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and Wouter Swierstra2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
{nicolas.wu, jose.pedro.magalhaes}@cs.ox.ac.uk

2 Department of Computer Science, Utrecht University, Utrecht, The Netherlands
{j.bransen, w.s.swierstra}@uu.nl

Abstract. This paper discusses our entry to the 2012 ICFP Program-
ming Contest, written entirely in Haskell. Our solution uses many fea-
tures of Haskell: pure immutable data structures, laziness, higher-order
functions, concurrency, and exception handling. Each of these features
plays an essential part in our overall solution, and we demonstrate how
these key elements can be composed together. In this exposition, we
stress the importance of how the code was structured in such a way that
made safely refactoring and extending the model a relatively easy task,
and how Haskell’s strong type system made it possible for our team to
remain agile under changing specifications.

1 Introduction

In the classic paper Why Functional Programming Matters, Hughes [3] argues
that functional programming in Miranda provides two kinds of glue that en-
able the modular construction of programs: lazy evaluation and higher order
functions. To drive this point home, Hughes presents several small and elegant
example programs that rely on precisely these features. But how useful are lazi-
ness and higher order functions in larger developments?

This paper investigates this question and aims to provide further evidence
supporting Hughes’s claim. We describe a solution to the 2012 ICFP program-
ming contest.1 This programming contest allows participants to write solutions
in any language, or combination of languages, in a time frame of 72 hrs. Our
solution was entirely implemented in Haskell [4]. We describe our solution as
it was developed in the 72 hours of the contest, plus some later refactoring for
readability and bug fixing. Crucially, the solution we present uses many dif-
ferent Haskell features: pure immutable data structures, laziness, higher-order
functions, concurrency, and exception handling.
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1 The official task description is available at http://icfpcontest2012.wordpress.com/task/.
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Fig. 1. Graphical representation of a mine

1.1 Problem Description

The ICFP programming contest has been run every year since 1998. This year,
participants were invited to program a virtual mining robot to collect resources
called ‘lambdas’ while avoiding falling rocks, getting trapped, or drowning. The
overall score of a route was determined by the number of lambdas collected
and the number of moves required to collect those lambdas. Figure 1 shows a
graphical depiction of a game in progress. The goal is to compute a sequence
of moves for the robot to collect as many lambdas as possible, without being
crushed by falling rocks. If all the lambdas are collected, reaching the exit gives
an extra score bonus.

The problem specification was extended four times over the course of the
competition, demanding efficient and correct code to be produced under tight
deadlines. This provided an excellent means of substantiating the claim that
functional programming languages help to produce code that is both modular
and reusable. In the remainder of this paper, we describe our solution and how
it relies on several key Haskell features. The precise description of the problem
will become clear from the presentation of our solution.

We begin by describing pure models of both the mine (Sect. 2) and the search
space (Sect. 3). Our solution uses a combination of search strategies (Sect. 4), that
traverse the shared search space. The main program then applies these strate-
gies in parallel (Sect. 5), returning the best result. Section 6 describes the changes
necessary to adapt our solution to each of the problem specification extensions.
We conclude in Sect. 7 with a summary of our experience, including a number of
practical guidelines for code development in a situation similar to ours.

2 Pure Modelling

In this section we describe how we model and simulate the problem in Haskell.
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2.1 Model

The model represents the entire state of a mine at any given time, and forms
an important interface for the rest of the system: the simulator (Sect. 2.2) takes
one state of the model to the next, the parser must produce a value of this type,
the visualiser outputs a visual rendering of the model (Sect. 2.3), and various
strategies can be employed based on the state held within the model (Sect. 4).

The basic building block of a mine is a Tile, which holds information about
what exists at a particular coordinate:

data Tile = Robot | Wall | Rock Bool | Lambda | Earth | Empty | Exit

Note that rocks are parameterised by a Boolean which indicates whether or not
a rock is falling: when the robot is directly beneath a falling rock, it is crushed.

Each tile in the mine is given a specific coordinate, which is simply a pair of
Int values named Coord . Putting these elements together, we are interested in
an array that is indexed by Coords and contains Tiles. This describes the layout
of the mine:

type Layout = Array Coord Tile

Using an array for this representation is appropriate, since we need to perform
lookups of elements at coordinates very often, and arrays have constant time
lookup.

It is useful to define a function that checks the value of a tile in the layout at
a particular coordinate, by dereferencing the appropriate location in the array:

isTile :: Layout → Coord → Tile → Bool
isTile l xy t = l ! xy ≡ t

There is an important caveat to using this function and others like it which make
use of (!), the unsafe indexing operator. This operator is efficient, but makes no
effort to ensure that the coordinates being sought are within the bounds of the
array, and this is a danger which could easily result in an exception being thrown
at runtime.

Another utility function finds the coordinates of all the tiles which satisfy a
given predicate:

findTiles :: (Tile → Bool) → Layout → [Coord ]
findTiles p = map fst ◦ filter (p ◦ snd) ◦ assocs

This works by getting a list of all the associations in the array and representing
these as a value of type [(Coord ,Tile)]. This list is then filtered by the predicate,
before the coordinates are extracted.

While the Layout structure holds much of the information required during the
game, some essential features are lacking, such as the number of moves that have
passed since the beginning of the game. The whole state is saved in a structure
named Mine, which contains all the information required for assessing the current
score:
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data Mine = Mine { layout :: Layout
, robot :: Coord
, lambdas :: Int
, moves :: Int }

In particular, Mine stores the current position of the robot along with the num-
ber of remaining lambdas and the number of moves it has taken to reach this
point, since this is an important part of calculating the score.

When the robot has finished collecting all the lambdas, the exit opens and
the robot is allowed to leave the mine. Our representation indicates that the
robot has exited when the robot’s coordinates correspond with the Exit tile in
the layout:

isDone :: Mine → Bool
isDone mine = isTile (layout mine) (robot mine) Exit

The task of ensuring that the robot can only enter an exit when all lambdas
have been collected is left to the simulator, which we explain in the next section.

2.2 Simulation

The simulation code determines how the system responds to the robot’s actions:
each time the robot makes a move the world is updated and a new Mine value
is calculated.

The robot can perform several moves: moving up, down, left, right, waiting,
or aborting the mission. For brevity, the data constructors that represent these
moves contain only the initial letter of each action:

data Move = L | R | D | U | W | A

We often calculate coordinates based on a sequence of moves; the following
function returns a coordinate that has been shifted by some movement value:

(�) :: Coord → Move → Coord
(x , y) � L = (x − 1, y )
(x , y) � R = (x + 1, y )
(x , y) � D = (x , y − 1)
(x , y) � U = (x , y + 1)
(x , y) � _ = (x , y )

For example, this operator is used to verify whether the robot has been crushed
by a rock, which happens whenever the tile directly above the robot is a falling
rock:

isDead :: Mine → Bool
isDead mine = isRockFalling (layout mine ! (robot mine � U ))
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The function isRockFalling distinguishes rocks that are falling.
The score is calculated by multiplying a constant factor per collected lambda

minus the number of moves the robot made. The constant depends on how the
game ended, and is 75 when all lambdas were collected, 25 when the robot dies,
and 50 if the robot aborted (which is the default action when no more moves
are made).

The central function used to simulate the robot’s progression through a mine
is step, which takes a current mine, a move, and steps the simulator through
that move:

step :: Mine → Move → Mine
step mine A = mine
step mine move = mine ′ where

(layout ′, robot ′) = stepRobot mine move
layout ′′ = array ((bounds ◦ layout) mine) $

concat [ updRocks (mine { layout = layout ′}) (x , y) (layout ′ ! (x , y))
| y ← [1 . . h ], x ← [1 . .w ]]

moves ′ = 1 + moves mine
lambdas ′ | isTile (layout mine) robot ′ Lambda = lambdas mine − 1

| otherwise = lambdas mine
(w , h) = (snd ◦ bounds ◦ layout) mine
mine ′ = mine { layout = layout ′′ , robot = robot ′

, lambdas = lambdas ′,moves = moves ′}

When a move other than A is requested, the simulator returns the result of the
updated record mine ′. The layout field is updated in two stages. First the value
of the layout is calculated after the robot has made its step and stored in layout ′,
and then this value is used in creating a new array, layout ′′, that contains the
state of the mine after all the falling of rocks has been calculated. This follows
the problem specification.

Updating the robot is left to the stepRobot function, which returns the layout
after the robot has moved, and gives the new coordinate of the robot:

stepRobot :: Mine → Move → (Layout ,Coord)
stepRobot mine move =

case l ! xy ′ of
Earth → (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Empty → (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Lambda → (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Exit | lambdas mine ≡ 0

→ (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Rock _ | (move ≡ L ∨ move ≡ R) ∧ isTile l (xy ′ � move) Empty

→ (l // [(xy ′,Robot), (xy ,Empty), (xy ′ � move,Rock False)], xy ′)
_ → (l // [(xy ,Robot)], xy)

where l = layout mine
xy = robot mine
xy ′ = xy � move
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Moving towards earth, an empty tile, or a lambda simply updates the robot
position, leaving an empty space behind. Moving towards the exit is only allowed
if all the lambdas have been collected. Moving towards a rock is possible if the
movement is sideways, and there is empty space next to the rock being pushed.
All other movements are invalid, and the robot remains in the same position.

Another crucial function is updRocks , which is responsible for updating the
position of rocks after the robot has moved:

updRocks :: Mine → Coord → Tile → [(Coord ,Tile)]
updRocks mine xy (Rock _)

| isFallDown l xy = [(xy ,Empty), (xy � D ,Rock True)]
| isFallRight l xy = [(xy ,Empty), (xy � D � R,Rock True)]
| isFallLeft l xy = [(xy ,Empty), (xy � D � L ,Rock True)]
| isFallLambda l xy = [(xy ,Empty), (xy � D � R,Rock True)]
| otherwise = [(xy ,Rock False)]
where l = layout mine

updRocks_xy tile = [(xy , tile)]

The functions isFallDown, isFallRight , isFallLeft , and isFallLambda determine
whether the rock will fall in a particular direction. These are all predicates that
take a Layout and a Coord , and simply output the appropriate Bool .

Keeping the entire state of a mine as a single value of type Mine enables
the definition of step to remain relatively simple, since all of the required data
for an update is held in a single structure. This complete encapsulation of state
means that there are no implicit outside dependencies to handle when trying to
evaluate a particular mine.

2.3 Input and Output

The input maps are supplied in text format. To read these into our model, we
wrote a text parser using Attoparsec,2 working on ByteStrings for efficiency
reasons. The input format is simple, so the parser is unsurprising and therefore
omitted in this presentation.

Visualising the maps in a user-friendly way was not a requirement of the con-
test. However during development it was helpful to visualise maps and generated
solutions, and to be able to manually play each mine. Due to time considerations
we developed only a simple ANSI text-based visualiser, which was enough for
our testing purposes.

3 The Game Trie

One of the key benefits of Haskell is its purity, allowing game states to be shared
across different solvers. Our strategy for exploiting this was to spawn a number of
different agents that explore a shared data structure that holds paths to different
game states together with their scores.
2 http://hackage.haskell.org/package/attoparsec

http://hackage.haskell.org/package/attoparsec
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3.1 Tries

The structure we use to encode paths through the mine is a non-empty trie [2]:

data Trie k v = Trie {root :: v , branches :: Map k (Trie k v)}
An important aspect of a value of type Trie k v is that it can behave like a
map of type Map [k ] v , and this forms the basis of an intuitive interface with
a number of well-understood standard functions. These standard functions on
Trie will prove useful in the strategy code (Sect. 4), since the entire search space
of a game can be encoded as a trie, mapping sequences of moves to a game state:

type GameTrie = Trie Move GameState
data GameState = GameState {gameStateMine :: Mine

, gameStateScore :: Score }
For instance, we can lookup the GameState associated with a certain path by
using the familiar lookup function:

lookup :: (Eq k ,Ord k) ⇒ [k ] → Trie k v → Maybe v
lookup [ ] (Triev_) = Just v
lookup (k : ks) (Trie_ kvs) = Map.lookup k kvs >>= lookup ks

A Path is represented by a list of moves:

type Path = [Move ]

The type GameTrie operates much like the type of Map Path GameState, but
its encoding is very efficient; each branch of the tree encodes one possible move,
as illustrated in the following figure:

GS0
U

R W

A

GS1 GS2
U

D
A

GS3
L A

GS4

GS5 GS6 GS7 GS8 GS9

In this example, starting from some initial game state GS0, the robot can move
up and die, resulting in game state GS1, with no further paths. Alternatively,
the robot can go right, and then proceed either up, down, or abort. A GameTrie
is computed by starting with an initial state (of score zero), and considering only
valid moves from the current position:

mkTrie :: (Eq k ,Ord k) ⇒ v → (v → [k ]) → (v → k → v) → Trie k v
mkTrie v f next = Trie v (Map.fromList [(k ,mkTrie (next v k) f next) | k ← f v ])

gameTree :: Mine → GameTrie
gameTree mine0 = mkTrie (GameState mine0 0 (hash mine0))

(goodMoves ◦ gameStateMine)
(mkGameState mine0 ◦ gameStateMine)
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We omit the function mkGameState, which simply computes the current
GameState, and function goodMoves, which returns the valid moves for the ro-
bot. One of the key features of our solution is that the GameTrie represents all
the paths in the mine, and this trie is shared over the different robot strategy
algorithms. This means that states are never computed twice; if strategy one
already went down a particular path, the next strategy can immediately get the
corresponding game state for that path, without having to step through each
move. In addition, equivalent states that are reachable through different paths
are not recomputed, and this is achieved through the use of hashes, described in
more detail in Sect. 3.3.

Another useful property of values of type Trie k v is that they behave like
trees of type Tree ([k ], v), which brings another family of standard functions
that are well understood. In particular, a tree can be traversed in breadth-first
order in order to compute all possible paths in increasing length:

flatten :: Trie k v → [([k ], v)]
flatten = concat ◦ levels

levels :: Trie k v → [[([k ], v)]]
levels tree = (map extract ◦ iterate expand) [([ ], tree)]

where
expand :: [([k ],Trie k v)] → [([k ],Trie k v)]
expand = concatMap (λ(sk ,Trie _ kts) → map (first (:sk)) (Map.toList kts))

extract :: [([k ],Trie k v)] → [([k ], v)]
extract = map (λ(sk ,Trie v ′_) → (reverse sk , v ′))

In Sect. 3.2 we will use variations of these functions to build efficient pathfinding
algorithms that are used to search for solutions within the GameTrie.

3.2 Pathfinding

The key to our strategy is to navigate the Trie structure, and identify a path
that leads to a high score. The following function, for example, finds the paths
to the exit:

solve :: Mine → [(Path,GameState)]
solve mine = (filter (isDone ◦ gameStateMine ◦ snd) ◦ flatten ◦ gameTree) mine

Since flatten produces a breadth first traversal of the tree, we know that the
result at the head of the list will have the shortest path. Furthermore, since the
predicate applied is isDone, we know that the solution found is for a completed
mine. Therefore, the head of this list will contain a solution with the maximal
score for a completed mine!

However, while this strategy would eventually find such a solution for com-
pletable mines, it is prohibitively inefficient. In addition, since the tree is poten-
tially very large, and not all mines are necessarily completable, an exhaustive
search will generally not be possible. In order to solve this, we break the problem
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down into finding paths to a number of intermediate states given by some pred-
icate: the basis for the searches will still be variations on breadth first search,
but the goal is different. Rather than finding paths to different values of type
GameState, we will seek values of type GameTrie, so that we can search for new
paths based on the returned tree, thus giving us more sophisticated searching
strategies, where intermediate goals are reached and further analysis is performed
on the trees that follow on from the paths to those goals.

A useful utility function along these lines is findPaths, which looks for paths
to a particular coordinate:

findPaths :: GameTrie → Coord → [(Path,GameTrie)]
findPaths tree dest = bfs ((≡) dest ◦ robot ◦ gameStateMine) tree

This can be used, for example, to find a path to the Exit once the task of
collecting all the lambdas is complete:

findExits :: GameTrie → [(Path,GameTrie)]
findExits tree = findTiles (≡ Exit) (layout (getMine tree)) >>= findPaths tree

This works by first finding the appropriate tile, and, if such a coordinate is found,
then it is used by findPath to calculate a path.

At the heart of findExits is an efficient breadth first search algorithm, with
a more general interface than that of solve. A naive breadth first search that
operates on the Trie structure can be described as follows:

type KTrie k v = ([k ],Trie k v)
bfsNaive :: (v → Bool) → Trie k v → [KTrie k v ]
bfsNaive p tree = (filter (p ◦ root ◦ snd) ◦ stems) [([ ], tree)]

This makes use of the function stems, which is similar to flatten, but returns a
list of paths with corresponding subtrees:

stems :: [KTrie k v ] → [KTrie k v ]
stems [ ] = [ ]
stems ((sk , t@(Trie_ kts)) : skts) = (reverse sk , t) : stems skts ′

where skts ′ = skts ++ [(k ′ : sk , t ′) | (k ′, t ′) ← Map.toList kts ]

The stems function produces a breadth-first traversal of the tree, but is certainly
not optimal: this function makes no effort to ensure that some common state
has not been investigated several times: certain paths lead to exactly the same
state, and we have no reason to assume that there will be any implicit sharing
of these states.

3.3 Hashing

During the lazy construction of the tree structure, sharing is not exploited be-
tween nodes that are equal. As a result, a search of the tree will likely result
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in repeated inspections of equal nodes and their children: this happens when-
ever there is more than one path to a particular state. To avoid this expensive
recomputation, the breadth first search algorithm is modified to contain an ac-
cumulator that keeps track of the nodes visited so far, and will not queue nodes
whose values have already been visited elsewhere.

Rather than have the accumulator store the entire state of each visited mine,
and have to perform an expensive equality operation, a hash of the mine is stored
instead. We therefore extend the type of a GameState so that it contains a Hash:

type Hash = Int
data GameState = GameState { . . .

, gameStateHash :: Hash }

An instance of Hashable is provided, giving us a means of obtaining the hash
of a Mine:

instance Hashable Mine where
hash mine = hash ((hash ◦ assocs ◦ layout) mine

, (hash ◦ robot) mine
, (hash ◦ moves) mine)

An accumulator, which is a set of hashes, is then added to the machinery of
stems that allows states which have already been visited to be pruned:

stemsPrune :: Hashable v ⇒ Set Hash → [KTrie k v ] → [KTrie k v ]
stemsPrune_ [ ] = [ ]
stemsPrune visited ((sk , t@(Trie v kts)) : skts) = case insertM (hash v) visited of

Nothing → stemsPrune visited skts
Just visited ′ → (reverse sk , t) : stemsPrune visited ′ skts ′

where skts ′ = skts ++ [(k ′ : sk , t ′) | (k ′, t ′) ← Map.toList kts ]

insertM :: Ord a ⇒ a → Set a → Maybe (Set a)
insertM x xs | Set .member x xs = Nothing

| otherwise = Just (Set .insert x xs)

The idea is to keep an accumulator that checks if the value of the tree being
examined has been visited before. If it has been visited, then this value is rejected
by the function insertM , and the next candidate for traversal is considered. If
the value has not yet been visited, then the tree that contains it is added to
the output of the search, its content is added to the set of visited values, and
children are scheduled for traversal.

This lets us define a breadth first search that does not visit the same subtree
twice:

bfsPrune :: Hashable v ⇒ (v → Bool) → Trie k v → [KTrie k v ]
bfsPrune p t = filter (p ◦ root ◦ snd) ◦ stemsPrune Set .empty $ [([ ], t)]
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The beauty of this solution is that it requires only the values v of the Trie k v
structure to be Hashable. However, this does not come without its cost: the
hashing itself is not perfect, and so it is possible that two different states hash
to the same value. If this were to happen, then not all unexplored states will
be visited, since we would incorrectly discard states that collide with already
visited states that a hash. In practice, this does not turn out to pose a problem,
since the hash space is large enough.

Another performance issue is that stems uses a list to hold the queue of
subtrees left to visit: the performance of appending to the end of a list is poor,
and this can be easily improved by using a queue structure instead, and replacing
the call to stemsPrune with an adequately instantiated call to stemsPruneQ .

stemsPruneQ :: Hashable v ⇒ Set Hash → Seq (KTrie k v) → [KTrie k v ]
stemsPruneQ visited q = case Seq .viewl q of

Seq .EmptyL → [ ]
(sk , t@(Trie v kts)) :< q ′ → case insertM (hash v) visited of

Nothing → stemsPruneQ visited q
Just visited ′ → (reverse sk , t) : stemsPruneQ visited ′

(foldr (flip (| >)) q ′ [(k ′ : sk , t ′) | (k ′, t ′) ← Map.toList kts ])

bfsPruneQ :: Hashable v ⇒ (v → Bool) → Trie k v → [KTrie k v ]
bfsPruneQ p t = (filter (p ◦ root ◦ snd) ◦ stemsPruneQ Set .empty ◦ return) ([ ], t)

This is a relatively straight-forward transliteration of the list based version into
one that uses a Seq datastructure instead.

On a final note about pathfinding, the findPaths function takes a destination
coordinate as an argument, and filters out the results of a breadth-first traversal
until a state is found where the robot is at the coordinate. A heuristic for possibly
improving the search is by using a distance metric which determines how close
a given point is to the destination, and using this information to give priority
to certain elements within the queue. This is the basis of the well known A*
algorithm [1], which is widely used in path finding and graph traversal.

To implement this algorithm, much of the structure present in bfsPruneQ
can be reused, where Seq is replaced by a MinQueue structure which orders the
elements according to some comparison function. For brevity, these details are
omitted, but the development revolves around choosing an appropriate compari-
son function: a valid option would be to use the well-known Manhattan distance
between two points, although there are other possible options. This function is
then used to form the priorities of elements within the MinQueue, which arranges
its elements so that those which are closest to the destination are favoured when
considering the next value to explore in the search.

4 Robot Strategy

Our solution relies on using a portfolio of simple strategy algorithms competing
for finding the best solution. A strategy takes a GameTrie and computes possible
paths through the mine, together with their score:
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type Strategy = GameTrie → [(Path,Score)]

We can now write a variation of the solve function (from Sect. 3) that produces
a Strategy using bfsPruneQ :

solveS :: Strategy
solveS = map (second getScore) ◦ bfsPruneQ (const True)

This encodes the strategy of trying all possible paths, in a breadth-first manner.
Naturally, this strategy is not very efficient, and will only work on very small
maps. We also have a variant strategy that looks ahead only a number steps,
and then takes one step along the best path found so far. This strategy finds
locally optimal solutions.

An alternative strategy orders the remaining lambdas, tries to reach each one
of them, and then walks towards the exit:

cmpS :: Comparison → Strategy

cmpS cmp tree

| lambdas (getMine tree) ≡ 0 = case listToMaybe $ findExits tree of

Just (p, tree′) → [(p , getScore tree′)]
Nothing → [([A], getScore tree )]

| otherwise = case pathToLambda cmp tree of

[ ] → [([A], getScore tree)]

((p, tree′): _) → (p, getScore tree′) : map (first (p++)) (cmpS cmp tree′)

We omit functions getMine and getScore, which are simple accessors of the
GameTrie data structure. Function pathToLambda takes a ranking function for
lambdas and returns a list of paths:

pathToLambda :: Comparison → GameTrie → [(Path,GameTrie)]
pathToLambda cmp tree = concatMap snd (sortBy cmp dests)
where dests = map (λcoord → (coord ,findPaths tree coord))

(findTiles (≡ Lambda) ((layout ◦ getMine) tree))

We can now define multiple strategies simply by instantiating the comparison
function of cmpS :

eqCmpS , lowCmpS , highCmpS :: Strategy
eqCmpS = cmpS (λ __→ EQ)
lowCmpS = cmpS (cmpCoords (λ(_, y) (_, y ′) → compare y y ′))
highCmpS = cmpS (cmpCoords (λ(_, y) (_, y ′) → compare y ′ y))

Strategy eqCmpS treats all lambdas equally, while lowCmpS prefers lambdas
located the lowest in the mine. This strategy might make sense when the lower
parts of the mine become harder to access as time goes by (see Sect. 6.1).

We also have more complicated strategies involving cmpS , such as preferring
lambdas that are part of large clusters.
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5 Concurrency and Exception Handling

Strategies turn the representation of a game tree into a list of paths with their
corresponding score. By sharing the game tree structure, a number of concurrent
worker threads using different strategies can compete with one another to find an
optimal solution. The communication between these threads occurs through the
use of Haskell’s MVar values: these are mutable variables which can be shared
and synchronised between threads. Initially, a trivial solution is put in mvBest .
The task of each worker is to improve this solution with whatever they might
encounter in their list of candidate answers.

improve :: (Ord s,NFData s,NFData a) ⇒ MVar (a, s) → [(a, s)] → IO ()

improve mvBest = mapM_(λx → x ‘deepseq ‘ modifyMVar_mvBest (cmpBest x))

where cmpBest x best = return (if snd x > snd best then x else best)

Here, each solution x is a tuple of type (s, a), where s is a score that will
be maximised, and a the answer itself. We require s and a to have an NFData
instance to be able to force evaluation using deepseq , since the entire computation
of the value of x should occur before blocking on the mvBest variable. The
MVar is a reference to the best solution found so far; improve updates this
MVar whenever a better solution is found. As this worker might be interrupted
before the list is fully evaluated, it is important that modifyMVar_ is an atomic
operation: if the worker raises an exception while it is modifying mvBest , then
the value is restored to its original state.

The workers are spawned by spawnWorkers, which creates a new asynchro-
nous thread for each of the answers returned by the strategies, and then waits
for all the threads to finish.

spawnWorkers :: (Ord s,NFData s,NFData a) ⇒ MVar (a, s) → [[(a, s)]] → IO ()

spawnWorkers mvBest xss = do workers ← mapM (async ◦ improve mvBest) xss

mapM_waitCatch workers

An important feature of this function is that the failure of one worker does
not affect the others, since waitCatch will silently ignore any worker which has
thrown an exception. While deceptively succinct, these two functions provide a
powerful mechanism by which multiple concurrent workers can be spawned to
improve the value of a solution, all the while dealing with exceptions in a safe
way by allowing the best known solution to prevail in the case of failure.

Since we can rely on the fact that the best solution will not be lost when
the workers fail, we can make use of this mechanism to allow the system to
demand an immediate answer at any point during the computation. This fits
nicely into the framework of the contest, where programs are given a set amount
of time within which to find a solution, and then given a signal which raises
an exception when time is up and an answer is required. To exploit this, the
function run is used, which spawns the workers to perform the task of finding
the best solution, and provides a callback that should be executed whether the
computation terminates naturally, or an exception is thrown.
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run :: (Ord s,NFData s,NFData a) ⇒
(a, s) → [[(a, s)]] → ((a, s) → IO ()) → IO ()

run best xss callback = catchUserInterrupt $
bracket (newMVar best)

(λmvBest → takeMVar mvBest >>= callback)
(λmvBest → spawnWorkers mvBest xss)

The function bracket :: IO a → (a → IO b) → (a → IO c) → IO c takes three
arguments: the initial computation, which initialises the best result found so far,
the final computation, which reads the best result found and calls the callback,
and the intermediate computation, which spawns the workers and waits for all
threads for finish. The final computation of a bracket is performed even if an
exception is raised, which is precisely the behaviour required here when the
callback is an action which outputs the best known solution.

One problem remains: if an exception is raised within a bracket , then after
the final computation has been executed the exception will be re-raised so that
it can be handled elsewhere in the system. If left unhandled, the program would
exit and indicate that there was an error. The catchUserInterrupt function is
a helper which allows the program to gracefully exit when the interrupt signal
which is expected from the judging environment is received.

catchUserInterrupt :: IO () → IO ()
catchUserInterrupt = handle (λe → case e of UserInterrupt → return ()

− → throwIO e)

Note that if the exception received is not one that is expected, then the exception
is thrown again and allowed to propagate further.

For testing purposes it is convenient to be able to kill worker threads after a
particular amount of time, in order to simulate the judging environment. This is
implemented using the timeout function which runs an IO computation within
a thread and kills the thread if no result is returned within a given time limit.

runWithTimeout :: (Ord s,NFData s,NFData a)

⇒ Int → (a, s) → [[(a, s)]] → ((a, s) → IO ()) → IO ()

runWithTimeout t best xss callback = timeout t (run best xss callback) >> return ()

This works as expected since exceptions are used to kill a thread that has expired.

6 Changing Specifications

One of the challenges was to deal with changing specifications. This was very
easy to cope with in our model, and only minor extensions were required, mostly
confined to the Mine and Tile datatypes, and the stepRobot and updRocks func-
tions. On average, about 20 lines of code were added for each extension. The
construction of the GameTrie structure relies on the step function to generate
its branches, and so the changes in the specification are automatically reflected
in the tree. As a result, all the strategies are also updated to reflect the change
in specifications, since strategies use the GameTrie to explore possible moves.
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6.1 Flooding

The first extension was to add flooding to the mines. In certain maps, there
is a rising level of water. The robot operates normally underwater, but it gets
destroyed if it spends too many turns underwater. Modelling flooding requires
changing the Mine data structure, extending it to contain additional information:

data Mine = Mine { . . .
, flood :: Int
, waterproof :: Int
, water :: Int }

These fields store the rate of flooding, how long the robot can last underwater,
and the current level of water.

6.2 Trampolines

The second extension introduces trampolines, which act like teleporters. Once
entering a trampoline, the robot gets instantly moved to a fixed destination
location, and the trampoline disappears.

Similarly to flooding, trampolines requiring adding extra information to the
Mine data structure:

data Mine = Mine { . . .
, trampolines :: Set Coord
, targets :: Set Coord }

These fields store the current position of trampolines and their associated targets.
Additionally, the stepRobot function has to consider the case of moving into a
trampoline, and we need two new tile types: trampolines and targets.

6.3 Beards and Razors

The third extension introduces beards. Beards are a new type of tile, that expand
into the surrounding empty spaces in a fixed number of turns. The robot cannot
traverse beards, but can collect and apply razors, which eliminate all beards
surrounding the robot.

Again, the Mine structure has to be extended, this time with a growth factor
and the number of available razors:

data Mine = Mine { . . .
, growth :: Int
, razors :: Int }

Two new tile types are added (beard and razor). A new robot “movement”
is to apply a razor, and the updRocks function now needs to update the tiles
adjacent to beards as well.
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6.4 Higher Order Rocks

The last extension introduces higher order rocks, which are rocks that upon
impact (from falling) transform into a lambda. Each higher order rock counts
as a lambda for the purpose of determining whether all lambdas have been
collected.

We add a second Boolean to the Rock constructor to distinguish higher order
rocks from normal rocks:

data Tile = . . . | Rock Bool Bool

The updRocks function now treats higher order rocks just like ordinary rocks,
apart from a small special case to check if a higher order rock should be trans-
formed into a lambda. Additionally, the calculation of the number of lambdas
after a step (lambdas ′ in Sect. 2.2) becomes more complicated. Two falling rocks
can fall into the same spot, with one disappearing. If the rock that disappears is
a higher order rock, then there is one fewer lambda in the mine. For simplicity,
we calculate the number of remaining lambdas by traversing the entire layout:

lambdas ′ = length $ findTiles (λt → t ≡ Lambda ∨ isRockLambda t) layout ′′

7 Conclusion

We have described our solution to the 2012 ICFP programming contest, and seen
how Haskell’s features are useful during fast paced prototyping. Both low-level
features (such as concurrency and exception handling) and high-level features
(such as purity and laziness) are key ingredients in our solution. Haskell is a
mature language, with both a stable compiler and high-quality libraries. We
now give some general advice for code development in similar situations, based
on our experience, and reflect briefly on possible improvements to our solution.

7.1 Practical Guidelines

Testing Even though Haskell’s strong type system caught many common pro-
gramming errors, we still had several bugs in our code. In particular, our
submitted version often returns rather poor solutions because of bugs in the
simulator. We focused our development in supporting the extensions and
improving the strategies, but it would have been more effective to find and
eliminate bugs.

Communication Our team was split into two groups in different locations.
We found that frequent short meetings were helpful to keep the team up-
to-date with the whole development, while allowing individual team mem-
bers to work on separate parts of the program. Video communication, and
screen/application sharing is useful for distance communication, but white-
board brainstorming is invaluable, and hard to mimic in a distance commu-
nication.
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Model first We started developing our solution by writing the model
(Sect. 2.1). With this in place, different team members could develop the
surrounding infrastructure more or less independently. Changes to the model
were discussed with everyone before being implemented, and applied as soon
as possible. This helped to minimise the mismatch between different compo-
nents, and to allow development in parallel effortlessly.

Pair programming We have alternated our development between whole team
discussion, individual coding sessions, and pair programming. We found pair
programming to be an effective way of coding the more challenging parts of
our solution, with the advantage that both team members become familiar
with the code.

With regard to possible improvements to our solution, while the pathfinding
algorithms take care to avoid going back to the same state several times, it
would be nice to have this built into the tree structure itself. However, this would
mean not using a tree structure, but rather some kind of directed graph. The
lazy construction of such a graph requires the use of an appropriate constructor
function to be called when elements are missing in a node lookup. The details
of such an implementation are beyond the scope of this paper.

We have no regrets about our choice of programming language: we found
Haskell to be suitable for developing a solution to this programming contest. We
had no need for features or libraries that were not available, and our solution
really played to Haskell’s strengths. Haskell’s type system helped catch bugs
early on, but we failed to test our solution against a number of simple scenarios.
These bugs (all minor and easy to fix, but nonetheless present), cost us a lot
of points on a number of maps, and we failed to enter the last round of the
competition. In that sense, dozens of submissions outperformed ours, but our
development tried to find an elegant, functional solution to the problem that
was easy to adapt to changing requirements. We feel that we achieved this goal,
and despite our poor final results, the sheer fun of competing in such a contest
using Haskell is hard to beat.
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