
OCaml-Java:
From OCaml Sources to Java Bytecodes

Xavier Clerc(B)

France
ocamljava@x9c.fr

http://www.ocamljava.org/

Abstract. This article presents the code generation scheme of the
OCaml-Java compiler. The goal of the OCaml-Java project is to allow
execution of OCaml programs on a Java Virtual Machine. In order to
achieve decent performance, it is necessary to build a compiler produc-
ing optimized bytecode that will rely on an efficient support library at
runtime.

The OCaml-Java project thus provides (i) an efficient runtime writ-
ten in pure Java, and (ii) an optimizing compiler based on the original
OCaml compilers for the front-end and on the Barista library for the
back-end.

Keywords: OCaml · Java · Bytecode · Compiler · Code generation

1 Introduction

The OCaml-Java project has been presented at large in previous work [1]; in the
present article, we will focus on the code generation process as implemented in
the OCaml-Java compiler. In the remainder of this section, we will nevertheless
summarize the goals and state of the OCaml-Java project. Then, Sect. 2 will ex-
pose the architecture of the various OCaml compilers. Section 3 will present the
runtime representation of values in the different compilers, and Sect. 4 will give
an overview of the Barista library that is used as the compiler back-end. Sec-
tion 5 shows examples of actual bytecode generation, and Sect. 6 shows how the
compiler performs on some benchmarks. Finally, Sect. 7 will discuss future work.

Why the JVM is an Interesting Target

The official OCaml distribution features both bytecode (for a dedicated virtual
machine), and native compilers (for common architectures and OSes). It may
seem at first sight that nothing more is needed, the former meeting portability
needs and the latter meeting performance needs. However, being able to run
OCaml code on a Java Virtual Machine is appealing for mainly two reasons:

– access to a larger choice of libraries;
– access to multicore programming.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 71–85, 2013.
DOI: 10.1007/978-3-642-41582-1 5, c© Springer-Verlag Berlin Heidelberg 2013



72 X. Clerc

The number of available libraries is still a known weakness of the OCaml
ecosystem in spite of a vibrant community. Having the ability to run on a Java
Virtual Machine gives access to all the libraries of the Java ecosystem. The Java
community is huge, and has developed frameworks and tools for almost any
purpose. There are obvious benefits for OCaml developers to use these libraries.

To be able to use the Java libraries, it is not sufficient to produce Java byte-
code. It is also necessary to give to the OCaml developer means to manipulate
Java objects from an OCaml program. For this reason, the OCaml-Java compiler
features an extension of the type system to allow the construction and manip-
ulation of Java instances from a pure OCaml program. More details regarding
the extensions to the type system can be found in our introductory article [1].

Multicore programming can be done in OCaml without resorting to compila-
tion to Java bytecodes. However, the original implementation of OCaml is based
on a global runtime lock allowing only one OCaml thread to run at a time. For
this reason, leveraging multiple cores is often done through libraries using indeed
multiple processes (most notably, map/reduce implementations [2,3]).

Another option is to modify the OCaml runtime to get rid of the global
runtime lock. Such a modification implies of course to develop a parallel garbage
collector [4] and needs a lot of manpower, as well as some modifications to core
OCaml libraries that are not reentrant. At the opposite, by targeting a Java
Virtual Machine, we get a parallel garbage collector for free, and in addition
can take advantage of Java standard libraries such as the fork/join framework
to develop multicore OCaml programs based upon shared-memory.

Java 1.7 Features for Functional Programming

The latest major release of the Java platform has brought a lot of exciting
new features. Among them, two are particularly interesting when implementing
functional languages:

– the invokedynamic framework;
– the G1 garbage collector.1

The invokedynamic framework is a very powerful addition to the Java plat-
form as it allows a language implementor to define new semantics for method
dispatch. In the OCaml-Java project, we in fact only use the method handles
(which are akin to function pointers in C) provided by the framework in order
to easily and efficiently implement closures.

The G1 garbage collector is actually pretty important for functional lan-
guage implementors because it is known to better suit the allocation/collection
pattern found in functional programs. Such programs are typically allocating a
lot of small and short-lived values while classical Java programs tend to put less
pressure on the allocator.

1 Already present in previous version, but not production-ready.



OCaml-Java: From OCaml Sources to Java Bytecodes 73

Past and Present of OCaml-Java

The 1.x versions of the OCaml-Java project should be regarded as mere proofs of
concept, whose goal was to reach compatibility with the original implementation.
The compatibility is almost total: all language constructs are supported and most
OCaml libraries exhibit the same behavior (some minor differences are due to
the fact that the Java Virtual Machine does not implement all posix primitives).

The 2.0 version described in this paper keeps the same compatibility level,
and features great improvements in both memory usage and performance. The
goal is to be able to execute typical OCaml code on a Java Virtual Machine while
remaining at worst two times slower than native code. The current prototype
fulfills this objective on the majority of tested benchmarks.

2 Compiler Architecture

Original Compilers

The original OCaml distribution ships with two compilers: one producing byte-
code for a dedicated virtual machine, and the other one producing native code.
The bytecode compiler is available on every architecture while the native one is
only available on the following:

– tier 1 (i.e. officially maintained): amd64, ia32, powerpc, and arm under Linux,
MacOS X or Windows;

– tier 2 (i.e. unofficially maintained): sparc, and tier 1 architectures under
BSD or Solaris flavors.

Both compilers naturally share a large codebase: parsing and typing are iden-
tical, thus relying on the very same code. Figure 1 shows the successive passes of
both compilers from an implementation source file (i.e. a .ml file) to an imple-
mentation compiled file (i.e. a .cmo file for the bytecode compiler, and a .cmx
file for the native compiler). We do not detail the compilation of an interface
source file because it (i) does not produce code, and (ii) it is identical in both
compilers.

Figure 1 presents the various passes from a source file to a binary file, as
well as the different data structures used during the process. We only skip
the passes that are just intended to optionally pretty-print the intermediate
data structures on standard output to ease debugging. As previously stated,
both compilers share the passes related to parsing (Pparse.file) and typing
(Typemod.type implementation). They also share the very first passes related
to code generation: Translmod.transl implementation and Simplif.simplify
lambda. These passes produces so-called lambda code, which is the most abstract
representation of code to be compiled.

From this point, the two compilers diverge. The bytecode compiler only needs
two more passes to produce its result; these passes are straightforward because
the instruction set of the OCaml virtual machine was designed to provide the
pieces allowing to almost execute lambda code. Of course, the native compiler



74 X. Clerc

Pparse.file

Unused_var.warn

Typemod.type_implementation

Translmod.transl_implementation

Simplif.simplify_lambda

Parsetree.structure

Parsetree.structure

Typedtree.structure

Lambda.lambda

Lambda.lambda

ml

Bytegen.compile_implementation

Emitcode.to_file

Compile.implementation

Optcompile.implementation

Closure.intro

Selection.fundecl

Comballoc.fundecl

Spill.fundecl

Split.fundecl

Asmgen.regalloc

Linearize.fundecl

Scheduling.fundecl

Emit.fundecl

Instruct.instruction list

Lambda.lambda

cmo

Lambda.lambda

Cmm.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Linearize.fundecl

Linearize.fundecl

cmx o&

Fig. 1. Passes of OCaml compilers.

has far more work to do because it has to accommodate an instruction set that
was not specifically designed for functional programming, and has to target a
register-based machine rather than a stack-based machine.

The first step, Closure.intro, handles the transformations associated with
closures, uncurrification, and related optimizations. From this point, the code
is represented by machine code which is an abstract representation that is still
largely independent from the target platform, based on pseudo-instructions. The
Selection.fundecl and Comballoc.fundecl are designed to perform the se-
lection of pseudo-instructions for the code, and the optimization of allocations
linked to a given block. Then, Spill.fundecl, Split.fundecl, and Asmgen.
regalloc are responsible for actual register allocation, using information from
the target platform. Finally, Linearize.fundecl reifies pseudo-instructions into
actual lists of instructions, and Scheduling.fundecl optimizes the resulting



OCaml-Java: From OCaml Sources to Java Bytecodes 75

order. The very last step is to output the assembly source code that will be used
by an external assembler to produce object code.

OCaml-Java Compiler

The OCaml-Java compiler can be seen as a third branch of the tree depicted by
Fig. 1. This means that passes up to Simplif.simplify lambda are shared with
the original compilers. Figure 2 shows which transformations are then made on
lambda code. First, very similarly to the native compiler, Jclosure.jlambda
of lambda is responsible for the handling of closures, producing a slightly different
and optimized lambda code. Then, Macrogen.translate decomposes operations
from the lambda code into macro instructions that are not Java bytecode instruc-
tions but can be easily mapped to. This pass is also responsible for variable al-
location which entails the choice of their actual representation, thus opening the
possibility of value unboxing. Finally, Bytecodegen.compile function produces
actual Java bytecode using the Barista library (detailed at Sect. 4).

The point where native and OCaml-Java compilers diverge (namely Jclosure
.jlambda of lambda) has been chosen because the latter has to be more aggres-
sive regarding constants handling and propagation. Indeed, the native compiler
does not need to optimize long values, as they are always unboxed. Another
construct is treated in a different way in OCaml-Java: switches because the Java
instruction set features both table and lookup instruction while the native code
generator only emits code corresponding to table switches.

The next pass of the OCaml-Java compiler (that is Macrogen.translate) de-
termines how values are locally stored by compiled functions. Most notably, this
implies to choose between boxed and unboxed representations for integer and float
types. This is a crucial operation as we observed a gain in the 25 %–33 % interval
between programs without any unboxing and the current strategy (based on the
initialization value of a variable to determine its type). This compilation pass is
also responsible for the handling of exceptions, as there is a mismatch between the
OCaml and Java semantics on the subject. The difference is that, in Java, when
an exception is thrown the stack is immediately emptied and the instance of the

Javacompile.implementation

Jclosure.jlambda_of_lambda

Macrogen.translate

Bytecodegen.compile_function

cmj jo&

Lambda.lambda

Jlambda.jlambda

Macroinstr.expression

BaristaLibrary.Method.t

Fig. 2. Architecture of OCaml-Java compiler.



76 X. Clerc

thrown exception is then pushed onto the stack. In OCaml, the raise of an excep-
tion will only pop stack values until it finds the enclosing try/with construct. As
a consequence, we have to do some code motion such that an exception can only
be raised at a point where the stack is empty: by enforcing this rule we guarantee
that both semantics are actually aligned.

Finally, the last compiler pass, Bytecodegen.compile function, uses the
Barista library to build an in-memory representation of the class file to emit. This
pass is quite straightforward as boilerplate operations such that the computation
of stack maps are handled by the Barista library. Indeed, the only important op-
timization handled by this pass is the tail call optimization. Whenever a call to a
function is to be generated, it is checked whether it is a call to the current func-
tion. If so, function parameters are placed into locals, and a jump to the method
start is emitted. Otherwise, function parameters are placed onto the stack, and a
bare static method call is emitted.

Once compilation is done, two files are produced: a .cmj file corresponding to
the .cmx file of the native compiler, and a .jo file corresponding to its .o file. The
.jo file is actually a Java archive containing two entries:

– Module.class is the class file containing the implementation of all module
functions as Java static methods;

– Module.consts is a binary file respecting the OCaml marshal format contain-
ing the (structured) constants used by the module.

A module is later linked to produce an executable jar file. At runtime, the ini-
tialization code for a module (located in its entry method) is responsible for the
loading of the constants from the Module.consts resource. The constants2 are
then accessed through thread-local storage. This indirection is indeed necessary
in order to allow several OCaml programs to run on the very same Java Virtual
Machine.

3 Value Representation

The compilation scheme of OCaml performs type erasure, meaning that almost all
typing information is lost during the compilation process. This is of course not a
problem as OCaml is statically and strongly typed, meaning that no type test has
to be performed at runtime. This is not a problem either for Java interoperability:
a Java instance will be wrapped in an OCaml value, but its actual class can still
be retrieved at runtime if needed through the mechanism of reflection.

Basically, all values share a common type, namely value (in the original
runtime, written in C). Having a common type for all values at runtime greatly
simplifies the compilation process because such a common representation makes
polymorphism compilation trivial.

More precisely, use of the value type is mandatory at function boundaries (i.e.
to call an OCaml function, or a C primitive), but a function is free to use whatever
2 Despite their name, some constants may in fact be modified, hence the impossibility

to share them between programs running in the very same Java Virtual Machine.



OCaml-Java: From OCaml Sources to Java Bytecodes 77

representation it prefers for local values. This freedom is indeed crucial in order
to reach good performance because it allows unboxing of values. Values still need
to be boxed at function’s call site, but this penalty can also be partially avoided
through function inlining.

In the remainder of this section, we first present the de facto specification of
runtime values set by the original OCaml implementation, and then present how
such a specification is implemented in OCaml-Java.

Original Runtime

The various values manipulated at runtime by OCaml program can be specified
by the following grammar.

value ::= long unboxed value
| pointer to managed block
| pointer to unmanaged block

A long value is differentiated from a pointer value using tagging: the lowest bit
is set to one for long values, while it is set to zero for pointer values. The encoding of
an integer value i as a long unboxed value l is thus done according to the following
equation: l = (i × 2) + 1. A managed pointer (i.e. inside the OCaml heap) is
discriminated from an unmanaged one (i.e. allocated by C code) by keeping the
list of memory block allocated as parts of the OCaml heap.

managedblock ::= tag ⊕ size ⊕ list of size blocks
| closure-tag ⊕ size ⊕ code pointer ⊕ list of size - 1 blocks
| string-tag ⊕ size ⊕ array of size bytes
| double-tag ⊕ 64-bit float value
| double-array-tag ⊕ size ⊕ array of size 64-bit float value
| custom-tag ⊕ identifier ⊕ size ⊕ array of size bytes

As seen by the possible contents of a managed block, some typing information
seems to be retained at runtime. However, this is not enough to recover the typing
information present in the source, because several different types in the source can
be mapped to the same runtime representation. Again, strong typing has been
enforced at compile time, so no confusion could be made at runtime between values
of different types.

OCaml-Java Runtime

The representation of values is based on multiple classes for the various kinds of
values. All classes inherit from a parent Value abstract class. This class imple-
ments the operations for all the kinds of values, possibly proposing a dummy or
failing implementation. It is then the responsibility of children classes to override



78 X. Clerc

that base implementation with a correct one. The guarantee that a dummy or fail-
ing implementation will never be called is based on the static and strong typing
occurring at compile time.

Derived classes are defined for long values, string values, double values, dou-
ble array values, and block values. Contrary to the original runtime, all values
even long ones are allocated because the Java Virtual Machine does not support
tagged values. However, every creation of a value has to be done through a fac-
tory method, which allows us to share values through a cache. As an example, long
values are immutable and a cache allows to share values between −128 and 255.
These values are allocated once at program startup, and also allow to use reference
comparisons for values between the bounds.

The compilation scheme of OCaml will turn a type such as a record or a tuple
of values into a mere block at runtime. Again, strong and static typing ensures
that the program will not try to access an element that does not exist (e.g. trying
to access the third component of a pair). For this reason the original OCaml com-
pilers will not generate code for testing such bounds. However, in Java it is not
possible to remove bounds checks when accessing the elements of an array.3 As a
consequence, if the elements of a block were stored into an array, we would have
to pay the price of a bound check at every access. Moreover, due to the covariant
nature of arrays, each array store operation incurs a check that the actual class of
the object to be stored is correct with respect to the array type.

For this very reason, we resorted to what could be called data inlining. Rather
than having only one class named BasicBlockValue storing its elements as one
Value[] field, we define a bunch of classes named BasicBlockValuen that store
n elements as n Value fields. This allows to defines methods such as get0() that
will return the first element of a value with no bound check. The same is done for
double arrays and allows “small” tuples, records and all types sharing the same
runtime representation to avoid bound checks when accessing the element at a
given index.

Experimentation showed measurable speedups when growing the n value up to
8. The current version of the runtime hence contains classes with n ranging from
0 to 8. The source code for these classes is, of course, generated to avoid mainte-
nance issues. Of course, besides those classes, a BasicBlockValue (respectively a
DoubleArrayBlockValue) is defined to be able to store an unbounded number of
elements in an array. Then, array bound checks cannot be avoided but experience
indicates that this representation is indeed used for OCaml types that turn out to
be arrays, and should test bounds at runtime for every access.

Alternative Encoding of Values

At first, one may question why the encoding of values in OCaml-Java is a direct
translation of the encoding set by the original compilers. The use of tags, in par-
ticular, seems superfluous as different Java classes can be used to discriminate

3 The Hotspot compiler can remove such tests if it can prove that no illegal access will
happen, but the developer can not request to remove such tests.



OCaml-Java: From OCaml Sources to Java Bytecodes 79

between the various kinds of blocks. Unfortunately, we have to closely follow the
encoding of the original compilers because some core libraries of the OCaml dis-
tribution have implementations based on the low-level memory layout of values.
As an example, the Printf and Scanf modules directly manipulate closures, thus
enforcing to use the very same memory layout in OCaml-Java as in the original
compilers.

Even under those constraints, other encoding schemes could be devised, and
previous versions explored some alternatives. We experimented with an encoding
based on the classes from java.lang with Object rather than Value as the parent
class of all values, but performance was inferior due to the number of casts to per-
form. Another scheme was used in versions 1.x of the project: rather than having
multiple subclasses, only one Value class was used for every kinds of values. In
order to avoid casts, we used multiple fields to store the multiple kinds of values.
This encoding led not only to a waste of memory, but also to a great performance
penalty as the garbage collector had far more references to iterate over.

When comparing the encoding scheme to the ones of other JVM languages, it
is important to only compare to languages sharing the same constraints: whether
there is an existing reference implementation. Indeed, languages such as Clojure
[5] or Scala [6] are completely free to design their encoding scheme because they
do not have to abide to an existing specification. At the opposite, projects such as
JRuby [7] or OCaml-Java have a more constrained design space. For example, the
idea of data inlining in order to avoid array bounds checks is also used in JRuby.

4 The Barista Library

Overview

Barista [8], by the same author, is initially an OCaml library designed to load,
construct, manipulate, and save Java class files. The library supports the whole
class file format as defined by Oracle (formerly Sun) up to version 1.7. On top of
the library, a command-line utility (also named “barista”) has been developed:
both an assembler and a disassembler for the Java platform.

The assembler will turn an assembly source file into a class file to be run on
a Java Virtual Machine. The disassembler does the same work in the opposite
direction: it takes the fully qualified name of a Java bytecode class file present
in the classpath, and transforms it into an assembler source. Two other utilities
allow to inspect the contents of a bytecode file: it is possible to just print the list
of methods of a given class, and also to print the control flow of a given method
as a graph.

While other libraries for bytecode manipulation already existed at the time
we started the development of Barista, they were not satisfactory alternatives in
our case. The most important thing is that we wanted to generate code through a
proper library, and not by invoking an external assembler. The underlying moti-
vation is that we want to use the type system to reject obviously wrong bytecode
(e.g. pushing an integer value instead of a float one). When using an external as-
sembler, one generates bare text and even type errors only show up at runtime.



80 X. Clerc

Moreover, Barista is also used in the opposite direction: to load class defini-
tions rather than to produce them. This feature is of utmost importance for the
extension of the type system: as we deal with manipulation of Java entities, we
need to be able to inspect a class contents at compilation time.

Finally, Barista provides some features that are not available in other bytecode
libraries, such as the ability to visualize the bytecode of a given method as an
hypergraph, or the ability to create/inspect serialized values.

Hypergraph

Besides the representation of methods as lists of instructions, the code of a method
can also be represented as a graph. Precisely, a method code can be represented
as a rooted hypergraph. The rooted property stems from the fact that there is
only one entry point for a given method. The hypergraph nature of the structure
is indeed a design choice that allows to represent the conditionals by edges with
one source and as many destinations as there are possible outcomes.

The nodes of the hypergraph are labelled with instruction lists that contain no
jump, jumps being represented by edges. Edges hence represent the control flow
of the method and can be:

– classical edges with one source and one destination, in order to encode sequen-
tial execution (the edge is then with no label);

– three-legged edges with one source and two destinations, in order to encode
a test and its two possible consequences (the edge is then labelled with the
condition associated with the test);

– n-legged edges with one source and n − 1 destinations, in order to encode
switch instructions (the edge is then labelled with the definition of the switch,
that is either a list of values or lower and upper bounds);

– special edges with one source and one destination, in order to indicate that
the source is protected by a try/catch construct, the destination being the
exception handler (the edge is then labelled with the class name of the excep-
tions that can be caught).

Given the hypergraph structure, there are two kinds of optimizations that can
be performed by the Barista library:

– structural optimizations, modifying the hypergraph structure;
– non-structural optimizations, modifying only the labels of nodes.

In the first category, Barista currently features two optimizations: dead code
elimination, and jump optimization. Dead code elimination removes all nodes that
cannot possibly be reached from the root. Jump optimization short-circuits con-
secutive jumps with no bytecode between them.

In the second category, Barista features several peephole optimizations that
are performed independently on the hypergraph nodes. These include, among
others:



OCaml-Java: From OCaml Sources to Java Bytecodes 81

– code size optimizations (e.g. replacing a generic instruction such as aload by
a more compact aloadn);

– removal of unnecessary load and/or store operations (e.g. if a loaded value is
discarded or if a stored value is overwritten with no use);

– expression simplifications related to neutral or absorbing elements (e.g. addi-
tion to zero);

– basic strength reduction (e.g. shifting rather than multiplying when the mul-
tiplier is a power of 2).

Example

As an example, we consider the following Java static method, doing some compu-
tation over integer values:

public static int meth(final int x, final int y) {
if (x > y) {
try {
return compute1(x);

} catch (final Exception e) {
return 0;

}
} else {
return compute2(y);

}
}

After compiling it with the javac compiler, we can dump its bytecode by in-
voking the javap utility, leading to the following output:
public static int meth(int, int);
Code:

0: iload_0
1: iload_1
2: if_icmple 13
5: iload_0
6: invokestatic #2 // Method compute1:(I)I
9: ireturn
10: astore_2
11: iconst_0
12: ireturn
13: iload_1
14: invokestatic #4 // Method compute2:(I)I
17: ireturn

Exception table:
from to target type

5 9 10 Class java/lang/Exception

Barista can be used to transform a method bytecode into an hypergraph by
executing the barista flow ’C.meth(int,int):int’ command where C is the
class defining the method. The result is a graph representation in dot4 format and
is represented in Fig. 3.

Figure 3 features seven graph elements:

– four nodes (represented by rectangular boxes), containing the bytecode for the
various code blocks (condition evaluation, if block, else block, and exception
handler);

4 See http://www.graphviz.org/.

http://www.graphviz.org/


82 X. Clerc

iload_0
iload_1

iload_0
invokestatic compute1(int):int

ireturn

iload_1
invokestatic compute2(int):int

ireturn

astore_2
iconst_0
ireturn

java.lang.Exception

le

Fig. 3. Hypergraph for method meth(int,int):int.

– a double arrow, indicating which node is the root;
– a dotted edge, from the protected node to the handler node and also labelled

with the class of exceptions to be caught;
– an hyperedge, linking three nodes: (i) the block evaluating the condition, (ii)

the block to execute next if condition is true, (iii) the block to execute next if
condition is false; the hyperedge is also labelled with the kind of condition to
perform.

5 Example of Bytecode Generation

Our example has been designed to show how the unboxing of values allows to reach
good performance in the case of numerical code. The left column shows the OCaml
code of the complete function, while the right one shows the generated bytecode
for the loop body:

let�float�()�=
��let�x�=�ref�1.�in
��let�y�=�ref�2.�in
��let�acc�=�ref�0.�in
��for�i�=�1�to�1_000_000_000�do
����acc�:=�!acc�+.�(!x�*.�!y);
����x�:=�!x�+.�1.;
����y�:=�!y�*.�2.
��done;
��!acc

(...)
33:�dload�5
35:�dload_1
36:�dload_3
37:�dmul
38:�dadd
39:�dstore�5
41:�dload_1
42:�dconst_1
43:�dadd
44:�dstore_1
45:�dload_3
46:�ldc2_w�2.0d
49:�dmul
50:�dstore_3
(...)

Variables x, y, and acc are respectively stored at local indexes 1, 3, and 5.
The compiler has determined from their initial values that they are double values.
Instructions at offsets 33 − 39 compute the expression !acc +. (!x *. !y) and
store its value back. Then, instructions at offsets 41−44 update the value of the x



OCaml-Java: From OCaml Sources to Java Bytecodes 83

variable, and instructions at offsets 45−50 update the value of the y variable. It is
obvious from the instructions that all operations are done using the Java double
primitive type, no boxing is done at all. This ensures that we get the best possible
performance, and also avoid to put any pressure on the memory allocator and
garbage collector.

When comparing the performance of the original OCaml compiler to the
OCaml-Java compiler, we measured the code generated by the former to take 3.8 s
and the code generated by the latter to take 5.6 s. Then, we changed the upper
bound of the loop by multiplying it by ten, and then measured times to be respec-
tively 38.6 s and 48.0 s. This means that in the second setting, OCaml-Java is less
than 25 % slower than original OCaml. Of course, the ratios are better when mea-
suring longer runs because virtual machine startup and just-in-time compiling are
amortized.

6 Benchmarks

Procedure

Rather than developing benchmark programs from scratch, we decided to reuse es-
tablished ones: those from the “Benchmarks Game” (that was previously known as
the “Language Shootout”5). In order to compare performance between ocamlopt-
and ocamljava-compiled code, we resorted to the following procedure:

– each program is executed 7 times;
– the best and worse times for each program are dropped;
– the remaining times for each program are averaged.

Running the programs several times is of course mandatory to mitigate pos-
sible interference from other processes on the testing computer. In the case of
performance evaluation for programs running on a JVM, it is also very impor-
tant to ensure that the virtual machine has been warmed up. This explains why
we have to drop the worst execution time (that is, in practice, the first execu-
tion time). Finally, it is important to state which options are passed to the JVM:
-server, -XX:+TieredCompilation, and -XX:+AggressiveOpts.

Numbers

Table 1 shows the results as ratios (execution time of ocamljava-compiled code
over execution time of ocamlopt-compiled code). The meteor* program is just
the repetition of meteor 64 times: the running time for meteor is so short that
virtual machine startup is significant.

Those results show that the OCaml-Java compiler is on par with the origi-
nal one on some benchmarks (thread-based and numerical ones), and most of the
time between two and three times slower than original OCaml. Given that the

5 See http://benchmarksgame.alioth.debian.org.

http://benchmarksgame.alioth.debian.org


84 X. Clerc

Table 1. Some benchmarks from the Benchmarks Game.

Benchmark ocamljava/ocamlopt Benchmark ocamljava/ocamlopt

binarytrees 1.75 nbody 1.00
fannkuch 3.11 revcomp 2.01
mandelbrot 1.58 spectralnorm 2.66
meteor 6.81 threadring 1.12
meteor* 4.50

OCaml-Java compiler is still at prototype stage, and the ability to leverage multi-
ple cores from an ocamljava-compiled code, we regard the results as encouraging.
Our goal of making OCaml-Java competitive with original OCaml from a perfor-
mance standpoint seems reachable. However, we clearly need to add new bench-
marks to our suite in order to gain more confidence on the preliminary results
presented here.

7 FutureWork

Most of our short-term effort will be focused on the unboxing of values. It proved
to produce large speedups in the past, and a lot of things can be done to make
it more aggressive. First, currently, the kind of storage is chosen according to the
initial value of a variable; we could design an heuristic also based on the uses of
the variable. Second, as previously said, boxing is mandatory at function bound-
aries; there are two ways to lift this restriction: (i) avoid such a boundary (e.g.
by using inlining) or (ii) allow the compilation to functions taking unboxed para-
meters when typing information allows to do so. Also, unboxing is currently done
only for the following OCaml types: int, int32, int64, nativeint, and float.
It could also be done on others types, particularly ones constructed (e.g. records
with mutable fields) over those that can already be unboxed.

Inlining itself can also be greatly improved. For example, the current version
of the compiler is unable to inline recursive functions. This seems like a reason-
able limitation at first, but some recursive functions can be tail-call optimized and
thus be compiled as mere loops. In this case, it would be possible to inline such
functions.

Another area we should definitely investigate is the possible influence of
garbage collection parameters over performance. It would have had little sense for
the example presented in this paper, but we expect performance to be sensitive
to garbage collector parameters in real-world applications. Indeed, the default pa-
rameters are chosen to allow good performance for typical Java applications, not
OCaml ones. The former ones tend to use big and long-lived instances, while the
latter ones tend to use small and short-lived instances.

Finally, we could also optimize compile-time performance by generating the
Barista hypergraph directly during code generation. Currently, the compiler pro-
duces plain bytecode that is then passed to Barista for low-level optimizations.
This incurs the price of hypergraph construction from a list of bytecode instruc-
tions, which can be avoided.



OCaml-Java: From OCaml Sources to Java Bytecodes 85

To conclude, some words about optimization opportunities that are linked to
the future development of the Java platform. Among those considered for inclu-
sion in the next revision of Java, two would be particularly useful to functional
languages targeting the Java Virtual Machine. The first feature is tagged values,
and would allow us to avoid boxing of int values: it would not only allow faster
operations but would also relieve the pressure over garbage collection by avoid-
ing allocation. The second feature is support for tail calls, and would allow us to
mark a method call as terminal to indicate to the just-in-time compiler that a call
can be optimized. It would allow, of course, faster execution, but would also make
the life of users easier because the absence of tail call optimization interacts with
semantics when calls come to blow up the stack.

References

1. Clerc, X.: OCaml-Java: OCaml on the JVM. In: Loidl, H.-W., Peña, R. (eds.) TFP
2012. LNCS, vol. 7829, pp. 167–181. Springer, Heidelberg (2013)

2. Danelutto, M., Di Cosmo, R.: Parmap: minimalistic library for multicore program-
ming. https://gitorious.org/parmap

3. Stolpmann, G.: Plama: Map/Reduce and distributed filesystem. http://plasma.
camlcity.org/

4. Chailloux, E., Canou, B., Wang, P.: OCaml for Multicore Architectures. http://www.
algo-prog.info/ocmc/web/

5. Hickey, R.: The clojure programming language. In: Proceedings of the 2008 Sympo-
sium on Dynamic Languages. DLS ’08, pp. 1:1–1:1. ACM, New York (2008)

6. Odersky, M., et al.: The Scala Language. http://www.scala-lang.org/
7. Nutter, C.O., et al.: JRuby. http://jruby.org
8. Clerc, X.: The Barista library. http://barista.x9c.fr

https://gitorious.org/parmap
http://plasma.camlcity.org/
http://plasma.camlcity.org/
http://www.algo-prog.info/ocmc/web/
http://www.algo-prog.info/ocmc/web/
http://www.scala-lang.org/
http://jruby.org
http://barista.x9c.fr

	OCaml-Java: From OCaml Sources to Java Bytecodes
	1 Introduction
	2 Compiler Architecture
	3 Value Representation
	4 The Barista Library
	5 Example of Bytecode Generation
	6 Benchmarks
	7 Future Work
	References


