao-Dong, Sui Xiu-Feng, Jin Ying-Qi, and
Zhao Xiao-Yu

Scheduling Model of Virtual Machine Base on Task Type in Multi-core
System . 26

Hui-Xing Chen, Kenli Li, and Lin Shi

Dynamic Pricing Strategy for Cloud Computing with Data Mining
Method . 40

Xing Wu, Ji Hou, Shaojian Zhuo, and Wu Zhang

Detecting Communities and Corresponding Central Nodes in Large
Social Networks . 55

Shengyi Jiang and Meiling Wu

The Design and Prototype Implementation of a Pipelined Heterogeneous
Multi-core GPU . 66

Junyong Deng, Libo Chang, Guangxin Huang, Lingzhi Xiao,
Tao Li, Lin Jiang, Jungang Han, and Huimin Du

A Parallel Approach for Real-Time OLAP Based on Node Performance
Awareness . 75

Wei He and Lizhen Cui

A Parallel Multigrid Poisson PDE Solver for Gigapixel Image
Editing . 89

Zhenlong Du, Xiaoli Li, Xiaojian Yang, and Kangkang Shen

Parallel Implementation and Optimization of Haze Removal Using
Dark Channel Prior Based on CUDA . 99

Yungang Xue, Ju Ren, Huayou Su, Mei Wen, and Chunyuan Zhang

Research on the Solution of Heat Exchanger Network MINLP Problems
Based on GPU . 110

Mingxing Xia, Yuxing Ren, Yazhe Tang, Lixia Kang, and
Yongzhong Liu

X Table of Contents

MapReduce-Based Parallel Algorithm for Detecting and Resolving
of Firewall Policy Conflict . 118

Qi Xiao, Yunchuan Qin, and Kenli Li

DPA-Resistant Algorithms for Trusted Computing System 132
Lang Li, Kenli Li, Yi Wang, YuMing Xu, Hui Liu, and Ge Jiao

Detection of KVM’s Virtual Environment and Vulnerability 140
Li Ruan, Yikai Sun, Limin Xiao, and Mingfa Zhu

Scalability Tests of a Finite Element Code on Hundreds of Thousands
Cores and Heterogeneous Architecture . 151

Jiangyong Ren, ChaoWei Wang, Yingrui Wang, and Rong Tian

Author Index . 167

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 1–11, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Improvement to the OpenMP Version
of BoomerAMG

Chunsheng Feng1, Shi Shu2,∗, and Xiaoqiang Yue3

1 School of Mathematics and Computational Science, Xiangtan University,
Xiangtan 411105, China

2 Hunan Key Laboratory for Computation and Simulation in Science and Engineering,
Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education,

Xiangtan University, Xiangtan 411105, China
3 School of Mathematics and Computational Science, Xiangtan University,

Xiangtan 411105, China
{spring,shushi}@xtu.edu.cn, yuexq1111@163.com

http://math.xtu.edu.cn/myphp/math/personal/shushi/

Abstract. Algebraic multigrid(AMG) method is one of the most efficient
iterative methods for solving the linear systems which arising from
discretizations of partial differential equations. Parallel AMG has been widely
used in large-scale scientific and engineering computation. In this paper,
considering a class of linear algebraic equations with sparse and banded
coefficient matrices, we improve the OpenMP version of BoomerAMG by
modifying its modules of the parallel interpolation and the parallel coarse grid
operator. The improved version of BoomerAMG is applied to solve the Laplace
equation and a class of two-dimensional three-temperature radiative diffusion
equations. Numerical results demonstrate that the new method yields better
scalability and efficiency.

Keywords: AMG method, parallel computing, OpenMP, HYPRE, radiation
heat conduction.

1 Introduction

Algebraic multigrid(AMG) method is one of the most efficient iterative methods (or
preconditioners) for solving the linear systems arising from discretizations of elliptic
partial differential equations. AMG has been widely used in large-scale scientific and
engineering computation fields. The AMG method was originally proposed by Brandt
A et al [1] in the early 1980s. Recently, through the joint efforts of many scholars,
AMG has been developed greatly. There are many new AMG methods, such as the
energy minimum interpolation AMG method and adaptive AMG methods [2-
4,11,12]. However, efficiency of AMG is usually depend on problem properties and
discretizations.

∗ Corresponding author.

2 C. Feng, S. Shu, and X. Yue

Serial computer programming usually not sufficient due to ever increasing problem
size and complexity in scientific and engineering computation. Parallel computing is
the key to improve computing ability and efficiency. Parallel scalability is an
important indicator which impact the computing performance of high-performance
parallel computer system directly. Many scholars have conducted extensive research
[6,13-15] in order to improve it. Currently, some solver packages based on the
parallel AMG methods solver have made important progress. For example,
HYPRE[8] (high performance parallel preconditioner library) is one of the most
popular iterative solver (preconditioner) package, which is developed by the
Lawrence Livermore National Laboratory. BoomerAMG [7] is the most common
linear solver and preconditioner in HYPRE.

OpenMP is an application program interface that may be used to explicitly direct
multicore (shared memory) parallelism[5]. It is a specification for a set of compiler
directives, library routines, and environment variables that can be used to specify
shared memory parallelism in Fortran and C/C++ programs. There are several
difficulties for multithread implementation for AMG methods: One of the problems is
that OpenMP programs sometimes require extra memory space than them
corresponding sequential versions. When working with sparse matrices in compressed
formats, like the Compressed Sparse Row(CSR) format, we sometimes need to
introduce auxiliary memory space. This will become more heavy a burden as the
number of OpenMP threads increases, and will lead to seriously reduce its parallel
scalability. When the size of the linear algebra system and the number of threads are
large, the problem becomes more severe. Therefore, how to take the advantage of
sparse linear algebra system's characteristics to optimize BoomerAMG, such as
reducing the auxiliary memory space allocated, is important for improving parallel
scalability.

The radiation fluid dynamics equations is an important mathematical model to
describe the implosion process of Inertial Confinement Fusion (ICF). The numerical
solution of the two-dimensional three-temperature (2D3T) radiation diffusion
equations takes the mainly time-consuming part in the numerical simulation of ICF
(more than 70% of CPU wall time). The solution of a large-scale ICF simulation is
challenging. The linear system resulting from the discretization of the radiation
diffusion equations is usually large, sparse, highly nonsymmetric and ill-conditioned.
The Krylov subspace methods are efficient iterative methods for these linear systems.
In order to solve a linear algebraic system of equations efficiently a preconditioner,
such as parallel AMG methods, is often necessary to accelerate the Krylov subspace
method.

In this paper, we will carefully analyze the parallel interpolation and coarse grid
operators in the setup phase of BoomerAMG based on the fact that the coefficient
matrices A we consider are usually banded. We proposed the effective length of the
auxiliary array mkP in the parallel interpolation and auxiliary array mkA and mkP in

the coarse grid operators on each thread, and the offset estimator. Then we obtained a
new auxiliary array formula with less memory overhead, and forming the improved
BoomerAMG solver named as BoomerAMG-OPT. The BoomerAMG-OPT is applied
to solve the finite difference discrete system of the Poisson equation and the
Symmetric Finite Volume Element (SFVE) discrete system[9] of a 2D3T radiation
diffusion equation. The numerical results show that, as there is an obvious change in

 An Improvement to the OpenMP Version of BoomerAMG 3

the length of the auxiliary memory cost between the original and improvements
BoomerAMG solver (for example, when the number of OpenMP thread is 128 and
the grid size is 2048x2048, for the two-dimensional 5pt discrete Laplacian system, the
size of auxiliary arrays in BoomerAMG is more than 100 times of the improved one).
The new solver improved the solving ability of the original one, i.e. larger problem
can be solved. This also makes BoomerAMG-OPT to obtain higher parallel
efficiency.

The rest of the paper is organized as follows: In Section 2 and Section 3, we
introduce the improved algorithms for parallel interpolation operator and parallel
coarse grid operator generation for BoomerAMG, respectively. In Section 4, we
report the results of our numerical experiments conducted in a typical multicore
computing environment.

2 An Improved Parallel Interpolation Operator Algorithm

The coefficient matrix arises from the discrete system of PDEs and its coarse grid
operator (matrix) in AMG methods typically have a sparse banded structure (see Fig.
1). Where lb and rb are the half left- and right-bandwidth of the matrix A . We

denote the bandwidth of the matrix A as n l rb b b= + . We show that, if the bandwidth

of the sparse coefficient matrix A is relatively small, then we can gain significantly
economize in memory usage.

Fig. 1. A demo for banded sparse matrix

The default interpolation operator of BoomerAMG is the correction classic
interpolation operator[10]. Corresponding to a program module name in HYPRE is
hypre_BoomerAMGBuildInterp. For convenience of description, here, we only
consider the case of two level grids in AMG. Suppose the current grid level of the
coefficient matrix ()ij n nA a ×= is symmetric. Let {1,2, , }AI n= denote the line number

4 C. Feng, S. Shu, and X. Yue

index set of A . Suppose we have split the index set AI

into a set C of the coarse-

level vertices and a set F of fine-level vertices:

 , ,AI C F C F= = ∅

and we denote cn as the cardinality of C , i.e. the number of C-vertices. Assume

that 2f c is the map from F-vertices to C-vertices. We denote ()
c cij n nP p ×= as the

standard interpolation matrix, where entry

, ,

,
2

2

\

ˆ ˆ() / () , []

1.0 , []

/ ,

,

0

F s C s w
i i ii i

c

C s
ij ik kj km ii ik i c

k D F m D k D F

ij c

othe

a a a a a a

rwi

i F j D j f c j

p i

se

C j f c i

∈ ∈ ∈

− + + ∈ ∈ =

= ∈ =

 (1)

where, Let ˆ 0:ija = , if a a > 0ii ij , and let :ˆij ija a= , otherwise; let , ()F s
i iD S Fε= ,

, ()C s

i i
D S Cε= , , ,\ ()w C s F s

i i i i
D N D D= , : 0,{ }i A ijN j I a j i≠= ∈ ≠ ，for [0,1)ε ∈ ,

()iS ε = { max(:)}i ij ik
k i

j N a aε
≠

∈ −− ≥ , , :{ F s
i iF j D= ∈ i and j without the same depended

C-vertices}.
Since the matrix P is sparse and stored in the CSR format, we need to use an

auxiliary integer marker called mkP to locate the column index of each non-zero entry

quickly in BoomerAMG of HYPRE. In fact, to generate the i-th row of P , we define
that , for 0 1j n≤ ≤ −

,
2

,

[],J ,

[] \ ,

1

2

c

C s
j i c

F s
mk i i

j D j f c j

p ij

otherwise

j D F

 ∈ =
= − − ∈

−
,

 (2)

where
cj

J is the position of
cijp entry in the column index array of the CSR storage of

P . In the OpenMP implementation, we have to allocate the marker mkP for all

OpenMP threads. The length of each mkP is n and the total length of mkP for all

threads is then TN n× where TN is the total number of OpenMP threads. When TN

is large, the memory cost for mkP is considerable. If the bandwidth of the sparse

coefficient matrix A is relatively small, and a certain conditions of the parallel
partition for AI are met, it can be found that the length of mkP on each thread may be

much less than n .
Denote t

mP and t
MP as the lower and upper column index of non-zero entries in A

of the t-th OpenMP thread, respectively. Assume that t
sp and t

ep are respectively

the lower and upper row index of AI of the t-th OpenMP thread. Fig. 1 shows the

 An Improvement to the OpenMP Version of BoomerAMG 5

corresponding position of t

s
p , t

ep , t
mP (corresponding non-zero entry

3 3,i ja of A)

and t
MP (corresponding non-zero entry

4 4,i ja of A).

If AI is assigned to each OpenMP thread in sequence and load balancing (i.e., the

row numbers difference between each thread does not exceed one). Suppose
/ , / ,(1)t t

s T e Tn Np t p t n N≈ ≈− × × then we obtain the following theorem about length

and offset estimates for mkP .

Theorem 1. If AI is assigned to each OpenMP thread in sequence and load

balancing, then the length and offset estimates of mkP is:

 min(, / 2 max(0,), /)(1) 2t t
T TP n m lL n n n NN b P t b≤ + ≥ − × −

Proof: By the equation (1) of the first branch, we know that the denominator
()

w
i i

ii ik
k D F

a a
∈

+

 associated minimum column number is k , and the molecule

, ,\

ˆ ˆ
F s C s

dd d

dk kj km
k D F m D

a a a
∈ ∈
 associated minimum column number is j .

Firstly, we consider column index k . Combing with Fig. 1 we can know that k
(1j in Fig. 1) is the minimum index of which is directly adjacent to vertices of AI

in the t-th OpenMP thread. There is

 1 1 .l s l
tk j i b p b≥ = − = −

Then, we consider column index j . Combing with Fig. 1 we can know that j (3j

in Fig. 1) is the minimum index of which is indirect adjacent to vertices of AI in the

t-th OpenMP thread. There is

 3 1 13) 2(2 .l l l
t

l l si i bj j b i pb bb= = − − = −−≥ − =

Combining the value of j and k with equation (2), we can obtain

 max(0, min(,)) max() (1)0, 2 max(0, 2 .)/t t
m l T lsP j k p b t n bN≥ = − ×≈ − −

Similar to the derivation of t
mP , we can get

 min(1 2 min(1, /)2)t t
eM r T rP n p b n t n N b≤ − + ≈ +− ×，

Then , there is

 1 2 2 1 / 2 .t t t t t
P M m l r T ne sL P P p p b b n N b= − + ≤ − + + + ≈ +

In summary above, min(, / 2 max(0,), /)(1) 2t t
T TP n m lL n n n NN b P t b≤ + ≥ − × − .

6 C. Feng, S. Shu, and X. Yue

3 An Improved Parallel Coarse Grid Operator Algorithm

The default coarse grid operator of BoomerAMG is generated by the Galerkin
formula. In HYPRE, this operator is implemented as a program module named
hypre_BoomerAMGBuildCoarseOperator. Similar to the previous section, we only
consider the two-grid case.

Take the restriction operator TR P= , and let {1,2, , }R cI n= denote the line

number index set of R . Then, the coarse grid operator of multigrid methods can be
built as () :

c c

c T
c ij n nA a RAP P AP×= = = , where , 1,, ,c

ij ki kl lj c
k l

a p a p i j n= = . Assume

that 2c f is the map from C-vertices to F-vertices.

Similar to the implement of the parallel interpolation operator, we need to allocate
two auxiliary arrays called mkA and mkP (see Fig. 2). The length of mkA and mkP are

n and
c

n , respectively. mkA and mkP can be defined as

0,, 0,

[] []
, ,[],

,

,
c c

c
j ijij

mk mk c I
c

J ai w

otherwise otherw
A j

is
P j

k i k A i e

 ≠≠ = = < <

where :() = ×=
cij n nW w RA , I

cA is the row array of CSR storage for cA ,
cj

J is the

position of non-zero entry
c

c
ija in the column array J

cA .

Fig. 2. A demo for cA RAP=

Denote t
mA and t

MA as the lower and upper column index of non-zero entries in

A of the t-th OpenMP thread, respectively. Assume that t
mP and t

MP are

respectively the lower and upper column index of non-zero entries in P of the t-th
OpenMP thread. Here, we have

 min(), max(), min(), max(),m M m M
t t t t

t t t tA V A V P V P V= = = =

 An Improvement to the OpenMP Version of BoomerAMG 7

where 2 2{ [] }, { :: [] }
t

M

m

t
e

t t
s

r A

l l k
k r k

t
A

tV m N c f k N V j c f j N
= =

= ∈ ∈ = ∈ , t
sr and t

er are the lower

and upper row index of RI on the t-th OpenMP thread. Fig. 2 shows the

corresponding position of t

s
r , t

er , t
mA (corresponding non-zero entry 1m of A),

t
MA (corresponding non-zero entry 2m of A), t

mP (corresponding non-zero entry 1n

of P) and t
MP (corresponding non-zero entry 2n

of P).

By using a similar proof as in Theorem 1, we can get the following theorem
about the length and the offset estimates for mkA and mkP .

Theorem 2. If 2c f is monotonically increasing, then the length and the offset

estimates of mkA is:

2 2 2min(, [] [] 1), max(0, ,[])t t t T
A l r l r

T
m
t t T

e s s l lL n c f r c f r b b b b A c f r b b≤ − + + + + + ≥ − −

the length and the offset estimates of mkA is:

 2 1 2 2 2 1[] [] 1, [],P
t

m
tL f c n f c n P f c n≤ − + ≥

where T
lb and T

rb are the left and right half-bandwidth of TA ,

1 1 2max([0,] : [] 0)ln j m b f c j= ∈ − ≥ , 2 2 2min([,) : [] 0)rn j m b n f c j= ∈ + ≥ ,

and

1 2 2 2max([0,] : [] 1), min([,) : [] 1)M
t

m
tm j A f c j j n c jm A f= ∈ = − = ∈ = − .

Remark 1. In BoomerAMG, 2c f is monotonically increasing by default.

Definition 1. Denote t
sa and t

ea as the lower and upper row index of AI of the t-th

OpenMP thread, respectively. If all row indexes Rk I∈ satisfy 2 []t t
s ea c f k a≤ ≤ , then

it’s called the parallel partition of RI is limited by the parallel partition of AI .

Corollary 1. Assume that A is symmetric, AI is assigned to each OpenMP thread in

sequence and load balancing and the parallel partition of RI is limited by the parallel

partition of AI , then the length and the offset estimates of mkA is:

 /min(, 2 max(0, /),).A T n m T
t

n
tL n b A bN nn t N≤ + ≥ × −

If we do not consider the possibility that the bandwidth of A can be much smaller
than n , then we will need two auxiliary arrays with length TnN . However, as we

noted above (see Theorem 1 and Corollary 1), we only need two arrays of length
2 n Tn b N+ . When nn b and TN is relatively large, we can save a lot of memory by

using these improved estimates. In fact, this will reduce not only the storage cost but
also the time needed to allocate and initialize memory.

When Theorem 1 and Corollary 1 are applied to BoomerAMG, then we obtain the
improved BoomerAMG named as BoomerAMG-OPT. We name them corresponding
Preconditioned Conjugate Gradient (PCG) algorithm as BoomerAMG-CG and
BoomerAMG-OPT-CG, respectively. In the next section, we will introduce some
numerical example results.

8 C. Feng, S. Shu, and X. Yue

4 Numerical Experiments

In this section, we perform two numerical experiments and analyze the performance
of BoomerAMG (in HYPRE) and BoomerAMG-OPT we proposed in Section 3. The
first numerical example is for the Laplace equation, and then for a 2D3T radiative
diffusion equation. We use a HP desktop PC which is equipped with two Intel
Xeon(R) X5590 (3.33GHz, 8cores) and 24GB RAM. The experimental environment
is CentOS 6.2 , GCC 4.4.6 and hypre-2.7.0b (with “–O2” optimization parameter).
The stopping criteria is that the relative residual in the Euclidian norm is less than
10−6.

Example 1. considering the following Laplacian equation

1, ,

0, ,

u

u

−Δ = ∈Ω
 = ∈∂Ω

x

x
 (7)

where : (0,1) , , 2,3.d dx dR =Ω = ∈
According to the linear equations which arise from the 2D-5pt and 3D-7pt

discretizations of the Laplace equation, Table 1. show out the total length and the
comparison of these two auxiliary arrays on the finest level of BoomerAMG and
BoomerAMG-OPT, in which TN is the OpenMP thread numbers, Size is the

unknown numbers, 1P and 2P are the auxiliary arrays for interpolate and coarse grid

operator, respectively, i
oL and i

nL are the length size in BoomerAMG and

BoomerAMG-OPT, respectively.

Table 1. Length and relative ratio of the aux-arrays in BoomerAMG and BoomerAMG_OPT

TN

2048 2048Size ×= 256 256 256Size × ×=

1P 2P 1P 2P

1
oL

1
nL

1 1/
o n

L L
2
oL

2
nL

2 2/
o n

L L
1
oL

1
nL

1 1/o nL L
2
oL

2
nL

2 2
/

o n
L L

2 32.0 16.0 2.0 16.0 8.0 2.0 16.0 8.3 1.9 8.0 4.2 1.9

4 64.0 16.1 4.0 32.0 8.1 4.0 32.0 8.8 3.7 16.0 4.6 3.5

8 128.0 16.2 7.9 64.0 8.2 7.8 64.0 9.8 6.6 32.0 5.3 6.0

16 256.0 16.5 15.5 128.0 8.4 15.3 128.0 11.8 10.9 64.0 6.8 9.4

32 512.0 17.0 30.2 256.0 8.7 29.3 256.0 15.8 16.3 128.0 9.8 13.0

64 1024.0 18.0 57.0 512.0 9.5 54.0 512.0 23.8 21.6 256.0 15.8 16.3

128 2048.0 19.9 102.9 1024.0 11.0 93.3 1024.0 39.6 25.8 512.0 27.6 18.5

It can be seen from Table 1.: the total length of mkP is linearly dependent on the

number of OpenMP threads in BoomerAMG, but the total length of m̂kP is only

weakly dependent on the number of OpenMP threads in BoomerAMG-OPT; The
relative ratio of the total length of the auxiliary array in BoomerAMG and
BoomerAMG-OPT monotonically increase as the number of OpenMP threads
increasing; Specifically, when the size of the two-dimensional grid is 2048x2048 and

 An Improvement to the OpenMP Version of BoomerAMG 9

OpenMP threads is 128 (see the last line of data of Table 1.), the auxiliary memory
demand of BoomerAMG reach 2GB but for BoomerAMG-OPT it is only 19.9 MB,
namely the improved algorithm reduces the memory requirements is about 102.9
times. Due to the improvement on the length of the auxiliary memory of the new
algorithm, making BoomerAMG-OPT can solve larger scale linear systems than the
original one.

Table 2. Wall time and relative ratio of Setup in BoomerAMG and BoomerAMG_OPT

Size
2TN = 4TN = 6TN = 8TN =

oT nT /o nT T oT nT /
o n

T T oT nT /o nT T oT nT /o nT T

2512 0.19 0.19 1.00 0.16 0.15 1.07 0.15 0.14 1.07 0.15 0.14 1.07
21024 0.87 0.82 1.06 0.73 0.69 1.06 0.68 0.64 1.06 0.66 0.62 1.06
22048 3.87 3.49 1.11 3.08 2.85 1.08 2.99 2.64 1.13 2.85 2.57 1.11

364 0.55 0.52 1.06 0.43 0.41 1.05 0.38 0.35 1.09 0.34 0.33 1.03
3128 5.49 5.24 1.05 4.02 3.70 1.09 3.56 3.20 1.11 3.35 2.95 1.14
3256 50.06 47.16 1.06 37.54 33.65 1.12 33.36 29.33 1.14 31.45 27.00 1.16

Table 2. shows the CPU wall time for the SETUP phase of BoomerAMG and

BoomerAMG-OPT, respectively. In which oT is the CPU wall time of SETUP phase

in BoomerAMG , nT is the CPU wall time of SETUP phase in BoomerAMG-OPT.

It can be seen from Table 2.: the CPU wall time of BoomerAMG-OPT is less than
BoomerAMG, and the time ratio is increasing with the size of the problem and the
OpenMP threads increasing.

Example 2. considering the following 2D3T radiative diffusion equations

2 2

2

3 2

() () (),

() (),

4 () (),

e
e e e ei i e er r e

i
i i i ei e i

r
r r r er e r

T
c T w T T w T T

t
T

c T w T T
t
T

aT T w T T
t

ρ κ ρ ρ

ρ κ ρ

κ ρ

∂ − ∇ ⋅ ∇ = − + − ∂
∂ − ∇ ⋅ ∇ = − ∂

 ∂ − ∇ ⋅ ∇ = − ∂

 (8)

where

1

1 1 1 2

2
1 22 2

1 311 1 1
1 1 1 1 11 1 1

2 2 232
2

2 22 2 22 2
2

, , ,, , ,
, , , , , ,

,, , ,,,

r

r

n

r ei e er e

r ei ern

ei e er er

A T A Tc m A T A T
c w w

c A T A T mA T

m m m m m

mm mT mA m

ς

ς

ς

ς

α β γ γ
κ ς κς

ς ς γ γβα
ς κ

κ ς

ρ ρ
κ κ ρ

ρρ

+

+
= = = = = =

1m and 2m are two different materials, lcς , lA
ςκ ,

r

lAκ , ln , lβ , l
eiA , l

erA , lγ , l
ςα , , 1,2l lρ = ,

,e iς = and a are all given constants.

10 C. Feng, S. Shu, and X. Yue

Fig. 3. Domain and mesh for equation (8)

For the given SFVE discretization linear system of the equation (8), the relative
speedup of BoomerAMG-OPT-CG and BoomerAMG-CG is shown in Fig. 4, where
the mesh size is 800x400 (See the right figure of Fig. 3), the time steps are from the
400th to 499th.

Fig. 4. Relative speedup for BoomerAMG_OPT-CG and BoomerAMG-CG

It can be seen from Fig. 4: the parallel computational efficiency of BoomerAMG-
OPT-CG is higher than BoomerAMG-CG, it increases upward trend with the
OpenMP threads increasing (except OpenMP thread number is two, there may be
some relation with the hardware construct).

Summary the numerical result of example one and example two, we can deduce the
conclusion BoomerAMG-OPT is overtaken BoomerAMG on the memory save and
parallel computational efficiency. At the same time , it also verified the correctness of
Theorem 1, Theorem 2 and Corollary 1.

Acknowledgments. The authors would like to thank Dr. Chensong Zhang from
NCMIS, Academy of Mathematics and System Sciences of China for his helpful
comments and suggestions. Feng is partially supported by the National Natural
Science Foundation of China under Grant No.11201398 and Project of Scientific
Research Fund of Hunan Provincial Education Department of China 11C1219 and
12A138. Shu is partially supported by the National Natural Science Foundation of
China under Grant Nos. 91130002 and 11171281, Project of Scientific Research Fund
of Hunan Provincial Science and Technology Department Grant No. 2012FJ4302 in
China and Specialized research Fund for the Doctoral Program of Higher Education
Grant No. 20124301110003 in China.

 An Improvement to the OpenMP Version of BoomerAMG 11

References

1. Brandt, A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid (AMG) for automatic
multigrid solution with application to geodetic computations, Tech. Rep., Institute for
Computational Studies, Colorado State University (1982)

2. Brandt, A.: General Highly Accurate Algebraic Coarsening. Electron. Trans. Numer.
Anal. 10, 1–20 (2000)

3. Brandt, A.: Multiscale scientific computation: Review 2001. In: Barth, T.J., Chan, T.F.,
Haimes, R. (eds.) Multiscale and Multiresolution Methods: Theory and Applications, pp.
1–96. Springer, Heidelberg (2001)

4. Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., McCormick, S., Ruge, J.:
Adaptive smoothed aggregation. SIAM J. Sci. Comput. 25, 1896–1920 (2004)

5. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

6. Feng, C.S., Shu, S., Wang, J.X.: An Efficient Parallel Preconditioner For Solving H(Curl)
Ellip-tic Problem And Parallel Implementation. Journal of Numerical Methods and
Computer Applicat. 33(1), 48–58 (2012)

7. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics 41, 155–177 (2002)

8. HYPRE: High performance preconditioner,
http://computation.llnl.gov/casc/hypre/

9. Nie, C.Y., Shu, S., Sheng, Z.Q.: Symmetry-preserving Finite Volume Element Scheme on
Unstructured Quadrilateral Grids. Chinese Journal of Computational Physics 26(2), 91–99
(2009)

10. Sterck, H.D., Yang, U.M., Heys, J.J.: Reducing complextity in parallel algebraic multigrid
preconditioners. SIAM J. Mat. Anal. Appl. 27(4), 1019–1039 (2006)

11. Wan, W.L., Chan, T.F., Smith, B.: An Energy-Minimizing Interpolation for Robust
Multigrid Methods. SIAM J. Sci. Comput. 21, 1632–1649 (1999)

12. Xu, J., Zikatanov, L.: On An Energy-Minimizing Basis for Algebraic Multigrid Methods.
Comput. Vis. Sci. 7, 121–127 (2004)

13. Xu, X.W., Mo, Z.Y., Cao, X.L.: Parallel scalability analysis for multigrid solvers in
HYPRE. Journal of Software 20, 8–14 (2009)

14. Yuan, Q.B., Zhao, J.B., Chen, M.Y., Sun, N.H.: Performance Bottleneck Analysis and
Solution of Shared Memory Operating System on a Multi-Core Platform. Journal of
Computer Research and Development 48(12), 2268–2276 (2011)

15. Zhang, Y.Q., Sun, J.C., Chi, X.B., Tang, Z.M.: Memory Complexity Analysis on
Numerical Programs. Chinese Journal of Computers 23(4), 363–373 (2000)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 12–25, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Dynamic Partitioning of Scalable Cache Memory
for SMT Architectures

Wu Jun-Min1,2, Zhu Xiao-Dong1,2, Sui Xiu-Feng3,

Jin Ying-Qi1,2, and Zhao Xiao-Yu1,2

1 School of Computer Science and Technology,
University of Science and Technology of China, Hefei, 230027, China

2 Suzhou Institute for Advanced Study,
University of Science and Technology of China, Suzhou, 215123, China

3 National Research Center for Intelligent Computing Systems,
Institute of Computing Technology, Beijing 100091

{jmwu,zhaoxy299}@ustc.edu.cn,
{xdzhu001,sxf,yqjin}@mail.ustc.edu.cn

Abstract. The one-level data cache [1], which is optimized for bandwidth,
eliminates the overhead to maintain containment and coherence. And it is
suitable for future large-scale SMT processor. Although the design has
good scalability, large-scale SMT architecture exacerbates the stress on
cache, especially for the bank-interleaved data cache referred to in paper
[1]. This paper proposes a dynamic partitioning method of scalable cache
for large-scale SMT architectures. We extend the scheme proposed in [2] to
multi-banking cache. Since memory reference characteristics of threads
can change very quickly, our method collects the miss-rate characteristics
of simultaneously executing threads at runtime, and partitions the cache
among the executing threads. The partitioning scheme has been evaluated
using a modified SMT simulator modeling the one-level data cache. The
results show a relative improvement in the IPC of up to 18.94% over those
generated by the non-partitioned cache using standard least recently used
replacement policy.

Keywords: Cache Partitioning, Scalable Multi-banking Cache Memory,
Bank Caching, Simultaneous Multithreading.

1 Introduction

Simultaneous multithreading (SMT) [3, 4] is a latency-tolerant architecture that
executes multiple instructions from multiple threads each cycle. SMT works by
converting thread-level parallelism into instruction-level parallelism, effectively
feeding instructions from different threads into the functional units of a
wide-issue, out-of-order superscalar processor [3]. SMT dynamically improves
shared resources utilization, such as functional units and caches. SMT processor
uses vertical and horizontal sharing to tolerate latencies, coping with branch

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 13

mispredictions, deeper pipelines, and the larger cache miss penalties. Intel Pen-
tium 4 [5] and the proposed Alpha 21464 [6] both belong to SMT.

To implement higher-context and super-wide SMT processor, however, a lot of
challenges have to be addressed, including the shared register file, the shared
cache hierarchy, and the degree of sharing or partitioning of hardware resources.
The problems of cache capacity and bandwidth become more serious as the
number of threads increases [1]. However, current cache hierarchy can’t solve
these two problems. The cache hierarchy has to be redesigned and optimized in a
large-scale SMT processor. [1] proposed a simple scalable single-level mul-
ti-banking cache design. It can optimize the bandwidth demand of large-scale
SMT processors, while slightly increasing the latency of primary data cache
access.

Furthermore, SMT exacerbates the stress on the cache hierarchy, especially
since the LRU replacement scheme treats all references in the same way. Thus, a
single thread can easily “pollute” the cache with its data, causing higher miss
rates for other threads, and resulting in low overall performance [2].To solve this
problem, [2] presented a dynamic cache partitioning algorithms that minimizes
the overall cache miss rate for SMT system. Rather than relaying on the standard
LRU cache replacement policy, the algorithm dynamically allocates parts of the
cache to the most needy threads using on-line estimates of individual thread miss
rates and the partition granularity is block or way.

The cache design proposed in [1] can support multiple contexts, but the data
cache may still be not large enough to hold all of the working sets of the simul-
taneously executing threads. Workloads have become much larger and diverse,
multimedia programs such as video or audio processing software often consume
hundreds of MB and many SPEC CPU2000 benchmarks now have memory
footprints larger than 100 MB [7].

This paper improves the dynamic cache partitioning algorithm and applies it to
the large-scale SMT architectures. It partitions the single-level multi-banking
data cache at “bank” granularity. The partitioning scheme will only allocate a new
cache bank to a thread if its current allocation is below its limit. To implement this
scheme, we require counters to provide on-line estimates of individual thread
miss rates. Based on these counters we can augment non-partitioned mul-
ti-banking cache to better allocate cache banks to threads. In order to actually
control the allocation to each thread, we use bank caching mechanism (derived
from column caching [8, 9]), which allows threads to be assigned to the corres-
ponding banks. Simulation shows that the partitioning algorithm can improve the
instructions per cycle (IPC) of the overall workloads.

The reminder of this paper is organized as follows. Section 2 discusses the
related work, including the scalable SMT architec-ture and the partitioning al-
gorithm. In section 3, we first study the optimal cache partitioning problem for the
multi-banking cache. Then we extend the definition of marginal gain to the
multi-banking cache, and discuss implementation details in Section 4. Section 5
describes methodology and Section 6 presents results. Finally, Section 7 con-
cludes the paper.

14 J.-M. Wu et al.

2 Related Work

The conventional cache hierarchy is only an added overhead and complexity
because of the principle of containment and cache coherence across the different
levels. The most prominent feature of the architecture proposed in [1] is the
elimination of the cache hierarchy. The design only preserves primary instruction
and data caches and scales them according to require-ment. The large primary
data caches, with a large number of ports and banks, increase the overall capacity
and the bandwidth.

G. Edward Suh et al. [2] studied one method to reduce cache interface among
simultaneously executing threads. The on-line cache partitioning algorithm es-
timates the miss characteristics of each thread at runtime, and dynamically par-
titions the cache amongst the threads that are executing simultaneously. The
algorithm estimates the marginal gains as a function of cache size and uses a
search algorithm to find the partition that minimizes the total number of misses.
Moreover, the hardware overheads for the algorithm are minimal.

Our partition work differs from the previous efforts. It works for multi-banking
caches with multiple threads, whereas Suh [2] only focused on set-associative
with way granularity.

3 Dynamic Bank Partitioning Algorithm

This section presents an analytical analysis of bank partitioning which extended
from the analysis in [2]. First, we define the optimal bank partition that minimizes
the total number of misses for simultaneous threads. Second, to design a parti-
tioning algorithm, we still use the term “marginal gains” proposed in [2] as a way
of determining the usefulness of cache space for a thread, but we have to redefine
it based on the multi-banking cache.

3.1 Optimal Bank Partitioning

Given N executing threads sharing a multi-banking cache of B banks with
partitioning on a bank granularity, the problem is partition the cache into N
disjoint subsets of banks to minimize the overall misses. Obviously, it isn’t
reasonable to repartition the cache every load/store instruction, so the partition
remains fixed over a time period, π , which is long enough to amortize the re-
partitioning cost. Let birepresent the number of banks assigned to the i-th thread
over the time period. A bank partition is specified by the number of cache banks
assigned to each thread, that is {b1, b1,…, bN}.

Define mi(c) as the number of cache miser for the i-th thread over a time period
π as a function of partition size (c) [2]. Let D and S represent the number of ways
and sets of each cache bank respectively. Then the optimal partition for the period
π is the set of values{b1, b1,…, bN},that minimizes the following expression:

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 15

 Total misses over time period ()i

N

i
i bSDm ⋅⋅=

=1

π (1)

Under the constrain that Bb
N

i i = =1
. B is the total number of banks in the cache.

3.2 Marginal Gains

In order to find the optimal partition, [2] used marginal gains of each competing
thread to guide the partition. And [2] gave the definition of the marginal gain of a
thread at a given cache space c, namely gi(c).

 () () ()1+−= cmcmcg iii (2)

Then the definition was extended to a partition chunk (one way of the cache in
[2]) ()kgway .

 ()
()

()cgkg
Sk

Skc
way

−⋅+

⋅=
=

11

 (3)

where S is the number of sets in the cache.
To partition the cache in bank granularity, we use a partition block that’s the

same size with one bank (SD ⋅ blocks). The cache allocation to each thread can
only be multiples of SD ⋅ blocks. For this purpose, we define marginal gains of a
bank gbank(b) as follows:

 ()
()

()
()

()cgkgbg
SDb

SDbc

Db

Dbk
waybank

−⋅⋅+

⋅⋅=

−⋅+

⋅=
==

1111

 (4)

The meanings of D and S are given in subsection 3.1.
If we expand equation (4), we can get the following result:

 () () ()()SDbmSDbmbgbank ⋅⋅+−⋅⋅= 1 (5)

The marginal gain at a given bank means the number of cache misses that will
be reduced by having one more cache bank. Thus, it indicates the benefit of
increasing the cache allocation from b to b+1 banks for a thread.

Meanwhile, Stone et al. [10] and G. Edward Suh et al. [2] gave the well-known,
simple greedy algorithms to result in an optimal partition, for both the case where
the marginal gain for each thread is a monotonically decreasing function of cache
space and a non-monotonically decreasing function.

4 Implementation

The previous section discussed some concepts used in our partitioning algorithm.
Now, we consider how to implement bank partitioning in multi-banking cache.
Our partitioning scheme consists of three parts: marginal gain counters, bank

16 J.-M. Wu et al.

caching, and a partition controller. First, we use a set of counters to estimate the
marginal gains of executing threads. Second, we adopt a mechanism to actually
control the allocation to each thread. Finally, the controller determines the best
partition based on the information from counters.

4.1 Marginal-Gain Counters

To perform dynamic bank partitioning, the marginal gains of having one more
cache bank should be estimated on-line. As discussed in previous work [2],
gway,i(k) is the number of additional hits that the i-th thread can obtain by having
k+1 cache ways compared to the case when it has k ways. Assuming the LRU
replacement policy is used, gway,i(0) represents the number of hits on the most
recently used cache way of the i-th thread, gway,i(1) represents the number of hits
on the second most recently used cache way of the i-th thread, and so on.

In multi-banking caches, a set of counters, one for each bank, is maintained per
thread. On every cache hit, the corresponding counter is increased. Although we
can only estimate marginal gains of having each bank, not each cache way, this is
often enough for partitioning if the cache has reasonable amount of banks. In the
scalable single-level multi-banking cache design, the primary data cache usually
has a great deal of banks, so we can obtain adequate information to guide the
partition. Let BA represents B/D. It is reasonable to assume that BA is always
greater than 1, because the number of banks is much more than the set associa-
tivity in the scalable cache memory.

Assuming that cache accesses are well distributed over banks and sets, we can
approximate the marginal gain of having additional D ways from the
bank-counters as follows:

 ()
()

()
()

()cgkgbcounter
SDb

SDbc

Db

Dbk
way

−⋅⋅+

⋅⋅=

−⋅+

⋅=
==

1111

 (6)

Note that the values of the counters may not monotonically decrease. For exam-
ple, ()0counter , ()1counter ,…, ()1−BAcounter record the number of hits to the MRU
way of some banks according to the foregoing definition, since which bank to be
accessed is dynamically determined in the decoding stage and every thread can
access any cache bank, it’s possible that some banks are hotter than others. But
the LRU ordering is still partly recorded by the counters.

Bank-counters for a multi-banking cache: There is one counter for each
bank of the cache. A hit to the MRU blocks of a certain bank whose bank
number is between 0 and (D-1) updates ()0counter . A hit to the LRU blocks of a
certain bank whose bank number is between (B-D) and (B-1) updates

()1−Bcounter .That is to say a hit to the

+

1

BA

i -th most recently used blocks of
a certain bank whose bank number is between ()()DBA%i ⋅ and ()()[]11 −⋅+ DBA%i
updates ()icounter .

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 17

4.2 Bank Caching

Our unit of partition granularity is that of a bank of the multi-banking cache,
hence the name “bank caching”. A standard multi-banking cache chooses one
bank from all banks to replace. As a result, a thread’s data can occupy any cache
bank. Bank caching, on the other hand, restricts the replacement to a subset of
banks, which essentially partitions the cache.

Fig. 1. Basic Bank Caching. Replacement and hit units are modified to partition the cache
via bit vector.

Bank caching specifies replacement candidacy using a bit vector in which a bit
indicates if the corresponding bank is a candidate for replacement. Bank caching
is implemented by small modifications to a conventional multi-banking cache
(Figure 1). The LRU replacement unit is modified so that it replaces the LRU
cache block from the candidate banks specified by a bit vector. When the cache is
accessed, all banks belonging to the thread are searched in parallel. If there are no
hit signals returned, a bank is chosen randomly from the subset indicated by the
bit vector, and the LRU cache block of the corresponding set specified by the
virtual address is replaced. Since the cache has been partitioned into disjoint
subsets, the probability that different threads access the same bank is rather small.
That is bank caching won’t result in additional bank interference.

4.3 Partitioning Controller

The previous two subsections discussed two mechanisms to enable cache parti-
tioning: marginal gain counters and bank caching. In our implementation, the

18 J.-M. Wu et al.

partitioning controller (or the operating system) controls these mechanisms to
partition cache. The partitioning controller has two main functions. First, it de-
termines a proper cache assignment based on the marginal gain counters. Second,
it appropriately updates the counters to reflect dynamic changes in workload
behavior.

Every π cycles, the partitioning controller interrupts a running thread and starts
to partition the cache. It first reads marginal gain counters to update its data
structure for marginal gains. Based on the new marginal gains, it decides a proper
partition for each thread and modifies the bit vectors. At last, it clears the counters
and restarts a thread.

Cache Assignment
The previous work [2] assumes that we can control cache allocation at a cache
way granularity, and we know marginal gains also at a way granularity. However,
with bank-counters for multi-banking cache, we can’t accurately estimate mar-
ginal gains at a cache way or block granularity. Again, it’s very difficult to control
the cache assignment at a way granularity. So we have to assign multiples of
cache ways at a time, referred as a partition way.

Using bank counters, we obtain marginal gains at a bank granularity. Thus, we
use a partition way which is the same size with one bank of the cache (D ways).
The cache allocation to each thread can only be multiples of D ways. To achieve
this goal, we can adopt the definition gbank(b) specified by (4).

For the case when the marginal gain is not a monotonically decreased function,
we randomly choose an initial allocation and use a greedy algorithm to decide a
partition. After computing a new partition, we compare it with the previous
partition and choose the better one to be a partition for the next partition period.
We use the similar algorithm proposed in [2], and the whole algorithm is as
follows:

1. Randomly initialize { }Nb,...,b,b 21 .
2. Find a thread that will get the most benefit by having one more bank (index i for

which ()ii,bank bg is largest), and the thread that will lose the least by giving up
one bank (index j(≠ i) for which gbank,j(bj-1) is smallest).

3. If () ()1−> jj,bankii,bank bgbg increase ib and decrease jb .
4. Repeat step 3 and 4 until () ()1−≤ jj,bankii,bank bgbg (maximum B times)
5. Compare the new partition with the previous one, and choose the better one.

Consider that N (the number of simultaneous threads) and B (the number of
partition banks) are given, the time complexity of foregoing algorithm is ()NBO ⋅ .
To be conservative, for the case when we have eight threads sharing a six-
teen-bank data cache, it is reasonable to set the overhead for computing a new
partition for every partition period to be 80000 cycles (see also paper [2]).

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 19

Counter Update
There is no doubt that characteristics of thread change dynamically, so the es-
timation of gbank(x) must reflect the changes. But our method of estimating gbank(x)
is not quite precise, moreover, we also would like to maintain some history of the
memory reference characteristics of a thread. We can achieve both objectives, by
giving more weight to the counter value measured in more recent time periods.

When a process starts running for the first time, all marginal gains are set to
zero. The partition controller updates the marginal gains (gbank(b)) every partition
period by giving more weight to the new counter values:

 () () ()bcounterbgbg bankbank +⋅= μ (7)

Here μ is between 0 and 1. As a result, the effect of hits in the previous time period
exponentially decays.

4.4 Optimization ━Cache Line Buffer

A small but important optimization is to hold cache data inside the processor
load/store unit, allowing a same-line load to be satisfied from the line buffer,
instead of from the cache. Think of line buffer as a small multi-ported ful-
ly-associated level-zero cache with a FIFO replacement policy. The line buffer
can mainly reduce the conflicts to the same cache block, caused by consecutive
load instructions, due to spatial locality of reference [11]. The main policies used
in the line buffer are as follows:

• A hit on a load in a line buffer is served from the buffer.
• A hit on a store updates the line buffer as well as the corresponding data cache

bank.
• A miss on a load is served from a data cache bank, and forwards a copy of the

cache block to the requiring line buffer.
• A miss on a store only writes the corresponding data cache bank, but no block

transfer occurs.

5 Simulation Methodology

We use a modified version of a SMT simulator [12] to emulate the scalable SMT
architecture proposed in [1]. It was built on top of the Simplescalar [13] using
PISA instruction set. We simulate a 4-context and 8-contex SMT processor. The
simulation parameters are summarized in the following table (taking an 8-contex
SMT processor as an example):

In the scalable SMT architecture, an unavoidable price is the overhead of the
interconnection, which increases in complexity with the number of cache banks
[1]. This interconnect can be a crossbar, a multi-stage network with uniform data
cache bank access. Whatever it might be, the interconnect increases the access

20 J.-M. Wu et al.

Table 1. Architectural parameters used in simulations

I-Cache

4 independent I-Cache banks

Each is 128KB,8-way associative,

64-byte lines,1 cycle access latency

D-Cache

16 banks

Each is 128KB, 8-way associative,

64-byte lines, total capacity:2MB,

7 cycle access latency

Line Buffers 8 lines per thread

L2 Cache None

Memory 100 cycles latency

Function

Units
24 int-alu,8 fp-alu,4 int-mult,4 fp-mult

Pipeline

Fetch width=32,Decode width=32,

Issue width=32, Commit width=32,

RUU 128 entries per thread,

LSQ 64 entries per thread

delay to the data cache from one to several clock cycles. Therefore the data cache
delays in table 1 can be divided into three parts:

• Forward the address form one input port to the corresponding data cache banks
through the interconnection network.

• Cache bank access.
• Forward the data to the corresponding physical destination register.

For benchmarks, we choose a subset of eight programs from SPEC2000 [7] to run
as independent threads: 4 integer benchmarks (176.gcc, 197.parser, 175.vpr,
181.mcf) and 4 floating-point benchmarks (188.ammp, 183.equake, 177.mesa,
179.art). For the simulation of the SMT-4 configuration, one workload composed
of 4 benchmarks (2 integer and 2 floating-point) are used. For the simulation of
the SMT-8 configuration, a single workload composed of the eight programs is
used. Table 2 summarizes the composition of the workloads. The eight bench-
marks are run in parallel until one of them terminates.

Table 2. Multiprogrammed workloads

SMT-4 175.vpr, 181.mcf, 188.ammp, 179.art

SMT-8
176.gcc, 197.parser, 175.vpr, 181.mcf,

188.ammp, 183.equake, 177.mesa, 179.art

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 21

6 Experimental Results

This section presents the simulation results in order to understand the quantitative
effects of our partitioning scheme. First, we discuss how long the partition period
should be. Then, we evaluate our partitioning scheme by running a set of eight
benchmarks on a large-scale SMT system sharing a multi-banking data cache.

6.1 Partition Period

In this subsection, we research how long the period should be. Figure 2 illustrates
the effects of the partition period on the IPC. Each curve represents a thread mix
with the particular primary data cache.

As shown in the figure, the performance degrades when the partition period is
either too short or too long. Short partition periods decrease the performance
because of two reasons. First of all, there is an overhead to compute a new par-
tition every partition period. Second, short partition period is bad for the esti-
mation of marginal gains. We age our marginal gains every partition period by
multiplying them by μ . If the partition period is too short, the marginal gains will
lose the past history very quickly.

On the other hand, if the partition period is too long, a partition can not reflect
the dynamic changes in the program behavior as quickly as possible. It must lead
to poor performance. However, program period does not change very quickly in
our experiments. As a result, any partition period between 5000000 cycles and
100000000 cycles showed the best possible performance. If we have a partition
period of fifty million cycles, the overhead of computing a new partition is less
than 0.16%.

Fig. 2. The IPC as a function of the partition period

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1.0E+05 5.0E+05 1.0E+06 5.0E+06 1.0E+07 5.0E+07 1.0E+08 5.0E+08

Partition period (cycle)

IP
C

SMT-4 SMT-8

22 J.-M. Wu et al.

6.2 Effect of Partitioning on IPC

Now we study the performance of our cache partition scheme. For the simulation,
we simulate a mix of eight benchmarks from SPEC CPU2000. The simulation
compares the IPC of conventional policy (non-partitioned) and the IPC of our
partitioning scheme. In the simulation, eight threads are run sharing the 16-bank
data cache. The partition period π is set as fifty million cycles, and the weighting
factor is μ =0.5. There is an 80000 cycle overhead modeling the computation of a
partition every period.

Figure 3 illustrates the speed-up of our partition scheme over the
non-partitioned multi-banking data cache for both the individual performance and
the overall performance. The results are shown for various data cache sizes, which
range form 0.25MB to 4MB.

Fig. 3. The speed-up of the partitioning scheme over the non-partitioned multi-banking
cache. The number of data cache banks is 16. π = 50000000, μ =0.5.

The simulation results demonstrate that the cache partitioning can improve the
total IPC more or less. For a 0.5-MB 16-banked data cache running eight
benchmarks, the speed-up of partitioning can arrive at 1.19. Our partitioning
algorithm assigns more cache banks to the thread with a larger marginal gain,
however, non-partitioned multi-banking cache blindly allocates the banks ac-
cording to the cache misses. In addition, we can note that the individual per-
formance of each benchmark may not get benefits from our partitioning scheme.
The reason lies in our partitioning algorithm concentrates on the overall per-
formance of the large-scale SMT system. At first, all the benchmarks share the
whole data cache, but some of them will get less cache space after partitioning.

Figure 3 also illustrates the relationship between the cache size and the effec-
tiveness of partitioning. For small caches, partitioning only helps rather little
since the size of total workloads is too large compared to the cache size. However,
in this case, changing the cache allocation can improve individual performance of
some benchmarks significantly (such as ammp and art). At the other extreme,

0

0.5

1

1.5

2

2.5

3

3.5

mcf vpr parser mesa gcc equake ammp art overall

Benchmarks

Sp
ee

d-
U

p

0.25M 0.5M 1M 2M 4M

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 23

partitioning can improve the cache performance slightly if the cache is large
enough to hold most of the workloads, e.g. under the condition of a 4MB data
cache. The range of cache sizes for which partitioning can improve performance
depends on both the number of simultaneous threads and the characteristics of the
threads. In our experiments, cache partitioning improves the performance in a
large range of cache size.

Table 3 summarizes more detailed approximated IPC information for an
8-context SMT with a 16-bank data cache managed by the conventional policy
and our partitioning algorithm respectively. The overall IPC is just the sum of the
eight threads. The improvement is relative to the IPC of the conventional
non-partitioned multi-banking cache. The table shows that partitioning algorithm
improves IPC for all cache sizes up to 18.94%.

The experiment results also show that SMT should manage cache carefully. In
the case of eight threads with a 2MB cache, SMT can achieve the overall IPC of
4.9095 from table 3. However, if you only consider one thread (gcc), its IPC is
only 0.3850 whereas it can achieve an IPC of more than 1 alone [2]. The per-
formance of a single thread is significantly degraded by sharing banks. Fur-
thermore, the performance degradation by cache bank interference will become
severe as the latency to the main memory increases. This problem can be solved
by partitioning the banks of cache memory for some cases.

Table 3. Detailed comparison of IPCs between the non-partitioned and partitioned cache in
an 8-context SMT

bench-

marks

Cache (MB)

0.25 0.5 1 2

N
on-partition IP

C
 / P

artition IP
C

mcf
0.3539/

0.3583

0.4021/

0.4098

0.4293/

0.3631

0.4584/

0.3637

vpr
0.6919/

0.7885

0.8213/

0.8426

0.9016/

0.7706

0.9144/

0.7672

parser
0.9551/

0.7041

0.8808/

0.6370

0.8337/

0.6953

0.8035/

0.6947

mesa
0.7380/

0.4592

0.6579/

0.5547

0.5886/

0.4495

0.5517/

0.4491

gcc
0.3233/

0.3903

0.3136/

0.3461

0.2943/

0.3852

0.2975/

0.3850

equake
0.7338/

0.6158

0.6979/

0.7795

0.6782/

0.6144

0.6632/

0.6167

ammp
0.1996/

0.5872

0.2103/

0.6187

0.2223/

0.6068

0.2423/

0.6157

art
0.4616/

0.9736

0.4636/

1.1013

0.5251/

1.0243

0.5604/

1.0175

overall
4.4573/

4.8771

4.4474/

5.2897

4.4731/

4.9092

4.4916/

4.9095

Improve 9.42% 18.94% 9.75% 9.30%

24 J.-M. Wu et al.

7 Conclusion

Low IPC can be caused by long memory latency. We have found that SMT only
exacerbates the problem when multiple executing threads share a multi-banking
cache.

We have studied one method to reduce cache interference among simulta-
neously executing threads. Our on-line cache partitioning algorithm estimates the
miss-rate characteristics of each thread at run-time, and dynamically partitions
the cache among the threads at a cache bank granularity. We give the definition of
marginal gains in multi-banking cache as a function of cache size and use bank
counters to record their values approximately. Then a greedy search algorithm is
used to find a proper partition that can reduce the total number of misses at a
certain extent.

The hardware overheads for the partition proposed in this paper are small. A
small number of extra counters are required. The counters are updated on cache
hits. To actually partition the cache, we can use bank caching which require a
small amount of bit vectors. In an 8-context SMT with a 16-banked data cache,
sixteen 32-bit counters and one 16-bit vector are required for each thread. The
total overheads are only 528 bytes.

The simulation results have shown that our partitioning algorithm can solve the
problem of thread bank interference in multi-banking caches for a range of cache
size. But threads that executing simultaneously should be selected carefully
considering their memory reference behavior.

Moreover, our algorithm only allows the allocation of a whole bank a time, and
there is no banks shared among the simultaneously executing threads. However,
sharing a bank is essential to achieve high performance with bank granularity
partitioning. For example, in large-scale SMT architectures, when the number of
threads is close to the number of data cache banks. It is obvious that threads must
share banks in order to use the cache more effectively. In this paper, we only
consider the no sharing case, and it is our future work to consider the sharing case.

Acknowledgment. This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61272132, and the Fundamental Research Funds
for the Central Universities of China under Grant No. WK0110000020.

References

1. Mudawar, M.F.: Scalable cache memory design for large-scale SMT architectures. In:
Proceedings of the 3rd Workshop on Memory Performance Issues: In Conjunction with
the 31st International Symposium on Computer Architecture, June 20, pp. 65–71 (2004)

2. Suh, G.E., et al.: Dynamic partitioning of shared cache memory. Journal of Super-
computing 28(1) (2004)

3. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous Multithreading: Maximizing
On-Chip Parallelism. In: Proceedings of the 22nd Annual International Symposium
on Computer Architecture, Santa Margherita Ligure, Italy (June 1995)

 Dynamic Partitioning of Scalable Cache Memory for SMT Architectures 25

4. Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L., Tullsen, D.M.: Simul-
taneous Multithreading: A Platform for Next-generation Processors. IEEE Micro,
12–18 (September/October 1997)

5. Marr, D.T., Binns, F., Hill, D.L., et al.: Hyper-Threading Technology Architecture
and Microarchitecture. Intel Technology Journal 6(1), 4–15 (2002)

6. Preston, R., et al.: Design of an 8-wide superscalar risc microprocessor with simul-
taneous multithreading. In: IEEE International Solid-State Circuits Conference, p.
344 (2002)

7. Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millennium.
IEEE Computer (July 2000)

8. Chiou, D.T.: Extending the reach of microprocessors: Column and curious caching.
Ph.D. Thesis, Massachusetts Institute of Technology (1999)

9. Chiou, D., Rudolph, L., Devadas, S., et al.: Dynamic Cache Partitioning via Co-
lumnization. CSG Memo 430. MIT

10. Stone, H.S., Turek, J., Wolf, J.L.: Optimal partitioning of cache memory. IEEE
Transactions on Computers 41(9) (1992)

11. Wilson, K.M., Olukotun, K., Rosenblum, M.: Increasing Cache Port Efficiency for
Dynamic Superscalar Microprocessors. In: Proc. 23rd Ann. Int’l Symp. Computer
Architecture, pp. 147–157 (May 1996)

12. Gonçalves, R., Ayguadé, E., Valero, M., Navaux, P.: A Simulator for SMT Archi-
tectures: Evaluating Instruction Cache Topologies. In: 12th Symposium on Computer
Architecture and High Performance Computing, pp. 279–286 (October 2000)

13. Austin, T., Larson, E.: SimpleScalar: An infrastructure for computer system model-
ing. IEEE Computer 35(2), 59–67 (2002)

Scheduling Model of Virtual Machine Base

on Task Type in Multi-core System

Hui-Xing Chen, Kenli Li, and Lin Shi

School of Information Science and Engineering, Hunan University,
Changsha 410082, China

{celine,lkl,shilin}@hnu.edu.cn
http://www.hnu.edu.cn

Abstract. The traditional virtual machine scheduling algorithm does
not fully consider the execution efficiency of parallel applications. When
multiple virtual machines cooperate to execute the parallel computing
tasks, the virtual machine monitor still allocates the physical CPUs by
the time-division multiplexing method. That will lead the parallel tasks
to be serialized and the efficiency degraded greatly. The modern chip
multiprocessors platform involves several available computing cores, to
meet the need of the concurrent execution of multiple virtual machines.
In this paper, we proposed a dynamic scheduling strategy –CON-Credit
scheduler, which helps to speed up the parallel applications in virtual
environment with multi-cores or many cores system. The main feature
of CON-Credit is to map the virtual CPU to the physical CPU directly,
so the virtual machines involves parallel tasks can take fully advantage
of the underlying hardware resources. More precisely, the CON-Credit
algorithm dynamically allocated processor cores to the virtual domains
according to the type of the application. For the parallel applications,
CON-Credit chooses to schedule a bulk of physical CPUs at the same
time to avoid the extra makespan of discrete dispatch in traditional vir-
tual machine scheduling algorithm. The experimental results show that
the CON-Credit algorithm improved the execution efficiency of the par-
allel application and optimized the overall performance of the virtual
machine system.

Keywords: multi-core, scheduler, parallel, VMM, MapReduce.

1 Introduction

System virtualization technology once had a great vogue in the mainframe era.
But it fades out as the descent of the computer hardware price and the popular
use of the Personal Computer. At the beginning of the 21st century, the pros-
perity of server consolidation market and the proposition of cloud computing
concept offer the opportunity of resuscitation to system virtualization technol-
ogy. Nowadays the system virtualization technology has become an important
infrastructure of cloud computing platforms, and there are more than one hun-
dred affiliated companies and platforms, for instance, KVM, XEN, VMware,

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 26–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.hnu.edu.cn

Scheduling Model of Virtual Machine Base on TTMS 27

Virtual PC, Hyper-V, and a large number of mature virtual machine platforms
have been widely deployed and applied.

Just as the role of process scheduling algorithm in the operating system, the
virtual machine scheduling algorithm is a key factor which affecting the overall
performance of system virtualization. The virtual machine scheduling is imple-
mented by the VMM(Virtual Machine Manager).At present, the popular VMM
scheduling algorithm directly absorbed the essential idea of the operating sys-
tem scheduler. It cant reflect the characteristics of the virtual machine platform:
the virtual machine is a set of hardware and software, and it is far greater in
granularity than the traditional process or thread on scheduling. The virtual
machine contains an additional scheduling layer, thus forms a double-layer and
two-dimensional scheduling architecture. Because the OS of virtual machine may
be heterogeneous, uncooperative, and unfriendly to virtualization, the schedul-
ing optimization only in the virtual machine manager layer may be not enough.
Therefore, it is important to design a multi-dimension scheduling algorithm for
virtualized multi-core processor system according to the very varied types of ap-
plication. And the most important factor is to design the scheduling algorithm.
In the single-core computer system, VMM, Domain0 and Domain U all run in
a processor core. But the multi-core platform has the capability to simultane-
ously run multiple virtual machines.The traditional time-division multiplexing
scheduling algorithm should transit to the hybrid schedule mode which com-
bines both the time-division multiplexing and space-division multiplexing.All in
all, traditional VMM scheduling algorithms mainly focus on the fairness of pro-
cessor resources among the virtual machines, but havent considered multipath
parallel features of the multi-core processors. Therefore, it leads to the decline
in the execution efficiency of the parallel tasks, when request tasks contains
some parallel tasks, the default scheduling algorithm in VMM cant fit to the
characteristic of the underlying hardware, and fully utilize the hardware.

In this work, we take the virtual machine monitor XEN as an example, design
a virtual machine schedule algorithmCON-Credit for the parallel environment.
The CON-Credit exploits the virtual machine requests-assign mechanism, and
dynamically adjusts the resource allocation pattern; the CPU resources are al-
located to the different tasks, according to the current resource status and task
characteristics. Without enforce a serious impact on other tasks, it ensures the
distribution execution in space and concurrent execution in time of the parallel
tasks, and improves the overall performance of the multi-core platform.

2 Background

2.1 Xen’s Credit Scheduler

Xen[1] is a virtual machine monitor based on the open source Linux kernel, it
comprises two parts: the hypervisor which located in the highest privilege level
management monitor and the frontend/backend driver in the virtual domain.
On recent versions of Xen, the Credit scheduler[2] is used by default. For this

28 H.-X. Chen, K. Li, and L. Shi

scheduler, each domain has two properties associated with it, a weight and a
cap. The weight determines the share of the PCPU time that the domain gets,
whereas the cap represents the maximum that the domain can get. In contrast,
the cap is an absolute value, representing a proportion of the total CPU that can
be used. The credit scheduler manages multiple PCPUs and distributes CPUs
time to each VCPU equally, which in order to realize the load balance. However,
it focus mainly on the fairness, ignores the specific characteristics of different
tasks, which leads to the inefficiency for the collaborative workload in the multi-
core system.

2.2 MapReduce

MapReduce is a distributed computing model by Google. It is simply represented
in two functions: Map and Reduce. Map function was written by the user, pro-
cesses a key-value pair to generate a set of intermediate key/value pairs. Reduce
function was written by the user too, which merges all intermediate values asso-
ciated with the same intermediate key. The Map usually contains independent
operation adapt to the characteristics of the large-scale parallel and distributed
computation. In MapReduce clusters consist of a large number of nodes for re-
dundancy and fault tolerance, each node in the cluster is assigned a certain
number of data chunks, which are in turn duplicated on several nodes based on
a distributed file system[3][4]. In the Map and Reduce operations, the Map is a
highly parallel, and Reduce is dependent on the result of Map operations. The
parallelism and balance of the Map operation determine the overall efficiency
of the MapReduce program.The MapReduce isalso widely used in the system-
level virtual machine platform, such as CLOUDLET [5] and Cloud BLAST [6]
and other projects. They combined the flexibility of the virtual machine and the
distributed parallelism of MapReduce framework, so the MapReduce can easily
be deploied in the cloud platform. It is important for cloud platform to support
this kind of parallel computing.

3 Scheduling Strategies and Analysis

3.1 Motivations and Modeling

In this paper, we take the MapReduce structure model for an example, which
is shown in the figure 1, where nodes V = V11, V12, · · ·, V21, V22, · · ·, Vi1, · · ·, Vij

denote the set of different tasks. Assume that the computation time of all the
nodes at the same level is the same. The processing time of the i− thlevel task
is T (Vi), T (Vi) = T (Vi1) = T (Vi2) = · · · = T (Vij), i = 1, 2, 3, · · ·, I.Assume there
are 4 cores available to execute this task. If a node Vij has already started in
the core, we define the node can occupy the processor core resources until its
processing completed. The target of scheduling is to find out a dispatch scheme
to guarantee the minimum of total execution time.

Scheduling Model of Virtual Machine Base on TTMS 29

Fig. 1. The Structure model of MapReduce

The main drawbacks of the existing default credit scheduler when applied to
MapReduce workloads are as follows. Figure 2(a) shows the scheduling time of
the nodes on the 4 cores physical machine under MapReduce workloads. The
total execute time is T = 4 · T (V1) + 2 · T (V2) + T (V3) + T (V4).

�

Core1

Core2

Core3

Core4

T(V1) T(V1) T(V1) T(V1) T(V2) T(V2) T(V3) T(V4) T

V11

V12

V13

V14 V15�

V17

V16

V21

V31

V41

V32 V22

V23

Core1

Core2

Core3

Core4

T(V1) T(V1) T(V2) T(V3) T(V4) T

V11 V31 V41

V12

V21

V23 V17 V14

V16 V13 V22

V15

V32

(a) (b)

Fig. 2. (a)A possible order distribution of the MapReduce workloads with Credit al-
gorithm.(b)A possible order distribution of the MapReduce workloads with concurrent
scheduling algorithm.

The concurrent scheduling algorithm uses a novel mechanism to optimize
the Credit algorithm. For a node, the tasks of next level must wait for all the
tasks of the previous level were disposed, before it is implemented. To make
full use of processor resources, a core can be adopted to maximize the parallel
process the various tasks of the same level.The total timeT = 2 ·T (V1)+T (V2)+
T (V3)+T (V4).A order distribution of theMapReduce workloads with concurrent
scheduling algorithm base on this idea is as shown in the figure 2(b).

Further we will discuss the situation that hybrid types of tasks run simultane-
ously. Assuming that the MapReduce model above and the other five common
tasks send request at the same time, there are six physical processor cores avail-
able and fix 3 processor cores to each type of task before execute. The total
timeT = 3 · T (V1) + T (V2) + T (V3) + T (V4), a possible schedule order distribu-
tion of the hybrid tasks as shown in the figure 3(a).

30 H.-X. Chen, K. Li, and L. Shi

�

Core1(Credit)

Core2(Credit)

Core3(Credit)

Core4(CON-Credit)

Core5(CON-Credit)

Core6(CON-Credit)

T(V1) T(V1) T(V1) T(V2) T(V3) T(V4) T

V11 V14 V17

V12 V15 V22

V23

V32

V31 V41

V16 V13

V21

J3

J5

J4 J1

J2

Core1(Credit)

Core2(Credit)

Core3

Core4(CON-Credit)

Core5(CON-Credit)

Core6(CON-Credit)

T(V1) T(V1) T(V2) T(V3) T(V4) T

V11 V14

V17

V23

V31

V16 V13

V12

J4

V15

V41 V21

V22 V32

J3

J2

J1

J5

(a) (b)

Fig. 3. (a)A possible order distribution of the MapReduce workloads and common
tasks with Credit schedule.(b)A possible order distribution of the MapReduce work-
loads and common tasks with concurrent scheduling algorithm.

If we design a mechanism to adjust the allocation of resources dynamically
according to the number of tasks for the different types of tasks, this allows us
to make full use of the resources, improve the overall real-time and throughput,
and reduce the total execution time. At this point, due to the core3 has been idle
after performing task J3, if its resources assigned to V17 dynamically, the total
timeT = 2 · T (V1) + T (V2) + T (V3) + T (V4). Now, a schedule order distribution
of the hybrid tasks as shown in the figure 3(b).

From the above scheduling situation, we can see that the default credit al-
gorithm for parallel tasks has obvious defects, but the concurrent scheduling
algorithm in multi-core system show better performance. In addition, the anal-
ysis of the hybrid tasks shows that dynamic scheduling give more conducive to
improve the resource utilization and application performance than static schedul-
ing, thereby enhancing the throughput of the entire system, reducing the mini-
mum total execution time the event(MAKESPAN).

3.2 Scheduling Framework

Based on the above analysis, this paper proposes CON-Credit scheduling
model(concurrent credit scheduler) that according to the types of the tasks to di-
vide multi-core processor core dynamically. The task status monitoring and
scheduling decision-making module are added in this model on the basis of the
original VMM scheduler structure. The former collect time and task status infor-
mation in the process of device access by reading the data in the event channel,
while the latter process the information that have collected in real-time, and dis-
patch cores resources to each VCPU dynamically to deal with the tasks of corre-
sponding types, make a scheduling decision when some conditions are satisfied.

The four main parts to realize this scheduling model are as follows:1) Cores
are divided into the COM-Core and CON-Core dynamically, COM-Core corre-
sponding to ordinary task and CON-Core corresponding parallel tasks; 2) The
VMM scheduler dispatch tasks according to the application type in the different
sets; 3) Task status monitoring and real-time decision-making. 4) Scheduling
virtual machine in parallel and collaboratively. The separation of CON-core and

Scheduling Model of Virtual Machine Base on TTMS 31

Domain 0

NB Driver

BB Driver

�������

Hardware

Xen VMM
Credit Scheduler

�������

�������

Event Channel

Domain U

Com-App

VCPU

Scheduling Decision

Making Module

CON-Credit

Scheduler

COM-Core

Core
�������

CON-Core

Core Core Core

Domain U

Coo-App

VCPU

Domain U

Coo-App

VCPU

Fig. 4. The overall structure of the scheduling strategy model in VMM

COM-Core is used to reduce the time of the physical CPU resource allocation
and to respond events request quickly. The task of condition monitoring and
dynamic division of decision-making are used to reduce the performance penalty
of context switching of the different task types. Parallel and collaboration of the
virtual machine are conducive to the separation between the parallel tasks, and
the implementation of the synchronous collaboration to achieve the task parallel
processing. The overall structure of the scheduling model was shown as figure 4.

3.3 CON-Credit Strategy Analysis

Taking into account |P | processor cores system, useP = P1, P2, · · ·, P|P | to rep-
resent all the multi-core processors. LetJ = J1, J2, · · ·, Jn means be the set of
the common tasks which have n tasks. For each taskJi ∈ J, T (Ji)means the pro-
cessing time of task i. Besides, with V = V11, V12, · · ·, V21, V22, · · ·, Vi1, · · ·, Vij

denotes the set of the nodes of parallel tasks, and m nodes. T (Vij) denotes the
process time of node i, and let W = J ∪ Vt. Assume the set of the |D| VC-
PUs is D = D1, D2, · · ·, D|D|. For a running time, there is |WR| ≤ |DR| ≤ |PR|,
and|WR|, |DR|, |PR| denotes the number of tasks are running at the moment, VC-
PUs and cores respectively. In the multi-core virtual machine monitor system,
the task scheduling includes allocation of the tasks in VCPUs to the domainU ,
denoted by Dk = λ(Wi), and the VMM allocate the cores to the each domainU ,
denoted by Pj = μ(Dk). So Pj = μ (λ(Wi)) denotes that allocate the processor
core j to the node i. ((((()))))We make the weight of PCPU process the com-
mon types of task is�(PJ), and the parallel types of task is�(PV) respectively,
then�(PJ) +�(PV) = 1. Of course, the cores that perform two types of tasks
can interconversion according to the value of�(PJ), �(PV).

When the event request, allocate processor core resources to the various VC-
PUs dynamically depending on the value of�(PJ), �(PV) to. Among the|P |
processor cores system, we assume that each half of the processor cores are as-
signed to the two types of tasks. In operation, record the number of two types of
tasks and the processing time required to be processed within a time unit in real-
time by state monitoring mechanism. We assume the number of common tasks is

32 H.-X. Chen, K. Li, and L. Shi

C1, then the total processing time can express as
∑C1

1 T (JK1), k = 1, 2, 3, · · ·, C1.
At the same time, we assume the numbers of parallel tasks type are C2, then
the total processing time can expressed as

∑C2

1 T (VK2) , k = 1, 2, 3, · · ·, C2.

So, the ratio of the task duration is denoted by R =
∑C1

1 T(JK1)
∑C2

1 T(VK2)
, and let

�(PJ)
�(PV) = R =

∑C1
1 T(JK1)

∑C2
1 T(VK2)

, �(PJ) + �(PV) = 1. As a result, the number of

processor cores are assigned to the type of the common tasks can be defined

as:RJ = ��(PJ) · |P |� =

⌊ ∑C1
1 T(JK1)

∑C1
1 T(JK1)+

∑C2
1 T(VK2)

· |P |
⌋
.The number of pro-

cessor cores are assigned to the type of the parallel tasks can be defined as:

RV = ��(PV) · |P |� =
⌈ ∑C2

1 T(VK2)
∑C1

1 T(JK1)+
∑C2

1 T(VK2)
· |P |

⌉
.Here |P | = RJ +RV .

In the CON-Credit algorithm, when a task node Wi has begun executed in
the processor core, it will occupy the core until it finished. The question is how
to find out a task scheduling strategy that has minimum total execution time for
the request event so as to improve the real-time performance and throughput.
When an event sends a request, each task nodes are assigned to each processor

core according to μ (λ(Wi)), T
(
μ
Pj

Wi

)
denote the process time of the task Wi

that assigned to the processor core Pj . If the total number of tasks that has
already completed is K within the time T , then the throughput is:ϕ = K

T , and:

T = max

{∑
J

T (Ji),
∑
V

T (Vi)

}
+

n+m∑
i=1

T
(
μ
Pj

Wi

)
. (1)

When the parallel task comes, each node is scheduled according to their level or
their sequential dependencies. The tasks at the same level are allocated to each
virtual machine in accordance with theλ(Vi), and corresponds to the processor
core for concurrent processing in accordance with theμ(λ(Vi)). Then allocate
the appropriate number of processors to process the task nodes at each level
according to the value of�(PJ), �(PV), and disposed of these tasks in a period
of time as much as possible to maximize concurrent processing of parallel tasks.
WhenRV < |Vi|, the processor cores resources are not enough. At this time, as-
sign theRV processor cores toRV nodes in accordance with the functionμ (λ(Vi)),
and detect dynamically if the task on the virtual machine completed or not. If
finished, transfer to the other node at the same level that waiting for process-
ing. When all the nodes at the same level have finished, then execute the tasks
of each node of the next level. The events the total execution time T (V) is as

follow:T (V) =
∑I

i=1 ki · T (Vi) +
∑I

i=1

∑
j T
(
μPn

Vij

)
=
∑I

i=1

⌈
ji
RV

⌉
· T (Vi) +

∑I
i=1

∑
j T
(
μPn

Vij

)
; Where ki =

⌈
ji
RV

⌉
, ki denotes the task allocate to the

i− thlevel, times of T (Vi) time period on a processor cores is needed to complete
all of the tasks in the i− thlevel. So the total execution time for such events is

as follows:minT (V) = min
∑I

i=1

⌈
ji
RV

⌉
· T (Vi) + min

∑I
i=1

∑
j T
(
μPn

Vij

)
.

Scheduling Model of Virtual Machine Base on TTMS 33

Therefore, when the hybrid tasks request, the objective function is to minimize
the execution time:

minT = max

(
minT (V),

∑
J

T (Ji) + min

n∑
i=1

T
(
μPn

Ji

))
. (2)

Subject to:The time that task node Vij obtained is decided by �(Vij), the k −
level task nodes scheduled before the r − level task nodes; here k < r, and
inequality|WR| ≤ |DR| ≤ |PR|must be established.

3.4 The Algorithm Flow

The CON-Credit algorithm flow chart was shown as figure 5. In the multi-core
processors virtual environment monitor system, the algorithm take VCPU for
scheduling unit, each VCPU associated with the corresponding virtual machine.
At the initial stage of this scheduling algorithm, it check the target VCPUs
running state and the queue position, judge the request event type and obtain
the proportion of the R value through the state decision module, and assign
the core number of various types that needed according to the R value. During
the operation, the state decision module monitor the ratio of the time required
for each task type in dynamically, and generate the corresponding distribution
value, reduce or increase the core number of the concurrent events needed ac-
cording to the value to make more common tasks or concurrent events can be
operated. In operation, if a new task request, the functionμ (λ(Wi)) will generate
a new allocated valueRj , Rv, reallocate processor resources to each virtual CPU.
Meanwhile, the scheduling decision module should judge the type of event and
select scheduling strategy. For the concurrent event, the CON-Core is selected.
Otherwise, the default COM-Core is assigned.

Start

Decision

Credit

schedule

Con-Module

Com-App

N

Cpu assign

Schedule task-node�

Assign

the Cpu

End

Con-App

Y

Y

N

Return

Fig. 5. The model flow chart

34 H.-X. Chen, K. Li, and L. Shi

4 Performance Evaluation

4.1 Experiment Environment

The hardware configuration of the experimental platform is Intel eight-core Xeon
7550 processors, the Seagate 1TB IDE hard disk, DDRII-800 8GB memory, and
the RTL 8139D 200Mbps Ethernet card. All experiments used Xen 4.1.2 on the
Fedora16 operating system with Linux 64bit 3.10.17 kernel. All virtual machines
are running with Fedora 16 with kernel 3.10.17. At the same time we build
a executable parallel programming environment with the virtual machines. To
study the performance comprehensively, we analyze the performance of CON-
Credit scheduling algorithm in three ways:Efficiency: What is the performance
profit CON-Credit algorithm can get comparing with the traditional Credit al-
gorithms.Adaptability: How the CON-Credit algorithm work in the hybrid task
mode.Scalability: How the number of virtual machine will give an influence on
the CON-Credit scheduling performance.

4.2 Benchmarks

Now, there are fourMapReduce benchmarks(Dot product, π Computation,RC4
Key Search and N − body problem)[7]have been constructed to demonstrate
the applicability of CON-Credit schedule framework.Dot product:We perform
the multiplications in the Map function and additions in the Reduce function.π
Computation: The classic Monte Carlo simulation is used to approximate the
value of π. For N paths, the output of the Map function is a stream of binary
values∈ 0, 1. The Reduce function is the addition and π is computed by mul-
tiplying the reduced value by 4

N on the host computer.RC4 Key Search: The
Map function input is an index indicating the position to start the search. The
reduce function, implemented on the host, checks the return value and outputs
the correct key if found.N − body:In our test, the input to the Map function
is the current information for the n particles and the particle index. It is the
reduce functions responsibility to fresh each particle new state according to the
formula associated[8].

4.3 Performance Measurement and Analysis

Now, we take the above 4 typicalMapReduce programs and serial program (such
as Rank sorting algorithm and gcc compile test in SPEC CPU2000) as the ex-
ample to verify our proposed virtual machine scheduling algorithm and compare
its performance with traditional one.

The first experiment tests per the formance of the distributed MapReduce
applications which ran in eight virtual machines. Each domain is configured
with 4 VCPUs and only one MapReduce task runs on each of them. The re-
sult is depicted in Figure 6. Compare with the traditional scheduler the total
execution time of four benchmarks reduced by 28.17%, 25.86%, 30.47%, 30.39%
respectively under the CON-Credit algorithm.

Scheduling Model of Virtual Machine Base on TTMS 35

0

200

400

600

800

1000

1200

Dot Dot π π RC4 RC4 N-Body N-Body
R

u
n

 t
im

e
(s

)
(D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8)

Benchmarks on doma ins

Credit CON-Credit

Fig. 6. The MapReduce benchmarks run simultaneously on 8 domains, respectively

The second experiment measures the overall performance of CON-Credit with
hybrid workload, server the parallel and serial task at the same time. In this
test, eight domains are created on XEN, and each domain is configured with 4
VCPUs. The figure 7 show the case then 4 domains run the MapReduce pro-
grams while the others involve only serial programs. According to Figure 9, the
proposed CON-Credit algorithm show better performance than traditional algo-
rithm, the execution time of dot product is decreased by 25.61%,π Computation
is decreased by 23.06%,RC4 Key Search is decreased by 28.60%, N − body is
decreased by 26.27%.However, the execution time of serial programs Rank is
increased by 5.33%, and 176.gcc is increased by 9.07%. Because the improved
VMM scheduler has added a scheduling decision module, all the tasks need the
scheduling decision module to allocate physical processor resources. That leads
to the time of serial tasks has a slight increase. This is acceptable in the large
environment.

The figure 8 show the another case, up to 6 domains are configured to run
MapReduce programs and the other 2 domains severed for the serial programs.
The overall execution time of the benchmarks with two schedulers is depicted.
According to Figure 10, the CON-Credit algorithm speeds up the dot product,

0

500

1000

1500

2000

2500

Dot π RC4 N-Body 176.gcc 176.gcc Rank Rank

R
u
n

 t
im

e
(s
)

(D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8)

Benchmark on domains

Credit CON-Credit

Fig. 7. Benchmarks run simultaneously on 8domains respectively, 4domains are used
to MapReduce programs and the others are used to serial programs, and the iterations
are set to 109

36 H.-X. Chen, K. Li, and L. Shi

0

200

400

600

800

1000

1200

Dot Dot π π RC4 RC4 176.gcc Rank

R
u
n

 t
im

e
(D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8)

Benchmarks on domains

Credit CON-Credit

Fig. 8. The benchmarks run simultaneously on 8domains respectively, 6domains are
used to MapReduce programs and the other 2domains are used to serial programs,
and the iterations are set to 109

π Computation, and RC4 Key Search by 26.23%, 24.94%, 29.70% respectively.
However, the execution time of Rank serial programs is increased by 5.25%, and
176.gcc is increased by 6.20%. It is also acceptable in the large environment as
the same reason of before said.

In the 3rd experiment, we create several virtual machines to stimulate the
cluster environment which be used to test the hybrid scheduling performance,
and the MapReduce parallel tasks and ordinary serial tasks are scheduled simul-
taneously. In order to find out how the number of domains influences the overall
performance of scheduling algorithm, we test the result with different cores and
domains. Each domain is equipped two VCPU, and the test cases are set to the
4 MapReduce benchmarks and two serial tasks. In this test, the CON-Credit
algorithm show better performance than the traditional scheduling algorithms
for parallel tasks, and adapt to the hybrid mode which involves both the parallel
and serial tasks.

The results of the experiment show that the total execution time changed
with the growing number of domains, and the average time of all tasks with
the corresponding number of domains are all shown on figure 9. The experiment
demonstrates the relative advantage of CON-Credit algorithm for MapRrduce
tasks than the default scheduling algorithm. With the number of virtual ma-
chines increased, the execution time of dot product is decreased by9.18%, 18.03%,
13.62%, 12.75%, 13.08%, 14.81%; the execution time of π Computation is de-
creased by 9.31%, 16.82%, 9.98%, 12.18%, 13.43%, 15.43%; the execution time
of RC4 Key Search is decreased by 10.08%, 13.55%, 10.74%, 9.81%, 10.71%,
11.99%; the execution time of N − body is decreased by 9.68%, 14.01%, 9.81%,
9.79%, 10.55%, 11.40%. However, the execution time of rank serial programs
increased by 1.19%, 5.45%, 4.42%, 3.62%, 3,37%, 2.94% in proper order, and
176.gcc increased by 2.79%,1.97%,2.43%,3.60%,5.18%,7.91% in proper order.

As the Figure 9 shows the whole system get the maximum performance when
the number of domains is configured to 4. The reason is there are only 8 physical
cores in the testbed, when 4 domains are running on top of the systemthere are
eight VCPUs on XEN in total because two VCPUs are set to each domain.

Scheduling Model of Virtual Machine Base on TTMS 37

0

500

1000

1500

2000

2500

2 4 6 8 10 12

T
h

e
 a

v
e
ra

g
e
 r
u

n
 t

im
e
(s

)

The number of domains

Dot product(CON-C) π Computation(CON-C)
RC4 Key Search(CON-C) N-body(CON-C)
176.gcc Dot(C)
π Computation(C) RC4(C)
N-Body(C) 176.gcc(C)
Rank Rank(C)

Fig. 9. 4 MapReduce benchmarks and 2 common tasks are run simultaneously on
domains, and the MapReduce benchmarks iterations set to 109

The communication overhead among domains in the Reduce process is smaller
relative to more domains. When the number of VCPUs is equal to the number
of physical processor cores, the execution time of Map process is reduced, and
system reach a balance point. When the number of VCPUs is great than 8,
the extra communication overhead will increase dynamically and fade out the
benefit of more VCPUs. Besides, with the increase of domains, the increase
velocity of the time of CON-Credit is gentle and trends to a steady value, but
the default algorithm still keep in an increasing trend. For serial task, when four
VCPUs in two virtual machines are created, the efficiency gets its peak value.
However, when the number of domains increases, the time spend in scheduling
make decision module also grow. The scalability experiment shown on the figure
9 shows that even take this element into account, the CON-Credit algorithm
still exhibit good scalability in large scale system.

5 Related Work

In this section, we present the related work on scheduling in the XEN VMM.
Several extensions to Xens Credit scheduler are proposed to improve I/O per-
formance, by adding a highest priority status named BOOST. The BOOST
related credit scheduler sort the RUN queue based on their remaining credits,
and tickling the scheduler when events are sent. The [9] has largely focused on
improving the efficiency of I/O operations and has not explored the impact of
the scheduler on I/O unrelated task. Scheduler improvements for I/O are likely
to also benefit these innovative I/O designs. Kim et al[10] proposed a task-aware
virtual machine scheduling mechanism based on inference techniques using gray-
box knowledge. The proposed mechanism infers the I/O-boundless of guest-level
tasks and correlates incoming events with I/O-bound tasks. Chuliang Weng et
al[11] analyzed the CPU scheduling problem and presented a hybrid schedul-
ing framework for the CPU scheduling in the virtual machine monitor. Lee et
al[12] have identified the area of soft real-time application domains and the per-
formance problems they encounter in virtualized environments. L Shi et al [13]

38 H.-X. Chen, K. Li, and L. Shi

proposed vCUDA, a general-purpose graphics processing unit computing solu-
tion for virtual machines. vCUDA allows applications executing within VMs to
leverage hardware acceleration, which can be beneficial to the performance of a
class of HPC applications. Philip M. Wells et al. [14] proposed a simple hardware
technique to detect when a VCPU is spinning, without requiring any software
modification, and preempt that VCPU in favor of one which is making forward
progress. Hui Kang et al. [15] designed and implemented the MRG scheduler,
a new Xen scheduler for VMs running MapReduce workloads. The scheduler
facilities MapReduce job fairness by introducing a two-level group credit based
scheduling policy. Chuliang Weng et al [16] proposed an adaptive dynamic co
scheduling method to mitigate the problem, while avoiding unnecessary over-
head for co scheduling, and implement a prototype ASMan. Neither of above
work combines the strength of MapReduce framework with the flexibility of vir-
tual machine technology. We propose a schedule algorithm, CON-Credit , which
is a fundamental approach for adapting to the diversity of VMs in the cloud
platform, to decide when and how to map VCPUs to cores wisely. Moreover, the
hybrid scheduling framework supports distributing core resources among VCPUs
based on demand, as well as distributing equally.

6 Conclusion

More and more parallel computing tasks have been deployed in the cloud com-
puting and virtualization platform. In this paper, we designed and implemented
a scheduling algorithm named CON-Credit that make full use of the inherent
characteristics of multi-core architecture, since the traditional virtual machine
scheduling algorithm does not adapt to the parallel task scheduling. The CON-
Credit achieved the dynamic classification and matching of the physical CPUs,
and improved the execution efficiency of the MapReduce task through coop-
erative scheduling between the ordinary tasks and parallel tasks. The experi-
ments prove that the algorithm worked well for the parallel task scheduling and
mixed task scheduling, and have strong adaptability and scalability. For now the
CON-Credit algorithm is only implemented in XEN virtual machine platform.
In future it will be ported to other VMM platform like KVM and Hyper-V. In
addition, the cloud computing platform may involved a large number of hetero-
geneous cores, that is a good candidate to exhibit the flexibility and scalability
of CON-Credit. How to combine the parallel computing tasks and heterogeneous
virtual computing environment, and design a more adaptable virtual machine
scheduling algorithm is still a topic worth further studying.

References

1. Chisnall, D.: The definitive guide to the Xen hypervisor, pp. 222–224 (November
2007)

2. Credit Scheduler, http://wiki.xensource.com/xenwiki/creditscheduler

http://wiki.xensource.com/xenwiki/creditscheduler

Scheduling Model of Virtual Machine Base on TTMS 39

3. Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., Shi, X.: Evaluating MapReduce on
Virtual Machines: The Hadoop Case. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.)
CloudCom 2009. LNCS, vol. 5931, pp. 519–528. Springer, Heidelberg (2009)

4. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: SOSP, pp.
29–43 (2003)

5. Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications. In:
Proceedings of the 2008 Fourth IEEE International Conference on eScience, pp.
222–229 (2008)

6. Ibrahim, S., Jin, H., Cheng, B., Cao, H., Wu, S., Qi, L.: CLOUDLET: towards
MapReduce implementation on virtual machines. In: Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing, pp. 65–66
(2009)

7. Yeung, J.H.C., Tsang, C.C., Tsoi, K.H., et al.: Map-reduce as a Programming
Model for Custom Computing Machines. In: 16th International Symposium on
Field-Programmable Custom Computing Machines, pp. 149–159 (2008)

8. Tsoi, K.H., Ho, C.H., Yeung, H.C., Leong, P.H.W.: An arithmetic library and
its application to the n-body problem. In: Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 68–78 (2004)

9. Kim, H., Lim, H., Jeong, J., Jo, H., et al.: Task-aware Virtual Machine Scheduling
for I/O Performance. In: Proceedings of the 4th International Conference on Virtual
Execution Environments (VEE), pp. 101–111 (2009)

10. Weng, C., Wang, Z., Li, M., Lu, X.: The Hybrid Scheduling Framework for Virtual
Machine Systems. In: Proceedings of the 4th International Conference on Virtual
Execution Environments (VEE), pp. 111–120 (2009)

11. Ongaro, D., Cox, A., Rixner, S.: Scheduling I/O in virtual machine monitors. In:
Proceedings of the 4th International Conference on Virtual Execution Environ-
ments (VEE), pp. 1–10 (2008)

12. Lee, M., Krishnakumar, A., Krishnan, P., Singh, N., Yajnik, S.: Supporting soft
real-time tasks in the XEN hypervisor. In: Proceedings of the 6th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, pp.
97–108. ACM (2010)

13. Shi, L., Chen, H., Sun, J.H., Li, K.L.: vCUDA: GPU-Accelerated High-
Performance Computing in Virtual Machines. IEEE Transaction on Computers,
doi:10.1109/TC.2011.112

14. Wells, P.M., Chakraborty, K., Sohi, G.S.: Hardware support for spin management
in overcommitted virtual machines. In: Proc. of the 15th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT 2006), Seattle,
Washington, USA, September 16-20 (2006)

15. Kang, H., Chen, Y., Wong, J.L., Wu, J., Sion, R.: Enhancement of Xen’s Scheduler
for MapReduce Workloads. In: HPDC 2011, San Jose, California, USA, June 8-11
(2011)

16. Weng, C., Liu, Q., Yu, L., et al.: Dynamic Adaptive Scheduling for Virtual Ma-
chines. In: HPDC 2011, San Jose, California, USA, June 8-11 (2011)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 40–54, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Dynamic Pricing Strategy for Cloud Computing
with Data Mining Method

Xing Wu1,2,3, Ji Hou1, Shaojian Zhuo1, and Wu Zhang1

1 School of Computer Engineering and Science,
Shanghai University, Shanghai, China

2 State Key Laboratory of Software Engineering,
Wuhan University Wuhan, China

3 State Key Laboratory for Novel Software Technology,
Nanjing University Nanjing, China

xingwu@shu.edu.cn

Abstract. Cloud computing is the delivery of computing as a service rather than
a product, whereby shared resources, software, and information are provided to
computers and other devices as a metered service over a network (typically the
Internet). To maximize the revenue of cloud service providers, a dynamic
pricing model is proposed, which consists of two data mining methods. The
first data mining method is the k-means algorithm with which historical data are
classified into groups. The second one is Bayes decision that can forecast the
trend of user-preferred cloud service packages. In proposed pricing model, BP-
neutral network is applied to forecast the price which can maximize the
revenue. Compared with the static pricing model and the models without k-
means algorithm, the proposed model can meet customers’ demand better and
outperform them in revenue maximization.

Keywords: maximum revenue, various resources, dynamic pricing, Cloud
Computing.

1 Introduction

Nowadays, more and more users are concentrating on Clouds Computing systems. To
cater to these demands, some corporations have implemented cloud computing to go
along with the new technology, such as Google and Amazon. Google engaged in the
development of cloud computing technology and proposed Google File System
(GFS), MapReduce and Bigtable[1]. While Amazon EC2 (Elastic Compute Cloud)
has successfully gain profit from its cloud services. To maximize the revenue [2] of
cloud providers, a proper pricing strategy is indispensable.
Other corporations have developed their own cloud platforms too. For instance,

As the number of cloud users varies from time to time and the demands of users
fluctuate, a dynamic pricing model to manage the revenue is more effective than the
static pricing model. Thus a dynamic pricing model implementing the neutral

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 41

networks to make a forecast according to requests made by users is proposed to
maximize the revenue of cloud providers. In the proposed model we also forecast the
user-preferred pattern [3] of cloud service packages using the Bayes decision.
Furthermore, some data mining methods are utilized to classify the customers based
on their behaviors.

2 Related Works

2.1 The Definition of Cloud Computing

Cloud Computing has a strong relationship with Grid Computing. Although there are
so many relations between these two kinds of styles, it is the differences that exist.
Although there are lots of definitions for cloud computing, we still don’t have a
universally agreed definition. A popular definition for cloud was proposed by Ian
Foster as follows: A large-scale distributed computing paradigm that is driven by
economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services are delivered on demand
to external customers over the Internet [4]. As can be seen in this definition, the most
important developed trends in cloud that the Grid Computing doesn’t have are
virtualized, dynamically-scalable platforms and services which are delivered on
demand to external customers over the Internet. Since the resources have been
virtualized as commodities, the transactions in cloud computing should follow the law
of economics. Compared with Grid computing, the services on Cloud Computing can
even be virtualized as commodities which makes the cloud computing much easier to
be charged.

Amazon EC2 charges for not only the cloud infrastructures but also cloud services.
An elastic model is proposed in the EC2 which means cloud can be seen as resources
without a boundary [5]. To extend this concept, cloud computing should provide
services without a boundary and thus should be charged dynamically.

2.2 The Revenue Management of Cloud Computing

As the pricing becomes an indispensable part of the cloud computing, it is a problem
how to make the profits maximum. Some scholars analyzed the cost-benefit of Cloud
Computing [6] and believed cloud computing has advantages in following aspects: the
reliability, the pricing and the response time concerned with the service quality. With
the cloud computing becoming widely used, pricing could play the vital role to make
the revenue maximum which is related to the revenue management of any company.
The term revenue management is most commonly used for the theory and practice of
maximizing expected revenues by opening and closing different fare classes or
dynamically adjusting prices for products. Putting this conception into clouding
pricing is meaningful. In the revenue management of cloud computing, a dynamic
pricing strategy is required to maximize the revenue.

42 X. Wu et al.

2.3 The Dynamic Pricing of Cloud Computing

There has been some scientific research concerned with dynamic pricing models for
cloud computing. Arun Anandasivam and Marc Premm proposed both a static pricing
model and a dynamic pricing model which utilizes a heuristic algorithm to forecast
the pricing [7]. In this research, the static model can’t be adjusted to changing
situations, whereas the proposed dynamic pricing model adapts to the real cloud
market. However the proposed dynamic pricing model only contained a math model
without an implementation and not available for multiple kinds of cloud resources.
Furthermore the model didn’t make revenue maximum. So we make an improvement
for multiple kinds of cloud resources.

There is a big difference between one kind of resource and multiple kinds of cloud
resources for dynamic pricing. For multiple kinds of cloud resources, the relationship
among these resources should be considered. To simply the situation of multiple
cloud resources, “combo” and “package” are defined. Combo is the combination
selected by customers, while package is the combination predetermined by company
previously.

Furthermore, a data mining method is used to classify the historical data which is
used for forecasting. Different people have different demands. With this method the
customers can be put into different classifications, so that a more specific forecast can
be made using the sorted data.

When a forecast for price adjustment is made, there should be a time scale. In [7],
time interval is the second-scale period which is too precise to realize it. Thus time
scale in hours is used in our pricing model. Before a forecast for the combos is
made, a data mining method is proposed to classify the various resources into
several classifications as different customers have different requests. Then the most
similar historical data can be utilized to forecast future usage with back-propagation
neutral network approach [8]. As the fluctuation of price has no regular patterns, the
back-propagation neutral network approach is appropriate for this situation [9].
Back-propagation neutral network is effective when there is no obvious rule [10].
After the forecast of back-propagation neutral network, a matrix of prices and
amount of requests which are accepted by customers will be gotten. Then an
equation of the maximum revenue can be acquired. After we seek partial derivative
for each resource price components, extreme points can be sought and then find the
max point which is to say to find the maximum revenue. Meanwhile the dynamic
pricing is determined.

As the conception that cloud is infinite, we don’t need to consider remained
resources or resources [11] that will be set free to adjust the price as other traditional
industries.

When we forecast the trend of packages [12], the time scale will be much longer,
such as time scale of months which is more reasonable. In this part, a way to forecast
the trend of using situation of packages is proposed and it is especially applied for the
packages.

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 43

3 Pricing Determination in Various Cloud Resources

3.1 Scenario

When some cloud resources are priced, first of all, what kind of services is used
should be decided, for example, a package or a combination, and then the using time,
which is to say, how long the resources need to be used, which decides the time scale
in our dynamic pricing model. In Dynamic Pricing how various resources that are
chosen by customers themselves are priced is going to be talked about so as to get a
biggest profit. In the next Forecast Model how to forecast the trend of using situation
of different packages will be talked about, in which the contents of packages have
been decided by the operating agencies.

In Dynamic Pricing, the time scale is a comparatively short time. It can be defined
as hours, while in Forecast Model the time scale will be much longer, and it can be
defined as several days even several months. Because the package is more static than
the combination, once the price and contents of the package is defined, it will not
change until next season or next time when the company decides to make a change,
while the combination is always changing as customers have different requests.

3.2 Basic Model and Dynamic Pricing

There is a certain amount of packages as , 1, 2, 3......i =iX . Each iX includes different
resource types of uncertain amount. Different resource types in a package can be
defined as a vector 1 2 3 k(x , x , x x)= ……iX where kx represents a kind of resource

such as CPU or MEM and so on. iX can also represent resource combinations which
are made by customers themselves in Dynamic Pricing. User requests (what have
been accepted, the below is the same) are always made over times. T represents the
spot when a user request is made.

When pricing, not only the present price, but also the change of request trend is
necessary. If there are more requests in the future, it can indeed influence pricing. The
customers’ behaviors can be thought as a serious of changing requests. Thus a metric is
defined to represent the trend of changing combination amounts from then to future.
As the follows:

Table 1. Trend of Changing Combination Amounts

i i + 1 i + 2 i + 3 j j + 1... t t t t ... T - 2t T - t T T +t T +2t ... t t ...

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2

i i + 1 i + 2 i + 3 n - 2t n - t n n + t n + 2t

... X X X X ... X X X X X X X X X

... X X X X ... X X X X X X X X X

...

... Xn Xn Xn Xn ... X X X X X . j j + 1.. Xn Xn ...

In Table 1, T represents the present time, it represents a past time while jt represents
a future time. The period of t is not defined which can be chosen by the real situation.
For example, t can be 1 hour or half an hour, and so on. And when pricing, both

44 X. Wu et al.

historical amount of accepted requests and relevant price should be considered. With
the historical data mentioned before, the accepted requests and the relevant price in the
future can be forecasted by BP Neural Network algorithm.

Through adjusting the price of different kinds of resources in the future, a relevant
request amount in the future can be forecasted by BP Neural Network. Then the
revenue could be maximized by the method which will be mentioned later.

If only one resource is put into consideration in dynamic pricing model, it can be
represented as a single symbol, but several resource types for a dynamic pricing model
are different. It has to be concerned with a matched problem. And different resource
types can form a large quantity of combinations

There are i historical spots considered to price a combination. As cloud resources
are by some means combined, the used historical data should be similar with the
combination which is priced. Thus the historical data could be classified into different
classifications.

In order to be quickly calculated and self-match, which is more appropriate for the
dynamic pricing model and more convenient, the algorithm K-means which is one of
data mining methods is proposed as following pseudo code:

Algorithm1. K-means
Required: past data and request now dealt as

1 2{ , }n requestX X X X=X ， ……

(1)Define c as classification number.
(2)Define the permissible error as ε and define t=1;
(3)Initializing cluster centers (), 1,2,..., .iw t i c= where c centers are chosen from X

random.
(4)Sum of squared error criterion function is as the target function:

2

1 1

|| x ||
c n

e ij j i

i j

J d w
= =

= −
1,

0,

j i
ij

j i

x w
d

x w

∈
= ∉

(5)Modified clustering center:

1

1

(1) , 1, 2 , . . . , .

n

i j j

j
i

n

i j

j

d x

w t i c
d

=

=

+ = =

(6)Calculate the error:

1

|| (1) () ||
c

i i

i

E w t w t
=

= + −

(7)If E<ε then
For i=1 to c
Use the Je to judge to which group the requestX belongs
If je is minimum then
Answer =i;
Endif
Endfor
else t=t+1 goto (4)
Endif

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 45

“Answer” is the classification the present request belongs to. Thus the historical
data in classification “Answer” is considered to be used in the Back Propagation
Neural Network. The Back Propagation Neural Network can be defined as function
network(x) which will be used in maximizing revenue.

Before using network(x), the data should be dealt with, so as to match with
network(x). ()i 1 2 ... kp p pP represents the price of each iX of chosen classification and

then each price of iX should be calculated by unit as iP . After that there is a new
()1 2 ... kp p piP in which kp is all by unit, kix is amount of each resource in iX .

 ()
1 2

1 2
1 2

k

k
k j

i i i

p p p
p p p

x x x
 =

iP P (1)

And then a Price demand prediction analysis matrix can be defined as following, in
which each row is the new iP and the last col is the sum amount of all the accepted
requests as ir

11 12 1 1

21 22 2 2

31 32 3 3

1 2

...

...

...

...

...

k

k

k

n n nk n

p p p r

p p p r

p p p r

p p p r

 (2)

As to pricing, a dealt algorithm can be defined as mentioned in the previous section.
What is predicted is the trend of users’ behaviors, thus some previous time nodes’ data
is used to forecast the future spot’s users’ behavior, which is to say, if the users will
accept the price. The process before is to make the price unit, but the amount of visitors
is also different, thus making them in a same standard is necessary. For example, at 1st
hour there are 1000 visitors and 800 people accept the price which is to say there are
800 accepted requests and price p1, at 2nd hour there are 100 visitors and 90 people
accept the price, which is to say there are 90 accepted requests and price p2 that is less
than p1. Even though p2 is less, price p1 attract more accepted requests, because the
visit quantity of 1st hour is more than 2nd hour. When a forecast of customers’ behavior
is made, a unified standard is necessary, because the customers will not care how many
people visit the website at a spot, what they care is only the price. And considering the
resource amount is different in each request, the sum of each resource amount should
be used not the request amount. In order to solve those problems, which can influence
the forecast of customers’ behaviors, the following algorithm is proposed:

At a certain time T, there are several requests for different combinations. S is
defined as a vector in which each component represents the sum of each resource
amount in a data center as ()1, 2 3 4= s , , ns s s sS …… .And the vector iX is the request of that

spot. Each component of iX represents each resource amount. Then all resources of
requests should be summed by adding the iX up as

 = i

n
Sx X , 1 2 3 k(x , x , x x)= ……iX (3)

If Sx is not matched to S, a special augmented matrix of Sx can be defined as Sx in
which a zero is added to where there is no request of this kind of resource to make sure

46 X. Wu et al.

that number of Sx’s cols equal S’s. Thus Sx S will be a part of the equation to price

in a same standard. As it is known two vectors can’t make a division, thus some little
adjustments can be made and do not change the equation’s meaning. A diagonal matrix
for S like the style:

1 2 3diag(...)=

1

2

n

s

s
s s s

s

 (4)

In the equation an inverse matrix 1−S is needed for 1 2 3diag(...)s s s to make

calculation. Thus Sx S can be thought as another form × -1Sx S . And percentage that

amount of resources of accepted requests in sum of resources at a spot multiplies the
percentage that accepted requests ()R t in amount of visitors as ()V t . So a function to

calculate at each spot the relationship between price and the resource amounts can be
made.

 -1() () ()
() (())

() ()

R t t V t
t t

V t R t
ψ = × = × ×Sx

Sx S
S

 (5)

At last, a forecast should be made by Back Propagation Neural Network algorithm
with training data of historical data and simulation as the form (10).General number of
hidden layer neuron to determine the empirical formula is:

i m n a= + + (6)

Where I is the number of hidden layer neurons, n is the number of input layer neuron.
The learning regular of neutral network is to confirm a W to make the error minimum.

() () ()TF W D T D T= − − (7)

And ()1 2D ... nd d d= is the idea output, if D is the output of the last layout of neutral

network then n will be the number of output. The W can be made by several tries as
 (1) () ()k k kW t W t W tδ+ = + (8)

Where k means the order of layouts of neutral network and δ means the adjust value.
The neutral network will correct the error of the ideal output and the normal output
from the back to the front until the error is the minimum. When the neutral network
makes the error minimum, it will be along the decrease which is most fast as

1

()
() ()k

ij k k

F W
W t t

w n n
δ

−

∂ = ∂ ×
 (9)

After the structure of the neural network is decided, the input vector and the output vector
are going to be designed. There is input vector as {price of various resources}, where
accepted request is from ()tψ . And output vector as {a standard calculated by (5)}

1 1

2 2

1 2

...

...

...

...

k

k

n n nk

p p p

p p p

p p p

 =

P

1

2

ni

()

()
=

...

()

n

n

t

t

t

ψ
ψ

ψ

T

 (10)

And in neutral network the Excitation function is defined as

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 47

1
()

1 x
f x −=

+
 (11)

Because f(x)<1 some adjustments of input P and output T are made to make them less
than 1. They can be divided by a certain number which depends on real situation. Then
the network can be trained as network(x) whose input is price and output is the
percentage calculated in (5).

Algorithm 2. BP Neural Network algorithm In Matlab
%Training net (just a template)
clear all
function net=network(P,T)
S1=11 according to (4);
S2=1;
net = newff(minmax(P),[S1 S2],{'tansig','logsig'},'traingdx','learngdm');
net.performFcn='sse'
net.trainParam.show=1;
net.trainParam.mc=0.95;
net.trainParam.epochs=50;
net.trainParam.goal=0.001;
[net,tr]=train(net,P,T);

After training, the simulation can be made. Also the input should be made less than 1

by dividing them with a number and let the output multiply the same number. The
output is the symbol of accepted percentage like (5) forecasted by neural network. If a
higher price is not expected because there will be a risk that the higher price may make
a fewer revenue, a network(0) is proposed or even a lower price to attract more accepted
requests. As to how to set the price which is put into network(x), a price range maybe
between ra=-10%~10% which is just a suggestion can be taken into the neural network
as network (x×(1+ra)). Following algorithm will finally decide the price:

Algorithm 3. Making revenue maximum with discrete method
n←number of resources
Mr←0
Pr←0
For i=1 to n
For x=-10% to 10%

 () 1 xi iP P= × +

()ir network x=
If iriP × >Mr then

Mr= iriP ×
Pr= iP

Endif
Endfor
Endfor

48 X. Wu et al.

Then the result Mr represents the maximum revenue in some degree, and the price
Pr is the price. When a forecast is made using Back Propagation Neural Network
algorithm with proper training, as it can be seen in Fig.1, in only several times the goal
can be reached. The one of the simulation in neutral network is as following figure:

0 2 4 6 8 10 12
10

-4

10
-3

10
-2

10
-1

10
0

10
1

13 Epochs

T
ra

in
in

g-
B

lu
e

 G
oa

l-B
la

ck
Performance is 0.000729472, Goal is 0.001

Fig. 1. Performance of BP Neutral Network

But there is still a problem about the way in which revenue is maximized. Price
adjustment is discrete. If the maximum revenue being more accurate is expected, a
continuous method is proposed. Firstly, the Back Propagation Neural Network
algorithm to forecast the relationship between price and the accepted requests as the
way mentioned before is also necessary. The equation of max revenue can be defined
as follows:

 1 1 2 2y () () ()i ip network p p network p p network p= × + × + × (12)

Where network(pi) means the forecast result of neural network and pi is the price of
this kind of the resource, so y is the revenue. Secondly, a linear regression to fit a
function of price and the requests corresponding to the price is proposed to find the
relationship between pi and network(pi). And a proper nonlinear regression model is
better than the linear regression. Then (12) can be changed as the follows:

 1 2y () () ()if p f p f p= + +
(13)

Thirdly, partial derivative of y respect to each pi is calculated separately.

 1 2y () () ()
......

i

j j j j

f p f p f p

p p p p

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

 j=1、2、3……I (14)

When y
0

jp

∂ =
∂

 the corresponding price of each kind resource is gotten, then the

maximum revenue is also achieved.

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 49

3.3 Forecast Model

As it is known, cloud resources can not only be as a combination, but also be sold as a
package. A package is more static than a combination since the combos are always
changing. Thus when a forecast model is made for packages, a longer time scale than the
combo is necessary. The time scale in this part can be a week, a month, even half a year.

And when there is a package which is not priced or not be introduced, whether it is
popular in the daytime or night is still unknown. Thus a Bayes to predict its using trend
is needed so that a good price can be made. Even though it may have already been
introduced, the use trend of it is not known exactly, because it can’t reflect people’s
real desire that which kind of package they want, since there is not a really desired
package for the customers, they only can buy a kind of package which is most closed
to their desired package. Using Bayes model to forecast can help us know what the
customers want much more specific, which is to say, at which time what users want
exactly can be known.

And in this forecast model there is only a forecast of the trend of packages’ using
situation not pricing. This part is not like Dynamic Pricing. Langer time scale will take
a pricing problem in economy. For example in Dynamic Pricing time scale is 1 hour,
in this one hour the prime cost of MEM will not change so much but in a longer time
scale as 1 month it’s hard to say. Thus a forecast is just made for trend not pricing
dynamically. In this part, a Bayesian Decision Theory to forecast is proposed when the
package will be used more and its possibility.

For example, there are past 1 month data which are the data of combination not the
data of packages because data of packages is of no value for customers’ really desired
packages and when there is a wish to make a new kind of package, the data of combo
will be used. The data then are divided into three time periods as Morning (6:00-
14:00), Afternoon (14:00-22:00) and Night (22:00-next day 6:00).

After that a Distribution model should be determined such as Normal distribution or
T distribution or Γ distribution. There a Normal distribution is proposed as it’s easy
to understand.

Now there are several packages as 1 2 3 kx , x , x x= ……iX （ ） where x represent each
different resource. 1 month data is divided by three time period as follow:

Table 2. Data of Combinations in a Month

 Day1 Day2 Day3 …… Day30 Day31
Morning M1 M2 M3 …… M30 M31

Afternoon A1 A2 A3 …… A30 A31
Night N1 N2 N3 …… N30 N31

where 1A means all the accepted combination in Day 1 Afternoon. N and M are the
same. And ()1 1 2 ... nA = X X X where each 1 2 3 k(x , x , x x)= ……iX in A means a

combination, n is the amount of combinations. First the three time period’s average and
the standard deviation are calculated.
Morning:

()i j

j
i

x

ans
n

∈
=
 X

 1 2(...)ians ans ans=ans
(15)

50 X. Wu et al.

31

1

31

i

stdM =
ans

 (16)

2 2 2
1 2[() ()()]nM M M

M
n

− + − + −= X std X std X std
s

 (17)

The Afternoon and night are the same. Then the three groups of average and standard
deviation are taken into the equation of Multidimensional Normal distribution

() ()
1

1 22
1

, 1

1
exp , 2

2

m m
ji

ij m
i j i j

xx
c R c R

R
π σ σ

σ σ
−− −

=

− =

 (18)

And R is the determinant of Correlation matrix ()ijp , ijR is its Algebra formula.

Then the three Normal distributions will be simultaneous to figure out two
Demarcation point or interface. The Bayes formula is used:

() ()

()
(|)

|
×

=
P B P A B

P B A
P A

 (19)

In details there is a kind of package X, then

() ()
()

(|)
|

i i
i

w w
w

×
=

P P X
P X

P X

 , { }iw Morning afternoon night∈
 (20)

Prior probabilities can be the same or based on the real situation. Thus that when the
package is more popular can be known, that is the forecasted trend, and its relative
probability.

When there are more people want to use this kind of package, maybe the package
can be a higher price. As how to make the revenue maximum, you can have the trend
which is forecasted by the Bayesian model, combined with a specific economic model.

Through Multidimensional normal distribution there is a basic figure.

Fig. 2. The 3D view of Bayesian Decision

Then there is a vertical view to look at a Demarcation interface.

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 51

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

firest resource

se
co

nd
 r

es
ou

rc
e

morning
noon
night

Fig. 3. Vertical view the 3D view of Bayesian Decision

The package which is forecasted can be made into the vertical view which is the
Demarcation interface to look up its possibility in each time period. As can be seen
from the vertical view of Bayes Decisions, in the morning people more like the
package with first resource 5 and second resource 5 around. And in the afternoon
people more like the package with first resource 15 and second resource 15 around
while in the evening people’s requests are more dispersed between 25 to 40 of both
resources although there are several requests of night is between 5 to 20(the black
dot), it is less possibility. So the price according to the forecast trend can be made.

4 Numerical Studies

In this section, numerical studies are conducted to evaluate the results between the
dynamic pricing model and the static pricing model. The request is set by a Normal
distribution. Dynamic pricing model is realized in Matlab and make a comparison.

4.1 Comparison between Static Model and Dynamic Model

In this section, there is a comparison about the revenue between our dynamic pricing
model and the static pricing model with two various resources as A and B. In Fig.1 it
is the comparison of prices between the dynamic pricing model and the static pricing
model. As it can be seen, the static pricing is always 10 which is the black line while
the dynamic price is between 11 and 9. With the dynamic price changing there are
different requests accepted as in Fig.2. In Fig.2 it can be seen that the requests of
static pricing model which is the blue line are corresponding to the Normal
distribution as mentioned before while the requests of our model is more or less. But
no matter the requests of our model is more than the static pricing model or less, the
revenue is more in our model as in Fig.3 and Fig.4. In Fig.3 the time scale is hours,
the revenue is summed of each hour in continues 24 hours. In Fig.4, the revenue of
each day is summed in continues 31 days.

52 X. Wu et al.

0 5 10 15 20 25
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Time/Hour

R
ev

en
ue

/Y
ua

n

static
first resource
second resource

Fig. 4. Price difference between the dynamic model using k-means method and the static model

0 5 10 15 20 25
0

100

200

300

400

500

600

700

Time/Hour

re
qu

es
ts

requests of static
requests of dynamic

Fig. 5. Requests amount difference between the dynamic model using k-means method and the
static model

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

Time/Hour

R
ev

en
ue

/Y
ua

n

static
dynamic

Fig. 6. Hourly revenue difference between the dynamic model using k-means method and the
static model

 Dynamic Pricing Strategy for Cloud Computing with Data Mining Method 53

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
x 10

4

Date/Day

R
ev

en
ue

/Y
ua

n

static
dynamic

Fig. 7. Daily revenue difference between the dynamic model using k-means method and the
static model

4.2 Performance of K-Means in the Algorithm

In this section, a comparison is made that whether there is a classified the data based
on different groups of users. In Fig.5 it can be seen if a c-means to classify the users’
behaviors into different groups is applied, more revenue can be gotten.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

Time/Hour

R
ev

en
ue

/Y
ua

n

No c-means
c-means

Fig. 8. Hourly revenue difference between the model using k-means method and the model
without using k-means method

Acknowledgement. This paper is supported by Doctoral Fund of Ministry of
Education of China (20123108120027), by Science and Technology Commission of
Shanghai Municipality (No. 10510500600 and No. 12511502900), by State Key
Laboratory of Software Engineering(SKLSE) SKLSE2012-09-36, by State Key
Laboratory of Novel Software Technology KFKT2012B30 and by Shanghai Leading
Academic Discipline Project (No. J50103)。

54 X. Wu et al.

References

1. Peng, B., Cui, B., Li, X.: Implementation Issues of a Cloud Computing Platform. Bulletin
of the Technical Committee on Data Engineering 32(1), 59–67 (2009)

2. Xu, H., Li, B.: Maximizing revenue with dynamic cloud pricing: The infinite horizon case.
In: Proc. of IEEE ICC, Next-Generation Networking Symposium, pp. 2929–2933. IEEE
Press, Budapest (2012)

3. Caron, E., Desprez, F., Muresan, A.: Pattern Matching Based Forecast of Non-periodic
Repetitive Behavior for Cloud Clients. J. Grid Computing, 49–64 (2011)

4. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-degree
compared. In: Grid Computing Environments Workshop, Austin, pp. 1–10 (2008)

5. Constantinos, E., Hill, N.: Cloud Computing for Parallel Scientific HPC Applications:
Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2.
In: Cloud Computing and Its Applications, Chicago, IL (2008)

6. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.: Cost-Benefit Analysis of
Cloud Computing versus Desktop Grids. In: IEEE International Symposium on Parallel &
Distributed Processing, pp. 1–12. IEEE Press, Rome (2009)

7. Anandasivam, A., Premm, M.: Bid Price Control and Dynamic Pricing in Clouds. In: 17th
European Conference on Information Systems, Verona, pp. 328–341 (2009)

8. Wang, D., Zeng, X., Keane, J.: A clustering algorithm for radial basis function neural
network initialization. Neurocomputing 77(1), 144–155 (2012)

9. Rathnayake, V., Premaratne, H., Sonnadara, D.: Performance of neural networks in
forecasting short range occurrence of rainfall. Journal of the National Science Foundation
of Sri Lanka 39(3), 251–260 (2011)

10. Feng, Y., David, H.: A short-range quantitative precipitation forecast algorithm using
back-propagation neural network approach. Advances in Atmospheric Sciences 23(3),
405–414 (2006)

11. Luis, R., Eddy, C., Adrian, M., Frédéric, D.: Using clouds to scale grid resources: An
economic model. Future Generation Computer Systems 28, 633–646 (2012)

12. Yang, X., Xie, W., Huang, J.: A c-means clustering approach based on cloud model. In:
IEEE International Conference on Fuzzy Systems, pp. 965–968. IEEE Press, Hong Kong
(2008)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 55–65, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Detecting Communities and Corresponding Central
Nodes in Large Social Networks

Shengyi Jiang1 and Meiling Wu2

1 School of Informatics, Guangdong University of Foreign Studies,
510006 Guangzhou, China

2 School of Management, Guangdong University of Foreign Studies,
510006 Guangzhou, China

{jiangshengyi,402745606}@163.com

Abstract. Community structure and central nodes are crucial for analyzing real
network systems. However, previous methods investigate these two issues
separately. This paper proposes an efficient method to discover both network
communities and corresponding central nodes together. This method utilizes an
incremental agglomerative clustering to group nodes of large networks based on
node structure equivalence. Moreover, central nodes are regarded as special
objects and detected by employing outlier detection from the clustering results.
This algorithm has been applied to several real networks, and achieves both
efficiency and high quality.

Keywords: Community detection, central nodes recognition, node centrality,
social networks.

1 Introduction

Social systems can often be described in terms of complex network, sets of nodes
joined together in pairs by links [1]. Community structure detection and node
centrality are two important tools for analyzing real-world social networks, since
communities represent functional modules of networks and node centrality reveals
important individuals that influence in group processes [2].

In recent years, community detection techniques have drawn great attention. Some
efficient community detection algorithms for networks have been proposed in recent
researches [3], including modularity-based methods [4], [5], spectral methods [6],
dynamic methods [7], and methods based on information theory [8],overlapping
community detection [9], hierarchical community detection [10], and dynamic
community detection[11]. Measures of node centrality have been presented over the
years to quantify the importance of individual in network, such as betweenness
centrality [12], closeness centrality [13], Google's PageRank [14], and node centrality
in weighted networks [15].

As the growing popularity of social network service has provided access to large
amount of network data, the tasks of discovering communities and central nodes in
such network can be challenging, both in terms of efficiency and quality. In previous

56 S. Jiang and M. Wu

network studies, researchers focused on either community detection or central nodes
recognition methods. Particularly, existing node centrality measurement requires a lot
of time to compute and sort centrality for all nodes, most of which are marginal and
unconsidered in real applications. For large social networks which count in millions
of nodes, these methods are computational expensive.

In this paper, we propose a clustering-based network analysis algorithm for
simultaneously discovering communities and corresponding central nodes. We obtain
clusters of nodes by employing a constrained single pass clustering algorithm [16].
Then, we employ clustering-based outlier detection approach to compute outlier
factor of clusters for measuring cluster centrality instead of single node centrality,
which efficiently discover central and considered nodes in central clusters [17].
Finally, we combine clusters into communities based on link density between clusters.
Our method can also adapt to directed, weighted or unconnected networks.

The rests of this paper are organized as follows. In section 2, definitions of our
method are introduced. Section 3 presents the method. Experimental results are
presented in section 4. Finally, section 5 concludes this paper and gives further work.

2 Preliminaries

There is no accurate definition for community, but several accepted ones are used by
different researchers [3]. In this paper, we adopt the definition that a community is a
group of objects similar to each other inside than outside them. In order to group the
nodes into communities, we will introduce distance between the nodes in the network.

The distance used in this paper is based on node structural equivalence [18]. This
distance must be small if the two nodes are structure equivalent, and on the contrary it
must be large enough. If two nodes have the same or similar neighbor nodes, they
have high structure equivalence even though they are not adjacent, as shown in Fig. 1.

Fig. 1. In this network, two sets of nodes enclosed in dash circle have high structural
equivalence respectively. And the red node is unique to others as it is in central position.

We embed network nodes in a multi-dimensional space, and denote a node with a
multi-dimensional space vector according to its neighbors. Since node degree in real
networks follows power-law distribution, most nodes have a few links, so most
dimensions of node space vectors are relatively low and the network can be
compressed to smaller storage. The distance is computed from the information given
by the connection between a node and its neighbors. To compare two nodes, we have
two prerequisites:

 Detecting Communities and Corresponding Central Nodes in Large Social Networks 57

Prerequisite 1. A node in a network is presented with a multi-dimensional space
vector),...,,(21 pvvvV = , where p is the number of neighbors for the node.

The value of each dimension in V is the weight of edge from node to its each
neighbor.

Prerequisite 2. If the network is directed, edge from node v to node u is not equal to
edge from node u to node v.

We can now give the definition of distance between nodes below:

Definition 1. Let v and u be two nodes in a network,),...,,(21 pvvvV = and

),...,,(U 21 quuu= are vectors for v and u respectively, and we define the distance

between v and u by:

()
= =

=
V

i

U

j
jivu uvfd

1 1

,

(1)

Where ()ji uvf , is computed as the following formula:

()
() ()

()
()

−=

=

=−

=

1,,

1,,

0,,

,
2

2

2

jiu

jiv

jiuv

uvf

j

i

ji

ji

δ

δ

δ

 (2)

Where ()ji,δ is to estimate whether the i-th neighbor of v is the same as the j-

th neighbor of u . () 0, =jiδ when iv and ju represent the same neighbor,

() 1, =jiδ when u not has the i-th neighbor of v , () -1, =jiδ when v not has

the j-th neighbor of u .
When nodes aggregate to clusters, we should give the distance between existing

clusters and a node. Here we also embed a cluster with a multi-dimensional vector
which is a centroid of all node vectors in this cluster.

Definition 2. Let c be one cluster with m nodes,),...,,(21 mMMMM = be the

m node vectors, k be the number of identical neighbors of the m nodes, and we denote cluster

c with vector),...,,(21 mcccC = , and each dimension ic by:

m

iMf

c

m

j
j

i

== 1

),(

(3)

58 S. Jiang and M. Wu

Where ic is the value of the i-th dimension of C , which is the centoid of the same

dimension of the m node vectors. 0),(=iMf j if node vector jM not has the i-th

dimension of cluster vector C .Otherwise ,),(iMf j is equal to the value of the

same dimension of jM .

Now we generalize distance between nodes to a cluster in a straightforward way.

Definition 3. Let v be a node with vector ()pvvvV ,...,, 21= , c be a cluster with vector

()qcccC ,...,, 21= . We define the distance vcd between node v and cluster c by:

()
= =

=
p

i

q

j
jivc cvfd

1 1

, (4)

Where the computation of ()ji cvf , is similar to equation (2) since both parameters

are space vectors.
In section 3, in order to find central nodes clusters, we should compute the outlier

factor of clusters based on distance between clusters. Here we give the definition of
clusters distance and outlier factor.

Definition 4. Let A , B be two clusters with vector),...,,(21 paaaA = and

),...,,(21 qbbbB = . We define the distance between the two clusters by:

()
= =

=
p

i

q

j
jiAB bafd

1 1

, (5)

Where the computation of ()ji baf , is similar to equation (2) since both parameters

are space vectors.

Definition 5. Let { }PCCCCP ,...,, 21= be the clustering results. The outlier factor of

cluster iC ,)(O iCF is defined as 2-power means of distances between cluster iC and the

rest of clusters:

−
=

 ≠

1

),(
)(O

2

CP

CCd
CF ij ji

i
 (6)

Where)(O iCF measures how far the nodes in iC departs away from the rest of

network. The larger)(O iCF is the more outer iC departs away from the rest.

 Detecting Communities and Corresponding Central Nodes in Large Social Networks 59

For combining different clusters to form communities, we should measure the link
density between clusters.

Definition 6. Let iC , jC be two clusters, and L is the number of edges linking iC and jC .

We define the link density between the two clusters by:

)*(
),(

ji

ji
CC

L
CCLD =

(7)

3 The Algorithm

In the previous section, we have introduced distance computation between nodes based
on node structural equivalence. We now propose our algorithm that finds clusters of
nodes with similar structure property, and then discover communities and corresponding
central nodes by clustering results. Our method has the following features:

Feature 1. Central nodes and non-central nodes in a community are separated when
clustering according to their different structural equivalence, as shown in Fig. 2.

Feature 2. Since network node degrees follow power-law distribution, central nodes
which have higher degree, are much less than non-central nodes. We regard these
central nodes as outliers and employ outlier detection approach to find them.

Feature 3. A central node is always in the center of community instead of the
complete network, which we call community constraint. The example is shown in Fig.
3. Our method can discover community-based central nodes and achieves efficiency.

clusteringclustering

Fig. 2. Separation of central and non-central clusters. In this network, the nodes are separated to
central cluster and non-central cluster after clustering.

Fig. 3. Example of community constrained central nodes. There are two communities in this
network, each of which has its own central node. The community constrained central node can
only have effect on members in the same community, but not other communities.

60 S. Jiang and M. Wu

3.1 Detecting Communities and Corresponding Central Nodes

Grouping nodes into clusters. We use an efficient incremental clustering algorithm
that only scans network data in single pass without loading the whole network in
memory at one time, which can process large networks. By clustering, clusters
containing central nodes and clusters including non-central nodes in different
communities are generated by node structural equivalence.

Identifying central clusters. We distinguish clusters containing central nodes from
clustering results. Central nodes, such as celebrities or leaders, are often distant from
non-central nodes, so we regard clusters of central nodes as outliers that appear to
deviate markedly from other nodes of the network. For purpose of identifying
central clusters, we employ outlier detection method based on clustering results.

Forming clusters into communities. The clusters generated by clustering are
components of communities, so the next step is to decide how to combine central
clusters and non-central clusters into communities. We form clusters into
communities according to clusters link density.

The details about our method are described as follows:

Step 1. Initialize the set of clusters, S, as the empty set, and read a vector of node v.
Step 2. Create a cluster with the node vector.
Step 3. If no nodes are left in network, go to step 6, otherwise read a node vector, and

find the cluster C* in S that is closest to the node with the distance by *Cv
d .

Step 4. If R*C
>

v
d , go to Step 2.

Step 5. Merge v into cluster C* and modify the vector of cluster C*. Go to Step 3.

Step 6. Sort clusters { }PCCCS ,...,, 21= by)(O)(O)(O p21 CFCFCF .

Step 7. Search the smallest b which satisfies =
≥b

i
i

n
C

1
ε , and label clusters

bCCC ,...,, 21 with central clusters, while pbb CCC ,...,, 21 ++ with non-central

clusters.
Step 8. Compute link density DL between central and non-central clusters;
Step 9. If DL , merge central and non-central cluster to form a community.

3.2 Parameter Selection

In our method, several parameters are required to be set, including the distance
threshold R in clustering, the proportion of central clusters ε , and the link density

threshold λ in forming clusters to communities.
Selecting threshold R. The threshold R may influence the quality of clustering and

the time-efficiency of the algorithm. As R increases, both the number of produced
clusters and time-costing will increase. In order to gain a reasonable and relative
stable threshold R, we employ sampling techniques to determine the threshold [19].

 Detecting Communities and Corresponding Central Nodes in Large Social Networks 61

The details are described as follows:

Step 1. Choose randomly N0 pairs of node vectors in the network.
Step 2. Compute distance between each pair of nodes.
Step 3. Compute average ex of distance from Step 2.
Step 4. Selecting R as exe , where e in [0.8,1.8].

When N0 reaches a higher value, ex remains stable. The value of threshold R is closely
related to the size of network and its application areas.

Selecting parameter ε . The value ε is an approximate ratio of the outlier
nodes to the whole network. Since node degree of most real networks follows
power-law distribution, the proportion of central nodes in a network is usually less
than 20%. We may determine ε exactly based on the node degree distribution of
real networks.

Selecting Parameter λ . The parameter λ may influence the formation of

communities. As λ decreases, central clusters may connect to several non-central
clusters, thus the number of communities will decrease while the size of communities
will increase. The value is related to the density of network, and we set λ from 0.6
to 1.0 in a rather dense network.

3.3 Complexity Analysis

We analyze time complexity for each step of our algorithm. The time complexity of
clustering algorithm is nearly linear with the size of network, by O (n).Supposing k
clusters generated during clustering process, the time consume of finding central
clusters is O (k2). We supposed k*α clusters are central clusters while

() k*1 α− are non-central clusters ()10 << α . The time complexity in forming

clustering into communities can be expected to be O (k2), which is very small
compared to n.

In summary, the complexity of our algorithm can be expected to be O (n), which
makes the method deserve good scalability. Since it is no need to load the whole
network at one time, the space complexity varies from capacity of memory.

4 Experimental Results

In this section, we verify the validity of our algorithm on a number of test-case
networks and we have compared it with three other community detection algorithms
[4], [5], [7]. We utilize modularity [20], which is the most wildly used evaluation
metric of network community detection, to measure our algorithm performance. The
environment settings of our empirical computer are as follows: Pentium(R) D CPU
2.80 GHz, 2.79 GHz, 2.00 GB; Operation System is Microsoft Windows XP SP2.

62 S. Jiang and M. Wu

4.1 Comparison of Community Detection Results

The networks include Zachary’s karate club network [21], scientific collaboration
network [22], and phone network. Zachary’s karate club network is a network of
friendship among 34 members of a karate club. Over a period of time the club split
into two factions due to leadership issues and each member joined one of the two
factions. Scientific collaboration network is the network of coauthorships between
scientists posting preprints on the Condensed Matter E-Print Archive between Jan 1,
1995 and March 31, 2005. It consists of 39577 nodes and 175692 edges. Phone
network is a network of communication between customers in a China mobile
operator in a month, and it consists of 1330749 nodes and 11667521 edges.

The results of community detection by using our method and other algorithm are
shown in Table 1. The table displays the modularity and number of communities.
Empty cells correspond to unavailability of our machine performance or a
computation time over 24 hours. The results demonstrate that our method is
approximate to all other methods in quality, and finds central nodes at the same time.

Table 1. Comparison of community detection results

 Karate Collaboration Phone
Nodes/edges 34/77 39577/175692 1330749 / 11667521
CNM 5/0.381 1907/0.626 -/-
BGLL 4/0.420 1842/0.722 2231/0.715
Infomap 3/0.490 1954/0.786 -/-
Our Method 2/0.51 1858/0.781 3125/0.730

4.2 Details of Karate Network Results

For interpreting the details of results of community and corresponding central nodes,
we examine a small social network- karate network.

Clustering results are shown in Table 2. Seven clusters are generated, including
central clusters and non-central clusters. Two communities C1 and C2 are formed
based on the clusters in Table 2, as shown in Fig. 5, where cluster 2 is linked to
central cluster 1 with LD 21=1.0; cluster 4 is linked to central cluster 1 with
LD41=0.889; cluster 2 is linked to central cluster 3 with LD 23=1.0; cluster 5 is linked
to central cluster 6 with LD 56=0.882; cluster 5 is linked to central cluster 7 with LD

57=0.882.
In order to verify the results of central nodes recognized by our method, we show

the centrality results computed by betweenness, closeness, degree and PageRank, as
shown in Table 3. The values in Table 2 are the orders of centrality of node 1, 3, 33
and 34. The results demonstrate that the central nodes we find using our method agree
with other centrality methods.

 Detecting Communities and Corresponding Central Nodes in Large Social Networks 63

Table 2. Clustering results on Zarchary`s karate club network

Cluster Members Type
1 1 central
2 2,4,8,14 non-central
3 3 central
4 5,6,7,11,12,13,17,18,22 non-central
5 9,10,15,16,19,20,21,23,24,25,26,27,28,29,30,31,32 non-central
6 33 central
7 34 Central

Table 3. Comparison of different centrality results of central nodes

Node Betweenness Closeness Degree PageRank
1 1 1 2 2
3 4 2 4 4
33 3 7 3 3
34 2 3 1 1

C2

1.0

4

2

0.889

1.0

1

3

0.882

0.882

5

6

7

C1
C2

1.0

4

2

0.889

1.0

1

3

0.882

0.882

5

6

7

1.0

4

2

0.889

1.0

1

3
1.0

4

2

0.889

1.0

1

3

0.882

0.882

5

6

70.882

0.882

5

6

7

C1

Fig. 4. Two communities are detected by our method. Community C1 includes non-central
cluster 2 and 4, while central cluster 1 and 3; Community C2 includes non-central cluster 5,
while central cluster 6 and 7.

5 Conclusion and Discussion

We have proposed a novel method to detect communities and corresponding central
nodes in large network. In order to group nodes efficiently, a distance between nodes
based on node structure equivalence is introduced. This distance can be utilized with
agglomerative clustering algorithm to aggregate nodes without loading the whole
network at one time. During clustering process, central nodes and non-central nodes
in network are separated, which enable us to find central nodes within communities.

Moreover, extensive experiments have been run to compare existing approaches.
They show that our method provides excellent results in community detection and

64 S. Jiang and M. Wu

central nodes recognition. Our approach is also relevant for the computation of
overlapping communities. Finally, we pointed out that the method can be extended to
detect hierarchical communities and track evolving communities, which are our
interesting research directions.

Acknowledgements. This work was supported by the National Natural
Science Foundation of China (No.61070061), Guangdong Province Colleges and
Universities Discipline Construction Project (No.2012KJCX0049), National Key
Technologies R&D Program Project (No.2012BAH02F03), Guangzhou Science and
Technology Program Project (No.2011J5100004).

References

1. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
2. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks.

Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)
3. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)
4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large

networks. Physical Review E 70, 066111 (2004)
5. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities

in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10008
(2008)

6. Izudheen, S., Mathew, S.: A Method for Community Detection in Protein Networks Using
Spectral Optimization. International Journal of Database Management Systems 3, 161–167
(2011)

7. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008)

8. Rosvall, M., Bergstrom, C.T.: Maps of information flow reveal community structure in
complex networks. Proc. Natl. Acad. Sci. USA. 105, 1118–1123 (2008)

9. Psorakis, I., Roberts, S., Ebden, M.: Overlapping community detection using Bayesian
non-negative matrix factorization. Physical Review E 83, 066114 (2011)

10. Shen, H., Cheng, X., Cai, K., Hu, M.: Detect overlapping and hierarchical community
structure in networks. Physica A: Statistical Mechanics and its Applications 388, 1706–
1712 (2009)

11. Greene, D., Doyle, D.: Tracking the evolution of communities in dynamic social networks.
In: Advances in Social Networks Analysis and Mining, pp. 176–183 (2010)

12. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–
41 (1977)

13. Freeman, L.C.: Centrality in social networks: I. Conceptual clarification. Social
Networks 1, 215–239 (1979)

14. Austin, D.: How Google Finds Your Needle in the Web’s Haystack. American
Mathematical Society Feature Column (2006)

15. Opsahl, T., Agneessens, Skvoretz, J.: Node centrality in weighted networks: Generalizing
degree and shortest paths. Social Networks 32, 245–251 (2010)

16. Jiang, S.: Efficient Classification Method for Large Dataset. In: Proceedings of the Fifth
International Conference on Machine Learning and Cybernetics, Dalian, pp. 1190–1194
(2006)

 Detecting Communities and Corresponding Central Nodes in Large Social Networks 65

17. Jiang, S., Song, X., Wang, H., Han, J.-J., Li, Q.-H.: A clustering-based method for
unsupervised intrusion detection. Pattern Recognition Letters 27, 802–810 (2006)

18. Lorrain, F., Whie, H.: Structural equivalence of individuals in social networks. The Journal
of Mathematical Sociology 1, 49–80 (1971)

19. Grubbs, F.E.: Procedures for detecting outlying observations in samples.
Technometrics 11, 1–21 (1969)

20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69, 026113 (2004)

21. Zachary, W.W.: An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 33, 452–473 (1977)

22. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci.
USA 98, 404–409 (2001)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 66–74, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Design and Prototype Implementation
of a Pipelined Heterogeneous Multi-core GPU

Junyong Deng1,2, Libo Chang2, Guangxin Huang2,
Lingzhi Xiao2, Tao Li2, Lin Jiang2, Jungang Han2, and Huimin Du2

1 School of Micro-electronics, Xidian University, Xi’an 710071, China
2 School of Electronic Engineering, Xi’an University of Posts & Telecommunications,

Xi’an 710121, China

Abstract. Because of the widespread use of 3D graphics processing units, this
paper presents the design and implementation of a heterogeneous multi-core
graphics processing unit, the HMGPU-9. HMGPU-9 supports OpenGL2.0 and
DirectDraw with programmable vertex shaders and fragment shaders. It
integrates 9 heterogeneous processor cores and many sophisticated application-
specific accelerators into a XC6VLX550T FPGA. It employs dual-rail
handshake protocol in its rendering pipeline to achieve high performance. It is
capable of assigning graphics processing tasks to different processors for
efficiency and flexibility. The pixel filling rate can reach 289.92Mpixel/s at its
peak performance.

Keywords: heterogeneous, multi-core processor, graphics processing unit,
pipeline, parallel execution.

1 Introduction

In recent years, with the increasing demand of vertex shading, pixel shading,
geometric rendering, physical computing and general purpose computing, the GPU
(Graphics Processing Unit) has evolved from a graphics accelerating application-
specific circuit to a large scale parallel processing SoC [1] (System on Chip).
However, there remain many challenges to be resolved, such as the maximization of
parallelism, the effective distribution of rendering tasks, and the balance between
performance and flexibility. Taking all the issues into consideration, this paper
presents the design and FPGA prototyping of a pipelined heterogeneous multi-core
graphics processing unit, HMGPU-9. This graphics processing unit supports
OpenGL2.0 style of shaders and DirectDraw 2D graphics, and allows the parallel
processing of graphics rendering tasks. HMGPU-9 achieves a balance between
performance and flexibility, and its pixel filling rate reaches up to 289.92Mpixel/s.

2 Architecture Design

As defined in the OpenGL specification, the traditional graphics processing pipeline
includes several stages. The pipeline starts with the model-view transformation stage to

The Design and Prototype Implementation of a Pipelined Heterogeneous Multi-core GPU 67

transform vertices and normals from object coordinates into eye coordinates. Vertex
shading is then performed. Shaded vertices are then assembled into geometric
primitives such as lines and triangles. Clipping and projective transformation are then
performed on the primitives. After that, back face culling is performed to remove
primitives that need not be scan-converted. The primitives are eventually transformed
into window coordinates via viewport transformation[2]. This kind of stream
processing is appropriate to be done in a pipeline[3]. The processing requirement of
real-time graphics and that of general purpose computing tasks demand for ever-
increasing high performance. On the other hand, it has also become increasingly
difficult to improve performance merely relying on increased clock frequency. It is
thus critical to exploit the parallelism among tasks to improve performance[4]. A stage
in the graphics pipeline is typically a coarse grain task which can be parallelized. For
example, pixel shading stage can employ many programmable shaders to perform
fragment shading in parallel. A combination of programmability and task specific
acceleration results in Application Specific Instruction Processors (ASIP). This is the
approach adopted by the prototype graphics processing unit of this paper.

Fig. 1. The architecture of HMGPU-9

According to the above, the first choice architecture for implementing a graphics
rendering engine[5,6] is a heterogeneous multi-core SoC to achieve the objectives of
programmability and coarse-grained parallelism in the rendering pipeline. After
research and performance simulation of the features of different graphics processing
tasks, we decide to adopt the heterogeneous multi-core approach for our
implementation of a graphics processing unit. This culminates the HMGPU-9
architecture, which integrates 9 processor cores with different ISAs (Instruction Set
Architecture) and many application-specific accelerators in the rendering pipeline.
HMGPU-9 performs various forms of parallel processing in the graphics rendering
pipeline, and settles one difficulty of the integration of multi-cores[7]. Figure 1 shows
the architecture of HMGPU-9. The programmable cores include the command
processor, the vertex shader, the plane-clip/projection transformation/3D-clip (CPC)
controllers, and the pixel shaders. Due to the excessive computation demanded by

68 J. Deng et al.

clipping, projection and fragment shading, HMGPU-9 integrates 3 clipping/projection
controllers and 4 pixel shaders to speed up the processing of clipping and fragment
shading.

For data transfer between any pair of modules, a common scheme is to use a
FIFO[4], as shows in figure 2. However, since on-chip SRAM is a limited resource,
HMGPU-9 uses the dual rail handshake protocol to connect a pair of adjacent
modules, as shown in figure 3. In this scheme, a pair of Valid and ready signals are
used to control the input and output of each pipeline stage. Valid indicates the
availability of data, and ready means the current stage can receive input data.

Xtensa LX Processor

Output Queue
Interface

（per output queue）

Xtensa LX Processor

Input Queue
Interface
（per input queue）

output
PushReq

Full

input

PopReq
empty

queue

Fig. 2. Xtensa LX Queue Interface

Fig. 3. dual-rail handshake protocol Interface

When the data signals data arrives at the current stage, the control signal valid
should be logic '1'; and when there is no data, valid be logic '0'.

When ready is logic '1', data and valid are accepted by current pipeline stage; and
when ready is '0', the pipeline is paused.

3 Circuit Design and Prototype System Realization

HMGPU-9 consists of 9 processor cores of different types and many complicated
application-specific circuits. The 9 cores include a front-end command processor, a
vertex shader unit supporting fixed point arithmetic and IEEE754 float-point
operations, three CPC controllers supporting fixed point and IEEE754 float-point
operations, four pixel shaders supporting fixed point as well as scan-conversion
operations. To achieve desired performance, the scan-conversions units employ a
sophisticated pipeline design. A scan-conversion unit is about three times the
complexity as the vertex shader. The application-specific circuits include a 4-channel
DMA controller, a primitive assembly unit, a memory management and DMA unit, a
coordinate homogenizer, a back-face culling controller, a viewport transform unit, a
fragment operation unit, a pixel-cache, a z-buffer, a frame buffer and a display
controller.

The Design and Prototype Implementation of a Pipelined Heterogeneous Multi-core GPU 69

3.1 Heterogeneous Microprocessors

3.1.1 Front-End Command Processor
The front-end command processor is responsible for the analyzing of OpenGL and
DirectDraw commands and for data transfer between the host and the GPU. Input
commands can be classified into five categories: buffer object commands, display list
commands, rendering program loading commands, status commands and other
commands (the rest OpenGL commands and DirectDraw commands).

The command processor is basically a RISC processor with a few special purpose
instructions. The command processor uses 32-bit long instructions, contains a register
file of 32 general-purpose registers. For the specific requirements of command
processing, this processor also interfaces to 27 interface registers (IFR), which are used
to communicate address, data and control information among the command processor,
the DMA controller, the memory management unit (MMU), the host and the on-chip
memory. The command processor has a four stage pipeline: the instruction fetch (IF)
stage, the instruction decoding stage, the execution stage and the write-back stage. The
IF stage can access the IM unit, which stores the assemble program to handle the input
commands. The execution stage and the write-back stage also read and write the on-chip
memory. Figure 4 shows the architecture of command processor.

Fig. 4. The architecture of the command processor

Fig. 5. the architecture of vertex shader

70 J. Deng et al.

3.1.2 Vertex Shader
The vertex shader deals with the vertex, texture, raster, normal, light and geometric
transformation related commands. It includes fixed-point and float-point instructions.
Figure 5 shows the architecture of vertex shader. The VS_CMD module handles the
reading and writing of parameters in commands. The VS_MM module takes charge of
the management of parameter storage memory and data cache. The VS module
accomplishes geometric transformation and light computing. VS_IM loads the
rendering assemble program from the off-chip memory.

3.1.3 CPC Controller
Plane clipping and 3D clipping are complicated operations in the graphics pipeline.
Such operations are time-consuming. A CPC controller accomplishes plane-clip,
projection transformation and 3D-clip. Plane-clip indicates the function of clipping
the objects in world space with the user-defined clip planes. Projection transformation
finishes multiplying of projection matrix and input vertices, matrix loading,
computing of the inverse of transpose matrix and processing of stack commands. 3D-
clip eliminates the primitives out of the view frustum in order to reduce computing of
following components. CPC controller also utilizes the Harvard architecture and
consists of four pipeline stages, as shown in figure 6.

IFETCH

bank7

IB

CONTROL

Data

PC

bank0

bank1

IDIAFBFDFA

Fig. 6. The architecture of CPC

The Design and Prototype Implementation of a Pipelined Heterogeneous Multi-core GPU 71

3.1.4 Pixel Shader
The pixel shader handles such operations as rasterization, fragment shading, texture
mapping and fog effects etc. The ISA of a pixel shader includes fixed-point
instructions and fragment shading specific operations. As shown in figure 7, the pixel
shader integrates four scan converters pls_sc1, pls_sc2, pls_sc3, and pls_sc4, a
scheduler PLS_SCHEDUAL, and four fragment shaders pls_pps1, pls_pps2, pls_pps3,
and pls_pps4. A scan-converter is about three time the complexity of that of a
fragment shader.

Fig. 7. The architecture of pixel shader

3.2 HMGPU-9 Prototype System

In accordance with architecture design described above, according to the circuit scale
and performance requirements, the prototype system is designed on the Xilinx's
FPGA XC6VLX550T, with the latest development board DNV6_F2PCIE. As for the
command entering, the EMU interface is secondary developed.

3.2.1 System Description
The HMGPU-9 graphics processing system is shown in figure 8. The left monitor
displays the operating results of HMGPU-9, and the right part is the host control
interface.

Figure 9 indicates the resource utilization report of HMGPU-9. According to the
formula provided by Xilinx, the scale of HMGPU-9 is nearly 5.27 million logic gates.

The frequency of HMGPU-9 is 72.48MHz, and it can handle 4 pixels per second
since there are 4 pixel shaders. The pixel filling rate is 289.92Mpixel/s.

72 J. Deng et al.

Fig. 8. The prototype system of HMGPU-9

Fig. 9. The circuit scale of HMGPU-9

3.2.2 Test Results
Figure 10 shows the rendering result of HMGPU-9. It indicates that HMGPU-9
supports all the 3D primitives, such as point, line and triangles, and the geometric
transformation, shading mode, lighting, texture and DirectDraw related commands.

4 Summary

This paper discusses the design and implementation of a multi-core SoC graphics
rendering engine. We present a pipelined heterogeneous multi-core GPU HMGPU-9.
HMGPU-9 accomplishes the graphics rendering tasks on different processor cores,
and integrates the nine cores with many application specific hardware accelerators.
HMGPU-9 supports OpenGL1.3 and DirectDraw. It uses about 5.27 million logic
gates and runs at a pixel filling rate of up to 282.92Mpixle/s.

The Design and Prototype Implementation of a Pipelined Heterogeneous Multi-core GPU 73

(a)Chinese map rendered by HMGPU-9(left) Chinese map rendered by Visual Studio

running on PC(right)

(b)smooth mode of shading (c)sphere with light

(d) spinning cube with texture(left) spinning cube with texture and light(right)

(e)results of DirectDraw commands

Fig. 10. The test resultsof HMGPU-9

74 J. Deng et al.

Acknowledgments. This paper is supported by the National Natural Science
Foundation of China under Grant Nos.61136002, 61272120; the Shaanxi Province
Science and Technology Research and Development Program under Grant
No.2011K06-4; the Shaanxi Education Department Program under Grant
No.2010JK817. We really appreciate the trust of the State Natural Science Funds
Commission to our early research work.

References

1. Han, J.-G., Liu, Y.-Y., Zhang, X.: GPU:The Past, Present and Future. Journal of Xi’an
University of Posts and Telecommunications 16(3), 61–64 (2011)

2. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL® Programming Guide, 6th edn.
China Machine Press, Beijing (2009)

3. Tumeo, A., Branca, M., Camerini, L., Ceriani, M., Monchiero, M., Palermo, G., Ferrandi,
F., Sciuto, D.: Prototyping Pipelined Applications on a Heterogeneous FPGA
Multiprocessor Virtual Platform, pp. 317–322. IEEE (2009)

4. Shee, S.L., Parameswaran, S.: Design Methodology for Pipelined Heterogeneous
Multiprocessor System. In: DAC 2007, San Diego, California, USA, June 4-8, pp.
811–816 (2007)

5. Javaid, H., Parameswaran, S.: A Design Flow for Application Specific Heterogeneous
Pipelined Multiprocessor Systems. In: DAC 2009, San Francisco, California, USA, July
26-31, pp. 250–253 (2009)

6. Javaid, H., Ignjatovic, A., Parameswaran, S.: Rapid Design Space Exploration of
Application Specific Heterogeneous Pipelined Multiprocessor Systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 29(11), 1777–1789 (2010)

7. Chen, F.-Y., Zhang, D.-S., Wang, Z.-Y.: Research of the Heterogeneous Multi-Core
Processor Architecture Design. Computer Engineering & Science 33(12), 27–36 (2011)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 75–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Parallel Approach for Real-Time OLAP Based
on Node Performance Awareness

Wei He and Lizhen Cui

School of Computer Science and Technology, Shandong University,
Middle of Shunhua Road, Jinan, P.R.China 250101

hewei@sdu.edu.cn

Abstract. Real-time OLAP applications require better performance for data
ETL (Extraction, Transformation, Loading) and OLAP queries, and parallel
processing via multiple nodes has become a research hotspot in recent years.
Focusing on performance bottlenecks of current OLAP applications, this paper
discusses a light-weighted parallel approach with a performance prediction and
data calibration model according to node characteristics, based on which large-
scale fact tables are partitioned to multiple nodes by parallel ETL process, and
computation for OLAP queries are concurrently performed on the nodes with
data fragments. The approach is implemented based on an open-source OLAP
engine Pentaho Mondrian, and verified by experiments and a business project.
According to the results, the method can effectively improve the performance
of both OLAP queries and data ETL tasks for large-scale high-dimensional fact
tables by decentralizing the DBMS workload brought by complicated SQL
queries and data loading.

Keywords: Real-time Data Warehouse, OLAP; Parallel Processing,
Performance Awareness, Data Partitioning.

1 Introduction

In recent years, with the increasing requirements for business intelligence, both
application domains and patterns of data warehouse are being extended. Besides
supporting strategic decisions for enterprises with subject-oriented, stable, integrated
and historical data set [1], data warehouse is also used to provide ad-hoc OLAP
processes based on real-time business data, which is considered as a new development
trend in the domain of data warehouse technologies. With the advantages of relational
database in technical maturation, manipulation flexibility and wide application,
ROLAP(Relational OLAP) can provide efficient approaches of information modeling
access and operation for data analysis and decision supports [2]. From the viewpoint
of SQL, a ROLAP query usually involves multiple complicated database operations
including table joining, aggregation, and grouping, which is a typical computation-
intensive task. Therefore, performance becomes one of the most important issues in
real-time ROLAP applications which concerns both users and developers.

76 W. He and L. Cui

In a real-time OLAP business project of supermarket sales and labor cost analysis
in which our research team was ever involved, we observed the performance changes
of MDX queries and ETL processes with the increasing size of their fact tables. For a
data cube with 12 dimensions and 8 measures, figure 1 shows the performance curve
of a MDX query with all of the dimensions. Once the size of the fact table exceeds a
particular value, such as 50 million rows, there is a sharp decline of the OLAP query
performance.

Fig. 1. Performance of OLAP query with different size of fact tables

According to the analysis of more experiment results, with the increasing size of
fact tables in OLAP model, the physical abilities such as CPU, memory and I/O limit
the query and process performance of the DBMS server. As a result, the large number
of complicated SQL statements generated by OLAP engine becomes the bottleneck of
OLAP queries.

Performance has always been one of the critical issues in OLAP applications.
Recently, parallel process technologies using multiple nodes for data warehouse have
become research hotspot, which mainly focus on parallel computation of data cubes.
Parallel methods break through the ability bottleneck of single storage or processing
node, and greatly improve the performance of data warehouse applications by
distributing data or dispatching tasks among multiple nodes. However, Current
approaches have limitations in several aspects, such as architecture complexity,
usability and automatic optimization capabilities. For instance, the greatest
disadvantage of parallel database is constructing and tuning difficulty, as well as the
lack of complete low-cost and open-source solutions [4]. On the other hand,
Map/Reduce-based methods usually assume equal abilities of different nodes to
simplify process model, which ignore the abilities of forecast and adjustment based on
nodes with different characteristics in their parallel processing models. Additionally,
there has not been any effective direction for traditional centralized ROLAP
applications to transfer to parallel process patterns.

In this paper, we propose a light-weighted parallel process approach for data
warehouse applications with large-scale and high-dimensional data cubes which can
efficiently improve performance of both data ETL tasks and MDX queries by
decentralizing the load on single server. Our method covers the whole procedure of
OLAP applications including data ETL and query process. The contributions of our

 A Parallel Approach for Real-Time OLAP Based on Node Performance Awareness 77

work include: (1) we propose a data partition strategy with dynamic optimization
ability based on node characteristics, as well as a parallel data ETL mode. (2)Then,
we give a parallel process algorithm for OLAP queries based on multiple data nodes.
Our approach is implemented and verified based on Pentaho Mondrian, a popular
open-source OLAP engine, and applied in a real-time data warehouse business
project.

Following is the organization of this paper. Section 2 gives the details of our
ROLAP parallel process model including both data ETL and multiple dimensional
queries. In section 3, we depict the performance forecast model and calibration
algorithm based on node characteristics. In section 4, implementation of the prototype
is introduced and some experiment results are discussed. Section 5 summarizes recent
research works related to our studies. Last section (Section 6) concludes this paper.

2 Parallel Process Model for Relational OLAP

2.1 Overview

Firstly, we propose the performance forecast and control model based on node
characteristics, and design parallel data ETL approach which is used to load data from
different sources to multiple OLAP partition nodes. Then, we add parallel process
ability for multi-dimensional queries to traditional OLAP engine, so that the workload
of single node for OLAP and DBMS process is reduced. At last, the parallel process
methods for data load and multi-dimensional query are integrated to form the whole
solution for efficient OLAP applications.

The system structure is shown in figure 2, which includes two parts of data ETL
and multi-dimensional query process based on multiple decentralized nodes of data
partitions. Each data node is deployed with relational DBMS to store and manage a
data partition of fact tables. To simplify the algorithm of result merging, row-
partitioned strategy is adopted, which store data segments of the fact table with the
whole schema in each data node, as well as all of the dimension tables. Meta-data
describe useful information required by the system, including description of fact
tables and their data segments, such as the data nodes, number of rows distributed on
each node, characteristics and workload of each node etc.

(1) Process Structure for Data ETL

The parallel process structure of data ETL is a master/slave pattern, which consists of
a master node in charge of scheduling ETL tasks and multiple slave nodes responsible
for executing sub ETL tasks. The task scheduling node creates detailed ETL plan for a
fact table, assigns sub tasks to the task executing nodes and records meta-data
according to data distribution of the fact table once the ETL task is completed.

Our strategy of decentralized storage for high-dimensional large-scale fact tables is
based on neither static nor equal distribution. Instead, the performance evaluation and
forecast model is constructed based on node characteristics and data partitions, which
directs data ETL task scheduling node to assign sub tasks with different data size to
the task scheduling nodes.

78 W. He and L. Cui

Fig. 2. Performance of OLAP query with different size of fact tables

(2) Process Structure for Multi-dimensional Queries

The other core part of our method is reconstructing traditional OLAP engine to
support parallel process for multi-dimensional queries, which also consists of a master
node and multiple slave nodes for executing sub query tasks. Based on traditional
OLAP engine, query evaluation module and query scheduling module are added.
Query evaluation module intercept and evaluate the SQL statements before they are
submitted to DBMS, which are generated by OLAP engine according to multi-
dimensional OLAP queries. The costly SQL statements will be submitted to query
scheduling module to parallelize the SQL query task. Query scheduling module
creates sub tasks, assigns them to data nodes of the fact table, and merges the results
returned from the nodes. Then, the merged result will be submitted to OLAP engine
to figure out the final multi-dimensional cube in memory.

Query executing nodes receive and execute SQL query tasks based on data
partitions. The query executing node can be deployed on data nodes to eliminate the
cost of data transferring between different nodes, as there is little workload on query
executing nodes brought by computing and complicated logic.

2.2 Data Distribution Model

We use row-partitioned strategy for high-dimensional large-scale fact tables, which
means each data node contains data segments with the whole schema, along with all
of the required dimension tables.

(1) Strategy for Partitioning Data

Instead of equal distribution of data segments, we use the strategy based on node
capabilities for partitioning fact tables.

Assuming there are n data nodes: p1, p2, …., pn. We use eigenvector (f1, f2, …, fm)
to represent the capabilities of current node, in which each component measures a

 A Parallel Approach for Real-Time OLAP Based on Node Performance Awareness 79

particular characteristic of the node, such as main memory, processor number, speed
of CPU and I/O etc. Function f(i, j) means the value fj for node pi. E.g. if the memory
size of node pi is 2 gigabytes, then f(i,j) = 2.

Then, we use , to denote the measure value by unitizing f(i,j): , | , || | (1)

Based on the above definition, we propose the evaluation function cap for node
capabilities: ∑ , (2)

Where w(j) represents the weight value of performance characteristic f(j).
Assuming there are R rows in fact table T, we compute the expected size R(T,i) of
data partition stored on node I based on above evaluation function: , ∑ (3)

(2) Meta-data of Data Partitions

Data partition information is saved as meta-data relations, whose concept view is
shown in figure 3. Table factTables describes fact tables in defined OLAP models, in
which attribute IsPartitioned means whether current table is partitioned and
DataBlockNumber denotes its partition number. Data partition meta-data DataNodes
contains detailed information of each node including the status, address, DBMS
connection information and characteristics related to performance. DataBlocks
describes data partitions of fact tables including location and partition size, which is
required by OLAP the query task scheduling module and updated by the data ETL
task scheduling node.

Fig. 3. Concept model of meta-data for data partitions

The meta-data is embedded into the cube definition in traditional OLAP model. An
example of the extended OLAP model is shown in figure 4.

80 W. He and L. Cui

Fig. 4. Extended OLAP model fragment

2.3 Parallel Process Approach for OLAP Queries

Based on the data distribution model, performance of OLAP queries can be improved
by decentralize the workload of computing and I/O from single DBMS server to
multiple nodes with smaller data partitions.

(1) Distributed Computing Model for Aggregation Functions

The result of any OLAP query can be expressed as a cube aggregated based on particular
dimension structure and hierarchies [3]. As mentioned in the beginning of this paper,
the SQL statements with many aggregating and group operations generated by OLAP
engine account for the majority of latency time.

Almost each aggregation function based on relational algebra has distributed
computable feature, which means the computation can be performed in 2 phases: (1)
aggregation operation is executed based on multiple data nodes respectively; (2) The
final result is merged based on multiple aggregation values. We enumerate and
analysis the OLAP aggregation functions provided by popular OLAP engine such as
Server Analysis Service and Pentaho Mondrian, and construct distributed computing
model for each aggregation function. Assuming the partitions of fact table T are
distributed on n nodes with sub tables T1,T2,…,Tn, and function f(Ti, c) is used to
denote the aggregation result for sub table Ti according to dimension attribute c.

E.g. for function AVERAGE, we have , , /

Similarly, other aggregation functions in OLAP queries, such as COUNT, DISTINCT-
COUNT, MAX, MIN, TOP(k), can be concurrently computed based on their
distributed computable feature. For nested functions, the functions in the innermost
layer are concurrently performed on data partitions, then the aggregation functions in
outer layer is computed based on merged results.

(2) Parallel Process Algorithm for OLAP Queries

Based on the distributed computing model for OLAP aggregation functions, we
propose a parallel process algorithm for OLAP queries which consists of several

 A Parallel Approach for Real-Time OLAP Based on Node Performance Awareness 81

phases including decomposing query task, concurrently performing sub tasks and
merging results.

The process structure is based on master/slave pattern as shown in section 2.1,
which is implemented by extending open source OLAP engine Mondrian. In the
following we give the brief description of the algorithm.

// scheduling control algorithm for OLAP queries:
ParallelOLAPQuery(MDXStatement x) {

OLAP engine analysis x based on OLAP model;
Set<<SQL-Statement, Result>> resultset = null;
for (each SQL statement s generated by OLAP engine) {

resultset.add(<s, null>);
if (s is a query for partitioned fact table) {
 Object[] d = dimension columns in s.select clause;
 Object[] m = aggregation functions in s.select clause;
 for (each aggregation function agg_func in m) {
 // kv_set is sub-queries set
 kv_set.add((m.agg_func, null));
 }

//invoke Mapper function to assign sub query tasks
 for (each node p of current table) {

 assign TaskMapper(kv_set, s) to node p;
}

//start a thread to asynchronously receive and merge results from multiple nodes
 Reducer(kv_set, result);
 Program will be blocked until all sub tasks are completed;

}
else {
 //if current table is not partitioned
 result = DBMS_Execute_SQL(s);
}
resultset.put(<s, result>);

 }
 OLAP engine computes current cube based on resultset;
}

// create and assign sub query tasks to data nodes:
TaskMapper(Set<key k, values v> kv_set, SqlStatement s) {

 for (each aggregation function agg_func in kv_set) {
//perform query s on local DBMS;
result = DBMS_Execute_SQL(s);
kv_set.put((m.agg_func, result));

}
}

//reducer thread, used to merge the results from a data nodes
Reducer(Set<key k, values v>input, Object result) {
 Merge input into result according to aggregation function type;
}

The process time of above algorithm is the maximal SQL executing time among n
data nodes, plus merging time for the sub results. The algorithm uses a similar

82 W. He and L. Cui

mechanism to Map/Reduce which supports concurrent process for both query
executing on the nodes and results merging on the master node. Due to the constraints
of where and group-by clauses, size of the returned results returned is much smaller
than its fact table. As a result, cost of merging operation in the algorithm is very low.

3 Node Performance Forecast and Calibration Model

In section 2.2, based on the data distribution strategy, expression 3 gives the expected
value , of partition rows on data node pi for fact table T, which is applied to
initial data partitioning based on static node characteristics. In data warehouse
applications, data from multiple sources will be continuously loaded to OLAP system.
Considering the changes of the number and configurations of data nodes, we propose
the node performance forecast and calibration model, which is used to adjust the data
partitioning strategy among data nodes dynamically.
(1) First, the performance forecast model for each node is constructed.

Based on the performance data retrieved from the SQL executing logs with
different data partition sizes on current node, performance sampling data can be
expressed:

PS = {(r1,t1), (r2,t2), …, (rn,tn)}

using linear least square method. The following 2 fitting functions are implemented
by MatLab via mechanism analysis:

 1 2 3 4, 1

The fitting function with smaller deviation from actual sampling data is selected as
the performance forecast function for current node.
(2) Secondly, the capability bottleneck of each node is forecasted according to the

performance fitting curve.
For a particular node, the performance bottleneck is identified by the point with a

sudden steep gradient on the performance fitting curve, which means the latency time
increases rapidly once the size of data partition reaches a particular value.

Assuming the cubic polynomial 1 2 3 4 is
selected as fitting curve, its second time derivative can be computed as: 6 1 2 2

Then the r value of the inflexion is computed according to the equation 0. If
the third derivative of the inflexion is greater than 0, it can be defined the mutation
point. Similar method can be applied to other fitting functions to identify mutation
points.

For example, figure 5 shows a node performance fitting curve according to some
sample data of SQL executing logs. If the latency time of queries on current node
exceeds 20 seconds, the node is considered the bottleneck of the whole OLAP

 A Parallel Approach for Real-Time OLAP Based on Node Performance Awareness 83

Fig. 5. A node performance fitting curve based on sampling data

process. Then, the limit of data partition size on current node can be forecasted based
on above method with the constraints of the overall performance.
(3) Lastly, the expected value of data partition size for each node is updated into the

parallel OLAP meta-data according to the forecasting results of its performance
bottleneck, which is used to direct data ETL task assignment and scheduling.

4 Applications and Experiments

The parallel process approach discussed in this paper is implemented and applied in a
business project of real-time OLAP for supermarket sales and labor cost analysis. The
parallel OLAP process is implemented based on the kernel of a traditional OLAP
engine Pentaho Mondrian. Data portioning and ETL parallel process for large-scale
fact table is realized using Java platform and similar Map/Reduce pattern.

In the experiments, a fact table with about 200 million rows and other dimension
tables are selected to construct an OLAP model with 12 dimensions and 6 measure
attributes. An OLAP query including all of the dimensions and measures are selected,
which is shown in following.

To avoid the effect of main memory cache on query performance, the cache
mechanisms of DBMS and OLAP engine are disabled.

a) Executing Time of Different Phases for OLAP Queries

The total executing time of an OLAP query composes of several parts: 1. Time of
preprocessing by OLAP engine including syntax parsing and lexical analysis for multi-
dimensional query statement, along with generating SQL queries. 2. Executing time of
the generated SQL statements. 3. Duration of computing cube based on the results of the
SQL queries. The results of this experiment are illustrated in figure 6 and 7.

select {[Measures].[VOLUME], [Measures].[Total Time], [Measures].[Operation Time] ,

[Measures].[UOM Per Time]} on 0,

CrossJoin(CrossJoin(CrossJoin(CrossJoin(Descendants([Org].[Chain],4),[Org_Type].[AllType].Ch

ildren),CrossJoin([Time].[Y2011].[Y2011-Q1].[Y2011-Q1-P1]. Children, [Job]. Children)),

CrossJoin(CrossJoin({[OperationType].AllMembers},{[Task].Members}),{[Volume_Driver].[Dri

ver].Members})),[Operation].[AllOperation].Children) on 1 from [OPERATION_TIME]

84 W. He and L. Cui

Fig. 6. Composition of OLAP executing time for 40 million rows

Fig. 7. Composition of OLAP executing time for 90 million rows

According to the results, executing time of the SQL queries for DBMS forms the
majority of the total latency time. Once the data size of a node reaches its border
value, the performance bottleneck appears. Parallel process with multiple data nodes
can decentralize the workload of single DBMS server. With the increasing data size
of the fact table, performance of SQL queries has an obvious improvement.

b) Executing Time with Different Data Size.

By constructing data for tact table OPERATION_TIME with different size, this
experiment compares the difference between traditional OLAP process with single
DBMS node and parallel approach with multiple nodes, which is shown in figure 8.

For fact table with small data size, the parallel process approach has lower
performance than traditional process with single node due to extra operations
including task scheduling, assignment and merging multiple results. However, the
workload of single DBMS node increases continuously. As a result, the performance
becomes unacceptable once data size reaches a particular value. Our parallel approach
eliminates this bottleneck by decentralizing the workload by partitioning data on
multiple nodes.

 A Parallel Approach for Re

Fig. 8. Ex

c) Executing Time for D

This experiment compares
strategies: even distributio
distribution based on perfo
effect of different strategie
different configurations are
procedure of this experimen

Fig. 9. Co

In the case of fact table
among 3 strategies. With in
even data distribution strat
bottleneck due to the dif
memory, CPU and I/O sp
configurations of nodes ma
calibration shows advantage

0
50

100
150
200
250
300
350
400

Executing ti
(second)

eal-Time OLAP Based on Node Performance Awareness

xecuting time with different size of fact table

Different Data Distribution Strategies

s the query performance of 3 different data distribut
on, distribution based on static node characteristics
ormance prediction and Calibration model. To verify
s and environments on query latency, multiple nodes w

e selected, and changes are applied to the nodes during
nt.

omparison among data distribution strategies

e with small data size, there are no significant differen
ncreasing data amount of the fact table, performance of
tegy gets worse because some nodes becomes execut
fference of performance-related characteristics such
peed. In dynamic environments where the number
ay be changed, the strategy of performance prediction
es than static distribution model.

ime

Data rows (10 million)

Data rows (10 million)

Data rows (10 million)

85

tion
and
the

with
the

nces
f the
ting

h as
and
and

86 W. He and L. Cui

d) Data ETL for Large-

This experiment verifies th
and Loading) for large fact

Fig. 10. P

According to the experim
because of the simplicity
coordinating sub-tasks and

On the other side, man
tables to optimize SQL que
compromises should be ado

5 Related Works

Current research works on
cubes using multiple nod
methods based on shared d
based on shared data is to b
to multiple nodes, which fo
partition based approaches
particular strategy. Comput
cube is figured out by merg

In recent years, SN patt
hotspot because of good sc
computing method for dat
following studies, the autho
load balance among nodes
nodes [9].

Generally speaking, data
better performance impro
However, most of current
capabilities. E.g. the studies

0
10
20
30
40
50
60

2000

单一DBM
Data ETL tim

Data rows (

-Scale Fact Tables

he performance of data ETL (Extraction, Transformat
tables, which is shown in figure 10.

Performance of data ETL for large fact tables

ment, the parallel data ETL process has obvious advanta
of parallelizing data ETL tasks without extra costs

merging sub-results.
ny indexes are usually created for high dimensional f
eries, which have obvious effect on data ETL tasks. So
opted to balance database queries and data ETL tasks.

n parallelizing OLAP focus on concurrently comput
des, which can be categorized into parallel process
ata and partitioned data. The main idea of cube comput

break down the whole calculation task and assign sub-ta
ocuses on extendibility or load balance of tasks [5, 6]. D
s place data segments on different nodes according t
ting tasks are performed based on local data, and the wh
ging all of the local results [7].
tern (shared nothing architecture) has become a resea

calability and extendibility. Literature [8] studied a para
ta cube running on a shared-nothing architecture. In
ors enhanced their cube computing methods by introduc
s and improving the parallelization of tasks on multi

a partition based on shared nothing architecture can achi
ovement because of sub tasks with smaller data s

researches ignored the differences among nodes in th
s in paper [9] assumed the precondition that data partiti

0 4000 6000 8000 10000

MS节点 2数据节点并行化 4数据节点并行化
me (minute)

10 thousand)

tion

ages
s of

fact
ome

ting
sing
ting
asks
Data
to a
hole

arch
allel
the

cing
iple

ieve
size.
heir
ions

 A Parallel Approach for Real-Time OLAP Based on Node Performance Awareness 87

are evenly distributed among the nodes. Recently, some researchers noticed this point
and began to perform researches on performance prediction [10, 11].

Moreover, current works on parallel process for data warehouse focus on cube
computing in main memory, instead of looking into detailed factors affecting the
whole OLAP performance. Actually, for OLAP applications with large fact tables and
high dimensions, the cost of DBMS-side SQL queries even exceeds that of cube
computing.

Map/Reduce programming model is drawing more and more attention in the
domain of analysis and computing for large-scale data set. Some researchers carried
out systematic analysis and evaluation for the advantages and disadvantages of
parallel database and Map/Reduce technologies in data warehouse applications [4].
HadoopDB [12] is a hybrid structure which integrates the high performance of DBMS
and the scalability of Map/Reduce architecture.

6 Conclusions

In this paper, we discuss a light-weighted parallel process approach for the entire
procedure of data warehouse applications with large-scale and high-dimensional data.
Our method covers the whole procedure of OLAP applications including data ETL
and query process. Firstly, we propose a data partition strategy with performance
prediction and calibration model based on node characteristics, along with a parallel
data ETL architecture which partitions large-scale high-dimensional fact table to
multiple data nodes. Then, we give a parallel process algorithm for OLAP queries
based on multiple data nodes. Our approach is implemented and verified based on
Pentaho Mondrian, a popular open-source OLAP engine, and applied in a real-time
data warehouse business project. According to the benchmark testing and
applications, the approach can effectively decentralize the DBMS workload brought
by complicated SQL queries and data loading, and improve the performance of both
MDX queries based on high-dimensional large-scale fact tables and data ETL tasks.

The works in this paper only focuses on improvement on DBMS-side performance.
In future researches, we plan to improve cube computing by integrating some latest
results of computing and selecting materialized views into current works.

Acknowledgement. This work is supported by the National Natural Science
Foundation of China under Grant No. 61003253 and Shandong Distinguished Middle-
aged and Young Scientist Encouragement and Reward Foundation under Grant No.
BS2010DX016.

References

[1] Inmon, W.H.: Building the data warehouse, 4th edn. Wiley, New York (2005)
[2] Li, W.H., Feng, Y.C., Ma, X.M., Fu, Q., Hu, W.B.: ROLAP-Oriented Temporal Vertical

Partitioning Method Based on Rough Sets. Chinese Journal of Computers 31(7), 1109–
1121 (2008)

88 W. He and L. Cui

[3] Zhang, Y.S., Zhang, Y., Huang, W., Wang, S., Chen, H.: Distributed Aggregate
Functions Enabled Parallel Main-Memory OLAP Query Processing Technique. Journal
of Software 20(suppl.), 165–175 (2009)

[4] Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:
MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53(1), 64–71 (2010)

[5] Dehne, F., Eavis, T., Hambrusch, S., Rau-Chaplin, A.: Parallelizing the data cube.
Distributed and Parallel Databases 11(2), 181–201 (2002)

[6] Dehne, F., Eavis, T., Rau-Chaplin, A.: A cluster architecture for parallel data
warehousing. In: Proc. IEEE International Conference on Cluster Computing and the
Grid (CCGrid 2001), Brisbane, Australia (2001)

[7] Goil, S., Choudhary, A.: High performance OLAP and data mining on parallel
computers. Journal of Data Mining and Knowledge Discovery 1(4), 391–417 (1997)

[8] Chen, Y., Dehne, F., Eavis, T.: Parallel ROLAP Data Cube Construction on Shared-
Nothing Multiprocessors. Distributed and Parallel Databases 15, 219–236 (2004)

[9] Dehne, F., Eavis, T., Rau-Chaplin, A.: The cgmCUBE project: Optimizing parallel data
cube generation for ROLAP. Distributed and Parallel Databases 19(1), 29–62 (2006)

[10] Duggan, J., Cetintemel, U., Papaemmanouil, O., Upfal, E.: Performance prediction for
concurrent database workloads. In: SIGMOD (2011)

[11] Popescu, A.D., Ercegovac, V., Balmin, A., Branco, M., Ailamaki, A.: Same Queries,
Different Data: Can we Predict Runtime Performance. In: ICDEW (2012)

[12] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Silberschatz, A., Rasin, A.:
HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for
analytical workloads. In: VLDB (2009)

A Parallel Multigrid Poisson PDE Solver

for Gigapixel Image Editing

Zhenlong Du, Xiaoli Li, Xiaojian Yang, and Kangkang Shen

College of Electronics & Information Engineering, Nanjing University of Technology,
Nanjing 210009, P.R.China

duzhlcad@gmail.com

Abstract. With the development of image acquisition technology, gi-
gapixel images are easily produced and widely used in modern society.
How to efficiently compile these gigapixel images within gradient domain
is the research focus in the community of image processing and computer
graphics. To solve Poisson equations involving large-scale unknowns is
crucial for gigapixel image editing in gradient domain. Traditional multi-
grid approach separately performs iteration, restriction and interpola-
tion, bears heavy communication costs between RAM and
external memory. In the paper, a parallel multigrid Poisson solver for
gigapixel image editing is proposed, which exploits the locality and rele-
vance of memory accessing and updating among the iteration, restriction
and interpolation for parallel performing the iteration, restriction and in-
terpolation in the sweeping window. Image stitching experiments show
that the presented method exhibits the higher efficiency than the Poisson
solver of successive overrelaxation, gauss-seider iteration and traditional
multigrid.

Keywords: Poisson PDE solver, parallel multigrid, gigapixel image
editing.

1 Introduction

Poisson partial differential equation (PDE) is one kind of elliptic PDE which is
widely used in community of science and engineering, such as machinery, physics,
information, etc. Since the introduction of Poisson PDE to the image editing by
Prez [1], image editing within gradient domain based on Poisson PDE becomes
the research focus of image editing, such as, image cloning and composition [2,8],
photo montage [3], matting [4], all achieved the photorealistic editing effect.
However, with the development of digital acquisition technology, the resolution
of acquired images have been increasing, so the space and time complexity in
image editing based on Poisson PDE becomes more and more higher. Therefore,
the investigation of fast Poisson solver is very significant.

Iterative Poisson PDE solver converges fast in the high frequency region but
slow in the low frequency region which easily leads to the solution to fall into
the local smooth region, therefore, it is unsuitable for solving Poisson PDE with

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 89–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

90 Z. Du et al.

large-scale unknowns. Multigrid Poisson solver respectively smoothes the error
residual in different frequency levels, and has better efficiency than iteration ap-
proach, hence is widely used in gigapixel images editing within gradient domain.
But the traditional multigrid approach separately performs iteration, restriction
and interpolation, not fully exploits the relevance among data in different stages,
bears heavy communication load between RAM and external memory.

A parallel [7] multigrid Poisson solver [6] is proposed which exploits the local-
ity and relevance of memory accessing and updating among the stage of iteration,
restriction and interpolation. The presented method in [6] parallel performs the
iteration, restriction and interpolation in the sweeping window which effectively
reduce the communication load between RAM and external memory and in-
crease the processing efficiency. In the paper a parallel multigrid Poisson PDE
solver is presented, which has better performance in solving Poisson equations
with large-scale unknowns. The proposed method is testified in gigapixel im-
age editing within gradient domain and demonstrates the high efficiency than
iterative Poisson solver.

2 Poisson PDE Solver

The general form of binary Laplace PDE U(x, y) : R2 → R2(R is the real set) is
as the follows.

� U(x, y) = � · �U(x, y) = f(x, y) (1)

Where � is Laplace operator, � is partial derivative operator, and f(x, y) is the
boundary condition. Eq.(1) is the Poisson PDE with Neuman boundary when
f(x, y) = 0 holds, and it is the Poisson PDE with Dirichlet boundary when
f(x, y) = c (c is a constant) is satisfied.

In the domainΩ = R×R, the purpose of image editing within gradient domain

is to make U(x, y) best close to the gradient field
−→
G(x, y), it is equivalent to the

functional min ‖ U − −→
G ‖, and the Poisson solver is able to be derived and

expressed as Eq (2).

� = � · �−→G = div
−→
G (2)

where div is the divergence operator.
The numerical solver of Eq. (2) is firstly converted to the discrete represen-

tation. There exists many discretization schema, the five-point discretization is
represented as the follows.

U(x+ 1, y) + U(x, y + 1) + U(x− 1, y) + U(x, y − 1)− 4U(x, y) = div
−→
G(x, y)

For each pixel (x, y) within the image domain Ω, there is a linear equation. The
equations of all pixels form an linear equations, which is denoted by LU = B, in
which L = (aij)n×n, U = (ui)n×1 and B = (bi)n×1 are separately the Laplace
matrix, unknowns matrix and boundary matrix.

There are many numerical solving methods for Poisson equation such as itera-
tion [5] (including gauss-seider iteration, Jacobi iteration and conjugate gradient

A Parallel Multigrid Poisson PDE Solver for Gigapixel Image Editing 91

Fig. 1. Five-point discretization

iteration), multigrid [5] and discrete cosine transform, etc. When the number of
unknowns in domain reaches 104, the size of L is 104 × 104. For the large-scale
image(the number of unknowns are greater than 106), L is 106 × 106. Though
L is the banded matrix, and generally it is sparse, the large-scale unknowns still
deteriorates the iteration speed and convergence performance.

3 Multigrid Poisson PDE Solver

Multigrid Poisson PDE solver acquires the solution in hierarchical manner, which
iterates and smoothes the high-frequency error residual in current level and con-
tinually smoothes the low-frequency residual in the next low-resolution level.
The error residual is restricted from the higher resolution level to the next lower
resolution one. The essence of the multigrid Poisson PDE solver is that smooth-
ing and iterating the high-frequency error residual in the low-resolution level
which are again restricted to the lower resolution level, repeats the process un-
til the error residual is sufficiently smooth. Each iteration at a low-resolution
level provides a more accurate calibration result for the next high-resolution
level. Multigrid Poisson Solver could quickly smooth the high-frequency resid-
ual existing in different frequency spectrums, hence it efficiently accelerates the
convergence procedure.

Let h be the discretization length. Linear equations discretized from Poisson
PDE at h level is expressed as the follow.

LhUh = Bh (3)

Let Uh and Uh separately be the accurate solution and approximate solution of
Eq. (3), Vh and dh separately be be the error quantity between Uh and Uh and
error residual, which are defined as Vh = Uh−Uh and dh = LhUh, respectively.

Multigrid Poisson solver performs in V-cycle manner, includes approxima-
tion, restriction and interpolation three procedures. It covers the following steps,
solving the approximate solution Uh, restricting the error residual dh to the
lower resolution level H by Eq. (4), acquiring VH by LHVH = −dH , returning
the calibration to the higher resolution level h by interpolation, finally, solving
the approximate solution at the highest resolution level, that is U

new

h (Vh is the

92 Z. Du et al.

approximation of Vh). The restriction operator R and interpolation operator P
used in multigrid solver are defined as Eq. (4) and Eq. (5) respectively.

dH = Rdh (4)

Vh = PVH (5)

The V-cycle in mulitigrid Poisson solver includes two procedures, one is a coars-
ening process from a high resolution level to the low resolution one, and the other
is a refining process from the low resolution to the high resolution. Coarsening
begins with the highest resolution level, restricts the error residual d to the next
low-resolution level. Coarsening polishes the error level by level. When the lowest
resolution level is reached, the linear equations with the minimal number of un-
knowns is solved. Refining begins with the lowest resolution level and returns the
calibration result from lower resolution level to higher resolution level via inter-
polation until the solution within the highest resolution level Unew is achieved.
Coarsening and refining separately correspond to the process of restriction and
interpolation in the figure 2.

Fig. 2. The procedure of multigrid V-cycle

Both restriction and interpolation in V-cycle process need iteration, which
gradually polishes the error. The iteration which performs before the restriction
is named pre-smooth, and which does after the interpolation are called post-
smooth.

3.1 Multigrid Poisson PDE Solver

Traditional multigrid Poisson solver acquires the solution of linear equations dis-
cretized from Poisson PDE in V-cycle manner. In the left half V-cycle of Figure
2, it solves the approximate solution after the fixed number of iteration, mean-
while restricts the error residual d of each level to the lower resolution level
through operator R. In the right half V-cycle of Figure 2, the algorithm returns
the calibration result to the high resolution level through operator P by inter-
polation. The algorithm of traditional multigrid Poisson solver is as algorithm 1
depiction.

A Parallel Multigrid Poisson PDE Solver for Gigapixel Image Editing 93

Algorithm 1. Multigrid Poisson PDE Solver

Input: k, N
Output: U

1. Approximately solving LU = B, and acquiring Uold.
2. Restriction

Do h = N − 1,· · · , 2, 1
2a. Approximately solving LhUh = Bh after k iterations, producing Uh.
2b. Vh ← Uh −Uh, dh ← LhUh −Bh.
2c. dh = Rdh+1

End Do
3. Solving L0V0 = d0

4. Interpolation
Do h = 2, · · · , N − 1,N
4a. Approximately solving LhVh = dh after k iterations.
Vh = PVh−1

If h = 1, Uh ← Uold +Vh

End Do

Where k is the number of iterations and N is the number of multigrid levels.

4 Parallel Multigrid Poisson PDE Solver

The conventional multigrid poisson solver separately performs the process of
approximation, restriction and interpolation. The data V and d at each level in
the RAM need to be loaded twice, one is used for restriction, the other is for
interpolation. Due to the limited capability of memory, only part of data could
be loaded into RAM, the rest of data are gradually loaded into RAM according
to the computation requirement. Therefore, for solving Poisson PDE with large-
scale unknowns, traditional multigrid Poisson solver bears heavy communication
between RAM and external memory, increases the operation time and reduces
the computation efficiency.

Fig. 3. The discretization point relationship between low-resolution and high-resolution

94 Z. Du et al.

The figure 3 demonstrates the discretization points relationship between the
neighbouring low-resolution and high-resolution level. When solver runs, matrix
L, B, U and U load only one time in RAM, the elements in them could be
indexed only according to the grid position when they are used in different
resolution level. At each level, V and d are produced and used for transferring
the linkage among different resolution level. d evaluated in restriction is used for
interpolation stage, therefore, V and d need to be resided in RAM. The total
number of elements in V and d with N level is expressed as Eq. (6), where ‖ · ‖
is for counting the number of elements in matrix. For the gigapixel image editing
within gradient domain, the number elements in V and d are 2 × 107, the sum
of elements in L, V and d would be 5× 107 when the multigrid level N is 5.

N∑
h=1

‖Vh‖ =

N∑
h=1

‖dh‖ ≈ 107 × (2 − 21−N) (6)

Most of operations in multigrid V-cycle belong to the operation of matrix-matrix
multiplication or matrix-vector multiplication which is suitable for parallelized.
In this paper, by full exploitation the local accessing coherence of memory data
in Uh, Vh and dh, the current accessed data is constructed a working set W ,
and then W is shifted along the image column direction for updating need of Vh

and dh. The shifting of working set is for making use of the data having been
loaded in RAM.

The parallelization of parallel multigrid Poisson solver proposed in this paper
embodies in two aspect, on one hand, the restriction and interpolation across dif-
ferent resolution level transfer with each other, on the other hand, the elements
is maximally shared between the restriction and interpolation. The paralleliza-
tion among different resolution level shows that, in the iteration, the updating
is able to be executed when the required elements be ready. The parallelization
between restriction and interpolation presents that, after finishing the restric-
tion, when the required data get ready, interpolation could be performed. The
solution could be achieved when the interpolation is accomplished at the highest
resolution level.

Fig. 4. The parallelization of parallel multigrid Poisson solver

A Parallel Multigrid Poisson PDE Solver for Gigapixel Image Editing 95

In figure 4, suppose k = 2 and N = 2, when the 6th and 7th execution cycle
perform the restriction of d1 → d0, the 4th and 5th execution cycle implement
restriction of d2 → d1. When the data in the first execution cycle of interpolation
is updated, V0 starts to be calculated and the 2nd and 3rd execution cycle could
interpolate V1 → V0.

Row of pixels is used as the operation unit for constructing working set W ,
which consists in the current processing row i, adjacent processed row and to be
processed row. The processed row is utilized for updating the current row data,
and the introduction of adjacent processed row is to calculate the error residual
and calibration after updating the current row data.

Table 1. Data Window

restriction

ih−1 + 2k + 1 < �(ih − 1)/2�
data window [ih − 3, ih + 2k + 1]

restriction from the resolution level of h− 1 [ih + 2k + 1]

pre-smooth [ih − 1, ih + 2k + 1]

error residual [ih − 3, ih + 1]

interpolation

ih+1 + 2k + 1 < 2ih − 1

data window [ih − 1, ih + 2k + 1]

interpolation to the resolution level of h+ 1 [ih + 2k + 1]

post-smooth [ih − 1, ih + 2k + 1]

Table 1 gives the data windows size in restriction and interpolation. Taking
the restriction as an example, set ih as the present processing line, when the
2k+1 line of ih in the h− 1 level is finished updating, the h level could perform
pre-smooth, therefore, the pre-smooth window is [ih − 1, ih + 2k + 1]. Since the
smoothed line could be used for evaluating the error residual, the error residual
window is [ih − 3, ih + 1]. The data window setting in interpolation is similar to
the restriction.

The algorithm of parallel multigrid Poisson Solver is as the follow.

Algorithm 2. Parallel multigrid Poisson solver

Input: K, N , L(the number image rows)
Output: U

1. Evaluating the k − 1 lines of Uh as the pre-processing data..
2. Do l = K, K + 1,· · · , L−K

2a. Evaluating Uh within [il − 3, il + 2k + 1].
2b. Calculating dh within [il − 3, il + 1].
2c. Acquiring Vh within [il − 3, il + 1]

End Do
3. Calculating VN on each level of l (l = K + 1, · · · , L) and then updating U.

96 Z. Du et al.

The algorithm 2, parallel performs the iteration, restriction and interpolation
which make good use of locality and relevance of memory accessing.

5 Experiment

The paper implements the parallel multigrid Poisson solver on dual-core PC
computer of TongFang E2180 with 2G RAM. The presented method is used for
image composition with a resolution of 1280× 720 or 1024× 768.

Fig. 5. Image Composition (Data 1)

Fig. 6. Image Composition (Data 2)

A Parallel Multigrid Poisson PDE Solver for Gigapixel Image Editing 97

The configurations of P andR exploited in the experiment are as the following,
which are set by bilinear interpolation.

P =

⎡
⎣

1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

⎤
⎦ R =

1

4
PT =

⎡
⎣

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎤
⎦

In parallel multigrid Poisson solver, the resolution at low resolution level is 2
times to the neighbouring the high resolution level, that is to say, H = 2h, and
the highest resolution is the size of source image.

The figure 5 and figure 6 are the composed image within gradient domain by
the presented method in the paper. The registration [8] of all images is performed
before composition. Figure 5 is a panorama with 8100× 3680 which is composed
by 5 pieces of image with size 1280 × 720. Figure 6 is another panorama with
7963 × 3580 which is composed by 5 pieces of image with size of 1024 × 768.
The RAM usage, I/O Communication, iterations as well as operation time of
the figure 5 and figure 6 are listed in the table 2.

Table 2. Comparison of different Poisson solver

Algorithm
RAM I/O Comm- Itera- Time

usage(M) unication(M) tions (s)

Over-relaxation SOR
Data1 56 7.53 676 9.656
Data2 51 7.3 615 8.433

Jaccobi
Data1 56 7.52 1365 19.499
Data2 51 7.34 1127 15.451

Multigrid
Data1 224 5.95 232 3.315
Data2 204 5.53 209 2.866

Parallel Multigrid
Data1 184 3.53 165 2.357
Data2 180 3.36 160 2.194

In table 2, the parallel multigrid Poisson solver is superior to the traditional
algorithm on RAM usage, and is obviously superior to the overrelaxation itera-
tion, Jacobi iteration and traditional multigrid algorithm.

6 Conclusion

Poisson PDE is a commonly used partial differential equation in the simulation
and image processing. How to efficiently compile the gigapixel images within
gradient domain is the research focus in recent years. Gigapixel image editing
in gradient domain needs solving Poisson equation with large-scale unknowns.
Traditional multigrid solver is not highly efficient on PC. Therefore, a parallel
multigrid Poisson solver for gigapixel image editing within gradient domain is
proposed, which exploits the locality and relevance of memory accessing and
updating among the stages of iteration, restriction and interpolation for paral-
lel performing. The approach could efficiently accomplish the gigapixel image
editing within gradient domain on the PC machine.

98 Z. Du et al.

Traditional multigrid Poisson solver separately performs iteration, restriction
and interpolation which could not make good use of the locality and relevance
of memory data. The presented method of parallel multigrid Poisson solver for
gigapixel image editing has the higher efficiency, it better utilizes the locality
and relevance of memory accessing and updating for parallel performing the
iteration, restriction and interpolation.

The proposed approach of parallel multigrid Poisson solver is suitable for Pois-
son equation with Neumann boundary condition and structured data. Expanding
the proposed approach for gigiapixel image editing with complex gradient do-
main, namely for solving Poisson equation with Dirichlet boundry condition is
our future work.

References

1. Pérez, P., Gangnet, M., Blake, A.: Poisson Image Editing. ACM Transactions on
Graphics 22(3), 313–318 (2003)

2. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless Image Stitching in the Gradient
Domain. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part IV. LNCS, vol. 3024, pp.
377–389. Springer, Heidelberg (2004)

3. Agarwala, A., Dontacheva, M., Agarwala, M., Drucker, S., et al.: Interactive Digital
Photomontage. ACM Transaction on Graphics 23(3), 294–302 (2004)

4. Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson Matting. ACM Transaction on
Graphics 23(3), 315–321 (2004)

5. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C. Cambridge University Press (2002)

6. Kazhdan, M., Hoppe, H.: Streaming Multigrid for Gradient-Domain Operations on
Large Images. ACM Transaction on Graphics 27(3), Article No. 21 (2008)

7. Chow, E., Falgout, R.D., Hu, J.J., Tuminaro, R.S., Yang, U.M.: A Survey of Paral-
lelization Techniques for Multigrid Solvers. In: Frontiers of Parallel Processing for
Scientific Computing. The Society for Industrial and Applied Mathematics (2006)

8. Szeliski, R.: Image Alignment and Stitching: A Tutorial. Foundations and Trends
in Computer Graphics and Computer Vision 2(1), 1–104 (2006)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 99–109, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Parallel Implementation and Optimization of Haze
Removal Using Dark Channel Prior Based on CUDA

Yungang Xue, Ju Ren, Huayou Su, Mei Wen, and Chunyuan Zhang

School of Computer, National University of Defense Technology,
Changsha, China

xueyungangyun@163.com,
{renju,shyou,meiwen,cyzhang}@nudt.edu.cn

Abstract. Haze Removal Using Dark Channel Prior is one of dehazing methods
with good effects, but its disadvantage of high time complexity limits the extent
of its applications. In this paper, we present its parallel implementation and
optimization based on the GPU, which greatly reduces the execution time. We
firstly implement the basic parallel program, and then optimize it to obtain
performance acceleration with more than 20 times. We introduce the method of
“guide image filter” to Haze Removal Using Dark Channel Prior, instead of
“soft matting” method, which largely reduces memory requirements and the
computation complexity of the original algorithm. While paralleling and
optimizing the algorithm, we improve some parts of the original serial program
or basic parallel program according to the characteristics of several steps, and
propose a novel method of selecting atmospheric light and a new parallel
method of calculating accumulative sum with keeping intermediate results,
which reduce the computation complexity of counterpart and increase the
parallel degree.

Keywords: Haze Removal, GPU, Parallel.

1 Introduction

Haze removal is an important issue concerned by both computer vision and image
processing. Haze removal can improve the definition of haze image and correct the
color distorted by haze [1]. Haze removal is widely used in lots of fields, such as
automatic control system, autopilot and outdoor target recognition and so on. Haze in
images will downgrade the effects of most algorithms in the field of computer vision,
which assume that the input images are clear, therefore, we should remove haze in
misty images before applying algorithms of computer vision to haze images.

Some algorithms of haze removal (or dehazeing) are effective but take long time,
so it is difficult for them to be widely used. Haze Removal Using Dark Channel Prior
(HRUDCP, we will use this abbreviation for simplicity in the rest of our paper) is one
of such algorithms, and it takes 10-20 seconds to process a 600x400 image. Recent
researches on HRUDCP mainly focus on improving the effect and reducing
computational complexity, related work can be found in [2,3,4,5], and parallel

100 Y. Xue et al.

research is simply mentioned only in paper [2]. The parallel research of HRUDCP is
significant and necessary, only in this way can we quickly process haze high
resolution images and even process haze videos in real time.

Strongly promoted by the applications of the graphics, image processing and video
rendering, Graphics Processing Unit (GPU) has quickly developed in the past few
years. With the advent of CUDA and OpenCL programming framework, GPU is not
only as devices for display acceleration, but also as a coprocessor to accelerate
general applications, and GPUS have succeeded in accelerating multitudinous
algorithms in many fields. Therefore, In this paper, we choose GPU as the platform of
the parallel implementation and optimization research.

This paper is organized as follows, section 2 introduces the each step of the
original Haze removal dark channel prior and several changes in our paper. Section 3
presents the parallel implementation and optimization of HRUDCP based on CUDA.
Section 4 analyzes and evaluates the parallel effect. The last section is conclusion.

2 HRUDCP and Parallelism Analysis

HRUDCP based on single image can obtain good effect and relatively accurate depth
image information. The dark channel prior is based on statistics of the haze-free
outdoor images. It is based on a key observation - most local patches in haze-free
outdoor images contain some pixels which have very low intensities in at least one
color channel [6]. In the haze image, the intensity of these dark pixels will be higher
since all of its color channels are filled with fog. HRUDCP have several advantages:
(1) good effect; (2) high quality depth map; (3) don’t need additional information; (4)
can automatically process. Meanwhile, it also has shortcomings to further overcome:
(1) bad effect for the scene objects which are inherently similar to the atmospheric
light and aren’t cast on by shadows; (2) high computational complexity; (3) memory-
consuming.

HRUDCP consists of five steps, whose function and detailed content are showed as
follows.

(1) Computing dark channel. This step produces a corresponding dark value for
each pixel of input image. J x min , , min Ω J y . (1)

Where J is a color channel of J and Ω x is a local patch centered at x. In this paper,
the patch size is the same with original algorithm, so the patch is 15 15.

(2) Estimating atmospheric light. We select a proper pixel in the input image as the
atmospheric light. We firstly select the 0.1% of pixels of input image, which own
brighter dark channel. and then we selected the pixel with highest intensity as the
atmospheric light.

(3) Calculating the initial transmission. This step calculates the rough transmission
rate based on dark channel image. Scene depth changes greatly at the edge of an
object, so the transmission rate is not accurate enough.

 Parallel Implementation and Optimization of Haze Removal Using Dark Channel 101

t0 x 1 ω min , , min Ω I A . (2)

The last part of the formula is similar to the formula (1), the difference between them
is the value of every pixel channel is normalized by dividing the corresponding
channel value of atmospheric light A. ω is a constant of 0.95.

(4) Refining the transmission. We abandon the soft matting method[7], which is
used to refine the transmission in original algorithm, as it takes long time and need
too much memory. In this paper, we adopt the method of “guided image filter”
proposed by Doctor He Kaiming to refine the transmission rate. a Σ U | | ∑ I p µ pΩ . (3)

b p aTµ . (4) q aTI b . (5)

Here I is a 3×1 color vector, a is a 3 × 1 coefficient vector, q and b are scalars, Σ is the 3×3 covariance matrix of I in patch Ω x , and U is a 3×3 identity matrix. In
this paper, we also use the quick implementation of guided image filter [8] by Doctor
He, which takes O(N) time.

(5) Haze removal. The haze removal image can be computed through the
parameters obtained in above steps and input haze image. I x J x t x A 1 t x . (6)

Where I is the observed intensity in haze image, J is the intensity in haze removal
image, A is the global atmospheric light, and t is the transmission rate.

Fig. 1. (a) Input image with haze (b) Result of original HRUDCP (c) Result of modified
HRUDCP by introducing guide filter instead of soft matting in step of refining initial
transmission. These show that modified HRUDCP is as good as original HRUDCP, ant it is the
main reason why we introduce the method of guide filter. We get the benefits that we can avoid
the need of large memory and decrease the computational complexity of refining initial
transmission.

We can know clearly that the main computing operation and the data dependence
from the formula above, so we can analyze the parallelism of the algorithm. We
analyze the parallelism of the algorithm using an image with width n and height m,
the result is shown in the table 1, the max parallelism stands for the number of pixels
that can be processed simultaneously.

102 Y. Xue et al.

Table 1. Parallelism analysis of HRUDCP

step Main operation Max parallelism
1 Compute dark

channel
Local comparison mn

2 Estimating
atmospheric light

Global comparison, sort Log2(0.1%*mn)

3 Calculating initial
transmission

Local comparison, four
fundamental arithmetic

mn

4 Refine
transmission

Four fundamental arithmetic,
3 order matrix inversion

m or n

5 Haze removal Four fundamental arithmetic mn

We can conclude that HRUDCP algorithm can be paralleled from table 1. The

parallelism of step 1,3 and 5 is highest, achieving the image resolution m×n, the
parallelism of step 2 is lowest, for a 600×400 image, its parallelism is about 16. In this
paper, we propose a novel method to select atmospheric light, which gets the almost
same result but its parallelism can expand to mn/log2(mn). The parallelism of step 4
is the height or width of the image, In this paper, we also propose a new parallel
method of calculating accumulative sum with keeping intermediate results, and it
expands the parallelism of step 4 from m or n to mLog2(mn) or nLog2(mn).

3 Parallel Implementation and Optimization Based on GPU

The parallel programs based on the CUDA include serial codes and parallel kernels
that work together as a CPU-GPU mode. The serial codes run on the host side, and
the CUDA kernels run on the device side in multi-threaded way [9]. The GPU threads
can be regarded as two layers, one layer consists of blocks, which contain many
threads and use unassociated data as input, the other layer consists of threads in
blocks, which can share the data in the same block through high speed shared
memory. While implementing and optimizing GPU programs, there are some
important principles: (1) maximize the parallelism; (2) minimize the global data
access and data copy between CPU memory and GPU memory; (3) use high-speed
registers and shared memory as much as possible instead of low-speed local memory
and global memory which locate in GPU memory. In a ward, make full use of
advantages of GPU computing, while reducing the cost of data correspondence [10].

For each subsection blew, we first introduce the most natural and basic parallel
implementation on GPU (basic GPU implementation for short in the rest of this
paper), and then bring forward the optimization of it (GPU optimization for short in
the rest of this paper). For basic GPU implementation, the data partition is natural but
its performance is not high enough. GPU optimization takes full advantage of the
GPU memory hierarchy, characteristics of communication among threads, and takes
into account the overhead of the kernel boot, so it greatly enhances the acceleration
performance.

 Parallel Implementation and Optimization of Haze Removal Using Dark Channel 103

3.1 Computing Dark Channel

The patch for computing dark channel value of one pixel is shown in fig 2. To
compute dark channel value of the central pixel, whose color is dark in the figure,
needs such a patch containing neighbor pixels. There are three layers in the fig 1(a)
and each of layer stands for a color channel of R, G, B. We select the smallest value
in the patch as the dark channel of the central pixel, and we can achieve a dark
channel value for every pixel in input image in this way.

In basic GPU implementation, the number of parallel threads is the same with the
number of pixels in input image, that is to say, each thread computes dark channel value
for one pixel. Each thread needs 675 (3×15×15) load operations from global memory,
which is very slow, so each thread has to spend much time on memory access.

Fig. 2. (a) Patch for computing dark channel (b) Tasks mapping

 Fig. 3. (a) data block (b) data partition and task mapping

In GPU optimization, the whole data in input image was divided into blocks with
size 128×64, and each data block is loaded into shared memory of one thread block,
then each thread access to the data in shared memory of its corresponding block,
rather than global memory. Shared memory access is very high, so the overheads of
memory access are greatly reduced. Since data cannot transfer between shared
memories of two different blocks, all data used by threads in the same thread block
should be loaded into corresponding shared memory, and the data in the edge region
of data block will be loaded by several thread blocks. The main part of data blocks are
loaded once, and the fringe data are loaded two or four times. The details are shown
in fig 3. The fig 3(a) is a data block, and fig 3(b) shows how to load overlapping data.

104 Y. Xue et al.

Each thread in thread block computes a dark channel value, but for each thread, its
needed data patch are loaded from shared memory rather than from global memory.

3.2 Selecting Atmospheric Light

Assuming the size of input image is 600x400, the number of 0.1% brightest pixels in
the dark channel image is about 240. There are two ways to implement the serial
program: (1) the basic way is to search and then remove the maximum dark channel
value at each time, we can obtain the 240 brightest pixels by repeating 240 times; (2)
the better way is to keep an array of 240 elements, which stores the 240 examined
pixels with brightest dark channel in the descent order. One pixel not examined is
firstly compared with the last value in the array. If the dark channel of this pixel is
smaller than the last pixel, it is abandoned, otherwise the pixel is inserted into the
array and the last pixel in the original array is removed. The second method is used in
our serial CPU program because it takes shorter running time, but it cannot be used in
GPU program because it needs global data transfer. The first way can be used for
GPU program, but its running time on GPU is the same as the second way on CPU, so
the original algorithm of selecting atmospheric light cannot be speeded up on GPU.

In this paper, we propose a novel algorithm to select atmospheric light, which is of
less computation and suitable for parallel. In the original algorithm, we can find out
that essence of selecting atmospheric light is to take into account the dark channel
values and intensities of pixels in the input image, and to select one pixel whose dark
channel and intensity are both big enough. Compared to intensity of one pixel, the
dark channel value is more important. Dark channel is the smallest one of the three
color channels, so intuitive that the intensity is greater than the value of dark channel
for the same pixel. Here we propose a new parameter of comprehensive assessment,
called F, to present the related factors and the weights relationship while selecting
atmospheric light. The atmospheric light is the maximum in all of the Fs. The way to
compute F is shown as equation (7) (8): F a Y b D . (7)

a ，b ， k YD . (8)

Where F is the parameter of comprehensive assessment, Y is the intensity of a
pixel, D is dark channel. a and b is weights for Y and D. It is obvious that a is smaller
than b, so the weight of pixel intensity is smaller than that of dark channel.

The parameter of comprehensive assessment can show the essence of selecting
atmospheric in original algorithm. Reasons are: (1) when D is too small, the weight of D
is big, and F is very small, that is to say, too small D leads to very small F, which makes
the pixel abandoned. (2) when D is big enough, for example, more than 200, then the k
is close to 1, therefore, both a and b are almost equal to 1/2, that is to say, when the dark
channels of pixels are all big enough, the pixels with lower intensity is abandoned. The
running time of our new algorithm on CPU is about 1/10 of original algorithm.

In basic GPU implementation, the number of parallel threads is equal to the
number of pixels in input image, and a parallelized method of reduction tree can be

 Parallel Implementation and Optimization of Haze Removal Using Dark Channel 105

Fig. 4. The method of reduction tree

used to compute the atmospheric light. The task mapping and the method of reduction
tree are shown in the fig 4.

In GPU optimization, we use thread blocks to reduce the running time because
many intermediate results can be store in shared memory to reduce the overheads of
global memory access. The number of thread blocks is equal to the height of input
image. Each thread in the block computes the corresponding pixel’s F, and each block
computes the max F in corresponding row by using parallel method of reduction tree.
After that, the pixel with maximum F can be picked up as atmospheric light, and the
method to find it is reduction tree, too.

3.3 Calculating Initial Transmission

Calculating initial transmission is similar to computing dark channel, and it concludes
three steps: (1) normalize the value of each pixel channel in input image by dividing
the corresponding channel of atmospheric light; (2) compute normalized dark channel
value by using the same method of computing dark channel; (3) obtain the initial
transmission of each pixel.

In basic GPU implementation, the number of parallel threads is equal to the
number of pixels in input image. It needs three kernels to finish calculating initial
transmission and each kernel accomplishes one corresponding step.

In GPU optimization, we merge the three kernels into one, which is shown in fig 5.

Fig. 5. Process of merging kernel

106 Y. Xue et al.

3.4 Refining Initial Transmission

In this step, an important function, named box_filter, is called for many times and it
have to be divided into two kernels in parallel program. The first kernel accomplishes
accumulation in row, and the second kernel accomplishes the similar computation in
column. The parallel method of the two kernels is the same. The other functions of
refining initial transmission are the basic four arithmetic operations among matrix.
Each kind of these operations is realized by one kernel, in which the number of
parallel threads is equal to the number of pixels in the input image.

Fig. 6. Process of accumulation recording intermediate results

Fig. 7. Process of merging kernels in both horizontal and vertical directions

 Parallel Implementation and Optimization of Haze Removal Using Dark Channel 107

In GPU optimization, two kinds of optimization methods are used: (1) propose a
novel method to compute accumulative result and to expand the parallelism inside
row/column; (2) merge kernels to reduce the overheads of kernel booting.

Since not only final cumulative result but also intermediate cumulative results
should be kept, the general parallel method, which only gets the final cumulative
result, is not fitting. In this paper, we propose a novel method to calculate
accumulative results recoding intermediate results, and the detailed process is shown
in fig 6. There are many kernels in basic parallel implementation, which lead to heavy
overhead of kernel booting and memory access, so we merge kernels in horizontal
and vertical directions. In horizontal direction, we merge similar kernels with
different input data. In vertical direction, when the output data of one kernel is the
input data of another, we merge them. We provide a simple example in figure 6 to
show the merging process.

Since the step 5 of haze removal is just a simple equation with little computation,
we merge it into the last kernel of refining initial transmission.

4 Experimental Results

Environments related to experiment results are show as follow. CPU: AMD Athlon 64
X2 5200+, 2.70GHZ, 2.00GB; GPU: Geforce GTX 460; Operating system: windows
XP; C++ development environment: Microsoft Visual Studio 2008; GPU
Development environment: cuda IDE 4.2; Program runtime vision: release.

We process a 1024x768 image to evaluate the running time and speed-up of each
step and entire algorithm. The running time is shown in table 2. The speed-ups of
basic GPU program and optimized GPU program to CPU are shown in fig 8.

Table 2. Execution time of each step and entire algorithm

 CPU(ms) basic GPU-version (ms) Optimized GPU-version (ms)

Compute dark
channel

1734 47 15

Select
atmospheric light

94 47 16

Calculate initial
transmission

1766 62 15

Refine initial
transmission

1140 530 110

Haze removal 63 15 NULL
Entire algorithm 4797 701 157

We can find from the running time and speed-up shown above that the speed-ups

are very different, the best is more than 100x but the worst is just 2-5x. The speed-ups
of computing dark channel and calculating initial transmission are high because their
parallelism is good and the amount of computing for each thread is relatively full. The
speed-up of refining initial transmission and selecting atmospheric light is low
because of low data parallelism, much data correlation, and too many kernels.

version
step

108 Y. Xue et al.

Comparing basic GPU implementation with GPU optimization, we can find that the
performance of optimized GPU program substantially increase, so optimizing parallel
program, according to the characteristics of the hardware and software programming,
is very important to improve the performance of parallel program.

Fig. 8. Speed-ups of basic GPU implementation and GPU optimization

We process the images with different size and compare their running time of entire
algorithm, shown in table 3.

Table 3. Running time of several image size

 CPU(ms) basic GPU-version (ms) Optimized GPU-version (ms)

400×300 734.6 145.3 19.6
600×400 1462.1 268.3 36.5
800×600 2924.5 442.7 79.3

1024×768 4812.4 801.6 156.9

From the table 3, we can find the execution time of image with size of 600x×400 is

less than 0.04s, that is to say, the GPU optimization program can process the image
with resolution of 600×400 in real time, 25 frames per second.

In paper[2], the author also modifies original HRUDCP to deceases the
computational complexity, and accelerates the modified HRUDCP on GPU, which
obtains 2-3x speed- up compared to serial program of his modified HRUDCP, finally
he can process foggy image with resolution 600×400 at speed of 10-12 frames per
second. In paper [2], the author introduces cross-lateral filter to refine initial
transmission, and the computational complexity is reduced largely, but the haze
removal effect is downgraded as cost, it needs people’s help to obtain as good effect
as original HRUDCP. In our paper, we introduce guide filter to refine initial
transmission, its computational complexity is higher than that in paper [2], but our

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Compute dark
channel

Select
atmospheric light

Calculate initial
transmission

Refine
transmission

Dehazing Entire algorithm

basic GPU-version optimized GPU-version

version
size

 Parallel Implementation and Optimization of Haze Removal Using Dark Channel 109

improved method of HRUDCP can obtain as good effect as original HRUDCP
without people’s assistance, so our method is more appropriate than that in paper [2],
and we can process foggy image with resolution 600×400 at the speed of 25 frames
per second based on GPU, which is 2 times faster than paper [2].

5 Conclusion

In this article, we introduce guided image filter to haze removal using dark channel
prior, and present its parallel implementation and optimization. The execution time of
haze removal reduces largely, and it only takes 0.2s to process a 3M image and can
process image with size 600×400 in real time (25f/s). The further work is to improve
the video dehazing process by using the relativity among frames so as to accelerate
the speed of processing video data and to process video with higher resolution in
real time.

References

[1] Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE
Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)

[2] Lv, X.Y., Chen, W.B., Shen, I.F.: Real-Time Dehazing for Image and Video. In: 18th
Pacific Conference on Computer Graphics and Applications, pp. 62–69. IEEE Computer
Society, Piscataway (2010)

[3] Li, Y.Z.: Uneven Cloud and Fog Removing for Satellite Remote Sensing Image. In: 2011
2nd International Conference on Mechanic Automation and Control Engineering, pp.
5485–5488. IEEE Computer Society, Piscataway (2011)

[4] Liu, Q.L., Zhang, H.Y., Lin, M.S., Wu, Y.D.: Research on Image Dehazing Algorithms
based on Physical Model. In: 2011 International Conference on Multimedia Technology,
pp. 467–470. IEEE Computer Society, Piscataway (2011)

[5] Xie, B., Guo, F., Cai, Z.X.: Improved Single Image Dehazing Using Dark Channel Prior
and Multi-Scale Retinex. In: 2010 International Conference on Intelligent System Design
and Engineering Application (ISDEA), pp. 848–851. IEEE Computer Society,
Piscataway (2010)

[6] He, K.M., Sun, J., Tang, X.O.: Single image haze removal using dark channel prior. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963. IEEE
Press, IEEE Computer Society, Piscataway (2009)

[7] Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 61–68. Institute of
Electrical and Electronics Engineers Computer Society (2006)

[8] He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg
(2010)

[9] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture-Programming Guide
Version 2.0. (2008)

[10] NVIDIA. NVIDIA CUDATM Developer Guide for NVIDIA Optimus Platforms Version
1.0 (2010)

Research on the Solution of Heat Exchanger

Network MINLP Problems Based on GPU

Mingxing Xia1, Yuxing Ren1, Yazhe Tang1, Lixia Kang2, and Yongzhong Liu2,3

1 Dept of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, Shaanxi, China

2 Dept of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi,
China

3 Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education,
Xi’an 710049, Shaanxi, China

Abstract. The optimization of heat exchanger network can be expressed
in a Mixed Integer Non-Linear mathematical Programming (MINLP)
model. However, it demands huge computing power to solve a realistic
heat exchanger network optimize problem. Nowadays graphic process-
ing unit (GPU) can be very powerful for general purpose computation.
Based on the CUDA framework, this paper presents a parallel computing
framework for solving the MINLP problem. We concentrate on both par-
allel computing model and specific GPU programming level optimization.
Tests on a simple MINLP problem is conducted and the results show the
new solution has 40 times faster than the one running serially on CPU.

Keywords: GPU, CUDA, MINLP, heat exchanger network.

1 Introduction

With the growing requirements of computing power for solving problems in
commerce and industry area, the graphics processing unit (GPU), which has
high throughput capacity and computing power, was introduced to the general-
purpose parallel computing field. Compared to CPU, single GPU has more com-
puting cores, greater throughput capacity and hardware thread switching mech-
anism, which makes it be more suitable to computing-intensive and throughput-
intensive parallel computing process [1]. In recent years, a new parallel computing
hardware architecture called CUDA (compute unified device architecture) was
launched. It not only makes more people easily to do parallel programming for
high-density and high-throughput applications running on GPU, but also greatly
reduces the corresponding cost [4].

The heat exchanger network is one of the key subsystems in chemical, oil
refining and other industries. With the goal of efficiently using energy, engineers
carefully design the topology of the heat exchanger network and calculate the
size of the exchanging area. Consequently, the heat exchange between the cold
streams and the hot streams will realize efficient energy use and even largely
determine the total cost of the system’s annual expenditures. This problem can

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 110–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Research on Heat Exchanger Network MINLP Problems 111

be modeled as a mixed-integer nonlinear programming problem (MINLP) [9].
Using a deterministic algorithm can get a feasible optimal structure of the heat
exchanger as well as optimal heat exchanger area. However, slightly increase
in hot and cold streams number and heat exchanger series will lead to sharp
increase of the solution space and hence an exponential growth of execution
time. This paper presents a parallel method for solving heat exchanger network
MINLP model based on GPU. In brief, we determine how to distribute different
computing tasks to CPU and GPU, and we propose a strategy for efficiently
making use of the massive cores of GPU. We also parallelize specific algorithms
to make them running faster in GPU. The goal is to improve the computational
efficiency and speed up the calculating process.

The paper is organized as follows: Section 2 introduces the MINLP model for
the heat exchanger network. Section 3 gives the parallel framework for solving
heat exchanger network MINLP problem based on CPU and GPU and specifi-
cally discusses the strategy to make full use of the massive GPU cores for paral-
lel computation. Section 4 analyzes the performance of our solution by a simple
comparison. Finally, the conclusion and outlook is given.

2 Heat Exchanger Network Problems and Its
Mathematical Model

A specific heat exchanger network has Nh hot streams and Nc cold streams. The
goal is to make these hot and cold streams to change to the target temperature
via heat exchanger network. The optimal solution of heat exchanger network
problem is actually a heat exchange between the hot and cold streams, making
each close to the target temperature and having minimal cost.

The optimal solution of heat exchanger network problem can be divided into
two aspects. The first is the structure of the connection between the hot and
cold streams. In fact, this connection structure is the most important factor in
the heat exchanger network optimization, since the connection structure will di-
rectly determine the whole process of the heat exchange. Usually the connection
structure of heat exchanger network is modeled as combination of integers 1
and 0, with 1 representing there is a heat exchanger between a pair of hot and
cold streams and with 0 representing no. Second, with a specific heat exchanger
connecting structure, we need to determine the best heat exchangers’ area to
achieve minimum cost. This turns out to be a problem of nonlinear program-
ming minimum.

3 Design and Implementation of Parallel Computing
System

3.1 System Framework

Figure 1 shows the system framework for solving MINLP problems based on
CPU and GPU. It can be seen that CPU carries out the pre-processing of the

112 M. Xia et al.

Fig. 1. The framework of the system to solve MINLP problem based on CPU and GPU

input model and the main control of the computation, while GPU enumerates
all possible heat exchanger network structures and calculates the corresponding
optimal solution for each one in parallel.

3.2 Pre-processing of the Heat Exchanger Network Input

When solving the optimal solution of heat exchanger area and the optimal struc-
ture of heat exchanger network in chemical industry, researchers usually do not
select the SQP method, a kind of deterministic algorithm. The reason is that
the initial input data for the algorithm is too much and it is very likely to make
mistakes when people input those data. The so-called data include objective
function, every equality and inequality constraints function of the algorithm,
differential evaluated expression of the objective function for continuous vari-
ables and Jacobi matrix [12] of equality and inequality constraints for continu-
ous variables . When there are a large number of continuous variables, equality
constraints and inequality constraint, the workload of manual derivation and
manual calculation and entering of the Jacobi matrix will be unacceptable. To
solve this problem, we design and implement the pre-processing part of the heat
exchanger network input. The function of the pre-processing part is to auto-
matically generate almost all the input data (such as the differentiation results
and Jacobi matrix) according to the objective function, equality and inequality
constraints. We will not talk about the details of this pre-processing due to space

Research on Heat Exchanger Network MINLP Problems 113

limitation. The result is so exciting that we are able to get nearly all the data
just from several simple expressions, as shown in Fig. 2 (a).

Fig. 2. The representation and conversion of heat exchanger network model (a) A
simple non-linear programming model.(b) The string representation of model in (a)

3.3 The Parallel System Framework and Tasks Division for CPU
and GPU

Our design uses multiple GPUs for parallel computing because there might be so
many hot and cold streams in the heat exchanger network that the solving space
of the MINLP problem will increase dramatically in the manner of exponential
growth. Although it is said that the integer variable number of heat exchanger
in every pair of hot and cold streams is close to linear growth, the number of
binary combinations representing all possible connection structures is a power
of 2, the number of binary variable. Computation of slightly larger model will
outride the parallel computing capability of one single GPU. Things are quite
different when using multi-GPUs. According to the number of GPUs and the
computing capability of each GPU, CPU reasonably assigns the computation
task of a certain number of binary combinations to different GPUs. The GPUs
will calculate the value of the cost function for each binary combination and
finally the minimum cost and the corresponding binary combination are the
optimal solution.

We use block as the coarse-grainedminimum parallel unit in the CUDA frame-
work. Each block is employed to compute a unique combination of integer vari-
ables, which physically represents a specific heat exchanger network connection
structure. After the heat exchanger connected structure is submitted as input
to each block, the block calculates the optimal size of the heat exchanger area
and ultimately get the minimum value of the total cost function in the specified
connection structure. If we have enough blocks that match the number of binary
combinations, we are able to compute all the binary combinations in parallel.
When all blocks have completed their work, their output, namely target cost, are
compared and the minimum value and the corresponding connection structure
are the final answer. Obviously such a coarse-grained parallel computing frame-
work works because the problem can be naturally divided into sub-problems
that can be computed concurrently. More importantly, those sub-problems are
completely independent with each other, which makes it possible to do a large

114 M. Xia et al.

number of parallel calculations in GPU. Therefore, in this paper, the core idea of
solving MINLP problems in parallel is doing coarse-grained parallel computing
based on heat exchanger network connection firstly and running optimization al-
gorithm within each block secondly, through the elaboration of multi-threading,
use of registers and shared memory.

3.4 Solving Nonlinear Programming within a Block

After each block gets a unique combination of integer variables, which determine
one unique connection structure of a heat exchanger, the next step is to solve
the NLP (Nonlinear Programming) problems. To that end, this paper uses the
SQP (Sequential Quadratic Programming method) [11] algorithm. The SQP
algorithm uses orthogonal matrix instead of the Lagrange array Heather matrix.
These algorithms and their code are quite complex and we are not going to dig
them in deep in this paper. However, we do have quite a lot considerations for
speeding up the computation based on the characteristics of GPU such as setting
a reasonable number of threads within a block and making efficient use of shared
memory.

Specifically, we mainly consider the following factors:

1) Optimization on matrix-matrix and matrix-vector multiplication. This is
common optimization for GPU computing.

2) The Jacobi matrix of equality constraints, the Jacobi matrix of inequality
constraints and the orthogonal matrix are all used multiple times in the improved
SQP algorithm. We take the strategy of calculating and saving them in array in
advance. Once needed, the array pointers are passed to kernel function to reduce
the computation. In addition, we design a faster matrix transpose algorithm.
Simple test shows, using the new algorithm, the speed of transposing a matrix
with 108 columns and 128 rows is 10 times faster than the CPU algorithm and
1.5-3 times faster than ordinary parallel matrix transpose algorithm on GPU.

3) According to the optimization strategy of the GPUmemory access, we make
local improvement for SQP algorithm. For instance, we do a matrix transposition
before multiplication between matrix and vector, matrix and matrix, so that we
can ensure that multi-threads access data in same block of memory and hence
increase the degree of parallelism.

4) Optimization for storage on the GPU. GPUs have different type of memory
(such as global memory, shared memory) and those memory has various access
time from 24, 36 clocks to 400 clocks. Therefore, it would be better if we make
full use of fast memory like shared memory. In this paper, we put vectors that are
used very frequently into shared memory as long as those vectors do not exceed
the memory size. We also set key variables accessed with high frequency into
registers. At same time, we put different intermediate variables like temporary
array into same space of shared memory in a time-division manner.

5) A large number of single-precision floating-point numbers are used in the
algorithm, not only because we do not need double precision numbers for higher

Research on Heat Exchanger Network MINLP Problems 115

precision but also because the calculation of single precision is twice faster than
that of double precision on our GPU. The paper also proposes a strategy to
reduce the rounds of iterations in the SQP algorithm, aiming to sacrifice accuracy
in exchange for time. The idea comes from the fact that if the changing rate of
independent variables and dependent variable are both less than a reasonable
threshold, we can suppose there is no need to do more iteration.

3.5 Experiment and Results Analysis

This section will analyze and compare the performance of CPU-based serial
algorithm and GPU-based parallel algorithm on solving MINLP problems. The
GPU used in the experiment is NVIDIA TESLA C2050 GPU, having 448 CUDA
Cores and a top-level memory of 2687MB. There are two CPU chips of Intel (R)
Xeon (R) E5640 in the server, with clock being at 2.67GHz and a total of four
processing cores. The CUDA programming environment version number is 4.0.

The test case is the non-linear planning example in Figure 2 (a). For simplicity,
we use only one integer combination of variables as the input of the algorithm
and run the algorithm for many times. We believe this will have quite the same
performance as if we run the algorithm with different integer combination of
variables. We run the non-linear programming algorithm for the same times in
CPU and GPU, respectively.

Figure 3 shows the experiment results which can be divided into three stages.
The first stage happens when the computation only runs once or twice. In this
stage, the execution time of the CPU is less than that of GPU. There may be
the following reasons: 1) the code of SQP algorithm is written in C and con-
tains a large number of branch judgment, as we all know, these branches can
only execute in serial mode in GPU; 2) the SQP algorithm is not fine-grained
parallellized; 3) SQP algorithm requires a large number of memory accesses,
however the GPU top-level memory access cycle is very long. Shared memory
can be accessed much faster, but only a small part of data can be put in it due
to size limitation; 4) the CPU used in the test is a multi-core CPU so that the
computing power is also very strong. The second stage starts when the com-
putation runs more and more times, the CUDA coarse-grained parallelism in
GPU begins to take effect. Each stream multiprocessor can run up to 8 blocks,
that is, simultaneously run the calculation of the optimal solution of eight in-
dependent nonlinear programming models. When the number of independently
running of nonlinear programming model further increases to more than the
maximum number of blocks running in the GPU stream multi-processors, the
GPU running time begins to grow linearly just like the running time on CPU.
We can see from the experiment that the parallel algorithm designed in this
paper running on GPU can be 40 times faster than the one running on CPU
when we execute the algorithm to solve a large number of mutually exclusive
problems of nonlinear programming.

116 M. Xia et al.

Fig. 3. The simulation performance for the algorithm based on CPU and algorithm
based on GPU

4 Conclusion

This paper analyzes and designs the GPU-based parallel algorithm for solving
the heat exchanger network MINLP. Experiment shows that we can achieve
acceleration of about 40 times compared with CPU algorithm implemented on
the same machine. Thus, for the mixed-integer nonlinear programming solution
problem, the idea of accelerating the SQP algorithm with both coarse-grained
block parallel and fine-grained parallel inside blocks is feasible.

For future work, we are planning to resolve the actual complex heat exchanger
network optimization problems. The scale of actual heat exchanger network is
very large. It should be tough (if not impossible) to calculate using the current
GPU because GPU memory is too small to hold the data. We’ve got three
candidate research directions: first, how to better optimize the algorithm and
reduce memory usage; second, how to use more kernels and more memory (the
latest GPU card can support) to complete the calculation; third, how to use
GPU group, which will linearly increase speedup theoretically.

Acknowledgments. The project has been supported by the Central Universi-
ties Fundamental Research. At the same time, we express thanks to those who
give support and advice to the work of this paper.

References

1. Cohen, J., Garland, M.: Novel Architectures: Solving Computational Problems
with GPU Computing. Computing in Science & Engineering 11(5), 58–63 (2009)

2. Owens, J.D., Houston, M., Luebke, D., et al.: GPU Computing. Proceedings of the
IEEE 96(5), 879–899 (2008)

Research on Heat Exchanger Network MINLP Problems 117

3. van der Laan, J.W., Jalba, A.C., Roerdink, J.B.T.M.: Accelerating Wavelet Lift-
ing on Graphics Hard ware Using CUDA. IEEE Transactions on Parallel and Dis-
tributed Systems 22(1), 132–146 (2011)

4. NVIDIA. CUDA C BEST PRACTICES Guide 4.1: CA, Nvidia Corporation (2012)
5. NVIDIA. NVIDIA CUDA Programming Guide 4.2: CA, Nvidia Corporation (2012)
6. Wah, B.W., Chen, Y.: Solving Large-Scale Nonlinear Programming Problems by

Constraint Partitioning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
697–711. Springer, Heidelberg (2005)

7. Hartwich, A., Stockmann, K., Terboven, C., Feuerriegel, S., Marquardt, W.: Paral-
lel sensitivity analysis for efficient large-scale dynamic optimization. Optimization
and Engineering 12, 489–508 (2011)

8. Bjokqvist, J., Westerlund, T.: Parallel solution of disjunctive MINLP problems.
Chemical Engineering Communications 185(1), 115–124 (2011)

9. Munawar, A., Wahib, M., Munetomo, M., Akama, K.: Advanced Genetic Algo-
rithm to solve MINLP problems over GPU. In: IEEE Congress on Evolutionary
Computation (CEC) (2010)

10. Bjo, K., Westerlund, T.: Global optimization of heat exchanger network synthe-
sis problems with and without the isothermal mixing assumption. Computers &
Chemical Engineering 26(11), 1581–1593 (2002)

11. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming
techniques. Optimization and Engineering 3(3), 227–252 (2002)

12. Ma, C.: Optimization methods and matlab program design. Science Press (2009)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 118–131, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MapReduce-Based Parallel Algorithm for Detecting
and Resolving of Firewall Policy Conflict

Qi Xiao, Yunchuan Qin, and Kenli Li

School of Information Science and Engineering, Hunan University,
Changsha, 410082, Hunan, China

Abstract. With the complexity of networks grows so accurate in the decade, the
number of firewalls rules becoming so large that the conflicts between the rules
are difficult to avoid. The detection and resolution of the policy conflict become
an important aspect of network security. Traditional single threaded methods
are time-consumption for current large complex networks. This paper proposes
a parallel algorithm of firewall policy conflict detection and resolution based on
segmentation strategies. The experiments show that the algorithm is much faster
than single threaded methods and is suitable for large complex networks.

Keywords: firewall rules, confliction, segment, MapReduce, ordering.

1 Introduction

In the field of computer network, the security issues are gaining more and more
attention in research and industry. Firewall is the equipment that helps to ensure
the security of the network, and it allows or rejects the data packets into or out of the
network according to the special rules. In a network, especially for large networks, the
number of rules is great, and there may be some conflicts among them, that is, when a
network packet arrived, it matches at least two rules, and the matching rules may have
homologous and deference actions (“Allow” and “Deny”) on the conflict. In order to
guarantee the security of the network, the management of these firewall rules
becomes more and more important. In a large network, there will be thousands of
policy rules or more, they may be written at different times by different administrators

[1]. In such situation, the management of the rules is a huge challenge for the
administrators. The large number of the rules led to increasing possibility of conflicts,
and made the network security facing a great threat.

At present, the research about the conflicts among firewall rules has gained great
achievements. Researchers have proposed many tools for firewall analysis, some are
more prominent among them, such as Firewall Policy Advisor[1] proposed by E.Al-
Shaer and FIREMAN[2] proposed by L.Yuan, all of them can be used for the policy
anomaly detection and analysis. The Firewall Policy Advisor only was able to detect
whether there is an abnormality between conflicting rules; the FIREMAN tool could
detect abnormality among multiple rules by analyzing the relationship between a rule
and the package space composed by all of the rules before it. But the FIREMAN has

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 119

some limitations[3] in detecting the abnormalities, that is, the analysis results by the
FIREMAN tool were only able to represent the abnormal between a certain rule and
the rules before it, but cannot accurately determine which the abnormal rule is.

After the conflicts among Firewall policy rules being detected, the ultimate goal is
to resolve them to ensure the security of the network. So far the momentum for the
research about firewall policy conflict detecting and resolving is very rapid. A.Hari et
al proposed that resolving the conflicts between the rules by increasing the resolved
filter[4]. Fu et al. defined the high-level security requirements, and developed a
mechanism to detect and resolve the conflicts between the IPSec rules[5]. And
Golnabi et al. used the data mining techniques to resolve the conflicts of rules[6].

In addition, Hongxin et al. implemented a visualization-based firewall anomaly
management environment (FAME)[7], the framework of this tool basis on the rule-
based segmentation strategies, and the conflict resolution basis on the risk assessment
of protected networks and the intention of policy definition, so that an average 92
percent of conflicts could be resolved. However, this tool uses a reordering algorithm
that the time complexity is O(n2), when the number of the rules in the firewall policy
becomes large, the whole process of the resolution could be time-consuming. This
paper proposes a new solution that the segments obtained by the rule-based
segmentation strategy are sorted by a simply dedicated algorithm, and the segments
after sorting would be converted into the expression of a regular rule by an inverse
function of the rule-based segmentation strategies, replacing the original rules. As the
segments obtained by the rule-based segmentation strategies are pairwise disjoint, and
each segment associates with only one action, which makes the conflicts no longer
exist. The core of this solution is a sorting algorithm which can be parallel
implemented. The basic idea of this paper is using the SecondarySort algorithm of the
MapReduce model to sort all the segments. The algorithm is time efficient, and
ensuring the firewall policy conflicts’ resolution. When the packets arrived, the
firewall rules dealt with our algorithm would decide to “allow” or “deny” the packets
quickly and effectively, ensuring the security of the network.

2 Overview of Firewall Policy Anomalies

A firewall rule is defined by a set of conditions, when a packet going across the
firewall matched all the conditions defined by a rule, the predetermined action of the
rule would be performed. The set of conditions include the following five
elements[8]: protocol type, source IP, source port, destination IP, destination port,
these conditions determine whether to allow or deny the packets through the
network[9][10]. Table 1 is an example of a firewall policy, lists 5 rules of the policy,
i.e. r1, r2, r3, r4 and r5. Each condition of a rule can be defined as a value or a range of
values. Such as, the protocol type of r5 is “*”, that indicates the value of the protocol
type is TCP or UDP, and source IP address “10.1.1.*” means that the IP address is in
the range of 10.1.1.1 to 10.1.1.255.

120 Q. Xiao, Y. Qin, and K. Li

Table 1. Example of a firewall policy

Rule Protoco

l

Source

IP

Source

Port

Destination

IP

Destinati

on Port

Action

r1 TCP 10.1.2.* * 192.168.1.* 25 deny

r2 TCP 10.1.*.* * 192.168.*.* 25 deny

r3 UDP 10.1.*.* * 172.32.1.* 53 allow

r4 UDP 10.1.1.* * 172.32.1.* 53 Deny

r5 * 10.1.1.* * * * allow

The anomalies between firewall

policy rules normally include four
categories[11]: Shadowing, Gene-
ralization, Correlation, and Redu-
ndancy. A rule is shadowed when a
previous rule matches all the packets
that match this rule, such that the
shadowed rule will never be activated.
A rule is a generalization of a
preceding rule if they have different
actions, and if the second rule can
match all the packets that match the
first rule. Two rules are correlated if
they have different filtering actions,
and the first rule matches some of the
packets that match the second rule and
the second rule matches some of the
packets that match the first rule. A
redundant rule performs the same
action on the same packets as another
rule such that if the redundant rule is
removed, the security policy will not
be affected.

The anomalies above defined for the
relationship between two rules, we
believe that the firewall policy conflict
should always consider a firewall
policy as a whole piece[7]. In this
paper, we consider that a precise
indication of the confliction caused by a set of overlapping rules is critical for
resolving the conflicts.

Definition 1 (Policy Conflict)[7]. A policy conflict pc in a firewall F is associated
with a unique set of conflicting firewall rules cr = {r1, … , rn}, which can derive a

Algorithm 1：Segment Generation for

Network Packet Space of a Set of Rules

Input a set of rules, R.
Output a set of packet

spaces segments, S
1 foreach r R do
2 sr PacketSpace(r);
3 foreach s S do
4 /* sr is a subset of

s*/
5 if sr s then
6 S.Append(s-sr);
7 s sr;
8 break;
9 /*sr is a superset of

s*/
10 else if sr s then
11 sr sr – s;
12 /* sr partially

matches s*/
13 else if sr s

then
14 S.Append(s- sr);
15 s sr s;
16 sr sr – s;
17 S.Append(sr);
18 return S;

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 121

common network packet space. All packets within this space can match exactly the
same set of firewall rules, where at least two rules have different actions: Allow
and Deny.

3 Firewall Policy Conflict Detecting and Resolving Algorithm

The algorithm for firewall policy conflict detecting and resolving mentioned in this
paper is divided into four steps: Firstly, all the rules are converted to the structures of
packet space segments, and the segments are pairwise disjoint. If a segment contains
more than one rules, and these rules have inconsistent actions, then it indicates that a
conflict occurred; Secondly, set an action constraints for each conflict segment, to
make each segment an uniform action to resolve the conflict; Thirdly, all these
segments should be sorted by a MapReduce-based algorithm to get an orderly
sequence of segments; Finally, the sequence of segments would be converted back to
the representation of rules to facilitate matching of packets.

3.1 Rule-Based Segmentation Strategy

In order to resolve the conflicts caused by a group of overlapping rules, Hongxin Hu
et al[7] proposed a rule-based segmentation strategy, using the binary decision
diagram (BDD) to represent the rules, to convert a group of rules into a set of disjoint
network packet spaces. The strategy has been used in several research areas, such as
network traffic measurement[12], firewall testing[13] and optimization[14]. The
pseudo code of generating segments for a set of firewall rules was shown in
Algorithm 1. For a set of inputted rules, each one should be converted to a packet
space. There are four types of relationships between one packet space and all the other
packet spaces existed: subset, superset, partial match, and disjoint. After calculating
the relationships of the packet spaces by Algorithm 1, the algorithm output a set of
unrelated packet space segments.

A set of segments outputted by Algorithm 1 are pairwise disjoint, and any two
different network packets within the same segment are matched by the exact same set
of rules.

Fig. 1 performed the process that 5 rules in Table 1 were divided into a set of
pairwise disjoint packet spaces. Each packet space was denoted by a colored
rectangle, and the different colors represented different kinds of spaces – allowed
space (white color) and denied space (gray color). Each rule converted into a packet
space, and the overlapping part of the two spaces meant that some network packets
matched with two spaces simultaneously. Fig. 1 shows that rule r5 intersect with rule
r2, rule r3 intersect with rule r5, and r3 intersect with rule r4, there are three overlapping
packet spaces. The Algorithm 1 divided all the packet spaces into packet space
segments which were pairwise disjoint, the segments were classified into the
following categories: nonoverlapping segment and overlapping segment, which was
further divided into conflicting overlapping segment and nonconflicting overlapping
segment. In order to facilitate analysis of each segment, the segments were divided

122 Q. Xiao, Y. Qin, and K. Li

into the form like Fig. 1(c). We could find in Fig. 1 that the 5 rules in Table 1 were
divided into 7 packet space segments, and all of them are pairwise disjoint, the
segment s2, s4 and s7 are the nonoverlapping segments, others are overlapping
segments, wherein segment s3 and s5 are the conflicting overlapping segments, s1 and
s6 are the nonconflicting overlapping segments.

r5
r5r2r1 r4 r3 r2

r1

r2

r3

r4

r5

r3
r2

r5

r3

r5

r1

r2
r2

r2

r5
r5

r3
r4
r5

r5
r3

r5

(a)Two dimensional geometric
representation of overlapping rules

(b)Packet space segmentation (c)Uniform representation

Fig. 1. Packet space representation derived from the rules in Table 1.

3.2 The Action Constrains of Segments

For the packet space segments converted by the Algorithm 1, if there is only one
action to determine the actions of the packets in a segment, the conflicts don’t exist.
For the nonoverlapping segments, the action of the packets in segment is determined
by the action of the rules inside. For the nonconflicting overlapping segment, the
action of the packets in the segment was decided by the common action of all rules in
the segment. For the conflicting overlapping segment, it involves two or more rules
and the actions of the rules conflicts, so we should set the unified action constraints
for this kind of segment. Hong Hu et al[7] proposed each conflicting overlapping
segment should determine a unified action constraint, to make the packets involved in
the conflicting overlapping segment have a unified action to resolve the conflict. The
action constraint of the conflicting overlapping segment means that when the packets
matching with this segment arriving, what the firewall policy should do (allow or
deny)?

The formation of the action constraint should interact with the system
administrators minimally, and divided into manual and automatic strategy selections.
The risk detection method of the conflicting overlapping segment needs to calculate
the value of a risk assessment. This value is used to determine which action the
system expected to performed on the packets matching this segment. If the risk value
of the segment is higher than the given value of the upper threshold (UT), the action
of this segment desired is “Deny”; if the risk value of the segment is lower than the
given value of the lower threshold (LT), then the action of this segment desired is
“Allow”; and if the risk value of the segment is between the upper threshold and the
lower threshold, the administrators should manually determine the action of this
segment desired based on the characteristics of the conflict. The upper threshold and
the lower threshold are determined by the administrator.

The risk value is figured out by the protected network-based vulnerability
assessment[15], using the Common Vulnerability Scoring System (CVSS)[16] as the
safety measure of the risk assessment. We assess the risk of the network by two main
factors – exploitability of vulnerability and severity of vulnerability[17]. Another

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 123

major factor is asset importance value, for example, system administrator would set
the priority of the important protective server higher than an ordinary PC, and this
value represent the inherent value of a server for a network attacker or an
administrator. We incorporate the CVSS base score and asset importance value to
compute the risk value for each vulnerability factor as follows:

)tan(Im)(ceValuepororeCVSSBaseScRiskValue ×= (1)

In order to calculate the risk value of every conflict segment, we need to accumulate
all risk values of vulnerabilities covered by a conflicting segment. For the
administrators, they are more concerned about the safety value of every hole in the
network. Therefore, the formula to calculate the average risk value of segment is
performed as follow:

)(

))()((
)()(

csV

sIVvCVSS
csRL csVv

×

×
=
 ∈

α

(2)

Where V(cs) represents all of the vulnerabilities contained by the conflicting
segments cs; CVSS(v) indicates the reference value of the CVSS vulnerability v;
IV(s) indicates the importance value of the server s; Variable α (1 / | V (cs) | <= α <=
1) allows the administrators to choose the average or overall risk value to evaluate the
risk of every conflict segment. When α reduce, the administrators pay more attention
to the overall risk value. When α increases, the administrators pay more attention to
the average value at risk.

3.3 Segments Sorting Algorithm Based on MapReduce

For each segment in packet spaces, when the packet matching it arrived, there would
have a determined action to execute. Since these segments are pairwise disjoint, for
each incoming packet, it matches nothing, or only matches with one segment, and the
conflicts of firewall policy are resolved. However, due to the number of the segments
converted by Algorithm 1 would be greater than the number of the original rules,
making the matching of the packets become more complex. Especially when the
number of rules is large, the number of segments may be larger than the number of
rules, which would seriously affect the filtering capabilities of the firewall policy. In
order to make the algorithm to be applied in actual situations, we propose the
algorithm using MapReduce model[18][19][20], adopting the cluster computers to sort all
the segments, and then getting a segment sequence increasing ordered.

3.3.1 MapReduce Model
MapReduce is Google’s invention, mainly for dealing with a large amount of data in a
distributed computing model. The model hides parallelization, fault tolerance, data
distribution, load balancing and other details into a library, the user only need to
concern the operations they need to perform. Its main principle is as following: using
the map operation on the input data, calculating an intermediate “key / value” pairs

124 Q. Xiao, Y. Qin, and K. Li

set, and using the reduce operation on all “value” with the same “key”, users only
need to specify the Map and Reduce functions.

In a large network, when the number of rule is large, according to the difference of
the relevance between the rules, the number of the segments would be several times
more than the number of rules and even more than a few times, which seriously
affects the matching of the arrival packets, so that the algorithm we proposed can’t be
used in the actual network using traditional computing model. And if we used the
ordinary sorting algorithm, the large numbers of segments would make the algorithm
take too much time. Therefore, the MapReduce model adopted in this paper was to
prevent long computation time caused by the large amount of data which making the
calculation can’t be even handle.

3.3.2 The Segments Sorting Algorithm
The section 3.1 mentioned that, all the rules are expressed as the BDD packet space
format. Each rule has five conditions, expressed as a quintuple <protocol type, source
IP, source port, destination IP, destination port >. BDD is used to represent the
structure of the Boolean function,. The packet space form of a rule expressed as BDD
structure mentioned in section 3.1, is connected together by the Boolean expression
representing all the conditions of a rule, to form a sequence represented by Boolean
variable 0/1/*. The packet space segments formatted by Algorithm 1 are obtained by
the calculation of these sequences of rules. So for every Boolean expression of
segments, it contains either the sequence of Boolean variable (0/1/*), or its
complementary set. To facilitate the sorting later, we represents these sequences as
strings, the Boolean variable which can be expressed 0 and 1 expressed with “*”. For
example, the rule4 in Table 1, “UDP 10.1.2.* * 172.32.1.* 53”, can be expressed as
the Boolean expression like, “1000010100000000100000010*******************
*****101011000010000000000001********00110101”. The first bit”1” indicates
“UDP”. In this paper, if the first bit is “0”, it indicates “TCP”; if it is “1”, it indicates
“UDP”; and if it is “*”, it indicates the arbitrary value in “TCP” and “UDP”. The
segments are formed by the Boolean expression of rules itself or its complementary
set, so the Boolean expressions of segments are either similar to the Boolean
expression of rules, or the collection set of this Boolean expression of rules.

For correctly sorting the segments, our algorithm splits the collection set of the
Boolean expressions. For example, a simple BDD structure

32
'
1

'
321321),,(xxxxxxxxxf += , it can express as 110+011. The two values 110

and 011 indicate the corresponding packet segment. In order to sort all of the packet
segments, our algorithm divides the BDD structure into 110 and 011, and both of
them join in the queue of sorting.

In our sorting algorithm, when the number of rules is too large, the number of
segments would be larger than it, so we would use a parallel algorithm based on
the MapReduce model to sort the segments. Fig. 2 is a flowchart of the algorithm, for
the set of inputted Boolean expressions, in the phase of the map, in accordance with
the first character of the Boolean expression, all the segments would be divided into
three categories, named “TCP” segment (the first character is “0”), “UDP” segment

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 125

(the first character is “1”) and the segment that the first character is “*”, outputting a
key-value pairs <segment type, segment Boolean expression>. Then, in the phase of
reduce, we sort all the Boolean expressions that has the same segment type by the
method of the MapReduce secondary sorting, and the larger one between two
expressions would be determined by follow: starting from the second character
(because all the first characters in a categories are the same), sorting the Boolean
expressions according by the order of 0<1<*,. If the second character of two
expressions is the same, then gonging on the third one, and so on. Finally, in the
phase of reduce output, we would sort the three categories of Boolean expressions by
the order of 0<1<* (the first character), and all the Boolean expressions would
Comprehensive been a sequential set.

Set of boolean
expressions of

rules

Map

Group that begin
with “*”

Group that begin
with “1”

Group that begin
with “0”

Reduce

Sort the group that
begin with “*”

Sort the group that
begin with “1”

Sort the group that
begin with “0”

Set of boolean
expressions of
rules that after

sorting

Fig. 2. A flowchart of the our sorting algorithm

3.4 Segments Converted into the Representation of Rules

The segment groups after sorting are represented as strings, so it is hard to apply on
matching of the packets. In order to match the packets correctly, our algorithm
convert the segments back to the representation of the original rule, that convert the
Boolean expressions which are represented by 97 bits back to the form of the rule
which has 5 conditions and one action. The conversion algorithm is the inverse
function that rules convert into the packet spaces, or the inverse function of Algorithm
1. Meanwhile, the segment’s action is the rule’s action. According to the original
conversion algorithm, the first character indicates the protocol type, that we would
convert “0” to “TCP”, “1” to “UDP”, and “*” to “*” (anyone of the two protocol
types). Then according to the number of bits, we would separate other rule conditions:
Source IP, Source port, destination IP, and the destination port. Particularly note that
it may have some troubles when a block of bits convert to IP address, such as the
block of bits are “00001010000000010000001*********”, they indicate a range of
IP address and not only a IP address, the lower bound of this range is “10.1.2.0” when

126 Q. Xiao, Y. Qin, and K. Li

“*” are all replaced by “0”, and the upper bound of this range is “10.1.3.255” when
“*” are all replaced by “1”, that is this block of bits can convert to a range of IP
address “10.1.2.*~10.1.3.*”.

After the conversion, the segments are all in the order of 0<1<*. When a packet
comes, using the fist-value matching strategy can ensure the packet matching fast and
accurate. Because all the rules are in order, the special value (0 or 1) is always in the
front of the arbitrary value (anyone in 0 and 1). That is, we give an example of
protocol type, the rules has been arranged in the order of “TCP-UDP-any”, for all
“TCP” packets coming, the firewall policy would match them with the “TCP” rules
rather than the “any” rules. The matching of other conditions are the same. After the
conversion, the segments are pairwise disjoint, and the rules after conversion are
pairwise disjoint the same. Every rule has only one action, so the conflicts of the
policy are resolved.

3.5 Equivalence of the Rules before and after Conversion

In order to ensure that the firewall policy which is converted by our algorithm still
work normally and the function of packets filter is the same with the original firewall
policy, we must guarantee the equivalence between the rules after conversion and
before. The so-call equivalence between the two groups of rules means that, for any
packets coming, the actions (either deny or allow) which the new firewall rules
performed are the same with the original firewall rules expected. To prove the
equivalence of two groups of rules, which is equivalent to prove the set of packet
space is unchanged and the corresponding actions are accord with the expectations of
the original rules.

Theoretically speaking, converting the rule to the format of the packet space is only
a change of the expressions of the rule, and it can’t change the set of packets that a
firewall rule could handle. The format of packet space expresses the set of the packets
which can match with all the conditions of this rule. Algorithm 1 compares and
computes with these sets only. Obviously, the result of the operations within a set is
the same with the collection of original set. So the result of Algorithm 1 does not
change the set of the total packets, and it doesn’t affect the packets which can match
the firewall policy. The rules converted by Algorithm 1 represent as segments, if the
actions of all rules involved in a segment are the same, then this action of all rules is
the action of this segment; if they are inconsistent, we use the Common Vulnerability
Scoring System (CVSS) to determine its action. The Common Vulnerability Scoring
System is generally in line with the provision which the administrators expect to
resolve the conflicts of the firewall policy. Then the segments are all converted to the
representation of the rules. A segment indicate a packet space, the set of segments are
equivalent with the original rules, so the rules after conversation are equivalent to the
rules before conversation as the same.

For the sake of simplicity, we take the first two rules of Table 1 as an example to
verify the equivalence between the rules converted by our algorithm and the original
rules. Firstly, we would convert the rules r3 and r4 to the packet spaces, the result of
conversion based on Algorithm 1 as shown in Table 2.

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 127

Table 2. The packet spaces of rule r3 and rule r4 in Table 1

Segment
No

The string representation of segments

s1 1000010100000000100000000************************101011000
010000000000001********0000000000110101+100001010000000010
000001*************************101011000010000000000001***
*****0000000000110101+10000101000000001000001*************
*************101011000010000000000001********0000000000110
101+1000010100000000100001***************************10101
1000010000000000001********0000000000110101+10000101000000
0010001****************************10101100001000000000000
1********0000000000110101+10000101000000001001************
*****************101011000010000000000001********000000000
0110101+1000010100000000101******************************1
01011000010000000000001********0000000000110101+1000010100
00000011*******************************1010110000100000000
00001********0000000000110101

s2 1000010100000000100000001************************101011000
010000000000001********0000000000110101

Seen from the Table 2, rule r3 and rule r4 can convert to two segments s1 and s2, and

the s2 is the collection of 8 strings of BDD format. In order not to miss any packets
when filtering, we need to split the collection. The segment s2 can split into eight
strings, which indicate eight ranges of packets matching. We sort these nine strings
with our MapReduce-based algorithm, and get an ascending sequence, as shown in
Table 3.

Table 3. The ascending sequence of segment s1 and segment s2 in Table 2

1000010100000000100000000************************101011000010000000
000001********0000000000110101
1000010100000000100000001************************101011000010000000
000001********0000000000110101
100001010000000010000001*************************101011000010000000
000001********0000000000110101
10000101000000001000001**************************101011000010000000
000001********0000000000110101
1000010100000000100001***************************101011000010000000
000001********0000000000110101
100001010000000010001****************************101011000010000000
000001********0000000000110101
10000101000000001001*****************************101011000010000000
000001********0000000000110101
1000010100000000101******************************101011000010000000
000001********0000000000110101
100001010000000011*******************************101011000010000000
000001********0000000000110101

After the sorting, we converted the segments back to the representation of the

rules. The operation of subtraction may result in the situation that each segment
expressed in a range. We take the minimum and maximum value as the upper bound

128 Q. Xiao, Y. Qin, and K. Li

and the lower bound of this range. After the conversion, we would give the same
action to the rules which split from the same segment. The result of the conversion is
shown in Table 4.

Table 4. The nine segments in the Table 3 converted to the rules

r’1 UDP 10.1.0.* * 172.32.1.* 53 allow
r’2 UDP 10.1.1.* * 172.32.1.* 53 deny
r’3 UDP 10.1.2.*~10.1.3.* * 172.32.1.* 53 allow
r’4 UDP 10.1.4.*~10.1.7.* * 172.32.1.* 53 allow
r’5 UDP 10.1.8.*~10.1.15.* * 172.32.1.* 53 allow
r’6 UDP 10.1.16.*~10.1.31.* * 172.32.1.* 53 allow
r’7 UDP 10.1.32.*~10.1.63.* * 172.32.1.* 53 allow
r’8 UDP 10.1.64.*~10.1.127.* * 172.32.1.* 53 allow
r’9 UDP 10.1.128.*~10.1.255.* * 172.32.1.* 53 allow

We observe the rule r3 and rule r4 of the firewall rules before conversion and know

that the original rule’s range to match the packets is “UDP, 10.1.*.*, *, 172.32.1.*,
53”, and it is the matching packets which must be the UDP protocol and send from IP
address 10.1.*.*, any ports, to the IP address 172.32.1.*, port 53. For the nine rules
after conversion, we connect their lower bound and the upper bound, and know that
the matching packets must be the UDP protocol and is sent from IP address
10.1.1.*~10.1.255.*, any port, to the IP address 172.32.1.*, port 53, and they are
equivalent to the original rules. The original rule r3 and rule r4 conflict, so the packets
which match the overlap of two rules cannot do the correct actions. After using our
algorithm to resolve the conflict of firewall, the action of rule r’2 (equivalent to r3) is
the same with the action of the original rule r3, other rules' actions are the same with
the difference set of r4 and r3 (r4 – r3). The actions of the rules after conversion meet
the expectations of the administrators.

4 Implementation and Evaluation

In this paper, we used the Java programming language to implement the algorithm,
and the algorithm is based on the MapReduce model. Our experiments were
performed on a cluster of three Intel computers, each with 8 core and 4G memory.
The algorithm implemented as the steps fellow: At first, the rules were converted to
segments by the Algorithm 1. Then the segments were added into the MapReduce
model and sorted. In the phase of map, we divided the segments according with the
first bit into three categories; in the phase of reduce, we sorted the three categories of
segments by our MapReduce-based algorithm, and converted the segments back to
the representation of the rules, then all the data got together into an output file finally.

The rule-based segmentation strategy in our paper is similar to the strategy in the
FAME[7] framework which proposed by Hongxin Hu et al. After converting the
segments to the representation of strings, the strings were inputted into MapReduce
model to be sorted. The MapReduce model is used to the parallel computation for

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 129

large-scale data sets, so our algorithm is mainly used for the conflicts detection and
resolution of large-scale rules. When implementing we found that, the processing time
of our algorithm increases along with the number of the segments. When the number
of rules is small, our algorithm had great superiority in time complexity compared
with other algorithms; for the number of over millions of rules, our algorithm also can
handle such a large amount of data. Fig. 3 is the time consumption by our sorting
algorithm for the data less than 12 million, we found that the number our algorithm
could handle can achieve a super value. Seen from the Fig. 3, we found that with the
increase of the number of segments, the time consumed by our sorting algorithm
increases almost linearly. So our algorithm can handle tens of millions of data that
others cannot handle.

Fig. 3. The time consumption of the algorithm in less than 12 million segments

Fig. 4 shows the comparison of two algorithms in the same scale, wherein the
abscissa is the number of rules, and the ordinate is the time consumed. Seen from
the figure that, when the rule number is less than 150, the reordering algorithm in the
FAME framework required less time than our algorithm; when the rule number is
equal to 150, the time required for sorting in two algorithm is almost the same;
however, when the rule number is more than 150, the time our MapReduce-based
sorting algorithm required did not change much, but the time resorting algorithm
required had greatly increased; particularly, the algorithm we proposed is able to
handle tens of thousands number, and the time consumption is relatively short.

In addition, the FAME framework can resolve about 92 percent of the conflicts.
This is because that the reordering algorithm in the framework cannot make sure that
the actions of rules after sorting fully comply with the actions of the segments they
involved in. But the sorting algorithm we proposed sorted the segments directly, and
made the segments’ actions be the rules’ actions, which guaranteed the new rules after
conversion can resolve nearly 100 percent of conflicts.

130 Q. Xiao, Y. Qin, and K. Li

Fig. 4. The time comparison between the reordering algorithm and the MapReduce-base sorting
algorithm

5 Summary and Related Work

In this paper, we improved the FAME framework, changed the reordering algorithm
that has high time complexity. We sorted based on the packet space segments, used a
parallel sorting algorithm based on the MapReduce model to sort the segments
directly, and converted the segments back to the representation of rules, so the actions
of the segments are the actions of these rules. The algorithm we proposed simplifies
the sorting in the original framework, and ensures the accuracy of the packets filtering
by directly replacing the original rules to the rules after conversion. Therefore, it is
very suitable for the use of large complex network.

Theoretically, the number of rules after conversion will be greater than the number
of original rules, and it will increase the time for matching when the packets coming,
the future direction of our paper is to study the merger of the rules. Some rules after
conversion are sequential, so we could develop the corresponding packet matching
algorithm according the characteristic of the rules, to simplify the matches of this kind
of packets.

Acknowledgments. Thanks for the guidance and help of all the teachers and students
in our laboratory for this article.

References：

1. Al-Shaer, E., Hamed, H.: Discovery of Policy Anomalies in Distributed Firewalls. In:
IEEE INFOCOM 2004, vol. 4, pp. 2605–2616 (2004)

2. Yuan, L., Chen, H., Mai, J., Chuah, C., Su, Z., Mohapatra, P., Davis, C.: Fireman: A
Toolkit for Firewall Modeling and Analysis. In: Proc. IEEE Symp. Security and Privacy, p.
15 (2006)

 MapReduce-Based Parallel Algorithm for Detecting and Resolving of Firewall 131

3. Alfaro, J., Boulahia-Cuppens, N., Cuppens, F.: Complete Analysis of Configuration Rules
to Guarantee Reliable Network Security Policies. Int’l J. Information Security 7(2),
103–122 (2008)

4. Hari, A., Suri, S., Parulkar, G.M.: Detecting and resolving packet filter conflicts. In:
INFOCOM (3), pp. 1203–1212 (March 2000)

5. Fu, Z., Wu, S.F., Huang, H., Loh, K., Gong, F., Baldine, I., Xu, C.: IPSec/VPN security
policy: Correctness, conflict detection, and resolution. In: Proceedings of Policy 2001
Workshop (January 2001)

6. Golnabi, K., Min, R.K., Khan, L., Al-Shaer, E.: Analysis of firewall policy rules using data
mining techniques. In: IEEE/IFIP Network Operations and Management Symposium,
NOMS 2006 (April 2006)

7. Hu, H., Ahn, G.J., Kulkarni, K.: Detecting and resolving firewall policy anomalies. IEEE
Transactions on Dependable and Secure Computing 9(3), 318–331 (2012)

8. Abedin, M., Nessa, S., Khan, L., Thuraisingham, B.: Detection and resolution of anomalies
in firewall policy rules. In: Damiani, E., Liu, P. (eds.) Data and Applications Security
2006. LNCS, vol. 4127, pp. 15–29. Springer, Heidelberg (2006)

9. Tian, D.X., Liu, X.: A fast matching alogorithm and conflict detection for packet filter
rules. Journal of Computer Research and Development 42(7), 1128–1134 (2005)

10. Hunt, R., Verwoerd, T.: Reactive firewalls-A new technique. Computer
Communications 26(12), 1302–1317 (2003)

11. Al-Shaer, E., Hamed, H., Boutaba, R., Hasan, M.: Conflict Classification and Analysis of
Distributed Firewall Policies. IEEE Journal on Selected Areas in Communications, vol 23,
2069–2084 (2005)

12. Yuan, L., Chuah, C., Mohapatra, P.: ProgME: Towards Programmable Network
Measurement. ACM SIGCOMM Computer Comm. Rev. 37(4), 108 (2007)

13. El-Atawy, A., Ibrahim, K., Hamed, H., Al-Shaer, E.: Policy Segmentation for Intelligent
Firewall Testing. In: Proc. First Workshop Secure Network Protocols, NPSec 2005 (2005)

14. Misherghi, G., Yuan, L., Su, Z., Chuah, C.-N., Chen, H.: A General Framework for
Benchmarking Firewall Optimization Techniques. IEEE Trans. Network and Service
Management 5(4), 227–238 (2008)

15. Sawilla, R.E., Ou, X.: Identifying Critical Attack Assets in Dependency Attack Graphs. In:
Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 18–34. Springer,
Heidelberg (2008)

16. Mell, P., Scarfone, K., Romanosky, S.: A Complete Guide to the Common Vulnerability
Scoring System Version 2.0. Published by FIRST—Forum of Incident Response and
Security Teams (June 2007)

17. Zhang, Y.Z., Fang, B.X., Chi, Y., Yun, X.C.: Risk propagation model for assessing
network information system. Journal of Software 18(1), 137–145 (2007)

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communication of the ACM-50th Anniversary Issue 51(1), 107–113 (1958-2008)

19. Li, J.J., Cui, J., Wang, D., Yan, L., Huang, Y.S.: Survey of MapReduce parallel
programming model. Acta Electronica Sinica 39(11), 2635–2642 (2011)

20. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Communication of
the ACM-Amir Pnueli: Ahead of His Time 53(1), 72–77 (2010)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 132–139, 2013.
© Springer-Verlag Berlin Heidelberg 2013

DPA-Resistant Algorithms for Trusted Computing System

Lang Li1,2, Kenli Li2, Yi Wang2, YuMing Xu1,2, Hui Liu1, and Ge Jiao1

1
 Department of Computer Science, Hengyang Normal University,

 Hengyang, 421002, China
2 College of Information Science and Engineering, Hunan University,

 Changsha, 410082, China
lilang911@126.com, lkl520@263.net,

{3999103,249284257,23506686,41706014}@qq.com

Abstract. Side channel attacks could efficiently break cryptographic algorithm
based on hardware implementation including applications on trusted computing
systems. Chinese researchers had proposed a standard encryption algorithm,
called SMS4, for their own wireless LAN communications in 2006. In this paper,
we propose a modified fixed-value masking algorithm for SMS4 in order to resist
again power analysis attack to hardware based SMS4. Furthermore, we simulate
the attacking environments and port the proposed countermeasure to FPGA
platform. The experimental results show that the proposed countermeasure can
efficiently resist against power analysis attack.

Keywords: Differential Power Analysis, SMS4, Fixed-Value Masking
Algorithm, Trusted Computing System

1 Introduction

The growing demands for information security are characterizing many
communication and computer systems, especially for trusted computing systemP [1]P.
In order to meet the secure requirements of trusted computing system, we usually use
extra encrypted module to protect the system. there have been a number of techniques
proposed to “crack” these systems. the real-world attacks are usually against the
implementation of the techniques and not the theoretical properties of the techniques.
Such attacks are called side channel attacksP [2-3]P. These attacks that are based on
"side channel information", that is, information that can be retrieved from the
encryption device that is neither the plaintext to be encrypted nor the ciphertext
resulting from the encryption process. These attacks are aimed at the physical
implementation of the cryptographic algorithms. Among these, power analysis attack
is most powerful attack.

Trusted Computing Group (TCG) proposed Trusted Platform Module (TPM) based
trusted system targeting at low end application such as personnel computer (PC),
therefore it lacks of the consideration of resisting against power analysis attacks.

 DPA-Resistant Algorithms for Trusted Computing System 133

But power analysis attack becomes a big threat to TPM when it is applied to high end
application such as server. There have two common power analysis attacks called
Simple Power Analysis (SPA) and Differential Power Analysis (DPA)P [4]P. SPA is a
technique that involves directly interpreting power consumption measurements during
cryptographic operations. DPA is based on statistical analysis in which the attacker
can guess the correctness of the keys by comparing the differences between a sample
power trace and the correct key power trace. Side Channel Attacks Resistant Design
(SCARD) group had done extensive research on side channel attack especially for
trusted computing system. Another research group from Motorola’s security lab had
proposed the countermeasures against side channel attack for trusted computing on
mobile devicesP [5]P. A. Schuster generalized a method for DPA attack to AES in the
work of [6]. In this paper, we proposed a novel reliable platform dedicated for the
trusted computing system with the capability to resist against side channel attack
especially for power analysis attack.

2 Impoved SMS4 against Power Analysis Attacks

2.1 SMS4

Active and passive attacks are two ways attacking trusted computing systems. Passive
attack is more powerful attack than active one due to no trace and no damage to the
original system after attacking. Figure 1 shows the architecture of a normal trusted
computing system.

Fig. 1. The architecture of a normal trusted computing system

Passive attack is also big threat to TPM. The sensitive data as private key needs to
be protected in TPM as it can be easily achieved by using power analysis attackP [7]P.
This is also can be seen by a case study on SMS4 algorithm introduced in the
followings P[8]P.

SMS4 is a block cipher with the typical length equaling to 128 bit and key length
equaling to 128 bit. The cipher and key expansion states need 32 nonlinear iterative
rounds. The procedure of encryption and decryption are similar except the sequences
of using round keys which is opposite to each other. The round operation consists of
XOR, S-box and left circle shifting. Figure 2 shows the encryption procedure of
SMS4.

134 L. Li et al.

Fig. 2. The encryption procedure of SMS4

The typical computational operations of SMS4 are carried on using word length.
We denote one iteration operation, called one round, as function F. . Figure 3 show
the procedure of F of SMS4. There have four S-boxes of SMS4 and each S-box is
characterized with 8 bit inputs and 8 bit outputs.

Fig. 3. The procedure of F in SMS4

According to the introduction of SMS4 algorithm given above, we choose two places
as the suitable points for DPA attack. The first attacking point is the XOR operation of
the first round of SMS4 algorithm and the second attacking point is the first bit output of
S-box. Figure 4 shows the above two attacking points labeled as (1) and (2).

 DPA-Resistant Algorithms for Trusted Computing System 135

Fig. 4. Two attacking places as (1) and (2)

2.2 The Weakness of SMS4 Algorithm

Considering a cryptographic algorithm based on hardware implementation, the
systems will consume power when the computations taking place. The quantity of
each circuit’s power consumption depends on the exact processing data. In gate level,
this is represented as the number of times of charging and discharging of the load
capacitances. In register level, this is represented as the number of times of flip-flop
flipping from 0 to 1 or from 1 to 0. In operand level, this is also represented as
hamming distance (HD) between the two consecutive operand datas. In this paper, we
use hamming distance model to mimic the power consumption in the real circuit.
The power consumption can be represented in the following equation as:

bRDaHw +→=)((1)

Where W is power consumption, H is HD, D and R is input and output to the register.
H(D → R) is the HD between operands D and R, a and b are two consistent
parameters.

When a=1,b=0, equation (2) can be rewrite as:

)(RDHw →= (2)

2.3 Proposed Countermeasure of SMS4 Algorithm

In this paper, we propose a modified fixed value masking algorithm for SMS4. We
precompute and store the corresponding S-box for each consistent masks. During the
computation, one round not only needs one mask, but also randomly uses several
masks. We can efficiently resist against high order power analysis if the attacker do
not know the load points of masks. The proposed countermeasure based on [9] is
described as follows:

1) Precompute n consistent masks, n depends on the area and power
consumption of a chip;

136 L. Li et al.

2) Select one mask is to perform XOR operation with plaintext;
During the S-box state, 32 rounds use 32 different masks;
3) Private key is to perform XOR operation with mask randomly;
4) Inverse operation during decryption

The key point of the proposed countermeasure depends on how to generate the fixed

value mask. We precompute the needed n fixed value masks (n ≥ 2) and store the
results in ROM. There also some rules for selecting fixed value masks to avoid simple
information leakaging. It does not allow to choose all ‘0’ or ‘1’ values for the fixed
value masks and the possibility of number of ‘0’ bit must take up around 50% of all
the bit for a fixed value mask.
The pseudo-code for generation of S-box, called SboxUpdate, is described as follows:

SboxUpdate(S,r)
For(x=0;x<=256;x++)

S’[x]=S[x⊕ mr]⊕ mr;
Output S’

Where, x is the input plaintext, mr] is a fixed value mask. S’ is precomputed S-box
and stored in ROM. It needs 256 times computation for one fixed value mask.

3 Implementation of Improved SMS4

We port our design to Xilinx Virtex II FPGA platform using hardware description
language Verilog HDL. The procedure of our implementation is described in Figure 5.

Encrypt_bl oc k

T_func t i on

Key_round

L_key_func t i on

Sbox

L_func t i on Swa p_func t i on

Left_s hi ft

T_key_func t i on

Da t a _round

Fig. 5. The procedure of the proposed countermeasure for SMS4

 DPA-Resistant Algorithms for Trusted Computing System 137

Fig. 6. Simulation results from ModelSim

Figure 5 shows the design flow chart in detail when coded with Verilog DHL. The
simulation result is shown in Figure 6 and it proves the correctness of our proposed
architecture.

Figure 7 shows the simulation wave form of the modified SMS4 algorithm. We
select only two wave forms represented the whole simulation, (a) representing running
time at ‘0’ and (b) representing running time at the end.

 (a) at time ‘0’

 (b) at the end

Fig. 7. The simulation waveform

4 Power Analysis Attacks Experiment of Improved SMS4

We also mimic the high-order DPA attack to our proposed countermeasure. Figure 8
shows the setup of the experimental environment for the proposed countermeasure.

Fig. 8. Experimental environment of the proposed countermeasure

138 L. Li et al.

In Figure 8, Plaintext is produced in PC by software control and PC sends it to
FPGA through the serial port. After receiving a full plaintext, our proposed algorithm
will produce ciphertext. At the same time, an external trigger signal will trigger the
oscilloscope to collect and store the waveform results. Oscilloscope will send those
data to PC through USB. The channel 1 of the oscilloscope is set to collect the data
and the channel 2 is set to connect to the external trigger signal. In this experiment,
we use Tektronix DPO4032 digital oscilloscope and collect 50000 samples with
10000 samples depth at 25MS/s.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time:us

di
ff

er
en

tia
l v

al
ue

Fig. 9. Experimental results of the proposed countermeasure for DPA attack

From Figure 9, we can see that there does not exist possible guessing point for
attacker to know the private key. Therefore, our proposed countermeasure efficiently
resist against DPA attack.

5 Conclusions

In this paper, we proposed an efficient countermeasure for SMS4 and simulate it in
real FPGA platform. We also analyzed SMS4 in details and shows that it can not
resist against power analysis attack when ported SMS4 to hardware platform.
Therefore, it is necessary to protect the SMS4 using our proposed countermeasure.

Acknowledgements. This research is supported by the Key Program of National
Natural Science Foundation of China under Grant No.61133005,the Scientific
Research Fund of Hunan Provincial Education Department with Grant No 11B018,
the Scientific Research fund of Hengyang Normal University with Grant No
12CXYZ01,11B43, Hunan Postdoctoral Science Foundation with Grant No
897203005,The Construct Program for "the 12th Five-Year" Key Disciplines
(Optics) in Hunan Province, The Construct Program for "the 12th Five-Year" Key
Disciplines (Computer Science) in Hengyang Normal University.

 DPA-Resistant Algorithms for Trusted Computing System 139

References

[1] Jian, M., Yujie, Z.: Trusted platform module countermeasures against hardware attacks.
Information Technology (6), 27–30 (2006)

[2] Kocher, P., Lee, R., et al.: Security as a New Dimension in Embedded System Design. In:
DAC 2004, San Diego, California, USA, pp. 753–760 (2004)

[3] Al-Somani, T.F., Amin, A.A.: High Performance Elliptic Curve Scalar Multiplication with
Resistance Against Power Analysis Attacks. Journal of Applied Sciences 8(24),
4587–4594 (2008)

[4] Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related attacks
(1998), http://www.cryptography.com/public/pdf/DPATechInfo.pdf

[5] Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart- card Security under the
Threat of Power Attack Analysis. IEEE Trans. on Computers 51(5), 541–552 (2002)

[6] Schuster, A.: Differential Power Analysis of an AES Implementation. Technical Report,
IAIK-TR2004/06/25

[7] Li, L., Li, R., Sha, E.H.M.: Survey on Security SOC Against Power Analysis Attack.
Computer Science 36(6), 16–18 (2009)

[8] Office of State Commercial Cipher Administration. Block Cipher for WLAN Products-
SMS4 (2006),
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

[9] Chang, H., Kim, K.: Securing AES against Second-Order DPA by Simple Fixed-Value
Masking. In: CSS 2003, pp. 145–150 (2003)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 140–150, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Detection of KVM’s Virtual Environment
and Vulnerability∗

Li Ruan**, Yikai Sun, Limin Xiao, and Mingfa Zhu

State Key Laboratory of Software Development Environment,
Beihang University, Beijing 100191, China

School of Computer Science and Engineering, Beihang University，Beijing 100191, China
{ruanli,xiaolm,zhumf}@buaa.edu.cn, sunyikai00@yahoo.com.cn

Abstract. Recently, virtualization technology has revived and become the key
support of the clouds. KVM (Kernel virtual machine) based on Linux kernel-
level achieves its popularity however with security risks. Therefore, the virtual
environment and vulnerability detecting of KVM is of theoretical significance
and great application value. However, there are few reports on virtual
environment and vulnerability detection for KVM. This paper introduces a
virtual environment and vulnerability method which includes the CPU cycle
based detection algorithms, the internet time detection algorithms and multi-
thread counter detection algorithms, etc.. In the vulnerability detection of KVM,
denial of service attack is simulated and its detection method is proposed.
Function and performance tests are also introduced.

Keywords: Virtual machine, virtual environment detection, vulnerability
detection.

1 Introduction

Recently, the security of virtualization gains increasing attention of academic and
industrial parties under cloud computing trends and some researches also point out
that virtual machine performance is no longer the most important metric of
virtualization under the risk of security. The introduction of virtual machines brings
more serious and broader virtual- machine featured security risks besides those for
traditional systems. First, in the virtual computing environment, if one virtual
machine is hijacked, the other virtual machines on the same physical machine are
more possible to be hijacked than non-virtual environment because they share the
same physical resources. Secondly, even if all virtual machines are assigned the same

∗ This work was supported by the Hi-tech Research and Development Program of China under

Grant No. 2011AA01A205, National Natural Science Foundation of China under Grant No.
61003015;Beijing Natural Science Foundation(4122042); The fund of the State Key
Laboratory of Software Development Environment under Grant No. SKLSDE-2012ZX-23
and the Open Research Fund of The Academy of Satellite Application under grant NO.
SSTC-YJS-01-03.

** Corresponding author.

 Detection of KVM’s Virtual Environment and Vulnerability 141

severe safety level, because they can communicate without network communication,
the degree of risk will be exponentially increased. In addition, the virtual machine
provides some additional features. For example, VMware provides functions like a
shared folder (Shared Folders), automatically drag and clipboard functions across
environments inevitably require additional information between the client and the
host opened transmission channel which bring a serious security risk. [1]uses the
QEMU’s CVE-2011-175 in KVM to conduct a virtual machine escape attack. DOS
attack will even make the whole virtual system collapsed [1-6].

Although virtual machine’s security gains increasing attention, existing researches
focus more on the security detection and evaluation on physical environments;
moreover, the security gains few focuses from the initial design of virtual machine.
There are few research on security and vulnerability detection and much fewer in
KVM(kernel virtual machine[1,5]. The virtual environment introduces new
requirement by the coexisting of private network and public network and changing
network environment [1,12]. This paper introduces a detection method of KVM’s
Virtual environment and vulnerability by taking into account of the CPU architecture
defects and KVM’s characteristics.

2 Virtual Environment Detection for KVM

The design idea is taking into the characteristics that there are some special CPU
instructions which will execute shorter clock cycle under virtual machine than
physical machine into consideration. We can construct a loop program which will
compare the run time of that special instruction and the common instruction and then
decide whether the current environment is under a virtual machine or not. The
algorithm KVMVEDetect is designed as following where the instruction of CPUID is
used as an example as in Algorithm 1.

Algorithm 1: KVMVEDetect
Input: CPUID
Output: c and Whether the current environment is a virtual environment or not.
1：a1 = the start time;//Execute a loop instruction under current environment

and record the start time a1.
2: LoopTimes = 1000;// set an initial counter for the times of this loop

instruction.
3: a2 = the end time;// Record the end time when the loop instruction is ended.
4: a = a2 - a1;// the total run time of loop a which is under the environment

without special instruction environment
5: Add instruction CPUID into each loop;
6: Repeat 1-3 and record the start time b1 with loop and end time b2,
7. b = b1 – b2;// the total run time of loop which is under the environment with

CPUID
8．c = b/a;
9. Judge whether the current environment is a virtual environment using c.

142 L. Ruan et al.

Because the addition of special instruction CPUID, it will take more time loop,
therefore b> a. Moreover, because the defects of CPU architecture, CPUID will take
different time under virtual environment and physical environment and the traditional
loop will take the same time. Therefore, the value of c will be different. There are
three different methods for our detection algorithms: (1)CPU cycle based detection
method which uses the CPU’s fixed clock cycle counter to implement detectection.
(2)Network time based detection method which uses outer resources, i.e. network
time to implement detection. (3)Multi-thread counter detection method which adds a
self-defined counter into the subthreads to implement detection.

2.1 CPU Cycle Based Detection

2.1.1 Design Idea
The fixed CPU clock cycle(TSC) is used as a baseline to record the time for
executing the same special instruction. When the program starts, the counter runs.
When the program’s loop ends, a signal is returned to CPU and the timer of CPU ends
together. The running time of the program is achieved by comparing the difference of
the time and the ration is used to judge whether it is now in the virtual environment.

2.1.2 Implementation Method
Initialize compile instruction by call clock_gettime(CLOCK_THREAD_CPUTIME_
ID,&time) to get current CPU time; Set the counter to 0; Loop till the counter to be the
set value (e.g. 1000); Call the function clock_gettime to gain the current CPU time;
difference the two time value to get the total time of the program running. If the special
instruction of CPUID is removed from the program to get the total time of another
program running. Finally, by judging the ratio of with and without special instruction of
CPUID, whether it is under virtual environment is judged. The algorithm is defined as
following Algorithm 2.

--
Algorithm 2: CPUCycleBasedDetection()
Input: clock_gettime
Output: c.
1. Call clock_gettime to achieve the current CPU time a1;
Set the integer variable i = 0. Loop (i = i + 1) till i =1000;
2. Call clock_gettime to achieve the current CPU time a2;
3. a = a 2 –a 1;
4. Call clock_gettime to achieve the current CPU time b1.
5. Set the integer variable i = 0. Loop {（i = i + 1）;CPUID;} till i =1000;
6. Call clock_gettime to achieve the current CPU time b2;
7. b = b2 – b1;
8. c = b/a;
9. Judge whether it is under virtual environment with c.

 Detection of KVM’s Virtual Environment and Vulnerability 143

2.2 Network Time Based Detection

2.2.1 Design Idea
The outer resources are used to achieve network time during the program runs NTP protocol to
call Internet time. First, when the program starts, the start time a1 of Loop without special
instruction is achieved by using NTP protocol to achieve current Internet time. The end time of
Loop without special instruction is recorded as a2. Then we add the special instruction. The
start time of Loop with special instruction is b1. The end time of Loop with special instruction
is b2. Then the total time during the program runs by using the difference c = (b2 - b1) /(a2 -
a1).

2.2.2 Implementation Method
Initialize compile instruction by call NPT protocol to get current network time; Set
the counter to 0; Loop till the counter to be the set value (e.g. 1000); When the loop
finishes, call the NPT protocol to gain the current network time; difference the two
value to get the total time of the program running. If the special instruction of CPUID
is removed from the program to get the total network time of another program
running. Finally, by judging the ratio of with and without special instruction of
CPUID, whether it is under virtual environment is judged. The algorithm is defined as
following Algorithm 3.

--
Algorithm 3: NetworkTimeBasedDetection()
Input: NPT protocol
Output: c
1. Call NPT protocol to achieve the current network time a1;
2. Set the integer variable i = 0. Loop (i = i + 1) till i =1000;
3. Call NPT protocol to achieve the current internet time a2;
4. a = a 2 –a 1;
5. Call NPT protocol to achieve the current network time b1.
6. Set the integer variable i = 0. Loop {（i = i + 1）;CPUID;} till i =1000;
7. Call NPT protocol to achieve the current CPU time b2;
8. b = b2 – b1;
9. c = b/a;
10. Judge whether it is under virtual environment with c.

2.3 Multi-thread Counter Based Detection

2.3.1 Design Idea
This method will use two threads. In the first thread, the loop time will be recorded with the
running of program. The second thread will communicate with the first thread when the
program starts and the counter is increased. When the counter arrives a fixed value(e.g. 1000),
the second thread will communicate with the first thread. The output time of the second thread
is the final results for the comparison.

144 L. Ruan et al.

2.3.2 Implementation Method
Initialize compile instruction by call NPT protocol to get current network time; Set
the counter to 0; Loop till the counter to be the set value (e.g. 1000); When the loop
finishes, call the NPT protocol to gain the current network time; difference the two
value to get the total time of the program running. If the special instruction of CPUID
is removed from the program to get the total network time of another program
running. Finally, by judging the ratio of with and without special instruction of
CPUID, whether it is under virtual environment is judged. The algorithm is defined as
following Algorithm 4.

--
Algorithm 4: NetworkTimeBasedDetection()
1. Call pthread_create to create the child process;
2. In thread2, set the integer variable b= 0. Loop (b = b + 1) till i =1000; Communicate

with thread1 by the function signal.
3. In thread1, set the integer variable a= 0. When the signal is received, Loop {(a= a +

1) ;CPUID;}.
4. When a in the thread2 received 1000, communicate with thread1 by the function

signal and thread1 stops.
5. Achieved a and b;
6. c = b/a;
7. Judge whether it is under virtual environment with c.

3 Vulnerability Detection for KVM

DOS attack vulnerability detection algorithm is designed as following Algorithm 5.

Algorithm5: KVMVulDetect
Input: shell
Output: vulnerability report
 1: Execute shell which collects the server information;

2. Print process whose CPU utility>0 to the file CPUUtility.tex; process ID = the first
process’s ID;

 3: a = CPU utility of the process by Read one line of CPUUtility.tex.
 4: If a>90 goto 6 else goto 5;
 5: If the end line of CPUUtility.tex, execute sleep; pause 5 seconds, goto 1 else go to 3;
 6: char[x] = command of current process; t = the times of the process ID exists; execute

sleep and pause 1 second; goto 7.
 8: loop step1 to step 5 for three times; goto step9;
 9: If t = 3 goto step10 else goto step1;
 10: Output char[x] ; print “there is a risk and whether to kill this process”;
 11: If kill, the process is terminated; else record this process as a secure process and its

process ID. If the ID exists in Step 2, process ID; goto 3.
--

 Detection of KVM’s Virtual Environment and Vulnerability 145

4 Experiments and Results Analysis

4.1 Test Environment

Table 1gives the hardware and software environments of our experiment.
Hardware environment: Intel Xeon 5160 3.00GHz with multi-cores and 4 threads

CPU. DDR2 667MHz memory of 4G. OS: Ubuntu Server 10.04.2; Deveopment
environment: C, shellcode, LINUX GCC and VIM.

Table 1. Hardware and Software Configurations

CPU Intel Xeon 5160 3.00GHz dual core with 4
threads

Memory(RAM) DDR2 667MHz 4*1G

OS Ubuntu Server 10.04.2

Development Language Visual C,Shellcode

Development environment Vim, Gcc

4.2 Function Test of Virtual Environment Detection

4.2.1 Virtual Environment Detection
Experimental process: Run detection program in the LINUX environment 和KVM
virtual environment in the server; analysis the results.

Fig. 1. Detection results in Linux

146 L. Ruan et al.

Fig. 2. Detection results in KVM

Results： As is shown in Fig.2 , c both with or without CPUID fluctuates around
30 in Linux and fluctuate between [2,3] under KVM. The value is different and
effective to differentiate the virtual and physical environments.

4.2.2 DoS Attack Simulation
In KVM, we open DoS attack process and investigate the change of CPU utility in the
server using TOP command and record once five seconds. The result is as following
Fig. 3

CPU Utility

Time

Fig. 3. Effect of DOS Attack to Virtual Machine Communication

 Detection of KVM’s Virtual Environment and Vulnerability 147

Fig. 4. Virtual Machine Stops Communication

As is shown in Fig. 4, after the DOS attack emulation, start another virtual machine
and communicate with the virtual machine which is attacked. Then we
ping192.168.5.160 and the result shows that normal communication stops.

Fig. 5. Communications with virtual machines recovered

148 L. Ruan et al.

As is shown in Fig.5, communication can finish after the fork process in the
attacked virtual machine is closed.

From this experiment, we can see that DOS is successfully emulated.

4.2.3 KVM Vulnerability Detection
(1) Simulate DOS attack
Test procedure: Run the DOS attack simulation process in KVM virtual machine.
Then, we record the CPU utility every 5 seconds using TOP.

Test results：we find that the CPU utility is above 98% except the time the
program initiates.It shows that DOS simulation (i.e.,CPU resources are mostly
occupied simulation)results are successfully achieved.
(2) Detect DOS attack
Test procedure: Repeat the running of the DOS attack close process in KVM virtual
machine. Run the vulnerability detection program. Observer the CPU utility and
report the attack to the

Test results: As is shown in Table 2, when the DOS attack process is running, our
program can successfully detect the risky status and report to user. When the DOS
attack process is closed and CPU utility is relatively low, there is no report to user.
This result verified the effectiveness of our detection software and stability of our
results.

Table 2. Function test results

Status Open Close Open Close Open Close Open Close Open
CPU% 100 57 99 27 100 78 98 45 100
Report Y N Y N Y N Y N Y

4.3 Performance Test

4.3.1 KVM Virtual Environment Detection
Our basic idea for virtual environment detection is that the difference of Linux and
KVM environments can be detected by comparing the running time . (1)CPU cycle
counter based detection method: under Linux system, the value is distributed between
[30,35] with or without special instruction （ CPUID ） .Under KVM virtual
environment , the value is distributed between [2,4] with or without special
instruction（CPUID）. These results are relatively stable.(2)multithreads counter
based detection method: under Linux system, the value is distributed
between[31,34]and [15,18] with or without special instruction（CPUID）.Under
KVM virtual environment , the value is distributed between [2,5] with or without
special instruction（CPUID）. These results fluctuated greatly and are not stable.

Environment adaptability test: Just because the above tests are performed under
single server, to avoid the randomness, we also performed the following tests in
different platforms. As is shown in the Table 3 and Table 4, the three algorithms can
apply to different environments.

 Detection of KVM’s Virtual Environment and Vulnerability 149

Table 3. Comparison of Different virtual environment methods

Comparison CPU
cycle
based
method

Network time based
method

Multithreads counter based
method

Stability High Middle Relative Low
Accuracy High Middle High
Anti-attack
difficulty

Low Middle High

Table 4. Detection accuracy

of created processes 1 2 5 10 15 20 50 80 100
CPU% 19 22 45 67 92 99 100 99 100

Report N N N N N N N Y Y

4.3.2 Vulnerability Real-Time Detection
Test procedure: Open limited threads in virtual machine and run vulnerability
detection program. Record CPU utility and report to user of the attacks. From Table
3 we can find out that, even CPU utility is up to 98% in a short time, the detection
software will not report. Only CPU utility remains high, the detection software will
report user and suggest to deal with the vulnerability.

5 Conclusions and Future Work

This paper introduced a detection method of KVM’s virtual environment and
vulnerability. Both function and performance test results verified its effectiveness. We
are now research on more automatic vulnerability detection method and vulnerability
detection method for XEN .

Acknowledgments. We express our gratitude for the related students in Beihang
University who participated in our project in [13].

References

1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol.
Biol. 147, 195–197 (1981)

2. May, P., Ehrlich, H.-C., Steinke, T.: ZIB Structure Prediction Pipeline: Composing a Complex
Biological Workflow through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.)
Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)

3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco (1999)

150 L. Ruan et al.

4. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for
Distributed Resource Sharing. In: 10th IEEE International Symposium on High
Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)

5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid
Services Architecture for Distributed Systems Integration. Technical report, Global Grid
Forum (2002)

6. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
7. Karger, P.A.: Is Your Virtual Machine Monitor Secure? In: Third Asia-Pacific Trusted

Infrastructure Technologies Conference, October 14-17, p. 5 (2008)
8. Wu, H.Q., Ding, Y., Winer, C., Yao, L.: Network security for virtual machine in cloud

computing. In: 5th International Conference on Computer Sciences and Convergence
Information Technology (ICCIT), November 30-December 2, pp. 18–21 (2010)

9. Christopher, T., Maria, H., Chad, L.: Virtualization Detection: New Strategies and Their
Effectiveness (Ph.D. Thesis). Minneapolis, MN 55455: University of Minnesota (2010)

10. Peter, F.: Attacks on Virtual Machine Emulators. Symantec Advanced Threat Research
(2008)

11. Mueller, S.: KVM Security Comparison (November 02, 2009), http://www.atsec.
com/downloads/white-papers/kvm_security_comparison.pdf

12. Bazargan, F.A., Yeun, C.Y., Zemerly, J.: Understanding the security challenges of
virtualized environments. In: 2011 International Conference for Internet Technology and
Secured Transactions (ICITST), December 11-14, pp. 67–72 (2011)

13. Sun,Y.K.: Detection of KVM’s Virtual Environment and Vulnerability. Bachelor Thesis.
Supervised by Ruan, L. (2012)

Y. Zhang, K. Li, and Z. Xiao (Eds.): HPC 2012, CCIS 207, pp. 151–165, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Scalability Tests of a Finite Element Code on Hundreds
of Thousands Cores and Heterogeneous Architecture

Jiangyong Ren, ChaoWei Wang, Yingrui Wang, and Rong Tian

HPC Research Center, Institute of Computing Technology,
Chinese Academy of Sciences, 100190 Beijing, China

{remjiangyong,wangchaowei,wangyingrui,rongtian}@ncic.ac.cn

Abstract. A multi-scale finite element method code, msFEM, is tested on
Jaguar and Nebulae, two petaflops computers that were listed as #1 and #2 on
the Top500 list of June 2010 at the time of the tests. The flat MPI version of
msFEM is scaled from 20K up to 200K CPU cores on Jaguar, delivering 70%
parallel efficiency at the 200K cores with a finite element model of eight
millions of degrees of freedom. GPU versions, in both double precision and
mixed precision coded through MPI+OpenMP+CUDA hybrid programming,
900 GPU nodes on Jaguar and 1500 GPU nodes on Nebulae, achieving
remarkable 90+% parallel efficiency on the systems. The mixed-precision GPU
version delivers further 1.5 times of speedup over the fully double precision
version with no significant implementational cost. The large-scale tests support
that the msFEM runs efficiently on petaflops computers and is highly potential
for domain applications at extreme-scale.

Keywords: Tens of Thousands Cores, Scalability, GPU, Mixed Precision,
Finite Element Method.

1 Introduction

The frontier of computational physics and engineering is to address the challenge of
high fidelity modeling and simulation of real complex systems, the need to
completely transform the discipline of computer simulation into predictive science
[1]. A real physical problem usually is an interaction process involving multiple
physics (i.e., multi-physics) and the interaction crossing a broad spectrum of spatial
and temporal scales (i.e., multi-scale). As petaflops computers become readily
available, computational scientists are stepping into a completely new era, a times
when the coupling of multi-physics that has not been feasible before now may
become affordable. Direct numerical simulation (DNS), which, in a broad sense,
means a simulation with least phenomenological assumption and parameterization in
the whole process, is commonly accepted as the “converged” solution and a major
path leading to the predictive science and it causes broad attention in the community
of computational science. For example, DNS can be conceived as a commonly shard
core feature of the 6 early exascale science codes selected on Titan, the #1 computer

152 J. Ren et al.

on the Top500 list of November 2012 [2]. The six codes are respectively S3D for
combustion [3], CAM-SE for climate [4], DENOVO for nuclear reactor designs [5],
LAMMPS for molecular dynamics [6], PELOTRAN for computational geo-science
[7], and WL-LSMS for first principle calculation [8].

Material strengthening is the centuries-long standing and ultimate goal of material
science. The material strengthening, in nature, is to introduce various kinds of defects
(e.g., point, line, planar and volume defects etc) to pin dislocation. However, material
strengthening invariably leads to concomitant decreasing plasticity and toughness,
showing a strength-toughness trade off. Quantitative understanding the link between
multiscale microstructures and properties of materials (Fig. 1) is fundamentally
crucial for improving fracture toughness while keeping high strength [9][10].

The promise of computational science in the extreme-scale computing era is to
reduce and decompose macroscopic complexities into microscopic simplicities with
the expense of high spatial and temporal resolution of computing. Direct combination
of 3D microstructure data sets and 3D large-scale simulations provides
transformational opportunity for the development of a comprehensive understanding
of microstructure-property relationships in order to systematically design materials
with specific desired properties.

We have developed a framework simulating the ductile fracture process zone in
microstructural detail (Fig. 2) [11]-[19]. The experimentally reconstructed
microstructural dataset is directly embedded into a continuum mesh model to improve
the simulation fidelity of microstructure effects on fracture toughness. For the first
time, the linking of fracture toughness to multiscale microstructures in a realistic 3D
numerical model in a direct manner has been accomplished (Fig. 2 and Fig. 3) [19].
Reported in the paper is the scalability tests of the developed multiscale simulation
code, msFEM, up to 200K CPU cores and 900 GPU nodes on Jaguar and 20K CPU
cores and 1500 GPUs cards on Nebulae, the two petaflops computers [2].

Fig. 1. Missing structure-property link in material designs [10]

Processing

Structure

Properties

Performance

Goals - Means

Cause - Effect

 Scalability Tests of a Finite Element Code on Hundreds 153

Fig. 2. Three dimensional microstructure reconstructions and simulations of fracture process
zone [17][18][19]. (a) and (b) show the crack tip specimen and microstructure reconstruction
providing the microstructures within the fracture process zone and crack opening displacement
(COD) versus the applied load, respectively. Using high performance computing, a 3-
dimensional microstructure simulation ((c), (d)) reveals clearer micro-structural features and
interplay during the development of the fracture process zone and provides a deeper
understanding of the effects of microstructures on materials properties.

Fig. 3. Microstructural features of fracture process zone revealed through numerical simulation.

2 msFEM—A Multi-scale Finite Element Method Code

The physical “multiscale nature” of extreme-scale domain applications determines the
time resolution needed to be resolved has to be small. When the physics at the small
scale is dominant, which is usual in multiscale phenomena, the small time step is not
only a requirement of the numerical stability, but more importantly also the need to
capture the rapid evolving physics at sub-scale. The sub-scale rapid evolving physics

154 J. Ren et al.

Fig. 4. The experimental verification

and the excellent scalability of explicit methods explain the current situation that
around 2/3 applications on today’s petaflops computers worldwide are either explicit
FEM/FDM or MD/particle simulation, for example on Titan [20].

msFEM is an explicit code for multiscale analyses of material deformation, which
is a 3D, parallel, nonlinear, large-deformation, multiscale code written in C++. The
code is based on gradient plasticity theories [21]-[23] and the framework of
generalized finite element methods [24]-[28]. The continuum model employed can be
switched between the classical continuum model and the multi-resolution continuum
model [11]-[19]. The generalized finite element framework allows an arbitrary
number of degrees of freedom (dof) per node. The code has been used on
BlueGene/L, Dawning 5000A, Nebulae and Jaguar (refer to [2] for the details of the
computers).

An explicit FEM is to solve explicitly Newton’s second law, Ma=F, where M is the
mass matrix and F is the vector of force. The most of calculation is spent on
computing F, approximately occupying 90-94% of the overall time-to-solution. The
update of acceleration, velocity, and displacement occupies about 1-2%, data IO
around 2-3%, and the rest around 3%.

2.1 Implementations of msFEM

msFEM has three different parallel implementations: (1) flat MPI version,
msFEM_CPU; (2) CPU+GPU double precision version, msFEM_GPU_double; (3)
CPU+GPU mixed precision version, msFEM_GPU_mixed. The three
implementations are detailed as follows:

1. msFEM_CPU: each CPU core runs a MPI process based on a traditional flat
MPI programming model;

2. msFEM_GPU_double, developed for GPU accelerated clusters. Each compute
node runs a MPI process, the cores of CPU and GPU are collectively managed
by multiple threads. It is based on a MPI+OpenMP+CUDA hybrid parallel
programming model. All float point operations are done in double precision in
this version.

 Scalability Tests of a Finite Element Code on Hundreds 155

3. msFEM_GPU_mixed, a mixed precision version of msFEM_GPU_double. The
mixed precision is an acceleration strategy on vector units such as SSE and GPU
using low precision for the majority of float point operations while maintaining
the accuracy of the solution of application. The purpose of the mixed precision is
to accelerate the time-to-solution by fully taking advantage of the compute
power of low precision over high precision on vector units and increasing the
throughput of network and memory access by doubling the usage efficiency of
bandwidth.

2.2 Parallelization and Acceleration Techniques in msFEM

msFEM decomposes the domain of interest using METIS [29], a graph partitioning
open source code. Each sub-domain is assigned to and computed by one MPI process.
Fig. 5 illustrates such a sub-domain without losing generality. The finite elements of
each sub-domain are grouped into two parts: an internal zone composed of the 4x4
elements in the center in the figure and a halo zone composed of the outer two layers
of elements. The internal zone is called internal because data are self dependent and
data exchange with neighboring processes is not needed. In the halo zone, the
outermost layer of elements is called a ghost layer and the second to the outermost is
called a boundary layer. Stepwise calculation in an explicit FEM includes two parts:
(1) to compute on the internal zone, (2) to send the boundary layer to neighboring
processes, to receive the data into the ghost layer from neighboring processes and to
compute on the boundary layer after the communication is done with success.

Fig. 5. Partitioned sub-domain of a FE mesh model

Parallelization is mainly concerned about:
1. Domain partition
There are two ways to partition a mesh: node-based partition and element-based

partition. For an explicit method, the element-based partition leads to a shorter
communication boundary and hence less elements that require inter-subdomain data
exchange. The element-based partition is adopted in msFEM.

156 J. Ren et al.

2. Asynchronous communication
Overlapping communication with computation is a major optimization strategy in a

parallel finite element code. The detailed procedure is to first start non-blocking
communication of the halo data exchange before the computation on the internal zone
so that the communication of the halo zone can be overlapped by the computation on
the internal zone. When the internal zone contains an enough number of elements, the
computation on the internal zone can well hide the time spent on the data exchange of
the halo zone.

3. Terabyte data IO
Aside the communication bottleneck, data IO becomes a new bottleneck when the

number of MPI processes is beyond tens of thousands. The sequential data IO is
definitely out of consideration for a simulation at scale. On the other hand, once the
number of MPI processes exceeds several tens of thousands (for example 40K MPI
processes), process-wise IO operations exert huge pressure on a parallel file system,
resulting in, for example, the contention of metadata server in a parallel file system
like Lustre on Jaguar. msFEM avoids the contention by collecting IOs operation into
a small set of the MPI processes involved in a simulation.

2.2.1 GPU Acceleration
GPU acceleration follows several quite standard techniques:

1. Packed data transfer between CPU and GPU. This includes to re-form data-
structure to improve memory access speed;

2. Asynchronous execution. Data to be computed on GPU is partitioned. Data
transfer and computation is pipelined to hide the time of data transfer between
CPU and GPU.

3. Memory optimization, including register, constant memory, texture memory.

2.2.2 Mixed Precision Computation
Mixed precision in computation can increase throughput of memory access and
communication while doubling FLOPs per second. A mixed precision algorithm is to
fully take advantage of low precision computation while not sacrificing the numerical
accuracy of the application solution. This has been shown advantageous on GPU
[41][43][44][45], FPGA [42].

The idea of mixed precision can be traced back to the iterative refinement [30]-[39]
in solving a system of linear equations, which is first developed by Wilkinson in 1948
[30].

The iterative refinement can be stated as (1)(2)(3)(4)

x(0) = 0 . (1)

d(k) = b – Ax(k) . compute residual in high precision (2)

Ac(k) = d(k) . solve equation system in low precision (3)

x(k+1) = x(k) + c(k) . accumulate solution in high precision (4)

 Scalability Tests of a Finite Element Code on Hundreds 157

Wilkinson and his collaborators [30] verified that if matrix A is not ill-conditioned,
iterative refining x using mixed precision can reach the same precision done by fully
high precision computation. For the above iterative refinement, 90% float point
operations can be done with low precision while not affecting the precision of
solution. The effectiveness of the mixed precision calculation is dependent on
whether there is precision loss. Langou et al. (2006) applied the mixed precision
algorithm to dense matrices and verified the effectiveness of the mixed precision
algorithm on Cell and other popular CPU architectures [36]. Goddeke et al. (2008)
employed the iterative refinement in a multigrid method to solve a large system of
linear equations [45]. Those work showed that the solution obtained by using the
mixed precision algorithm is the same as that obtained using fully high precision.

To the best knowledge of the authors’, the mixed precision idea is mostly applied
to solving a system of linear equations (for examples [30]-[51]) and remains yet
investigated in an explicit solve. We have extended the idea to an explicit finite
element method [52][53][54]. The mixed precision explicit FEM is described as
follow:

m△ak+1 = β△fk+1 . (5)

ak+1 = ak + △ak+1/β . (6)

vk+1 = vk + ak+1△t . (7)

uk+1 = uk + vk+1△t . (8)

The basic idea of the above mixed precision algorithm is to solve an incremental form
of Newton’s second law using low precision and to update the acceleration using high
precision to avoid precision loss (5)(6)(7)(8). A scaling parameter β is introduced to
avoid the underflow of small incremental values△a and△f. βis chosen to be ||f||1/n,
where n is the length of the vector f [53][54].

3 Tests and Results

msFEM is tested on Jaguar and Nebulae, which are, respectively, installed in Oak
Ridge National Lab. and Chinese National Center for HPC at Shenzhen. The two
computers were respectively listed as #1 and #2 on the Top500 list of June of 2010,
the time of the tests having been done.

Jaguar is equipped with AMD Opteron 6274 CPUs and NVIDIA Tesla 2050 GPUs
(in the time of tests, not the GPU is replaced by Tesla 2090). The whole system is
composed of 18688 compute nodes (299008 CPU cores). At the time of the tests,
Jaguar underwent an upgrade to Titan and the whole system contains two partitions: a
CPU partition containing 17728 compute nodes and a GPU partition containing 960
GPU-accelerated compute nodes. msFEM_CPU, the flat MPI version, has been tested
on the CPU partition, while msFEM_GPU, both the full and the mixed precision

158 J. Ren et al.

versions, have been tested on the GPU partition. Each compute node of Nebulae is
equipped with an Intel X5650 CPU and a NVIDIA Tesla C2050 GPU. The available
nodes at the time of the test are 2000, each equipped with a GPU processor. The tests
of msFEM_CPU use CPUs only while the tests of msFEM_GPU are co-processed by
both CPUs and GPUs. Those codes are equivalent in their physical model and the
target of domain application. The msFEM codes, by different architecture-oriented
implementations, can well reveal a better matched parallelization scheme with today’s
petaflops computer architecture to achieve the same application target.

3.1 Tests of msFEM_CPU

The finite element method implemented in the msFEM code computes 9 dofs per
node in 3D (which is 3 usually), which is more communication sensitive than the
usual finite element method. The tested mesh model on Nebulae is a mesh of 100M
tetrahedral elements. Time to solution is an averaged value of 10 steps. The time to
solution versus the number of CPU cores is listed in Table 1 and plotted in Fig. 6.

Two mesh models are tested on Jaguar: a mesh of 5M tetrahedral elements and a
mesh of 20M tetrahedral elements. The test results are also plotted in Fig. 6 for a
comparison with those obtained on Nebulae. It is seen that speedup saturates at 25800
CPU cores for “Jaguar(20M elems)” and 13468 CPU cores for “Jaguar(5M elems)”,
respectively. The reason is that the number of elements allocated to each CPU core at
the two critical points is too small such that the size ratio of the internal zone to the
halo zone is too small to largely overlap the time of communication. As the increase
of the model size from 5M to 20M elements, the speedup curve converges toward the
ideal case, signaling a good weak scalability of the msFEM code. msFEM_CPU
shows good strong scalability on Nebulae with linear speedup within the scale of 10K
CPU cores. Beyond the scale, speedup slows down but still delivers a linear
scalability. Based on the plots in Fig. 6, a comparison of the performance of two
petaflops systems is also made possible: the both computers show similar
performance within the scale of 10K CPU cores but Jaguar outperforms Nebulae at
the scale beyond 10K CPU cores. This is also intuitively consistent with user
experience with the tests on the systems.

Table 1. Strong scalability tests of msFEM_CPU on Nebulae

of processes Time Parallel efficiency(%)

2500 11.5 100

5000 5.8 99

7500 4.2 91

10000 3.2 89

12000 3.2 74

14000 3.0 68

16000 2.8 64

18000 2.6 61

20000 2.5 57

 Scalability Tests of a Finite Element Code on Hundreds 159

Fig. 6. Strong scalability of msFEM_CPU(2500-20K CPU cores)

In order to test msFEM_CPU’s performance with an extremely large mesh model,
the code has been tested up to 200K CPU cores on Jaguar (Table 2 and Fig. 7). The
test model is a mesh of 2.7 billion, approximately 8 billion of dofs. The computation
at the scale of 200K CPU cores utilizes around 2/3 computing resources of Jaguar.
Table 2 lists the test results from 20K to 200K CPU cores. The parallel efficiency at
200K CPU cores is 71%. As shown in Fig. 7, msFEM_CPU is able to deliver an
approximately linear speedup up to 80K CPU cores with the mesh model of 8 billion
of DOFs; from 80K to 200K CPU cores the rate of speedup decreases but speedup is
still evident. In summary, msFEM_CPU shows a good strong scalability up to 200K
CPU cores on Jaguar and the code utilized efficiently 2/3 computing resources of the
petaflops system.

Table 2. Strong scalability tests of msFEM_CPU on Jaguar up to 200K CPU cores

of processes Time Speedup

20000 70.9 1.00

40000 34.5 2.05

80000 18.2 3.89

100000 15.2 4.66

160000 11.0 6.44

200000 10.0 7.09

160 J. Ren et al.

Fig. 7. Strong scalability of msFEM_CPU(20K-200K CPU cores)

3.2 Tests of msFEM_GPU

msFEM_GPU has two different GPU implementations: full precision and mixed
precision. The GPU implementations have been tested on Jaguar and Nebulae. The
tests are not completed at the same time and hence the models used in the tests on
the two machine are also not exactly the same. But the model size is approximately
the same, around 100M tetrahedral elements. Test results are listed in Table 3 and
plotted in Fig. 8. The test on Jaguar is done with Jaguar’s GPU partition. Each
compute node is equipped with one GPU card. Each compute node runs one MPI
process (therefore the number of MPI processes on each node is only 1/16 of that of
the flat MPI runs). One CPU core is assigned solely for data transfer and management
and the rest 15 CPU cores are responsible for computation. The tests used up to 900
compute nodes or 900 GPU processors, which is almost the entirety (the whole
partition contains 960 compute nodes with GPU) of the GPU partition of Jaguar.

With regard to the time-to-solution, msFEM_GPU_double is 14 times faster than
msFEM_CPU, msFEM_GPU_mixed is 19 times faster than msFEM_CPU. The
mixed precision version gains extra 1.5 times speedup over the double precision
implementation. The final solution of application obtained using the mixed precision
algorithm maintains 10 effective numbers of decimal digits compared with that
obtained by the double precision version[53][54].

It can be concluded from the above tests that:

1. Hybrid parallel computing, CPU-GPU co-processing, shows excellent parallel
efficiency (90+%), due to significant increase in parallelization grain size on a
GPU-accelerated compute node;

2. On the same hardware and the same accuracy of application solution, the
mixed precision algorithm offers extra 1.5 times speedup with no significant
implementational cost [53][54].

 Scalability Tests of a Finite Element Code on Hundreds 161

Table 3. Strong scalability tests of msFEM_GPU codes on Jaguar

of MPI

processes

Time(second/step) Parallel efficiency Speedup
Speedup of
mixed/double Double

prec.
Mixed
prec.

Double
prec.

Mixed
prec.

Double
prec.

Mixed
prec.

160 26.82 18.00 1.00 1.00 1 1.00 1.49

320 13.45 9.09 1.00 0.99 1.99 1.98 1.48

640 6.82 4.55 0.98 0.99 3.93 3.96 1.50

902 4.91 3.27 0.97 0.98 5.46 5.50 1.50

(a)Jaguar (b) Nebulae

Fig. 8. Strong scalability tests of msFEM_GPU codes

3.3 Comparisons and Discussions

The tests in 3.1 and 3.2 are based on the same application algorithm but the different
parallelization schemes. So a comparison between the results obtained by msFEM_CPU
and msFEM_GPUs well reveals the difference in the parallelization model used. The
GPU version of msFEM uses a MPI+X programming model (where X is the
openMP+CUDA) while the CPU version is a flat MPI one. Clearly the MPI+X model
shows much better scalability than the flat MPI; no matter on Jaguar or Nebulae (Fig. 8)
the two ways of parallelization shows critically different scalability—the MPI+X is
always much better than the flat MPI for the given approximately same size of mesh
model. Clearly, the good scalability is attributed to the remarkably increased
parallelization grain size on a GPU accelerated compute node.

4 Concluding Remarks

The scalability tests of the multi-scale code “msFEM” on Jaguar and Nebulae, two
petaflops computers, show msFEM is highly scalable. msFEM_CPU is scalable from

162 J. Ren et al.

20K up to 200K CPU cores and delivers 71% parallel efficiency at the scale of 200K
CPU cores; its GPU implementations achieve linear speedup with 90+% parallel
efficiency at the scale of 1500 GPU nodes. On the same hardware and the same
solution of application, the mixed precision algorithm offers extra 1.5 time speedup
over the double precision implementation, with no significant implementational cost.
The implementations of a CPU-only version and a CPU+GPU co-processing version
for the same numerical method and the same physical model enable a direct
comparison between the two programming models, the flat MPI and the MPI+X. It is
clearly shown that the MPI+X is much better scalable due to the increasing
parallelization grain size affordable on a GPU accelerated compute node. This
observation motivates a further discussion on the scalability of the flat MPI model.
When moving from today’s petaflops computers to tomorrow’s exascale systems, we
will expect a dramatic increase in parallelism. A billion ways of parallelism in
conjunction with runtime imbalance of millions of compute nodes [1], the flat MPI
model will not scale down to use within future CPUs with hundreds or thousands of
lightweight cores, in particular for those bulk synchronization intensive
applications—for example implicit methods. This bulk synchronization operation
resembles to frequently stop the whole population of China for one single thing,
which is obviously not practical. Hence, a natural idea is to structure the flatten world
of the flat MPI model into a hierarchy of several layers to reduce and finally to reduce
a single-dimensional synchronization into a multiple level of synchronization.
Fortunately, the GPU-accelerated compute node is already on the path, leading to a
hierarchy of parallelism. As such, domain applications should also be structured in the
similar way to match with the hardware evolution trend.

In summary, the MPI+X hybrid parallel model will be much better scalable as
largely increasing parallelism grain size affordable by an individual compute node.
The increased grain size reduces the number of MPI processes and hence reduces the
volume/expense of bulk synchronization. With this reason, we should expect a shift in
both computer hardware architecture and domain application algorithm framework
from a single-dimensional, flatten world of parallelism into multiple level of
hierarchy of parallelism.

Acknowledgements: The work was financially supported by “100 Talent Program”
of Chinese Academy of Sciences and National Foundation of Sciences of China
(grand numbers: 11072241, 11111140020, 91130026). This research used resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725, under the Director's Discretion
(DD) Project “MAT028” from 2010-2012. This research used resources of China
National Center of HPC at Shenzhen.

References:

1. Summary Report of the Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee, Office of Science, DOE (2010)

2. http://www.top500.org

 Scalability Tests of a Finite Element Code on Hundreds 163

3. Sankaran, R.: Porting S3D turbulent combustion software to accelerator based systems.
Titan Summit. August 15-17, JICS Auditorium, Building 5100, ORNL, USA (2011)

4. Archibald, R.: Progress Towards Accelerating CAM-SE on Hybrid Multi-Core Systems.
Titan Summit. August 15-17, JICS Auditorium, Building 5100, ORNL, USA (2011)

5. Joubert, W.: Porting the Denovo Radiation Transport Code to Titan: Lessons Learned.
Titan Summit. August 15-17, JICS Auditorium, Building 5100, ORNL, USA (2011)

6. Tharrington, A.: LAMMPS: Code Transformations in preparing for Titan. Titan Summit.
August 15-17, JICS Auditorium, Building 5100, ORNL, USA (2011)

7. http://ees.lanl.gov/pflotran/
8. Eisenbach, M.: Preparing WL-LSMS for First Principles Thermodynamics Calculations on

Accelerator and Multicore Architectures. Titan Summit. August 15-17, JICS Auditorium,
Building 5100, ORNL, USA (2011)

9. Olson, G.B.: Designing a new material world. Science 288(5468), 993–998 (2000)
10. Olson, G.B.: Computational design of hierarchically structured materials.

Science 277(5330), 1237–1242 (1997)
11. McVeigh, C., Liu, W.K.: Multiresolution continuum modeling of micro-void assisted

dynamic adiabatic shear band propagation. Journal of the Mechanics and Physics of
Solid 58(2), 187–205 (2010)

12. McVeigh, C., Vernerey, F., Liu, W.K., Brinson, C.: Multiresolution analysis for material
design. Computer Methods in Applied Mechanics and Engineering 195, 5053–5076 (2006)

13. McVeigh, C., Vernerey, F.J., Liu, W.K., Moran, B., Olson, G.B.: An Interactive microvoid
shear localization mechanism in high strength steels. Journal of the Mechanics and Physics
of Solids 55(2), 224–225 (2007)

14. McVeigh, C.: Ph.D. thesis, Northwestern University (2007)
15. McVeigh, C., Liu, W.K.: Linking microstructure and properties through a predictive

multiresolution continuum. Computer Methods in Applied Mechanics and
Engineering 197, 3268–3290 (2008)

16. McVeigh, C., Liu, W.K.: Multiresolution modeling of ductile reinforced brittle
composites. Journal of the Mechanics and Physics of Solids 57, 244–267 (2009)

17. Tian, R., Moran, B., Liu, W.K., Olson, G.B.: Multiscale fracture simulator. Dynamic
Microstructure Design Consortium (ONR Contract: N00014-05-C-0241) Base Final
Report (2008)

18. Tian, R., Liu, W.K., Chan, S., Olson, G.B., Tang, S., Wang, J.S., Jou, H.J., Gong, J.D.,
Moran, B.: Linking Microstructures to Fracture Toughness—predictive 3D process zone
simulations. The D 3-D Annual PI Review, Evanston, IL, March 23-25 (2009)

19. Tian, R., Chan, S., Tang, S., Kopacz, A.M., Wang, J.-S., Jou, H.-J., Siad, L., Lindgren, L.-
E., Olson, G., Liu, W.K.: A multi-resolution continuum simulation of the ductile fracture
process. Journal of the Mechanics and Physics of Solids 58(10), 1681–1700 (2010)

20. http://www.olcf.ornl.gov/event/cray-technical-workshop-on-
xk6-programming/

21. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture.
International Journal of Engineering Science 30(10), 1279–1299 (1992)

22. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. Journal of the
Mechanics and Physics of Solids 11(5), 357–372 (1963)

23. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 326(1565), 131–147 (1972)

24. Tian, R., Yagawa, G.: Generalized node and high-performance elements. International
Journal for Numerical Methods in Engineering 64, 2039–2071 (2005)

164 J. Ren et al.

25. Tian, R., Yagawa, G., Terasaka, H.: Linear dependence problems of partition of unity
based generalized FEMs. Computer Methods in Applied Mechanics and Engineering 195,
4768–4782 (2006)

26. Tian, R.: A PU-based 4-node quadratic tetrahedron and linear dependence elimination in
three dimensions. International Journal of Computational Methods 3, 545–562 (2006)

27. Tian, R., Matsubara, H., Yagawa, G.: Advanced 4-node tetrahedrons. International Journal
for Numerical Methods in Engineering 68, 1209–1231 (2006)

28. Tian, R., Yagawa, G.: Allman’s triangle, rotational dof and partition of unity. International
Journal for Numerical Methods in Engineering 69, 837–858 (2006)

29. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
30. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice-Hall (1963)
31. Moler, C.B.: Iterative refinement in floating point. J. ACM 14(2), 316–321 (1967)
32. Jankowski, M., Woniakowski, H.: Iterative refinement implies numerical stability. Journal

BIT Numerical Mathematics 17(3), 303–311 (1977)
33. Higham, N.J.: Accuracy and stability of numerical algorithms. Society for Industrial and

Applied Mathematics, Philadelphia (2002)
34. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM Press (1997)
35. Demmel, J., Hida, Y., Kahan, W., Li, X.S., Mukherjee, S., Riedy, E.J.: Error bounds from

extra precise iterative refinement. Technical Report No. UCB/CSD-04-1344, LAPACK
Working Note 165 (February 2005)

36. Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A., Dongarra, J.: Exploiting the
performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting
iterative refinement for linear systems). In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing (2006)

37. Kurzak, J., Dongarra, J.: Implementation of mixed precision in solving systems of linear
equations on the Cell processor. Concurrency and Computation: Practice and
Experience 19(10), 1371–1385 (2007)

38. Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed precision
iterative refinement techniques for the solution of dense linear systems. Int. J. High
Perform. Comput. Appl. 21, 457–466 (2007)

39. Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P., Tomov, S.: Using Mixed Precision for
Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit
Accuracy. ACM Transactions on Mathematical Software (TOMS) 34(4) (2008)

40. Taiji, M., Narumi, T., Ohno, Y., Futatsugi, N., Suenaga, A., Takada, N., Konagaya, A.:
Protein Explorer: A Petaflops Special-Purpose Computer System for Molecular Dynamics
Simulations. In: Proc. Supercomputing (2003)

41. Göddeke, D., Strzodka, R., Turek, S.: Accelerating double precision FEM simulations with
GPUs. In: Proceedings of ASIM 2005 - 18th Symposium on Simulation Technique
(2005)

42. Strzodka, R., Göddeke, D.: Pipelined mixed precision algorithms on FPGAs for fast and
accurate PDE solvers from low precision components. In: IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2006), pp. 259–268 (2006)

43. Strzodka, R., Göddeke, D.: Mixed precision methods for convergent iterative schemes. In:
Proceedings of the 2006 Workshop on Edge Computing Using New Commodity
Architectures, p. D–59–60 (2006)

44. Göddeke, D., Strzodka, R., Turek, S.: Performance and accuracy of hardware-oriented
native-, emulated- and mixed-precision solvers in FEM simulations. International Journal
of Parallel, Emergent and Distributed Systems (IJPEDS), Special Issue: Applied Parallel
Computing 22(4), 221–256 (2007)

 Scalability Tests of a Finite Element Code on Hundreds 165

45. Göddeke, D., Strzodka, R.: Performance and accuracy of hardware-oriented native-,
emulated- and mixed-precision solvers in FEM simulations (part 2: Double precision
GPUs). Technical report, Technical University Dortmund (2008)

46. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J.W., Dongarra, J.J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’
Guide. SIAM, http://www.netlib.org/lapack/

47. Li, X.S., Demmel, J.W., Bailey, D.H., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kang,
S.Y., Kapur, A., Martin, M.C., Thompson, B.J., Tung, T., Yoo, D.J.: Design,
implementation and testing of extended and mixed precision BLAS. ACM Transactions on
Mathematical Software (TOMS) 28(2) (2002)

48. Göddeke, D., Strzodka, R., Turek, S.: Performance and accuracy of hardware-oriented
native-,emulated- and mixed-precision solvers in FEM simulations. International Journal
of Parallel, Emer-gent and Distributed Systems, Special Issue: Applied Parallel
Computing 22(4), 221–256 (2007)

49. Göddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P., Turek, S.: Co-
processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU.
Accepted for Publication in the International Journal of Computational Science and
Engineering (2008)

50. Strzodka, R., Göddeke, D.: Pipelined mixed precision algorithms on FPGAs for fast and
accurate PDE solvers from low precision components. In: FCCM 2006: Proceedings of the
14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp.
259–270 (2006)

51. Kurzak, J., Dongarra, J.J.: Implementation of mixed precision in solving systems of linear
equations on the CELL processor. Concurrency and Computation: Practice and
Experience 19(10), 1371–1385 (2007)

52. Tian, R.: Co-design thinking towards exascale computing. Information Technology
Letter 70(3), 50–63 (2012)

53. Liu, J., Wang, C., Ren, J., Tian, R.: A mixed precision explicit finite element algorithm on
heterogeneous architecture and its CUDA implementation. Computer Science 39(6), 293–
296 (2012)

54. Liu, J.: A mixed precision GPU acceleration algorithm and its application to FEM. MS
thesis of Graduate School of Chinese Academy of Sciences (2011)

Author Index

Chang, Libo 66
Chen, Hui-Xing 26
Cui, Lizhen 75

Deng, Junyong 66
Du, Huimin 66
Du, Zhenlong 89

Feng, Chunsheng 1

Han, Jungang 66
He, Wei 75
Hou, Ji 40
Huang, Guangxin 66

Jiang, Lin 66
Jiang, Shengyi 55
Jiao, Ge 132
Jun-Min, Wu 12

Kang, Lixia 110

Li, Kenli 26, 118, 132
Li, Lang 132
Li, Tao 66
Li, Xiaoli 89
Liu, Hui 132
Liu, Yongzhong 110

Qin, Yunchuan 118

Ren, Jiangyong 151
Ren, Ju 99
Ren, Yuxing 110
Ruan, Li 140

Shen, Kangkang 89
Shi, Lin 26
Shu, Shi 1
Su, Huayou 99
Sun, Yikai 140

Tang, Yazhe 110
Tian, Rong 151

Wang, ChaoWei 151
Wang, Yi 132
Wang, Yingrui 151
Wen, Mei 99
Wu, Meiling 55
Wu, Xing 40

Xia, Mingxing 110
Xiao, Limin 140
Xiao, Lingzhi 66
Xiao, Qi 118
Xiao-Dong, Zhu 12
Xiao-Yu, Zhao 12
Xiu-Feng, Sui 12
Xu, YuMing 132
Xue, Yungang 99

Yang, Xiaojian 89
Ying-Qi, Jin 12
Yue, Xiaoqiang 1

Zhang, Chunyuan 99
Zhang, Wu 40
Zhu, Mingfa 140
Zhuo, Shaojian 40

	Preface
	Organization
	Table of Contents
	An Improvement to the OpenMP Versionof BoomerAMG
	1 Introduction
	2 An Improved Parallel Interpolation Operator Algorithm
	3 An Improved Parallel Coarse Grid Operator Algorithm
	4 Numerical Experiments
	References

	Dynamic Partitioning of Scalable Cache Memoryfor SMT Architectures
	1 Introduction
	2 Related Work
	3 Dynamic Bank Partitioning Algorithm
	3.1 Optimal Bank Partitioning
	3.2 Marginal Gains

	4 Implementation
	4.1 Marginal-Gain Counters
	4.2 Bank Caching
	4.3 Partitioning Controller
	4.4 Optimization

	5 Simulation Methodology
	6 Experimental Results
	6.1 Partition Period
	6.2 Effect of Partitioning on IPC

	7 Conclusion
	References

	Scheduling Model of Virtual Machine Baseon Task Type in Multi-core System
	1 Introduction
	2 Background
	2.1 Xen’s Credit Scheduler
	2.2 MapReduce

	3 Scheduling Strategies and Analysis
	3.1 Motivations and Modeling
	3.2 Scheduling Framework
	3.3 CON-Credit Strategy Analysis
	3.4 The Algorithm Flow

	4 Performance Evaluation
	4.1 Experiment Environment
	4.2 Benchmarks
	4.3 Performance Measurement and Analysis

	5 Related Work
	6 Conclusion
	References

	Dynamic Pricing Strategy for Cloud Computingwith Data Mining Method
	1 Introduction
	2 Related Works
	2.1 The Definition of Cloud Computing
	2.2 The Revenue Management of Cloud Computing
	2.3 The Dynamic Pricing of Cloud Computing

	3 Pricing Determination in Various Cloud Resources
	3.1 Scenario
	3.2 Basic Model and Dynamic Pricing

	4 Numerical Studies
	References

	Detecting Communities and Corresponding CentralNodes in Large Social Networks
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Detecting Communities and Corresponding Central Nodes
	3.2 Parameter Selection
	3.3 Complexity Analysis

	4 Experimental Results
	4.1 Comparison of Community Detection Results
	4.2 Details of Karate Network Results

	5 Conclusion and Discussion
	References

	The Design and Prototype Implementationof a Pipelined Heterogeneous Multi-core GPU
	1 Introduction
	2 Architecture Design
	3 Circuit Design and Prototype System Realization
	3.1 Heterogeneous Microprocessors
	3.2 HMGPU-9 Prototype System

	4 Summary
	References

	A Parallel Approach for Real-Time OLAP Basedon Node Performance Awareness
	1 Introduction
	2 Parallel Process Model for Relational OLAP
	2.1 Overview
	2.2 Data Distribution Model
	2.3 Parallel Process Approach for OLAP Queries

	3 Node Performance Forecast and Calibration Model
	4 Applications and Experiments
	5 Related Works
	6 Conclusions
	References

	A Parallel Multigrid Poisson PDE Solverfor Gigapixel Image Editing
	1 Introduction
	2 Poisson PDE Solver
	3 Multigrid Poisson PDE Solver
	3.1 Multigrid Poisson PDE Solver

	4 Parallel Multigrid Poisson PDE Solver
	5 Experiment
	6 Conclusion
	References

	Parallel Implementation and Optimization of HazeRemoval Using Dark Channel Prior Based on CUDA
	1 Introduction
	2 HRUDCP and Parallelism Analysis
	3 Parallel Implementation and Optimization Based on GPU
	3.1 Computing Dark Channel
	3.2 Selecting Atmospheric Light
	3.3 Calculating Initial Transmission
	3.4 Refining Initial Transmission

	4 Experimental Results
	5 Conclusion
	References

	Research on the Solution of Heat ExchangerNetwork MINLP Problems Based on GPU
	1 Introduction
	2 Heat Exchanger Network Problems and Its Mathematical Model
	3 Design and Implementation of Parallel Computing System
	3.1 System Framework
	3.2 Pre-processing of the Heat Exchanger Network Input
	3.3 The Parallel System Framework and Tasks Division for CPU and GPU
	3.4 Solving Nonlinear Programming within a Block
	3.5 Experiment and Results Analysis

	4 Conclusion
	References

	MapReduce-Based Parallel Algorithm for Detectingand Resolving of Firewall Policy Conflict
	1 Introduction
	2 Overview of Firewall Policy Anomalies
	3 Firewall Policy Conflict Detecting and Resolving Algorithm
	3.1 Rule-Based Segmentation Strategy
	3.2 The Action Constrains of Segments
	3.3 Segments Sorting Algorithm Based on MapReduce
	3.4 Segments Converted into the Representation of Rules
	3.5 Equivalence of the Rules before and after Conversion

	4 Implementation and Evaluation
	5 Summary and Related Work
	References�

	DPA-Resistant Algorithms for Trusted Computing System
	1 Introduction
	2 Impoved SMS4 against Power Analysis Attacks
	2.1 SMS4
	2.2 The Weakness of SMS4 Algorithm
	2.3 Proposed Countermeasure of SMS4 Algorithm

	3 Implementation of Improved SMS4
	4 Power Analysis Attacks Experiment of Improved SMS4
	5 Conclusions
	References

	Detection of KVM’s Virtual Environmentand Vulnerability
	1 Introduction
	2 Virtual Environment Detection for KVM
	2.1 CPU Cycle Based Detection
	2.2 Network Time Based Detection
	2.3 Multi-thread Counter Based Detection

	3 Vulnerability Detection for KVM
	4 Experiments and Results Analysis
	4.1 Test Environment
	4.2 Function Test of Virtual Environment Detection
	4.3 Performance Test

	5 Conclusions and Future Work
	References

	Scalability Tests of a Finite Element Code on Hundredsof Thousands Cores and Heterogeneous Architecture
	1 Introduction
	2 msFEM—A Multi-scale Finite Element Method Code
	2.1 Implementations of msFEM
	2.2 Parallelization and Acceleration Techniques in msFEM

	3 Tests and Results
	3.1 Tests of msFEM_CPU
	3.2 Tests of msFEM_GPU
	3.3 Comparisons and Discussions

	4 Concluding Remarks
	References

	Author Index

