
An Embedded Type Debugger

Kanae Tsushima(B) and Kenichi Asai

Ochanomizu University, Tokyo, Japan
tsushima.kanae@is.ocha.ac.jp, asai@is.ocha.ac.jp

Abstract. This paper presents how to build a type debugger without
implementing any dedicated type inferencer. Previous type debuggers
required their own type inferencers apart from the compiler’s type infer-
encer. The advantage of our approach is threefold. First, by not imple-
menting a type inferencer, it is guaranteed that the debugger’s type
inference never disagrees with the compiler’s type inference. Secondly,
we can avoid the pointless reproduction of a type inferencer that should
work precisely as the compiler’s type inferencer. Thirdly, our approach
is robust to updates of the underlying language. The key observation of
our approach is that the interactive type debugging, as proposed by Chi-
til, does not require a type inference tree but only a tree with a certain
simple property. We identify the property and present how to construct
a tree that satisfies this property using the compiler’s type inferencer.
The property guides us how to build a type debugger for various lan-
guage constructs. In this paper, we describe our idea and first apply
it to the simply-typed lambda calculus. After that, we extend it with
let-polymorphism and objects to see how our technique scales.

1 Introduction

To write a well-typed program is not always easy. Although a compiler gives us an
error message when a type error occurs, it is not straightforward to understand
why the type error arose. Furthermore, the source of a type error can be far from
the place reported by the compiler as a type error. In this paper, we define the
source of a type error to be a part of an ill-typed program which programmers
want to fix. Our purpose is to construct a way to find it in a strongly typed
functional language. In this paper, we use OCaml’s syntax for examples.

1.1 Locating the Source of a Type Error

Two Conflicting Expressions. A type error occurs when types of two expressions
conflict with each other. Let us consider the following example:
let rec f g lst = match lst with

| [] -> []
| fst :: rest -> (g fst) :: (f g rest) in

(f 1 [2;3;4]) @ [5;6;7]

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 190–206, 2013.
DOI: 10.1007/978-3-642-41582-1 12, c© Springer-Verlag Berlin Heidelberg 2013

An Embedded Type Debugger 191

In this program, the two boxed expressions have a type conflict causing a type
error. The first argument g of the function f is used as a function in (g fst), but
an integer 1 is passed as g in (f 1 [2;3;4]). Because a function type ’a -> ’b
cannot be unified with int, a type error occurs. To locate these two conflicting
expression is useful when one of these conflicting expressions is the source of a
type error. Unfortunately, it is not always the case.

The Source of a Type Error. The source of a type error cannot be determined
solely from the conflict of types. For example, suppose that a call to f in the
previous example is wrapped by a call to h.

let rec f g lst = match lst with
| [] -> []
| fst :: rest -> (g fst) :: (f g rest) in

let h n lst = f n lst in
(h 1 [2;3;4]) @ [5;6;7]

In this program, although (g fst) and (h 1 [2;3;4]) are the conflicting
expressions, the source of the type error may be in the definition of h: if we
replace the boxed expression with (f (fun x -> x + n) lst), the program is
well-typed. Because which of these expressions is the source of the type error
depends on the programmer’s intention, we cannot locate the source of the type
error automatically.

A Standard Type Inference Tree. To locate the source of a type error, we basically
detect the difference between an inferred type and a programmer’s intended type.
Let us consider a small example:

(fun x -> x + x) true

This program is ill-typed, because true is passed to x, but x is consumed by
an integer addition +. Let us assume that the programmer wrote this program,
because he mistakenly thought that + was the logical or operator.1 Since the
logical or operator in OCaml is ||, the programmer’s intended program is (fun
x -> x || x) true.

We show a standard type inference tree for this example constructed by the
compiler in Fig. 1 and programmer’s intended type tree in Fig. 2. By detecting
the difference between these two type inference trees, we can locate an expression
that includes the source of a type error. For example, since types of expressions
in the boxed part differ in Figs. 1 and 2, the source of the type error resides in
the expression (fun x -> x + x). However, we cannot further identify which
subexpression of this expression is the root cause of the type error, as long as
we use a compiler’s type inference tree.

The standard type inference tree is not suited for type debugging, because a
type of an expression can depend on the types of other expressions. In the above
1 This is an example of the source of this type error. If the programmer has a different

intention, other fixes are possible, such as replacing true with 1.

192 K. Tsushima and K. Asai

Fig. 1. A standard type inference tree

Fig. 2. Programmer’s intended type tree

Fig. 3. The most general type tree

example, the type of x does not have to be int if it appears independently. It
becomes int, because it is used as an argument of +. Such information is lost in
the standard type inference tree, because the type of x becomes int throughout,
once it is unified with the argument type of +.

The Most General Type Tree. To break the dependency between expressions, we
introduce the most general type tree. We show the most general type tree for
our example in Fig. 3. The most general type tree holds the most general type
for each subexpression. For example, x has a typing {x:’a} �x:’a for any type
’a, because x alone does not require any constraints on its type. The type of x is
constrained only when it is used in a context. For example, x + x has a typing
{x:int} � x + x:int, because + requires that x has type int. Using this most
general type tree, we can exactly locate the source of a type error by detecting
difference between inferred types and intended types. By comparing Figs. 3 and
2, we find that the type conflict occurs in the boxed part of Fig. 3. We can then
locate the source of the type error to be +. Note that the type of x (at the two
leaves of the tree) does not contradict with programmer’s intended type, because
bool is an instance of ’a.

Algorithmic Debugging. Of course, a tree with programmer’s intended types
exists only in programmer’s mind. To extract programmer’s intention, we use
algorithmic debugging proposed by Shapiro [11]. Algorithmic debugging is used
to identify the location of an error in a tree by traversing over the tree accord-
ing to oracles. For oracles, questions for the programmer are often used. It is
originally used for Prolog, but algorithmic debugging can be used for any tree
structures and is applied to various areas, to locate run-time errors [9], semantic
errors [12], etc. To debug Fig. 3 using algorithmic debugging, we start from the

An Embedded Type Debugger 193

root of the tree where a type error occurs. The type debugger first asks if the two
child nodes are correctly typed according to programmer’s intention. Since the
programmer’s intended type for (fun x -> x + x) is not int -> int but bool
-> bool, the programmer answers no to the first question. From this answer,
the type debugger determines that the source of the type error resides within
this expression. Next, the type debugger asks whether the intended type of x +
x is int. Again, the answer is no, and the type debugger moves into the subex-
pression. By repeating this process, the type debugger locates the source of the
type error as +.

1.2 Problems

Chitil [1] constructed the most general type tree by inferring types composi-
tionally, and located the source of a type error interactively using algorithmic
debugging. Using his type debugger, one can locate the source of a type error
by simply answering questions.

Following Chitil’s work, we implemented a type debugger for a subset of
OCaml together with some improvements [15] and used it in a course in our
university. However, due to the need to implement a tailor-made type inferencer,
we encountered at least three problems.

Implementation of a Type Inferencer. First, to implement a type inferencer that
returns exactly the same type as the compiler’s type inferencer is tedious and
error-prone. Even for a small language, we had to fully understand the behavior
of the compiler’s type inferencer. For example, a compiler has an initial envi-
ronment for typing. If a tailor-made type inferencer lacks a part of the initial
environment, it cannot infer the same type as the compiler’s type inferencer.
Furthermore, the discrepancy between the two type inferencers becomes appar-
ent only when we find unexpected debugging behavior. It makes it hard to detect
errors in the tailor-made type inferencer.

Support for Advanced Features. Secondly, to implement a type inferencer for
advanced features, such as objects and modules, is difficult and takes time. In
our previous type debugger [15], we could implement the main subset of OCaml,
including functions, lists, and pattern matching, but not the advanced features,
such as user-defined data structures, objects, and modules. This is unfortunate:
a type debugger would be particularly useful in the presence of such advanced
features.

Compiler’s Updates. Thirdly, to reimplement the type inferencer every time the
compiler is updated is costly. In the last three years, the OCaml compiler had
two major updates and two minor updates. It is not realistic to follow all these
updates and reimplement the type inferencer.

To solve these problems, we propose not to implement a tailor-made type
inferencer but to use the compiler’s own type inferencer as is to construct the
most general type tree.

194 K. Tsushima and K. Asai

1.3 Our Approach

Rather than implementing our own type inferencer, we use a compiler’s type
inferencer to construct the most general type tree. Construction consists of
two stages. First, the erroneous program to be debugged is decomposed into
subprograms. This decomposition determines the overall shape of the tree. Then,
the type of each subprogram is inferred by passing the subprogram to the
compiler’s type inferencer. For example, if a program M is decomposed into
subprograms, M1, . . . , Mn, we first construct the left tree below.

M1 ... Mn

M

M1 : τ1 ... Mn : τn

M : τ
⇒➚➚

We then infer their types (possibly an error) by passing each of Mi (and M) to
the compiler’s type inferencer to obtain its type τi (and τ). Note that unlike the
standard type inference, types of subexpressions are not determined by applying
typing rules to the parent expression. Rather, they are determined by executing
the compiler’s type inferencer for each subexpression independently.

The above explanation is somewhat simplistic, because we did not consider
bindings. To cope with bindings properly, we actually maintain a context C of
an expression M , treating C[M] as a complete closed program (where C[M] is
the expression C whose hole is filled with M , possibly capturing free variables
of M). We call M in C[M] the focused expression.

Overview. In the rest of this paper, we first show a type debugger for the
simply-typed lambda calculus in Sect. 2 and a necessary property for decompo-
sition in Sect. 3. We then extend it with let polymorphism (Sect. 4), and objects
(Sect. 5) to see how our technique scales. Finally, we describe our implementation
of a type debugger for OCaml that uses OCaml’s own type inferencer (Sect. 6).
We compare our work with related work in Sect. 7, and the paper concludes in
Sect. 8.

2 The Simply-Typed Lambda Calculus

In this section, we introduce a type debugger for the simply-typed lambda
calculus. Although simple, it is enough to explain the basic behavior of our
type debugger.

The Language. We show the syntax of lambda calculus λ→ in Fig. 4. It includes
constants, variables, abstractions, and applications. We assume that basic prim-
itive operations (such as + that we will use in examples) are predefined as
constants. Types include type variables, type constants, and function types.

Tree Structure Determined by Decomposition. Let us consider a type inference
tree for λx.x+1. Since the only subprogram of λx.x+1 is x+1 and it is further
decomposed into three subprograms, x, (+), and 1, the overall structure of the
tree should look like:

Γ0 � x Γ0 � (+) Γ0 � 1
Γ0 � x + 1

Γ0 � λx.x + 1

An Embedded Type Debugger 195

Fig. 4. The syntax of simply-typed lambda calculus λ→

where Γ0 is the initial environment used by the type inferencer of the underlying
compiler and contains all the bindings for the supported constants. However, the
above subprograms are not directly typable using the compiler’s type inferencer,
because they include free variables (such as x).

Decomposition with Contexts. To make a subprogram typable, we enclose it with
a context that supplies necessary bindings for free variables. In this language,
a context is defined as either an empty context � or a lambda binding λx.C
(Fig. 4). The most general type tree of λx.x + 1 becomes as follows:

Γ0 � λx.[x] : ’a -> [’a] Γ0 � λx.[(+)] : ’a -> [int -> int -> int] Γ0 � λx.[1] : ’a -> [int]

Γ0 � λx.[x + 1] : int -> [int]

Γ0 � [λx.x + 1] : [int -> int]

Looking at the focused expressions filled in the context, we see that it has the
same structure as the previous tree. Thanks to the contexts, all the subprograms
are now typable under Γ0. The types enclosed by [...] correspond to the types
of focused expressions.

Although the above tree is similar to the standard type inference tree for λ→:

Γ0, x : int � x : int Γ0, x : int � (+) : int -> int -> int Γ0, x : int � 1 : int
Γ0, x : int � x + 1 : int

Γ0 � λx.x + 1 : int -> int

they have two important differences. First, the type of x is not constrained to
int at the leaf nodes. Since we treat all the subderivations independently, each
judgement depends only on its subexpressions. It enables us to locate where the
type of x is first forced to int. Secondly, the type environment contains only the
predefined constants. It enables us to use the compiler’s type inferencer to infer
the type of each expression. We simply pass it to the compiler’s type inferencer
and obtain its type. This is in contrast to the standard type inference tree where
the environment contains free variables.

Other Approach. A compiler’s type inferencer is usually designed to accept an
open expression and an environment for its free variables. Although we could
use this extra flexibility for the type debugger, it does not lead to a simpler type
debugger. In this paper, we chose to use contexts, to avoid going into the under-
lying compiler implementation together with the representation of environments.

196 K. Tsushima and K. Asai

Fig. 5. The decomposition function Dec for λ→

Fig. 6. The function Collect to obtain types of free variables for λ→

If we want to implement type debuggers for various languages, it would require
substantial investigation of the underlying compiler. The method proposed here
has an advantage that we can treat the compiler’s type inferencer completely as
a black box that accepts an expression and returns its type.

Construction of the Most General Type Tree. The most general type tree is built
as follows. A program to be debugged C[M] is first decomposed into subprograms
using the decomposition function Dec defined in Fig. 5. It basically decomposes
M and returns a list of its subprograms, but it maintains its contexts properly
so that the resulting subprograms (pairs of a context and a decomposed term)
are always closed. When the decomposition of C[M] is [C1[M1]; . . . ;Cn[Mn]], all
the subprograms become the children of C[M] in the tree.

The type of each subprogram C[Mi] is determined using the compiler’s type
inferencer by passing C[Mi] to it. When the context C is empty �, the returned
type is the type of the expression. When the context is not empty, we split the
obtained type into two: types for free variables and the type for the focused
expression. If we obtain the type of λx.[x + 1] as int -> int, for example, we
associate the type of x to be int (the argument part of int -> int) and the
type of x + 1 to be int (the body part of int -> int). This is done by the
function Collect in Fig. 6.

Using Dec and Collect, we construct a judgement for C[M] in the tree as
shown in Fig. 7. First, we construct a closed term M ′ by plugging M into C. It
is then passed to the compiler’s type inferencer written as typing here. When
we obtain a type τ of M ′, we split it into an environment γ holding types of
variables in the context and a type τ ′ for M . Using them, we can construct
a judgement for (possibly open) M (in the context C) as Γ0, γ � M : τ ′. For
λx.[x + 1], for example, we have Γ0, x : int � x + 1 : int.2

2 Before, we wrote Γ0 � λx.[x + 1] : int -> [int] to emphasize that we are using the
compiler’s type inferencer to infer the type of M in C. Since we are interested in the
type of M itself together with the types of its free variables, we also write it using
the standard notation Γ0, x : int � x + 1 : int.

An Embedded Type Debugger 197

Fig. 7. The function Judge to obtain typing for λ→

3 The Decomposition Property

In our type debugger, the most general type tree is constructed by first decom-
posing an expression into subexpressions and then inferring their types using
the compiler’s type inferencer. The shape of the tree is determined by how we
decompose an expression. However, it does not mean that we can use any arbi-
trary decomposition. We require that the decomposition satisfies the following
necessary property:

Definition 1 (The Decomposition Property). The decomposition function
Dec should satisfy the following property for any context C and term M :

T (C[M]) ⇒ ∀(C ′,M ′) ∈ Dec[[(C,M)]], T (C ′[M ′])

where T is a predicate stating that a given expression is well typed (under the
compiler’s type inferencer).

The decomposition property states that if a program C[M] is well typed,
all of its decomposed subprograms are also well typed. Although this property
looks trivial, it does preclude x + 1 as a decomposition of λx.x + 1, because the
latter is well typed, but the former is not typable with unbound x. In the next
section, we will see how this property guides us to define decomposition that is
suitable for type debugging.

This property is essential for our type debugger. Since the source of a type
error is detected by tracking conflicts between inferred types and intended types,
we can no longer continue type debugging into subexpressions if their inferred
types are not available from the compiler’s type inferencer. Therefore, we design
decomposition carefully so that it satisfies the property and thus keeps the
typability of expressions. In the following sections, we sketch why the pre-
sented decomposition satisfies this decomposition property. For the simply-typed
lambda calculus, we reason as follows.

Decomposition for λ→ Satisfies the Decomposition Property. We need to show
that for each case of the definition of Dec in Fig. 5, all the subexpressions in the
right hand side are well typed if the left hand side is well typed. For constants
and variables, it is satisfied vacuously. For abstraction, because the expression in
the left hand side C[λx.M] is identical to the expression in the right hand side
C[λx.[M]], the decomposition property is satisfied. For application, we notice

198 K. Tsushima and K. Asai

that if C[M1M2] is well typed, M1M2 is also well typed in a type environment
consistent with C (formally proven by induction on C). Hence, both M1 and M2

are well typed in the same environment. Since C has all the necessary bindings
for M1 and M2 and C simply adds binding to them, both C[M1] and C[M2] are
well typed as required.

4 Let Polymorphism

In this section, we extend our idea to let polymorphism.

The Language. We show the syntax of λlet in Fig. 8. It extends the simply-
typed lambda calculus with pairs, fixed points, and let expressions. Types are
also extended accordingly. Unlike the standard let-polymorphic calculus, we do
not introduce type schemes. Type schemes are required only for inferring types.
Once the type inference is done (in the compiler), all the expressions in the most
general type tree are given mono types (possibly containing type variables).

Naive Decomposition. To support a let expression in the type debugger, we
first need to define its decomposition. Because a let expression contains two
subexpressions, the let-bound expression and the main body, we are tempted to
define its decomposition as these two subexpressions. However, straightforward
decomposition leads to violation of the decomposition property (Sect. 3). Let us
consider the following program:

1 + (let id = λx.x in (id id) 2.0)

Since id in the second subexpression (id id) 2.0 is free, we need to supply its
context. If we naively follow the previous section, however, we end up with the
following tree:

� [1] : int [+] : int→int→int

� [λx.x] : ’a→’a � (λid.[(id id) 2.0]) · · · Type Error

� [let id = λx.x in (id id) 2.0] : float
� [1 + (let id = λx.x in (id id) 2.0)] · · · Type Error

Although the bottom expression in the boxed part is well typed, one of its
subexpressions is not well typed. Thus, this decomposition does not satisfy the
decomposition property.

Fig. 8. The syntax of the let-polymorphic language λlet (new cases only)

An Embedded Type Debugger 199

The reason why (λid.[(id id) 2.0]) is not typable is clear. In the original
expression, id is used polymorphically, while in the decomposed subexpression,
id is bound by λ and thus monomorphic. From this example, we observe that
we need to preserve the polymorphic types of let-bound variables, when decom-
posing expressions.

Decomposition with let Context. To preserve polymorphic types of let-bound
variables, we extend the context with a let context (Fig. 8). We also extend it
with a fix context since it is a (monomorphic) binder. Using the let context, the
above tree changes as follows, satisfying the decomposition property:

� [1] : int [+] : int→int→int

� [λx.x] : ’a→’a � (let id = λx.x in [(id id) 2.0]) : float
� [let id = λx.x in (id id) 2.0] : float

� [1 + (let id = λx.x in (id id) 2.0)] · · · Type Error

Construction of the most General Type Tree. To enable inspection of the def-
inition of let-bound variables, we change the decomposition function as shown
in Fig. 9. The definition is the straightforward extension of the previous defini-
tion except for the variable case. When we decompose a variable, we search for
its definition using Get defined in Fig. 10. When the variable is bound by a let
expression, Get returns its (inner-most) definition as the decomposition of the
variable. Otherwise, the variable is bound by lambda or fix, so Get returns no
decomposition. Using this decomposition function, we can further debug into the
definition of let-expressions to identify the source of a type error.

Since the context is extended with a let context and a fix context, the defin-
ition of Collect is extended accordingly as shown in Fig. 11. It collects types for

Fig. 9. Dec for λlet (new cases only)

Fig. 10. The function Get to search definition of variables for λlet

200 K. Tsushima and K. Asai

Fig. 11. Collect for λlet (new cases only)

lambda- and fix-bound variables and discards let-bound variables since they do
not appear in the type returned by the compiler. (We assume that the compiler’s
type inferencer returns τ1 → τ2 as the type of fix f x → M (and hence of f)
where τ1 is the type of x and τ2 is the type of M .)

As the program to be debugged becomes larger, the number of let-bound
variables increases. Since we can debug into the definition of let-bound variables
when their types conflict with the programmer’s intention, we can skip asking
for the type of let-bound variables as an oracle each time. (For example, in the
previous tree, the type debugger can skip the node � [λx.x] : ’a →’a). Rather,
we only ask for variables in a context that are bound by lambda or fix. This is
consistent with Chitil’s approach that maintains an environment for polymorphic
variables separately.

Decomposition for λlet Satisfies the Decomposition Property. We can confirm that
the decomposition property is still satisfied. The interesting case is for variables.
(Other cases are similar to the reasoning shown for λ→.) Assume that C[x] is
well typed. We first observe that Get(C1, x, C2, p) maintains an invariant that
C2[C1] is always the same across the recursive call, because at each recursive call,
the topmost frame of C1 is simply moved to the hole of C2. This ensures that
all the contexts appearing in the definition of Get are well typed (as contexts),
because the initial context [C[x]] with which Get is called from Dec is well typed.
Next, the returned expression C[M] is collected only from the let case. Because
C[let x = M in C ′] is well typed, we hence have that C[M] is also well typed as
required.

Observe how the decomposition property serves as a guideline for what we
have to do and what we can do to incorporate let expressions. We have to
define the decomposition function so that the let polymorphism is preserved. On
the other hand, as long as the decomposition property is satisfied, we have the
liberty of defining the decomposition in a way the debugging process becomes
easier for programmers to understand. By defining the decomposition of let-
bound variables as their definition, the debugger’s focus moves from the use of
variables to their definition.

5 Objects

So far, we have seen that interactive debugging is possible for various language
constructs by suitably defining a Dec function that satisfies the decompositon
property. This idea extends to advanced language constructs. In this section, we
introduce objects and see how they can be supported in a similar way.

An Embedded Type Debugger 201

Fig. 12. The syntax of the object language λobj (new cases only)

Fig. 13. Dec for λobj (new cases only)

The Language. We show the syntax of the object language λobj in Fig. 12. It
models OCaml-style objects where an object is defined using a class (in which
single inheritance is allowed) and is created by the new construct. Besides the
inheritance declaration, an object can contain method and value declarations.
In OCaml, class names (to be more precise, the object structures denoted by
the class names) are used as types. We use them as is in our type debugger,
abbreviated as obj in Fig. 12.

Construction of the most General Type Tree. The decomposition function Dec is
extended with the new constructs and the Get function used in the variable case
is extended with the class context (Figs. 13, 14). The interesting cases are for
new and method invocation of Dec. In both cases, we need to identify the object
mentioned in the expressions (in case their types contradict with intended types,
so that we can debug into the object). For this purpose, the function SearchObj in
Fig. 15 is used. Its behavior is similar to that of Get, but differs in that SearchObj
collects all the method declarations in the designated object. In particular, if the
object contains inheritance declaration, those method declarations are collected,
too (see SearchObj ′).

We collect all the declarations in an object because types of declared methods
in an object are mutually dependent. Thus, we need to ask for the types of

Fig. 14. Get for λobj (new cases only)

202 K. Tsushima and K. Asai

Fig. 15. The function SearchObj to search for the definition of objects for λobj

all these method declarations to locate the source of type errors. For example,
consider the following program:

class counter = object (self)
val mutable n = 0
method incr = n <- n+1
method get = n

end
let t = (new counter) in
t#incr; ("now, the conter is" ^ t#get)

The last line results in a type error, because t#get returns an integer, which
is in conflict with the intended type (i.e., string). To find the source of this type
error, we first look up t’s class definition counter and search for the definition
of the get method. However, we find here that the get method itself does not
force the type of n as an integer. It simply returns a value of n. Instead, n is an
integer because it is assigned 0 and n+1 elsewhere in the class. Thus, we need to
examine all the declarations in an object to find the source of type errors.

Since any method declarations can be the source of type errors, we collect all
the method declarations in a class definition, and return them as decomposition
of the object reference. Although this strategy is necessary in general, it could
lead to a large number of questions. Its practical implementation is future work.

Decomposition for λobj Satisfies the Decomposition Property. We can confirm
that Dec satisfies the decomposition property as follows. First, Get will return a
list of well-typed subexpressions only, using the similar argument we described
in Sect. 4. For new and method invocation, we have to show that SearchObj
returns a list of well-typed subexpressions. It can be proved by observing that
SearchObj simply collects subexpressions in an object in a suitable context. The

An Embedded Type Debugger 203

only interesting case is for a class declaration, where we have to properly insert
bindings for the arguments to the class and the self variable v′. Note that declared
values are put into let contexts in SearchObj ′.

6 Implementation

We have implemented a type debugger for OCaml 3.12.1. To minimize the imple-
mentation efforts, we utilize the following components from OCaml as is:

– the abstract syntax tree for structures, expressions, and types (together with
the lexer, the parser, and the pretty printer)

– the type inferencer typing (that accepts an expression and returns its type,
both expressed using the above abstract syntax tree)

– the is expansive function (that accepts an expression and returns a boolean
to judge whether the given expression needs to be kept monomorphic or not)

By using exactly the same abstract syntax as OCaml, we can not only avoid
reproducing the same abstract syntax but also utilize OCaml’s own lexer, parser,
and pretty printer. In addition to the type inferencer, we utilize the is expansive
function. Although OCaml has its own criteria for weak polymorphism [2], we can
stay away from it by using OCaml’s is expansive function as is. Furthermore,
this approach is robust to updates of OCaml: if the syntax and the interface of
the two functions are the same, we can use the same debugger.

A slight complication is that OCaml treats a let expression without in dif-
ferently from the one with in: the former is a structure, while the latter is an
expression. We support both styles by splitting the context into two: the struc-
ture part and the expression part.

Another complication is the use of patterns in place of a variable declaration.
For example, instead of fun lst ->, one can write fun (first :: rest) ->.
Because patterns have type constraints, they may be the source of a type error.
To make such an error detectable, we included patterns as the decomposition of
the expression.

The rest of the language constructs are supported without requiring any
special treatment. For each new construct, we define its decomposition and show
that it satisfies the decomposition property. Our type debugger supports all
features of OCaml including weak polymorphism and modules.

To construct the most general type tree, we use the compiler’s type infer-
encer many times. Although it appears that our type debugger incurs significant
overhead, this is not the case, because we do not have to construct the whole
tree beforehand. Instead, the most general type tree is constructed as we debug:
after the root node is constructed, the rest of the tree can be constructed during
the interaction with the programmer.

7 Related Work

The typical approach to improving type error messages is to design a new type
inference algorithm. Wand [16] keeps track of the history how type variables

204 K. Tsushima and K. Asai

are instantiated and shows the conflicting history when a type error arises. Lee
and Yi [6] present the algorithm M that finds conflict of types earlier than
the algorithm W and thus reports a narrower expression as an error. Heeren and
Hage [5] use a constraint-based type inference for improving type error messages.
Although these improved type error messages are useful for programmers, it is
in general not possible to identify the source of type errors by a single error
message.

To locate the source of type errors, Chitil [1] uses compositional type inference
and constructs an interactive type debugger for a subset of Haskell. Based on
his work, we designed a type debugger for OCaml using the compiler’s own type
inferencer rather than a tailor-made type inferencer. The use of the compiler’s
type inferencer enables us to build a type debugger for a larger language easily.
Stuckey, Sulzmann, and Wazny [14] find the source of type errors using type
inference via CHR solving. They implement a type debugger called Chameleon,
which can explain why an inferenced type is derived by searching. Tailor-made
type inference is used for this purpose.

As different approaches, Haack and Wells [3] use slicing with respect to types
to narrow the possibly erroneous parts of programs. By extracting the slice
related to type errors, they help the programmer to identify the source of type
errors. The advantage of this approach is that the process is automatic and
the programmer does not have to answer questions. Schilling [10] obtains slices
using the compiler’s type inferencer. We share the goal of reusing the available
resources in the compiler.

Lerner et al. [7] propose automatic type-error correction. They replace the
erroneous part with various syntactically correct similar expressions, and see
if they type check. If they do, they are displayed as the candidates for fixing
the type error. Since the system automatically shows us possible fixes without
intervention, the system is useful if the programmer’s intended fix is shown.
Unfortunately, it does not always produce the intended program.

As visualizing tools of types, Simon, Chitil, and Huch [13] show TypeView
that allows programmers to browse through the source code and to query the
types of each expression. McAdam [8] displays types as graphs and extracts
various facts from them that are useful for debugging. Our previous Emacs
interface [15] inspired by these works, and we will continue to build such interface.

8 Conclusion

In this paper, we have fleshed out our thesis that it is possible and also practical
to write a type debugger by piggy-backing on the built-in type inferencer of an
existing compiler. The key observation is that we only need the most general
type tree with the decomposition property; such a tree can be constructed using
the compiler’s type inferencer. The decomposition property guided the design
of our type debugger: we maintained contexts so that the property is satisfied
all the time. We have illustrated the thesis with OCaml, and we have described
how to handle a number of issues: simple types, let polymorphism, and objects.
Our design is in use in our laboratory and in our classrooms.

An Embedded Type Debugger 205

We plan to continue the present line of work as follows. First, we want to
explore how far the idea presented in this paper scales. In particular, we are
interested in supporting type classes [4] in Haskell and GADTs introduced in
OCaml 4.0. We will investigate how we can define decomposition of a program
with type classes or GADTs and see if it satisfies the property (Sect. 3). Secondly,
we want to perform thorough user tests. We have built an Emacs interface based
on our previous work [15] and the type debugger is in use in several courses in
our university. From user tests, we plan to obtain various feedback including
usefulness and how to effectively show the type information to novices. Finally,
we want to establish some kind of correctness criteria of the type debugger. By
considering the most general type tree, it might become possible to formally
state a property such as the type debugger would always find the source of a
type error.

Aknowledgements. We would like to thank Olaf Chitil, Olivier Danvy, Ian Zerny,
IFL participants, and anonymous reviewers for valuable comments and discussions.

References

1. Chitil, O.: Compositional explanation of types and algorithmic debugging of type
errors. In: Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming (ICFP’01), pp. 193–204 (2001)

2. Garrigue, J.: Relaxing the value restriction. In: Kameyama, Y., Stuckey, P.J. (eds.)
FLOPS 2004. LNCS, vol. 2998, pp. 196–213. Springer, Heidelberg (2004)

3. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order lan-
guages. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 284–301. Springer,
Heidelberg (2003)

4. Hall, C., Hammond, K., Jones, S.P., Wadler, P.: Type classes in Haskell. ACM
Trans. Program. Lang. Syst. (TOPLAS) 18(2), 241–256 (1996)

5. Heeren, B., Hage, J.: Parametric type inferencing for Helium. Technical Report
UU-CS-2002-035, Utrecht University (2002)

6. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm.
ACM Trans. Program. Lang. Syst. 20(4), 707–723 (1998)

7. Lerner, B.S., Flower, M., Grossman, D., Chambers, C.: Searching for type-error
messages. In: Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’07), pp. 425–434 (2007)

8. McAdam, B.J.: Generalising techniques for type debugging, chapter 6. In: Trinder,
P., Michaelson, G., Loidl, H.-W. (eds.) Trends in Functional Programming, pp.
49–57. Intellect, Portland (2000)

9. Nilsson, H.: Declarative debugging for lazy functional languages. Ph.D. thesis,
Linköping, Sweden (1998)

10. Schilling, T.: Constraint-free type error slicing. In: Peña, R., Page, R. (eds.) TFP
2011. LNCS, vol. 7193, pp. 1–16. Springer, Heidelberg (2012)

11. Shapiro, E.Y.: Algorithmic program debugging. MIT Press, Cambridge (1983)
12. Silva, J., Chitil, O.: Combining algorithmic debugging and program slicing. In:

Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’06), pp. 157–166 (2006)

206 K. Tsushima and K. Asai

13. Simon, A., Chitil, O., Huch, F.: Typeview: a tool for understanding type errors.
In: Draft Proceedings of the 12th International Workshop on Implementation of
Functional Languages, pp. 63–69 (2000)

14. Stuckey, P. J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In:
Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell’03), pp.
72–83 (2003)

15. Tsushima, K., Asai, K.: Report on an OCaml type debugger. In: ACM SIGPLAN
Workshop on ML, 3 p. (2011)

16. Wand, M.: Finding the source of type errors. In: Proceedings of the 13th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’86), pp. 38–43 (1986)

	An Embedded Type Debugger
	1 Introduction
	1.1 Locating the Source of a Type Error
	1.2 Problems
	1.3 Our Approach

	2 The Simply-Typed Lambda Calculus
	3 The Decomposition Property
	4 Let Polymorphism
	5 Objects
	6 Implementation
	7 Related Work
	8 Conclusion
	References

