
1

H
inze (E

d.)
Im

plem
entation and Application

of Functional Languages

LNCS
8241

Ralf Hinze (Ed.)

 123

LN
CS

 8
24

1

24th International Symposium, IFL 2012
Oxford, UK, August 30–September 1, 2012
Revised Selected Papers

Implementation
and Application
of Functional Languages

IFL
2012

Lecture Notes in Computer Science 8241

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ralf Hinze (Ed.)

Implementation and
Application of Functional
Languages

24th International Symposium, IFL 2012
Oxford, UK, August 30–September 1, 2012
Revised Selected Papers

123

Editor
Ralf Hinze
University of Oxford
Oxford
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-41581-4 ISBN 978-3-642-41582-1 (eBook)
DOI 10.1007/978-3-642-41582-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954020

CR Subject Classification F.3, D.3, D.2, F.4.1, D.1, D.2.4

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the selected peer-reviewed revised articles that were presented
at IFL 2012, the 24th International Symposium on Implementation and Application of
Functional Languages. IFL 2012 was held in Oxford, UK, during 30 August–1 Sep-
tember, 2012. The goal of the IFL symposia is to bring together researchers actively
engaged in the implementation and application of functional and function-based
programming languages. IFL is a venue for researchers to present and discuss new
ideas and concepts, work in progress, and publication-ripe results related to the
implementation and application of functional languages and function-based
programming.

The call for papers generated 37 submissions, all of which were accepted for
presentation. Participants are invited to submit either a draft paper or an extended
abstract describing work to be presented at the symposium. These submissions are
screened by the program chair to make sure they are within the scope of IFL. It should
be stressed, however, that these contributions are not peer-reviewed publications. The
submissions accepted for presentation appear in the draft proceedings distributed at
the symposium, which also appeared as a Department of Computer Science technical
report (RR-12-06).

After the symposium, authors are given the opportunity to consider the feedback
received from discussions at the symposium and are invited to submit revised full
articles to the formal review process. The revised submissions are reviewed by the
Program Committee considering their correctness, novelty, originality, relevance,
significance, and clarity. Of the 37 papers presented at IFL 2012, the Program
Committee reviewed 28 revised submissions, and 14 papers were ultimately selected
for this volume. Each submission was reviewed by four members of the Program
Committee. Three papers had an additional round of ‘‘shepherding’’ by a member of
the Program Committee in order to improve the presentation and tailor it for the IFL
audience.

Fritz Henglein, from the Department of Computer Science at the University of
Copenhagen, was the invited speaker of IFL 2012. He delivered a truly inspiring talk
about generic sorting and partitioning in linear time and fully abstractly. Thank you
Fritz for your contribution to IFL 2012.

Following the IFL tradition, IFL 2012 provided participants with an opportunity to
get to know each other and to talk outside the formal setting of presentations with a
social event on the second day of the symposium. This year, the participants embarked
on a boat trip on the river Isis, followed by a banquet at Balliol College, one of
Oxford’s oldest colleges.

Carrying on a tradition started in 2003, the Program Committee selected a paper for
the Peter J. Landin Award, given to the best article presented at the symposium. The
recipients of the award for IFL 2012 are Kanae Tsushima and Kenichi Asai, from

V

Ochanomizu University, for their contribution entitled ‘‘An Embedded Type
Debugger.’’

Putting together IFL 2012 was truly a team effort. I am grateful to the Department
of Computer Science, Elizabeth Walsh in particular, for administrative support and to
St. Anne’s College for hosting the event. I would like to thank the members of the
Program Committee and the external referees for their care and diligence in reviewing
the submitted papers. A special thank you is due to the three shepherds, Andy Gill,
Tim Sheard, and Peter Thiemann. Finally, I would like to thank Kwok-Ho Cheung,
Tom Harper, Daniel James, José Pedro Magalhães, and Nicolas Wu, for their help
with organizing the symposium and for distributing the call for papers. The review
process and compilation of the proceedings were greatly helped by Andrei Voron-
kov’s EasyChair system, which I can highly recommend.

I hope that the readers will enjoy this collection of selected papers from IFL 2012.
Make sure to join us at a future version of IFL!

September 2013 Ralf Hinze

VI Preface

Organization

Program Committee

Edwin Brady University of St. Andrews, UK
Andrew Butterfield University of Dublin, Ireland
Matthew Flatt University of Utah, USA
Andy Gill University of Kansas, USA
Stephan Herhut IntelLabs, Santa Clara, USA
Ralf Hinze University of Oxford, UK
Zhenjiang Hu National Institute of Informatics, Japan
Patrik Jansson Chalmers University of Technology, Sweden
Mauro Jaskelioff Universidad Nacional de Rosario, Argentina
Gabriele Keller University of New South Wales, Australia
Simon Marlow Microsoft Research, UK
Pablo Nogueira Technical University of Madrid, Spain
Bruno Oliveira Seoul National University, Korea
José Nuno Oliveira University of Minho, Portugal
Rinus Plasmeijer Radboud University Nijmegen, The Netherlands
Tom Schrijvers Ghent University, Belgium
Tim Sheard Portland State University, USA
Wouter Swierstra University of Utrecht, The Netherlands
Peter Thiemann University of Freiburg, Germany
Simon Thompson University of Kent, UK
Steve Zdancewic University of Pennsylvania, USA

Additional Reviewers

Kazuyuki Asada Andrew Farmer Steffen Michels
Clara Benac Earle Álvaro Fernández Díaz David Nowak
Jeroen Bransen Lars-Ake Fredlund Hugo Pacheco
Manuel Chakravarty Fritz Henglein Exequiel Rivas
Larry Diehl Pieter Koopman Neil Sculthorpe
Jonas Duregård Trevor McDonell John Van Groningen

VII

Local Organizing Committee

Ralf Hinze University of Oxford, UK
Nicolas Wu University of Oxford, UK
José Pedro Magalhães University of Oxford, UK

VIII Organization

Contents

A Notation for Comonads . 1
Dominic Orchard and Alan Mycroft

Iterating Skeletons: Structured Parallelism by Composition 18
Mischa Dieterle, Thomas Horstmeyer, Jost Berthold, and Rita Loogen

Building JavaScript Applications with Haskell . 37
Atze Dijkstra, Jurriën Stutterheim, Alessandro Vermeulen,
and S. Doaitse Swierstra

Advances in Lazy SmallCheck . 53
Jason S. Reich, Matthew Naylor, and Colin Runciman

OCaml-Java: From OCaml Sources to Java Bytecodes 71
Xavier Clerc

The HERMIT in the Tree: Mechanizing Program Transformations
in the GHC Core Language . 86

Neil Sculthorpe, Andrew Farmer, and Andy Gill

Optimisation of Generic Programs Through Inlining 104
José Pedro Magalhães

A Type- and Control-Flow Analysis for System F 122
Matthew Fluet

Dependently-Typed Programming in Scientific Computing:
Examples from Economic Modelling . 140

Cezar Ionescu and Patrik Jansson

Engineering Proof by Reflection in Agda . 157
Paul van der Walt and Wouter Swierstra

Agda Meets Accelerate . 174
Peter Thiemann and Manuel M. T. Chakravarty

An Embedded Type Debugger . 190
Kanae Tsushima and Kenichi Asai

IX

http://dx.doi.org/10.1007/978-3-642-41582-1_1
http://dx.doi.org/10.1007/978-3-642-41582-1_2
http://dx.doi.org/10.1007/978-3-642-41582-1_3
http://dx.doi.org/10.1007/978-3-642-41582-1_4
http://dx.doi.org/10.1007/978-3-642-41582-1_5
http://dx.doi.org/10.1007/978-3-642-41582-1_6
http://dx.doi.org/10.1007/978-3-642-41582-1_6
http://dx.doi.org/10.1007/978-3-642-41582-1_7
http://dx.doi.org/10.1007/978-3-642-41582-1_8
http://dx.doi.org/10.1007/978-3-642-41582-1_8
http://dx.doi.org/10.1007/978-3-642-41582-1_9
http://dx.doi.org/10.1007/978-3-642-41582-1_9
http://dx.doi.org/10.1007/978-3-642-41582-1_10
http://dx.doi.org/10.1007/978-3-642-41582-1_11
http://dx.doi.org/10.1007/978-3-642-41582-1_12

Pure and Lazy Lambda Mining: An Experience Report 207
Nicolas Wu, José Pedro Magalhães, Jeroen Bransen,
and Wouter Swierstra

Decomposing Metaheuristic Operations . 224
Richard Senington and David Duke

Author Index . 241

X Contents

http://dx.doi.org/10.1007/978-3-642-41582-1_13
http://dx.doi.org/10.1007/978-3-642-41582-1_14

A Notation for Comonads

Dominic Orchard(B) and Alan Mycroft

Computer Laboratory, University of Cambridge, Cambridge, UK
{dominic.orchard, alan.mycroft}@cl.cam.ac.uk

Abstract. The category-theoretic concept of a monad occurs widely as
a design pattern for functional programming with effects. The utility and
ubiquity of monads is such that some languages provide syntactic sugar
for this pattern, further encouraging its use. We argue that comonads,
the dual of monads, similarly provide a useful design pattern, captur-
ing notions of context dependence. However, comonads remain relatively
under-used compared to monads—due to a lack of knowledge of the de-
sign pattern along with the lack of accompanying simplifying syntax.

We propose a lightweight syntax for comonads in Haskell, analogous
to the do-notation for monads, and provide examples of its use. Via our
notation, we also provide a tutorial on programming with comonads.

Many algebraic approaches to programming apply concepts from category the-
ory as design patterns for abstracting and structuring programs. For example,
the category-theoretic notion of a monad is widely used to structure programs
with side effects, encapsulating effects within a parametric data type [1,2]. A
monadic data type M has accompanying operations which provide composition
of functions with structured output of type a → M b. Side effects can be seen as
impure output behaviour, encoded by the data type M .

Monads are so effective as an abstraction technique that some languages
provide a lightweight syntactic sugar simplifying programming with monads,
such as the do-notation in Haskell and the let! notation in F# [3].

Comonads are the dual structure to monads, where a comonadic data type
C has operations for the composition of functions with structured input, of type
C a → b. Whilst monads capture impure output behaviour (side effects), comon-
ads capture impure input behaviour, often described as context dependence, en-
coded by the data type C. There are various examples of programming with
comonads in the literature including dataflow programming via streams [4], at-
tribute evaluation [5], array computations [6], and more [7]. However, despite
these examples, comonads are less widely used than monads.

There are two reasons for this: one is that they are less well-known, the
other, related reason is the lack of language support, which impedes the use
of comonads as a design pattern. To remedy this, we propose a syntax which
simplifies programming with comonads in Haskell, called the codo-notation,
which also serves to promote the comonad design pattern.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 1–17, 2013.
DOI: 10.1007/978-3-642-41582-1 1, c© Springer-Verlag Berlin Heidelberg 2013

2 D. Orchard and A. Mycroft

In Haskell, comonads are defined by the following class1:

class Comonad c where
extract :: c a → a
extend :: (c a → b) → c a → c b

The contextual view of comonads is that values of type c a encode context-
dependent computations of values of type a, and functions c a → b describe local
operations within some context. The extract operation defines a notion of current
context and is a trivial local operation returning the value at this context; extend
defines the range of all possible contexts, extending a local operation to a global
operation by applying it at every context. Thus comonads abstract “boilerplate”
code for extending an operation, defined at one context, to all contexts.

For example, arrays can be seen as encoding contextual computations, where
a value depends on its position. An array paired with an array index denoting
the current context – called the cursor – is a comonad. Its extract operation
accesses the cursor element of the array; extend applies a local operation, which
computes a value from an array at a particular cursor, to an array at each possible
cursor index in its domain (i.e., globally), computing an array of results [6]. Local
operations of this form, on arrays, are ubiquitous in image processing, scientific
computing, and cellular automata.

The codo-notation simplifies programming with comonads. For example, the
following codo-block defines a local operation for computing image contours:

contours :: CArray (Int , Int) Float → Float
contours = codo x ⇒ y ← gauss2D x

z ← gauss2D y
w ← (extract y) − (extract z)
laplace2D w

where CArray i a is a cursored-array data type, with index type i and element
type a, and gauss2D , laplace2D :: CArray (Int , Int) Float → Float compute,
at a particular index, discrete Gaussian and Laplace operators on 2D arrays. A
contour image can thus be computed by applying (extend contours) to an image.

The primary contribution of this paper is the codo-notation, introduced in
detail in Sect. 1, continuing with arrays as an example. The notation desug-
ars into the operations of a comonad (Sect. 3) which provides an equational
theory for the notation following from the laws of a comonad (Sect. 2). The
codo-notation is analogous to the do-notation for programming with monads in
Haskell, but with some notable differences which are explained from a categor-
ical semantics perspective in Sect. 4. Section 5 discusses related work, including
a comparison of the codo-notation to Haskell’s arrow notation.

This paper contributes examples (arrays, trees, and graphs), explanation,
and notation to promote comonads in programming. A prototype of the notation,

1 Available via Edward Kmett’s Control.Comonad package.

A Notation for Comonads 3

as a macro-based library using quasi-quoting brackets, is provided by the
codo-notation package.2 An implementation as a GHC extension is in progress.

Array example. The array comonad is used throughout the next section to
introduce codo. It is defined in Haskell by the following data type and instance:

data CArray i a = CA (Array i a) i
instance Ix i ⇒ Comonad (CArray i) where

extract (CA a i) = a ! i
extend f (CA a i) = let es ∗ = map (λj → (j , f (CA a j))) (indices a)

in CA (array (bounds a) es ∗) i

where extract accesses the cursor element using the array indexing operation !,
and, for every index j of the parameter array, extend applies f to the array with
j as its cursor, returning an index-value pair list from which the result array is
constructed. Note, the return and parameter arrays have the same size and cursor,
i.e., extend preserves the incoming context in its result.

Many array operations can be defined as local operations c a → b (hereafter
comonadic operations, sometimes called coKleisli arrows/morphisms in the lit-
erature) using relative indexing, e.g., the laplace2D operator, for approximating
differentiation, can be defined:

laplace2D :: CArray (Int , Int) Float → Float
laplace2D a = a ? (−1, 0) + a ? (1, 0) + a ? (0,−1) + a ? (0, 1) − 4 ∗ a ? (0, 0)

where (?) abstracts relative indexing with bounds checking and default values3:

(?) :: (Ix i ,Num a,Num i) ⇒ CArray i a → i → a
(CA a i) ? i ∗ = if (inRange (bounds a) (i + i ∗)) then a ! (i + i ∗) else 0

(where Ix is the class of valid array-index types). Whilst laplace2D computes the
Laplacian at a single context (locally), extend laplace2D computes the Laplacian
at every context (globally), returning an array rather than a single float.

1 Introducing codo

The codo-notation provides a form of let-binding for composing comonadic
operations, which has the general form and type:

(codo p ⇒ p ← e; e) :: Comonad c ⇒ c t → t ∗

(where p ranges over patterns, e over expressions, and t, t∗ over types). Compare
this with the general form and type of the monadic do-notation:
2 http://hackage.haskell.org/package/codo-notation
3 There are many alternative methods for abstracting boundary checking and values;

our choice here is for simplicity of presentation rather than performance or accuracy.

http://hackage.haskell.org/package/codo-notation

4 D. Orchard and A. Mycroft

(do p ← e; e) :: Monad m ⇒ m t

Both comprise zero or more binding statements of the form p ← e (separated
by semicolons or new lines), preceding a final result expression. A codo-block
however defines a function, with a pattern-match on its parameter following the
codo keyword. The parameter is essential as comonads describe functions with
structured input. A do-block is instead an expression (nullary function). Section 4
compares the two notations in detail.

Comonads and codo-notation for composition. The extend operation of a
comonad provides composition for comonadic functions as follows:

(◦̂) :: Comonad c ⇒ (c y → z) → (c x → y) → c x → z
g ◦̂ f = g ◦ (extend f) (1)

Thelawsofacomonadareequivalenttorequiringthatthiscompositionisassociative
and that extract is its identity (discussed further in Sect. 2).

The codo-notation abstracts over extend in the composition of comonadic
operations. For example, the composition of two array operations:

lapGauss = laplace2D ◦ (extend gauss2D)

(i.e., laplace2D ◦̂ gauss2D), can be written equivalently in the codo-notation:

lapGauss = codo x ⇒ y ← gauss2D x
laplace2D y

where lapGauss ::CArray (Int , Int) Float → Float , x , y ::CArray (Int , Int) Float .
The parameter of a codo-block provides the context of the whole block where

all subsequent local variables have the same context. For example, x and y in the
above example block are arrays of the same size with the same cursor.

For a variable-pattern parameter, a codo-block is typed by the following rule:
(here typing rules are presented with a single colon: for the typing relation)

[varP]
Γ ; x : c t ∨c e : t∗

Γ ∨ (codo x ⇒ e) : Comonad c ⇒ c t → t ∗

where ∨c types statements of a codo-block. Judgments Γ ;Δ ∨c . . . have two
sequences of variable-type assumptions: Γ for variables outside a block and Δ for
variables local to a block. For example, variable-pattern statements are typed:

[varB]
Γ ;Δ ∨c e : t Γ ;Δ, x : c t ∨c r : t∗

Γ ;Δ ∨c x ← e; r : t ∗

where r ranges over remaining statements and result expression i.e. r = p ← e; e∗.
A variable-pattern statement therefore locally binds a variable, in scope for

the rest of the block. The typing, where e : t but x : c t , gives a hint about codo
desugaring. Informally, (codo y ⇒ x ← e; e ∗) is desugared into two functions,

A Notation for Comonads 5

Fig. 1. Typing rules for the codo-notation

the first statement as λy → e and the result expression as λx → e ∗. These are
comonadically composed, i.e., (λx → e ∗) ◦ (extend (λy → e)), thus x : c t.

Further typing rules for the codo-notation are collected in Fig. 1.

Non-linear plumbing. For the lapGauss example, codo does not provide a
significant simplification. The codo-notation more clearly benefits computations
which are not mere linear function compositions. Consider a binary operation:

minus :: (Comonad c,Num a) ⇒ c a → c a → a
minus x y = extract x − extract y

which subtracts its parameters at their respective current contexts. Using codo,
minus can be used to compute a pointwise subtraction, e.g.

contours ∗ = codo x ⇒ y ← gauss2D x
z ← gauss2D y
w ← minus y z
laplace2D w

(equivalent to contours in the introduction which inlined the definition of minus).
The context, and therefore cursor, of every variable in the block is the same as
that of x . Thus, y and z have the same cursor and minus is applied pointwise. The
equivalent program without codo is considerably more complex:

contours ∗ x = let y = extend gauss2D x
w = extend (λy ∗ → let z = extend gauss2D y ∗

in minus y ∗ z) y
in laplace2D w

where the nested extend means that y ∗ and z have the same cursor, thus minus
y ∗ z is pointwise. An alternate, more point-free, approach uses the composition ◦̂:

contours ∗ = laplace2D ◦̂ (λy ∗ → minus y ∗ ◦̂ gauss2D $ y ∗) ◦̂ gauss2D

6 D. Orchard and A. Mycroft

This approach resembles that of using monads without the do-notation, and
is elegant for simple, linear function composition. However, for more complex
plumbing the approach quickly becomes cumbersome. In the above two (non-
codo) examples, care is needed to ensure that minus is applied pointwise. An
incorrect attempt to simplify the first non-codo contours ∗ might be:

contour bad x = let y = extend gauss2D x
z = extend gauss2D y
w = extend (minus y) z

in laplace2D w

In the above, extend (minus y) z subtracts z at every context from y at a
particular, fixed context, i.e., not a pointwise subtraction.An equivalent expression
to contours bad can be written using nested codo-blocks:

contour bad = codo x ⇒ y ← gauss2D x
(codo y ∗ ⇒ z ← gauss2D y ∗

w ← minus y z
laplace2D w) y

where y inminus y z is bound in the outer codo-block and thus has its cursor fixed,
whilst z is bound in the inner codo-block and has its cursor varying. Variables
bound outside of the nearest enclosing codo-block are “unsynchronised” with
respect to the context inside the block, i.e., at a different context.

A codo-block may have multiple parameters in an uncurried-style, via tuple
patterns ([tupP], Fig. 1). For example, the following block has two parameters,
which are Laplace-transformed and then pointwise added:

lapPlus :: CArray Int (Float ,Float) → Float
lapPlus = codo (x , y) ⇒ a ← laplace2D x

b ← laplace2D y
(extract a) + (extract b)

This block has a single comonadic parameter with tuple elements, whose type is
of the form c (a, b). However, inside the block x : c a and y : c b as the desugaring
of codo unzips the parameter (see Sect. 3). A comonadic tuple parameter ensures
that multiple parameters have the same context, e.g., x and y in the above example
have the same shape/cursor. Therefore, a pair of arguments to lapPlus must be
zipped first, provided by the czip operation:

class ComonadZip c where czip :: (c a, c b) → c (a, b)

For CArray , czip can be defined:

instance (Eq i , Ix i) ⇒ ComonadZip (CArray i) where
czip (CA a i ,CA a ′ j) =

if (i �≡ j ∨ bounds a �≡ bounds a ′) then error "Shape/cursor mismatch"

else let es ′′ = map (λk → (k , (a ! k , a ′ ! k))) (indices a)
in CA (array (bounds a) es ′′) i

A Notation for Comonads 7

Thus only arrays of the same shape and cursor can be zipped together. In the
contextual understanding, the two parameter arrays are thus synchronised in their
contexts. The example of lapPlus can be applied to two (synchronised) array
parameters x and y by extend lapPlus (czip (x , y)).

Any data constructor pattern can be used for the parameter of a codo-block
and on the left-hand side of a binding statement. For example, the following uses
a tuple pattern in a binding statement (see [tupB], Fig. 1), which is equivalent to
lapPlus by exchanging a parameter binding with a statement binding:

lapPlus = codo z ⇒ (x , y) ← extract z
a ← laplace2D x
b ← laplace2D y
(extract a) + (extract b)

Tuplepatternsarespecificallydiscussedheresincetheyprovidemultipleparameters
to a codo-block, as seen above. The typing of a general pattern in a statement,
for some type/data constructor T , is roughly as follows:

[patB]
Γ ;Δ ∨c e : T t̄ Γ ;Δ,Δ∗ ∨c r : t∗ dom(Δ∗) = var-pats(p)

Γ ;Δ ∨c (T p) ← e; r : t∗

where dom(Δ∗) is the set of variables in a sequence of typing assumptions, and
var-pats is the set of variables occurring in a pattern.

Example: labelled graphs. Many graph algorithms can be structured by a
comonad,particularlycompileranalysesandtransformationsoncontrolflowgraphs
(CFGs). The following defines a labelled-graph comonad as a (non-empty) list of
nodes which are pairs of a label and a list of their connected vertices:

data LGraph a = LG [(a, [Int])] Int -- pre-condition: non-empty lists
instance Comonad LGraph where

extract (LG xs c) = fst (xs !! c)
extend f (LG xs c) = LG (map (λc∗ → (f (LG xs c∗), snd (xs !! c∗)))

[0 . . length xs]) c

The LGraph-comonad resembles the array comonad where contexts are positions
with a cursor denoting the current position. Analyses over CFGs can be defined
using graphs labelled by syntax trees. For example, a live-variable analysis (which,
for an imperative language, calculates the set of variables that may be used in a
block before being (re)defined) can be written, using codo, as:

lva = codo g ⇒ lv0 ← (defUse g , []) -- compute definition/use sets, paired
lva ∗ lv0 -- with initial empty live-variable set

lva ∗ = codo ((def , use), lv) ⇒
live out ← foldl union [] (successors lv)
live in ← union (extract def) ((extract live out) \\ (extract use))

8 D. Orchard and A. Mycroft

lvp ← ((extract def , extract use), extract live in)
lvNext ← lva ∗ lvp
if (lv ≡ live in) then (extract lv) else (extract lvNext)

where union and set difference (\\) on lists have typeEq a ⇒ [a] → [a] → [a] and
defUse :: LGraph AST → ([Var], [Var]) computes the sets of variables defined
and used by each block in a CFG. The analysis is recursive, refining the set of live
variables until a fixed point is reached.

The live variables for every block of a CFG can be computed by extend lva.

Costate, trees, and zippers. Arrays were used to introduce comonads and codo
to aid understanding since the notion of context is made clear by the cursor. The
above graph example has a similar form. Both are instances of a general comonad,
often called the costate comonad, whose data type is a pair of a function from
contexts to values and a particular context: C a = (s → a) × s.

For both arrays and labelled graphs, the type of contexts is a finite domain
of integer, or integer-tuple, indices. For labelled graphs, the costate comonad is
combined with product comonad (see [8]) pairing the label of a node with the list
of its successors, thus the type is isomorphic to C a = (s → (a × [s])) × s.

For costate, the notion of context is explicitly provided by a cursor acting as a
pointer or address. This is not the only way to define a notion of context. Other
data types encode the context structurally rather than using a cursor. For example,
a comonad of labelled binary trees can be defined:

data BTree a = Leaf a | Node a (BTree a) (BTree a)
instance Comonad BTree where

extract (Leaf a) = a
extract (Node a l r) = a
extend f (Leaf a) = Leaf (f (Leaf a))
extend f t@(Node a l r) = Node (f t) (extend f l) (extend f r)

The action of extend is to apply its parameter function f to successive suffix trees,
thus f can only access its children, not its parents. Thus extend not only defines
what it means for a local (comonadic) operation to be applied globally, but also
which contexts are accessible from each possible context.

A tree comonad that has a structural notion of context but whose comonadic
operations can access any part of the tree can be defined using Huet’s zipper data
type, where trees are split into a path to the current position and the remaining
parts of the tree [5,9]. For a certain class of data types it has been shown that a
zipper structure can be automatically derived by differentiation of the data type
[10]. All container-like zippers are comonads [11] where the notion of context is
encoded structurally, rather than by a pointer -like cursor. The codo-notation thus
provides a convenient syntax for programming with zipper comonads.

A Notation for Comonads 9

2 Equational Theory

As shown in Sect. 1, extend provides composition for comonadic functions, Eq.
(1). The laws of a comonad are exactly the laws that guarantee this composition
is associative with extract as a left and right unit, i.e.

(right unit) f ◦̂ extract ≡ f � extend extract ≡ id [C1]
(left unit) extract ◦̂ f ≡ f � extract ◦ (extend f) ≡ f [C2]

(associativity) h ◦̂ (g ◦̂ f) � extend g ◦ extend f
≡ (h ◦̂ g) ◦̂ f ≡ extend (g ◦ extend f) [C3]

As there is no mechanism for enforcing such rules in Haskell the programmer is
expected to verify the laws themselves.

Since codo is desugared into the operations of a comonad, the comonad laws
imply equational laws for the codo-notation, shown in Fig. 2(a). Figure 2(b) shows
additional codo laws which follow from the desugaring.

Comonads are functors. The category theoretic notion of a functor can be used
to abstract map-like operations on parametric data types. In Haskell, functors are
described by the Functor type class, of which map provides the list instance:

class Functor f where fmap :: (a → b) → f a → f b
instance Functor [] where fmap = map

Fig. 2. Equational laws for the codo-notation

10 D. Orchard and A. Mycroft

All comonads are functors by the following definition using extend and extract:

cmap :: Comonad c ⇒ (a → b) → c a → c b
cmap f x = extend (f ◦ extract)

While fmap applies its parameter function to a single element of a data type, extend
applies its parameter function to a subset (possibly the whole) of the parameter
structure. Thus extend generalises fmap.

Monoidal operation. The czip :: (c a, c b) → c (a, b) operation introduced in
Sect. 1 corresponds to that of a (semi)-monoidal functor which may satisfy various
laws with respect to the comonad (see the discussion of (semi)-monoidal comonads
in [8]). The following property, which we call idempotency of a semi-monoidal
functor, frequently holds of comonad/czip implementations:

czip (x , x) ≡ cmap (λy → (y , y)) x (2)

This property implies codo laws relating tuple patterns and czip (Fig. 2(c)). For
every rule involving a tuple pattern there is an equivalent rule derived using the
(χ) rule (Fig. 2(b)) which exchanges parameter and statement binders.

Shape preservation. The shape of a data structure is defined by its structure
without any values, which can be computed as such: (where const x = λ → x)

shape = cmap (const ())

An interesting derived property of comonads is that, for any comonadic function f ,
(extend f) preserves the shape of the incoming structure in its result. For example,
extend of the array comonad preserves the size, cursor, and dimensions of the
parameter array in the result. Appendix A gives a proof of this property, which
is stated formally, for a comonad c and function f :: c a → b, as:

shape ◦ (extend f) ≡ shape (3)

This property explains why all locally bound variables in a codo-block bind
comonadic values which have the same context.

3 Desugaring codo

The desugaring of codo is based on Uustalu and Vene’s semantics for a context-
dependentλ-calculus[8].Ithastwoparts:translationofstatementsintocomposition
via extend , and management of the environment for variables bound in a codo-
block. The first part is explained by considering a restricted codo-notation, which
only ever has one local variable, bound in the previous statement.

(1). Single-variable environment. For a comonad C , consider the codo-block:

foo1 = (codo x ⇒ y ← f x ; g y) :: C x → z

A Notation for Comonads 11

where f :: C x → y , g :: C y → z . The first statement y ← f x can be desugared
as a function with parameter x and body f x , the second, which is the final result
expression, can be similarly desugared as a function from y to its expression, i.e.
(λx → f x) and (λy → g y). Both are functions with structured input, thus the
semantics of foo1 is their comonadic composition (equivalent to g ◦̂ f):

[[foo1]] = (λy → g y) ◦ (extend (λx → f x)) :: Cx → z.

(2). Multiple-variable environment. A codo-block may bind multiple variables,
allowing the following example with binary function h :: Cx → Cy → z:

foo2 = (codo x ⇒ y ← f x ; h x y) :: C x → z

The first statement cannot be desugared as before since the second statement uses
both x and y , thus the desugaring must return x with the result of f x :

(λx → (extract x , f x)) :: C x → (x , y) (#4)

Applying extract to x means that extend (#4), of type C x → C (x , y), returns
the parameter x and the result of f x synchronised in their contexts.

The desugaring of the second statement is a function taking a value C (x , y)
and unzipping it, binding the constituent values to x and y in the scope of the
result expression, where x and y are synchronised at the same context since cmap
preserves the context encoded by the comonadic value:

(λenv → let x = cmap fst env
y = cmap snd env in h x y) :: C (x , y) → z

(#5)

The desugaring of foo2 is therefore �foo2 � = (#5) ◦ (extend (#4)).

3.1 General Construction

Thedesugaring translation traverses the list of binding statements in acodo-block,
accumulating a comonadic environment of the local variables bound so far. The
accumulated environment is structured by right-nested pairs terminated by a unit
value (). Thus, the actual desugaring of foo2 is:

�foo2 � = (λenv → let y = cmap fst env
x = cmap (fst ◦ snd) env in h x y)

◦ (extend (λenv → (let x = cmap fst env in f x , extract env)))
◦ (cmap (λenv → (env , ())))

For foo2 , the environment in the first statement contains just x and has type
C (x , ()), and in the second statement contains x and y and has type C (y , (x , ())).

The top-level translation of a codo-block is defined:

�codo x ⇒ b� = �x ∨ b�c ◦ (cmap (λx → (x , ())))
�codo ⇒ b� = �· ∨ b�c ◦ (cmap (λx → (x , ())))

�codo (x, y) ⇒ b� = �x, y ∨ b�c ◦ cmap (λp → (fst p, (snd p, ())))

12 D. Orchard and A. Mycroft

where �Δ ∨ b�c is the translation of the binding statements b within a codo-block,
with the scope of the local variables Δ. In the translation here, types are omitted
for brevity. A translation with the types included can be found in the first author’s
forthcoming PhD dissertation [12].

The top-level translation generalises easily to arbitrary patterns. In each case,
�−�c is pre-composed with a lifted projection function, which projects values
inside the incoming parameter comonad to right-nested pairs terminated by ().
The translation of binding statements yields a Haskell function of type:

�Δ ∨ b ; e�c : Comonad c ⇒ c (t1, (. . . , (tn, ()))) → t

where e : t and Δ = v1, . . . , vn where vi : c ti. The definition of �−�c is:

�Δ ∨ e�c = �Δ ∨ e�exp

�Δ ∨ x ←e; r�c = �x,Δ ∨ r�c ◦extend (λenv →(�Δ ∨ e�exp env , extract env))
�Δ ∨ (x , y)←e; r�c = �x, y,Δ ∨ r�c ◦ extend (λenv →(λ((x , y),Δ)→(x , (y ,Δ)))

(�Δ ∨ e�exp env , extract env))

where �Δ ∨ e�exp translates expressions on the right-hand side of a statement or
for the result of a block. The last case translates tuple-pattern statements where
λ((x , y),Δ) → (x , (y ,Δ))) reformats results into the right-nested tuple format of
the environment; this generalises in the obvious way to arbitrary patterns.

The translation of expressions unzips the incoming comonadic environment,
binding the values to the variables in Δ with a local let-binding:

�v1, . . . , vn ∨ e�exp = λenv → let [vi = cmap (fst ◦ snd i−1) env]n1 in e

where sndk means k compositions of snd and snd0 = id .
The next section compares codo-notation with do-notation, and explains why

the desugaring of codo-notation is more complex.

4 Comparing do- and codo-notation

Whilst comonads and monads are dual, this duality does not appear to extend to
the codo- and do-notation. Both provide let-binding syntax, for composition of
comonadic and monadic operations respectively. However, codo-blocks are para-
meterised, of type c a → b for a comonad c, whilst do-blocks are unparameterised,
of type m a for a monad m. Since comonads abstract functions with structured
input, the parameter to a codo-block is important. In thedo-notation, expressions
have implicit input via their free variables and Haskell’s scoping mechanism is
reused for handling local variables in a do-block.

The codo- and do-notation can be seen as internal domain-specific languages,
for contextual and effectful computations respectively,with their semantics defined
by translation to Haskell. This perspective is similar to the approach of categorical

A Notation for Comonads 13

semantics, where typed programs are given a denotation as a morphism4 in some
category, mapping from the inputs of a program to the outputs. The disparity
between codo- and do-notation is illuminated by this approach.

Categorical semantics. For the simply-typed λ-calculus, the traditional
approach recursively maps the type derivation of an expression to a morphism [13]:

�Γ ∨ e : t� : (�t1� × . . . × �tn�) −→ �t�

where Γ = x1 : t1, . . . xn : tn. Thus, an expression e : t with the free-variable
typing assumptions Γ is modelled as a morphism from a product of the types for
the free variables, as inputs, to the result type as the output.

Categorical semantics for effectful computations. Moggi showed that effect-
ful computations can be given a semantics in terms of a Kleisli category [14,15],
which has morphisms a → m b for a monad m, with denotations:

�x1 : t1, . . . xn : tn ∨ e : t� : (�t1� × . . . × �tn�) −→ m �t�

In Moggi’s calculus, let-binding corresponds to a call-by-value (eager) evaluation
of effects followed by substitution of a pure value, corresponding to composition
of the denotations provided by the bind operation of a monad. The semantics of
multi-variable environments requires a strong monad : a monad with an additional
strength operation. The effectful semantics for let-binding is as follows (here a

f−→ b
abbreviates f : a → b with arrow concatenation expressing composition; �−�
brackets are elided on types in morphisms for brevity):

�Γ ∨ e : t� = g : Γ → m t �Γ, x : t ∨ e∗ : t∗� = h : Γ × t → m t∗

�Γ ∨ let x = e in e∗ : t∗� = Γ
〈id,g〉−−−→Γ × mt

strength−−−−−→ m(Γ ×t) bind h−−−−→ mt∗
(6)

where 〈f, g〉 is the function pairing: λx → (f x , g x), bind is the prefix version of
Haskell’s (>>=) :: Monad m ⇒ m a → (a → m b) → m b operator and strength
provides distributivity of × over m:

strength : (a × m b) → m (a × b)
bind : (a → m b) → (m a → m b)

Whilst the do-notation provides a semantics for effectful let-binding embedded
in Haskell, the translation is simplified by reusing Haskell’s scoping mechanism
since, in Haskell, all monads are strong with a canonical strength:

strength :: Monad m ⇒ (a,m b) → m (a, b)
strength (a,mb) = mb >>= (λb → return (a, b))

It is straightforwardly proved that this definition of strength satisfies the properties
of a strong monad (see [14] for these properties). The standard translation of do

4 Morphisms generalise the notion of function. Readers unfamiliar with category theory
may safely replace ‘morphism’ with ‘function’ here.

14 D. Orchard and A. Mycroft

can be derived from (6) by inlining the above strength and simplifying according
to the monad laws:

Γ ∨ e : m t Γ, x : t ∨ e∗ : m t∗

Γ ∨ �do x ← e; e ∗� : m t∗ ≡ Γ ∨ e >>= (λx → e ∗) : m t∗

This gives a translation using just the monad operations and Haskell’s scoping
mechanism todefine the semantics ofmulti-variable scopes for effectful let-binding.
Thus the inputs to effectful computations are handled implicitly and so a do-block
is an expression of type m a.

Categorical semantics for contextual computations. The dual of Moggi’s
semantics interprets expressions in a coKleisli category, with denotations:

�x1 : t1, . . . xn : tn ∨ e : t� : c (�t1� × . . . × �tn�) −→ �t�

for a comonad c. Uustalu and Vene gave the semantics of a context-dependent
calculus in this form [8].

For a comonadic semantics, the input of an expression – the values of the free
variables – thus have a comonadic product structure rather than just a product
structure as in the monadic approach. Therefore, Haskell’s scoping mechanisms
cannotbedirectly used since the variables local to acodo-blockmusthave the same
comonadic context and are therefore wrapped in a comonadic data type. The local
environment of a codo-block is therefore handled manually in the desugaring of
codo resulting in amore complicated translation than that of thedo-notation.The
desugaring of statements is equivalent to the semantics of let-binding in Uustalu
and Vene’s approach:

�Γ ∨ e : t� = g : c Γ → t �Γ, x : t ∨ e∗ : t∗� = h : c (Γ × t) → t∗

�Γ ∨ let x = e in e∗ : t∗� = c Γ
extend〈extract,g〉−−−−−−−−−−−→ c (Γ × t) h−→ t∗

The other parts of the desugaring manage projections from the (comonadic)
environment, simulating application and variable access in a comonadic semantics.

5 RelatedWork and Conclusions

Arrow notation. In Haskell, various notions of computation can be encoded as a
category structure,withadditionalarrow operations forconstructingcomputations
and handling environments, defined by the Category and Arrow classes:

class Category cat where
id :: cat x x
(◦) :: cat y z → cat x y → cat x z

class Category a ⇒ Arrow a where
arr :: (x → y) → a x y
first :: a x y → a (x , z) (y , z)

A Category thus has a notion of composition and identity for its morphisms, which
are modelled by the type cat x y . The Arrow class provides arr for promoting a
Haskell function to a morphism and first transforms a morphism to take and return

A Notation for Comonads 15

an extra parameter, used for threading an environment through a computation.
Other arrow combinators can be derived from this minimal set.

Every comonad defines a coKleisli category, whose morphisms have structured
input,wherecompositionisdefinedasinSect. 1.Furthermore,allcoKleislicategories
in Haskell are arrows:

data CoKleisli c x y = CoK {unCoK :: (c x → y)}
instance Comonad c ⇒ Category (CoKleisli c) where

id = CoK extract
(CoK g) ◦ (CoK f) = CoK (g ◦ (extend f))

instance Comonad c ⇒ Arrow (CoKleisli c) where
arr k = CoK (k ◦ extract)
first (CoK f) = CoK (λx → (f (cmap fst x), extract (cmap snd x)))

where arr pre-composes a function with extract, and first is defined similarly to
the handling of the local block environment in the desugaring of codo.

The arrow notation simplifies programming with arrows [16,17], comprising:
arrow formation (proc x → e), arrow application (f ≺ x) and binding (x ← e).
Given the above coKleisli instances forCategory andArrow , comonadic operations
canbewritteninthearrownotationinsteadofusingthecodo-notation.Forexample,
the original contours example can be written as follows:

proc x → do y ← CoK gauss2D ≺ x
z ← CoK gauss2D ≺ y
w ← returnA ≺ y − z
CoK laplace2D ≺ w

The arrow notation here is not much more complicated than codo, requiring
just the additional overhead of the arrow application operator ≺ and lifting of
gauss2D and laplace2D by CoK . One difference is that the variables here have a
non-comonadic type, i.e., Float rather than CArray (Int , Int) Float .

The arrow notation is however more cumbersome than codo when plumbing
comonadic values, for example when using comonadic binary functions (of type
c t → c t ∗ → t ∗∗). The alternate definition of contours using minus becomes:

proc x → do y ← CoK gauss2D ≺ x
z ← CoK gauss2D ≺ y
w ← CoK (λv → minus (fmap fst v) (fmap snd v)) ≺ (y , z)
CoK laplace2D ≺ w

where v :: c (y , z) must be deconstructed manually. Whilst minus can be inlined
here and the code rewritten to the more elegant first example, this is only possible
since minus applies extract to both arguments. For other comonadic operations,
with more complex behaviour, this refactoring is not always possible.

Comparing the two, arrow notation appears as powerful as codo-notation,
in terms of the computations which can be expressed. Indeed, from a categorical
perspective, bothnotations need only a comonad structure (i.e., coKleisli category)

16 D. Orchard and A. Mycroft

with no additional closed or monoidal structure (see Paterson’s discussion [17,
Sect. 2.1]). However, whilst arrow notation is almost as simple as codo for some
purposes, the syntax is less natural for more complicated plumbing of comonadic
values (as seen above). We argue that codo provides the most elegant and natural
solution to programming with comonads, with a cleaner applicative-style.

Other applications. There are many interesting comonads which have not been
explored here. For example, the semantics of the Lucid dataflow language are
captured by an infinite stream comonad [4], which was used by Uustalu and Vene
to define an interpreter for Lucid in Haskell. Using codo-notation, Lucid can be
embedded directly into Haskell as an internal domain-specific language.

Many comonadic data types are instances of the general concept of containers.
Containers comprise a set of shapes S and, for each shape s ∈ S, a type of positions
Ps, with the data type C a =

∑
s∈S(Ps → a), i.e., a coproduct of functions from

positions to values for each possible shape [18]. Ahman et al. recently showed that
all directed containers (those with notions of sub-shape) are comonads, where
positions are contexts and sub-shapes define accessibility between contexts for
the definition of extend [11]. The labelled binary-tree example in Sect. 1 can be
describedasadirected-containercomonad.Thecostate comonadcanbegeneralised
to cursored containers with type C a =

∑
s∈S(Ps → a) × Ps.

Whilst the codo-notation was developed here in Haskell, it could be applied in
other languages with further benefits. For example, a codo-notation for ML could
be used to abstract laziness using a delayed-computation comonad with data type
C a = () → a, or defining lazy lists using the stream comonad.

Concluding remarks. Comonads essentially abstract boilerplate code for data
structure traversals, allowing succinct definitions of local operations by abstracting
their promotion to global operations. The codo-notation presented here simplifies
programmingwithcomonads.Wehopethisprompts theuseof comonadsasadesign
pattern and tool for abstraction, and promotes further exploration of comonads
yielding new and interesting examples.

Whilst the codo keyword is used in the notation here, some may prefer an
alternate keyword as codo-notation is not exactly dual to do-notation (Sect. 4).
For example, using context as the keyword provides more intuition about its use,
akin to do, but causes more serious namespace pollution.

Acknowledgements. We thank Jeremy Gibbons, Ralf Hinze, Tomas Petricek, Tarmo
Uustalu, and Varmo Vene for helpful discussions, and to the anonymous reviewers for
their comments on this paper and an earlier draft. This research was supported by an
EPSRC Doctoral Training Award.

AProof of Shape Preservation

To prove shape preservation we first prove the following intermediate lemma:

cmap g ◦ extend f = extend (g ◦ f) (7)

A Notation for Comonads 17

cmap g ◦ extend f
≡ extend (g ◦ extract) ◦ extend f definition of cmap
≡ extend (g ◦ extract ◦ extend f) [C3]
≡ extend (g ◦ f) � [C2]

The proof of shape preservation (3) is then:
shape ◦ (extend f)

≡ (cmap (const ()) ◦ (extend f) definition of shape
≡ extend ((const ()) ◦ f) (7)
≡ extend ((const ()) ◦ extract) (const x) ◦ f ≡ (const x) ◦ g
≡ (cmap (const ())) ◦ (extend extract) (7)
≡ cmap (const ()) [C1]
≡ shape definition of shape

�
References

1. Wadler, P.: The essence of functional programming. In: Proceedings of POPL ’92,
pp. 1–14. ACM (1992)

2. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

3. Petricek, T., Syme, D.: Syntax Matters: writing abstract computations in F#. Pre-
proceedings of TFP (Trends in Functional Programming), St. Andrews, Scotland
(2012)

4. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Horváth, Z. (ed.)
CEFP 2005. LNCS, vol. 4164, pp. 135–167. Springer, Heidelberg (2006)

5. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. Trends Funct.
Program. 6, 145–160 (2007)

6. Orchard, D., Bolingbroke, M., Mycroft, A.: Ypnos: declarative, parallel structured
grid programming. In: DAMP ’10, pp. 15–24. ACM, NY (2010)

7. Kieburtz, R.B.: Codata and Comonads in Haskell (1999) (unpublished)
8. Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor.

Comput. Sci. 203, 263–284 (2008)
9. Huet, G.: The zipper. J. Funct. Program. 7, 549–554 (1997)

10. McBride, C.: The derivative of a regular type is its type of one-hole contexts.
Unpublished manuscript (2001)

11. Ahman, D., Chapman, J., Uustalu, T.: When is a container a comonad? In: Birkedal,
L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 74–88. Springer, Heidelberg (2012)

12. Orchard, D.: Programming contextual computations (2013) Forthcoming PhD
dissertation. http://www.cl.cam.ac.uk/techreports

13. Lambek, J., Scott, P.: Introduction to higher-order categorical logic. Cambridge
University Press, Cambridge (1988)

14. Moggi, E.: Computational lambda-calculus and monads. In: Logic in Computer
Science, LICS’89, pp. 14–23. IEEE (1989)

15. Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991)
16. Hughes, J.: Programming with arrows. In: Vene, V., Uustalu, T. (eds.) AFP 2004.

LNCS, vol. 3622, pp. 73–129. Springer, Heidelberg (2005)
17. Paterson, R.: A new notation for arrows. In: ACM SIGPLAN Notices, vol. 36,

pp. 229–240. ACM (2001)
18. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive

types. Theor. Comput. Sci. 342, 3–27 (2005)

http://www.cl.cam.ac.uk/techreports

Iterating Skeletons

Structured Parallelism by Composition

Mischa Dieterle1(B), Thomas Horstmeyer1, Jost Berthold2, and Rita Loogen1

1 FB Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany
{dieterle, horstmey, loogen}@informatik.uni-marburg.de

2 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
berthold@diku.dk

Abstract. Algorithmic skeletons are higher-order functions which
provide tools for parallel programming at a higher abstraction level, hid-
ing the technical details of parallel execution inside the skeleton imple-
mentation. However, this encapsulation becomes an obstacle when the
actual algorithm is one that involves iterative application of the same
skeleton to successively improve or approximate the result. Striving for a
general and portable solution, we propose a skeleton iteration framework
in which arbitrary skeletons can be embedded with only minor modifica-
tions. The framework is flexible and allows for various parallel iteration
control and parallel iteration body variants. We have implemented it in
the parallel Haskell dialect Eden using dedicated stream communication
types for the iteration. Two non-trivial case studies show the practi-
cality of our approach. The performance of our compositional iteration
framework is competitive with customised iteration skeletons.

1 Introduction

Modern hardware shows an increasing degree of parallelism at multiple levels.
Graphics processing units (GPUs) and modern multicore CPUs offer numerous
processing elements on one chip; cloud computing solutions promise to scale com-
pute clusters up to previously inconceivable node counts with ease. It therefore
becomes more and more difficult to effectively program these complex large-scale
platforms at a convenient level of abstraction, especially when the programmer
is not a parallelism expert. Research in parallel programming has developed a
range of concepts and models for skeleton-based parallel programming to facili-
tate parallel programming and separate algorithm and parallelism concerns in
this increasingly parallel computer landscape.

Algorithmic skeletons implement the parallel behaviour for applications of
an algorithm class [4], represented directly as higher-order functions in func-
tional languages. A concrete algorithm can be parallelised simply by applying
the appropriate skeleton to function parameters which define the details of this
algorithm, entirely hiding parallelism aspects in the skeleton implementation.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 18–36, 2013.
DOI: 10.1007/978-3-642-41582-1 2, c© Springer-Verlag Berlin Heidelberg 2013

Iterating Skeletons 19

This approach of “parallel building blocks” constitutes a problem when the
parallel algorithm involves iterations – applying the same skeleton repeatedly to
successively improving data. Each skeleton incurs a certain overhead of thread
and process creation, termination detection and communication/synchronisa-
tion. Repeatedly using one and the same skeleton leads to a repetition of this
parallel overhead for every skeleton instantiation.

Example. Consider a simple genetic algorithm which computes the development
of a population of individuals under some mutation until a termination crite-
rion is met. The flowchart in Fig. 1 shows the iterated steps of the algorithm.

Fig. 1. Flowchart

type Individual = (Genome, Rating)
test :: Individual → Bool -- terminate?
select :: [Individual] → [(Genome, Genome)]

-- parents for next gen.
recomb :: (Genome, Genome) → [Genome]

-- generate offspring
rate :: Genome → Individual -- evaluation

A straightforward parallel version of the algorithm using
recursion is listed beneath. It tests whether at least one
individual of a given population fulfills the termination
criteria. If not, genomes are selected based on their fitness
(i.e. their relative rating) and paired as parents for the
next generation. A parallel map implementation (parMap)
is used to recombine the parents (already distributed into
n sublists, one for each processing element (PE)) and rate

the offspring – working on each sublist of the population in an own parallel
process. The results of all processes are gathered and passed to a recursive call of
the main function ga. The algorithm terminates when one of the new individuals
passes the test.

ga :: [[Individual]] → Individual
ga pop = case (test_select pop) of

Left parentss → ga $ parMap recomb_rate parentss
Right solution → solution

test_select :: [[Individual]]
→ Either [[(Genome, Genome)]] Individual

recomb_rate :: [(Genome, Genome)] → [Individual]

In this parallel implementation, new parMap processes are created for each
recursive call of ga. However, it would be much better to reuse processes, initiali-
sation data, and communication channels across the different parMap invocations,
especially when running the parallel program in a distributed environment. Also,
if processes were reused, they would work on localised data and could even share
a local state across the entire computation.

As the parallel behaviour is encapsulated inside a skeleton’s implementation,
it is generally very hard to optimise the repeated use of a skeleton without mod-
ifying the skeleton itself. On the other hand, a solution that involves rewriting

20 M. Dieterle et al.

parallel skeletons for every concrete sequence of applications is not favourable;
we seek a more general method to compose skeletons for iterative computations,
which we call skeleton iteration1 subsequently.

Our Approach. We propose a general functional iteration scheme iter which is
a meta-skeleton (combinator) using an iteration control and an iteration body
function as parameters, and streams for exchanging data between both. Specific
control and body functionality can be freely combined to express a wide range
of iterative algorithmic patterns. We show how to lift ordinary skeletons in a
systematic way to work on communication streams such that they can be used
as iteration bodies in our iteration scheme. The central idea is to replace the
repeated instantiations of the same body skeleton in an iteration with the single
instantiation of a lifted body skeleton, the iteration body, which works on a
stream of input values instead and produces a stream of output values. The
control function transforms the output stream into the input stream which thus
depends on the output stream, yielding a circular program, i.e. a program which
uses such a self-referential data structure [3]. Each value on the input stream
corresponds to an instantiation of the original skeleton, i.e. to an iteration step.

To improve programming comfort and safety we introduce special types for
the communication streams as these replace iterative processing. Special support
is provided for iteratively processing distributed data structures.

We have implemented our iteration framework in the parallel Haskell dialect
Eden [9,10]. The functional approach makes it easy to precisely state interfaces
and to identify conceptional requirements from our implementation. Using two
non-trivial case studies, K-means and N-body, we compare the performance of
implementations using our framework to that of straightforward recursion-based
implementations, and, for K-means, to a monolithic customised parMap iteration
skeleton [13]. The K-means case study shows that our framework performs much
better than a straightforward recursion-based version with repeated process in-
stantiation, and that it is competitive with the specialised monolithic skeleton.
In the N-body case study, the framework-based implementation scales better and
reduces overhead compared to the recursive version. However, when run on a small
number of processors, the latter has slightly better overall runtimes.

In total, our skeleton iteration framework allows for targeted optimisations
of iterative algorithms, with respect to minimising data transfers and controlling
dependencies. It drastically improves code structure and readability and provides
an acceptable performance with low effort.

Plan of Paper. In the next section, we introduce the proposed skeleton iteration
framework gradually, starting with the Haskell prelude function for iteration. The
performance evaluation follows in Sect. 3. Sections 4 and 5 provide a discussion of
related work and conclusions.

1 Skeleton iteration should not be confused with parallel for-loops or parallel map,
where a sequential block is executed in parallel by multiple threads, instead of several
times. We focus on computations defined by algorithmic skeletons which are by
themselves already parallel and will be executed several times in sequence.

Iterating Skeletons 21

2 Iterating Skeletons

The Haskell prelude function iterate defines the iteration of a parameter function
f, producing an infinite list (or: stream) of all intermediate results of the iteration:
[x,(f x),(f (f x)),...]. The same stream can be defined in a self-referential way,
using the map function and a feedback of the result stream instead of a recursive
function call (this technique of circular programs has been used by Bird [3] to
improve data structure traversals).

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

streamIterate :: (a → a) → a → [a]
streamIterate f x = xs

where xs = x : map f xs

We are especially interested in the case where the parameter f of map, which we call
iteration body in the following, is a parallel skeleton, the body skeleton, i.e. when
evaluation of f involves the creation of threads or processes and communication
of data between them. Both the iterate function and the variant streamIterate
above would in this case repeatedly construct and destroy the parallel process
system evaluating f in every iteration step. As an illustrative example, consider
the case where the body skeleton is a parallel map (parMap), i.e. creates one parallel
process per input list element to apply a parameter function to it. The following
specialised version of streamIterate implements this:

iterateParMap0 :: (a → a) → [a] → [[a]]
iterateParMap0 g xs = xss

where xss = xs : map (parMap g) xss

Note that, in the result type of iterateParMap0, type [[a]] denotes a stream
of lists, i.e. the outer list is infinite, while the inner lists are finite and computed
in parallel (by the iteration body parMap g of type [a] → [a]).

As the iteration body (parMap g) is always the same, it would be desirable
to use just one set of processes for all iterations, instead of creating a new set of
processes in each step. This can be achieved by first transposing the input into
a list of streams and then applying parMap (map g) to it; and finally restoring the
original order with a second transposition. The transposition function transposeS

fixes the length of its result list to the length of the first inner list of its input. This
guarantees that parMap is applied to a finite list.

iterateParMap1 :: (a → a) → [a] → [[a]]
iterateParMap1 g xs = xss

where xss = xs : transposeS (parMap (map g) (transposeS xss))

Now the iteration via map takes place within the processes created by parMap

only once, saving the process creation overhead. In this simple example, it is suf-
ficient to replace the iteration map (parMap g) with the composition

transposeS ◦ (parMap (map g)) ◦ transposeS.

22 M. Dieterle et al.

It is by virtue of streaming and the use of map to express the iteration that we can
lift the body skeleton parMap to work on streams and push the iteration (expressed
by map) inside the processes. Just swapping map and parMap in the definition (lead-
ing to parMap (map g) xss) would instead lead to a pseudo-parallelisation over the
stream instead of over the lists. In the absence of a distinction between lists (for
parallelism) and streams (for iteration), types do not indicate this mistake. In
the following, we will propose special types and mechanisms to generalise this
approach and make a clear distinction between the iteration stream and the list
of inputs to the parallel processes. We will also add special control functions for
the iteration to improve locality and performance.

2.1 Iteration Type and Body

In this subsection, we introduce the iteration type used to distinguish between
streams and lists and we show how to lift body skeletons, which can then be
embedded in the iteration scheme discussed in the subsequent subsection.

Implementation Language and Process Types. We use the parallel Haskell
dialect Eden to present our language-independent concept. Eden is geared
towards distributed memory settings, but works equally well on shared memory
system [10]. In Eden, the parMap skeleton

parMap :: (Trans b, Trans c) ⇒ (b → c) → [b] → [c]

creates a parallel process for every element of the input list, which eagerly evalu-
ates the application of the parameter function (mapping input of type b to out-
put of type c). Processes are distributed among the available processing elements
(PEs) (i.e. cores of a multicore or nodes of a compute cluster); and their inputs
(the list elements) and process outputs (elements of the result list) are sent implic-
itly to and from these processes.

Communication-related properties of Eden processes are determined by types,
using overloaded communication functions in the type class Trans for transmissi-
ble data. As a principle, data transmitted between processes will be evaluated to
normal form prior to sending, which introduces additional strictness into Haskell
in favour of parallelism. Furthermore, instances for Trans determine different send
modes: while the default mode is to fully evaluate and send data as a single item,
product types (tuples) can be decomposed and sent concurrently, and recursive
types (such as lists) can be transmitted as streams, element by element. The impor-
tant aspect here is that the type of a process determines the communication mode
for its input and output data.

Special Stream Type for Iteration. In our iterateParMap definitions above,
streams were modeled as lists, leading to a potential pseudo-parallelisation of the
algorithm when parallelisation is applied at the outer level. In order to have a
clear distinction of the (sequential) iteration stream and the (parallel) input to
the iteration body, we introduce a special iteration type Iter (see Fig. 2), which
is isomorphic to lists but different with respect to the communication mode. This

Iterating Skeletons 23

Fig. 2. Iter type and auxiliary functions

enables the programmer and the type checker to identify iteration inputs and out-
puts in type signatures and thereby increases readability and type safety. Further-
more, the intended streaming behaviour can be defined in a targeted manner by
an appropriate Trans instance for Iter, while other lists can be communicated as
single items.2 The functor instance of Iter provides fmap, lifting a function of type
a → b to iteration streams, Iter a → Iter b.

Aside from the new data type, Fig. 2 shows auxiliary functions for common
uses of Iter data when defining efficiently iterable skeletons. Function
distribWith splits a single iteration stream into many iteration streams, where
the ith element of each output stream is generated from the ith element of the
input stream. The function parameter f produces a list of output elements for
each element of the input iteration stream; these lists are then distributed into a
list of output streams using map Iter ◦ transposeS. Consider the special case of
f = id, which implies a = [b] and merely interchanges an outer Iter and an inner
list. One subtle detail here is that f must produce lists of identical length k for all
its arguments (elements of the iteration stream) as indicated by the superscript
k of the list result type of f.3 The number of output streams, which defines the
parallelism degree, is determined by the first incoming stream element and thus
equal to the size of the result lists of f, again indicated by superscript k in the list
type. Finally, the function combineWith defines the inverse transformation.

Lifting Body Skeleton parMap. With these tools at hand, it is easy to define the
efficient iterable version of parMap in a more readable and type-safe way
(see Fig. 3). The lifted skeleton simpleParMapIter transforms inputs of
type Iter [b]k, i.e. streams of fixed-length lists, element by element into outputs
of type Iter [c]k. It creates k map processes, each transforming a stream of values
of type b into a stream of values of type c. The auxiliary functions
distribWith and combineWith are applied to the identity function id and thus
reduce to type conversions and transpositions. Consequently, the behaviour of
2 The original Eden definition specifies that top-level lists are communicated as

streams. In this work, we use a modified Trans class which gives programmers more
control of streaming through separate stream types.

3 The superscripts in our types are merely annotations to indicate implicit constraints
on the list lengths. Fixed sized lists could however be implemented e.g. using the
recent Haskell library Vec, see http://hackage.haskell.org/package/Vec

http://hackage.haskell.org/package/Vec

24 M. Dieterle et al.

Fig. 3. Parallel map as an iteration body

simpleParMapIter corresponds to the iteration body of iterateParMap1:
transposeS ◦ (parMap (map g)) ◦ transposeS.

In iterateParMap1, the output stream was simply fed back into the iteration
body. Instead, an iteration control function should be used to decide about ter-
mination. In the following, we propose an iteration scheme which combines an
iteration body, i.e. a lifted body skeleton, with such an iteration control.

2.2 Iteration Scheme and Iteration Control

A Generic Iteration Scheme. Iteration control links together the output and
input iteration streams of the body skeletons, to produce new input and decide
termination. The body skeleton’s input stream must be started with initial data,
and the result stream must be conditionally fed back to the body skeleton, or
terminated by closing the input stream and returning a final result. This can be
defined in terms of the following generic iteration scheme:

The meta-skeleton simpleIter takes two function parameters: an iteration con-
trol function which produces initial input and handles the two loose ends of the
iteration stream, also determining the final result, and an iteration body function.
While not restricted to it, the iteration body is typically an iterable skeleton like
simpleParMapIter. All parallelism is encapsulated in these two parameter func-
tions, simpleIter only deals with the interconnection, and thereby provides a very
liberal interface to combine iteration control and body functions.

IterationControl Functions. The iteration body is allowed to transform input
of type Iter b to a different type Iter c. Thus, output cannot be fed back directly
by the control function, but needs to be transformed back from Iter c to Iter b, in
an element-wise fashion. The iteration control function must be carefully defined
to ensure progress in the circular iteration scheme. It has to provide the initial
input for the iteration body, it needs to check a termination condition, and to
produce the final output from the iteration body’s output upon termination. Two
common examples for iteration control functions are loopControl, which performs
exactly n iterations by forwarding n inputs without any transformation, and

Iterating Skeletons 25

whileControl, which takes a function parameter checkNext to transform the ini-
tial input and iteration output of type a to a new iteration input of type b (Left
alternative). It stops the iteration with a result of type d (Right alternative). The
lazy patterns ˜(...:_) in both control functions are necessary because the cor-
responding pattern matching can only be performed after the final iteration step.
Note that the rest stream matching the underscore pattern _ is empty. Both con-
trol functions ensure progress because they provide their second argument a as
initial input and essentially pass the elements of the output stream (or at least
parts of them) to the input stream until the number of iterations is reached or
the termination condition is fulfilled.

loopControl :: Int → a → Iter a → (Iter a, a)
loopControl n a (Iter as) = (Iter as’, a’) where

(as’,˜(a’:_)) = splitAt n (a:as)

whileControl :: (a → Either b d) → a → Iter a → (Iter b,d)
whileControl checkNext a (Iter as) = (Iter $ lefts bs, d) where

(bs,˜(Right d:_)) = (break isRight ◦ map checkNext) (a:as)

In whileControl, the parameter function checkNext only considers the output
of a single iteration step to decide termination or to compute the input for the next
step. The general control function type in simpleIter is much more liberal, in fact
it is not even required that the control function generates exactly one iteration
body input for each iteration body output. Often, it appears more suitable to use
a state-based control function like the one shown here:

whileControlS :: (a → State s (Either b d)) → s
→ a → Iter a → (Iter b, d)

Its first parameter function is a state transformation for a single iteration step,
thereby combining safety (i.e. guaranteed progress) and flexibility. We have imple-
mented generic stateful control functions and used them in our measurements, but
present our work in terms of the stateless interface due to space constraints.

Running Example. The genetic algorithm presented earlier is an example of a
parallel map iterated with a conditional control function:

gaBody :: Iter [[(Genome, Genome)]]k → Iter [[Individual]]k

gaBody = simpleParMapIter recomb_rate

gaControl :: [[Individual]]k → Iter [[Individual]]k

→ (Iter [[(Genome, Genome)]]k, Individual)
gaControl = whileControl test_select

gaIter :: [[Individual]]k → Individual
gaIter = simpleIter gaControl gaBody

26 M. Dieterle et al.

The iteration body is constructed from recomb_rate by simpleParMapIter, and
iteration control uses the test_select function inside whileControl. Function
simpleIter combines gaControl and gaBody to implement the genetic algorithm
with parallel recombination and rating.

2.3 Performance Tweaking

The main potential for optimisation of iteration steps lies in reducing communi-
cation overhead. One obvious bottleneck is that data is gathered in the control
function and then redistributed to the iteration body in each step. One approach
to optimise communication is to keep all data distributed between the iterations.
In Eden, this can be done using remote data [6]. We can create a remote data
handle from local data and fetch the data remotely using functions:

release :: Trans a ⇒ a → RD a
fetch :: Trans a ⇒ RD a → a

When data is released, an intermediate data handle of type RD a is created,
which can be forwarded between several processes at negligible communication
cost, until the destination process fetches the real data. release and fetch estab-
lish a direct connection between a producer and a consumer process.

In our scenario of iterative algorithms, termination can often be decided from
only a small fraction of data, while most of the data remains unmodified across
several iteration steps. When the iteration body’s inputs and outputs are lifted
to remote data, data will be passed directly from the output of a process to its
input for the following iteration step. It is straightforward to define a variant of
the simpleParMapIter skeleton for remote data, by lifting its parameter function
to the remote data interface:

parMapIterRD :: (Trans b, Trans c)
⇒ (b → c) → Iter [RD b]k → Iter [RD c]k

parMapIterRD f = simpleParMapIter (release ◦ f ◦ fetch)

This variant can now be combined with control function loopControl n to iter-
ate a computation n times on input (already supplied as remote data), and data
will never be gathered and re-distributed in-between the iteration steps. In every
iteration step, input for each process will be fetched for local processing using
function f, and released afterwards, only to be fetched within one and the same
process in the next iteration step. Other control functions, like e.g. whileControl,
need to gather data in-between iteration steps to decide termination and provide
input for further iteration steps. Therefore, a parallel iteration control skeleton
should be used to achieve locality and save communication without compromis-
ing abstraction by a manual decomposition of iteration data.

2.4 Parallel Iteration Control Skeletons

In many cases where the iteration body uses a skeleton to work on distributed
data, a corresponding control skeleton with parallel processes can be used to

Iterating Skeletons 27

Fig. 4. Parallel iteration control

Fig. 5. Local iteration control skeleton

inspect the distributed data, exchanging only the parts of it that are needed glob-
ally (see Fig. 4a). In addition, corresponding processes of control and body can be
placed on the same processing element to avoid communication.4 This concept
can be used with arbitrary distributed data structures, in our implementation we
focus on the special case of iterations over distributed lists (lists of remote data).
Two different types of parallel iteration control can be distinguished: local and
global iteration control, with respect to the data dependencies within the control
processes.

Local Iteration Control means that no data exchange with other control
processes is necessary – data dependency is local, as depicted in Fig. 4b. Other-
wise, a global data exchange is necessary, as depicted in Fig. 4c. The type of a local
iteration control skeleton for lists of remote data is given in Fig. 5. The implemen-
tation is similar to the implementation of parMapIterRD, but takes the two input
values and the tuple output into account. The control processes will connect both
to their predecessor processes that produce the distributed list beforehand and to
the processes of the iteration body, fetching data on-demand, or else passing on
the RD handles. Functionality in each process is described by the process-local con-
trol function which transforms the initial input and the output of a process in the
iteration body (stream-wise) in the respective control process. This skeleton can
implement several common iteration control variants simply by partially apply-
4 Eden supports explicit placement of computations in a multi-node parallel system.

We have omitted placement aspects from our code for simplicity throughout.

28 M. Dieterle et al.

ing the control skeleton to a suitable control function. For example, a variant of
whileControl where termination can be decided from local data would be:

localWhileCtrl :: (a → Either b d) →
[RD a]k → Iter [RD a]k → (Iter [RD b]k,[RD d]k)

localWhileCtrl checkNext = localControl (whileControl checkNext)

The control function checkNext works on the local part of a distributed list (of
type [RD a]), and either produces input for the next iteration or the final output
(again a distributed list).

Fig. 6. all-gather control

Global Iteration Control. If the
control function needs information
from multiple processes to calculate
the next input for the body or to deter-
mine termination, the processes of the
control skeleton need to exchange these
data. As an example of this kind of
control skeleton, consider an all-gather
pattern where all processes gather
selected data from all other processes
in a distributed manner (see Fig. 6).
We only discuss the signature of the
skeleton here:

allGatherControl::(Trans a, Trans b, Trans c, Trans d, Trans sc)
⇒ (a → Iter c → Iter sc) --select
→ (Int → a → Iter c → Iter [sc]k → (Iter b, d)) --combine
→ [RD a]k → Iter [RD c]k → (Iter [RD b]k, [RD d]k) --controlType

Aside from the iteration body output (distributed list of type [RD c], iterated),
the input for the next iteration and the final result (distributed lists
[RD b] and [RD d]) depend on additional synchronisation data (of type sc, iter-
ated). Combine function cmb produces the local next input and result, but consid-
ers the entire list of synchronisation data (iterated) and the own position in the
list of processes (Int). Select function sct yields the local synchronisation data
which will be communicated to all other control processes.
A skeleton allGatherWhileCtrl can be defined as a specialisation of skeleton
allGatherControl with simpler interface, where type a=c.

allGatherWhileCtrl :: (Trans a, Trans b, Trans d, Trans sc)
⇒ (a → sc) --select
→ (Int → a → [sc]k → Either b d) --combine
→ [RD a]k → Iter [RD a]k → (Iter [RD b]k, [RD d]k) --controlType

allGatherWhileCtrl sct cmb = allGatherControl sct’ cmb’ where
sct’ a (Iter as) = Iter $ map sct (a:as)
cmb’ self a (Iter as) (Iter scss) = (Iter $ lefts bs,d) where
(bs,˜((Right d):_)) = break isRight $

zipWith (cmb self) (a:as) scss

Iterating Skeletons 29

The select and combine function of this skeleton work on single elements of the
iteration stream. The encoding of the termination condition in cmb is similar to
the simple whileControl function presented in Sect. 2.2.

Running Example. The genetic algorithm described earlier needs to consider
the entire population to decide about termination (test) and produce input for
the next iteration step (select). Therefore, it uses a global control variant when
implemented with parallel iteration control.

gaBodyRD :: Iter [RD[(Genome,Genome)]]k → Iter [RD[Individual]]k

gaBodyRD = parMapIterRD recomb_rate

gaControlRD :: [RD [Individual]]k → Iter [RD [Individual]]k

→ (Iter [RD [(Genome,Genome)]]k, [RD Individual]k)
gaControlRD = allGatherWhileCtrl id cmb where

cmb self _ pop = case test_select pop of
Left next → Left $ next !! self
Right res → Right res

gaIterRD :: [RD [Individual]]k → Individual
gaIterRD = head ◦ fetchAll ◦ simpleIter gaControlRD gaBodyRD

Iteration control is constructed from allGatherWhileCtrl, broadcasting the local
population (sct=id) to all sibling processes, such that every process can use the
whole global population in function cmb. The latter calls test_select to either
terminate (yielding Right res) or produce the next input (Left next) for all body
processes. Each process then selects (by !! self) its own next input from the list.

2.5 Inlining the Iteration Streams

Up to now, we derived the type Iter and with iterSimple the signature of iterated
skeletons. We introduced remote data to achieve direct communication among
processes and used streams of parallel inputs (Iter [RD x]) to connect the
processes of iteration control and body. This has two drawbacks: (1) In the skele-
ton definitions, we have to drag the iteration stream from the outside of the iter-
ated list to its elements. (2) The channel connections between the processes of the
body and the control skeleton have to be rebuilt in every iteration step. Instead of
having a stream of parallel inputs, we will use parallel input streams, leading to
type [RD (Iter x)]. The transpositions implied by distribWith and combineWith

are now obsolete. Further, streams of data will be communicated over remote data
connections established only once. The following parMap variant with modified
interface implements these static remote data connections:

parMapIter :: (Trans b, Trans c)
⇒ (b → c) → [RD (Iter b)]k → [RD (Iter c)]k

parMapIter f = parMap (release ◦ fmap f ◦ fetch)

Notice that we can express the iterable skeleton simply by transforming the
function parameter. We observed that the transformation of more complex topol-
ogy skeletons, such as allToAllRD and allReduceRD (both developed in the context

30 M. Dieterle et al.

of remote data [6]), are similarly easy, only involving the respective function para-
meters (all transformations done by the nodes are function parameters to these
skeletons).
The iteration streams to and from all processes have to be processed by a control
function or skeleton which exactly matches the particular distributed data shape.
This constraint can be fulfilled by adjusting the type signature of simpleIter to
reflect the change from a stream of parallel inputs to a parallel input stream:

iterD :: (a → [RD (Iter c)]k → ([RD (Iter b)]m,d)) --control
→ ([RD (Iter b)]m→[RD (Iter c)]k) --body
→ a → d --in/out

iterD = ... -- code from simpleIter

We need to define specialised versions of local and global iteration control cor-
respondingly, which again are simplifications of the existing implementations.

2.6 Unifying the Interface

The adjusted signature of iterD of the last section is not compatible with the
simpleIter function, even though their implementations are identical. It is easy
to specify a more general type for the iteration combinator,

type generalIter = (a → iterC → (iterB,d))
→ (iterB → iterC)
→ a → d

but we lose type safety when dropping the type of the Iter streams. This prob-
lem can be addressed using a type family which describes iteration types used to
interconnect iteration control and body. We want to have special instances for dis-
tributed data types. As an example we define a special type for distributed finite
lists.

type family Iterated a :: ∗

newtype DList a = DList [RD a] --Distributed List
type instance Iterated (DList a) = DList (Iter a)

The distributed list type DList a is defined, containing a list of remote data
which represent the distributed elements of type a. Exchanging the iteration
stream and the distribution by [RD _] is now done automatically in the type
instance for DList of the Iterated type family, which yields DList (Iter a) – iso-
morphic to type [RD (Iter a)]. Other distributed data types and Iterated

instances can be defined in the same way, e.g. distributed trees or matrices.
We use the simple type mapping type instance Iterated a = Iter a to define

the types of iterations for ordinary types. It is not possible to allow overlapping
instances for type families, so we have to define these instances for every base-type

Iterating Skeletons 31

Fig. 7. General iteration skeleton

separately. Quite advisedly, we have defined DList a as newtype, so an instance for
lists can be defined without overlapping Iterated (DList a):

type instance Iterated [a] = Iter [a]

The type family approach enables us to finally define a generic but type-safe
iteration skeleton iter (see Fig. 7) which subsumes all previously presented def-
initions. It works for both DLists and for any other reasonable type instance of
Iterated. A small caveat is that two dummy parameters b and c need to be used
in the control function, in order for the typechecker to check the types
Iterated b and Iterated c. This is needed to determine the types, because the
type family mapping might not be injective.

3 Evaluation

We measured the performance of our iteration framework on a 32 node Beowulf
cluster at the Heriot-Watt University Edinburgh, each node with 2 x 4-core@2.00
GHz Intel Xeon E5504 processors, connected by gigabit Ethernet. Eden runtime
system instances were co-located on the nodes to make use of all processor cores
(which we further refer to as processors). The cluster provides a total of 256 proces-
sors. However, as it could not be used exclusively, measurements are limited to a
maximum of 128 processors. All program versions where tested on 2i processors
with i ranging from 0 to 7. The reported runtimes are mean values of 5 program
runs. They are presented in diagrams with logarithmically scaled axes, with run-
times corresponding to a linear speedup indicated by dotted lines. In the follow-
ing we present measurement results for two non-trivial case studies: k-means and
n-body.

K-means clustering is a heuristic method to partition a given data set of
n d-dimensional vectors into k clusters. In an iterative approximation, the method
identifies clusters such that the average distance (a metric such as the euclidian
or Manhattan distance) between each vector and its nearest cluster centroid is
minimal [12]. The algorithm proceeds as follows: (1) randomly choose k vectors
from the data set as starting centroids, (2) define clusters by assigning each vec-
tor to the nearest centroid, (3) compute the centroids of these clusters, and (4)
repeat the last two steps until the clusters do not change anymore. The iteration

32 M. Dieterle et al.

body takes a list of cluster centroids as input and computes the list of new cen-
troids as output. The iteration continues until two subsequent iteration results
are equal or their differences fall below a threshold. The cluster assignment and
part of the centroid computation can be parallelised using parMap. Each paral-
lel process receives a subset of the vectors, and the whole list of centroids. Every
process then computes a list of weighted sub-centroids which are combined to the
list of new centroids by the iteration control.

We measured the runtimes of this parallel k-means algorithm with a data set
of 600000 vectors and k = 25 cluster centroids. The whole computation comprised
142 iterations. Three different implementations were compared:

– recursive parMap is a näıve implementation which creates new processes and
re-distributes not only the centroids but also the (unchanged) list of vectors in
each iteration step. As the parallel processes are newly created for each step,
there is no way to share the vector list across iterations.

– untilControl/simpleParMapIter uses our iteration scheme with stateful ver-
sions of untilControl5 and simpleParMapIter. Only the centroids are gath-
ered and distributed for each iteration step, while the data vectors are once
distributed and then kept in the worker states during the iteration.

– monolithic iterUntil uses a special monolithic iteration skeleton iterUntil

presented in [13]. Like the composed version above, it uses a stable process sys-
tem and holds the data set in local states. While a perfect match for the par-
allel k-means, other iterative algorithms would require a complete re-design
and re-write of the skeleton.

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

T
im

e
(s

)

Processors

recursive parMap
untilControl/parMapIter

monolithic iterUntil
linear speedup

Fig. 8. Runtimes for k-means with 600000 vectors,
25 clusters, 142 iterations

Figure 8 shows the mean
runtimes plotted against the
number of processors. The mod-
ular skeleton untilControl/
simpleParMapIter performs as
well as the specialised mono-
lithic iterUntil version. Both
scale well, showing an almost
linear speedup up to 8 proces-
sors. On more than 32 proces-
sors, initialising and distrib-
uting the vectors increasingly
influences runtime, leading to
lower speedup.

The näıve recursive parMap
version performs dramatically worse. The overhead of distributing the vectors for
every iteration enormously slows down the computation.

N-body. The n-body problem is to simulate the movement of n particles in a
3-dimensional space, taking into account their mutual gravitational forces. In a
5 Similar to whileControl, but forwards the initial input directly to the iteration body,

thus doing at least one iteration before termination.

Iterating Skeletons 33

straightforward parallel N-body algorithm, particles are distributed to processes
and each process computes the new velocity and position for its own particles.
To update its particles’ velocities, each process needs position and mass (but not
velocity) of all other particles. This information needs to be exchanged in-between
the iterations, leading to considerable communication between the parallel
processes, in contrast to the parallel k-means algorithm described earlier.

We have used variants of the skeleton allToAll to parallelise the iteration
body. Each process holds a subset of the particles and processes exchange parti-
cle information in every iteration step in a distributed manner using the all-to-all
topology. We implemented the following versions:

– recursive allToAllRD recursively instantiates the skeleton allToAllRD. As the
corresponding processes are allocated on the same processor in each itera-
tion, all data transfers occur between processes on the same processors. The
Eden runtime system optimises this processor-local communication by pass-
ing references to existing data instead of serialising and sending it. That is,
processor-local communications do not incur any overhead. Thus, the only
remaining overhead consists of the repeated process creations.

– loopControl/allToAllIter instantiates our iteration scheme with the skeletons
loopControl for the iteration control and allToAllIter (allToAllRD lifted to
the Iter type) for the body.

In the first setting, we ran the n-body simulation for 10 iterations with 15000 bod-
ies. This constitutes a relatively high workload and large amounts of data have to
be exchanged in every iteration. Runtimes against number of processes are plotted
in Fig. 9.

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128

T
im

e
(s

)

Processors

recursive allToAllRD
loopControl/allToAllIter

linear speedup

Fig. 9. Runtimes for n-body with 15000 bodies, 10
iterations

Surprisingly, the recursive
allToAllRD version performs
slightly better on up to 32
processors, showing even a
super-linear speedup on 2 and
4 processors. Only on 64 and
128 processors, the loopCon-
trol/allToAllIter version is
faster than the recursive ver-
sion. An analysis of runtime
behaviors revealed that the
recursive allToAllRD has no
disadvantage in the communi-
cation steps due to the opti-
mised local communications,
but the computation phases
seem to be shorter, although sharing the same sequential code base with the itera-
tion scheme version. Pending further investigation, we assume that the differences
originate from the runtime system, maybe the garbage collection does not work
as effectively for the data streams in our iteration scheme version. In any case, our

34 M. Dieterle et al.

measurements show that the loopControl/allToAllIter version scales better than
the recursive version.

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64 128

T
im

e
(s

)

Processors

recursive allToAllRD
loopControl/allToAllIter

linear speedup

Fig. 10. Runtimes for n-body with 1500 bodies, 100
iterations (overhead measurement)

In the second setting
(Fig. 10), we reduced the work-
load and amount of data to be
communicated for every iter-
ation step, in order to mea-
sure the parallelism overhead.
We used only 1500 bodies but
increased the number of iter-
ation steps to 100. This time,
version loopControl/allToAll-
Iter clearly outperforms the
recursive version independent
of the number of processors.

4 RelatedWork

The original skeleton work by Murray Cole [4] contains a chapter on an iterative
completion, parallelised on a grid of processes, but does not generalise iteration
as we do. Slightly more general is the iteration skeleton proposed in earlier Eden
skeleton work [13], realising an iteration of a stateful parallel map. This work lays
the grounds for our investigation, but does not generalise iteration bodies and
types, nor does it consider parallel control skeletons.

Many skeleton libraries, especially those based on imperative programming
languages, provide the constructs while for conditional iteration or for for fixed
iteration and support skeleton nesting, see e.g. the Scandium library [11], which
uses Java as computation language. However, no indications are made about
whether iterated body skeletons will be optimised with respect to process cre-
ation overhead. A slightly larger corpus of related work can be found in the cloud
computing community but usually restricted to map-reduce [1,5] computations,
like e.g. [7,14]. HaLoop [2] is another Map-Reduce extension, which mainly cap-
italises on caching mechanisms for unmodified data and reduction results across
several iterations of one map-reduce computation over the same dataset. A small
API extension is provided to specify how existing map-reduce (Hadoop) compu-
tations should be iterated.

None of these publications addresses parallel iteration as a general concept
or distills out algorithmic patterns as we do. This generalising conceptual angle
is present in very recent work in the data-flow framework Stratosphere [8]. The
authors propose the concept of ”incremental” iteration and ”microsteps” to
exploit sparseness of data dependencies and optimise read-only data accesses, but
thereby break up the iterative nature of the computation.

Iterating Skeletons 35

5 Conclusions and FutureWork

Iteration is one of the main building blocks of programming. In this work, we
developed a general approach to describing iteration that works not only in the
common sequential setting but also in the case where the iterated computation is
highly parallel and executed in a distributed setting. We allow for arbitrary par-
allel body skeletons and supply some parameterised control functions including
step counting and termination conditions on local and global data. We have shown
how body skeletons can be transformed in such a way that the body processes will
be re-used for all iterations, how to handle streams of input and output data, and
how to optimise communication between distributed processes in a parallel exe-
cution. Runtime measurements for two non-trivial example applications, k-means
and n-body, clearly show that our framework performs similar to monolithic itera-
tion skeletons and better than directly programmed iterations where the iterated
skeletons are repeatedly instantiated.

We will further investigate the field of skeleton composition in the future. In
particular, we plan to extend the work at hand by adding other distributed data
structures, to augment programming comfort for such distributed data by suitable
indexed types and type classes.

Acknowledgements. The authors thank the anonymous referees for their helpful
comments on a previous version of this paper. Jost Berthold was partially supported
by DSF under contract number 10-092299 (Hiperfit).

References

1. Berthold, J., Dieterle, M., Loogen, R.: Implementing parallel google map-reduce in
Eden. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704,
pp. 990–1002. Springer, Heidelberg (2009)

2. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The HaLoop approach to large-scale
iterative data analysis. VLDB J. 21(2), 169–190 (2012)

3. Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta
Inform. 21, 239–250 (1984)

4. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge (1989)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
CACM 51(1), 107–113 (2008)

6. Dieterle, M., Horstmeyer, T., Loogen, R.: Skeleton composition using remote data.
In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 73–87. Springer,
Heidelberg (2010)

7. Ekanayake, J., Li, H., Zhang, B., Gunarathne, Th., Bae, S., Qiu, J., Fox, G.:
Twister: a runtime for iterative mapreduce. In: HPDC ’10. ACM (2010)

8. Ewen, St, Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast iterative data
flows. PVLDB 5(11), 1268–1279 (2012)

9. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel functional programming in
Eden. J. Funct. Program. 15(3), 431–475 (2005)

36 M. Dieterle et al.

10. Loogen, R.: Eden – parallel functional programming with Haskell. In: Zsók, V.,
Horváth, Z., Plasmeijer, R. (eds.) CEFP. LNCS, vol. 7241, pp. 142–206. Springer,
Heidelberg (2012)

11. Leyton, M., Piquer, J.M.: Skandium: multi-core programming with algorithmic
skeletons. In: PDP. IEEE Computer Society (2010)

12. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge (2003). See chapter 20, p. 284ff

13. Peña, R., Rubio, F.: Parallel functional programming at two levels of abstraction.
In: PPDP’01, pp. 187–198. ACM (2001)

14. Zhang, Y., Gao, Q., Gao, L., Wang, C.: iMapReduce: a distributed computing
framework for iterative computation. JOGC 10, 47–68 (2012)

Building JavaScript Applications with Haskell

Atze Dijkstra(B), Jurriën Stutterheim, Alessandro Vermeulen,
and S. Doaitse Swierstra

Department of Information and Computing Sciences,
22 Universiteit Utrecht, 23 P.O.Box 80.089,

3508 TB Utrecht, The Netherlands
{atze, doaitse}@uu.nl, j.stutterheim@me.com, avermeulen@spockz.nl

Abstract. We introduce the Utrecht Haskell Compiler JavaScript back-
end, which allows one to compile Haskell code to JavaScript, so it can be
run in the browser. To interface with JavaScript and overcome part of
the impedance mismatch between the two languages, we introduce the
Foreign Expression Language; a small subset of JavaScript for use in For-
eign Function Interface imports. Finally we discuss the implementation
of a JavaScript application, completely written in Haskell, with which
we show that it is now possible to write an entire JavaScript application
completely in Haskell.

Keywords: Compilation · FFI · Web applications · Haskell · JavaScript

1 Introduction

When developing interactive web applications, JavaScript is often the language
of choice due to native support in every major web browser. In contrast to other
client-side programming languages, no plugins are needed to execute JavaScript.
Unfortunately, JavaScript is currently the only client-side programming language
that is supported by all major browsers. People wishing to use other program-
ming languages or paradigms have to rely on using existing plugins such as Flash
or Java Applets, writing custom browser plugins, or modifying the browsers
themselves. None of these options is ideal, since they either require a lot of work,
or force the use of strict, imperative programming languages. Instead of choos-
ing between the aforementioned options, we use the Utrecht Haskell Compiler
(UHC) [9,10] to compile Haskell code to JavaScript, effectively using JavaScript
as a high-level byte-code, and allowing us to side-step the problems identified
with the other approaches.

To overcome the impedance mismatch between Haskell and JavaScript, we
have extended UHC’s FFI with a small JavaScript-like expression language we
call the Foreign Expression Language (FEL). With these enhancements to the
FFI, we claim that it is now possible to write complete JavaScript applications
using only Haskell. We back up this claim by porting a web-based Prolog “proof
assistant” from JavaScript to Haskell. While this paper focusses on Haskell, the
ideas should be relatively easy to implement in similar languages.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 37–52, 2013.
DOI: 10.1007/978-3-642-41582-1 3, c© Springer-Verlag Berlin Heidelberg 2013

38 A. Dijkstra et al.

With this paper, we make the following contributions:

– We introduce the UHC JavaScript backend, a compiler backend that allows
one to compile any Haskell code supported by UHC to JavaScript and exe-
cute it in the browser, maintaining Haskell’s lazy semantics.

– We introduce the Foreign Expression Language (FEL), which allows for a
more natural way of interfacing with object-oriented languages via the FFI.

– We provide evidence that it is now possible to write a web application com-
pletely in Haskell.

– We provide a basic library with bindings to common JavaScript APIs.

The rest of this paper is structured as follows: Section 2 introduces the UHC
JavaScript runtime system (RTS). Section 3 covers the FFI with our additions,
after which Sect. 4 shows how we have implemented a fully working JavaScript
application completely in Haskell. Sects. 5 and 6 discuss future and related work
respectively, after which Sect. 7 concludes.

We assume at least some familiarity with the Haskell Foreign Function In-
terface (FFI) and JavaScript.

2 Compiling Haskell to JavasScript

2.1 Runtime System

There exists an obvious mismatch between Haskell and Object-Oriented (OO)
languages, such as JavaScript, which has been addressed in various ways over
time (Sect. 6):

– Mapping the runtime machinery required for Haskell to an imperative lan-
guage has to deal with the lazy evaluation strategy imposed by Haskell (rest
of this section).

– Use of OO language mechanisms as available in JavaScript, in particular
prototype based objects, in Haskell; we only mention this topic in passing.

– Use of available JavaScript libraries; we deal with this in the next section by
exploiting the freedom offered by Haskell’s Foreign Function Interface (FFI).

The design of any backend for a lazy functional language needs to deal with
functions, their (lazy) application to arguments, and reducing such applications
to Weak Head Normal Form (WHNF). The design should also cater for under-
and over saturated function applications as well as tail recursion.

In UHC’s JavaScript backend, functions and their applications are both rep-
resented straightforwardly by objects:

Fun.prototype = {
applyN : function (args) . . .
needsNrArgs : function () . . .

}
function Fun (fun) {. . .}

Building JavaScript Applications with Haskell 39

We omit implementation details and only expose the programmatic interface
as used by the runtime system. The actual implementation can be found in the
UHC Git repository [1]. A Fun object wraps a JavaScript function so that it
can be used as a Haskell function. The applyN field is only used when function
applications are being evaluated (forced); only then it is necessary to know the
needsNrArgs number of arguments which must be passed. For the time being
it stays unevaluated as a Fun object wrapped inside an App or AppLT closure
object, which will be explained below.

Similarly, closures stemming from partially applied (and thus undersatu-
rated) functions need to store already passed arguments and how many argu-
ments are still missing. An AppLT (LT stand for less than) object encodes this
and again we provide its programmatic interface first:

AppLT .prototype = {
applyN : function (args) . . .
needsNrArgs : function () . . .

}
function AppLT (fun, args) {. . .}

An AppLT only wraps other AppLT objects or Fun objects.
Finally, for all remaining saturation cases an App object is used. Knowledge

about the degree of saturation is delegated to the encapsulated function object,
which may be another App, AppLT , or Fun.

App.prototype = {
applyN : function (args) . . .

}
function App (fun, args) {. . .}

With this interface we now can embed Haskell functions; for example, as-
suming an elementary JavaScript representation of the Haskell function id , the
function λx → id(id x) is available, by:

new Fun (function (x) {
return new App (id , [new App (id , [x])]);

})

Evaluation is forced by a separate function eval which assumes the presence
of an eOrV (evaluator Or Value) field in all Haskell runtime values, which tells
us whether the JavaScript object represents a Haskell non-WHNF value which
needs further evaluation or not; in the former case it will be a JavaScript function
of arity 0, which can be called. A Haskell function or application object does
not evaluate itself since the tail recursion involved will cause the stack of the
underlying JavaScript engine to flow over. The separate external function eval
doing the evaluation allows non-WHNF values to be returned, thus implementing
a trampoline mechanism:

40 A. Dijkstra et al.

function eval (x) {
while (x ⇒ x .eOrV) {
if (typeof x .eOrV == ’function’) {

x = x .eOrV ();
} else {
x = x .eOrV ;

} }
return x ;

}

Even normal JavaScript values can be thrown at eval , provided they do not
(accidentally) contain an eOrV field. The actual eval function is somewhat more
involved as it provides some protection against null values and also updates the
eOrV field for all intermediate non-WHNF objects computed in the evaluation
loop.

As usual, the evaluation is driven by the need to pattern-match on a value,
e.g. as the result of a case expression or by a built-in JavaScript primitive which
is strict in the corresponding argument. As in the wrapper of the primitive
multiplication function, which contains the actual multiplication (←):

new Fun (function (a, b) {
return eval (a) ← eval (b);

})

Depending on the number of arguments provided, either an undersatured clo-
sure is built, or the function is directly invoked using JavaScript’s apply . In case
too many arguments are provided, a JavaScript closure is constructed, which
subsequently is evaluated in the evaluation loop of eval . The implementation of
AppLT is similar to that of Fun. App’s implementation of applyN simply dele-
gates to applyN of the function it applies to. Also omitted are the encodings of
nullary applications, used for unevaluated constants (CAF, Constant Applica-
tive Form) and indirection nodes required for mutual recursive definitions. Data
types and tuples are straightforwardly mapped onto JavaScript objects with
fields for the constructor tag and its fields. If available, record field names of the
corresponding Haskell datatype are used. We map Int , Double, Float , Integer ,
and PackedString values to JavaScript objects, shown in Table 1. Despite the

Table 1. Mapping from Haskell Types to native JavaScript types

Haskell JavaScript

Int , Double, Float Number
Integer BigInt (non-native, offered by a library)
PackedString String
Otherwise RTS representation

Building JavaScript Applications with Haskell 41

mapping to JavaScript objects, the expressions of these types are lazy. Currently,
Haskell arrays are not yet translated to JavaScript arrays.

3 JavaScript Foreign Function Interface

We have extended the FFI with the Foreign Expression Language (FEL), a small
JavaScript-like language that greatly simplifies interfacing with the JavaScript
world from Haskell. The FEL allows one to number and reorder the function ar-
guments, explicitly use them as arguments to JavaScript functions, or use them
as objects. Other features include hard coding of literals, accessing array in-
dices, and a built-in mechanism for converting datatypes to JavaScript objects.
The new grammar for importing functions is shown in Fig. 1. In the current
implementation, only string literals are supported, although there are no funda-
mental issues preventing implementation of numeric, boolean, undefined and
null literals.

Common FFI features, such as the dynamic and wrapper [18] imports, work
as expected, allowing one to use higher-order JavaScript functions in the same
way as C function pointers.

As an example of how to use the FEL to import a JavaScript function,
suppose we want to import the subString method from the JavaScript String
class, where myStr is a concrete JavaScript string object:

myStr.subString(start, length);

This method is called on a JavaScript string object, and returns a substring,
based on the integer value for a start offset and an integer value for the length of
the substring, both of which are passed as arguments to the method. Importing
this method shows the FEL’s added value in several ways: the method is called
on a JavaScript object, it takes multiple arguments, and it requires conversion

Fig. 1. Import entity notation for the JavaScript calling convention

42 A. Dijkstra et al.

from a Haskell String type to a native JavaScript string type1. The import is
shown below:

foreign import js "%1.subString(%2, %3)"
subString :: JSString → Int → Int → JSString

In addition to the js calling convention, the other noticeable difference with,
for example, a C import, is the import definition in the string. Rather than
having the FFI place all arguments in one position, we number the arguments
and allow them to be placed in different positions in the imported method.
Manually ordering arguments enables us to treat one of the arguments as an
object, while treating the rest of the arguments as parameters to a method call
on that object. In our example, the first argument, indicated by %1, before the
dot, is treated as an object in the generated JavaScript code. The number of the
argument corresponds to the position of the arguments in the type signature.
The two remaining arguments are placed between parentheses, so that they
become arguments in the method call in the generated JavaScript code. An
alternative way of writing this import is shown below, where we replace the last
two explicit argument positions with a wildcard. This says that all remaining
arguments should be placed where the wildcard is, saving the programmer some
work. Using a wildcard has as added advantage that it becomes easy to import
variadic JavaScript methods; the function’s arity is then only determined by the
type signature, without the need to modify the foreign expression.

foreign import js "%1.subString(%*)"
subString :: JSString → Int → Int → JSString

Exporting a function does not make use of the FEL, so it is not much different
from exporting a function for the C FFI. The only concerns to keep in mind are
using the js calling convention, and specifying a JavaScript-compatible type in
the type signature.

3.1 The UHC-JavaScript Library

We provide a library [29], simply called the UHC-JavaScript library, to streamline
the development of JavaScript applications with UHC. It contains bindings to
standard ECMAScript [12], the formal standard behind JavaScript, as well as
bindings to the jQuery library [26]. The library aims to provide a bare-metal
interface that is consistent with the JavaScript functions. Eventually, this library
should form a core upon which more (functional) abstractions are built. We shall
make use of this library in the rest of this paper.
1 Naively using a Haskell String would give us a JavaScript representation of a list of

characters, rather than a JavaScript string. To obtain a native JavaScript string, we
require the Haskell String to be converted to a JSString , which is a type synonym
for PackedString .

Building JavaScript Applications with Haskell 43

3.2 Creating, Manipulating and Querying Objects

Being a purely functional programming language, Haskell has no notion of ob-
jects. JavaScript, however, does. Objects come in two flavours: anonymous and
named objects. The former is denoted in JavaScript as { }, while the latter is cre-
ated by defining a constructor function. Objects can then be instantiated with
the new keyword, e.g. new MyObj (). Each constructor function also has a
prototype object. New object instances will automatically have the same values
and functions as the prototype.

UHC offers support for creating, manipulating and querying objects, using
several new primitive functions in the runtime-system (RTS). Instead of show-
ing the rather uninteresting function definitions in JavaScript, the code below
shows the Haskell type signatures which need to be used when importing these
primitives with the FFI:

primMkCtor :: JSString → IO ()
primMkObj :: JSString → IO (JSPtr c)
primMkAnonObj :: IO (JSPtr c)
primGetAttr :: JSString → JSPtr c → IO a
primSetAttr :: JSString → a → JSPtr c → IO (JSPtr c)
primModAttr :: JSString → (a → b) → JSPtr c → IO (JSPtr c)
primGetProtoAttr :: JSString → JSString → IO a
primSetProtoAttr :: JSString → a → JSString → IO ()
primModProtoAttr :: JSString → (a → b) → JSString → IO ()

JSString is a type synonym for PackedString , the builtin type correspond-
ing to JavaScript strings. The primMkCtor function creates a new construc-
tor function if it does not yet exist in the window scope, where window is the
variable containing everything pertaining the current window or tab. This func-
tion is usually only called from within the other functions listed above. The
primMkAnonObj function creates an anonymous object { }, while primMkObj
accepts a string with the class name of the object to be created. If the class does
not exist yet, it is created using an empty constructor. The other functions ma-
nipulate objects and prototypes, using a mechanism inspired by lenses [16,19],
an abstraction over accessors and mutators. The first argument is always the
name of the object attribute of interest passed as a string. In case of the set-
functions, the second argument is the value that needs to be set. Since JavaScript
is a loosely typed language, this can be any type, even when interfacing with
it from the Haskell world. The mod -functions take as second argument a func-
tion which modifies the attribute specified in the first argument. Modifying an
attribute may change its type, hence the a → b type for the function. Finally,
the last argument is either a reference to an object, or the name of a class as a
string, in case of prototypes. These functions can be used by importing them as
primitives:

foreign import prim "primGetAttr"
getAttr :: JSString → JSPtr p → IO a

44 A. Dijkstra et al.

Objects are represented in the UHC-JavaScript library by a JSPtr type,
which has no constructors, so they can’t be instantiated directly. The only way
an object can be obtained is by getting it via the FFI. A JSPtr takes one
phantom type as a parameter, which specifies the type of the JavaScript object.
This should again be a type without constructor. Suppose we want a pointer to
a JavaScript Book object, for which we have some definition in JavaScript. We
define it in Haskell as follows:

data BookPtr
type Book = JSPtr BookPtr

We can now define functions on the Book type, giving us a type-safe way to
deal with JavaScript objects. A similar approach is often taken in GHC’s C FFI
to deal with pointer types.

We offer the Language.UHC .JS .Primitives module in the UHC-JavaScript
library, which defines primitive imports and abstracts away from JSString . Using
these functions we can now create, manipulate and query an object:

main = do
o ∗ mkObj "Book"
setAttr "pages" 123 o
modAttr "pages" (+1) o
p ∗ getAttr "pages" o
print p -- Prints 124

While defining objects as shown in the previous example works fine, the
process is rather verbose and tedious, especially when dealing with several object
attributes. It would therefore be ideal if we could use Haskell datatypes to achieve
the same results. In some ways, datatypes and JavaScript objects have a lot in
common, especially when the datatype has record selectors. Suppose we have a
simple Book type2 in Haskell:

data Book = Book
{ author :: JSString
, title :: JSString
, pages :: Int }

A concrete Book value would look as follows:

myBook = Book
{ author = toJS "me"
, title = toJS "story"
, pages = 123}

2 We use JSString here so that the resulting Haskell record relates more closely to the
JavaScript object.

Building JavaScript Applications with Haskell 45

The representation of myBook closely resembles an object with the same data
in JavaScript:

myBook =
{ author : "me"
, title : "story"
, pages : 123 }

In fact, a JavaScript object very similar to the one shown above is already
being generated by the UHC. However, since it is generated as an application of a
constructor to some values, the generated datatype values are not directly usable
in other JavaScript libraries. We require a mechanism to convert the Haskell
representation of the datatype into a JavaScript representation. This idea is
similar to that of the FFI’s wrapper import feature. Using a similar mechanism
to the wrapper, we can make Haskell datatypes available as JavaScript objects.
This mechanism is exposed via the FEL, simply as { }:

foreign import js "{}"
mkObj :: a → IO (JSPtr b)

It takes a value of datatype a and converts it to a plain JavaScript object,
resulting in a pointer to the new object. If the datatype contains record selectors,
they will be used as the object’s indices. When no record selectors are available,
an integer is used instead.

Creating the object is achieved by recursively evaluating and cloning the data
inside the datatype to a new, empty object, disposing of RTS-specific information
in the process. Cloning is required, because modifications on the new object by
plain JavaScript code must not be reflected in the original datatype value. Using
the object wrapper, we can simplify our example above:

main = do
let b′ = myBook {pages = pages myBook + 1}
b ∗ mkObj b′

p ∗ getAttr "pages" b
print p -- Prints 124

Note that even though this example is only one line shorter, we also have
the two strings available in our JavaScript object, which would have taken two
more lines in the original example. More importantly, Haskell’s type system is
in a much better position to catch programmer mistakes, since record selectors
are used in the modification of the pages value instead of strings.

3.3 Pure Objects

Objects in JavaScript are mutable by nature. By modifying an object, you modify
it for everything that has a pointer to that particular object. This forces any
update operation to be defined in IO . In order to escape the IO monad, update

46 A. Dijkstra et al.

operations need to become non-destructive, which is achieved by creating a copy
of an object before modifying it. The RTS exports a primitive to do exactly this:

primClone :: JSPtr a → JSPtr a

By cloning an object first, all pointers to the original object remain untouched
when modifying the clone. This enables pure variants of the primSetAttr and
primModAttr functions:

primPureSetAttr :: JSString → a → JSPtr c → JSPtr c
primPureModAttr :: JSString → (a → b) → JSPtr c → JSPtr c

Since a potentially large graphs of objects will be cloned by these pure func-
tions, they should be used with care. The cloning method used is a modification
of the cloning method used by jQuery [26].

4 The JCU Application

To explore the limitations, and to demonstrate the features of the UHC JavaScript
backend in a real-life scenario, we ported the ‘JCU Prolog Proof Assistant’ [31],
a web application developed to aid in teaching [28] Prolog at the Junior College
Utrecht, to Haskell. It is a tool developed for students to learn about important
concepts in computer science, such as proofs, trees, unification, and backtrack-
ing, by means of proving Prolog queries manually. Students enter a Prolog query,
after which they can build a proof of this query by dragging and dropping Pro-
log rules and facts on top of the query, and by applying substitutions manually
throughout the proof tree.

The application was originally programmed in coffeescript [7], a layer of
syntactic sugar for JavaScript, and used the Brunch [22] framework. In the orig-
inal implementation, all Prolog logic was implemented server-side in Haskell,
using the NanoProlog [30] library. We rewrote the application in Haskell using
UHC and the UHC-JavaScript library. We also use jQuery for interacting with
the Document Object Model (DOM) and the jQuery AjaxQueue [25] plugin for
sequential non-blocking communication with the server. The resulting applica-
tion has the same functionality as the original implementation and appears to
be at least as stable, although this has only been manually tested. As is expected
of applications that interact heavily with a graphical user interface, a large part
of the application’s code lives in the IO monad.

With the ability to compile Haskell to JavaScript comes the possibility of
running any Haskell library that compiles on UHC in the browser, without mod-
ification. We use this feature in the JCU web application to run the NanoProlog
library in the browser, allowing us to perform proof checking and unification at
the client-side, eliminating the need for many AJAX requests. In a further step
we eliminated the need for a server altogether by storing the set of rules and
facts using HTML5 Local Storage, a browser-based database supported by most
modern browsers, instead of in a database on the server. With this modification,

Building JavaScript Applications with Haskell 47

the assistant can be run with only the requirement of a modern web browser; no
Internet connection is required. A live demo is available online.3

4.1 Implementation Issues

Most of the problems we encountered in porting the JCU application to Haskell
were due to the lack of advanced language features in UHC, such as functional
dependencies and type families. Practically, this implies that only part of the
libraries available on Hackage today can currently be compiled to JavaScript
using the UHC JavaScript backend.

Another issue arises from JavaScript’s scoping rules. In JavaScript, the key-
word this is dynamically scoped while all other variables are lexically scoped.
Since we emulate lazy evaluation by native JavaScript functions encapsulated by
objects, the this keyword can in some cases point to the runtime system, rather
than the expected scope, exposing the runtime system to the programmer. Sim-
ply importing this as a function using the FFI is not an option here. This might
happen when an imported JavaScript library expects the programmer to make
use of the this keyword in a callback function. The jQuery library, for example,
expects event callbacks to get the active DOM-node using the this keyword.
One way to still get a reference to the expected object when using this is to
create a wrapper function that captures the expected scope and passes it to the
wrapped function as explicit argument. We have implemented this solution in
the wrappedThis function, which is part of our RTS.

Figure 2 shows how the wrappedThis function can be used to obtain the
value of an HTML input field. The code above the definition of bindInput is
copied from the JavaScript library; valString is a function that gets the value
of a jQuery object as a String . We query the DOM using jQuery, retrieving all
input elements, such as text fields, in the DOM. We define a function alertHndlr
that takes the string value of a jQuery object and then shows it in an alert box.
Note the explicit this parameter. We then wrap it so it becomes a JavaScript
function, after which we partially apply it to an explicit this parameter using
wrappedThis. Finally, we bind the event handler to all input fields retrieved by
our jQuery selector.

A last example of implementation difficulties is found in the lack of threading
support in our current implementation of the proof assistant, and in the current
implementation of the UHC JavaScript backend. In addition to the web-based
proof exerciser, we offer a web-based user interface to NanoProlog’s interpreter.
In some cases, the interpreter can get stuck in an infinite recursion when trying
to unify a rule. For example, trying to prove the query silly (X), where silly is
defined as silly (X) ◦ silly (X)., will never terminate. Originally, we spawned
a new thread on the server, which we would terminate after a given amount
of time. Our current approach, however, does not yet offer threading, risking
blocking the client-side process causing a tab or the whole browser to hang.
JavaScript’s WebWorkers might provide a solution to this problem, although we
3 http://uu-computerscience.github.com/JCU/

http://uu-computerscience.github.com/JCU/

48 A. Dijkstra et al.

Fig. 2. Code for adding an event handler to an input field

have yet to investigate this option. Another solution would be to change the
implementation to limit its recursion depth.

4.2 Performance

In general, the performance of the web application is on par with the original
implementation in JavaScript, but only when using a state of the art JavaScript
engine, as is found in Google Chrome or Safari. The largest bottleneck seems to
be memory management. Building up lazy Haskell expressions leads to a large
number of JavaScript objects. The quick creation and then successive destruction
of these large expressions places a strain on the memory manager and garbage
collector. Other popular browsers, such as Firefox, Opera, and Internet Explorer,
perform significantly worse than the aforementioned browsers, although this has
only been tested informally.

5 Future Work

While we have shown that it already is possible to implement an entire JavaScript
application in Haskell, there is still a lot of room for improvement. As mentioned
before, UHC itself lacks support for the more advanced Haskell features, such
as type families and functional dependencies. This prevents us from compiling
many packages from Hackage directly to JavaScript.

Our current UHC-JavaScript library relies on the programmer to use im-
ported functions correctly. The object-wrapper import, for example, will try to
wrap anything, possibly failing at runtime. Extra constraints could be added,

Building JavaScript Applications with Haskell 49

although the RTS cannot currently deal with them. Eventually, one could imag-
ine a higher-level library being built on top of the low-level imports to provide
improved type-safety. Such libraries may be based on generic programming to
eliminate repetition, functional reactive programming [6,14,32] to interact with
the DOM, or they may be an entire user-interface toolkit, such as wxHaskell [20].

Working with WebWorkers as a JavaScript counterpart to Haskell threads
is not investigated yet. Our JCU application would become significantly more
usable with a threading alternative.

Communication with the server is currently encoded manually. One could
imagine an approach inspired by Cloud Haskell’s [15] typed channels, where com-
munication proceeds over type-safe communication channels, abstracting away
from the actual AJAX call.

Currently the only way of converting a datatype to a JavaScript object is to
do so at runtime. This, however, is a process with time complexity linear in the
number of datatype records. Future work could focus on generating (parts of)
JavaScript objects at compile-time, so that only dynamic values will need to be
copied to the object at runtime.

Targeting Haskell to a different platform means that some assumptions fol-
lowing from using a single platform only are no longer valid. First, a different
platform means a different runtime environment. Almost all of the UNIX func-
tionality is available for the usual Haskell UNIX runtime, but is naturally not
available inside a web browser and, vice versa, specific JavaScript libraries like
jQuery are not available on a UNIX platform. Some library modules of a package
(partially) cannot be built on some platforms, while others (partially) can. To
cater for this, UHC rather ad-hoc marks modules to be unavailable for a back-
end by a pragma {-# EXCLUDE_IF_TARGET js #-}. Of course CPP can still be
used to select functionality inside a module. However, in general, awareness of
platform permeates all aspects of a language system, from the compiler itself to
the library build system like Cabal. In particular, Cabal needs a specification
mechanism for such variation in target and platform to allow for selective com-
pilation of a collection of variants. Currently this means that UHC compilation
for the JavaScript backend cannot be done through Cabal.

Currently, we generate JavaScript from the compiler’s core language. It might
be possible to generate faster code which uses native JavaScript language features
when generating JavaScript at a later stage in the compiler pipeline, where the
intermediate code is more imperative in nature.

6 Related Work

The idea of running Haskell in a browser is not new. To our knowledge, the
first attempts to do so using JavaScript were made in the context of the York
Haskell Compiler (YHC) [3]. The DOM inside a browser was accessed via wrap-
per code generated from HTML standard definitions [2]. However, YHC is no
longer maintained, and direct interfacing to the DOM nowadays is replaced by
libraries built on top of the multiple DOM variations.

50 A. Dijkstra et al.

GHCJS [21,23] is an attempt to use the GHC API to create a dedicated
Haskell to JavaScript compiler. It uses the C calling convention, rather than
a dedicated js calling convention. A major advantage of using the GHC API
is that a mature, production-ready compiler, with support for advanced type-
system features is at the programmer’s disposal, solving some of the issues we are
currently experiencing due to lack of these features in UHC. Currently, GHCJS
does not support an import system like the one described in this paper, so
its ability to use external APIs is limited. GHCJS’ authors remarked on the
glasgow-haskell-users mailing list (13 November 2012) that adding an FEL-
like import mechanism to GHCJS should be relatively straight- forward.

A very recent, and very promising looking attempt at compiling Haskell to
JavaScript is the Fay language [11] by Chris Done, which aims to support a
subset of Haskell and compile to JavaScript. It, too, makes extensive use of
GHC, giving it a production-ready Haskell compiler and type-checker to build
on. In designing Fay’s FFI, Done drew some inspiration from the work we present
here, namely the FEL.

We ran a benchmark between UHCJS, GHCJS, Fay and Native JavaScript
and noticed that the code generated by UHCJS performs the worst by far. This
is largely due to excessive memory allocation of objects and subsequent garbage
collection. The full details of this benchmark can be found in our git repository.4

Another recent attempt is Haste[13] by Anton Ekblad. It, too, builds on top
of GHC, and it attempts to be easy to use and generate “relatively lean code”.
It comes with a small reactive library for interacting with the DOM.

Rather than focusing on source-to-source compiling, “Functional JavaScript”
[27] offers a library for a more functional style of programming in JavaScript.
“Haskell in JavaScript” [4] offers an interpreter for Haskell, written in JavaScript.

The workflow framework iTasks, built on top of the Clean system [5], uses a
minimal platform-independent functional language, SAPL, which is interpreted
in the browser by code written in Java. The latest interpreter incarnations are
written in JavaScript [8,17,24]. Although currently a Haskell front-end exists for
Clean, the use of it in a browser appears to be limited to the iTasks system. The
intermediate language SAPL also does not provide the facilities as provided by
our Haskell FFI.

7 Conclusion

We have shown that UHC is capable of supporting the development of com-
plete client-side web applications, opening the door to Haskell-only web devel-
opment. In the process we added the FEL to UHC and provided a library that
exposes the JavaScript world to Haskell. Considering the increasing maturity of
the GHC-based solutions, we can conclude that the two biggest contributions of
this paper are the FEL, and our evidence that writing a complete, non-trivial
web application, optionally using external JavaScript libraries is now possible in
4 https://github.com/UU-ComputerScience/uhc-js/tree/benchmark

https://github.com/UU-ComputerScience/uhc-js/tree/benchmark

Building JavaScript Applications with Haskell 51

Haskell. Since UHC does not support advanced Haskell language features, and
GHC’s development is faster and more consistent, it remains to be seen whether
our implementation in UHC can grow to become a mature tool for developing
JavaScript applications. While still keeping this option open, we also call on au-
thors of GHC-based solutions to consider using the contributions of this paper
in their work.

When it comes to libraries for writing JavaScript applications in Haskell,
better abstractions are still required to reduce the amount of code that lives
in the IO monad directly, and to give programming with the UHC JavaScript
backend a more functional feel. While performance, in most cases, is acceptable,
it needs to be improved if computationally heavy functions are to be run on the
client. In order for most of the frequently used Hackage libraries to be run on
the client, additional work on UHC and Cabal will have to be performed.

References

1. UHC Git repository. https://github.com/UU-ComputerScience/uhc/
2. Haskell in web browser. http://www.haskell.org/haskellwiki/Haskell in web

browser (2007)
3. Yhc/Javascript. http://www.haskell.org/haskellwiki/Yhc/Javascript (2007)
4. A Haskell interpreter in JavaScript. https://github.com/johang88/

haskellinjavascript (2010)
5. Clean. http://wiki.clean.cs.ru.nl/Clean (2011)
6. Apfelmus, H.: Reactive banana. http://www.haskell.org/haskellwiki/

Reactive-banana
7. Ashkenas, J.: CoffeeScript. http://coffeescript.org/
8. Bruël, E., Jansen, J.M.: Implementing a non-strict purely Functional Language in

JavaScript. In: Implementation of Functional Languages (2010)
9. Dijkstra, A., Fokker, J., Swierstra, S.D.: The Architecture of the Utrecht Haskell

Compiler. In: Haskell Symposium (2009)
10. Dijkstra, A., Fokker, J., Swierstra, S.D.: UHC Utrecht Haskell Compiler. http://

www.cs.uu.nl/wiki/UHC (2009)
11. Done, C.: Fay programming language. http://fay-lang.org/
12. ECMA International, Geneva, Switzerland. ECMAScript Language Specifica-

tion. http://www.ecma-international.org/publications/standards/Ecma-262.htm
(2011)

13. Ekblad, A.: Towards a declarative web. Master’s thesis, University of Gothenburg,
Chalmers University of Technology, Department of Computer Science and Engi-
neering, Göteborg, Sweden (2012) (To appear) http://ekblad.cc/hastereport.pdf

14. Elliott, C.M.: Push-pull functional reactive programming. In: Proceedings of the
2nd ACM SIGPLAN Symposium on Haskell, Haskell ’09, pp. 25–36. ACM, New
York (2009)

15. Epstein, J., Black, A.P., PeytonJones, S.: Towards Haskell in the Cloud (2011)
16. Hofmann, M., Pierce, B., Wagner, D.: Symmetric lenses. SIGPLAN Not. 46(1),

371–384 (2011)
17. Jansen, J.M.: Functional web applications, implementation and use of client-side

interpreters. Ph.D. thesis, Radboud University Nijmegen (2010)

https://github.com/UU-ComputerScience/uhc/
http://www.haskell.org/haskellwiki/Haskell_in_web_browser
http://www.haskell.org/haskellwiki/Haskell_in_web_browser
http://www.haskell.org/haskellwiki/Yhc/Javascript
https://github.com/johang88/haskellinjavascript
https://github.com/johang88/haskellinjavascript
http://wiki.clean.cs.ru.nl/Clean
http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
http://coffeescript.org/
http://www.cs.uu.nl/wiki/UHC
http://www.cs.uu.nl/wiki/UHC
http://fay-lang.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://ekblad.cc/hastereport.pdf

52 A. Dijkstra et al.

18. Jones, S.P. (ed.): Haskell 98 Language and Libraries: The Revised Report. http://
haskell.org/, September 2002

19. Kagawa, K.: Compositional references for stateful functional programming. SIG-
PLAN Not. 32(8), 217–226 (1997)

20. Leijen, D.: wxHaskell: A portable and concise GUI library for Haskell. In: Proceed-
ings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, pages 57–68.
ACM, New York (2004)

21. Mackenzie, H., Nazarov, V., Stegeman, L.: GHCJS: Haskell to JavaScript transla-
tor. https://github.com/ghcjs/ghcjs/tree/gen2 (2012)

22. Miller, P., Graf, N., Schranz, T., Gerstmayr, A.: Brunch. IO. http://brunch.io/
23. Nazarov, V.: GHCJS: Haskell to Javascript compiler (via GHC). https://github.

com/ghcjs/ghcjs (2011)
24. Plasmeijer, R., Jansen, J.M., Koopman, P.: Declarative Ajax and Client Side

Evaluation of Workflows using iTasks. In: Principles and Practice of Declarative
Programming (2008)

25. Podolsky, O.: jquery-ajaxq. http://code.google.com/p/jquery-ajaxq/
26. Resig, J.: jQuery. http://jquery.com
27. Steele, O.: Functional JavaScript. http://osteele.com/sources/javascript/

functional/ (2007)
28. Stutterheim, J., Swierstra, W., Swierstra, D.: Forty hours of declarative program-

ming - Teaching Prolog at the Junior College Utrecht (2012)
29. Stutterheim, J., Vermeulen, A., Dijkstra, A.: UHC-JavaScript libraries. https://

github.com/UU-ComputerScience/uhc-js
30. Swierstra, D., Stutterheim, J.: NanoProlog package. http://hackage.haskell.org/

package/NanoProlog
31. Swierstra, W., Doaitse Swierstra, S., Stutterheim, J.: Logisch en Functioneel Pro-

grammeren voor Wiskunde D. Technical Report UU-CS-2011-033, Universiteit
Utrecht (2011)

32. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation, PLDI ’00, pp. 242–252. ACM, New York (2000)

http://haskell.org/
http://haskell.org/
https://github.com/ghcjs/ghcjs/tree/gen2
http://brunch.io/
https://github.com/ghcjs/ghcjs
https://github.com/ghcjs/ghcjs
http://code.google.com/p/jquery-ajaxq/
http://jquery.com
http://osteele.com/sources/javascript/functional/
http://osteele.com/sources/javascript/functional/
https://github.com/UU-ComputerScience/uhc-js
https://github.com/UU-ComputerScience/uhc-js
http://hackage.haskell.org/package/NanoProlog
http://hackage.haskell.org/package/NanoProlog

Advances in Lazy SmallCheck

Jason S. Reich1(B), Matthew Naylor2, and Colin Runciman1

1 Department of Computer Science, University of York, York, UK
{jason, colin}@cs.york.ac.uk

2 Computer Laboratory, University of Cambridge, Cambridge, UK
matthew.naylor@cl.cam.ac.uk

Abstract. A property-based testing library enables users to perform
lightweight verification of software. This paper presents improvements
to the Lazy SmallCheck property-based testing library. Users can now
test properties that quantify over first-order functional values and nest
universal and existential quantifiers in properties. When a property fails,
Lazy SmallCheck now accurately expresses the partiality of the counter-
example. These improvements are demonstrated through several practi-
cal examples.

Keywords: Automated testing · Lazy SmallCheck · Functional values ·
Existential quantification · Search-based software engineering

1 Introduction

Property-based testing is a lightweight approach to verification where expected
or conjectured program properties are defined in the source programming lan-
guage. For example, consider the following conjectured property1 that in Haskell
every function with a list of Boolean values as an argument, and a single Boolean
value as result, can be expressed as a foldr application.

prop ReduceFold :: ([Bool] → Bool) → Property
prop ReduceFold r = exists $ λf z → forAll $ λxs → r xs ≡ foldr f z xs

When this property is tested using our advanced version of Lazy SmallCheck,
a small counterexample is found for r.

>>> test prop_ReduceFold
... Depth 2: Var 0: { [] -> False

; _:[] -> False
; _:_:_ -> True }

1 Like all other properties used as examples in this paper, this property does not hold;
our goal is to find a counterexample.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 53–70, 2013.
DOI: 10.1007/978-3-642-41582-1 4, c© Springer-Verlag Berlin Heidelberg 2013

54 J. S. Reich et al.

The counterexample is a function that tests for a multi-item list. It is ex-
pressed in the style of Haskell’s case-expression syntax. Several new features of
Lazy SmallCheck are demonstrated by this example. (1) Two of the quantified
variables, r and f, are functional values. (2) An existential quantifier is used
in the property definition. (3) The counterexample found for r is concise and
understandable.

Previous property-based testing libraries struggle with such a property. The
QuickCheck [2] library does not support existentials as random testing ‘would
rarely give useful information about an existential property: often there is a
unique witness and it is most unlikely to be selected at random [14]’. QuickCheck
also requires that functional values be wrapped in a modifier [1] for shrinking
and showing purposes.

The original Lazy SmallCheck [14] supports neither existentials nor func-
tional values. SmallCheck [14] supports all the necessary features of the property.
However, it takes longer to produce a more complicated looking counterexam-
ple. This is because SmallCheck enumerates only fully defined test data and
shows functions only in part, by systematically enumerating small arguments
and corresponding results.

1.1 Contributions

This paper discusses the design, implementation2 and use of new features in
Lazy SmallCheck. We present several contributions:

– An algorithm for checking properties that may contain universal and exis-
tential quantifiers in a Lazy SmallCheck-style testing library.

– A method of lazily generating and displaying functional values, enabling the
testing of higher-order properties.

– An evaluation of these additions with respect to functionality and run-time
performance.

1.2 Roadmap

Section 2 is a brief reminder of the Lazy SmallCheck approach to property-based
testing. Section 3 demonstrates the new features of the Lazy SmallCheck through
several examples. Section 4 describes architectural changes that enable these new
features. Section 5presents the formulationof functional values. Section 6 evaluates
the new Lazy SmallCheck in comparison to other Haskell property-based testing
libraries. Section 7 offers conclusions and suggestions for further work.

2 The Lazy SmallCheck Search Strategy

A property-based testing library uses a strategy to search the test data space
for counterexamples to a given property. For example, QuickCheck [2] randomly
2 Source code available at http://github.com/UoYCS-plasma/LazySmallCheck2012.

http://github.com/UoYCS-plasma/LazySmallCheck2012

Advances in Lazy SmallCheck 55

Table 1. Values of xs used by Lazy SmallCheck when testing prop ListSizes xs.

Test-data Result Test-data Result

(1) ⊥ Refine test-data (5) ⊥ : ⊥ : ⊥ Refine test-data
(2) [] Property satisfied (6) ⊥ : ⊥ : [] Property satisfied
(3) ⊥ : ⊥ Refine test-data (7) ⊥ : ⊥ : ⊥ : ⊥ Refine test-data
(4) ⊥ : [] Property satisfied (8) ⊥ : ⊥ : ⊥ : [] Counterexample

selects a fixed number of test-data values. SmallCheck [14], on the other hand,
exhaustively constructs all possible values of a particular type, bounded by the
depth of construction (or some appropriate metric for non-algebraic types).

Lazy SmallCheck instead begins by testing undefined — ⊥ — as the value
and refines it by need. The demands of the test property guide the exploration
of the test-data space. When evaluation of a property depends on an undefined
component of the test-data, exactly that component is refined. For algebraic
datatypes, undefined is refined to all possible constructions, each with undefined
arguments. To ensure termination, when Lazy SmallCheck is run, a bound is set
on the depth of possible refinements.

Consider the illustrative property prop ListSize. It asserts that all lists with
Bool-typed elements have lengths less than three.

prop ListSize :: [Bool] → Bool
prop ListSize xs = length xs < 3

Clearly this property is false. Lazy SmallCheck finds the following counterex-
ample where each occurrence of means any value.

>>> test prop_ListSize
... Depth 3: Var 0: _:_:_:[]

As Lazy SmallCheck searches for this counterexample, it refines the test
values bound to xs as shown in Table 1. Notice that the elements of the list xs
are never refined as their values are never needed by the property. This pruning
effect is the key benefit of Lazy SmallCheck over eager SmallCheck.

3 New Features in Action

The following examples further illustrate the new features in Lazy SmallCheck.
The first generates functional values and displays partial counterexamples. The
second shows the benefits of generating small, partial functional values. The final
example demonstrates existential quantification.

56 J. S. Reich et al.

3.1 Left and Right Folds

Let us look for a counterexample of another conjectured property. This property
states that foldl1 f gives the same result as foldr1 f for non-empty list arguments
with natural numbers as the element type.

prop foldlr1 :: (Peano → Peano → Peano) → [Peano] → Property
prop foldlr1 f xs = (¬ ◦ null) xs =⇒ foldl1 f xs ≡ foldr1 f xs

As in the original Lazy SmallCheck [14], testing this property requires a
Serial instance for the Peano datatype. Additionally, an Argument instance must
be defined so that Lazy SmallCheck can produce functional values with Peano
arguments. We have defined a Template Haskell function [15] — deriveArgument
— that automatically derives a suitable Argument instance. Section 5.2 discusses
this in more detail.

data Peano = Zero | Succ Peano deriving (Eq,Ord,Show,Data,Typeable)
instance Serial Peano where series = cons0 Zero <|> cons1 Succ
deriveArgument "Peano

Lazy SmallCheck finds a counterexample at depth 3. The function f returns
Succ Zero if its input is Zero and returns Zero in all other cases. The list xs is of
length three where the last element is Zero.

>>> test prop_foldlr1
Depth 3: ... Var 0: { _ -> { Zero -> Succ _

; Succ _ -> Zero } }
Var 1: _:_:Zero:[]

3.2 Generating Predicates

Our next example is based on prop PredicateStrings from Claessen [1].

prop PredStrings :: (String → Bool) → Property
prop PredStrings p = p "Lazy SmallCheck" =⇒ p "SmallCheck"

Lazy SmallCheck finds as a counterexample the function p that returns True
when the second character in its argument is ’a’ and False when any other
character occurs in the second position. The function is undefined for strings of
length less than two.

Advances in Lazy SmallCheck 57

>>> test prop_PredStrings
...
Depth 4:
Var 0: { _:’a’:_ -> True

; _:_:_ -> False }

Why is this the first counterexample found? We might expect a function
that distinguishes an initial ‘L’ from an initial ‘S’. As the depth-bound for test-
ing increases, the extent to which the spines of list arguments can be refined
increases. But also the range of character values used in refinements increases
and the smallest non-empty range contains just ‘a’.

QuickCheck also finds counterexamples for this property but the functions
are stricter. They test equality with one of whole strings "Lazy SmallCheck" or
"SmallCheck".

3.3 Prefix of a List

This example is taken from Runciman et al. [14]. We assert that a (flawed)
definition of isPrefix satisfies a soundness specification of the function.

isPrefix :: Eq a ⇒ [a] → [a] → Bool
isPrefix [] = True
isPrefix (x : xs) (y : ys) = x ≡ y ∨ isPrefix xs ys
isPrefix = False

prop isPrefixSound xs ys = isPrefix (xs :: [Peano]) ys =⇒
(exists $ λxs′ → xs ++ xs′ ≡ ys)

In Runciman et al. [14], this property could only be checked by SmallCheck as
Lazy SmallCheck did not support existential properties. Running it through the
new Lazy SmallCheck gives another concise counterexample: if the first argument
of isPrefix is a multi-item list with first element Zero, and the second argument
is [Zero]; then isPrefix incorrectly returns True.

>>> test prop_isPrefixSound
... Depth 2: Var 0: Zero:_:_ Var 1: Zero:[]

A smallest counterexample with both xs and ys non-empty suggests an error
in the second equation defining isPrefix. Indeed, a disjunction has been used in
place of a conjunction.

4 Implementation of New Lazy SmallCheck

This section describes in detail how new Lazy SmallCheck achieves the process
outlined in Sect. 2. We shall return to the prop ListSize example discussed in
Sect. 2 to illustrate the data-types used in the implementation.

58 J. S. Reich et al.

Fig. 1. Definition of Functor, Applicative and Alternative type-classes.

In places, instead of the actual definitions used in the implementation, we
give simpler versions that are less efficient but easier to read. These differences
will be summarised in Sect. 4.5.

Abstractions We will make extensive use of the Functor, Applicative and Alternative
type-classes. All are defined in Fig. 1. Functors are containers with an associ-
ated fmap operation that applies functions to each contained element. Lists, for
example, are functors under the map function.

Applicative functors [12] extend this by viewing containers as contexts from
which values may be obtained. Any ordinary value can be wrapped up in a
context using pure. A function-in-context can be applied to a value-in-context
using the (<∗>) operator. Returning to the lists example, pure places the value
into a singleton list and fs <∗> xs applies every function in the collection fs to
every argument in collection xs to obtain a collection of results.

Alternative functors are an extension of applicative functors by the addition
of an empty container and an operation, (<|>), to merge containers. For lists,
empty is the empty list and (<|>) is list concatenation.

4.1 Partial Values

Refinement exceptions As highlighted in Sect. 2, the test-data space includes par-
tial values that are refined by need during the search for a counterexample. When
the value of an undefined is needed, an exception tagged with the location of the
undefined is raised and caught by the testing algorithm. The implementation
uses GHC’s user-defined exceptions. [11] The definition of Lazy SmallCheck’s
refinement exceptions can be found in Fig. 2.

The Location information uniquely identifies the component of a partial test-
data value that is needed by a property under test. The Path in a Location
gives directions from the root of a binary-tree representation to some specific

Advances in Lazy SmallCheck 59

Fig. 2. Definition of Location carrying exceptions.

subtree. The Nesting in a Location is akin to a de Bruijn [4] level : it identifies
the quantifier for the test-data variable that needs refining.

Partial values functor A functor of Partial values is defined in Fig. 3. The only
method of accessing the value inside the Partial functor is through runPartial. It
forces the result of a computation using partial values and catches any refinement
exception that may be raised.

A Show instance is defined so that Partial values can be printed. The definition
is omitted here but it follows the ‘Chasing Bottoms’ [3] technique. This is what
allows the display of wildcard patterns in counterexamples.

Running example Consider the third value, ⊥ : ⊥, tested in Table 1 from Sect. 2.
Here is its simplified representation and the results of two small computations
using it.

Fig. 3. Definition of the Partial values functor.

60 J. S. Reich et al.

>>> let step3 = (:) <$> refineAt (0, [False, True])
<*> refineAt (0, [True]) :: Partial [a]

>>> runPartial (prop_ListSize <$> step3)
Left (RefineAt (0,[True]))

>>> print (step3 :: Partial [Bool])
:

The undefined arguments of the list-cons are uniquely tagged by locations.
The result of applying prop ListSize shows that the second argument is needed.
Pretty-printing this partial value hides the complexity underneath.

4.2 Test-Value Terms

The representation of a test-value term contains tValue, the information needed
to obtain a partial test-data value, and tRefine, its possible refinements. The
Term datatype is defined in Fig. 4.

The Applicative instance for terms shows how: (1) the Path component of a
location is extended through the argument of tValue and (2) the tRefine uses this
information to pass the rest of the path to the relevant subterm.

The mergeTerms function demonstrates how a collection of terms can be
turned into a single undefined value paired with the ability to obtain the collec-
tion when required. This is key to the strategy illustrated in Sect. 2.
Test-value environments After test data is generated but before a property is
applied to it, a pretty-printed representation of the partial value is recorded.
The benefit of this technique is that we need not record a pretty-printing that

Fig. 4. Definition of test-value terms and a merging operation.

Advances in Lazy SmallCheck 61

Fig. 5. Definition of test-value environments.

could be obtained from the final test-value derived from the term. This will be
especially useful for the display of functional values in Sect. 5.

The test-value environments type is shown in Fig. 5. We omit AlignedString
in this paper but it follows established pretty-printing techniques, such as that
used by Hughes [7].

4.3 Test-Value Series Generators

Series functor Properties are tested against a series of depth-bounded test-data
terms. The Lazy SmallCheck library defines instances for the test-data Series
functor that implicitly enforces depth-bounding and the introduction of partial
test-data values. These definitions are in Fig. 6.

As with the original Lazy SmallCheck, a depth-cost is only introduced on
the right-hand side of binary applications so that each child of a constructor is
bounded by the same depth.

Fig. 6. Definition of Series generators.

62 J. S. Reich et al.

Fig. 7. Definition of the Serial type-class.

Running example The following are definitions for depth-bounded values of
Booleans, polymorphic lists and Boolean lists.

>>> let boolSeries = pure False <|> pure True
>>> let listSeries elem = pure []

<|> (:) <$> elem <*> listSeries elem
>>> let listBoolSeries = listSeries boolSeries

Serial class A class of Serial types is defined in Fig. 7. Lazy SmallCheck uses
Serial instances to automatically generate test values for argument variables in
properties. Using the generic Series operators of Fig. 6, a family of consn combi-
nators can be defined exactly as described by Runciman et al. [14].

Running example again The library defines the series generators for many data-
types. The Serial instances for Bool and lists are as below. Notice that we no
longer explicitly define how the arguments of list-cons are instantiated. It is
automatically handled by the type system.

instance Serial Bool where
series = cons0 False <|> cons0 True

instance Serial a ⇒ Serial [a] where
series = cons0 [] <|> cons2 (:)

4.4 Properties and Their Refutation

Properties The Property data-type in Fig. 8 defines the abstract syntax of a
domain-specific language. It includes standard Boolean operators. Crucially, it
also provides a representation of universal and existential quantifiers that sup-
ports searches for counterexamples and witnesses.

Though not defined here, smart wrappers are provided for all six Property
constructions. These automatically lift Bool-typed expressions to Property and

Advances in Lazy SmallCheck 63

Fig. 8. The underlying representation of the Property DSL.

instantiate free variables in properties with appropriate series from Serial
instances.

Refutation of properties The depthCheck function takes as arguments an integer
depth-bound and a Testable property that may contain free variables of types of
any Serial type. The counterexample and refute functions given in Fig. 9 search
for a failing example.

A key point to observe is that refute recurses when it encounters a nested
quantification. All refinement requests must therefore be tagged with the Nesting
level for the associated quantifier. The RefineAt information can then be passed
onto the relevant tRefine function. Those refined terms are then prepended onto
the list of terms left to test.

Fig. 9. Definition of the refutation algorithm.

64 J. S. Reich et al.

4.5 Differences Between Versions of Lazy SmallCheck

The main differences between the new Lazy SmallCheck and the original Lazy
SmallCheck described in [14] are as follows. In the new implementation:

– Terms are always represented in a type-specific way. Previously they were
generated from a generic description.

– Terms can carry a test-value environment enabling the display of test-data
types (such as functions) that cannot be directly pretty-printed.

– The testing algorithm calls itself recursively, refining information about en-
closing quantifiers.

The main differences between real implementation of the new Lazy Small-
Check and the slightly simplified variant described in this paper are as follows.
In the real implementation:

– The Path datatype is a difference list to optimise the list-snoc operation.
– Terms representing total and partial values are distinguished to optimise

performance and to allow the use of existing Show instances for total terms.
– Terms representing partial values record the total number of potential refined

values they represent up to the depth bound. The refutation algorithm counts
the actual number of refinements performed. (This is useful for performance
measurements and comparison with other approaches.)

5 Implementing Functional Values

The key to generating functional values is the ability to represent them as tries,
also known as prefix trees. New Lazy SmallCheck supports the derivation of
appropriate tries for given argument types, and the conversion of tries into func-
tions to be used as test values.

The use of test-value environments allows a trie to be pretty-printed before
it is converted into a Haskell function. This removes the need for the kind of
modifier used by Claessen [1].

5.1 Trie Representations of Functions

We define a generic trie datatype in Fig. 10. It is expressed as a two-level, mu-
tually recursive GADT. Level one describes functions that either ignore their
argument — Wild, or perform a case inspection of it — Case.

Level two represents details of a case inspection. The Valu construction occurs
when the argument is of unit type and therefore returns the single result. The
Sum construction represents functions with a tagged union as argument type,
performing further inspection on their constituent types. The Prod construction
represents functions with arguments of a product type, producing a trie that
first inspects the left component of the product, then the right to return a value.

A construction Natu vs v represents a function with a natural number ar-
gument. If an argument n is less than the length of vs, the value of vs !! n is

Advances in Lazy SmallCheck 65

Fig. 10. Definition of the two-level trie data structure.

returned. Otherwise v is returned as default. The Cast construction is used in all
other cases. We shall say more about it in Sect. 5.2. The function applyT converts
a trie into a Haskell function.

5.2 Custom Data-Types for Functional Value Arguments

The Argument class is defined in Fig. 11. Users supply an instance Argument t to
enable generated functional test values with an argument of type t. Each instance
defines a base type representation and an isomorphism between the argument
type and the base type. This is a variation of the generic trie technique used
by Hinze [6]. The Cast construction of the trie datatype performs the necessary
type conversions using the Argument instances.

The BaseCast functor is used at recursive points to prevent infinite repre-
sentations of recursive datatypes. It is a type-level thunk indicating that an
arbitrary type can be translated into a Base type. For example, Fig. 12 shows
the Argument Peano instance. The Template Haskell function deriveArgument
automatically produces Argument instances for any Haskell 98 type.

5.3 Serial Instances of Functional Values

Functional values have been reified through the trie datatype, so we first need
to define series of types. The Serial instances are defined in Fig. 13. A special

66 J. S. Reich et al.

Fig. 11. Definition of the Argument type-class.

Fig. 12. The Argument instance for Peano.

Fig. 13. Definition of Series generators for tries and functions.

Advances in Lazy SmallCheck 67

Table 2. Comparision of property-based testing library features.

Feature QuickCheck SmallCheck Original LSC New LSC

Test strategy Random Bounded
exhaustive

Bounded
exhaustive

Bounded
exhaustive

Test-space
pruning

N/A N/A Lazy
generation

Lazy
generation

Minimal result Shrinking Natural Natural Natural
Functional values Yesa Yes No Yes
Existentials No Yes No Yes
Nested

quantification
Yes Yes No Yes

Displays partial
counterexamples

N/A N/A No Yes

Haskell 98/2010 Partialb Compatible Compatible Noc

a Functional value is wrapped in a modifier at its quantification binding if showing or
shrinking is required.

b Originally Haskell 98 compatible but functional values modifier requires GADTs.
c Requires Haskell extensions: GADTs, type families and flexible contexts.

type-class SerialL2 is defined. It represents types that can be represented as trie
constructions. The applicative operators with a carret suffix introduce no depth
cost, as opposed to those defined in Sect. 4.3. These specialist operators have
been carefully placed to give a natural depth metric for functions while keeping
the series finite.

Using these definitions, a Serial instance for functional values is defined. The
default definition of seriesWithEnv is overridden to store the pretty-printed form
of the trie before it is converted into a Haskell function. This instance definition
is omitted here due to lack of space.

6 Discussion and Related Work

A feature comparison of several Haskell property-based testing libraries can be
found in Table 2. The test-space exploration strategy is the main distinction be-
tween the QuickCheck library and SmallCheck family of libraries. QuickCheck
assumes that test data detecting a failure is likely within some probability dis-
tribution. SmallCheck, on the other hand, appeals to the Small Scope hypothesis
[8] — programming errors are likely to appear for small test data.

6.1 Runtime Performance

The repository includes performance benchmarks to compare this implementa-
tion with the previously published Lazy SmallCheck. Experiments performed
using GHC 7.6.1 with -O2 optimisation on a 2GHz quad-core PC with 16GB of
RAM show very little difference in execution times between the two encodings.

68 J. S. Reich et al.

6.2 Functional Values

The original QuickCheck paper [2] explains how functional test values can be
generated through the Arbitrary instance of functions with a Coarbitrary instance
of argument types. At this stage, QuickCheck could not display the failing ex-
ample without bespoke use of the whenFail property combinator.

QuickCheck has since gained the ability not only to display functional coun-
terexamples but also to reduce their complexity through shrinking. Claessen [1]
achieves this by transforming functions generated using the existing Coarbitrary
technique into tries.

Claessen’s formulation of tries slightly differs from ours. Existential types are
used in place of type families and there is no provision for non-strict functions.
Partiality of functions is explicitly expressed instead of being a result of partially
defined tries. Claessen also requires that functions are wrapped in a ‘modifier’
at quantification binding. This Fun modifier retains information for showing and
shrinking at the expense of a slightly more complex interface presented to users.

In Lazy SmallCheck, on the other hand, we directly generate a trie and then
convert it into a Haskell function. A pretty-printed representation of the trie is
stored at the time of generation and retrieved for counterexample output.

The SmallCheck representation of functional values uses a coseries approach,
analogous to QuickCheck’s Coarbitrary. However, functional values are displayed
by systematically enumerating arguments.

6.3 Existential and Nested Quantification

As previously discussed in Sect. 1, it does not make sense to use QuickCheck
for existential quantification. The previous design of Lazy SmallCheck made
it difficult to conceive of a refutation algorithm that could handle the nested
quantification required to make existential properties useful.

The use of the Partial values functor in this implementation gives statically
typed guarantees that term refinements are performed at the correct quantifier
nesting.

6.4 Benefits of Laziness

Runciman et al. [14] discussed the benefits and fragility of exploiting the lazi-
ness of the host language to prune the test-data search space. When applied to
functional values, we see further benefits. The partiality of a trie representation
corresponds directly with the partiality of the function it represents. Whereas
Claessen [1] needs to shrink total function to partial functions, the latest Lazy
SmallCheck has partial functions as a natural result of its construction.

7 Conclusions and Further Work

This paper has described the extension of Lazy SmallCheck with several new fea-
tures; (1) quantification over functional values, (2) existential and nested quan-
tification in properties and (3) the display of partial counterexamples.

Advances in Lazy SmallCheck 69

Properties that quantify over functional values occur often in higher-order
functional programming. Similarly, many properties may involve existential quan-
tification and even nesting of quantification within property definitions. The
examples in this paper have demonstrated the power of a tool that can find
counterexamples for such properties.

This paper takes an extensional view of functional values, characterising
them as mappings from input to output. An alternative would be to characterise
functions intensionally as lambda abstractions or other defining expressions,
perhaps allowing recursion [9,10]. We would expect the generic machinery for
typed functional series to be more complex. Also, when functions are needed
as test values, alternative definitions of the same extensional function are not
interesting [13].

Parallelisation of the refutation algorithm is a current area of investigation.
A prototype implementation shows near-linear speedups, in multicore shared-
memory environments, for benchmarks in which no counterexample is found.
This benefit is derived from the tree structure of the Lazy SmallCheck test-
value search space. However, in some benchmarks where a counterexample is
found the overheads of continued searches in other threads can cause slowdowns
rather than speedups.

Acknowledgements. We would like to acknowledge an e-mail suggestion from Max
Bolingbroke pointing to Elliott’s [5] MemoTrie library as a possible starting point for
the generation of functional values. We thank Andy Gill, IFL reviewers and Michael
Banks for helpful comments and suggestions.

This research was supported, in part, by the EPSRC through the Large-Scale
Complex IT Systems project, EP/F001096/1.

References

1. Claessen, K.: Shrinking and showing functions: (functional pearl). In: Proceedings
of the 2012 Symposium on Haskell, pp. 73–80. Haskell ’12, ACM (2012)

2. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, pp. 268–279. ICFP ’00. ACM (2000)

3. Danielsson, N.A., Jansson, P.: Chasing bottoms. In: Kozen, D. (ed.) MPC 2004.
LNCS, vol. 3125, pp. 85–109. Springer, Heidelberg (2004)

4. de Bruijn, N.G.: Lambda calculus notation with nameless dummies: a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Math. 34, 381–392 (1972)

5. Elliott, C.: Elegant memoization with functional memo tries.
http://conal.net/blog/posts/elegant-memoization-with-functional-memo-tries
(October 2008). Accessed 26 July 2012

6. Hinze, R.: Generalizing generalized tries. J. Funct. Program. 10(04), 327–351
(2000)

7. Hughes, J.: The design of a pretty-printing library. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 53–96. Springer, Heidelberg (1995)

http://conal.net/blog/posts/elegant-memoization-with-functional-memo-tries

70 J. S. Reich et al.

8. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2012). Revised edn

9. Katayama, S.: Systematic search for lambda expressions. In: Trends in Functional
Programming, TFP2005, vol. 6, pp. 111–126. Intellect Books (2007)

10. Koopman, P., Plasmeijer, R.: Synthesis of functions using generic programming.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812,
pp. 25–49. Springer, Heidelberg (2010)

11. Marlow, S.: An extensible dynamically-typed hierarchy of exceptions. In: Proceed-
ings of the 2006 ACM SIGPLAN Workshop on Haskell, pp. 96–106. Haskell ’06.
ACM (2006)

12. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

13. Reich, J.S., Naylor, M., Runciman, C.: Lazy generation of canonical test pro-
grams. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 69–84. Springer,
Heidelberg (2012)

14. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: au-
tomatic exhaustive testing for small values. In: Proceedings of the First ACM
SIGPLAN Symposium on Haskell, pp. 37–48. Haskell ’08, ACM (2008)

15. Sheard, T., Peyton Jones, S.: Template metaprogramming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pp. 1–16. Haskell ’02.
ACM (2002)

OCaml-Java:
From OCaml Sources to Java Bytecodes

Xavier Clerc(B)

France
ocamljava@x9c.fr

http://www.ocamljava.org/

Abstract. This article presents the code generation scheme of the
OCaml-Java compiler. The goal of the OCaml-Java project is to allow
execution of OCaml programs on a Java Virtual Machine. In order to
achieve decent performance, it is necessary to build a compiler produc-
ing optimized bytecode that will rely on an efficient support library at
runtime.

The OCaml-Java project thus provides (i) an efficient runtime writ-
ten in pure Java, and (ii) an optimizing compiler based on the original
OCaml compilers for the front-end and on the Barista library for the
back-end.

Keywords: OCaml · Java · Bytecode · Compiler · Code generation

1 Introduction

The OCaml-Java project has been presented at large in previous work [1]; in the
present article, we will focus on the code generation process as implemented in
the OCaml-Java compiler. In the remainder of this section, we will nevertheless
summarize the goals and state of the OCaml-Java project. Then, Sect. 2 will ex-
pose the architecture of the various OCaml compilers. Section 3 will present the
runtime representation of values in the different compilers, and Sect. 4 will give
an overview of the Barista library that is used as the compiler back-end. Sec-
tion 5 shows examples of actual bytecode generation, and Sect. 6 shows how the
compiler performs on some benchmarks. Finally, Sect. 7 will discuss future work.

Why the JVM is an Interesting Target

The official OCaml distribution features both bytecode (for a dedicated virtual
machine), and native compilers (for common architectures and OSes). It may
seem at first sight that nothing more is needed, the former meeting portability
needs and the latter meeting performance needs. However, being able to run
OCaml code on a Java Virtual Machine is appealing for mainly two reasons:

– access to a larger choice of libraries;
– access to multicore programming.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 71–85, 2013.
DOI: 10.1007/978-3-642-41582-1 5, c© Springer-Verlag Berlin Heidelberg 2013

72 X. Clerc

The number of available libraries is still a known weakness of the OCaml
ecosystem in spite of a vibrant community. Having the ability to run on a Java
Virtual Machine gives access to all the libraries of the Java ecosystem. The Java
community is huge, and has developed frameworks and tools for almost any
purpose. There are obvious benefits for OCaml developers to use these libraries.

To be able to use the Java libraries, it is not sufficient to produce Java byte-
code. It is also necessary to give to the OCaml developer means to manipulate
Java objects from an OCaml program. For this reason, the OCaml-Java compiler
features an extension of the type system to allow the construction and manip-
ulation of Java instances from a pure OCaml program. More details regarding
the extensions to the type system can be found in our introductory article [1].

Multicore programming can be done in OCaml without resorting to compila-
tion to Java bytecodes. However, the original implementation of OCaml is based
on a global runtime lock allowing only one OCaml thread to run at a time. For
this reason, leveraging multiple cores is often done through libraries using indeed
multiple processes (most notably, map/reduce implementations [2,3]).

Another option is to modify the OCaml runtime to get rid of the global
runtime lock. Such a modification implies of course to develop a parallel garbage
collector [4] and needs a lot of manpower, as well as some modifications to core
OCaml libraries that are not reentrant. At the opposite, by targeting a Java
Virtual Machine, we get a parallel garbage collector for free, and in addition
can take advantage of Java standard libraries such as the fork/join framework
to develop multicore OCaml programs based upon shared-memory.

Java 1.7 Features for Functional Programming

The latest major release of the Java platform has brought a lot of exciting
new features. Among them, two are particularly interesting when implementing
functional languages:

– the invokedynamic framework;
– the G1 garbage collector.1

The invokedynamic framework is a very powerful addition to the Java plat-
form as it allows a language implementor to define new semantics for method
dispatch. In the OCaml-Java project, we in fact only use the method handles
(which are akin to function pointers in C) provided by the framework in order
to easily and efficiently implement closures.

The G1 garbage collector is actually pretty important for functional lan-
guage implementors because it is known to better suit the allocation/collection
pattern found in functional programs. Such programs are typically allocating a
lot of small and short-lived values while classical Java programs tend to put less
pressure on the allocator.

1 Already present in previous version, but not production-ready.

OCaml-Java: From OCaml Sources to Java Bytecodes 73

Past and Present of OCaml-Java

The 1.x versions of the OCaml-Java project should be regarded as mere proofs of
concept, whose goal was to reach compatibility with the original implementation.
The compatibility is almost total: all language constructs are supported and most
OCaml libraries exhibit the same behavior (some minor differences are due to
the fact that the Java Virtual Machine does not implement all posix primitives).

The 2.0 version described in this paper keeps the same compatibility level,
and features great improvements in both memory usage and performance. The
goal is to be able to execute typical OCaml code on a Java Virtual Machine while
remaining at worst two times slower than native code. The current prototype
fulfills this objective on the majority of tested benchmarks.

2 Compiler Architecture

Original Compilers

The original OCaml distribution ships with two compilers: one producing byte-
code for a dedicated virtual machine, and the other one producing native code.
The bytecode compiler is available on every architecture while the native one is
only available on the following:

– tier 1 (i.e. officially maintained): amd64, ia32, powerpc, and arm under Linux,
MacOS X or Windows;

– tier 2 (i.e. unofficially maintained): sparc, and tier 1 architectures under
BSD or Solaris flavors.

Both compilers naturally share a large codebase: parsing and typing are iden-
tical, thus relying on the very same code. Figure 1 shows the successive passes of
both compilers from an implementation source file (i.e. a .ml file) to an imple-
mentation compiled file (i.e. a .cmo file for the bytecode compiler, and a .cmx
file for the native compiler). We do not detail the compilation of an interface
source file because it (i) does not produce code, and (ii) it is identical in both
compilers.

Figure 1 presents the various passes from a source file to a binary file, as
well as the different data structures used during the process. We only skip
the passes that are just intended to optionally pretty-print the intermediate
data structures on standard output to ease debugging. As previously stated,
both compilers share the passes related to parsing (Pparse.file) and typing
(Typemod.type implementation). They also share the very first passes related
to code generation: Translmod.transl implementation and Simplif.simplify
lambda. These passes produces so-called lambda code, which is the most abstract
representation of code to be compiled.

From this point, the two compilers diverge. The bytecode compiler only needs
two more passes to produce its result; these passes are straightforward because
the instruction set of the OCaml virtual machine was designed to provide the
pieces allowing to almost execute lambda code. Of course, the native compiler

74 X. Clerc

Pparse.file

Unused_var.warn

Typemod.type_implementation

Translmod.transl_implementation

Simplif.simplify_lambda

Parsetree.structure

Parsetree.structure

Typedtree.structure

Lambda.lambda

Lambda.lambda

ml

Bytegen.compile_implementation

Emitcode.to_file

Compile.implementation

Optcompile.implementation

Closure.intro

Selection.fundecl

Comballoc.fundecl

Spill.fundecl

Split.fundecl

Asmgen.regalloc

Linearize.fundecl

Scheduling.fundecl

Emit.fundecl

Instruct.instruction list

Lambda.lambda

cmo

Lambda.lambda

Cmm.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Linearize.fundecl

Linearize.fundecl

cmx o&

Fig. 1. Passes of OCaml compilers.

has far more work to do because it has to accommodate an instruction set that
was not specifically designed for functional programming, and has to target a
register-based machine rather than a stack-based machine.

The first step, Closure.intro, handles the transformations associated with
closures, uncurrification, and related optimizations. From this point, the code
is represented by machine code which is an abstract representation that is still
largely independent from the target platform, based on pseudo-instructions. The
Selection.fundecl and Comballoc.fundecl are designed to perform the se-
lection of pseudo-instructions for the code, and the optimization of allocations
linked to a given block. Then, Spill.fundecl, Split.fundecl, and Asmgen.
regalloc are responsible for actual register allocation, using information from
the target platform. Finally, Linearize.fundecl reifies pseudo-instructions into
actual lists of instructions, and Scheduling.fundecl optimizes the resulting

OCaml-Java: From OCaml Sources to Java Bytecodes 75

order. The very last step is to output the assembly source code that will be used
by an external assembler to produce object code.

OCaml-Java Compiler

The OCaml-Java compiler can be seen as a third branch of the tree depicted by
Fig. 1. This means that passes up to Simplif.simplify lambda are shared with
the original compilers. Figure 2 shows which transformations are then made on
lambda code. First, very similarly to the native compiler, Jclosure.jlambda
of lambda is responsible for the handling of closures, producing a slightly different
and optimized lambda code. Then, Macrogen.translate decomposes operations
from the lambda code into macro instructions that are not Java bytecode instruc-
tions but can be easily mapped to. This pass is also responsible for variable al-
location which entails the choice of their actual representation, thus opening the
possibility of value unboxing. Finally, Bytecodegen.compile function produces
actual Java bytecode using the Barista library (detailed at Sect. 4).

The point where native and OCaml-Java compilers diverge (namely Jclosure
.jlambda of lambda) has been chosen because the latter has to be more aggres-
sive regarding constants handling and propagation. Indeed, the native compiler
does not need to optimize long values, as they are always unboxed. Another
construct is treated in a different way in OCaml-Java: switches because the Java
instruction set features both table and lookup instruction while the native code
generator only emits code corresponding to table switches.

The next pass of the OCaml-Java compiler (that is Macrogen.translate) de-
termines how values are locally stored by compiled functions. Most notably, this
implies to choose between boxed and unboxed representations for integer and float
types. This is a crucial operation as we observed a gain in the 25 %–33 % interval
between programs without any unboxing and the current strategy (based on the
initialization value of a variable to determine its type). This compilation pass is
also responsible for the handling of exceptions, as there is a mismatch between the
OCaml and Java semantics on the subject. The difference is that, in Java, when
an exception is thrown the stack is immediately emptied and the instance of the

Javacompile.implementation

Jclosure.jlambda_of_lambda

Macrogen.translate

Bytecodegen.compile_function

cmj jo&

Lambda.lambda

Jlambda.jlambda

Macroinstr.expression

BaristaLibrary.Method.t

Fig. 2. Architecture of OCaml-Java compiler.

76 X. Clerc

thrown exception is then pushed onto the stack. In OCaml, the raise of an excep-
tion will only pop stack values until it finds the enclosing try/with construct. As
a consequence, we have to do some code motion such that an exception can only
be raised at a point where the stack is empty: by enforcing this rule we guarantee
that both semantics are actually aligned.

Finally, the last compiler pass, Bytecodegen.compile function, uses the
Barista library to build an in-memory representation of the class file to emit. This
pass is quite straightforward as boilerplate operations such that the computation
of stack maps are handled by the Barista library. Indeed, the only important op-
timization handled by this pass is the tail call optimization. Whenever a call to a
function is to be generated, it is checked whether it is a call to the current func-
tion. If so, function parameters are placed into locals, and a jump to the method
start is emitted. Otherwise, function parameters are placed onto the stack, and a
bare static method call is emitted.

Once compilation is done, two files are produced: a .cmj file corresponding to
the .cmx file of the native compiler, and a .jo file corresponding to its .o file. The
.jo file is actually a Java archive containing two entries:

– Module.class is the class file containing the implementation of all module
functions as Java static methods;

– Module.consts is a binary file respecting the OCaml marshal format contain-
ing the (structured) constants used by the module.

A module is later linked to produce an executable jar file. At runtime, the ini-
tialization code for a module (located in its entry method) is responsible for the
loading of the constants from the Module.consts resource. The constants2 are
then accessed through thread-local storage. This indirection is indeed necessary
in order to allow several OCaml programs to run on the very same Java Virtual
Machine.

3 Value Representation

The compilation scheme of OCaml performs type erasure, meaning that almost all
typing information is lost during the compilation process. This is of course not a
problem as OCaml is statically and strongly typed, meaning that no type test has
to be performed at runtime. This is not a problem either for Java interoperability:
a Java instance will be wrapped in an OCaml value, but its actual class can still
be retrieved at runtime if needed through the mechanism of reflection.

Basically, all values share a common type, namely value (in the original
runtime, written in C). Having a common type for all values at runtime greatly
simplifies the compilation process because such a common representation makes
polymorphism compilation trivial.

More precisely, use of the value type is mandatory at function boundaries (i.e.
to call an OCaml function, or a C primitive), but a function is free to use whatever
2 Despite their name, some constants may in fact be modified, hence the impossibility

to share them between programs running in the very same Java Virtual Machine.

OCaml-Java: From OCaml Sources to Java Bytecodes 77

representation it prefers for local values. This freedom is indeed crucial in order
to reach good performance because it allows unboxing of values. Values still need
to be boxed at function’s call site, but this penalty can also be partially avoided
through function inlining.

In the remainder of this section, we first present the de facto specification of
runtime values set by the original OCaml implementation, and then present how
such a specification is implemented in OCaml-Java.

Original Runtime

The various values manipulated at runtime by OCaml program can be specified
by the following grammar.

value ::= long unboxed value
| pointer to managed block
| pointer to unmanaged block

A long value is differentiated from a pointer value using tagging: the lowest bit
is set to one for long values, while it is set to zero for pointer values. The encoding of
an integer value i as a long unboxed value l is thus done according to the following
equation: l = (i × 2) + 1. A managed pointer (i.e. inside the OCaml heap) is
discriminated from an unmanaged one (i.e. allocated by C code) by keeping the
list of memory block allocated as parts of the OCaml heap.

managedblock ::= tag ⊕ size ⊕ list of size blocks
| closure-tag ⊕ size ⊕ code pointer ⊕ list of size - 1 blocks
| string-tag ⊕ size ⊕ array of size bytes
| double-tag ⊕ 64-bit float value
| double-array-tag ⊕ size ⊕ array of size 64-bit float value
| custom-tag ⊕ identifier ⊕ size ⊕ array of size bytes

As seen by the possible contents of a managed block, some typing information
seems to be retained at runtime. However, this is not enough to recover the typing
information present in the source, because several different types in the source can
be mapped to the same runtime representation. Again, strong typing has been
enforced at compile time, so no confusion could be made at runtime between values
of different types.

OCaml-Java Runtime

The representation of values is based on multiple classes for the various kinds of
values. All classes inherit from a parent Value abstract class. This class imple-
ments the operations for all the kinds of values, possibly proposing a dummy or
failing implementation. It is then the responsibility of children classes to override

78 X. Clerc

that base implementation with a correct one. The guarantee that a dummy or fail-
ing implementation will never be called is based on the static and strong typing
occurring at compile time.

Derived classes are defined for long values, string values, double values, dou-
ble array values, and block values. Contrary to the original runtime, all values
even long ones are allocated because the Java Virtual Machine does not support
tagged values. However, every creation of a value has to be done through a fac-
tory method, which allows us to share values through a cache. As an example, long
values are immutable and a cache allows to share values between −128 and 255.
These values are allocated once at program startup, and also allow to use reference
comparisons for values between the bounds.

The compilation scheme of OCaml will turn a type such as a record or a tuple
of values into a mere block at runtime. Again, strong and static typing ensures
that the program will not try to access an element that does not exist (e.g. trying
to access the third component of a pair). For this reason the original OCaml com-
pilers will not generate code for testing such bounds. However, in Java it is not
possible to remove bounds checks when accessing the elements of an array.3 As a
consequence, if the elements of a block were stored into an array, we would have
to pay the price of a bound check at every access. Moreover, due to the covariant
nature of arrays, each array store operation incurs a check that the actual class of
the object to be stored is correct with respect to the array type.

For this very reason, we resorted to what could be called data inlining. Rather
than having only one class named BasicBlockValue storing its elements as one
Value[] field, we define a bunch of classes named BasicBlockValuen that store
n elements as n Value fields. This allows to defines methods such as get0() that
will return the first element of a value with no bound check. The same is done for
double arrays and allows “small” tuples, records and all types sharing the same
runtime representation to avoid bound checks when accessing the element at a
given index.

Experimentation showed measurable speedups when growing the n value up to
8. The current version of the runtime hence contains classes with n ranging from
0 to 8. The source code for these classes is, of course, generated to avoid mainte-
nance issues. Of course, besides those classes, a BasicBlockValue (respectively a
DoubleArrayBlockValue) is defined to be able to store an unbounded number of
elements in an array. Then, array bound checks cannot be avoided but experience
indicates that this representation is indeed used for OCaml types that turn out to
be arrays, and should test bounds at runtime for every access.

Alternative Encoding of Values

At first, one may question why the encoding of values in OCaml-Java is a direct
translation of the encoding set by the original compilers. The use of tags, in par-
ticular, seems superfluous as different Java classes can be used to discriminate

3 The Hotspot compiler can remove such tests if it can prove that no illegal access will
happen, but the developer can not request to remove such tests.

OCaml-Java: From OCaml Sources to Java Bytecodes 79

between the various kinds of blocks. Unfortunately, we have to closely follow the
encoding of the original compilers because some core libraries of the OCaml dis-
tribution have implementations based on the low-level memory layout of values.
As an example, the Printf and Scanf modules directly manipulate closures, thus
enforcing to use the very same memory layout in OCaml-Java as in the original
compilers.

Even under those constraints, other encoding schemes could be devised, and
previous versions explored some alternatives. We experimented with an encoding
based on the classes from java.lang with Object rather than Value as the parent
class of all values, but performance was inferior due to the number of casts to per-
form. Another scheme was used in versions 1.x of the project: rather than having
multiple subclasses, only one Value class was used for every kinds of values. In
order to avoid casts, we used multiple fields to store the multiple kinds of values.
This encoding led not only to a waste of memory, but also to a great performance
penalty as the garbage collector had far more references to iterate over.

When comparing the encoding scheme to the ones of other JVM languages, it
is important to only compare to languages sharing the same constraints: whether
there is an existing reference implementation. Indeed, languages such as Clojure
[5] or Scala [6] are completely free to design their encoding scheme because they
do not have to abide to an existing specification. At the opposite, projects such as
JRuby [7] or OCaml-Java have a more constrained design space. For example, the
idea of data inlining in order to avoid array bounds checks is also used in JRuby.

4 The Barista Library

Overview

Barista [8], by the same author, is initially an OCaml library designed to load,
construct, manipulate, and save Java class files. The library supports the whole
class file format as defined by Oracle (formerly Sun) up to version 1.7. On top of
the library, a command-line utility (also named “barista”) has been developed:
both an assembler and a disassembler for the Java platform.

The assembler will turn an assembly source file into a class file to be run on
a Java Virtual Machine. The disassembler does the same work in the opposite
direction: it takes the fully qualified name of a Java bytecode class file present
in the classpath, and transforms it into an assembler source. Two other utilities
allow to inspect the contents of a bytecode file: it is possible to just print the list
of methods of a given class, and also to print the control flow of a given method
as a graph.

While other libraries for bytecode manipulation already existed at the time
we started the development of Barista, they were not satisfactory alternatives in
our case. The most important thing is that we wanted to generate code through a
proper library, and not by invoking an external assembler. The underlying moti-
vation is that we want to use the type system to reject obviously wrong bytecode
(e.g. pushing an integer value instead of a float one). When using an external as-
sembler, one generates bare text and even type errors only show up at runtime.

80 X. Clerc

Moreover, Barista is also used in the opposite direction: to load class defini-
tions rather than to produce them. This feature is of utmost importance for the
extension of the type system: as we deal with manipulation of Java entities, we
need to be able to inspect a class contents at compilation time.

Finally, Barista provides some features that are not available in other bytecode
libraries, such as the ability to visualize the bytecode of a given method as an
hypergraph, or the ability to create/inspect serialized values.

Hypergraph

Besides the representation of methods as lists of instructions, the code of a method
can also be represented as a graph. Precisely, a method code can be represented
as a rooted hypergraph. The rooted property stems from the fact that there is
only one entry point for a given method. The hypergraph nature of the structure
is indeed a design choice that allows to represent the conditionals by edges with
one source and as many destinations as there are possible outcomes.

The nodes of the hypergraph are labelled with instruction lists that contain no
jump, jumps being represented by edges. Edges hence represent the control flow
of the method and can be:

– classical edges with one source and one destination, in order to encode sequen-
tial execution (the edge is then with no label);

– three-legged edges with one source and two destinations, in order to encode
a test and its two possible consequences (the edge is then labelled with the
condition associated with the test);

– n-legged edges with one source and n − 1 destinations, in order to encode
switch instructions (the edge is then labelled with the definition of the switch,
that is either a list of values or lower and upper bounds);

– special edges with one source and one destination, in order to indicate that
the source is protected by a try/catch construct, the destination being the
exception handler (the edge is then labelled with the class name of the excep-
tions that can be caught).

Given the hypergraph structure, there are two kinds of optimizations that can
be performed by the Barista library:

– structural optimizations, modifying the hypergraph structure;
– non-structural optimizations, modifying only the labels of nodes.

In the first category, Barista currently features two optimizations: dead code
elimination, and jump optimization. Dead code elimination removes all nodes that
cannot possibly be reached from the root. Jump optimization short-circuits con-
secutive jumps with no bytecode between them.

In the second category, Barista features several peephole optimizations that
are performed independently on the hypergraph nodes. These include, among
others:

OCaml-Java: From OCaml Sources to Java Bytecodes 81

– code size optimizations (e.g. replacing a generic instruction such as aload by
a more compact aloadn);

– removal of unnecessary load and/or store operations (e.g. if a loaded value is
discarded or if a stored value is overwritten with no use);

– expression simplifications related to neutral or absorbing elements (e.g. addi-
tion to zero);

– basic strength reduction (e.g. shifting rather than multiplying when the mul-
tiplier is a power of 2).

Example

As an example, we consider the following Java static method, doing some compu-
tation over integer values:

public static int meth(final int x, final int y) {
if (x > y) {
try {
return compute1(x);

} catch (final Exception e) {
return 0;

}
} else {
return compute2(y);

}
}

After compiling it with the javac compiler, we can dump its bytecode by in-
voking the javap utility, leading to the following output:
public static int meth(int, int);
Code:

0: iload_0
1: iload_1
2: if_icmple 13
5: iload_0
6: invokestatic #2 // Method compute1:(I)I
9: ireturn
10: astore_2
11: iconst_0
12: ireturn
13: iload_1
14: invokestatic #4 // Method compute2:(I)I
17: ireturn

Exception table:
from to target type

5 9 10 Class java/lang/Exception

Barista can be used to transform a method bytecode into an hypergraph by
executing the barista flow ’C.meth(int,int):int’ command where C is the
class defining the method. The result is a graph representation in dot4 format and
is represented in Fig. 3.

Figure 3 features seven graph elements:

– four nodes (represented by rectangular boxes), containing the bytecode for the
various code blocks (condition evaluation, if block, else block, and exception
handler);

4 See http://www.graphviz.org/.

http://www.graphviz.org/

82 X. Clerc

iload_0
iload_1

iload_0
invokestatic compute1(int):int

ireturn

iload_1
invokestatic compute2(int):int

ireturn

astore_2
iconst_0
ireturn

java.lang.Exception

le

Fig. 3. Hypergraph for method meth(int,int):int.

– a double arrow, indicating which node is the root;
– a dotted edge, from the protected node to the handler node and also labelled

with the class of exceptions to be caught;
– an hyperedge, linking three nodes: (i) the block evaluating the condition, (ii)

the block to execute next if condition is true, (iii) the block to execute next if
condition is false; the hyperedge is also labelled with the kind of condition to
perform.

5 Example of Bytecode Generation

Our example has been designed to show how the unboxing of values allows to reach
good performance in the case of numerical code. The left column shows the OCaml
code of the complete function, while the right one shows the generated bytecode
for the loop body:

let�float�()�=
��let�x�=�ref�1.�in
��let�y�=�ref�2.�in
��let�acc�=�ref�0.�in
��for�i�=�1�to�1_000_000_000�do
����acc�:=�!acc�+.�(!x�*.�!y);
����x�:=�!x�+.�1.;
����y�:=�!y�*.�2.
��done;
��!acc

(...)
33:�dload�5
35:�dload_1
36:�dload_3
37:�dmul
38:�dadd
39:�dstore�5
41:�dload_1
42:�dconst_1
43:�dadd
44:�dstore_1
45:�dload_3
46:�ldc2_w�2.0d
49:�dmul
50:�dstore_3
(...)

Variables x, y, and acc are respectively stored at local indexes 1, 3, and 5.
The compiler has determined from their initial values that they are double values.
Instructions at offsets 33 − 39 compute the expression !acc +. (!x *. !y) and
store its value back. Then, instructions at offsets 41−44 update the value of the x

OCaml-Java: From OCaml Sources to Java Bytecodes 83

variable, and instructions at offsets 45−50 update the value of the y variable. It is
obvious from the instructions that all operations are done using the Java double
primitive type, no boxing is done at all. This ensures that we get the best possible
performance, and also avoid to put any pressure on the memory allocator and
garbage collector.

When comparing the performance of the original OCaml compiler to the
OCaml-Java compiler, we measured the code generated by the former to take 3.8 s
and the code generated by the latter to take 5.6 s. Then, we changed the upper
bound of the loop by multiplying it by ten, and then measured times to be respec-
tively 38.6 s and 48.0 s. This means that in the second setting, OCaml-Java is less
than 25 % slower than original OCaml. Of course, the ratios are better when mea-
suring longer runs because virtual machine startup and just-in-time compiling are
amortized.

6 Benchmarks

Procedure

Rather than developing benchmark programs from scratch, we decided to reuse es-
tablished ones: those from the “Benchmarks Game” (that was previously known as
the “Language Shootout”5). In order to compare performance between ocamlopt-
and ocamljava-compiled code, we resorted to the following procedure:

– each program is executed 7 times;
– the best and worse times for each program are dropped;
– the remaining times for each program are averaged.

Running the programs several times is of course mandatory to mitigate pos-
sible interference from other processes on the testing computer. In the case of
performance evaluation for programs running on a JVM, it is also very impor-
tant to ensure that the virtual machine has been warmed up. This explains why
we have to drop the worst execution time (that is, in practice, the first execu-
tion time). Finally, it is important to state which options are passed to the JVM:
-server, -XX:+TieredCompilation, and -XX:+AggressiveOpts.

Numbers

Table 1 shows the results as ratios (execution time of ocamljava-compiled code
over execution time of ocamlopt-compiled code). The meteor* program is just
the repetition of meteor 64 times: the running time for meteor is so short that
virtual machine startup is significant.

Those results show that the OCaml-Java compiler is on par with the origi-
nal one on some benchmarks (thread-based and numerical ones), and most of the
time between two and three times slower than original OCaml. Given that the

5 See http://benchmarksgame.alioth.debian.org.

http://benchmarksgame.alioth.debian.org

84 X. Clerc

Table 1. Some benchmarks from the Benchmarks Game.

Benchmark ocamljava/ocamlopt Benchmark ocamljava/ocamlopt

binarytrees 1.75 nbody 1.00
fannkuch 3.11 revcomp 2.01
mandelbrot 1.58 spectralnorm 2.66
meteor 6.81 threadring 1.12
meteor* 4.50

OCaml-Java compiler is still at prototype stage, and the ability to leverage multi-
ple cores from an ocamljava-compiled code, we regard the results as encouraging.
Our goal of making OCaml-Java competitive with original OCaml from a perfor-
mance standpoint seems reachable. However, we clearly need to add new bench-
marks to our suite in order to gain more confidence on the preliminary results
presented here.

7 FutureWork

Most of our short-term effort will be focused on the unboxing of values. It proved
to produce large speedups in the past, and a lot of things can be done to make
it more aggressive. First, currently, the kind of storage is chosen according to the
initial value of a variable; we could design an heuristic also based on the uses of
the variable. Second, as previously said, boxing is mandatory at function bound-
aries; there are two ways to lift this restriction: (i) avoid such a boundary (e.g.
by using inlining) or (ii) allow the compilation to functions taking unboxed para-
meters when typing information allows to do so. Also, unboxing is currently done
only for the following OCaml types: int, int32, int64, nativeint, and float.
It could also be done on others types, particularly ones constructed (e.g. records
with mutable fields) over those that can already be unboxed.

Inlining itself can also be greatly improved. For example, the current version
of the compiler is unable to inline recursive functions. This seems like a reason-
able limitation at first, but some recursive functions can be tail-call optimized and
thus be compiled as mere loops. In this case, it would be possible to inline such
functions.

Another area we should definitely investigate is the possible influence of
garbage collection parameters over performance. It would have had little sense for
the example presented in this paper, but we expect performance to be sensitive
to garbage collector parameters in real-world applications. Indeed, the default pa-
rameters are chosen to allow good performance for typical Java applications, not
OCaml ones. The former ones tend to use big and long-lived instances, while the
latter ones tend to use small and short-lived instances.

Finally, we could also optimize compile-time performance by generating the
Barista hypergraph directly during code generation. Currently, the compiler pro-
duces plain bytecode that is then passed to Barista for low-level optimizations.
This incurs the price of hypergraph construction from a list of bytecode instruc-
tions, which can be avoided.

OCaml-Java: From OCaml Sources to Java Bytecodes 85

To conclude, some words about optimization opportunities that are linked to
the future development of the Java platform. Among those considered for inclu-
sion in the next revision of Java, two would be particularly useful to functional
languages targeting the Java Virtual Machine. The first feature is tagged values,
and would allow us to avoid boxing of int values: it would not only allow faster
operations but would also relieve the pressure over garbage collection by avoid-
ing allocation. The second feature is support for tail calls, and would allow us to
mark a method call as terminal to indicate to the just-in-time compiler that a call
can be optimized. It would allow, of course, faster execution, but would also make
the life of users easier because the absence of tail call optimization interacts with
semantics when calls come to blow up the stack.

References

1. Clerc, X.: OCaml-Java: OCaml on the JVM. In: Loidl, H.-W., Peña, R. (eds.) TFP
2012. LNCS, vol. 7829, pp. 167–181. Springer, Heidelberg (2013)

2. Danelutto, M., Di Cosmo, R.: Parmap: minimalistic library for multicore program-
ming. https://gitorious.org/parmap

3. Stolpmann, G.: Plama: Map/Reduce and distributed filesystem. http://plasma.
camlcity.org/

4. Chailloux, E., Canou, B., Wang, P.: OCaml for Multicore Architectures. http://www.
algo-prog.info/ocmc/web/

5. Hickey, R.: The clojure programming language. In: Proceedings of the 2008 Sympo-
sium on Dynamic Languages. DLS ’08, pp. 1:1–1:1. ACM, New York (2008)

6. Odersky, M., et al.: The Scala Language. http://www.scala-lang.org/
7. Nutter, C.O., et al.: JRuby. http://jruby.org
8. Clerc, X.: The Barista library. http://barista.x9c.fr

https://gitorious.org/parmap
http://plasma.camlcity.org/
http://plasma.camlcity.org/
http://www.algo-prog.info/ocmc/web/
http://www.algo-prog.info/ocmc/web/
http://www.scala-lang.org/
http://jruby.org
http://barista.x9c.fr

The HERMIT in the Tree

Mechanizing Program Transformations
in the GHC Core Language

Neil Sculthorpe(B) , Andrew Farmer, and Andy Gill

Information and Telecommunication Technology Center,
The University of Kansas, Lawrence, KS, USA

{neil, afarmer, andygill}@ittc.ku.edu

Abstract. This paper describes our experience using the HERMIT tool-
kit to apply well-known transformations to the internal core language of
the Glasgow Haskell Compiler. HERMIT provides several mechanisms to
support writing general-purpose transformations: a domain-specific lan-
guage for strategic programming specialized to GHC’s core language, a
library of primitive rewrites, and a shell-style–based scripting language
for interactive and batch usage.

There are many program transformation techniques that have been
described in the literature but have not been mechanized and made avail-
able inside GHC — either because they are too specialized to include in a
general-purpose compiler, or because the developers’ interest is in theory
rather than implementation. The mechanization process can often reveal
pragmatic obstacles that are glossed over in pen-and-paper proofs; under-
standing and removing these obstacles is our concern. Using HERMIT,
we implement eleven examples of three program transformations, report
on our experience, and describe improvements made in the process.

Keywords: GHC · Mechanization · Transformation · Worker/wrapper

1 Introduction

HERMIT (Haskell Equational Reasoning Model-to-Implementation Tunnel) [4]
is a recently implemented plugin for the Glasgow Haskell Compiler (GHC) [5]
that provides an interactive interface for applying transformations directly to
GHC’s internal intermediate language. This plugin is part of a larger HERMIT
toolkit, a Haskell framework that is being developed with the aims of supporting
equational reasoning and allowing custom optimizations to be applied without
modifying either GHC or the Haskell users’ source code.

There are a wide variety of transformation techniques for optimizing func-
tional programs. Many such transformations have been implemented, and many
are used by modern compilers. However, there are also techniques that have
been described on paper but not mechanized, either because the transformation
is too specialized to include as an optimization in a general-purpose compiler,
or because the developers’ interest is in theory rather than implementation. We

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 86–103, 2013.
DOI: 10.1007/978-3-642-41582-1 6, c© Springer-Verlag Berlin Heidelberg 2013

The HERMIT in the Tree 87

want to implement these more specialized transformations using the custom op-
timization capabilities of HERMIT.

We believe there is a lot to be learned from mechanizing program transforma-
tions. The mechanization process can often reveal obstacles that do not appear
in pen-and-paper proofs, either because of implementation-specific details, or
because the pen-and-paper proofs gloss over details that may seem obvious to a
human, but are less obvious to a machine.

This paper reports on our experience using HERMIT to mechanize optimiza-
tion techniques, using the worker/wrapper [7,25], concatenate vanishes [28] and
tupling [1,9] transformations as case studies.We first introduce these transfor-
mations (Sect. 2), then we overview HERMIT and what it offers to the mecha-
nization process (Sect. 3). We then give an extended example of using HERMIT
to specifically apply tupling (Sect. 4), then discuss our general experience using
HERMIT on our 11 examples (Sect. 5). Finally we discuss related work (Sect. 6),
and draw conclusions from our mechanization efforts (Sect. 7).

Whereas the previous HERMIT publication [4] described HERMIT itself,
this paper describes HERMIT in use, on a suite of examples. The main con-
tribution of this work is pragmatic — showing by example that the HERMIT
system is sufficiently mature to be able to encode and apply well-understood
transformation techniques, in the context of the full power of GHC. We report
on our experience, the obstacles that arose during mechanization, and our ap-
proaches to overcoming them, including a new combinator for tree traversal:
any-call. Additionally, we demonstrate that it is straightforward to augment
HERMIT with new specialized transformations as needed.

At this stage of our investigations we are explicitly concerned with mecha-
nization rather formal proof; for example, a number of the transformations we
use have pre-conditions that HERMIT does not verify. We return to this short-
coming in Sect. 5.1, and for now observe that correctness and mechanization are
both important, but independently challenging.

2 Transformations for Mechanization

This section overviews the program-transformation techniques that we chose as
case studies. While mechanizing these techniques we observed that the concate-
nate vanishes transformation, and our main tupling transformation, are instances
of the worker/wrapper transformation. A proof of the former, and an informal
sketch of the latter, are given in the extended version of this paper, which is
available on the first author’s webpage.

2.1 Concatenate Vanishes

The concatenate vanishes transformation (CV) [28] is a technique for increasing
the efficiency of programs that make repeated use of list concatenation. Consider
the following standard definition:

88 N. Sculthorpe et al.

(++) :: [a] → [a] → [a]
[] ++ bs = bs
(a : as) ++ bs = a : (as ++ bs)

The time complexity of this definition is linear in the length of its first argument,
but constant in the length of its second argument. Thus, while ++ is associative,
(as ++ bs) ++ cs will evaluate less efficiently than as ++ (bs ++ cs). The essence
of CV is to exploit this observation to restructure programs using repeated con-
catenation into a more efficient form.

CV can be summarized as follows. Given a function that returns a list,1

f :: a → [b]
f a = expr

where expr is an expression that may contain f and a, define a new function
that returns a list-to-list function (known as a difference list [10]):

f ′ :: a → [b] → [b]
f ′ a bs = expr ++ bs

Then redefine the original function f as:

f :: a → [b]
f a = f ′ a []

The efficiency gains (if any are possible) are then achieved through refactoring
the definition of f ′: first by applying the associativity and unit laws of ++, and
then by folding [2] the definition of f ′ to eliminate any recursive calls to f .

2.2 Tupling Transformations

Tupling transformations come in several forms. The main one we consider in this
paper involves transforming a recursive function that repeatedly solves subprob-
lems into one that uses tabulation, a form of dynamic programming optimization
where each subproblem is only solved once, and the solutions to subproblems are
only stored as long as needed [1,15,16]. We will refer to this particular tupling
transformation as TT.

As an example, consider the call tree for the Fibonacci function, in Fig. 1a.
Computing fib n requires computing fib(n − 1) and fib(n − 2), but computing
fib(n − 1) also requires computing fib(n − 2). We would like to avoid this du-
plication by exploiting sharing, such that our transformation results in the call
graph in Fig. 1b.

In general, to perform TT on a function f , we define a function t whose
body is an n-ary tuple of the n calls to f that share a common recursive call.
By case-splitting on the arguments to t , we establish base cases for well-founded
recursion. The recursive case of t is then calculated by selectively unfolding calls
1 For clarity of presentation we assume the function is in uncurried form, but CV is

valid for functions that take any number of arguments; see [28].

The HERMIT in the Tree 89

Fig. 1. Call graphs for fib, illustrating duplicated computation.

to f to expose the common recursive call. All distinct calls to f are let-bound,
introducing sharing, which is the goal of the transformation. These let-bound
calls are themselves grouped into an n-ary tuple, which can be folded into a call
to t , leaving t recursively defined. Finally, f is redefined non-recursively in terms
of t . This is demonstrated in detail for the Fibonacci function in Sect. 4.

2.3 Worker/Wrapper Transformation

The worker/wrapper transformation (WW) [7,25] is a technique for improving
the efficiency of a recursive program by changing the data type being operated
on. The idea is to factorize a program prog :: a into a more efficient worker
program work :: b, and a wrapper function wrap :: b → a that converts the result
into a value of the original type.

The first step is to ensure that the program is expressed as the least fixed
point of a non-recursive function f , which may involve rewriting as follows (where
expr is an expression that may contain prog):

prog = expr ⇒ prog = let f = λprog → expr
in fix f

Next comes the key step: choosing a more efficient data type. Once chosen, we
define conversion functions between the two types:

unwrap :: a → b
wrap :: b → a

These conversion functions are required to satisfy the property that

fix (wrap ◦ unwrap ◦ f) ≡ fix f

and often satisfy the stronger property wrap ◦ unwrap ≡ id . It is then valid to
redefine the original program as follows (this is called WW factorization):

prog = wrap work

The definition of work can be derived in a number of ways [25]. Typically, we
start from either work = fix (unwrap ◦ f ◦ wrap) or work = unwrap prog , and
then simplify the definition using any laws specific to the types a and b.

90 N. Sculthorpe et al.

In practice, Haskell programs are typically defined using general recursion,
rather than a fixed-point operator. Consequently, using the WW transformation
often involves the following sequence of steps: introduce fix ; perform WW fac-
torization; eliminate fix . To factor out this repetition, we define an additional
transformation that comprises the three steps, converting a generally recursive
function into a non-recursive function that calls a recursive worker (we call this
the WW split):

prog = let f = λprog → expr
prog = expr ⇒ in let work = unwrap (f (wrap work))

in wrap work

3 HERMIT

This section briefly overviews the HERMIT toolkit; for more details consult [4].

3.1 GHC Core

GHC recently added support for custom compiler plugins that can be inserted
amid GHC’s optimization passes [5]. HERMIT uses this mechanism to provide
a transformation system for GHC Core, GHC’s internal intermediate language.

GHC Core is an implementation of System F�

C [26,29], which is System F [21]
extended with let-bindings, constructors, type coercions and algebraic and poly-
morphic kinds. Figure 2 shows HERMIT’s representation of GHC Core, omitting
a few constructors that aren’t used in this paper.

3.2 User Interface

HERMIT provides several interfaces at different levels of abstraction. In this
paper we will use just one of those interfaces: a read-eval-print loop (REPL).

The REPL allows navigation over a GHC Core abstract syntax tree (AST),
displaying the current sub-tree via a choice of pretty printers. The REPL pro-
vides a statically typed monomorphic functional language with overloading. Most
commands construct a rewrite from AST to AST, and the result of executing
such a command is the newly transformed AST. Historic versions of the AST
are maintained, and it is possible to step back and forth through the history of
ASTs, or create branches to explore alternative transformation sequences. That
is, HERMIT provides a version-control tree, where each node of the tree is an
AST. When the user has finished applying transformations, she selects one of
the ASTs for GHC to compile, and the rest are discarded. We give an extended
example using the REPL in Sect. 4.

3.3 Extendability

HERMIT is designed to facilitate the addition of new transformations. There are
three methods of doing this: writing a script to combine existing transformations,

The HERMIT in the Tree 91

Fig. 2. GHC Core.

leveraging the GHC RULES mechanism [20], or adding an internal primitive. We
used all three methods extensively while mechanizing our examples.

Scripting is the least powerful method, as it can only construct transforma-
tions by sequencing HERMIT-shell commands. However, it does allow transfor-
mations to be named and abstracted, as scripts can be called by other scripts.

RULES allow Haskell source files to be annotated with directed rewrite rules.
HERMIT exposes any such rules as rewrite commands, allowing the user to
selectively apply them as desired. This provides a lightweight mechanism for
adding transformations that cannot be expressed in terms of existing commands,
albeit limited to those that can be expressed by RULES.

Adding an internal primitive is the most powerful method, and our experience
has been that typically new transformations can be constructed fairly easily out
of the large suite of low-level congruence combinators and strategic traversals
provided by HERMIT and its underlying strategic-programming library, KURE
(see [4,24]). The main drawback of this approach is that it requires additions to
the HERMIT source code, and consequently recompilation of the package.

4 Example: Fibonacci Tupling

In this section we demonstrate the mechanization process in detail by performing
TT on the Fibonacci function using the HERMIT REPL. Starting with the clear
but inefficient (exponential time) definition over Peano naturals,

data Nat = Z | S Nat

fib :: Nat → Nat
fib Z = Z
fib (S Z) = S Z
fib (S (S n)) = fib (S n) + fib n

we transform it into the following efficient (linear time) definition:

fib′ :: Nat → Nat
fib′ n = fst (work n)

where work :: Nat → (Nat ,Nat)
work Z = (Z, S Z)
work (S m) = let (x , y) = work m in (y , x + y)

92 N. Sculthorpe et al.

As TT is an instance of WW, we will make use of our existing WW infrastruc-
ture. Following [25], we choose the more efficient data type to be a function that
returns a tuple of consecutive Fibonacci numbers, and define wrap and unwrap
as follows:

wrap :: (Nat → (Nat ,Nat)) → Nat → Nat
wrap h = fst ◦ h

unwrap :: (Nat → Nat) → Nat → (Nat ,Nat)
unwrap h n = (h n, h (S n))

Trivially, the wrap ◦ unwrap ≡ id precondition holds.
Placing the definitions of fib, wrap and unwrap into a file Fib.hs, we load the

file into HERMIT, give some initialization commands (see Sect. 5.1), and zoom
to the definition of fib using the consider command:
hermit "Fib.hs"

hermit> set-pp-expr-type Show ; flatten-module ; consider ’fib

fib = λ ds � case ds of wild

Z � Z

S ds � case ds of wild

Z � S Z

S n � (+) (fib (S n)) (fib n)

We can now see the GHC Core that has been generated.
The next step is to apply the WW split. We have written a script for this

transformation (see Sect. 5.1), which we load and apply with the load command:
hermit> load "WWSplitTactic.hss"

fib = let f = λ fib ds � case ds of wild

Z � Z

S ds � case ds of wild

Z � S Z

S n � (+) (fib (S n)) (fib n)

rec work = unwrap (f (wrap work))

in wrap work

As we will need this definition of work later, we save it under the name origwork
using the remember command:
hermit> consider ’work ; remember origwork

work = unwrap (f (wrap work))

We now need to η-expand the body of work so that we can unfold unwrap:
hermit> 0 ; eta-expand ’n

hermit> any-call (unfold ’unwrap)

λ n � (,) Nat Nat (f (wrap work) n) (f (wrap work) (S n))

The HERMIT in the Tree 93

There are several things to note here. Numbers designate a child node to descend
into, with 0 designating the right-hand-side of the definition in this case (the sole
child, as variables and literals are not considered to be children). any-call is
a higher-order command that applies its argument everywhere it can succeed
in the current sub-tree (we discuss this further in Sect. 5.4). Finally, the tuple
constructor is polymorphic, and thus takes two type arguments (both Nat in
this case).

Next we case-split on n to establish a base case for work :
hermit> 0 ; case-split-inline ’n

case n of n

Z � (,) Nat Nat (f (wrap work) Z) (f (wrap work) (S Z))

S a � (,) Nat Nat (f (wrap work) (S a)) (f (wrap work) (S (S a)))

Now we selectively unfold f in three of the four places it is called2:
hermit> { 1 ; any-call (unfold ’f) }
hermit> { 2 ; 0 ; 1 ; any-call (unfold ’f) }
hermit> simplify

case n of n

Z � (,) Nat Nat Z (S Z)

S a � (,) Nat Nat (f (wrap work) (S a))

((+) (wrap work (S a)) (wrap work a))

We move into the second case alternative for the remainder of the derivation.
In the second tuple component, we unfold the saved definition of work :
hermit> 2 ; 0 ; { 1 ; any-call (unfold origwork) }
(,) Nat Nat (f (wrap work) (S a))

((+) (wrap (unwrap (f (wrap work))) (S a))

(wrap (unwrap (f (wrap work))) a))

This creates an opportunity for fusing wrap and unwrap via the worker/wrapper
precondition, which we encoded in the source file as a GHC RULES pragma:

{-# RULES "precondition" ∀ x . wrap (unwrap x) = x #-}

hermit> any-call (unfold-rule precondition)

(,) Nat Nat (f (wrap work) (S a))

((+) (f (wrap work) (S a)) (f (wrap work) a))

Now the duplicated computation of f (wrap work) (S a) is evident. We name
each distinct call to f by introducing let bindings, float the lets outside of the
tuple, and then fold the duplicated computation of y :
2 Curly braces denote scoping: within a scope it is impossible to navigate above the

node at which the scope starts, and when the scope ends the cursor returns to the
starting node.

94 N. Sculthorpe et al.

hermit> { 1 ; 1 ; let-intro ’x }
hermit> { 0 ; 1 ; let-intro ’y }
hermit> innermost let-float

hermit> any-call (fold ’y)

let x = f (wrap work) a

y = f (wrap work) (S a)

in (,) Nat Nat y ((+) y x)

These steps caused us to wish for better navigation capabilities for moving into
case alternatives and tuples, as the use of numbers is unclear and brittle. We
think that this will be especially problematic as examples grow in size.

We now combine x and y into a case-analyzed tuple,
hermit> let-tuple ’xy

case (,) Nat Nat (f (wrap work) a) (f (wrap work) (S a)) of xy

(,) x y � (,) Nat Nat y ((+) y x)

thereby exposing the opportunity to fold unwrap:
hermit> any-call (fold ’unwrap)

case unwrap (f (wrap work)) a of xy

(,) x y � (,) Nat Nat y ((+) y x)

All that remains is to fold our saved definition of work . This results in a
definition with no calls to f , and no conversions via wrap and unwrap:
hermit> any-call (fold origwork)

case work a of xy

(,) x y � (,) Nat Nat y ((+) y x)

Zooming out to see all of fib, we notice that f is now dead code. This would
be removed by GHC’s optimizer, but for presentation purposes we do so here.
We also unfold the remaining call of wrap:
hermit> top ; consider ’fib

hermit> innermost dead-let-elimination

hermit> any-call (unfold ’wrap) ; simplify

fib = let rec work = λ n � case n of n

Z � (,) Nat Nat Z (S Z)

S a � case work a of xy

(,) x y � (,) Nat Nat y ((+) y x)

in λ x � fst Nat Nat (work x)

We now have the efficient version of fib, and so tell GHC to resume compilation:

hermit> resume

The HERMIT in the Tree 95

5 User Experiences

In this section we discuss our experience using HERMIT to mechanize our suite
of transformations. After selecting the three transformation techniques, we chose
the following representative examples from the literature as our suite, and mech-
anized them using HERMIT:

– WW: CPS [7], Last [25], Reverse [4,7], Memoization [7], Unboxing [7,18]
– CV: Flatten [11,28], Quicksort [28], Reverse [11,28]
– Tupling: Fibonacci [1,2,25], Mean [9], Towers of Hanoi [3,16]

Our resulting scripts are bundled with the HERMIT package, and are summa-
rized in Table 1. The Fibonacci script presented in Sect. 4 should provide the
reader with a point of comparison.

5.1 Worker/Wrapper

WW was the first transformation that we mechanized. Introducing fix , the first
step of WW, was not a transformation originally provided by HERMIT, nor was
it definable in terms of other HERMIT commands. However, using the existing
HERMIT infrastructure, it was straightforward to add a new rewrite for this
task. Adding a rewrite to eliminate fix was unnecessary, as that can be achieved
by using HERMIT’s existing unfold command.

We chose to encode WW factorization using GHC RULES. Thus no modifi-
cation to HERMIT was required, we just included the following pragma in the
source code of each example, along with appropriate wrap and unwrap functions:

{-# RULES "ww" ∀ f . fix f = wrap (fix (unwrap ◦ f ◦ wrap)) #-}

Table 1. HERMIT script sizes.

Script name Number of HERMIT commandsa Scripts called
Rewrites Strategy combinators Navigation Total

WWSplit 12 0 8 20 –
CPS 13 4 10 27 WWSplit
Last 10 1 8 19 WWSplit
Reverse 21 16 7 44 WWSplit
Memoisation 6 2 6 14 WWSplit
Unboxing 15 7 10 32 WWSplit

ConcatVanishes 23 8 5 36 –
Flatten 1 0 2 3 ConcatVanishes
Quicksort 3 1 2 6 ConcatVanishes
Reverse 1 0 2 3 ConcatVanishes

Fibonacci 21 12 21 54 WWSplit
Hanoi 34 21 36 91 WWSplit
Mean 19 5 27 51 –
a Rewriting commands are those that modify the syntax tree, navigation commands

focus the cursor onto specific nodes, and strategy combinators modify rewrites to
apply them in some systematic manner.

96 N. Sculthorpe et al.

This use of GHC RULES works, but is clunky to use, being specific to each wrap
and unwrap. We are currently working on creating a HERMIT command that
takes wrap and unwrap functions as parameters, thereby avoiding the need to
repeat this rule for every specific wrap and unwrap.

We encoded the WW split as a HERMIT script that calls WW factorization.
That is, it assumes the existence of an appropriate ww rule in the source file.
This is even more clunky, and we likewise intend to replace this script with a
paramaterized HERMIT command.

HERMIT does not yet have a mechanism for checking preconditions, so it is
up to the user to ensure that factorization is used only when the WW precon-
dition holds. This is not ideal, and providing some mechanism within HERMIT
for verifying pre-conditions, or at least for recording which pre-conditions have
been assumed during the transformation, is an obvious next step in its develop-
ment. Furthermore, as well as the danger of the HERMIT user incorrectly using
a rule, it is also possible that the GHC optimizer may apply a rule (which is
the intended purpose of GHC RULES after all). We addressed this using GHC’s
phase annotations, which allow the user to specify which optimization phases
the rule is eligible to be applied in. Inconveniently, these annotations required
at least one phase to be specified, but patching the GHC parser to accept zero
phases was trivial. This patch will be included in the GHC 7.8 release.

Another issue is that, unlike in a Haskell source file, the top-level bindings
are not treated as a mutually recursive group. During type checking (before gen-
erating GHC Core), a dependency analysis separates the bindings into minimal
recursive groups and orders these groups by their dependencies [17, Sect. 6.2.8].
This can be problematic when applying GHC RULES, as some of the variables
in the rule may not be in scope. To address this, we added a flatten-module
rewrite that combines the top-level binding groups into a single recursive group,
thereby ensuring that all variables that can appear in a rule will be in scope.

Other than these issues, we found mechanizing the WW examples to be
straightforward uses of HERMIT’s basic transformations and GHC RULES. A
detailed walk-through of the Reverse example, in the spirit of Sect. 4, can be
found in our earlier description of HERMIT [4].

We also encountered some unexpected behavior involving type-level universal
quantification. GHC Core passes around type arguments explicitly; thus when a
call is made to a polymorphic function, the type argument has to be provided.
For example, the Core generated from last has the following type and structure:

last :: ∀ τ . [τ] → τ
last = Λ τ → λ as → ...last τ ...

However, we discovered that if the type signature of a top-level polymorphic
function is omitted in the source code, GHC generates different Core. Specifically,
it performs the static-argument transformation [22], producing an outer non-
recursive polymorphic function, and an inner recursive monomorphic function.
That is, the type is fixed outside the recursion, avoiding the need to provide the
type as an argument to each recursive call.

The HERMIT in the Tree 97

last :: ∀ τ . [τ] → τ
last = Λ τ → let last :: [τ] → τ

last = λ as → ...last ...
in last

This difference, which is not noticeable at the level of Haskell source code, is
significant enough to allow a GHC rule to fire in one case and not another. For
example, WW factorization only fires for monomorphic functions, not polymor-
phic ones. In our opinion, HERMIT’s ability to interactively display information
on selected fragments of GHC Core was most helpful in understanding why the
rule was not firing. Indeed, we believe that experimenting with and debugging
GHC RULES is a potential application of the HERMIT system.

5.2 Concatenate Vanishes

Mechanizing CV proved straightforward. The main step can be expressed as WW
factorization, so most of the transformation proceeded in the same manner as
in Sect. 5.1. Mechanizing Flatten and Quicksort proved very similar to Reverse,
with only a few differences in the basic rewrites required to simplify the resultant
worker function. It was not necessary to add any new functionality to HERMIT.

Encouraged by the similarity of the three HERMIT scripts, we wrote a single
generic script that works for all three examples, using HERMIT’s higher-level
commands. For this we did need to add a new command to HERMIT. The
issue was that case-floating (taking a function applied to a case expression and
applying it to each case alternative instead) is only valid if the function is strict:

f (case x of
a1 → e1
a2 → e2
...
an → en)

⇒

case x of
a1 → f e1
a2 → f e2
...
an → f en

As HERMIT lacks a mechanism for verifying preconditions (Sect. 5.1), it is the
user’s responsibility to ensure that case-floating is only applied to strict func-
tions. This was fine when considering each example in isolation, as we explicitly
stated when and where to float a case. But as this differed between examples, the
usage in the generic script was potentially unsafe. To address this, we added a
command that floats case (and let) expressions, but only past a specific function
that it takes as a parameter. Again, adding this was straightforward.

Our generic CV script makes heavy use of GHC RULES, which encode the
monoid laws for ((++), []) and ((◦), id), and a monoid homomorphism between
them. We also used a rule to encode the fusion law relating the conversion
functions between lists and difference lists [7]. This rule also has a precondition,
and currently its usage in the generic script is unsafe in general (although in
each specific example it is used safely). We are working on adding a rewrite to
HERMIT that will allow us to restrict this rule to situations where the pre-
condition is met, in a similar manner to the case-floating previously discussed.

98 N. Sculthorpe et al.

Note that we do not claim that our generic script would work for any CV
example; indeed we are quite confident it would not. Its purpose was just to
test how well HERMIT copes with abstracting from multiple similar examples.
HERMIT is designed as an interactive system where transformations are user-
guided; we do not aim nor expect to be able to fully automate transformations
in general. What we do aim for is to make HERMIT commands as robust as
possible, in an effort to minimize the changes required if the source code changes,
and more abstract commands help in this regard.

5.3 Tupling Transformations

The tupling examples motivated several new capabilities in HERMIT. Recall
that in the Fibonacci example (Sect. 4) we established a base case for work
by case-splitting on a variable. This functionality required us to create a new
rewrite, case-split-inline,3 that performs the following transformation
(where C1..Cn are the constructor patterns of type T):

expr [x :: T] ⇒

case x of
C1 → expr [C1 / x]
C2 → expr [C2 / x]
...
Cn → expr [Cn / x]

This rewrite was straightforward to implement using capabilities provided by
the HERMIT API. It exposes an issue, however, when dealing with primitive
types. For example, the only constructor for the Int type is I#, which wraps
a primitive unboxed integer, rendering case-splitting rather unproductive. One
could imagine an alternative rewrite that accepts a literal value as the case
to introduce, rather than enumerating the constructors. However, implementing
this rewrite would require modifying the HERMIT REPL parser to parse Haskell
values (or at the very least, Haskell literals), and so remains future work.

The tupling examples use the fold/unfold equational-reasoning technique [2].
When using fold/unfold, it is common to need access to past definitions of func-
tions; a non-issue when working on paper (one simply looks up the page), but
one that we needed to address. While the HERMIT kernel maintains a record of
every version of the AST, we found it preferable to provide a command remember
that explicitly saves a definition, rather than dig through the kernel’s history.
This also allows fold/unfold to be a lower-level notion that does not assume the
existence of a version-control history, and means a definition can be saved and
then applied within a single composite rewrite.

Our implementation of fold performs a straightforward structural compari-
son of two expressions, attempting to instantiate one in terms of the other, and
thus is currently limited to folding syntactically α-equivalent expressions. This
was the most challenging new rewrite to add because it traverses two ASTs in
lockstep, and therefore cannot use much of the automation provided by KURE.
3 There is also a case-split command, which does not inline x in the alternatives.

The HERMIT in the Tree 99

Exposing fold opportunities required a new rewrite let-tuple that combines
the right-hand sides of multiple non-recursive let-bindings into a tuple, which is
then scrutinized by a case statement to project out the original bindings:

let v1 = e1

v2 = e2

...
vn = en

in expr

⇒ case (e1, e2, ..., en) of
(v1, v2, ..., vn) → expr

The only complication in encoding this rewrite was locating GHC’s tuple con-
structor, as the name (,) is used at both the type and value level, and in GHC
Core they share the same name space. There is also a more general need to
improve name lookup, as currently the source code has to explicitly import con-
structors for them to be visible to HERMIT.

We found the Towers of Hanoi example to be substantially similar to the
Fibonacci example, and it did not require any new capabilities beyond those we
had already added. The Mean example on the other hand did require a handful
of new transformations. However, these were simple local rewrites (such as let-
floating) that had been omitted from HERMIT’s suite of local transformations,
and were straightforward to encode using KURE.

5.4 Observations on Inlining

Initially, it was unclear how best to provide function inlining. We found that
the inline rewrite was in practice often followed by the general-purpose clean-
up command bash [4]. Among other things, bash performs beta-reduction and
inlining repeatedly, and thus was serving as a crude way of unfolding a definition.
However, in some cases this was undesirably reducing the content of the inlined
function or its arguments. Consider the following bindings:

f = λx → (+) x 4

e = f (g x)

What should the result of inlining f in the right-hand-side of e be? After con-
sideration, we settled on three distinct rewrites, summarized in Table 2.

Table 2. Inlining terminology and usage examples.

Terminology Description Example

To inline To replace a value with its definition (λx → (+) x 4) (g x)

To apply To inline in the context of (zero or more)
arguments, and perform beta-reduction
(to let-binding) on all the arguments

let xn = g x
in (+) xn 4 (where
n is unique)

To unfold To apply, then attempt safe/cheap
substitution on all the new let-bindings
introduced by the application

(+) (g x) 4

100 N. Sculthorpe et al.

Building on this decision, we found KURE’s traversal combinators [4,24] in-
sufficient for our needs: specifically, it was difficult to include as many arguments
as possible when unfolding curried functions, while at the same time ensuring ter-
mination of unfolding. This is not an issue with inline, only apply and unfold.
To address this, we invented a traversal strategy to support apply and unfold
called any-call, which visits nodes in an order that maximizes the number of
arguments provided to an inlined function, as well as traversing any arguments
before performing the apply/unfold. We have used any-call in our examples, as
it is now our standard traversal combinator for working with apply and unfold.

When inlining case wildcard binders, there is a choice between using either
the case scrutinee, or the pattern matched by the current case alternative. For
example, consider the following situation:

case expr of wild
pat → ... wild ...

If we inline wild on the right-hand-side of the case alternative, should we re-
place it with expr or pat? HERMIT initially did the former, but in practice we
found that we usually wanted the latter. We thus modified the inline rewrite
accordingly, and added a rewrite inline-scrutinee to provide the old behavior.

6 Related Work

There are several refactoring tools for Haskell programs, including the Haskell
Refactorer (HaRe) [14], the Programming Assistant for Transforming
Haskell (PATH) [27], the Ulm Transformation System (Ultra) [8], and the Haskell
Equational Reasoning Assistant (HERA) [6]. The key distinction of HERMIT
from these systems is that they operate on Haskell source code, or some variant
thereof, whereas HERMIT operates on GHC Core, midway through the com-
pilation process. The principal advantage of this approach is that GHC Core
is a small language, having stripped away all of Haskell’s syntactic sugar. This
makes HERMIT simpler to use, implement and maintain, as there are far fewer
cases to consider. Other advantages are that this automatically supports GHC
language extensions, as GHC compiles them to GHC Core, and that inserting
HERMIT inside the GHC optimization pipeline allows transformations to be
intermixed with GHC’s optimization passes. However, a disadvantage is that
HERMIT cannot output Haskell source code.

More generally, there are a wide variety of refactoring tools for other lan-
guages. However, unlike HERMIT, most do not support higher-order commands
and the scripting of composite refactorings [12]. One exception is Wrangler [13],
a refactoring tool for Erlang, which has recently added such support [12].

One can also use proof assistants such as Coq or Agda to mechanize program
transformations interactively. However, this requires modeling the syntax and
semantics of the object language, encoding the program in that model, and then,
after transformation, transliterating the result back into the object language
before it can be compiled and executed. Even were we to ignore GHC language

The HERMIT in the Tree 101

extensions, or consider only a limited subset of Haskell 98, the presence of partial
values and lazy semantics mean we cannot simply define our programs directly
in the total languages provided by such proof assistants, but instead have to
model Haskell’s domain-theoretic setting of continuous functions over pointed ω-
complete partial orders [23]. We emphasize that one of the aims of the HERMIT
project is to make transforming Haskell programs easy for the user: we do not
want familiarity with domain theory and proof assistants to be prerequisites.

7 Conclusions and Future Work

Our experience thus far has been that it is viable to mechanize basic program
transformations, and that performing the transformations in HERMIT is no
more complicated than on paper. However, while encoding our examples we re-
peatedly found it necessary to add additional transformations, and higher-level
transformation strategies. This is unsurprising, as the HERMIT system is still
in an early stage of development. What remains to be seen is whether, as we
try more complex examples, we continue to need to add new transformations, or
whether those we have now will scale. In general, we found adding new transfor-
mations to HERMIT to be a fairly simple procedure, whether by building them
from HERMIT’s existing low-level transformations, or by using GHC RULES.
More challenging has been verifying the correctness of these transformations,
and debugging our HERMIT programs when they fail to do as we expect.

Working within GHC has proved convenient. GHC Core has already been
type checked before HERMIT acts on it, making all type information available.
Much implementation effort was saved by using existing GHC functions such as
substitution and variable de-shadowing, and safety checks such as the Core Lint
pass [19], which ensures that the resultant code is type-correct and well-scoped.

More work is now needed. We have mechanized a collection of small examples
as a proof of concept, but we need to try transforming larger real-world programs.

Acknowledgements. We thank Ed Komp for his work on implementing the HER-
MIT system, Jason Reich for suggesting the Mean example, and the anonymous re-
viewers for their constructive comments and feedback. This material is based upon
work supported by the National Science Foundation under Grant No. 1117569.

References

1. Bird, R.S.: Tabulation techniques for recursive programs. ACM Comput.Surv.
12(4), 403–417 (1980)

2. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

3. Chin, W.N., Khoo, S.C., Jones, N.: Redundant call elimination via tupling. Fun-
dam. Informaticae 69(1–2), 1–37 (2006)

4. Farmer, A., Gill, A., Komp, E., Sculthorpe, N.: The HERMIT in the machine: a
plugin for the interactive transformation of GHC core language programs. In: 2012
ACM SIGPLAN Haskell Symposium, pp. 1–12. ACM, New York (2012)

102 N. Sculthorpe et al.

5. GHC Team: The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 7.6.2. http://www.haskell.org/ghc (2013)

6. Gill, A.: Introducing the Haskell equational reasoning assistant. In: 2006 ACM
SIGPLAN Haskell Workshop, pp. 108–109. ACM, New York (2006)

7. Gill, A., Hutton, G.: The worker/wrapper transformation. J. Funct. Program.
19(2), 227–251 (2009)

8. Guttmann, W., Partsch, H., Schulte, W., Vullinghs, T.: Tool support for the in-
teractive derivation of formally correct functional programs. J. Univ. Comput. Sci.
9(2), 173–188 (2003)

9. Hu, Z., Iwasaki, H., Takeichi, M., Takano, A.: Tupling calculation eliminates multi-
ple data traversals. In: 2nd ACM SIGPLAN International Conference on Functional
Programming, pp. 164–175. ACM, New York (1997)

10. Hughes, R.J.M.: A novel representation of lists and its application to the function
“reverse”. Inf. Process. Lett. 22(3), 141–144 (1986)

11. Hutton, G.: Programming in Haskell. Cambridge University Press, Cambridge
(2007)

12. Li, H., Thompson, S.: A domain-specific language for scripting refactoring in Er-
lang. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 501–515.
Springer, Heidelberg (2012)

13. Li, H., Thompson, S., Orosz, G., Tóth, M.: Refactoring with wrangler, updated:
data and process refactorings, and integration with eclipse. In: 7th ACM SIGPLAN
Erlang Workshop, pp. 61–72. ACM, New York (2008)

14. Li, H., Thompson, S., Reinke, C.: The Haskell refactorer, HaRe, and its API.
Electron. Notes Theor. Comput. Sci. 141(4), 29–34 (2005)

15. Liu, Y.A., Stoller, S.D.: Dynamic programming via static incrementalization.
Higher-Order Symbolic Comput. 16(1–2), 37–62 (2003)

16. Pettorossi, A.: A powerful strategy for deriving efficient programs by transfor-
mation. In: 1984 ACM Symposium on LISP and Functional Programming, pp.
273–281. ACM, New York (1984)

17. Peyton Jones, S.: The Implementation of Functional Programming Languages.
Prentice Hall, New York (1987)

18. Peyton Jones, S.L., Launchbury, J.: Unboxed values as first class citizens in a non-
strict functional language. In: 5th ACM Conference on Functional Programming
Languages and Computer Architecture, pp. 636–666. Springer, Heidelberg (1991)

19. Jones Peyton, S., Santos, A.L.M.: A transformation-based optimiser or Haskell.
Sci. Comput. Program. 32(1–3), 3–47 (1998)

20. Peyton Jones, S., Tolmach, A., Hoare, T.: Playing by the rules: rewriting as a prac-
tical optimisation technique in GHC. In: 2001 ACM SIGPLAN Haskell Workshop,
pp. 203–233. ACM, New York (2001)

21. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
22. Santos, A.: Compilation by transformation in non-strict functional languages.

Ph.D. thesis, University of Glasgow (1995)
23. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-

ment. Allyn and Bacon, Newton (1986)
24. Sculthorpe, N., Frisby, N., Gill, A.: KURE: A Haskell-embedded strategic program-

ming language with custom closed universes (in preparation)
25. Sculthorpe, N., Hutton, G.: Work it, wrap it, fix it, fold it (in preparation)
26. Sulzmann, M., Chakravarty, M.M.T., Peyton Jones, S., Donnelly, K.: System F

with type equality coercions. In: 3rd ACM SIGPLAN Workshop on Types in Lan-
guage Design and Implementaion, pp. 53–66. ACM, New York (2007)

http://www.haskell.org/ghc

The HERMIT in the Tree 103

27. Tullsen, M.: PATH, a program transformation system for Haskell. Ph.D. thesis,
Yale University (2002)

28. Wadler, P.: The concatenate vanishes. University of Glasgow, Tech. rep. (1989)
29. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,

J.P.: Giving Haskell a promotion. In: 7th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, pp. 53–66. ACM, New York (2012)

Optimisation of Generic Programs
Through Inlining

José Pedro Magalhães(B)

Department of Computer Science, University of Oxford, Oxford, UK
jpm@cs.ox.ac.uk

Abstract. It is known that datatype-generic programs often run slower
than type-specific variants, and this factor can prevent adoption of
generic programming altogether. There can be multiple reasons for the
performance penalty, but often it is caused by conversions to and from
representation types that do not get eliminated during compilation. How-
ever, it is also known that generic functions can be specialised to specific
datatypes, removing any overhead from the use of generic programming.
In this paper, we investigate compilation techniques to specialise generic
functions and remove the performance overhead of generic programs in
Haskell. We pick a representative generic programming library and look
at the generated code for a number of example generic functions. After
understanding the necessary compiler optimisations for producing effi-
cient generic code, we benchmark the runtime of our generic functions
against handwritten variants, and conclude that the overhead can indeed
be removed automatically by the compiler.

1 Introduction

Datatype-generic programming is a form of abstraction that allows defining func-
tions that operate on every suitable datatype. Generic programs operate on the
general structure of datatypes, therefore remaining agnostic of the individual
detail of each datatype. Examples of behaviour that can be defined generically
are (de)serialisation, equality testing, and traversing data. It is convenient to
define such functions generically because less code has to be written, and this
code has to be adapted less often. However, generic programs operate on the
underlying structure of datatypes, and not on datatypes themselves directly.
This indirection often causes a runtime penalty, as conversions to and from the
generic representation are not always optimised away.

The performance of generic programs has been analysed before. Rodriguez
Yakushev et al. [14] present a detailed comparison of nine libraries for generic
programming in Haskell, with a brief performance analysis. This analysis in-
dicates that the use of a generic approach could result in an increase of the
running time by a factor of as much as 80. Van Noort et al. [10] also report

This work has been funded by EPSRC grant number EP/J010995/1. We thank the
anonymous reviewers for the helpful feedback.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 104–121, 2013.
DOI: 10.1007/978-3-642-41582-1 7, c© Springer-Verlag Berlin Heidelberg 2013

Optimisation of Generic Programs Through Inlining 105

severe performance degradation when comparing a generic approach to a similar
but type-specific variant. While this is typically not a problem for smaller exam-
ples, it can severely impair adoption of generic programming in larger contexts.
This problem is particularly relevant because generic programming techniques
are especially applicable to large applications where performance is crucial, such
as structure editors or compilers.

To understand the source of performance degradation when using a generic
function from a particular generic programming library, we have to analyse
the implementation of the library. The fundamental idea behind generic pro-
gramming is to represent all datatypes by a small set of representation types.
Equipped with conversion functions between user datatypes and their repre-
sentation, we can define functions on the representation types, which are then
applicable to all user types via the conversion functions. While these conversion
functions are typically trivial and can be automatically generated, the overhead
they impose is not automatically removed. In general, conversions to and from
the generic representations are not eliminated by compilation, and are performed
at run-time. These conversions are the main source of inefficiency for generic pro-
gramming libraries. In the earlier implementations of generic programming as
code generators or preprocessors [4], optimisations (such as automatic generation
of type-specialised variants of generic functions) could be implemented exter-
nally. Modern implementations of generic programming are libraries, removing
the need for cumbersome work on parsing and type checking, for instance. With
the switch to library approaches, however, all optimisations have to be performed
by the compiler.

The Glasgow Haskell Compiler (GHC, the main Haskell compiler) compiles a
program by first converting the input into a core language and then transforming
the core code into more optimised versions, in a series of sequential passes. While
it performs a wide range of optimisations, with the default settings it seems to
be unable to remove the overhead incurred by using generic representations.
Therefore generic libraries perform worse than handwritten type-specific coun-
terparts. Alimarine and Smetsers [1,2] show that in many cases it is possible to
remove all overhead by performing a specific form of symbolic evaluation in the
Clean compiler. In fact, their approach is not restricted to optimising generics,
and GHC performs symbolic evaluation as part of its optimisations. Our goal is
to convince GHC to optimise generic functions so as to achieve the same perfor-
mance as handwritten code, without requiring any additional manipulation of
the compiler internals.

We have investigated this problem before [8], and concluded that tweaking
GHC optimisation flags can achieve significant speedups. The problem with using
compiler flags is that these apply to the entire program being compiled, and while
certain flags might have a good effect on generic functions, they might adversely
affect performance (or code size) of other parts of the program. In this paper
we take a more fine-grained approach to the problem, looking at how to localise
our performance annotations to the generic code only, by means of rewrite rules

106 J. P. Magalhães

and function pragmas.1 In this way we can improve the performance of generic
functions with minimal impact on the rest of the program.

We continue this paper by defining two representative generic functions which
we focus our optimisation efforts on (Sect. 2). We then see how these functions
can be optimised manually (Sect. 3), and transfer the necessary optimisation
techniques to the compiler (Sect. 4). We confirm that our optimisations result in
better runtime performance of generic programs in a benchmark in Sect. 5, and
conclude in Sect. 6.

2 Example Generic Functions

For analysing the performance of generic programs we choose the
generic-deriving library, now integrated in GHC. Due to space considerations
we can only provide the (simplified) interface of this library:

data U1 λ = U1

data K1 Γ λ = K1 Γ
data (Γ :+: Δ) λ = L1 (Γ λ) | R1 (Δ λ)
data (Γ :×: Δ) λ = Γ λ :×: Δ λ

class Generic Γ where
type Rep Γ :: χ → χ
to :: Rep Γ λ → Γ
from :: Γ → Rep Γ λ

U1 encodes constructors without arguments. K1 Γ λ encodes recursion into
some datatype Γ. Finally, (:+:) encodes choice between constructors, and (:×:)
is used for constructors with multiple arguments. The parameter λ, present in
all the representation types, is not used by our example generic functions and
can be safely ignored. The type class Generic encodes the conversion between a
datatype Γ and its representation Rep Γ, witnessed by the conversion functions
to and from. The reader is referred to Magalhães [7] for a full description of
generic-deriving.

We present two generic functions that will be the focus of our attention:
equality and enumeration. These are chosen as representative examples; equality
is a generic consumer, taking generic values as input, and enumeration is a
generic producer, since it generates generic values. Equality is a relatively simple,
standard example, while enumeration requires the use of auxiliary (non-generic)
functions.

2.1 Generic Equality

A notion of structural equality can easily be defined as a generic function. We
first define a class for equality on the representation types:

class GEqRep φ where
geqRep :: φ Γ → φ Γ → Bool

1 http://www.haskell.org/ghc/docs/7.4.1/html/users guide/pragmas.html

http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html

Optimisation of Generic Programs Through Inlining 107

We can now give instances for each of the representation types:

instance GEqRep U1 where
geqRep _ _ = True

instance (GEqRep Γ,GEqRep Δ) ⇒ GEqRep (Γ :+: Δ) where
geqRep (L1 x) (L1 y) = geqRep x y
geqRep (R1 x) (R1 y) = geqRep x y
geqRep _ _ = False

instance (GEqRep Γ,GEqRep Δ) ⇒ GEqRep (Γ :×: Δ) where
geqRep (x1 :×: y1) (x2 :×: y2) = geqRep x1 x2 ← geqRep y1 y2

Units are trivially equal. For sums we continue the comparison recursively if
both values are either on the left or on the right, and return False otherwise.
Products are equal if both components are equal.

For recursive occurrences we fall back to a user-facing GEq class:

instance (GEq γ) ⇒ GEqRep (K1 γ) where
geqRep (K1 a) (K1 b) = geq a b

This user-facing class is similar to GEqRep, but is used for user datatypes,
and comes with a generic default method:

class GEq Γ where
geq :: Γ → Γ → Bool
default geq :: (Generic Γ,GEqRep (Rep Γ)) ⇒ Γ → Γ → Bool
geq x y = geqRep (from x) (from y)

This class is similar to the Prelude Eq class, but we have left out inequality for
simplicity. The generic default simply calls from on the arguments, and then
proceeds using the generic equality function geqRep.

Adhoc instances for base types can reuse the Prelude implementation:

instance GEq Int where
geq = (∗)

User datatypes, such as lists, can use the generic default:

instance (GEq Γ) ⇒ GEq [Γ]

2.2 Generic Enumeration

We now define a function that enumerates all possible values of a datatype. For
infinite datatypes we have to make sure that every possible value will eventu-
ally be produced. For instance, if we are enumerating integers, we should not

108 J. P. Magalhães

first enumerate all positive numbers, and then the negatives. Instead, we should
interleave positive and negative numbers.

We enumerate values by listing them with the standard list type. There is
only one unit to enumerate, and for datatype occurrences we refer to a user-
facing GEnum class:

class GEnumRep φ where
genumRep :: [φ Γ]

instance GEnumRep U1 where
genumRep = [U1]

instance (GEnum Γ) ⇒ GEnumRep (K1 Γ) where
genumRep = map K1 genum

The more interesting cases are those for sums and products. For sums we
enumerate both alternatives, but interleave them with a (|||) operator:

instance (GEnumRep Γ,GEnumRep Δ) ⇒ GEnumRep (Γ :+: Δ) where
genumRep = map L1 genumRep ||| map R1 genumRep

infixr 5 |||
(|||) :: [Γ] → [Γ] → [Γ]

For products we generate all possible combinations of the two arguments,
and diagonalise the result matrix, ensuring that all elements from each sublist
will eventually be included, even if the lists are infinite:

instance (GEnumRep Γ,GEnumRep Δ) ⇒ GEnumRep (Γ :×: Δ) where
genumRep = diag(map (λx → map (λy → x :×: y) genumRep)genumRep)

diag :: [[Γ]] → [Γ]

We omit the implementation details of (|||) and diag as they are not important;
it only matters that we have some form of fair interleaving and diagonalisation
operations. The presence of (|||) and diag throughout the generic function defini-
tion makes enumeration more complicated than equality, since equality does not
make use of any auxiliary functions. We will see in Sect. 4.3 how this complicates
the specialisation process. Note also that we do not use the more natural list
comprehension syntax for defining the product instance, again to simplify the
analysis of the optimisation process.

Finally, we define the user-facing class, with a default implementation:

Optimisation of Generic Programs Through Inlining 109

class GEnum Γ where
genum :: [Γ]
default genum :: (Generic Γ,GEnumRep (Rep Γ)) ⇒ [Γ]
genum = map to genumRep

3 Specialisation, by Hand

We now focus on the problem of specialisation of generic functions. By speciali-
sation we mean removing the use of generic conversion functions and representa-
tion types, replacing them by constructors of the original datatype. To convince
ourselves that this task is possible, we first develop a hand-written derivation of
specialisation by equational reasoning. For simplicity we ignore implementation
mechanisms such as the use of type classes and type families, and focus first on
a very simple datatype encoding natural numbers:

data Nat = Ze | Su Nat

We give the representation of naturals with standard Haskell datatypes using a
type synonym:

type RepNat = Either () Nat

We use a shallow representation (with Nat at the leaves, and not RepNat), re-
maining faithful with generic-deriving. We also need a way to convert between
RepNat and Nat :

toNat :: RepNat → Nat
toNat n = case n of {Left () → Ze; Right n → Su n; }
fromNat :: Nat → RepNat
fromNat n = case n of {Ze → Left (); Su n → Right n; }

We now analyse the specialisation of generic equality and enumeration on this
datatype.

3.1 Generic Equality

We consider two versions of an equality function. The first is a handwritten,
type-specific definition of equality for Nat :

eqNat :: Nat → Nat → Bool
eqNat m n = case (m , n) of

(Ze , Ze) → True
(Su m , Su n) → eqNat m n
(_ , _) → False

110 J. P. Magalhães

The second is generic equality on Nat through RepNat , for which we need
equality on units and sums:

eqU :: () → () → Bool
eqU x y = case (x , y) of {(() , ()) → True; }
eqPlus :: (α → α → Bool) → (β → β → Bool) → Either α β → Either α β → Bool
eqPlus ea eb a b = case (a , b) of

(Left x , Left y) → ea x y
(Right x , Right y) → eb x y
(_ , _) → False

Now we can define equality for RepNat , and generic equality for Nat through
conversion to RepNat :

eqRepNat :: RepNat → RepNat → Bool
eqRepNat = eqPlus eqU eqNatFromRep
eqNatFromRep :: Nat → Nat → Bool
eqNatFromRep m n = eqRepNat (fromNat m) (fromNat n)

Our goal now is to show that eqNatFromRep is equivalent to eqNat . In the
following derivation, we start with the definition of eqNatFromRep, and end with
the definition of eqNat :

eqRepNat (fromNat m) (fromNat n)

∗◦ inline eqRepNat and eqPlus ∨
case (fromNat m , fromNat n) of

(Left x , Left y) → eqU x y
(Right x , Right y) → eqNatFromRep x y
_ → False

∗◦ inline fromNat ∨
case (case m of {Ze → Left ();Su x1 → Right x1 }

, case n of {Ze → Left ();Su x2 → Right x2 }) of
(Left x , Left y) → eqU x y
(Right x , Right y) → eqNatFromRep x y
_ → False

∗◦ case-of-case transform ∨
case (m , n) of

(Ze , Ze) → eqU () ()
(Su x1 , Su x2) → eqNatFromRep x1 x2
_ → False

Optimisation of Generic Programs Through Inlining 111

∗◦ inline eqU and case-of-constant ∨
case (m , n) of

(Ze , Ze) → True
(Su x1 , Su x2) → eqNatFromRep x1 x2
_ → False

This shows that the generic implementation is equivalent to the type-specific
variant, and that it can be optimised to remove all conversions. We discuss the
techniques used in this derivation in more detail in Sect. 4.1, after showing the
optimisation of generic enumeration.

3.2 Generic Enumeration

A type-specific enumeration function for Nat follows:

enumNat :: [Nat]
enumNat = [Ze] ||| map Su enumNat

To get an enumeration for RepNat we first need to know how to enumerate
units and sums:

enumU :: [()]
enumU = [()]
enumPlus :: [Γ] → [Δ] → [Either Γ Δ]
enumPlus ea eb = map Left ea ||| map Right eb

Now we can define an enumeration for RepNat :

enumRepNat :: [RepNat]
enumRepNat = enumPlus enumU enumNatFromRep

With the conversion function toNat , we can use enumRepNat to get a generic
enumeration function for Nat :

enumNatFromRep :: [Nat]
enumNatFromRep = map toNat enumRepNat

We now show that enumNatFromRep and enumNat are equivalent2:
2 Given that these are recursive structures, we have to be careful to preserve correct-

ness over the whole proof, even if each step is clearly correct [15]. None of the steps
in the proof changes the productivity of the entire expression, so we are confident of
its overall correctness.

112 J. P. Magalhães

map toNat enumRepNat

∗◦ inline enumRepNat and enumPlus ∨
map toNat (map Left enumU ||| map Right enumNatFromRep)

∗◦ inline enumU and map ∨
map toNat ([Left ()] ||| map Right enumNatFromRep)

∗◦ free theorem (|||) : ≡f a b.map f (a ||| b) = map f a ||| map f b ∨
map toNat [Left ()] ||| map toNat (map Right enumNatFromRep)

∗◦ inline map and toNat , case-of-constant ∨
[Ze] ||| map toNat (map Right enumNatFromRep)

∗◦ functor composition law: ≡f g l .map f (map g l) = map (f ◦ g) l ∨
[Ze] ||| map (toNat ◦ Right) enumNatFromRep

∗◦ inline toNat and case-of-constant ∨
[Ze] ||| map Su enumNatFromRep

Like equality, generic enumeration can also be specialised to a type-specific vari-
ant without any overhead.

4 Specialisation, by the Compiler

After the manual specialisation of generic functions, let us now analyse how to
convince the compiler to automatically perform the specialisation.

4.1 Optimisation Techniques

Our calculations in Sect. 3 rely on a number of lemmas and techniques that the
compiler will have to use. We review them here:

Inlining. Inlining replaces a function call with its definition. It is a crucial opti-
misation technique because it can expose other optimisations. However, inlining
causes code duplication, and care has to be taken to avoid non-termination
through infinite inlining.

GHC uses a number of heuristics to decide when to inline a function or
not, and loop breakers for preventing infinite inlining [11]. The programmer can
provide explicit inlining annotations with the INLINE and NOINLINE pragmas,
of the form:

{−# INLINE [n] f #−}

Optimisation of Generic Programs Through Inlining 113

In this pragma, f is the function to be inlined, and n is a phase number. GHC
performs a number of optimisation phases on a program, numbered in decreasing
order until zero. Setting n to 1, for instance, means “be keen to inline f in phase
1 and after”. For a NOINLINE pragma, this means “do not inline f in phase
1 or after”. The phase can be left out, in which case the pragma applies to all
phases.3

Application of free theorems and functor laws. Free theorems [16] are theorems
that arise from the type of a polymorphic function, regardless of the function’s
definition. Each polymorphic function is associated with a free theorem, and
functions with the same type share the same theorem. The functor laws arise
from the categorical nature of functors. Every Functor instance in Haskell should
obey the functor laws.

GHC does not compute and use the free theorem of each polymorphic func-
tion, in particular because it may not be clear which direction of the theorem is
useful for optimisation purposes. However, we can add special optimisation rules
to GHC via a RULES pragma [13]. For instance, the rewrite rule corresponding
to the free theorem of (|||) follows:

{−# RULES "ft/|||" ≡f a b. map f (a ||| b) = map f a ||| map f b #−}

This pragma introduces a rule named “ft/|||” telling GHC to replace occurrences
of the application map f (a ||| b) with map f a |||map f b. GHC does not perform
any confluence checking on rewrite rules, so the programmer should ensure con-
fluence or GHC might loop during compilation.

Optimisation of case statements. Case statements drive evaluation in GHC’s core
language, and give rise to many possible optimisations. Peyton Jones and Santos
[12] provide a detailed account of these; in our derivation in Sect. 3.2 we used a
“case of constant” rule to optimise a statement of the form:

case (Left ()) of {Left () → Ze; Right n → Su n; }

Since we know what we are case-analysing, we can replace this case statement by
the much simpler expressionZe. Similarly, in Sect. 3.1 we used a case-of-case trans-
form to eliminate an inner case statement. Consider an expression of the form:

case (case x of {p1 → e2 ; }) of {p2 → e3 ; }

Here, p1 and p2 are patterns, e2 and e3 are expressions, and e2 matches p2 . Taking
care to avoid variable capture, we can often simplify this to:

case x of {p1 → e3 ; }

This rule naturally generalises to case statements with multiple branches.
3 See the GHC User’s Guide for more details: http://www.haskell.org/ghc/docs/7.4.1/

html/users guide/pragmas.html.

http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html

114 J. P. Magalhães

4.2 Generic Equality

We have seen that we have a good number of tools at our disposal for directing
the optimisation process in GHC: inline pragmas, rewrite rules, phase distinction,
and all the standard optimisations for the functional core language. We will now
annotate our generic functions and evaluate the quality of the core code generated
by GHC.
We start by defining a Generic instance for the Nat type:

instance Generic Nat where
type Rep Nat = U1 :+: K1 Nat
{−# INLINE [1] to #−}
to (L1 U1) = Ze
to (R1 (K1 n)) = Su n
{−# INLINE [1] from #−}
from Ze = L1 U1

from (Su n) = R1 (K1 n)

We give inline pragmas for to and from to guarantee that these functions will be
inlined. However, we ask the inliner to only inline them on phase 1 and after; this
is to ensure that we first inline the generic function definitions, simplify those, and
then inline the conversion functions and simplify again.

We can now provide a generic definition of equality for Nat :

instance GEq Nat

Compiling this code with the standard optimisation flag -O gives us the fol-
lowing core code:

$GEqNatgeq :: Nat → Nat → Bool

$GEqNatgeq = λ(x :: Nat) (y :: Nat) →
case x of

Ze → case y of {Ze → True; Su m → False; }
Su m → case y of {Ze → False;Su n → $GEqNatgeq m n; }

The core language is a small, explicitly typed language in the style of System F
[17]. The function $GEqNatgeq is prefixed with a $ because it was generated by
the compiler, representing the geq method of the GEq instance for Nat . We can
see that the generic representation was completely removed.

Optimisation of Generic Programs Through Inlining 115

The same happens for lists, as evidenced by the generated core code:

$GEq []geq :: ≡Γ.GEq Γ ⇒ [Γ] → [Γ] → Bool
$GEq []geq = λΓ (eqA :: GEq Γ) (l1 :: [Γ]) (l2 :: [Γ]) →

case l1 of
[] → case l2 of {[] → True; (h : t) → False; }
(h1 : t1) → case l2 of

[] → False
(h2 : t2) → case eqA h1 h2 of

False → False
True → $GEq []geq Γ eqA t1 t2

Note that type abstraction and application is explicit in core. There is syntax to
distinguish type and value application and abstraction from each other, but we
suppress the distinction since it is clear from the use of Greek letters for type vari-
ables. Note also that constraints (to the left of the ⇒ arrow) become just ordinary
parameters, so $GEq []geq takes a function to compute equality on the list elements,
eqA.4

Perhaps surprisingly, GHC performs all the required steps of Sect. 3.1 without
requiring any annotations to the generic function itself. In general, however, we
found that it is sensible to provide INLINE pragmas for each instance of the rep-
resentation datatypes when defining a generic function. In the case of geqRep, the
methods are small, so GHC inlines them eagerly. For more complicated generic
functions, the methods may become larger, and GHC will avoid inlining them.
Supplying an INLINE pragma tells GHC to inline the methods anyway.

4.3 Generic Enumeration

Generic consumers, such as equality, are, in our experience, more easily optimised
by GHC. A generic producer such as enumeration, in particular, is challenging be-
cause it requires map fusion, and lifting auxiliary functions through maps using
free theorems. As such, we encounter some difficulties while optimising enumera-
tion. We start by looking at the natural numbers:

instance GEnum Nat where
genum = map to genumRep

Note that instead of using the default definition we directly inline its definition;
this is to circumvent a bug in the current implementation of defaults that prevents
later rewrite rules from applying. GHC then generates the following code:
4 The type of eqA is GEq α, but we use it as if it had type α → α → Bool . In the gen-

erated core there is also a coercion around the use of eqA to transform the class type
into a function, but we elide these details as they are not relevant to the optimisation
itself.

116 J. P. Magalhães

$x2 :: [U1 :+: K1 Nat]
$x2 = map $x4 $GEnumNatgenum
$x1 :: [U1 :+: K1 Nat]
$x1 = $x3 ||| $x2
$GEnumNatgenum :: [Nat]
$GEnumNatgenum = map to $x1

We omit the definitions of $x3 and $x4 for brevity. To make progress we need to
tell GHC to move the map to expression in $GEnumNatgenum through the (|||)
operator. We use a rewrite rule for this:

{−# RULES "ft/|||" ≡f a b. map f (a ||| b) = map f a ||| map f b #−}

With this rule in place, GHC generates the following code:

$x2 :: [U1 :+: K1 Nat]
$x2 = map $x4 $GEnumNatgenum
$x1 :: [Nat]
$x1 = map to $x2
$GEnumNatgenum :: [Nat]
$GEnumNatgenum = $x3 ||| $x1

We now see that the $x1 term is map applied to the result of a map. The way
map is optimised in GHC (by conversion to buildfoldr form) interferes with our
"ft/|||" rewrite rule, and map fusion is not happening. We can remedy this with
an explicit map fusion rewrite rule:

{−# RULES "map/map" ≡f g l . map f (map g l) = map (f ◦ g) l #−}

This rule results in much improved generated code:

$x3 :: [U1 :+: K1 Nat]
$x3 = $x4 : []
$x2 :: [Nat]
$x2 = map to $x3
$x1 :: [Nat]
$x1 = map Su $GEnumNatgenum
$GEnumNatgenum :: [Nat]
$GEnumNatgenum = $x2 ||| $x1

The only thing we are missing now is to optimise $x3 ; note that its type is [U1 :+:
K1 Nat], and not [Nat]. For this we simply need to tell GHC to eagerly map a
function over a list with a single element:

Optimisation of Generic Programs Through Inlining 117

{−# RULES "map/singleton" ≡f x . map f (x : []) = (f x) : [] #−}

With this, GHC can finally generate the fully specialised enumeration function on
Nat :

$x2 :: [Nat]
$x2 = Ze : []
$x1 :: [Nat]
$x1 = map Su $GEnumNatgenum
$GEnumNatgenum :: [Nat]
$GEnumNatgenum = $x2 ||| $x1

Compelling GHC to optimise generic enumeration for lists proves to be more
difficult.5 Since lists use products, we need to introduce a rewrite rule for the free
theorem of diag , allowing map to be pushed inside diag :

{−# RULES "ft/diag" ≡f l . map f (diag l) = diag (map (map f) l) #−}

With this rule, and the extra optimisation flag -fno-full-laziness to maximise
the chances for rewrite rules to apply, we get the following code:

$GEnum[]genum :: ≡Γ.GEnum Γ ⇒ [[Γ]]
$GEnum[]genum = λ(gEnumA :: GEnum Γ) →

([] : []) ||| let $x1 :: [K1 [Γ]]
$x1 = map K1 ($GEnum[]genum gEnumA)

in diag (map (λ($x3 :: Γ) →
map (λ($x2 :: K1 [Γ]) → case $x2 of

K1 $x4 → $x3 : $x4) $x1)
gEnumA)

Most of the generic overhead is optimised away, but one problem remains: $x1
maps K1 over the recursive enumeration elements, but this K1 is immediately
eliminated by a case statement. If $x1 was inlined, GHC could perform a map
fusion, and then eliminate the use of K1 altogether. However, we have no way
to specify that $x1 should be inlined; the compiler generated it, so only the
compiler can decide when to inline it. Also, we had to use the compiler flag
-fno-full-laziness to prevent some let-floating, but the flag applies to the en-
tire program and might have unintended side-effects.

Reflecting on our developments in this section, we have seen that:
5 We believe, however, that this is only due to bugs in the inliner, and have filed bug

reports #7109, #7112, and #7114 to address these issues.

http://hackage.haskell.org/trac/ghc/ticket/7109
http://hackage.haskell.org/trac/ghc/ticket/7112
http://hackage.haskell.org/trac/ghc/ticket/7114

118 J. P. Magalhães

– Convincing GHC to optimise genum for a simple datatype such as Nat re-
quires the expected free theorem of (|||). However, due to interaction between
phases of application of rewrite rules, we are forced to introduce new rules for
optimisation of map.

– Optimising genum for a more complicated datatype like lists requires the ex-
pected free theorem of diag . However, even after further tweaking of optimisa-
tion flags, we are currently unable to derive a fully optimised implementation.
In any case, the partial optimisation achieved is certainly beneficial.

– More generally, we see that practical optimisation of generic functions is hard
because of subtle interactions between the different optimisation mechanisms
involved, such as inlining, rewrite rule application, let floating, case optimi-
sation, etc.

These experiments have been performed with GHC version 7.4.1. We have ob-
served that the behavior of the optimiser changes between compiler versions. In
particular, some techniques which resulted in better code in some versions (e.g.
the use of SPECIALISE pragmas) result in worse code in other versions. We are
working together with GHC developers to ensure that generic code, at least for the
generic-deriving library, is specialised adequately, guaranteeing performance
equivalent to type-specific code.

5 Benchmarking

We have confirmed the expected runtime behaviour of our code by benchmarking
it. Benchmarking is, in general, a complex task, and a lazy language imposes even
more challenges on the design of a benchmark. We designed a benchmark suite
that ensures easy repeatability of tests, calculating the average running time and
the standard deviation for statistical analysis. It is portable across different op-
erating systems and can easily be run with different compiler versions. To ensure
reliability of the benchmark we use profiling, which gives us information about
which computations last longer. For each of the tests, we ensure that at least 50 %
of the time is spent on the function we want to benchmark. A top-level Haskell
script takes care of compiling all the tests with the same flags, invoking them a
given number of times, parsing and accumulating results as each test finishes, and
calculating and displaying the average running time at the end, along with some
system information. To ensure the improvements are effective in practice, we have
not used micro-benchmarking, and instead benchmark whole programs.

We have a detailed benchmark suite over different datatypes and generic func-
tions.6 It is, however, useless to show most of the benchmark figures; because we
have inspected the resulting core code and concluded that it is equivalent to a
hand-written variant, the benchmark is only a form of “sanity-check” on the op-
timisation. Confirming the findings of Sect. 4, the benchmark finds no difference
between the running times of generic versus type-specific equality. We have also
benchmarked a traversal that updates the values in a tree, and a conversion to
6 https://bitbucket.org/dreixel/public/src/7d32c569e678/benchmark

https://bitbucket.org/dreixel/public/src/7d32c569e678/benchmark

Optimisation of Generic Programs Through Inlining 119

String ; in both cases, the generic function performs as fast as the handwritten
code. The techniques used to optimise these functions were exactly the same as
those for generic equality, and indeed we expect this to be the case for many com-
mon generic functions.

As for enumeration, we find no overhead for theNat datatype. Enumeration for
a binary tree datatype runs about 1.63 times slower than a type-specific variant,
probably because the optimiser fails to remove all generic representation overhead
(as predicted in Sect. 4.3). Even with the remaining problems in optimising generic
enumeration, these results are a substantial improvement over our previous opti-
misation efforts [8], and rely on techniques that are far less likely to degrade per-
formance in other parts of the code.

6 Conclusion

In this paper we have looked at the problem of optimising generic functions. With
their representation types and associated conversions, generic programs tend to
be slower than their type-specific handwritten counterparts, and this can limit
adoption of generic programming in situations where performance is important.
We have picked one specific library, generic-deriving, and investigated the code
generation for generic programs, and the necessary optimisation techniques to
fully remove any overhead from the library. We concluded that the overhead can
be fully removed most of the time, using only already available optimisations that
apply to functional programs in general. However, due to the difficulty of manag-
ing the interaction between several different optimisations, in some cases we are
not able to fully remove the overhead. We are confident, however, that this is only
a matter of further tweaking of GHC’s optimisation strategies, and fixing some
open bugs.

6.1 Automatic Inlining and Generation of Rewrite Rules

Some work remains to be done in terms of improving the user experience. We have
mentioned that the to and from functions should be inlined; this should be auto-
matically established by the mechanism for deriving Generic instances. Addition-
ally, inserting INLINE pragmas for each case in the generic function is a tedious
process, which should also be automated. Finally, it would be interesting to see if
the definition of rewrite rules based on free theorems of auxiliary functions used
could be automated; it is easy to generate free theorems, but it is not always clear
how to use these theorems for optimisation purposes.

6.2 Optimising Other Libraries

The library we have used for the development in this paper, generic-deriving,
is practical, realistic, and representative of many other libraries. In particular, our
techniques readily apply to regular [9] and instant-generics [3], for instance.

120 J. P. Magalhães

Other approaches to generic programming, such as Scrap Your Boilerplate
(SYB, [5,6]), use different implementation mechanisms and require different opti-
misation strategies. SYB, in particular, cannot be optimised using the same tech-
niques we have seen, because it relies on (type-safe) runtime casts. Since type com-
parisons are performed at runtime, the compiler does not have enough information
to automatically specialise generic functions. It remains to be seen how to optimise
other approaches, and to establish general guidelines for optimisation of generic
programs.

In any case, it is now clear that generic programs do not have to be slow, and
their optimisation up to handwritten code performance is not only possible but
also achievable using only standard optimisation techniques. This opens the door
for a future where generic programs are not only general, elegant, and concise, but
also as efficient as type-specific code.

References

1. Alimarine, A., Smetsers, S.: Optimizing generic functions. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 16–31. Springer, Heidelberg (2004)

2. Alimarine, A., Smetsers, S.: Improved fusion for optimizing generics. In:
Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp.
203–218. Springer, Heidelberg (2005)

3. Chakravarty, M.M.T., Ditu, G.C., Leshchinskiy, R.: Instant generics: fast and easy.
http://www.cse.unsw.edu.au/chak/papers/CDL09.html (2009)

4. Hinze, R., Jeuring, J., Löh, A.: Comparing approaches to generic programming in
Haskell. In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006.
LNCS, vol. 4719, pp. 72–149. Springer, Heidelberg (2007)

5. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, pp. 26–37. ACM
(2003). doi:10.1145/604174.604179

6. Lämmel, R., Peyton Jones, S.: Scrap more boilerplate: reflection, zips, and gener-
alised casts. In: Proceedings of the 9th ACM SIGPLAN International Conference on
Functional Programming, pp. 244–255. ACM (2004). doi:10.1145/1016850.1016883

7. Magalhães, J.P.: Less is more: generic programming theory and practice. Ph.D. the-
sis, Universiteit Utrecht (2012)

8. Magalhães, J.P., Holdermans, S., Jeuring, J., Löh, A.: Optimizing generics is easy!
In: Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, pp. 33–42. ACM (2010). doi:10.1145/1706356.1706366

9. Van Noort, T., Rodriguez Yakushev, A., Holdermans, S., Jeuring, J., Heeren, B.: A
lightweight approach to datatype-generic rewriting. In: Proceedings of the ACM
SIGPLAN Workshop on Generic Programming, pp. 13–24. ACM (2008). doi:10.
1145/1411318.1411321

10. Van Noort, T., Rodriguez Yakushev, A., Holdermans, S., Jeuring, J., Heeren, B.,
Magalhães, J.P.: A lightweight approach to datatype-generic rewriting. J. Funct.
Program. 20(3–4), 375–413 (2010). doi:10.1017/S0956796810000183

11. Peyton Jones, S., Marlow, S.: Secrets of the Glasgow Haskell Compiler inliner. J.
Funct. Program. 12(4&5), 393–433 (2002). doi:10.1017/S0956796802004331

http://www.cse.unsw.edu.au/chak/papers/CDL09.html
http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1145/1016850.1016883
http://dx.doi.org/10.1145/1706356.1706366
http://dx.doi.org/10.1145/1411318.1411321
http://dx.doi.org/10.1145/1411318.1411321
http://dx.doi.org/10.1017/S0956796810000183
http://dx.doi.org/10.1017/S0956796802004331

Optimisation of Generic Programs Through Inlining 121

12. Peyton Jones, S., Santos, A.L.M.: A transformation-based optimiser for Haskell.
Sci. Comput. Program. 32, 3–47 (1998). doi:10.1016/S0167-6423(97)00029-4

13. Jones, P., Tolmach, A., Hoare, T.: Playing by the rules: rewriting as a practical
optimisation technique in GHC. In: Haskell Workshop 2001, pp. 203–233 (2001)

14. Rodriguez Yakushev, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira,
B.C.d.S.: Comparing libraries for generic programming in Haskell. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, pp. 111–122. ACM (2008). doi:10.
1145/1411286.1411301

15. Sands, D.: Improvement theory and its applications. In: Gordon, A.D., Pitts, A.M.
(eds.) Higher Order Operational Techniques in Semantics, Publications of the New-
ton Institute, pp. 275–306. Cambridge University Press, Cambridge (1998)

16. Wadler, P.: Theorems for free! In: Proceedings of the 4th International Conference
on Functional Programming Languages and Computer Architecture, pp. 347–359.
ACM (1989). doi:10.1145/99370.99404

17. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving Haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, pp. 53–66. ACM (2012).
doi:10.1145/2103786.2103795

http://dx.doi.org/10.1016/S0167-6423(97)00029-4
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/2103786.2103795

A Type- and Control-Flow Analysis for System F

Matthew Fluet(B)

Computer Science Department,
Rochester Institute of Technology, Rochester, NY 14623, USA

mtf@cs.rit.edu

Abstract. We present a monovariant flow analysis for System F (with
recursion). The flow analysis yields both control-flow information, ap-
proximating the λ- and Λ-expressions that may be bound to variables,
and type-flow information, approximating the type expressions that may
instantiate type variables. Moreover, the two flows are mutually bene-
ficial: the control flow determines which Λ-expressions may be applied
to which type expressions (and, hence, which type expressions may in-
stantiate which type variables), while the type flow filters the λ- and
Λ-expressions that may be bound to variables (by rejecting expressions
with static types that are incompatible with the static type of the vari-
able under the type flow). As is typical for a monovariant control-flow
analysis, control-flow information is expressed as an abstract environ-
ment mapping variables to sets of (syntactic) λ- and Λ-expressions that
occur in the program under analysis. Similarly, type-flow information is
expressed as an abstract environment mapping type variables to sets of
(syntactic) types that occur in the program under analysis. Compatibil-
ity of static types (with free type variables) under a type flow is decided
by interpreting the abstract environment as productions for a regular-tree
grammar and querying if the languages generated by taking the types in
question as starting terms have a non-empty intersection.

1 Introduction

Control-flow analysis is an important enabling technology for the compilation
and optimization of functional languages. Because functional languages have
first-class functions, the control flow of a functional program is not syntactically
apparent: in an application expression, the function can itself be the result of
a computation and may not be available until run time. Indeed, during the
execution of a program, many different functions may be applied at the same
(source-program) application expression. A control-flow analysis [16,22,26,34,
35] approximates, at compile time, the flow of first-class functions in a program:
which first-class functions might be bound to a given variable or returned by a
given expression at run time.

Control-flow analyses have typically been formulated for dynamically- or
simply-typed functional languages.1 However, most statically-typed functional
1 Although there are many type-based [27] control-flow analyses, where the analyses are

expressed as a sophisticated type systems, the language under analysis is typically
a simply-typed language.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 122–139, 2013.
DOI: 10.1007/978-3-642-41582-1 8, c© Springer-Verlag Berlin Heidelberg 2013

A Type- and Control-Flow Analysis for System F 123

languages have rich type systems that include polymorphic types. Indeed, Sys-
tem F [10,31], the polymorphic lambda calculus, and extensions thereof are
commonly used as typed intermediate languages in compilers for functional lan-
guages [28,37,38]. Since optimizations are performed on a typed intermediate
language and optimizations are enabled by control-flow analyses, it is natural to
seek a control-flow analysis that is formulated for System F.

While one could näıvely adopt an existing control-flow analysis that is formu-
lated for a dynamically- or simply-typed functional language and ignore the Sys-
tem F features of type abstraction and type application, such an approach fails
to take advantage of the static information provided by a well-typed program.
Intuitively, a control-flow analysis for System F should exploit the well-typedness
of the program under analysis in order to obtain more precise control-flow in-
formation. For instance, if a control-flow analysis asserts that a variable x might
be bound to a function of type int → int, a function of type bool → bool, and a
function of type string → string (and no other functions), but the static type of x
is int → int, then the type soundness of the language guarantees that x will only
be bound to functions of type int → int at run time and the control-flow result
may be soundly refined to assert that x might only be bound to the function of
type int → int. However, if the static type of x is α → α (where the type vari-
able α is bound by a type abstraction in the program under analysis), then it is
unclear whether or not the control-flow result may be soundly refined, because
the type variable α may be soundly instantiated at any type.

Given additional information that asserts that the type variable α might be
instantiated at the type int and the type bool (and no other types), then the
control-flow result may be soundly refined to assert that x might only be bound
to the function of type int → int and the function of type bool → bool. This ad-
ditional information may be obtained by a type-flow analysis that approximates,
at compile time, the flow of types in a program: which types might instantiate
a given type variable at run time. As demonstrated by the example above, this
approximate type-flow information can be used to increase the precision of a
control-flow analysis. Furthermore, this approximate type-flow information can
be used to enable type-dependent optimizations, such as guiding the specializa-
tion of a polymorphic function that is used at a small number of distinct types or
eliminating type operations in a language with intensional polymorphism [11].
Just as a control-flow analysis yields useful information because, for a given
program, it is unlikely that a given variable is bound to every function during
execution, a type-flow analysis yields useful information because it is unlikely
that a given type variable is instantiated at every type during execution.

Although type-flow information and control-flow information might be ob-
tained by independent analyses, the two kinds of information can be mutually
beneficial, particularly for the higher-rank impredicative polymorphism of Sys-
tem F. Control-flow analysis supports type-flow analysis by yielding information
about the type abstractions that may be applied at type applications and, hence,
about the types at which type variables may be instantiated. The type-flow in-
formation soundly refines the control-flow information by rejecting flows that are

124 M. Fluet

incompatible with the static typing of the program under analysis; because the
static typing may be expressed in terms of syntactic types with free type vari-
ables, the type-flow information is used to determine the compatibility of types.
When the type-flow information refines the control-flow information by rejecting
the flow of a type abstraction, the type-flow information itself may be refined
because the type abstraction may be applied at fewer type applications, and,
hence, there may be fewer types at which the type variable may be instantiated.

In a combined type- and control-flow analysis, the type-flow information
soundly refines the control-flow information by determining when types are in-
compatible. In the presence of recursion and higher-rank impredicative poly-
morphism, the type-flow information must approximate complex relationships
between type variables and types and the compatibility or incompatibility of
types under the type-flow information may not be obvious. Indeed, during the
execution of a program that is well-typed in System F with recursion, a type
variable may be instantiated at an infinite number of types. In order to obtain
a computable analysis, the type-flow information must use a finite representa-
tion that approximates the (potentially infinite) set of closed types that may
instantiate a type variable and the compatibility of types under the type-flow
information must be a decidable property.

Most control-flow analyses approximate the (potentially infinite) set of first-
class functions that might be bound to a variable at run time by a (necessarily
finite) set of function expressions (possibly with free variables) that occur in
the program under analysis. Similarly, a type-flow analysis may approximate
the (potentially infinite) set of closed types that may instantiate a type vari-
able at run time by a (necessarily finite) set of type expressions (possibly with
free type variables) that occur in the program under analysis. For instance, if
a type-flow analysis asserts that a type variable α might be instantiated at the
type expression int → int and the type expression int → α (and no other type
expressions), then, by interpreting the type-flow information as productions for
a regular-tree grammar [2,6,9], the type-flow analysis may be seen to be as-
serting that the type variable α might be instantiated at the infinite set of
closed types {int → int, int → int → int, int → int → int → int, . . .}. Furthermore, if
the type-flow analysis asserts that a type variable β might be instantiated at the
type expression int → bool and the type expression int → β (and no other type
expressions) and a control-flow analysis asserts that a variable x might be bound
to a function of type int → int, a function of type bool → int, a function of type
string → int, a function of type int → α, and a function of type int → β (and
no other functions), but the static type of x is α, then the control-flow result
may be soundly refined to assert that x might only be bound to the function
of type int → int and the function of type int → α, because the types of these
two functions are compatible with the type α (under the type-flow information),
while the types of the other three functions are incompatible with the type α.

Two types are compatible (under the type-flow information) if there exists a
closed type that is a member of the sets of closed types at which the types might
be instantiated; conversely, two types are incompatible if there does not exist a

A Type- and Control-Flow Analysis for System F 125

closed type that is a member of the sets of closed types at which the types might
be instantiated. The type soundness of the language guarantees that a variable
will only be bound to a well-typed closed function of a closed type at run time;
hence, if there is no closed type at which both the static type of a variable and
the static type of a function might be instantiated, then that variable will never
be bound to that function at run time. For example, the types int → α and α
are compatible because the type int → α, interpreted as a starting term for the
regular-tree grammar corresponding to the type-flow information, represents the
infinite set of closed types {int → int → int, int → int → int → int, . . .}, which has
a non-empty intersection with the infinite set of closed types that might in-
stantiate the type variable α (given above). Similarly, the types int → β and α
are incompatible because the type int → β represents the infinite set of closed
types {int → int → bool, int → int → int → bool, . . .}, which has an empty intersec-
tion with the infinite set of closed types that might instantiate the type variable
α. Since regular-tree grammars are closed under intersection and the emptiness
of a regular-tree grammar is decidable, the compatibility of types under the
type-flow information is a decidable property.

Overview. We present a monovariant type- and control-flow analysis for Sys-
tem F extended with recursive functions. Our flow analysis is a variation on
0CFA, the classic monovariant control-flow analysis [26]. For a given program,
the flow analysis computes an abstract environment that maps variables to (fi-
nite) sets of λ- and Λ-expressions that occur in the program and maps type
variables to (finite) sets of type expressions that occur in the program.

Our formulation of the type- and control-flow analysis as a refinement of
the syntax-directed constraint-based formulation of 0CFA establishes that the
combined type- and control-flow analysis can be more precise than 0CFA. Al-
though not as precise as a type-directed polyvariant control-flow analysis [15],
our monovariant type- and control-flow analysis nonetheless rejects some similar
classes of spurious flows and, furthermore, has the benefits of handling full (i.e.,
impredicative) System F and terminating for all well-typed programs.

Soundness of the analysis is proven with respect to an operational seman-
tics for System F given in the style of the administrative-normal-form (ANF)
environment- and continuation-based CaEK abstract machine [7], where the
(concrete) environment component of the abstract machine maps variables to
closures (pairs of λ- or Λ-expressions and an environment, which captures the free
variables and type variables of the λ- or Λ-expression) and maps type variables
to type closures (pairs of type expressions and an environment, which captures
the free type variables of the type expression). A sound flow analysis computes
an abstract environment that approximates every concrete environment that
arises during evaluation. We present the analysis-time type-compatibility pred-
icate as a judgment; this yields a declarative specification of type compatibility,
for which the regular-tree-grammar interpretation gives an algorithmic imple-
mentation. A companion technical report [8] provides additional commentary,
technical details, and proofs.

126 M. Fluet

Fig. 1. Syntax of ANF System F

2 Language and Semantics

Our source language is a variant of System F, extended with recursive functions
and presented in (a restriction of) administrative normal form (ANF). The op-
erational semantics of the language is presented as an abstract machine. The
static semantics of the language is entirely standard, but given for completeness.

Syntax. The syntax of our ANF variant of System F is given in Fig. 1.
Types include function types, type variables, and universal types; in the

universal type ⇒α. τb, the type variable α is bound in the type τb. Type equality
is syntactic identity (up to α-conversion of bound type variables).

Expressions include variables, let-bindings of recursive functions, let-
bindings of non-tail function applications, let-bindings of recursive type ab-
stractions, and let-bindings of non-tail type applications. In the let-binding
expression let x:τx = b in e, the variable x is bound in e; in the recursive
function μf:τf.λz:τz.eb, the variables f and z are bound in the expression eb

and in the recursive type abstraction μf:τf.Λβ.eb, the variable f and the type
variable β are bound in the expression eb.

Finally, we define a function ←·∗ on expressions, which extracts the variable
that yields the expression’s value.

The language is Church-style, in which every bound variable is annotated
with its type. We restrict the constituents of function applications and type
applications to variables, rather than allowing a larger class of “trivial” expres-
sions, and we restrict function applications and type applications to non-tail
calls, rather than allowing tail calls. Neither restriction is essential for the type-
and control-flow analysis; we adopt them simply to reduce the number of infer-
ence rules in the operational semantics, static semantics, and flow analysis.

Operational Semantics. The operational semantics for our ANF-variant of
System F is presented as an adaptation of the environment- and continuation-
based CaEK machine [7] and is given in Fig. 2.

A machine state ς has four components: a control expression, a run-time type
environment, a run-time value environment, and a continuation.

A Type- and Control-Flow Analysis for System F 127

Fig. 2. Operational Semantics of ANF System F

A run-time type environment φ is a map from type variables to run-time
types and a run-time value environment ρ is a map from variables to run-time
values. A run-time type π is a “type closure”: a pair of a (possibly open) type and
a run-time type environment; the run-time type environment captures the free
type variables of the type. A run-time value w is a “function closure” or a “type-
abstraction closure”: a triple of a (possibly open) value (a recursive function or a
recursive type abstraction), a run-time type environment (that captures the free
type variables of the value), and a run-time value environment (that captures
the free variables of the value).

A continuation κ is a stack of frames, each of the form ◦x; τx;φ; ρ; e∨, where x
is the variable receiving the result w of a non-tail function application or non-tail
type application, τx is the (static, syntactic) type of x, and e is the expression to
be evaluated in the environments φ and ρ extended with x bound to w to yield
the result of the frame.

The first rule returns a result to the top-most frame of the continuation
when the control expression has been reduced to a variable. The second and
third rules create function closures and type-abstraction closures. The fourth
and fifth rules extract the expression body, run-time type environment, and
run-time value environment from an applied function closure or type-abstraction
closure, extend the closure’s run-time value environment with f bound to the
closure (making the recursive function or recursive type-abstraction available to
the expression body), extend the closure’s run-time value environment with the
run-time value argument (in the case of a function application) or extend the
closure’s run-time type environment with the run-time type argument (in the

128 M. Fluet

Fig. 3. Static Semantics of ANF System F

case of a type application), and push a frame onto the continuation to receive
the result of the function application or type application.

Static Semantics. The standard static semantics for System F, adapted to
our ANF variant, is given in Fig. 3. A type-variable context Δ records free type
variables and the judgment Δ ≡ τ asserts that the type τ is well-formed in Δ.
A variable context Γ records free variables and their types and the judgments
Δ;Γ ≡ e : τ and Δ;Γ ≡ b : τ assert that the expression e and bind b have the
type τ in Δ and Γ ; in the rule for type applications, we write [α � τa]τb for the
capture-avoiding substitution of τa for free occurrences of α in τb.

Type Soundness. A syntactic proof [39] of type soundness, using entirely
standard Progress and Preservation theorems, is given in a technical report [8].

Theorem 1 (Type Soundness). If •; • ≡ e : τ and ◦e; •; •; ◦∨ −→∗ ς ′, then
either ς ′ = ◦x′;φ′; ρ′; ◦∨ or ς −→ ς ′.

In addition to the judgments of Fig. 3, we introduce judgments that assert
the “well-typedness” of run-time types (≡ π � τ), run-time type environments
(≡ φ : θ), run-time values (≡ w : τ), run-time value environments (≡ ρ : Γ), con-
tinuations (≡ τ � κ : τ), and states (≡ ς : τ). Of note is the judgment ≡ φ : θ
that asserts that the run-time type environment φ corresponds to a substitution

A Type- and Control-Flow Analysis for System F 129

θ; the domains of φ and θ are equal, but whereas φ maps a type variable to a
run-time type (a pair of a (possibly open) type and a (closing) run-time type
environment), θ maps a type variable to a closed type obtained by (recursively)
expanding the (possibly open) type by its (closing) run-time type environment.

3 Type- and Control-Flow Analysis

Our type- and control-flow analysis is presented as an adaptation of the syntax-
directed 0CFA, the classic monovariant control-flow analysis [26, Sect. 3.3], and
is given in Fig. 4.

The result of our type- and control-flow analysis is a pair of abstract envi-
ronments. An abstract type environment φ̂ is a map from type variables to sets
of abstract types, where an abstract type is a (possibly open) type. An abstract

Fig. 4. Type- and Control-Flow Analysis of ANF System F

130 M. Fluet

value environment ρ̂ is a map from variables to sets of abstract values, where an
abstract value is a (possibly open) recursive function or recursive type abstrac-
tion. Pairs of abstract type and value environments form complete lattices with
the usual partial orders for pairs, functions, and power sets.

The judgments φ̂; ρ̂ � e and φ̂; ρ̂ � b � Ŵ assert that a pair of abstract envi-
ronments φ̂ and ρ̂ is an acceptable type- and control-flow analysis of the expres-
sion e and bind b, respectively. An acceptable type- and control-flow analysis is
one that soundly approximates the run-time behavior of the program, in a sense
made precise by Theorem 2; intuitively, acceptable abstract type and value envi-
ronments must describe every run-time type and value environment that arises
during the evaluation of the program. The judgment φ̂; ρ̂ � b � Ŵ additionally
asserts that the bind b is approximated by the set of abstract values Ŵ .

Ignoring the shaded terms, the constraints asserted by the rules are standard
for a monovariant control-flow analysis. The rule for a let-binding expression
let x:τx = b in e asserts that the abstract environments are acceptable for the
bind b and the expression e and that the set of abstract values that approximate
the bind b are included in the set of abstract values mapped from the variable x.
The rules for values (recursive functions and recursive type abstractions) assert
that the value itself is included in both the set of abstract values approximating
the bind and the set of abstract values mapped from the μ-bound variable f
(corresponding to the f
→ wf binding in the operational semantics making the
recursive function or recursive type-application available to the expression body)
and that the abstract environments are acceptable for the body expression. The
rule for a non-tail function application asserts that, for all functions in the set of
abstract values mapped from the variable xf , the abstract values mapped from
the actual argument xa flow to the formal argument z and the abstract values
from the function result ←eb∗ flow to the set of abstract values approximating the
function application. Similarly, the rule for a non-tail type application asserts
that, for all type abstractions in the set of abstract values mapped from the
variable xf , the actual type argument τa flows to the formal type argument β
and the abstract values from the function result ←eb∗ flow to the set of abstract
values approximating the type application.

Now consider the shaded terms in the rules for a let-binding expression and
a non-tail function application and the judgments and rules in Fig. 5. In essence,
the shaded terms perform a kind of analysis-time type checking at the point
where there is a non-local flow of abstract values. The judgment φ̂ ≡ ŵ :≺≺≺ π
asserts that (the abstract type of) the abstract value ŵ is compatible with the
abstract type π under φ̂. Thus, in the rule for a let-binding expression, each
abstract result ŵr ∈ Ŵr that flows from the bind to the receiving variable x
must have an abstract type that is compatible with τx, the static type of the
receiving variable. Similarly, in the rule for non-tail function applications, each
abstract argument ŵa ∈ ρ̂(xa) that flows from the actual argument to the formal
argument z must have an abstract type that is compatible with τz, the static
type of formal argument.

A Type- and Control-Flow Analysis for System F 131

Fig. 5. Analysis-time Type Compatibility

The rules for the judgment φ̂ ≡ ŵ :≺≺≺ π̂ simply form the abstract type of the
recursive function or recursive type abstraction from the (static, syntactic) type
of the μ-bound variable. The judgment φ̂ ≡ π̂1 ≺≺≺ π̂2 asserts that the abstract
types π̂1 and π̂2 are compatible under φ̂, by asserting that π̂1 and π̂2 expand
to a common closed type. Finally, the judgment Δ; φ̂ ≡ π̂ ⇒⇒ τ asserts that the
abstract type π̂ expands under φ̂ to the type τ (which is well-formed in Δ). The
first rule expands a function type by recursively expanding its argument and
result types. The second rule expands a ⇒-bound type variable to itself, while
the third rule expands a universal type by recursively expanding its result type
(in a type-variable context extended with α). The fourth rule expands a Λ-bound
type variable to an abstract type according to the abstract type environment φ̂
and recursively expands the abstract type; the abstract type is expanded under
the empty type-variable context, because it is not in the scope of the ⇒-bound
type variables appearing in Δ. Note that, when used in the context of the type
compatibility judgment φ̂ ≡ π̂1 ≺≺≺ π̂2, this rule must “guess” a satisfying abstract
type from among the set of abstract types mapped from the type variable.

Flow Soundness. We show that, with respect to a given program, every accept-
able pair of abstract environments soundly approximates the run-time behavior
of the program. To formalize the approximation, we introduce “shallow” abstrac-
tion functions that take run-time types and values to abstract types and values
and that take run-time type and value environments to abstract type and value
environments:2

2 These abstraction functions are “shallow” in the sense that they do not abstract and
join the embedded run-time type and value environments.

132 M. Fluet

| · | :: RType → AType

|⇒τ ;φ◦| = τ

| · | :: RValue → AValue

|⇒μf:τf.λz:τz.e;φ; ρ◦| = μf:τf.λz:τz.eb
|⇒μf:τf.Λβ.eb;φ; ρ◦| = μf:τf.Λβ.eb

| · | :: RTEnv → ATEnv

|φ|(α) =

{
{} if α /∗ dom(φ)

{|π|} if φ(α) = π

| · | :: RVEnv → AVEnv

|ρ|(x) =

{
{} if x /∗ dom(ρ)

{|w|} if ρ(x) = w

A proof of flow soundness for well-typed programs, using a Preservation (aka,
subject reduction) theorem, is given in a technical report [8].

Theorem 2 (Flow Soundness). If •; • ≡ e : τ , φ̂; ρ̂ � e, and
◦e; •; •; ◦∨ −→ ∗◦e′;φ′; ρ′;κ′∨, then ◦|φ′|, |ρ′|∨ � ◦φ̂, ρ̂∨.
In addition to the judgments of Fig. 4, we introduce judgments that assert the
acceptability of abstract environments with respect to run-time types (φ̂ � π),
run-time type environments (φ̂ � φ), run-time values (φ̂; ρ̂ � w), run-time value
environments (φ̂; ρ̂ � ρ), continuations (φ̂; ρ̂ � Ŵ � κ), and states (φ̂; ρ̂ � ς). The
judgments φ̂ � φ and φ̂; ρ̂ � ρ assert that the abstract environments are “deep”
abstractions of the run-time environments.

A key lemma is the following, which establishes that two abstract types may
be judged compatible if their expansions (induced by run-time type environments
for which the abstract type environment is acceptable) are syntactically equal:

Lemma 3 (Syntactic Equality implies Analysis-Time Type Compatibility).
If ≡ φ1 : θ1, φ̂ � φ1, • ≡ θ1(τ1), ≡ φ2 : θ2, φ̂ � φ2, • ≡ θ2(τ2), and θ1(τ1) = θ2(τ2),
then φ̂ ≡ τ1 ≺≺≺ τ2.

In the Preservation proof, the necessary preconditions for this lemma are ob-
tained from the well-typedness of the machine state undergoing transition.

Existence of Minimum, Finite Flows. Although presented in constraint
form, our type- and control-flow analysis can be presented in an equivalent fix-
point form [5]. It is straightforward to read the analysis of Fig. 4 as defining
a monotone function from pairs of abstract environments to pairs of abstract
environments. For a given program, fixed points of this monotone function are
acceptable pairs of abstract environments. Since pairs of abstract environments
form complete lattices, Tarski’s fixed point theorem establishes that:

Theorem 4 (Minimum Flows Exist). For all expressions e, there exist min-
imum abstract environments φ̂min and ρ̂min such that φ̂min; ρ̂min � e.

Furthermore, for a given program e, the minimum abstract type environment
must be an element of ATEnve = TyVare → P(ATypee) (where TyVare is the
set of Λ-bound type variables that occur in the program and ATypee is the
set of (syntactic) types that occur in the program) and the minimum abstract
value environment must be an element of AEnve = Vare → P(AValuee) (where
Vare is the set of let-, μ-, and λ-bound variables that occur in the program

A Type- and Control-Flow Analysis for System F 133

and AValuee is the set of (syntactic) values (recursive functions and recursive
type abstractions) that occur in the program). These abstract environments
are “finite”, in the sense that they map finite domains to finite sets, and form
complete lattices.

Decidability and Computability of Flows. While Theorems 2 and 4 es-
tablish that, for every program, there is a “best” pair of abstract environments
that soundly approximates the run-time behavior of the program, we would like
this pair of abstract environments to be computable. The key concern is the
decidability of the φ̂ ≡ π̂1 ≺≺≺ π̂2 judgment. Even simply verifying that a pair of
abstract environments is acceptable for a given program requires showing that
constraints of the form {ŵa ∈ ρ̂(xa) | φ̂ ≡ ŵa :≺≺≺ τz} ⊆ ρ̂(z) are satisfied; this, in
turn, requires showing, for each abstract value ŵa that is an element of ρ̂(xa)
but is not an element of ρ̂(z), that the judgment φ̂ ≡ ŵa :≺≺≺ τz is not derivable.

Due to “recursion” in the abstract type environment, whereby a type variable
may be mapped to a set of abstract types in which the type variable itself occurs
free, we cannot simply enumerate the (potentially infinite sets of) closed types τ1
and τ2 such that •; φ̂ ≡ π̂1 ⇒⇒ τ1 and •; φ̂ ≡ π̂2 ⇒⇒ τ2 in order to decide whether
or not the judgment φ̂ ≡ π̂1 ≺≺≺ π̂2 is derivable. To address this issue, we take
inspiration from the theory and implementation of regular-tree grammars [2,6,9],
which has been used extensively for flow analysis [12,13,17,18] (including type
inference [3,24]), but whereas previous work has applied regular-tree grammars
to the analysis of values, we apply regular-tree grammars to the analysis of types.

Given a finite abstract type environment φ̂, we interpret it as a regular-tree
grammar as follows: the set of non-terminals is dom(φ̂) and the set of productions
is {α ⇒ π̂ | α ∈ dom(φ̂) ∧ π̂ ∈ φ̂(α)}. The language generated by the grammar
φ̂ for the starting term π̂ is Lφ̂(π̂) def= {τ ′ ∈ Type | •; φ̂ ≡ π̂ ⇒⇒ τ ′}; a derivation
of •; φ̂ ≡ π̂ ⇒⇒ τ ′ is exactly a parse tree witnessing the derivation of τ ′ from π̂ by
φ̂.

Consider deciding whether or not φ̂ex ≡ int → β ≺≺≺ α is derivable, where
φ̂ex(α) = {int → int, int → α} and φ̂ex(β) = {int → bool, int → β}. Intuitively, it
is not derivable because

Lφ̂ex
(int → β) = {int → int → bool, int → int → int → bool, . . .}

Lφ̂ex
(α) = {int → int, int → int → int, int → int → int → int, . . .}

and Lφ̂ex
(int → β) ∩ Lφ̂ex

(α) = ∅; there is no (closed) type that is generated by
φ̂ex from both int → β and α. Simply unfolding definitions establishes that:

Theorem 5 (Analysis-Time Type Compatibility iff Languages Inter-
sect). φ̂ ≡ π̂1 ≺≺≺ π̂2 if and only if Lφ̂(π̂1) ∩ Lφ̂(π̂2) �= ∅.

An immediate corollary of Theorem 5 is the decidability of type compati-
bility (under a finite abstract type environment), since regular-tree grammars
are closed under intersection and the emptiness of a regular-tree grammar is

134 M. Fluet

decidable [9,24]. In turn, we have that the acceptability of a pair of finite ab-
stract environments for a given program is decidable. Finally, we have that the
minimum acceptable pair of abstract environments for a given program is com-
putable, either by enumerating the finite abstract environments for the program
and checking acceptability or by defining the analysis as a monotone function
and using a standard least fixed-point computation.

We briefly sketch implementations of testing emptiness and intersection of
regular-tree grammars, based on those given by Aiken and Murphy [2]; both op-
erations are (worst-case) quadratic time in the size of the regular-tree grammar.
Recall that, for a given program e, it suffices to consider finite abstract type
environments φ̂e ∈ ATEnve, interpreted as (finite) regular-tree grammars.

To decide the emptiness of a language, we define the function Ψ as follows:

Ψ :: AEnv → (TyVar → B)
Ψ(φ̂) = lfpF

where F :: (TyVar → B) → (TyVar → B)

F (ψ)(α) =

{
� if ∃π̂ ∈ φ̂(α). ⇒β ∈ FTV(π̂). ψ(β) = �
⊥ if ⇒π̂ ∈ φ̂(α). ∃β ∈ FTV(π̂). ψ(β) = ⊥

where B = {�,⊥} with the usual partial order (⊥ � �); ⊥ (resp. �) denotes
an empty (resp. non-empty) language. The language Lφ̂(π̂) is non-empty if and
only if ⇒β ∈ FTV(π̂). Ψ(φ̂)(β) = �. If φ̂ is a finite abstract type environment,
then Ψ(φ̂) is computable using a standard least fixed-point computation.

In order to intersect the languages generated by the regular-tree grammar φ̂
for the starting terms π̂1 and π̂2, we extend φ̂ with finitely many additional non-
terminals and productions to obtain φ̂λ and generate a starting term π̂λ such that
Lφ̂(π̂1) ∩ Lφ̂(π̂2) = Lφ̂�(π̂λ). The idea is that each new non-terminal represents
the intersection of a type variable in dom(φ̂) and a type; a global mapping from
pairs of type variables and types to new non-terminals is maintained to ensure
that the same new non-terminal is used whenever the same pair is encountered.

To illustrate the technique, consider intersecting the languages generated
by φ̂ex for the starting terms int → β and α. First, extend the grammar with
a new non-terminal Z and no productions (i.e., extend φ̂ex with the mapping
Z
→ {}); the non-terminal Z will serve as the starting term for an empty lan-
guage. We are trying to intersect int → β and α; since α is a non-terminal,
generate a new non-terminal A0 mapped from the pair ◦int → β;α∨, add the
triple ◦A0; {int → β}; φ̂ex(α)∨ to a work list, and return A0 as the result of
intersecting int → β and α. The work list contains new non-terminals whose
productions should be generated by intersecting all pairs of elements from the
two sets. Therefore, add productions corresponding to A0 ⇒ int → β � int → int
and A0 ⇒ int → β � int → α. Intersecting int → β and int → int generates a
new non-terminal A1 mapped from ◦β; int∨, adds ◦A1; φ̂ex(β); {int}∨ to the
work list, and returns int → A1. Intersecting int → β and int → α gener-
ates a new non-terminal A2 mapped from ◦β;α∨, adds ◦A1; φ̂ex(β); φ̂ex(α)∨
to the work list, and returns int → A2. Therefore, extend with the mapping

A Type- and Control-Flow Analysis for System F 135

A0
→ {int → A1} ∪ {int → A2}. Returning to the work list, add productions
corresponding to A1 ⇒ int → bool � int and A1 ⇒ int → β � int. Intersecting
int → bool and int returns Z (since clearly the intersection of the languages gen-
erated from these two starting terms is empty), as does intersecting int → β and
int; therefore, extend with the mapping A1
→ {Z} ∪ {Z}. Returning to the work
list, add productions corresponding to A2 ⇒ int → bool � int → int (returning
Z), A2 ⇒ int → bool � int → α (generating a new non-terminal A3 mapped from
◦bool;α∨, adding ◦A3; {bool}; φ̂ex(α)∨ to the work list, and returning int → A3),
A2 ⇒ int → β � int → int (returning int → A1, using the global map), and
A2 ⇒ int → β � int → α (returning int → A2, using the global map); therefore,
extend with the mapping A2
→ {Z} ∪ {int → A3} ∪ {int → A1} ∪ {int → A2}.
Finally, add productions corresponding to A3 ⇒ bool � int → int (returning Z)
and A3 ⇒ bool � int → α (returning Z); therefore, extend with the mapping
A3
→ {Z} ∪ {Z}. In summary, we have

Global map
◦int → β;α∨
→ A0

◦β; int∨
→ A1

◦β;α∨
→ A2

◦bool;α∨
→ A3

New productions
A0
→ {int → A1} ∪ {int → A2}
A1
→ {Z} ∪ {Z}
A2
→ {Z} ∪ {int → A3} ∪ {int → A1} ∪ {int → A2}
A3
→ {Z} ∪ {Z}

To conclude, return φ̂λ
ex equal to φ̂ex extended with the new productions

and π̂λ equal to A0. Finally, note that Ψ(φ̂λ
ex)(π̂

λ) = ⊥, confirming that
Lφ̂ex

(int → β) ∩Lφ̂ex
(α) = ∅ and that φ̂ex ≡ int → β ≺≺≺ α is not derivable.

We conclude with a crude upper-bound on the time complexity of our type-
and control-flow analysis. Consider a program of size n and the analysis defined
in fixedpoint form. The two abstract environments are lattices of height O(n2).
Each (näıve) iteration of the monotone function is syntax directed (O(n)) and
dominated by the function-application bind, which loops over all of the elements
of ρ̂(xf) (O(n)), loops over all of the elements of ρ̂(xa) (O(n)), and computes type
compatibility via a regular-tree grammar intersection (O(n2)) and emptiness
test (O(n2)2), because the regular-tree grammar representing the intersection
may be of size O(n2). Hence, our analysis is computable in polynomial time:
O((n2 + n2) ∗ (n ∗ n ∗ n ∗ (n2 + n4))) = O(n9). Further considerations regarding
implementations of our type and control-flow analysis are given in Sect. 5.

4 Related Work

There is surprisingly little work on control-flow analyses for statically-typed
languages with polymorphic types. Control-flow analyses have typically been
formulated for dynamically- or simply-typed languages.3 Production implemen-
tations of control-flow analyses for Standard ML, a language with rank-1 poly-
morphism (i.e., “let”-polymorphism), typically handle the polymorphism either
3 Again, we draw a distinction between flow analyses expressed as sophisticated type

systems and flow analyses of languages with sophisticated type systems.

136 M. Fluet

by monomorphisation [4] (explicitly eliminating polymorphism before analysis)
or by polyvariance [12] (implicitly eliminating polymorphism during analysis).

The most closely related work is the “Type-Directed Flow Analysis for Typed
Intermediate Languages” of Jagannathan, Weeks, and Wright [15], which de-
scribes a framework for polyvariant flow analyses of Λi, the predicative subset of
System F extended with recursive functions. A specific analysis called SRT uses
types to control polyvariance; essentially, SRT introduces a distinct polyvariance
context for each closed type at which a polymorphic function is applied, yielding
an analysis more precise than our type- and control-flow analysis. Unfortunately,
SRT does not terminate on programs that use polymorphic recursion [14,19,25];
such programs may instantiate a polymorphic function at an infinite number
of closed types during execution. In contrast, our type- and control-flow analy-
sis is computable for all programs in (impredicative) System F extended with
recursive functions.

Another closely related work is the “Type-sensitive Control-Flow Analysis”
of Reppy [30], which describes an extension of Serrano’s version of 0CFA [33]
that uses a program’s type information to compute more precise results. Ser-
rano’s and Reppy’s analyses are modular and use an abstract value � to denote
an unknown value; variables bound outside the unit of analysis are assigned �,
as are the parameters of functions that escape the unit of analysis. Reppy’s in-
sight is that values of an abstract type can only be created within their defining
module; hence, “unknown” values of the abstract type can be soundly approxi-
mated by the known set of escaping values of the abstract type. This leads to a
type-indexed family of abstract values for unknown values, in addition to the �
abstract value. Reppy’s analysis is formulated for a simply-typed language with
top-level abstract types; he suggests extending the analysis to a language with
polymorphism by mapping type variables to the � abstract value. Our type-
and control-flow analysis is a whole-program analysis, but has a more precise
treatment of type variables.

5 Future Work

While we have established the computability of the minimum, finite acceptable
pair of abstract environments for every program, we would like our type- and
control-flow analysis to be efficiently computable. A popular approach for com-
puting control-flow analyses is as a constraint-based analysis [1]; an initial phase
generates constraints that a solution to the analysis must satisfy, while a sub-
sequent phase solves the constraints. The syntax-directed 0CFA that we adapt
for our type- and control-flow analysis has an O(n3) algorithm following this
approach [26, Sect. 3.4]. However, algorithms for solving a set of constraints are
sensitive to the syntax of constraints; the filtering of sets by type compatibility
may prove problematic, since the derivability of a type-compatibility judgment
depends upon the abstract type environment, itself being solved for.

Independent of the overall approach, it seems clear that we will need to
efficiently decide the derivability of a type-compatibility judgment under an ab-
stract type environments. We have established that this decision can be made

A Type- and Control-Flow Analysis for System F 137

by intersecting and testing the emptiness of regular-tree grammars. Aiken and
Murphy [2, Sect. 4] suggest maintaining a regular-tree grammar with an invari-
ant that makes testing the emptiness (of a non-terminal) constant time. Aiken
and Murphy [2, Sect. 5.3] also suggest that the algorithm given previously, which
generates only the intersections necessary to express the result, performs well in
the typical case. We further observe that, for a fixed abstract type environment,
we can maintain the global map from pairs of type variables and types to new
non-terminals across decisions of the derivability of type-compatibility. Hence,
the (worst-case) quartic time bounds all queries under a given abstract type en-
vironment, not each query, and improves our crude upper-bound to O(n6). We
may also be able to exploit the fact that we are only interested in the emptiness
of an intersection of regular-tree grammars, and not the intersection itself.

Another direction of future work is to extend the type- and control-flow
analysis to handle unknown and escaping values [36] and types [30]. It should be
straightforward to introduce a � abstract type and a � abstract value; conserva-
tively, the � abstract type should be judged compatible with any other abstract
type. A more interesting direction is to consider primitives that make essential
use of higher-rank polymorphism, such as Haskell’s runST [20,21].

Yet another direction is to extend the monovariant type- and control-flow
analysis to a polyvariant analysis.

Finally, we would like to extend type- and control-flow analysis to languages
with even more sophisticated type systems. Of particular interest is System F
with guarded algebraic data types (GADTs), as we would like to combine the
flow-directed defunctionalization of Cejtin, Jagannathan, and Weeks [4] with
the polymorphic typed defunctionalization of Pottier and Gauthier [29]. Also of
interest is System Fω, the higher-order polymorphic lambda-calculus: System Fω

has been used as a target language for the elaboration of a full-featured, higher-
order ML-like module language [32] and System Fω extended with type equality
coercions [37] is used as a typed intermediate language in the Glasgow Haskell
Compiler (GHC).

Acknowledgments. Many thanks to Jan Midtgaard for the excellent survey “Control-
flow analysis of functional programs” [22] and companion bibliography and for valu-
able feedback on an earlier draft. Thanks to Jurriaan Hage, Fritz Henglein, and Peter
Thiemann for thoughtful conversation at IFL’12. This material is based upon work
supported by the National Science Foundation under Grant No. 1065099.

References

1. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput.
Program. 35(2–3), 79–111 (1999)

2. Aiken, A., Murphy, B.R.: Implementing regular tree expressions. In: Conference on
Functional Programming Languages and Computer Architecture (FPCA). LNCS,
vol. 523, pp. 427–447, August 1991

3. Aiken, A., Murphy, B.R.: Static type inference in a dynamically typed language.
In: Symposium on Principles of Programming Languages (POPL), pp. 279–290,
January 1991

138 M. Fluet

4. Cejtin, H., Jagannathan, S., Weeks, S.: Flow-directed closure conversion for typed
languages. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 56–71. Springer,
Heidelberg (2000)

5. Cousot, P., Cousot, R.: Compositional and inductive semantic definitions in fix-
point, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In: Conference on Computer Aided Verification (CAV). LNCS,
vol. 939, pp. 293–308, July 1995

6. Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based pro-
gram analysis by abstract interpretation. In: Conference on Functional Program-
ming Languages and Computer Architecture (FPCA), pp. 170–181, June 1995

7. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Conference on Programming Language Design and Implementa-
tion (PLDI), pp. 237–247, June 1993

8. Fluet, M.: A type- and control-flow analysis for System F. Tech. rep., Rochester
Institute of Technology. https://ritdml.rit.edu/handle/1850/15920, February 2013

9. Gecseg, F., Steinby, M.: Tree Automata. Akademiai Kiado, Budapest (1984)
10. Girard, J.Y.: Une extension de l’interpretation de Gödel à l’analyse, et son ap-

plication à l’élimination des coupures dans l’analyse et la théorie des types. In:
Scandinavian Logic Symposium. Stud. Logic Found. Math. 63, 63–92 (1971)

11. Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analysis.
In: Symposium on Principles of Programming Languages (POPL), pp. 130–141,
Januay 1995

12. Heintze, N.: Set-based program analysis of ML programs. In: Conference on Lisp
and Functional Programming (LFP), pp. 306–317, June 1994

13. Heintze, N., Jaffar, J.: A finite presentation theorem for approximating logic pro-
grams. In: Symposium on Principles of Programming Languages (POPL), pp. 197–
209, January 1990

14. Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Program.
Lang. Syst. 15(2), 253–289 (1993)

15. Jagannathan, S., Weeks, S., Wright, A.K.: Type-directed flow analysis for typed
intermediate languages. In: International Symposium on Static Analysis (SAS).
LNCS, vol. 1302, pp. 232–249, September 1997

16. Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Inter-
national Colloquium on Automata, Languages and Programming (ICALP). LNCS,
vol. 115, pp. 114–128, July 1981

17. Jones, N.D.: Flow analysis of lazy higher-order functional programs. In: Abramsky,
S., Hankin, C. (eds.) Abstract Interpretation of Declarative Languages, Chap. 4,
pp. 103–122. Ellis Horwood, Chicheste (1987)

18. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of LISP-like struc-
tures. In: Symposium on Principles of Programming Languages (POPL), pp. 244–
256, January 1979

19. Kfoury, A., Tiuryn, J., Urzyczyn, P.: Type reconstruction in the presence of poly-
morphic recursion. ACM Trans. Program. Lang. Syst. 15(2), 290–311 (1993)

20. Launchbury, J., Peyton Jones, S.: Lazy functional state threads. In: Conference
on Programming Language Design and Implementation (PLDI), pp. 24–35, June
1994

21. Launchbury, J., Peyton Jones, S.: State in Haskell. Lisp Symbolic Comput. 8(4),
293–341 (1995)

22. Midtgaard, J.: Control-flow analysis of functional programs. ACM Comput. Surv.
44(3), 10:1–10:33 (2012)

https://ritdml.rit.edu/handle/1850/15920

A Type- and Control-Flow Analysis for System F 139

23. Midtgaard, J., Adams, M., Might, M.: A structural soundness proof for Shivers’s
escape technique. In: International Symposium on Static Analysis (SAS). LNCS,
vol. 7460, pp. 352–369, September 2012

24. Mishra, P., Reddy, U.S.: Declaration-free type checking. In: Symposium on Prin-
ciples of Programming Languages (POPL), pp. 7–21. ACM, January 1985

25. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: International
Symposium on Programming. LNCS, vol. 167, pp. 217–228, April 1984

26. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

27. Palsberg, J.: Type-based analysis and applications. In: Workshop on Programming
Analysis for Software Tools and Engineering (PASTE), pp. 20–27 (2001)

28. Peyton Jones, S.: Compiling Haskell by program transformation: A report from the
trenches. In: European Symposium on Programming (ESOP). LNCS, vol. 1058, pp.
18–44, April 1996

29. Pottier, F., Gauthier, N.: Polymorphic typed defunctionalization and concretiza-
tion. Higher-Order Symbolic Comput. 19(1), 125–162 (2006)

30. Reppy, J.: Type-sensitive control-flow analysis. In: Workshop on ML (ML). pp.
74–83, September 2006

31. Reynolds, J.: Towards a theory of type structure. In: International Symposium on
Programming. LNCS, vol. 19, pp. 408–425, April 1974

32. Rossberg, A., Russo, C., Dreyer, D.: F-ing modules. In: Workshop on Types in
Language Design and Implementation (TLDI), pp. 89–102, January 2010

33. Serrano, M.: Control flow analysis: a functional languages compilation paradigm.
In: Symposium on Applied Computing (SAC), pp. 118–122, Feburary 1995

34. Sestoft, P.: Replacing function parameters by global variables. In: Conference on
Functional Programming Languages and Computer, Architecture (FPCA), pp. 39–
53, September 1989

35. Shivers, O.: Control-flow analysis in Scheme. In: Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 164–174, June 1988

36. Shivers, O.: Control-Flow Analysis of Higher-Order Languages or Taming Lambda.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Report CMU-CS-91-145, May 1991

37. Sulzmann, M., Chakravarty, M.M.T., Peyton Jones, S., Donnelly, K.: System F
with type equality coercions. In: Workshop on Types in Language Design and
Implementation (TLDI), pp. 53–66, January 2007

38. Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., Lee, P.: TIL: a type-
directed optimizing compiler for ML. In: Conference on Programming Language
Design and Implementation (PLDI), pp. 181–192, May 1996

39. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

Dependently-Typed Programming
in Scientific Computing

Examples from Economic Modelling

Cezar Ionescu1(B) and Patrik Jansson2

1 Potsdam Institute for Climate Impact Research, Potsdam, Germany
ionescu@pik-potsdam.de

2 Chalmers University of Technology, Göteborg, Sweden

Abstract. Computer simulations are essential in virtually every scien-
tific discipline, even more so in those such as economics or climate change
where the ability to make laboratory experiments is limited. Therefore, it
is important to ensure that the models are implemented correctly, that
they can be re-implemented and that the results can be reproduced.
Typically, though, the models are described by a mixture of prose and
mathematics which is insufficient for these purposes. We argue that using
dependent types allows us to gradually reduce the gap between the math-
ematical description and the implementation, and we give examples from
economic modelling. We discuss the consequences that our incremental
approach has on programming style and the requirements it imposes on
the dependently-typed programming languages used.

1 Introduction

In 2006, Herbert Gintis [10] announced the discovery of a mechanism that
would explain price formation and disequilibrium adjustment without requir-
ing the presence of a central authority or omniscience on part of the agents, as
is currently assumed in mainstream economics. Gintis’ results were, as he put
it “empirical rather than theoretical: we have created a class of economies and
investigated their properties for a range of parameters.” They were obtained
by computer simulations. Due to the importance of this result, two groups of
researchers, one at PIK, the other at Chalmers [9], independently attempted
to do something which should perhaps be routine, but is hardly ever done: to
re-implement the model described in the paper and reproduce the results. Af-
ter initial attempts failed and Gintis graciously provided the source code, both
groups discovered several ways that his implementation diverged from the de-
scription in the paper, only one of which could be called a “bug”. Much more
problematic was the ambiguity left open by the model description given in the
paper, which consisted of a mixture of prose and mathematical equations.

The example of the Gintis model was chosen because it is well documented
in recent literature, not because it is unique. It is quite typical for scientists
to believe that the mathematical equations used to develop a model are suffi-
cient specification for the implementation of that model, but that is rarely the

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 140–156, 2013.
DOI: 10.1007/978-3-642-41582-1 9, c© Springer-Verlag Berlin Heidelberg 2013

Dependently-Typed Programming in Scientific Computing 141

case. Discretizations, approximations, choices of integration methods, and many
other similar steps come between the mathematical description and the program.
This is a gap that must be bridged if we are to be able to check correctness of
implementations, re-implement models, or replicate results.

Sooner or later, everyone who considers this problem is bound to encounter
constructive mathematics and Martin-Löf’s type theory, which seems to be made
to order for this purpose. Here is for example a quote from the programmatic
article “Constructive Mathematics and Computer Programming” [12]:

Now, it is the contention of the intuitionists (or constructivists, I shall use
these terms synonymously) that the basic mathematical notions, above
all the notion of function, ought to be interpreted in such a way that
the cleavage between mathematics, classical mathematics, that is, and
programming that we are witnessing at present disappears.

Specifications (“tasks that the programs are supposed to perform”) are also
mentioned explicitly:

[Type theory] provides a precise notation not only, like other program-
ming languages, for the programs themselves but also for the tasks that
the programs are supposed to perform. Thus the correctness of a pro-
gram written in the theory of types is proved formally at the same time
as it is being synthesized.

The ideal of correctness put forward here is very enticing. There are many
examples of such correct-by-construction development, for example [7,14,15,17,
19,20]. It seems natural to attempt to apply the same methodology in the context
of scientific computing, for instance when building economic models such as the
one we mentioned in the beginning.

A necessary (but far from sufficient) condition for that is that type theory
has the expressive power to formulate the usual mathematical concepts which
modelers use as specifications. In the next section we show that this is indeed
the case. Together with economists at PIK, we have formalized basic building
blocks of economic theory, used in almost all economic models today, concepts
such as Pareto efficiency, Walrasian equilibrium, Nash equilibrium, and a host
of others, together with the relations between them (for example, Walrasian
equilibria are Pareto efficient). The resulting formalizations are pleasantly close
to the mathematical formulations the modelers are used to, so we can hope they
could use them in specifications.

The bad news is most of these concepts are classical in nature: economics is
currently a non-constructive theory (and even the so-called “computable general
equilibrium models” turn out to be non-computable, as pointed out by Velupillai
in [25]). Therefore, the specifications turn out to be non-implementable and the
gap between the mathematics and the programming is still there. But, as we
argue in the third section, we are now in a better position to close it.

We close the paper with a discussion of some consequences of this approach.

142 C. Ionescu and P. Jansson

2 Formalizing Economic Notions in Type Theory

The quintessential economic situation is that of exchange of goods, which we
introduce via the simplest possible example: two agents and two goods. We have
to assume at least two agents and two goods: if we had only one agent there
would be no one to exchange with, and if there were only one kind of good then
there would be nothing against which to exchange that good. We would then
have a situation of gift-giving, rather than exchange.

For concreteness, let us call the first good “wine” and the second good “beer”,
assume they come in bottles and cans respectively, and that there are 5 bottles
of wine and 10 cans of beer, distributed among our two agents: agent one has
3 bottles of wine and 3 cans of beer and agent two has 2 bottles of wine and 7
cans of beer. The bundle of goods each agent has is called its endowment, the
distribution of the endowments is an allocation.

Let us assume that the agents have different preferences for beer and wine.
For example, agent one likes beer more than wine, but needs to have at least
one bottle of wine in case he has more sophisticated guests. Agent two, on
the other hand, values wine over beer, but must have at least three cans of
beer for watching football with friends. The agents are allowed to change their
endowments by trading, but in the end there must be exactly as many bottles
and cans as we started out with: there is no consumption and no production of
goods, only pure exchange.

In our example, agents have preferences over their endowments (their own
stocks only), but in general they could have them over allocations (including their
competitors’ endowments), allowing economists to model not just greed, but
also envy. In most common examples, preferences, sometimes qualified with the
adjective weak, are total preorders (reflexive and transitive, but not necessarily
anti-symmetric). Thus, an agent can prefer x over y and y over x, without having
x = y. We say that x is strongly preferred to y if x is weakly preferred to y, but
y is not weakly preferred to x (in particular, nothing can be strongly preferred
to itself).

An agent’s preference over endowments can be extended to preference over
allocations in the natural way (by just ignoring others’ endowments).

An exchange leads to a re-allocation of goods, but the resulting allocation
must be feasible: this includes the “no creation, no consumption”-condition, but
also the constraints the agents have (at least one bottle of wine for the first agent
and three cans of beer for the second one).

Under the assumptions we have made, we can expect that the two agents will
indeed trade with each other, since each one stands to gain by an exchange. This
would not be the case if we switched the two preferences (or, equivalently, the
two endowments) because then the agent who prefers wine would not be able to
trade any of his beer for it because of the 3-cans constraint. Coming back to the
original setting, we can also see that intuitively a re-allocation of goods in which
agent one has 1 bottle of wine and 7 cans of beer (and the rest goes to agent
two) is optimal. The two agents are as well off as they can possibly be, given
their initial endowments and their preferences. An allocation in which agent one

Dependently-Typed Programming in Scientific Computing 143

has 2 bottles of wine and 7 cans of beer (and agent two therefore 3 and 3) is
also feasible and preferred by both agents to the initial one, but is intuitively
less satisfactory (since the first agent is indifferent to the second bottle of wine,
it looks as though the second agent has not made a good deal, giving up four
cans for just one bottle). Still, it is a possible end-result of an exchange between
the agents.

The reader should now be in a position to understand the following definitions
taken from the standard textbook on microeconomics:

Definitions of Pareto efficiency. A feasible allocation x is a weakly
Pareto efficient allocation if there is no feasible allocation x′ such that
all agents strictly prefer x′ to x. A feasible allocation x is a strongly
Pareto efficient allocation if there is no feasible allocation x′ such that
all agents weakly prefer x′ to x, and some agent strictly prefers x′ to x.

Varian [23], p. 323

In our example, the first re-allocation, intuitively considered optimal, can be
seen to be strongly Pareto efficient, while the second one, less satisfactory, but
not leading necessarily to an exchange, is weakly Pareto efficient.

Pareto efficiency is fundamental in economics and easily formalized in con-
structive type theory, which makes it a good place to start. Since our economist
colleagues were familiar with Haskell, we chose to work with implementations
of type theory which offer a similar syntax, so we have used equally Agda and
Idris (here we present the Agda version).

We were fortunate that we could assume familiarity with a functional pro-
gramming language, which is not currently part of the standard training of
economists. We were even more fortunate that we could assume familiarity with
the ideas and practice of formalization, at the level of, for example, Chapter 12
of Suppes’ Introduction to Logic [18]. The interdisciplinary nature of research at
PIK, involving a mixture of natural and social sciences, has led to many inquiries
into the meaning of words such as “sustainability”, “resilience”, or “vulnerabil-
ity” in the context of climate change. There have been a number of projects,
workshops, and seminars devoted to the topic of formalization and mathemati-
cal modeling of such concepts using classical logic and set theory.

Accordingly, our formalization of Pareto efficiency has a distinctively set-
theoretical flavor. We assume a set Agent for the agents, a set Allocation for
the allocations, a predicate Feasible on this set, and a ternary relation of strict
preference. In Agda, the standard way of working with such assumptions is to
pass them as parameters to the module encapsulating the formalization. Alter-
natively, we can explicitly express them as postulates:

postulate
Agent : Set
Allocation : Set
Feasible : Allocation → Set
_strictlyPrefers_to_ : Agent → Allocation → Allocation → Set

144 C. Ionescu and P. Jansson

The formalization of weak Pareto efficiency as a predicate on allocations reads

WeakPareto x = Feasible x ∧
¬ (∃ [x’ : Allocation] (Feasible x’ ∧

(∀ [a : Agent] (a strictlyPrefers x’ to x))))

We are using here Agda’s flexible, Unicode-enabled syntax, to make the for-
malization readable to anyone familiar with the standard logical connectors and
quantifiers. It is, we hope, clearly an ad-litteram translation of the definition
cited above. To achieve this effect, we have sometimes used a different notation
than that of the standard Agda library, for example we use ∃ where the standard
library has Σ. The most important departures from the standard are noted in
the Appendix, which also lists references for readers unfamiliar with Agda or the
monomorphic version of Martin-Löf’s type theory it implements.

The formalization of strong Pareto efficiency requires an additional ternary
relation for weak preference, but is otherwise just as simple:

postulate
_weaklyPrefers_to_ : Agent → Allocation → Allocation → Set

StrongPareto x = Feasible x ∧
¬ (∃ [x’ : Allocation] (Feasible x’ ∧

(∀ [a : Agent] (a weaklyPrefers x’ to x)) ∧
(∃ [a’ : Agent] (a’ strictlyPrefers x’ to x))))

It is just as easy to formulate a simple relationship between weak and strong
Pareto efficiency: namely, that strong Pareto efficiency is stronger than weak
Pareto efficiency, i.e., the former implies the latter:

Strong=>Weak : ∀ [x : Allocation] (StrongPareto x → WeakPareto x)

but this is as far as we can go without discussing the meaning of the connectives
and quantifiers.

Until now, the formulas we have seen could have been written in classical
logic. Typed predicate logic, for example, introduced by Raymond Turner in
[22], has the same syntax as constructive type theory, but is a classical, multi-
sorted predicate logic. What is different is the inferential system: what counts
as a proof.

Constructively, the universal quantifier above is interpreted as a function
which, to each allocation x, associates a proof of the statement “x is strongly
Pareto efficient implies that x is weakly Pareto efficient”. In turn, this implication
is interpreted as a function which, given a proof that x is strongly Pareto efficient,
produces a proof that x is weakly Pareto efficient. A proof that x is weakly Pareto
efficient consists of a pair of proofs: one that x is feasible, the other that it is
impossible to find an x′ which is also feasible and strictly preferred by all agents
to x. And so on.

Dependently-Typed Programming in Scientific Computing 145

It takes a bit of getting used to, but after that, and with a little help from the
Agda proof assistant Agsy, it is easy to implement proofs such as the following:

postulate
agent0 : Agent
strict=>weak : ∀ {a x x’} → a strictlyPrefers x’ to x →

a weaklyPrefers x’ to x

Strong=>Weak x (fx, spx) = (fx,wpx)
where
wpx : ¬ (∃ [x’ : Allocation] (Feasible x’ ∧

(∀ [a : Agent] (a strictlyPrefers x’ to x))))
wpx (x’, (fx’, prefx’)) =

spx (x’, (fx’, ((λ a → strict=>weak (prefx’ a)),
(agent0, prefx’ agent0))))

In fact, it is instructive to do so. Here, we can see that we need the assumption
that strict preferences imply weak preferences (which holds in the common model
of preferences as total preorders) and that the set of agents is not empty (and
that we can actually pick an agent from it, whom we called agent0). As is often
the case, assumptions are made explicit by formalization.

From Pareto efficiency we move on to one of the most important notions of
economics: that of a Walrasian equilibrium.

In a first approximation, Walrasian equilibrium can be understood as a way
of computing Pareto efficient allocations. This computation is difficult in general,
among other reasons because it involves looking at all the agents simultaneously.
It would be much easier if the agents could somehow be treated individually,
instead of collectively.

In the model proposed by Walras in [27], goods have prices. Since each agent
starts out with an initial endowment, the value of this endowment can be com-
puted to yield the agent’s budget. Each agent then computes the optimal en-
dowment within this budget. Suppose these optimal endowments together make
up a feasible allocation: this would surely be a good end-result for an exchange,
since every agent gets the best it can afford. Whether this optimal allocation is
in fact feasible depends on the prices. In our example above, if the price of a
can of beer were the same as the price of a bottle of wine, say 1 cent each, then
agent one would have as optimal endowment one bottle of wine and five cans of
beer, while agent two could optimally afford six bottles of wine and three cans of
beer. The resulting allocation is not feasible: it needs too many bottles of wine
(seven, instead of the five available ones) and too few cans of beer (eight, instead
of ten). On the other hand, if wine bottles cost twice as much as beer cans, say
two cents to one, then the optimal endowments of the two agents make up the
strongly Pareto allocation we have seen earlier. Prices for which the optimal en-
dowments constitute a feasible allocation are called equilibrium prices, together
with an optimal allocation they make up a Walrasian equilibrium. Here is the
definition from Varian’s classical textbook [23]:

146 C. Ionescu and P. Jansson

An allocation-price pair (x,p) is a Walrasian equilibrium if (1) the
allocation is feasible, and (2) each agent is making an optimal choice
from its budget set. In equations:

1.
∑n

i=1 xi =
∑n

i=1 ωi

2. If x′
i is preferred by agent i to xi, then px′

i > pωi.

Varian, Microeconomic Analysis, p. 325

Here, ω is the initial allocation. It is assumed that the endowments are vectors
of non-negative real numbers, each component representing the quantity of the
respective good, and that the value of an endowment is computed by a scalar
product with the prices. In turn, an allocation is represented by a matrix, having
the individual endowments as columns. Thus, the sum in the first point in the
definition is column-wise and represents the conservation of goods condition. The
second point states that if an allocation is preferred by an agent to the optimal
one, the value of the agent’s endowment in this allocation is greater than the
value of the agent’s initial endowment: the allocation is out of budget.

There is a level of detail in this definition which is more than we need for
the moment. For the purpose of formalizing Walrasian equilibrium, it suffices
to assume that we can compute an agent’s endowment from an allocation and
the value of that endowment at given prices, and that we can compare values
with one another. This being granted, the precise nature of the sets of prices,
endowments, values is not important and we can formalize a more general version
of Walrasian equilibrium:

postulate
Endowment : Set
Price : Set
Value : Set

endmt : Allocation → Agent → Endowment

value : Endowment → Price → Value
> : Value → Value → Set

ω : Allocation

WalrasianEq (x, p) = Feasible x ∧
(∀ [a : Agent] (∀ [x’ : Allocation]

((a strictlyPrefers x’ to x) →
value (endmt x’ a) p > value (endmt ω a) p)))

While a bit more abstract, this formalization is still just an almost literal
translation of the definition given by Varian.

We have referred to the allocation in a Walrasian equilibrium as “optimal”,
but is it really Pareto efficient? In fact, it is easy to show that it is weakly Pareto
efficient, a result known as the first theorem of welfare economics:

Dependently-Typed Programming in Scientific Computing 147

First theorem of welfare economics. If (x,p) is a Walrasian equi-
librium, then x is [weakly] Pareto efficient.

Varian, Microeconomic Analysis, p. 326

We have explicitly added the qualifier weakly : Varian adopts the following
convention “when we say ‘Pareto efficient’ we generally mean ‘weakly Pareto
efficient’ ” (p. 324).

The proof of the theorem is by contradiction and relies on the distributivity
of multiplication over addition, on factor cancellation and on the assumption
that prices are strictly positive (and therefore non-zero). We can abstract away
from these properties by postulating that, for any prices p and any allocation x,
if every agent’s endowment in x is more valuable than in ω, then x is not feasible:

postulate
outOfBudget : ∀ [p : Price] (∀ [x : Allocation]

(∀ [a : Agent] (value (endmt x a) p > value (endmt ω a) p) →
¬ (Feasible x)))

The formalization of the theorem is then short and simple, at least if one
is accustomed to the computational reading of the logical connectives and
quantifiers.

FirstTheorem : ∀ [x : Allocation] (∀ [p : Price] (WalrasianEq (x, p) →
WeakPareto x))

FirstTheorem x p (fx,weq) = (fx,wpe) where
wpe : ¬ (∃ [x’ : Allocation] (Feasible x’ ∧

(∀ [a : Agent] (a strictlyPrefers x’ to x))))
wpe (x’, (fx’, prefx’)) = outOfBudget p x’

(λ a → weq a x’ (prefx’ a)) fx’

More interestingly is that, while formalizing this proof, we hit upon the fol-
lowing question: if (x,p) is a Walrasian equilibrium, is then every endowment in
x in the respective agent’s budget? The answer, which even some of our econo-
mist colleagues found surprising, is no. Of course, if one has the idea of looking
for them, counter-examples are easy to find. Consider our two-agent example,
with the same initial allocation, but removing the constraints on the preferences:
agent one no longer needs to have at least one bottle of wine, and agent two no
longer cares about beer.

The former equilibrium prices, two cents for a bottle of wine and one for a can
of beer, are still equilibrium prices for the new situations. The allocation which
gives agent one an endowment of no wine and nine cans of beer, and agent two
all five bottles of wine and one can of the beer is optimal. Any allocation strictly
preferred by agent one would have more cans of beer than it can afford, and the
same for agent two in terms of wine (no half-bottles accepted!). Therefore, the
Walrasian equilibrium condition is satisfied.

148 C. Ionescu and P. Jansson

Now consider the allocation that gives agent one all ten cans of beer, and
agent two the five bottles of wine. This allocation is certainly feasible: it contains
five bottles of wine and ten cans of beer, just like ω. If another allocation is
preferred by agent one, it has to give it at least ten cans of beer: more than it
can afford. If it is preferred by agent two, it has to give it six bottles of wine,
but agent two can only afford five. Therefore, this allocation is also a Walrasian
equilibrium for these prices. But, as we see, it is out of budget for agent one.

We have said that Walrasian equilibrium can be approached as a way of
computing Pareto efficient allocation, an idea that we found useful but which
might make some of our economist colleagues cringe. Before going further, we
should point out that the importance of the Walrasian model lies in that it serves
to explain prices as arising from desirability of goods, from the preferences of
the agents and their initial endowments, as opposed to the Marxist theory of
value, where prices appear as a measure of the labor involved in the production
of goods.

This model admits many extensions: one can add to it production and con-
sumption of goods, a labor market (treating labor as a good to be exchanged
by the workers), exchanges in several steps (adding a temporal dimension to the
problem), and so on. Most mainstream economic models, including such as are
used for policy advice (for example ReMIND [4] and GEM-E3 [3]) are general
equilibrium models based on extensions of the Walrasian ideas formalized in this
section.

A general criticism of all these models is that they neglect the dynamical
aspect of reaching the equilibrium situation. There is no known plausible mecha-
nism which explains exactly how equilibrium prices can arise in practice. Walras’
own proposal for such a price-formation mechanism involved an auctioneer. This
is a central entity who can see all supply-demand imbalances and adjust prices
accordingly, raising the prices of goods for which there is too great demand, and
lowering those for which there is too little, in an iterative process. Even if one
accepts that in some situations one could have an authority that might act as
auctioneer, there is no general proof that the iterative process will eventually
converge.

This, in fact, was the problem that Gintis attempted to solve, and the reason
the papers we referred to in the previous section found an immediate echo in
the economics community. This shows that even non-mainstream models like his
can actually benefit from having formal specifications of the classical economic
concepts.

We have formalized much more than just what we have shown here: the
detailed definitions in Varian’s book, but also the notions of Nash equilibria,
correlated equilibria, and several others. They are all more complex, but not
more complicated than what we have been able to show here. All in all, we can
say that constructive type theory as embodied by Agda or Idris has passed our
test for expressiveness: we were able to formulate in it fundamental notions of
economics and relationships between them in such a way that they can be read,
and with some exercise even used, by our colleagues.

Dependently-Typed Programming in Scientific Computing 149

That was the good news. The bad news is that most of these concepts are not
constructive. Specifications of programs that take as input agents characterized
by preference relations and initial endowments and return a Walrasian (or Nash,
or correlated, . . .) equilibrium can in general not be fulfilled. In fact, as men-
tioned in the introduction, even the so-called computable general equilibrium
models are not, in fact, computable.

We started with the problem that the mathematical descriptions employed
in scientific computing are too far from the implementation to serve as spec-
ifications. Constructive type theory promised to be a bridge across this gulf.
However, it now appears that we have not made any progress. The simplic-
ity of the translation from informal mathematical definitions to formal ones,
which we interpreted as proof of the expressiveness of constructive type theory,
turns out to have been deceptive. We appear to have the same unsatisfactory
specifications, only in slightly fancier notation. The gap has not been bridged,
after all.

However, the translational effort has brought us something essential, as we
shall see in the next section.

3 Increasingly Correct Scientific Computing

There are general reasons for wanting to formalize the kind of mathematical
specifications used in scientific programming. For one thing, formalization can
help us understand the informal definitions better. We have seen this in the case
of Walrasian equilibrium, where optimal allocations are allowed by the standard
definition to be “out of budget” for some agents. For another, having formal
specifications makes them checkable by computer: we can be fairly confident
that the syntactic errors are going to be signalled by it, as well as some of the
more glaring semantical errors, such as inverting quantifier order.

Still, why choose constructive type theory as the vehicle for the formalization,
over, for example, classical higher-order logic and set theory (which also have
the advantage of being more familiar to non-computer scientists)?

The reason is that the only way one can decrease the distance between math-
ematics and programming is to make the mathematical side more constructive:
computation cannot become more classical. There are many efforts underway
aiming to use constructive mathematics in the context of scientific computing.
For example, Velupillai’s program for computable economics [24,26], or various
projects for developing constructive numerical methods [2,11].

Using constructive type theory both for formalizing specifications and for the
implementations enables us to take advantage of these developments as they oc-
cur, by gradually replacing the non-constructive concepts with their constructive
counterparts. This is an increase of correctness “from above”: we are improving
the specifications, becoming more precise about what we are “really” computing
and what relationship there is between this and what we think we should be
computing.

We can already implement the constructive parts, and isolate the ones that
depend on classical theory in postulates. For example, the kind of inter-temporal

150 C. Ionescu and P. Jansson

optimization that many economic models are based on can be solved by apply-
ing Bellman’s dynamic programming algorithm [5,6], thus reducing the inter-
temporal optimization to the successive application of local optimizations. This
works if the Bellman principle can be applied, and the proof is constructive.
Thus, we can have a verified implementation of the dynamic programming algo-
rithm, if we can implement the local maximization.

Few modelers are going to implement their own optimization routine. Rather,
they are going to use an external one, with an interface which in its simplest
form can be expressed as

maxUtil : {n : Nat} → (Vect Float n → Float) → Float

so that maxUtil u returns the maximum of the utility function u defined over Rn.
(For brevity, we ignore here that a function such as maxUtil should also return
the input vector for which the utility reaches its maximum). The modeler will
often use maxUtil as if it implemented the specification

postulate maxSpec : {n : Nat} →
∀ [u : (Vect Float n → Float)]

(∀ [x : Vect Float n]
(so (u x � maxUtil u)))

In this usage, postulates express a condition relative to which the correctness
of the implementation is to be judged. In particular, this is always the case
when using external routines which do not have a type theoretical interface. The
typechecker can at least verify that we are using the postulated properties in a
correct way. Another advantage is that we have clearly signalled the spots where
further refinement is necessary, where constructive mathematics can help.

There is another usage of postulates which points to further refinements in
a different, simpler way. The scientists involved in the modeling process are
usually not experts in giving formal proofs, let alone constructive formal proofs.
Sometimes, it is useful to just defer the proof to the experts, or to a later stage
of development. For example, while maximizing utility functions is in general
not computable, it is computable when the domain of the utility is a finite set.
Therefore, the following specification

postulate maxFinSpec : {n : Nat} →
∀ [u : (Fin (S n) → Float)]

(∀ [i : Fin (S n)]
(so (u i � maxUtil u)))

is implementable, but the proof might be tricky for the beginner.
In fact, beginners, even under the somewhat ideal conditions of familiarity

with Haskell, tend to paint themselves into a corner. For example, to implement

Dependently-Typed Programming in Scientific Computing 151

maximization by enumeration, one might try to translate the following Haskell
code:

maxUtil :: Nat -> (Nat -> Float) -> Float
maxUtil 0 u = u 0
maxUtil (n + 1) u = maxUtil’ (n + 1) u (u 0) 0

maxUtil’ :: Nat -> (Nat -> Float) -> Float -> Nat -> Float
maxUtil’ n u best c’ =

let c = c’ + 1 in -- c is the candidate new best
let uc = u c in -- uc is potential new optimum
let bU = max uc best in

if c == n -- is c the last candidate?
then bU
else maxUtil’ n u bU c

in the following somewhat exaggeratedly literal manner. We hasten to say that
we are not presenting this example as a model of good style, instead, it’s main
merit is that it has actually arisen in practice and is a somewhat typical and
instructive case:

maxUtil : {n : Nat} → (Fin (S n) → Float) → Float
maxUtil {O} u = u fO
maxUtil {S n} u = maxUtil’ u (u fO) fO
maxUtil’ : {n : Nat} →

(Fin (S n) → Float) → Float → Fin n → Float

maxUtil’ {n} u bestU c’ =
let c = fS c’ in -- c is the candidate
let uc = u c in -- uc is potential new optimum
let bU = max uc bestU in
if (c =F= toFin n) -- is c the last candidate?
then bU
else (maxUtil’ u bU c) -- !

But this code does not type check! The reason is that the type of the last
argument to maxUtil’, namely c, is Fin (S n) instead of Fin n, as required by our
use of it (namely to increment it in order to obtain a new candidate). We know
that, in fact, c could be cast to a valid value of type Fin n, since we have just
tested that it is not maximal in Fin (S n), but we are going to have a very hard
time convincing the type checker of it, let alone prove that the resulting max
satisfies maxFinSpec. On top of it all, the termination checker also complains it
does not see why maxUtil’ is not just going to loop forever. Unfortunately, this
situation is quite common when attempting to just write Haskell in Agda.

At this point, many a scientific programmer can feel like throwing their hands
up and returning to Haskell or Fortran. Which is why it is important that the
language provides some form of unsafe cast. In Agda, this takes the form of

152 C. Ionescu and P. Jansson

trustMe, on the basis of which one can write an unsafe function coerce (see the
Appendix) which can be used to eliminate the type error. We can get the above
code to work by replacing the last line with else (maxUtil’ u bU (coerce c)) and
adding a no-termination-check option for the compiler.

But, in so doing we have lost all additional safety provided by the
dependently-typed system: we are just writing Haskell in Agda. Again, the same
question arises: why not just write Haskell then? And, again, the same answer:
because here we can improve. It is an instructive exercise to repair the maxUtil
function, eliminating the unsafe elements, while still keeping it tail-recursive. In
doing so, one discovers that the main culprit is the boolean test, where work is
done to determine if the candidate is maximal, only to immediately discard that
work so that it is unavailable when we need it only a couple of lines later. This
will also help with the proof that maxUtil satisfies the specification, leading to
the realization that proving “the correctness of a program . . . at the same time
as it is being synthesized” is sometimes the simplest way to go.

The usage of unsafe coercions leads to the possibility of increasing the cor-
rectness of our programs “from below”. They indicate the key points we need
to address to improve the implementations and prove they meet the specifica-
tions. As an intermediate step, one can eliminate “brutal” coercions in favor of
applications of non-constructive principles, such as the law of double negation.
In interval analysis, for example, it is often much easier to show that the interval
returned by a given method cannot possibly fail to contain the solution, than
that it actually does contain the solution.

In summary, formulating the current specifications and implementations in
constructive type theory does not result in immediate ideal correctness for our
programs, which is perhaps disappointing. On the other hand, it leaves us no
worse off than before, and it offers a clear path for improvement: we can better
our specifications by making them more constructive, and we can refine our
implementations by removing unsafe features and postulates.

4 Conclusions

The approach to increasing the correctness of scientific computing presented
here requires us to formalize the current typical mixture of classical and con-
structive mathematics within an implementation of constructive type theory,
using the kind of brute-force mechanisms that the dependently-typed program-
ming community rightly frowns upon. Nevertheless, the possibility to use unsafe
features and postulates, together with a good foreign-function interface, is essen-
tial if we want to take advantage of what we can do now, in our less than ideal
circumstances.

The results of such a formalization are, as we have seen in the previous
section, not very pretty, but they have the advantage of explicitly flagging the
points where improvements can be made. We are then in a better position to
move towards the Martin-Löf ideal of correctness, by replacing unsafe coercions
and postulates.

Dependently-Typed Programming in Scientific Computing 153

In many cases, this requires a shift in the programming style we adopt. There
are (at least) two ways of specifying a computation with inputs of type A and
outputs of type B which have to satisfy a relation R:

1. as a member of the type

∀ [a : A] (∃ [b : B] (R a b))

that is, a function which, for every input a : A returns a pair consisting of a
value b : B together with a proof that R a b. This is the approach presented
in the textbook of Nordström et al. [15];

2. or as a member of the type

∃ [f : (A → B)] (∀ [a : A] (R a (f a)))

that is, as a pair consisting of a function f : A → B and a proof that
for every a : A we have R a (f a). This is the approach of the other major
textbook on programming and type theory, that of Thompson [20].

The two approaches are logically equivalent (see also Thompson [21]), in the
sense that a member of one can always be turned in a member of the other, but
they encourage a different practice: the Nordström et al. style suggests develop-
ing the proof within the implementation, while the Thompson style advocates
developing the proof alongside the implementation.

The Thompson approach fits very well the current state of affairs in scien-
tific computing, where implementations are generally considered separately from
specifications, and is therefore easier for newcomers to type theory to understand.
This is the style we saw in the previous section, when we translated the Haskell
function maxUtil more or less literally in Agda, and postulated that it fulfills the
specification maxFinSpec. This approach is also forced on us whenever we use an
external function without a type-theoretical interface.

However, this style usually leads to duplication of effort: the same kind of op-
erations needed to implement the computation turn out to be useful for proving
that it fulfills the specification. Moreover, in the absence of a powerful reflec-
tion mechanism, the proof cannot be formulated at all. This was the case in the
example from the previous section, where, after the boolean test, we “lost” the
information necessary to prove the type-correctness of our program and had to
appeal to unsafe coercion.

Once these difficulties are encountered in practice, the newcomers quickly
start to appreciate the value of developing the proof and the program in the same
context.1 The increase in correctness is accompanied by a gradual shift from the
Thompson-style to the Nordström-style. This is not so surprising, after all the
observation that correct-by-construction programming is easier than separating
proof and program predates Martin-Löf’s type theory (e.g. Dijkstra [8]).

1 And explore environments that could assist them in this task, such as Coq.

154 C. Ionescu and P. Jansson

5 Appendix

We have summarized here the definitions of the datatypes and functions we have
used in this article and which are not part of the standard Agda syntax or library.
For more information on the latter, the reader is referred to the Agda wiki [1],
where a wealth of material is available, starting with the ever-growing reference
manual. For an introduction to the Martin-Löf type theory that Agda is based
on we recommend, besides the standard textbooks referred to in Sect. 4, also the
chapter by Nordström et al. in the Handbook of logic in computer science [16].
The various video lectures and associated materials of Conor McBride, such
as [13], are an excellent and entertaining introduction to programming with
dependent types.

Back to the Agda definitions: these fall in three categories. The first comprises
datatypes and functions designed to maximize the amount of cut-and-paste we
can do between Agda and Idris programs:

data ⊥ : Set where

data One : Set where
one : One

so : Bool → Set
so true = One
so false = ⊥
data _∧ _ (A : Set) (B : Set) : Set where

, : A → B → A ∧ B

fst : {A B : Set} → A ∧ B → A
fst (a, b) = a

snd : {A B : Set} → A ∧ B → B
snd (a, b) = b

The second category consists of definitions and syntax declarations meant to
increase the similarity of Agda and standard logic notations:

data Σ (A : Set) (B : A → Set) : Set where
, : (a : A) → (b : B a) → Σ A B

syntax Σ A (λ x → B) = ∃ [x : A] B
Π : (A : Set) → (B : A → Set) → Set
Π A B = (a : A) → B a

syntax Π A (λ x → B) = ∀ [x : A] B

The third category is that of function definitions that are meant to facilitate
the usage of unsafe features and the literal translation of Haskell programs. The
only such function we have used here is

Dependently-Typed Programming in Scientific Computing 155

coerce’ : {A B : Set} → A ≡ B → A → B
coerce’ refl a = a

coerce : {A B : Set} → A → B
coerce = coerce’ trustMe

Note that the intended use of postulates and trustMe is to mark the spots
where assumptions are made and improvements are needed.

References

1. Agda wiki page. http://wiki.portal.chalmers.se/agda/
2. Formalisation of Mathematics. http://wiki.portal.chalmers.se/cse/pmwiki.php/

ForMath/ForMath
3. GEM-E3 Website. http://www.gem-e3.net/
4. ReMIND-R. http://www.pik-potsdam.de/research/sustainable-solutions/models/

remind
5. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton

(1957)
6. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn. Athena

Scientific, Belmont (2000)
7. Brady, E., Hammond, K.: Correct-by-construction concurrency: using dependent

types to verify implementations of effectful resource usage protocol. Fundamenta
Informaticae 102, 145–176 (2010)

8. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968)

9. Evensen, P., Märdin, M.: An extensible and scalable agent-based simulation of
barter economics. Master’s thesis 2009/04a, Chalmers University of Technology
and University of Gothenburg (2009)

10. Gintis, H.: The emergence of a price system from decentralized bilateral exchange.
B.E. J. Theor. Econ. 6(1), 13 (2006)

11. Kreinovich, V.: Designing, understanding, and analyzing unconventional compu-
tation: the important role of logic and constructive mathematics. Appl. Math. Sci.
6(13–16), 645–649 (2012)

12. Martin-Löf, P.: Constructive mathematics and computer programming. Philos.
Trans. R. Soc. Lond. 312(1522), 501–518 (1984)

13. McBride, C.: Dependently typed programming. http://www.cs.uoregon.edu/
Research/summerschool/summer10/curriculum.htm

14. Mu, S.-C., Ko, H.-S., Jansson, P.: Algebra of programming in Agda: dependent
types for relational program derivation. J. Funct. Program. 19, 545–579 (2009)

15. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
ory. Oxford University Press, Oxford (1990)

16. Nordström, B., Petersson, K., Smith, J.: Martin-Löf type theory. In: Handbook
of Logic in Computer Science, vol. 5, pp. 1–37. Oxford University Press, Oxford
(2000)

17. Nordström, B., Smith, J.: Propositions and specifications of programs in Martin-
Löf’s type theory. BIT Numer. Math. 24, 288–301 (1984)

18. Suppes, P.: Introduction to Logic. Dover Books on Mathematics Series. Dover, New
York (1999). (Reprint of the 1957 edition from Van Nostrand)

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://www.gem-e3.net/
http://www.pik-potsdam.de/research/sustainable-solutions/models/remind
http://www.pik-potsdam.de/research/sustainable-solutions/models/remind
http://www.cs.uoregon.edu/Research/summerschool/summer10/curriculum.htm
http://www.cs.uoregon.edu/Research/summerschool/summer10/curriculum.htm

156 C. Ionescu and P. Jansson

19. Swierstra, W.: A Hoare logic for the state monad. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 440–451.
Springer, Heidelberg (2009)

20. Thompson, S.: Type Theory and Functional Programming. Addison-Wesley,
Redwood (1991)

21. Thompson, S.: Are subsets necessary in Martin-Löf type theory? In: Myers Jr,
J.P., O’Donnell, M.J. (eds.) Constructivity in CS 1991. LNCS, vol. 613. Springer,
Heidelberg (1992)

22. Turner, R.: Computable Models. Springer, London (2009)
23. Varian, H.R.: Microeconomic Analysis. Norton, New York (1992)
24. Velupillai, K.: Computable Economics: The Arne Ryde Memorial Lectures. Oxford

University Press, Oxford (2000)
25. Velupillai, K.V.: Algorithmic foundations of computable general equilibrium

theory. Appl. Math. Comput. 179, 360–369 (2006)
26. Velupillai, K.V.: Taming the incomputable, reconstructing the nonconstructive and

deciding the undecidable in mathematical economics. New Math. Nat. Comput.
(NMNC) 8(01), 5–51 (2012)

27. Walras, L.: Elements of Pure Economics: Or the Theory of Social Wealth. Rout-
ledge Library Editions-Economics. Taylor & Francis Group, London (1954)

Engineering Proof by Reflection in Agda

Paul van der Walt(B) and Wouter Swierstra

Department of Computer Science, Utrecht University, Utrecht, The Netherlands
paul@denknerd.org, w.s.swierstra@uu.nl

Abstract. This paper explores the recent addition to Agda enabling
reflection, in the style of Lisp and Template Haskell. It gives a brief in-
troduction to using reflection, and details the complexities encountered
when automating certain proofs with proof by reflection. It presents a
library that can be used for automatically quoting a class of concrete
Agda terms to a non-dependent, user-defined inductive data type, alle-
viating some of the burden a programmer faces when using reflection in
a practical setting.

Keywords: Dependently-typed programming · Reflection ·Agda · Proof
by reflection · Metaprogramming

1 Introduction

The dependently typed programming language Agda [1,2] has recently been
extended with a reflection mechanism [3] for compile time metaprogramming
in the style of Lisp [4], MetaML [5], Template Haskell [6], and C++ templates.
Agda’s reflection mechanisms make it possible to convert a program fragment
into its corresponding abstract syntax tree (AST) and vice versa. In tandem
with Agda’s dependent types, this has promising new programming potential.

This paper addresses the following central questions:

“What practical issues do we run into when trying to engineer automatic
proofs in a dependently typed language with reflection? Are Agda’s re-
flective capabilities sufficient and practically usable, and if not, which
improvements might make life easier?”

Contributions. This paper reports on the experience of using Agda’s reflection
mechanism to automate certain categories of proofs. This is a case study, illustra-
tive of the kind of problems that can be solved using reflection. More specifically:

– We give a very brief introduction to Agda’s reflection mechanism (Sect. 2).
Previously, these features were only documented in the release notes and
comments in Agda’s source files. A detailed tutorial is available elsewhere [3].

– We present Autoquote, an Agda library that does a declaratively-specified
translation of a quoted expression to a representation in a user-defined non-
dependent datatype (Sect. 3).

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 157–173, 2013.
DOI: 10.1007/978-3-642-41582-1 10, c© Springer-Verlag Berlin Heidelberg 2013

158 P. van der Walt and W. Swierstra

– We show how to use Agda’s reflection mechanism to automate certain cate-
gories of proofs (Sect. 4). The idea of proof by reflection is certainly not new,
but still worth examining in the context of this technology.

The code presented in this paper compiles using Agda version 2.3.2.1

1.1 Introducing Agda

Agda is an implementation of Martin-Löf’s type theory [7], extended with records
and modules. It is developed at the Chalmers University of Technology [1]; in
accordance with Curry–Howard isomorphism, it can be viewed as both a func-
tional programming language and a proof assistant for intuitionistic logic. It is
comparable to Coq, which is based on Coquand’s calculus of constructions [8].
There are many excellent tutorials on Agda [1,2,9].

Since version 2.2.8, Agda includes a reflection API [10], which allows the
conversion of parts of a program’s code into an abstract syntax tree, a data
structure in Agda itself, that can be inspected or modified like any other. The
idea of reflection is old: in the 1980s Lisp included a similar feature, then already
called quoting and unquoting, which allowed run time modification of a program’s
code.

2 Using Reflection

We will now introduce the reflection API with some small examples.

The Keywords. There are several keywords that can be used to quote and unquote
terms: quote, quoteTerm, quoteGoal, and unquote. The quote keyword allows
the user to access the internal representation of any identifier. This internal
representation, a Name value, can be used to query the type or definition of the
identifier. We refer to the release notes [10] for a listing of the data structures
involved; most important is Term : Set, representing concrete Agda terms.

The simplest example of quotation uses the keyword quoteTerm x : Term,
where x is a fragment of concrete syntax. Note that quoteTerm reduces like any
other function in Agda. As an example, the following unit test type checks:

example0 : quoteTerm (λ (x : Bool) → x) ⇒ lam visible (var 0 [])
example0 = refl

In dissecting this, we find the lam constructor, since we introduced a lambda
abstraction. Its one argument is visible (as opposed to implicit), and the body
of the lambda abstraction is just a reference to the nearest-bound variable, thus
var 0, applied to an empty list of arguments. Variables are referred to by their
De Bruijn indices.
1 All supporting code, including this paper in Literate Agda format, is available on
GitHub. https://github.com/toothbrush/reflection-proofs

https://github.com/toothbrush/reflection-proofs

Engineering Proof by Reflection in Agda 159

Furthermore, quoteTerm type checks its argument before returning the Term.
Since type checking a term necessitates normalisation, the returned Term is
always in normal form, as example1 demonstrates.

example1 : quoteTerm ((λ x → x) 0) ⇒ con (quote zero) []
example1 = refl

The identity function is applied to zero, resulting in just the value zero. The
quoted representation of a natural zero is con (quote zero) [], where con means
that we are introducing a constructor. The constructor zero takes no arguments,
hence the empty list.

The quoteGoal keyword is different. We cannot assign quoteGoal an informal
type, since it is really a syntactic construct that depends on the context. See the
following example.

example2 : N

example2 = quoteGoal e in { }0

The quoteGoal keyword binds the variable e to the Term representing the
type expected at the position of quoteGoal. In this example, the value of e in the
hole will be def N [], i.e., the Term representing the type N, which is a definition,
hence def.

The unquote keyword takes one argument – a Term – and converts it back to
a concrete expression. Just as quoteTerm and quoteGoal, unquote type checks
and normalises the Term before splicing it into the program text. Note that it
is not yet possible to introduce top-level declarations using unquote. This is a
technical limitation.

The quote x : Name keyword returns the representation of an identifier x
as a value in the primitive type Name, if x is the name of a definition (function,
datatype, record, or a constructor). Unfortunately, we cannot simply pattern
match on constructor names. The reason pattern matching on Names is not
supported, is that the elimination principle is not clear, since Name is a built-
in, non-inductive type. The only mechanism we have to distinguish Names is
decidable equality,2 which results in code as presented below – a lot less concise
than the pattern matching equivalent would be. Agda does allow matching on
String (which similarly only exposes decidable equality), so the limitation is a
technical one, which might be solved in the future.

whatever : Term → ...

whatever (con c args) with c
?= -Name quote foo

... | yes p = { }0 -- foo applied to arguments

... | no ¬p = { }1 -- not foo, try another Name, etc.

2 using the function
?
=-Name

160 P. van der Walt and W. Swierstra

This short introduction should already be enough to start developing simple
programs using reflection. For a more detailed description of the reflection API
in Agda, the reader is referred to Van der Walt’s thesis ([3], Chap. 3).

3 Automatic Quoting

In the previous section, we saw how to recover values of type Term, representing
concrete Agda terms. This is a start, but we rarely want to directly manipulate
Terms: often it is much more useful to use our own AST for computations. It
should be a minor task to write a function to convert a Term into another AST,
but this often turns out to become a mess.

When pattern matching is possible, converting elements of one AST to an-
other is a simple task. Unfortunately, Agda functions are required to be total,
which means they must have a case for each possible pattern. Since Term covers
all quotable terms, it has many alternatives. Furthermore, for Names, we only
have decidable equality. This is why such conversion functions tend to become
verbose, as in the code snippet of Fig. 1, an excerpt of a conversion function used
before a better solution was developed.

Fig. 1. The gist of a näıve conversion function, from Term into some more specific data
type.

A (partial) solution – something which at least mitigates the agony – is
presented in this section, in the form of the Autoquote library.

The Autoquote Library. We will use Expr, presented in Fig. 2, as a running ex-
ample of a toy AST. It is a simple non-dependent inductive data structure rep-
resenting terms with Peano-style natural numbers, variables represented using
De Bruijn indices, and additions.

We might want to convert an expression, such as 5 + x, to this AST using
reflection. In an ideal world, we would just pattern match on concrete con-
structs such as the + function and return elements like Plus of our AST. The
Autoquote library allows just this, exposing an interface which, when provided
with such a mapping, automatically quotes expressions that fit. Here, fitting is
defined as only containing names that are listed in the mapping, or variables

Engineering Proof by Reflection in Agda 161

Fig. 2. The toy expression language Expr. Quoting such terms is now easier.

with De Bruijn indices, and respecting constructor arities. Trying to convert
other terms results in a type error. The user provides a straightforward map-
ping, such as in Fig. 3, and Autoquote converts Agda terms to values in the AST.
Currently only non-dependent inductive types are supported.

Fig. 3. The mapping table for converting to the Expr AST.

This table should be interpreted as follows: any variables encountered should
be stored in Vars, and the + operator should be mapped to a Plus constructor.
A zero, from the Data.Nat standard library, should be treated as our Z construc-
tor, etc. Note that the first item in the table (Var in this case) is special, and
should be a constructor for De Bruijn-indexed variables. The rest of the table is
an arbitrary list of constructors.

We will not say much about the implementation of this library, since it is
not groundbreaking. For more details, we again refer to ([3], Sect. 3.3). Using
the library is simple; it exposes a function called doConvert which takes the
conversion table, a (hidden, automatically inferred) proof that the conversion is
possible, and a Term to convert, and produces an inhabitant of the desired data
type, where possible. The implicit proof technique is outlined in Sect. 4.1.

The use of doConvert is illustrated in Fig. 4. The hidden assumption that the
conversion is possible causes a type error if an incompatible term is given. The
utility of the Autoquote library is clear if you compare this relatively straight-
forward code to the verbose term2boolexpr snippet in Fig. 1.

Usually, the result from doConvert will require some post-processing – for
example, turning all naturals into Fin n values, or scope checking a resulting
expression – as we will see in the Boolean tautologies example (Sect. 4.2). How-
ever, for now it suffices to say that Autoquote eases converting Terms into other
ASTs.

162 P. van der Walt and W. Swierstra

Fig. 4. An example of Autoquote in use. See Fig. 3 for the definition of exprTable, a
declarative Name-to-constructor mapping.

A mechanism like Autoquote is actually an ad-hoc workaround for a more
general difficulty in Agda, namely that currently, a watered-down version of
pattern matching on data types exposing decidable equality is unreasonably
awkward. If this were possible in general, like it is for String, the Autoquote
library would be redundant.

4 Proof by Reflection

The idea behind proof by reflection is simple: given that type theory is both
a programming language and a proof system, it is possible to define functions
that compute proofs. Reflection in the proof technical sense is the method of
mechanically constructing a proof of a theorem by inspecting its shape. The
proof by reflection technique we describe here is not new – see for example
Chap. 16 of Coq’Art [11] – but instead combines a number of existing methods
into a usable package. The following two case studies illustrate proof by reflection
and how Agda’s reflection mechanism can make the technique more accessible.
The first example is a closed example and sets the stage for the second, an open
expression type extended to include variables.

4.1 Closed Example: Evenness

To illustrate the concept of proof by reflection, we will follow Chlipala’s example
of even naturals [12]. Our objective is to be able to automatically prove evenness
of certain naturals. To this end, we first write a test function which decides if
a natural is even, then prove the soundness of this predicate. This results in a
proof generator.

We start by defining the property Even.

data Even : N → Set where
isEven0 : Even 0
isEven+2 : {n : N} → Even n → Even (2 + n)

Using these rules to produce the proof that some large number n is even is
tedious: it requires n/2 applications of the isEven+2 constructor.

To automate this, we will show how to compute the proof required. We define
a predicate even? that returns the unit type (top) when its input is even and

Engineering Proof by Reflection in Agda 163

the empty type (bottom) otherwise. In this context, ← and ∗ can be seen as the
analogues of true and false, since there exists a proof that some number is even,
if it is 0 or 2 + n, for even n. Otherwise, no proof exists.

even? : N → Set
even? 0 = ←
even? 1 = ∗
even? (suc (suc n)) = even? n

Next we need to show that the even? function is sound. To do so, we prove
that if and only if even? n returns ←, the type Even n is inhabited. Since we are
working in a constructive logic, the only way to show this is to give a witness.
This is done in the function soundnessEven. Note that we are actually giving a
recipe for constructing proof trees.

soundnessEven : {n : N} → even? n → Even n
soundnessEven {0} tt = isEven0
soundnessEven {1} ()
soundnessEven {suc (suc n)} s = isEven+2 (soundnessEven s)

In the case of n = 1, we do not need to provide a right-hand side of the
function definition. The assumption even? 1 is uninhabited, and we discharge
this branch using Agda’s absurd pattern, ().

If we need a proof that some arbitrary n is even, soundnessEven builds it.
Note that the value of n is inferred. The only argument we must to provide to
soundnessEven is proof that even? n is inhabited. For any closed term, such as
the numbers 28 or 8772, this proof obligation reduces to ←, which is proven by
its single constructor, tt.

isEven8772 : Even 8772
isEven8772 = soundnessEven tt

Now we can easily get a proof term for arbitrary even numbers, without
having to explicitly write down the proof tree. Note that it is not possible to
give a term with type Even 27, or any other uneven number, since the parameter
even? n is equal to ∗, which is uninhabited. Providing tt anyway will produce a
type error stating that the types ← and ∗ cannot be unified.

Implicit Proofs. Since the type ← is a simple record type, Agda can infer the
tt argument. This means we can turn the assumption even? n into an implicit
argument, so a user could just write soundnessEven as the proof, letting Agda
fill in the missing proof. This trick works because Agda supports eta expansion
for record types. Concretely, Agda will automatically fill in implicit arguments
of the unit type. Here, the type system is doing more work than for general data
types; for records eta expansion is safe, since recursion is not allowed. This trick
will be used from here on to ameliorate our proof generators’ interfaces.

164 P. van der Walt and W. Swierstra

Friendlier Errors. It is possible to generate a descriptive “error” of sorts, by
replacing the ∗ with an empty type that has a friendly name:

data IsOdd : N → Set where

This makes the soundness proof a little less straightforward, but in return
the type error generated if an odd number is used becomes more informative.
When a user tries to use the soundnessEven lemma to generate a proof of the
statement Even 7, Agda will complain about a missing implicit argument of type
IsOdd 7. An unsolved implicit argument is marked yellow in Agda, which looks
less dire than a type error in a visible argument, but no spurious proofs are being
generated.

Limitations. This is a very simple, closed example. In particular, it would not
work in the presence of quantifications, for example to define a lemma like
Even x → Even (x + 100). Why this is the case, and how it could be solved, is
discussed at the end of Sect. 4.2.

The next step will be to use the same approach for a problem involving
variables.

4.2 Open Example: Boolean Tautologies

We will now apply the same steps as above to a different problem, clarifying the
relationship to the previous example at each step. This example of proof by reflec-
tion will be lifting a predicate that checks if a Boolean expression with indexed
variables is a tautology under all possible assignments, to a proof generator.

Take as an example the following proposition.

(p1 ◦ q1) ∨ (p2 ◦ q2) ≡ (q1 ◦ p1) ∨ (q2 ◦ p2) (1)

If we squint, we see that (1) is a tautology, but explicitly proving this in
Agda would be rather tedious. Assuming we want to check if the formula always
holds by trying all possible variable assignments, this would require 2n pattern
matching cases, where n is the number of variables.

To automate this process, we start by defining an inductive data type to
represent Boolean expressions with at most n free variables (see Fig. 5).

Fig. 5. Modelling boolean expressions with n free variables.

Engineering Proof by Reflection in Agda 165

We use the type Fin n to ensure that variables (represented by Atomic and
identified by their De Bruijn index) are in scope. If we want to evaluate the
expression, we will need some way to map variables to values. For this we use
Env n: a vector of n Boolean values.

Now we can define an interpretation function, which tells us if an expression
is true or not, given some assignment of variables. It does this by evaluating the
formula’s AST, filling in for Atomic values the concrete values which are looked
up in the environment. For example, And is evaluated to the Boolean function
∨ , and its two arguments in turn are recursively interpreted.

[[]] : ∀ {n : N} (e : Env n) → BoolExpr n → Bool
[[env 	 Truth]] = true
[[env 	 And be be1]] = [[env 	 be]] ∨ [[env 	 be1]]
[[env 	 Atomic n]] = lookup n env
...

Recall our test function even? in the previous section. It returned ← if the
proposition was valid, ∗ otherwise. Looking at [[]], we see that we should just
translate true to the unit type and false to the empty type, to get the analogue
of the even? function. We therefore define a function P, mapping Booleans to
types (see Fig. 6). As before we decorate the empty type, this time with a string,
to give more informative error messages.

Fig. 6. Empty type Error, facilitating clearer errors.

Now that we have these helper functions, it is easy to define what it means to
be a tautology. We quantify over a few Boolean variables and wrap the formula
in the function P. If the resulting type is inhabited, the argument to P is a
tautology, i.e., for each assignment of the free variables the entire equation still
evaluates to true. An example encoding of such a theorem is Fig. 7 – notice how
similar it looks to the version expressed in mathematical notation, in (1).

Here a complication arises, though. We are quantifying over a list of Boolean
values outside of the function P, so proving P to be sound will not suffice. We
just defined the function [[]] to take one environment and one expression. In
Fig. 7, though, we effectively quantified over all possible environments. We are
going to need a way to lift the function P over arbitrary environments.

The function forallsAcc, in Fig. 8, performs this lifting. This function rep-
resents the real analogue of even? in this situation: it returns a type which is

166 P. van der Walt and W. Swierstra

Fig. 7. The term exampletheorem : Set encodes (1).

only inhabited if the argument Boolean expression is true under all variable as-
signments. This is done by cumulatively generating a full binary tree – the truth
table – of ← or ∗ types, depending on the result of [[]] under each assignment.
This corresponds precisely to the expression being a tautology if and only if the
tree is inhabited. The function foralls simply bootstraps forallsAcc with an empty
environment – it is omitted for brevity. The Diff argument makes forallsAcc pro-
duce a tree with depth equal to the number of free variables in an expression,
putting a bound on the recursion.

Fig. 8. The function forallsAcc, which decides if a proposition is a tautology. Compare
to the even? function in Sect. 4.1

Soundness. Now we finally know our real decision function foralls, we can set
about proving its soundness. Following the soundnessEven example, we want a
function with a type something like in Fig. 9.

Fig. 9. The informal type of soundness, taking an expression and its truth table.

But what should the return type of the soundness lemma be? We would like
to prove that the argument b is a tautology, and hence, the soundness function
should return something of the form (b1 . . . bn : Bool) → P B, where B is an
expression in the image of the interpretation [[]]. For instance, the statement
exampletheorem is a proposition of this form.

The function proofGoal takes a BoolExpr n as its argument and generates the
proposition that the expression is a tautology, by giving back the type equal to
the theorem under scrutiny. It first introduces n universally quantified Boolean

Engineering Proof by Reflection in Agda 167

variables. These variables are accumulated in an environment. Finally, when n
binders have been introduced, the BoolExpr n is evaluated under this environment.

proofGoal : (n m : N) → Diff n m → BoolExpr m → Env n → Set
proofGoal .m m (Base) b acc = P [[acc 	 b]]
proofGoal n m (Step y) b acc =

(a : Bool) → proofGoal (1 + n) m y b (a :: acc)

Now that we can interpret a BoolExpr n as a theorem using proofGoal, and
we have a way to decide if something is true for a given environment, we need
to show the soundness of our decision function foralls. That is, we need to be
able to show that a formula is true if it holds for every possible assignment of
its variables to true or false.

This is done in the function soundness, of which we only provide the type sig-
nature. It requires the predicate foralls which is only satisfied when a proposition
is a tautology, and gives back a proof which has the type computed by proofGoal.
It uses the predicate to safely extract the leaf from foralls corresponding to any
given environment resulting from the binders introduced by proofGoal.

soundness : {n : N} → (b : BoolExpr n) → {p : foralls b}
→ proofGoal 0 n (zero-least 0 n) b []

Now, we can prove theorems by a call of the form soundness b {p}, where b is
the representation of the formula under consideration, and p is the evidence that
all branches of the proof tree are true. We do not give p explicitly since the only
valid values are nested pairs of tt, which can be inferred automatically. This once
again exploits the fact that Agda supports eta expansion for record types.

If the module type checks, we know that the representation of the formula
corresponds to the concrete expression, soundness gave a valid proof, and that
the formula is in fact a tautology. We also have the corresponding proof object
at our disposal, as in someTauto (Fig. 10).

If one were to give as input a formula which is not a tautology, Agda would
not be able to infer the proof foralls, since it would be an uninhabited type.
As before, this would result in an unsolved meta-variable (a type error stating

Fig. 10. An example Boolean formula, along with the transliteration to a proposition
and the corresponding proof.

168 P. van der Walt and W. Swierstra

Error and ← cannot be unified). Agda disallows importing modules with unsolved
meta-variables, which means such an unfulfilled proof obligation would not be
usable elsewhere in a real-life development.

Limitations. Unfortunately, this approach is only possible using variables with
a finite type. If we wanted to prove properties about naturals, for example, we
would not be able to enumerate all possible values. Also, not all problems are
decidable. In the ring solver example [13] a canonical representation is used, but
this does not always exist. One way forward would be if a proof search system
could be implemented, going beyond simple reflection. By inspecting the shape
of the obligation it might be possible to find a lemma which sufficiently reduces
the goal to something we can easily generate. This is motivated by the evenness
example: we could imagine it being possible to automatically prove lemmas like
Even n → Even (n + 100), given a list of usable lemmas. On inspecting the
goal and finding the Plus (Var n) 100 term, we might be able to learn that
this lemma (which would have a particularly tedious proof) is an instance of
Even x → Even y → Even (x + y), which might be an existing library proof.
However, this would require a rather advanced way of recognising structures in
proof goals, and a reliable proof search for useful lemmas in a database. This
would correspond to implementing an analogue of Coq’s auto tactic in Agda.
The Agda synthesizer Agsy already implements such a proof search, but is built
directly into the compiler. This is definitely an avenue for future work.

Summary. The only thing we still have to do manually is convert the Agda
representation of the formula (p ∨ q ≡ q, for example) into our abstract syntax
(rep). This is unfortunate, as we end up typing out the formula twice. We also
have to count the number of variables ourselves and convert them to De Bruijn
indices. This is error-prone given how cluttered the abstract representation can
get for formulae containing many variables.

We would like this transliteration process to be automated. Luckily Autoquote
is available for precisely this purpose, and we show this now.

4.3 Adding Reflection

It might come as a surprise that in a paper focusing on reflection – in the
programming language technology sense – we have not yet presented a convincing
use for reflection. We can get rid of the duplication seen in Fig. 10 using Agda’s
reflection API. Using the quoteGoal keyword to inspect the current goal would
give us the Agda representation, and passing that to Autoquote, we can convert
it to its corresponding BoolExpr.

The conversion between a Term and BoolExpr is achieved in two phases, neces-
sary because Autoquote only supports non-dependent data types, and BoolExpr n
has an argument of type Fin n to its constructor Atomic (see Fig. 5). To work
around this, we introduce a simpler, intermediary data structure, to which we
will convert from Term. This type, called BoolInter, is not shown here, but the
only difference with BoolExpr n is that its variables are represented by Nats
instead of Fins.

Engineering Proof by Reflection in Agda 169

The Autoquote library uses a lookup table, mentioning which constructor
represents variables and how names map to constructors. This way only Terms
containing variables or the usual operators are accepted. Using the mapping
presented in Fig. 11, we can construct a function that, for suitable Terms, gives
us a value in BoolInter.

Fig. 11. The mapping table for quoting to BoolInter.

Once we have a BoolInter expression, the second phase is to check that its
variables are all in scope (this means that ∀ Atomic x : x < n, if we want to con-
vert to a BoolExpr n), and replace all N values with their Fin n counterparts. We
can now write a function proveTautology, which uses the automatic quoter and
calls soundness on the resulting term. An approximation of proveTautology’s type
is given here. In summary, it takes a term (as bound in the body of quoteGoal),
quotes it with Autoquote, passes it to soundness, which returns a term fulfilling
the proofGoal type.

proveTautology : (t : Term) → let t’ = doConvert boolTable t
in ... { i : foralls t’} → proofGoal n t’

That is all we need to automatically prove that formulae are tautologies. The
following snippet illustrates the use of the proveTautology function; we can omit
all arguments except e, since they can be inferred.

peirce : (p q : Bool) → P (((p ≡ q) ≡ p) ≡ p)
peirce = quoteGoal e in proveTautology e

With that, we have automatically converted propositions in Agda to our own
AST, generated a proof of their soundness, and converted that back into a proof
term for the concrete formula.

5 Discussion

Related Work. Our main innovations are novel combinations of existing tech-
niques. As a result, quite a number of subjects are relevant to mention here.

As far as reflection in general goes, Demers and Malenfant [14] provide an
informative historical overview. What we are referring to as reflection dates

170 P. van der Walt and W. Swierstra

back to work by Smith [15] and was initially presented in Lisp in the 80s. Since
then, many developments in the functional, logic as well as object-oriented pro-
gramming worlds have emerged – systems with varying power and scope [16,17].
Unfortunately, reflection is often unsafe: in Smalltalk and Objective-C, for exam-
ple, calling non-existent functions causes exceptions, to name just one
pitfall.

These systems have inspired the reflection mechanism introduced in Agda,
which is lacking in a number of fundamental capabilities – most notably type
awareness of unquote, type preservation when using quoteTerm and inability
to introduce top-level definitions. Nevertheless, it does provide the safety of a
strong type system.

Evaluation. If we look at the taxonomy of reflective systems in programming
language technology written up by Sheard [18], we see that we can make a
few rough judgements about the metaprogramming facilities Agda currently
supports.3

– Agda’s current reflection API leans more towards analysis than generation,
– it supports encoding of terms in an algebraic data type (as opposed to a

string, for example),
– it involves manual staging annotations (by using keywords such as quote

and unquote),
– it is homogeneous, because the object language is the metalanguage. The

object language’s representation is a native data type.
– It is only two-stage: we cannot as yet produce an object program which is

itself a metaprogram. This is because we rely on keywords such as quote,
which cannot be represented.

As far as the proof techniques used in Sect. 4 are concerned, Chlipala’s
work [12] proved an invaluable resource. One motivating example for doing this
in Agda was Jedynak’s ring solver [13], which is the first example of Agda’s re-
flection API in use that came to our attention. Compared to Jedynak’s work, the
proof generator presented here is marginally more refined in terms of the inter-
face presented to the user. We expect that approaches of this kind will become
commonplace for proving mundane lemmas in large proofs. The comparison to
tactics in a language like Coq is a tempting one, and we see both advantages
and disadvantages of each style. Of course, the tactic language in Coq is much
more specialised and sophisticated, but it is a pity that it is separate. This pa-
per explores an alternative, with metaprograms written directly in the object
language. Some people might also appreciate the fact that proof generation in
Agda is explicit.
3 Of course, having been implemented during a single Agda Implementors’ Meet-
ing [19], the current implementation is more a proof-of-concept, and is still far from
being considered finished, so it would be unfair to judge the current implementation
all too harshly. In fact, we hope that this work might motivate the Agda developers
to include some more features, to make the system truly useful.

Engineering Proof by Reflection in Agda 171

Performance is another possible area of improvement. Introducing reflective
proofs requires a lot of compile time computation, and for this approach to
scale, Agda would need a more efficient static evaluator than the current call-
by-name implementation. The extensive use of proof by reflection in Coq and
SSReflect [20], for example for proving the four colour theorem [21], has moti-
vated a lot of recent work on improving Coq’s compile time evaluation. We hope
that Agda will be similarly improved.

Conclusions. Returning to our research question, repeated here, a summary of
findings is made.

“What practical issues do we run into when trying to engineer automatic
proofs in a dependently typed language with reflection? Are Agda’s re-
flective capabilities sufficient and practically usable, and if not, which
improvements might make life easier?”

This paper shows that the reflection capabilities recently added to Agda
are quite useful for automating tedious tasks. For example, we now need not
encode expressions manually: using quoteTerm and Autoquote, some AST con-
version can be done automatically. Furthermore, by using the proof by reflec-
tion technique, we have shown how to automatically generate a simple class
of proofs, without loss of general applicability. Constraining ourselves to (pairs
of) unit types as predicates, we can let Agda infer them, and by tagging an
empty type with a string, we can achieve more helpful errors if these predicates
are invalid. These simple tools were sufficient to engineer relatively powerful
and – more importantly – easily usable proof tools. Unfortunately, these proofs
are limited to finite domains, and are still not very scalable or straightforward
to implement. In particular, quantifying over variables with infinite domains
should not be a great conceptual difficulty, but would necessitate a lot of ex-
tra machinery: a smarter goal inspector, and a generalised lemma searching or
matching algorithm. Simple pattern matching on Names would also be a useful
feature.

It seems conceivable that in the future, using techniques such as those pre-
sented here, a framework for tactics might be within reach. Eventually we might
be able to define an embedded language in Agda, in the style of Coq’s tac-
tic language, then inspect the shape of the proof obligation, and look at a
database of predefined proof recipes to see if one of them might discharge or
simplify the obligation. An advantage of this approach versus the tactic lan-
guage in Coq, would be that the language of the propositions and tactics is the
same.

Acknowledgements. We would like to thank each of the four anonymous review-
ers for taking the time to provide detailed and constructive comments that greatly
improved the article.

172 P. van der Walt and W. Swierstra

References

1. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden (2007)

2. Norell, U.: Dependently typed programming in Agda. In: Proceedings of the 4th
International Workshop on Types in Language Design and Implementation, TLDI
’09, pp. 1–2. ACM, New York (2009)

3. van der Walt, P.: Reflection in Agda. Master’s thesis, Department of Computer Sci-
ence, Utrecht University, Utrecht, The Netherlands. http://igitur-archive.library.
uu.nl/student-theses/2012-1030-200720/UUindex.html (2012)

4. Pitman, K.M.: Special forms in Lisp. In: Proceedings of the ACM Conference on
LISP and Functional Programming, pp. 179–187. ACM (1980)

5. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM ’97 (1997)

6. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pp. 1–16 (2002)

7. Martin-Löf, P.: Constructive mathematics and computer programming. In: Pro-
ceedings of a Discussion Meeting of the Royal Society of London on Mathematical
Logic and Programming Languages, pp. 167–184. Prentice-Hall Inc., Upper Saddle
River (1985)

8. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3),
95–120 (1988)

9. Oury, N., Swierstra, W.: The power of pi. In: Proceedings of the 13th ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’08, pp. 39–50.
ACM, New York (2008)

10. Agda Developers: Agda release notes, regarding reflection. The Agda Wiki:
http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-2-8 and http://
wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-3-0 (2013). Accessed 9
Feb 2013

11. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, Heidelberg (2004)

12. Chlipala, A.: Certified Programming with Dependent Types. MIT Press, New York
(2011)

13. Jedynak, W.: Agda ring solver using reflection. GitHub. https://github.com/wjzz/
Agda-reflection-for-semiring-solver (2012). Accessed 26 June 2012

14. Demers, F., Malenfant, J.: Reflection in logic, functional and object-oriented pro-
gramming: a short comparative study. In: Proceedings of the IJCAI, vol. 95, pp.
29–38 (1995)

15. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
’84, pp. 23–35. ACM, New York (1984)

16. Stump, A.: Directly reflective meta-programming. High. Order Symbolic Comput.
22(2), 115–144 (2009)

17. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation.
Addison-Wesley Longman Publishing Co. Inc., Boston (1983)

18. Sheard, T.: Staged programming. http://web.cecs.pdx.edu/∼sheard/staged.html.
Accessed 20 Aug 2012

http://igitur-archive.library.uu.nl/student-theses/2012-1030-200720/UUindex.html
http://igitur-archive.library.uu.nl/student-theses/2012-1030-200720/UUindex.html
http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-2-8
http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-3-0
http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-3-0
https://github.com/wjzz/Agda-reflection-for-semiring-solver
https://github.com/wjzz/Agda-reflection-for-semiring-solver
http://web.cecs.pdx.edu/~sheard/staged.html

Engineering Proof by Reflection in Agda 173

19. Altenkirch, T.: [Agda mailing list] More powerful quoting and reflection? mail-
ing list communication. https://lists.chalmers.se/pipermail/agda/2012/004127.
html (2012). Accessed 14 Sept 2012

20. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reasoning 3(2), 95–152 (2010). (RR-7392 RR-7392)

21. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008)

https://lists.chalmers.se/pipermail/agda/2012/004127.html
https://lists.chalmers.se/pipermail/agda/2012/004127.html

Agda Meets Accelerate

Peter Thiemann1(B) and Manuel M. T. Chakravarty2

1 University of Freiburg, Freiburg, Germany
thiemann@informatik.uni-freiburg.de

2 University of New South Wales, Sydney, Australia
chak@cse.unsw.edu.au

Abstract. Embedded languages in Haskell benefit from a range of type
extensions, such as type families, that are subsumed by dependent types.
However, even with those type extensions, embedded languages for data
parallel programming lack desirable static guarantees, such as static
bounds checks in indexing and collective permutation operations.

This observation raises the question whether an embedded language
for data parallel programming would benefit from fully-fledged depen-
dent types, such as those available in Agda. We explored that question by
designing and implementing an Agda frontend to Accelerate, a Haskell-
embedded language for data parallel programming aimed at GPUs. We
discuss the potential of dependent types in this domain, describe some
of the limitations that we encountered, and share some insights from our
preliminary implementation.

Keywords: Programming with dependent types · Data parallelism

1 Introduction

Generative approaches to programming parallel hardware promise to combine
high-level programming models with high performance. They are particularly
attractive for targeting restricted architectures that cannot efficiently execute code
aimed at conventional multicore CPUs. One prime example are GPUs (graphics
processor units), which require a high degree of data parallelism, restricted control
flow, and custom tailored data access patterns to be efficient. Previous work —for
example, Accelerator [17], Copperhead [2], and Accelerate [3]— demonstrates that
embedded array languages with a custom code generator can meet those GPU con-
straints with carefully designed language constructs.

Given a host language with an expressive type system, it is attractive to
leverage that type system to express static properties of the embedded language.
For example, Accelerate, an embedded array language for Haskell, uses Haskell’s
recent support for type-level programming like GADTs and type families in that
manner [3]. This design choice is desirable for approaches relying on run-time
code generation: each potential fault at application run time should be discovered
by a compile-time fault in the embedded language. Moreover, static guarantees
hold the potential to improve the predictability of parallel performance.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 174–189, 2013.
DOI: 10.1007/978-3-642-41582-1 11, c© Springer-Verlag Berlin Heidelberg 2013

Agda Meets Accelerate 175

Dependent types [9] are an established approach to certified programming,
where invariants are established in the form of types and proven at compile
time. Many of Haskell’s type-level extensions used in Accelerate approximate
aspects of dependently-typed programming. Hence, it is natural to ask whether
fully-fledged dependent types, such as those provided by Agda, improve the
specification of an embedded language like Accelerate, whether they increase
the scope of static guarantees, and whether they may be leveraged to predict
performance more accurately.

This paper is a first investigation into this topic. It reports on a partial port
of Accelerate to a new, dependently-typed host language, Agda [1,10]. Agda
is particularly suited to this port because of its foreign function interface to
Haskell, which enables it to directly invoke the functionality of Accelerate. The
main contributions of this paper are the following:

– We identify and discuss the challenges of combining generative embedded
languages with dependent typing (Sect. 4).

– We propose predicated arrays to overcome some of these challenges (Sect. 5).
– We outline an implementation of the main parts of Accelerate in Agda using

the Agda-Haskell FFI for code execution (Sect. 6).

Overall, our investigation has the following structure. After recalling some back-
ground on Agda and Accelerate in Sect. 2 and describing related work in Sect. 3,
Sect. 4 discusses potential uses of dependent types in an array-oriented data
parallel language and how they were realized in our implementation. Section 5
considers conceptual problems and limitations that we ran into when construct-
ing the Agda frontend for Accelerate. Section 6 explains some technical details
of the implementation and discusses some example code.
Source code is available at https://github.com/mchakravarty/accelerate-agda.

2 Background

2.1 Agda

Agda [1,10] is a dependently-typed functional programming language. Its basis is
a dependently-typed lambda calculus extended with inductive data type families,
dependent records, and parameterized modules. At the same time, Agda is also
a proof assistant for interactively constructing proofs in an intuitionistic type
theory based on the work of Per Martin-Löf [9].

One attractive feature of Agda’s inductive data type families is the ability
to construct indexed data types. A familiar example for such an indexed data
type is the type Vec A n of vectors of fixed length n and elements of type A.
This vector data types can be equipped with an access operation that restricts
the index to the actual length of the vector at compile time.1

1 An identifier can be an almost arbitrary string of Unicode characters except spaces,
parentheses, and curly braces. Agda also supports mixfix syntax with the position
of arguments indicated by underscores in the defining occurrence of an identifier.

https://github.com/mchakravarty/accelerate-agda

176 P. Thiemann and M. M. T. Chakravarty

data Nat : Set where
zero : Nat
suc : Nat -> Nat

data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
:: : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

The above defines the type Nat of natural numbers and an indexed data type
Vec A n where A is a type and n is a natural number. The latter type comes
with two constructors, [] for the vector of length zero and :: for the infix cons
operator that increases the length by one.

One way of writing a safe access operation first defines an indexed type that
encodes the required less-than relation on natural numbers.

data _<_ : Nat -> Nat -> Set where
z<s : {n : Nat} -> zero < suc n
s<s : {m n : Nat} -> m < n -> suc m < suc n

Lines two and three of the definition encode named inference rules for the cases
that 0 < n + 1 (for all n) and that m + 1 < n + 1 if m < n (for all m,n).

The access operation takes a vector of length n, an index m, and a proof of
m < n (a derivation tree) to produce an element of the vector.

get : {A : Set} {n : Nat} -> Vec A n -> (m : Nat) -> m < n -> A
get [] _ () -- impossible case
get (x :: xs) zero z<s = x
get (x :: xs) (suc m) (s<s p) = get xs m p

This code cannot fail at run time because a caller has to construct the proof
tree for m < n before invoking get. Thus, an “index out of bounds” error cannot
happen. (In Agda, arguments in curly braces are implicit arguments that will be
inferred if omitted in an application.)

2.2 Accelerate

Accelerate [3] is a generative data-parallel array language embedded into Haskell,
which targets GPUs. Being generative, its data-parallel array operations are not
executed directly. Instead, Accelerate constructs abstract syntax trees (AST)
representing an entire data-parallel subcomputation. These computation repre-
sentations are executed using a run operation that accepts such a representation
(of type Acc a), compiles it to GPU kernels, uploads it to a device, executes it,
and retrieves the results.2

CUDA.run :: Arrays a => Acc a -> a

2 To distinguish Haskell code from Agda code, we display Haskell code in a framed
boxes.

Agda Meets Accelerate 177

The type class constraint Arrays a restricts the result type to a single array or
a tuple of arrays.

As computation representations of type Acc a are compiled at application
run time, all Acc compilation errors are effectively run-time errors of the appli-
cation. Hence, Accelerate uses a range of Haskell type system extensions to sta-
tically type Accelerate expressions, such that these run-time errors are avoided
where possible. In particular, Accelerate uses GADTs [7], associated types [4],
and type families [14].

As a simple example of an Accelerate program, consider a function imple-
menting a dot product:

dotp :: Vector Float -> Vector Float -> Acc (Scalar Float)
dotp xs ys = let { xs’ = use xs; ys’ = use ys }

in fold (+) 0 (zipWith (*) xs’ ys’)

The types Vector and Scalar represent one- and zero-dimensional arrays. Plain
arrays, such as Vector Float are conventional Haskell arrays, using an unboxed
representation to improve performance. However, when they are wrapped into
the constructor Acc, such as in Acc (Scalar Float), they represent arrays of
the embedded language and are allocated in GPU memory, which in current
high-performance GPUs is physically separate from CPU memory.

The use operation makes a Haskell array available in the embedded lan-
guage by wrapping it into the Acc constructor. It amounts to copying it to GPU
memory.3 The operations fold and zipWith represent collective operations on
Accelerate arrays, effectively producing a representation of an array computa-
tion yielding a single float value (Scalar Float). The code relies on (type class)
overloading: 0, (+), and (*) are overloaded to construct abstract syntax.

The types Scalar and Vector are type synonyms instantiating a shape-
parameterised array type to the special case of zero and one dimensional arrays:

type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e

In the general type for use, the class Elt characterizes all types that may be
held in Accelerate arrays. These are currently primitive types and tuples.

use :: Elt e => Array sh e -> Acc (Array sh e)

Common dimensions, such as DIM0, DIM1, and so on, are predefined, but to enable
shape polymorphic computations, along the lines pioneered in the Haskell array
library Repa [8], shapes are inductively defined using type-level snoc lists built
from the data types Z and :.. The use of snoc lists simplifies the type signatures
of fold operations that reduce or abstract over the least significant dimensions.
3 Accelerate employs caching to avoid the transfer of arrays that are already available
in GPU memory.

178 P. Thiemann and M. M. T. Chakravarty

data Z = Z
data sh :. i = sh :. i
-- Types for often used dimensions
type DIM0 = Z
type DIM1 = DIM0 :. Int
-- and so on

3 Related Work

Peebles formalizes parts of the Repa API using Agda [11]. The formalisation
relies on the same shape structure as Accelerate, but array computations are
neither embedded nor can parallel high-performance code be generated.

Swierstra and Altenkirch investigated the use of dependent types for distrib-
uted array programming [15,16]. Their notation for distributed arrays is inspired
by the X10 language [13]. They focus on expressing locality awareness.

Dependent ML is an ML dialect with a restricted form of dependent types,
which, among other applications, may be used to statically check array bounds
[18]. However, only simple indexing and array updating are considered and not
aggregate array operations, such as those provided by Accelerate.

Accelerator [17] enables embedded GPU computations in C# programs; it
subsequently also added F# support. However, no attempt is made to track
properties of array programs statically. Similarly, Copperhead [2] embeds an
array language into Python, but does not attempt to track information statically.

4 Dependent Types for Accelerate

In this section, we investigate the potential uses of dependent typing in a lan-
guage like Accelerate and point out how they may be implemented in Agda.
First, we review some basics of the embedding.

4.1 Embedding of Haskell Types

Accelerate supports a wide range of numeric types, characterized by the type
class Elt, as base types for array computations. Almost all of these types lack
a suitable counterpart in Agda, which only supplies computationally expensive
encodings for natural and rational numbers. For that reason, our embedding
keeps the Haskell types abstract in Agda. To specify the types of functions that
are polymorphic in such a Haskell type or depend on it in some way, we have
reified the possible element types as an Agda type Elt:

data Elt : Set where
Bool : Elt
Int : Elt

Agda Meets Accelerate 179

Float : Elt
Double : Elt
Pair : Elt -> Elt -> Elt
-- and so on

Corresponding to Haskell type classes that are used in Accelerate, our embedding
supplies predicates that characterize subsets. For example, the set of numeric
types is defined by a predicate Numeric4:

Numeric : Elt -> Set
Numeric Int = →
Numeric Float = →
Numeric Double = →
Numeric _ = ⇒
The embedding declares further subsets all in the same style.

4.2 Array Types

To demonstrate the Agda embedding in action, we translate the dot product
example from Sect. 2.2 to Agda.5

dotp : forall {E : Elt} {{p : Numeric E}} {n : Nat}
-> PreVector n E -> PreVector n E -> Scalar E

dotp{E} xs ys =
let xs’ = use xs

ys’ = use ys
in fold _+_ ("0" ::: E) (zipWith _*_ xs’ ys’)

Unlike the Accelerate code, this function is polymorphic with respect to the
array element type, provided it is numeric. The length parameter n ensures that
the two input vectors have the same size. The PreVector type of the arguments
corresponds to the plain Vector type in Accelerate, whereas the result type
Scalar E corresponds to Acc (Scalar E)—a piece of abstract syntax.

The use function works as before, but its type includes more information:

use : {sh : Shape}{E : Elt} -> PreArray sh E -> Array sh E

Like E, the index sh is now an element of an ordinary type instead of having to
rely on type-level snoc lists6:

data Shape : Set where
Z : Shape
:<> : Shape -> Nat -> Shape

4 ⇒ is a one-element type, whereas ⊥ is a type without elements. These types custom-
arily represent truth and falsity.

5 In Agda, arguments in double curly braces are instance arguments [5] that are ag-
gressively inferred. We use them like type class constraints in Haskell.

6 Recent work on Haskell’s type system manages to avoid this issue [19].

180 P. Thiemann and M. M. T. Chakravarty

Asking for arrays of equal shape, as in the signature of use, means that the
arrays have to have the exact same layout. The PreVector and Vector types
are just synonyms as in Haskell:

PreVector n E = PreArray (Z :< n >) E
Vector n E = Array (Z :< n >) E

The functions fold, zipWith, and ::: are discussed in the subsequent subsec-
tions. The functions + and * both have the same type:

+ _*_ : {E : Elt} {{p : Numeric E}} -> Exp E -> Exp E -> Exp E

They are restricted to arguments of numeric type and construct abstract syntax
for an addition or a multiplication by delegating to the corresponding Accelerate
functions. The type Exp E denotes an AST of an expression of type E.

4.3 Exact Checking of Array Bounds

Accelerate’s API features expressive type constraints that describe the shape of
the array arguments and results. These constraints ensure that no shape mis-
matches occur (e.g., a 1D array cannot be considered 2D), but they do not ensure
at compile time that the sizes of the dimensions match up. Such a mismatch re-
sults in a run-time error.

As an example, consider the function reshape. It takes a target shape sh
and an array of source shape sh’ and changes the layout of that array to sh.

reshape :: Exp sh -> Acc (Array sh’ e) -> Acc (Array sh e)

For this reshaping to work correctly, the underlying number of elements must
remain the same. For example, while it makes sense to reshape a two-dimensional
3 × 4-array to a vector of size 12 or to a three-dimensional 3 × 2 × 2-array, an
attempt to reshape to a 2 × 5-array should be rejected at compile time.

As Shape is an ordinary data type in Agda, we can define a size function
that computes the number of elements stored in an array of a certain shape.

size : Shape -> Nat
size Z = 1
size (sh :< n >) = size sh * n

Now we can state an accurate type for reshape in Agda, which involves an extra
argument with a proof that the source and target shapes have the same size.

reshape : {sh : Shape} {E : Elt}
-> (sh’ : Shape) -> Array sh E -> (size sh ← size sh’)
-> Array sh’ E

There is a subtle difference to the original signature. In Accelerate, the first
argument is an expression that produces a value of type sh at run time, whereas
the Agda reshape requires a Shape as its first argument. Hence, Agda reshape

Agda Meets Accelerate 181

computes the shape in the host language on the CPU, whereas the original
signature admits to compute the new shape in the embedded language as part
of a GPU computation. In other words, we slightly restrict expressiveness here
to gain more static information, we will get back to that issue when discussing
filtering.

In Agda, functions like map and zipWith obtain more precise types. The type
of map tells us that the input shape is identical to the output shape:

map : {A B} {sh} -> (Exp A -> Exp B) -> Array sh A -> Array sh B

Similarly, the type of zipWith restricts its input arrays to identical shapes:

zipWith : {A B C} {sh} -> (Exp A -> Exp B -> Exp C)
-> Array sh A -> Array sh B -> Array sh C

The latter type is more restrictive than the Accelerate implementation of zipWith.
Instead of checking the sizes of the input arrays, it truncates them to the respec-
tive minima. We also developed an Agda type that directly corresponds to this
implementation. It requires a binary function isect that computes the minimum
of two shapes of the same rank, which we leave as an exercise to the reader.

zipWith’ : {A B C} {shA shB} {p : rank shA ≡ rank shB}
-> (A -> B -> C)

-> Array shA A -> Array shB B -> Array (isect shA shB p) C

4.4 Associativity of Operations

Some parallel reduction operations require their base operation to be associative
to return a predictable result. Here are two examples from Accelerate.

fold :: (Shape ix, Elt a) =>
(Exp a -> Exp a -> Exp a) -> Exp a ->
Acc (Array (ix :. Int) a) -> Acc (Array ix a)

fold1 :: (Shape ix, Elt a) =>
(Exp a -> Exp a -> Exp a) ->
Acc (Array (ix :. Int) a) -> Acc (Array ix a)

In both cases, the text of the documentation says that “the first argument needs
to be associative” and furthermore the fold1 documentation “requires the re-
duced array to be non-empty”. The second requirement can be enforced by
asking for a suitable proof object on each call of fold1:

fold1 : ... -> Array (sh :< n >) E -> (size sh * n > 0)
-> Array sh E

The first requirement can be rephrased to saying that the first two parameters
of fold together form a monoid, which requires an associative operation with
a unit element. The concept of a monoid can be formalized in Agda, which has

182 P. Thiemann and M. M. T. Chakravarty

indeed been done in the standard library. Unfortunately, the formalization from
the library cannot be used because Accelerate deals with ASTs, not with values.
So, a formalization is required that states that the meaning of an AST-encoded
function is associative and the meaning of another AST-encoded constant is its
unit element. Given that Accelerate encodes AST construction using higher-
order abstract syntax, such a formalization is not straightforward. Moreover,
even given expressions with a fixed meaning, associativity has to be proved on
a case by case basis.

In any case, providing such information would be done by including an ad-
ditional argument that holds a suitable proof object, as in

fold : forall {E}{sh}{n}
-> (f : Exp E -> Exp E -> Exp E) -> (e : Exp E)
-> Array (sh :< n >) E -> IsMonoid f e -> Array sh E

where

IsMonoid : forall {E} -> (Exp E -> Exp E -> Exp E) -> Exp E -> Set
IsMonoid f e = (IsAssociative f , IsUnit f e)

Some readers may object that neither addition nor multiplication of float-
ing point numbers is associative [6]. However, for advanced optimizations, the
exploitation of algebraic laws is a necessity and the involved degradation of preci-
sion or change of result is accepted or accounted for in the error estimates. More-
over, there are other operations, like min or max, that are commonly used with
fold-like operations, which are truly associative. Last, but not least, the associa-
tivity declarations serve as important documentation that passing an inherently
non-associative function will produce unpredictable, implementation-dependent
results.

4.5 Embedding of Constants

Accelerate relies on Haskell’s built-in support for the type classes Num and
Fractional to embed constants. The Haskell compiler reads each integer literal
as a value of type Integer, which is a built-in type of arbitrary precision integers.
To this value, Haskell applies the function fromInteger that converts to the type
expected by the context. Similarly, floating point constants are read as values
of type Rational (Integer fractions) and then converted using fromRational.
Accelerate provides instances of these type classes that define fromInteger and
fromRational to produce suitable AST fragments.

Because of Agda’s lack of support for overloaded numeric literals, we embed
numeric literals for integers and floating point numbers using a string with an
explicit type annotation that determines the parsing of the string. Here are some
example embeddings:

"3.1415926" ::: Float
"6.0221415E23" ::: Double

Agda Meets Accelerate 183

Recall that Float and Double are not types, but rather values of type Elt. The
::: operation is the workhorse of the embedding:

::: : (s : String) -> (E : Elt)
-> {{nu : Numeric E}} -> {p : T (s parsesAs E)} -> Exp E

s ::: E = Ex (constantFromString (EltDict E) (ReadDict E) s)

The arguments s and E are explicit, but the remaining ones are inferred by Agda.
As mentioned, the argument nu is an instance argument; it is automatically filled-
in with a suitably typed value in scope [5]. As before, the predicate Numeric plays
the role of a type class that characterizes the numeric types.

The function parsesAs dispatches on its “type” argument and parses the
string to check whether it is an acceptable literal of the expected type. The
function constantFromString is imported from Accelerate. It is an overloaded
function that requires two type dictionaries, which are computed from E using
the functions EltDict and ReadDict. This results in a flexible way of handling
literals, which worked well in our examples.

5 Limitations

In a number of places, Accelerate’s generativity limits the applicability of de-
pendent typing. We already mentioned that the formalization of associativity or
of the concept of a monoid cannot be verified in Agda because such properties
have to be asserted for abstract syntax.

For a related problem, consider an implementation of the filter operation
that takes a predicate and a source array and returns an array that only contains
the elements of the source array fulfilling the predicate. First of all, filtering only
makes sense for one-dimensional arrays, that is, for vectors. To see the second
catch, let’s try to write down a dependent type signature for filter.

filter : forall {n m : Nat}{E : Elt}
-> Vector n E -> (Exp E -> Exp Bool) -> Vector m E

The problem is that the size of the result cannot be determined statically — that
is, we cannot simplify define a type-level function that determines the length of
a vector. Why? Vector m E is not a representation of a vector. Instead, it is a
representation of a computation that, once run, produces a vector.

Similarly, we cannot define a function that uses the predicate passed to
filter to count the number of elements that will appear in filter’s result.
Such a function would need access to the elements of the filtered vector, but,
as discussed, we cannot even get its length. Moreover, such a counting func-
tion would need to evaluate the predicate. We cannot do that as the predicate
of type Exp E -> Exp Bool maps abstract syntax to abstract syntax; it does
not directly implement a Boolean predicate. We might consider to include an
evaluator for abstract syntax to lift these restrictions. However, that evaluator
would not be the code actually executed on the GPU, and hence, it doesn’t seem
to be any more valuable than simply asserting an axiom concerning the size of

184 P. Thiemann and M. M. T. Chakravarty

filter’s result. That is the price we pay for a generative approach, where at
program runtime, we dynamically generate the code to be executed on the GPU.

We encounter similar restrictions if we try to, at least, establish that m must
be less than or equal to n for filter. We cannot prove this constraint as the
GPU code of filter is not available to us — it is generated by the underlying
Haskell library. Even if we had access to that code, any statements about its
properties would need to be based on the semantics of CUDA (i.e., NVIDIA’s C
dialect for GPU programming).

We might contemplate employing an existential type like

exists Nat (\ m -> m <= n -> Vector m E)

but it is not possible to build such an existential package because the evidence
m is not available when the existential package has to be constructed.

However, we may use an alternative encoding of arrays that is compatible
with filtering. The idea is to keep all elements but mark those which are no
longer present because they have been filtered out. There are several ways of
implementing this idea. The simplest approach is to pair up each element with
a boolean flag that indicates its presence, which we call predicated arrays7:

FVector : Nat -> Elt -> Set
FVector n E = Vector n (Pair Bool E)

In this encoding, filtering is quite simple because the length of the FVector
does not change. Furthermore, filtering could be extended to multi-dimensional
arrays, although the result might require careful interpretation.

filterF : forall {n : Nat}{E : Elt}
-> (Exp E -> Exp Bool) -> FVector n E -> FVector n E

filterF {n}{E} pred vec = map g vec
where g : Exp (Pair Bool E) -> Exp (Pair Bool E)

g bx = pair ((fst bx) && p (snd bx)) x

Mapping, which applies a function to each element of an array, becomes more
complicated as it either has to materialize a dummy result for each absent ele-
ment in the argument vector or apply the function to absent elements, too. This
makes filter reminiscent of the where statement of the SIMD language C∗ [12].

mapF : forall {n : Nat}{E F : Elt}
-> Exp F -> (Exp E -> Exp F) -> FVector n E -> FVector n F

mapF {n}{E}{F} defaultF f vec = map g vec
where g : Exp (Pair Bool E) -> Exp (Pair Bool F)

g bx = if (fst bx) then (pair (fst bx) (f (snd bx)))
else (pair (fst bx) defaultF)

Some operations can get rid of absent elements. A fold operation which reduces
a filtered vector with a monoid returns a single value. In Accelerate, such a value
has type Scalar, which is a synonym for an array of dimension 0.
7 Accelerate currently does not support Maybe types as array elements.

Agda Meets Accelerate 185

foldF : forall {n : Nat}{E : Elt}
-> (Exp E -> Exp E -> Exp E) -> Exp E
-> FVector n E -> Scalar E

foldF f e vec =
fold f e (map (\ bx -> if (fst bx) then (snd bx) else e) vec)

Operations like fold1 and the scan operations extend to this representation, but
they cannot revert to a non-filtered representation.

In the end, such a representation may not even lead to reduced efficiency on
a GPU. As long as all computations take the same path, all processing elements
work in unison. As soon as there are different paths in the same computation
step, then some elements will be idle for part of the computation step. So it would
be most advantageous to organize work as uniformly as possible by reorganizing
the array so that the present and the absent elements are grouped together. A
segmented array might be a suitable representation.

6 Implementation

Ordinarily, Agda is an interactive tool for constructing proofs and verified pro-
grams. Programs may be run, which amounts to normalizing Agda expressions,
but this process is not very efficient.

Alternatively, an interactively developed program may be compiled to Haskell
using the Alonzo compiler. It supports a Haskell foreign function interface (FFI),
for Agda programs to invoke Haskell functions. Using this interface amounts to
declaring a typed identifier in Agda and then binding the identifier to a suitably
typed Haskell function. As an example, consider the import of the use function.

postulate
useHs : {E : Set}

-> HsEltDict E -> HsArray HsDIM1 E -> Acc (AccArray HsDIM1 E)
{-# COMPILED useHs (\ _ -> Accel.use) #-}

The first three lines introduce the typed identifier useHs and the last line is
a pragma for the Alonzo compiler that binds the Agda identifier useHs to the
Haskell expression on the right. But wait, this type looks very unpleasant and
quite different to the one mentioned in Sect. 4.2. This difference arises as the
type translation of Alonzo is unable to cope with the index type Shape. Hence,
the interface uses a simplified array type and adapter functions are required, in
the worst case, both on the Agda side and on the Haskell side of the interface.

At the foreign function interface level, all arrays are considered as one-
dimensional arrays. Additional arguments are passed to encode the shape in-
formation as far as it is needed. The Agda adapter provides the encoding of this
structure and the Haskell adapter decodes it again.

We believe that these adaptations only have a minor performance impact
because (1) most functions just manipulate abstract syntax, so that only AST
construction is affected, and (2) internally, Accelerate considers all arrays as
one-dimensional so that operations like reshape are no-ops at run time.

186 P. Thiemann and M. M. T. Chakravarty

Here is the Agda adapter for use:

use : forall {sh : Shape}{E : Elt} -> PreArray sh E -> Array sh E
use {sh}{E} (PA y) = Ar (useHs (EltDict E) y)

It makes use of two wrapper types. PreArray wraps a one-dimensional Haskell
array using the constant HsDIM1 (the DIM1 type shown in Sect. 2.2 imported
from Haskell via FFI) and the function EltType (not shown), which interprets a
value of type Elt as a Haskell type. The latter types are also imported via FFI.

data PreArray (E : Elt) : Shape -> Set where
PA : {sh : Shape} -> HsArray HsDIM1 (EltType E) -> PreArray sh E

The Array type wraps an AST reference for an Accelerate array, where Acc and
AccArray are types imported from Haskell.

data Array (E : Elt) : Shape -> Set where

Ar : {sh : Shape} -> Acc (AccArray HsDIM1 (EltType E)) -> Array sh E

The EltDict function translates a value (E : Elt) into a Haskell expression
that evaluates to a dictionary for the Haskell type of E for the Haskell type class
Elt. Such a dictionary is passed, whenever the corresponding Haskell function
has type class constraints.

EltDict : (E : Elt) -> HsEltDict (EltType E)

The Haskell side of the adapter has several purposes. First, it materializes
the type class dictionaries from the encoding that we just discussed. Second, it
reconstructs sufficient information about the array shape so that the intended
operation can execute. Here is the code for Accel.use, where the module name
A is a shorthand for Data.Array.Accelerate.

use :: EltDict e -> Array A.DIM1 e -> A.Acc (A.Array A.DIM1 e)
use EltDict (ARRAY ar) = (A.use ar)

It does not have to reconstruct any information except the type class constraint.
This constraint is materialized using the type EltDict below.

data EltDict e where
EltDict :: (A.Elt e) => EltDict e

This datatype is built such that each value captures the Elt dictionary of type
e. It remains to build such values for all types that we want to transport across
the FFI. These are the values used by the (Agda) EltDict function. Here are
two examples.

eltDictBool :: EltDict Bool
eltDictBool = EltDict

eltDictInt :: EltDict Int
eltDictInt = EltDict

Agda Meets Accelerate 187

As an example for a function that requires more work on both sides, consider
the fold operation.

fold : forall {E}{sh}{n}
-> (Exp E -> Exp E -> Exp E)
-> Exp E
-> Array (sh :< n >) E
-> Array sh E

fold {E}{sh}{n} f (Ex e) (Ar a) =
Ar (foldHs (EltDict E) (toHsInt (size sh)) (toHsInt n)

(unwrap2 f) e a)

As values of type Exp also need a wrapper type in Agda (it is not possible to
import type constructors via the FFI), there is some unwrapping going on for the
e and f arguments. The implementation of fold just calls the foldHs function
and encodes the information about the shape in two integer arguments. Here,
size sh is the size of the result and n is the size of the dimension that is folded.
As these values are initially available as Agda natural numbers, they need to be
converted to Haskell numbers using the function toHsInt.

The foldHs function is defined via the FFI.

postulate
foldHs : {A : Set}

-> HsEltDict A
-> HsInt
-> HsInt
-> (AccExp A -> AccExp A -> AccExp A)
-> AccExp A
-> Acc (AccArray HsDIM1 A)
-> Acc (AccArray HsDIM1 A)

{-# COMPILED foldHs (_ -> Accel.fold) #-}

The Haskell adapter reconstructs the Elt dictionary as before, but it also needs
to reshape the one-dimensional array representation into a two-dimensional one
for executing the fold operation. The two size arguments are required for exactly
this reshape operation. With that insight, the code is straightforward.

fold :: EltDict a
-> Int -> Int
-> (A.Exp a -> A.Exp a -> A.Exp a)
-> A.Exp a
-> A.Acc (A.Array A.DIM1 a)
-> A.Acc (A.Array A.DIM1 a)

fold EltDict size2 size1 f e a =
(A.reshape (A.lift (A.Z A.:. size2))
(A.fold f e
(A.reshape (A.lift (A.Z A.:. size2 A.:. size1)) a)))

188 P. Thiemann and M. M. T. Chakravarty

Fortunately, the fold example is about as complicated as the adapter code
gets. There are also many cases where at least one side of the adapter code is
trivial. However, each case must be considered separately.

7 Conclusion

We have built an experimental Agda frontend for the Accelerate language. The
goal of this experiment was to explore potential uses of dependently-typed pro-
gramming for data-parallel languages.

At the moment, the outcome of the experiment is mixed. It is successful,
because we have been able to construct Agda functions for a representative
sample of Accelerate’s functionality. However, there was less scope for encoding
extra information in the dependent types than we had hoped for. Exact matching
of array bounds works, but results in restrictions (like the problems with zipWith
and filtering) that were not anticipated.

Exploiting algebraic properties did not work out in the intended way, mainly
because it boils down to asserting that some AST denotes an associative function.
However, these assertions cannot be proven: the proof would have to apply the
semantics to the AST, but the AST is an abstract type in our implementation.
An AST representation in Agda might give us a better handle at this problem.

In some places, the Agda frontend is less dynamic than Accelerate. In a
number of places, Accelerate accepts a run-time value of type Exp sh for a
shape argument, where the Agda frontend requires a value of type Shape. To
address this problem, we would have to include a Shape-indexed encoding of the
Shape type in the Elt type so that we can describe the type of an expression
whose value has a certain shape.

Finally, the type translation of Agda’s FFI has a number of shortcomings
that cause problems when transporting information between Agda and Haskell.
One part of the problem is, unfortunately, the rich type structure of Accelerate’s
API which already encodes many useful constraints. An alternative, untyped
(or less-typed) interface to Accelerate would make the adaptation to an Agda
frontend simpler.

References

1. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda - a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

2. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: Compiling an embed-
ded data parallel language. Technical Report UCB/EECS-2010-124. University of
California, Berkeley (2010)

3. Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
Haskell array codes with multicore GPUs. In: Carro, M., Reppy, J.H. (eds.) Work-
shop on Declarative Aspects of Multicore Programming, DAMP 2011, Austin, TX,
USA, January 2011, pp. 3–14. ACM (2011)

Agda Meets Accelerate 189

4. Chakravarty, M.M.T., Keller, G., Peyton Jones, S.: Associated type synonyms. In:
Pierce, B.C. (ed.) Proceedings International Conference on Functional Program-
ming 2005, Tallinn, Estonia, September 2005, pp. 241–253. ACM Press, New York
(2005)

5. Devriese, D., Piessens, F.: On the bright side of type classes: Instance arguments
in Agda. In: Danvy, O. (ed.) Proceedings International Conference on Functional
Programming 2011, Tokyo, Japan, September 2011, pp. 143–155. ACM Press,
New York (2011)

6. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

7. Jones, S.L.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based
type inference for GADTs. In: Lawall, J. (ed.) ICFP, Portland, Oregon, USA,
September 2006, pp. 50–61. ACM Press, New York (2006)

8. Keller, G., Chakravarty, M.M., Leshchinskiy, R., Peyton Jones, S., Lippmeier,
B.: Regular, shape-polymorphic, parallel arrays in Haskell. In: Proceedings of the
15th ACM SIGPLAN International Conference on Functional Programming, ICFP
2010. ACM (2010)

9. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)
10. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-

jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009)

11. Peebles, D.: A dependently typed model of the Repa library in Agda. https://
github.com/copumpkin/derpa (2011)

12. Rose, J.R., et al.: C∗: An extended c language for data parallel programming. In:
Proceedings of the Second International Conference on Supercomputing, pp. 2–16
(1987)

13. Saraswat, V.: Report on the programming language X10. http://dist.codehaus.
org/x10/documentation/languagespec/x10-200.pdf. October 2009. Version 2.0

14. Schrijvers, T., Peyton Jones, S.L., Chakravarty, M.M.T., Sulzmann, M.: Type
checking with open type functions. In: Thiemann, P. (ed.) Proceedings Inter-
national Conference on Functional Programming 2008, Victoria, BC, Canada,
October 2008, pp. 51–62. ACM Press, New York (2008)

15. Swierstra, W.: More dependent types for distributed arrays. Higher-Order Sym-
bolic Comput., pp. 1–18 (2010)

16. Swierstra, W., Altenkirch, T.: Dependent types for distributed arrays. In: Trends
in Functional Programming, vol. 9 (2008)

17. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program
GPUs for general-purpose uses. In: ASPLOS-XII: Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Language and Op-
erating Systems, pp. 325–335. ACM (2006)

18. Xi, H.: Dependent ML: An approach to practical programming with dependent
types. J. Funct. Program. 12(2) (2007)

19. Yorgey, B.A., Weirich, S., Cretin, J., Jones, S.L.P., Vytiniotis, D., Magalhães,
J.P.: Giving Haskell a promotion. In: Pierce, B.C. (ed.) Proceedings of TLDI 2012,
Philadelphia, PA, USA, January 2012, pp. 53–66. ACM (2012)

https://github.com/copumpkin/derpa
https://github.com/copumpkin/derpa
http://dist.codehaus.org/x10/documentation/languagespec/x10-200.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-200.pdf

An Embedded Type Debugger

Kanae Tsushima(B) and Kenichi Asai

Ochanomizu University, Tokyo, Japan
tsushima.kanae@is.ocha.ac.jp, asai@is.ocha.ac.jp

Abstract. This paper presents how to build a type debugger without
implementing any dedicated type inferencer. Previous type debuggers
required their own type inferencers apart from the compiler’s type infer-
encer. The advantage of our approach is threefold. First, by not imple-
menting a type inferencer, it is guaranteed that the debugger’s type
inference never disagrees with the compiler’s type inference. Secondly,
we can avoid the pointless reproduction of a type inferencer that should
work precisely as the compiler’s type inferencer. Thirdly, our approach
is robust to updates of the underlying language. The key observation of
our approach is that the interactive type debugging, as proposed by Chi-
til, does not require a type inference tree but only a tree with a certain
simple property. We identify the property and present how to construct
a tree that satisfies this property using the compiler’s type inferencer.
The property guides us how to build a type debugger for various lan-
guage constructs. In this paper, we describe our idea and first apply
it to the simply-typed lambda calculus. After that, we extend it with
let-polymorphism and objects to see how our technique scales.

1 Introduction

To write a well-typed program is not always easy. Although a compiler gives us an
error message when a type error occurs, it is not straightforward to understand
why the type error arose. Furthermore, the source of a type error can be far from
the place reported by the compiler as a type error. In this paper, we define the
source of a type error to be a part of an ill-typed program which programmers
want to fix. Our purpose is to construct a way to find it in a strongly typed
functional language. In this paper, we use OCaml’s syntax for examples.

1.1 Locating the Source of a Type Error

Two Conflicting Expressions. A type error occurs when types of two expressions
conflict with each other. Let us consider the following example:
let rec f g lst = match lst with

| [] -> []
| fst :: rest -> (g fst) :: (f g rest) in

(f 1 [2;3;4]) @ [5;6;7]

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 190–206, 2013.
DOI: 10.1007/978-3-642-41582-1 12, c© Springer-Verlag Berlin Heidelberg 2013

An Embedded Type Debugger 191

In this program, the two boxed expressions have a type conflict causing a type
error. The first argument g of the function f is used as a function in (g fst), but
an integer 1 is passed as g in (f 1 [2;3;4]). Because a function type ’a -> ’b
cannot be unified with int, a type error occurs. To locate these two conflicting
expression is useful when one of these conflicting expressions is the source of a
type error. Unfortunately, it is not always the case.

The Source of a Type Error. The source of a type error cannot be determined
solely from the conflict of types. For example, suppose that a call to f in the
previous example is wrapped by a call to h.

let rec f g lst = match lst with
| [] -> []
| fst :: rest -> (g fst) :: (f g rest) in

let h n lst = f n lst in
(h 1 [2;3;4]) @ [5;6;7]

In this program, although (g fst) and (h 1 [2;3;4]) are the conflicting
expressions, the source of the type error may be in the definition of h: if we
replace the boxed expression with (f (fun x -> x + n) lst), the program is
well-typed. Because which of these expressions is the source of the type error
depends on the programmer’s intention, we cannot locate the source of the type
error automatically.

A Standard Type Inference Tree. To locate the source of a type error, we basically
detect the difference between an inferred type and a programmer’s intended type.
Let us consider a small example:

(fun x -> x + x) true

This program is ill-typed, because true is passed to x, but x is consumed by
an integer addition +. Let us assume that the programmer wrote this program,
because he mistakenly thought that + was the logical or operator.1 Since the
logical or operator in OCaml is ||, the programmer’s intended program is (fun
x -> x || x) true.

We show a standard type inference tree for this example constructed by the
compiler in Fig. 1 and programmer’s intended type tree in Fig. 2. By detecting
the difference between these two type inference trees, we can locate an expression
that includes the source of a type error. For example, since types of expressions
in the boxed part differ in Figs. 1 and 2, the source of the type error resides in
the expression (fun x -> x + x). However, we cannot further identify which
subexpression of this expression is the root cause of the type error, as long as
we use a compiler’s type inference tree.

The standard type inference tree is not suited for type debugging, because a
type of an expression can depend on the types of other expressions. In the above
1 This is an example of the source of this type error. If the programmer has a different

intention, other fixes are possible, such as replacing true with 1.

192 K. Tsushima and K. Asai

Fig. 1. A standard type inference tree

Fig. 2. Programmer’s intended type tree

Fig. 3. The most general type tree

example, the type of x does not have to be int if it appears independently. It
becomes int, because it is used as an argument of +. Such information is lost in
the standard type inference tree, because the type of x becomes int throughout,
once it is unified with the argument type of +.

The Most General Type Tree. To break the dependency between expressions, we
introduce the most general type tree. We show the most general type tree for
our example in Fig. 3. The most general type tree holds the most general type
for each subexpression. For example, x has a typing {x:’a} →x:’a for any type
’a, because x alone does not require any constraints on its type. The type of x is
constrained only when it is used in a context. For example, x + x has a typing
{x:int} → x + x:int, because + requires that x has type int. Using this most
general type tree, we can exactly locate the source of a type error by detecting
difference between inferred types and intended types. By comparing Figs. 3 and
2, we find that the type conflict occurs in the boxed part of Fig. 3. We can then
locate the source of the type error to be +. Note that the type of x (at the two
leaves of the tree) does not contradict with programmer’s intended type, because
bool is an instance of ’a.

Algorithmic Debugging. Of course, a tree with programmer’s intended types
exists only in programmer’s mind. To extract programmer’s intention, we use
algorithmic debugging proposed by Shapiro [11]. Algorithmic debugging is used
to identify the location of an error in a tree by traversing over the tree accord-
ing to oracles. For oracles, questions for the programmer are often used. It is
originally used for Prolog, but algorithmic debugging can be used for any tree
structures and is applied to various areas, to locate run-time errors [9], semantic
errors [12], etc. To debug Fig. 3 using algorithmic debugging, we start from the

An Embedded Type Debugger 193

root of the tree where a type error occurs. The type debugger first asks if the two
child nodes are correctly typed according to programmer’s intention. Since the
programmer’s intended type for (fun x -> x + x) is not int -> int but bool
-> bool, the programmer answers no to the first question. From this answer,
the type debugger determines that the source of the type error resides within
this expression. Next, the type debugger asks whether the intended type of x +
x is int. Again, the answer is no, and the type debugger moves into the subex-
pression. By repeating this process, the type debugger locates the source of the
type error as +.

1.2 Problems

Chitil [1] constructed the most general type tree by inferring types composi-
tionally, and located the source of a type error interactively using algorithmic
debugging. Using his type debugger, one can locate the source of a type error
by simply answering questions.

Following Chitil’s work, we implemented a type debugger for a subset of
OCaml together with some improvements [15] and used it in a course in our
university. However, due to the need to implement a tailor-made type inferencer,
we encountered at least three problems.

Implementation of a Type Inferencer. First, to implement a type inferencer that
returns exactly the same type as the compiler’s type inferencer is tedious and
error-prone. Even for a small language, we had to fully understand the behavior
of the compiler’s type inferencer. For example, a compiler has an initial envi-
ronment for typing. If a tailor-made type inferencer lacks a part of the initial
environment, it cannot infer the same type as the compiler’s type inferencer.
Furthermore, the discrepancy between the two type inferencers becomes appar-
ent only when we find unexpected debugging behavior. It makes it hard to detect
errors in the tailor-made type inferencer.

Support for Advanced Features. Secondly, to implement a type inferencer for
advanced features, such as objects and modules, is difficult and takes time. In
our previous type debugger [15], we could implement the main subset of OCaml,
including functions, lists, and pattern matching, but not the advanced features,
such as user-defined data structures, objects, and modules. This is unfortunate:
a type debugger would be particularly useful in the presence of such advanced
features.

Compiler’s Updates. Thirdly, to reimplement the type inferencer every time the
compiler is updated is costly. In the last three years, the OCaml compiler had
two major updates and two minor updates. It is not realistic to follow all these
updates and reimplement the type inferencer.

To solve these problems, we propose not to implement a tailor-made type
inferencer but to use the compiler’s own type inferencer as is to construct the
most general type tree.

194 K. Tsushima and K. Asai

1.3 Our Approach

Rather than implementing our own type inferencer, we use a compiler’s type
inferencer to construct the most general type tree. Construction consists of
two stages. First, the erroneous program to be debugged is decomposed into
subprograms. This decomposition determines the overall shape of the tree. Then,
the type of each subprogram is inferred by passing the subprogram to the
compiler’s type inferencer. For example, if a program M is decomposed into
subprograms, M1, . . . ,Mn, we first construct the left tree below.

M1 ... Mn

M

M1 : τ1 ... Mn : τn

M : τ
⇒➚➚

We then infer their types (possibly an error) by passing each of Mi (and M) to
the compiler’s type inferencer to obtain its type τi (and τ). Note that unlike the
standard type inference, types of subexpressions are not determined by applying
typing rules to the parent expression. Rather, they are determined by executing
the compiler’s type inferencer for each subexpression independently.

The above explanation is somewhat simplistic, because we did not consider
bindings. To cope with bindings properly, we actually maintain a context C of
an expression M , treating C[M] as a complete closed program (where C[M] is
the expression C whose hole is filled with M , possibly capturing free variables
of M). We call M in C[M] the focused expression.

Overview. In the rest of this paper, we first show a type debugger for the
simply-typed lambda calculus in Sect. 2 and a necessary property for decompo-
sition in Sect. 3. We then extend it with let polymorphism (Sect. 4), and objects
(Sect. 5) to see how our technique scales. Finally, we describe our implementation
of a type debugger for OCaml that uses OCaml’s own type inferencer (Sect. 6).
We compare our work with related work in Sect. 7, and the paper concludes in
Sect. 8.

2 The Simply-Typed Lambda Calculus

In this section, we introduce a type debugger for the simply-typed lambda
calculus. Although simple, it is enough to explain the basic behavior of our
type debugger.

The Language. We show the syntax of lambda calculus λ∗ in Fig. 4. It includes
constants, variables, abstractions, and applications. We assume that basic prim-
itive operations (such as + that we will use in examples) are predefined as
constants. Types include type variables, type constants, and function types.

Tree Structure Determined by Decomposition. Let us consider a type inference
tree for λx.x+1. Since the only subprogram of λx.x+1 is x+1 and it is further
decomposed into three subprograms, x, (+), and 1, the overall structure of the
tree should look like:

Γ0 � x Γ0 � (+) Γ0 � 1
Γ0 � x + 1

Γ0 � λx.x + 1

An Embedded Type Debugger 195

Fig. 4. The syntax of simply-typed lambda calculus λ→

where Γ0 is the initial environment used by the type inferencer of the underlying
compiler and contains all the bindings for the supported constants. However, the
above subprograms are not directly typable using the compiler’s type inferencer,
because they include free variables (such as x).

Decomposition with Contexts. To make a subprogram typable, we enclose it with
a context that supplies necessary bindings for free variables. In this language,
a context is defined as either an empty context � or a lambda binding λx.C
(Fig. 4). The most general type tree of λx.x + 1 becomes as follows:

Γ0 � λx.[x] : ’a -> [’a] Γ0 � λx.[(+)] : ’a -> [int -> int -> int] Γ0 � λx.[1] : ’a -> [int]

Γ0 � λx.[x + 1] : int -> [int]

Γ0 � [λx.x + 1] : [int -> int]

Looking at the focused expressions filled in the context, we see that it has the
same structure as the previous tree. Thanks to the contexts, all the subprograms
are now typable under Γ0. The types enclosed by [...] correspond to the types
of focused expressions.

Although the above tree is similar to the standard type inference tree for λ∗:

Γ0, x : int � x : int Γ0, x : int � (+) : int -> int -> int Γ0, x : int � 1 : int
Γ0, x : int � x + 1 : int

Γ0 � λx.x + 1 : int -> int

they have two important differences. First, the type of x is not constrained to
int at the leaf nodes. Since we treat all the subderivations independently, each
judgement depends only on its subexpressions. It enables us to locate where the
type of x is first forced to int. Secondly, the type environment contains only the
predefined constants. It enables us to use the compiler’s type inferencer to infer
the type of each expression. We simply pass it to the compiler’s type inferencer
and obtain its type. This is in contrast to the standard type inference tree where
the environment contains free variables.

Other Approach. A compiler’s type inferencer is usually designed to accept an
open expression and an environment for its free variables. Although we could
use this extra flexibility for the type debugger, it does not lead to a simpler type
debugger. In this paper, we chose to use contexts, to avoid going into the under-
lying compiler implementation together with the representation of environments.

196 K. Tsushima and K. Asai

Fig. 5. The decomposition function Dec for λ→

Fig. 6. The function Collect to obtain types of free variables for λ→

If we want to implement type debuggers for various languages, it would require
substantial investigation of the underlying compiler. The method proposed here
has an advantage that we can treat the compiler’s type inferencer completely as
a black box that accepts an expression and returns its type.

Construction of the Most General Type Tree. The most general type tree is built
as follows. A program to be debugged C[M] is first decomposed into subprograms
using the decomposition function Dec defined in Fig. 5. It basically decomposes
M and returns a list of its subprograms, but it maintains its contexts properly
so that the resulting subprograms (pairs of a context and a decomposed term)
are always closed. When the decomposition of C[M] is [C1[M1]; . . . ;Cn[Mn]], all
the subprograms become the children of C[M] in the tree.

The type of each subprogram C[Mi] is determined using the compiler’s type
inferencer by passing C[Mi] to it. When the context C is empty �, the returned
type is the type of the expression. When the context is not empty, we split the
obtained type into two: types for free variables and the type for the focused
expression. If we obtain the type of λx.[x + 1] as int -> int, for example, we
associate the type of x to be int (the argument part of int -> int) and the
type of x + 1 to be int (the body part of int -> int). This is done by the
function Collect in Fig. 6.

Using Dec and Collect, we construct a judgement for C[M] in the tree as
shown in Fig. 7. First, we construct a closed term M ′ by plugging M into C. It
is then passed to the compiler’s type inferencer written as typing here. When
we obtain a type τ of M ′, we split it into an environment γ holding types of
variables in the context and a type τ ′ for M . Using them, we can construct
a judgement for (possibly open) M (in the context C) as Γ0, γ → M : τ ′. For
λx.[x + 1], for example, we have Γ0, x : int → x + 1 : int.2

2 Before, we wrote Γ0 � λx.[x + 1] : int -> [int] to emphasize that we are using the
compiler’s type inferencer to infer the type of M in C. Since we are interested in the
type of M itself together with the types of its free variables, we also write it using
the standard notation Γ0, x : int � x + 1 : int.

An Embedded Type Debugger 197

Fig. 7. The function Judge to obtain typing for λ→

3 The Decomposition Property

In our type debugger, the most general type tree is constructed by first decom-
posing an expression into subexpressions and then inferring their types using
the compiler’s type inferencer. The shape of the tree is determined by how we
decompose an expression. However, it does not mean that we can use any arbi-
trary decomposition. We require that the decomposition satisfies the following
necessary property:

Definition 1 (The Decomposition Property). The decomposition function
Dec should satisfy the following property for any context C and term M :

T (C[M]) ⇒ ←(C ′,M ′) ∗ Dec[[(C,M)]], T (C ′[M ′])

where T is a predicate stating that a given expression is well typed (under the
compiler’s type inferencer).

The decomposition property states that if a program C[M] is well typed,
all of its decomposed subprograms are also well typed. Although this property
looks trivial, it does preclude x + 1 as a decomposition of λx.x + 1, because the
latter is well typed, but the former is not typable with unbound x. In the next
section, we will see how this property guides us to define decomposition that is
suitable for type debugging.

This property is essential for our type debugger. Since the source of a type
error is detected by tracking conflicts between inferred types and intended types,
we can no longer continue type debugging into subexpressions if their inferred
types are not available from the compiler’s type inferencer. Therefore, we design
decomposition carefully so that it satisfies the property and thus keeps the
typability of expressions. In the following sections, we sketch why the pre-
sented decomposition satisfies this decomposition property. For the simply-typed
lambda calculus, we reason as follows.

Decomposition for λ∗ Satisfies the Decomposition Property. We need to show
that for each case of the definition of Dec in Fig. 5, all the subexpressions in the
right hand side are well typed if the left hand side is well typed. For constants
and variables, it is satisfied vacuously. For abstraction, because the expression in
the left hand side C[λx.M] is identical to the expression in the right hand side
C[λx.[M]], the decomposition property is satisfied. For application, we notice

198 K. Tsushima and K. Asai

that if C[M1M2] is well typed, M1M2 is also well typed in a type environment
consistent with C (formally proven by induction on C). Hence, both M1 and M2

are well typed in the same environment. Since C has all the necessary bindings
for M1 and M2 and C simply adds binding to them, both C[M1] and C[M2] are
well typed as required.

4 Let Polymorphism

In this section, we extend our idea to let polymorphism.

The Language. We show the syntax of λlet in Fig. 8. It extends the simply-
typed lambda calculus with pairs, fixed points, and let expressions. Types are
also extended accordingly. Unlike the standard let-polymorphic calculus, we do
not introduce type schemes. Type schemes are required only for inferring types.
Once the type inference is done (in the compiler), all the expressions in the most
general type tree are given mono types (possibly containing type variables).

Naive Decomposition. To support a let expression in the type debugger, we
first need to define its decomposition. Because a let expression contains two
subexpressions, the let-bound expression and the main body, we are tempted to
define its decomposition as these two subexpressions. However, straightforward
decomposition leads to violation of the decomposition property (Sect. 3). Let us
consider the following program:

1 + (let id = λx.x in (id id) 2.0)

Since id in the second subexpression (id id) 2.0 is free, we need to supply its
context. If we naively follow the previous section, however, we end up with the
following tree:

→ [1] : int [+] : int◦int◦int

→ [λx.x] : ’a◦’a → (λid.[(id id) 2.0]) · · · Type Error

→ [let id = λx.x in (id id) 2.0] : float
→ [1 + (let id = λx.x in (id id) 2.0)] · · · Type Error

Although the bottom expression in the boxed part is well typed, one of its
subexpressions is not well typed. Thus, this decomposition does not satisfy the
decomposition property.

Fig. 8. The syntax of the let-polymorphic language λlet (new cases only)

An Embedded Type Debugger 199

The reason why (λid.[(id id) 2.0]) is not typable is clear. In the original
expression, id is used polymorphically, while in the decomposed subexpression,
id is bound by λ and thus monomorphic. From this example, we observe that
we need to preserve the polymorphic types of let-bound variables, when decom-
posing expressions.

Decomposition with let Context. To preserve polymorphic types of let-bound
variables, we extend the context with a let context (Fig. 8). We also extend it
with a fix context since it is a (monomorphic) binder. Using the let context, the
above tree changes as follows, satisfying the decomposition property:

→ [1] : int [+] : int◦int◦int

→ [λx.x] : ’a◦’a → (let id = λx.x in [(id id) 2.0]) : float
→ [let id = λx.x in (id id) 2.0] : float

→ [1 + (let id = λx.x in (id id) 2.0)] · · · Type Error

Construction of the most General Type Tree. To enable inspection of the def-
inition of let-bound variables, we change the decomposition function as shown
in Fig. 9. The definition is the straightforward extension of the previous defini-
tion except for the variable case. When we decompose a variable, we search for
its definition using Get defined in Fig. 10. When the variable is bound by a let
expression, Get returns its (inner-most) definition as the decomposition of the
variable. Otherwise, the variable is bound by lambda or fix, so Get returns no
decomposition. Using this decomposition function, we can further debug into the
definition of let-expressions to identify the source of a type error.

Since the context is extended with a let context and a fix context, the defin-
ition of Collect is extended accordingly as shown in Fig. 11. It collects types for

Fig. 9. Dec for λlet (new cases only)

Fig. 10. The function Get to search definition of variables for λlet

200 K. Tsushima and K. Asai

Fig. 11. Collect for λlet (new cases only)

lambda- and fix-bound variables and discards let-bound variables since they do
not appear in the type returned by the compiler. (We assume that the compiler’s
type inferencer returns τ1 ◦ τ2 as the type of fix f x ◦ M (and hence of f)
where τ1 is the type of x and τ2 is the type of M .)

As the program to be debugged becomes larger, the number of let-bound
variables increases. Since we can debug into the definition of let-bound variables
when their types conflict with the programmer’s intention, we can skip asking
for the type of let-bound variables as an oracle each time. (For example, in the
previous tree, the type debugger can skip the node → [λx.x] : ’a ◦’a). Rather,
we only ask for variables in a context that are bound by lambda or fix. This is
consistent with Chitil’s approach that maintains an environment for polymorphic
variables separately.

Decomposition for λlet Satisfies the Decomposition Property. We can confirm that
the decomposition property is still satisfied. The interesting case is for variables.
(Other cases are similar to the reasoning shown for λ∗.) Assume that C[x] is
well typed. We first observe that Get(C1, x, C2, p) maintains an invariant that
C2[C1] is always the same across the recursive call, because at each recursive call,
the topmost frame of C1 is simply moved to the hole of C2. This ensures that
all the contexts appearing in the definition of Get are well typed (as contexts),
because the initial context [C[x]] with which Get is called from Dec is well typed.
Next, the returned expression C[M] is collected only from the let case. Because
C[let x = M in C ′] is well typed, we hence have that C[M] is also well typed as
required.

Observe how the decomposition property serves as a guideline for what we
have to do and what we can do to incorporate let expressions. We have to
define the decomposition function so that the let polymorphism is preserved. On
the other hand, as long as the decomposition property is satisfied, we have the
liberty of defining the decomposition in a way the debugging process becomes
easier for programmers to understand. By defining the decomposition of let-
bound variables as their definition, the debugger’s focus moves from the use of
variables to their definition.

5 Objects

So far, we have seen that interactive debugging is possible for various language
constructs by suitably defining a Dec function that satisfies the decompositon
property. This idea extends to advanced language constructs. In this section, we
introduce objects and see how they can be supported in a similar way.

An Embedded Type Debugger 201

Fig. 12. The syntax of the object language λobj (new cases only)

Fig. 13. Dec for λobj (new cases only)

The Language. We show the syntax of the object language λobj in Fig. 12. It
models OCaml-style objects where an object is defined using a class (in which
single inheritance is allowed) and is created by the new construct. Besides the
inheritance declaration, an object can contain method and value declarations.
In OCaml, class names (to be more precise, the object structures denoted by
the class names) are used as types. We use them as is in our type debugger,
abbreviated as obj in Fig. 12.

Construction of the most General Type Tree. The decomposition function Dec is
extended with the new constructs and the Get function used in the variable case
is extended with the class context (Figs. 13, 14). The interesting cases are for
new and method invocation of Dec. In both cases, we need to identify the object
mentioned in the expressions (in case their types contradict with intended types,
so that we can debug into the object). For this purpose, the function SearchObj in
Fig. 15 is used. Its behavior is similar to that of Get, but differs in that SearchObj
collects all the method declarations in the designated object. In particular, if the
object contains inheritance declaration, those method declarations are collected,
too (see SearchObj ′).

We collect all the declarations in an object because types of declared methods
in an object are mutually dependent. Thus, we need to ask for the types of

Fig. 14. Get for λobj (new cases only)

202 K. Tsushima and K. Asai

Fig. 15. The function SearchObj to search for the definition of objects for λobj

all these method declarations to locate the source of type errors. For example,
consider the following program:

class counter = object (self)
val mutable n = 0
method incr = n <- n+1
method get = n

end
let t = (new counter) in
t#incr; ("now, the conter is" ^ t#get)

The last line results in a type error, because t#get returns an integer, which
is in conflict with the intended type (i.e., string). To find the source of this type
error, we first look up t’s class definition counter and search for the definition
of the get method. However, we find here that the get method itself does not
force the type of n as an integer. It simply returns a value of n. Instead, n is an
integer because it is assigned 0 and n+1 elsewhere in the class. Thus, we need to
examine all the declarations in an object to find the source of type errors.

Since any method declarations can be the source of type errors, we collect all
the method declarations in a class definition, and return them as decomposition
of the object reference. Although this strategy is necessary in general, it could
lead to a large number of questions. Its practical implementation is future work.

Decomposition for λobj Satisfies the Decomposition Property. We can confirm
that Dec satisfies the decomposition property as follows. First, Get will return a
list of well-typed subexpressions only, using the similar argument we described
in Sect. 4. For new and method invocation, we have to show that SearchObj
returns a list of well-typed subexpressions. It can be proved by observing that
SearchObj simply collects subexpressions in an object in a suitable context. The

An Embedded Type Debugger 203

only interesting case is for a class declaration, where we have to properly insert
bindings for the arguments to the class and the self variable v′. Note that declared
values are put into let contexts in SearchObj ′.

6 Implementation

We have implemented a type debugger for OCaml 3.12.1. To minimize the imple-
mentation efforts, we utilize the following components from OCaml as is:

– the abstract syntax tree for structures, expressions, and types (together with
the lexer, the parser, and the pretty printer)

– the type inferencer typing (that accepts an expression and returns its type,
both expressed using the above abstract syntax tree)

– the is expansive function (that accepts an expression and returns a boolean
to judge whether the given expression needs to be kept monomorphic or not)

By using exactly the same abstract syntax as OCaml, we can not only avoid
reproducing the same abstract syntax but also utilize OCaml’s own lexer, parser,
and pretty printer. In addition to the type inferencer, we utilize the is expansive
function. Although OCaml has its own criteria for weak polymorphism [2], we can
stay away from it by using OCaml’s is expansive function as is. Furthermore,
this approach is robust to updates of OCaml: if the syntax and the interface of
the two functions are the same, we can use the same debugger.

A slight complication is that OCaml treats a let expression without in dif-
ferently from the one with in: the former is a structure, while the latter is an
expression. We support both styles by splitting the context into two: the struc-
ture part and the expression part.

Another complication is the use of patterns in place of a variable declaration.
For example, instead of fun lst ->, one can write fun (first :: rest) ->.
Because patterns have type constraints, they may be the source of a type error.
To make such an error detectable, we included patterns as the decomposition of
the expression.

The rest of the language constructs are supported without requiring any
special treatment. For each new construct, we define its decomposition and show
that it satisfies the decomposition property. Our type debugger supports all
features of OCaml including weak polymorphism and modules.

To construct the most general type tree, we use the compiler’s type infer-
encer many times. Although it appears that our type debugger incurs significant
overhead, this is not the case, because we do not have to construct the whole
tree beforehand. Instead, the most general type tree is constructed as we debug:
after the root node is constructed, the rest of the tree can be constructed during
the interaction with the programmer.

7 Related Work

The typical approach to improving type error messages is to design a new type
inference algorithm. Wand [16] keeps track of the history how type variables

204 K. Tsushima and K. Asai

are instantiated and shows the conflicting history when a type error arises. Lee
and Yi [6] present the algorithm M that finds conflict of types earlier than
the algorithm W and thus reports a narrower expression as an error. Heeren and
Hage [5] use a constraint-based type inference for improving type error messages.
Although these improved type error messages are useful for programmers, it is
in general not possible to identify the source of type errors by a single error
message.

To locate the source of type errors, Chitil [1] uses compositional type inference
and constructs an interactive type debugger for a subset of Haskell. Based on
his work, we designed a type debugger for OCaml using the compiler’s own type
inferencer rather than a tailor-made type inferencer. The use of the compiler’s
type inferencer enables us to build a type debugger for a larger language easily.
Stuckey, Sulzmann, and Wazny [14] find the source of type errors using type
inference via CHR solving. They implement a type debugger called Chameleon,
which can explain why an inferenced type is derived by searching. Tailor-made
type inference is used for this purpose.

As different approaches, Haack and Wells [3] use slicing with respect to types
to narrow the possibly erroneous parts of programs. By extracting the slice
related to type errors, they help the programmer to identify the source of type
errors. The advantage of this approach is that the process is automatic and
the programmer does not have to answer questions. Schilling [10] obtains slices
using the compiler’s type inferencer. We share the goal of reusing the available
resources in the compiler.

Lerner et al. [7] propose automatic type-error correction. They replace the
erroneous part with various syntactically correct similar expressions, and see
if they type check. If they do, they are displayed as the candidates for fixing
the type error. Since the system automatically shows us possible fixes without
intervention, the system is useful if the programmer’s intended fix is shown.
Unfortunately, it does not always produce the intended program.

As visualizing tools of types, Simon, Chitil, and Huch [13] show TypeView
that allows programmers to browse through the source code and to query the
types of each expression. McAdam [8] displays types as graphs and extracts
various facts from them that are useful for debugging. Our previous Emacs
interface [15] inspired by these works, and we will continue to build such interface.

8 Conclusion

In this paper, we have fleshed out our thesis that it is possible and also practical
to write a type debugger by piggy-backing on the built-in type inferencer of an
existing compiler. The key observation is that we only need the most general
type tree with the decomposition property; such a tree can be constructed using
the compiler’s type inferencer. The decomposition property guided the design
of our type debugger: we maintained contexts so that the property is satisfied
all the time. We have illustrated the thesis with OCaml, and we have described
how to handle a number of issues: simple types, let polymorphism, and objects.
Our design is in use in our laboratory and in our classrooms.

An Embedded Type Debugger 205

We plan to continue the present line of work as follows. First, we want to
explore how far the idea presented in this paper scales. In particular, we are
interested in supporting type classes [4] in Haskell and GADTs introduced in
OCaml 4.0. We will investigate how we can define decomposition of a program
with type classes or GADTs and see if it satisfies the property (Sect. 3). Secondly,
we want to perform thorough user tests. We have built an Emacs interface based
on our previous work [15] and the type debugger is in use in several courses in
our university. From user tests, we plan to obtain various feedback including
usefulness and how to effectively show the type information to novices. Finally,
we want to establish some kind of correctness criteria of the type debugger. By
considering the most general type tree, it might become possible to formally
state a property such as the type debugger would always find the source of a
type error.

Aknowledgements. We would like to thank Olaf Chitil, Olivier Danvy, Ian Zerny,
IFL participants, and anonymous reviewers for valuable comments and discussions.

References

1. Chitil, O.: Compositional explanation of types and algorithmic debugging of type
errors. In: Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming (ICFP’01), pp. 193–204 (2001)

2. Garrigue, J.: Relaxing the value restriction. In: Kameyama, Y., Stuckey, P.J. (eds.)
FLOPS 2004. LNCS, vol. 2998, pp. 196–213. Springer, Heidelberg (2004)

3. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order lan-
guages. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 284–301. Springer,
Heidelberg (2003)

4. Hall, C., Hammond, K., Jones, S.P., Wadler, P.: Type classes in Haskell. ACM
Trans. Program. Lang. Syst. (TOPLAS) 18(2), 241–256 (1996)

5. Heeren, B., Hage, J.: Parametric type inferencing for Helium. Technical Report
UU-CS-2002-035, Utrecht University (2002)

6. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm.
ACM Trans. Program. Lang. Syst. 20(4), 707–723 (1998)

7. Lerner, B.S., Flower, M., Grossman, D., Chambers, C.: Searching for type-error
messages. In: Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’07), pp. 425–434 (2007)

8. McAdam, B.J.: Generalising techniques for type debugging, chapter 6. In: Trinder,
P., Michaelson, G., Loidl, H.-W. (eds.) Trends in Functional Programming, pp.
49–57. Intellect, Portland (2000)

9. Nilsson, H.: Declarative debugging for lazy functional languages. Ph.D. thesis,
Linköping, Sweden (1998)

10. Schilling, T.: Constraint-free type error slicing. In: Peña, R., Page, R. (eds.) TFP
2011. LNCS, vol. 7193, pp. 1–16. Springer, Heidelberg (2012)

11. Shapiro, E.Y.: Algorithmic program debugging. MIT Press, Cambridge (1983)
12. Silva, J., Chitil, O.: Combining algorithmic debugging and program slicing. In:

Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’06), pp. 157–166 (2006)

206 K. Tsushima and K. Asai

13. Simon, A., Chitil, O., Huch, F.: Typeview: a tool for understanding type errors.
In: Draft Proceedings of the 12th International Workshop on Implementation of
Functional Languages, pp. 63–69 (2000)

14. Stuckey, P. J., Sulzmann, M., Wazny, J.: Interactive type debugging in Haskell. In:
Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell’03), pp.
72–83 (2003)

15. Tsushima, K., Asai, K.: Report on an OCaml type debugger. In: ACM SIGPLAN
Workshop on ML, 3 p. (2011)

16. Wand, M.: Finding the source of type errors. In: Proceedings of the 13th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’86), pp. 38–43 (1986)

Pure and Lazy Lambda Mining

An Experience Report

Nicolas Wu1(B), José Pedro Magalhães1(B), Jeroen Bransen2(B),
and Wouter Swierstra2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
{nicolas.wu, jose.pedro.magalhaes}@cs.ox.ac.uk

2 Department of Computer Science, Utrecht University, Utrecht, The Netherlands
{j.bransen, w.s.swierstra}@uu.nl

Abstract. This paper discusses our entry to the 2012 ICFP Program-
ming Contest, written entirely in Haskell. Our solution uses many fea-
tures of Haskell: pure immutable data structures, laziness, higher-order
functions, concurrency, and exception handling. Each of these features
plays an essential part in our overall solution, and we demonstrate how
these key elements can be composed together. In this exposition, we
stress the importance of how the code was structured in such a way that
made safely refactoring and extending the model a relatively easy task,
and how Haskell’s strong type system made it possible for our team to
remain agile under changing specifications.

1 Introduction

In the classic paper Why Functional Programming Matters, Hughes [3] argues
that functional programming in Miranda provides two kinds of glue that en-
able the modular construction of programs: lazy evaluation and higher order
functions. To drive this point home, Hughes presents several small and elegant
example programs that rely on precisely these features. But how useful are lazi-
ness and higher order functions in larger developments?

This paper investigates this question and aims to provide further evidence
supporting Hughes’s claim. We describe a solution to the 2012 ICFP program-
ming contest.1 This programming contest allows participants to write solutions
in any language, or combination of languages, in a time frame of 72 hrs. Our
solution was entirely implemented in Haskell [4]. We describe our solution as
it was developed in the 72 hours of the contest, plus some later refactoring for
readability and bug fixing. Crucially, the solution we present uses many dif-
ferent Haskell features: pure immutable data structures, laziness, higher-order
functions, concurrency, and exception handling.

Nicolas Wu and José Pedro Magalhães have been funded by EPSRC grant number
EP/J010995/1.

1 The official task description is available at http://icfpcontest2012.wordpress.com/task/.
A video presenting the task and announcing the winners can be seen at
https://www.youtube.com/watch?v=5TCqUU3-GT0.

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 207–223, 2013.
DOI: 10.1007/978-3-642-41582-1 13, c© Springer-Verlag Berlin Heidelberg 2013

http://icfpcontest2012.wordpress.com/task/
https://www.youtube.com/watch?v=5TCqUU3-GT0

208 N. Wu et al.

Robot

Earth

Wall

Rock

Exit

Lambda

Higher-order rock

Fig. 1. Graphical representation of a mine

1.1 Problem Description

The ICFP programming contest has been run every year since 1998. This year,
participants were invited to program a virtual mining robot to collect resources
called ‘lambdas’ while avoiding falling rocks, getting trapped, or drowning. The
overall score of a route was determined by the number of lambdas collected
and the number of moves required to collect those lambdas. Figure 1 shows a
graphical depiction of a game in progress. The goal is to compute a sequence
of moves for the robot to collect as many lambdas as possible, without being
crushed by falling rocks. If all the lambdas are collected, reaching the exit gives
an extra score bonus.

The problem specification was extended four times over the course of the
competition, demanding efficient and correct code to be produced under tight
deadlines. This provided an excellent means of substantiating the claim that
functional programming languages help to produce code that is both modular
and reusable. In the remainder of this paper, we describe our solution and how
it relies on several key Haskell features. The precise description of the problem
will become clear from the presentation of our solution.

We begin by describing pure models of both the mine (Sect. 2) and the search
space (Sect. 3). Our solution uses a combination of search strategies (Sect. 4), that
traverse the shared search space. The main program then applies these strate-
gies in parallel (Sect. 5), returning the best result. Section 6 describes the changes
necessary to adapt our solution to each of the problem specification extensions.
We conclude in Sect. 7 with a summary of our experience, including a number of
practical guidelines for code development in a situation similar to ours.

2 Pure Modelling

In this section we describe how we model and simulate the problem in Haskell.

Pure and Lazy Lambda Mining 209

2.1 Model

The model represents the entire state of a mine at any given time, and forms
an important interface for the rest of the system: the simulator (Sect. 2.2) takes
one state of the model to the next, the parser must produce a value of this type,
the visualiser outputs a visual rendering of the model (Sect. 2.3), and various
strategies can be employed based on the state held within the model (Sect. 4).

The basic building block of a mine is a Tile, which holds information about
what exists at a particular coordinate:

data Tile = Robot | Wall | Rock Bool | Lambda | Earth | Empty | Exit

Note that rocks are parameterised by a Boolean which indicates whether or not
a rock is falling: when the robot is directly beneath a falling rock, it is crushed.

Each tile in the mine is given a specific coordinate, which is simply a pair of
Int values named Coord . Putting these elements together, we are interested in
an array that is indexed by Coords and contains Tiles. This describes the layout
of the mine:

type Layout = Array Coord Tile

Using an array for this representation is appropriate, since we need to perform
lookups of elements at coordinates very often, and arrays have constant time
lookup.

It is useful to define a function that checks the value of a tile in the layout at
a particular coordinate, by dereferencing the appropriate location in the array:

isTile :: Layout → Coord → Tile → Bool
isTile l xy t = l ! xy ≡ t

There is an important caveat to using this function and others like it which make
use of (!), the unsafe indexing operator. This operator is efficient, but makes no
effort to ensure that the coordinates being sought are within the bounds of the
array, and this is a danger which could easily result in an exception being thrown
at runtime.

Another utility function finds the coordinates of all the tiles which satisfy a
given predicate:

findTiles :: (Tile → Bool) → Layout → [Coord]
findTiles p = map fst ◦ filter (p ◦ snd) ◦ assocs

This works by getting a list of all the associations in the array and representing
these as a value of type [(Coord ,Tile)]. This list is then filtered by the predicate,
before the coordinates are extracted.

While the Layout structure holds much of the information required during the
game, some essential features are lacking, such as the number of moves that have
passed since the beginning of the game. The whole state is saved in a structure
named Mine, which contains all the information required for assessing the current
score:

210 N. Wu et al.

data Mine = Mine { layout :: Layout
, robot :: Coord
, lambdas :: Int
, moves :: Int }

In particular, Mine stores the current position of the robot along with the num-
ber of remaining lambdas and the number of moves it has taken to reach this
point, since this is an important part of calculating the score.

When the robot has finished collecting all the lambdas, the exit opens and
the robot is allowed to leave the mine. Our representation indicates that the
robot has exited when the robot’s coordinates correspond with the Exit tile in
the layout:

isDone :: Mine → Bool
isDone mine = isTile (layout mine) (robot mine) Exit

The task of ensuring that the robot can only enter an exit when all lambdas
have been collected is left to the simulator, which we explain in the next section.

2.2 Simulation

The simulation code determines how the system responds to the robot’s actions:
each time the robot makes a move the world is updated and a new Mine value
is calculated.

The robot can perform several moves: moving up, down, left, right, waiting,
or aborting the mission. For brevity, the data constructors that represent these
moves contain only the initial letter of each action:

data Move = L | R | D | U | W | A

We often calculate coordinates based on a sequence of moves; the following
function returns a coordinate that has been shifted by some movement value:

(�) :: Coord → Move → Coord
(x , y) � L = (x − 1, y)
(x , y) � R = (x + 1, y)
(x , y) � D = (x , y − 1)
(x , y) � U = (x , y + 1)
(x , y) � _ = (x , y)

For example, this operator is used to verify whether the robot has been crushed
by a rock, which happens whenever the tile directly above the robot is a falling
rock:

isDead :: Mine → Bool
isDead mine = isRockFalling (layout mine ! (robot mine � U))

Pure and Lazy Lambda Mining 211

The function isRockFalling distinguishes rocks that are falling.
The score is calculated by multiplying a constant factor per collected lambda

minus the number of moves the robot made. The constant depends on how the
game ended, and is 75 when all lambdas were collected, 25 when the robot dies,
and 50 if the robot aborted (which is the default action when no more moves
are made).

The central function used to simulate the robot’s progression through a mine
is step, which takes a current mine, a move, and steps the simulator through
that move:

step :: Mine → Move → Mine
step mine A = mine
step mine move = mine ′ where

(layout ′, robot ′) = stepRobot mine move
layout ′′ = array ((bounds ◦ layout) mine) $

concat [updRocks (mine { layout = layout ′}) (x , y) (layout ′ ! (x , y))
| y ← [1 . . h], x ← [1 . .w]]

moves ′ = 1 + moves mine
lambdas ′ | isTile (layout mine) robot ′ Lambda = lambdas mine − 1

| otherwise = lambdas mine
(w , h) = (snd ◦ bounds ◦ layout) mine
mine ′ = mine { layout = layout ′′ , robot = robot ′

, lambdas = lambdas ′,moves = moves ′}

When a move other than A is requested, the simulator returns the result of the
updated record mine ′. The layout field is updated in two stages. First the value
of the layout is calculated after the robot has made its step and stored in layout ′,
and then this value is used in creating a new array, layout ′′, that contains the
state of the mine after all the falling of rocks has been calculated. This follows
the problem specification.

Updating the robot is left to the stepRobot function, which returns the layout
after the robot has moved, and gives the new coordinate of the robot:

stepRobot :: Mine → Move → (Layout ,Coord)
stepRobot mine move =

case l ! xy ′ of
Earth → (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Empty → (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Lambda → (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Exit | lambdas mine ≡ 0

→ (l // [(xy ′,Robot), (xy ,Empty)], xy ′)
Rock _ | (move ≡ L ∨ move ≡ R) ∧ isTile l (xy ′ � move) Empty

→ (l // [(xy ′,Robot), (xy ,Empty), (xy ′ � move,Rock False)], xy ′)
_ → (l // [(xy ,Robot)], xy)

where l = layout mine
xy = robot mine
xy ′ = xy � move

212 N. Wu et al.

Moving towards earth, an empty tile, or a lambda simply updates the robot
position, leaving an empty space behind. Moving towards the exit is only allowed
if all the lambdas have been collected. Moving towards a rock is possible if the
movement is sideways, and there is empty space next to the rock being pushed.
All other movements are invalid, and the robot remains in the same position.

Another crucial function is updRocks , which is responsible for updating the
position of rocks after the robot has moved:

updRocks :: Mine → Coord → Tile → [(Coord ,Tile)]
updRocks mine xy (Rock _)

| isFallDown l xy = [(xy ,Empty), (xy � D ,Rock True)]
| isFallRight l xy = [(xy ,Empty), (xy � D � R,Rock True)]
| isFallLeft l xy = [(xy ,Empty), (xy � D � L ,Rock True)]
| isFallLambda l xy = [(xy ,Empty), (xy � D � R,Rock True)]
| otherwise = [(xy ,Rock False)]
where l = layout mine

updRocks_xy tile = [(xy , tile)]

The functions isFallDown, isFallRight , isFallLeft , and isFallLambda determine
whether the rock will fall in a particular direction. These are all predicates that
take a Layout and a Coord , and simply output the appropriate Bool .

Keeping the entire state of a mine as a single value of type Mine enables
the definition of step to remain relatively simple, since all of the required data
for an update is held in a single structure. This complete encapsulation of state
means that there are no implicit outside dependencies to handle when trying to
evaluate a particular mine.

2.3 Input and Output

The input maps are supplied in text format. To read these into our model, we
wrote a text parser using Attoparsec,2 working on ByteStrings for efficiency
reasons. The input format is simple, so the parser is unsurprising and therefore
omitted in this presentation.

Visualising the maps in a user-friendly way was not a requirement of the con-
test. However during development it was helpful to visualise maps and generated
solutions, and to be able to manually play each mine. Due to time considerations
we developed only a simple ANSI text-based visualiser, which was enough for
our testing purposes.

3 The Game Trie

One of the key benefits of Haskell is its purity, allowing game states to be shared
across different solvers. Our strategy for exploiting this was to spawn a number of
different agents that explore a shared data structure that holds paths to different
game states together with their scores.
2 http://hackage.haskell.org/package/attoparsec

http://hackage.haskell.org/package/attoparsec

Pure and Lazy Lambda Mining 213

3.1 Tries

The structure we use to encode paths through the mine is a non-empty trie [2]:

data Trie k v = Trie {root :: v , branches :: Map k (Trie k v)}
An important aspect of a value of type Trie k v is that it can behave like a
map of type Map [k] v , and this forms the basis of an intuitive interface with
a number of well-understood standard functions. These standard functions on
Trie will prove useful in the strategy code (Sect. 4), since the entire search space
of a game can be encoded as a trie, mapping sequences of moves to a game state:

type GameTrie = Trie Move GameState
data GameState = GameState {gameStateMine :: Mine

, gameStateScore :: Score }
For instance, we can lookup the GameState associated with a certain path by
using the familiar lookup function:

lookup :: (Eq k ,Ord k) ⇒ [k] → Trie k v → Maybe v
lookup [] (Triev_) = Just v
lookup (k : ks) (Trie_ kvs) = Map.lookup k kvs >>= lookup ks

A Path is represented by a list of moves:

type Path = [Move]

The type GameTrie operates much like the type of Map Path GameState, but
its encoding is very efficient; each branch of the tree encodes one possible move,
as illustrated in the following figure:

GS0
U

R W

A

GS1 GS2
U

D
A

GS3
L A

GS4

GS5 GS6 GS7 GS8 GS9

In this example, starting from some initial game state GS0, the robot can move
up and die, resulting in game state GS1, with no further paths. Alternatively,
the robot can go right, and then proceed either up, down, or abort. A GameTrie
is computed by starting with an initial state (of score zero), and considering only
valid moves from the current position:

mkTrie :: (Eq k ,Ord k) ⇒ v → (v → [k]) → (v → k → v) → Trie k v
mkTrie v f next = Trie v (Map.fromList [(k ,mkTrie (next v k) f next) | k ← f v])

gameTree :: Mine → GameTrie
gameTree mine0 = mkTrie (GameState mine0 0 (hash mine0))

(goodMoves ◦ gameStateMine)
(mkGameState mine0 ◦ gameStateMine)

214 N. Wu et al.

We omit the function mkGameState, which simply computes the current
GameState, and function goodMoves, which returns the valid moves for the ro-
bot. One of the key features of our solution is that the GameTrie represents all
the paths in the mine, and this trie is shared over the different robot strategy
algorithms. This means that states are never computed twice; if strategy one
already went down a particular path, the next strategy can immediately get the
corresponding game state for that path, without having to step through each
move. In addition, equivalent states that are reachable through different paths
are not recomputed, and this is achieved through the use of hashes, described in
more detail in Sect. 3.3.

Another useful property of values of type Trie k v is that they behave like
trees of type Tree ([k], v), which brings another family of standard functions
that are well understood. In particular, a tree can be traversed in breadth-first
order in order to compute all possible paths in increasing length:

flatten :: Trie k v → [([k], v)]
flatten = concat ◦ levels

levels :: Trie k v → [[([k], v)]]
levels tree = (map extract ◦ iterate expand) [([], tree)]

where
expand :: [([k],Trie k v)] → [([k],Trie k v)]
expand = concatMap (λ(sk ,Trie _ kts) → map (first (:sk)) (Map.toList kts))

extract :: [([k],Trie k v)] → [([k], v)]
extract = map (λ(sk ,Trie v ′_) → (reverse sk , v ′))

In Sect. 3.2 we will use variations of these functions to build efficient pathfinding
algorithms that are used to search for solutions within the GameTrie.

3.2 Pathfinding

The key to our strategy is to navigate the Trie structure, and identify a path
that leads to a high score. The following function, for example, finds the paths
to the exit:

solve :: Mine → [(Path,GameState)]
solve mine = (filter (isDone ◦ gameStateMine ◦ snd) ◦ flatten ◦ gameTree) mine

Since flatten produces a breadth first traversal of the tree, we know that the
result at the head of the list will have the shortest path. Furthermore, since the
predicate applied is isDone, we know that the solution found is for a completed
mine. Therefore, the head of this list will contain a solution with the maximal
score for a completed mine!

However, while this strategy would eventually find such a solution for com-
pletable mines, it is prohibitively inefficient. In addition, since the tree is poten-
tially very large, and not all mines are necessarily completable, an exhaustive
search will generally not be possible. In order to solve this, we break the problem

Pure and Lazy Lambda Mining 215

down into finding paths to a number of intermediate states given by some pred-
icate: the basis for the searches will still be variations on breadth first search,
but the goal is different. Rather than finding paths to different values of type
GameState, we will seek values of type GameTrie, so that we can search for new
paths based on the returned tree, thus giving us more sophisticated searching
strategies, where intermediate goals are reached and further analysis is performed
on the trees that follow on from the paths to those goals.

A useful utility function along these lines is findPaths, which looks for paths
to a particular coordinate:

findPaths :: GameTrie → Coord → [(Path,GameTrie)]
findPaths tree dest = bfs ((≡) dest ◦ robot ◦ gameStateMine) tree

This can be used, for example, to find a path to the Exit once the task of
collecting all the lambdas is complete:

findExits :: GameTrie → [(Path,GameTrie)]
findExits tree = findTiles (≡ Exit) (layout (getMine tree)) >>= findPaths tree

This works by first finding the appropriate tile, and, if such a coordinate is found,
then it is used by findPath to calculate a path.

At the heart of findExits is an efficient breadth first search algorithm, with
a more general interface than that of solve. A naive breadth first search that
operates on the Trie structure can be described as follows:

type KTrie k v = ([k],Trie k v)
bfsNaive :: (v → Bool) → Trie k v → [KTrie k v]
bfsNaive p tree = (filter (p ◦ root ◦ snd) ◦ stems) [([], tree)]

This makes use of the function stems, which is similar to flatten, but returns a
list of paths with corresponding subtrees:

stems :: [KTrie k v] → [KTrie k v]
stems [] = []
stems ((sk , t@(Trie_ kts)) : skts) = (reverse sk , t) : stems skts ′

where skts ′ = skts ++ [(k ′ : sk , t ′) | (k ′, t ′) ← Map.toList kts]

The stems function produces a breadth-first traversal of the tree, but is certainly
not optimal: this function makes no effort to ensure that some common state
has not been investigated several times: certain paths lead to exactly the same
state, and we have no reason to assume that there will be any implicit sharing
of these states.

3.3 Hashing

During the lazy construction of the tree structure, sharing is not exploited be-
tween nodes that are equal. As a result, a search of the tree will likely result

216 N. Wu et al.

in repeated inspections of equal nodes and their children: this happens when-
ever there is more than one path to a particular state. To avoid this expensive
recomputation, the breadth first search algorithm is modified to contain an ac-
cumulator that keeps track of the nodes visited so far, and will not queue nodes
whose values have already been visited elsewhere.

Rather than have the accumulator store the entire state of each visited mine,
and have to perform an expensive equality operation, a hash of the mine is stored
instead. We therefore extend the type of a GameState so that it contains a Hash:

type Hash = Int
data GameState = GameState { . . .

, gameStateHash :: Hash }

An instance of Hashable is provided, giving us a means of obtaining the hash
of a Mine:

instance Hashable Mine where
hash mine = hash ((hash ◦ assocs ◦ layout) mine

, (hash ◦ robot) mine
, (hash ◦ moves) mine)

An accumulator, which is a set of hashes, is then added to the machinery of
stems that allows states which have already been visited to be pruned:

stemsPrune :: Hashable v ⇒ Set Hash → [KTrie k v] → [KTrie k v]
stemsPrune_ [] = []
stemsPrune visited ((sk , t@(Trie v kts)) : skts) = case insertM (hash v) visited of

Nothing → stemsPrune visited skts
Just visited ′ → (reverse sk , t) : stemsPrune visited ′ skts ′

where skts ′ = skts ++ [(k ′ : sk , t ′) | (k ′, t ′) ← Map.toList kts]

insertM :: Ord a ⇒ a → Set a → Maybe (Set a)
insertM x xs | Set .member x xs = Nothing

| otherwise = Just (Set .insert x xs)

The idea is to keep an accumulator that checks if the value of the tree being
examined has been visited before. If it has been visited, then this value is rejected
by the function insertM , and the next candidate for traversal is considered. If
the value has not yet been visited, then the tree that contains it is added to
the output of the search, its content is added to the set of visited values, and
children are scheduled for traversal.

This lets us define a breadth first search that does not visit the same subtree
twice:

bfsPrune :: Hashable v ⇒ (v → Bool) → Trie k v → [KTrie k v]
bfsPrune p t = filter (p ◦ root ◦ snd) ◦ stemsPrune Set .empty $ [([], t)]

Pure and Lazy Lambda Mining 217

The beauty of this solution is that it requires only the values v of the Trie k v
structure to be Hashable. However, this does not come without its cost: the
hashing itself is not perfect, and so it is possible that two different states hash
to the same value. If this were to happen, then not all unexplored states will
be visited, since we would incorrectly discard states that collide with already
visited states that a hash. In practice, this does not turn out to pose a problem,
since the hash space is large enough.

Another performance issue is that stems uses a list to hold the queue of
subtrees left to visit: the performance of appending to the end of a list is poor,
and this can be easily improved by using a queue structure instead, and replacing
the call to stemsPrune with an adequately instantiated call to stemsPruneQ .

stemsPruneQ :: Hashable v ⇒ Set Hash → Seq (KTrie k v) → [KTrie k v]
stemsPruneQ visited q = case Seq .viewl q of

Seq .EmptyL → []
(sk , t@(Trie v kts)) :< q ′ → case insertM (hash v) visited of

Nothing → stemsPruneQ visited q
Just visited ′ → (reverse sk , t) : stemsPruneQ visited ′

(foldr (flip (| >)) q ′ [(k ′ : sk , t ′) | (k ′, t ′) ← Map.toList kts])

bfsPruneQ :: Hashable v ⇒ (v → Bool) → Trie k v → [KTrie k v]
bfsPruneQ p t = (filter (p ◦ root ◦ snd) ◦ stemsPruneQ Set .empty ◦ return) ([], t)

This is a relatively straight-forward transliteration of the list based version into
one that uses a Seq datastructure instead.

On a final note about pathfinding, the findPaths function takes a destination
coordinate as an argument, and filters out the results of a breadth-first traversal
until a state is found where the robot is at the coordinate. A heuristic for possibly
improving the search is by using a distance metric which determines how close
a given point is to the destination, and using this information to give priority
to certain elements within the queue. This is the basis of the well known A*
algorithm [1], which is widely used in path finding and graph traversal.

To implement this algorithm, much of the structure present in bfsPruneQ
can be reused, where Seq is replaced by a MinQueue structure which orders the
elements according to some comparison function. For brevity, these details are
omitted, but the development revolves around choosing an appropriate compari-
son function: a valid option would be to use the well-known Manhattan distance
between two points, although there are other possible options. This function is
then used to form the priorities of elements within the MinQueue, which arranges
its elements so that those which are closest to the destination are favoured when
considering the next value to explore in the search.

4 Robot Strategy

Our solution relies on using a portfolio of simple strategy algorithms competing
for finding the best solution. A strategy takes a GameTrie and computes possible
paths through the mine, together with their score:

218 N. Wu et al.

type Strategy = GameTrie → [(Path,Score)]

We can now write a variation of the solve function (from Sect. 3) that produces
a Strategy using bfsPruneQ :

solveS :: Strategy
solveS = map (second getScore) ◦ bfsPruneQ (const True)

This encodes the strategy of trying all possible paths, in a breadth-first manner.
Naturally, this strategy is not very efficient, and will only work on very small
maps. We also have a variant strategy that looks ahead only a number steps,
and then takes one step along the best path found so far. This strategy finds
locally optimal solutions.

An alternative strategy orders the remaining lambdas, tries to reach each one
of them, and then walks towards the exit:

cmpS :: Comparison → Strategy

cmpS cmp tree

| lambdas (getMine tree) ≡ 0 = case listToMaybe $ findExits tree of

Just (p, tree′) → [(p , getScore tree′)]
Nothing → [([A], getScore tree)]

| otherwise = case pathToLambda cmp tree of

[] → [([A], getScore tree)]

((p, tree′): _) → (p, getScore tree′) : map (first (p++)) (cmpS cmp tree′)

We omit functions getMine and getScore, which are simple accessors of the
GameTrie data structure. Function pathToLambda takes a ranking function for
lambdas and returns a list of paths:

pathToLambda :: Comparison → GameTrie → [(Path,GameTrie)]
pathToLambda cmp tree = concatMap snd (sortBy cmp dests)
where dests = map (λcoord → (coord ,findPaths tree coord))

(findTiles (≡ Lambda) ((layout ◦ getMine) tree))

We can now define multiple strategies simply by instantiating the comparison
function of cmpS :

eqCmpS , lowCmpS , highCmpS :: Strategy
eqCmpS = cmpS (λ __→ EQ)
lowCmpS = cmpS (cmpCoords (λ(_, y) (_, y ′) → compare y y ′))
highCmpS = cmpS (cmpCoords (λ(_, y) (_, y ′) → compare y ′ y))

Strategy eqCmpS treats all lambdas equally, while lowCmpS prefers lambdas
located the lowest in the mine. This strategy might make sense when the lower
parts of the mine become harder to access as time goes by (see Sect. 6.1).

We also have more complicated strategies involving cmpS , such as preferring
lambdas that are part of large clusters.

Pure and Lazy Lambda Mining 219

5 Concurrency and Exception Handling

Strategies turn the representation of a game tree into a list of paths with their
corresponding score. By sharing the game tree structure, a number of concurrent
worker threads using different strategies can compete with one another to find an
optimal solution. The communication between these threads occurs through the
use of Haskell’s MVar values: these are mutable variables which can be shared
and synchronised between threads. Initially, a trivial solution is put in mvBest .
The task of each worker is to improve this solution with whatever they might
encounter in their list of candidate answers.

improve :: (Ord s,NFData s,NFData a) ⇒ MVar (a, s) → [(a, s)] → IO ()

improve mvBest = mapM_(λx → x ‘deepseq ‘ modifyMVar_mvBest (cmpBest x))

where cmpBest x best = return (if snd x > snd best then x else best)

Here, each solution x is a tuple of type (s, a), where s is a score that will
be maximised, and a the answer itself. We require s and a to have an NFData
instance to be able to force evaluation using deepseq , since the entire computation
of the value of x should occur before blocking on the mvBest variable. The
MVar is a reference to the best solution found so far; improve updates this
MVar whenever a better solution is found. As this worker might be interrupted
before the list is fully evaluated, it is important that modifyMVar_ is an atomic
operation: if the worker raises an exception while it is modifying mvBest , then
the value is restored to its original state.

The workers are spawned by spawnWorkers, which creates a new asynchro-
nous thread for each of the answers returned by the strategies, and then waits
for all the threads to finish.

spawnWorkers :: (Ord s,NFData s,NFData a) ⇒ MVar (a, s) → [[(a, s)]] → IO ()

spawnWorkers mvBest xss = do workers ← mapM (async ◦ improve mvBest) xss

mapM_waitCatch workers

An important feature of this function is that the failure of one worker does
not affect the others, since waitCatch will silently ignore any worker which has
thrown an exception. While deceptively succinct, these two functions provide a
powerful mechanism by which multiple concurrent workers can be spawned to
improve the value of a solution, all the while dealing with exceptions in a safe
way by allowing the best known solution to prevail in the case of failure.

Since we can rely on the fact that the best solution will not be lost when
the workers fail, we can make use of this mechanism to allow the system to
demand an immediate answer at any point during the computation. This fits
nicely into the framework of the contest, where programs are given a set amount
of time within which to find a solution, and then given a signal which raises
an exception when time is up and an answer is required. To exploit this, the
function run is used, which spawns the workers to perform the task of finding
the best solution, and provides a callback that should be executed whether the
computation terminates naturally, or an exception is thrown.

220 N. Wu et al.

run :: (Ord s,NFData s,NFData a) ⇒
(a, s) → [[(a, s)]] → ((a, s) → IO ()) → IO ()

run best xss callback = catchUserInterrupt $
bracket (newMVar best)

(λmvBest → takeMVar mvBest >>= callback)
(λmvBest → spawnWorkers mvBest xss)

The function bracket :: IO a → (a → IO b) → (a → IO c) → IO c takes three
arguments: the initial computation, which initialises the best result found so far,
the final computation, which reads the best result found and calls the callback,
and the intermediate computation, which spawns the workers and waits for all
threads for finish. The final computation of a bracket is performed even if an
exception is raised, which is precisely the behaviour required here when the
callback is an action which outputs the best known solution.

One problem remains: if an exception is raised within a bracket , then after
the final computation has been executed the exception will be re-raised so that
it can be handled elsewhere in the system. If left unhandled, the program would
exit and indicate that there was an error. The catchUserInterrupt function is
a helper which allows the program to gracefully exit when the interrupt signal
which is expected from the judging environment is received.

catchUserInterrupt :: IO () → IO ()
catchUserInterrupt = handle (λe → case e of UserInterrupt → return ()

− → throwIO e)

Note that if the exception received is not one that is expected, then the exception
is thrown again and allowed to propagate further.

For testing purposes it is convenient to be able to kill worker threads after a
particular amount of time, in order to simulate the judging environment. This is
implemented using the timeout function which runs an IO computation within
a thread and kills the thread if no result is returned within a given time limit.

runWithTimeout :: (Ord s,NFData s,NFData a)

⇒ Int → (a, s) → [[(a, s)]] → ((a, s) → IO ()) → IO ()

runWithTimeout t best xss callback = timeout t (run best xss callback) >> return ()

This works as expected since exceptions are used to kill a thread that has expired.

6 Changing Specifications

One of the challenges was to deal with changing specifications. This was very
easy to cope with in our model, and only minor extensions were required, mostly
confined to the Mine and Tile datatypes, and the stepRobot and updRocks func-
tions. On average, about 20 lines of code were added for each extension. The
construction of the GameTrie structure relies on the step function to generate
its branches, and so the changes in the specification are automatically reflected
in the tree. As a result, all the strategies are also updated to reflect the change
in specifications, since strategies use the GameTrie to explore possible moves.

Pure and Lazy Lambda Mining 221

6.1 Flooding

The first extension was to add flooding to the mines. In certain maps, there
is a rising level of water. The robot operates normally underwater, but it gets
destroyed if it spends too many turns underwater. Modelling flooding requires
changing the Mine data structure, extending it to contain additional information:

data Mine = Mine { . . .
, flood :: Int
, waterproof :: Int
, water :: Int }

These fields store the rate of flooding, how long the robot can last underwater,
and the current level of water.

6.2 Trampolines

The second extension introduces trampolines, which act like teleporters. Once
entering a trampoline, the robot gets instantly moved to a fixed destination
location, and the trampoline disappears.

Similarly to flooding, trampolines requiring adding extra information to the
Mine data structure:

data Mine = Mine { . . .
, trampolines :: Set Coord
, targets :: Set Coord }

These fields store the current position of trampolines and their associated targets.
Additionally, the stepRobot function has to consider the case of moving into a
trampoline, and we need two new tile types: trampolines and targets.

6.3 Beards and Razors

The third extension introduces beards. Beards are a new type of tile, that expand
into the surrounding empty spaces in a fixed number of turns. The robot cannot
traverse beards, but can collect and apply razors, which eliminate all beards
surrounding the robot.

Again, the Mine structure has to be extended, this time with a growth factor
and the number of available razors:

data Mine = Mine { . . .
, growth :: Int
, razors :: Int }

Two new tile types are added (beard and razor). A new robot “movement”
is to apply a razor, and the updRocks function now needs to update the tiles
adjacent to beards as well.

222 N. Wu et al.

6.4 Higher Order Rocks

The last extension introduces higher order rocks, which are rocks that upon
impact (from falling) transform into a lambda. Each higher order rock counts
as a lambda for the purpose of determining whether all lambdas have been
collected.

We add a second Boolean to the Rock constructor to distinguish higher order
rocks from normal rocks:

data Tile = . . . | Rock Bool Bool

The updRocks function now treats higher order rocks just like ordinary rocks,
apart from a small special case to check if a higher order rock should be trans-
formed into a lambda. Additionally, the calculation of the number of lambdas
after a step (lambdas ′ in Sect. 2.2) becomes more complicated. Two falling rocks
can fall into the same spot, with one disappearing. If the rock that disappears is
a higher order rock, then there is one fewer lambda in the mine. For simplicity,
we calculate the number of remaining lambdas by traversing the entire layout:

lambdas ′ = length $ findTiles (λt → t ≡ Lambda ∨ isRockLambda t) layout ′′

7 Conclusion

We have described our solution to the 2012 ICFP programming contest, and seen
how Haskell’s features are useful during fast paced prototyping. Both low-level
features (such as concurrency and exception handling) and high-level features
(such as purity and laziness) are key ingredients in our solution. Haskell is a
mature language, with both a stable compiler and high-quality libraries. We
now give some general advice for code development in similar situations, based
on our experience, and reflect briefly on possible improvements to our solution.

7.1 Practical Guidelines

Testing Even though Haskell’s strong type system caught many common pro-
gramming errors, we still had several bugs in our code. In particular, our
submitted version often returns rather poor solutions because of bugs in the
simulator. We focused our development in supporting the extensions and
improving the strategies, but it would have been more effective to find and
eliminate bugs.

Communication Our team was split into two groups in different locations.
We found that frequent short meetings were helpful to keep the team up-
to-date with the whole development, while allowing individual team mem-
bers to work on separate parts of the program. Video communication, and
screen/application sharing is useful for distance communication, but white-
board brainstorming is invaluable, and hard to mimic in a distance commu-
nication.

Pure and Lazy Lambda Mining 223

Model first We started developing our solution by writing the model
(Sect. 2.1). With this in place, different team members could develop the
surrounding infrastructure more or less independently. Changes to the model
were discussed with everyone before being implemented, and applied as soon
as possible. This helped to minimise the mismatch between different compo-
nents, and to allow development in parallel effortlessly.

Pair programming We have alternated our development between whole team
discussion, individual coding sessions, and pair programming. We found pair
programming to be an effective way of coding the more challenging parts of
our solution, with the advantage that both team members become familiar
with the code.

With regard to possible improvements to our solution, while the pathfinding
algorithms take care to avoid going back to the same state several times, it
would be nice to have this built into the tree structure itself. However, this would
mean not using a tree structure, but rather some kind of directed graph. The
lazy construction of such a graph requires the use of an appropriate constructor
function to be called when elements are missing in a node lookup. The details
of such an implementation are beyond the scope of this paper.

We have no regrets about our choice of programming language: we found
Haskell to be suitable for developing a solution to this programming contest. We
had no need for features or libraries that were not available, and our solution
really played to Haskell’s strengths. Haskell’s type system helped catch bugs
early on, but we failed to test our solution against a number of simple scenarios.
These bugs (all minor and easy to fix, but nonetheless present), cost us a lot
of points on a number of maps, and we failed to enter the last round of the
competition. In that sense, dozens of submissions outperformed ours, but our
development tried to find an elegant, functional solution to the problem that
was easy to adapt to changing requirements. We feel that we achieved this goal,
and despite our poor final results, the sheer fun of competing in such a contest
using Haskell is hard to beat.

References

1. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

2. Hinze, R.: Generalizing generalized tries. J. Funct. Program. 10(4), 327–351 (2000)
3. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)
4. Peyton Jones, S. (ed.): Haskell 98, Language and Libraries. The Revised Report.

Cambridge University Press, Cambridge (2003). Journal of Functional Programming
Special Issue 13(1)

Decomposing Metaheuristic Operations

Richard Senington and David Duke(B)

University of Leeds, Leeds LS2 9JT, UK
richardsenington@gmail.com, d.j.duke@leeds.ac.uk

Abstract. Non-exhaustive local search methods are fundamental tools
in applied branches of computing such as operations research, and in
other applications of optimisation. These problems have proven stub-
bornly resistant to attempts to find generic meta-heuristic toolkits that
are both expressive and computationally efficient for the large problem
spaces involved. This paper complements recent work on functional ab-
stractions for local search by examining three fundamental operations on
the states that characterise allowable and/or intermediate solutions. We
describe how three fundamental operations are related, and how these
can be implemented effectively as part of a functional local search library.

Keywords: Search · Optimisation · Stochastic · Combinatorial

1 Introduction

Metaheuristics (also known as local search) refer to a collection of methods for
tackling combinatorial problems which are ubiquitous in areas including the
sciences, engineering, economics, business and logistics [1]. These methods stand
in contrast to “exhaustive” (global) search (such as Branch & Bound (B&B)
which explicitly and/or implicitly examine all candidates in the solution space),
in that they do not guarantee to find an optimal solution to the problem.

In many tasks however time is limited, and finding a high quality solution
quickly is more important than finding a provably optimal solution. When prob-
lem sizes become large enough, global methods are unable to complete in practi-
cal time limits and in these cases metaheuristics have been shown to give better
solutions to the same problems in practical time bounds.

Metaheuristics are iterative algorithms that operate through the transforma-
tion of a solution or group of solutions into new solutions, before taking these
new solutions and transforming them again. They are abstract search methods,
in that the basic search logic can be applied to many different problems. For
example the hill climber, or iterative improver, works by only moving to new
solutions that improve upon the old solution, a concept that can be applied to
any problem that has a way to generate new solutions from old, and a way to
decide which of two solutions is better . The interaction with specific problems is
handled by low level, problem specific operators, defined with the problem. Three
types of operator are commonly used and are described in Sect. 3; perturbation,
neighbourhood and recombination. Low level operations on problems are usually

R. Hinze (Ed.): IFL 2012, LNCS 8241, pp. 224–239, 2013.
DOI: 10.1007/978-3-642-41582-1 14, c© Springer-Verlag Berlin Heidelberg 2013

Decomposing Metaheuristic Operations 225

implemented in singular monolithic functions. This paper contributes the first
analysis of these low level operators for metaheuristics, breaking them down
into smaller, more generic components whose various combinations illuminate
the design space of the operations.

While metaheuristics have been found to give very strong results they are not
a “Silver Bullet” for optimisation. Each algorithm has a number of parameters
which must be tuned to the problem, to allow the metaheuristic to perform
well. The parameters traditionally tuned are scalar types such as the size of a
population in a genetic algorithm, however the low level operators themselves
are functional parameters which can be tuned. The break down of the low level
operators into composable components supports a mechanism for subtle tuning
of functional parameters, which is not possible in a monolithic approach.

A more complex approach to creating a metaheuristic for a problem is known
as hybridisation. This is where either several metaheuristics, or components of
metaheuritics are combined together to give a new algorithm that is better
suited (or can be better tuned) to the specific problem that is being considered.
Some hybrid methods will include other search methods as components, such as
exhaustive search [2,3].

Toolkits to aid in metaheuristic design, tuning, hybridisation and research
have been created, however they are complex, frequently (though not by design)
obscuring their inner workings. By analogy with crafting wood, these tools are
adequate when one works ‘with the grain’ defined by the tools’ abstractions and
interfaces, but their limitations [4] are painfully exposed when a new problem
requires working ‘against the grain’.

One solution is to build tools from finer-grained components, and we have pre-
viously argued [5] that functional abstractions provide a powerful substrate for
developing metaheuristics from combinators. Functional languages like Haskell,
and implementations like the Glasgow Haskell Compiler, contribute layers of
mechanism for the translation of these high level abstractions into efficient
low level code, thus helping to resolve the tension between expressiveness and
efficiency.

The paper is structured as follows. Section 2 reminds the reader of the Trav-
elling Salesperson Problem (TSP), a well known and intensively studied problem
that is used as an example in this paper. Section 3 provides a brief description
of the library that is used in this paper, and how the low level operations for
interaction with combinatorial problems interact with it. Section 4 describes per-
turbation and neighbourhood methods, and shows how higher order functions
can facilitate the easy conversion between these two.

Section 5 decomposes Perturbation methods, providing finer grained opera-
tors for the design of low level interactions with problems. Section 6 describes
Recombination methods and shows how they have elements in common with
some perturbation methods. Section 7 Uses the decomposition to investigate a
broad range of different perturbation operations for the TSP. Section 8 details
conclusions further work.

226 R. Senington and D. Duke

Fig. 1. The example TSP problem that will be used in this paper.

2 Example Problem: TSP

The Travelling Salesperson Problem (TSP) is a combinatorial problem that is
often used as an example and for testing optimisation algorithms. The TSP is
defined as finding a Hamiltonian cycle (a tour of a graph going through each node
exactly once), of minimum cost, in a complete graph with an edge of known cost
connecting every pair of vertices.

A TSP may be symmetric, where the cost of an edge is the same whichever
way it is traversed, or asymmetric where this constraint does not necessarily hold.
This paper will use the TSP as the example problem for illustrative purposes
though other combinatorial problems will also be mentioned.

Fig. 2. Example solutions to the illustrative TSP problem.

Decomposing Metaheuristic Operations 227

Figure 1 gives the complete graph of the TSP that will be used in diagrams
throughout this paper. The optimal solution to this problem can be computed
using an exhaustive search and is shown in Fig. 2, however to illustrate the
actions of search operators a non-optimal solution will be used and is included
in the same figure. Where code is shown we will assume that there is a data
type called TSP, which supports equality testing and ordering based upon the
relative quality of the solutions.

3 Combinators for Metaheuristics

This paper uses an experimental library [5] for the expression of metaheuristic
algorithms in the pure functional language Haskell. Metaheuristics are iterative,
and work by transforming one (or more) solutions into new solutions that are fed
back into the process and form the basis for the next iteration. We capture this
as a stream transformation, that is a function that takes a stream of solutions
and yields a stream of solutions that are one step forward in the metaheuristic
process. Metaheuristics expressed in this way may be created and manipulated
using higher order functions, and composed with other transformations to create
more complex search logic.

A metaheuristic iterates from an initial seed that must be provided externally.
To achieve this using stream transformations, the function that represents the
search process is looped using the following function, which represents infinite
streams using lazy lists.

loopS :: ([s] → [s]) → [s] → [s]
loopS f seeds = let as = seeds ++ f as in as

The library frequently uses finite lists to represent collections or groups, in ad-
dition to their use as streams of unlimited length. This can cause confusion, so
to distinguish between the uses of lists we define the following type synonyms:

type Stream a = [a] --always of unlimited length
type Group a = [a] --promises to always be finite

The various well known metaheuristic algorithms (Iterative Improvement,
TABU search, Simulated Annealing, Genetic Algorithms) all interact with the
underlying problem through one of the three basic operations described below.
Within the functional toolkit, these generic operations will be expressed as forms
of stream transformation:

type Perturbation s = Stream s → Stream s — a single solution is changed to
yield a different, but similar, solution. This can be seen in algorithms such
as random walk and simulated annealing.

type Neighbourhood s = Stream s → Stream (Group s) — a single solution is
used as the seed to generate a group of similar solutions. This can be seen
in iterative improvement and TABU search.

228 R. Senington and D. Duke

type Recombination s = Stream (Group s) → Stream s — a group of solutions
are merged in some way to yield a new solution sharing characteristics of
the parents. Genetic algorithms are the classic example of this type.

Problem-specific specialisations are then used to realise these operations in
metaheuristic algorithms, providing the low level interactions with the problem
data. This paper explores higher order functions to aid in the expression of these
different classes of interaction function.

To further illustrate how the library is used to combine logic to implement
metaheuristics we will use the first-found iterative improver. The search process
of this algorithm is to select the first solution in a neighbourhood that im-
proves upon the solution used to construct that neighbourhood. This can be
implemented using a higher order function called improvement to transform a
neighbourhood function into an improving neighbourhood, and then composing
this with a selection method. Below is the implementation of improvement, an
example of the completed algorithm, and a how the completed algorithm can be
looped at the ghci prompt. In these examples nF is the problem specific neigh-
bourhood function, and seed is an initial solution for the program to iterate
from.

improvement :: Ord s ⇒ Neighbourhood s → Neighbourhood s
improvement nF xs = zipWith (λ x → filter (< x)) xs (nF xs)
ffii :: Ord s ⇒ Neighbourhood s → Stream s → Stream s
ffii nF = map head ◦ improvement nF
> loopS ffii nF [seed]

4 Perturbation and Neighbourhoods

Both perturbation and neighbourhood functions can be defined as specialized,
problem specific functions for any given problem. A common example neighbour-
hood function for the TSP is the adjacent swap neighbourhood. In this function
a group of new solutions are defined as the exchange of adjacent cities in the
original, and an example of this can be seen in Fig. 3.

We will assume a function called swap, which works with the previously
defined TSP data type. Swap will take two indices and an instance of a TSP
solution and returns a new TSP solution with those indices swapped. The ad-
jacent exchange function, taking the number of cities as a constant parameter,
can then be implemented as follows:

adjNeighbourhood :: Int → Neighbourhood TSP
adjNeighbourhood nCities = map (λt → map (λi → swap i (i + 1) t) [0 .. nCities])

However this hides a general relationship between perturbation and neigh-
bourhoods, which permits each to be described in terms of the other:

– A Neighbourhood is the application of a perturbation function to a solution
many times and gathering up the results into a group of solutions.

Decomposing Metaheuristic Operations 229

Fig. 3. The solutions resulting from applying two adjacent swapping transformations
to the base solution.

– A Perturbation function can be implemented as the composition of a selec-
tion operation with a neighbourhood function, where the selection operator
selects one element from the group.

4.1 Neighbourhood to Perturbation

A neighbourhood function can be adapted to become a perturbation function
through the composition of the function with some form of selection function.
The selection function, operating over streams, will have the type1:

type Selection s = Stream (Group s) → Stream s

The methods that may be used for selection are numerous and fall into two
major categories:

Deterministic: such as selecting the first, last, maximum or minimum valued
solutions from each neighbourhood. Of these, first might be used because
in combination with lazy evaluation it will limit the runtime requirements
of the program; where as minimum might be used to move towards a local
minima in the shortest number of iterations. Deterministic operations can
be lifted to operate over streams using the standard map function.

Stochastic: while uniform likelihood selection is the most obvious concept here,
other options include stochastic selection with varying likelihood based upon
quality of the solutions in the underlying group. A function with the type:

System.Random.Random r ⇒ r → Group s → s

1 Note that this is also the type of recombination, so any recombination method could
be used at this point, if it was felt that it was appropriate to do so.

230 R. Senington and D. Duke

may be lifted to operate over streams using the zipWith function, and the
randoms function from the System.Random package, which produces a
stream of random values from a random number generator.

> zipWith selectFunction (randoms g) :: Selection s

The selectFunction in this example is a place holder for functions that per-
form a single selection from a single group. Since such stochastic selection
functions may make use of any probability distribution it is not possible
to enumerate all possible examples. A selection method using a uniform
distribution will be shown as an example of how these functions can be
implemented.

uniformSelect :: double → Group s → s
uniformSelect d xs = xs !! (floor . (d ∗) . fromIntegral . length $ xs)

4.2 Perturbation to Neighbourhood

The repeated application of a perturbation operation to elements of an under-
lying stream, and the subsequent collection of these results into a group can be
achieved using a function called doMany from the local search library. This is
defined as follows:

doMany :: Int → (Stream b → Stream s) → Stream b → Stream (Group s)
doMany n f = chunk n ◦ f ◦ stretch n

The doMany combinator works by duplicating the underlying elements creating
a stream that is n times longer than the original (stretch), and when the function
f is applied to this it is equivalent to applying it many times to each value in
the underlying stream. chunk is then used to divide the output of this process
into a stream of regularly sized blocks, gathering the results back together into
a new group.

Using doMany, different forms of neighbourhood can be created from a single
perturbation function. For example, using the swap function for TSP,

– a deterministic neighbourhood which performs the same operation on each
seed can be created by cycling a specific pattern of cities to be exchanged,
for example:

tspDNF :: [(Int, Int)] → Neighbourhood TSP

tspDNF p

= doMany (length p) (zipWith 3 swap (cycle pA) (cycle pB))
where (pA, pB) = unzip p

This allows the previous adjNeighbourhood for TSP to be implemented as

adjNeighbourhood nCities = tspDNF (zip [0..nCities] [1..nCities-1])

Decomposing Metaheuristic Operations 231

– stochastic neighbourhood functions are implemented by parameterising do-
Many with a stochastic perturbation function. In the example of swapping
cities, this can be achieved by creating two streams of random city indices
(integers in the range 0-nCities) to indicate which cities should be swapped,
rather than a cycling pattern as was seen in the deterministic approach.

stocSwap :: RandomGen g ⇒ g → Int → Perturbation TSP

stocSwap g numCities = zipWith 3 swap r r’
where r = randomRs (0, numCities-1) g

r’ = randomRs (0, numCities-1) ◦ snd ◦ split $ g

This can then be used to implement a stochastic neighbourhood function.

tspSNF :: RandomGen g ⇒ g → Int → Int → Neighbourhood TSP
tspSNF g numCities nSize = doMany nSize (stocSwap g numCities)

5 Decomposition of Perturbation

The swapping operation for TSP, which has been used so far as the most basic
operation in these examples, is known not to be particularly effective. A better
method is to model a solution as a collection of edges, rather than a sequence of
cities, and make changes by deleting edges and then reconnecting the resulting
fragments. The swapping of cities can be seen as a very restricted configuration
of functions that manipulate the edge set of a solution, where the cities being
swapped determine exactly which edges are to be removed and inserted.

More generally this gives rise to two different activities, which when paired
give rise to a perturbation technique, damage and repair. In this general pattern
the damage phase removes something from the solution, leaving a data structure
that is no longer a valid or complete solution to the combinatorial problem. The
repair phase is then required to create a completed solution from the incomplete
data structure.

The damage/repair model of perturbation is also more effective when con-
sidering more general models of combinatorial problems than the specific TSP
example, for example when modelling problems using constraints. A constraint
model provides a solution as a collection of constraints, generated through a
constructive search process. Once a completed solution is achieved, what does
it mean to swap or otherwise make changes to the constraints. In many cases
arbitrary changes to the constraints will make them inconsistent, however using
a damage repair model to define methods for deleting and reconstructing from
the remaining constraints can give rise to effective algorithms.

5.1 Damage Methods

Damage methods have two dimensions and a rough diagram of how these overlap
can be seen in Fig. 4. All decisions in the damage method are made with respect

232 R. Senington and D. Duke

Fig. 4. Characteristics of damage methods, where a decision is an action upon a solu-
tion, for example the removal of an edge from a TSP solution. The degree of damage
refers to the number of changes that will be made at once, for example the number of
edges to remove.

to some problem specific valuation mechanism, for example in the TSP edge
length is a simple way to evaluate the quality or usefulness of any give edge.
A decision can be made in an entirely stochastic way, ignoring this valuation
mechanism (usually resulting in each edge having a uniform likelihood of selec-
tion), or can be made with no stochastic element, resulting in a most likely or
greedy deletion method. Between these extremes is an approach where decisions
involve a stochastic element, but it is biased with respect to the value of the
decisions, so that worse decisions are less likely. For example, in the TSP the
selected edges could be ordered by length and then selected from based upon a
probability distribution. Two possible example distributions are seen in Fig. 5.

On the other axis is how the scale of damage to be done will be selected. At
the deterministic end is a fixed level of damage, for example three or six edges
to be deleted from each solution. At the stochastic end is that any number of
edges can be deleted and how many will be chosen with uniform likelihood.

In the centre of Fig. 4 is a situation where each decision is made stochastically,
but with a reasonable respect for the valuation mechanism for the decisions.
Each decision is independent of the others, so that any number of edges might
be deleted, but it is unlikely it will be all, and the number is dependent upon
the qualities of the edges in the solution at the time.

Implementation of the damage methods are required to operate over streams,
giving rise to a transformation from a stream of solutions, to a stream of damaged
solutions. Internally stochastic elements and logic can be threaded using zipWith
and map as with the previous combinators.

Decomposing Metaheuristic Operations 233

Fig. 5. Two probability distributions for managing how edges are selected for deletion.

5.2 Repair Methods

Unlike damage methods, repair methods cannot easily vary how far they repair a
solution, so there is only one dimension that can be varied, the level of stochastic
computation involved in each decision. Like damage methods a valuation system
for potential choices is used to guide decisions, and at one end of the spectrum
is uniformly random likelihood of any legal2 decision being made, at the other
a greedy process that always chooses the cheapest option. Figure 6 shows two
possible probability distributions for repair after three edges were removed from
the example solution.

Repair methods can make use of a further style of operation, exhaustive
search. Due to the level of repair usually being limited, exhaustive methods such
as Branch & Bound can be used with confidence that they will complete. This
can be seen as a variant on a neighbourhood, where a number of solutions are
considered, and only the best is accepted, however it is more simply defined
at this time as a separate operation, rather than breaking it down into the
generation of solutions and selection.

In Sect. 4.2 we saw how neighbourhoods could be created through the re-
peated application of a perturbation operation. The decomposition of pertur-
bation operations allows for an alternative form, where damage is carried out
only once, and a stochastic repair procedure is then used several times to yield
2 An illegal decisions would result in an invalid solution, for example sub-loops

in a TSP.

234 R. Senington and D. Duke

Fig. 6. Two probability distributions for managing how edges are selected for insertion.
The edges that were removed from the original solution are indicated by crosses rather
than dashes.

a neighbourhood. The reverse of this, where damage is carried out many times
and then each is repaired is the equivalent of a neighbourhood built from a
perturbation operation.

6 Recombination

As with neighbourhoods and perturbation, recombination can be defined mono-
lithically, and often is. When considering problems such as Boolean Satisfiability
(SAT), a simple recombination method is to cut two lists of boolean values at
the same point and concatenate the sublists, for example see Fig. 7. However
such an approach is not effective for the TSP, because it tends to result in dupli-
cated cities. This issue can be fixed by creating the second part of the solution
through filtering the second solution, removing any city found in the first part
created through cutting the first solutions string, hence preserving some sense
of the order of the original solutions.

Fig. 7. Illustration of a simple crossover mechanic in SAT

Decomposing Metaheuristic Operations 235

However, as with perturbation methods, the most effective recombination
algorithms for TSP consider the solutions in terms of the edges they use, rather
than the order of the cities. The most effective genetic algorithm for the TSP [6],
made use of a recombination method that was maximally respectful of the edges
in the parent solutions. This meant that it identified edges common to both
parents and ensured that they were present in the new solution. Each other
edge in each parent was then selected probabilistically, on the condition that
the result was not invalid. Any final gaps were filled in using a greedy repair
algorithm.

These examples of the TSP and SAT do not provide guidance on creating
recombination techniques for other problems. For example, the recombination of
a problem modelled using constraints, where constraints are simply selected from
the parents, once again runs a considerable risk of having irreconcilable conflicts.
The final example of TSP recombination, using a greedy algorithm to complete
a solution legally does however provide inspiration for an approach which can be
explored; selecting some constraints from the parents and then using a greedy
approach to insert new constraints until the solution is completed.

The process of recombination can be described as following a pattern of
analysis of the parents, followed by the construction of a new solution based upon
the analysis. The construction process has a strong similarity to repair concepts
seen in perturbation, as in the TSP example already seen. This suggests that
analysis forms a new class of operations, but that the repair operations can be
reused.

7 Which Perturbation Algorithm?

The No Free Lunch Theorem [7] says that there is no one metaheuristic, nor
perturbation method that is best for all problems. So it is of value to be able to
experiment with specific problems and see how different perturbation algorithms
compare.

This paper has proposed a collection of building blocks, specifically related to
the TSP, which may be used to construct perturbation methods. To demonstrate
their effectiveness, and requirement with relation to the No Free Lunch Theorem,
we built a simple program to test a number of perturbation methods in the
context of a single problem and metaheuristic. The problem chosen was fl417
a symmetric TSP problem drawn from the TSPLIB [8] and the metaheuristic
was simply the repeated application of the perturbation method to the last
solution seen.

The program combined various damage and repair elements to generate dif-
ferent perturbation methods. In the event that uniform likely hood damage and
uniform likely hood repair are used, this results in a form of random walk of
the solution space. Damage levels of three edges and six edges were used, to
compare the result when different degrees of damage occurred, and how this af-
fected the performance of each metaheuristic. The results of each metaheuristic
were processed to preserve only the best solution seen at that point, and were

236 R. Senington and D. Duke

Table 1. Results of an iterated damage-repair perturbation with various combinations
of selection methods for each phase. Lower scores indicate better solutions and the
optimal for this test problem has been previously found : 11861. In the table each
name indicates a way of selecting edges for either damage or repair. In general these
are distributions over the edges ordered by length, with the following meanings; Geo is
a distribution created from a geometric progression, Uniform is a uniform distribution,
Greedy is a distribution where only one edge can be chosen (the longest available for
damage, the shortest for repair), BU 0.05 is the best edge has a likelihood of 0.05,
and all others are uniformly distributed, and Exhaustive is where every combination
is considered and the best solution created is chosen.

Repair Damage
Geo Uniform Greedy BU 0.05

Deleting and inserting 3 edges
Geo 32200 183000 172000 152000
Uniform 31500 191000 175000 156000
Greedy 32000 85400 175000 53400
Exhaustive 34400 32400 188000 25400
Deleting and inserting 6 edges
Geo 25300 183000 63300 151000
Uniform 25400 195000 61500 158000
Greedy 24500 84000 56100 54700
Exhaustive 29200 19600 254000 16700

sampled at 10,000 iterations. Each test was run 25 times and the average, to 3
significant figures, is presented in Table 1.

Table 1 does not contain all the results that were generated, only a cross-
section including the most interesting or illustrative results. Other distributions
that were tried included varying the parameters to the geometric progressions,
changing the parameter of the biased uniform strategies and normal distribu-
tions. Similarly other combinations were tried that are not listed here. An ex-
haustive strategy for damage is not practical because there is no way to know,
before repair has begun, which set of edges is best to remove.

These results exhibit some broad patterns which are consistent with the
expected characteristics of the combinations, but also some interesting diversity
worth deeper consideration. The worst results are seen in algorithms which are
highly stochastic, such as uniform likelihood of damage and repair, or purely
deterministic such as greedy damage with exhaustive repair. This is correct for
both three and six edge experiments, however there is a particularly interesting
result, the high weakness of greedy damage, combined with exhaustive rebuild
over this shift. This suggests that, rather than the increased size of damage
improving performance through widening the options that might be considered,
for this algorithm the change causes it to more rapidly find and become stuck
in a local minima.

The geometric damage patterns perform consistently well at both levels, with
any form of repair technique, however the best perturbation method uses the
Biased Uniform damage strategy, with an exhaustive repair technique. This pat-

Decomposing Metaheuristic Operations 237

tern of successful algorithms also supports common wisdom, that the best results
come from a careful marriage of the level of damage, stochastic and determin-
istic components. However these results also show the significant variances that
occur as components are exchanged, and how other parameters, such as the level
of damage can change the apparent performance of particular combinations on
particular problems.

This all supports the idea that flexibility and ease of experimentation are
important characteristics of any library or toolkit for metaheuristic implemen-
tations. Our library, and this approach to the construction of new low level op-
erators, provides this flexibility to the metaheuristic designer and enables rapid
experimentation upon new problems with minimal programming cost.

To further investigate the use of these combinators a test was built using a
Set Covering problem, drawn from train scheduling algorithms. Integer Linear
Programming (ILP) provides the most effective tool for tackling these problems,
providing the best known solutions though it suffers the usual limitations of an
exhaustive search, that it cannot complete for most problem instances.

The Hypermutation metaheuristic [9] is also known to give interesting re-
sults, though not actually able to compete with ILP on the scale of problems
that have been used in this study. Hypermutation works through an iterated
perturbation, where the perturbation is achieved through the composition of a
stochastic damage method, biased towards components with a worse value, and
a greedy repair strategy. An exhaustive repair strategy has not, to the authors
knowledge, been tried in the context of Hypermutation.

The TSP experiments had suggested that using an exhaustive repair strategy,
in combination with a highly random damage strategy could provide better
results. The damage process that was chosen was to select a finite number of
components in a solution using a uniform likelihood selection method, rather
than biasing it with respect to an valuation function.

Repair was carried out using an ILP solver, with the elements of the previous
solution designated for preservation fixed in the constraints of the ILP model.3

This more constrained problem could be completed at each iteration, though a
search on the problem instance in general would not complete (though would
yield some solutions). The ILP system used was the GNU Linear Programming
Kit Version 4.254 and linked to Haskell using glpk-hs,5

The solutions found were good, superseding the Hypermutation previously
described, and over runtimes of between 15 minutes and 2 hours the metaheuris-
tic gave stronger results than the ILP method alone over the same time limit.
We were pleased that the use of concepts from the previous TSP study gave such
promising results, however they do not equal results yielded from a commercial
solver, based upon ILP methods using specialised extensions.
3 Other uses of ILP as a component in the construction of metaheuristics may be seen

in [2,3].
4 GLPK may be found at http://www.gnu.org/software/glpk/glpk.html
5 glpk-hs is written by Louis Wasserman and may be found in the Haskell libraries at

http://hackage.haskell.org/package/glpk-hs

http://www.gnu.org/software/glpk/glpk.html
http://hackage.haskell.org/package/glpk-hs

238 R. Senington and D. Duke

8 Conclusion

This paper has used functional programming techniques to examine perturba-
tion, recombination and neighbourhood methods, used as the low level interac-
tion operations in metaheuristics. This has resulted in the creation of
combinators for moving between these various methods and the decomposition
of the monolithic functions into three alternative classes of function; analysis,
damage and repair. A number of types and variations upon each these have been
proposed.

This decomposition into smaller building blocks makes visible a broad range
of alternative perturbation, neighbourhood and recombination methods, through
picking and choosing from the options available. The visibility of the elements
being used in each composition allows for clearer comprehension of how they
interact and how larger methods operate, aiding in the design of new variations.

This was demonstrated using a short investigation of a specific TSP problem,
mixing and matching across a range of both well known and less frequently seen
operations, yielding some useful results. The results of the investigation into the
TSP provided inspiration for a new variation of a known metaheuristic for a large
real world problem, which when tested was found to be similarly successful. We
see that the right set of abstractions, here as elsewhere, can provide powerful
tools to aid in the investigation of problems and the construction of algorithms.

Haskell’s expressiveness aids in these forms of investigation, with the type
system providing clues and pointers as to how components may be combined.
This in turn proposes lines of investigation, sometimes unconsidered, or shows
where more sophisticated conversion techniques will be required to facilitate a
desired line of research.

The next stage in this investigation is the further hybridisation of these
operations. At present damage and repair alternatives have been created, but a
more complex approach might use a number of damage and repair strategies in
a single perturbation method. For example, fixing one part of the solution using
a greedy method, another part of a solution using a uniform likelihood and finally
an exhaustive technique. This suggests a new range of combinators that can be
explored to improve the expression of these hybrids.

We see this work as moving in the direction of superior methods for investigat-
ing metaheuristic methods, and automated experimentation through combining
well understood building blocks. This places the work in the realm of hyper-
heuristics [10], a branch of metaheuristic research that attempts to automate
the design of algorithms for specific problems.

Acknowledgements. The authors would like to thank Tim Sheard for all his advice
in the final stages of writing this paper.

References

1. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco (2005)

Decomposing Metaheuristic Operations 239

2. Contardo, C., Cordeau, J.-F., Gendron, B.: A grasp + ilp-based metaheuristic for
the capacitated location-routing problem. Technical report (2011)

3. Prins, C., Prodhon, C., Ruiz, A., Soriano, P., Calvo, R.W.: Solving the capac-
itated location-routing problem by a cooperative lagrangean relaxation-granular
tabu search heuristic. Transp. Sci. 41(4), 470–483 (2007)

4. Masrom, S., Siti, A.Z., Hashimah, P.N., Rahman, A.A.: Towards rapid development
of user defined metaheuristics hybridisation. Int. J. Softw. Eng. Appl. 5(2), 1–12
(2011)

5. Senington, R., Duke, D.: Combinators for meta-heuristic search. J. Funct. Program.
(2012, Submitted)

6. Merz, P., Freisleben, B.: Memetic algorithms for the travelling salesman problem.
Complex Syst. 13(4), 297–345 (2001)

7. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimisation. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

8. Reinelt, G.: TSPLIB - a traveling salesman problem library. INFORMS J. Comput.
3(4), 376–384 (1991). http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

9. Li, J., Kwan, R.S.K.: A fuzzy genetic algorithm for driver scheduling. Eur. J. Oper.
Res. 147(2), 334–344 (2003)

10. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: an emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Op-
erations Research & Management Science, pp. 457–474. Kluwer, Dordrecht (2003)

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Author Index

Asai, Kenichi 190

Berthold, Jost 18
Bransen, Jeroen 207

Chakravarty, Manuel, M. T. 174
Clerc, Xavier 71

Dieterle, Mischa 18
Dijkstra, Atze 37
Duke, David 224

Farmer, Andrew 86
Fluet, Matthew 122

Gill, Andy 86

Horstmeyer, Thomas 18

Ionescu, Cezar 140
Jansson, Patrik 140

Loogen, Rita 18

Magalhães, José Pedro 104, 207
Mycroft, Alan 1

Naylor, Matthew 53

Orchard, Dominic 1

Reich, Jason S. 53
Runciman, Colin 53

Sculthorpe, Neil 86
Senington, Richard 224
Stutterheim, Jurriën 37
Swierstra, S. Doaitse 37
Swierstra, Wouter 157, 207

Thiemann, Peter 174
Tsushima, Kanae 190

van der Walt, Paul 157
Vermeulen, Alessandro 37

Wu, Nicolas 207

	Preface
	Organization
	Contents
	A Notation for Comonads
	1 Introducing codo
	2 Equational Theory
	3 Desugaring codo
	3.1 General Construction

	4 Comparing do- and codo-notation
	5 Related Work and Conclusions
	References

	Iterating Skeletons
	1 Introduction
	2 Iterating Skeletons
	2.1 Iteration Type and Body
	2.2 Iteration Scheme and Iteration Control
	2.3 Performance Tweaking
	2.4 Parallel Iteration Control Skeletons
	2.5 Inlining the Iteration Streams
	2.6 Unifying the Interface

	3 Evaluation
	4 Related Work
	5 Conclusions and Future Work
	References

	Building JavaScript Applications with Haskell
	1 Introduction
	2 Compiling Haskell to JavasScript
	2.1 Runtime System

	3 JavaScript Foreign Function Interface
	3.1 The UHC-JavaScript Library
	3.2 Creating, Manipulating and Querying Objects
	3.3 Pure Objects

	4 The JCU Application
	4.1 Implementation Issues
	4.2 Performance

	5 Future Work
	6 Related Work
	7 Conclusion
	References

	Advances in Lazy SmallCheck
	1 Introduction
	1.1 Contributions
	1.2 Roadmap

	2 The Lazy SmallCheck Search Strategy
	3 New Features in Action
	3.1 Left and Right Folds
	3.2 Generating Predicates
	3.3 Prefix of a List

	4 Implementation of New Lazy SmallCheck
	4.1 Partial Values
	4.2 Test-Value Terms
	4.3 Test-Value Series Generators
	4.4 Properties and Their Refutation
	4.5 Differences Between Versions of Lazy SmallCheck

	5 Implementing Functional Values
	5.1 Trie Representations of Functions
	5.2 Custom Data-Types for Functional Value Arguments
	5.3 Serial Instances of Functional Values

	6 Discussion and Related Work
	6.1 Runtime Performance
	6.2 Functional Values
	6.3 Existential and Nested Quantification
	6.4 Benefits of Laziness

	7 Conclusions and Further Work
	References

	OCaml-Java: From OCaml Sources to Java Bytecodes
	1 Introduction
	2 Compiler Architecture
	3 Value Representation
	4 The Barista Library
	5 Example of Bytecode Generation
	6 Benchmarks
	7 Future Work
	References

	The HERMIT in the Tree
	1 Introduction
	2 Transformations for Mechanization
	2.1 Concatenate Vanishes
	2.2 Tupling Transformations
	2.3 Worker/Wrapper Transformation

	3 HERMIT
	3.1 GHC Core
	3.2 User Interface
	3.3 Extendability

	4 Example: Fibonacci Tupling
	5 User Experiences
	5.1 Worker/Wrapper
	5.2 Concatenate Vanishes
	5.3 Tupling Transformations
	5.4 Observations on Inlining

	6 Related Work
	7 Conclusions and Future Work
	References

	Optimisation of Generic Programs Through Inlining
	1 Introduction
	2 Example Generic Functions
	2.1 Generic Equality
	2.2 Generic Enumeration

	3 Specialisation, by Hand
	3.1 Generic Equality
	3.2 Generic Enumeration

	4 Specialisation, by the Compiler
	4.1 Optimisation Techniques
	4.2 Generic Equality
	4.3 Generic Enumeration

	5 Benchmarking
	6 Conclusion
	6.1 Automatic Inlining and Generation of Rewrite Rules
	6.2 Optimising Other Libraries
	References

	A Type- and Control-Flow Analysis for System F
	1 Introduction
	2 Language and Semantics
	3 Type- and Control-Flow Analysis
	4 Related Work
	5 Future Work
	References

	Dependently-Typed Programming in Scientific Computing
	1 Introduction
	2 Formalizing Economic Notions in Type Theory
	3 Increasingly Correct Scientific Computing
	4 Conclusions
	5 Appendix
	References

	Engineering Proof by Reflection in Agda
	1 Introduction
	1.1 Introducing Agda

	2 Using Reflection
	3 Automatic Quoting
	4 Proof by Reflection
	4.1 Closed Example: Evenness
	4.2 Open Example: Boolean Tautologies
	4.3 Adding Reflection

	5 Discussion
	References

	Agda Meets Accelerate
	1 Introduction
	2 Background
	2.1 Agda
	2.2 Accelerate

	3 Related Work
	4 Dependent Types for Accelerate
	4.1 Embedding of Haskell Types
	4.2 Array Types
	4.3 Exact Checking of Array Bounds
	4.4 Associativity of Operations
	4.5 Embedding of Constants

	5 Limitations
	6 Implementation
	7 Conclusion
	References

	An Embedded Type Debugger
	1 Introduction
	1.1 Locating the Source of a Type Error
	1.2 Problems
	1.3 Our Approach

	2 The Simply-Typed Lambda Calculus
	3 The Decomposition Property
	4 Let Polymorphism
	5 Objects
	6 Implementation
	7 Related Work
	8 Conclusion
	References

	Pure and Lazy Lambda Mining
	1 Introduction
	1.1 Problem Description

	2 Pure Modelling
	2.1 Model
	2.2 Simulation
	2.3 Input and Output

	3 The Game Trie
	3.1 Tries
	3.2 Pathfinding
	3.3 Hashing

	4 Robot Strategy
	5 Concurrency and Exception Handling
	6 Changing Specifications
	6.1 Flooding
	6.2 Trampolines
	6.3 Beards and Razors
	6.4 Higher Order Rocks

	7 Conclusion
	7.1 Practical Guidelines

	References

	Decomposing Metaheuristic Operations
	1 Introduction
	2 Example Problem: TSP
	3 Combinators for Metaheuristics
	4 Perturbation and Neighbourhoods
	4.1 Neighbourhood to Perturbation
	4.2 Perturbation to Neighbourhood

	5 Decomposition of Perturbation
	5.1 Damage Methods
	5.2 Repair Methods

	6 Recombination
	7 Which Perturbation Algorithm?
	8 Conclusion
	References

	Author Index

