Advances in Lazy SmallCheck

Jason S. Reich!®, Matthew Naylor?, and Colin Runciman®

! Department of Computer Science, University of York, York, UK
{jason, colin}@cs.york.ac.uk

2 Computer Laboratory, University of Cambridge, Cambridge, UK
matthew.naylor@cl.cam.ac.uk

Abstract. A property-based testing library enables users to perform
lightweight verification of software. This paper presents improvements
to the Lazy SmallCheck property-based testing library. Users can now
test properties that quantify over first-order functional values and nest
universal and existential quantifiers in properties. When a property fails,
Lazy SmallCheck now accurately expresses the partiality of the counter-
ezample. These improvements are demonstrated through several practi-
cal examples.

Keywords: Automated testing - Lazy SmallCheck - Functional values -
Existential quantification - Search-based software engineering

1 Introduction

Property-based testing is a lightweight approach to verification where expected
or conjectured program properties are defined in the source programming lan-
guage. For example, consider the following conjectured property' that in Haskell
every function with a list of Boolean values as an argument, and a single Boolean
value as result, can be expressed as a foldr application.

prop- ReduceFold :: ([Bool] — Bool) — Property
prop_ ReduceFold r = exists $ \f z — forAll $ \xs — r xs = foldr f z xs

When this property is tested using our advanced version of Lazy SmallCheck,
a small counterexample is found for r.

>>> test prop_ReduceFold
. Depth 2: Var 0: { [] -> False
; _:[1 -> False
-> True }

3 ==

! Like all other properties used as examples in this paper, this property does not hold;
our goal is to find a counterexample.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 53-70, 2013.
DOI: 10.1007/978-3-642-41582-1_4, © Springer-Verlag Berlin Heidelberg 2013

54 J. S. Reich et al.

The counterexample is a function that tests for a multi-item list. It is ex-
pressed in the style of Haskell’s case-expression syntax. Several new features of
Lazy SmallCheck are demonstrated by this example. (1) Two of the quantified
variables, r and f, are functional values. (2) An existential quantifier is used
in the property definition. (3) The counterexample found for ris concise and
understandable.

Previous property-based testing libraries struggle with such a property. The
QuickCheck [2] library does not support existentials as random testing ‘would
rarely give useful information about an existential property: often there is a
unique witness and it is most unlikely to be selected at random [14]’. QuickCheck
also requires that functional values be wrapped in a modifier [1] for shrinking
and showing purposes.

The original Lazy SmallCheck [14] supports neither existentials nor func-
tional values. SmallCheck [14] supports all the necessary features of the property.
However, it takes longer to produce a more complicated looking counterexam-
ple. This is because SmallCheck enumerates only fully defined test data and
shows functions only in part, by systematically enumerating small arguments
and corresponding results.

1.1 Contributions

This paper discusses the design, implementation? and use of new features in
Lazy SmallCheck. We present several contributions:

— An algorithm for checking properties that may contain universal and exis-
tential quantifiers in a Lazy SmallCheck-style testing library.

— A method of lazily generating and displaying functional values, enabling the
testing of higher-order properties.

— An evaluation of these additions with respect to functionality and run-time
performance.

1.2 Roadmap

Section 2 is a brief reminder of the Lazy SmallCheck approach to property-based
testing. Section 3 demonstrates the new features of the Lazy SmallCheck through
several examples. Section 4 describes architectural changes that enable these new
features. Section 5 presents the formulation of functional values. Section 6 evaluates
the new Lazy SmallCheck in comparison to other Haskell property-based testing
libraries. Section 7 offers conclusions and suggestions for further work.

2 The Lazy SmallCheck Search Strategy

A property-based testing library uses a strategy to search the test data space
for counterexamples to a given property. For example, QuickCheck [2] randomly

2 Source code available at http://github.com/UoYCS-plasma/LazySmallCheck2012.

http://github.com/UoYCS-plasma/LazySmallCheck2012

Advances in Lazy SmallCheck 55

Table 1. Values of xs used by Lazy SmallCheck when testing prop_ListSizes xs.

Test-data Result Test-data Result
(1) L Refine test-data (5) L:L1:1 Refine test-data
2)] Property satisfied (6) L:L1:]] Property satisfied
(8) L:1L Refine test-data (77 L:L:1:1 Refine test-data
(4) L:]] Property satisfied (8) L:Ll:L1:]] Counterezample

selects a fixed number of test-data values. SmallCheck [14], on the other hand,
exhaustively constructs all possible values of a particular type, bounded by the
depth of construction (or some appropriate metric for non-algebraic types).

Lazy SmallCheck instead begins by testing undefined — 1 — as the value
and refines it by need. The demands of the test property guide the exploration
of the test-data space. When evaluation of a property depends on an undefined
component of the test-data, eractly that component is refined. For algebraic
datatypes, undefined is refined to all possible constructions, each with undefined
arguments. To ensure termination, when Lazy SmallCheck is run, a bound is set
on the depth of possible refinements.

Consider the illustrative property prop_ ListSize. It asserts that all lists with
Bool-typed elements have lengths less than three.

prop_ ListSize :: [Bool] — Bool
prop_ ListSize xs = length xs < 3

Clearly this property is false. Lazy SmallCheck finds the following counterex-
ample where each occurrence of _ means any value.

>>> test prop_ListSize
. Depth 3: Var 0: _:_:_:[]

As Lazy SmallCheck searches for this counterexample, it refines the test
values bound to xs as shown in Table 1. Notice that the elements of the list xs
are never refined as their values are never needed by the property. This pruning
effect is the key benefit of Lazy SmallCheck over eager SmallCheck.

3 New Features in Action

The following examples further illustrate the new features in Lazy SmallCheck.
The first generates functional values and displays partial counterexamples. The
second shows the benefits of generating small, partial functional values. The final
example demonstrates ezistential quantification.

56 J. S. Reich et al.

3.1 Left and Right Folds

Let us look for a counterexample of another conjectured property. This property
states that foldll f gives the same result as foldrl f for non-empty list arguments
with natural numbers as the element type.

prop_ foldlr1 :: (Peano — Peano — Peano) — [Peano] — Property
prop_ foldlrl f xs = (= o null) xs = foldl1 f xs = foldr1 f xs

As in the original Lazy SmallCheck [14], testing this property requires a
Serial instance for the Peano datatype. Additionally, an Argument instance must
be defined so that Lazy SmallCheck can produce functional values with Peano
arguments. We have defined a Template Haskell function [15] — deriveArgument
— that automatically derives a suitable Argument instance. Section 5.2 discusses
this in more detail.

data Peano = Zero | Succ Peano deriving (Eq, Ord, Show, Data, Typeable)

instance Serial Peano where series = cons0 Zero <|> consl Succ
derive Argument " Peano

Lazy SmallCheck finds a counterexample at depth 3. The function f returns
Succ Zero if its input is Zero and returns Zero in all other cases. The list xs is of
length three where the last element is Zero.

>>> test prop_foldlrl

Depth 3: ... Var 0: { _ -> { Zero -> Succ _
; Succ _ -> Zero } }
Var 1: _:_:Zero:[]

3.2 Generating Predicates

Our next example is based on prop_ PredicateStrings from Claessen [1].

prop- PredStrings :: (String — Bool) — Property
prop- PredStrings p = p "Lazy SmallCheck" =— p "SmallCheck"

Lazy SmallCheck finds as a counterexample the function p that returns True
when the second character in its argument is ’a’ and False when any other
character occurs in the second position. The function is undefined for strings of
length less than two.

Advances in Lazy SmallCheck 57

>>> test prop_PredStrings
Depth 4:

Var 0: { _:’a’:_ -> True
-> False }

3 —r—r

Why is this the first counterexample found? We might expect a function
that distinguishes an initial ‘L’ from an initial ‘S’. As the depth-bound for test-
ing increases, the extent to which the spines of list arguments can be refined
increases. But also the range of character values used in refinements increases
and the smallest non-empty range contains just ‘a’.

QuickCheck also finds counterexamples for this property but the functions
are stricter. They test equality with one of whole strings "Lazy SmallCheck" or
"SmallCheck".

3.3 Prefix of a List

This example is taken from Runciman et al. [14]. We assert that a (flawed)
definition of isPrefix satisfies a soundness specification of the function.

isPrefix :: Eq a = [a] — [a] — Bool

isPrefix [] _ = True
isPrefix (x: xs) (y:ys) = x =y V isPrefix xs ys
isPrefix _ _ = False

prop_isPrefixSound xs ys = isPrefix (xs:: [Peano]) ys =
(exists $ Axs' — xsH xs' = ys)

In Runciman et al. [14], this property could only be checked by SmallCheck as
Lazy SmallCheck did not support existential properties. Running it through the
new Lazy SmallCheck gives another concise counterexample: if the first argument
of isPrefix is a multi-item list with first element Zero, and the second argument
is [Zero]; then isPrefix incorrectly returns True.

>>> test prop_isPrefixSound
. Depth 2: Var 0: Zero:_:_ Var 1: Zero:[]

A smallest counterexample with both xs and ys non-empty suggests an error
in the second equation defining isPrefix. Indeed, a disjunction has been used in
place of a conjunction.

4 Implementation of New Lazy SmallCheck

This section describes in detail how new Lazy SmallCheck achieves the process
outlined in Sect.2. We shall return to the prop_ ListSize example discussed in
Sect. 2 to illustrate the data-types used in the implementation.

58 J. S. Reich et al.

class Functor f where
fmap::(a—b)—>fa—fb

infixl 3 <|>

infixl 4 <o, <>

(<$>) = fmap

class Functor f = Applicative f where
pure a—fa
(<) =f(a—b)—>Ffa—frb

class Applicative f = Alternative f where
empty ;- f a
(<|>):fa—fa—fa

Fig. 1. Definition of Functor, Applicative and Alternative type-classes.

In places, instead of the actual definitions used in the implementation, we
give simpler versions that are less efficient but easier to read. These differences
will be summarised in Sect. 4.5.

Abstractions We will make extensive use of the Functor, Applicative and Alternative
type-classes. All are defined in Fig. 1. Functors are containers with an associ-
ated fmap operation that applies functions to each contained element. Lists, for
example, are functors under the map function.

Applicative functors [12] extend this by viewing containers as contexts from
which values may be obtained. Any ordinary value can be wrapped up in a
context using pure. A function-in-context can be applied to a value-in-context
using the (<#>) operator. Returning to the lists example, pure places the value
into a singleton list and fs <#> xs applies every function in the collection fs to
every argument in collection xs to obtain a collection of results.

Alternative functors are an extension of applicative functors by the addition
of an empty container and an operation, (<|>), to merge containers. For lists,
empty is the empty list and (<|>) is list concatenation.

4.1 Partial Values

Refinement exceptions As highlighted in Sect. 2, the test-data space includes par-
tial values that are refined by need during the search for a counterexample. When
the value of an undefined is needed, an exception tagged with the location of the
undefined is raised and caught by the testing algorithm. The implementation
uses GHC’s user-defined exceptions. [11] The definition of Lazy SmallCheck’s
refinement exceptions can be found in Fig. 2.

The Location information uniquely identifies the component of a partial test-
data value that is needed by a property under test. The Path in a Location
gives directions from the root of a binary-tree representation to some specific

Advances in Lazy SmallCheck 59

type Location = (Nesting, Path)

type Nesting = Int

type Path = [Bool]

data Refine = RefineAt Location deriving (Show, Typeable)
instance Exception Refine

Fig. 2. Definition of Location carrying exceptions.

subtree. The Nesting in a Location is akin to a de Bruijn [4] level: it identifies
the quantifier for the test-data variable that needs refining.

Partial values functor A functor of Partial values is defined in Fig.3. The only
method of accessing the value inside the Partial functor is through runPartial. It
forces the result of a computation using partial values and catches any refinement
exception that may be raised.

A Show instance is defined so that Partial values can be printed. The definition
is omitted here but it follows the ‘Chasing Bottoms’ [3] technique. This is what
allows the display of wildcard patterns in counterexamples.

Running example Consider the third value, | : L, tested in Table 1 from Sect. 2.
Here is its simplified representation and the results of two small computations
using it.

newtype Partial a = Partial { unsafePartial :: a}

instance Functor Partial where
fmap f (Partial x) = Partial (f x)
instance Applicative Partial where
pure = Partial
Partial f <¥> Partial x = Partial $ f x
runPartial :: (NFData a) = Partial a — Either Refine a
runPartial value = unsafePerformlO $
(Right <$> evaluate (force (unsafePartial value)))
‘catch’ (return o Left)
refineAt :: Location — Partial a
refineAt = Partial o throw o RefineAt

Fig. 3. Definition of the Partial values functor.

60 J. S. Reich et al.

>>> let step3 = (:) <$> refineAt (0, [False, Truel)
<x> refineAt (0, [True]) :: Partial [a]

>>> runPartial (prop_ListSize <$> step3)
Left (RefineAt (0, [Truel))

>>> print (step3 :: Partial [Booll)

The undefined arguments of the list-cons are uniquely tagged by locations.
The result of applying prop_ ListSize shows that the second argument is needed.
Pretty-printing this partial value hides the complexity underneath.

4.2 Test-Value Terms

The representation of a test-value term contains tValue, the information needed
to obtain a partial test-data value, and tRefine, its possible refinements. The
Term datatype is defined in Fig. 4.

The Applicative instance for terms shows how: (1) the Path component of a
location is extended through the argument of tValue and (2) the tRefine uses this
information to pass the rest of the path to the relevant subterm.

The mergeTerms function demonstrates how a collection of terms can be
turned into a single undefined value paired with the ability to obtain the collec-
tion when required. This is key to the strategy illustrated in Sect. 2.

Test-value environments After test data is generated but before a property is
applied to it, a pretty-printed representation of the partial value is recorded.
The benefit of this technique is that we need not record a pretty-printing that

data Term a = Term {tValue ::(Location — TVE (Partial a))
, tRefine :: (Path — [Term a])}

instance fFunctor Term where
fmap f (Term v es) = Term ((fmap o fmap o fmap $ f) v)
((fmap o fmap o fmap $ f) es)

instance Applicative Term where
pure x = Term (pure o pure o pure $ x) (pure [])
fs <> xs = Term
(A(n, ps) = (<x>) <$> tValue fs (n, ps H [False])
<> tValue xs (n, ps + [Truel))
(M(p: ps) — if p then fmap (fs <x>) (tRefine xs ps)
else fmap (<> xs) (tRefine fs ps))
mergeTerms :: [Term a] — Term a
mergeTerms xs = Term (TVE [string "_"] o refineAt) (const xs)

Fig. 4. Definition of test-value terms and a merging operation.

Advances in Lazy SmallCheck 61

data TVE a= TVE {tveEnv :: TVinfo, tveVal :: a}
type TVinfo = [AlignedString]

instance Functor TVE where
fmap f (TVE ctx val) = TVE ctx (f val)
instance Applicative TVE where
pure = TVE []
TVE ctx0 f <¥> TVE ctxl x = TVE (ctx0 + ctx1) (f x)

Fig. 5. Definition of test-value environments.

could be obtained from the final test-value derived from the term. This will be
especially useful for the display of functional values in Sect. 5.

The test-value environments type is shown in Fig. 5. We omit AlignedString
in this paper but it follows established pretty-printing techniques, such as that
used by Hughes [7].

4.3 Test-Value Series Generators

Series functor Properties are tested against a series of depth-bounded test-data
terms. The Lazy SmallCheck library defines instances for the test-data Series
functor that implicitly enforces depth-bounding and the introduction of partial
test-data values. These definitions are in Fig. 6.

As with the original Lazy SmallCheck, a depth-cost is only introduced on
the right-hand side of binary applications so that each child of a constructor is
bounded by the same depth.

type Depth = Int
newtype Series a = Series { runSeries :: Depth — [Term a]}

instance Functor Series where
fmap f xs = pure f <> xs

instance Applicative Series where

pure = Series o pure o pure o pure

Series fs <x> Series xs = Series $ \d —

[f <> mergeTerms x | d >0, + fs d
et x =xs (d — 1), (monull) x]

instance Alternative Series where

empty = Series $ pure []

Series xs <|> Series ys = Series $ () <$> xs <> ys

Fig. 6. Definition of Series generators.

62 J. S. Reich et al.

class (Data a, Typeable a) = Serial a where
series :: Series a

seriesWithEnv :: Series a

seriesWithEnv = Series $ fmap storeShow <$> runSeries series
storeShow :: (Data a, Typeable a) = Term a — Term a
storeShow (Term v es) = Term

((fmap $ A\(TVE _ x) — TVE [string $ show x] x) v)

(fmap storeShow <$> es)

Fig. 7. Definition of the Serial type-class.

Running example The following are definitions for depth-bounded values of
Booleans, polymorphic lists and Boolean lists.

>>> let boolSeries = pure False <|> pure True
>>> let listSeries elem = pure []

<|> (:) <$> elem <*> listSeries elem
>>> let listBoolSeries = listSeries boolSeries

Serial class A class of Serial types is defined in Fig.7. Lazy SmallCheck uses
Serial instances to automatically generate test values for argument variables in
properties. Using the generic Series operators of Fig. 6, a family of cons,, combi-
nators can be defined exactly as described by Runciman et al. [14].

Running ezample again The library defines the series generators for many data-
types. The Serial instances for Bool and lists are as below. Notice that we no
longer explicitly define how the arguments of list-cons are instantiated. It is
automatically handled by the type system.

instance Serial Bool where
series = cons0 False <|> cons0 True

instance Serial a = Serial [a] where
series = cons0 | <|> cons2 (:)

4.4 Properties and Their Refutation

Properties The Property data-type in Fig.8 defines the abstract syntax of a
domain-specific language. It includes standard Boolean operators. Crucially, it
also provides a representation of universal and existential quantifiers that sup-
ports searches for counterexamples and witnesses.

Though not defined here, smart wrappers are provided for all six Property
constructions. These automatically lift Booltyped expressions to Property and

Advances in Lazy SmallCheck 63

data Property = Lift Bool | Not Property
| And Property Property | Implies Property Property
| ForAll (Series Property) | Exists (Series Property)

Fig. 8. The underlying representation of the Property DSL.

instantiate free variables in properties with appropriate series from Serial
instances.

Refutation of properties The depthCheck function takes as arguments an integer
depth-bound and a Testable property that may contain free variables of types of
any Serial type. The counterexample and refute functions given in Fig.9 search
for a failing example.

A key point to observe is that refute recurses when it encounters a nested
quantification. All refinement requests must therefore be tagged with the Nesting
level for the associated quantifier. The RefineAt information can then be passed
onto the relevant tRefine function. Those refined terms are then prepended onto
the list of terms left to test.

counterexample :: Depth — Series Property — Maybe T Vinfo
counterexample d xs = either L id $ refute 0 d xs

refute :: Nesting — Depth — Series Property — Either Refine (Maybe TVinfo)
refute n d xs = terms (runSeries xs d)
where

terms :: [Term Property] — Either Refine (Maybe TVinfo)
terms [] = Right Nothing
terms (Term v es : ts) = case (join o runPartial o fmap prop) <$> v (n, []) of
TVE _ (Left (RefineAt (m,ps))) | m=n — terms$ es ps + ts
| otherwise — Left $ RefineAt (m, ps)

TVE info (Right False) — Right $ Just info
TVE _ (Right True) — terms $ ts
prop :: Property — Either Refine Bool
prop (Lift v) = pure v
prop (Not p) == <$> prop p
prop (And pq) =(A) <$> prop p <> prop q
prop (Implies p q) =(=) < propp <« propq
prop (ForAll xs) = isNothing <$> refute (succ n) d xs
prop (Exists xs) = isJust <$> refute (succ n) (succ d) (fmap Not xs)

Fig. 9. Definition of the refutation algorithm.

64 J. S. Reich et al.

4.5 Differences Between Versions of Lazy SmallCheck

The main differences between the new Lazy SmallCheck and the original Lazy
SmallCheck described in [14] are as follows. In the new implementation:

— Terms are always represented in a type-specific way. Previously they were
generated from a generic description.

— Terms can carry a test-value environment enabling the display of test-data
types (such as functions) that cannot be directly pretty-printed.

— The testing algorithm calls itself recursively, refining information about en-
closing quantifiers.

The main differences between real implementation of the new Lazy Small-
Check and the slightly simplified variant described in this paper are as follows.
In the real implementation:

— The Path datatype is a difference list to optimise the list-snoc operation.

— Terms representing total and partial values are distinguished to optimise
performance and to allow the use of existing Show instances for total terms.

— Terms representing partial values record the total number of potential refined
values they represent up to the depth bound. The refutation algorithm counts
the actual number of refinements performed. (This is useful for performance
measurements and comparison with other approaches.)

5 Implementing Functional Values

The key to generating functional values is the ability to represent them as tries,
also known as prefix trees. New Lazy SmallCheck supports the derivation of
appropriate tries for given argument types, and the conversion of tries into func-
tions to be used as test values.

The use of test-value environments allows a trie to be pretty-printed before
it is converted into a Haskell function. This removes the need for the kind of
modifier used by Claessen [1].

5.1 Trie Representations of Functions

We define a generic trie datatype in Fig. 10. It is expressed as a two-level, mu-
tually recursive GADT. Level one describes functions that either ignore their
argument — Wild, or perform a case inspection of it — Case.

Level two represents details of a case inspection. The Valu construction occurs
when the argument is of unit type and therefore returns the single result. The
Sum construction represents functions with a tagged union as argument type,
performing further inspection on their constituent types. The Prod construction
represents functions with arguments of a product type, producing a trie that
first inspects the left component of the product, then the right to return a value.

A construction Natu vs v represents a function with a natural number ar-
gument. If an argument n is less than the length of vs, the value of vs!! n is

Advances in Lazy SmallCheck 65

type (:—:) = Levell
data Levell k v where
Wild :: v — Levell k v
Case :: Level2 k v — Levell k v

data Level2 k v where

Valu v — Level2 () v

Sum :: Level2 j v — Level2 k v — Level2 (Either j k) v
Prod :: Level2 j (Level2 k v) — Level2 (j, k) v

Natu :: [v] = v — Level2 Nat v

Cast :: Argument k = Levell (Base k) v — Level2 (BaseCast k) v
applyT i (k= v) >k — v
applyT (Wild v) = const v
applyT (Case t) = applyL2 t

applyL2 :: Level2 k v — k — v

applyL2 (Valuv) _ =v

applyL2 (Sum t _) (Left k) =t applyL2' k

applyL2 (Sum _t) (Right k) =t ‘applyL2" k

applyL2 (Prod t) (J, k) = t'applyL2' j 'applyl2* k
applyL2 (Natu m d) (Nat k) = foldr const d $ drop k m

—~ o~

applyL2 (Cast t) BaseCast k) =t ‘applyT" k

Fig. 10. Definition of the two-level trie data structure.

returned. Otherwise v is returned as default. The Cast construction is used in all
other cases. We shall say more about it in Sect. 5.2. The function apply T converts
a trie into a Haskell function.

5.2 Custom Data-Types for Functional Value Arguments

The Argument class is defined in Fig. 11. Users supply an instance Argument t to
enable generated functional test values with an argument of type t. Each instance
defines a base type representation and an isomorphism between the argument
type and the base type. This is a variation of the generic trie technique used
by Hinze [6]. The Cast construction of the trie datatype performs the necessary
type conversions using the Argument instances.

The BaseCast functor is used at recursive points to prevent infinite repre-
sentations of recursive datatypes. It is a type-level thunk indicating that an
arbitrary type can be translated into a Base type. For example, Fig. 12 shows
the Argument Peano instance. The Template Haskell function deriveArgument
automatically produces Argument instances for any Haskell 98 type.

5.3 Serial Instances of Functional Values

Functional values have been reified through the trie datatype, so we first need
to define series of types. The Serial instances are defined in Fig. 13. A special

66

J. S. Reich et al.

class (SerialL2 (Base k), Typeable k, Data k) = Argument k where
type Base k
toBase ik — Base k
fromBase :: Base k — k

data BaseCast a = BaseCast { forceBase :: Base a}

toBaseCast :: Argument k = k — BaseCast k
toBaseCast = BaseCast o toBase

fromBaseCast :: Argument k = BaseCast k — k
fromBaseCast = fromBase o forceBase

Fig. 11. Definition of the Argument type-class.

instance Argument Peano where
type Base Peano = Either () (BaseCast Peano)
toBase Zero = Left ()
toBase (Succ n) = Right $ toBaseCast n
fromBase (Left _) = Zero
fromBase (Right n) = Succ $ fromBaseCast n

Fig. 12. The Argument instance for Peano.

seriesT :: (SerialL2 k) = Series v — Series (k :—: v)
seriesT srs = (Wild <$>" srs) <|> (Case <$> seriesL2 srs)
class SerialL2 k where
seriesL2 :: Series v — Series (Level2 k v)
instance SerialL2 () where
seriesl.2 srs = Valu <$>" srs
instance (SerialL2 j, SerialL2 k) = SerialL2 (Either j k) where
seriesL.2 srs = Sum <$>" seriesL.2 srs <¥>" seriesL2 srs
instance (Seriall2 j, SerialL2 k) = SerialL2 (j, k) where
seriesL.2 srs = Prod <$>" seriesL.2 (seriesL2 srs)
instance SerialL2 Nat where
seriesL2 srs = Natu <$>" fullSizeList srs <&>" srs

instance Argument k = SerialL2 (BaseCast k) where
seriesL.2 srs = Cast <$>" seriesT srs

Fig. 13. Definition of Series generators for tries and functions.

Advances in Lazy SmallCheck 67

Table 2. Comparision of property-based testing library features.

Feature QuickCheck SmallCheck Original LSC New LSC
Test strategy Random Bounded Bounded Bounded
exhaustive exhaustive exhaustive

Test-space N/A N/A Lazy Lazy
pruning generation generation

Minimal result Shrinking Natural Natural Natural

Functional values Yes® Yes No Yes

Existentials No Yes No Yes

Nested Yes Yes No Yes
quantification

Displays partial N/A N/A No Yes
counterexamples

Haskell 98/2010 Partial® Compatible Compatible No®

® Functional value is wrapped in a modifier at its quantification binding if showing or
shrinking is required.

® Originally Haskell 98 compatible but functional values modifier requires GADTs.

¢ Requires Haskell extensions: GADTs, type families and flexible contexts.

type-class Seriall2 is defined. It represents types that can be represented as trie
constructions. The applicative operators with a carret suffiz introduce no depth
cost, as opposed to those defined in Sect.4.3. These specialist operators have
been carefully placed to give a natural depth metric for functions while keeping
the series finite.

Using these definitions, a Serial instance for functional values is defined. The
default definition of seriesWithEnv is overridden to store the pretty-printed form
of the trie before it is converted into a Haskell function. This instance definition
is omitted here due to lack of space.

6 Discussion and Related Work

A feature comparison of several Haskell property-based testing libraries can be
found in Table 2. The test-space exploration strategy is the main distinction be-
tween the QuickCheck library and SmallCheck family of libraries. QuickCheck
assumes that test data detecting a failure is likely within some probability dis-
tribution. SmallCheck, on the other hand, appeals to the Small Scope hypothesis
[8] — programming errors are likely to appear for small test data.

6.1 Runtime Performance

The repository includes performance benchmarks to compare this implementa-
tion with the previously published Lazy SmallCheck. Experiments performed
using GHC 7.6.1 with -02 optimisation on a 2GHz quad-core PC with 16GB of
RAM show very little difference in execution times between the two encodings.

68 J. S. Reich et al.

6.2 Functional Values

The original QuickCheck paper [2] explains how functional test values can be
generated through the Arbitrary instance of functions with a Coarbitrary instance
of argument types. At this stage, QuickCheck could not display the failing ex-
ample without bespoke use of the whenFail property combinator.

QuickCheck has since gained the ability not only to display functional coun-
terexamples but also to reduce their complexity through shrinking. Claessen [1]
achieves this by transforming functions generated using the existing Coarbitrary
technique into tries.

Claessen’s formulation of tries slightly differs from ours. Existential types are
used in place of type families and there is no provision for non-strict functions.
Partiality of functions is explicitly expressed instead of being a result of partially
defined tries. Claessen also requires that functions are wrapped in a ‘modifier’
at quantification binding. This Fun modifier retains information for showing and
shrinking at the expense of a slightly more complex interface presented to users.

In Lazy SmallCheck, on the other hand, we directly generate a trie and then
convert it into a Haskell function. A pretty-printed representation of the trie is
stored at the time of generation and retrieved for counterexample output.

The SmallCheck representation of functional values uses a coseries approach,
analogous to QuickCheck’s Coarbitrary. However, functional values are displayed
by systematically enumerating arguments.

6.3 Existential and Nested Quantification

As previously discussed in Sect. 1, it does not make sense to use QuickCheck
for existential quantification. The previous design of Lazy SmallCheck made
it difficult to conceive of a refutation algorithm that could handle the nested
quantification required to make existential properties useful.

The use of the Partial values functor in this implementation gives statically
typed guarantees that term refinements are performed at the correct quantifier
nesting.

6.4 Benefits of Laziness

Runciman et al. [14] discussed the benefits and fragility of exploiting the lazi-
ness of the host language to prune the test-data search space. When applied to
functional values, we see further benefits. The partiality of a trie representation
corresponds directly with the partiality of the function it represents. Whereas
Claessen [1] needs to shrink total function to partial functions, the latest Lazy
SmallCheck has partial functions as a natural result of its construction.

7 Conclusions and Further Work

This paper has described the extension of Lazy SmallCheck with several new fea-
tures; (1) quantification over functional values, (2) existential and nested quan-
tification in properties and (3) the display of partial counterexamples.

Advances in Lazy SmallCheck 69

Properties that quantify over functional values occur often in higher-order
functional programming. Similarly, many properties may involve existential quan-
tification and even nesting of quantification within property definitions. The
examples in this paper have demonstrated the power of a tool that can find
counterexamples for such properties.

This paper takes an extensional view of functional values, characterising
them as mappings from input to output. An alternative would be to characterise
functions intensionally as lambda abstractions or other defining expressions,
perhaps allowing recursion [9,10]. We would expect the generic machinery for
typed functional series to be more complex. Also, when functions are needed
as test values, alternative definitions of the same extensional function are not
interesting [13].

Parallelisation of the refutation algorithm is a current area of investigation.
A prototype implementation shows near-linear speedups, in multicore shared-
memory environments, for benchmarks in which no counterexample is found.
This benefit is derived from the tree structure of the Lazy SmallCheck test-
value search space. However, in some benchmarks where a counterexample is
found the overheads of continued searches in other threads can cause slowdowns
rather than speedups.

Acknowledgements. We would like to acknowledge an e-mail suggestion from Max
Bolingbroke pointing to Elliott’s [5] MemoTrie library as a possible starting point for
the generation of functional values. We thank Andy Gill, IFL reviewers and Michael
Banks for helpful comments and suggestions.

This research was supported, in part, by the EPSRC through the Large-Scale
Complex IT Systems project, EP/F001096/1.

References

1. Claessen, K.: Shrinking and showing functions: (functional pearl). In: Proceedings
of the 2012 Symposium on Haskell, pp. 73-80. Haskell 12, ACM (2012)

2. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, pp. 268-279. ICFP ’00. ACM (2000)

3. Danielsson, N.A., Jansson, P.: Chasing bottoms. In: Kozen, D. (ed.) MPC 2004.
LNCS, vol. 3125, pp. 85-109. Springer, Heidelberg (2004)

4. de Bruijn, N.G.: Lambda calculus notation with nameless dummies: a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Math. 34, 381-392 (1972)

5. Elliott, C.: Elegant memoization with functional memo tries.
http://conal.net/blog/posts/elegant-memoization-with-functional-memo-tries
(October 2008). Accessed 26 July 2012

6. Hinze, R.: Generalizing generalized tries. J. Funct. Program. 10(04), 327-351
(2000)

7. Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 53-96. Springer, Heidelberg (1995)

http://conal.net/blog/posts/elegant-memoization-with-functional-memo-tries

70

10.

11.

12.

13.

14.

15.

J. S. Reich et al.

Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2012). Revised edn

Katayama, S.: Systematic search for lambda expressions. In: Trends in Functional
Programming, TFP2005, vol. 6, pp. 111-126. Intellect Books (2007)

Koopman, P., Plasmeijer, R.: Synthesis of functions using generic programming.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 25-49. Springer, Heidelberg (2010)

Marlow, S.: An extensible dynamically-typed hierarchy of exceptions. In: Proceed-
ings of the 2006 ACM SIGPLAN Workshop on Haskell, pp. 96-106. Haskell ’06.
ACM (2006)

McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1-13 (2008)

Reich, J.S., Naylor, M., Runciman, C.: Lazy generation of canonical test pro-
grams. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 69-84. Springer,
Heidelberg (2012)

Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: au-
tomatic exhaustive testing for small values. In: Proceedings of the First ACM
SIGPLAN Symposium on Haskell, pp. 37-48. Haskell '08, ACM (2008)

Sheard, T., Peyton Jones, S.: Template metaprogramming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pp. 1-16. Haskell ’02.
ACM (2002)

	Advances in Lazy SmallCheck
	1 Introduction
	1.1 Contributions
	1.2 Roadmap

	2 The Lazy SmallCheck Search Strategy
	3 New Features in Action
	3.1 Left and Right Folds
	3.2 Generating Predicates
	3.3 Prefix of a List

	4 Implementation of New Lazy SmallCheck
	4.1 Partial Values
	4.2 Test-Value Terms
	4.3 Test-Value Series Generators
	4.4 Properties and Their Refutation
	4.5 Differences Between Versions of Lazy SmallCheck

	5 Implementing Functional Values
	5.1 Trie Representations of Functions
	5.2 Custom Data-Types for Functional Value Arguments
	5.3 Serial Instances of Functional Values

	6 Discussion and Related Work
	6.1 Runtime Performance
	6.2 Functional Values
	6.3 Existential and Nested Quantification
	6.4 Benefits of Laziness

	7 Conclusions and Further Work
	References

