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Abstract. We investigate robust decision-making under utility uncertainty, using
the maximin criterion, which optimizes utility for the worst case setting. We show
how it is possible to efficiently compute the maximin optimal recommendation in
face of utility uncertainty, even in large configuration spaces. We then introduce a
new decision criterion, setwise maximin utility (SMMU), for constructing optimal
recommendation sets: we develop algorithms for computing SMMU and present
experimental results showing their performance. Finally, we discuss the problem
of elicitation and prove (analogously to previous results related to regret-based
and Bayesian elicitation) that SMMU leads to myopically optimal query sets.

1 Introduction

Reasoning about preferences [9] is an important component of many systems, including
decision support and recommender systems, personal agents and cognitive assistants.
Because acquiring user preferences is expensive (with respect to time and cognitive
cost), it is essential to provide techniques that can reason with partial preference (utility)
information, and that can effectively elicit the most relevant preference information.
Adaptive utility elicitation [3] tackles the challenges posed by preference elicitation by
representing the system knowledge about the user in the form of beliefs, that are updated
following user responses. Elicitation queries can be chosen adaptively given the current
belief. In this way, one can often make good (or even optimal) recommendations with
sparse knowledge of the user’s utility function.

Since utility is uncertain, there is often value in recommending a set of options from
which the user can choose her preferred option. Retrieving a “diverse” set of recom-
mended options increases the odds that at least one recommended item has high utility.
Intuitively, such a set of “shortlisted” recommendations should include options of high
utility relative to a wide range of “likely” user utility functions (relative to the current
belief) [10]. This stands in contrast to some recommender systems that define diversity
relative to product attributes. “Top k” options (those with highest expected utility) do
not generally result in good recommendation sets.

Recommendation systems can be classified according to the way they represent the
uncertainty about the user preferences (encoded by an utility function) and how such
uncertainty is aggregated in order to produce recommendations that are believed to have
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high utility. A common approach [4,10,3,14] is to consider a distribution over possible
user preferences, and make recommendations based on expected utility. Another line of
work [1,2,3,13] assumes no probabilistic prior is available (the strict uncertainty setting)
and provides recommendations using the minimax regret criterion. The latter approach
makes robust recommendations; regret measures the worst-case loss in utility the user
might incur by accepting a given recommendation instead of the true optimal option.

In this paper, we take an approach similar to the second setting; we cast decision-
making as a problem of optimization under strict uncertainty and we produce robust
recommendations based on the maximin utility criterion. Maximin [15,11] is the most
pessimistic decision criterion; the recommended decision or option is the one that leads
to the highest utility in the worst case. It is a well-known concept and we believe it is
worth studying it from an utility elicitation perspective. While we recognize that max-
imin might not be the right decision criterion in many circumstances due to its intrinsic
pessimism, we argue it is apt for high-stakes decisions requiring the strongest guaran-
tees. As in works on regret-based utility elicitation, in our setting the uncertainty over
possible utility functions is encoded by a set of constraints (usually obtained through
some form of user feedback, such as responses to elicitation queries of the type: “Which
of these products do you prefer ?”). Differently from regret, the recommendation en-
sures that a certain level of utility is attained.

In order to provide recommendation sets that efficiently cover the uncertainty over
possible user preferences, we define a new setwise maximin utility criterion, formal-
izing the idea of providing a set of recommendations that optimize the utility of the
user-selected option in the context of our framework. We show how linear and mixed
integer programming techniques can be used to efficiently optimize both singleton rec-
ommendations and sets in large configuration spaces, and more computationally effi-
cient heuristic techniques motivated by our theoretical framework. Finally, we discuss
the problem of interactive elicitation (which can be viewed as active preference learn-
ing) and how to identify queries that are myopically optimal with respect to a non-
probabilistic analogue of value of information.

2 Decision-Making with Maximin Utility

Much work in AI, decision analysis and OR has been devoted to effective elicitation
of preferences [1,4,12]. Adaptive preference elicitation recognizes that good, even op-
timal, decisions can often be recommended with limited knowledge of a user’s utility
function [1]; and that the value of information associated with elicitation queries is of-
ten not worth the cost of obtaining it [3]. This means we must often take decisions in
the face of an incompletely specified utility function.

These approaches all represent the uncertainty about the user’s utility function ex-
plicitly as “beliefs”. In the case of strict uncertainty (no probabilistic prior is available),
the belief takes the form of a set of possible utility functions, usually implicitly encoded
by constraints [1,13]. In this work, we adopt the notion of maximin utility as our de-
cision criterion for robust decision making under utility function uncertainty. Maximin
utility (like minimax regret [1,2,13]) relies on relatively simple prior information in the
form of bounds or constraints on user preferences.
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2.1 Basic Setting

The setting is that of [13]: we consider a multi-attribute space as, for instance, the space
of possible product configurations from some domain (e.g., computers, cars, apartment
rentals, etc.). Products are characterized by a finite set of attributes X = {X1, ...Xn},
each with finite domains Dom(Xi). Let X ⊆ Dom(X ) denote the set of feasible con-
figurations. Attributes may correspond to the features of various apartments, such as
size, neighborhood, distance from public transportation, etc., with X defined either by
constraints on attribute combinations (e.g., constraints on computer components that
can be put together), or by an explicit database of feasible configurations (e.g., a rental
database). Let x ∈ X be a feasible configuration, and xi the value of the i-th attribute.

The user has a utility function u : Dom(X ) → R. In what follows we will assume
either a linear or additive utility function depending on the nature of the attributes [8].
In both additive and linear models, u can be decomposed as follows1:

u(x) =
∑

i

fi(xi) =
∑

i

λivi(xi)

where each local utility function fi assigns a value to each element of Dom(Xi). In
classical utility elicitation, these values can be determined by assessing local value
functions vi over Dom(Xi) that are normalized on the interval [0, 1], and importance
weights λi (

∑
i λi = 1) for each attribute [6,8]. This sets fi(xi) = λivi(xi) and en-

sures that global utility is normalized on the interval [0, 1]. A simple additive model in
the rental domain might be: u(Apt) = f1(Size) + f2(Distance) + f3(Nbrhd). 2

Since a user’s utility function is not generally known, we write u(x;w) to emphasize
the dependence of u on parameters that are specific to a particular user. In the additive
case, the values fi(xi) over ∪i{Dom(Xi)} serve as a sufficient parameterization of u
(for linear attributes, a more succinct representation is possible). The optimal product
for the user with utility parameters w is argmaxx∈Xu(x;w). The goal of a decision
aid system is to recommend, or help the user find, an optimal, or near optimal, product.

2.2 Singleton Recommendations

Assume that using some prior knowledge, we determine that the user’s utility function
w lies in some bounded set W .3 Such prior knowledge might be obtained through some
interaction with a user (the exact form of W will be defined in section 3.1). We define:

Definition 1. Given a set of feasible utility functionsW , the minimum utilityMU (x;W )
of x ∈ X is defined as:

MU (x;W ) = min
w∈W

u(x;w)

1 In our notation, we use bold lowercase for vectors.
2 Our presentation relies heavily on the additive assumption, though our approach is easily gen-

eralized to more general models such as GAI [6,2].
3 We assume that W is topologically closed. Otherwise one should substitue min and max with
inf and sup in the definitions below.
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Definition 2. The maximin utility MMU (W ) of W and a corresponding maximin op-
timal configuration x∗

W are defined as follows:

MMU (W ) = max
x∈X

MU (x;W ) = max
x∈X

min
w∈W

u(x;w)

x∗
W = argmax

x∈X
MU (x;W ) = argmax

x∈X
min
w∈W

u(x;w)

Intuitively, MU (x;W ) is the worst-case utility associated with recommending con-
figuration x; i.e., by assuming an adversary will choose the user’s utility function w
from W to minimize the utility. The maximin optimal configuration x∗

W is the configu-
ration that maximizes this minimum utility. Any choice that is not maximin optimal has
strictly lower utility than x∗

W for some w ∈ W .
In problems where the items or choices are explicitly listed in a database, we can in

principle iterate over all candidate items, compute their minimum utility (this requires
solving a linear program defined in Section 3.1), and pick the item with the highest value
for recommendation. In configuration problems, the product space X is formulated as
a constraint satisfaction problem (CSP) or mixed integer program (MIP). In Section 3.1
we show how computing maximin utility in configuration domains can be formulated
as a mathematical programming problem and solved using techniques such as Bender’s
decomposition and constraint generation, adapting techniques developed for minimax
regret optimization [1,2].

2.3 Recommendation Sets: The Setwise Maximin Utility Criterion

Suppose we wish to pick a subset Z ⊆ X of size k to present to the user and want to
quantify the minimum utility obtained by restricting the user’s decision to options in
that set. In the maximin utility criterion, we choose the set of k options first, and then
the adversary picks the utility function w such that it minimizes the utility of the best
of the k options. We assume Z is restricted to subsets of X of cardinality k without
making this explicit. In practical circumstances, constraints on the user interface design
might lead to the choice of k.

Definition 3. Let W be a feasible utility set, Z ⊆ X. Define:

SMU (Z;W ) = min
w∈W

max
x∈Z

u(x;w)

SMMU (W ) = max
Z⊆X

min
w∈W

max
x∈Z

u(x;w)

Z∗
W = argmax

Z⊆X
min
w∈W

max
x∈Z

u(x;w)

The setwise minimum utility(SMU) of a set Z of k options reflects the intuitions
above. Setwise maximin utility (SMMU) is SMU of the minimax optimal set Z∗

W , i.e.,
the set that maximizes SMU (Z,W ).

Setwise maximin utility has some intuitive properties. SMU is monotone with re-
spect to set inclusion: adding new items to a recommendation set cannot decrease SMU
(Observation 1). Incorporating options that are known to be dominated given W does
not change setwise maximin utility (Observation 2).

Observation 1. SMU (A ∪B;W ) ≥ SMU (A;W ).
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Observation 2. If u(a, w) > u(b, w) for some a,b ∈ Z and all w ∈ W , then
SMU (Z ∪ {b};W ) = SMU (Z;W ).

Observation 3. MU and SMU can be explicitly expressed as the minimization over
different utility spaces

MU (A;W1∪W2)=min{MU (A;W1),MU (A;W2)}
SMU (A;W1∪W2)=min{SMU (A;W1), SMU (A;W2)}

The computation of SMU is made with respect to the item x ∈ Z with highest utility,
when the utility value is computed according to w ∈ W . Due to this, the different
choices of x ∈ Z define a partition of the utility space, where a partition with respect to
a given x is the region of W where the utility of x is highest among the options in Z.
More formally,

W [Z → xi] = {w ∈ W : u(xi;w) ≥ u(xj ;w) ∀j �= i, 1 ≤ j ≤ k}

That is, W [Z → xi] is the region of w where the utility of xi is at least as high as
any other option in Z. (the regions W [Z → xi], xi ∈ Z, partition W if one ignores
ties). We call this the Z-pseudo-partition4 of W . Using the Z-pseudo-partition, we can
rewrite SMU (this will be useful for optimization):

Observation 4. Let Z = {x1, . . . ,xk}. Then

SMU (Z,W ) = min
x∈Z

min
w∈W [Z→x]

u(x, w) = min
i=1≤...≤k

MU (xi;W [Z → xi])

We use a similar notation to express the combination of two partitions: W [Z1 →
xi,Z2→xj ] = W [Z1→xi] ∩W [Z2→xj ].

We introduce a transformation that modifies a given recommendation set Z in such
a way that SMU cannot decrease and usually increases. This will be used as a heuristic
for efficiently generating recommendation sets. It will also be useful when discussing
elicitation. Define the transformation T to be a mapping that updates a given recom-
mendation set Z in the following way: (a) First we construct the Z-pseudo-partition of
W ; (b) we then compute the single recommendation that has maximin utility in each re-
gion of the pseudo-partition of W ; (c) finally, we let T (Z) be the new recommendation
set consisting of these new recommendations. Note that T (Z) may have cardinality less
than |Z| = k.

Definition 4. Let Z = {x1, . . . ,xk}. We define T (Z) = {x∗
W [Z→x1]

, . . .x∗
W [Z→xk]

}

We will discuss optimization of a recommendation set below in Section 3.2.

4 The definition of the Z-partition first appeared in [13], in the context of recommendations
based on the minimax regret crierion.
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3 Maximin Utility Optimization

In this section we formalize the problem of generating recommendations (both sin-
gle recommendations and setwise recommendations) using mathematical programming
techniques (linear programming models and mixed integer programming models).
These optimization techniques are adaptation of techniques previously proposed [1,13]
for minimax regret. We note that maximin is faster to compute than minimax regret.

3.1 Optimization of Singleton Recommendations

In the following we assume the utility to be linear in w: u(x;w) = w ·x. In this case W
is a convex polytope effectively represented by a set of constraints (whenever the user
answers a query, new constraints are added) that we denote with Constraints(W).

MU(x, W). Given configuration x and the space of possible utility functions W (en-
coded by linear constraints), the minimum utility of x can be found by minimizing the
function w · x =

∑
1≤i≤n xi · wi, subject to Constraints(W), and w⊥

i ≤ wi ≤ w�
i for

all i ∈ {1 . . . n}, which is solvable by linear programming.

MMU(W). Given the possible utility functions W (encoded by linear constraints), the
problem is to find the configuration x∗

W that is associated with maximin utility. In order
to “break” the maximin optimization, we make use of Benders decomposition:

max
x,δ

δ

s.t. δ ≤ w · x ∀w ∈ GEN (1)

In this model, δ corresponds to the maximin utility of the optimal recommendation
x∗
W . Constraint 1 ensures that δ is less than the utility of choice x for each w. The

optimization is exact when GEN=W in constraint 1. However, all the constraints over
W need not be expressed for each of the (continuously many) w∈W . Since maximin
utility is optimal at some vertex of W , we only need to add constraints for all vertices
Vert(W ) of W , but they can still be exponential. We apply constraint generation in
order to solve the MIP much more efficiently, as very few of the vertices are usually
needed. This procedure works by solving a relaxed version of the problem above—the
master problem— using only the constraints corresponding to a small subset GEN ⊂
Vert(W ). We then test whether any constraints are violated in the current solution. This
is accomplished by computing the minimum utility of the returned solution (the slave
problem). If MU is lower than what was found in the master problem, a constraint was
violated. The constraint (corresponding to the choice wa of the adversary) is added to
the master problem, tightening the MIP relaxation. The master problem is recomputed,
and this process is repeated until no violated constraint exists.

3.2 Optimization of Recommendation Sets

SMU(Z, W). Given a set Z and a space of possible utility functionsW , by observation 4
the setwise minimum utility of Z can be found by solving k (k being the cardinality of
Z) optimization problems. Using the Z-partition of W, we computeMU (x,W [Z → x])
for each x ∈ Z, using the LP model shown above. We then take the (arithmetic) mini-
mum of the results: minx∈Z MU (x,W [Z → x]).
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SMMU(W). Given utility space W , we can compute the maximin optimal set (of car-
dinality k) using the following MIP.

max δ

s.t. δ ≤
∑

1≤j≤k

vjw ∀w ∈ GEN (2)

vjw≤w · xj ∀j ≤ k,w ∈ GEN (3)

vjw≤w�Ijw ∀j ≤ k,w ∈ GEN (4)
∑

1≤j≤k

Ijw = 1 ∀w ∈ GEN (5)

Ijw ∈ {0, 1} ∀j ≤ k,w ∈ GEN

Decision variables: xj , δ, Iw, vw

In this model, δ corresponds to the setwise maximin utility of the optimal set Z∗
W .

w� is some upper bound on the values taken by the weight parameters. Constraints 2,
3 and 4 ensures that δ is less than the utility of the best option in {x1, ...,xk} for each
w, by introducing a variable v (for each w and each element of the set) to represent
the value of minimum utility for the item selected, and indicators Iw to represent the
selection. Only one vw will be different from zero for each w, and since the objective
function is maximized, the optimization will set vjw = w ·xj for the j such that Ijw=1;
constraint 4 enforces 0 in the other cases. Constraint 5 ensures that only one of the k
items is selected for each utility function w.

We employ constraint generation in a way analogous to the single item case. At each
step of the optimization, we compute the setwise minimum utility, solved using a series
of LPs (as discussed above).

Alternative Heuristics. Setwise optimization requires solving a large number of MIPs
using constraint generation strategies. We present a number of heuristic strategies that
are computationally less demanding.

– The current solution strategy (CSS) proceeds as follows. Consider wa, the adver-
sary’s utility parameters minimizing the utility of x∗

W , the current maximin opti-
mal recommendation; u(x∗

W ;wa) = MU (x∗
W ;W ). Let’s further consider xa =

argmaxx∈X u(x;wa). CSS will return the set ZCSS = {x∗
W ,xa}. We extend this

to sets with cardinality greater than two. Considering a set Z, define wa(Z) =
argminw∈W maxx∈Z u(x;w) and xa(Z) = argmaxx∈X u(x;wa(Z)). We start
by initializing Z to be ZCSS , the set of size two returned by the current solu-
tion strategy, and then iteratively add one element (k − 2 times) by setting Z :=
Z ∪ xa(Z).

– The query iteration strategy (QIS) directly applies the T operator until a fixed point
is reached. A fixed point is such that SMU (T (Z);W ) = SMU (Z;W ). We start
QIS with the solution found by CSS.

3.3 Evaluation of Optimization Strategies

Using randomly generated elicitation data we ran a number of experiments using the al-
gorithms described above. For all experiments, we generated constraints on the
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Table 1. Computation times and utility values for our strategies (averaged over 30 instances). On
the rightmost columns, setwise minimum utility values of the sets retrieved by each strategy. A
dash means that one or more instances for this set of parameters timed out. Note that for set size
1, all three approaches reduce to MMU in this case.

Computation time Setwise utility
n. of features set size exact SMMU CSS QIS exact SMMU CSS QIS

5 1 0.1s n.a. n.a. 0.188 n.a. n.a.
5 2 0.1s 0.1s 0.2s 0.349 0.321 0.347
5 3 0.1s 0.1s 0.3s 0.366 0.356 0.366
5 4 0.2s 0.2s 0.4s 0.366 0.363 0.366
5 5 0.2s 0.2s 0.5s 0.366 0.366 0.366
10 1 0.1s n.a. n.a. 0.218 n.a. n.a.
10 2 0.2s 0.1s 0.3s 0.375 0.305 0.332
10 3 0.3s 0.1s 0.3s 0.389 0.369 0.376
10 4 0.5s 0.2s 0.5s 0.391 0.385 0.385
10 5 - 0.3s 0.6s - 0.392 0.392
15 1 0.1s n.a. n.a. 0.213 n.a. n.a.
15 2 0.5s 0.1s 0.4s - 0.268 0.290
15 3 - 0.2s 0.5s - 0.314 0.322
15 4 - 0.2s 0.7s - 0.359 0.368
15 5 - 0.3s 0.8s - 0.371 0.375

possible options using random binary constraints of the form ¬f1 ∨ ¬f2 where f1 and
f2 are features. We also assume some prior knowledge of user preferences, represented
by random utility constraints of the form w · xk ≥ w · xl, where xk and xl are ran-
dom assignments ∈ [0, 1]m (not necessarily feasible options) sampled with uniform
probability over all possible assignments. The user’s preference values w1 . . . wn are
random and normalized such that

∑
iwi=1. All experiments were run on a laptop with

a 2.5GHz Core 2 Duo processor and 2GB ram, with all mathematical programs solved
with CPLEX, version 12.2.

First, we ran experiments to determine how the runtime of the algorithms are affected
by increasing the problem size (number of features) and the size (cardinality) of the
recommendation sets. This was done by running the algorithms on instances ranging
from 5 to 15 features, with 30 experiments performed on each size. 5 As seen in Table 1,
runtime of exact SMMU computation becomes rapidly higher, and we were unable
to perform experiments with more than 15 features, as several of the 30 experiments
per size would time out. In contrast to this we see that the runtime of the CSS and
QIS algorithms increase much more gradually. In another experiment, we compared
the average runtimes of our strategies when fixing the set size, and varying the number
of features in the problem domain (Figure 1).

We then investigated whether the computational effort is worth it in terms of utility
increase. In the rightmost column of Table 1, we show how our strategies perform on
different problem settings. Showing a set of items, instead of a single top item, is very
beneficial: the minimum utility roughly doubles with five items instead of a single one.
Moreover, the set-wise utility values of our approximate strategies (CSS and QIS) are
very close to optimal SMMU.

5 For comparison, we include the “degenerate” case of set size equal 1, corresponding to re-
trieving the single best recommendation according to maximin.
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Fig. 1. Average runtime of maximin utility optimization for an increasing number of features.
Averaged over 30 instances per size, with set size k = 3.

4 Utility Elicitation

Usually, utility information is not readily available, but must be acquired through an
elicitation process. Since elicitation can be costly, it is important to ask queries elicit-
ing the most valuable information. Our setwise criterion can be used directly for this
purpose, implementing a form of preference-based diversity. This stands in contrast to
“product diversity” typically considered in many recommender systems. And unlike re-
cent work in polyhedral conjoint analysis [12], which emphasizes volume reduction of
the utility polytope W , our maximin utility-based criterion is sensitive to the range of
feasible products and does not reduce utility uncertainty for its own sake.

4.1 Optimal Myopic Elicitation

In general, there is a tension between recommending the best options to the user, and
acquiring informative feedback from the user. While in the recommendation task the
goal is to retrieve the best possible options to show to an user, in the elicitation task
the objective is to identify candidate queries with high information value, so that better
recommendations can be made when the user’s response is incorporated in the model.
The two tasks, recommendation and elicitation, considered separately in classic deci-
sion theory, are interleaved in decision aid tools such as conversational recommender
systems where the user is in control.

Here, we consider choice queries requiring a user to indicate which choice/product
is preferred from a set of k options. Hence, we can view any set of products as either a
recommendation set or query (or choice) set. Given a set, one can evaluate the value of
the set as a recommendation set and as a query set. Recently, Viappiani and Boutilier
[14,13] showed how these two problems are connected to each other, under both a
Bayesian framework and when using minimax regret. In the following we show the
same connection with maximin utility used as criterion.



420 P. Viappiani and C. Kroer

Any set Z can be interpreted as a choice query: we simply allow the user to state
which of the k elements xi ∈ Z she prefers. We refer to Z interchangeably as a query
or a choice set. The choice of some xi ∈ Z refines the set of feasible utility functions
W by imposing the k − 1 linear constraints u(xi;w) > u(xj ;w), j �= i.

When treating Z as a choice set (as opposed to a recommendation set), we are not
interested in its maximin utility, but rather in how much a query response will increase
maximin utility. In our distribution-free setting, the most appropriate measure is pos-
terior maximin utility, a measure of the value of information of a query. We define:

Definition 5. The worst case posterior maximin utility (WP) of Z = {x1, . . . ,xk} is

WP(Z,W ) = min[MMU (W [Z → x1]), . . . ,MMU (W [Z → xk])]

which can be rewritten as: WP(Z,W ) = minx∈Zmaxx′∈X minw∈W [Z→x] u(x
′,w).

An optimal query set is any Z that maximizes worst case posterior maximin utility
MaxWP(W ) = maxZ⊆X WP(Z,W )

Intuitively, each possible response xi to the query Z gives rise to updated beliefs about
the user’s utility function. We use the worst-case response to measure the quality of the
query (the updated W with lowest maximin utility). The optimal query is the query that
maximizes this value. We observe:

Observation 5. WP(Z;W ) ≥ SMU (Z;W ).

We now consider the transformation T introduced earlier (see Definition 4). Using
Observation 3 and Observation 4, we prove the following.

Observation 6. Let Z = {x1, . . . ,xk}. Let W 1, ...,W l be any partition of W .

WP(Z,W ) =min
i

MMU (W [Z → xi]) = min
i

MU (x∗
W [Z→xi]

,W [Z → xi])

=min
i,j

{MU (x∗
W [Z→xi]

,W [Z → xi] ∩W j)}

In particular, if we consider T (Z) = {x′
1, . . . ,x

′
k} where x′

i = x∗
W [Z→xi]

and its
induced partition on W , the expression above becomes the following.

WP(Z,W ) = min
i,j

{MU (x∗
W [Z→xi]

,W [Z → xi;T (Z) → x′
j ]}

Using this, we can now prove the following lemma:

Lemma 1. SMU (T (Z),W ) ≥ WP(Z,W )

From observation 5 and lemma 1 it follows that SMU (T (Z),W ) ≥ SMU (Z,W ),
supporting our use of T as a local search optimization strategy.

Theorem 7. Let Z∗
W be a maximin optimal recommendation set. Then Z∗

W is an opti-
mal choice set: WP(Z∗

W ,W ) = MaxWP(W ).



Robust Optimization of Recommendation Sets 421

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5  6  7  8

ut
ili

ty
 lo

ss

# queries

CSS
QIS

Fig. 2. Average utility loss with respect to the op-
timal recommendation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8

m
in

im
um

 u
til

ity

# queries

CSS
QIS

Fig. 3. Comparison of CSS and QIS. Results av-
eraged over 30 instances, with set size k=3.

4.2 Evaluation of the SMMU Criterion for Preference Elicitation

We simulated the interaction between a recommender system and a user; at each run
a new utility function is randomly sampled. At each cycle the system asks a choice
query presenting a set of items to the simulated user and the item with highest utility is
selected; this is used by the system to produce a new set of items in the next cycle. Due
to the high computation time of the exact method, we focused on CSS and QIS. 6

In figure 2 we present the “true” utility loss by comparing, after each query answer,
the utility of the optimal singleton recommendation according to MMU with utility
of the true optimal recommendation (according to the utility function of the simulated
user), as a function of the number of queries. The CSS and QIS algorithms have compa-
rable performance, both improving utility loss when more queries are asked, but stalling
approximately after 8 queries. In figure 3 we plot the minimum utility guarantee as a
function of the number of queries. It quickly increases with the first 4-5 queries, but
after that there is little improvement. While our theoretical results show that there is a
connection between the problem of generating recommendations and queries, our ex-
periments seem to indicate that maximin is generally unable to effectively elicit useful
utility information beyond the first cycles. This is due to the extremely pessimistic na-
ture of maximin and the “absorbing” nature of worst-case posterior maximin utility: in
many situations there is no query leading to an improvement of maximin in the worst
case (one needs to rely on ad-hoc tie-breaking strategies in these cases). It might be
useful to adopt a non-myopic approach, or an alternative decision criterion. Further in-
vestigation is required to make long-term preference elicitation with maximin effective
and avoiding stalling. 7

6 These were performed using larger instances, with 30 features per instance, 40 binary feature
constraints and 40 utility constraints.

7 We note that it is of course possible to use maximin as a decision criterion, while resorting to
other strategies (perhaps based on regret or on probabilistic methods) for elicitation.
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5 Discussion

In this paper we have developed a novel formalization for decision-making under util-
ity uncertainty using the maximin utility criterion. This approach provides the highest
degree of robustness, as the recommendation is guaranteed to yield the highest utility
in the worst case. We addressed the problem of generating recommendation sets intro-
ducing a new decision criterion, setwise maximin utility, that formalizes the intuition
that the best recommendation set is the one that is maximally “diverse” in a decision-
theoretic way. Adapting ideas from [1,13], we developed computational methods for
optimizing sets according to this new criterion, as well as heuristics useful for large
problem domains.

Following analogous models available for the minimax regret and Bayesian frame-
works [13,14], we showed the connection between the problem of generating optimal
recommendation sets and myopically optimal elicitation queries. Our setwise maximin
criterion (a natural extension of maximin to sets), in addition to providing robust recom-
mendation sets, also serves as a means of generating myopically optimal choice queries
(asking the user to pick his most preferred option in a set). In our experiments we evalu-
ated the performance of our optimization methods on randomly generated data, showing
that there is often value in recommending a set of options (instead of a single recom-
mendation) to the user, and that recommendation sets can be efficiently optimized in
practice. We also experimented with interactive utility elicitation, with elicitation driven
by the (set-wise) maximin optimization; however in this setting the myopic elicitation
with choice queries is not very effective (differently from [13,14]).

In this work we consider the value of a set with respect to its capacity of “covering”
the uncertainty associated with the partially known user utility function. The underlying
assumption is that the user is looking for a single item to pick or purchase, and a set is
shown to increase the chance that at least one item has high utility. We underline that
there are works[5,7] that consider recommendation sets with a different semantics (the
problem of recommending a set of options accounting for positive or negative synergies
between options). It would be interesting to consider their setting with a principled
decision-theoretic view.

We conclude with a remark about the choice of the decision criterion. Maximin is
very pessimistic; indeed expected utility may yield better recommendations in many
cases. However, when a decision maker requires guarantees on the worst-case perfor-
mance (e.g. in critical decisions with high stakes), she must be willing to sacrifice “av-
erage” utility. This is the price to pay for the (strong) worstcase guarantees of maximin.
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Appendix

Proof of Observation 5. Considering the definition of WP(Z,W ) and the equation for
SMU (Z,W ) in observation 4, we see that they are the same except that WP(Z,W ) picks a
maximizing x′ ∈ X after x∈Z has been picked. Since X includes all options, x′ can at worst
be x.

Proof of Lemma 1. Let T (Z) = {x′
1, . . . ,x

′
k} where x′

i = x∗
W [Z→xi]

. The previous observa-
tions allow to write WP and SMU compactly

WP(Z,W ) = min
i,j

[MU (x′
i,W [Z → xi, T (Z) → x′

j ])] (6)

SMU (T (Z),W ) = min
i,j

[MU (x′
j ,W [Z → xi, T (Z) → x′

j ])] (7)
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We now compare the two expressions componentwise. Consider the utility space W [Z →
xi, T (Z) → x′

j ]: if i = j then the two MU components are the same. If i �= j, consider any w ∈
W [Z → xi, T (Z) → x′

j ]. Since w ∈ W [T (Z) → x′
j ], we must have u(x′

j ;w) > u(x′
i;w).

Therefore MU (x′
j ,W [Z → xi, T (Z) → x′

j ]) ≥ MU (x′
i,W [Z → xi, T (Z) → x′

j ]). In the
expression of SMU (T (Z)) (Eq. 7), each element is no less than its correspondent in the WP(Z)

expression (Eq. 6). Thus SMU (T (Z),W ) ≥ WP(Z,W ).

Proof of Theorem 7. Suppose Z∗
W is not an optimal query set, i.e., there is some Z′ such that

WP(Z′,W ) > WP (Z∗
W ,W ). If we apply transformation T to Z′ we obtain a set T (Z′),

and by the results above we have: SMU (T (Z′),W )) ≥ WP(Z′,W ) > WP(Z∗,W ) ≥
SMU (Z∗

W ,W ). This contradicts the (setwise) maximin optimality of Z∗
W . If T (Z′) has lower

cardinality than the initial set, then a set of the original cardinality can be constructed in arbitrary
way, since MMU is montone.
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