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Jérôme Lang1 and Marija Slavkovik2
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Abstract. Several recent articles have defined and studied judgment aggregation
rules based on some minimization principle. Although some of them are defined
by analogy with some voting rules, the exact connection between these rules and
voting rules is not always obvious. We explore these connections and show how
several well-known voting rules such as the top cycle, Copeland, maximin, Slater
or ranked pairs, are recovered as specific cases of judgment aggregation rules.

1 Introduction

Judgment aggregation studies the problem of finding collective judgments that represent
a collection of individual judgments on several logically interrelated issues. Originating
from law and studied in social choice theory, it has now become clear that judgment
aggregation also relates to various fields of knowledge representation, such as belief
merging or nonmonotonic reasoning.

The literature on judgment aggregation has, until recently, focused much more on
impossibility or possibility theorems than on the study of specific rules, which departs
from the (admittedly much older) field of voting theory. However, several recent, inde-
pendent papers have started to explore the zoo of interesting, concrete judgment aggre-
gation rules, in particular [MO09, EGP12, NPP11, LPSvdT11, DP12, Die12].

Some of these rules were obviously defined by analogy with a well-known voting
rule; for instance, the so-called Young rule in [LPSvdT11], that looks for a minimum
number of agents to remove so that the resulting profile becomes majority-consistent, is
the obvious counterpart of the Young voting rule. For a few others, the analogy remains
clear, but the formal connection is less trivial to establish; as an example of such result,
[EGP12] show that the distance-based procedure proposed in [MO09] (and close to the
distance-based majoritarian merging operator proposed in [KPP02]), corresponds in
some sense to the Kemeny rule. For a few other rules, the analogy itself is not obvious.

The formal connection between judgment aggregation rules and voting rules makes
use of the preference agenda [DL07]: given a set of alternatives C, this agenda is com-
posed of propositions of the form “x is preferred to y”, where x and y are alternatives in
C; a profile corresponds to a set of individual judgments, whose consistency condition
corresponds to the transitivity of the individual votes. A nontrivial question is whether
the collective judgment set should be consistent with the transitivity constraint, or only
with the constraint expressing the existence of an undominated alternative.
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Section 2 introduces the judgment aggregation framework we are using. Section 3
gives some background on judgment aggregation rules, while Section 4 gives some
background on voting rules. Section 5 addresses the question of relations between vot-
ing and judgment aggregation rules in full detail: we define a formal way of mapping
a judgment aggregation rule into two voting rules, obtained by requiring the collective
judgment to be consistent with one constraint or the other.

It is rather intriguing to see which pairs of well-known voting rules correspond to the
same judgment aggregation rule. For instance, as we show, the Copeland rule comes to-
gether with the Slater rule, whereas the maximin rule comes together with the “ranked
pairs” rule. Section 6 discusses some implications of our results as well as further re-
search issues.

2 Judgment Aggregation: General Definitions

Let L be a set of well-formed propositional logical formulas, including � (tautology)
and⊥ (contradiction). An issue is a pair of formulasϕ,¬ϕwhereϕ ∈ L andϕ is neither
a tautology nor a contradiction. An agenda A is built up from a finite set of issues, and
has the form A = {ϕ1,¬ϕ1, . . . , ϕm,¬ϕm}. The preagenda [A] associated with A is
[A] = {ϕ1, . . . , ϕm}. A judgment on ϕ ∈ [A] is one of ϕ or ¬ϕ. A judgment set J is a
subset of A. It is complete iff for each ϕ ∈ [A], either ϕ ∈ J or ¬ϕ ∈ J .

Constraints can be specified to explicitly represent logical dependencies enforced on
agenda issues. Since we have a finite L, without loss of generality we can assume that
the constraints consist of one propositional formula (typically the conjunction of sev-
eral simpler constraints). The constraint associated to an agenda A is thus a consistent
formula Γ ∈ L. When not otherwise specified, Γ is the tautology �. Involving con-
straints in judgment aggregation has already been considered in a few places, such as
[DL08, GE13].

A judgment set J (and more generally, a set of propositional formulas) is Γ -consistent
if and only if J ∪ {Γ} � ⊥. Let D(A, Γ ) be the set of all Γ -consistent judgment sets
(for agenda A) and D(A, Γ ) ⊂ D(A, Γ ) be the set of all judgment sets that are also
complete. We omit specifying A and Γ when they are clear from the context.

A profile P = 〈J1, . . . , Jn〉 ∈ D
n(A, Γ ) is a collection of complete, Γ -consistent

individual judgment sets. Given I ⊆ {1, . . . , n}, the sub-profile PI is the collection
PI = 〈Ji | i ∈ I〉. In the whole paper (except at one place), we assume we have an odd
number n of voters.

A sub-agenda is a subset of issues from A, that is, a subset of A of the form
{ϕj ,¬ϕj | j ∈ J}. A sub-preagenda is a subset of [A]. Given a sub-agenda Y , the
projection of J on Y is J↓Y = J ∩Y . Given a profile P = 〈J1, . . . , Jn〉, the projection
of P on Y is P ↓Y = 〈J↓Y

1 , . . . , J↓Y
n 〉. An example is given in Figure 1. For ϕ ∈ A, the

set of agents in P with judgment sets that contain ϕ is N(P, ϕ) = #{i | ϕ ∈ Ji}.
An irresolute judgment aggregation rule, for n voters, is a function

FΓ : Dn → 2D \ {∅}, i.e., FΓ maps a profile of complete judgment sets to a nonempty
set of judgment sets. When Γ is omitted, i.e., when we note F instead of FΓ , we assume
that F is defined for any possible constraint Γ (F then defines a family of judgment
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

{p q r}
{p q r}
{p ¬q ¬r}
{p ¬q ¬r}
{¬p q ¬r}
{¬p q ¬r}
{¬p q ¬r}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
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3
4
5
6
7

PI

P ↓Y

PI

Fig. 1. A profile P for 7 agents for [A] = {p, q, r} and Γ = (p ∧ q) ↔ r. The grey shaded
area depicts sub-profile PI for I = {1, 2, 3, 4}, while the dotted lined area corresponds to the
projection P ↓Y for Y = {q,¬q, r,¬r}. We have, for instance, N(P, q) = 5.

aggregation rules – one for each Γ – but by a slight abuse of language we will still call
F a judgment aggregation rule).1

The majoritarian judgment set associated with profile P contains all elements of the
agenda that are supported by a majority of judgment sets in P , i.e.,

m(P ) = {ϕ ∈ A | N(P, ϕ) >
n

2
}.

A profile P is (Γ )-majority-consistent iff m(P ) is Γ -consistent. A judgment ag-
gregation rule FΓ is majority-preserving iff, for every Γ -majority-consistent profile
P ∈ D

n, F (P ) = {m(P )}.
Given a set of formulas Σ, S ⊆ Σ is a maximal Γ -consistent subset of Σ if S

is Γ -consistent and no S′ such that S ⊂ S′ ⊆ Σ is Γ -consistent; and S ⊆ Σ is a
maxcard (for “maximal cardinality”) Γ -consistent subset of Σ if S is Γ -consistent and
no S′ ⊆ Σ such that |S| < |S′| is Γ -consistent. MaxCons(m(P ), Γ ) denotes the set
of all maximal Γ -consistent subsets of m(P ). MaxCardCons(m(P ), Γ )) denotes the
maxcard set of Γ -consistent subsets of m(P ).

3 Judgment Aggregation Rules

We recall four minimization-based judgment aggregation rules. We reuse the names
from [LPSvdT11] and indicate when a rule has appeared elsewhere with a different
name. Let P = 〈J1, . . . , Jn〉 from D(A, Γ )n.

Definition 1 (Maximal and maxcard sub-agenda rules). The maximal sub-agenda
(MSA) and the maxcard sub-agenda (MCSA) rules are defined as follows:

MSAΓ (P ) = MaxCons(m(P ), Γ ), (1)

MCSAΓ (P ) = MaxCardCons(m(P ), Γ ). (2)

1 We could have opted for the more complex notation Fn,A,Γ . However, omitting n and A will
not lead to any ambiguity.
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The MSA rule is called “Condorcet admissible set”, and the MCSA “Slater rule”, in
[NPP11].

Definition 2 (Ranked agenda). Let �P be the weak order on A defined by: for all
ψ, ψ′ ∈ A, ψ �P ψ′ iffN(P, ψ) ≥ N(P, ψ′). For A = {ψ1, . . . , ψ2m} and a permuta-
tion σ of {1, . . . , 2m}, let>σ be the linear order on A defined byψσ(1) > ... > ψσ(2m).
We say that >σ is compatible with �P if ψσ(1) �P ... �P ψσ(2m). The ranked agenda
rule RAΓ is defined as J ∈ RAΓ (P ) iff there exists a permutation σ such that >σ is
compatible with �P and such that J = Jσ is obtained by the following procedure:

S := ∅; 1
for j = 1, . . . , 2m do 2

if S ∪ {ψσ(j)} is Γ -consistent, then S := S ∪ {ψσ(j)} 3
end for; 4
Jσ := S. 5

The RA rule is called by the name “leximin rule” by [NPP11].
The next rule is defined as the distance-based rule in [EGP12], “maxweight sub

agenda” rule in [LPSvdT11], “Prototype” in [MO09], “median rule” in [NPP11], and
“simple scoring rule” in [Die12] has received much more attention that the others. Its
relationship to the Kemeny rule is considered in [EGP12] (see also [EM05]).

Definition 3 (Maxweight sub-agenda rule). Let J ∈ D(A, Γ ). The maxweight sub-
agenda rule MWA is defined as 2

MWA(P ) = arg max
J∈D(A,Γ )

WP (J) where WP (J) =
∑
ϕ∈J

N(P, ϕ).

Definition 4 (Young rule). Let MSP (P ) be the set of all maxcard Γ -majority-
consistent sub-profiles PI ∈ D

|I|(A, Γ ) of P ∈ D
n(A, Γ ), namely,

MSP (P ) = {PI | there is no I ′ such that |I| < |I ′| and m(PI′) ∈ D(A, Γ )}.

The Young judgment aggregation rule is defined as

YΓ (P ) = {m(PI) | PI ∈MSP (P )}.

4 Voting Rules

Let C = {x1, . . . , xq} be a set of alternatives. An n-voter profile over C (recall that n
is assumed to be odd) is a collection V = 〈�1, . . . ,�n〉 of linear orders on C, called

2 Alternatively the rule MWA can be defined as a (Hamming) distance based rule

RdH ,
∑

(P ) = arg min
J∈D(A,Γ )

n∑

i=1

dH(Ji, J).

The equivalence between these two definitions was shown in [LPSvdT11].
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votes. An irresolute voting rule (or voting correspondence) is a function R mapping
every profile V into a nonemptyset of alternatives R(V ) ∈ 2C \ {∅}. For every pair of
alternatives (x, y) ∈ C and profile V , let nV (x, y) be the number of votes in V ranking
x above y, and let M(V ) be the majority graph associated with V , whose vertices are
C and containing edge (x, y) iff nV (x, y) >

n
2 . The alternative x ∈ C is a Condorcet

winner for V if there is an outgoing edge in M(V ) from x to every y �= x.
We now define several (irresolute) voting rules.
The Top-cycle (TC) rule maps every profile V to the set of alternatives x ⊆ C such

that for all y ∈ C \ x, there exists a path in M(V ) that goes from x to y. Equivalently,
TC(P ) is the smallest set S such that for every x ∈ S and y ∈ C \ S, we have
(x, y) ∈M(V ).

A Slater order for V is a linear order � over C maximizing the number of (x, y) s.t.
x � y iff (x, y)∈M(V ). The Slater rule maps a profile V to the set of all alternatives
that are dominating in some Slater order for M(V ).

The Copeland rule maps V to the set of alternatives maximizing the number nc(x)
of outgoing edges from x in M(V ).

The ranked pairs rule [Tid87] is defined as follows. We define first its non-neutral
version: given a tie-breaking priority, that is, a linear order ρ over {(x, y) ∈ C2, x �= y},
the linear order >ρ on {(x, y) ∈ C2, x �= y} is constructed as follows: (x, y) >ρ

(x′, y′) iff either (a) nV (x, y) > nV (x
′, y′) or (b) if nV (x, y) = nV (x

′, y′) and ρ
gives priority to (x, y) over (x′, y′). Then all pairs (x, y) are considered in sequence
according to >ρ, and we build a linear order �ρ over C starting with the pair on top of
>ρ, and iteratively adding the current pair to �ρ if it does not make it cyclic. The ranked
pairs winner for V according to ρ is the unique undominated element in �ρ. Now, x is a
winner of the neutral ranked pairs rule for V iff it is a winner of the non-neutral ranked
pairs rule for some ρ. (See [BF12] for a recent discussion on neutral and non-neutral
variants of ranked pairs.)

The maximin rule maps V to the set of alternatives that maximize

mm(x, V ) = min
y∈C\{x}

nV (x, y).

Let SY (x, V ) be the minimal number of votes whose removal from V makes x
a Condorcet winner. The Young (voting) rule maps V to the set of alternatives that
minimize SY (x, V ).

5 From Judgment Aggregation to Voting Rules

In this Section, we assume that judgment profiles contain an odd number n of individual
judgments. The reason for this assumption is that the connections to voting rules are
much easier to state, and more natural, under this assumption.

A specific type of agenda is the preference agenda associated with a set of alterna-
tives C [DL07] whose propositions are of the form xPy (“x preferred to y”).

Definition 5. The preference agenda associated with C = {x1, . . . , xq} is
AC = {xiPxj | 1 ≤ i < j ≤ q}.
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When j > i, xiPxj is not a proposition of AC , but we will write xjPxi as a short-
hand for ¬(xjPxi).
Definition 6. Let V = 〈�1, ...,�n〉 be an n-voter profile overC. With every individual
vote �i we associate the individual judgment set

J(�i) = Ji = {xPy | x �i y, for x, y ∈ C}.
The judgment aggregation profile associated with V is P (V ) = 〈J1, . . . , Jn〉.

Conversely, given a judgment set J on AC , the binary relation �J over C is defined
by: for all xi, xj ∈ C, xi �J xj if xiPxj ∈ J and xj �J xi if ¬xiPxj ∈ J .

Now we define two preference constraints: the transitivity constraint Tr and the
dominating alternative, or “winner”, constraint W .

Definition 7. We define the transitivity Tr and dominating alternative W constraints:

– Tr =
∧

i,j,k∈{1,...,m}
(
(xiPxj) ∧ (xjPxk) → (xiPxk)

)
– W =

∨
i≤m

∧
j �=i(xiPxj)

For complete judgment sets, Tr is stronger than W , therefore, any complete Tr-
consistent judgment set is also W -consistent.

Lemma 1. Let J be a judgment set on AC .

– J is Tr-consistent iff �J is acyclic;
– J is W -consistent iff �J has at least one undominated element.

The proof is almost straightforward from Definition 6: J is Tr-consistent if �J can
be completed into a transitive order, i.e., iff �J is acyclic; J is W -consistent if some
x can be made a winner by adding the missing propositions xPy, which is possible iff
some x is undominated in �J .

As a consequence of Lemma 1, any Tr-consistent judgment is also W -consistent.
Note also that �J is a linear order if and only if J is complete and Tr-consistent.

For instance, let J = {aPb, aPc, bPc, dPb, cPe, ePb}; then

�J= {(a, b), (a, c), (b, c), (d, b), (c, e), (e, b)}
J is not Tr-consistent because bPc ∧ cPe ∧ Tr |= ¬ePb (or equivalently, �J con-
tains the cycle b �J c �J e �J b). However, it is W -consistent: a and d are both
undominated in �J .

For each x ∈ C we define W (x) =
∧

y∈C,y �=x(xPy). Note that W is equivalent to∨
x∈C W (x) and that J is W (x)-consistent iff x is undominated in �J .
Since each vote �i is a linear order, the individual judgment sets Ji are complete and

consistent with Tr (and a fortiori with W ). The collective judgment will sometimes be
required to be consistent with respect to Tr and sometimes only to be consistent with
respect to W . Lemma 2 is straightforward from Definition 6.

Lemma 2. Given a voting profile V , for all x, y ∈ C, xPy is in m(P (V )) iff
(x, y) ∈M(V ).
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Proposition 1. A voting profile V has a Condorcet winner iff m(P (V )) is W -
consistent.

Proof. From Lemma 2, xPy is in m(P (V )) iff M(V ) contains (x, y). Since n is odd,
m(P (V )) contains either xiPxj or xjPxi for all i �= j, thereforem(P (V ))∪{W} � ⊥
iff there exists x ∈ C s.t. m(P (V )) contains {xPy | y �= x}, i.e., , by Lemma 2again,
iff V has a Condorcet winner.

Note that for an even n, W -consistency would be equivalent to the existence of a
weak Condorcet winner.

Definition 8. Let
Win(J) = {x | J ∪W (x) � ⊥}

Let Γ ∈ {Tr,W} and F be a judgment aggregation rule. The voting ruleRF,Γ induced
from F and Γ is defined as x ∈ RF,Γ (P (V )) if there is a J ∈ RF,Γ (P (V )) such that
x ∈ Win(J), or equivalently:

RF,Γ (P ) =
⋃

J∈FΓ (P (V ))

Win(J).

Note that J ∪ {W} � ⊥ or J ∪ {Tr} � ⊥, then Win(J) �= ∅, therefore Definition
8 is well-founded.

Thus, for every judgment aggregation rule F we have two voting rules, obtained by
requiring the collective judgment set to be acyclic, i.e., consistent with Tr, or to have a
undominated element, i.e., consistent with W .

Example 1. Let V = 〈a �1 b �1 c �1 d, b �2 c �2 a �1 d, d �3 c �3

a �3 b〉. We have P (V ) = 〈J1, J2, J3〉 with J1 = {aPb, aPc, aPd, bPc, bPd, cPd},
J2 = {bPa, bPc, bPd, cPa, cPd, aPd} and J3 = {dPa, dPb, dPc, cPa, cPb, aPb};
and we have m(P (V )) = {aPb, bPc, cPa, aPd, bPd, cPd}.

Let us choose F =MSA and Γ = Tr.
We have FTr(P (V )) = {J, J ′, J ′′}, where J = {aPb, bPc, aPd, bPd, cPd},

J ′ = {aPb, cPa, aPd, bPd, cPd} and J ′′ = {bPc, cPa, aPd, bPd, cPd}.
Now, Win(J) = {a}, Win(J ′) = {c} and Win(J ′′) = {b}.
Therefore,RMSA,Tr(P (V )) =Win(J) ∪Win(J ′) ∪Win(J ′′) = {a, b, c}.

Proposition 2.

1. RMSA,Tr = TopCycle

2. RMSA,W =

{{c} if V has a Condorcet winner c
C otherwise

Proof. We prove the first correspondence. From Lemmas 1 and 2, J ∈ MaxCons(m
(P ), T r) iff �J is a maximal acyclic sub-graph of M(V ). Let x ∈ TC(V ); then there
exists an acyclic subrelation G of M(V ) containing, for all y �= x, a path from x to y.
G can be completed into a maximal acyclic subrelation G′ of M(V ), and x is undom-
inated in G′ (because adding an edge to any y �= x would create a cycle), therefore G′

corresponds to a maximal Tr-consistent subset J of m(P (V )), consistent with W (x),
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which means that x ∈ RMSA,Tr(V ). Conversely, if there is a J ∈ RMSA,Tr(V ) such
that x ∈ Win(J), then �J is a maximal acyclic subrelation of M(V ) in which x does
not have any incoming edge. Assume x /∈ TC(V ); then there is an y such that there
is no path from x to y in M(V ). Obviously, (x, y) �∈ M(V ), therefore, since M(V )
is complete, (y, x) ∈ M(V ). Adding (y, x) to �J results in an acyclic subrelation
of M(V ) that contains �J , therefore �J is not a maximal acyclic subset of M(V ),
contradiction.

Now we prove the second correspondence. Assume there is no Condorcet winner.
Let x ∈ C. Let S(x) be the subset of m(P (V )) defined by
{yPz|z �= x, yPz ∈ m(P (V ))}. S(x) is W -consistent, because it is consistent with
W (x). Assume S(x) is not maximal: then there is some element of m(P (V )) \ S(x)
that can be added to S(x) without violating W -consistency; now, every element of
m(P (V ))\S(x) is of the form yPx. Let S′ = S(x)∪{yPx}. S′ is not consistent with
W (x). Therefore, since it is W -consistent, it must be consistent with W (z) for some
z �= x. This implies that there is no tPz ∈ S′, therefore, no tPz ∈ S(x). Now, by
construction of S(x), this means that there is no tPz ∈ m(P (V )), which implies that
z is a Condorcet winner: contradiction.

Proposition 3.

1. RMCSA,Tr = Slater
2. RMCSA,W = Copeland

Proof. For point 1, let J ∈MCSATr(P (V )), hence J ∈ MaxCardCons(m(P ), T r)
and �J is an acyclic subrelation of M(V ). Let > be a linear order extending �J . The
number of edge reversals needed to obtain > from �J is |m(P (V )) \ J |.
This number is minimal iff J has a maximal cardinality. Consequently,> is a Slater or-
der for V . Conversely, let > be a Slater order for V and let
J = {xPy | x > y and xPy ∈ m(P (V ))}. Because > is a linear order, J is Tr-
consistent. Moreover, |m(P (V )) \ J | is the number of edge reversals needed to ob-
tain > from M(V ). Since |m(P (V )) \ J | is minimal, |J | is maximal and therefore
J ∈ MCSATr(P (V )). This one-to-one correspondence between Slater orders for V
and maxcard acyclic subgraphs of P (V ) allows us to conclude.

For point 2, let J ∈ MaxCardCons(m(P ),W ). From J ∪ {W} � ⊥ it follows
that there exists a x ∈ C s.t. for every y ∈ C, yPx �∈ J . For every y ∈ C, consider
z ∈ C, z �= x, such that yPz ∈ m(P (V )). Adding yPz to J results in a judgment set
which is still W -consistent, therefore the maximumW -consistent subsets of m(P (V ))
are of the form Jx = m(P (V )) \ {yPx, y �= x} for some x ∈ C, and such a judgment
set Jx is a maxcard W -consistent subset of m(P (V )) iff |{y | xPy ∈ m(P (V ))}| is
maximal, i.e., using Lemma 2, iff x ∈ Copeland(V ).

Example 2. Let V be such that M(V ) = {(a,b),(a,c),(b,c),(b,d),(c,d),(d,a)}, i.e.,
m(P (V )) = {aPb, aPc, bPc, bPd, cPd, dPa}. The only maxcard Tr-consistent sub-
set of m(P (V )) is J = {aPb, aPc, bPc, bPd, cPd}, and Win(J) = {a}; a is also the
only Slater winner for P . Now, m(P (V )) has two maxcard W -consistent subsets: J
and J ′ = {aPc, bPc, bPd, cPd, dPa};Win(J ′) = {b}; a and b are also the Copeland
winners for V .
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Proposition 4.

1. RRA,Tr = ranked pairs.
2. RRA,W = maximin.

Proof. The proof of point (1) is simple, due to the similarity of the definitions of ranked
pairs and RA, and observing that adding xPy to a current Tr-consistent judgment set
without violating Tr corresponds to adding (x, y) to a current acyclic graph without cre-
ating a cycle. The proof of point (2) is more interesting. The candidate x is a maximin
winner if it maximizes mm(x, V ), or equivalently, if it minimizes maxy nV (y, x). Let
β = minxmaxy nV (y, x). (Note that we have β ≥ 1

2 when there is no Condorcet win-
ner.) Assume that x is a Maximin winner for V . In order to show that x ∈ RRA,W (V ),
we have to construct a linear order �=�σ on {xPy | (x, y) ∈ C2, x �= y}, com-
patible with �P , such that the judgment set Jσ obtained by following �σ is such that
x ∈ Win(Jσ). Let �σ be as follows:

1. the first propositions of �σ are all uPv such that nV (u, v) > β, with ties broken
in an arbitrary manner;

2. the propositions that follow in �σ are all yPz such that nV (y, z) = β and z �= x;
3. the following propositions are all yPx such that nV (y, x) = β;
4. the rest of �σ does not matter.

We now follow step by step the construction of Jσ . During step (1) – corresponding to
considering one by one the proposition in (1) above – we consider all the propositions
uPv such that nV (u, v) > β, and all are added to S, because the resulting judgment
set is consistent with W (x), and a fortiori with W (otherwise it would be the case
that for all y, nV (y, x) > β, contradicting minx maxy nV (y, x) = β). During step
(2) all propositions yPz such that nV (y, z) = β and z �= x are considered one by
one, and they are all added to S, because the resulting judgment set is, each time,
consistent with W (x) and a fortiori with W . After steps (1) and (2), due to the fact
that β = minx maxy nV (y, x), S contains some yPz for all z �= x. Step (3) considers
all yPx such that nV (y, x) = β, and does not add them to S, because this would make
it inconsistent with W . Finally, the propositions considered in Step (4) are not of the
form yPx. Therefore, x ∈Win(Jσ) and x ∈ RRA,W (V ).

Conversely, let x ∈ RRA,W (V ). Let > be the order refining �P such that the
judgment set obtained is J , with x ∈ Win(J). First, all formulas uPv such that
N(P, uPv) > β are added to S without creating any inconsistency with W . Then,
> must consider all propositions zPy such that N(P, zPy) = β and y �= x, and
add them all to S; at this point, for any y �= x, a proposition zPy has been consid-
ered and added to S, otherwise there would be an y such that for no z it holds that
nV (z, y) ≥ β, which would contradict β = minx maxy nV (y, x). Therefore, no propo-
sitions zPx will be added to S (or else W would be violated). Therefore, x is such that
minx maxy nV (y, x) ≤ β, hence minx maxy nV (y, x) = β: x is a maximin winner.



Judgment Aggregation Rules and Voting Rules 239

Example 3. Let n = 9 and V such that nV is as follows:

nV a b c d
a − 6 2 4
b 3 − 5 6
c 7 4 − 2
d 5 3 7 −

(3)

The weak order �P starts with cPa and dPc (tied), then aPb and bPd, then bPc
and dPa, etc. Applying RA with Γ = W starts by adding cPa and dPc, whatever
the choice of the linear order �σ refining �P . Next, there is a choice between aPb or
bPd. If aPb is considered first (that is, if aPb �σ bPd), then it is added to S, bPd
is not (because it would violate W -consistency), and then all other propositions except
aPd, bPd and cPd are added. The other choice is similar, replacing d by b. Therefore,
RA(P (V ),W ) contains the two judgment sets

J1 = {dPa, dPB, dPc, aPb, bPa, aPc, cPa, bPc, cPb}
and

J2 = {bPa, bPc, bPd, aPc, cPa, aPd, dPa, cPd, dPa},
with Win(J1) = d and Win(J2) = b. We check that b and d are also the maximin
winners for V .

Applying RA with Γ =W first adds cPa and dPc. Next, there is a choice between
aPb or bPd. If aPb is considered first, then it is added to S, bPd is not, then all other
propositions except aPd, bPd and cPd are added.

For MWA, it is already known that the choice of the transitivity constraint leads to
the Kemeny rule, i.e., RMWA,Tr = Kemeny. The proof can be found in [EGP12].

The choice of the W constraint leads to an unknown voting rule, for which, interest-
ingly, the winners maximizes the sum of the Borda score and a second term: if SB(P, x)
is the Borda score of P for profile P , RMWA,W is the voting rule defined by

SMWA,W (x) = SB(P, x) +
∑

y �=z �=x

max(NP (y, z), NP (z, y))

and
RMWA,W (P ) = argmax

x∈X
SMWA,W (x).

We give in Appendix an example of winner determination for this rule, which shows
that it differs from Borda.

The connection between the Young judgment aggregation rule and the Young voting
rule is less clear that is seems at first glance: because the removal of judgments (and
votes) can make the number of judgments (votes) even, the voting rule obtained from
Y together with W is not Young (even for n odd), but a weak version of Young: the
weak Young voting rule is defined as the voting rule, except that we look for a minimal
number of votes whose removal in V makes x a weak Condorcet winner (where x is a
weak Condorcet winner if for any y �= x, at least half of the voters prefer x to y).
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Proposition 5. RY oung,W =WeakY oung.

Proof. Removing a minimal number of judgments from P (V ) so as to make it consis-
tent is equivalent to removing a minimal number of votes from V so that the majority
graph contains an undominated outcome, i.e., so that there exists a weak Condorcet
winner.

RY oung,Tr does not appear to be a known voting rule. It consists of the dominating can-
didates in maximum cardinality sub-profiles of P (V ) whose majoritarian aggregation
is acyclic.

Another judgment aggregation rule defined in [LPSvdT11] is the distance-based rule
RdH ,max. Because the voting rules we obtain from it are not known voting rules, we
omit the corresponding results.

6 Discussion

We have obtained a number of correspondences between judgment aggregation rules
and pairs of voting rules. It is especially interesting to see which pairs come together.
We summarize the results here.

RF,Γ F =MSA F =MCSA F =MWA F = RA F = Y
Γ = Tr Top Cycle Slater Kemeny ranked pairs weak Young
Γ =W Copeland maximin

Note that if the assumption that profiles have an odd number of judgments sets is
relaxed, then the voting rules obtained are generally be weak versions of the usual voting
rule, strict majority being replaced by weak majority. In particular, RMCSA,W would
be Copeland0, where ties count as much as victories.

What do these results tell us? After all, these judgment aggregation rules have not
been widely studied yet (although some of them have been introduced independently
in several papers), and one may argue that they were defined in such a way that their
specialization to the preference agenda correspond to such or such voting rule, and one
may advocate that this makes these correspondence results rather pointless. This is an
important point: while the premise is not entirely false (at least for some of the rules,
such as RA), we would strongly disagree with the conclusion. The definition and study
of judgment aggregation rules is only starting, and knowing that a judgment aggrega-
tion rule specializes to a well-known voting rules (sometimes, to two well-known voting
rules) is a hint that the judgment aggregation rule is a natural generalization of interest-
ing voting rules, which is a first justification for studying it. Also, it gives insights about
the properties it may satisfy. In particular, a challenging question is the axiomatization
of judgment aggregation rules, and for this, a good start could be to start with the ax-
iomatization (when it exists) of the voting rule(s) into which the judgment aggregation
rule degenerates.

In our correspondence results, a voting rule is defined from two elements: a judgment
aggregation operator and a constraint. This is reminiscent of a recent research stream
on the distance rationalizability of voting rules (see [Bai87, Kla05a, Kla05b, MN08]
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for early works and [EFS09, EFS12] for a systematic study). There, one seeks to define
voting rules via a distance between profiles and a consensus class. In some sense, our
judgment aggregation rules play the role of distances whereas the constraint plays the
role of the consensus class. More precisely, the Tr and W constraint more or less cor-
respond to, respectively, the strong unanimity and Condorcet consensus classes, with a
noticeable difference: the definition of a consensus class bears on a profile, whereas a
constraint bears on an (individual or collective) judgment set (this may explains why
we don’t have any constraint that corresponds to the unanimity and majority consensus
classes). This is consistent with the fact that the two rules we obtain by letting Γ = W
are also rationalizable for the Condorcet consensus class (see [Kla05b] for Copeland
and [EFS09] for maximin).

The discussion about distance rationalizability leads to a very intriguing question.
One of the key questions in [EFS12] is a systematic study of which rules can be axiom-
atized by a given consensus class or a given distance. They not only show that some
rules are indeed axiomatizable via a given consensus class or a given distance function,
but also that some rules are not. This leads us to ask the following question: which vot-
ing rules are definable from a judgment aggregation rule by specializing to the prefer-
ence agenda and imposing the Tr or the W constraint? Asked this way, this question is
trivial; the judgment aggregation rule can be defined such as its application to the prefer-
ence agenda behaves exactly like the voting rule we started from. However, suppose we
ask the judgment aggregation rule to be neutral with respect to propositional symbols,
which means that if σ is a permutation of the set of propositional symbols, Jσ the judg-
ment set obtained by applying σ in every ϕ ∈ J and P (V )σ = {Jσ|J ∈ P (V )}, then
F (P (V )σ) = F (P (V ))σ . (Note that this is the case of all the rules we study here.)
Then the question becomes highly nontrivial, and we suspect that some well-known
rules will not be definable this way.

Finally, as argued three paragraphs above, the definition of judgment aggregation
rules which specialize to well-known voting rules (and thereby give them a justifica-
tion) is a bottom-up process. A subsequent top-down process would consists in apply-
ing these judgment aggregation rules (obtained as a generalization from voting rules) to
other specific agendas and/or with other constraints. We give here two examples. A first
example would consist in keeping the preference agenda and to consider constraints that
are intermediate between Tr andW , such as the judgment set being transitive on the top

k candidates; for instance, k = 2 this would be
∨

x �=y

(∧
z �=x xPz ∧

∧
z �=x,y yPz

)
. A

second example would consist in keeping an preference agenda of the form
{xPy, x, y ∈ X}, but with a very different meaning, where xPy means that x and
y are in the same equivalence class, and choose Γ as the expression of an equivalence
relation; this process will give interesting rules for aggregating equivalence relations.
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Appendix

RMWA,W

Let X = {a, b, c, d, e}, n = 25, and let V be the profile containing: 3 votes abcde, 2
votes bcade, 2 votes cabde, 2 votes edabc, 2 votes edbca, 2 votes edcab, 2 votes adebc,
2 votes deabc, 2 votes eadbc, 2 votes cbade, 2 votes cbdea, 2 votes cbead. The weighted
majority graph associated with V is:

nV a b c d e
a − 15 11 15 11
b 10 − 15 13 13
c 14 10 − 13 13
d 10 12 12 − 14
e 14 12 12 11 −

(4)

The Borda scores are respectively 52 for a (Borda winner), 51 for b, 50 for c, 48 for
d and 49 for e.

For all x ∈ X , let

SMWA,W (x) = SB(P, x) +
∑

y �=z �=x

max(NP (y, z), NP (z, y)).

We get
SMWA,W (a) = 52 + 81 = 133;
SMWA,W (b) = 51 + 82 = 133;
SMWA,W (c) = 50 + 84 = 134;
SMWA,W (d) = 48 + 83 = 131;
SMWA,W (e) = 49 + 85 = 134.

The co-winners are c and e.
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