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Abstract. We discuss the semantics of NL coordination in modern type
theories (MTTs) with coercive subtyping. The issue of conjoinable types
is handled by means of a type universe of linguistic types. We discuss
quantifier coordination, arguing that they should be allowed in principle
and that the semantic infelicity of some cases of quantifier coordination
is due to the incompatible semantics of the relevant quantifiers. Non-
Boolean collective readings of conjunction are also discussed and, in par-
ticular, treated as involving the vectors of type V ec(A,n), an inductive
family of types in an MTT. Lastly, the interaction between coordination
and copredication is briefly discussed, showing that the proposed account
of coordination and that of copredication by means of dot-types combine
consistently as expected.

1 Introduction

The literature on NL coordination dates back to [1] and a number of proposals
have been put forth within the Montagovian tradition since then. However, a
number of central issues as regards NL coordination have not been clarified
yet. In this paper we depart from single-sorted versions of type theory found in
Montague’s work (as well as in most of the subsequent work within the same
tradition) and employ a many-sorted modern type theory (MTT),1 as proposed
and studied for NL semantics in [6,7,8], to deal with two central issues in NL
coordination. These issues concern the notion of conjoinable types, in effect the
question of which NL elements can be coordinated, and non-Boolean conjunction,
where a collective rather than the expected Boolean distributive reading of and
arises.2 The difference between collective and distributive readings is exemplified

� This work is supported by the research grant F/07-537/AJ of the Leverhulme Trust
in the U.K.

1 Examples of modern type theories include Martin-Löf’s type theory (MLTT) [2,3],
the Unifying Theory of dependent Types (UTT) [4] and the type theory implemented
in the Coq proof assistant (pCIC) [5].

2 We will use the term ‘collective coordination’ to refer to non-Boolean conjunction
as the latter is described in analyses like [9] and [10].
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in the examples below, where the same conjoined NP is interpreted distributively
in (1) but collectively in (2):

(1) John and Mary came to the Party.

(2) John and Mary met at the Party.

We shall investigate how collective readings can be interpreted by means of
the inductive family of types of vectors in an MTT.

We further discuss the interaction between dot-types for coordinated NPs.
Dot-types have been proposed by Pustejovsky [11,12] for lexical interpretations
of inherently polysemous words in phenomena such as co-predication (see, for
example, [13]).3 For example, book according to [11] can be represented with
the dot-type Phy • Info, a type whose objects have both a physical and an
informational aspect. Dot-types have been formally introduced into MTTs with
coercive subtyping [7,8] and a computational implementation of this account in
Plastic4 has also been done [17]. What we want to look at in this paper is the
interaction between these types and coordination, i.e. examples of the following
sort:

(3) The book and my lunch were sent by mistake to someone else.

(4) John picked up the newspaper and the book from the floor.

Given that the dot-types of the coordinated phrases are different and assuming
that the NL coordination operate on the same types, we will have to explain
how coordination is possible in these cases. The problem that arises in examples
like (3) and (4) is that the individual NPs of the conjunction (e.g. the book and
my lunch in (3) have different types (Phy• Info for book and Event •Phy for
lunch). The challenge is to account for the possibility of coordination in these
cases by, at the same time, retaining the assumption that coordination operates
on elements of the same type. As we shall see, the coercive subtyping mechanism
actually allows us to combine the proposed typing for NL coordinations and the
account with dot-types in a rather straightforward way.

2 Type Theory with Coercive Subtyping

In this paper, we employ modern type theories (MTTs) as the language for
formal semantics. A brief introduction to the relevant features of MTTs are
given here.

3 See also [14] for a critique of the flaws in the various formalizations of dot-types in
their original formulation as well as in much of the later work based on that.

4 Plastic [15] is a proof assistant, an implementation of the modern types theory UTT
[4] on the computer for formalised proof development. In the context of linguistic
semantics, type theory based proof assistants such as Agda [16], Coq [5] and Plastic
can be used to formalise and reason about the formal semantics based on MTTs.
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An MTT has a number of differences when compared to Church’s simple type
theory as employed in Montague semantics [18,19]. One of the most important
differences between an MTT and the simple type theory, is that the former can
be regarded as many-sorted while the latter single-sorted. MTTs use many types
to interpret Common Nouns (CN) such as [[man]] and [[table]], while single-sorted
type theories use only one type (e) for the type of all entities (and another type t
for logical truth values), with CNs being interpreted as predicates of type e → t.

In Montague semantics, an Intransitive Verb (IV) is interpreted as a function
from entities to truth values (e → t), a type which is shared with CNs and
intersective adjectives, and a quantified NP as of the type from properties to
truth values ((e → t) → t).

In an MTT, types (‘sorts’) are used to interpret the domains to be represented.
Some of them are:

– the propositional types (or logical propositions),
– the inductive types such as the type of natural numbers and Σ-types of

dependent pairs,
– the inductive families of types such as the types V ec(A, n) of vectors (or

lists) of length n, and
– other more advanced type constructions such as type universes.

For example, within such a many-sorted logical system CNs are not interpreted
as predicates as in the Montagovian tradition but rather as Types.5 Theoretical
motivation behind such a proposal has been provided by the second author based
on the notion of identity criteria that CNs have according to [21].6 Then given
the interpretation of CNs as types, adjectives are interpreted as a predicate over
the type interpreting the domain of the adjective. For example, the adjective
handsome is interpreted as [[handsome]] : [[man]] → Prop, with Prop being the
type of logical propositions.7 Modified CNs are then interpreted as Σ-types, the
types that intuitively represent subset types but contain explicit proof objects.8

One of the important features of MTTs is the use of dependent types. Two
examples of basic constructors for dependent types are Π and Σ. The Π-type
corresponds to universal quantification in the dependent case and implication in

5 In this paper we only deal with count and not mass nouns. For a first attempt at
a treatment of mass nouns within the framework presented in this paper, see [20].
The treatment presented there seems compatible with the account presented in this
paper. However, more careful examination is needed in order to see whether this is
indeed true.

6 See [20] for the exact details of this proposal and information on the identity criteria.
7 MTTs have consistent internal logics based on the propositions-as-types principle
[22,23]. For example, in a predicative type theory such as Martin-Löf’s type theory,
the logical proposition A&B corresponds to the product type A×B (a special case
of Σ-type – see below) and a pair of a proof of A and a proof of B corresponds to an
object of the product type. In an impredicative types theory such as UTT, logical
propositions are similarly constructed as types but, furthermore, there is the type
Prop – a totality of logical propositions.

8 See [6,7] for more details on this.
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the non-dependent case. In more detail, when A is a type and P is a predicate
over A, Πx:A.P (x) is the dependent function type that, in the embedded logic,
stands for the universally quantified proposition ∀x:A.P (x). A Π-type degener-
ates to the function type A → B in the non-dependent case. In the case of Σ, if
A is a type and B is an A-indexed family of types, then Σ(A,B), or sometimes
written as Σx:A.B(x), is a type, consisting of pairs (a, b) such that a is of type
A and b is of type B(a). When B(x) is a constant type (i.e., always the same
type no matter what x is), the Σ-type degenerates into product type A × B
of non-dependent pairs. Σ-types (and product types) are associated projection
operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of
type Σ(A,B) or A×B.

Coercive subtyping is an adequate subtyping mechanism for MTTs [24,25]
and, in particular, it avoids a problem associated with the ordinary notion of
subtyping (subsumptive subtyping), namely violation of canonicity [7]. Basically,
coercive subtyping is an an abbreviation mechanism: A is a (proper) subtype of
B (A < B) if there is a unique implicit coercion c from type A to type B and, if
so, an object a of type A can be used in any context CB[ ] that expects an object
of type B: CB[a] is legal (well-typed) and equal to CB[c(a)]. For instance, one
may introduce [[man]] < [[human]]. Then, if we assume that [[John]] : [[man]] and
[[shout]] : [[human]] → Prop, the interpretation (6) of (5) is well-typed, thanks
to the coercive subtyping relation between [[man]] and [[human]]:9

(5) John shouts.

(6) [[shout]]([[John]])

Ending our discussion on the preliminaries of TTCS, we mention one further
more advanced feature of the theory, that of universes. A universe is a collection
of (the names of) types into a type [2]. This can be seen as a reflection princi-
ple where the universe basically reflects the types whose names are its objects.
Universes are extremely useful in accounts of lexical semantics using MTTs.
Specifically, universes can help semantic representations. To give an example,
one may use the universe cn : Type of all common noun interpretations and,
for each type A that interprets a common noun, there is a name A in cn. For
example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting the
overlines and the operator Tcn by simply writing, for instance, [[man]].

Summarizing, we can say that the use of TTCS in interpreting NL semantics
has given a number of interesting results and insights. These include an increased
type granularity when compared to Montague Semantics given its type richness
as well as an adequate subtyping mechanism.10 Furthermore the interpretation

9 It is important to note that function types are contravariant. Thus, even though
Man < Human, it does not hold that Man → Prop < Human → Prop but rather
that Human → Prop < Man → Prop.

10 This subtyping mechanism is however in line with canonicity and as such computa-
tionally more attractive [7].



An Account of NL Coordination in Type Theory with Coercive Subtyping 35

of CNs as Types rather than predicates seems to be closer to the idea accord-
ing to which the distinguishing feature of CNs, when compared to other parts
of speech, is that only the former have what Geach called, criteria of identity
[21]. The work presented in [20] provides strong arguments for supporting the
non-predicate view on CNs based on Geach’s identity criteria. The successful
formalization [7] and subsequent implementation in Plastic [17] of dot.types is
another achievement of this line of research given that no proper formalization
of dot.types existed up to that point. The use of universes has been also proven
fruitful in looking at alternative ways for defining the types for quantifiers and
adverbs among others. Lastly, parts of the various proposals made in the afore-
mentioned papers have been tested using the Coq interactive theorem prover.
Some first results can be seen in [8] as well as in this paper. Current work of the
first author concentrates on the use of Coq to prove valid NL theorems11 as well
as building universes relevant to NL semantics (e.g. CN , LType) in Plastic.12

3 Conjoinable Types

The issue of defining which NL types are conjoinable is of very high importance
to all accounts of coordination proposed so far. Most of the accounts that have
been proposed in the Montagovian tradition argue that conjoinable types are
either of type t or of a function type that ends with t. The formalization might
be different in individual cases but the core of the proposal is pretty much the
same. The definition as given by Winter [26] is given below (using the term
t-reducible):13

(7) τ is a t-reducible type iff τ = t or τ = τ1τ2, where τ1 is any type and τ2 is
a t-reducible type.

Such type of formulation allows coordination of categories ending in type t only,
with type e conjunction not being possible. Thus, in these accounts proper name
coordination is either assumed to involve type-lifting to quantifier type or proper
names are assumed to be quantifiers in all cases. However, Partee & Rooth [10]
propose a definition of e conjoinable types to deal with collective reading cases.
Similar proposals have been made by Hoeksema [27]. Of course, an inductive
definition of an e-conjoinable type does not make much sense given that at least
in standard Montagovian semantics, the only e conjoinable types are the type
of individual concepts, of type s → e, i.e the type from indices to individuals, so
the definition basically covers just one case.

Moving away from the simple type theory in Montague Grammar and using
many-sorted MTTs, the first question to ask ourselves is how conjoinable cat-
egories can be defined. Well, the first question to be asked is which linguistic

11 An example of this type is the following: if John and Mary met then John met Mary.
Such theorems can be proved if the correct semantics are given in each case.

12 This is not possible in Coq.
13 We follow the notation as this is given in [26]. As such, τ1τ2 should be taken to mean

τ1 → τ2.
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types can be conjoined? Surprisingly (or not) it seems that all linguistic cate-
gories can be conjoined. We first note the obvious cases of sentence and predicate
coordination (8 and 9) to CN coordination (10):

(8) John walks and Mary talks.

(9) John walks and talks.

(10) A friend and colleague came.

Then, quantified NP coordination (11), quantifier coordination (12) and proper
name (PN) coordination are possible (13):

(11) Every student and every professor arrived.

(12) Some but not all students got an A.

(13) John and Mary went to Italy.

Adverb conjunction(14), preposition conjunction(15), PP conjunction (16)

(14) I watered the plant in my bedroom but it still died slowly and agonizingly.

(15) I can do with or without you.

(16) The book is on the table and next to the chair.

Lastly, coordination of subordinate connectives is also possible (17):

(17) When and if he comes, you can ask him.

3.1 Universe of Linguistic Types

In this section we will propose a way to handle the flexibility NL coordination
exhibits by using a MTT. The key idea behind the account we are going to
propose is the notion of a universe.

A universe, as we have already mentioned at the end of §2, is a collection of
(the names of) types into a type [2]. In the case of coordination, the universe
cn of the types that we have used to interpret common nouns is far too small
to capture the generality of the phenomenon. Given that all linguistic categories
can be coordinated, the universe we need, has to be far more general than cn.

The idea is to introduce a type universe LType of Linguistic Types. Intu-
itively, LType contains (the names of) all types that are employed in linguistic
semantics. Of course, in doing so, we will have to specifically say what we con-
sider a linguistic type to be. Even though a thorough discussion of meticulously
constructing the universe of linguistic types is out of the scope of this paper, we
shall indicate positively what types may have names in the universe LType.14

Figure 1 contains some of the introduction rules for LType, where we have used
the so-called Russell-style formulation of a universe to omit the names of its
objects. The informal explanations of the rules in Figure 1 are given below.

14 We leave this most thorough and complete discussion of the universe LType for future
work. Besides the theoretical work behind such a proposal, we plan to implement the
universe LType in P lastic, which contrary to Coq, allows construction of universes.
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PType : Type Prop : PType

A : LType P (x) : PType [x:A]

Πx : A.P (x) : PType

LType : Type cn : LType

A : cn

A : LType

A : PType

A : LType

Fig. 1. Some (not all) introduction rules for LType

– The type Prop of logical propositions is a linguistic type. (It is of type
PType15 by the first rule and hence of type LType by the last rule.)

– If A are linguistic types and P is an A-index family of types in PType, so is
the Π-type Πx:A.P (x). In particular, in the non-dependent case, if Ai are
linguistic types, so is the arrow type A1 → ... → An → Prop. (It is of type
PType by repeated uses of the third rule and hence of type LType by the
last rule.)

– The universe cn (of types that interpret common nouns) is an object of type
LType.

– If A interprets a common noun, then A is a linguistic type in LType. For
example, the Σ-types that interpret modified CNs are in LType.

Other example types in LType include the type of VP adverbs (18), quanti-
fiers (19), argument-introducing and adjunct-introducing prepositions (20 and
21 respectively):

(18) ΠA : cn. (A → Prop) → (A → Prop)

(19) ΠA : cn. (A → Prop) → Prop

(20) ΠA : cn. A → (A → Prop) → (A → Prop)

(21) ΠA : cn. A

To our knowledge, almost all types needed for representing the semantics of
NLs can be handled with these rules. However, we shall leave the universe LType
open in the sense that we may introduce new types into it in the future.16

Having described the universe of linguistic types, we can now use it to describe
the type of coordinators: every (binary) coordinator is of the following type:

(22) ΠA : LType. A → A → A

For instance, the coordinator and is of the above type.
To give an example of how this type works, let us imagine three cases of

coordination: PN coordination (John and George), propositional coordination
(John runs and Mary drives) and VP coordination (John cycles and drives).

15 Ptype can be thought of as the universe of predicates. It is an intermediate universe
used to build LType.

16 For example, an extra introduction rule will be needed for vector types. See Remark 1
for such a rule. Formally, openness of a universe would imply that we do not impose
an elimination rule for it. We omit the technical details here.
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In the first case, John and George are of type [[Man]], so the A in this case is
of type [[Man]] which is in LType given that it is of type CN . In the case of
propositional coordination, our A is of type Prop, which being a PType is also
an LType. In the third case our A is of type [[Man]] → Prop which is also in
LType. Similar considerations apply to all the cases from (8) to (17). Thus, this
type captures the flexibility associated with coordination.17 It is not difficult to
see that all examples of coordination from (8) to (17) are predicted via the type
given for coordination above.18 However, what we need to discuss is examples
where the rule proposed in (47) might seem to overgenerate or departs from the
standard assumptions as these are made in the formal semantic literature.

3.2 Quantifier Coordination

The type for coordination we have proposed might be argued to overgenerate
for cases involving coordination of two quantifiers like the ones shown below:

(23) # Some and every man came

(24) # No and some boy read

The above sentences seem to be generated via the rule we have proposed for
coordination. Note, that this problem applies to all coordination accounts pro-
posed. Given that quantifiers involve a function type ending in t, they should be
conjoinable according to the accounts proposed in the Montagovian literature.
No explicit discussion has been made of how cases like these are disallowed, so
it would be good to see in more detail what is going on in these cases.

The basic problem is that some quantifiers seem to be able to be coordinated
and some others do not. Between the cases of quantifiers that cannot be coordi-
nated there are cases where adding a modal adverb between the coordinator and
the second conjunct make a difference in acceptability. For example, adding the
modal adverb possibly in (23) but not in (26) makes the sentence semantically
felicitous:19

(25) Some and possibly every man came

(26) # No and possibly some boy read

17 Of course, there are cases discussed in the literature where coordination of different
categories seems to be possible. One such example is discussed in [28], where an
adjective is coordinated with a NP: John is either stupid or a liar. We will not
pursue an account here but we could note that an account in a similar vein to the
one proposed by [29] where coordination even in this case operates on like and not
on unlike categories is possible.

18 All the examples have been checked using the Coq theorem prover [5]. The code can
be found in the Appendix.

19 As one of the reviewers correctly notes, cases of quantifier coordination that are
always felicitous include cases involving a proper noun and a quantifier, e.g. John
and every girl left the party. Obviously, if one wants to retain the assumption that
similar types are conjoined, the proper noun is a generalized quantifier in the previous
example.
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For the rest of the cases, whether such sentences will be semantically felicitous
depends largely on the type of coordination in each case (cf. the two examples
below):

(27) # One and two of my students came to the party.

(28) One or two of my students came to the party.

Thus, it seems that in principle, coordination of quantifiers should be al-
lowed, given that there are clear cases where this is possible. However, allowing
coordination of quantifiers to be in principle possible, we will have to explain
semantically infelicitous cases like (27). A way that can help us rule out a num-
ber of infelicitous semantic cases is to look at the semantics of the individual
quantifiers in combination with the coordinator in each case. Let us take the
example of the following sentence:

(29) # Some and no men arrived.

The quantifiers in the above example can be coordinated via the rule we have
proposed. However, the semantics we get for the coordinated NP some and no
man are the following, in effect a contradiction:

(30) ∃x : [[man]] .P (x)∧ ∼ ∃x : [[man]] .P (x)

We can quite plausibly assume that the contradictory semantics is the reason
the conjunction is infelicitous in (33), especially when uttered out of the blue
without any context. However, imagine the following situation: someone is lying
and has stated that no men arrived on one occasion and that some men arrived
on another. Then, the hearer might spot this contradiction and utter the fol-
lowing some and no men arrived?. In this case, some and no men is perfectly
felicitous.20 Moving on to cases of disjunction of the same quantifiers, we notice
that no special context is needed in order for these to be felicitous. Examples of
this quantifier combination are quite frequently found in NL:

(31) People with some or no academic training.

(32) This license may grant the customer the ability to configure some or no
parts of the software themselves.

The semantics of some or no x in contrast to the semantics of some and
no x do not give rise to a contradiction. To the contrary, they are always true
under any interpretation. The example below depicts the semantics of some or
no men:21

(33) ∃x : [[man]]P (x)∨ ∼ ∃x : [[man]] .P (x)

20 The same kind of example can be devised for cases like (25).
21 This is the case assuming a logical interpretation of some. If the quantity implicature

is taken into consideration, the quantifier combination is not always true.
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Further examples of quantifiers that do not need a special context in or-
der to be felicitous are some but not all, more than three and less than five.
It might then be the case that quantifier combinations that are always false
(in effect contradictions) need a special context in order to be felicitous, while
quantifier combinations that do not fall into this category do not. Of course,
there are obvious counterexamples to such a proposal, for example cases like
some and all or most and all, which are of course infelicitous in the absence
of any special context contrary to what we would expect in case what we say
is true. However, quantifiers like some and most in NL carry a quantity im-
plicature (see e.g. [30], [31] and [32] among others). The idea is that a speaker
uttering some and not the stronger all, does that because he believes that sub-
stitution for the stronger value cannot be done salva veritate. For if the latter
was true, he would have uttered the stronger all. A quantifier combination like
some and all cancels out this implicature, so this might be the reason for the
infelicitousness of this quantifier combination when uttered out of context. The
same can be argued for the case of most and all. The issue requires more care-
ful examination in order to see whether what we have argued is true or not.
In particular, one has to check whether cases of quantifier combinations that
are always false need the aid of some special context in order to be felicitous.
Then, cases where infelicitousness arises unexpectedly must be shown to arise
from other independent factors (like the quantity implicature for example). We
believe that what we have proposed can produce a fruitful line of research as
regards quantifier coordination but at least for this paper, we will not examine
the issue any further. What is rather uncontroversial, no matter the assump-
tions we make as regards the interplay of quantifier coordination and the use
of context, is that we need a rule for coordination that will in principle al-
low quantifier coordination. The rule we have proposed in (26) suffices for this
reason.

Recapitulating, we propose a general rule for coordination which extends over
a universe that contains all linguistic types, the universe LType. This rule is
general enough to allow all types of coordination we find in NL. The rule might
seem to overgenerate in the case of quantifier coordination, but as we have seen,
in principle quantifier coordination should be allowed. The infelicitous cases
(when uttered out of the blue) are attributed to the semantics of the individual
quantifiers under the coordinator involved in each case.

3.3 Collective Coordination

The first thing we have to see is what is the prediction our typing rule proposed
for coordination makes for these cases. But before doing this, we first have to
discuss the typing of predicates like meet in their collective interpretation. Such
predicates can be seen as one place predicates that take a plural argument and
return a logical proposition (something in Prop in our case), an assumption
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already made in a number of the accounts within the Montagovian tradition
(e.g. [26,33]). The plausible question is how plural arguments are going to be
represented.

An interesting account of plurality within an MTT is presented by [34], where
Martin-Löf’s type theory is used for linguistic semantics. In this account, plural
count nouns are interpreted using the type List(A). Such an account is shown
to give a uniform treatment of both singular and plural anaphora, being com-
patible with the classical type-theoretic treatment of anaphora, as this is given
by [35].22 In MLTT, List(A) corresponds to the set of lists of elements of a set
A. We will keep the intuition regarding the need to represent lists of objects
but instead of using the inductive type List(A), we will use the inductive family
of types Vec, n. V ec(A, n) and List(A) are very much alike, with the difference
being mainly that V ec(A, n) involves an additional argument n of type Nat,
which counts the number of the elements in a list (that is why they are called
vectors):

(34) V ec : (A : Type)(n : Nat)Type

Intuitively, V ec(A, n) is the type of lists [a1, ..., an] of length n, with ai : A
(i = 1, ..., n).23

Now, collective predicates can be given types in a more appropriate way. For
example, the collective predicate meet can be given the following type:

(35) Πn : Nat. V ec([[human]], n+ 2) → Prop

Please note that, as n ≥ 0, an object of type V ec([[human]], n+2) has length of
at least 2 or longer – this means that meet can only be applied to at least two
people, but not less. Such more exact requirements are captured in typing by
means of the inductive families like V ec(A, n).24

Now, let us explain how to interpret sentences like (36):

(36) John and Mary met.

22 Another interesting account of plurals is given by [36] using Girard’s system F. It is
shown that the basic properties of plurals can be effectively accounted for by using
a second-order system like Girard’s system F.

23 See, for example, Chapter 9 of [4] for the formal definition of V ec(A,n). We omit
the formal details here.

24 As suggested by an anonymous reviewer, one might consider using finite types (see,
for example, Appendix B of [20]) instead of the vector type. However, a lot of the
cases discussed here (e.g. the respectively) involve ordering of elements, in which
case vector types seem more well suited (at least for these cases). However, for other
cases of plurality where ordering is not needed (or needs to be avoided), using finite
types seems to be a good suggestion and as such will be considered for a more general
account of plurality in TTCS.
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The above typing of meet assumes that the typing for humans can distinguish
the number for the plural cases. We propose the following rule for collective and
should be given the following type:25

(37) ΠA : LType. Πn,m : Nat. V ec(A, n) → V ec(A,m) → V ec(A, n+m)

Assuming that J : V ec([[human]], 1) and M : V ec([[human]], 1), then J and M
is of type V ec([[human]], 2). In order to type phrases like John and Mary, we
need to introduce the following coercions, for every type A:

A <c V ec(A, 1)

where the coercion c maps any a to [a], the vector with only one object a. With
John : [[man]] < [[human]] and Mary : [[woman]] < [[human]], we have that
John and Mary is interpreted as of type V ec([[human]], 2) and therefore, the
above sentence (36) gets interpreted as intended.

However, we are not done yet with collective predication, given that we have
not yet discussed cases involving quantifiers. Such a case is shown below:

(38) Three men and five women met.

If we assume that the numeral quantifiers 1, 2, 3, ... are given the following type:

n : ΠA:cn. (V ec(A, n) → Prop) → Prop,

then we have26

[[three man]] = [[three]]([[man]])

: (V ec([[man]], 3) → Prop) → Prop

< (V ec([[human]], 3) → Prop) → Prop

[[five women]] = [[five]]([[women]])

: (V ec([[women]], 5) → Prop) → Prop

< (V ec([[human]], 5) → Prop) → Prop

and

[[three man and five women]]

= [[and]]([[three]]([[man]]), [[five]]([[women]]))

: (V ec([[human]], 8) → Prop) → Prop

This can now be applied to the semantics of meet (more precisely, [[meet]](6)) to
form the semantics of (38).

25 Note that A extends over Ltype since different vector types might be needed and not
just vector cases with A : CN . See the following discussion on quantifiers and respec-
tively. It is not clear whether this rule is too strong or not. This is an issue that needs
to be further researched. In any case, if we want to provide a typing for collective and
which covers all the cases we are interested in and furthermore avoids overloading, we
need a bigger universe than cn. Whether the universe needed in this case is LType or
something considerably smaller is a subject open to further inquiry and debate.

26 Here, we have assumed that, if A <c B, then V ec(A,n) <map(c V ec)(B,n), where
map(c) maps [a1, ..., an] to [c(a1), ..., c(an)].



An Account of NL Coordination in Type Theory with Coercive Subtyping 43

Remark 1 (Vector types and LType). The meticulous reader might have noticed
that the introduction rules we proposed for LType do not include vector types.
Since vector types are employed in NL semantics (at least in our account), then
these types should be included in Ltype. For example, one could consider the
following introduction rule:

A : LType n:Nat

V ec(A, n) : LType

Under this rule, vector types are now part of LType. Again, we note that the
task of meticulously constructing the universe LType will not be undertaken in
this paper. However, such a rule is indicative of how vector types can be included
in the constructed LType universe.

One further welcoming extension of the account proposed is a straightforward
explanation of the way the reciprocal each other functions in English. Verbs like
meet are reciprocal predicates in the sense that they do not need an overt recip-
rocal to give rise to a reciprocal reading (basically what we have been calling the
collective reading so far). For non-reciprocal predicates, there is the possibility
of getting these readings via the use of each other. The idea is that each other in
English turns a transitive predicate into an intransitive one whose sole argument
is a vector whose length is at least 2:

(39) [[each other]] : ΠA : cn, Πn : Nat. (A → A → Prop) → (V ec(A, n+ 2) →
Prop)

Lastly collective coordination cases involving respectively can also be ac-
counted for by using a similar reasoning. In particular, one might view respec-
tively as big functor which takes two vector arguments and returns a proposition.
Specifically, the following typing seems to be appropriate for respectively:

(40) [[respectively]] : ΠA : cn. V ec(A, n) → V ec((A → Prop), n) → Prop

Basically, respectively takes one V ecA argument and one V ec(A → Prop) ar-
gument. Such a typing is able to deal with most of the cases involving respectively
shown below:

(41) Stergios and Zhaohui cycle and drive respectively.

(42) Stergios and Zhaohui are Greek and Chinese respectively.

(43) Stergios and Zhaohui prepared and taught a course respectively.

In (41), the second vector argument is the result of coordination of the predicates
cycle and drive of type [[Human]] → Prop. With this rule for collective and, let us
get back to the examples in (41) to (43). In (41) and (42), the second vector argu-
ment is of type V ec(A → Prop) given that both intransitive verbs and adjectives
are defined as predicates (A → Prop). This is formed from coordinating intransi-
tive verbs and adjectives respectively. In (43), things are a little bit more compli-
cated, since some functional application is needed first in order for the desired type
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to be reached. Specifically, we need to somehow apply prepared and taught to a
course and then coordinate the result of these two applications (prepared a course
and taught a course) to get theV ec(A → Prop) argument.The exact details of how
this is donewill notbefleshedout in this paper.The samegoes formore complicated
respectively-structures involving ditransitive verbs like the ones shown below:

(44) Stergios and Zhaohui sent a paper to Robin and Tao respectively.

(45) Stergios and Zhaohui sent Robin beer and wine respectively.

Remark 2. A further interesting issue involves inferencing arising from collective
coordination. The following examples constitute classic NLI cases associated with
collective coordination:

(46) Stergios and Zhaohui met⇒ Stergios met Zhaohui and Zhaohui met Stergios

(47) Stergios and Zhaohui hit each other ⇒ Stergios hit Zhaohui and Zhaohui
hit Stergios

(48) Stergios and Zhaohui are Greek and Chinese respectively ⇒ Stergios is
Greek

In order to deal with these inferences, the definitions provided for collective
meet and each other, besides typing information must provide information that
will somehow allow inferences like the above to arise. For example, assuming
a transitive version of meet, defined as being of type [[human]] → [[human]] →
Prop, we can use a definition for collective meet that besides typing information
will further provide information about its relation with transitivemeet. The same
idea is applied to the definition of each other, the only difference being that
each other basically defines a relation over an arbitrary P of type [[human]] →
[[human]] → Prop and not a specific predicate as in the case of collective meet.
Similarly, respectively takes two vector arguments and applies each element of
the V ec(A) argument to each element of the V ec(A → Prop). This kind of
approach can be found in the appendix where the definitions for meet, each
other and respectively needed to capture inferences like the ones in (46), (47)
and (48) are shown. The inferences discussed are also shown to be derivable using
Coq in the form of theorems. The idea is to treat NLIs as valid Coq theorems.
The proof steps needed for proving the inferences in (46), (47) and (48) are
also given in the appendix. It has to be noted that this line of research, i.e.
using an interactive theorem prover like Coq in order to deal with NLIs, seems
to us quite promising for at least two reason: a) checking the predications that
an MTT like the one presented here makes with respect to NLIs and b) explore
ways in which an interactive theorem prover can help automatic theorem proving
when dealing with NLIs. This last issue, we believe, is of vital importance, given
that interactive theorem proving might reveal strategies for proving certain NLIs
that can otherwise go unnoticed. In the long run, these collection of strategies
gathered from the ‘experience’ of interactive theorem proving can be potentially
used to make automation more effective. However, a proper discussion of NLIs
and their implementation as Coq theorems are out of the scope of this paper.
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4 Interaction of Coordination and Copredication

Dot-types have been successfully formalized in MTTs with coercive subtyping
[7,8], and an implementation of them in the proof assistant Plastic also exists
[17]. We first summarize the account proposed for dot-types and then proceed
and discuss the interaction between dot-types and coordination. We will use book
as our prototypical example in presenting the account.

Book is assumed to be a dot-type having both a physical and an informational
aspect. The type-theoretic formalization of this intuition proceeds as follows.
Let Phy and Info be the types of physical objects and informational objects,
respectively. One may consider the dot-type Phy•Info as the type of the objects
with both physical and informational aspects. A dot-type is then a subtype of
its constituent types: Phy • Info < Phy and Phy • Info < Info. A book may
be considered as having both physical and informational aspects, reflected as:

(∗) [[book]] < Phy • Info.
27

Now, consider the following sentence:

(49) John picked up and mastered the book.

We assume the following typing for pick-up and master respectively:

[[pick up]] : [[human]] → Phy → Prop

[[master]] : [[human]] → Info → Prop

Because of the above subtyping relationship (∗) (and contravariance of subtyping
for the function types), we have

[[pick up]] : [[human]] → Phy → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

[[master]] : [[human]] → Info → Prop

< [[human]] → Phy • Info → Prop

< [[human]] → [[book]] → Prop

Therefore, [[pick up]] and [[master]] can both be used in a context where terms
of type [[human]] → [[book]] → Prop are required and the interpretation of the
sentence (49) can proceed as intended.

The first case of interaction has already been introduced and involves examples
like (49). It is easy to see how this is going to be predicted given what we have
said.28

27 See [17] for a detailed exposition of how dot-types are formalized in MTT with
coercive subtyping.

28 See [7,8] for an account of this.
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The next step is to take a look at examples where two words with dot-types
are coordinated. Such an example is shown below:

(50) The book and my lunch were sent by mistake to someone else.

In the above example we have two dot-types involved, Phy • Info and Phy •
Event, representing the types for book and lunch respectively. Let us see whether
the rule for coordination we have along with the treatment of dot-types will give
us the correct results.

We need to coordinate the two NPs:

[[the book]] : [[book]] and [[my lunch]] : [[lunch]] .

Furthermore, the passive send is of the following type:

[[sendpass]] : Human → Phy → Prop.

Now, because
[[book]] < Phy • Info < Phy

[[lunch]] < Phy • Event < Phy

the above sentence (50) can be interpreted as intended. In other words, the
coercive subtyping mechanism interacts with that for coordination correctly.

5 Conclusions

In this paper we presented an account of NL coordination using Type Theory
with Coercive Subtyping. The issue of conjoinable types was taken care of by
proposing an inductive type for coordination which extends over the universe
of Linguistic Types, called LType. This type has been shown to be sufficient to
explain the flexibility of NL coordination. We argued that a rule for NL coor-
dination should in principle allow quantifier coordination and showed that the
infelicitous quantifier combination cases are due to the inherent semantics of the
quantifier combination under the coordinator in each case, along with general
pragmatic implicatures associated with quantifiers (e.g. the quantity implica-
ture for quantifiers some and most). Collective coordination was accounted for,
assuming that collective predicates take one vector argument representing plu-
rality. A second rule for collective and was proposed which takes two vector
arguments of n and m length and produces a vector type of length n+m. Fur-
thermore, the issue of inferences arising from collective predication was briefly
discussed and a proposal on how to define collective predicates as well as the
reflexive each other and the adverb respectively was proposed. These proposals
have been implemented in Coq and a proof of these NLIs within in the form
of theorems is possible. Lastly, the interaction of dot.types with coordination
was briefly discussed. It was shown that the coordination account proposed in
combination with the co-predication account as this was given in [8] gives the
correct predictions.
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Future work includes the further refinement of the universe LType. The Coq
proof assistant does not allow one to introduce new universes and, as a conse-
quence, we had to use some existing universe instead, which is not quite faithful.
Some other proof assistants, like Plastic [15], allow one to introduce new uni-
verses. We are going to use such systems for this work so that the universe of
linguistic types may get implemented properly.

Acknowledgement. Thanks go to the reviewers of the paper for useful com-
ments of its earlier version.
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14. Bassac, C., Mery, B., Retoré, C.: Towards a type-theoretical account of lexical

semantics. Journal of Logic Language and Information 19, 229–245 (2010)
15. Callaghan, P., Luo, Z.: An implementation of LF with coercive subtyping and

universes. Journal of Automated Reasoning 27, 3–27 (2001)
16. The Agda proof assistant (version 2),

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php? (2008)
17. Xue, T., Luo, Z.: Dot-types and their implementation. In: Béchet, D., Dikovsky,
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A Implementations in Coq

We use Coq’s predifined Type Universe instead of LType. Bvector is needed
for vectors (Require Import Bvector). The coercion A <c V ec(A, 1) for proper
nouns is not possible in Coq, so we have to introduce the coercions as separate
entries.

A.1 Conjoinable Types

(* Categories*)

Definition CN := Set.

Parameters Bank Institution Human Man Woman Object Animal OObject: CN.

Parameter John Stergios Zhaohui : Man.

Parameter Mary: Woman.
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Axiom mh : Man->Human. Coercion mh : Man >-> Human.

Axiom wh : Woman->Human. Coercion wh : Woman >-> Human.

Axiom ha: Human-> Animal. Coercion ha: Human>-> Animal.

Axiom ao: Animal->Object. Coercion ao: Animal>-> Object.

Axiom ooo: OObject-> Object. Coercion ooo: OObject>->Object.

Parameter walk: Animal ->Prop.

Parameter talk cycle drive: Human->Prop.

Parameter attack killed: Animal -> Animal -> Prop.

Parameter If when: Prop-> Prop-> Prop.

Parameter the some most all: forall A:CN, (A->Prop)->Prop.

Parameter die: OObject-> Prop.

Parameter slowly agonizingly: forall A:CN, (A->Prop)->(A->Prop).

Parameter And: forall A:Type, A->A->A. (*Predefined Type universe

instead of LType*)

(*Cases to check*)

Check And Man (Stergios)(Zhaohui)

Check And Man (Stergios)(Mary) (*does not go through because Mary:Woman*)

Check And Human (Stergios)(Mary) (*this is fine given Woman Man<Human*)

Check And ((Human->Prop)->Prop) (some Man)(some Woman) (*Quantified NP*)

Check And (forall A: CN, (A->Prop)->Prop) (some)(all).(*Quantifier*)

Check And (Human->Prop) (cycle)(drive) (*VP*)

Check And (forall A:CN, (A->Prop)->(A->Prop))(slowly)(agonizingly).

(*VP adverb*)

Check And (Prop->Prop->Prop) (If)(when) (*subordinate conjunction*)

A.2 Collective Coordination

Require Import Bvector.

Variables n m: nat.

Parameter meetc:forall n:nat, vector Human(n+2)->Prop.(*collective meet*).

Parameter John1 George1: vector Human 1.(*coercions do not work with

vectors so we use Human instead of Man here*)

(*Unit type for collective And*)

Inductive OneAndc : Set := Andc.

Definition AndSem1 := forall A: CN,forall n:nat,forall m:nat, vector (A)(n)

->vector(A)(m)->vector(A)(n+m).

Definition AndSem2 :=forall A: CN,forall n:nat,forall m:nat, ((vector A n)->Prop)

->Prop->

((vector A m)->Prop)->Prop->((vector A (n+m))->Prop).

Parameter Andc1 : AndSem1.

Parameter Andc2 : AndSem2.

Definition a1 (a:OneAndc) : AndSem1 := Andc1. Coercion a1 : OneAndc >-> AndSem1.

Definition a2 (a:OneAndc) : AndSem2 := Andc2. Coercion a2 : OneAndc >-> AndSem2.

*Some interesting cases to check*

Check meetc 0 ((Andc:AndSem1 (Human)(1)(1)(John1)(George1)) (*John and George met,

with both George and John of lower type*)
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A.3 Co-predication

(* Phy dot Info *)

Parameter Phy Phy1 Info : CN.(*Phy1 should be taken to be the same as Phy*)

Record PhyInfo : CN := mkPhyInfo { phy :> Phy; info :> Info }.

Parameter Book: PhyInfo.

Parameter Event : CN.

Record EventPhy : CN := mkEventPhy { event :> Event; phy1 :> Phy1}.

(*Phy1 is used because Phy cannot be used twice*)

Parameter lunch: EventPhy.

Axiom po: Phy->Object. Coercion po:Phy>->Object.

Axiom pp: Phy1->Phy. Coercion pp: Phy1>->Phy.(*We introduce this coercion

to mean that the two Phy and Phy1 are the same.*)

Parameter was_given_to_someone_else: Object->Prop.

*Interesting case to check*)

Check was_given_to_someone_else (And(Object)(Book)(lunch)).

A.4 Collective Coordination Inferences

Parameter hit meettr: Human->Human->Prop.

Parameter meettr: Human -> Human -> Prop

Definition meetc:= fun v : vector Human 2 =>exists x: Human, exists y:Human,

meettr x y /\ meettr y x /\ v=(Human::x)1((Human::y)0(Vnil Human))

Definition each_other:=fun x:vector Human 2,fun P:Human->Human->Prop=>

exists k : Human,exists l: Human,P k l/\P l k/\(Human::k)1((Human :: l)0

(Vnil Human))=x.

Definition respectively:=fun A:CN,fun x:vector A 2,fun P:vector(A ->Prop)

2=>exists k:A,exists l:A,exists Q:A->Prop,exists R:A->Prop,Q k/\R l/\(A::k)

1((A::l)0(Vnil A))=x/\((A -> Prop)::Q)1(((A->Prop)::R)0(Vnil(A->Prop)))=P.

*Proof of Stergios and Zhaohui hit each other -> Stergios hit Zhaohui*

Theorem each_other1:each_other((Human::Stergios)1((Human::Zhaohui)0(Vnil

Human))) hit -> hit(Stergios)(Zhaohui).

intros.

unfold each_other in H.

destruct H.

destruct H.

destruct H.

destruct H0.

inversion H1.

replace Stergios with x.

replace Zhaohui with x0.

assumption.

*Proof of Stergios and Zhaohui met -> Stergios met Zhaohui*

Theorem MEET1:meetc ((Human::Stergios)1((Human::Zhaohui)0(Vnil Human))) ->

meettr(Stergios)(Zhaohui).

intros.

unfold meetc in H.
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destruct H.

destruct H.

destruct H.

destruct H0.

inversion H1.

replace Stergios with x .

replace Zhaoui with x0 .

assumption.

*Proof of John and Stergios hit Zhaohui and George respectively->Stergios hit

Zhaohui*

Coq< Theorem resp: respectively Human((Human:: John)1((Human::Stergios)0(Vnil

Human)))(((Human->Prop)::(hit Zhaohui))1(((Human->Prop)::(hit George))0(Vnil

(Human->Prop))))-> hit Zhaohui John.

intros.

destruct H.

destruct H.

destruct H.

destruct H.

destruct H.

destruct H0.

destruct H1.

inversion H1.

inversion H2.

rewrite <- H4.

rewrite <- H6.

assumption.
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