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Preface

This volume contains the proceedings of ADT 2013, the Third International
Conference on Algorithmic Decision Theory held at ULB (Université Libre de
Bruxelles), Belgium, November 12–14, 2013.

ADT seeks to bring together researchers and practitioners coming from di-
verse areas such as articial intelligence, database systems, operations research,
decision theory, discrete mathematics, game theory, multiagent systems, compu-
tational social choice, and theoretical computer science in order to improve the
theory and practice of modern decision support and automation systems.

ADT provides a multi-disciplinary forum for sharing knowledge in these ar-
eas with a special focus on algorithmic issues in decision theory. The two first
International Conference on Algorithmic Decision Theory (ADT 2009, 2011)
brought together researchers and practitioners from diverse areas of computer
science, economics, and operations research from around the globe, with pro-
ceedings published in LNAI 5783 and LNAI 6992. ADT 2013 sought to continue
this tradition and presented 33 technical research papers concerning preferences
in reasoning and decision making, uncertainty and robustness in decision mak-
ing, multi-criteria decision analysis and optimization, collective decision making,
learning and knowledge extraction for decision support.

There were more than 70 submissions of abstracts, and finally 60 full papers.
Each submission was reviewed by at least two Program Committee members.
The committee decided to accept 33 papers for the proceedings. We also accepted
six oral presentations not submitted to the proceedings. In addition to the con-
tributed papers, the conference proposed various invited talks including talks
by Matthias Ehrgott (Lancaster University) on “Multiobjective Optimisation,”
Itzhak Gilboa (Tel Aviv University and HEC Paris) on “Decision Making Under
Uncertainty,” and Arkadii Slinko (University of Auckland) on “Social Choice.”

We wish to thank all authors who submitted papers to this conference, as
well as the Program Committee members and external reviewers for their in-
volvement in the reviewing process. ADT 2013 was made possible thanks to the
support of CNRS (the French national research center) through the Interna-
tional Research Group Algodec, FNRS (Research foundation of the Federation
Wallonia-Brussels, Belgium), EURO (Association of European Operational Re-
search Societies), LIP6, LAMSADE, ULB, and UMONS (Université de Mons).

We would also like to acknowledge the support of Easychair in the manage-
ment of submitted papers and in the preparation of the proceedings.

July 17, 2013 Patrice Perny
Marc Pirlot

Alexis Touskiàs
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Léa Deleris, Stéphane Deparis, Bogdan Sacaleanu, and Lamia Tounsi

Voting on Actions with Uncertain Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 167
Ulle Endriss

Restricted Manipulation in Iterative Voting: Condorcet Efficiency and
Borda Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Umberto Grandi, Andrea Loreggia, Francesca Rossi,
Kristen Brent Venable, and Toby Walsh

Controller Compilation and Compression for Resource Constrained
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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Two Agents Competing for a Shared Machine

Alessandro Agnetis1, Gaia Nicosia2, Andrea Pacifici3, and Ulrich Pferschy4

1 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Università degli Studi di Siena, Italy

agnetis@dii.unisi.it
2 Dipartimento di Ingegneria, Università degli studi “Roma Tre”, Italy

nicosia@dia.uniroma3.it
3 Dipartimento di Ingegneria Civile e Ingegneria Informatica,

Università degli Studi di Roma “Tor Vergata”, Italy
pacifici@disp.uniroma2.it

4 Department of Statistics and Operations Research, University of Graz, Austria
pferschy@uni-graz.at

Abstract. In this paper we address a deterministic scheduling problem
in which two agents compete for the usage of a single machine. The
agents submit their tasks in successive steps to an external coordinator,
who sequences them according to a known priority rule. We introduce the
problem for three different shop configurations, namely when the agents’
parts are transferred to the machine through two distinct linear conveyor
belts, when they are transferred through circular conveyor belts, and
when parts can be freely picked from the two agents’ buffer. We consider
the problem from different perspectives. First, we look at the problem
from a centralized point of view as a bicriteria optimization problem and
characterize the set of Pareto optimal solutions from the computational
complexity perspective. Then, we address the problem from one agent’s
point of view. In particular, we propose algorithms suggesting to an agent
how to sequence its own tasks in order to optimize its own objective
function, regardless of the other agents objectives.

Keywords: scheduling, multi-agent optimization, bicriteria
optimization.

1 Introduction

Classical scheduling problems deal with situations in which a set of tasks has to
be processed on some processing resource. In addition, in two-agent scheduling
problems there are two agents, each task belongs to only one agent, and each
agent is interested in optimizing his/her own performance index. Although these
problems can be viewed as a special case of bicriteria scheduling problems [7],
their specific properties and applications have spurred a considerable amount of
research since the seminal work by Agnetis et al. [1] and Baker and Smith [2].

In this paper we consider a new problem: There are two agents, A and B,
each owning a set of nonpreemptive tasks that require a single machine to be

P. Perny, M. Pirlot, and A. Tsoukiàs (Eds.): ADT 2013, LNAI 8176, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Agnetis et al.

processed. There is also one coordinator (e.g., the machine owner), who is in-
terested in maximizing the machine throughput, which can be defined as the
number of processed tasks per time unit. The coordinator gives precedence to
shorter tasks, among those that are promoted for execution. More precisely, to
regulate access to the machine, the coordinator defines a selection mechanism,
consisting of the iterative application of the following steps.

1. Each agent submits one of its tasks.
2. The coordinator selects the shortest between submitted tasks for processing1.

Each repetition of the above steps is a round, and the selected task is referred
to as the winner of the round. The two steps are repeated until all tasks of one
agent have been processed (the remaining tasks of the other agent are appended
thereafter).

ai1

ai2ai3ai4

bi4 bi3 bi2 bi1 machine

(a) Linear conveyors. Task bi1 is the next
B task in the schedule.

ai1

machine

bi4

bi3

bi2

bi1

ai2

ai3

ai4

(b) Circular conveyors. Task bi1 is moved
to the end of the queue.

Fig. 1. Layout of different conveyor types. Agents submit tasks ai1 < bi1: ai1 is selected.

For the task submitted in each round, we consider three distinct situations,
which may be interpreted as corresponding to different shop configurations [6]:

Linear conveyor: Two linear conveyor belts, one for each agent, transport
parts to the machine. In this configuration, each agent sequences the parts
on the conveyor, implying that, at each round, one of the two candidate tasks
is the loser of the preceding round. In other words, each task is submitted
for possible processing, in the given order, until it wins.

Circular conveyor: Two circular conveyor belts, one for each agent, transport
parts to the machine. In this configuration, each agent sequences the parts
on the conveyor, however differently from the previous scenario, since the
two belts move simultaneously, at each round the unselected task is moved
on and therefore placed at the end of the (current) sequence.

Flexible processing: In this scenario, there are no queues at the machine and
any part from the two agents’ buffers can be picked up and submitted for
possible processing. Hence, in this case, the agents are free to choose any
available task for submission at each round, independently from the outcome
of the previous round.

1 Ties are broken by giving preference to one of the agents, e.g. agent A.



Two Agents Competing for a Shared Machine 3

We denote by shop(fA, fB) the above problem, where shop ∈
{line, circ, f lexi} refers to one of the three above described shop configurations,
and fA and fB are the two agents’ objective functions.

We consider the problem from different perspectives.

Centralized perspective. This analysis aims at characterizing the set of
Pareto optimal feasible schedules in terms of size and computational
complexity.

Agent perspective. Considering an agent (say, B), its strategy consists in de-
ciding which task to submit at each round, taking into account its own
objective function. As in [3–5] we consider two different settings concerning
the information available to agent B.

Offline. Agent B knows in advance the length of each task of the op-
ponent, as well as its submission sequence. In this case, B wants to deter-
mine how to sequence its tasks under such an advantageous asymmetry of
information.

Online. Agent B knows the length of each task of the opponent (agent A),
but B has no information at all on A’s strategy. In this case, B may want
to select a strategy that minimizes its solution cost in the worst possible
case, i.e., for any strategy of A. This corresponds to what is usually called
minimax strategy in game theory.

Also, in this context one is interested in assessing the performance of
some classical single-agent sequencing rules in the two-agent setting.

In this paper we consider that the agents pursue the minimization of the most
commonly used objective functions in scheduling problems, i.e., makespan, total
flow time and total weighted flow time.

2 Problem Formulation and Notation

Let A and B denote the two agents. Each agent owns a set of n nonpreemptive
tasks to be performed on a single machine. Tasks have nonnegative deterministic
processing times a1 ≤ a2 ≤ . . . ≤ an for agentA (A-tasks) and b1 ≤ b2 ≤ . . . ≤ bn
for agent B (B-tasks). All processing times are known to both agents.

Each agent chooses a strategy, i.e., a submission sequence of its tasks.
The application of the coordinator selection mechanism to the submitted se-
quences results in a schedule σ. Each agent wants to optimize its own ob-
jective function, which only depends on the completion times of its tasks:
fX(σ) = fX(CX

1 (σ), . . . , CX
n (σ)), where CX

i (σ) is the completion time of task
i of agent X (i = 1, . . . , n, X = A,B) in σ, i.e. the point in time when task i
is completely processed. In this paper, we will consider objective function pairs
(fA, fB) consisting of makespan (i.e. the latest completion time over all tasks of
A, resp. B), total flow time (i.e. the sum over all completion times), and total
weighted flow time, where the completion time of each task i is weighted by a
relevance factor wi.

The machine can process only one task at a time and each agent wants to
optimize its own cost function. The decision process is divided into 2n rounds
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in which each agent submits one task — if available — for possible processing.
The shortest between the two submitted tasks is selected and appended at the
end of the current schedule, which is initially empty.

At the beginning, each agent decides which task to submit for the first round.
Then, the winning agent submits a new task for the second round, while the
losing task may be subject to specific constraints depending on the shop config-
uration (see Section 1). The process goes on until all tasks are scheduled. For a
given shop configuration we call a schedule feasible, if it can be obtained through
the application of such mechanism in that particular setting.

2.1 Our Contribution

The first shop configuration we consider is the linear conveyor (Section 3). In
this scenario, we provide results on the complexity of the problem from a cen-
tralized perspective. In particular, when the agents’ objective is the makespan
minimization, we show that there is only one Pareto optimal feasible sched-
ule, while when minimizing the total flow time the number of Pareto optimal
solutions becomes exponential. In the latter case, we also prove that it is NP-
complete to decide whether a feasible solution achieving given objectives for the
two agents exists (Section 3.1). Then, in Section 3.2 we deal with the design of
algorithms suggesting to an agent which task to submit in each round in order
to optimize its objective function. In particular, standard greedy algorithms are
optimal when minimizing makespan or total flow time, while a more complex lo-
cal search algorithm is needed when the objective is the weighted total flow time
minimization. In Section 4 some negative results concerning the performances
of simple natural strategies are briefly reported for the circular conveyor case.
Moreover, we provide a lower bound on the competitive ratio of any single agent
online strategy aiming at makespan minimization. Finally, in Section 5 we sum-
marize results on the flexible processing scenario. From the centralized point of
view, these results are similar to those of the linear conveyor case, whereas from
a single agent perspective the problem of designing optimal strategies becomes
harder. In particular, we limit ourselves to the analysis of the performance of
the well-known SPT submission list.

3 Linear Conveyors

3.1 Centralized Perspective

In this section, we address the problem of characterizing the set P of Pareto
optimal solutions in the case of linear conveyors for various objective functions.

If both agents want to minimize their makespan, it is easy to observe that,
since the largest task can never win against any opponent’s task, there is only
one Pareto optimal solution, precisely the one in which the largest task is played
in the first round. As a consequence, the other agent wins the first n rounds
(regardless of its submission sequence).
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Consider now problem line(
∑

CA
j ,
∑

CB
j ): It is possible to show that (i) there

are exponentially many Pareto optimal solutions and (ii) it is NP-complete to
recognize a Pareto optimal solution.

Regarding the characterization of Pareto optimal solutions, it is easy to note
that, when both agents submit their tasks in SPT order, i.e. in increasing order
of processing times, the outcome is a Pareto optimal solution. Note that because
of the selection mechanism, this results in an overall SPT schedule, which is well-
known to be the schedule minimizing

∑
j C

A
j +

∑
j C

B
j . Consider the following

instance POexp where M is a very large number and each agent owns n = 2m
tasks. Agent A’s tasks are a2i−1 = 1 +M i, a2i = 4 + M i, while B’s tasks are
b2i−1 = 2 +M i and b2i = 3 +M i, for i = 1, . . . ,m. It is possible to show that,
for instance POexp, there exist at least 2m nondominated schedules. Hence, the
following result holds.

Theorem 1. There can be exponentially many Pareto optimal solutions for
problem line(

∑
CA

j ,
∑

CB
j ).

Consider now the problem of deciding whether a certain given objective for
each agent can be achieved. Formally, given two positive values PA and PB, we
want to know whether there exists a feasible schedule σ∗ such that

∑
CA

j (σ∗) ≤
PA and

∑
CB

j (σ∗) ≤ PB . We refer to the latter problem as Recognition.
It is possible to reduce Even-Odd Partition to our problem, hence the

following result (which trivially extends to line(
∑

wA
j C

A
j ,
∑

wB
j CB

j )) holds.

Theorem 2. Recognition for line(
∑

CA
j ,
∑

CB
j ) is NP-complete.

3.2 Single Agent Perspective

We now focus our attention to the design of algorithms suggesting to an agent,
say agent B, which task to submit at each round, in order to optimize its objec-
tive function.

Minimization of Makespan or Total Flow Time
When B’s objective is the minimization of the makespan or sum of completion
times, finding an optimal strategy forB is trivial. Since in every round the shorter
between the two candidate tasks wins, there is no advantage in deviating from
the SPT sequence. More precisely, independently from A’s submission sequence,
by standard pairwise interchange arguments, it is easy to show that an optimal
solution for agent B is attained by submitting tasks in SPT order. Hence, SPT
is both a minimax strategy and an optimal offline algorithm for agent B for
problems line(fA, CB

max) and line(fA,
∑

CB
j ) for any objective fA.

This argument does not hold anymore for the minimization of the weighted
sum of completion times, for which different aspects will be considered in the
subsequent section.

Minimization of Weighted Total Flow Time: Offline Case
In the following, we assume that the sequence of tasks played by agent A is
fixed and known by agent B, i.e. we are in the offline scenario. Hereafter, we
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propose an algorithm that builds a sequence minimizing B’s objective, for a
given sequence of submissions of A.

Scheduling all the tasks ofB in SPT order has the advantage that the tasks are
scheduled as early as possible which was beneficial for the previous objectives.
However weights of tasks are not taken into account. It is well known that in
a single agent problem sorting tasks by the WSPT rule, i.e. in nonincreasing
order of ratios wj/bj, minimizes

∑
j wjCj . However, sequencing the tasks of B

in WSPT order may result in a schedule that is not optimal for B due to the
presence of the A tasks, which may delay the heavier (and possibly long) tasks.

First observe that, given the submission sequences of A and B, the resulting
schedule can be represented by a sequence of blocks: 〈A1, B1, A2, B2, . . . Aq, Bq〉

An A-block Ai (resp., B-block Bj) is a maximal subsequence of consecutive A-
tasks (resp., B-tasks). Each A-block starts with some task a′ which wins against
some task b′, i.e. a′ ≤ b′. Since b′ remains submitted until it wins, the A-block
may contain a number of additional tasks also winning against b′. The block
ends when A submits an item losing against b′, which now starts a new B-block.
Therefore, the first task of each block is longer than all the tasks in the preceding
block. The first and the last blocks A1 and Bq are possibly empty.

Also note that by an exchange argument a solution minimizing B’s total
weighted completion time is such that, in each block of B, all the tasks of the
block are in nonincreasing order of the ratio wi/bi, i.e. in WSPT order.

Denote as BlockWspt the schedule built as follows: B submits its tasks in
SPT order (while those of A are submitted in the given order). Let the resulting
schedule be arranged in the blocks 〈A1, B1, A2, B2, . . . Aq, Bq〉. Sort the tasks
within each block of B in WSPT order. Note that this schedule is feasible. In
fact, by construction, all tasks of a block Bi have shorter processing times than
the first task of block Ai+1 and longer than all tasks of block Ai.

Let us define the density ρΔ of a sequence Δ of consecutive tasks as the ratio
between the total weight of B’s tasks in Δ and the total processing time of all
tasks in Δ (including A’s tasks), that is

ρΔ =
wΔ

tΔ
=

∑
j∈Δ∩B wj∑

j∈Δ∩A aj +
∑

j∈Δ∩B bj
.

Clearly, if Δ is a single B-task x, then ρx = wx/bx.

A key property of an optimal solution is that if two B-tasks are not in relative
WSPT order, then the task with higher density cannot come earlier because of
its large processing time. This can be proved through the following lemma.

Lemma 3. In a schedule σ1, let x and y be two tasks such that ρx > ρy, x
belongs to block Bj, y to Bi with j > i, and bx is smaller than the first A-task in
block Ai+1, i.e., x might feasibly be scheduled in block Bi. Let σ2 be the schedule
in which, with respect to σ1, x is moved before y and let σ3 be the schedule in
which y is moved after x. Then either σ2 or σ3 is better than σ1 (cf. Figure 2).
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Fig. 2. Pictorial representation of schedules σ1, σ2, and σ3 of Lemma 3

Proof. Let Fi indicate the objective function value of schedule σi, i = 1, 2, 3.
It is quite easy to see that the relation between the different objective function
values is as follows.

F2 = F1 + (wy + wΔ)bx − wx(by + tΔ) (1)

F3 = F1 + wy(bx + tΔ)− (wx + wΔ)by (2)

Assume first that F3 > F1, we must show that F2 < F1. By (2), wy(bx+ tΔ)−
(wx + wΔ)by > 0 and hence, since wybx − wxby < 0, it must be wytΔ > wΔby.
Therefore, ρΔ < ρy < ρx and hence,

F2 − F1 = wybx − wxby︸ ︷︷ ︸
<0

+wΔbx − wxtΔ︸ ︷︷ ︸
<0

< 0.

On the contrary, if F2 > F1, then we show that F3 < F1. In fact, by (1),
(wy +wΔ)bx −wx(by + tΔ) > 0 and since wybx −wxby < 0, then ρΔ > ρx > ρy.
As a consequence,

F3 − F1 = wybx − wxby︸ ︷︷ ︸
<0

+wytΔ − wΔby︸ ︷︷ ︸
<0

< 0.

The thesis follows. �

The local search algorithm (Move) that we present hereafter starts from the
BlockWspt schedule and iteratively “moves” one task from its position to one
later in the schedule if this operation results in an improvement of B’s objective.
For instance, suppose we move a task y of agent B in position i to a later
position j in the schedule. Denote by Δ the set of consecutive tasks between
positions i and j. Then the change of the objective function of agent B is given
by the quantity wytΔ − wΔby, which is smaller than 0 if ρΔ > ρy. If task y can
be beneficially relocated to more than one position, e.g. positions P and Q in
Figure 3(a), then by doing some easy calculations, we observe that position Q
is better than P if the following holds:

wΔQ − wΔP

tΔQ − tΔP

>
wy

by
= ρy. (3)
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Algorithm 1. Algorithm of agent B for problem line(fA,
∑

wjC
B
j ) offline case

Move

1: Compute the BlockWspt schedule.
2: For all tasks x in increasing order of ρx (reverse WSPT order)

Try to move x from its current block Bh to block B� , � > h, where B� is the block
maximizing the improvement of B’s objective, if an improvement is possible.

3: Return the resulting schedule σ.

This relation can be used to establish the best position for moving y. Note that
when a task y is moved from its current position to a different block B�, then
y’s best position within B� corresponds to a WSPT sequencing of the tasks in
the block.

Observe that σ is built in O(n) moving steps, where each step costs O(n) by
checking all possible insertion positions each in constant time. The next propo-
sition is useful for reducing the computational costs of Move.

Proposition 4. In Move algorithm, if it is not beneficial to move the last task
of a B-block to a later position, then this applies also for the tasks preceding it.

Proof. Consider three feasible schedules where the B-blocks are WSPT ordered
and that are identical but for the positions of two B-tasks, x and y, with

ρx ≥ ρy, (4)

and a piece Δ consisting of B and A tasks. The first schedule σ1 sequences
(in order) x, y, and Δ consecutively. The second schedule σ2 sequences y, Δ,
and x consecutively. The third schedule σ3 sequences Δ first and then x and y,
consecutively. The remainder of the schedule is identical for the three schedules.
In the following, wΔ and tΔ indicate the total weight of B-tasks in the sub-
schedule Δ and its length, respectively.

The thesis is equivalent to show that if schedule σ2 is better than σ1, then σ3

is better than σ2. In other words, if moving the second last task x of a B block
is beneficial, then it is even better to postpone the last two tasks of a block. If
Fi is the total weighted completion time of B tasks in schedule σi, i = 1, 2, 3,
then it is easy to see that:

F2 = F1 − (wΔ + wy)bx + wx(tΔ + by) (5)

F3 = F2 − (wΔ + wx)by + wy(tΔ + bx). (6)

Suppose then that F2 improves upon F1 but, by contradiction, that F3 is strictly
worse than F2:

wΔbx + wybx ≥ wxtΔ + wxby (7)

wΔby + wxby < wytΔ + wybx. (8)
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Since, from (4), wxby ≥ wybx, from (7) we obtain wΔbx ≥ wxtΔ and from (8)
we obtain wΔby < wytΔ which imply

wy

by
> wΔ

tΔ
≥ wx

bx
. This contradicts (4), and

the thesis follows. �

Proposition 4 together with Lemma 3 have a strong impact on the compu-
tational costs of Move. In fact, (i) if during the execution of the algorithm no
beneficial move is possible for a certain task y, then it is not beneficial to move
any other task preceding y in the same block; (ii) whenever a certain task y is
moved to a block B�, then all tasks in B� preceding y shall not be considered in
the successive steps of the algorithm because they would certainly not benefit
from a move in the schedule. Hence, the number of tasks to be considered for a
beneficial move can be substantially reduced although we cannot get below the
O(n2) running time complexity.

Theorem 5. Given the sequence of submissions of agent A, algorithm Move

finds an optimal solution of problem line(fA,
∑

wjC
B
j ) for agent B.

Proof. In the following we show that if Move moves a task y to its best position
at a certain iteration, then it is never beneficial to move it again in a successive
step. This implies that each task is moved at most once by Move and that it is
moved to the optimal position. Hence, Move finds an optimal solution for B.

First, we observe that by construction each task belonging to a block Bi in
the BlockWspt schedule, in an optimal schedule will either be in the same
block or in a block Bj succeeding block Bi, i.e. with j > i. Let us refer to the
blocks of the optimal schedule as optimal blocks.

In what follows we show that whenever a task is moved in Move, then it is
moved to its optimal block. We will do so by observing that whenever a task y
is moved to its best position at a certain iteration of Move, then even if several
changes in the structure of the schedule occur after y has been moved, then it
is never beneficial to move y again in a successive step.

To prove the thesis, we assume that after y is relocated some other task x,
with ρx > ρy, is moved and we analyze how the relocation of task x affects the
contribution of y to the objective function. In particular, we distinguish two cases
depending on the position of x with respect to y in the BlockWspt schedule:

Case 1. y is moved to a certain position and then some other task x located
after y in the BlockWspt schedule is moved.

Assume first that, when moving y, the best improvement in the objective
function is attained in a position Q located after x in the BlockWspt schedule
(see Figure 3(a)). Due to Lemma 3 if y is moved to position Q, then it is never
beneficial to have x in any position R after Q in the schedule. On the other
hand, if x is moved to any position before Q in the schedule, the density of ΔQ

does not change. So, in both cases the block containing Q is the optimal block
for y.

Assume now that Move moves task y to position P corresponding to the best
improvement in the objective function (see Figure 3(a)). Assume also that, in a
later step of the algorithm, x is moved to position R. It can be shown that in this
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Fig. 3. Illustration of cases 1 and 2 in the proof of Theorem 5

case it not beneficial to move again task y. In fact, position Q is not beneficial
for y due to Lemma 3, while any position after R is worse for y than the current
position P . In fact, the densities of intervals ΔP and ΔR do not change when
moving x to R, so recalling (3) P remains the best choice for y.

Case 2. y is moved to a certain position and then some other task x located
before y in the BlockWspt schedule is moved. Let Q be the position in which
y is moved by Move (that is the position with the best improvement in the
objective function). Similarly to Case 1, consider different possibilities for x. If
x is moved in any position before the position of task y in the BlockWspt

schedule, then this change in the schedule does not affect y’s contribution to the
objective function.

If x is moved in any position before P (see Figure 3(b)), then one can show
that this does not affect the y contribution to the objective function. Due to

(3), if Q is better than P for y, then
wΔQ

−wΔP

tΔQ
−tΔP

>
wy

by
. So, if x is moved in a

position before P , both tΔQ and tΔP and their total weights increase by the
same quantity and hence the best position for task y remains Q.

If x is moved to any position between P and Q, it is easy to observe that
Q remains the best position for y. In fact, due to Lemma 3, y could not be in
position P nor in its original block. On the other hand, R remains worse than
Q since equation (3) holds when applied to R and Q. Finally, note that due to
Lemma 3, it is never beneficial to move x after position Q.

In conclusion, whenever a task y is moved it is placed in its optimal block and
this proves the theorem. �
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We have observed before that SPT is a minimax strategy of agent B for
problems line(fA, CB

max) and line(fA,
∑

CB
j ). For the case of

∑
j wjC

B
j we can

characterize the worst-case situation for B as follows.

Lemma 6. For any strategy σB played by B, the maximum value of B’s objec-
tive

∑
wjC

B
j is attained if A plays its tasks in SPT order.

Now Lemma 6 implies that a minimax strategy of B for problem
line(fA,

∑
wjC

B
j ) can be attained by assuming that A submits its tasks in

SPT order and applying the offline algorithm Move for B.

4 Circular Conveyors

In the circular conveyor setting solving our problem becomes much harder. In
fact, since losing tasks are moved to the end of the sequence, the outcome of
the process in the first n rounds “freezes” the sequence in the last n rounds.
This consideration is particularly interesting in the on-line setting when devising
strategies for agent B. The cyclic conveyor scenario can be seen as a mixture of
settings: the first n rounds are indeed online, i.e, one has to see what agent A
does, but then all the remaining n rounds are fixed. In the following, we provide
a few negative results but the most important questions pertaining the circular
conveyor setting remain indeed open.

We start with the minimization of the makespan, i.e., problem
circ(CA

max, C
B
max). In this case, even determining the best offline strategy for

agent B against any given strategy of agent A is a non trivial task and remains
an open problem. In particular, it can be proven that it could be beneficial for B
to voluntarily lose a round (even if B could win) to obtain a better matching in
a successive stage. Hence, no greedy-type algorithm can be optimal. This applies
even when A submits its tasks in SPT order. Similar negative results hold for
the online strategies. Hereafter, we provide a lower bound on the competitive
ratio of any online strategy.

Theorem 7. No on-line strategy of agent B against an arbitrary strat-
egy of agent A can have a competitive ratio smaller than 3

2 for problem
circ(CA

max, C
B
max).

Proof. To prove the theorem we consider an instance with n = 4 jobs for each
agent and

a1 < a2 < b1 < b2 < ε�M < a3 < b3 < b4 < a4.

where ε and M are suitably given parameters.
We will consider two strategies of agent A: In both cases A starts by submit-

ting 〈a1, a2〉, thus winning, in the first two rounds. In rounds 3 and 4, strategy
S1 submits 〈a3, a4〉 while strategy S2 submits 〈a4, a3〉. Given the first two items
a1 and a2, agent B is forced to lose and may decide to do so with, say b1 and b3
while keeping b2 and b4 to win against a3 and a4.

In Case 1, B submits 〈b3, b1〉 losing the first two rounds. Then A plays strat-
egy S1 and B can win the subsequent two rounds with 〈b2, b4〉. After that the
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sequences for both agents are fixed and B completes the processing of its jobs
with a makespan CB

max = PB + a1 + a2 + a3, as depicted in the following table
(boxed items refer to winning jobs).

Rounds 1 2 3 4 5 6 7 8
A a1 a2 a3 a4 a3 a4 a4 a4

B b3 b1 b2 b4 b3 b1 b3

However, an optimal response for B against strategy S1 would play 〈b1, b3〉 in
the first two rounds and therefore obtain a makespan CB

max = PB + a1 + a2.

Rounds 1 2 3 4 5 6 7 8

BOPT b1 b3 b2 b4 b1 b3

In Case 2, B submits 〈b1, b3〉 in the first two rounds but then A plays strategy
S2, and we have exactly the same values for the actual and optimal makespan
of agent B.

In conclusion we get a worst-case competitive ratio of PB+a1+a2+a3

PB+a1+a2
= 4ε+3M

4ε+2M

which also gives a lower bound of 3
2 . �

Note that in the proof above, agent B may or may not know the submission
of A in each round in advance. So, the theorem can be extended to prove that
even in the case of partial information, B is not able to devise an optimal re-
sponse strategy. These negative results easily extend to the minimization of total
completion times.

5 Flexible Processing

We now consider a different shop configuration that allows the agents to freely
choose any available task for submission at each round. In the linear conveyor
case a strategy of an agent is completely described by a submission list. In the
flexible processing case this is not true anymore. In fact, when a task loses a
round it is not mandatory to resubmit it again in the next round: this increased
level of flexibility makes it possible for an agent to adopt what we call an adaptive
strategy. In particular any agent strategy can be described by an algorithm (not
by a submission list).

In this scenario, with increased degree of freedom, finding an algorithm for
a single agent against its opponent becomes a harder task. In fact, our results
here are limited to the performance analysis of a natural submission strategy.
However, from a centralized point of view, things remain roughly the same.

5.1 Centralized Perspective

Similarly to the linear conveyor case, in the flexible processing setting we have:

– flexi(CA
max, C

B
max): there is a single PO solution. The owner of the longest

job cannot avoid finishing this job last.
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– flexi(
∑

CA
j ,
∑

CB
j ): the recognition version of this problem is NP-

complete. In fact, consider an instance of flexi(
∑

CA
j ≤WA,

∑
CB

j ≤WB)
where A and B have n + 1 tasks each and the processing times of the first
n A-tasks are equal to the n items of Partition while those of the first n
B-tasks are (almost) equal to their A counterparts (e.g., ai+ε = bi for small
ε.) an+1 and bn+1 are very large. Since the subsequences ai, bi or bi, ai are
both feasible—the n+ 1-th task can be used to lose against any of the first
n tasks of the opponent—we may use a proof analogous to [1, Theorem 9.2].

– The latter result implies also the NP-completeness of the recognition version
of flexi(

∑
wA

j C
A
j ,
∑

wB
j CB

j ).

5.2 Single Agent Perspective

Differently from the centralized perspective, most of the results for the linear
conveyor architecture do not extend to the flexible processing scenario. It can
be shown that when B submits its tasks in SPT order, in general, this is not
optimal even when B wants to minimize its makespan due to the possible erratic
behavior of A. Hereafter, we report a result on the worst-case performance of an
SPT strategy for B in which losing tasks are submitted until they win as in the
linear conveyor case.

Theorem 8. The SPT strategy for B against an arbitrary adaptive strategy of
A has performance bounds r(SPT ), with

– r(SPT ) = n for problem flexi(fA, CB
max);

– r(SPT ) = n for problem flexi(fA,
∑

CB
j );

– n ≤ r(SPT ) ≤ 2n for problem flexi(fA,
∑

wB
j C

B
j ).

6 Future Research

We have studied a two agent scheduling problem in different shop configurations.
Most of the results concern the linear conveyor case. However, from a mathemat-
ical point of view the circular conveyor scenario poses an intriguing challenge
which we only started to consider. Also for the flexible processing case it would
be interesting to construct and analyze more advanced algorithms. A first in-
teresting problem to be addressed is the design and analysis of an algorithm for
the minimization of weighted total flow time, which —differently from the SPT
heuristic here considered— explicitly takes weights into account.

Acknowledgments. Ulrich Pferschy was supported by the Austrian Science
Fund (FWF) [P 23829-N13].
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Abstract. In some multi-criteria decision making problems, it is more
convenient to express the decision maker preferences in bipolar scales.
In such cases, the bipolar Choquet integral with respect to bi-capacities
was introduced. In this paper, we address the problem of eliciting a bipo-
lar Choquet integral with respect to a 2-additive bi-capacity. We assume
that we are given a set of examples with (i) their scores distribution in
regard to several criteria and (ii) their overall scores. We propose two
types of optimization problems that allow identifying the parameters of
a 2-additive bi-capacity such that the inferred bipolar Choquet integral
is consistent with the given examples as much as possible. Furthermore,
since the elicitation process we study has many relationships with prob-
lems in statistical machine learning, we also present the links between
our models and concepts developed in the latter field.

Keywords: 2-additive bi-capacity identification, Bipolar Choquet inte-
gral, Preference elicitation.

1 Introduction

Multi-criteria decision making (MCDM) aims at representing the preferences of
a decision maker (DM) over a set of options (or alternatives) and in regard to
several criteria. It then seeks to formalize the DM’s decision process through
mathematical tools in order to help him make decisions over the set of alterna-
tives. The DM’s decision process is assumed to be guided by the importance and
the relationships he wants to take into account regarding the criteria. Concern-
ing the preferences representations, one possible model is the Multi-Attribute
Utility Theory (MAUT) which assumes that each attribute (or criterion) pro-
vides a utility value (or score) over the set of alternatives. Then, an aggregation
function is used to combine, for each option, its scores distribution (or profile)
in an overall score. The latter global utility values are then employed to make
decisions. There are many types of aggregation functions to model a decision pro-
cess. The Choquet integral has been proved to be a versatile tool to construct
overall scores (see for example [1–4]). This aggregation function is intimately
based on the concept of a capacity (or fuzzy measure). In particular, it assumes
that partial utilities belong to non-negative or unipolar scales.

P. Perny, M. Pirlot, and A. Tsoukiàs (Eds.): ADT 2013, LNAI 8176, pp. 15–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Unipolar scales are not always appropriate to represent the DM’s preferences
(see the motivating example in [5]). In some problems, bipolar scales are more
convenient. This type of scales is typically composed of a negative, a positive and
a neutral part which respectively allow representing a negative, a positive and
a neutral affect towards an option. To apply the Choquet integral in the case of
bipolar scales, the bipolar Choquet integral (BCI) was introduced in [6] and [7].
In this paper, we particularly focus on BCI which use the concept of a bi-capacity
(BC) introduced in [6] and which was further studied in [8, 9] and in [10, 11].
The BCI typically requires the DM to set 3n − 1 values where n is the number
of attributes. When n exceeds some units, it is impossible for the DM to set all
parameters of his decision model. In order to better cope with this combinatorial
burden, the BCI with respect to (w.r.t.) a 2-additive bi-capacity (2A-BC) was
introduced in the following papers [10, 12]. The 2-additivity property implies
that only the interactions between at most two criteria are taken into account in
a BC, and it enables reducing the number of parameters from 3n− 1 to 2n2 +1.
This has facilitated the use of this aggregation function in practice.

Even though there have been many papers studying 2A-BC, most of them
have focused on theoretical aspects. In this contribution, we study the practical
problem of identifying the parameters of a 2A-BC on the basis of information
provided by the DM. This problem is also known as preference elicitation. There
are different contexts in which we can proceed to the elicitation of the preference
model of a DM. In our case, we assume that the DM provides the bipolar scores
for a subset of (real or fictitious) options w.r.t. all criteria of the decision problem.
In addition, he provides the overall bipolar scores of the same set of alternatives.
These evaluated examples constitute the only data we have at our disposal. Then,
the elicitation model consists in inferring the parameters of a 2A-BC such that
the associated BCI is consistent with the preferences given by the DM on these
examples. We propose optimization models that address this kind of preference
elicitation problems.

Eliciting preference models is a research topic that has been studied by many
researchers (see for example [13, 14]). However, the BCI w.r.t. 2A-BC has not
been studied very much so far. To our knowledge, the only paper that addressed
this exact problem is [15]. Yet, in the latter paper, the authors assumed an
elicitation process in which the DM was asked to provide cardinal information
on trinary actions. This setting is different from the one considered in this paper.
Our approach is also in line with the work detailed in [14]1 about the preference
elicitation using unipolar Choquet integrals with mathematical programming.
In this latter work, the authors also assume that the only information provided
are examples evaluated by the DM.

The elicitation process we deal with has many relationships with the problems
addressed in statistical machine learning. The interconnections between prefer-
ence elicitation on the one hand and machine learning on the other hand were
highlighted in [16]. There has been a growing interest for the last years about
cross-fertilizing these two domains by studying how the concepts developed in

1 And with the papers cited therein.
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one field can be applied in the other one. In line with this research topic, we also
discuss the links between the concepts of these two domains that our models
involve.

The rest of the paper is organized as follows. We recall in section 2 some
basic definitions about BC and the properties of 2A-BC by using the bipolar
Möbius transform defined by [10]. We then propose in section 3 two identification
methods of a 2A-BC using linear programming and quadratic programming. In
order to illustrate our proposals, we apply the different methods to a numerical
example. Next, in section 4, we underline the relationships of our approaches
with concepts developed in the field of machine learning. We finally conclude
this paper and sketch some future works in section 5.

2 Bi-capacities and Bipolar Choquet Integrals

Let us denote by N = {1, . . . , n} a finite set of n criteria and X = X1×· · ·×Xn

the set of possible alternatives, where X1, . . . , Xn represent the attributes. For
all i ∈ N , the function ui : Xi → R is called a utility function. Given an element
x = (x1, . . . , xn), we denote by U(x) = (u1(x1), . . . , un(xn)), the element’s profile
or its scores distribution. We will often write ij, ijk instead of {i, j} and {i, j, k}
respectively.

2.1 2-Additive Bi-capacities

Let us denote by 2N := {S ⊆ N} the set of subsets of N and 3N := {(A,B) ∈
2N×2N : A∩B = ∅} the set of couples of subsets ofN with an empty intersection.
We define on 3N the following relation �, ∀(A1, A2), (B1, B2) ∈ 3N :

(A1, A2) � (B1, B2)⇔ [A1 ⊆ B1 and B2 ⊆ A2]

Definition 1 (Bi-capacity (BC) [9], [5]). A function ν : 3N → R is a BC
on 3N if it satisfies the following two conditions :

ν(∅, ∅) = 0 (1)

∀(A1, A2), (B1, B2) ∈ 3N : [(A1, A2) � (B1, B2)⇒ ν(A1, A2) ≤ ν(B1, B2)] (2)

Note that (2) is called the monotonicity condition.
In addition, a BC is said to be normalized if it satisfies :

ν(N, ∅) = 1 and ν(∅, N) = −1 (3)

A BC is also said to be additive if the following relation holds :

∀(A1, A2) ∈ 3N : ν(A1, A2) =
∑
i∈A1

ν(i, ∅) +
∑
j∈A2

ν(∅, j) (4)
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An additive BC assumes that the attributes are independent from each other
and this kind of BC boils down to linear decision models.

In order to better formalize some of the properties of BC, the following defi-
nition of a (bipolar) Möbius transform2 of a BC was proposed.

Definition 2 (Bipolar Möbius Transform of a Bi-capacity [10, 17]). Let
ν be a BC on 3N . The bipolar Möbius transform of ν is a set function b : 3N → R
defined for any (A1, A2) ∈ 3N by :

b(A1, A2) :=
∑

B1 ⊆ A1
B2 ⊆ A2

(−1)|A1\B1|+|A2\B2|ν(B1, B2) (5)

=
∑

(∅,A2)�(B1,B2)�(A1,∅)
(−1)|A1\B1|+|A2\B2|ν(B1, B2)

Conversely, for any (A1, A2) ∈ 3N , it holds that :

ν(A1, A2) :=
∑

B1 ⊆ A1
B2 ⊆ A2

b(B1, B2). (6)

Note that using b, (1) is equivalent to :

b(∅, ∅) = 0 (7)

BC on 3N generally require 3n − 1 parameters. In order to reduce this num-
ber, [8, 9] and [5] proposed the concept of k-additivity of a BC. This concept
translates as follows in terms of the bipolar Möbius transform.

Proposition 1 ([17]). Given a positive integer k < n, a BC ν is k-additive if
and only if the two following conditions are satisfied :

∀(A1, A2) ∈ 3N : |A1 ∪ A2| > k ⇒ b(A1, A2) = 0 (8)

∃(A1, A2) ∈ 3N : |A1 ∪ A2| = k ∧ b(A1, A2) �= 0 (9)

To avoid a heavy notation, we use the following shorthands for all i, j ∈ N ,
i �= j :

• νi| := ν(i, ∅), ν|j := ν(∅, j), νi|j := ν(i, j), νij| := ν(ij, ∅), ν|ij := ν(∅, ij),
• bi| := b(i, ∅), b|j := b(∅, j), bi|j := b(i, j), bij| := b(ij, ∅), b|ij := b(∅, ij).

Whenever we use i and j together, it always means that they are different.
Using the above definitions, we propose the following properties of a 2A-BC

ν and its bipolar Möbius transform b :

2 Note that [12] was the first paper to define the Möbius transform of a BC. Their
definition is different from the one given in [10]. However, there is a one-to-one
correspondence between the two Möbius transform definitions. This equivalence was
established in [11].
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Proposition 2.

1. Let ν be a 2A-BC and b its bipolar Möbius transform. For any (A1, A2) ∈ 3N

we have :

ν(A1, A2) =
∑
i∈A1

bi| +
∑
j∈A2

b|j +
∑

i ∈ A1
j ∈ A2

bi|j +
∑

{i,j}⊆A1

bij| +
∑

{i,j}⊆A2

b|ij (10)

2. If the coefficients bi|, b|j, bi|j, bij|, b|ij are given for all i, j ∈ N , then the
necessary and sufficient conditions to get a 2A-BC generated by (10) are :

∀(A,B) ∈ 3N , ∀k ∈ A : bk| +
∑
j∈B

bk|j +
∑

i∈A\k
bik| ≥ 0 (11)

∀(A,B) ∈ 3N , ∀k ∈ A : b|k +
∑
j∈B

bj|k +
∑

i∈A\k
b|ik ≤ 0 (12)

3. The inequalities (11) and (12) can be respectively reformulated in terms of
the BC ν as follows :

∀(A,B) ∈ 3N ,∀k ∈ A :
∑
j∈B

νk|j +
∑

i∈A\k
νik| ≥ (|B|+ |A|−2)νk|+

∑
j∈B

ν|j +
∑

i∈A\k
νi|

∀(A,B) ∈ 3N ,∀k ∈ A :
∑
j∈B

νj|k +
∑

i∈A\k
ν|ik ≤ (|B|+ |A|−2)ν|k +

∑
j∈B

νj| +
∑

i∈A\k
ν|i

Proof. (Sketch of)

1. Because ν is 2-additive, the proof of (10) is given by using the relation (6)
between ν and b.

2. The proof of the second point is based on the expression of ν(A1, A2) given
in (10) and on these equivalent monotonicity properties (which are easy to
check) : ∀(A,B) ∈ 3N and ∀A ⊆ A′,
(a) ν(A,B) ≤ ν(A′, B)⇔ {∀k ∈ A : ν(A \ k,B) ≤ ν(A,B)};
(b) ν(B,A′) ≤ ν(B,A)⇔ {∀k ∈ A : ν(B,A) ≤ ν(B,A \ k)}.

3. These inequalities are obtained departing from (11) and (12) and by using
the relation (6) between ν and b.

��

Hence, according to proposition 2 and (10), the computation of a 2A-BC ν
only requires the values of b on the elements (i, ∅), (∅, i), (i, j), (ij, ∅), (∅, ij),
∀i, j ∈ N . However, in order to satisfy the monotonicity condition given in (2) a
2A-BC should also satisfy the inequalities (11) and (12). Moreover, we have the
following conditions in order to obtain a normalized 2A-BC :

νN | =
∑
i∈N

bi| +
∑

{i,j}⊆N

bij| = 1 and ν|N =
∑
i∈N

b|i +
∑

{i,j}⊆N

b|ij = −1 (13)
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2.2 Bipolar Choquet Integral w.r.t. a 2-Additive Bi-capacity

Definition 3 (Bipolar Choquet integral (BCI) (w.r.t. a BC) [9]). Let ν
be a BC on 3N and x = (x1, . . . , xn) ∈ Rn. The expression of the BCI of x w.r.t.
ν is given by

Cν(x) :=

n∑
i=1

|xσ(i)|
[
ν(Nσ(i)∩N+, Nσ(i)∩N−)−ν(Nσ(i+1)∩N+, Nσ(i+1)∩N−)

]
(14)

where N+ = {i ∈ N |xi ≥ 0}, N− = N \ N+, Nσ(i) := {σ(i), . . . , σ(n)} and σ
is a permutation on N such that |xσ(i)| ≤ |xσ(i+1)| ≤ . . . ≤ |xσ(n)|.

We also have the following equivalent expression of the BCI w.r.t. b, given by
[11] :

Cb(x) =
∑

(A1,A2)∈3N

b(A1, A2)
( ∧

i∈A1

x+
i ∧

∧
j∈A2

x−
j

)
(15)

where

{
x+
i = xi if xi > 0

x+
i = 0 if xi ≤ 0

and

{
x−
i = −xi if xi < 0

x−
i = 0 if xi ≥ 0

.

Note that Cν(x) = Cb(x) and the subscript is meant to clarify whether it is
ν or b which is used in the calculation. Besides, the BCI of x w.r.t. a 2A-BC
represented by b reduces to :

Cb(x) =
n∑

i=1

bi| x+
i +

n∑
i=1

b|i x−
i +

n∑
i,j=1

bi|j (x+
i ∧ x−

j ) (16)

+
∑

{i,j}⊆N

bij| (x+
i ∧ x+

j ) +
∑

{i,j}⊆N

b|ij (x−
i ∧ x−

j )

We have introduced the basic tools related to 2A-BC. In the next section, we
focus on the problem of identifying a 2A-BC.

3 Identifying a 2-Additive Bi-capacity

We establish mathematical programming problems that enable the identification
of a 2A-BC. First, we detail the type of elicitation process we are concerned
with. Next, we state all the constraints that allow the representation of a 2A-
BC. Then, we define objective functions that reflect the quality of the identified
2A-BC in regard to the information provided by the DM. We end this section
by illustrating the results obtained with the proposed models on a numerical
example.

3.1 Elicitation Process

In MCDM, there are two types of paradigms for elicitation processes : direct and
indirect methods. In the former case, the DM is able to provide the parameters
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of his decision model directly. However, when using a BCI w.r.t. a BC, the
direct method is infeasible if the number of attributes n exceeds some units
(typically 4), since a BC requires 3n − 1 values to be set. We argued in the
introduction that in order to reduce this complexity, 2A-BC were introduced.
Nevertheless, this latter case cannot be applied in practice neither since, even if
the number of parameters reduces to 2n2+1, the complexity remains very high.
Moreover, a BC is a too complex aggregation operator to ensure that a DM will
understand the influence of each parameter on the final result. Even with more
simple aggregation rules, it has been shown that there is no clear link between
the parameters values provided by the DM and the way these values are used in
the decision model [18].

Therefore, we follow the indirect paradigm. In that case, the DM does not give
information about his decision model, instead, he provides information on the
outputs of his decision model. In our setting, we suppose that the DM gives for
some examples x ∈ X ′ ⊆ X , their partial utilities for all criteria (U(x)) and also
their overall scores (S(x)). We then assume, that there is no further interaction
with the DM. Given the judged examples, we have to infer a decision model based
on the BCI w.r.t. a 2A-BC. The estimated BCI should predict overall scores,
Cb(x), that are consistent with the preference relations provided by the DM. In
other words, if S(x) ≥ S(x′), which means that x is preferred or equivalent to
x′, then the inferred decision model should also satisfy Cb(x) ≥ Cb(x′).

However, it might happen that this condition is not fulfilled for some pairs
(x, x′). There are two main reasons for such situations : either the judgements
provided by the DM himself are not consistent or the restriction of the decision
model to 2A-BC does not allow fitting the DM preferences correctly. In MCDM,
inconsistencies are usually treated in an interaction loop with the DM. It is
assumed that the DM preferences can change in order to fix these incoherences
when they are encountered. In our setting, the interaction loop is not permitted.
Consequently, in order to cope with incoherences, we propose two versions of our
models : the first one does not deal with inconsistencies and thus will return that
the problem is infeasible if any incoherence is encountered whereas the second
one allows inconsistencies and attempts to infer a model that minimizes errors
due to such situations as much as possible.

3.2 Mathematical Programming Problems

We propose two types of optimization problems to identify a 2A-BC in the
context we have described in the previous paragraph. We base our work on some
of the elicitation methods detailed in [14] in the case of unipolar Choquet integral.
Before introducing the objective functions of our optimization problems, we start
by enumerating the different sets of constraints that need to be satisfied.

We represent the unknown 2A-BC ν, via its associated bipolar Möbius trans-
form b. There are two reasons for this. Firstly, equations (5) and (6) state that it
is equivalent to work with either ν or b. Secondly, since we restrict the BC to be
2-additive and since this property, given in (8) and (9), is defined in terms of b,
it is thus necessary to use the latter representation in our optimization problems.
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However, we do not take (9) into account in our set of constraints. This equation
ensures that ν is exactly 2-additive and by discarding it, we explicitly allow b to
be either 2-additive or simply additive. To summarize this first set of constraints,
we need to integrate the following relations in our optimization problems in order
to have a normalized 2A-BC in terms of b : (7), (8) with k = 2, (11), (12) and (13).

Next, we have to take into account the preference relations provided by the
DM on the subset of examples X ′. If S(x) ≥ S(x′) then the BCI should be in
concordance with this inequality. Accordingly, we have the following second set
of constraints :

∀x, x′ ∈ X ′, x �= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc (17)

where δc is a non-negative indifference threshold which is a parameter of the
model. Note that this set of constraints does not allow incoherences. Indeed, the
inferred 2A-BC b could not be flexible enough to satisfy Cb(x) − Cb(x′) ≥ δc for
some pairs (x, x′). In that case the optimization problem is infeasible.

As discussed previously, in order to overcome this drawback, we transform
the previous constraints as follows :

∀x, x′ ∈ X ′, x �= x′ : S(x) − S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc − ξxx′ (18)

where ξxx′ are non-negative slack variables which allow inconsistencies. However,
we want ξxx′ to be has low as possible and thus there should be a term in
the objective function seeking to minimize

∑
x,x′:S(x)≥S(x′) ξxx′ . Note that when

the latter term is null, it means that the inferred model does not produce any
incoherence. On the contrary, if for some pairs (x, x′), ξxx′ > δc then the optimal
solution has not been able to satisfy the preference relations on these pairs.

The third set of constraints is related to the computation of the BCI. Indeed,
in (17) or (18), we need to calculate Cb(x) for each x ∈ X ′. As a consequence, we
need to add the constraints provided by (16) in our models. Note that despite the
fact that the latter equations involve the minimum function, we can pre-compute
the terms (x±

i ∧ x±
j ) since they are parameters of the models. Consequently, the

constraints (16) are linear equations.
The fourth set of constraints is optional. It simply consists in adding upper

and lower bounds for the BCI values :

∀x ∈ X ′ : lb ≤ Cb(x) ≤ ub (19)

where lb and ub are two real parameters.
After having introduced the constraints, we now focus on the different objec-

tive functions and the resulting optimization problems.
We propose two kinds of optimization models. In the first approach, we extend

the maximum split method introduced in [19]. This model assumes the following
constraints in place of (17) :

∀x, x′ ∈ X ′, x �= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc + ε (20)

where ε is a variable of the problem unlike δc which is a parameter. The objective
function consists in maximizing ε. In other words, we want to maximize the
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difference (split) Cν(x)−Cν(x′) for any x �= x′ ∈ X ′ such that S(x) ≥ S(x′). We
refer to the following optimization problem as the split method : max ε subject
to (7), (8) with k = 2, (11), (12), (13), (16), (19) and (20).

However, the split model does not address incoherences. Hence, as explained
previously, we propose the split f lex approach which uses the following third set
of constraints instead of (20) :

∀x, x′ ∈ X ′, x �= x′ : S(x)− S(x′) ≥ 0⇒ Cb(x)− Cb(x′) ≥ δc + ε− ξxx′ (21)

More formally, the split f lex model is defined by : max ε−
∑

x,x′:S(x)≥S(x′) ξxx′

subject to (7), (8) with k = 2, (11), (12), (13), (16), (19) and (21). Note that the
split and split f lex optimization problems have linear objective functions and
linear constraints. Therefore, there are linear programs.

We now present the second type of model for 2A-BC identification. This
approach is a regression-like method and yields to quadratic programs. We
propose to minimize the sum of square errors between S and Cb which re-
sults in the following objective function : min

∑
x,x′∈X′(S(x) − Cb(x))2. Ac-

cordingly, we named rss (for Residual Sum of Square) the following problem :
min

∑
x,x′∈X′(S(x)−Cb(x))2 subject to (7), (8) with k = 2, (11), (12), (13), (16)

and (17). Similarly to split, the rss method does not permit incoherences.
As a consequence, we introduce a flexible version of rss that we call rss flex

and which is given by : min
∑

x,x′∈X′(S(x)−Cb(x))2 +
∑

x,x′:S(x)≥S(x′) ξxx′ sub-

ject to (7), (8) with k = 2, (11), (12), (13), (16) and (18).

3.3 An Illustrative Example

We applied the four different mathematical programming problems defined pre-
viously on a numerical example taken from [14]. It concerns the grades (utilities)
obtained by 7 students (alternatives) for n = 5 subjects (attributes) : statistics
(S), probability (P), economics (E), management (M), and English (En). The
grades globally belong to [0, 20] but in this example, the scores only vary in
[11, 18]. In our perspective, we transformed them in order to have a bipolar scale
by simply applying a translation of −14 to the original scores. Therefore, in this
bipolar scale, the scores belong to [−3, 4]. Suppose that a student is delivered
his diploma with honors providing that his overall grade is greater or equal to
14. Hence, the translated scores in the bipolar scale allow us to deal with the
decision problem of delivering honors as follows : the student is attributed the
honors if and only if his overall grade in the bipolar scale is non-negative.

The performance table is given in Table 1 (a). In Table 1 (b), the first column
S corresponds to the (translated) overall grades as given in [14]. Then, in the
subsequent columns of Table 1 (b), we show the different estimated scores. Note
that for all models we set δc = 0.5, lb = −3 and ub = 4. For split and split f lex,
even if the inferred overall scores are not the same, the two solutions are actually
equivalent since they give the same objective function value (the problem is not
strictly concave). However, in terms of decisions, the sign of the overall grade
for c is not the same for the two models. This example exhibits some limits
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Table 1. (a) Performance table; (b) Results obtained with the original (translated)
overall score S; (c) Results obtained with the modified overall score S′ that presents
inconsistencies

Student S P E M En

a 4 -3 -3 -3 4
b 4 -3 4 -3 -3
c -3 -3 4 -3 4
d 4 4 -3 -3 -3
e -3 -3 4 4 -3
f -3 -3 4 -3 -3
g -3 -3 -3 -3 4

S

1
0.5
0

-0.5
-1
-1.5
-2

split

1.68
1.04
0.41
-0.23
-0.86
-1.5
-2.14

split
flex

1.02
0.38
-0.25
-0.89
-1.53
-2.16
-2.8

rss

1
0.5
0

-0.5
-1
-1.5
-2

rss
flex

1
0.5
0

-0.5
-1
-1.5
-2

S′

1
0.5
0

-0.5
-1
-1.5
0.5

split

.

.

.

.

.

.

.

split
flex

0.22
-0.28
-0.78
-1.28
-1.78
-2.28
-0.78

rss

.

.

.

.

.

.

.

rss
flex

1.12
0.62
0.12
-0.5
-1
-1.5
0.12

(a) (b) (c)

of this type of model. Besides, we precise that in split f lex outputs, all slack
variables ξxx′ are null which means that there is no inconsistency. Regarding rss
and rss flex, we obtain a null objective function value and in the latter case,
the slack variables are also all null as expected.

To illustrate the case with incoherences, we modified the overall score S into
S′. We simply change the global grade of g from −2 to 0.5. This new score is an
example of inconsistent preferences provided by the DM since his decision model
is not monotonic in that case. Indeed, if we compare the profiles of c and g in
regard to their overall score S′(c) and S′(g), we can observe that g is preferred
to c while the scores distribution of the former student is Pareto dominated by
the latter one. This situation is not consistent with a rational decision. Table 1
(c) presents the estimated BCI. As expected, split and rss returned an infeasible
problem. On the contrary, split f lex and rss flex provide interesting results. In
both cases, we precise that ξgc = 0.5 while the other slack variables are null.

We present in Table 2 the elicited bipolar Möbius transform b for each opti-
mization problem when S is the targeted overall grades vector. In Table 3, it is
the estimated b for the split f lex and rss flex methods when S′ is put in place
of S, which are shown. Notice that an empty cell in these two tables means that
the solver returned a null value for the corresponding elements.

We show the bipolar Möbius transform b and not the 2A-BC ν because the
latter set function requires 35 − 1 = 242 non-null values which represents a too
large table. In contrast, because ν is 2-additive, we have at most 2× 52+1 = 51
values for its related bipolar Möbius transform b.

The utility of presenting Tables 2 and 3, is that they allow one to check that
the constraints (7), (8) with k = 2, (11), (12), (13) are indeed satisfied. We thus
obtain a 2A-BC. However, it is difficult to interpret the bipolar Möbius transform
b with regard to the underlying elicited preference model. Moreover, from this
illustrative example, it is not straightforward to understand the impact of taking
into account inconsistencies either when we compare the regular and the flex
versions of split and rss models in Table 2, or when we look at the obtained b
for S in Table 2 and the one estimated for S′ in Table 3. Accordingly, further
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Table 2. Values of the elicited bipolar Möbius transform b when S is the overall score

split split flex rss rss flex

A1 A2 bA1|A2
bA2|A1

bA1|A2
bA2|A1

bA1|A2
bA2|A1

bA1|A2
bA2|A1

∅ ∅
∅ S 0.26 -0.145 -0.039 0.077 0.056
∅ P -0.077 0.038 -0.056
∅ E 0.145 -0.038 0.077 0.056
∅ M -0.08 0.038
∅ En -0.066 -0.039 0.008 -0.056

∅ SP -0.56 -0.33 -0.24
∅ SE -0.076 0.11 -0.004 0.11 0.19
∅ SM -0.21 -0.008
∅ SEn -0.29 0.48 0.43 0.039 0.47 0.53
∅ PE -0.29 -0.43
∅ PM -0.03
∅ PEn -0.008
∅ EM -0.42 -0.23 0.004
∅ EEn 0.26 0.32 -0.14 0.23 -0.056 0.17
∅ MEn -0.17

S P
S E -0.07 -0.039 -0.056
S M 0.145 0.004 -0.02
S En 0.039 0.039 0.056
P E
P M 0.039
P En 0.038 0.056
E M 0.004
E En -0.145 -0.039 0.034
M En 0.066 0.073

experiments should be undertaken in order to have a better understanding of
the behaviors of the elicited ν and b for each proposed optimization problem but
such an experimental study is out of the scope of this paper.

4 Relationships with Machine Learning

The preference elicitation problem have many common points with supervised
learning problems (SL) in statistical machine learning (ML). In the latter field,
we are given a training set which consists of items described in a feature space
and each element also comes with a value in regard to a target variable. In ML,
the goal of SL is to infer from the training set a mapping from the feature space
to the target variable. This description if similar to the preference elicitation
setting we have described previously : the set of examples with their profiles
U(x) and their overall scores S(x) are the equivalent of the training set in ML
and identifying the parameters of the decision model in order to reproduce the
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Table 3. Values of the elicited bipolar Möbius transform b when S′ is the overall score
with incoherences

split flex rss flex

A1 A2 bA1|A2
bA2|A1

bA1|A2
bA2|A1

∅ S -0.077 0.47
∅ P -0.19 -0.53 0.077
∅ E -0.077 0.023
∅ M 0.031 -0.14 0.077
∅ En -0.031 0.19

∅ SP -0.26 0.077 0.09
∅ SE 0.19 0.263
∅ SM 0.73
∅ SEn -0.16 0.055 -0.018
∅ PE
∅ PM 0.14
∅ PEn 0.031 -0.077
∅ EM
∅ EEn -0.24 -0.39 -0.023
∅ MEn -0.16 -0.077

S P 0.06
S E
S M -0.031 -0.33
S En
P E
P M 0.14
P En 0.19 -0.077 0.31
E M
E En 0.077
M En -0.077

preference relations given by the DM is the same as inferring a mapping from
a feature space (X) and a target variable (S). Despite these straightforward
similarities, the roots of these two domains are distinct, and it is only recently,
that there has been a growing interest in applying concepts or/and techniques
developed in MCDM to ML problems and vice-versa [16].

To contribute in that direction, we discuss the relationships between our work
and some concepts defined in ML.

Firstly, in MCDM, incoherences are not generally allowed from the DM view-
point who has to fix them during the course of the elicitation procedure. In
ML, on the contrary, such situations are typically observed in real-world appli-
cations. Thus, the models split and rss are typical of MCDM whereas split f lex
and rss flex are closer to SL problems.

Secondly, it is noteworthy that the restriction to 2A-BC can be interpreted as
an explicit regularization of the decision model based on the BCI. Indeed, in SL,
regularization is a concept that aims at dealing with the bias-variance trade-off
of predictive models. Typically, in order to avoid an over-fitting effect, we allow
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the estimated predictive model to make more errors on the training set (bias) but
in return we want it to be less variable (variance). The goal of regularization is
to enhance the ability of the inferred model to predict correctly the overall score
of observed examples (the training set) but also and in particular the global
score of unseen examples (the test set). In our case, 2A-BC are less flexible
than unconstrained BC and this could lead to more inconsistencies as explained
beforehand. However, the 2-additivity property makes the BC less complex and
we intuitively expect 2A-BC to be less variable than unconstrained BC.

Thirdly, we stated that the constraint (9) ensuring that ν is exactly 2-additive
was not part of our set of constraints. In that case ν could thus be either 2-
additive or simply additive. We can make the correspondence between this ap-
proach and the Occam’s Razor principle often used in ML. This concept states
that one should prefer simpler models than more complex ones because they
allow a better understanding of the phenomenon under study. In our case, we
can transpose this statement as follows : if an additive BC fits better the DM
judgements than a 2A-BC then we should go for the former one. By discarding
(9) from our constraints we make the latter statement possible. However, if it
happens that a 2A-BC and an additive BC yield to the same optimal objective
function value then it is not guaranteed that the optimization solver will provide
the simplest solution.

Finally, in order to make the models split and rss more flexible regarding
inconsistencies, we have proposed to integrate slack variables in the constraints
and in the objective function as well. Our approach is inspired from the Support
Vector Machine (SVM) method developed in SL in order to deal with non lin-
early separable cases in binary classification [20]. However, it is noteworthy that
the UTA (UTilités Additives) framework is a MCDM methodology that also ad-
dresses inconsistencies by integrating overestimation and underestimation error
variables in the elicitation model (see for example [21]). This approach is similar
to adding slack variables.

5 Conclusion

We have proposed optimization problems that allow the identification of the pa-
rameters of a 2A-BC. The decision model is inferred from examples that the DM
evaluated both regarding their partial utilities and their global scores. We have
considered the traditional preference elicitation setting where no inconsistency is
allowed. But, we have also extended the models to the more flexible case where
we have to cope with such incoherences. In this context, we have emphasized
the relationships between our approaches and concepts in ML.

In our future work, we intend to integrate other kinds of information provided
by the DM such as the importance of criteria and the interactions between them.
Moreover, as pointed out previously, additional experiments should be conducted
in order to better characterize the elicited bipolar Möbius transform b and its
associated 2A-BC ν, we obtain for each type of mathematical program.

As regard to our ongoing work, we are investigating optimization problems for
preferences learning that integrate other concepts developed in the ML literature.
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We are currently working on objective functions that involve a penalty term that
favors sparse BC. Such an approach adds a trade-off between the accuracy of the
model and its simplicity (Occam’s Razor principle). The expected advantage is
to elicit preference models that are easier to interpret and such a feature is of
great importance in MCDM.
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Abstract. We consider the following decision scenario: a society of vot-
ers has to find an agreement on a set of proposals, and every single
proposal is to be accepted or rejected. Each voter supports a certain
subset of the proposals–the favorite ballot of this voter–and opposes the
remaining ones. He accepts a ballot if he supports more than half of the
proposals in this ballot. The task is to decide whether there exists a bal-
lot approving a set of selected proposals (agenda) such that all voters
(or a strict majority of them) accept this ballot.

On the negative side both problems are NP-complete, and on the
positive side they are fixed-parameter tractable with respect to the to-
tal number of proposals or with respect to the total number of vot-
ers. We look into further natural parameters and study their influence
on the computational complexity of both problems, thereby providing
both tractability and intractability results. Furthermore, we provide tight
combinatorial bounds on the worst-case size of an accepted ballot in
terms of the number of voters.

1 Introduction

Consider the following decision scenario which may occur in contexts like coali-
tion formation, the design of party platforms, the change of statutes of an as-
sociation, or the agreement on contract issues: A leader has an agenda, that is,
a set of proposals she wants to get realized. However, a set of proposals has to
be approved or disapproved as a whole by a set of voters. Each voter has his
favorite proposals he wants to support. A set of proposals is acceptable to a voter
if he supports more than half of these proposals. Now, the leader is searching
for a set of proposals containing her personal agenda such that a majority of
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voters accepts this set. Can the leader efficiently find such a successful set of
proposals realizing her agenda? What about when this set of proposals has to
be acceptable to all voters and not just to a majority?

Mathematical Model. Let V be a society of n voters and P be a set of m pro-
posals. Each voter may support any number of proposals in P and rejects all the
others. Subsets of P are called ballots. The favorite ballot Bi ⊆ P of a voter i
(1 ≤ i ≤ n) consists of all proposals he supports.

The voters evaluate a ballot Q ⊆ P according to the size of the intersection
of Q and their favorite ballots. More precisely, voter i accepts Q if and only if a
strict majority of proposals from Q is also contained in his favorite ballot, that
is,

|Bi ∩Q| > |Q|/2.
We say that in this case voter i is happy with Q.

The central question is whether there exists a ballot Q that (a) contains a
given agenda and that (b) is acceptable to the society. The agenda in (a) is a
set Q+ ⊆ P of proposals that have to be contained in Q, that is, Q+ ⊆ Q.
The society’s acceptance in (b) might be a unanimous acceptance or a majority
acceptance. This leads to the following two problems which only differ in the
respective questions asked.

Unanimously Accepted Ballot (UnaAB)

Input: A set P of m proposals; a society V of n voters with favorite
ballots B1, . . . , Bn ⊆ P ; an agenda Q+ ⊆ P .
Question: Is there a ballot Q+ ⊆ Q ⊆ P which every single voter i
accepts (that is, |Bi ∩Q| > |Q|/2)?

Majoritywise Accepted Ballot (MajAB)

Input: A set P of m proposals; a society V of n voters with favorite
ballots B1, . . . , Bn ⊆ P ; an agenda Q+ ⊆ P .
Question: Is there a ballot Q+ ⊆ Q ⊆ P which a strict majority of the
voters accepts (that is, |Bi ∩Q| > |Q|/2)?

One important special case of UnaAB or MajAB is when the agenda is
empty, that is, Q+ = ∅. In that case, the only question is whether there is a
ballot acceptable to the society.

Interestingly, the following example demonstrates that the solutions sizes to
our problems are not monotone, that is, a solution ballot of size h does not imply
a solution of a size smaller or larger than h. This is in notable contrast to many
natural decision problems, such as all problems we reduce from in this paper.

Example 1. Consider the society V = {1, 2, 3, 4} of voters and the set P =
{p1, p2, p3, p4, p5} of proposals. The favorite ballots are given asB1 = {p2, p3, p4},
B2 = {p1, p3, p5}, B3 = {p1, p2, p4}, and B4 = {p1, p2, p3}.

Suppose that the hidden agenda is empty. Then the only unanimously ac-
cepted ballots are {p1, p2, p3} of size three and {p1, p2, p3, p4, p5} of size five.
This shows that the set of the sizes of all solution ballots may contain gaps.
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With regard to majority acceptance, if the hidden agenda is {p5}, then bal-
lots {p1, p2, p5}, {p2, p3, p5}, and {p1, p2, p3, p4, p5} are the only ballots that are
acceptable to a strict majority of voters. Again, the set of the sizes of all solution
ballots contains gaps. If the hidden agenda is empty, then ballot {p1, p2, p3, p4}
is also acceptable to a strict majority of voters.

Related Work. While the two problems we introduce and study seem to be
new, the investigation of situations where a society has to decide upon binary
(that is, yes-or-no) issues is common within the theory and practice of decision
making. For instance, Laffond and Lainé [26] recently investigated the condi-
tions under which issue-wise majority voting allows for reaching several types
of compromise. An alternative to issue-wise evaluation is to compare issue sets
(which correspond to ballots in our setting) using the symmetric difference from
a voter’s favorite issue set [8,25,26]. A small symmetric difference is good, and a
large symmetric difference is bad. This way of comparing issue sets is very close
to the way we study in our paper: A voter accepts a ballot Q if and only if the
symmetric difference from his favorite ballot B to Q is smaller than the symmet-
ric difference from B to the empty ballot. Typically, the studies in this context
focus on proving desirable properties or on showing how to deal with certain
paradoxes. Computational complexity studies are established for related binary
decision making problems like judgment aggregation [4,14], lobbying [7,9,15,16],
or control of multiple referenda [10]. In the context of judgment aggregation,
Alon et al. [2] investigated the computational complexity of control by bundling
issues which is also related to “vote on bundled proposals” as considered in this
paper.

The scenario considered in our work is also (weakly) related to the concepts
of collective domination [13] and proportional representation [28]—in both cases
one has to select certain alternatives (proposals in our context) that provide
a “good representation” of the voter’s will. Herein, extending the Condorcet
winner principle to Condorcet winner sets plays a central role. In our work,
we also deal with “collectively winning ballots”, namely more than half of the
proposals in such a ballot are supported by a voter.

Finally, we mention in passing that central computational complexity results
of our work are cast within the framework of parameterized complexity analysis,
which due to its refined view on algorithmic (in)tractability fits particularly well
with voting and related problems [5].

Our Contributions. We analyze the combinatorial and algorithmic behavior of
Unanimously Accepted Ballot and Majoritywise Accepted Ballot.
In particular, we investigate the role of the following natural parameters:

– the number m of proposals,
– the number n of voters,
– the size h of the solution ballot Q, that is, h = |Q|,
– the maximum size bmax of favorite ballots, that is, bmax = maxi∈V |Bi|, and
– the difference bgap between �(m + 1)/2� and the minimum size of favorite

ballots, that is, bgap = �(m+ 1)/2� −mini∈V |Bi|.
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Table 1. Parameterized complexity results on two central problems. An entry “ILP-
FPT” means fixed-parameter tractability based on a formulation as an integer linear
program. Note that all our “intractability” results also hold for the case of Q+ = ∅.

Parameters UnaAB MajAB

Number m of proposals FPT, no polynomial kernel (Thm. 2)

Number n of voters ILP-FPT, no polynomial kernel (Thm. 3)

Parameter h W[2]-complete (Thm. 4) W[2]-hard (Thm. 4)

Parameter bmax FPT, no polynomial kernel (Thm. 5) in W[1] (Thm. 5)

Parameter bgap NP-complete already for bgap = 1 (Thm. 6)

The parameter bgap measures how far a given instance is from being trivial in
terms of the number of proposals: If each voter’s favorite ballot contains at least
�(m + 1)/2� proposals, then choosing Q = P makes every voter happy, so the
instance is a trivial yes-instance. While the parameters n and m are naturally
related to the “dimensions” of the input, the parameters h, bmax, and bgap measure
certain degrees of contradiction or inhomogeneity in an instance.

Section 2 is devoted to computational complexity results. The main picture is
summarized in Table 1. Not too much of a surprise, Unanimously Accepted

Ballot and Majoritywise Accepted Ballot turn out to be NP-complete.
More surprisingly, this remains so even when the input ballots are almost trivial,
that is, bgap = 1. Namely, if |Bi| ≥ �(m + 1)/2� for all voters i, then all voters
accept the ballot P . But if every voter i only satisfies the slightly weaker con-
dition |Bi| ≥ �m/2�, then both problems already become NP-complete. Next,
formulating the problems as integer linear programs (ILPs) where the number
of variables only depends (exponentially) on n implies fixed-parameter tractabil-
ity with respect to the parameter n. Using simple brute-force search, one easily
obtains that both problems are fixed-parameter tractable with respect to the pa-
rameter m. As to efficient and effective preprocessing by polynomial-time data
reduction, however, we show that neither for parameter n nor for parameter m
polynomial-size problem kernels exist unless an unlikely collapse in complexity
theory occurs. As to the parameter h, we prove parameterized intractability—
more precisely, W[2]-completeness for Unanimously Accepted Ballot and
W[2]-hardness for Majoritywise Accepted Ballot. While the two problems
behave in almost the same way with respect to the parameters n, m, and h, the
situation may change for the parameter bmax: While Unanimously Accept-

ed Ballot is shown fixed-parameter tractable, for Majoritywise Accepted

Ballot we only could show containment in W[1] and leave hardness as an open
question.

In Section 3, we provide an in-depth combinatorial analysis concerning the
dependence of the size of a solution ballot on the parameter n. In particular, we
show the upper bound (n+1)(n+1)/2 and the lower bound nn/2−o(n) for Unani-

mously Accepted Ballot with Q+ = ∅, thus achieving asymptotically almost
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matching bounds. Analogous results hold for Majoritywise Accepted Bal-

lot. In Section 4, we conclude with some open questions for future research.
Due to the lack of space, we only sketch the ideas of the proofs for some of

our results.

Parameterized Complexity Preliminaries. The concept of parameterized
complexity was pioneered by Downey and Fellows [12] (see also [18,27] for more
recent textbooks). A parameterized problem is a language L ⊆ Σ∗ ×Σ∗, where
Σ is an alphabet. The second component is called the parameter of the prob-
lem. Typically, the parameter or the “combined” ones are non-negative integers.
A parameterized problem L is fixed-parameter tractable if there is an algorithm
that decides in f(k)·|x|O(1) time whether (x, k) ∈ L, where f is an arbitrary com-
putable function depending only on k. Correspondingly, FPT denotes the class of
all fixed-parameter tractable parameterized problems. A core tool in the devel-
opment of fixed-parameter algorithms is polynomial-time preprocessing by data
reduction [6,22]. Here, the goal is to transform a given problem instance (x, k) in
polynomial time into an equivalent instance (x′, k′) with parameter k′ ≤ k such
that the size of (x′, k′) is upper-bounded by some function g only depending
on k. If this is the case, we call instance (x′, k′) a (problem) kernel of size g(k).
If g is a polynomial, then we say that this problem has a polynomial-size problem
kernel, in short, polynomial kernel.

Fixed-parameter intractability under some plausible complexity-theoretic as-
sumptions can be shown by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, k), computes in f(k) · |x|O(1) time an
instance (x′, k′) (with k′ only depending on k) such that (x, k) is a yes-instance
for P if and only if (x′, k′) is a yes-instance for P ′. The two basic complexity
classes for fixed-parameter intractability are W[1] and W[2]. A parameterized
problem L is W[1]- or W[2]-hard if there is a parameterized reduction from a
W[1]- or W[2]-hard problem to L. For instance, both Independent Set and
Hitting Set are known to be NP-complete [20]. However, when parameterized
by the solution size, Independent Set is W[1]-complete while Hitting Set is
W[2]-complete [12].

2 Computational Complexity

The following observation is used many times in our proofs.

Observation 1. Let i and j be two voters that are both happy with some Q ⊆ P.

(i) Then Bi ∩Bj �= ∅.
(ii) If Bi ∩Bj = {p}, then p ∈ Q and furthermore |Bi ∩Q| = |Bj ∩Q|.

The next observation basically says that UnaAB can be many-one reduced in
polynomial time to MajAB with the same agenda. This implies that the “ma-
jority problem” is computationally at least as hard as the “unanimous problem”.
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Observation 2. Let Iuna be a UnaAB instance with n voters, and let Imaj be
a MajAB instance with 2n− 1 voters such that

– Iuna and Imaj both have the same proposal set P and the same agenda Q+,
– the voters from Iuna and the first n voters from Imaj have the same favorite

ballots B1, . . . , Bn, and
– the remaining n− 1 voters from Imaj support no proposals.

Then, Q ⊆ P is a solution for Iuna if and only if Q is a solution for Imaj.

We will use the NP-complete Hitting Set (HS) problem [20] to show many of
our intractability results. Given a finite set U , subsets S1, . . . , Sr of U , and a
nonnegative integer k, HS asks whether there is a hitting set of size k, that is,
whether there is a size-k set U ′ ⊆ U such that Si ∩ U ′ �= ∅, i ∈ {1, . . . , r}. The
following reduction from HS to UnaAB is used several times in our intractability
proofs. Note that, due to Observation 2, it implies a reduction to MajAB.

Reduction 1. Let (U , S1, . . . , Sr, k) be an instance of HS. Construct an in-
stance of UnaAB as follows. The proposal set P consists of all the elements
of U , of k new dummy proposals, and of a special proposal α. There are r + 2
voters. For 1 ≤ i ≤ r, the favorite ballot Bi consists of the elements from Si

together with all dummy proposals. Furthermore, Br+1 = U ∪ {α} and Br+2

consists of α together with all dummy proposals. Finally, set Q+ = ∅.

Lemma 1. Reduction 1 is a parameterized reduction where the parameters h,
n, and m are linearly bounded in the parameters k, r, and |U |, respectively. More
precisely, h = 2k + 1, n = r + 2, and m = |U |+ k + 1 ≤ 2|U |+ 1.

2.1 NP-Completeness

We show that UnaAB and MajAB are NP-complete even if Q+ = ∅. This
implies that there is no hope for fixed-parameter tractability parameterized
by |Q+|.

Theorem 1. Both Unanimously Accepted Ballot and Majoritywise

Accepted Ballot are NP-complete even if Q+ = ∅.

Proof (Sketch). Containment in NP is easy to see; the hardness result is achieved
due to Observations 1 and 2 and Lemma 1. ��

2.2 Few Proposals or Few Voters

Complementing our intractability result from Theorem 1, we show that instances
with few proposals or few voters are tractable. More precisely, we show that the
considered problems are polynomial-time solvable for a fixed number of propos-
als or a fixed number of voters and the degree of the polynomial is a constant.
However, we also show that under plausible complexity-theoretic assumptions
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these problems do not admit polynomial-time preprocessing algorithms that re-
duce the size of an instance to be polynomially bounded by the the number m
of proposals or the number n of voters. In other words, UnaAB and MajAB

are unlikely to allow for polynomial kernels with respect to the parameters n or
m, respectively.

Theorem 2. Parameterized by the number m of proposals, Unanimously Ac-

cepted Ballot and Majoritywise Accepted Ballot are fixed-parameter
tractable. Unless NP ⊆ coNP/poly, both problems do not admit a polynomial
kernel even if Q+ = ∅.

Proof (Sketch). For the fixed-parameter tractability result, one guesses a bal-
lot Q with Q+ ⊆ Q ⊆ P and checks whether this is a solution for UnaAB (resp.
MajAB). This takes O(2m · nc) time with c being a constant. As for the non-
existence of a polynomial kernel for UnaAB, this is due to the non-existence of
a polynomial kernel of HS parameterized by |U |+k+1 [11] and due to Lemma 1.
Together with Observation 2, the non-existence of polynomial kernels transfers
to MajAB even if Q+ = ∅. ��

Theorem 3. Parameterized by the number n of voters, Unanimously Ac-

cepted Ballot and Majoritywise Accepted Ballot are fixed-parameter
tractable. Unless NP ⊆ coNP/poly, both problems do not admit a polynomial
kernel even if Q+ = ∅.

Proof. We first describe how to formulate MajAB as an integer linear pro-
gram (ILP) and show how to modify the ILP to also work for UnaAB. Let
NV be the number of proposals that are accepted by the voter set V , that is,
NV := |{j | (∀i ∈ V : j ∈ Bi) ∧ (∀i′ /∈ V : j /∈ Bi′)}|. As the proposals
counted by NV only depend on V , we refer to V as a proposal type. Let xV

be the number of proposals of type V in the ballot Q. Further, let N+
V be the

number of proposals in Q+ that are accepted by the voter set V ⊆ V , that is,
N+

V := |Q+ ∩ {j | (∀i ∈ V : j ∈ Bi) ∧ (∀i′ /∈ V : j /∈ Bi′)}|. For each voter i
we introduce a binary variable zi that may only have value 1 if voter i is happy
with Q (and may have value 0 in any case). Then Q must satisfy the following
constraints (1)–(3).

n∑
i=1

zi ≥
n+ 1

2
(1)∑

V ⊆V:
i∈V

xV −
∑
V⊆V:
i/∈V

xV ≥ m(zi − 1) + 1 ∀ i ∈ {1, . . . , n} (2)

NV ≥ xV ≥ N+
V ∀V ⊆ V (3)

Constraint (1) requires that a strict majority of voters is happy with Q. Con-
straint set (2) ensures that voter i is happy if variable zi is set to 1. Constraint
set (3) requires ballot Q to contain all proposals in Q+ and restricts the number
of proposals of each type in Q to those actually present.
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Our ILP contains at most 2n variables xV and n variables zi. The total number
of constraints is at most 2n + n+ 1. Since an ILP with ρ variables and L input
bits can be solved in O(ρ2.5ρ+o(ρ)L) time [24,19], MajAB is fixed-parameter
tractable with respect to the number n of voters.

If we delete constraint (1) and the variables zi, and replace the right-hand
side of constraint (2) with 1, then we gain an ILP for UnaAB with at most 2n

variables and 2n+n constraints. Thus, UnaAB is also fixed-parameter tractable
with respect to parameter n.

Unless NP ⊆ coNP/poly, even if Q+ = ∅, both problems do not have a poly-
nomial kernel with respect to the parameter n: Reduction 1 is a polynomial-time
reduction from the NP-complete problem Hitting Set; the number n of voters
in the reduced instance is linearly bounded by the number r of sets in the instance
one reduces from; and Q+ = ∅. A polynomial kernel of UnaAB with Q+ = ∅
parameterized by n would yield a polynomial kernel for Hitting Set param-
eterized by r. However, this is not possible unless NP ⊆ coNP/poly (e.g. [23,
Lemma 14]). Thus, even if Q+ = ∅, UnaAB does not admit a polynomial ker-
nel. Neither does MajAB admit a polynomial kernel even if Q+ = ∅ due to
Observation 2. ��

2.3 Small Ballots

We perform a parameterized complexity analysis concerning parameters based
on the ballot sizes. We start with the size h of the solution ballot. For technical
reasons, we need to assume that h is given as part of the input when dealing
with the parameterized problems.

Theorem 4. Parameterized by the size h of the solution ballot, Unanimously

Accepted Ballot is W[2]-complete and Majoritywise Accepted Ballot

is W[2]-hard. Both results hold even if Q+ = ∅.
Proof (Sketch). Reduction 1 is a parameterized reduction from the W[2]-hard
Hitting Set parameterized by the size k of the hitting set to UnaAB pa-
rameterized by the size h of the solution ballot with Q+ = ∅ (see Lemma 1).
Because of Observation 2, this implies W[2]-hardness for MajAB parameterized
by h even if Q+ = ∅. To show that UnaAB is in W[2], we reduce from UnaAB

parameterized by h to the W[2]-complete Independent Dominating Set pa-
rameterized by the solution size k [12]. ��
The membership of MajAB parameterized by the size h of the solution ballot
for the class W[2] remains open. Note that the W[2]-hardness reduction in the
proof of Theorem 4 does not rely on (an upper bound for) h being given as part
of the input. That is, the problem is computationally hard also for the cases
where the size of ballot Q is not explicitly required to be bounded by h.

Except for the parameter h where we only know that MajAB is W[2]-hard
while UnaAB is even W[2]-complete, all results shown so far are the same for
unanimous acceptance and majority acceptance. The following theorem shows
that this may change when considering the parameter bmax where UnaAB re-
mains tractable but for MajAB we only know W[1]-membership.
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Theorem 5. Parameterized by the maximum size bmax of the favorite ballots,
Unanimously Accepted Ballot can be solved in O(b2bmax

max
·nm) time implying

fixed-parameter tractability; however, it admits no polynomial kernel unless NP ⊆
coNP/poly even if Q+ = ∅. Majoritywise Accepted Ballot parameterized
by bmax is in W[1].

Proof (Sketch). To show that UnaAB is solvable in O(b2bmax
max

· nm) time, we
first observe that any solution Q must satisfy |Q| ≤ 2bmax. Based on this, we
can design a depth-bounded search tree algorithm solving UnaAB where the
number of branching possibilities in each step is at most bmax and the depth of
the algorithm is at most 2bmax.

The non-existence of a polynomial kernel for UnaAB with respect to param-
eter m shown in Theorem 2 also holds for parameter bmax, as bmax ≤ m.

Finally, to show the W[1] containment, we use a theorem from [18, Theo-
rem 6.22.] which states that a parameterized problem L with parameter k is in
W[1] if and only if there is a tail-nondeterministic k-restricted nondeterministic
random access machine (NRAM) program deciding L. The description of a tail-
nondeterministic bmax-restricted NRAM program P for MajAB is omitted due
to lack of space. ��

Next, we discuss the relation between the parameters “maximum size bmax

of the favorite ballots” and “the size hmax of the maximum symmetric differ-
ence between any two favorite ballots”. As the following proposition shows, for
the cases with Q+ = ∅, the two parameters hmax and bmax are “equivalent” in
terms of parameterized complexity theory: The fact that a parameter x is lin-
early bounded by a parameter y implies that the parameterization by x and the
parameterization by y are in the same level of the W-hierarchy and yield the
same parameterized hardness results.

Proposition 1. For any instance of Unanimously Accepted Ballot or
Majoritywise Accepted Ballot it holds that hmax ≤ 2bmax, where hmax

denotes the size of the maximum symmetric difference between two favorite bal-
lots and bmax denotes the maximum size of the given favorite ballots. Instances
of Unanimously Accepted Ballot or Majoritywise Accepted Ballot

are yes-instances if hmax < bmax/2 and Q+ = ∅.

We conclude this section with the following theorem which uses the fact that
an instance of UnaAB or MajAB is a trivial yes-instance if the minimum
size of the favorite ballots is at least �(m + 1)/2� where m denotes the total
number of proposals in P . However, both problems become NP-complete when
this minimum size is one less than the guarantee �(m + 1)/2�, even if Q+ = ∅.
This implies that there is no hope for fixed-parameter tractability with respect to
the “below guarantee parameter” bgap which is the difference between �(m+1)/2�
and the minimum size of the favorite ballots.
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Theorem 6. An instance of UnanimouslyAccepted Ballot (resp.Major-

itywiseAcceptedBallot) is a yes-instance if each voter i satisfies |Bi| > m/2.
Unanimously Accepted Ballot (resp.Majoritywise Accepted Ballot)
is NP-complete even if Q+ = ∅ and each voter i satisfies |Bi| > m/2− 1.

Proof. As for the first statement, choosing Q = P makes every voter happy. To
show the second statement, we many-one reduce from the NP-complete Vertex

Cover (VC) problem. Given an undirected graph G = (U,E) and an integer
k ≤ |U |, VC asks whether there is a vertex cover of at most k vertices, that is,
whether there is a set U ′ ⊆ U with |U ′| ≤ k and e ∩ U ′ �= ∅, ∀e ∈ E.

Let I = ((U,E), k) with vertex set U = {u1, . . . , ur} and edge set E =
{e1, . . . , es} be a VC instance. We first reduce from it to an instance I ′ for
UnaAB and then extend this reduced instance I ′ to an instance I ′′ for MajAB.

Both instances I ′ and I ′′ have the same proposal set P . It consists of one
special proposal α, of all vertices in U , of k dummy proposals βj (1 ≤ j ≤ k),
and of r−k additional dummy proposals γj′ (1 ≤ j′ ≤ r−k). Thus, |P| = 2r+1.

Instance I ′ contains four types of voters: one voter v0, one voter v0, s edge
voters, and r− k vertex haters. Voter v0 favors proposal α and all the r dummy
proposals. Voter v0 also favors proposal α, and all the vertices in U . For 1 ≤ i ≤ s,
the ith edge voter’s favorite ballot Ai consists of the two vertices in ei, of all
the k dummy proposals βj , and of r− k− 2 arbitrarily chosen dummy proposals
from {γ1, . . . , γr−k}. For 1 ≤ i′ ≤ r− k, the favorite ballot Bi′ of vertex hater i′

consists of α and of all dummy proposals but γi′ . In total, the number of voters
in I ′ is s+ r− k+ 2, with each voter supporting at least r = �|P|/2� proposals.
Set Q+ = ∅. Obviously, this reduction runs in polynomial time.

To show the reduction’s correctness, we have to show that I has a vertex cover
of size at most k if and only if there is a ballot Q ⊆ P that all the voters in I
are happy with.

For the “only if” part, suppose that U ′ ⊆ U with |U ′| ≤ k is a vertex cover.
We show that every voter is happy with Q = {α}∪{βj | 1 ≤ j ≤ |U ′|}∪U ′. First,
the size of Q is 2|U ′|+1. To make a voter happy, at least |U ′|+1 of his favorite
proposals must be also in Q. Obviously, voters v0, v0 and all vertex haters are
happy with Q. For each i ∈ {1, . . . , s}, Q ∩ Ai contains all dummy proposals βj

with 1 ≤ j ≤ |U ′| and at least one vertex proposal vj′ with vj′ ∈ ei ∩ U ′ since
U ′ is a vertex cover. This sums up to at least |U ′| + 1 proposals. Hence, every
edge voter is also happy with Q.

For the “if” part, by applying Observation 1(ii) to the ballots of voters v0 and
v0, ballot Q must contain α, and furthermore, Q contains an equal number x
of vertex proposals and dummy proposals. For each i′ ∈ {1, . . . , r− k}, ballot Q
cannot contain dummy proposal γi′ since otherwise |Bi′ ∩Q| = x < �|Q|/2�+1.
Thus, vertex hater i′ would not be happy. Therefore, the x dummy proposals
must come from {β1, . . . , βk} and x ≤ k. To make the ith edge voter happy,
ballot Q must satisfy the condition |Q ∩ Ai| ≥ x + 1. But since no edge voter
favors proposal α, ballot Q must contain at least one proposal uj ∈ Ai. By
definition of Ai, the corresponding vertex uj is incident to edge ei. This implies
that the x vertices in Q form a vertex cover for (U,E).
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Next, we extend instance I ′ to instance I ′′ for MajAB by adding r−k vertex
lovers who have the same favorite ballot U , and s edge-inverse voters such that
for 1 ≤ i ≤ s, edge-inverse voter i’s favorite ballot Ci = (U ∪{γ1, . . . , γr−k})\Ai.
Thus, Ci and Ai are disjoint. In total, I ′′ has 2(s+ r− k) + 2 voters. Since each
of the newly added voters favors exactly r proposals, the constraint that each
voter’s proposal set has at least r = �|P|/2� holds. This extension also runs in
polynomial time.

Now we show the correctness of the extended reduction, that is, I has a vertex
cover of size at most k if and only if there is a ballot Q ⊆ P which more than
half of the voters in I ′′ are happy with.

For the “only if” part, the ballot Q as constructed in the “only if” part above
makes all voters in I ′ happy. This sums up to s + r − k + 2. Since I ′′ contains
all the voters from I ′ and has 2(s+ r− k) + 2 voters, this also means that more
than half of the voters in I ′′ is happy with Q.

For the “if” part, for 1 ≤ i ≤ s, the ith edge voter and the ith edge-inverse
voter do not share a common favorite proposal. Furthermore, no vertex hater’s
favorite ballot intersects any vertex lover’s favorite ballot. Hence, by applying
Observation 1(i), any ballot can make at most s voters from the edge voters
and the edge-inverse voters happy, and can make at most r − k voters from
the vertex haters and the newly constructed vertex lovers happy. But I ′′ has
2(s+ r−k)+2 voters. This means that in order to be a solution ballot for I ′′, Q
must make both v0 and v0 happy. By applying Observation 1(ii), Q must then
contain α, and, furthermore, Q contains the same number x of vertex proposals
and dummy proposals. The ballot Q cannot make any vertex lover happy since
his favorite ballot and Q have an intersection of size x which is smaller than
�|Q|/2� + 1. Thus, Q needs to make all vertex haters happy. Then, Q cannot
contain any dummy proposal γi′ since otherwise the vertex hater i′ is not happy
due to |Bi′ ∩ Q| = x < �|Q|/2� + 1. Hence, Q contains x dummy proposals
from {β1, . . . , βk} with x ≤ k. Then, no edge-inverse voter is happy with Q
since at most x proposals from his favorite ballot are in Q. This means that
all edge voters must be happy with Q. To make the ith edge voter happy, Q
must intersect with Ai in at least one vertex uj ∈ Ai. By definition of Ai, the
corresponding vertex uj is incident to edge ei. Thus, the x vertices in Q form a
vertex cover for (U,E). ��

3 Combinatorial Bounds on Minimal Accepted Ballots

We say that a unanimously (resp. majoritywise) accepted ballot is minimal if
no proper subset of it is also unanimously (resp. majoritywise) accepted. In
this section, we investigate the largest possible size of a minimal unanimously
accepted ballot for the situation with n voters and Q+ = ∅. We derive (almost
tight) upper and lower bounds on this quantity. From this bound, a similar result
can be derived for majoritywise accepted ballots.

It is not hard to see that both upper and lower bounds come down to studying
the case where the set P of all proposals already is a minimal accepted ballot:
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Such instances cannot have smaller solutions (giving a lower bound), and up-
per bounds directly carry over to Q ⊆ P by considering a restricted instance
with P ′ := Q. To make the question more amenable to combinatorial tools we
translate it into a problem on a sequence of vectors with {−1, 1}-entries: Given n
voters and m proposals we create m vectors x1, . . . , xm ∈ {−1, 1}n; the ith entry
in vector xj is 1 if the jth proposal is contained in the favorite ballot of voter i,
else it is −1. In this formulation, a unanimously accepted ballot Q corresponds
to a subset of the vectors whose vector sum is positive in each coordinate: Con-
sidering some voter i, for each proposal in Bi ∩Q we incur 1, for each proposal
in Q \ Bi we incur −1. If |Bi ∩ Q| > |Q|/2 then this gives a positive sum in
coordinate i; the converse is true as well.

Let us normalize the question a little more. First of all, no minimal ballot can
be of even size: Otherwise all coordinate sums would be even and hence each sum
is at least 2; then however we may discard an arbitrary vector and still retain
sums of at least 1 each. Secondly, it is clear that replacing +1 entries by−1 entries
does not introduce additional subsequences with positive coordinate sums. Thus,
we may restrict ourselves to the case where the coordinate sums over the minimal
sequence of m vectors are all equal to 1 (all sums are odd and such a replacement
lowers a sum by exactly 2).

Now, a collection of vectors is called a minimal majority sequence of dimen-
sion n (an n-mms for short) if all its coordinate-wise sums are 1 and no proper
subsequence of the vectors has a positive sum in each coordinate. Note that an
n-mms cannot contain a nonempty subsequence S whose sum is at most 0 in
each coordinate, since otherwise the sum of the vectors that are in this n-mms
but not in S must be positive in each coordinate—a contradiction to the mini-
mality of an n-mms. Thus, the definition of an n-mms is equivalent to that all its
coordinate-wise sums are 1 and no nonempty subsequence has sum of at most 0
in each coordinate. The length of the sequence is the number m of its elements.
Let f(n) denote the maximum possible length of an n-mms. In this section, we
show that f(n) ≈ nn/2+o(n).

Theorem 7. The maximum possible length f(n) of a minimal majority sequence
of dimension n satisfies

nn/2−o(n) ≤ f(n) ≤ (n+ 1)(n+1)/2.

Proof (Sketch). One way to obtain an upper bound on f(n) is to apply a known
result of Sevastyanov [29]. It asserts that any sequence of vectors whose sum is the
zero vector, where the vectors lie in an arbitrary n-dimensional normed space R
and each of them has norm at most 1, can be permuted so that all initial sums
of the permuted sequence are of norm at most n. Given an n-mms v1, . . . , vm ∈
{−1, 1}n, append to it the vector −1 where 1 is the all-1-vector of length n to get
a zero-sum sequence of m+ 1 vectors in Rn, where the ∞ norm of each vector
is 1. By the above mentioned result there is a permutation u1, u2, . . . , um+1 of
these vectors so that the ∞-norm of each initial sum

∑j
i=1 ui is at most n. If

m + 1 > (2n + 1)n then, by the pigeonhole principle, some two distinct initial
sums are equal, and their difference gives a proper subsequence of the original
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mms with sum either the zero vector (if this difference does not include the
vector −1), or 1 (if it does). In both cases, this contradicts the assumption that
the original sequence is an mms. This shows that f(n) ≤ (2n+ 1)n. See [1] for
a similar argument.

The proof of the stronger upper bound stated in Theorem 7 is similar to
that of a result of Huckeman, Jurkat, and Shapley (cf. [21]) and is based on
some simple facts from convex geometry. The details and the proof for the lower
bound are omitted. ��

The proof combines the main result of Alon and Vu [3] with arguments from
Linear Algebra, Geometry, and Discrepancy Theory. Instead of turning to the
proof, let us give a corollary for the effect on our two central problems.

Corollary 1. Consider a Unanimously Accepted Ballot instance with n
voters. If there exists a unanimously accepted ballot, then there also exists one
of size at most (n + 1)(n+1)/2. This bound is essentially tight, as there exist
choices of accepted ballots such that any unanimously accepted ballot has size
at least nn/2−o(n). For Majoritywise Accepted Ballot, the corresponding
upper and lower bounds are respectively (t + 1)(t+1)/2 and tt/2−o(t), where t =
�(n+ 1)/2� denotes the majority threshold.

Proof. As the correspondence between favorite ballots and vector sequences has
been thoroughly discussed above for the unanimous case, we now concentrate
on the majority case.

To see the lower bound for the majority case, we start from a lower bound
example for the unanimous case with t old voters and a minimum accepted
ballot size of tt/2−o(t), and we add n − t < n/2 new voters with empty favorite
ballots to it. Note that the resulting instance has a total of n voters and that
its majority threshold indeed is t. Then any majoritywise accepted ballot must
be unanimously accepted by the t old voters, so that the minimum majoritywise
accepted ballot has size at least tt/2−o(t).

For the upper bound, consider any majoritywise accepted ballot Q for n vot-
ers and consider any minimal majority of t voters that (amongst themselves)
unanimously accept this ballot. Then any other unanimously accepted ballot for
these voters is also majoritywise accepted by all n voters, so that we get the
desired upper bound of (t+ 1)(t+1)/2 on the size of Q. ��

4 Open Questions and Conclusion

We have introduced new and naturally motivated problems in computational
social choice, and we studied their computational complexity and started an
analysis of their combinatorial properties. We conclude this paper with a few
challenges for future research.

First, recall that in Proposition 1 we stated upper bounds on hmax (the size
of the maximum symmetric difference between two favorite ballots) in terms
of linear functions in bmax (the maximum ballot size of voters). Hence, param-
eterized hardness results with respect to bmax transfer to the parameterization
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by hmax. In the case of empty agenda, that is, Q+ = ∅, however, we have no good
lower bounds for hmax in terms of bmax. Thus, it remains to classify the param-
eterized computational complexity of both Unanimously Accepted Ballot

and Majoritywise Accepted Ballot using parameter hmax. Notably, in the
cases of Q+ = ∅ the parameters hmax and bmax are linearly related so that the
same parameterized complexity results will hold for both parameterizations.

Second, with respect to parameter h (the size of the solution ballot Q), we
established W[2]-hardness for Majoritywise Accepted Ballot even if Q+ =
∅, but we left open the precise location of this problem in the parameterized
complexity hierarchy. It might be W[2]-complete, but all we currently know is
that it is contained in W[2] (Maj), a class presumably larger than W[2] [17].

Third, the combinatorial bounds from Section 3 do not hold for instances
with nonempty agenda, since such bounds cannot be independent of |Q+|. For
cases with nonempty agenda there are similar bounds with an extra factor of
|Q+|. A detailed analysis could be part of investigations of weighted variants of
our problems. In this regard, weights on the voters, weights on the proposals, or
weights on the acceptance threshold of the voters seem to be well-motivated.

Fourth, can we avoid Integer Linear Programs for showing fixed-parameter
tractability with respect to the parameter number n of votes and provide direct
combinatorial algorithms beating the ILP-based running times? In this context,
the exponential lower bound on the number of proposals in ballots accepted by
society from Section 3 might be relevant.

Finally, it remains a puzzling open question whether Majoritywise Ac-

cepted Ballot parameterized by bmax is fixed-parameter tractable—we could
only show containment in W[1].
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1 Laboratoire LITIO, Université d’Oran, BP 1524, El-M’Naouer, 31000 Oran, Algérie
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Abstract. In this paper, we study the use of exact approaches based on constraint
programming and mixed integer programming, to tackle the parameter elicitation
problem in the lexicographic ordering approach (LO). Like all multicriteria op-
timization methods, the LO method has the criteria order parameter that should
be fixed carefully. Indeed, the criteria usually conflict with each other, and thus,
finding an appropriate order between the criteria is challenging. This is why we
propose elicitation methods in order to assist the Decision Maker (DM) in fixing
this parameter. These methods require some prior knowledge, that the DM can
give easily. We present some numerical experiments, showing the effectiveness
of our approaches.

1 Introduction

Many methods for solving multicriteria optimization problems exist, and it is not so
simple to choose a method well adapted to a given problem. Moreover, even after a
multicriteria method has been selected, different parameters (e.g., some weights, some
utility functions, ...) need to be determined, either to find the optimal solution (best
tradeoff) or to rank the set of feasible solutions (alternatives). This may be even more
difficult, and elicitation methods are sometimes used to assist the decision maker in this
task.

In this paper, we focus on the lexicographic ordering method [9], which is appro-
priate when a strict dominance relation between the criteria can be established. The
parameter of this method is a total ordering of the criteria. Additionally, we make the
assumption that we have prior information about the preferences of the decision maker,
given across an outcome vector (cf. [3]), and we focus on how to use these information,
rather than how to get them. Thus, we assume that we have some alternatives along
with their outcome values. For instance, consider a situation in which a seller wishes
to explain/justify the price of his different products, say digital cameras, to his cus-
tomers. A digital camera is characterized by several criteria: its number of mega-pixels,
its weight, the maximal zoom range,... The need of the seller is to have a justification
for his customers, which is both simple and consistent with its products. The customers
of this seller do not understand subtle tradeoffs between criteria. Indeed, they can only

� This work is supported by TASSILI research program 11MDU839 (France, Algeria). This
work is also supported by PNR research project 70/TIC/2011 (Algeria).
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understand that one criterion (e.g., zoom range) is more important than another one
(e.g., weight). So, the challenge here consists to find a permutation between the criteria
that best justifies the product’s prices.

In the present work, we propose two exact approaches based on constraint program-
ming (CP), and mixed integer programming (MIP) techniques. These methods are then
used to get automatically the appropriate order parameter.

The rest of this paper is organized as follows. Section 2 provides some necessary
preliminaries. Section 3 gives a formulation of the multicriteria elicitation problem.
Section 4 illustrates our exact approaches on a motivating example. Sections 5 and 6
describe with details our exact approaches. Empirical results are given and discussed in
Section 7. We present some related works in Section 8. Section 9 concludes the paper.

2 Background

Before discussing our approaches, we provide some necessary background.

Definition 1 (Lexicographic order). [14] The criteria are ordered by the decision
maker according to their perceived importance. Hence, the solution with the best value
for the most important criterion is selected. Tied solutions are evaluated using their
values in the second most important criterion, and so on. Formally, let x, y ∈ Rn,

x <lex y ≡ (x1 < y1) ∨ ((x1 = y1) ∧ 〈x2, ..., xn〉 <lex 〈y2, ..., yn〉) (1)

In the context of this paper, we need to measure the discrepancy between an ordering
given by the lexicographic method, and an ideal ordering given by the outcomes. Thus,
we suggest to use one of the most widely used distance defined as follows.

Definition 2 (Kendall tau distance). The Kendall tau distance [13] is a metric that
counts the number of pairwise disagreements between two lists (τ1, τ2).

K(τ1, τ2) = |{(i, j) : i ∈ {1, ..., n− 1}, j ∈ {i+ 1, ..., n},
(τ1(i) < τ1(j) ∧ τ2(i) > τ2(j)) ∨ (τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))}| (2)

When the two lists are identical, then K(τ1, τ2) = 0. If τ1 is strictly increasing, and
τ2 contains the same elements as τ1 in reverse order, then K(τ1, τ2) = n(n − 1)/2,
where n = |τ |. The time complexity of Kendall tau method is of O(n2) [24].

Example 1. The Kendall tau distance between [0, 3, 1, 6, 2, 5, 4] and [1, 0, 3, 6, 4, 2, 5]
is equal to six, i.e., |{(0, 1), (1, 2), (1, 4), (2, 5), (4, 5), (5, 6)}|, and all other pairs are
in the same order [21].

2.1 Constraint Programming

Constraint Programming (CP) [19,18] is a powerful paradigm to model and solve com-
binatorial problems. It has been successfully applied in many different areas (e.g., re-
source allocation, scheduling and planning problems). This paradigm is based on the
notion of constraint network [15], which is formally defined as a triple 〈X,D,C〉
where:



Exact Approaches for Parameter Elicitation in Lexicographic Ordering 47

– X = {X1, ..., Xn} is a set of n decision variables;
– D = {DX1 , ..., DXn} is a set of associated domains, where DXi is a finite set of

potential values for Xi;
– C is a set of constraints where, each c ∈ C, refers to a set of permitted tuples R(c)

over a set of variables X(c) ⊆ X called its scope. The size of the scope is the arity
of the constraint.

An instantiation v of a set of variables S is a function that maps each variable x ∈ S to
a value v(x) from its domain Dx. A solution is a complete instantiation that satisfies all
the constraints. The problem of finding a solution to a constraint network is called Con-
straint Satisfaction Problem (CSP), and is, in general, an NP-complete problem1. The
set of solutions of a CSP is denoted by sol(X,D,C). A CSP can be extended to involve
optimization problems. Thus, Given a constraint network 〈X,D,C〉, and an objective
variable O ∈ X , find a value m ∈ DO where m = max{v(O)|v ∈ sol(X,D,C)}.

Example 2. Let be the following CSP:

X = {x, y, z}
D = {Dx, Dy, Dz} where, Dx = Dy = Dz = 1..10.
C = {C1(x, y), C2(x, z), C3(y, z)} where,

C1(x, y) : x+ y = 10,
C2(x, z) : x+ z = 8,
C3(y, z) : |y − z| = 2.

One possible solution for this CSP is: (x, y, z) = (7, 3, 1). If we consider the objec-
tive function“max(x+ y+ z)”, then the optimal solution is (x, y, z) = (1, 9, 7), where
the objective value takes its max value 17.

2.2 Mixed Integer Linear Programming

Mixed-Integer Linear Programming (MILP,MIP) [23] is one of the most widely used
methods for handling optimization problems, due to its rigorousness, flexibility and
extensive modeling capability. A MIP program is a linear program with the added re-
striction that some, but not necessarily all, of the variables must be integer. Typically, a
MIP model involves: (i) a set of decision variables, (ii) a set of linear constraints, where
each constraint requires that a linear function of the decision variables is either equal to,
less than, or more than, a scalar value, and (iii) an objective function that assesses the
quality of the solution. Solving a MIP problem consists to find the best solution for the
objective function in the set of solutions that satisfy the constraints. Formally, a MIP
problem takes the form:

Maximize or minimize cTx
subject to Ax (≤,=, or ≥) b

xi ∈ Z, i = 1..p
xi ∈ R, i = p+ 1..n

1 Which means that the solving time scales exponentially as the problem size increases in the
worst case.
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where x represents the vector of decision variables, p is some positive integer value,
cj , ∀j = 1, ..., n are referred to as objective coefficients, A is an m × n matrix of
coefficients, and b is an m× 1 vector of the right-hand-side values of the constraints.

3 Problem Formulation

The issue of parameter elicitation regarding the lexicographic ordering method can be
described by:

– A set of criteria: X = {X1, ..., Xn}, where n ≥ 2;
– A set of alternatives A = {A1, ..., Am}, where Aij is the value of the jth criterion

for the ith alternative. These alternatives are ordered according to their finite out-
come values Y , i.e., Y (Ai) ≤ Y (Aj), i = 1, ...,m − 1, j = i + 1, ...,m, where
Y (Ai) denotes the outcome value of the ith alternative. These outcome values can
be gathered either experimentally, or from responses of a questionnaire survey of
preference (cf. [3]).

The problem is to find a total ordering of criteria θ, for which the lexicographic
ordering induced on the set of alternatives Aθ , becomes as close as possible to the
”ideal” ordering given in A. Before we state our optimality criterion, we introduce a
measure of discrepancy between Aθ and A.

Definition 3 (Discrepancy measure). Let θ = [Xθ(1), ..., Xθ(n)] be a permutation be-
tween criteria [X1, ..., Xn]. According to θ, we get a lexicographic ordering Aθ =
(Aσ(1), ..., Aσ(m)), where [σ(1), ..., σ(m)] is a permutation of [1, ...,m]. The discrep-
ancy measure for Aθ is given by:

D(Aθ) = K([σ(1), ..., σ(m)], [1, ...,m]) (3)

Definition 4 (Optimal permutation). A permutation θ∗ is said to be optimal, if and
only if for any permutation θ,

D(Aθ) ≥ D(Aθ∗) (4)

Note that for a multicriteria problem with n criteria, we have n! possible permuta-
tions. So, the space of possible permutations has a size being exponential in the number
of criteria. Therefore, the challenge consists to find the best order without going into all
possibilities.

4 Motivating Example

Let us reconsider the introductory example, in which we have an outcome vector Y (the
prices), that the seller wishes to explain/justify to his customers. A sampling data of 18
apparatus are shown in Table (1), where X1 indicates the weight, X2 the resolution of
image sensor, and X3 the zoom of the apparatus.
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Table 1. Sample data for the Seller Problem

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
X1 440 510 470 400 340 390 250 250 360 220 320 280 310 300 280 200 270 210
X2 2 2 4 4 6 8 8 12 14 14 18 20 20 22 24 26 28 30
X3 5 2 2 4 12 1 5 6 8 7 7 9 10 9 3 12 14 13
Y 389 416 421 425 434 449 461 465 468 473 478 484 485 488 527 529 532 566

In this example, we aim to find a permutation between criteria that minimizes the
optimality criterion given by Equation (3). To evaluate efficiently the degree of the dis-
crepancy between the ideal ordering given by the outcome vector (Y ), and the lexico-
graphic ordering of the alternatives, we have used a normalized2 version of the Kendall
tau distance given in Definition (2). In this sense, values that are close to 1 indicate a
strong discrepancy; whereas values that are close to 0 indicate a weak discrepancy.

The proposed exact approaches (i.e., CP and MIP) seek to find the optimal permu-
tation between criteria by construction, and for our case study, both have yielded the
same (optimal) permutation, i.e., θcp = θmip = [X2, X3, X1], where X2 is the most
important criterion, and so forth ending with X1. Besides, the discrepancy measure
associated to this permutation is equal to3 0.97, which captures the goodness of the
computed parameter.

5 Constraint Programming Model

Constraint Programming frameworks (e.g., CPO, Gecode, Choco,...) aim at making
easy problems formulation and solving. An important ingredient of a CP model are
global constraints [18] which provide an efficient reasoning mechanisms within a prob-
lem model. Two global constraints have been exploited in our CP optimization model,
namely, All-different [17], and Element constraints [10]. This model is de-
scribed in Algorithm (1), where:

– θ∗i , i = 1..n, is the index of the ith criterion,
– Dθ∗

i
, i = 1..n, (inst. 1) specifies the domain of the variable θ∗i .

– Variables in θ∗ must be all different (inst. 2), since any two criteria cannot be placed
at the same index.

– The preferences are extracted from the outcome vector, and are handled using Rei-
fied Constraints4 (loop. 3 − 5). So, for each preference relation Y (Ai) < Y (Aj)
we post the reified constraint (Ai <lex Aj)⇐⇒ b, where b ∈ {0, 1}.

– When Y (Ai) = Y (Aj) or Ai and Aj are indifferent, nothing is done, since each
alternative (Ai and Aj) outranks the other, and hence this case does not affect the
discrepancy degree. To keep the algorithm simple, this last case is not detailed in

2 By dividing the Kendall tau distance by the number of all possible pairs.
3 The underline indicates that the result is less than the significance level (α, most commonly

fixed to 5%, cf. [6]). Note that a significance level indicates how likely a result is due to chance.
4 Reified constraints reflect the validity of a constraint C into a 0/1 finite domain.
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Algorithm 1. LEXMAXCSP finds the optimal permutation between criteria
Input: n criteria; m alternatives: {Al, ..., Am}
Output: Optimal permutation θ∗

1 Dθ∗i ← {1, ..., n}, i = 1..n

2 ALL-DIFFERENT(θ∗)
3 for i ← 1 to m− 1 do
4 for j ← i+ 1 to m do
5 prefk ← LEXLE(Ai, Aj , θ

∗)

6 MAXIMIZE(
∑|pref |

k=1 prefk)
7 return θ∗

Algorithm 2. LEXLE finds a permutation θ, so that (x <lex y)

Input: x, y : two vectors of n integer values
Output: (x <lex y)

1 lexn−1 ← (xθn−1 < yθn−1) ∨ ((xθn−1 = yθn−1) ∧ (xθn < yθn))
2 for k ← n− 2 downto 1 do
3 lexk ← (xθk < yθk ) ∨ ((xθk = yθk ) ∧ (lexk−1))

4 return lex1

Algorithm (1). It can be easily integrated by avoiding generating the preference
constraint when Y (Aj) = Y (Ai).

– The objective is modelled using a cost function (inst. 6), with which the number of
satisfied preferences is maximized.

Besides, Algorithm (2) is proposed as an iterative version of the recursive For-
mula (1). It looks for a permutation between criteria, that allows to a vector X to be
lexicographically less than another vector Y . In addition, Algorithm (2) contains con-
straints of the form xz op yz , where x, y are two vectors of integers, z a decision
variable whose domain is Dz = {1, ..., n}, and op ∈ {<,=}. This kind of constraints
is handled efficiently via the use of Element global constraint. That is,

(xz op yz) ≡

⎧⎪⎪⎨⎪⎪⎩
Element(z, [x1, ..., xn], t1)
Element(z, [y1, ..., yn], t2)
t1 op t2
integer(ti) for i = {1, 2}

(5)

The constraint Element(z, [x1, ..., xn], t1) is satisfied if t1 = xz . And also, the
constraintElement(z, [y1, ..., yn], t2) is satisfied if t2 = yz . With these two Element
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constraints, we can reformulate the constrait (xz op yz) as t1 op t2. For purpose of
writing ease, we decided to preserve the notation xz op yz .

The number of generated constraints of this model is ofO(n×m2) in the worst case
(i.e., m(m− 1)/2 constraints to model the preference relations, and 2n− 1 constraints
for each LEXLE constraint). By construction, our CP approach computes the optimal
order between criteria. In fact, the CP model finds the best permutation between criteria
to satisfy at most m(m− 1)/2 possible preference relations. Similarly, the Kendall tau
criterion focuses on m(m− 1)/2 possible relations.

6 MIP Model

In the sequel we introduce a mixed integer programming (MIP) formulation of the
elicitation problem. Due to high performance of MIP solvers in handling combinatorial
optimization problems, we thought that it is convenient to propose and compare the
effectiveness of a MIP model against the proposed CP model.

Our idea consists to reformulate our CP model toward usage by a MIP solver. In
particular, we have to linearize All-Different and Element global constraints,
used in Algorithm (1).

Linearizing All-Different constraint. The linear formulation of this constraint
is given in Algorithm (3); in which we associate to each decision variable a vector of
binary variables, so that at most one variable is fixed to 1. Constraints in loop (2 − 3),
and loop (4− 5) ensure that variables in θ should have distinct values.

Linearizing Element constraint. Due to the decision variables (θ) among the indices
on the x and y vectors in Algorithm (2), the later have to be reformulated toward usage
by a MIP solver. To tackle constraints for variable indexing (i.e., Element constraint),
we make use of a compact reformulation given in [16,11]. So, consider the constraint
xz op yz , where x, y are two alternatives of constant values, z an integer variable whose
domain Dz = {1, ..., n}, and op ∈ {<,>,=, �=,≤,≥}. Here is how to reformulate this
constraint into linear terms.

(xz op yz) ≡

⎧⎪⎪⎨⎪⎪⎩
z =

∑n
i=1 i · γi∑n

i=1 xi · γi op
∑n

i=1 yi · γi∑n
i=1 γi = 1

γi ∈ {0, 1}, for i ∈ {1, .., n}
(6)

Thus, the MIP elicitation model is obtained by applying this reformulation to Algo-
rithms (1 and 2). The number of elementary constraints of this model is of O(n×m2)
in the worst case (i.e., m(m − 1)/2 constraints to model the preference relations, and
4n− 1 constraints for each linearized LEXLE constraint). Straightforwardly, this linear
reformulation preserves the optimality of the computed solutions.
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Algorithm 3. ALLDIFFMIP - MIP reformulation of ALL-DIFFERENT constraint
Input: b: a matrix of n× n binary variables;
a: a vector of n integers;
θ: a vector of n integer variables.
Output: ALLDIFF(θ)

1 Dθ ← {1, .., n}
2 for i ← 1 to n do
3

∑n
j=1 bij ≤ 1

4 for j ← 1 to n do
5

∑n
i=1 bij ≤ 1

6 for i ← 1 to n do
7 θi =

∑n
j=1 bij · aj

8 return θ

7 Experimental Evaluation

We evaluated experimentally the proposed elicitation approaches on a set of realistic
instances [22,5]. We have implemented and solved our CP and MIP models using IBM
ILOG Concert C++ interface, and CP Optimizer(CPO)/CPLEX solvers5 (version 12.5).
Our experiments have been performed on x86 64 machine with Intel Xeon (x5460)
4xCores @3.16 Ghz and 8 Gb of free memory. We have also used the discrepancy
measure (see Equation 3) to evaluate the similarity between the ideal ordering, and the
ordering given by the lexicographic method, once the parameter has been identified.

Table (2) summarizes our empirical results of both exact approaches, conducted on
a data set of 11 instances with 100 alternatives for each. In this table, columns #, Cr
and Dopt respectively indicate, the benchmark number, the number of criteria and the
optimal discrepancy degree computed from the result of the CP approach.

For the CP approach, columns Vars, Cons, Mem and TCP respectively designate,
the number of variables and constraints for each CP model, along with the memory
usage (in Mb) and the solving time of CPO solver (in seconds), with a timeout of
3, 600 sec in all experiments. Besides, for each MIP model, we have reported the num-
ber of constraints in rows column box; the number of integer and binary variables in
both columns cols and bin; the memory usage (in Mb) in Mem column box; while
the solving time (in seconds) of CPLEX solver is depicted in TMIP column box, with
a timeout of 1 hour for all instances.

It is worth observing from Table (2, columns TCP and TMIP ), that the CP approach
outperforms the MIP approach in all benchmarks. Here, we point out that the TO value,
especially in TMIP column box, indicates that CPLEX solver failed to prove the opti-
mality of the solution within the time allotted. Thus, a feasible solution is given instead.
In this particular case, the Dopt value can be used to measure how far is the discrepancy
degree corresponding to the computed feasible solution, from the optimal discrepancy

5 http://www-142.ibm.com/software/products/fr/fr/
ibmilogcplecpopti/

http://www-142.ibm.com/software/products/fr/fr/ibmilogcplecpopti/
http://www-142.ibm.com/software/products/fr/fr/ibmilogcplecpopti/
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Table 2. Empirical results of the CP and MIP approaches

CP approach MIP approach

# Cr Dopt Vars Cons Mem TCP rows cols bin Mem TMIP

1 3 0.40 3 44,551 59 0.83 2,414 904 192 0.01 4.16
2 5 0.44 5 84,151 130 2.46 5,219 6,429 3,694 0.42 78.37
3 6 0.48 6 103,951 158 71.87 4,609 9,242 4,649 3.98 439.18
4 8 0.42 8 143,551 212 2.94 4,625 9,306 4,713 166.9 896.53
5 8 0.44 8 143,551 213 3.74 4,683 9,422 4,771 494.85 1,587.10
6 9 0.47 9 163,351 276 257.71 4,861 9,865 5,048 2,273.15 1,796.53
7 11 0.44 11 202,951 342 6.65 — — — — TO
8 11 0.42 11 202,951 342 5.84 — — — — TO
9 18 0.37 18 341,551 566 30.27 — — — OM —
10 19 0.16 19 361,351 687 23.19 — — — OM —
11 44 0.41 44 856,351 800 537.30 — — — OM —

TO: timeout (3,600 sec)
OM: out of memory

degree computed using the CP optimal solution. Furthermore, from benchmark #9 to
#11 (see Table 2), CPLEX solver has reported an “out of memory” (OM) status, due to
a huge memory used to solve the MIP models, that exceeded, in those cases, the amount
of available memory.

Tuning Parameters for Computational Performance

The results of both CPO and CPLEX solvers were obtained according to a custom pa-
rameter settings. Using these parameters, we succeed to boost the solving performances.

– CPLEX parameters
It is known that CPLEX has a number of sophisticated features that drastically
improve solving performance. To solve our MIP models, we have investigated the
following parameters:
1. Priority orders Assign higher priority to the integer variables that should be

decided earlier.
2. Cuts Adding cuts are one of the principal reasons of recent increases in MIP

performance. In general (and particularly in our benchmarking), disabling this
parameter will boost CPLEX solver.

3. Probing This looks at the logical implications of fixing binary variables, which
happens after presolve but before branch and bound. Here, we have applied
more intensive probing, which improved the results.

– CP Optimizer
We argue that there are several parameters that may enhance the performance of CP
Optimizer. We examine, without being exhaustive, most of prominent parameters
that we have investigated in our experiments.
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1. Search phases with selectors This parameter explicitly indicates to the search
engine the key variables, and which variable should be instantiated to which
value. For our experiments, we decided to select decision variables having small-
est domain size.

2. Inference levels This parameter is used to achieve more domain reduction by
changing the inference level of some global constraints, like All-different.

3. Parameters on search
• Search type parameter This parameter controls the type of (construc-

tive) search applied to a problem. The search type we selected is based on
the Restart strategy, jointly with two other parameters, namely, Fail
limit, and Restart grow factor.

Interestingly, there has been recent works in identifying a parameter tuning that
achieves good performance (cf. [12]). However, the best combinations of parameter
settings differ according to problem types, which is of course the reason that such
design choices are mainly given as parameters.

Discussion

Due to the slower solving performance of the proposed MIP model, we have investi-
gated another MIP model, where the key idea consists to reformulate the lexicographic
ordering method as a weighted sum optimization method, providing that the chosen
weighting vector prohibits any compensation between the criteria. Clearly, to react as a
lexicographic method, we chose a large enough weights to rule out any compensation.
Additionally, the number of generated constraints of this MIP model is of O(m2) in
the worse case (i.e., m(m− 1)/2 constraints to model the preference relations) against
O(n × m2) in the first MIP model. However, even if this reformulation seems to be
compact, it may result in numerical instability and slower performance.

8 Related Works

The problem of elicitation in multicriteria decision making has been also tackled by
many works in decision making community. The main focus of these works is on
preference elicitation [7,4,8,20]. These works encompass both (pro)active and iterative
learning procedures, and are advocated as means to restrict the domain of admissible
preferences which enables to make a good decision. Here, we suppose that the multi-
criteria decision making is done in the context of a multicriteria method. For instance,
the paper [3] tackles parameter elicitation in the context of OWA methods.

In our previous work related to parameter elicitation [2,1], we have investigated a
CP approach, along with two approximate approaches based on statistics. However,
the main contribution of the present work, is on the use of two exact approaches. In
particular, an improved CP model, and a linear reformulation of this model based on
MIP techniques, to handle efficiently the elicitation problem regarding the lexicographic
method.
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9 Conclusion and Perspectives

In this paper, we have proposed and discussed two exact approaches toward solving the
problem of parameter elicitation regarding the lexicographic method. More precisely,
we highlighted the effectiveness of an exact approach, since it ensures the optimality
of the solution, and offers a concise and expressive problem formulation, especially
with CP modeling. We also showed some empirical results, carried on a significant
multicriteria problem. These experiments have shown that the CP approach is more
suitable than the MIP approach in term of solving performance. Among our future
works, we plan to improve the proposed MIP model, particularly by investigating other
linearization techniques.

Acknowledgment. We would especially like to thank Olivier Lhomme for his assis-
tance, suggestions and insightful comments.
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17. Régin, J.-C.: A filtering algorithm for constraints of difference in csps. In: Hayes-Roth, B.,
Korf, R.E. (eds.) AAAI, pp. 362–367. AAAI Press / The MIT Press (1994)
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Abstract. Given the knowledge of the preferences of a set of voters
over a set of candidates, and assuming that voters cast sincere approval
ballots, what can we say about the possible (co-)winners? The outcome
depends on the number of candidates each voter will approve. Whereas
it is easy to know who can be a unique winner, we show that deciding
whether a set of at least two candidates can be the set of co-winners is
computationally hard. If, in addition, we have a probability distribution
over the number of candidates approved by each voter, we obtain a prob-
ability distribution over winners; we study the shape of this probability
distribution empirically, for the impartial culture assumption. We study
variants of the problem where the number of candidates approved by
each voter is upper and/or lower bounded. We generalize some of our
results to multiwinner approval voting.

Keywords: Computational social choice, Approval voting, Voting
under incomplete knowledge, Computational complexity.

1 Introduction

While most voting rules take as input a collection of rankings over candidates,
approval voting stands as an exception and takes as input a collection of subsets
of candidates [7]. It is well-known that there is no single sincere approval ballot
given a voter’s preferences over a set of candidates: for any candidate c, approving
the set of all candidates that are preferred to c is a sincere ballot [8]. If the voter’s
preference relation over a set of m candidates is a linear order, this makes m
sincere ballots1.

Assume that we2 know the preference relation of every voter (each assumed
to be a linear order) but that we cannot predict the threshold they will fix,
that is, the number of candidates they will approve. For each vector of such
thresholds (one for each voter), there will be a winner, or, in case of a tie, a set
of co-winners, called a co-winning set. We say that a subset of candidates is a

1 Sometimes, voting for all candidates is excluded, which makes only m − 1 sincere
ballots. See for instance [9].

2 ‘We’ is generic, and represents anyone who may reason about the outcome of the
vote; the chair, for instance.
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possible co-winning set if it is the set of co-winners for some vector of thresholds,
and candidate x is a possible unique winner if {x} is a possible co-winning set.
The properties of the set of possible approval winners has been addressed first
in [9], with the restriction that voters cannot approve all candidates (nor none).
They show that the set of possible approval winners contains the Condorcet
winner (if any) and also the winner(s) of many voting rules. Another related
work is [28], who gives a geometric interpretation of the set of possible approval
winners. None of both works characterizes possible winning sets, nor addresses
the computational difficulties of identifying them.

We go further in several respects. First, we consider a more general setting
where the number of approved candidates can be anything between a fixed lower
bound and a fixed upper bound. In the case where voters are totally free of
the number of approvals, that is, when these bounds are respectively 1 and m
candidates3, characterizing the set of candidates that can be a unique winner
(without a tie) turns out to be straightforward: x is a possible unique winner if it
is Pareto-undominated in the original profile. We give a similar characterization
when the bounds are different. Then we consider the problem of recognizing co-
winning sets, and show that it is NP-complete, even for sets of size two. Next,
we consider a probabilistic version of the problem, starting with a probability
distribution over approval vectors; we focus on the uniform distribution, and
in this case we first observe that the probability that a candidate is in the co-
winning set is proportional to its Borda score; then, assuming impartial culture,
we study experimentally the shape of the probability distribution over winners.

This work is related to (at least) four research streams. The first of these is a
series of works in social choice theory that relate approval voting to the classical
Arrovian model, which considers social choice functions mapping a collection of
weak orders into a nonempty subset of candidates (whereas approval voting gen-
erates the social outcome by aggregating collections of subsets of candidates).
For this, the key notion is that of sincere ballot, already evoked above. Most
works in this research stream (with the exception of [9] and [28] cited above)
study the conditions under which approval voting can, or cannot, be consid-
ered strategyproof, and the extent to which strategic behaviour may lead to an
undesirable outcome; see [29,30,23,15,26,24,14].

The second related research stream is the characterization and computation
of possible and necessary winners given some incomplete information about the
votes. The main difference with our setting is that in all these works (up to one
exception, discussed below), the voting rule used takes a classical profile, that is,
a collection of rankings, as input, and the incomplete information consists of a
collection of partial orders: a possible (resp. necessary) winner is then a candidate
that wins in some completion (respectively, all completions) of this collection of
partial orders [21,32,4,3,33,10,5,1,22,18]. An exception is [33], which, in Section
4, states a characterization of possible winners in approval voting, given an

3 Approving no candidate and approving all of them are equivalent, in the sense that
whatever the remaining votes, the outcome will be the same. Therefore, without loss
of generality, we exclude the possibility for a voter to approve 0 candidate.
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initial approval ballot over an initial set of candidates, and given a number of
new candidates to be added; the nature of the incomplete information about
approval ballots in their setting and ours (an approval profile over a subset
of candidates vs. a ranking profile over all candidates) is totally different, and
results cannot easily be compared.

The third related research stream is a series of works that focuses on the com-
putational aspects of strategic behaviour in approval voting; see in particular
[16,2]. The reason why it relates to our work is that we also find computation-
ally hard problems in approval voting; but, once again, our problems do not
come from any form of strategic behaviour. Lastly, the computational aspect of
strategic behaviour in multiwinner versions of approval voting was considered in
[25].

Lastly, our Section 4, where we study the complexity of identifying possible
outcomes in multiwinner approval voting, relates to the computational study of
multiwinner election schemes, such as full proportional representation [27,6,31],
Condorcet winning sets [13] or other approaches to committee selection [11,12,20]
(we discuss [11] in more detail in Section 4).

The paper is organized as follows. In Section 2 we introduce the necessary
background. In Section 3 we define possible and necessary (co)winners and give
some characterizations as well as some hardness results about the identification
of possible winning sets. In Section 4 we consider multiwinner elections, and
generalize some of our results of Section 3. In Section 5 we present further
research issues.

2 Preliminaries

We are given n voters N = {1, . . . , n} and m candidates (or alternatives) X =
{x1, . . . , xm}. A ranking profile P = (Pi)i∈N is a collection of linear orders (also
called rankings) over X . Pi is also denoted by �i.

An approval ballot is a nonempty subset of X . An approval profile is a col-
lection A = 〈A1, . . . , An〉 where Ai ⊆ X is the set of candidates approved by
voter i. Such an approval ballot is called sincere, if for every voter i and every
candidate xj approved by i there exists no candiate x not approved by i such
that x �i xj . We denote by ki, for i = 1, . . . , n and 1 ≤ ki ≤ m, the number of
candidates approved by voter i. Hence, in a sincere approval ballot, each voter i
approves its ki best candidates according to the ranking given by Pi.

Given an approval profile A, the approval score of candidate xj , denoted by
appA(xj), or, when there is no ambiguity, app(xj), is the number of voters i such
that xj ∈ Ai, for i = 1, . . . , n and j = 1, . . . ,m. The set of approval co-winners
for A, denoted by App(A), is the set of candidates with maximal approval score.
If App(A) is a singleton {a} then a is said to be a single winner for A4.

For a ranking profile P , voter i ∈ N and candidate x ∈ X , rkP (i, x) ∈
{1, . . . ,m} denotes the rank of x in the ranking Pi. For X

′ ⊂ X , let PX′ be the

4 Approval voting is here considered an irresolute voting rule; a resolute version of
approval voting can be defined by applying a tie-breaking priority mechanism.



60 N. Barrot et al.

restriction of P to candidates in X ′. We denote by pl(x,X ′) the plurality score
approval score of candidate x ∈ X ′ in profile PX′ , that is, the number of voters
in PX′ who rank x on top. For X ′ ⊂ X and x ∈ X \ X ′, we write X ′ �i x if
∀x′ ∈ X ′, x′ �i x and candidates among X ′ are ranked arbitrarily. Finally, we
say that candidate x dominates candidate x′ according to profile P if ∀i ∈ N ,
x �i x

′.
Approval voting can also be used for multiwinner elections. Here the goal is to

elect a set of alternatives, or a committee, of fixed size K. There are several pro-
cedures for determining a committee using approval voting, which are reviewed
in [19]. The most obvious way consist in choosing the candidates with the K
highest approval scores (using some tie-breaking mechanism if necessary).

Sometimes, a further constraint on the number of approvals is added: each
voter is only allowed to approve at least d and most k candidates, where k ≥ d ≥
1; a typical choice, often implemented in real-world elections, consists in fixing
d to 1 and k to an arbitrary constant (such as, in multi-winner elections, the
number of positions to be filled). The corresponding voting rule, mapping any
collection of n subsets ofX of cardinality between d and k, is called [d, k]-approval
voting. Notice that approval voting is equivalent to [1,m]-approval voting.

3 Single-Winner Approval Voting

3.1 Restriction-Free Approval Voting

We start by defining the set of approval ballots that are compatible with a
ranking profile.

Definition 1

– A threshold vector (for N and X) is a vector k = 〈k1, . . . , kn〉 ∈ {1, . . . ,m}n.
– Let P = 〈P1, . . . , Pn〉 be a ranking profile over X, and k a threshold vector.

For all i ≤ n, let (Pi)
1→ki be the subset of X defined by

(Pi)
1→ki = {x ∈ X | rk(x, Pi) ≤ ki}

The approval profile induced by P and k, denoted by AP,k, is defined as

AP,k = 〈(P1)
1→k1 , . . . , (Pn)

1→kn〉
– The set of all approval profiles compatible with P is defined as

CAP (P ) = {AP,k | k ∈ {1, . . . ,m}n}
Example 1. Let m = n = 3, P = 〈x1 � x2 � x3, x1 � x2 � x3, x3 � x1 � x2〉
and k = 〈2, 1, 2〉; then AP,k = 〈{x1, x2}, {x1}, {x1, x3}〉.
Definition 2. Let P be a ranking profile P over X. A subset X ′ ⊆ X is called
a possible co-winner set for P if there exists a threshold vector k such that X ′ =
App(AP,k). The set of all possible co-winner sets for P is denoted by PCS(P ).
x ∈ X is a possible single winner for P if {x} ∈ PCS(P ), a possible co-winner
if it belongs to some possible co-winner set, a necessary co-winner if it belongs
to all co-winner sets for P , and a necessary single winner if PCS(P ) = {x}.
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Example 1, continued. {x1} is a possible co-winner set (and hence x1 a possible
single winner) for P , obtained for instance for k = 〈1, 3, 3〉, for k = 〈1, 2, 2〉, and
for many other threshold vector; and

PCS(P ) = {{x1, x2, x3}, {x1, x2}, {x1, x3}, {x1}, {x3}}
whereas the possible single winners for P are x1 and x3.

Without any restriction on the allowed thresholds, the notions of possible co-
winner, necessary co-winner and necessary single winner turn out to trivialize:
all candidates are possible co-winners, no candidate is a necessary single winner,
and a x is a necessary co-winner if and only if it is ranked on top of all votes.

We now consider the following question: given a ranking profile P and a subset
of X ′ of candidates, is X ′ a possible winner set for P? We call this problem the
possible co-winner set problem for approval voting

5. This problem
turns out to be easy in the case where X ′ is a singleton:

Theorem 1. x is a possible single winner for P if and only if no candidate in
X \ {x} dominates x in P .

Proof. Assume no y dominates x in P . Define k by ki = rkP (i, x) for any i ∈ N .
x is approved n times in AP,k; if y �= x is also approved n times AP,k, then for
all i, rkP (i, y) ≤ ki, i.e., y would dominates x in P ; therefore, App(AP,k) = {x}.
Conversely, if y dominates x in P , then for all k, y will be approved at least as
many times as x in AP,k, therefore x cannot be a posssible single winner.

As a consequence, the restriction of the possible co-winner set problem to sin-
gletons can be solved in polynomial time. This property does not generalize to
subsets of arbitrary size. Indeed, the possible co-winner set problem is computa-
tionally hard, even under the restriction to sets of candidates of fixed size  ≥ 2.
We first prove the following lemma.

Lemma 1. If X ′ ∈ PCS(P ), then there exists a solution (ki)i∈N satisfying the
following properties:

(a) For any i ∈ N , ki ∈ {rkP (i, x) : x ∈ X ′}.
(b) The score of any co-winner is at least maxx∈X′ pl(x,X ′).

Proof. Let X ′ ∈ PCS(P ). (a): Let (ki)i∈N be any solution such that the can-
didates in X ′ = {x1, . . . , x�} are exactly the co-winners for profile P . Con-
sider a voter i and, without loss of generality, assume that x1 �i · · · �i x�.
Moreover, assume ki /∈ {rkP (i, x) : x ∈ X ′}. If rkP (i, xj) < ki < rkP (i, xj+1)
with j ∈ {1, . . . ,  − 1}, then we replace ki by rkP (i, xj). If ki < rkP (i, x1) or
ki > rkP (i, x�), we replace ki by rkP (i, x�). It is not difficult to see that X ′

remains exactly the co-winner set. By repeating this procedure for each voter,
we obtain the expected result. (b): Using (a), we know that there is a solution
(ki)i∈N such that the global score of candidate xj ∈ X ′ is at least pl(xj , X

′).
Since the candidates in X ′ are the co-winners, we must have that each candidate
of X ′ is approved at least maxx∈X′ pl(x,X ′) times.

5 From now on we will generally omit “for approval voting”.
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Theorem 2. Let  ≥ 2. Given a profile P and a subset of candidates X ′ such
that |X ′| = , determining whether X ′ is a possible co-winner set for P is NP-
complete.

Proof. The problem is clearly in NP for all  ≥ 2. Let us give a proof for the case
when  = 2 and explain then how to generalize to all other cases. The proof of the
NP-completeness is based on a reduction from exact 3-set cover (X3C in
short). In an instance of X3C, we are given a family of m sets S = {S1, . . . , Sm}
over a ground set Y = {y1, . . . , y3n} such that ∪mi=1Si = Y and |Si| = 3, for
i = 1, . . . ,m. The question is whether there exists a subset J ⊆ {1, . . . ,m} of
size n such that

∑
j∈J Sj = Y ? This problem is known to be NP-complete [17].

Let I = (S, Y ), with S = {S1, . . . , Sm} and Y = {y1, . . . , y3n}, be an instance
of X3C. We build an instance of possible co-winner set for approval

voting, with  = 2, as follows. There are 2m − n voters N = {1, . . . ,m −
n} ∪ {1′, . . . ,m′} and m + 2n + 2 candidates X = E ∪ Y ∪ {a, b} where E =
{e1, . . . , em−n} and we set X ′ = {a, b} as the target candidates. The profile P is
given by:

• For 1 ≤ i ≤ m− n, E \ {ei} �i Y �i a �i ei �i b.

• For 1 ≤ j ≤ m, b �j′ Y \ Sj �j′ E �j′ a �j′ Sj.

This clearly gives us an instance I ′ of possible co-winner set. We claim that
there exists a subset J ⊆ {1, . . . ,m} with|J | = n such that

∑
j∈J Sj = Y if and

only if {a, b} is a possible co-winner set for P .
Suppose that I is a yes-instance of X3C, i.e., there exists J ⊆ {1, . . . ,m}

with|J | = n such that
∑

j∈J Sj = Y . We set kj′ = rkP (j
′, a) for j ∈ J . For the

remaining voters i ∈ N \{j′ : j ∈ J}, we set ki = min{rkP (i, a), rkP (i, b)}. a and
b are approved m times while candidates in E ∪ Y are approved at most m− 1
times. Thus X ′ = {a, b} is a possible co-winner set.

Conversely, assume that I ′ is a yes-instance of possible co-winner set.
Using (a) and (b) of Lemma 1, there exists k with ki ∈ {rkP (i, a); rkP (i, b)}
for any i ∈ N and a, b must be approved at least m times. Thus, there exists
J ⊆ {1, . . . ,m} such that kj′ = rkP (j

′, a) for j ∈ J and kj′ = rkP (j
′, b) for j /∈ J .

In particular, we deduce that
∑

j∈J Sj = X since otherwise any candidate of
X \ (

∑
j∈J Sj) necessarily dominates a; hence, |J | ≥ n. Moreover, if |J | ≥ n+1,

then a gets approved at least m+ 1 times. Thus, there exists at least one voter
i ∈ {1, . . . ,m − n} such that ki = rkP (i, b) (since a and b must get approved
the same number of times). But then app(ei) ≥ app(a), a contradiction. So we
conclude that |J | = n and

∑
j∈J Sj = Y : I is a yes-instance of X3C.

This shows the NP-completeness of possible co-winner set for ap-

proval voting, restricted to co-winner sets of size 2. Now it is not difficult
to see that, if we proceed exactly the same way and replace everywhere in the
previous proof a by {a1, . . . , a�−1} and we set X ′ = {b} ∪ {a1, . . . , a�−1}, for
 ≥ 3, we can show the NP-completeness of possible co-winner set for

approval voting restricted to co-winner sets of size .



Possible Winners in Approval Voting 63

3.2 Approval Voting with Restriction on the Number of Approvals

We now consider, more generally, [d, k]-approval voting. The definitions are nat-
ural generalizations of those in Section 3.1, with the difference that each ki
should be such that d ≤ ki ≤ k. The set of all [d, k]-approval profiles compatible
with P is defined by CAPd,k(P ) = {AP,k | k ∈ [d, k]n}, and the set of possible
[d, k]-approval co-winner sets for P is denoted by PCSd,k(P ).

Example 1, continued.

– PCS1,2(P ) = {{x1}, {x1, x2}};
– PCS2,3(P ) = {{x1}, {x1, x2}, {x1, x3}, {x1, x2, x3}}

Again, in order to check whether x is a possible single winner, it is enough to
check it for a specific choice of k, namely, the best possible choice for x.

Theorem 3. {x} ∈ PCSd,k(P ) if App(AP,k) = {x} for k defined by ki =
rkP (i, x) when rkP (i, x) ∈ [d, k], and ki = d otherwise.

Proof. (⇐) is direct from the definition. For (⇒), suppose {x} ∈ PCSd,k(P ).
Then there is a vector (k′i)i∈N for which x is the single winner. If k′ = k then we
are done. Otherwise, take the voter i with minimum index that satisfies k′i �= ki.
If k′i < ki then doing k′i ← ki increases the score of a subset of candidates by one
unit, and this subset includes x. If k′i ≥ ki then by doing k′i ← ki the score of x
remains unchanged, while the score of some other candidates decreases. In all,
x remains the single winner by the operation k′i ← ki. Repeating the operation
until k′ = k leads to the result. ��

Theorem 3 generalizes Lemma 2 in [9]; for d = 1 and k = m − 1, we recover
their notion of critical strategy profile for x: every voter who ranks i as his
worst candidate approves only one candidate; the other voters vote for i and
all candidates above. Then x is a possible 1,m− 1- approval winner (called AV
outcome in [9]) if x wins at his critical strategy profile.

As a corollary, we get simple characterizations of possible and necessary co-
winners and single winners, which we state without proof: let D+

P (x, y) = {i |
rki(P, x) ≤ k, rki(P, y) > d andx �i y} and D−

P (x, y) = {i | rki(P, x) ≤
d and rki(P, y) > k}. Then x is a possible [d, k]-approval co-winner (respectively,
possible single winner, necessary co-winner, single winner) for P if and only if
for all y �= x, |D+

P (x, y)| ≥ |D
−
P (y, x)| (respectively, |D

+
P (x, y)| > |D

−
P (y, x)|,

|D−
P (x, y)| ≥ |D

+
P (y, x)|, |D

−
P (x, y)| > |D

+
P (y, x)|).

Theorem 2 immediately extends to [1, k]-approval for k = m − 2 because in
the proof of Theorem 2 we do not approve more m − 2 candidates for each
voter.

Theorem 4. For any integer  ≥ 2, the problem of checking whether X ′ is
a [1,m − 2]-approval possible co-winner set is NP-complete, even under the
restriction |X ′| = .
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Remark: The proof of Theorem 2 can be adapted in such a way that for any inte-
gers  ≥ 2 and d ≥ 2, checking whether X ′ is a [d, k]- approval possible co-winner
set, under the restriction |X ′| = , is NP-complete for some k. Moreover, using
Algorithm 1 described in Subsection 3.3 we can prove that checking whether X ′

is a [d, k]- approval possible co-winner set is polynomial whenever k− d is upper
bounded by a constant.

3.3 The Probability of Possible Co-winner Sets

Definition 3. Let p be a probability distribution on all threshold vectors. Given
a profile P and a subset of candidates X ′ ⊆ X, the probability that X ′ is the
co-winner set (for approval) is equal to

∑
k|App(AP,k)=X′ pr(k).

A simple assumption consists in assuming that π(i, r) approves his r most pre-
ferred candidates with a given probability π(i, r), and that voters’ choices are
probabilistically independent. Under this assumption, we show how to compute
efficiently the probability of each co-winner subset.

We first show how to enumerate all possible scores and their probabilities.
Given a voter i and a threshold ki ∈ [d..k], we define trace(i, ki) as the m-
dimensional 0-1 vector whose coordinate j is equal to 1 if candidate xj belongs
to the ki most preferred candidates of i, and 0 otherwise. For example, there are
4 candidates and voter i’s preference profile is x2 �i x3 �i x1 �i x4; we have
trace(i, 1) = (0, 1, 0, 0), trace(i, 2) = (0, 1, 1, 0), trace(i, 3) = (1, 1, 1, 0) and
trace(i, 4) = (1, 1, 1, 1).

We suppose wlog. that the voters provide their ballots sequentially, by ascend-
ing index, and a list Li contains all possible scores after voter i’s turn. Therefore
Li is defined as Li−1 to which one adds the possible ballots of voter i.

An element of a list is a couple composed of an m-dimensional vector (a score
for each candidate) and a probability. We suppose that a list never contains
two elements with the same vector. In addition, a list is sorted by its elements’
vectors which are sorted in lexicographic order (e.g. (1, 3, 4) <lex (1, 4, 0)). A
possible list can be 〈((1, 3, 4), 0.24), ((1, 4, 0), 0.36), ((2, 0, 1), 0.15)〉.

We use a subroutine merge-lists(L,L′) that merges the lists L and L′. If sev-
eral elements have the same vector then they are combined in a unique element
whose probability is the sum of all condensed elements’ probabilities. For example,
merge-lists(〈((1, 4, 0), 0.36), ((2, 0, 1), 0.15)〉, 〈((1, 2, 6), 0.41), ((1, 4, 0), 0.06)〉)
is equal to 〈((1, 2, 6), 0.41), ((1, 4, 0), 0.42), ((2, 0, 1), 0.15)〉. merge-lists(L,L′)
needs |L|+ |L′| operations.

Given a list L, a vector vec and its probability π, L⊕ (vec, π) means that we
add vec to every vector of L (component by component) and we multiply every
probability by π. For example, 〈((1, 4, 0), 0.3), ((2, 0, 1), 0.1)〉⊕((1, 0, 1), 0.3) gives
〈((2, 4, 1), 0.09), ((3, 0, 2), 0.03)〉. L⊕ (vec, π) requires |L| operations.

Algorithm 1 gives the exhaustive list of outcomes with their probabilities,
where 0 denotes the m-dimensional vector whose coordinates are all equal to 0.

Then we can retrieve from Ln the winner sets and their probabilities. The
size of Li is at most (k− d+1)|Li−1|, and |L0| = 1 so |Ln| ≤ (k− d+1)n ≤ mn.
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Algorithm 1. All possible scores with probabilities

1: L0 ← 〈(0, 1)〉
2: for i = 1 to n do
3: L′ ← 〈〉
4: for r = d to k do
5: L′ ← merge-lists(L′, Li−1 ⊕ (trace(i, r), π(i, r)))
6: end for
7: Li ← L′

8: end for
9: return Ln

Meanwhile the final score of any candidate belongs to [0..n] so there are at most
(n + 1)m distinct vectors of scores and |Ln| ≤ (n + 1)m. Thus Algorithm 1 is
exponential in the input size but it is polynomial when n orm is a fixed constant.

As a short example, consider an instance with m = n = 3, d = 1 and k = 3.
The profiles are x1 �1 x2 �1 x3, x3 �2 x1 �2 x2 and x2 �3 x3 �3 x1. We
suppose that for every voter i, the probabilities that the ki first candidates are
approved are 0.3, 0.5 and 0.2 when ki is equal to 1, 2 and 3 respectively. These
probabilities are independent. Hence voter 1 approves {x1, x2} with probability
0.5. And voter 2 approves {x1, x2} with probability 0 since it is not a sincere
vote. Running Algorithm 1 yields the values given in Table 1.

Table 1. Output of Algorithm 1 on the example

detailed scores & winner(s) &
corresponding prob. total prob.

(322) (312) (211) {x1}
0.082 0.03 0.045 0.157

(121) (231) (232) {x2}
0.045 0.03 0.062 0.137

(112) (123) (223) {x3}
0.045 0.03 0.012 0.087

(221) (332) {x1, x2}
0.123 0.02 0.143

detailed scores & winner(s) &
corresponding prob. total prob.

(212) {x1, x3}
0.093 0.093

(122) (233) {x2, x3}
0.093 0.02 0.113

(111) (222) (333) {x1, x2, x3}
0.027 0.235 0.008 0.27

3.4 Experimental Analysis

Finally, we provide an experimental analysis of the sensitivity of the winner to
the choice of the thresholds. We generate 5 ∗ 104 ranking profiles with an uni-
form distribution (impartial culture assumption). For each profile we generate
5 ∗ 104 threshold vectors with a uniform distribution, for each of these vectors
we compute the winner (ties being broken randomly), and we obtain the winning
probability of each candidate. We reorder these winning probabilities decreas-
ingly. Then we compute the average, over all generated profiles, of the largest
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winning probability. The results of these experiments are summarized in Table
2. We observe that the largest winning probability is above 50% with a low num-
ber of candidates and any number of voters. This probability decreases when the
number of candidates increases.

Table 2. Largest winning probability with uniformly drawn profiles and thresholds

n = 5 n = 20 n = 50 n = 100

m = 5 55.9 58.5 55.4 54.7
m = 20 32.8 35.0 34.6 35.1
m = 50 23.9 27.1 27.3 27.3
m = 100 18.3 22.4 22.7 22.8

We also compute the average of the second and third largest winning proba-
bilities. Figure 1 shows us the evolution of the largest, second and third largest
winning probabilities as a function of the number of candidates, with n = 5.
Finally, in Figure 2 we represent the largest winning probability as a function of
the number of voters. The largest winning probability appears to be independent
from the number of voters.

0 20 40 60 80 100

0.2

0.5

Third
Second
First

Fig. 1. Largest, second and third largest winning probabilities as a function of the
number of candidates, with n = 5

0 20 40 60 80 100
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0.5

m = 50
m = 20
m = 5

Fig. 2. Largest winning probability as a function of the number of voters
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4 Multiwinner Approval Voting

We now briefly reconsider some of the questions addressed in Section 3 in the
context of multiwinner approval voting. We are now given an integer K ≤ m,
and look for a committee of size K.

Definition 4. For any approval profile A, AppK(A) is the set of all committees
X ′ ⊆ X of size K such that for any x ∈ X and z /∈ X ′, appA(x) ≥ appA(z).
Let P a ranking profile over X. X ′ ⊆ X is a possible winning K-committee
for P if X ′ ∈ AppK(AP,k) for some threshold vector k. The set of all possible
winning K-committees for P is denoted by PCSK(P ). x ∈ X is possibly (resp.
necessarily) elected w.r.t. K and P if it belongs to some (resp. all) possible win-
ning K-committee(s) for P . Let PossK(P ) and NecK(P ) be the set of possibly
(resp. necessarily) elected candidates w.r.t. K and P . These definitions naturally
generalize to [d, k]-approval voting.

The following result generalizes Theorem 1.

Theorem 5. x ∈ PossK(P ) if and only if x is not Pareto-dominated by K
candidates or more.

Proof. Suppose that x is member of a possible winning K-committee, then the
candidates that dominate x are also in this winning K-committee, therefore at
most K − 1 candidates dominate x. Conversely, assume that x is dominated
by K − 1 candidates or less. For all i ∈ N , let ki = rkP (i, x). Only x and
the candidates that dominates x have an approval score equal to n, therefore x
belongs to a winning K-committee.

Theorem 6. x ∈ NecK(P ) if and only if x dominates at least n−K candidates.

The proof is similar to the proof of Theorem 5.
We now consider the following problem: given a ranking profile P over X and

a subset X ′ ⊂ X of size K, is K a possible winning K-committee for P? We
first establish the following lemma, for K = 2.

Lemma 2. Let X ′ = {x′
1, x

′
2}. If X ′ ∈ PCS2(P ), then X ′ ∈ App2(A

P,k) for
some k satisfying |{i ∈ N : rkP (i, x

′
1) ≤ ki}| = |{i ∈ N : rkP (i, x

′
2) ≤ ki}|.

Proof. Let X ′ ∈ PCS2(P ) and let k such that X ′ ∈ App2(A
P,k). If

appAP,k(x′
1) = appAP,k(x′

2), we are done. Otherwise, assume without loss of
generality that appAP,k(x′

1) > appAP,k(x′
2). There exists a subset N ′ ⊂ N of

size appAP,k(x′
1) > appAP,k(x′

2) such that for voters i ∈ N ′, rkP (i, x′
1) ≤ ki <

rkP (i, x
′
2). We build a new vector k as follows: (i) for i ∈ N ′, k′i = 0; (ii) for i ∈

N\N ′, k′i = ki. We have appAP,k′ (x′
1) = appAP,k(x′

1)−(appAP,k(x′
1)−appAP,k(x′

2)
and appAP,k′ (x′

2) = appAP,k(x′
2), therefore appAP,k′ (x′

2) = appAP,k′ (x′
1).

Theorem 7. Determining whether X ′ is a possible winning 2-committee is NP-
complete.
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Proof. Hardness is shown by a reduction from the problem of determining
whether a set of 2 candidates is a possible winning set in single-winner ap-
proval (NP-complete, cf. Theorem 2). Let I = (P,N,X,X ′) be an instance
of this problem, with X ′ = {x′

1, x
′
2}. From I, we build an instance I ′ of the

possible winning 2-committee problem, with the same N , X , P , and X ′. We
claim that X ′ is a possible winning set in I if X ′ is a possible winning 2-
committee in I ′. Clearly, if X ′ = App(AP,k), then X ′ = App2(A

P,k). Con-
versely, assume that X ′ = App2(A

P,k). By lemma 2, we know that there
exists k′ such that X ′ = App2(A

P,k) and appAP,k′ (x′
1) = appAP,k′ (x′

2), therefore,

X ′ = App2(A
P,k′

).

Unsurprisingly, this difficulty carries on to committees of larger size (the proof,
by reduction from the possible winning 2-committee, is easy and omitted):

Theorem 8. For any integer K ≥ 2, determining whether X ′ is a possible
winning K-committee is NP-complete.

This complexity result extends to [1, k]-approval:

Theorem 9. For any integer K ≥ 2, and k ≥ 3, determining whether X ′ is a
possible winning K-committee for [1, k]-approval is NP-complete.

A related series of results on the complexity of multiwinner elections with ap-
proval ballots is in [11] (Theorems 3.4 to Corollary 3.9). There the setting is
different from ours: each voter approves exactly t candidates; if voter i approves
Ai ⊆ X (with |Ai| = t), then given two k-committees X and Y , i is assumed to
prefer X over Y (X #i Y ) if |X ∩Ai| > |Y ∩Ai|. A k-committee X is a popular
k-committee if it majority-wise defeats all other k-committees (that is, if it a
Condorcet winner in the set of all k-committees for the profile 〈#1, . . . ,#n〉).
Darmann shows that deciding whether a k-committee is a popular committee is
NP-hard as soon as 2 ≤ t ≤ m − 2 (finding such a committee is probably even
harder). Unlike ours, the hardness results in [11] are not due to the uncertainty
about the number of approvals and they do not imply, nor are implied by, any
of our results.

5 Further Issues

When thresholds vectors are generated with a uniform probability, the winning
probability of a candidate for a given profile is proportional to its Borda score;
more generally, if the probabilities on the number of approvals for voters are
i.i.d., the winning probability of a candidate for a profile is proportional to its
score for some positional scoring rule. This connection is worth exploring further.

Another interesting topic that we did not explore is the control of an election
by a chair who has the power to fix the lower and upper bounds d and k on the
number of approvals. Assume that the chair moreover knows the voters’ rankings
and has some subjective probability distribution on the number of candidates
the voters will approve (to be conditioned by the bounds d and k). Clearly, the
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choice of d and k has an influence on the winning probability of a candidate;
this election control is computationally hard if computing winning probabilities
is computationally hard — a question that we have not addressed yet.
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Abstract. We study computational aspects of various forms of manipulation and
control in judgment aggregation, with a focus on the premise-based procedure.
For manipulation, we in particular consider incomplete judgment sets and the
notions of top-respecting and closeness-respecting preferences introduced by Di-
etrich and List [13]. This complements previous work on the complexity of ma-
nipulation in judgment aggregation that focused on Hamming-distance-induced
preferences [14,6], which we also study here. Regarding control, we introduce the
notion of control by bundling judges and show that the premise-based procedure
is resistant to it in terms of NP-hardness.

1 Introduction

Judgment Aggregation is the task of aggregating individual judgment sets of possibly
interconnected logical propositions (see the surveys by List and Puppe [21] and by
List [20]). Manipulability and (the game-theoretic concept of) strategy-proofness for
the formal framework of judgment aggregation was first introduced by Dietrich and
List [13]. We focus on their notion of strategy-proofness, since their (non)manipula-
bility condition is not always appropriate in our setting. Manipulation has been studied
in a wide variety of settings (voting, mechanism design, game theory, fair division,
judgment aggregation, etc.). The incentive of a manipulative attack is always to achieve
a “better” result by agents (voters, players, etc.) providing untruthful information. In
judgment aggregation, this untruthful information is the manipulator’s individual judg-
ment set and the result is the collective outcome of a judgment aggregation procedure.
However, it is not at all obvious what a “better” result is. To compare two collective
judgment sets, a preference over all possible judgment sets would be needed, but such
preferences are rarely elicited, and they may be exponentially large in the number of for-
mulas in the agenda (see Section 2 for the notions not defined here). One way to avoid
this obstacle, is to derive an order from a given individual judgment set. Based on the
notions introduced by Dietrich and List [13], we in particular consider incomplete judg-
ment sets and the notions of top-respecting and closeness-respecting preferences. Since
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most judgment aggregation rules are not strategy-proof, we study the computational
complexity of the corresponding decision problems. This complements previous work
on the complexity of manipulation in judgment aggregation (initiated by Endriss et
al. [14], see also the work of Baumeister et al. [6]) that focused on Hamming-distance-
induced preferences, which we also study here.

Regarding control in judgment aggregation, we extend previous work by Baumeister
et al. [3,4] who, inspired by the notion of control in voting (see, e.g., the book chap-
ter [5] and the references cited therein) studied the complexity of control by adding,
deleting, or replacing judges. We introduce a new type of control, control by bundling
judges, which is well-motivated for judgment aggregation by real-world scenarios and
is somewhat reminiscent of control by partitioning voters in voting. We show that one
specific judgment aggregation procedure, namely the premise-based procedure is resis-
tant to this control type in terms of NP-hardness.

This paper is organized as follows. In Section 2, we provide the basic framework of
judgment aggregation and define the relevant notions formally. In Section 3, we study
the complexity of manipulation in judgment aggregation, and in Section 4 that of the
problem modeling control by bundling judges. Finally, Section 5 summarizes our results
and presents a number of interesting open problems for future research.

2 Preliminaries

We adopt the framework on judgment aggregation described by Endriss et al. [14] and
used also by Baumeister et al. [6,3]. Let N = {1, . . . ,n} be a set of judges who have
to judge over the formulas in the agenda Φ . We assume that the agenda is a finite,
nonempty subset of the set LPS of all propositional formulas that are built from the
boolean constants 1 and 0 and the propositional variables in PS using the boolean con-
nectives ∨, ∧,→, and↔. Further, we assume that the agenda does not contain doubly
negated formulas. To this end, we denote by ∼α the complement of α: ∼α = ¬α if α
is not negated, and ∼α = β if α = ¬β . We also assume that the agenda is closed un-
der complementation (if α ∈Φ then ∼α ∈Φ) and under propositional formulas (every
literal that occurs in a formula of the agenda is itself contained in the agenda).

An (individual or collective) judgment set is a subset of the agenda Φ , where “indi-
vidual” refers to the judgment set of an individual judge and “collective” refers to the
outcome of a judgment aggregation procedure. A judgment set is said to be complete if
it contains α or ∼α for all α ∈ Φ; it is said to be consistent if all its formulas can be
satisfied by some truth assignment simultaneously; and it is said to be complement-free
if it does not contain α and ∼α simultaneously for any α ∈ Φ . Let J (Φ) denote the
set of all complete and consistent judgment sets.

The well-known doctrinal paradox says that under the majority rule the collective
outcome may be inconsistent even if all underlying individual judgment sets are consis-
tent. To avoid this, we focus on the premise-based procedure (PBP) for an odd number
of judges, which—under the assumptions made below—always guarantees a complete
and consistent outcome. For a given profile T = (J1, . . . ,Jn) ∈J (Φ)n of individual
judgment sets, the agenda Φ is divided into the set of premises Φp and the set of con-
clusions Φc. PBP(T) first aggregates the individual judgment sets on the premises Φp
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using the majority rule and then derives the collective outcome for the conclusions Φc.
Formally, it is a function PBP : J (Φ)n→ 2Φ mapping each given profile of individual
judgment sets to the collective judgment set

PBP(T) =&∪{ϕ ∈Φc | & |= ϕ},

where
&=

{
ϕ ∈Φp

∣∣∣ ‖{i | ϕ ∈ Ji}‖>
n
2

}
.

To guarantee complete and consistent outcomes, we follow Endriss et al. [14] and iden-
tify the premises with the set of literals from the agenda. Furthermore, we will extend
PBP to work also for an even number of judges by assuming that in case of a tie the
negated literal will be contained in the collective judgment set.

3 Various Forms of Manipulation in Judgment Aggregation

3.1 Definitions

As mentioned in the introduction, we apply the notions introduced by Dietrich and
List [13] to study various types of preferences. If for two judgment sets X ,Y ∈J (Φ),
X is preferred to Y for a given type of preference T and some individual judgment set
J, we write X �J

T Y .

Definition 1. Given some individual judgment set J, we define preferences to be (strictly)

– unrestricted (U) if there is no restriction on �J
U ;

– top-respecting (TR) if J �J
TR X for all X ∈J (Φ)\ {J};

– closeness-respecting (CR) if for all X ,Y ∈J (Φ), we have X �J
CR Y if Y ∩ J ⊂

X ∩ J;
– Hamming-distance-induced (HD) if for all X ,Y ∈J (Φ), X �J

HD Y if and only if
HD(X ,J)< HD(Y,J), where the Hamming distance HD(X ,Y ) between two (pos-
sibly incomplete) judgment sets X and Y is the number of disagreements on propo-
sitions that occur in both judgment sets.

By allowing equalities the Hamming-distance-induced preference is the only com-
plete relation among the above. Intuitively, unrestricted preferences capture the setting
where we know nothing about the individual preferences. The slightly more restricted
case of top-respecting preferences at least requires the given judgment set to be the
most preferred one. This also holds for closeness-respecting preferences, but in addition
judgment sets that have additional agreement are preferred. In contrast, the Hamming-
distance-induced preferences focus only on the total number of disagreements. Hence,
for X ,Y ∈J (Φ), if X �J

T R Y then it holds that X �J
CR Y , and if X �J

CR Y then it holds
that X �J

HD Y .

Example 1. For variables a, b, c, and d, let the agenda contain the formulas

a, b, c, d, a∨b, b∨ c, a∨ c, b∨d,
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Table 1. Applying the premise-based judgment aggregation procedure

a b c d a∨b b∨ c a∨ c b∨d

Judge 1 1 1 0 0 1 1 1 1
Judge 2 0 0 0 0 0 0 0 0
Judge 3 1 0 1 1 1 1 1 1

PBP 1 0 0 0 ⇒ 1 0 1 0

and their negations. The individual judgment sets of three judges are shown in Table 1.
A 0 indicates that the negation of the formula is in the judgment set, and a 1 indicates
that the formula itself is contained in the judgment set.

The result according to the premise-based procedure is also given in the table. Now
assume that the third judge is trying to manipulate and reports the untruthful individual
judgment set {a,b,c,d} and the corresponding conclusions. Then the collective out-
come equals the individual judgment set of the first judge.

– If the manipulator has unrestricted preferences, we do not know whether she prefers
this new outcome or not.

– If she has closeness-respecting preferences, we again do not know whether she
prefers the new outcome, since the agreement on ¬b is no longer given. However,
if she is interested only in the conclusions, then she does prefer the new outcome,
since the agreement on a∨b and a∨c is preserved and there are the two additional
agreements on b∨ c and b∨d.

– The same holds for top-respecting preferences: If the manipulator is interested in
the whole collective judgment set, we do not know which outcome is better for
her, but restricted to the conclusions the new outcome equals her initial individual
judgment set and thus is preferred to all other outcomes.

– If the manipulator has Hamming-distance-induced preferences, we know that the
new outcome is preferred to the old one, since before the manipulation the Ham-
ming distance was 4, but now it is only 3.

Just as Dietrich and List [13], we study settings where the desired judgment set
is incomplete, to also capture their “reason-oriented” and “outcome-oriented” prefer-
ences. However, we will not generally restrict the desired judgment set to the premises
or the conclusions; rather, we allow arbitrary incomplete desired judgment sets (which
still must have a consistent extension to the whole agenda). In this case, we restrict
the preferences to the formulas that occur in the desired judgment set. Since we want
to compare two preferences with each other, but most of the induced preferences will
be incomplete, we distinguish the cases where the relation between them is known or
unknown. Let T ∈ {U, TR, CR} be a type of induced preferences.

– A judge necessarily prefers X to Y for type T if X >J
T Y for all complete extensions

of �J
T .

– A judge possibly prefers X to Y for type T if X >J
T Y for some complete extension

of �J
T .
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Definition 2. A judgment aggregation rule F is necessarily/possibly strategy-proof with
respect to induced preferences of type T ∈ {U, TR, CR} if for all profiles (J1, . . . ,Jn)
and each i, 1≤ i ≤ n, agent i necessarily/possibly prefers the outcome F(J1, . . . ,Jn) to
the outcome

F(J1, . . . ,Ji−1,J
∗
i ,Ji+1, . . . ,Jn)

(with respect to preferences of type T and the individual judgment set Ji) for any J∗i ∈
J (Φ).

This definition applies to complete desired judgment sets Ji only. More generally, the
definition can easily be extended to incomplete desired judgment sets J ⊆ Ji as well.

These notions are remotely inspired by “possible” vs “necessary winner” in voting
theory due to Konczak and Lang [19] (see also the work of Xia and Conitzer [32]), and
by “possible” vs “necessary envy-freeness” in fair division due to Bouveret et al. [8]
(see also the papers by Brams et al. [9,10]). The stronger notion of necessary strategy-
proofness corresponds to the “strategy-proofness” condition defined by Dietrich and
List [13], whereas the weaker notion of possible strategy-proofness is introduced here.
Note that since the Hamming-distance-induced preferences are a complete relation, we
simply say that F is strategy-proof with respect to Hamming-distance-induced prefer-
ences if for each individual judge the actual outcome is at least as good as all outcomes
obtained by reporting a different individual judgment set.

The result of Dietrich and List [13] says that an aggregation rule that satisfies the
“universal domain” condition is necessarily strategy-proof with respect to non-strict
closeness-respecting preferences if and only if it is independent and monotonic. Uni-
versal domain is satisfied if the domain of the aggregation function is the set of all
possible profiles from J (Φ)n, which obviously is true for PBP. Independence means
that the collective decision on each proposition only relies on the individual judgments
of this proposition. Since PBP derives the outcome for the conclusions from the out-
come of the premises, it is not independent and hence not necessarily strategy-proof
with respect to non-strict closeness-respecting preferences. An aggregation function is
monotonic if additional support for some proposition that is currently accepted may
never result in a non-acceptance for this formula, provided everything else remains
unchanged. In the case where the agenda contains solely premises, PBP is indepen-
dent and monotonic, and hence necessarily strategy-proof also for the case of strict
closeness-respecting preferences.

Endriss et al. [14] initiated the study of the complexity of manipulation in judgment
aggregation. Their work (and also the follow-up work of Baumeister et al. [6]) focuses
only on preferences induced by the Hamming distance to the complete desired judgment
set of the manipulator. We extend this study to the setting where the manipulator may be
interested only in parts of the agenda, so her desired judgment set can be an incomplete
subset of her true judgment set. For a given type T ∈ {U, TR, CR} of preference
induced by the desired judgment set J ⊆ Jn (i.e., judge n is the manipulator), we define
the manipulation problem T -NECESSARY-MANIPULATION as follows:



76 D. Baumeister et al.

T -NECESSARY-MANIPULATION

Given: An agenda Φ , a profile T = (J1, . . . ,Jn) ∈J (Φ)n, and the manipulator’s de-
sired consistent (possibly incomplete) judgment set J ⊆ Jn.

Question: Does there exist a judgment set J∗ ∈J (Φ) such that

PBP(J1, . . . ,Jn−1,J
∗)|J >J

T PBP(J1, . . . ,Jn)|J

for all extensions >J
T that are consistent with �J

T ?

Here, PBP(J1, . . . ,Jn)|J denotes the restriction of PBP(J1, . . . ,Jn) to the formulas that
occur, negated or not, in the desired judgment set J. In T -POSSIBLE-MANIPULATION,
we ask whether

PBP(J1, . . . ,Jn−1,J
∗)|J >J

T PBP(J1, . . . ,Jn)|J
for some extension >J

T that is consistent with �J
T . In the case of Hamming-distance-

induced preferences we will simply say HD-MANIPULATION. Furthermore, we in-
troduce and study the exact variant, EXACT-MANIPULATION, where the manipulator
seeks to achieve not only a better, but a best outcome for a given subset of her desired
judgment set. Here, the question is whether there is some judgment set J∗ ∈J (Φ)
such that

J ⊆ PBP(J1, . . . ,Jn−1,J
∗).

We assume the reader is familiar with complexity classes such as P and NP and the
notion of NP-completeness (w.r.t. the polynomial-time many-one reducibility,≤p

m).

3.2 Results

Theorem 1. EXACT-MANIPULATION is NP-complete, even for only three judges.

Proof. The proof is by a reduction from the NP-complete satisfiability problem. Let
ϕ be a given formula in conjunctive normal form, where the clauses are built from
the set A = {α1, . . . ,αm} of variables. The question is whether there is a satisfying
assignment for this formula. Without loss of generality, we may assume that neither
setting all variables to true, nor setting all variables to false is a satisfying assignment
for ϕ . Now construct an agenda Φ that consists of the variables in A and their negations,
an additional variable β and its negation, and the formula ϕ ∨β and its negation. The
profile T consists of three judges. The individual judgment set of the first one contains
A and ¬β and the individual judgment set of the second one contains ¬αi for each i,
1≤ i≤m, and ¬β . The third judge is the manipulative one and his individual judgment
set contains A and β . The desired outcome he tries to achieve exactly consists of only
the conclusion ϕ ∨β . It holds that

PBP(T) = A∪{¬β}∪{¬(ϕ∨β )}.

Note also that the third judge is decisive for every formula in A, and that independently
of the individual judgment set of the manipulator, β is never contained in the collective
judgment set. Hence, the only way to obtain the conclusion ϕ ∨ β in the collective
outcome is to evaluate the formula ϕ to true. This implies that there is a satisfying
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assignment for ϕ if and only if the individual judgment set of the third judge can be
modified such that ϕ ∨β is contained in the collective outcome. ❑

Theorem 2. 1. EXACT-MANIPULATION ≤p
m T -NECESSARY-MANIPULATION for

each type T ∈ {TR,CR}.
2. EXACT-MANIPULATION ≤p

m T -POSSIBLE-MANIPULATION for each type T ∈
{U,TR,CR}.

3. EXACT-MANIPULATION ≤p
m HD-MANIPULATION.

Proof. For the exact problem, we have an agenda Φ , some profile T = (J1, . . . ,Jn),
and some desired judgment set J = {α1, . . . ,αm}⊆ Jn, and we are looking for a modified
judgment set J∗n such that

J ⊆ PBP(J1, . . . ,Jn−1,J
∗
n ).

In the trivial case that J ⊆ PBP(T), J∗n = Jn obviously fulfills the requirement, so we
can construct an arbitrary yes-instance for the corresponding manipulation problem. We
will prove all three assertions via the same reduction, but using different arguments.

Assume that J \ PBP(T) �= /0 and consider the following problem. Fix some T ∈
{TR,CR,HD}, let the agenda Φ ′ be the union of Φ , the formula ϕ = α1 ∧ ·· · ∧αm,
and its negation. Let T′ ∈J (Φ ′)n be the consistent extensions of T. In particular,
J′n = Jn∪ϕ . Let the desired judgment set be J′ = ϕ , and we are looking for a modified
judgment set J′∗n such that for all extensions >J′

T of �J′
T , we have

PBP(J′1, . . . ,J
′
n−1,J

′∗
n )|J′ >J′

T PBP(J′1, . . . ,J
′
n−1,J

′
n)|J′ .

Since J′ consists of the single formula ϕ , there are only two different collective out-
comes when restricted to J′. Since ϕ ⊆ Jn, it obviously holds that ϕ �J′

T ¬ϕ for all
T ∈ {TR,CR,HD}, and since in this case �J′

T is complete, there is no difference be-
tween the notions of necessary and possible preference. In the case of unrestricted pref-
erences and the possible manipulation problem, we ask whether there is some different
outcome, since they all may be possibly preferred. Since there is some J∗n with

J ⊆ PBP(J1, . . . ,Jn−1,J
∗
n )

if and only if there is some J′∗n with

ϕ ⊆ PBP(J′1, . . . ,J
′
n−1,J

′∗
n ),

the reduction works in all cases. ❑

This reduction requires a partial desired judgment set for T -NECESSARY-MANI-
PULATION, T -POSSIBLE-MANIPULATION, and HD-MANIPULATION; together with
Theorem 1, this implies NP-completeness of HD-MANIPULATION, T -NECESSARY-
MANIPULATION for T ∈ {TR,CR}, and T -POSSIBLE-MANIPULATION for T ∈
{U,TR,CR} whenever the desired judgment set of the manipulator is incomplete. Al-
ternatively, the reduction given by Endriss et al. [14] in fact shows NP-completeness for
HD-MANIPULATION even if the desired judgment set of the manipulator is complete.
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Proposition 1. For T ∈ {U,TR}, T -POSSIBLE-MANIPULATION can be solved in
polynomial time if the desired judgment set of the manipulator is complete.

Proof. This result holds, since a U-POSSIBLE-MANIPULATION instance is positive
exactly if there is some premise from the desired judgment set for which the manipulator
is decisive, i.e., the collective outcome depends on the decision of the manipulator.
For a TR-POSSIBLE-MANIPULATION instance to be positive, it must additionally be
required that the desired judgment set is not the actual outcome. ❑

Proposition 2. PBP is possibly strategy-proof when closeness-respecting preferences
are assumed and the desired judgment set of the manipulator is complete.

Proof. If closeness-respecting preferences are assumed, a judgment set that is neces-
sarily preferred to the actual collective outcome must preserve all agreements between
the desired judgment set and the actual outcome. Now consider a premise α that is con-
tained in the collective judgment set, but ∼α is contained in the desired judgment set.
It can obviously never be the case that a switch from the manipulator to α causes ∼α
to be in the collective judgment set. Hence there can be no additional agreement among
the premises. Since the desired judgment set is complete and the outcome for the con-
clusions depends solely on the outcome of the premises, PBP is possibly strategy-proof
in this case. ❑

Note that this does not contradict the results of Dietrich and List [13], since they
impose different conditions on nonmanipulability and non-strict preferences.

4 Control by Bundling Judges

Previous work on control in judgment aggregation (see [3,4]) considered the problems
of control by adding, deleting, or replacing judges. Although adding and deleting judges
is inspired by the corresponding control problems in voting, explicit examples for such
control actions in judgment aggregation are given, and the third type, control by re-
placing judges, was motivated by real-world examples from international arbitration.
We here introduce another type of control motivated by real-world scenarios, control
by bundling judges, which is remotely akin to control by partitioning voters in voting.
A prominent natural example for control by bundling judges can be found in Euro-
pean legislation. Certain European legislative acts, such as Directives, give considerable
freedom to Member States regarding the concrete implementation of these acts. Yet, in
some cases uniform implementation is crucial, so the basic act confers implementing
powers on the European Commission or the Council of the European Union to adopt
the required implementing acts.1 The exercise of implementing powers through the
Commission and Council is controlled by the member states through so-called comitol-
ogy committees in accordance with previously specified rules.2 The committees are set

1 Article 291 of the Treaty on the Functioning of the European Union.
2 Regulation (EU) No 182/2011 of the European Parliament and of the Council of 16 Febru-

ary 2011 laying down the rules and general principles concerning mechanisms for control by
Member States of the Commission’s exercise of implementing powers (Implementing Acts
Regulation).
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up by the basic act in question.3 Some of these committees are concerned with such a
broad range of issues that they are divided into subcommittees, each of which is dealing
with different issues. When preparing implementing acts covering several issues, each
subcommittee votes on the issues assigned to it, and the implementing act is shaped
according to the decisions of the different subcommittees.4

4.1 Definitions

The problem EXACT CONTROL BY ADDING JUDGES asks, given an agenda Φ , two
complete profiles T ∈J (Φ)n and S ∈J (Φ)‖S‖, a positive integer k, and a desired
judgment set J (which may be incomplete, i.e., J ⊆ J′ for some J′ ∈J (Φ)), whether
there is a subset S′ ⊆ S of the potential new judges of size at most k, which can be
added such that J ⊆ PBP(T∪S′). The variant of this problem asking for a preferred
outcome when Hamming-distance-induced preferences are assumed will be denoted
by CONTROL BY ADDING JUDGES. The problem EXACT CONTROL BY DELETING

JUDGES asks, given an agenda Φ , a complete profile T ∈J (Φ)n, a positive integer k,
and a desired (possibly incomplete) judgment set J, whether it is possible to delete
at most k judges from T such that J is a collective outcome, and the corresponding
problem CONTROL BY DELETING JUDGES asks, for the same input, whether there is a
preferred outcome when Hamming-distance-induced preferences are assumed.

When analyzing the complexity of these problems, Baumeister et al. [3,4] follow
the terminology introduced by Bartholdi, Tovey, and Trick [2] for control problems
in voting. For a given judgment aggregation procedure F (such as PBP) and a given
control type C (such as those defined above), F is said to be

– immune to control by C if it is never possible to successfully exert this type of
control,

– susceptible to control by C if F is not immune,
– vulnerable to control by C if F is susceptible to control by C and the corresponding

decision problem is in P, and
– resistant to control by C if F is susceptible to control by C and the corresponding

decision problem is NP-hard.

Baumeister et al. [3,4] have shown that the premise-based procedure is resistant to con-
trol by adding judges, to control by deleting judges, and to control by replacing judges
(which in some sense combines control by deleting with control by adding judges)
when preferences are assumed to be Hamming-distance-induced and in the exact vari-
ant. We will study the new problem of CONTROL BY BUNDLING JUDGES also in these
two variants for the premise-based procedure. The formal definition for the Hamming-
distance-induced version is as follows. In the problem definition below, we will use the
notation

Δ =
⋃

1≤i≤k

PBP(T|Φ i
p,Ni

),

3 Recital 6 of the Preamble of Implementing Acts Regulation.
4 One example is the Customs Code Committee, see Articles 1 (1) and 5 (7) (8) of the Rules of

procedure for the Customs Code Committee.
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where PBP(T|Φ i
p,Ni

) is the collective judgment set obtained by restricting the agenda to

Φ i
p and the set of judges to Ni ⊆ N.

CONTROL BY BUNDLING JUDGES

Given: An agenda Φ , where the premises are partitioned into k subsets Φ1
p, . . . ,Φk

p, a
complete profile T ∈J (Φ)n, and a consistent and complement-free judgment
set J (not necessarily complete).

Question: Is there a partition N1, . . . ,Nk of the n judges such that

H(J,Δ ∪{ϕ ∈Φc | Δ |= ϕ})< H(J,PBP(T))?

In EXACT CONTROL BY BUNDLING JUDGES we ask, for the same input, whether
there is a partition N1, . . . ,Nk of the n judges such that

J ⊆ Δ ∪{ϕ ∈Φc | Δ |= ϕ}).

Example 2. Consider the same variables a,b,c, and d and the same individual judgment
sets as in Example 1. Assume that the set of premises is partitioned into Φ p

1 = {a,b}
and Φ p

2 = {c,d}, and that the desired judgment set J contains

a∨b, b∨ c, ¬(a∨ c), and b∨d.

Note that this is a consistent judgment set, since it can be reached by accepting b and the
negation of all other variables. The Hamming distance between the current collective
outcome and J is 3. But if we partition the set of judges into two groups, where the
first judge forms the first group and the last two judges are in the second group, the
outcome is as shown in Table 2, where the individual judgments for a single variable
not belonging to the group who decides over this variable are marked with � 1 or � 0.
Recall that the negative literal is contained in the collective judgment set in case of a tie
by convention.

Table 2. Example for CONTROL BY BUNDLING JUDGES

a b c d a∨b b∨ c a∨ c b∨d

Judge 1 1 1 � 0 � 0 1 1 1 1
Judge 2 � 0 � 0 0 0 0 0 0 0
Judge 3 � 1 � 0 1 1 1 1 1 1

PBP 1 1 0 0 ⇒ 1 1 1 1

After bundling the judges, the Hamming distance between the collective outcome
and J has decreased to 1. Hence, this is a positive instance of CONTROL BY BUNDLING

JUDGES. However, since it is not possible to bundle the jugdes into two groups to obtain
exactly J as a subset of the collective outcome, it is a negative instance of EXACT

CONTROL BY BUNDLING JUDGES.
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Remotely related bundling problems in judgment aggregation have recently been
studied by Alon et al. [1]. However, their setting is different from ours. They consider
judgment aggregation over independent variables, and only the variables are bundled
in their bundling attacks. It is assumed that then all judges decide over all bundles by
deciding uniformly for all variables contained in the same bundle. Furthermore, the
goal in their model is to always accept all positive variables, that is, a complete desired
judgment set. This setting in fact covers a restriction of judgment aggregation known as
optimal lobbying (see, e.g., the papers by Christian et al. [12], Erdélyi et al. [16], and
Bredereck et al. [11]).

4.2 Results

We show that the exact variant and the Hamming-distance-induced variant defined
above are closely related. In fact, the proof of Lemma 1 below applies to all the control
problems in judgment aggregation studied in the literature (control by adding, deleting,
replacing, or bundling judges; for the formal definition of control by replacing judges,
see [3,4]).

Lemma 1. Let C be a control type. EXACT CONTROL BY C ≤p
m CONTROL BY C .

Proof. In the exact problem variant, we have an agenda Φ , some profile T, and some
desired judgment set J = {α1, . . . ,αm}, and we are looking for a modified profile U such
that PBP(U) = J. Now consider the following problem. Let the agenda Φ ′ be the union
of Φ , the formula ϕ = α1 ∧·· · ∧αm, and its negation. Let T′ and U′ (both in J (Φ ′))
be the consistent extensions of, respectively, T and U, and let J′ = ϕ . In the trivial case
that PBP(T) = J, we have H(J,PBP(T′)) = 0. In the nontrivial case that PBP(T) �= J,
we have H(J,PBP(T′)) = 1. This implies

H(J,PBP(U′))< H(J,PBP(T′)) if and only if PBP(U′) = J′,

so H(J,PBP(U′))< H(J,PBP(T′)) is equivalent to PBP(U) = J. ❑

Note that the above proof requires the desired judgment set of the Hamming-dis-
tance-induced variant to be incomplete. Note further that Lemma 1 implies that NP-
hardness of a Hamming-distance-induced variant is inherited from NP-hardness of the
corresponding exact problem variant.

The problem CONTROL BY BUNDLING JUDGES is somewhat similar to the problem
of CONTROL BY DELETING JUDGES. We will exploit this in the following proof.

Theorem 3. PBP is resistant to EXACT CONTROL BY BUNDLING JUDGES and to
CONTROL BY BUNDLING JUDGES.

Proof. The proof will be by a reduction from the related problem EXACT CON-
TROL BY DELETING JUDGES. Given an agenda Φ = Φp ∪Φc, a complete profile
T ∈J (Φ)n, and a positive integer k that is the bound on the number of judges that
may be deleted. We assume that the individual judgment set of the manipulator is Jn,
and J ⊆ Jn is the desired judgment set. Now, we construct an instance of EXACT CON-
TROL BY BUNDLING JUDGES, resistance for CONTROL BY BUNDLING JUDGES then
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follows from Lemma 1. Without loss of generality, we assume that n ≥ k + 2. The
agenda is Φ ′ = Φ ∪{α,¬α}, and is divided into two subsets. The first one consists of
Φp, and the second one is {α,¬α}. The profile S ∈J (Φ ′)n+k+1 contains the indi-
vidual judgment sets from T, each extended by ¬α . Furthermore, there are k+ 1 new
individual judgment sets that each contain ϕ ∈ Φp if and only if ∼ϕ ∈ J, they each
contain α , and the conclusions are evaluated accordingly. These k+ 1 new judges will
be denoted by N′. The desired judgment set is J′ = J∪{α}. We show that it is possible
to obtain the desired judgment set J by deleting at most k judges from T if and only if
the judges from S can be bundled into two groups such that the desired outcome is J′.

For the direction from left to right, assume that there is a subset T′ ⊆ T, ‖T′‖ ≤ k,
such that PBP(T \T′) = J. Then the judges can be bundled as follows. The k+ 1 new
judges and the judges corresponding to T′ decide over α . Then obviously α is contained
in the collective outcome, hence the constructed instance is a positive one for EXACT

CONTROL BY BUNDLING JUDGES.
For the direction from right to left, assume that the judges can be bundled into N1 and

N2 such that the collective outcome is J′. Hence, it holds that PBP(S|Φ ,N1 ) = J. We will
show that ‖N2 \N′‖ ≤ k and PBP(S|Φ ,N1\N′) = J. Since α is contained in the collective
judgment set and since there are only k+1 judges having α in their individual judgment
set, at most k of the initial judges can be in N2. Due to the premise-based procedure, it
is enough to show that PBP(S|Φp,N1) = PBP(S|Φp,N1\N′). This holds trivially, since for
all judges from N1 it holds that ϕ ∈ Φp is contained in the individual judgment set if
and only if ∼ϕ ∈ J. ❑

5 Conclusions and Future Work

To conclude, we investigated various forms of manipulation in judgment aggregation
that originate from different assumptions on the incentives and the type of preferences
of the manipulator. Our results show that whether one considers a judgment aggre-
gation rule to be (necessarily or possibly) strategy-proof or manipulable crucially de-
pends on the given setting. Table 3 summarizes our results for the various manipulation
problems. The last two columns consider the Hamming-distance-induced preferences
and the exact variant; note that there is no distinction between the possible and nec-
essary manipulation problem for these preference types. The first two rows concern
the general problem with an incomplete desired judgment set (abbreviated by DJS in
the table), whereas the last two rows show the results for the restricted problem where
the desired judgment set is required to be complete. We abbreviate “NP-complete” by
“NP-c.” All results stated in the table are new to this paper, except for the one for
Hamming-distance-induced preferences with a complete desired judgment set, which
is due to Endriss et al. [14].

We propose to launch a systematic study of the computational aspects of manip-
ulation in judgment aggregation for complete and incomplete desired judgment sets,
in particular by solving the open problems indicated by question marks in Table 3.
Furthermore, the concepts studied here for manipulation can be transferred to other
forms of interference as well, such as bribery and control [3,4,6]. Regarding the lat-
ter, we have proposed a new control type, control by bundling judges, which in some
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Table 3. Overview of results for various manipulation problems

T U TR CR HD EXACT

T -POSSIBLE-MANIPULATION
NP-c NP-c NP-c

NP-c NP-c
for incomplete DJS

T -NECESSARY-MANIPULATION
? NP-c NP-c

for incomplete DJS

T -POSSIBLE-MANIPULATION
in P in P ?

NP-c [14] strategy-proof
for complete DJS

T -NECESSARY-MANIPULATION
? ?

possibly
strategy-prooffor complete DJS

sense corresponds to control by partitioning voters in voting. We have argued why this
control type models a natural real-world scenario and showed that the premise-based
procedure is resistant to it. It would be interesting to complement such worst-case com-
plexity results by typical-case studies, or with respect to parameterized complexity, as
has been done successfully in voting (see, e.g, the papers by Betzler and Uhlmann [7],
Erdélyi et al. [15], Liu et al. [22,23], and Rothe and Schend [25,26,24] for control and
the papers by Isaksson et al. [18], Friedgut et al. [17], Walsh [27,28,29], and Xia and
Conitzer [30,31] for manipulation).
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Abstract. Many works have studied preferences in Dung-style argu-
mentation. Preferences over arguments may be derived, e.g., from their
relative specificity, relative strength or from values promoted by the argu-
ments. An underexposed aspect in these models is change of preferences.
We present a dynamic model of preferences in argumentation, centering
on what we call property-based AFs. It is based on Dietrich and List’s
model of property-based preference and it provides an account of how
and why preferences in argumentation may change. The idea is that pref-
erences over arguments are derived from preferences over properties of
arguments, and change as the result of moving to different motivational
states. We also provide a dialogical proof theory that establishes whether
there exists some motivational state in which an argument is accepted.

Keywords: argumentation, preferences, property-based, dialogue,
Dung.

1 Introduction

Dung’s theory of abstract argumentation [1] plays a central role in many ap-
proaches to reasoning and decision making in AI. It is based on the concept of
an argumentation framework (AF, for short), i.e., a set of abstract arguments
and a binary attack relation encoding conflict between arguments. The outcome
of an AF is a set of justifiable points of view on the acceptability of its arguments,
represented by extensions and computed under a given semantics, different se-
mantics corresponding to different degrees of skepticism or credulousness.

Many works have recognized the importance of preferences in this setting. Pref-
erences over arguments may be derived, e.g., from their relative specificity or from
the relative strength of the beliefs with which they are built. On the abstract level
preferences can be represented by preference-based AFs, which instantiate AFs
with a preference relation over the set of arguments [2,3]. An attack of an argu-
ment x on y then succeeds only if y is not strictly preferred over x.Value-based AFs
provide yet another account of how preferences are derived [4]. The idea here is
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that arguments promote certain values and that different audiences have different
preferences over values, from which the preferences over arguments are derived.

An underexposed aspect in these models is change of preferences [5,6]. Prefer-
ences are usually assumed to be fixed and no account is provided of how or why
they may change. We address this aspect by applying Dietrich and List’s recently
introduced model of property-based preference [7,8]. In this model, preferences
over alternatives are derived from preferences over sets of properties satisfied by
the alternatives. Furthermore, agents are assumed to have a motivational state,
consisting of the properties on which the agent focuses in a given situation, when
forming preferences over alternatives. The authors present an axiomatic charac-
terization of their model, in terms of a number of reasonable constraints on the
relationship between motivational states and preferences.

Our contribution is a new, dynamic model of preferences in argumentation,
centering on what we call property-based AFs. It is based on the model of Di-
etrich and List and provides an account of how and why preferences in argu-
mentation may change. Our model generalizes preference-based AFs as well as
value-based AFs, if properties are used to represent values. We look at two types
of acceptance, called weak and strong acceptance (i.e., acceptance in some or all
motivational states). We also provide a dialogical proof theory that establishes
whether an argument is weakly accepted. It is based on the grounded game [9]
and extends it with dialogue moves consisting of properties.

The outline of this paper is as follows. We start in section 2 with some pre-
liminaries concerning abstract argumentation theory. In section 3 we first give a
brief outline of preference-based and value-based abstract argumentation. Then
we give in section 4 an overview of the relevant parts of Dietrich and List’s
model of property-based preferences. We move on to our own work in section 5,
where we present our model of property-based AFs, followed by a dialogical
proof procedure for weak acceptance in section 6. We discuss some related work
in section 7 and we conclude in section 8.

2 Preliminaries

We start out with some preliminaries concerning Dung’s model of abstract ar-
gumentation [1]. We assume that argumentation frameworks are finite.

Definition 1. An argumentation framework (AF for short) is a pair AF =
(A,→) where A is a finite set of arguments and →⊆ A×A an attack relation.

Given an AF (A,→) we say that x attacks y and also write x→ y instead of
(x, y) ∈→. The outcome of an AF consists of possible sets of arguments, called
extensions. A semantics embodies a set of conditions that an extension must
satisfy. The most studied ones are defined as follows:

Definition 2. Let AF = (A,→). An extension of AF is a set E ⊆ A. We say
that E is conflict-free iff �x, y ∈ E s.t. x → y; that it defends an argument
x ∈ A iff ∀y ∈ A s.t. y → x, ∃z ∈ E s.t. z → y; and we define Def(E) by
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Def(E) = {x ∈ A |E defends x}. An extension E ⊆ A is said to be: admissible
iff E is conflict free and E ⊆ Def(E), complete iff E is conflict free and E =
Def(E), stable iff E is admissible and ∀x ∈ A \E, ∃y ∈ E s.t. y → x, preferred
iff E is maximal (w.r.t. set inclusion) among the set of admissible extensions
of AF and grounded iff E is minimal (w.r.t. set inclusion) among the set of
complete extensions of AF .

Note that the grounded extension is unique and always exists, and represents
the most skeptical viewpoint on the acceptability of the arguments in the AF.
Although the concepts we introduce in this paper can be applied generally to all
semantics, we will focus in this paper on the grounded semantics.

a

b c

d

AF1

a

b c

d

AF2

Fig. 1. Two argumentation frameworks

Example 1. Consider the AF AF1 shown in figure 1 (nodes represent arguments
and arrows represent attacks). The AF has three complete extensions, namely
∅, {a, c} and {b, d}. The extension ∅ is also the grounded extension, while {a, c}
and {b, d} are also stable and preferred extension. The AF AF2 has a single
complete extension namely {d, b}. This extension is thus also a grounded, stable
and preferred extension.

3 Preferences and Values in Argumentation

Preference-based AFs [2] extend AFs with a preference relation over arguments,
used to represent the relative strength of arguments. The idea is that an attack
of an argument x on y succeeds only if y is not strictly preferred over (i.e.,
not stronger than) x. A preference-based AF represents a unique AF (A,→),
where the attack relation → consists only of the attacks that succeed [10]. The
extensions of a preference-based AF are those of the AF that it represents.
Formally:

Definition 3. A preference-based AF (PAF for short) is a triple PAF = (A,
�, )) where A is a finite set of arguments, � an attack relation and ) a partial
pre-order (i.e., a reflexive and transitive relation) or a total pre-order (i.e., a
reflexive, transitive and complete relation) over A. A PAF (A,�,)) represents
the AF (A,→) where → is defined by ∀x, y ∈ A, x → y iff x � y and not
(x ≺ y).
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Example 2. Consider the PAF (A,�,)) where A and � are as in AF1 in ex-
ample 1 and ) is a total pre-order defined by x ) y iff x ∈ {b, c} or y ∈ {a, d}.
We have that (A,�,)) represents AF2, shown in figure 1. This AF has one
complete, grounded, stable and preferred extension, namely {d, b}.

Preference-based AFs give—at least at the abstract level—no account of how
preferences over arguments are formed. Bench-Capon’s [4] model of value-based
AFs does. In a value-based AF, the idea is that arguments may promote certain
values and that different audiences have different preferences over values, from
which the preferences over arguments are derived. An audience specific value-
based AF encodes a single audience’s preferences over values.

Definition 4. A value-based AF (VAF for short) is a 5-tuple (A,�, V, val, U),
where A is a set of arguments, � an attack relation, V a set of values, val : A→
V a mapping from arguments to values and U a set of audiences. An audience
specific value-based AF (aVAF for short) is a 5-tuple (A,�, V, val, <a) where
a ∈ U is an audience and <a a partial order (i.e. an irreflexive and transitive
relation) over V .

An aVAF represents a unique PAF [10]:

Definition 5. An aVAF (A,�, V, val, <a) represents the PAF (A,�,)), where
) is defined by ∀x, y ∈ A, x ) y iff val(x) <a val(y) or val(x) = val(y).

Since a PAF represents a unique AF, an aVAF also represents a unique AF.
The extensions of an aVAF are the extensions of this AF.

Example 3. Consider the aVAF (A,�, V, val, <a) where A and � are as in
example 1, V = {blue, red}, val(a) = val(d) = blue, val(b) = val(c) = red and <a

is defined by x <a y iff x = red and y = blue. It can be checked that this aVAF
represents the PAFfrom example 2 and thus the AF AF2 shown in figure 1.

4 Dietrich and List’s Model of Property-Based Preference

Dietrich and List’s model of property-based preference [7,8] aims at giving an
account of rational choice that explains how preferences are formed and how
they may change. This is opposed to traditional models that assume an agent’s
preferences over alternatives to be given and fixed. In this model, every alterna-
tive x ∈ X is associated with a set P (x) of properties satisfied by x, each P (x)
being a subset of a set P of possible properties. Furthermore, a setM ⊆ 2P of
motivational states encodes sets of properties on which an agent may focus in a
given situation. That is, ifM ∈ M is the agent’s state then only the properties in
M matter to the agent when forming preferences over X . Change of preferences
can then be understood as being caused by moving from one motivational state
to another. Note thatM may coincide with 2P but in general this need not be
the case, as certain combinations of properties may be deemed inconsistent.
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Every state M ∈ M gives rise to a preference order (i.e., a total pre-order)
)M over X representing the agent’s preferences in the state M . There is thus a
family ()M )M∈M of preference orders over X . Strict and indifference relations
≺M and ∼M are defined as usual.

According to the model of property-based preference, preferences over X are
formed using an underlying weighing relation ≤ over combinations of properties.
This relation can be thought of as a ‘betterness’ relation, i.e., if S ≤ S′ then the
set of properties S′ is at least as good as the set of properties S.

Definition 6. A family ()M )M∈M of preference orders is called property-based
if there is a weighing relation ≤⊆ 2P × 2P such that, for every M ∈ M and
x, y ∈ X, x )M y iff P (x) ∩M ≤ P (y) ∩M.

The authors present an axiomatic characterization of their model, in terms of
two constraints on the relationship between motivational states and preferences.

Theorem 1. [An axiomatic characterization [7]] Let ()M )M∈M be a family of
preference orders. Consider the following axioms:

Axiom 1 ∀x, y ∈ X, ∀M ∈ M, if P (x) ∩M = P (y) ∩M , then x ∼M y.

Axiom 2 ∀x, y ∈ X, ∀M,M ′ ∈ M s.t. M ⊆ M ′, if P (x) ∩ (M ′ \ M) =
P (y) ∩ (M ′ \M) = ∅ then x )M y ↔ x )M ′ y.

It holds that ifM is intersection-closed (i.e. M,M ′ ∈ M implies M ∩M ′ ∈M)
then a family of preference orders ()M )M∈M satisfies axioms 1 and 2 iff it is
property-based.

Axiom 1 says that the preference relation is indifferent on pairs of alterna-
tives that have the same properties that are at the same time motivational, while
axiom 2 says that preferences on pairs of alternatives change only if additional
properties become motivational that are satisfied by at least one of the alterna-
tives. A third axiom, strengthening the second and concerned with the class of
separable weighing relations may be considered as well. The reader is referred to
Dietrich and List [7] for details.

5 Property Based AFs

The value-based AF model gives an account of where an agent’s (or audience’s)
preferences over arguments come from, namely the relative importance of the
values they promote. However, it gives no account of how or why they may
change. This motivates us to apply the model of property-based preference in
argumentation, giving rise to what we call property-based AFs. In a property-
based AF, each argument is associated with a set of properties that it satisfies.
Among the types of properties we may consider are values promoted by the
argument.
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Furthermore, a property-based AF consists of a set of motivational statesM
and a weighing relation ≤ over sets of properties. The idea is as before: ≤ encodes
the agent’s preferences over sets of properties but only properties in the agent’s
state M ∈M matter when forming preferences over arguments.

Definition 7. A property-based AF is a 6-tuple (A,�,P , P,M,≤) where A is
a set of arguments, � an attack relation, P is a set of properties, P : A → 2P

a mapping of arguments to sets of properties, M⊆ 2P is an intersection-closed
set of motivational states and ≤⊆ 2P × 2P a reflexive, transitive and complete
weighing relation.

Note that there are cases where ≤ does not need to be transitive and complete
over all sets of properties. For simplicity, however, we assume that it is. The
reader is referred to Dietrich and List [7, Remark 1] for details.

If we focus on values as properties then the weighing relation can be under-
stood as encoding the relative importance that an agent associates with different
combinations of values, and the motivational state as consisting of the values of
which an agent is aware in a given situation.

a

b c

d e f

∅

{B} {R}

{R}{B,G} ∅

Fig. 2. An argumentation framework

Given a property-based AF, each motivational state M ∈ M represents a
unique PAF which we denote by PAFM . Preferences in PAFM are formed by
comparing sets of properties satisfied by the arguments, that are at the same time
motivational. The AF according to which the agent determines the extensions
in the motivational state M , denoted by AFM , is the AF represented by PAFM .

Definition 8. Given a property-based AF (A,�,P , P,M,≤) and a motiva-
tional state M ∈ M we say that:
– M represents the PAFM = (A,�,)), where ) is defined by ∀x, y ∈ A, x )

y iff P (x) ∩M ≤ P (y) ∩M.
– M represents the AF AFM = (A,→M ), which is the AF represented by

PAFM .
Given an attack x � y and state M ∈ M, we say that x � y is enabled
(otherwise disabled) in M iff x→M y.

Let us illustrate the definitions with an example.
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Example 4. Consider the property-based AF (A,�,P , P,M,≤) where A and
� and the properties assigned by P to the arguments are as shown in figure 2.
Furthermore, P = {R,G,B}, M = 2P and ≤ is defined via a weight function
w : P → Z with w(R) = w(G) = 1 and w(B) = −2 as follows: X ≤ X ′

iff
∑

x∈X w(x) ≤
∑

x∈X′ w(x). This gives rise to the weighing relation {B} <
{R,B} = {G,B} < {R,G,B} = ∅ < {R} = {G} < {R,G}, where < is the strict
counterpart of ≤.

Figure 3 shows the AFs represented by all possible motivational states. We
have, e.g., that in PAF{G} the argument e is strictly preferred over f , so that the
attack from f to e is disabled AF{G}. On the other hand, in PAF∅ and PAF{B,G}
the argument e is not preferred over f . Here, the attack from f to e succeeds
and is therefore enabled in AF∅ and AF{B,G}.

Arguments in the AFs in figure 3 that are a member of the grounded extension
of the respective AFs are shown black. We can see, e.g., that a is accepted only
in the motivational state {R,G}.

AF∅

a

b c

d e f

AF{R}

a

b c

d e f

AF{G}

a

b c

d e f

AF{B}

a

b c

d e f

AF{R,G}

a

b c

d e f

AF{R,B}

a

b c

d e f

AF{B,G}

a

b c

d e f

AF{R,G,B}

a

b c

d e f

Fig. 3. AFs represented by all motivational states in example 4

We should remark that in many systems of argumentation, arguments have
(in)formal ‘logical content’. As a result, conflicts between arguments cannot gen-
erally be disregarded, on pain of inconsistency of the AF’s outcome. This can be
taken into account by requiring, for example, the relation � to be symmetric,
representing a conflict relation over two arguments, i.e. both arguments cannot
be accepted together. In this way one attack between a pair of arguments always
remains enabled.

Apart from looking at acceptance of arguments in a given motivational state,
we can look at acceptance of arguments in some or all possible states. We will
say that an argument is weakly (resp. strongly) accepted iff it is a member of the
grounded extension given some (resp. all) motivational states. Weak acceptance
thus means that the agent may accept an argument, namely when she moves
to the right motivational state, whereas strong acceptance means that an agent
accepts an argument regardless of her motivational state.
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Definition 9. Let (A,�,P , P,M,≤) be a property-based AF and x ∈ A an
argument. We say that x is weakly accepted (resp. strongly accepted) iff x is a
member of the grounded extension of AFM for some (resp. all) M ∈ M.

Example 5 (Continued from example 4). All arguments except b are weakly ac-
cepted. Only f is strongly accepted.

The following properties follow directly from theorem 1.

Proposition 1. Let (A,�,P , P,M,≤) be a property-based AF. We have:

Property 1 ∀x, y ∈ A s.t. x � y, ∀M ∈M s.t. P (x)∩M = P (y)∩M,x→M y.

Property 2 ∀x, y ∈ A, ∀M,M ′ ∈ M s.t. M ⊆ M ′, if P (x) ∩ (M ′ \ M) =
P (y) ∩ (M ′ \M) = ∅ then x→M y iff x→M ′ y.

Property 1 states that an attack x � y is enabled in a motivational state M
if x and y have the same set of properties that are also motivational in M , while
property 2 states that an attack between two arguments x and y changes only if
additional properties become motivational that are satisfied either by x or by y.

6 A Dialogical Proof Theory for Weak Acceptance

In this section we present a proof procedure to establish weak acceptance of an
argument in a property-based AF. It is a dialogical proof procedure because it
is based on generating dialogues where two players (PRO and OPP) take alter-
nating turns in putting forward attacks according to a certain set of rules. This
is similar in spirit to the grounded game, a dialogical proof procedure that estab-
lishes an argument’s membership of the grounded extension [9]. In the grounded
game, PRO repeatedly puts forward arguments (either as an initial claim or
in defence against OPP’s attacks) and OPP can initiate different disputes by
putting forward possible attacks on the arguments put forward by PRO. PRO
wins iff it can end every dispute in its favor according to a “last-word” principle.

By contrast, the proof procedure we present simply generates dialogues won
by PRO. Such dialogues represent proofs that the initial argument is weakly ac-
cepted, and are structured as single sequences of moves where PRO and OPP put
forward attacks and, in addition, PRO puts forward properties. If the procedure
generates no dialogues then the argument is not weakly accepted.

Dialogical proof procedures make it possible to relate a semantics to a stereo-
typic pattern of dialogue. It has been shown, e.g., that the grounded and pre-
ferred credulous semantics can be related to persuasion and socratic style di-
alogue [11,12]. Dialogues generated by our procedure can also be thought of
as persuasion dialogues, where PRO has the additional freedom to change the
motivational state of the players by putting forward properties. Intuitively, this
may benefit PRO in two ways: PRO can enable attacks necessary to put up a
successful line of defence, and disable attacks put forward by the opponent from
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which PRO cannot defend its own arguments. PRO thus persuades OPP to ac-
cept an argument, where PRO decides which properties become motivational.
Dialogues are structured as follows.

Definition 10. Let (A,�,P , P,M,≤) be a property-based AF. A dialogue is a
sequence S = (m1, . . . ,mn), where each mi is either:
– an attack move “OPP: x � y”, where x, y ∈ A and x � y,
– a defence move “PRO: x � y”, where x, y ∈ A and x � y,
– an enabling property move “PRO: P+”, where P ⊆ P,
– a disabling property move “PRO: P−”, where P ⊆ P,
– a conceding move “OPP: ok”,
– a success claim move “PRO: win”.

We denote by S · S′ the concatenation of S and S′ and we say that S is a
subsequence of S′ iff S′ = S′′ · S · S′′′ for some S′′, S′′′, and that S is a proper
subsequence of S′ iff S′ = S′′ · S · S′′′ for nonempty S′′ or S′′′.

Definition 11. Let S = (m1, . . . ,mn) be a dialogue. We denote the motiva-
tional state in S at index i by MS

i , defined recursively by:

MS
i =

⎧⎪⎨⎪⎩
∅ if i = 0,

MS
i−1 ∪ P if mi = PRO: P + or mi = PRO: P−,

MS
i−1 otherwise.

We now define a set of production rules that generate weak x-acceptance
dialogues. Note that AFs containing cycles may generate infinite sequences of
moves. We prevent this by requiring dialogues to be finite.

Definition 12 (Weak acceptance dialogue). Let (A,�,P , P,M,≤) be a
property-based AF and let x ∈ A.
– A weak x-acceptance dialogue is a finite sequence

S1 · (PRO: win)

where S1 is an x-attack sequence.
– An x-attack sequence is a sequence

(OPP: y1 � x) · S1 · . . . · (OPP: yn � x) · Sn · (OPP: ok)

where {y1, . . . , yn} = {y | y � x} and each Si is a yi-defence sequence.
– An x-defence sequence is either:
• a regular x-defence sequence

(PRO: y � x) · S1

for some y ∈ A s.t. y � x, where S1 is a y-attack sequence,
• an enabling property defence sequence

(PRO: P+) · S1

for some P ⊆ P, where S1 is a regular x-defence sequence,



Property-Based Preferences in Abstract Argumentation 95

• a disabling property defence sequence

(PRO: P−)

for some P ⊆ P.

Intuitively, a disabling property move can be interpreted as saying “the pre-
ceding move is invalid considering the properties P .” An enabling property move,
on the other hand, says “the following move is valid considering the properties
P .” Not every weak x-acceptance dialogue, generated by the production rules
in definition 12, will follow this interpretation. We need to impose a number of
additional constraints to ensure that property moves make sense.

Definition 13 (Property-consistency). Let (A,�,P , P,M,≤) be a property-
based AF and S = (m1, . . . , mn) a sequence. We say that S is property-consistent
iff for all i ∈ [1, . . . , n], we have:

1. MS
i ∈M

2. If mi = PRO: x � y then for all j ∈ [i, . . . , n], x→MS
j
y,

3. If mi = PRO: P− and mi−1 = OPP: x � y then for all j ∈ [i, . . . , n],
x �→MS

j
y.

Condition 1 ensures that property moves are valid in the sense that they actu-
ally lead to a new motivational state M ∈M. Conditions 2 and 3 ensure that a
property move does not undermine preceding property moves. That is, condition
2 ensures that attacks put forward by PRO remain enabled in subsequent states
and condition 3 ensures that disabled attacks remain disabled.

Example 6 (Continued from example 4). Consider the following two property-
consistent weak acceptance dialogues for the argument a.

Index Move State
1 OPP: b � a ∅
2 PRO: c � b ∅
3 OPP: b � c ∅
4 PRO: {R}− {R}
5 OPP: ok {R}
6 OPP: d � a {R}
7 PRO: {G}+ {R,G}
8 PRO: e � d {R,G}
9 OPP: f � e {R,G}
10 PRO: ∅− {R,G}
11 OPP: ok {R,G}
12 OPP: ok {R,G}
13 PRO: win {R,G}

Index Move State
1 OPP: b � a ∅
2 PRO: c � b ∅
3 OPP: b � c ∅
4 PRO: {R,G}− {R,G}
5 OPP: ok {R,G}
6 OPP: d � a {R,G}
7 PRO: e � d {R,G}
8 OPP: f � e {R,G}
9 PRO: ∅− {R,G}
10 OPP: ok {R,G}
11 OPP: ok {R,G}
12 PRO: win {R,G}

Explanation: In the dialogue shown on the left, the initial exchange of attacks
consists of b � a, c � b and b � c. PRO must end this line of argument by mak-
ing a disabling property to disable the attack b � c. PRO moves PRO: {R}−
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and as a result, the motivational state of the dialogue becomes {R}. OPP’s next
attack is d � a. PRO cannot move e � d because this attack is disabled in the
current motivational state. PRO moves PRO: {G}+, changing the motivational
state of the dialogue to {R,G}, so that e � d is enabled. To OPP’s attack f � e
PRO responds with an empty disabling move, as f � e is already disabled in
the current motivational state. The dialogue on the right is similar with the ex-
ception that PRO immediately moves both R and G when making a disabling
property move on line 4. As a result, no enabling property move is needed on
line 7 because the attack d � e is already enabled.

The existence of a property-consistent weak x-acceptance dialogue implies
weak acceptance of x, i.e., it is a sound proof procedure:

Lemma 1 (Soundness). Let (A,�,P , P, M, ≤) be a property-based AF and
x ∈ A. If there exists a property-consistent weak x-acceptance dialogue S =
(m1, . . . ,mn) then x is a member of the grounded extension of the AF represented
by MS

n . Hence x is weakly accepted.

Proof (of lemma 1). Let (A,�,P , P,M,≤) be a property based AF, x ∈ A and
S a property-consistent weak x-acceptance dialogue. A subsequence S′ of S that
is a y-attack sequence (for some y ∈ A) will be called a y-attack subsequence.
We denote the depth of an attack subsequence S′ by D(S′) and define it by
D(S′) = 0, if S′ = (OPP: ok) and 1 + k otherwise, where k = max({D(S′′) |
S′′ ∈ T }), where T is the set of attack sequences that are proper subsequences
of S′. Furthermore from hereon we denote the grounded extension of (A,→MS

n
)

by G. We show that for every y-attack subsequence S′ it holds that y ∈ G. We
prove this by strong induction on the depth of S′. Let the induction hypothesis
H(k) stand for “if S′ is a y-attack subsequence with depth k then y ∈ G.”
– Base case (H(0)): Here S′ = (OPP: ok), thus y has no attackers in (A,�),

hence no attackers in (A,→MS
n
). It follows that y ∈ G.

– Induction step: Assume H(0), . . . , H(k − 1) holds. We need to prove H(k).
It can be checked that for every z s.t. z � y, either:
• There is a z′-attack sequence S′′ that is a proper subsequence of S′.
Thus D(S′′) < k and z′ � z. From H(D(S′′)) and the fact that S is
property-consistent it follows that z is attacked by G.
• S′ contains a disabling property move. Hence z �→MS

n
y.

This means that for every z such that z →MS
n
y, G attacks z, hence y ∈ G.

By the principle of strong induction it follows that if there is a y-attack subse-
quence then y ∈ G. Thus we have x ∈ G, hence x is weakly accepted. ��

Conversely, if x is weakly accepted then a property-consistent weak
x-acceptance dialogue exists:

Lemma 2 (Completeness). Let (A,�,P , P, M,≤) be a property-based AF
and x ∈ A be weakly accepted. There exists a weak x-acceptance dialogue S that
is property-consistent.
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Proof. Let (A,�,P , P, M,≤) be a property-based AF and x ∈ A be weakly
accepted. Then there is some M ∈ M s.t. x is a member of the grounded
extension of (A,→M ). From hereon we use M to refer to any such motivational
state and G to refer to the grounded extension of (A,→M ).

First some notation: The characteristic function C : 2A → 2A of an AF (A,→)
is defined by C(X) = {x ∈ A | x is defended by X}. It is well known that G
coincides with the least fixed point of C [1]. We define the degree Deg(x) of any
x ∈ G as the smallest positive integer s.t. x ∈ Cn(∅).

We now prove, by strong induction over the degree of an argument y ∈ G
that there exists a property consistent weak y-acceptance dialogue. Let H(k)
stand for “If y ∈ G and Deg(y) = k then there exists a property consistent weak
y-acceptance dialogue.”

– Base case (H(0)): If y ∈ G and Deg(y) = 0 then there is no z ∈ A s.t.
z →M y and we can define S by (OPP: z1 � y) · S′ · . . . · (OPP: zn �
y) · S′ · (OPP: ok) · (PRO: win), where {z1, . . . , zn} = {z′ | z′ � y} and
S′ = (PRO:M−). It can be checked that S is a property consistent weak
y-acceptance dialogue.

– Induction step: Assume H(0), . . . , H(k − 1) holds. Thus if y′ ∈ G and
Deg(y′) < k then there exists a property consistent weak y′-acceptance
dialogue. We denote this dialogue by S(y′). We need to prove H(k).
Assume that y ∈ G and Deg(y) = k. It follows that for every z ∈ A s.t.
z →M y, there exists an argument which we denote by def(z, y) such that
def(z, y) ∈ G and def(z, y)→M z. Furthermore from the fixpoint construc-
tion it follows that Deg(def(z, y)) < k, so that S(def(z, y)) is well defined.
Now, for every z ∈ A s.t. z � y we define Ty(z) by (1) Ty(z) = (OPP: z �
y)·(PRO:M−), if z �→M y and (2) Ty(z) = (OPP: z � y)·(PRO:M+)·S′,
if z →M y—where S′ is defined by S(def(z, y)) = S′ · (PRO: win). It
can be checked that Ty(z1) · . . . · Ty(zi) · (OPP: ok) · (PRO: win) (where
{z1, . . . , zi} = {z′ | z′ � y}) is a property consistent weak y-acceptance
dialogue.

By the principle of strong induction it follows that for every y ∈ G, there exists
a property consistent weak y-acceptance dialogue. Hence, there exists a property
consistent weak x-acceptance dialogue. ��

Notice that in the fourth move of in the second dialogue in example 6, PRO
puts forward both R and G in a disabling property move. However, it suffices
to put forward just R, as in the first dialogue, because G is not relevant with
respect to disabling the attack b � c. We call a dialogue in which property moves
are relevant a property-relevant dialogue. Property moves in a property-relevant
dialogue consist only of properties satisfied by one of the arguments involved in
the attack that is enabled or disabled.

Definition 14 (Property-relevance). Let (A,�,P , P,M,≤) be a property-
based AF and S = (m1, . . . , mn) a weak acceptance dialogue. We say that S is
property-relevant iff for all i, j ∈ [1, . . . , n] s.t. j = i+ 1, we have:
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1. If mi = OPP: x � y and mj = PRO: P− then P ⊆ P (x) ∪ P (y).
2. If mi = PRO: P+ and mj = PRO: x � y then P ⊆ P (x) ∪ P (y).

Note that in example 6 the first dialogue is property-relevant, whereas the
second one is not. Focusing on property-relevant dialogues can be used to opti-
mize the algorithm. Furthermore, it makes sense intuitively: when persuading an
opponent to accept an argument, one does not refer to properties not relevant
to this objective.

As a final result we show that weak acceptance of an argument implies the
existence of a property-consistent weak x-acceptance dialogue that is, in ad-
dition, property relevant. However, this requires that M is sufficiently rich to
ensure that PRO is not forced to put forward irrelevant properties. This can
be achieved by assuming that M = 2P , but note that there are cases where a
weaker assumption is sufficient.

Lemma 3 (Property-relevant completeness). Let (A,�,P , P,M,≤) be a
property-based AF whereM = 2P , and let x ∈ A be weakly accepted. There exists
a weak x-acceptance dialogue S that is property-consistent and property-relevant.

Proof. Let (A,�,P , P, M,≤) be a property-based AF and x ∈ A be weakly
accepted. Let S = (m1, . . . ,mn) be the property-consistent weak x-acceptance
dialogue (for x a member of the grounded extension of (A,→M )) as constructed
in the proof of lemma 2. That is, every property move in S is either of the
form PRO:M+ or PRO:M−. Using property 1 (2) it can be checked that the
dialogue S′ formed by
– replacing every move mi = PRO:M+ in S by PRO:M ′+, where M ′ =

M ∩ P (x) ∪ P (y) where x, y are defined by mi+1 = PRO: x � y, and
– replacing every move mi = PRO:M− in S by PRO:M ′−, where M ′ =

M ∩ P (x) ∪ P (y) where x, y are defined by mi−1 = OPP: x � y,
is also a property-consistent weak x-acceptance dialogue, that is in addition
property-relevant. ��

Summarizing, we have the following result.

Theorem 2. Let (A,�,P , P, M,≤) be a property-based AF.
– An argument x ∈ A is weakly accepted iff there exists a weak x-acceptance

dialogue that is property-consistent.
– IfM = 2P then an argument x ∈ A is weakly accepted iff there exists a weak

x-acceptance dialogue that is property-consistent and property-relevant.

Proof. Follows from lemmas 1, 2 and 3. ��

7 Related Work

We already mentioned the relation of our model with that of preference and
value-based AFs [2,4]. Also related is a study of value-based AFs where argu-
ments promote multiple values [10], concerned mainly with the problem of de-
riving a unique preference order over arguments from a preference relation over
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individual values. Note that in our approach, a property-based AF together with
a motivational state already defines a unique preference order over arguments.

Furthermore, Bench-Capon et al. have considered dialogues in which a propo-
nent can make moves consisting of value preferences [13]. In this approach, the
outcome of a winning dialogue corresponds to the specification of an audience
(i.e., a preference order over values) such that some initial set of arguments is
accepted in the corresponding aVAF.

Also related are Modgil’s model of extended AFs, in which arguments at-
tack and disable attacks between other arguments [14]. Such arguments can be
seen as meta-level arguments expressing preferences over object level arguments.
Whereas we take the agent’s state (which determines whether individual attacks
are enabled) to be external to the AF, here it is part of AF itself. That is,
whether an attack is enabled depends on the status of a metalevel argument.

Our work shares methodological similarities with work of Kontarinis et al. [15],
who present a goal-oriented procedure to determine which attacks to disable or
enable in order to make an argument accepted under a given semantics. While the
procedure that they present is designed to be implemented as a term rewriting
system, our procedure is defined simply by a set of production rules, amenable
to implementation using e.g. PROLOG.

8 Conclusion and Future Work

We presented a dynamic model of preferences in argumentation, based on Di-
etrich and List’s model of property-based preference. It provides an account of
how and why preferences in argumentation may change and generalizes both
preference-based AFs and value-based AFs, if properties are taken to be values.
We consider a number of directions for future work. First, we plan to complete
the proof-theoretic picture by looking at the problem of deciding whether an
argument is strongly accepted. In addition, we will consider other semantics in
addition to grounded. Second, we plan to investigate the possibility of axiom-
atizing property-based AFs, in the spirit of Dietrich and List’s axiomatization
as presented in section 4. Finally, we intend to look at connections between
property-based AFs and Modgil’s model of extended AFs.

Acknowledgements. Richard Booth is supported by the FNR (National Re-
search Fund) DYNGBaT project.
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Abstract. In traditional multicriteria decision analysis, decision maker
evaluations or comparisons are considered to be error-free. In particular,
algorithms like UTA*, ACUTA or UTA-GMS for learning utility func-
tions to rank a set of alternatives assume that decision maker(s) are
able to provide fully reliable training data in the form of e.g. pairwise
preferences. In this paper we relax this assumption by attaching a like-
lihood degree to each ordered pair in the training set; this likelihood
degree can be interpreted as a choice probability (group decision mak-
ing perspective) or, alternatively, as a degree of confidence about pair-
wise preferences (single decision maker perspective). Since binary choice
probabilities reflect order relations, the former can be used to train algo-
rithms for learning utility functions. We specifically address the learning
of piecewise linear additive utility functions through a logistic distribu-
tion; we conclude with examples and use-cases to illustrate the validity
and relevance of our proposal.

1 Introduction

Preference learning consists in determining a model that reflects the subjective
value, i.e. as perceived by a decision maker (DM), of alternatives or items be-
longing to a set S (the reader can refer to Fürnkranz & Hüllermeier, 2011, for a
general introduction on the topic). In artificial intelligence and decision theory,
this problem is frequently solved by learning a value or utility function u such
that the order obtained by ranking the alternatives by order of decreasing utility
corresponds to the order induced on S by the preferences of the DM. Typically,
the preference relation on S is not entirely known; therefore, it is common prac-
tice to obtain a sample of the preference relation on a subset SL ⊂ S – the
learning set – to train the utility model. The thereby obtained utility function
can then be used to evaluate alternatives in S \ SL and to obtain an estimate
of the preference relation on S as a whole, thereby allowing to solve ranking or
choice problems on S.

In multicriteria decision theory, alternatives are characterized by their perfor-
mances of several criteria; in this context, the preference learning problem aims
at producing a utility function that evaluates items as a function of their ‘scores’
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on the criteria and that reflects the preference relation of the DM. In other terms,
the ‘global utility’ u(i) of an item i ∈ S is an aggregate of its scores on all cri-
teria and the order induced by u on S (or SL) is the same as the one induced
by the preferences. The most common aggregation model in decision theoretic
literature is the additive value model, which, starting with the contribution of
Jacquet-Lagrèze & Siskos (1982), has led to a variety of preference learning ap-
proaches known as the UTA (for ‘UTilités Additives’) family of methods. For
instance, UTA (Jacquet-Lagrèze & Siskos, 1982), UTA* (Siskos & Yannacopou-
los, 1985), UTAMP I & II (Beuthe & Scannella, 1996, 2001) and ACUTA (Bous
et al., 2010) are methods based on piecewise linear utility functions that are
adjusted to the preference sample through different optimization methods. As
opposed to these methods, which produce a unique utility function, other recent
proposals (see, in particular, Greco et al., 2008; Figueira et al., 2009; Kadziński
et al., 2012) seek to determine the set of all preference-compatible utility func-
tions (not necessarily piecewise), often requiring a post-processing step to prune
the results (see Kadziński et al., 2012).

Information regarding preferences can be expressed in different manners, the
most common being direct evaluations and binary (i.e. pairwise) comparisons of
items, which may take the form of a ranking or any other order relation. In tradi-
tional multicriteria decision analysis (including previously cited references), such
preference information is typically assumed to be entirely reliable, i.e. error-free.
There is however longstanding evidence that this is not necessarily true. The
pioneering work of Fechner (1860) and Thurstone (1927a,b) showed that binary
comparisons on two items i, j ∈ S may be subject to unintentional (perception)
errors, which translate as random fluctuations in the outcome of the compar-
ison. Such fluctuations have experimentally been shown to be magnified by a
variety of factors, including the similarity or strong dissimilarity of items, the
cardinality of S and the existence of multiple attributes (see, e.g., Kahneman,
1973; Shugan, 1980). For the multiattribute preference learning problem, this
implies that the DM preference sample, i.e. the order on SL, may not be entirely
accurate. Instead, pairwise comparisons have a likelihood degree that takes the
form of a binary choice probability.

In addition to problems involving a single ‘inaccurate’ DM, we may also con-
sider group decision making problems. That is, learning a utility function as
compatible as possible with the preference samples of all DM’s on S. Unless all
DM’s have the same preference relation, there will be some who, for any two
i, j ∈ S, prefer i, while others prefer j. The proportion of DM’s preferring one or
the other alternative thus allows to deduce the frequency with which one item is
chosen, i.e. it allows to deduce the binary choice probability regarding the pair
i, j.

From this probabilistic perspective, the (multicriteria) preference learning
paradigm thus becomes a problem of determining a utility function as com-
patible as possible with a preference relation on SL taking into account that
ordered pairs have a likelihood degree. For instance, if some binary preferences
are contradicting or cannot be satisfied, priority should be given to more likely
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pairs. However, ‘learning’ is in this case more than just a problem of preference
prioritization: in addition to deriving a utility function to evaluate alternatives
S, it is necessary to learn a probability distribution that reflects the binary choice
probabilities of the items in SL and that predicts the choice probabilities of the
items in S as whole. In other terms, the preference learning problem is about
adjusting a random utility model (see, e.g., Block & Marschak, 1960; Luce &
Suppes, 1965; Fishburn, 1998) as a function of multiattribute utility functions
such that it reflects both the order relation and the binary choice probabilities
of the items in SL.

In this paper we consider a random utility model based on the multinomial
logistic distribution, which is the most widely applied random utility model (Mc-
Fadden, 1986), in combination with the piecewise linear additive (PLA) model
to characterize the utilities of multiattribute items. We measure the ‘adjustment’
of these models through the relative entropy between target probabilities (pro-
vided by the DM) and calculated probabilities (obtained by fitting the model).
Altogether, this constitutes the CEUTA method, a nonlinear optimization prob-
lem to learn utility functions subject to both preference-related constraints and
PLA model constraints. The paper is structured as follows: after introducing
the problem, we present the PLA model and then discuss the problem of learn-
ing random utility models. Next, we present the CEUTA method and finally
conclude with an experimental analysis and directions for future research.

2 Utility Functions with the Piecewise Linear Additive
Model

2.1 Preferences and Utility Functions

The standard approach to modeling preferences is to model them as a binary
relation over the items of a set, i.e. as an order (see e.g. Luce & Suppes, 1965;
Fishburn, 1970; Aleskerov et al., 2007). Throughout the paper, we focus on
preference relations that are strict linear orders, i.e. a binary relation � on a
nonempty set S that is complete, asymmetric and transitive. In other terms,
whenever i � j holds for any two i, j ∈ S, i �= j, it means that i is strictly
preferred to j. Preference relations can be represented by utility (or value) func-
tions provided the latter are ‘order preserving’. More formally, for a finite set
S = {1, 2, ..., N} of N items and a strict linear order (S, �), a utility function is
a numeric representation u : S → R+ of (S, �), such that i � j ⇔ u(i) > u(j). It
has been shown (see e.g. Fishburn, 1970, ch. 2) that, provided S is finite, there
always exists an order-preserving function u for strict linear orders on S.

2.2 Multicriteria Decision Problems and Additive Utility

In the multidimensional case, items are characterized by several measurable cri-
teria, i.e. they are described by m-dimensional vectors with each dimension
corresponding to one criterion. We write this x(i) = (x1(i), x2(i), ..., xm(i)),
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where xk(i) corresponds to the actual score of item i on criterion k. In deci-
sion theoretic literature, items are usually called alternatives and are denoted
A = {a1, a2, ..., aN }; for simplicity, we retain the ‘label notation’ whenever pos-
sible, i.e. i ≡ ai, and use S to denote the set of items, i.e. S ≡ A.

As opposed to the real score of an item, we are interested in its utility, which
reflects the (subjective) value that a person would assign to this item. It is of
use to distinguish between the overall value of an item, known as total or global
utility, and criterion-specific value, which is known as marginal or partial utility.
The marginal utility of an item i on criterion k, denoted uk(i), thus reflects the
perceived value of i on k. It is a function of xk(i), i.e. uk(i) is a short notation
for uk(xk(i)). A convenient model to aggregate marginal utilities into a global
utility is the additive model, i.e.

u(i) =
m∑

k=1

uk(i) ∀ i ∈ S, (1)

where S denotes the set of alternatives. Note that the additive utility model
requires criteria to be (mutually) preferentially independent of each other (see
e.g. Fishburn, 1970; Dyer, 2005, for details).

2.3 Modeling Marginal Utility with Piecewise Linear Functions
The representation of marginal utilities is usually done using functions uk(xk)
whose domain cover the scores of all items considered in the decision problem,
i.e.

xk ∈
[
min
i∈S

xk(i), max
i∈S

xk(i)
]

, (2)

where S = {1, 2, ..., N}. In the piecewise linear utility function model
(Jacquet-Lagrèze & Siskos, 1982), interval xk is divided into sk sub-intervals
of equal length. This leads to a discretization with sk + 1 score-utility pairs
(ul

k, ul+1
k ), for l = 0, 1..., sk − 1; the rest of the values of the function are ob-

tained through linear interpolation. On this basis, the marginal utility of an item
i at an arbitrary point xk(i) ∈ xk is given by:

uk(i) =

⎧
⎨

⎩
ul

k if xk(i) = xl
k(

xk(i)−xl
k

xl+1
k

−xl
k

)
ul+1

k +
(

xl+1
k

−xk(i)
xl+1

k
−xl

k

)
ul

k if xk(i) ∈ (xl
k; xl+1

k )
(3)

There are two important ‘types’ of (marginal) utility functions: those cor-
responding to the case of criteria that have to be maximized, modeled with
monotonously increasing functions, and those that have to be minimized, mod-
eled with monotonously decreasing functions. In the forthcoming formulations,
we focus on the maximization case (the minimization case is straightforward to
derive from the former; for details, the reader can refer to e.g. Siskos et al., 2005).
Obtaining a monotonously increasing function is achieved by constraining the
values of the variables u0

k, u1
k, ..., usk

k as follows:

ul
k ≤ ul+1

k for l = 0, 1, ..., sk − 1 and k = 1, ..., m. (4)
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Let xk = x0
k; the piecewise linear model imposes a utility of zero to the worst

score uk = uk(xk) in the xk-scale, i.e.

uk = 0 k = 1, 2, ..., m. (5)

Moreover, utilities of items are limited to at most one, a constraint known as
the normalization constraint. Let xk = xsk

k so that uk = uk(xk) is the weight of
criterion k; the normalization constraint is then given by

m∑

k=1

uk = 1. (6)

Equations (1) - (6) constitute the PLA utility model (Jacquet-Lagrèze & Siskos,
1982). We take one more step into rewriting the global utility of an item as
a linear combination of the variables ul

k. To this end, we rewrite the marginal
utility as

uk(i) =
sk∑

l=0

αl
k(i) · ul

k , (7)

where the αl
k(i) are coefficients derived from (3), so that the global utility of

item i may be written as

u(i) =
m∑

k=1

sk∑

l=0

αl
k(i) · ul

k . (8)

Methods for learning PLA utility functions include UTA (Jacquet-Lagrèze &
Siskos, 1982), UTA* (Siskos & Yannacopoulos, 1985), UTAMP I & II (Beuthe
& Scannella, 1996, 2001) and ACUTA (Bous et al., 2010). All of these methods
require preference information in the form of rankings (possibly non strict) on
SL. ACUTA is a nonlinear optimization approach that determines the analytic
center (Huard, 1967; Sonnevend, 1985) of the constraints, while the remaining
methods are formulated as linear programming problems.

3 Learning Random Utility Models

3.1 Random Utility Models

Preferences expressed in the form of (strict or non-strict rankings) can be broken
down to ordered pairs. For example, the ranking i � j � k corresponds to
i � j, i � k and j � k. To provide a ranking on a set S, the DM must thus
be able to choose and state the most preferred item in every pair i, j ∈ S,
i �= j. As previously mentioned, there is evidence that performing such choices is
difficult and may consequently lead to unintentional errors, like e.g. occasionally
stating j � i when actually i � j. Alternatively, we may consider a group of
non-consensual DMs, some stating i � j and others declaring j � i, which
also expresses uncertainty on whether i or j is overall preferred. Uncertainty in
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choice behavior led to the development of probabilistic choice theories (see Luce
& Suppes, 1965, for a general overview) in which choice – and hence also binary
comparisons – are governed by choice probabilities pij = P(i � j), ∀ i, j ∈ S,
that describe the probability of choosing (i.e. preferring) i over j.

Random utility models are a special type of probabilistic choice models in
which choice probabilities are a function of item utilities. More precisely, pij =
P(u(i) ≥ u(j)), i.e. the probability of choosing i over j is the probability that the
utility of i is greater than that of j. While many random utility models exist, the
most common are the normal distribution (as originally proposed by Thurstone,
1927a) and the multinomial logit choice model, which is based on the logistic
distribution and is defined as (see McFadden, 1986)

pij = e(u(i)−u(j))

1 + e(u(i)−u(j)) . (9)

In what follows (section 4), we use this model to learn random utility functions
based on the previously introduced PLA model.

3.2 Learning Functions

For a given learning set SL of alternatives for which an order and binary choice
probabilities are given, learning a random utility model such as (9) is thus a
problem of fitting a utility function u such that

1. the order obtained by sorting the alternatives of SL by decreasing utility
corresponds to the order provided by the DM on SL

2. the binary choice probabilities, as given by (9), also correspond to those
given as input to the problem.

Fortunately, there exists a correspondence between binary choice probabilities
and orders: under certain conditions, binary choice probabilities induce different
types of order relations (Fishburn, 1973). In particular, binary choice probabil-
ities are equivalent to a nested family of strict linear orders if, for any three
items i, j, k ∈ SL with i � j � k, they satisfy partial stochastic transitivity (see
Fishburn, 1973, for a detailed proof):

pij >
1
2

& pjk >
1
2

⇒ pik ≥ min(pij , pjk). (10)

As a consequence, to learn a utility function that reflects a strict linear order
and binary choice probabilities (satisfying partial stochastic transitivity) on the
items of SL, it is sufficient to adjust u to have pij = p�

ij , ∀ i, j ∈ SL, where
pij denotes the ‘calculated probability’ given by (9) and p�

ij denotes the tar-
get probability provided as input to the decision problem. The utility function
learning problem thus becomes a problem of learning a probability model which
‘implicitly’ produces a utility function that can be used to evaluate and rank the
alternatives.
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Several types of learning (i.e. fitting) functions can be considered to adjust a
probability model to target probabilities. Least squares minimization remains a
very popular fitting approach in the learning domain in general (see e.g. Bishop,
2006; Hastie et al., 2009, for applications and references in the machine and
statistical learning areas); another popular option for probability distribution
learning is relative entropy minimization (or cross-entropy minimization), which
has been successfully applied in the machine learning community in the con-
text of neural networks (Baum & Wilczek, 1987) as well as in the web ranking
community to adjust logistic distributions (Burges et al., 2005; Burges, 2006).
Relative entropy (or Kullback-Leibler distance) is a distance-like measure of the
resemblance of two probability distributions. For two probability mass functions
p(x) and q(x) it is defined as (see Cover & Thomas, 2006, p. 19)

D(p||q) =
∑

x∈X

p(x) log p(x)
q(x)

(11)

with the conventions 0 log 0
0 = 0, 0 log 0

q = 0 and p log p
0 = ∞. While relative

entropy is not a true distance, it still is a measure of the inefficiency of assum-
ing that the probability distribution is q(x) when it actually is p(x) (Cover &
Thomas, 2006). Relative entropy satisfies D(p||q) ≥ 0 for any p(x) and q(x); the
closer q(x) to p(x), the smaller D(p||q) with D(p||q) = 0 if and only if p(x) = q(x)
(Cover & Thomas, 2006, p. 28). In our context, the minimization of the relative
entropy between p�

ij and pij , as given by (9), thus means adjusting pij such that
it is ‘as close as possible’ to p�

ij .

4 The CEUTA Method

4.1 Utility and Probability Models
The CEUTA method is based on the PLA utility model, as defined by equations
(1) - (8). To slightly simplify notations, we let

αl
k(i, j) = αl

k(i) − αl
k(j) ∀ i, j ∈ S, (12)

so that the utility difference between any two items i, j ∈ S is given by

u(i) − u(j) =
m∑

k=1

sk∑

l=0

αl
k(i, j) · ul

k. (13)

Regarding the probability model, CEUTA relies on a parametric logistic func-
tion. The ‘traditional’ logistic distribution (9) is a probability distribution on
[−∞, +∞], which means that it cannot take the scaling of the value (or utility)
function into account. With the PLA model, utilities are however defined on the
[0,1] interval and utility differences u(i) − u(j) are at most equal to one; this
scaling should however not forbid to obtain binary choice probabilities that are
close to 1 or 0 for certain pairs of alternatives. We therefore scale (9) as follows

pij = eμ(u(i)−u(j))

1 + eμ(u(i)−u(j)) , (14)
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where μ is a strictly positive parameter that influences the steepness of the
probability function at the inflexion point u(i) = u(j). Equation (14) has an
upper asymptote at pij = 1 for u(i) − u(j) >> 0 and a lower asymptote at
pij = 0 for u(i) − u(j) << 0. As a consequence, if μ is sufficiently large, the
probability to choose i over j satisfies pij ≈ 1 for items whose utility difference
u(i) − u(j) > 0 is large (on a [0,1] scale). In practice, μ can be chosen such
that the choice probability between the ideal alternative (with u(i) = 1) and the
anti-ideal alternative (with u(j) = 0) is very close to one.

Combining the PLA model with the parametric logistic distribution leads to

pij =
e

μ

(
m∑

k=1

sk∑
l=0

αl
k(i,j)ul

k

)

1 + e
μ

(
m∑

k=1

sk∑
l=0

αl
k

(i,j)ul
k

) , (15)

which is obtained by inserting (13) into (14); this equation will be used shortly
to calculate the gradient and Hessian for the ranking learning problem.

4.2 Objective Function

Consider a learning set SL ⊂ S of cardinality n with known binary choice prob-
abilities p�

ij for each pair of items i, j ∈ SL, i �= j. It is assumed that binary
choice probabilities satisfy partial stochastic transitivity, as defined in (10), so
that cutting the p�

ij at the level 1
2 induces a strict linear order on SL; we call this

order the reference ranking and denote it π0. We use the convention π0(i) = i for
all i = 1, ..., n, i.e. items are labeled according to their rank in the reference rank-
ing, which means that i < j ⇔ i � j, ∀ i, j ∈ SL. With this labeling convention,
the reference ranking thus corresponds to the strict linear order 1 � 2 � ... � n.
The relative entropy of one pair i, j of π0 with the logistic distribution pij and
the goal probability p�

ij is

p�
ij log

p�
ij

pij
+ (1 − p�

ij) log
(1 − p�

ij)
(1 − pij)

, (16)

where the logarithm is base two. For the ranking π0, we consider the sum of the
relative entropy of all pairs, i.e.

∑

i=1,...,n−1
j=i+1,...,n

p�
ij log

p�
ij

pij
+ (1 − p�

ij) log
(1 − p�

ij)
(1 − pij)

. (17)

As the p�
ij are actually constants, the expression above can be expanded and all

logarithms involving constant values can be eliminated, leading to

f = −
∑

i=1,...,n−1
j=i+1,...,n

p�
ij log pij + (1 − p�

ij) log(1 − pij). (18)
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4.3 Optimization Problem

The CEUTA (Cross Entropy UTA) method combines the PLA model and its
constraints, the parametric logistic distribution (15) and objective function (18)
to determine a utility function and probability model that reflect the preference
relation and the binary choice probabilities of the items in SL. Following the
relative entropy minimization principle, all this combined leads to the following
nonlinear optimization problem:

⎧
⎪⎨

⎪⎩

min f = −
∑

i=1,...,n−1
j=i+1,...,n

p�
ij log pij + (1 − p�

ji) log(1 − pij)

s.t. PLA model constraints,
(19)

where pij is given by (15) and the PLA model constraints are (4), (5) and (6).
CEUTA is solved by applying Newton’s method for linearly constrained opti-

mization (see, e.g. Gill et al., 1981; Fletcher, 1987; Antoniou & Lu, 2007). Our
implementation uses nullspace projection (see Gill et al., 1981) to handle equality
constraints (5)-(6) and a logarithmic barrier function for inequality constraints
(4), which allows to introduce the latter into the objective function. To this end,
let B · u ≤ 0 be the matrix notation for the monotonicity constraints in the form
ul

k − ul+1
k ≤ 0 (B is the coefficient matrix and u is the vector containing the ul

k

variables). Also, let σt = −bt· · u be the tth slack vector and bt· the tth line of B.
The logarithmic barrier is defined as (see, e.g., Nesterov & Nemirovsky, 1994;
Ye, 1997)

Bλ(u) = λ ·
nv∑

t=1
ln(σt), (20)

where λ > 0 is a small positive constant known as the barrier parameter and nv

is the number of monotonicity constraints. Introducing (20) into the objective
function leads to

⎧
⎪⎪⎨

⎪⎪⎩

min fλ = −
∑

i=1,...,n−1
j=i+1,...,n

p�
ij log pij + (1 − p�

ji) log(1 − pij) − λ ·
nv∑

t=1
ln(σt)

s.t. PLA model equality constraints

(21)

To solve this problem with Newton’s method, it is required to calculate the
gradient and the Hessian of fλ. For the barrier function, they respectively are
(details are given in Bous et al., 2010)

∇(−Bλ(u)) = λ

nv∑

t=1

bT
t·

σt
= λBT S−1e, (22)

where S = diag(σ) and e is a column vector of ones, and

∇2(−Bλ(u)) = λ

nv∑

t=1

bt· · bT
t·

σ2
t

= λBT S−2B. (23)
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Regarding the relative entropy contribution f in fλ, its partial derivative is given
by the following expression:

∂f

∂ul
k

= − μ

ln(2)
∑

i=1,...,n−1
j=i+1,...,n

αl
k(i, j)

(
p�

ij − pij

)
. (24)

Similarly, the second order partial derivative with respect to the PLA model
variables, here generically denoted ul

k and ut
s, is given by:

∂2f

∂ul
k∂ut

s

= μ2

ln(2)
∑

i=1,...,n−1
j=i+1,...,n

αl
k(i, j)αt

s(i, j) pij(1 − pij). (25)

In practice, it is more useful to have these formulas in matrix form, like for the
barrier function. To this purpose, let p and p� be column vectors containing
pairwise probabilities (model and goal probabilities, respectively) and A be the
matrix containing the αl

k(i, j) coefficients. This leads to the simple expression

∇f = − μ

ln(2)
AT (p� − p). (26)

Finally, if we let P = diag(p), the Hessian is given by

∇2f = μ2

ln(2)
AT P(I − P)A, (27)

where I denotes the identity matrix. Overall, we thus have

∇fλ = − μ

ln(2)
AT (p� − p) + λBT S−1e (28)

and
∇2fλ = μ2

ln(2)
AT P(I − P)A + λBT S−2B. (29)

Optimization problem (21) is easily solved with Newton’s method using nullspace
projection for the equality constraints as done by Bous et al. (2010) in the
ACUTA method. Newton’s method consists in computing iterates ui+1 = ui +
γi �i, where index i here denotes the ith iteration, γi the step-size and �i the
Newton direction. In unconstrained problems, the latter is obtained at each step
by solving

∇2fλ(ui) �i= −∇fλ(ui). (30)

Let Be · u = ce be the matrix notation of inequality constraints (5)-(6); taking
these into account in Newton’s method can be achieved by identifying a basis of
the null-space of Be, i.e. a non-null matrix M such that BeM = 0, and projecting
both the gradient and the Hessian onto the null-space. The Newton-step is then
given by �M,i= M �i and (30) becomes (Gill et al., 1989)

MT ∇2fλ(ui)M �M,i= −MT ∇fλ(ui). (31)
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Starting from an initial point u0 such that all slack variables are strictly positive,
iterates are computed until the stopping condition ||MT ∇fλ(ui) = 0|| is met with
a certain precision level ε. The step-size γi should be as large as possible under
the constraint that slack variables remain strictly positive at each iteration;
in practice, it is frequently computed with simple line-search procedures like,
for example, starting with γi = 1 and multiplying with 0.9 until σt,i > 0, ∀t.
The interested reader can refer to (Bous et al., 2010) for further details on the
algorithm.

5 Experimental Analysis

To validate the CEUTA method, a series of experiments using simulated data
were performed. Due to the large number of parameter combinations to analyze
(number of criteria, number of segments, size of the learning set SL, size of S\SL

and μ), we chose to set μ = 20, the number criteria to m = 10 and the number
of alternatives to evaluate to |S \ SL| = 1000, thereby focusing our attention
on the number of segments and the size n of SL. The number of segments s
was evaluated for s = {1, 2, 3} and equal for all marginal utility functions, i.e.
sk = s, ∀k; regarding n, we considered the cases n = {10, 25, 50, 100}. For each
combination of values of these two parameters, 100 tests were run. For each test,
with a given value of s and n, the following procedure was executed:

1. generate marginal utility functions of s segments randomly;
2. generate n + |S \ SL| alternatives x(i) = (x1(i), x2(i), ..., x10(i)) randomly

with the uniform distribution;
3. evaluate the global utility u� of the generated data with the utility functions

of step 1;
4. build a learning set by clustering the alternatives into n clusters according

to their global utility, and then extracting one alternative per cluster (the
one closest to the average utility of the cluster);

5. evaluate the probabilities p�
ij of each alternative with (15) and u�;

6. deduce the order of the learning set from the probabilities computed at the
previous step;

7. run the CEUTA method (with s segments and μ = 20 as well) on the learning
set to obtain a ‘learned utility function’;

8. evaluate the remaining alternatives, i.e. S \SL, with the learned utility func-
tion to obtain their global utility u;

9. compute the Kendall rank correlation coefficient (i.e. Kendall’s τ) between
the order induced by u� and u on S \ SL and, finally,

10. compute the relative entropy between p�
ij and pij for the entire set S.

CEUTA converged for all tests performed, requiring on average 5.4083 iter-
ations across all tests (the minimum and maximum being 3 and 44 iterations,
respectively). Fig. 1 shows the results for Kendall’s τ , grouped by s and n. It
is clearly visible that the greater n, the better the results, while n = 10 is in-
sufficient to train the model efficiently. Moreover, a larger number of segments
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negatively influences Kendall’s τ , requiring larger learning sets to ‘compensate’
for an increased number of variables. In general, however, CEUTA produces
good results and the correlation between the orders induced by u� and u is high,
even with learning sets that are quite small in comparison to the number of
alternatives to evaluate.
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Fig. 1. Kendall’s τ as a function of the number of segments s and the size of the
learning set n for 1000 alternatives evaluated with CEUTA

Fig. 2 shows the distribution of the relative entropy, again grouped by s and
n. Confirming the results of Fig. 1, relative entropy shows high dispersion and
very large values for n = 10, an indication that the learning set is too small and
fails to train the model. For other values of n and s however, relative entropy
is low, which shows that the learning algorithm is efficient in fitting the PLA
model and the parametric logistic distribution to the data set as whole.
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Fig. 2. Relative entropy as a function of the number of segments s and the size of the
learning set n for n + 1000 alternatives evaluated with CEUTA
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Besides evaluating CEUTA with real data-sets, other interesting experiments
to perform in future work are to analyze the robustness of the method with
respect to different number of segments, as well as different values of μ in the
generated and learned functions. In addition, it is of interest to evaluate the
impact of imprecise information regarding the target probabilities p�

ij .

6 Conclusion

In traditional multicriteria preference learning algorithms, decision maker eval-
uations or comparisons are considered to be error-free despite longstanding ev-
idence that this is not necessarily the case. We have therefore relaxed this as-
sumption by attaching a likelihood degree to the preference relation of the DM(s)
and developed a new method, CEUTA, to learn PLA utility functions by taking
into account the probabilities. CEUTA is based on the multinomial logistic dis-
tribution to model probabilities and relies on relative entropy to fit the model
to the training set. Preliminary experimental results show that CEUTA is very
efficient in that it is both fast and accurate, even with relatively small training
sets for large data-sets.

Besides further experimentation, we consider two main directions for future
research. First, the development of a variant of CEUTA in which μ is not a
parameter, but instead a variable of the optimization problem. We expect this to
improve the robustness of the method by making it ‘independent’ of a parameter
which currently is determined approximately. Second, we wish to pursue in the
direction of group decision making analysis. While CEUTA can be applied to this
type of problems, it produces a unique utility function as compatible as possible
with the preferences of all DM’s, which implies that it may be incompatible with
the preferences of one or more subgroups of DM’s. It is therefore of interest to
investigate the possibility of extending CEUTA as to identify subgroups of DM’s
who have similar preferences and produce possibly several utility functions (i.e.
one per subgroup) if the preferences between subgroups show little correlation.
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Abstract. This paper addresses the biobjective capacitated m-ring star
problem. The problem consists of finding a set of m simple cycles (rings)
through a subset of nodes of a network. The network consists of a dis-
tinguished node called the depot and two different kinds of nodes, the
customers and the transition points. Each ring contains the depot, a
number of customers and some transition points. The customers not in
any ring are directly connected to nodes in the rings. The rings must be
node-disjoint and the total number of customers in a ring or connected
to a ring is limited by the capacity of the ring. The aim is to minimize
two objective functions, one referring to the cost due to the links of
the rings and the other referring to the cost of allocating customers to
nodes in the ring. An evolutionary algorithm is developed to approxi-
mate the Pareto front. The algorithm combines standard characteristics
of evolutionary algorithms with the use of a heuristic to construct feasi-
ble solutions to the problem. A computational experiment is carried out
using benchmark instances to show the performance of the algorithm.

1 Introduction

The capacitated m-ring star problem (CmRSP) aims to design a set of m cycles
(rings) through a subset of nodes of a network (see Fig.1). The network consists
of a distinguished node called the depot and two different kinds of nodes, the
customers and the transition points. Each ring contains the depot, a number
of customers and some transition points. The customers not in any ring are di-
rectly connected to nodes in the rings. The rings must be node-disjoint (except
for the depot) and the total number of customers in a ring or connected to a
ring is limited by the capacity of the ring. The relevant costs are due to the links
of the rings (ring cost) and to the connections of customers with the nodes in
the ring (allocation cost). The CmRSP was first proposed by Baldacci et al. [1]
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in the context of designing telecommunication networks. The objective was to
minimize the sum of the ring costs and the allocation costs. They present two
integer programming formulations of the problem and propose a branch-and-cut
approach to solve it. Hoshino and Souza [4] propose a branch-and-cut-and-price
approach that outperforms in many instances the algorithm introduced in [1].
Mauttone et al. [6] develop a hybrid metaheuristic algorithm based on GRASP
and Tabu Search. Naji et al. [7,8] propose two heuristics based on the use of dif-
ferent local search procedures and the use of the general Variable Neighborhood
Search scheme together with exact optimization. These algorithms show a good
performance in terms of computing time involved and closeness to the optimal
solution.

Depot

Customers

Transition points

Fig. 1. A feasible solution of the CmRSP with m = 4

In this paper we address the biobjective capacitated m-ring star problem (B-
CmRSP) in which both the ring cost and the allocation cost are considered
individually instead of jointly. Liefooghe et al. [5] point out the importance
of considering the ring cost and the allocation cost separately when dealing
with the ring star problem, a particular case of the CmRSP in which there are
no transitions points and only a ring is constructed without capacity bounds.
They remark that both objective functions are comparable only if it is assumed
that they are proportional one to another, which is rarely the case in practice.
The CmRSP as formulated in [1] can be considered a scalar approach of the B-
CmRSP in which the ring cost and the allocation cost are added. The aim of the
paper is to propose an evolutionary algorithm to find a good approximation of the
Pareto front. The paper is organized as follows. Section 2 states the biobjective
capacitated m-ring star problem. Section 3 presents the main characteristics of
the evolutionary algorithm developed to tackle the problem. In Section 4 the
computational performance of the algorithm is evaluated using the benchmark
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instances dealt with in the literature. Finally, Section 5 concludes the paper with
some final remarks and the main lines for future work.

2 The Biobjective Capacitated m-Ring Star Problem

Let G = (V,E ∪A) be a mixed graph, where V is the node set, E is the edge set
and A is the arc set. The node set is defined as V = {0} ∪ U ∪W , where node
0 represents the depot, U is the set of customers and W is the set of transition
points (Steiner nodes). The set of edges is E = {[i, j] : i, j ∈ V, i �= j}. Edges
represent undirected arcs used to link the nodes of the ring. The set of arcs is
A = {(i, j) : i ∈ U, j ∈ V }. Arcs are directed links which are used to connect
the customers to the ring. We assume that there is a nonnegative ring cost cij
associated with each edge [i, j], representing the cost of connecting nodes i and
j, and a nonnegative allocation cost dij associated with each arc (i, j), referring
to the cost of customer i being allocated (connected) to node j.

A ring R is a simple cycle visiting a subset of nodes including the depot.
Each customer i is assigned to a ring R, meaning that either the ring R passes
through the node i or the node i is allocated to a node of the ring R. Let m be
the number of rings to be constructed and Q the capacity of each ring, i.e. the
maximum number of customers which can be assigned to it. We assume that
mQ � |U |, where |U | stands for the cardinal of U , i.e. the number of customers.

A feasible solution R = {R1, . . . , Rm, AR} of the B-CmRSP consists of m
rings R1, . . . , Rm and a set of index pairs AR so that each customer is in exactly
one ring or is allocated to exactly one node of a ring, each transition point is
visited at most once and the total number of customers assigned to each ring
is less than or equal to Q. The nodes in the rings Rk, k = 1, . . . ,m, will be
called ring nodes. Let Vk be the ring node set of the ring Rk. For each customer
i /∈ V1 ∪ · · · ∪Vm, let ji be the index of the node to which he is allocated. Hence,
AR = {(i, ji) : i /∈ V1 ∪ · · · ∪ Vm}. Let X be the set of feasible solutions in the
decision space.

The ring cost of the feasible solution R is defined as:

Z1(R) =
m∑

k=1

∑
[i,j]∈Rk

cij (1)

and the allocation cost as:

Z2(R) =
∑

(i,ji)∈AR
diji (2)

The B-CmRSP aims to minimize the objective functions (1)-(2) in the set of
feasible solutions:

min [Z1(R), Z2(R)]
subject to R ∈ X

For every R ∈ X , let Z(R) = [Z1(R), Z2(R)] and let Z = {Z(R) : R ∈ X}
be the set of feasible points in the objective space. According to the theory of
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multiobjective optimization [3], a feasible solution R is efficient if and only if

there is no other feasible solution R̃ so that Zs(R̃) � Zs(R), s = 1, 2 and there

exists t ∈ {1, 2} such that Zt(R̃) < Zt(R). A point Z ∈ Z is a nondominated
outcome vector if there exists at least one efficient solution R so that Z = Z(R).
The set of all nondominated outcome vectors is the Pareto front.

3 An Evolutionary Algorithm

In order to approximate the Pareto front of the B-CmRSP we develop an evolu-
tionary algorithm. One of its distinctive aspects is that the chromosome contains
information on the ring nodes but neither on the rings themselves nor on the
allocation of the remaining nodes.

3.1 Chromosome Encoding

We encode the chromosome as a binary |V |-dimensional vector C ∈ {0, 1}|V |, so
that for each i ∈ V \ {0}

Ci =

{
1, if i is a ring node
0, otherwise

We define C0 = 1, representing that node 0 is always in all the rings.
A chromosome is associated with a feasible solution of the B-CmRSP. Note

that the chromosome C gives information on the ring nodes but gives no indica-
tion of how the rings are constructed and how the customers which are no ring
nodes are allocated to the rings. In order to build the rings, we propose to use
the main ideas of the heuristic algorithm proposed in [7] to construct an initial
solution of the CmRSP.

For this purpose, we select the ring node i1 which is furthest from the node
0. The first ring consists of the nodes 0 and i1. Next the ring node i2 is selected
which is furthest from nodes 0 and i1. The second ring consists of the nodes
0 and i2. The process is continued until the ring node im is selected which is
furthest from nodes 0, i1, . . . , im−1 and the m-th ring is formed with nodes 0 and

im. Let S be the set of ring nodes of the chromosome and S̃ ⊆ S. The furthest
ring node from S̃ is defined as arg max{min{cij : j ∈ S̃} : i ∈ S \ S̃}.

From these initial m rings, the remaining nodes are randomly taken and the
following procedure is applied:

– If i ∈ U and Ci = 1, it is inserted in the ring which provides the minimum
insertion cost and is not full of customers.

– If i ∈ U and Ci = 0, it is allocated to the ring node which provides the
minimum allocation cost, bearing in mind the constraint on the capacity of
the corresponding ring.

– If i ∈ W and Ci = 1, it is inserted in the ring which provides the minimum
insertion cost.

– If i ∈W and Ci = 0, it is discarded.
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Finally, two local search procedures are applied. In order to improve the rings,
2-opt local search is applied to each of the m rings. Next, to improve the alloca-
tion of the customers which are not ring nodes, these nodes are analyzed looking
for a better feasible allocation. Therefore, each of them is selected in a random
order and is allocated to the node ring with the lowest allocation cost belonging
to a ring with available capacity. At the end of this process, we have a feasible
solution of the B-CmRSP associated with the chromosome C.

3.2 Initial Population

The initial population is formed by randomly generated P chromosomes, where
P represents the population size. In order to encourage diversification, for each
chromosome, a number p ∈ [0, 1] is generated. Then, each node is selected to be
a ring node with probability p. Given the chromosome C, if

|V |−1∑
r=1

Cr < m

the chromosome is ‘repaired’ by switching the allele of m −
∑|V |−1

r=1 Cr nodes
randomly selected amongst the current no ring nodes.

3.3 Crossover, Mutation and Local Search

We apply a uniform crossover operator which enables the parent chromosomes to
contribute the gene level. For each population, the crossover operator randomly
selects P pairs of parents and generates one offspring from each pair. Each gene
of the offspring is selected from one of the parents with a probability of 0.5.

Next, the mutation operator is applied to the offspring. The mutation proba-
bility is 0.5. After a chromosome has been selected, a gene is randomly selected
and its allele value is switched.

At the end of this process, if a chromosome has fewer than m ring nodes
(excluding the depot) the chromosome is repaired as indicated above.

3.4 Fitness Evaluation

We define the cost of a chromosome as the pair formed by the ring cost and
the allocation cost of its associated feasible solution. Based on the chromosome
cost, the NSGA-II procedure [2] is applied to the incumbent population (current
population plus offspring). First, the chromosomes are ranked into several non-
dominated fronts. The first nondominated front involves all nondominated points
of the incumbent population. After discarding these points, the second nondom-
inated front involves all nondominated points amongst the remaining ones. The
process is repeated until all chromosomes of the incumbent population are clas-
sified and are assigned a nondomination rank. Moreover, for each chromosome a
second value called crowding distance is computed which gives an estimation of
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the density of solutions surrounding the solution associated to the chromosome
in the population. Then the new population is generated by selecting the best
P individuals (without repetition) in accordance with the nondomination rank
or, in case of a tie, according to the crowding distance. Moreover, an archive is
maintained which contains potentially efficient solutions already found.

4 Computational Experiment

In order to analyze the performance of the algorithm, a computational experi-
ment has been carried out. The numerical experiments have been performed on
a PC Intel R© CoreTM I7-3820 CPU at 3.6 GHz having 32 GB of RAM under
Ubuntu Linux 12.04 LTS. The code has been written in C++, GCC 4.6.3.

The algorithm has been tested on test problems generated following the
ideas proposed in [1] to test the CmRSP. The problems were generated from
TSPLIB instances [9] named eil51, eil76 and eil101, whose node set consists of
51, 76 and 101 points. Moreover, an instance eil26 with 26 nodes was created
which consists of the first 26 nodes of eil51. The first point of the TSPLIB in-
stance defines the depot, the following |U | points are the customers and the
remaining points are the transition points. For each TSPLIB instance, several
B-CmRSP instances are generated by varying m and |U |. The number of rings is
set to m = 3, 4, 5. The number of customers is given by |U | = �α(n−1)� where n
is the number of nodes and α = 0.25, 0.5, 0.75, 1.0. The ring capacity Q is given

by Q = � |U|
0.9m�. The ring cost cij and the allocation cost dij of a pair of nodes

i, j are equal to the Euclidean distance according to the TSPLIB standard, i.e.
both costs are integer. Unlike instances in [1], no constraint is set on the nodes
to which a customer can be allocated.

The aim of the study was to assess the influence of the population size P
and the computing time involved on the performance of the algorithm. We have
taken P = 100 and P = 200 and the total computing time has been estab-
lished at 5 minutes, recording the results every 30 seconds. A set of 20 runs
per instance has been executed. To evaluate the performance of the algorithm
we have used the additive ε indicator I1ε+ and the hypervolume indicator I−H .
They have been computed using the tool suite provided in PISA (available
at http://www.tik.ee.ethz.ch/pisa/?page=assessment.php). For each in-
stance, the reference set has been computed as the Pareto front of the union of
the outputs obtained throughout the whole experiment.

From the study we conclude that there are no significant differences between
the values of both indices obtained when varying the population size. Hence,
Tables 1 and 2 display only the results of the experiment when P = 100. Both
tables are similar, except for the indicator shown. The first column gives the
name of the problem. The second, third and fourth columns show the number
of rings, the number of customers and the capacity value. The fifth to four-
teenth columns show the average of the corresponding indicator values obtained
in the 20 runs (in order to obtain the real value, the number in the table must
be multiplied by 10−3). These results are displayed in Figs. 2-5. These tables and

http://www.tik.ee.ethz.ch/pisa/?page=assessment.php
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Table 1. Results of the I−H indicator, multiplied by 10−3 (P = 100)

Name m |U | Q Computing time in seconds

30 60 90 120 150 180 210 240 270 300

eil26 3 6 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 3 12 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 3 18 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 3 25 10 0.07 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

eil26 4 6 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 4 12 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 4 18 5 0.49 0.36 0.28 0.22 0.17 0.14 0.12 0.11 0.09 0.09
eil26 4 25 7 0.28 0.19 0.16 0.14 0.12 0.09 0.09 0.08 0.07 0.06

eil26 5 6 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 5 12 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 5 18 4 0.27 0.08 0.04 0.02 0.02 0.01 0.01 0.00 0.00 0.00
eil26 5 25 6 0.32 0.18 0.13 0.08 0.07 0.06 0.04 0.04 0.03 0.03

eil51 3 12 5 0.04 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00
eil51 3 25 10 0.32 0.18 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.07
eil51 3 37 14 2.42 1.45 1.29 1.25 0.88 0.83 0.80 0.78 0.77 0.76
eil51 3 50 19 2.75 2.24 1.93 1.76 1.65 1.55 1.45 1.38 1.32 1.28

eil51 4 12 4 0.06 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
eil51 4 25 7 2.56 2.10 1.93 1.82 1.71 1.51 1.38 1.31 1.28 1.19
eil51 4 37 11 1.18 0.86 0.71 0.63 0.57 0.53 0.49 0.47 0.45 0.43
eil51 4 50 14 7.17 5.82 5.06 4.57 4.22 3.93 3.68 3.51 3.35 3.21

eil51 5 12 3 0.06 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
eil51 5 25 6 1.71 1.18 0.89 0.69 0.57 0.48 0.43 0.35 0.30 0.26
eil51 5 37 9 2.38 1.75 1.46 1.29 1.10 0.99 0.93 0.88 0.78 0.75
eil51 5 50 12 5.81 4.64 4.08 3.74 3.47 3.22 3.03 2.90 2.75 2.65

eil76 3 18 7 2.78 2.02 1.60 1.37 1.25 1.14 1.02 0.95 0.90 0.83
eil76 3 37 14 5.11 4.02 3.50 3.18 2.93 2.77 2.63 2.48 2.33 2.23
eil76 3 56 21 4.00 3.18 2.77 2.44 2.23 2.05 1.93 1.80 1.70 1.62
eil76 3 75 28 7.32 6.04 5.48 5.11 4.83 4.60 4.42 4.28 4.17 4.07

eil76 4 18 5 7.37 5.62 4.81 4.34 3.61 3.32 3.06 2.78 2.60 2.44
eil76 4 37 11 7.96 6.08 5.13 4.50 4.11 3.82 3.57 3.38 3.14 2.94
eil76 4 56 16 6.83 5.40 4.70 4.24 3.90 3.66 3.46 3.29 3.10 2.97
eil76 4 75 21 6.43 5.22 4.60 4.19 3.90 3.64 3.44 3.26 3.08 2.93

eil76 5 18 4 6.34 4.30 3.58 3.15 2.83 2.62 2.46 2.31 2.17 2.06
eil76 5 37 9 8.53 6.78 5.78 5.15 4.71 4.33 4.07 3.81 3.61 3.47
eil76 5 56 13 9.39 7.55 6.65 6.04 5.64 5.29 4.98 4.74 4.55 4.40
eil76 5 75 17 11.66 9.36 8.19 7.44 6.94 6.55 6.23 5.96 5.73 5.54

eil101 3 25 10 1.38 0.86 0.64 0.51 0.41 0.36 0.33 0.30 0.28 0.27
eil101 3 50 19 6.36 4.93 3.94 3.43 2.98 2.69 2.34 2.12 1.98 1.88
eil101 3 75 28 6.76 5.58 5.07 4.71 4.48 4.29 4.14 4.00 3.87 3.77
eil101 3 100 38 6.13 4.94 4.38 4.01 3.75 3.51 3.32 3.17 3.04 2.93

eil101 4 25 7 2.98 2.08 1.70 1.50 1.33 1.18 1.09 1.00 0.93 0.88
eil101 4 50 14 4.26 3.27 2.79 2.47 2.23 2.07 1.96 1.87 1.78 1.71
eil101 4 75 21 8.20 6.55 5.74 5.16 4.75 4.44 4.16 3.96 3.79 3.64
eil101 4 100 28 6.89 5.35 4.58 4.11 3.76 3.50 3.28 3.10 2.94 2.81

eil101 5 25 6 5.45 3.51 2.78 2.30 2.02 1.83 1.67 1.52 1.42 1.33
eil101 5 50 12 6.67 5.24 4.44 3.91 3.53 3.24 3.01 2.84 2.68 2.57
eil101 5 75 17 9.65 7.22 6.07 5.34 4.84 4.43 4.12 3.84 3.63 3.45
eil101 5 100 23 11.19 8.89 7.78 7.00 6.46 6.05 5.70 5.43 5.16 4.95
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Table 2. Results of the I1ε+ indicator, multiplied by 10−3 (P = 100)

Name m |U | Q Computing time in seconds

30 60 90 120 150 180 210 240 270 300

eil26 3 6 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 3 12 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 3 18 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 3 25 10 3.35 1.21 0.95 0.44 0.22 0.22 0.22 0.22 0.22 0.22

eil26 4 6 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 4 12 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 4 18 5 8.05 7.38 6.88 6.42 6.13 5.76 5.67 5.52 5.52 5.52
eil26 4 25 7 6.59 5.75 5.47 5.31 4.68 4.27 3.82 3.52 3.18 2.73

eil26 5 6 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 5 12 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
eil26 5 18 4 7.35 4.07 3.28 1.92 1.92 0.59 0.59 0.39 0.20 0.20
eil26 5 25 6 6.81 6.00 5.40 4.42 4.42 3.89 3.22 3.19 2.77 2.77

eil51 3 12 5 4.59 3.62 3.38 3.14 2.42 1.69 1.21 0.97 0.97 0.73
eil51 3 25 10 5.84 4.47 4.06 4.02 3.96 3.79 3.26 3.20 3.16 2.88
eil51 3 37 14 10.98 8.58 8.28 8.14 7.11 6.82 6.75 6.60 6.60 6.60
eil51 3 50 19 7.57 7.09 6.83 6.67 6.65 6.44 6.44 6.26 5.98 5.91

eil51 4 12 4 4.10 1.44 1.44 1.44 1.44 0.48 0.48 0.48 0.48 0.48
eil51 4 25 7 10.62 9.81 9.70 9.30 9.18 8.61 8.28 8.17 8.00 7.77
eil51 4 37 11 5.59 5.21 4.80 4.76 4.67 4.47 4.27 4.27 4.27 4.20
eil51 4 50 14 11.53 10.90 10.03 9.69 9.35 9.08 8.83 8.68 8.34 8.15

eil51 5 12 3 4.50 3.28 2.57 2.11 2.11 1.87 1.64 1.64 1.64 1.41
eil51 5 25 6 11.54 9.79 8.61 7.63 6.58 6.11 6.11 5.51 5.02 4.74
eil51 5 37 9 9.00 8.69 8.48 8.33 8.20 8.19 8.19 8.12 7.92 7.92
eil51 5 50 12 11.99 10.53 9.73 9.24 8.91 8.52 8.35 8.24 8.19 8.13

eil76 3 18 7 13.22 12.37 11.34 10.89 10.70 10.39 10.29 10.11 9.73 9.17
eil76 3 37 14 11.38 10.42 10.21 9.64 9.49 9.48 9.29 9.00 8.87 8.64
eil76 3 56 21 11.48 10.05 9.05 8.89 8.85 8.63 8.39 8.28 8.18 8.18
eil76 3 75 28 13.12 11.34 10.70 10.09 9.94 9.66 9.46 9.20 9.14 9.09

eil76 4 18 5 17.13 14.63 13.73 13.54 12.21 11.96 11.77 11.33 10.37 9.85
eil76 4 37 11 15.45 14.89 13.78 12.97 12.74 12.47 11.87 11.49 11.05 10.32
eil76 4 56 16 14.93 11.97 11.45 11.07 10.32 10.04 9.76 9.46 9.07 8.81
eil76 4 75 21 13.33 12.06 11.70 11.17 10.83 10.66 10.33 10.19 9.87 9.51

eil76 5 18 4 14.07 12.15 11.91 11.82 11.62 11.47 11.38 11.07 11.00 10.85
eil76 5 37 9 15.19 14.16 13.27 12.92 12.33 12.03 11.67 11.29 10.84 10.78
eil76 5 56 13 15.41 12.66 11.90 11.47 11.38 10.97 10.75 10.60 10.30 10.08
eil76 5 75 17 18.29 15.71 14.76 13.89 13.15 12.91 12.58 12.28 12.17 11.92

eil101 3 25 10 6.43 6.16 5.67 5.66 5.66 5.66 5.66 5.60 5.60 5.60
eil101 3 50 19 11.82 11.06 9.83 8.99 8.44 8.06 7.22 6.66 6.56 6.27
eil101 3 75 28 10.32 10.06 10.02 9.81 9.75 9.71 9.64 9.52 9.48 9.38
eil101 3 100 38 9.63 8.30 7.59 7.22 7.02 6.76 6.59 6.33 6.25 6.23

eil101 4 25 7 11.92 10.09 9.16 9.03 8.39 8.23 8.23 7.52 7.52 7.44
eil101 4 50 14 8.44 7.15 6.62 6.03 5.81 5.62 5.53 5.47 5.35 5.25
eil101 4 75 21 12.34 10.30 9.52 9.15 8.78 8.62 8.23 8.07 8.06 7.71
eil101 4 100 28 10.10 8.99 8.33 7.74 7.35 7.13 6.83 6.71 6.60 6.56

eil101 5 25 6 14.43 12.12 11.78 11.13 10.76 10.50 10.37 10.20 10.11 9.77
eil101 5 50 12 12.77 11.56 11.04 10.69 10.13 9.58 8.82 8.65 8.50 8.37
eil101 5 75 17 12.30 10.62 9.76 9.20 8.62 8.31 8.25 8.03 7.86 7.81
eil101 5 100 23 15.29 13.10 12.20 11.71 11.10 10.42 10.05 9.80 9.55 9.36
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figures allow us to assess the evolution of the corresponding indicator when the
computing time varies. For the smaller problems, these indices are zero or close
to zero from the smaller computing time values. For the remaining problems the
indices decrease as the computing time increases. However, both indices have
a different behavior. For instance, for the problem eil26, m = 3, |U | = 25, the
indicator I−H ranges from 0.07 × 10−3 to 0.00 whereas the indicator I1ε+ ranges
from 3.35×10−3 to 0.22×10−3. Moreover, as we might expect, the characteristics
of the problem, i.e. the number of nodes, rings and customers, greatly affect the
value of the indicators and hence the slope of the curve.

5 Conclusions and Future Work

This paper addresses for the first time the biobjective capacitated m ring star
problem and proposes an evolutionary algorithm for approaching the Pareto
front. The chromosomes of the algorithm contain information on the ring nodes
but neither on the rings themselves nor on the allocation of the remaining nodes.
A feasible solution of the problem associated to the chromosome is constructed
by applying a heuristic algorithm. The evolutionary algorithm has been tested
on a set of benchmark problems. Our work can be extended in several ways.
First, the proposed algorithm could be enriched by considering local search pro-
cedures which allow for the interchange of ring nodes which belong to different
rings. Moreover, other techniques to construct the rings from the information
provided by the chromosome should be assessed. Second, it is worthwhile to ex-
plore different approaches to approximate the Pareto front based on local search.
We hope to explore these extensions in future work.
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Abstract. In this paper, we are dealing with the problem of paramedics sched-
uling, we propose a new system sufficiently flexible for its resolution. The op-
timization method used to solve this problem has been selected based mainly on 
the time available to solve an instance of the problem and the required level for 
the quality of the solution. Our goal was to produce a usable system on desktop 
computers as well as being used frequently for evaluating a multiple scenarios. 
Our approach is an adaptation of a linear programming model that solves a 
Pydxp6g4roblem of coverage, also called "set covering", by selecting the  
optimal mix of elements from the bank of the available scheduling patterns. 

Keywords: Planning, scheduling, optimization, decision support, simulation. 

1 Introduction 

The "scheduling" is a very wide range of research. [Ernst-1] has identified more than 
600 scientific articles in this field. Making scheduling staff is just one of the various 
branches of "scheduling". However, very few articles of scheduling deal with the ambu-
lance services or even emergency services in general (for example: police, fire, etc.). 

A quick literature reviews show that very few articles resume the same modeling so-
lutions that have been already used. This still true even if a very large number of articles 
deal with problems having a lot issues in common. For instance, there are more than 
100 articles that deal with nurses only as identified in [Ernst-1]. This is an indication of 
the specificity of each problem making schedules, and the difficulty of adapting an ex-
isting model to a new problem. The models are generally-specific to each situation. 

The classification of issues making schedules made by [Cheang] is structured,  
detailed, and logical and it is made by many of the same authors who designed the 
annotated bibliography [Ernst-1]. The classification of [Ernst-2] (that concerns the 
Schedule process) is made by modules; a problem can be solved by using one or more 
of these modules. These modules are to some extent the steps of a process of schedul-
ing. And to our knowledge, only one article studies the paramedics scheduling. This is 
the [Ernst-0]. More than a dozen other articles discuss "ambulance scheduling", but 
they focus on other issues such as ambulance positioning of vehicles in the territory. 

In this article, we focus on the problem of making schedule paramedics in “Ur-
gences-santé de Québec” (U.S.) that has the responsibility to provide pre-hospital 
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services to the islands of Montreal and Laval. Paramedics are working continuously 
round the clock, 7 days a week. Some of them work full-time (FT), other part-time 
(PT). Some have regular jobs with strict working conditions, others do not. To cover a 
large territory, the vehicles have only three deposits. Paramedics do not have the same 
skill levels. Work rules are governed by a relatively strict and complex collective 
agreement, but also by several work habits deeply rooted in the culture of the com-
pany and therefore difficult to change. In addition, time must be made in order to take 
into account implicitly vehicle management. 

The system proposed in this paper enable us to optimize and reduce considerably 
the time effectively and making schedules paramedics. 

This system consists of two main parts. The first part is an algorithmic component 
incorporating the "set covering" and the constraint programming approach. The sec-
ond part is a human-machine interface (HMI) facilitating to the user the intervention 
in the resolution process and visualization of the results. 

Our system has been tested in “Urgences-santé de Québec”. We present the results 
of tests on real data to scheduling paramedics for the year 2013. 

2 Definition of Paramedic Scheduling Problem  

The problem of scheduling is part of a class of problems that are very complex to 
model and solve. In fact, this problem is of nature combinatorial in which several 
constraints are conflicting. 

Solve a paramedics scheduling problem equivalent to specifying the number of 
paramedics, vehicles, work days, days off and duration of the working day and lunch 
break for each employee. A permanent service 24 hours a day and 7 days a week, 
must be assured. 

Paramedics are grouped into pairs on each vehicle. Each pair of paramedics has the 
same schedule for the full duration of a quarter. Pairs of paramedics are always as-
signed to a vehicle. So the problem is to solve a problem of scheduling pairs of para-
medics and this leads implicitly to take into account the management of vehicles. This 
allows us to simplify the representation of the problem by simply combining two 
paramedics to the same line of the schedule. 

Considering the large number of paramedics to which we must make a schedule 
and also the number of shifts possible for one pair of paramedics, the problem to re-
solve becomes very complex. Indeed, in a real context such as that of U.S., there are 
over 600 paramedics, so more than 300 pairs, and the shifts of each of them can start 
almost any time of day, any day of the week. The size of the space of possible solu-
tions to a problem instance is huge. 

Since we have only few minutes to resolve the problem (to be usable in a real con-
text), a heuristic (and even a meta-heuristic) could explore a very small part of the 
solution space. We therefore concluded that the problem must be broken. 

The conflicting nature of the constraints of the problem has naturally led us to di-
vide them into two types: hard and flexible constraints that can be violated but we 
minimize the violation. 
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3 Solving Approach 

Following an analysis of the structure of the problem and its characteristics, our 
choice fell on a decomposition of the problem in two steps: 

3.1 The First Step: The Bank of Schedules Patterns 

It allows creating a database of schedules patterns from a merger of two distinct ele-
ments: the cycle and day. After the creation of cycles and days, the module developed 
at this level enables to generate schedules patterns bank and calculate the annual cost 
(in hours) for each zone based on the following process: 
 

Create days

Merge days and cycles

Create cycles

Integrate the model schedules

 

Fig. 1. Process of creating schedules 

In the figure above, the schedules that are bank scheduling patterns are obtained 
with the fusion of cycles and days via the GUI of our system in which we have devel-
oped algorithmic components integrating constraint programming. This bank will be 
supplied as required by new combinations cycle / day and can be operated in whole or 
in part in making different scenarios. This module also includes a calculation function 
of ergonomic note per schedule. 
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3.2 The Second Step: The Model Resolution 

Like any optimization problem, our problem requires the optimization of a function  
objective respecting certain constraints. Our approach is the application of a linear pro-
gramming model that solves a problem of coverage, also called "set covering". This prob-
lem is resolved by selecting time from the bank scheduling patterns available in order to 
meet the real demand accurately and optimize management of the fleet while maintaining 
the best possible operational and financial constraints and ergonomic criteria. 

All data in our optimization system are stored in a database. The majority of data 
constitutes the constraints of the linear program schedules, columns and the results of 
previously optimized time models. 

The first step to perform in our approach is to assess the demand for ambulance 
transport. This application is assessed using historical data such as the number of inter-
ventions each time of the day and the duration of these interventions. The results of the 
analysis are expressed in our system in terms of number of vehicles required on the 
entire territory and discretized into half-hour for the seven different days of the week. 

The objective function is to minimize the sum of costs associated with time and the 
amount of costs associated with the management of the fleet. It should be noted that the 
costs will not consist of monetary costs, but the cost in terms of penalties in violations 
of ergonomic constraints or the number of hours each year by that time. The more viola-
tions are great, the greater the penalty in the objective function will be. This aims to: 

Minimize: 
Summation (associated with each hourly cost * amount 
each time) + (cost for each additional vehicle * number 
of additional vehicles) - (associated with a unit gap 
between demand and offer service cost) 

The objective defined in the objective function is to minimize the violations of soft 
constraints. This is due to the approach that is more focused on ensuring that employ-
ees have a certain number of hours of work over a definite period. 

It should there fore be highlighted that all variables can be set via the HMI of the 
proposed system. 

4 Methodology 

In our model, we selected periods of 30 minutes (half an hour) because we did not 
seem to have more accurate discretization and half-hour discretization is generally 
acceptable for many making scheduling problems. However, given the rapidity of the 
resolution of our system obtained during the tests, it would be quite possible to solve 
it with a more finite discretization if the actual application context required it. 

The translation in discretization per periods of half an hour has to go along with a 
selection of solutions shifts from the bank of schedules patterns so that the beginning 
of shifts would be the best possible spread in the resolution horizon. This spread is 
necessary to optimize the management of the fleet to limit the number of the required 
vehicles, but also to optimize the coverage of demand that varies greatly from half an 
hour to another of a day. 
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The first phase of our model (the creation of schedules patterns bank) is solved by a 
constraint programming and a set of algorithms translated into computer modules. The 
second phase of the production schedule is determined by a mixed linear program. The 
relatively simple structure of the modeling problem is the main motivation for this choice. 
Indeed, given that this problem can be solved optimally within a very short time by this 
method, at this stage, it is not necessary to consider other possibilities of solving methods. 

Our model optimizes the location of each quarter of the solution and locates their 
breaks in order to maintain the best possible coverage of the application. 

Specifically, the objective function minimizes the sum of violations of     short-
comings in offer, surplus in offer, the maximum number of employees in full and 
part-time, the maximum number of vehicles, of non-respected holiday requests, of 
soft ergonomic constraints and preference. 

Our goal is to get a workable solution in a real environment with a consideration of 
breaks. The quarters of our model are variables; duration shift can be 8 hours with a 30 
minute break, 10 hours with a 45 minute break or 12 hours with 60 minutes break (rules 
of the collective agreement). For each day, there are three possible types of quarters 
which are: night (N), day (D) and evening (E). Shifts can start at the earliest at 5:00 and 
at the latest at 23:30. Every paramedic must have a weekend off every two weeks. 

5 Analysis of Numerical Results 

In this section, we will present the preliminary results that we have obtained using our 
system called SYSCONF. The evaluation of the quality of the results is simple to 
make for certain elements like cover the demand. However, with regard to other ele-
ments such as the quality of individual schedules, evaluation is less simple to do. 

We created a list of measures allowing the user to assess the quality of a schedule 
as a whole. These measures are: 

─ Hours of vehicles 
─ Number of man hours 
─ Number of times. 
─ Ergonomic Cost 
─ Number of vehicles 
─ Number of additional vehicles 
─ Cover demand 
─ Percentage of shifts starting less than 12 hours after the previous quarter. 
─ Execution Time 
─ Number of hours by type of cycle / day. 

We considered that these statistics are those necessary and / or useful to be able to 
assess the quality of a schedule, in terms of respecting the demand and also the com-
pliance with the available number of vehicles, ergonomic, but most of all in terms of 
its potential implementation in U.S. 

SYSCONF contains several parameters. The vast majority of these are included in 
the of schedules patterns bank. Making the schedules model requires very little setup. 

The size of the problem is a parameter of high importance because it affects signifi-
cantly over the duration of resolution. Of course, the user has little control over this 
parameter (it can identify the amount and nature of schedules to include in the model). 



 Planning System for Emergency Services 135 

 

The size of the problem has three dimensions: the number of employees, the 
schedule selection and the horizon of resolution. 

A normal instance has an horizon of two weeks (14 days) and between 300 to 400 
pairs of paramedics. Under these conditions, it is possible to obtain a satisfactory 
solution generally between 1 and 30 minutes of computing time on a desktop Intel 
Core Duo CPU E6850 at 3.00 GHz and 3.48 RAM. The time resolution is highly 
variable because it depends on the number of constraints and integrated active pa-
rameters of the model we are trying to resolve. Generally, the more the number of 
constraints and parameters are activated, the longer the time of resolution will be. 

The tests in this section are of a size of 298 schedules, a schedule for each pair of 
paramedics (278 schedules full-time and 20 part-time) over a period of two weeks as 
it is illustrated in the following table: 

Table 1. Number of schedules to make by SYSCONF for each test 

Number of schedules Test 1 Test 2 Test 3 

Full time 278 278 278 

Part time 20 20 20 

Total 298 298 298 

 
This corresponds to a time model for the employees in the U.S.; for the 596 para-

medics 556 are FT and 40 are TP. 
For the three tests, SYSCONF responded fully to the request of the weekend with 

596 employees. 
The constraint of the covered demand pushed the offer to be greater than or equal to 

the demand for all periods of the year where it is feasible. If the request cannot be fully 
covered for a given period, the objective function is penalized. The surplus in offer is not 
taken into account since they have no direct negative impact on the quality of the solu-
tion. The indirect consequences of a surplus in offer are the improper distribution on the 
horizon of the early shift (causing bottlenecks in vehicle warehouse) and the need to add 
additional vehicles to the fleet when we have a surplus in offer during peak periods. 

The constraint of respecting the number of available vehicles in the fleet is very 
important for two following reasons: first, an increase in the number of the required 
vehicles usually occurs in parallel with an increase in traffic while storing vehicles, 
which conducts to bottlenecks during the go in/out of vehicles. These bottlenecks 
increase the complexity of managing the fleet and reduce the availability of vehicles. 
Second, the cost of adding an additional vehicle is very expensive and is around $ 
200,000 over five years. This cost does not include additional products by managing 
problems caused by the increase in fleet size and the increase in traffic while storing 
the additional vehicles to the fleet. 

Ergonomics is the less penalized criterion in the phase of the generation of sched-
ules patterns bank. 

The criteria for judgment used in our tests were always stated in terms of the num-
ber of iterations without improving the best known solution.  
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The main parameters selected in each test are: 

Table 2. The main parameters of our time models for the 3 tests 

� 12 hours 

Start time shift From 5h00 at the earliest to 
23h30 at the latest  

Schedules (for each test) 
� All schedules are 10 working 

days on 14 with a weekend off 
every two weeks and 8 hours 
with 30 minutes of breaks. 

� All schedules are 8 working 
days on 14, with a weekend off 
every two weeks and 10 hours 
with 45 minutes breaks. 

� All schedules are 7 working 
days on 14, with a weekend off 
every two weeks and 12 hours 
with 60 minutes of breaks. 

� All schedules are 6 working 
days on 14, with a weekend off 
every two weeks and 10 hours 
with 45 minutes breaks. 

 Test 1 Test 2 Test 3 

Maximum number of vehicles 110 115 123 

Maximum number of addition-
al vehicles 

2 2 2 

Part-time 20 20 20 

Full time 278 278 278 

Cycle 1 1 1 

Cost of additional vehicle 1000 1000 1000 

Surplus gap 200 200 200 

Type of cycle (for each test) 
� 6 days on 14 

� 7 days on 14 

� 8 days on 14 

� 10 days on 14 

Type of day (for each test) 
� 8 hours 

� 10 hours 
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The table above summarizes the main parameters of three tests we performed in 
SYSCONF when making three scenarios schedules models. 

It should be highlighted that we have not used the constraints relative to schedules 
groupings or constraints related to the limitations of a certain type of schedules. 

The following table shows the duration of resolution in each test: 

Table 3. Time resolution 

 Test 1 Test 2 Test 3 

Time 00:10:18.63 00:10:18.78 00:33:39.80 

 
By changing a few parameters, the running time differs from one test to another in-

cluding the maximum number of vehicles. 
The following table shows the distribution of results for the three tests based on the 

type of schedules: 

Table 4. Distribution of schedules by type for the three tests 

Type Test  1 Test 2 Test 3 

614 / 10h 20 20 20 

714 / 12h 205 202 206 

814 / 10h 13 10 10 

1014 / 8h 60 66 62 

Total 298 298 298 

 
These results are presented in detail in SYSCONF as a report description schedules 

for solution. 
The report description schedules gives a detailed presentation of all the schedules 

of the solution indicating the cycle type and the schedule type, the start and end of the 
shift, the schedule number, the required number of schedule per combination to meet 
the demand, the hour break, and a graphical presentation of working days and holiday 
on 14 days cycle. 

Summary of other results is presented in the following table: 

Table 5. Summary of other test results 

Item Test 1 Test 2 Test 3 

Hours-vehicles 568.483 568.750 568.769 

Man-hours 1.136.967 1.137.500 1.137.539 

Schedules 596 596 596 
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The strength of our method is the rapid resolution of the linear program since it 
(the linear program) must select the schedules among a sample to be included in the 
solution and take into consideration several types of shift. In the short term, we see 
SYSCONF as an excellent tool for scenarios simulation, for modifications and for 
improvements of existing structures and processes of schedules in U.S. To conclude, 
the following section will discuss the avenues for improving our SYSCONF system. 

6 Conclusion and Future Application 

The objective of SYSCONF was to produce simple and flexible schedules with best 
quality that can responses to the majority of organisational and operational constraints 
of U.S. We believe this is achieved quickly and our model provides good solutions on 
desktop machines and its flexibility allows you to test and evaluate a large number of 
scenarios without ever having to create manually schedules. Schedules created are 
ergonomic and easily meet the demand as the number of employees is sufficient. In 
addition, fleet management is done efficiently, thereby reducing the high costs associ-
ated with the acquisition of additional vehicles and several instances have achieved 
savings of 15% in terms of number of vehicles required in relation to the schedules 
model of U.S. SYSCONF is as effective in terms of time needed for the preparation of 
a schedule. 

Future research should be conducted in order to add components to optimize the 
distribution shifts in operational center. Finally, the addition of a replacements man-
agement system in real time could further improve SYSCONF and this is another 
focus which would be interesting to study. 

References 

1. Blais, M., Guertin, Y., Morel, C.: « Horaires de travail des techniciens ambu-lanciers: État 
de la situation ». Service de statistiques et recherche opération-nelle, Urgences-Santé de 
Québec, 20 pages (2011) 

2. Cheang, B., Li, H., Lim, A.: Rodrigues: “Nurse rostering problems - A bibliographic sur-
vey”. European Journal of Operational Research - Amsterdam 151(3), 447–460 (2003) 

3. Ernst, A.T., Hourigan, P., Krishnamoorthy, M., Mills, G., Nott, H., Sier, D.: “Rostering 
Ambulance Officers”. In: Proceedings of the 15th National Conference of the Australian 
Society for Operations Research, pp. 470–481 (1999) 

4. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An Anno-tated Bibliogra-
phy of Personnel Scheduling and Rostering. Annals of Operations Research - Ba-
sel 127(1:4), 21–144 (2004) 

5. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A re-
view of applications, methods and models. European Journal of Operational Research 153, 
3–27 (2004) 

6. Guertin, Y.: « Projet d’amélioration des horaires des paramédics et des superviseurs, De-
scription préliminaire des besoins ». Direction des services préhospitaliers, 7 pages (2010) 



What Is a Decision Problem?
Preliminary Statements

Alberto Colorni1 and Alexis Tsoukiàs2

1 Design Department, Politecnico di Milano
2 LAMSADE-CNRS, Université Paris Dauphine

Abstract. This paper presents a general framework about what is a decision
problem. The aim is to provide a theory under which the existing methods and
algorithms can be characterised, designed, chosen or justified. The framework
shows that 5 features are necessary and sufficient in order to completely describe
the whole set of existing methods. It also explains why optimisation remains the
general approach under which decision problems are algorithmically considered.

1 Introduction

The reader should be aware that this paper does not address the title question in a com-
prehensive way. The problem of what is a decision and what is a decision problem has
been addressed in philosophy, psychology and the cognitive sciences, economy, politi-
cal science etc.. We are not going to make a survey of this literature which is out of the
scope of the paper. The reader interested in these aspects can have a look to a number
of fundamental texts such as [10], [12], [16], [24], [26], [28], [30], [35].

Our proposition is instead pretty technical and formal. Operational Research and
Decision Analysis are seen as part of a more general Decision Aiding Methodology
(see [32]) aiming to help real decision makers to understand, formulate and model their
problems and possibly reach a reasonable solution (if any). We are concerned by that
type of activities occurring in a decision aiding situation where a “client” (very broadly
defined) asks for some advice or help to an “analyst”, such an advice being expected
to come under form of a formal model allowing some form of rationality. We call such
activities a “decision aiding process” (see [31]). At a certain point of that process the
analyst will have to formulate a “decision problem” requiring some computing to be
performed by some algorithms providing a result which is expected to be used in order
to present a recommendation relevant to the decision maker’s “decision problem”.

Our focus is exactly here: what is a decision problem for the analyst? The proposal of
the paper is to suggest a general framework under within which it is possible to identify
all possible models, algorithms, procedures which routinely analysts use in their job as
well as to allow to invent ones (if possible). The paper introduces two hypotheses:

- It is possible to establish a common framework under which any formal decision prob-
lem can be formulated, enabling to construct wide classes of methods characterised by
common features.
- From an algorithmic point of view any decision problem can be reduced to an optimi-
sation problem.

P. Perny, M. Pirlot, and A. Tsoukiàs (Eds.): ADT 2013, LNAI 8176, pp. 139–153, 2013.
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In the following section we introduce notation. Then in section 3 we show what
the primitives of a decision problem are. Then in section 4 we describe the five char-
acteristic features under which methods can be described. Section 5 introduces some
methodology principles, while section 6 discusses the two running examples of the pa-
per. Further research challenges are introduced within the conclusion.

2 Concepts and Notation

In the following A will always represent the set of “alternatives” considered either
within a model or by a method. Although in practice such a set is never readily available,
but constructed, for the purpose of this paper we are going to consider it as “given”.

Along the paper we are going to use extensively preference relations. The basic rela-
tion we will adopt will be , (possibly indexed ,i) which will read as “at least as good
as” (� will represent the asymmetric part of ,, while ∼ will represent the symmetric
part). We will only make the hypothesis that this is a reflexive binary relation. The in-
terested reader can see more about preference structures in [21] or [27] from which we
adopt definitions and notation. We are now able to make our first claim.

Claim 1. A decision problem for the analyst consists in finding an appropriate parti-
tioning of the set A, relevant for the decision maker’s concerns.

The presentation of any algorithm or method discussed in this paper will be based
on separating the “primitives” (what is the strictly necessary information required to
be provided by the decision maker in order to allow some reasonable advice) and the
“output” (what is the information the algorithm or method provides to the user). The
reader should note that we distinguish between primitives and “input” to the algorithm.
The reason is that the input to a precise existing algorithm or method is in reality con-
structed out of the primitives. Let’s summarise. Our hypothesis is that the modelling
process, that is the dialogue between the client and the analyst, follows (roughly) a se-
quence starting with the client providing ground information, which through learning
protocols is transformed in primitives and these through modelling tools are transformed
to the input to some method. For the description of these concepts see figure 1.

Ground
Information

� Primitives � Input
�

Learning
Protocols

�

Modelling
Tools

Fig. 1. The modelling process

Ground Information contains the problem description and for the purposes of this pa-
per we will focus to what we call “preference statements”: pieces of client’s statements
(in his own language), expressing values, opinions and likelihoods. In other terms it
is how the client see his/her problem. Learning Protocols are procedures allowing to
identify preference statements within the client’s discourse and to translate them in or-
dering relations. In order to do so we need to establish the sets on which such relations
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apply. As it will become clear in section 4 such protocols are aimed at establishing the
set A, the problem statement and the preference relations upon A. Primitives are the
ordering relations “learned” using the protocols and we will discuss them extensively
in the next section. Modelling Tools are the usual analytic tools an analyst uses in or-
der to transform primitives in decision aiding models. Examples include the procedures
allowing to construct a value function, a set of constraints, a probability distribution
etc.. The Input is the information modelled in such a way that a decision aiding method
can be applied. For instance in a linear programming method the input are the decision
variables, the constraints and the objective function. In the following we present two
running examples explaining some of the concepts introduced in each section.

Example 1.1 Ground information. The client is a horse races gambler. He is consider-
ing the next bet to make. In order to assess the “value” of each possible bet the client
considers three different information: the quality of the horse, the quality of the jockey
who runs it and the weather conditions. The client wants to rank all possible bets.

Example 2.1 Ground information. A hospital is considering the recrutement of nurses
for three of their departments: General Medicine (GM), Oncology (ON), Children (CH).
The hirings are managed by two: the general manager and the surgeon general. Can-
didates fill an application form and go through an interview. Practically the result is a
report where the two managers consider three information: the age, the specialisation
(if any) and the motivations of the candidate.

In both cases the learning protocols are procedures through which the analyst will
try to gather the preferences of the client(s). Which horses (s)he prefers? With which
jockey? Under which weather conditions? What is a good nurse for a given department?
How specialisations compare with respect to the requirements of each department? How
age influences the fitting of a candidate to a given department?

3 Primitives and Problems

What type of information can generally affect a decision? Since the origins (see for
instance [7], [23]) most of the decision analysis literature will classify such information
in three categories: values, opinions and likelihoods.

1. Values (related to attributes). Values should represent “what matters for the de-
cision maker” (for a nice discussion see [13]). Under a more formal perspective we
consider that the set A can be described against a set of attributes D, each attribute
being equipped with a scale from a set of scales E. Following measurement theory (see
[25]) such scales can be nominal, ordinal, ratio or interval ones. However, this is just
descriptive information about A (x is 10cm long, y is yellow etc.). In order to be able
to talk about values affecting decisions we need further information coming under form
of preferential statements (“I prefer long tables to short ones”, “ I do not like yellow
shoes”), possibly of more complex content (“I prefer a train travel to Paris to a flight at
Amsterdam”, “my preference of apples against oranges is stronger than my preference
of peaches against apricots”). We distinguish two types of sentences:
- comparative ones, where elements of A are compared among them (under one or more
attributes) in order to express a preference;
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- absolute ones, where an element of A is directly assessed against some “value struc-
ture” (under one ore more attributes).

2. Opinions (related to stakeholders). Decisions can be affected by the judgements
and opinions of many stakeholders. In this case preference statements are going to be
associated to “opinions”. It is reasonable however, to distinguish once again among:
- comparative opinions (stakeholder i prefers x to y), where preferences are expressed
among elements of the set A;
- absolute opinions (stakeholder i considers x as “worthy”), where preferences are ex-
pressed under form of value assessments.

3. Likelihoods (related to scenarios). When we express preferences it is likely that
these depend from uncertain future conditions. Although the intuitive temptation is to
use estimates (it is likely to rain) or quantifications of uncertainty (the probability of
raining is p), if we focus on decision situations the primitives we need to consider will
once again be preference statements of the type “under scenario j, I prefer x to y” or of
the type “under scenario j, x is unworthy”.

The reader will note that we do not include among the primitives the concept of rela-
tive importance of the dimensions under which preferences are expressed. The reason is
simple: relative importance is a derivable information. Consider the case where x �I y
and y �J x for some I, J ⊂ H (x, y being elements of A and H being the set of crite-
ria). If we add the information that “globally” x � y (which is once again a primitive)
we can derive that I # J (# representing an ordering relation upon the power set
of H: #⊂ 2H × 2H). This will be true if I and J are sets of values, but also if they
are opinions or likelihoods. Of course a decision maker may wish to make direct state-
ments comparing two dimensions (I is more likely to occur than J), but there are two
reasons for which it is better to avoid it. The first has to do with the fact that there is no
general model for “relative importance”, this depending on how primitive preferences
are considered at the global level (see [17]). The second is that these are second order
comparisons allowing for more cognitive biases and potential inconsistencies. Indeed
more often than less decision makers are ready to change their statements about relative
importance as soon as they realise the impact they may have on first order preference
statements (that is comparing elements of A).

From the above discussion and in order to model “absolute statements” we need
to introduce, besides the set A (of potential decisions), a set B being a collection of
“norms” or “standards” or “thresholds” representing an external (with respect to A)
value structure. In other terms if we want to claim that x is “nice” (under a certain point
of view) we need to establish somewhere (not in A) what “nice” means and compare x
to that norm. Under such a perspective:

Definition 1.
- Comparative preference statements come under form of x ,i y x, y ∈ A, i being any
among attributes, stakeholders or scenarios (thus ∀i ,i⊆ A×A).
- Absolute preference statements come under form of x ,i b x ∈ A b ∈ B, i being any
among attributes, stakeholders or scenarios (thus ∀i ,i⊆ A×B ∪B ×A).

From the above presentation we can establish our second general claim.
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Claim 2. Decisions are based on primitives which always come under form of compar-
ative or absolute preference statements.

Remark 1. We use the term preference statement in a very broad way. However, the
formalism adopted should not conduct to confusion. Preference statements can be mod-
elled either under form of asymmetric ordering relations (x is strictly before y) or un-
der form of symmetric ordering relations such as similarities or nearness relations (x is
similar or near to y) and these can be learned directly from the client. The use of the ,
relation is a comfortable way to combine such relations in a unique definition.

We continue with our running examples.

Example 1.2 Primitives. The alternatives considered by the client are the “bets” (a
combination of a horse with its jockey). This is a finite enumeration of the participants
to the next race. The client provides different types of preference statements (examples):
- horse x is better than horse y;
- jockey i is better than jockey j;
- horse w run by jockey j is better than horse z run by jockey i;
- if it rains horse y is better than horse w.

Such sentences need to be interpreted. For instance should we understand the first
sentence as “horse x being better than horse y independently from the jockeys they
run them and the weather conditions?” Or should we understand it as “considering
the same jockey and the same weather conditions then horse x is better than horse
y?” The difference can be important. In the first case we consider that ∀j ∈ J, t ∈
T 〈xjt〉 , 〈yjt〉 where J is the set of jockeys and T is the set of weather conditions.
This will imply for instance that 〈x, Paul, rain〉 , 〈y, John, dry〉. In the second case such
a comparison is not allowed. We can only write formulas of the type 〈x, Paul, rain〉 ,
〈y, Paul, rain〉 (ceteris paribus comparisons).

Example 2.2 Primitives. The set A is composed by those candidates who filled the
application form and got the interview. However, this is an assignment problem where
we also need to specify the classes where the elements of A are assigned. These are
four: the three hospital departments and the rejected. The type of preference statements
we need here are of the type: “being young is ideal for the Childrens’ Department”, “not
having a specialisation is very bad for Oncology”, “being motivated and specialised are
the candidates we are looking for”, these being more or less nuanced among the two
managers (who may possibly disagree on some of them).

However, once again these need to be better understood. For instance we need to
establish what “young” means (we need a threshold for that). Perhaps too young is
not that ideal, that implying measuring an absolute distance from some ideal ”young
nurse age”. We also need to understand if not having a specialisation is an eliminating
handicap for the candidate or if it is a general negative assessment becoming more
important for the special case of Oncology. On the other hand the reader will note that
at this stage we do not need to compare candidates among them.

The reader will note that in the case of the horse races we are using comparative pref-
erence statements (a horse is better than another), while in the case of the nurses we are
using absolute preference statements (a nurse feature fits, more or less, the requirements
of a given department).
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Using claim 2 and definition 1 we can summarise the possible primitive information
used in a decision problem as in figure 2. As we move away the origin along any of the
axes we start considering multiple values (opinions, likelihoods).

Definition 2. We call optimisation problem any decision problem considering a unique
dimension under which primitives are expressed (pointO of figure 2).
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Fig. 2. The archetype problems

Figure 2 establishes eight archetype “problems” represented by the eight points:
O,A, C,R,AC,RC,RA andM. We call:

O: an optimisation problem (see more details in section 4);
A: an agreement problem, since different opinions need to be taken into account;
C: a compromise problem, since different values need to be considered;
R: a robustness problem, since a solution needs to be considered worthy under dif-

ferent likelihoods;
AC: an agreed compromise (a combination of A and C);
RC: a robust compromise (a combination ofR and C);
RA: a robust agreement (a combination ofR and A);
M: a “mess”, because the problem starts to become really messy ...

However, the above eight archetype problems do not stand alone. Behind a compro-
mise problem other compromises may need to be considered in a hierarchy of criteria.
Behind an agreement problem other agreement problems may have to be solved along a
hierarchy of delegates, community representatives and other organisational structures.
Behind a robustness problem many states of the nature may have to be considered in a
hierarchy of likelihoods establishing complex scenarios. And, any combination of the
above may in reality occur as complex as possible (see figure 3).

What can we observe in analysing these archetypal decision problems? Despite
the different semantics behind values, opinions and likelihoods, the underlying formal
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structure is always the same. We have one common primitive: preference statements
which we represent through preference relations. And we have one principal task: move
along the hierarchy, from the leaves of the most elementary preference statements up
to the root where “x , y all relevant information being considered” (x, y being either
both in A or one in A and the other in B). This allows to introduce our third claim.

Claim 3. A decision problem can be represented as a sequence of preference aggrega-
tions along an hierarchy of opinions, values and likelihoods, combined arbitrarily.
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Fig. 3. Many decision problems hierarchically related

Example 3.1 Consider the case where a committee is assessing a number of develop-
ment projects for an urban area. The outcomes of these projects depend on a number
of uncertain issues due to the unstable economic situation of the whole region. At this
stage we have many levels of the dimensions hierarchy: the different members of the
committee and the different scenarios considered as “realistic” for the region, the set
of attributes describing the projects. We consider as first level of our hierarchy the sce-
narios and as second level the committee members. We can expect that each committee
members will assess the projects on a number of attributes (such as cost, sustainabil-
ity, environmental impact etc.). It is reasonable to consider that some of such attributes
decompose further in other attributes (such as direct costs, maintenance costs, financial
costs etc.). This situation is captured by figure 3.

4 Main Features

In the following we present the 5 features which constitute the key parameters designing
the whole set of conceivable formal decision problems. For the time being only one
feature (the problem statement) will be discussed in an extensive way, the other four
being essentially sketched.

4.1 The Set of Alternatives

A can be of different types:
- a countable enumeration of objects, A = {a1 · · · an};
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- a subset of all possible combinations of the attribute scales in the attributes space,
A ⊆ E1 × · · ·Em;
- a combinatorial structure resulting from the product of a set of discrete decision vari-
ables (possibly 0 or 1), A ⊆ X1 × · · ·Xm, Xi ⊆ Z or Xi = {0, 1};
- a vector space resulting from the product of a set of real valued decision variables,
A ⊆ X1 × · · ·Xm, Xi ⊆ R.

4.2 The Problem Statements

Partitioning a set A consists in establishing a set of “equivalence classes” to which
associate the elements of A. We can distinguish two different cases:

1. The first case concerns the fact that such classes can be ordered or not. Typical
examples in the first case are classes of merit, the equivalence classes of a weak order
etc.. Typical examples of the second case are problems of medical diagnosis, failure
detection, pattern recognition etc..

2. The second case concerns the fact that such classes can be pre-defined with respect
to some norm, standard, profile etc. or not. Typical examples of the first case include
assigning elements of A to given ratings or patterns. Typical examples of the second
case are clustering a population for some attribute or ranking it.

We summarise the above cases in table 1.

Table 1. Basic Problem Statements

Pre-defined wrt NOT pre-defined
some external standard

Ordered Rating Ranking
Not Ordered Assignment Clustering

A special cases within the above problem statements is the one where the number of
classes are just two, one being the complement of the other.
Let’s discuss more in details the above problem statements.

1. Ranking. The primitive in this case will be a binary relation on A: ,⊆ A × A to
be read “at least as good as”. The expected result is a partitioning of A in equivalence
classes [A]1, · · · [A]n such that:

• ∃ �⊂ A×A
• � = � ∪ ≈
• [A] is the set of equivalence classes constructed by ≈
• �⊂ [A]× [A], � being a strict partial order such that:
• [A]j � [A]i ⇔ j > i and
• ∀x ∈ [A]j , y ∈ [A]i : x � y and
• ∀x, y ∈ [A]j x ≈ y

Discussion. The reader will note that the ordering relation among the equivalence
classes is not the primitive relation comparing the elements of A. Generally speaking
, is not an ordering relation since preferences can be partial and or inconsistent. If
we have to proceed with some operational procedure we need to transform the prefer-
ence relation , to an ordering relation �. We may impose that ,⊂�, but this is not
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mandatory (for instance in case of inconsistent preference statements we may want to
drop some primitive comparisons). As already mentioned � is not necessary a com-
plete relation. In case we impose completeness (� becoming a total order) we get that
[A]1 = supA(�) (n being the number of equivalence classes in which A is partitioned).

What is a choice problem? We consider as choice the particular case where A is par-
titioned in two classes [A]1 � [A]2. We can generalise this observation claiming that
any ranking problem partitions A in a set of classes, the first being the “optimal ele-
ments”, then the second one being the “second optimal ones” and so on. The current
literature considers as optimisation the special case where:
,=� and � is a weak order on A such that ∃f : A -→ R : x � y ⇔ f(x) ≥ f(y).
Under such a hypothesis it is clear that [A]1 = maxA f(x). However, we do not really
need the function f in order to “optimise”. Generalising the concept of optimisation
we can always construct an algorithm such that [A]1 = supA(�). Extending further
this reasoning the whole set of equivalence classes can be constructed as result of some
optimisation: [A]n+1 = supA\[A]n(�) etc..

2. Clustering The primitive in this case is a binary relations on A: ≈⊆ A × A to be
read “similar to”. The expected result is a partitioning of A in [A]1, · · · [A]n such that:
∀x, y ∈ [A]j x ≈ y and ∀x ∈ [A]j , y ∈ [A]i : ¬(x ≈ y).

Discussion. In case≈ is an equivalence relations then the partitioning of A results in
constructing the indiscernibility relation on A ([22]). However, this is not generally the
case. Elements of A are more or less similar between them (or differently similar, see
[34]). Under such a perspective we consider that instead of a single similarity relation
we have a set of nested similarity relations ≈l and [A]j = supA(≈l). In other terms
we try to maximise similarity within classes (clusters) and minimise similarity among
classes (clusters). If ≈l are nested similarity relations with nice properties then we can
establish metrics (see [11]:

• s(x, y): how similar is x to y?
• d(x, y): how distant is x from y?
Then, establishing the equivalence class of any element y ∈ A,
[A]y = {x|maxA F (s(x, y))}, F being a measure (a fitting function) of the overall
similarity of the elements of [A] with respect to y, we can construct the clusters [A]j .
Meyer and Olteanu generalised this idea (see [18]) for general preference structures.

Remark 2. The reader should note that both ranking and clustering problem statements
boil down in solving some mathematical optimisation problem. This should not be sur-
prising: in absence of any external information and being allowed only to compare
elements of A among them, the only mathematical notion we have, in order to clearly
separate classes between them, is the one of “optimality”.

3. Rating The primitive here is a binary relation from the set A to the set B:,⊆ A×B∪
B×A to be read “at least as good as”, B being the set of external “norms” characterising
the ordered classes C1 � · · · � Cn. The expected result is to assign each element of A
in a Cj such that: x ∈ Cj ⇔ x � pj , pj+1, · · · pn and p1 · · · pj−1 � x.

Discussion. As in the ranking problem statement we need to differentiate between the
primitive preference relation , and the operational result represented by the ordering
relation �. By transitivity of � it is clear that if element x is in Cj and element y is in
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Cj+1, x � y, while if both elements are assigned in the same class x ∼ y (� ∪ ∼=�).
However, the reader should remember that classes are pre-established.

Suppose now that the relation � is a weak order such that we can establish a function
f : A ∪ B -→ R such that x � pj ⇔ f(x) ≥ f(pj). The problem of assigning the
elements ofA to the ordered classes represented by the “norms” pj turns to be a classical
constraint satisfaction problem: Cj = {x : f(x) ≥ f(pj) and f(pj−1) ≥ f(x)}. We
can generalise this concept dropping the function and claim that the rating problem can
be considered a generalised constraint satisfaction problem.

4. Assignment The primitive is a binary relation on A: ≈⊆ A×B ∪B ×A
to be read “similar to”, B being the set of external “norms” characterising the classes
C1 · · ·Cn (the difference with the rating problem statement being the fact that these
classes are not ordered among them). The result is to assign each element of A in a Cj

such that: x ∈ Cj ⇔ x ≈ pj , where pj is the norm characterising class Cj .
Discussion. Assigning objects to unordered classes could be seen as a constraint

satisfaction problem where constraints are expressed as equalities (Cj = {x : f(x) =
f(pj)}), where f is a function representing a metric of similarity.

Concluding: the problem statements we present here can be handled either as an
optimisation problem or as a constraint satisfaction one. Considering that any constraint
satisfaction problem can be transformed in an optimisation one we can state one of our
principal claims, based on the hypothesis that our problem statements are exhaustive of
all possible decision problems (partitionings).

Claim 4. From an algorithmic point of view any decision problem is an optimisation
problem.

Remark 3. The reader should not make confusion with the notion of decision problem
typical in the algorithmic complexity literature ([8]). On the other hand we want to
emphasise that what we are talking here concerns how algorithmically primitives get
transformed in ordering relations such that can be used for recommending something
or being used for further aggregations.

4.3 Independence

As already mentioned primitives come under form of statements of the type “x is at
least as good as y, under I”, x, y being mono or multi-dimensional objects and I being
a subset among values, likelihoods and opinions. However, despite its intuitive meaning,
such a sentence can still be interpreted in different ways. We are going to distinguish
two principal interpretations:

- “x is at least as good as y, under I”, independently on what happens to H \I (H being
the set of criteria);
- “x is at least as good as y, under I”, provided a condition holds in some J ⊆ H \ I .

These two interpretations lead to completely different problem formulations and con-
sequently to different methods and resolution algorithms. Preferential independence
(the first interpretation) allows to envisage a linear (additive) model representing pref-
erences. Conditional preferences lead to more complex preference structures implying
non linear aggregation functions ([9], [14], [29]) or specialised algorithms ([3], [4]).
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4.4 Differences of Preferences

Let’s recall once again our primitives and let’s consider the sentence “x is strictly better
than y and these are both better than z (under I)”. We know we can represent this
sentence giving numerical values to x, y, z (for instance x = 3, y = 2, z = 1 and
adopt the natural ordering of the numbers. However we could choose the numerical
representation x = 100, y = 10, z = 1 and it would be the same. Preferences are orders
and the numbers we use only carry ordinal information.

The point is that in many cases we could either have richer information (we know for
instance that x is twice more heavy than y) or we would like to have richer information
of the type “x is much more better than y”. We need to reason in terms of “differences
of preferences” and their representation. In other terms we need primitives of the type:
“xy is not less than zw” where xy (zw) represents the difference of preference between
x and y (z and w). It is interesting to note that primitives of this type can be used
also in order to express ordinal preferences, while the opposite is not true. Under such
a perspective we can claim that primitives should always be considered as sentences
about differences of preferences, the ordinal case being a special one. The interested
reader can see more in the literature about conjoint measurement (see [15]) and how
this helped in reframing multidimensional preferences (see [1], [2], [17]).

4.5 Positive and Negative Reasons

Consider a preference statement of the type: “I do not like x”, or “any candidate, but
not x”. Such statements can be considered as explicit “negative preferential statements”
to be considered independently from the “positive ones” (which are the usual ones).
The idea here is that there are cases where decision makers need to express negative
judgements and values which are not complementary to the positive ones (such as a
veto on a specific dimension). Such statements have been explicitly considered in the
literature both in decision theory (see [6], [20], [33]) and in argumentation theory (see
[19]). When such situations occur we need to develop specific procedures adding thus
a further dimension of characterisation of the decision problem at hand.

5 Methodology

Let’s summarise in order to outline how our framework can be used for methodolog-
ical purposes. We have a set A, information describing the set A against a number of
attributes and preference statements (these being values, opinions or likelihoods) com-
paring either the elements of A among them or the elements of A to elements of a set
B (the set of norms). We aim at partitioning A appropriately.

The first problem we have is reducing the problem to an “optimisation problem”:
that is, obtaining one-dimensional preference statements. In other terms we are trying
to aggregate preference statements expressed on several different dimensions to a single
one. For the time we consider that transforming some attributes to “constraints” (thus
bounding the space of feasible solutions) has already been considered in establishing
the set A. How do the different parameters described in section 4 influence the design
(or the choice) of an appropriate solution method?



150 A. Colorni and A. Tsoukiàs

Allowing to have explicit measures of differences of preferences allows to handle
richer preferential information, such that we can consider to obtain at the aggregated
level preference statements sufficiently rich to satisfy nice properties (for instance ob-
taining directly an ordering relation). In case we need to work with purely ordinal infor-
mation we should expect the negative consequences of Arrow’s impossibility theorem
(see the discussion in [5]). In case preferential independence holds we are in the “easy
case”: given a set of primitives holding at the same level of the hierarchy of dimen-
sions (see figure 3) these can be aggregated (possibly through a linear model) to the
parent node. In case independence does not hold we have two options: either we need
explicitly non linear models accounting for the observed dependencies or we need to
reformulate the modelling dimensions (these options being not exclusive). This second
case may result in aggregating more levels of the hierarchy in a single step.

The presence of explicit negative preference statements (not complementary to the
positive ones) will result in duplicating the decision model creating an hierarchy of
“negative reasons” (to be associated to the hierarchy of “positive reasons”). It will also
require to establish how and when these two sources of information should merge.

The second problem we need to handle is to obtain, out of the one-dimension prim-
itives computed in the previous step, an ordering relation allowing the partitioning of
the set A (the recommendation to hand to the decision maker). It is clear that the type of
problem statement adopted strongly influences how this step will be considered since it
establishes both the type of primitives we need to construct and the type of algorithm to
be used. Before concluding this discussion we note that the properties of the set A will
also influence the design or the choice of the method for obvious algorithmic reasons.

At this stage is easy to show that the five features we introduced in this paper (prop-
erties of the set A (and B), problem statement, preferential independence, difference of
preferences, explicit negative preference statements) are necessary in order to clearly
establish, design and axiomatically characterise any model, algorithm and method aim-
ing at handling a decision problem (on set A). Our claim, not demonstrated here, is that
these features are also sufficient. We thus get:

Claim 5. The properties of the set A, the type of problem statement, the holding or
not of preferential independence, the explicit use of differences of preferences, the ex-
plicit use of negative preference statements, are the necessary and sufficient features for
choosing, designing, justifying and axiomatically characterising any decision problem
and the associated resolution methods and algorithms.

Discussion. The reader should recall that the use of the “learning protocols” provides
the analyst with some first basic information: the set A, the problem statement and the
preferences about A. Without these information we cannot really make any tentative
to formalise a decision problem of a client. However, there are many methods through
which this information can be handled. In order to choose among them, to explain and
justify them besides maintaining an axiomatic coherence) we need to know more about
the preferences: whether preferential independence is met, whether differences of pref-
erences hold or not and whether explicit negative statements are done. For instance the
use of linear programming will make sense in a situation where the set A is a subset of a
vector space, the problem statement is a ranking one (and more precisely a choice) and
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the preferences among the elements of A are such to allow a numerical representation
which is also an interval scale of ”profits” (or costs), which means that differences of
preferences hold, and this is additive, which means that preferential independence also
holds, while there is no use of explicit negative statements.

6 Horse Races and Nurses

Let’s finalise the discussion of the two running examples.

Example 1.3 Modelling. Having established the correct primitives representing the
client’s preference statements we can check whether preferential independence is met
and how differences of preferences are measured. If the preferences among horses are
independent from the preferences among jockeys and among weather conditions then
we can clearly look for a linear aggregation of such values (in case differences of prefer-
ences are meaningful) and even allow to compute a relative importance for each weather
condition under form of probabilities. This will allow to use expected utility theory.

Discussion. The problem presented is a “robust compromise”. A compromise be-
cause we need to take into account two different type of values (the quality of the horse
and the quality of the jockey) and a robustness problem because we need to take into
account three different likelihoods: raining, humid weather, dry weather. The expected
utility problem formulation will hold under very specific conditions. In case these do
not hold we can look for alternative ones (using CP nets [3], [4] or fuzzy integrals [9]).

Example 2.3 Modelling. Each candidate is described against three attributes which are
very different: age is a continuous numerical scale (probably discretised), specialisation
is a nominal scale (which specialisation, if any, has the candidate), motivation is (proba-
bly) an ordinal scale reporting the judgement of the expert who did the interview. On the
other hand the classes also need to be described against the same attributes either pro-
viding the “ideal” values for each class (for instance the “ideal nurse” for the Childrens’
Department is 30 year old) or the “minimal” ones (not more than 35 years old). Then we
need to establish how the candidates compare to such classes. For instance we need to
value the distance between two ages or between two specialisations. The reader should
remember that such models might be different among the two managers. Should we
be able to measure these differences and should these be commensurable among them,
then we can envisage to write a value model (possibly additive) assessing the “fitting”
of each candidate for each category. Otherwise we could opt for some ordinal model
using some majority principle (of the type: if two criteria agree that candidate x fits
to class a then assign him/her there). However, the presence of negative assessments
play an important role here, since they may exclude a candidate from a certain class
independently from any other assessment (if the candidate does not have a specialisa-
tion in oncology cannot work in Oncology).

Discussion. The situation is a an Agreed Compromise since we need to find a com-
promise among the three fitness criteria and an agreement among the two managers.
There are two paths leading to the final assignment. The first (more cooperative) con-
sists in finding an agreement between the two managers for each criterion separately
and then find a compromise using the agreed assessments. The second (more negotia-
tion oriented) consists in finding the assignments for each manager and then try to find
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an agreement for the cases where these are different (possibly all of them). The reader
will note that there is no reason for which these two paths lead to the same result.

7 Discussion and Conclusion

In this paper we introduced a general framework describing the whole set of methods
and decision problems an analyst may have to design in order a problem provided by
a client. We have shown that decision problems can be generally seen as optimisation
problems after a complex hierarchy of values, opinions and likelihoods gets transformed
to a single dimension through a sequence of “preference aggregations”. In order to con-
struct this general framework we make use of what we call primitives (the strictly neces-
sary information to be provided in order to model meaningfully the decision problem).
Then we described five main features which characterises any method aiming at mod-
elling and solving the decision problem. Our general claim is that these five features (the
type of the set A, the problem statement, the holding of preferential independence, how
differences of preferences are considered, the presence of explicit negative reasons) are
necessary and sufficient in order to choose, design, justify and characterise any deci-
sion support procedure. Further research includes on the one hand showing how formal
argumentation theory can help in explaining and justifying methods design and their
outcomes and on the other hand exploring how formal model reformulation techniques
can help finding the most appropriate algorithm to adopt for resolution purposes.
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Abstract. By exploiting advances in natural language processing, we believe 
that information contained in unstructured texts can be leveraged to facilitate 
risk modeling and decision support in healthcare. In this paper, we present our 
initial investigations into dependence relation extraction and aggregation into a 
Bayesian Belief Network structure.  Our results are based on a corpus com-
posed of MEDLINE® abstracts dealing with breast cancer risk factors. 
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information extraction, expert aggregation, Bayesian networks. 

1 Introduction 

Bayesian belief networks (BBNs) [1] have been applied within a variety of contexts, 
including engineering, computer science, medicine and bioinformatics. They are a 
popular tool for risk analysis modeling and decision support systems [2, 3]. While 
BBNs can be constructed automatically from structured data, the amount of human 
effort required to construct a BBN manually, either from expert opinion or based on a 
literature review, may be impractical on a large scale. 

However, there is a wealth and growing amount of information in unstructured for-
mat that could be leveraged to facilitate the creation of BBNs (Medical academic know-
ledge being one example). The challenges associated with unstructured texts are many. 
Relevant information is (i) sparse, (ii) scattered among a large amount of irrelevant 
sentences and (iii) ambiguous due to the richness of the human language. Beyond the 
extraction of that information, synthesizing it in a coherent model presents its own chal-
lenges, akin to those associated with the construction of risk models from multiple  
experts, in particular diverging opinions and partial information. 

Our goal is nevertheless to investigate how current advances in natural language 
processing techniques could be used to address the scalability problem of extracting 
relevant pieces of information to build BBN-based risk models from unstructured 
texts. Note that our objective is not to replace experts but rather to facilitate their task. 
Therefore the focus is on extracting the information and creating initial versions of 
BBNs which are then to be edited by domain experts.  
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In this paper we describe our overarching approach to construct BBN from text fol-
lowed by a detailed description of extraction and aggregation of structural informa-
tion. The extraction and aggregation of the quantitative information is not addressed 
here.  

2 Description of the Research Problem 

2.1 Overarching Approach 

This section presents the general approach that we have defined to construct BBNs 
from unstructured texts. BBNs are composed of a graph, whose nodes (or vertices) 
represent random variables and whose arcs (or edges) capture dependence statements 
(independence, the stronger statements, is derived from the absence of arcs).  Each 
node is associated with a conditional probability table which provides numerical in-
formation about the strength of the dependence. People commonly refer to the graph 
(nodes and arcs) as the graphical layer or structure of the BBN while the term quantit-
ative layer pertains to the conditional probability tables (CPTs) of the nodes. The 
construction of BBN based on expert knowledge typically follows three main steps:  

1.  Identification of variables (nodes), possibly definition of the states (although this 
does not need to be done till before the third step) 

2. Definition of the network structure, i.e., the dependence and independence rela-
tions among the variables (arcs) 

3. Specification of the parameters of the CPTs. 

How does this process translate into text-based extraction of expertise? Because 
the elements of the quantitative layer depend on the graphical layer (the structures of 
the conditional probability tables depend on the parents of each node) it is reasonable 
when obtaining information from experts to determine the structure of the BBN be-
fore populating it with quantitative information. This constraint does not apply when 
information is extracted from a set of unstructured texts because the extraction step is 
not tailored to a given structure. Indeed it is unlikely that the probability statements 
that can be extracted will perfectly match the required CPT inputs. Limiting the 
search for quantitative information solely to the CPTs would result in discarding rele-
vant information. We assume therefore that the dependence relation extraction and the 
probability statement extraction can be done in parallel as independent tasks. 

By contrast, the output of the transformation of the extracted information into a 
BBN can vary depending on the sequence of subtasks. Rather than constructing a 
BBN for each source and then combine those together, we chose to first aggregate all 
dependence information into a network structure and thereafter to populate the asso-
ciated CPTs based on all the probability statements extracted. We think that pooling 
information together as early as possible will reduce aggregation challenges: When 
probability and dependence statements are few at each source level but aggregated 
over many sources, the individual BBNs for each source are likely to be dissimilar.  
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Our suggested methodology is summarized on Fig. 1. We start by building the in-
formation base through the extraction of (i) structural information in the form of de-
pendence and independence relations among risk factors (e.g. Age at Menarche  
Breast Cancer Incidence)  and (ii) quantitative information in the form of probability 
statements (e.g., P(Lifetime Breast Cancer | Malaysian Women) = 0.05). The content 
of the information base is then processed to generate variables, states, aggregated 
network structure and finally parameters for the CPTs.  

In this paper we describe in more details the dependence extraction and the con-
struction of the aggregated network structure. Despite not having achieved full auto-
mation of the extraction process, we are able to shed some light on the feasibility of 
both extraction and aggregation and on some of the related challenges. Regarding 
variable and state identification, we intend to address them in future research and 
resort to simple heuristics in the meantime. Specifically, different terms are consi-
dered as different variables and variables are considered as binary so that state identi-
fication is not required. In the future, we will leverage knowledge bases such as 
UMLS along with machine learning methods to cluster terms together into variables. 
Regarding quantitative information, we have defined and evaluated algorithms for 
extraction and evaluation but chose not to present them due to space constraints. 

 

Fig. 1. Steps involved in building BBN from Text 

2.2 Related Research 

To the best of our knowledge, there is limited research that focuses on building BBNs 
from unstructured text. There has been some early work related to building BBN from 
structured text information. [4] presents a graph grammar which takes as input struc-
tured information (disease, treatment, test) and constructs an influence diagram (BBN 
augmented by decision nodes) from it. Similarly, [5] leverages the information  
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contained in Medical Subject Headings (MESH) and subheadings in MEDLINE cita-
tions to build the structure of an influence diagram. Both approaches are specific to the 
medical domain as they rely on pre-determined keywords to guide the structuring of 
the network. [6] appears to be the first paper to specifically focus on presenting an 
NLP framework for building BBN from unstructured texts. The authors, coming from 
the natural language processing community, restrict their search to causal relation  
extraction to determine the edges of the network. While they leverage semantic infor-
mation extracted from WordNet for variable identification, they provide a limited dis-
cussion on the construction of the graph, ignoring challenges related to aggregation of 
all the causal information into a coherent BBN such as the creation of cycles and the 
need to distinguish between direct and indirect relations. Our approach, while similar 
in spirit, builds more significantly upon the decision science literature. In that domain, 
there has been a significant amount of work in combining expert opinions when those 
opinions are probabilities, for instance [7], yet the combination of Bayesian network 
structures provided by experts is seldom considered.  Notable exceptions are [8-10] 
which provide practical and theoretical perspectives on the fusion of Bayesian net-
works. One important requirement of these research efforts is that input are composed 
of true Bayesian networks, meaning directed dependence relations among random 
variables, while our input would be better described as degenerate versions of Bayesian 
network in the form of undirected dependence and independence statements among 
pairs of random variables. The works of [11-12], which we will discuss in section 4, 
are better aligned with our task as relying on looser input requirements. 

2.3 Focus on Healthcare 

So far, we have concentrated our efforts in applying the above framework in the 
healthcare domain. Indeed, BBNs have long been advocated as a useful decision and 
risk modeling framework in medicine [13] and used in several decision support sys-
tems [14-16] yet the difficulty of building BBNs from scratch has limited widespread 
adoption [17]. In fact, [17] reports that the process of building the structure of model 
for therapy selection for the treatment of the cancer of the esophagus required 11 
sessions with 2 experts and one knowledge engineer, each session lasting 2-4 hours 
and requiring about 20 hours of preparation.  Our focus on automating the extraction 
and aggregation of relevant information seeks to address this practical challenge.  

This paper focuses specifically on breast cancer, simply motivated by the large 
amount of academic papers published on the topic each year and the fact that it is a 
disease that is well understood. We created a reference information base (called gold 
standard in the natural language processing community) from about 300 MEDLINE® 
abstracts selected according to the query: “KW1:breast cancer AND parity” over the 
past 5 years. This reference information base consists of the manually generated out-
put of the two extraction tasks. It is used to understand the characteristics of the ele-
ments to be extracted, to develop machine learning algorithms for extraction and, in 
this paper, as proxy for automatically extracted information (for aggregation).  

                                                           
1  KW stands for Keyword(s). 
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3 Structural Information Extraction 

3.1 Defining Dependence and Independence 

Structural information extraction involves identifying in texts information indicating 
dependence or independence among variables. Dependence and independence here 
are to be understood as defined by probability theory where A depends on B iff P(A) 
≠ P(A|B). As independence statements are seldom, we focus predominantly on de-
pendence in the remaining of this paper and define independence as the negation of 
dependence. Future research will focus on understanding the specificities of indepen-
dence statements to increase the chances of extracting such statements. 

Our objective in the extraction step is to transform a sentence into set of depen-
dence relation entries structured as follows:  

• One Variable A and One Variable B (compulsory) 
• Influence terms (compulsory) 
• A modifier (optional) 
• A context variable (Optional) 
• A negation (Optional) 

While dependence and independence of variables are symmetric relations, we 
make a loose distinction between Variable A and Variable B, where Variable A cap-
tures the causing factor and Variable B the influenced factor. We make influence 
terms compulsory because from a language perspective, they serve as the cornerstone 
of the dependence relation.  Examples of influence terms include: “associated with”, 
“reduction”, “correlated”, “higher” or “likely”. The modifier can provide nuances 
about the strength of the statement (e.g., “significantly”, “may”, and “positively”), the 
context variable limits the population to which the statement applies, and the negation 
element enables to capture independence. Other optional variables could be added, 
typically meta-data such as authorship, venue, publication year and original language. 
As an example, from the sentence “For endometrial cancer, body mass index 
represents a major modifiable risk factor; about half of all cases in postmenopausal 
women are attributable to overweight or obesity.”, we extract two structured relations: 

• Variable A: body mass index – Variable B: endometrial cancer – Influence Term: 
risk factor – Modifier: major 

• Variable A: overweight or obesity – Variable B: cases – Influence Term: attributa-
ble – Context: postmenopausal women. 

Our first step is to characterize the elements to be extracted (so far variables and 
influence terms) and then to develop machine learning approaches using features 
derived from the characteristics uncovered.  Dependence information extraction has 
many similarities with relation extraction from clinical texts whose focus has been on 
protein-protein interactions or protein-gene interactions, with less attention being paid 
to the extraction of other types of relationship [18-20]. Our goal here is different as 
we approach a new type of relation (risk) and do not have any predefined restrictions 
for the variables beside the medical domain. 
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3.2 Characterizing Elements 

Using 30 abstracts2 from our information base, we analyzed the syntactic and seman-
tic characteristics of variables. Syntactically, variables are noun phrases (NP) with 
different levels of complexity: Variables A are mostly specific displaying context 
information (e.g. age at menarche, duration of breast feeding, personal history of 
breast cancer), while Variables B are rather concise (e.g. breast carcinoma, mammo-
graphic density).  Semantically, using UMLS Metathesaurus semantic types3 referred 
to in biomedical texts, we observed the following patterns: 

• Variables A: [Finding] / [Therapeutic or Preventive Procedure] / [Organism 
Function] / [Disease or Syndrome] / [Gene or Genome] / [Organism Attribute] 

• Variables B: [Neoplastic Process] / [Qualitative Concept] / [Disease or Syn-
drome] 

Regarding influence terms, they appear to belong to a limited controlled language. 
From our full information base, we identified 1000 relations representing only 117 
unique terms out of a vocabulary of about 10000 words. We report in Table 1 fre-
quency counts of the 10 most frequent roots of those influence terms along with ratio 
of occurrences in a dependence relation by the total occurrences. Note that the five 
most common roots account for about 50% of the influence terms occurrences and the 
10 most frequent for almost two third. Note also that for many roots, their occurrence 
is highly indicative of the presence of a dependence relation (fourth column). 

Table 1. Frequency Counts of Most Frequent Influence Terms 

Root Occurrences
in relations 

Frequency among
identified 

influence terms 

Occurrences in  
relation / Total  

occurences 

associate 333 34.5% 64.8% 
increase 76 7.9% 37.4% 

risk 62 6.4% 9.2% 
relate 42 4.3% 36.5% 
reduce 33 3.4% 55.0% 

influence 26 2.7% 54.2% 
likely 23 2.4% 71.9% 
effect 22 2.3% 27.2% 

correlate 20 2.1% 62.5% 
high 17 1.8% 22.7% 

                                                           
2  Those corresponds to the first 30 abstracts that were returned from Medline with our query. 
3  UMLS Metathesaurus semantic types enable to categorize the concepts listed in the Metathe-

saurus. There are 133 semantic types which are grouped around the following broad catego-
ries: organism, anatomical structure, biologic function, chemical, physical object, idea or 
concept. See [22] for a more in-depth description. 



160 L. Deleris et al. 

 

3.3 Extraction Algorithm 

Consequently, using our information base we will build a dictionary of influence 
terms.  The main challenge that we currently face is to determine for each occurrence 
of such terms whether it does correspond to a dependence relation and to extract the 
associated variables. As commonly done in natural language processing, we rely on 
machine learning for this task. Each term in a text will represent a candidate to be 
classified using features ranging from lexical ones (e.g., distance to influence term), 
to syntactic ones (e.g., part-of-speech, grammatical function, constituent type), to 
semantic ones (e.g., UMLS type). We plan to experiment with different classification 
algorithms for each variable type (A and B). Since the training set is small, generative 
classifiers like Naive Bayes are preferred initially as they are less subject to overfit-
ting. Afterward, we plan to use additional unlabeled data with the Naive Bayes clas-
sifier and combine them in a semi-supervised learning approach. The resulting  
extended set of labeled data will be considered for learning with ensemble methods 
for decision trees that tend to outperform other algorithms for classification problems. 

However, there are several steps that have to be undertaken before using the cur-
rent information base for learning. Medical abstracts have to be preprocessed to deal 
with two linguistic challenges highly present in this domain, namely anaphoric refer-
ence and ellipsis. Referencing happens when the authors refer back to previously 
mentioned entities to avoid repetition (e.g., it referencing BRCA4), while ellipsis oc-
curs when, after a more specific mention, words are partially or completely omitted 
when the phrase needs to be repeated.  

Similarly we need to post-process the variables extracted to handle terms referring 
to an underdefined set of variables (e.g., physician characteristics, personal factors) 
and to cluster those referring to the same risk factor (e.g., smokers, smoking, ciga-
rettes, tobacco consumption) into a single variable. This corresponds to our variable 
identification step which we will undertake using general lexical resources like the 
Roget Metathesaurus or specialised ones as the UMLS Metathesaurus and borrowing 
from [6]. The final output of the extraction and variable identification steps would be 
a set of cleaned evidence statements representing dependence and independence be-
tween variables rather than terms. Those are the input for the information aggregation 
described hereafter. 

4 Structural Information Aggregation 

4.1 General Problem Description 

One way to aggregate a cleaned set of evidence statements into a BBN structure is: 

1. to reconcile statements involving the same pair of variables A and B. The sim-
plest approach being a majority vote, which can be modulated by adding weights to 
each statement, based on modifiers, publication year of the paper (higher weights for 
more recent papers) or any other relevant information. 

                                                           
4  BRCA is a mutation of the genes BRCA1 and BRCA2 associated with higher risk of develop-

ing breast cancer. 
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2. to aggregate reconciled statements into a BBN structure, i.e., into a directed 
acyclic graph. One process to do so is to first create the undirected graph associated 
with the reconciled statements, assuming lack of information is understood for instance 
as independence (but the reverse convention is as valid, if not more) and second to 
orient the edges by assigning a random order to the variables thus ensuring that no 
cycle is created in the process.  

The specific methods described in each step above are only the most straightfor-
ward solutions provided for the sake of illustration. More sophisticated approaches on 
the majority vote of the adjacency matrix of the graph, adapted for instance from [11] 
could also be applied. In addition, a Bayesian approach as described by Richardson 
and Domingos [12] is a valid alternative where, instead of having as input BBN struc-
tures from multiple experts, we have evidence statements from multiple papers. Final-
ly yet another approach can be used based on an adaptation of the PC Algorithm [21]. 
While the PC Algorithm is based on independence tests, it can be adapted by replac-
ing those tests with the independence statements extracted from the evidence  
statement extraction after reconciliation for conflicting opinions. 

4.2 Our Method 

We adapt Richardson and Domingos (RD hereafter) method for aggregation of mul-
tiple BBNs provided by human experts (and data, but that is not relevant in this pa-
per). In their approach, each expert gives a description of the dependencies among a 
fixed set of variables, which is used to compute the most probable structure doing 
Bayesian updating. Some assumptions are made to simplify the computations, in par-
ticular that experts statements are independent from one another both across experts 
and across pairs of variables.  As will become clear in the following paragraph, we 
make similar independence assumptions. However, the main difference in our method 
is that we assume that the information provided by sources (abstracts for us, experts 
for RD) is not directed. This simplifies the specification of the likelihood function yet 
implies that the output of the model is non-directed. We thus need to orient the edges 
to obtain a full BBN. 

We now describe our approach, starting with some notation: 

─ Let , ,  denote the set of variables in the information base, arbitrarily 
ordered.  

─ Let  denote a non-directed graph over A, we choose to represent , , , ,  as a vector of size · 1 2⁄  where  corresponds 
to the jth variable pair for some arbitrary ordering of all possible pairs. 1 if 
there is an edge between the variables forming the jth pair and 0 otherwise.  

─ Let  denote the number of sources (texts) in our information base and , , , ,  represent the evidence statements from the mth source 
where  means that no statement has been made about the jth pair, 

, means a dependence statement has been made and  means an indepen-
dence statement has been made. Finally we denote by , , , ,  the 
full content of the information base. 
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Our objective is to evaluate the posterior distribution of the underlying non-
directed graph P G|E , which by Bayes theorem is P G|E αP G P E|G . We need 
to specify the prior P G  and the likelihood function P E|G . For simplicity, we as-
sume that the presence of an arc between a pair of variables is independent from the 
other pairs, thus P G ∏ P gN . In addition, we assume that sources are condi-

tionally independent given graph G so that P E|G P E , , E , , EM  |G∏ P E |GM . Finally, we assume that evidence statement from source m about pair 
j is conditionally independent from the other evidence statements from source m and 
depends only on g  and not g . This leads to 

| |  · |                   1  

We acknowledge that we are making strong independence assumptions. We will 
revisit those assumptions in future research yet the current model has value in the 
sense that it provides a benchmark for more sophisticated models.  Moreover, in sev-
eral other situations, it has been found that naïve models such as ours provide a useful 
first approximation (e.g., naïve Bayes classification, Markov chains modeling of 
complex systems, aggregation of expert opinions about probabilities). 

Applying (1) enables us to derive the most likely non directed structure G* asso-
ciated with the information base E. To orient the arcs, we rely on a user-defined order 
of the variables, which we obtained by clustering the diseases (and associated UMLS 
concepts) at the end of the list so that arcs would typically go from factors/symptoms 
to disease. This is consistent with our findings in section 3.2 related to Variables A 
and B.   

4.3 Experimental Results 

Data. From the reference information base of about 1000 relations, we selected 198 
cleaned evidence statements, limiting ourselves to simple concepts that were unambi-
guous to non-medically trained researchers. “Her2-overexpressing cases”, “basal-like 
molecular subtype” were thus discarded, as were references to subtypes of breast 
cancer (Triple-negative, ER+/GR+). To reduce the number of variables to a managea-
ble size, we selected the 18 most frequent which led us to keep 96 evidence state-
ments. As expected given the limited size of our text data, we only have very partial 
information about the relationships among those variables. In our example, out of the 
153 possible pairs, we obtained 

• 18 pairs associated with only one evidence statement (11 pairs with one depen-
dence statement and 7 pairs with one independence statement), 
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• 10 pairs associated with multiple concurring dependence statements (none for in-
dependence statements), 

• 5 pairs associated with conflicting evidence statements (interactions between breast 
cancer and respectively age at menarche, breastfeeding, hormone replacement ther-
apy, fertility, and single-nucleotide polymorphism). 

 
We believe however that expanding the corpus may not resolve the lack of full cover-
age. Medical research focuses mostly on interactions between factors and diseases 
rather than among factors. 

Parameters.  In our experiment, we assume that each pair of variables independently 
presents a probability  of being connected and set  to 0.05, similarly to RD. We 
similarly assume that all likelihood parameters |  are identically distributed 
according to Table 2. Through this parameterization, lack of mention of a relation (Ø) 
is neutral in the sense that observation of “no mention” leaves the prior probability 
unchanged. While it has no effect on the computations, for the sake of completeness 
we set  = 0.995 (based on observed value in our information base). We  
set   0.9, a somewhat arbitrary estimation of the reliability of medical  
research on which we perform sensitivity analysis. 

Table 2. Likelihood Model 

     
   D I 

 1  1  1 1  
 0  1 1  1  

 
Output. Applying the method described above, the BBN structure that we would 
obtain is presented on Fig. 2a. where labels indicate the associated posterior probabili-
ties that there is an arc between the pair of variables j i.e. 1 . In fact, as our 
goal is not to provide a definite model but rather an easily understandable synthesis of 
the extracted information that tends toward a BBN representation, we deviate from 
providing the most likely structure. Instead, we report two graphs derived from the 
posterior probabilities as follows:  If  then we show an arc on  
Fig. 2a, if ⁄  then we show an arc on Fig. 2b (with 3 in this 
illustration). Any pair of variables that is not connected in either graphs is therefore in 
the unknown category (which could be represented graphically). In this perspective, 
the order of the variable used for arc orientation is not critical; its role is mostly to 
avoid cycles and to generate an intuitive output. 



164 L. Deleris et al. 

 

 

Fig. 2. Aggregation Output: Dependence Relations (top) and Independence Relations (bottom) 

Overall, the information presented on Fig. 2 is designed to be challenged by a hu-
man expert. Variable order could be modified; logical relations (such as an arc be-
tween fertility and parity) could be added. In a real implementation, the expert would 
also be able to select an arc and view the underlying information for validation. In 
addition to the graphs, pairs of variables having strong support (multiple concurring 
relations) or high conflict (multiple conflicting relations) would be highlighted. Fur-
thermore, we envision querying the user for validation of non-consensual statements 
and indirect influences (i.e. when we have both ABC and AC), asking whether 
the second influence really exists or was generated from a simplification of the indi-
rect one. For the BBN presented in Fig. 2 for instance, we would question whether the 
(protective) effect of parity on breast cancer is limited to breastfeeding.  

One question that can be raised is about the benefits of the sophisticated Bayesian 
approach which seems to behave very much like majority vote. This is in part due to 
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our strong independence assumptions. In future research, we will investigate how 
social networks  about authorship (co-authors / referred and referring authors) could 
be used to build a simple dependence model about text sources so as to make the ben-
efits of the Bayesian updating method more salient. 

A Note on Sensitivity Analysis. We performed sensitivity analysis on the parameters, 
using graph edit distance to measure the effect of parameters changes. If  stays 
within [0.01-0.2], then the output graph remains exactly the same, thus displaying 
reasonable robustness. In addition, the values of   and  only influence the arcs 
supported by multiple conflicting statements, which would nonetheless be singled out 
for appraisal by a human expert. More care, however, needs to be spent in defining 
the default values of those parameters.  

5 Conclusion 

This paper outlines our general framework for facilitating the construction of Baye-
sian networks from unstructured texts, focusing initially on the medical domain. Our 
objective is to reduce the need for human intervention in just the same way that ma-
chine translation of a text provides a human translator with an imperfect but labor-
saving first draft. We discuss more specifically the problem of extracting and aggre-
gating dependence information for which we propose, if not fully defined algorithms, 
a detailed description of the steps to follow. The main shortcomings of our current 
analyses are (i) the lack of final algorithm for extraction and (ii) the limited size of 
our reference set for aggregation. Therefore we cannot reach definite conclusions. In 
particular, we can expect that the input to aggregation will be several orders of magni-
tude larger once the extraction step is fully automated. We feel nonetheless that the 
findings discussed in this paper are encouraging in that they confirm the feasibility of 
our endeavor and illustrate its usefulness. 
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vided by the Irish Industrial Development Agency under reference 199954. 
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Voting on Actions with Uncertain Outcomes

Ulle Endriss

Institute for Logic, Language, and Computation,
University of Amsterdam

Abstract. We introduce a model for voting under uncertainty where a
group of voters have to decide on a joint action to take, but the individual
voters are uncertain about the current state of the world and thus about
the effect that the chosen action would have. Each voter has preferences
about what state they would like to see reached once the action has been
executed. That is, we need to integrate two kinds of aggregation: beliefs
regarding the current state and preferences regarding the next state.

1 Introduction

Imagine a group of agents who have to make a collective decision about what
(joint) action to take. This action has to be chosen from a set of available actions.
Each agent has her own preferences over the effects of actions, i.e., over the state
of the world after a given action has been executed. Unfortunately, our agents
are uncertain about the current state of the world and thus about the precise
effects (or outcomes) of actions. Each agent only has a (possibly different) set of
states she considers plausible (but they all agree on what the effect of executing
a given action in a given state would be). What action should they take?

This is a collective decision making problem that involves the aggregation
of two kinds of information: social information regarding the preferences over
states of the world (effects of actions) and epistemic information regarding the
plausibility of certain states being the actual current state of the world. This
combination of concerns is what we should expect to encounter in a variety of
application domains, e.g., when devising mechanisms for teams of autonomous
software agents to interact and agree on actions to pursue collectively. However,
while social choice theory has, rightly, been argued to be relevant to multiagent
systems [17,7], the standard model of social choice only deals with the aggre-
gation of preferences [10]. In this paper we put forward a model for voting on
actions with uncertain effects that integrates this standard perspective with a
simple notion of uncertainty.

We model uncertainty in the simplest possible way: a voter can only distin-
guish between states she considers plausible and those she does not consider
plausible. This model of uncertainty is sometimes called strict uncertainty or
complete ignorance [5]. It is different from much work on reasoning under un-
certainty, which often assumes the availability of a probability distribution over
the set of possible states [13]. Our chosen representation of voter preferences is
also simpler than what is typically assumed in the literature on decision-making
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under uncertainty: rather than endowing each voter with a utility function map-
ping possible outcomes to numerical values, we only assume that they are able
rank the outcomes in terms of their relative desirability. There are two reasons
for choosing such simple representations of uncertainty and preference. First,
it arguably is often not realistic to expect a decision-maker to be able to pro-
vide either a fully specified probability distribution (e.g., how should she judge
whether a given state has probability 15% or 20% of being the actual state of
the world?) or a precise utility function (what does it mean to assign utility 20
rather than 19 to a given outcome?). Second, we want the individual components
of our model to be as simple as possible, so as to be able to better focus on the
analysis of their interplay.

The remainder of this paper is organised as follows. We begin, in Section 2,
with a detailed discussion of the challenges associated with voting under uncer-
tainty and present three paradoxes one might encounter in this context. After
presenting our formal model in Section 3, we then focus on two specific aspects
of the general problem: aggregating information regarding the current state only,
without considering preferences (in Section 4); and integrating uncertainty and
preference information for the special case of a single agent (in Section 5). We
conclude in Section 6 by using the insights gained to make a first tentative
proposal for best practices for voting on actions with uncertain outcomes.

2 Three Paradoxes

In this section we introduce three paradoxes—scenarios that show how a seem-
ingly reasonable approach to voting on actions with uncertain effects can lead
to suboptimal outcomes. Our presentation is organised in terms of the point in
the aggregation process at which the uncertainty about the current state of the
world is being resolved.

For each paradox we also briefly discuss similarities to related phenomena
from different strands of the literature on social choice theory, namely judgment
aggregation, preference aggregation and voting, and ranking sets of objects.

2.1 The Paradox of Individual Uncertainty Resolution

Suppose there are two possible states of the world, A and B. Whichever state
we are in, we can execute one of two actions: to change to the other state or to
stay in the current state. There are three agents, who are all uncertain about
the current state. Agents 1 and 2 believe A is most plausible; agent 3 believes B
is most plausible. They have to agree on one of the two actions to be executed,
and they each have their own preferences about what state they would like to
end up in afterwards. Agent 1 prefers A; agents 2 and 3 both prefer B.

If each agent is left to resolve their uncertainty regarding the current state
on their own, then each of them will infer their “most preferred action” based
on their preferences over states and based on what they believe to be the most
plausible current state. That is, agents 1 and 3 will choose to stay, and only
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A B

change

change

stay stay

Belief Preference Action

Agent 1: A A  B stay
Agent 2: A B  A change
Agent 3: B B  A stay

Collective: stay

Belief Preference Action

Agent 1: A A  B
Agent 2: A B  A
Agent 3: B B  A

Collective: A B  A change

Fig. 1. The Paradox of Individual Uncertainty Resolution

agent 2 will choose to change. If we use the majority rule to decide between
these two options, we will thus decide that the best move for the collective is to
stay in the current state (see lefthand side of Fig. 1).

But this, arguably, is not the best course of action for this group. If instead
the agents first use the majority rule to aggregate their information regarding
the current state (finding A to be most plausible) and then to aggregate their
preferences (finding B to be socially preferred), then the appropriate action to
take would be to change the state (see righthand side of Fig. 1).

That is, resolving uncertainties regarding the current state individually before
aggregation can lead to outcomes that, arguably, are suboptimal.

This paradox is related to the discursive dilemma familiar from judgment
aggregation [15]. In judgment aggregation, we are asked to aggregate the views
of several individuals regarding the truth or falsity of a number of formulas
of propositional logic, and the discursive dilemma is a family of paradoxical
situations that we may encounter in this framework. We can model our paradox
as a problem of judgment aggregation as follows. Let p stand for “A is the most
plausible current state” (and thus ¬p for “B is the most plausible current state”);
let q stand for “A is the most preferred next state” (and thus ¬q for “B is the
most preferred next state”). Then we should choose the action stay if and only
if p ↔ q is true (i.e., we should choose change if it is false). Then the following
situation corresponds to the scenario described earlier:

p q p ↔ q

Agent 1: Yes Yes Yes
Agent 2: Yes No No
Agent 3: No No Yes

Majority: Yes No ?

The righthand side of Fig. 1 corresponds to what is known as the premise-
based procedure in judgment aggregation: we use the majority rule to obtain a
collective judgment on p and q and then use logical inference to decide that
p↔ q must be false. The lefthand side of Fig. 1 corresponds to the conclusion-
based procedure: to obtain a collective judgment on p ↔ q we only consider the



170 U. Endriss

A C B

a, b

a b

a, b

Belief Preference Action

2 agents: A or C A  C  B
3 agents: B or C B  A  C

Collective: C A  B  C a

Belief Preference Action

2 agents: A or C A  �C  B
3 agents: B or C B  A  �C
Collective: C B  A b

Fig. 2. The Paradox of Late Collective Uncertainty Resolution

individual judgments on the same formula and find that a majority is in favour
of labelling it as being true. Thus, two seemingly reasonable forms of aggregation
yield contradictory advice, i.e., we are facing a discursive dilemma.

2.2 The Paradox of Late Collective Uncertainty Resolution

Suppose there are three possible states, A, B and C, and two available actions,
a and b. Executing a in state C takes us to A; executing b in C takes us to B;
and executing either a or b in either state A or B will take us to C. We have
two agents who are uncertain whether the current state is A or C, and for the
next state they both prefer A over C over B; and we have three agents who are
uncertain between B and C, and they all prefer B over A over C.

Let us use the Borda rule to aggregate preferences: for each agent a state
gets as many points as that agent ranks other states below the state in question
(and we then order the states in terms of the points received). That is, A gets
2 · 2 + 3 · 1 = 7 points, B gets 2 · 0 + 3 · 2 = 6 points, and C gets 2 · 1 + 3 · 0 = 2
points, i.e., we obtain the collective preference order A � B � C. To resolve the
uncertainty regarding the current state, there really is only one natural choice,
namely to take the state considered plausible by the highest number of agents,
which is C. A, the collectively most preferred state, is reachable from C, namely
by executing action a. Hence, we should execute a (see lefthand side of Fig. 2).

But now consider this: if C is the current state, which is the collectively most
plausible assumption to make here, then C cannot be the next state, whichever
action we execute (if we execute a, we end up in A; if we execute b, we end up
in B). So, arguably, our agents’ preferences regarding C are not relevant. Then
we have two agents who prefer A over B, and three agents who prefer B over
A. Hence, the collectively most preferred state is B (under the Borda rule, as
well as under any other reasonable aggregator) and we should execute action b
to reach it (see righthand side of Fig. 2).

That is, by having postponed the collective uncertainty resolution until after
the step of preference aggregation, we have missed the opportunity to eliminate
irrelevant information from our aggregation problem which, arguably, has led to
a suboptimal outcome.
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A C B
b a

a, b a, b

Belief Preference Action

9 agents: A or C A  C  B
1 agent: A or B B  C  A

Collective: A A  C  B a [or b]

Belief Preference Action

9 agents: A or C A  C  B
1 agent: A or B B  C  A

Collective: A [or C] A  C  B b

Fig. 3. The Paradox of Early Collective Uncertainty Resolution

This paradox is closely related to Arrow’s independence of irrelevant alterna-
tives [2]: Arrow postulated that for any reasonable form of preference aggregation
the relative collective ranking of two alternatives should only depend on their
relative rankings provided by the individuals, and not on any third (“irrelevant”)
alternative. Our example demonstrates that the Borda rule, when used as an ag-
gregator for preference orders, violates this desideratum: the relative ranking of
A and B adopted by the collective does depend on C. Our paradox also has close
connections to the topic of election control by means of adding (or deleting) can-
didates, widely studied in computational social choice [4,9], which in turn relies
on violations of Arrow’s independence axiom: our example demonstrates how
adding candidate C to a Borda election in which B was winning can result in A
becoming the new winner.

2.3 The Paradox of Early Collective Uncertainty Resolution

Suppose again that there are three possible states, A, B and C, and two available
actions, a and b. When in state C, action a will take us to state B, while b will
take us to A. If the current state is either A or B, then neither action will
change the current state. There are ten agents. Nine of them consider A and C
plausible states and prefer A over C over B. The remaining agent considers A
and B plausible and prefers B over C over A.

If we aggregate the information regarding the plausibility of different states,
we find that A is the most plausible state (but C comes a close second). Now
suppose we insist on aggressively exploiting this information to pinpoint the most
plausible current state: that is, we take A to be that state. In state A it does not
matter what action we execute; the next state will always be A again. Suppose
that in such a case, by default, the lexicographically first action is chosen, i.e.,
a in this case (see the lefthand side of Fig. 3).

But this clearly is a suboptimal choice: C is almost as likely to be the current
state as A. If it really is C, then executing (the chosen) action a will result in
state B, while executing (the dismissed) action b will result in state A. Con-
sidering that the collective preference order is clearly A � C � B (for any
reasonable preference aggregation rule), executing b therefore would be a much
better choice. We could obtain this outcome by delaying uncertainty resolution:
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if we consider both A and C plausible current states and compute the best action
for either case, we find that in the first case it makes no difference which action
is chosen, while in the second case b is better (see the righthand side of Fig. 3).

That is, resolving the uncertainty regarding the current state too early, even
if we take the information supplied by all agents into account, can lead to a
suboptimal outcome.

There are connections here to problems analysed in the literature on ranking
sets of objects [14,3,11]. The question discussed in that literature is how to extend
a preference order over individual objects to a preference order over nonempty
sets of such objects (with the most common interpretation of those sets being
that we will eventually obtain one of the objects in the set in question, but
cannot control which). One of the most basic axioms formulated in this literature
postulates that, if we strictly prefer A over B, then we should (at least weakly)
prefer {A} over {A,B}—because, whatever choice rule may get used to select
from the second set, the outcome can never be worse than A. This is precisely
why, in our scenario above, we should prefer action b (which can only result in
A when A and C are considered the only plausible states) over action a (which
might result in either A or B).

3 A Formal Model

Fix a finite set Q of states and a finite set Σ of actions. A transition function
δ : Q×Σ → Q determines for any given state q ∈ Q and any given action σ ∈ Σ
the state q′ that will be reached after executing σ in q. In other words, δ defines
the effect of an action for every possible state. Note that δ is a total function,
i.e., every action is executable from every state—but it may well be the case
that an action σ has no effect in a given state q in the sense that δ(q, σ) = q.
We use δ(σ,Q) = {δ(q, σ) | q ∈ Q} to refer to the set of states that are reachable
from Q via σ, i.e., the set of states we might reach by executing action σ in a
situation where any of the states in Q ⊆ Q is a plausible current state.

Fix a finite set N = {1, . . . , n} of agents. We assume that each agent has com-
plete knowledge of δ. On the other hand, an agent does not necessarily know
the identity of the current state. We express an agent’s uncertainty regarding
the current state in terms of a (nonempty) subset of Q: for each agent i ∈ N ,
let Qi ⊆ Q denote the set of states she considers possible. This is a very min-
imalist approach towards modelling uncertainty; other options include defining
a probability distribution or a plausibility ranking on Q for each agent.

Agents have preferences over states, which we model in terms of linear orders
(i.e., binary relations that are irreflexive, transitive, and complete). We write �i

for the preference order of agent i ∈ N . Let L(Q) denote the set of all linear
orders on Q and let Π(Q) denote the set of nonempty subsets of Q. That is,
each agent provides us with an element of Π(Q)×L(Q), i.e., a pair consisting of
an uncertainty set and a preference order. A profile is a vector of n such pairs,
one for each agent, i.e., it is an element of [Π(Q)× L(Q)]n.

We are now ready to define our main concept: an aggregation mechanism that
accepts a profile, i.e., the beliefs and preferences of each agent, and then returns
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a single action to be executed by the group. Our definition is relative to a given
transition function δ (while Q, Σ and N are taken to be fixed throughout).

Definition 1. Let δ be a transition function. Then a social action choice
function for δ, Fδ : [Π(Q)×L(Q)]n → Σ, is a mapping from profiles to actions.

Note that we insist on Fδ returning a single action. Alternatively, we could
have defined Fδ as an irresolute aggregator returning a nonempty set of most
preferred actions and considered the problem of tie-breaking, i.e., of choosing
one best action to actually execute, as a separate problem.

A closely related problem is to derive a weak order (i.e., a binary relation
that is reflexive, transitive, and complete) on the available actions from a given
profile. This is useful, for instance, when we are not yet certain which actions
will become available and we want to prepare for executing the collectively best
available action. We write W(Σ) for the set of all weak orders on Σ.

Definition 2. Let δ be a transition function. Then a social action ranking
function for δ, Fδ : [Π(Q) × L(Q)]n → W(Σ), is a mapping from profiles to
weak orders on actions.

When agents are certain about the identity of the current state of the world,
then social action choice functions essentially correspond to what are known
as (resolute) social choice functions in the literature, and social action ranking
functions correspond to social welfare functions [10].

4 Uncertainty Resolution in Isolation

Our model deals with problems that require both the aggregation of preferences
and the aggregation of beliefs regarding the identity of the current state. The
former, when viewed in isolation, is the main problem studied in classical social
choice theory [10]. In this section we want to study the latter in isolation, i.e., we
want to study the problem of uncertainty resolution on the basis of the reports
of the individual agents. Suppose each agent reports a nonempty sets of states (a
subset of Q). How should we aggregate such an uncertainty profile into a single
collective set of states that appropriately reflects the beliefs of the group?

Definition 3. An uncertainty resolution rule F : Π(Q)n → Π(Q) is a
mapping from an uncertainty profile to a single nonempty set of states.

We use Q = (Q1, . . . , Qn) to refer to a profile of sets of states, with Qi being
the set reported by agent i. Let NQ

q = {i ∈ N | q ∈ Qi} denote the set of agents
who include state q in their set under profile Q.

Structurally, an uncertainty resolution rule has the same form as a voting rule
based on approval ballots [16], of which approval voting is the main representa-
tive [6]: such a voting rule takes as input a set of candidates from each voter
and returns a winning candidate as output (or possibly a set of tied winners).
Indeed, the most natural choices for an uncertainty resolution rule all correspond
to rules discussed in the literature on voting:
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– Under approval voting we return the states with maximal support [6]:

F (Q) = argmax
q∈Q

|NQ
q |

– Under even-and-equal cumulative voting each agent evenly distributes a total
of weight 1 over the states they report as plausible and the state(s) with the
maximal sum of weights are being returned [1]:

F (Q) = argmax
q∈Q

∑
i∈NQ

q

1

|Qi|

– Under the mean-based rule we return all those states that receive at least an
average amount of support [8]:

F (Q) =

{
q ∈ Q | |NQ

q | �
|Q1|+ · · ·+ |Qn|

|Q|

}
To see that above equality correctly formalises the mean-based rule, note
that |Q1|+ · · ·+ |Qn| =

∑
q∈Q |NQ

q |.

Observe that in case there is at least one state that is reported by every agent,
approval voting yields the same result as taking the intersection of all individual
sets of states. Let us call this the intersection rule.

We now want to consider uncertainty resolution rules from an axiomatic point
of view and formulate desiderata to characterise appropriate rules. The simplest
such desideratum is neutrality, a standard concept in social choice theory, which
asks that the chosen rule should treat all states symmetrically. Our formula-
tion below is closest to how neutrality has been formalised in the literature on
judgment aggregation [12].

Definition 4. An uncertainty resolution rule F is called neutral if, for all pro-
files Q and all states q and q′, NQ

q = NQ
q′ implies q∈F (Q)⇔ q′ ∈ F (Q).

Before we formulate further desiderata, we need to clarify the semantics of the
set of states reported by an agent. Do agents report what they know about the
identity of the current state or do they merely report their beliefs?

4.1 Uncertainty Resolution When Agents Report Knowledge

Assuming that agents report knowledge means assuming that, for each agent,
the true state of the world is an element of the set reported by that agent. In
particular, this means that Q1 ∩ · · · ∩ Qn �= ∅. This is not as unrealistic an
assumption as it may seem: after all, each agent has the option to report the
full set Q, i.e., even a completely ignorant agent can report true (albeit vacuous)
information. If we trust in our assumption of agents reporting knowledge, then
we can exclude any state not reported by all agents.
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Definition 5. Suppose agents report knowledge. An uncertainty resolution rule
is called trustful if, for all profiles Q, we have that F (Q) ⊆ Q1 ∩ · · · ∩Qn.

Proposition 1. Suppose agents report knowledge. Then an uncertainty resolu-
tion rule is both trustful and neutral if and only if it is the intersection rule.

Proof. Clearly, the intersection rule is both trustful and neutral. For the other
direction, suppose F is an uncertainty resolution rule that is trustful and neutral.
By virtue of F being trustful, we have F (Q) ⊆ Q1 ∩ · · · ∩Qn. Now, for the sake
of contradiction, assume that F (Q) is a proper subset of Q1 ∩ · · · ∩ Qn. Then
there exist a state q ∈ F (Q) and another state q′ ∈ Q1 ∩ · · · ∩Qn \ F (Q). That

is, despite having NQ
q = NQ

q′ (both are equal to the full set N ), we do not have
q ∈ F (Q)⇔ q′ ∈ F (Q), i.e., we have observed a violation of neutrality. ��

4.2 Uncertainty Resolution When Agents Report Mere Beliefs

If agents merely report beliefs regarding the identity of the current state, then
the intersection rule ceases to be a viable option (as it may then return the empty
set). In this case, approval voting is maybe the most natural choice. Even-and-
equal cumulative voting is appropriate if we have reason to assume that agents
who report small sets do so because they possess more accurate information. The
mean-based rule is an attractive choice if we do not want to exclude too many
alternatives before also considering preference information. Axiomatisations of
all these rules are available in the literature [18,1,8].

5 The Single-Agent Case

In this section we discuss the special case where there is just a single agent.
Even in this severely simplified scenario we still face the challenge of integrating
belief and preference information. As we shall see, this special case is interesting
in its own right, but it is also relevant to the more general aggregation problem
discussed in this paper. The reason is that one natural approach to voting under
uncertainty is to first aggregate belief and preference information independently
and to then decide what action to take based on the thus obtained collective
belief and collective preference order.

For the case of n = 1, Definitions 1 and 2 simplify to what we shall call action
choice functions and action ranking functions, respectively. In the sequel, we
focus on the latter, so as to be able to discuss connections to the literature on
ranking sets of objects [14,3,11].

For any Q ⊆ Q and any linear order � on Q, let �Q represent the weak order
returned by Fδ (i.e., �Q denotes Fδ(Q,�)). That is, we write σ �Q σ′ to say
that σ is at least as good an action to take as σ′. We furthermore write σ �Q σ′

in case σ is the strictly better action to take and σ ∼Q σ′ in case both actions are
equally good choices, i.e., �Q is the strict part of �Q and ∼Q is the indifference
part of �Q. Finally, � (without a subscript) denotes the reflexive closure of �
(our agent’s strict preference order over outcomes).
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5.1 Desiderata for Action Choice Functions

We now want to formulate desiderata (or axioms, in the terminology of social
choice theory) for an action ranking function Fδ. Recall that, given a set Q of
plausible current states, every action σ gives rise to a set of plausible outcomes
δ(σ,Q). There are two approaches to formulating desiderata:

– Outcome-based desiderata: First, we may choose to formulate desiderata re-
garding the relative ranking of actions purely in terms of the sets of plausible
outcomes they correspond to.

– Case-based desiderata: Alternatively, we may also take into account which of
the plausible current states would give rise to what outcomes and formulate
our desiderata case by case.

We begin with the former approach:

Definition 6. An action ranking function satisfies outcome-dominance if,
for all σ, σ′ ∈ Σ, we have σ �Q σ′ whenever the following conditions hold:

(i) q � q′ for all q ∈ δ(σ,Q) \ δ(σ′, Q) and all q′ ∈ δ(σ′, Q)
(ii) q � q′ for all q ∈ δ(σ,Q) and all q′ ∈ δ(σ′, Q) \ δ(σ,Q)
(iii) δ(σ,Q) �= δ(σ′, Q)

Outcome-dominance is known as the Gärdenfors principle in the literature on
ranking sets of objects [3]. It is a natural requirement to impose: it classifies any
change of action as an improvement if it results either in a new best possible
outcome to be added or in the currently worst possible outcome to be eliminated.

An example for an action ranking function that satisfies outcome-dominance
is the max-min ordering: Prefer σ over σ′ (with Q being the plausible states)
if and only if either max(δ(σ,Q)) � max(δ(σ′, Q)) or both max(δ(σ,Q)) =
max(δ(σ′, Q)) and min(δ(σ,Q)) � min(δ(σ′, Q)).1 That is, under the max-min
ordering we first check for which action the best possible outcome is better and
in case that is not enough to differentiate the two actions, we go by the worst
possible outcome for either action.

Definition 7. An action ranking function satisfies casewise-dominance if
σ �Q σ′ whenever δ(q, σ) � δ(q, σ′) for all states q ∈ Q, and that preference
is strict in at least one case.

That is, casewise-dominance says that we should prefer an action if it does
at least as well or better than a competing action for every state we consider
possible. This certainly is a property we would like to see satisfied.

An example for an action ranking function that satisfies it is what we shall
call a casewise-lexicographic ordering: Fix any strict linear order # on Q. We
want to rank σ and σ′ (with Q being the plausible states). First consider the
state q1 that is maximal in Q with respect to #. If δ(q1, σ) � δ(q1, σ

′), then
prefer σ; if δ(q1, σ

′) � δ(q1, σ), then prefer σ′; and if δ(q1, σ) = δ(q1, σ
′), then

1 Here max and min are defined with respect to the given order  on states.
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postpone the decision and compare σ and σ′ for state q2, the next best state
with respect to#. Continue until one action is found to be preferred or until all
states in Q have been exhausted (in which case you declare indifference).

Proposition 2. Outcome-dominance does not imply casewise-dominance, nor
does casewise-dominance imply outcome-dominance.

Proof (sketch). To see this, check that casewise-lexicographic orderings violate
outcome-dominance and the max-min ordering violates casewise-dominance. ��

Definition 8. An action ranking function satisfies outcome-relevance if
σ ∼Q σ′ whenever δ(σ,Q) = δ(σ′, Q).

That is, outcome-relevance says that we should be indifferent between any two
actions with identical sets of reachable states (given our beliefs regarding the
current state). Intuitively speaking, outcome-relevance is much weaker a condi-
tion than outcome-dominance, but we note that technically the latter does not
imply the former. The reason is that outcome-dominance does not prescribe how
to rank two actions that produce the same outcome set.

5.2 Outcome-Based Desiderata and Ranking Sets of Objects

Our next result shows that we are dealing with a framework that is at least as
expressive as the classical framework for ranking sets of objects [3].2 Consider a
problem of the latter kind, with m objects. To embed this into an action-ranking
problem, we will show how to construct a scenario with a set Q of m states
(corresponding to the m objects) and a set Σ of 2m−1 actions (corresponding
to the 2m−1 nonempty sets of objects), where for every possible nonempty set
Q ⊆ Q of states there exists an action σ ∈ Σ such that Q is equal to the set of
plausible outcomes associated with σ.3

Proposition 3. For any set Q of states, we can construct a set Σ of actions
and a state transition function δ such that for every nonempty set Q ⊆ Q there
exists exactly one action σ ∈ Σ with δ(σ,Q) = Q.

Proof. Let Q be an arbitrary set of states with |Q| = m. Define Σ := Π(Q), i.e.,
every action is associated with a nonempty set of states. Fix an arbitrary order
on Q so that min(Q) is well-defined for every set Q ∈ Π(Q). That is, min(σ) ∈ σ
for every action σ. Now define a transition function δ as follows:

δ(q, σ) =

{
q if q ∈ σ
min(σ) otherwise

Now suppose our agent considers the entire set Q to be the set of plausible
states. Then, given our definition of δ, after executing action σ the states she

2 At this point we shall assume familiarity with the standard model used in the relevant
literature [3].

3 For our specific construction, this will be the case when the set of states considered
to be plausible as current states is the full set Q.
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will consider possible outcomes are precisely the states in the set corresponding
to σ. That is, δ(σ,Q) = σ. As every nonempty set Q ⊆ Q is in fact equal to
some action σ, we are done. ��

The interest of this result stems from the fact that any of the impossibility
results about satisfying certain combinations of desiderata known for ranking
sets of objects [14,3,11] are now inherited by our model. To be sure, this is true
only if we allow for arbitrary transition functions. An interesting direction for
future work would be to investigate to what extent more positive results are
attainable when we limit, for instance, the number of distinct follow-up states
any given action may give rise to.

5.3 Impossibility of Satisfying Both Kinds of Desiderata

Our final result shows that, maybe somewhat surprisingly, casewise-dominance
(which we suggested to be highly desirable) is in fact incompatible with the
weakest possible outcome-related requirement:

Proposition 4. There exists no action ranking function that satisfies both
casewise-dominance and outcome-relevance.

Proof. Consider a scenario with three sates and three actions: Q = {A,B,C}
and Σ = {a, b, c}. Suppose our agent consider all three states plausible and has
the preference order A � B � C. Furthermore, suppose the definition of the
transition function δ is given by the following figure:

A B C
a c

a, b, c b a, b, c

Now, for the sake of contradiction, let us try to construct an action ranking
function producing the weak order �Q for this scenario. We can derive the
following relative rankings of actions:

– a �Q b. This follows from casewise-dominance: if the current state is A or
C, then actions a and b have the same effect; if the current state is B, then
a will result in A, while b will only result in B.

– b �Q c. This also follows from casewise-dominance: if the current state is A
or C, then actions b and c have the same effect; if the current state is B,
then b will result in B, while c will only result in C.

– a ∼Q c. This, finally, follows from outcome-relevance, given that we have
δ(a,Q) = δ(c,Q) = {A,C}.

But there can be no weak order �Q that satisfies all three constraints, as the
first two constraints entail that a should be strictly preferred to c, while the
third requires that they should be equally preferred. ��

It is not too hard to see that this impossibility result extends to the natural
adaptations of our desiderata to action choice functions.
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6 Conclusion

We have introduced a simple model for voting under uncertainty and demon-
strated its interest through three paradoxes, i.e., situations that show how certain
seemingly reasonable choices in that model can lead to unexpected and undesir-
able outcomes. We have also seen that certain components of the model already
give rise to interesting questions. Specifically, we have discussed the problem of
aggregating several sets of plausible states into a single such set and we have
discussed how to rank available actions when given a single set of plausible states
and a single preference order. Finally, while we believe that the main contribu-
tion of this paper is of a conceptual nature, we have also established some basic
technical results regarding the aforementioned components of the model.

But we have not yet answered our initial question: how should we make a
decision when voting on actions with uncertain effects?

Of course, as for standard voting (without uncertainty), we cannot expect
a definitive answer to this question: no method of aggregation will satisfy all
desiderata that one might wish to impose. Still, our results and discussion above
suggest at least some tentative guidelines for best practices. First, while full
integration of uncertainty resolution and preference aggregation is desirable in
principle, given our current understanding of the problem domain, the best prag-
matic approach we can recommend is to first aggregate beliefs and preferences
in isolation, and to then integrate the collective beliefs and the collective pref-
erences thus obtained into a decision regarding the action to take. Second, for
each of the three phases of this process, we can make some recommendations:

– Uncertainty resolution: To avoid the Paradox of Early Collective Uncertainty
Resolution, uncertainty resolution should not be overly aggressive, i.e., we
should not aim at excluding too many possible states. In case the agents
are known to report knowledge (rather than mere belief) regarding the cur-
rent state, the intersection rule is the only reasonable choice. Otherwise, the
mean-based rule promises to offer a good compromise.

– Preference aggregation: It is advisable to use a social welfare function (re-
turning a collective preference order) rather than just a voting rule (return-
ing one or several top states) at this stage, so as to be able to report more
information to the next stage. Preference aggregation is subject to the well-
understood challenges of social choice, but, e.g., the Kemeny rule is often re-
garded as an aggregator that makes a good trade-off between desiderata [10],
and it may also be a good compromise in our context.

– Integration: Finally, we have to integrate the collective beliefs and the collec-
tive preference order into a final decision regarding the action to choose. This
corresponds to the single-agent case analysed in Section 5. Here a case-based
approach appears superior to an outcome-based approach. For instance, we
could use a casewise-lexicographic rule. The “salience order” # used to ini-
tialise this rule could even refer back to the full profile and favour states
proposed by larger numbers of individuals.
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Abstract. In collective decision making, where a voting rule is used to take a
collective decision among a group of agents, manipulation by one or more agents
is usually considered negative behavior to be avoided, or at least to be made
computationally difficult for the agents to perform. However, there are scenarios
in which a restricted form of manipulation can instead be beneficial. In this pa-
per we consider the iterative version of several voting rules, where at each step
one agent is allowed to manipulate by modifying his ballot according to a set
of restricted manipulation moves which are computationally easy and require lit-
tle information to be performed. We prove convergence of iterative voting rules
when restricted manipulation is allowed, and we present experiments showing
that iterative restricted manipulation yields a positive increase in the Condorcet
efficiency and Borda score for a number of standard voting rules.

1 Introduction

In multi-agent systems often agents need to take a collective decision. A voting rule can
be used to decide which decision to take, mapping the agents’ preferences over the pos-
sible candidate decisions into a winning decision for the collection of agents. In these
kind of scenarios, it may be desirable that agents do not have any incentive to manipu-
late, that is, to misreport their preferences in order to influence the result of the voting
rule in their favor. Indeed, manipulation is usually seen as bad behavior from an agent,
to be avoided or at least to be made computationally difficult to accomplish. While we
know that every voting rule is manipulable when no domain restriction is imposed on
the agents’ preferences (Gibbard, 1973; Satterthwaite, 1975), we can at least choose a
voting rule that is computationally difficult to manipulate for single agents or coalitions.

In this paper we consider a different setting, in which instead manipulation is allowed
in a fair way. More precisely, agents express their preferences over the set of possible
decisions and the voting rule selects the current winner as in the usual case. However,
this is just a temporary winner, since at this point a single agent may decide to manip-
ulate, i.e., to change her preference if by doing so the result changes in her favor. The
process repeats with a new agent manipulating until we eventually reach a convergence
state, i.e., a profile where no single agent can get a better result by manipulating. We call
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such a process iterative voting. In this scenario, manipulation can be seen as a way to
achieve consensus, to give every agent a chance to vote strategically (a sort of fairness),
and to account for inter-agent influence over time.

There are two prototypical situations in which iterative manipulation takes place. The
first example is represented by the response of an electorate to a series of information
polls about the result of a political election. At each step individuals may realize that
their favorite candidate does not have chances to win and report a different preference
in the subsequent poll. The second example is Doodle,1 a very popular on-line system
to select a time slot for a meeting. In Doodle, each participant can approve as many
time slots as she wants, and the winning time slot is the one with the largest number
of approvals. At any point, each participant can modify her vote in order to get a better
result, and this can go on for several steps.

Iterative voting has been the subject of numerous publications in recent years. Previ-
ous work has focused on iterating the plurality rule (Meir et al., 2010), on the problem
of convergence for several voting rules (Lev and Rosenschein, 2012), and on the con-
vergence of plurality decisions between multiple agents (Airiau and Endriss, 2009). Lev
and Rosenschein (2012) showed that, if we allow agents to manipulate in any way they
want (i.e., to provide their best response to the current profile), then the iterative ver-
sion of most voting rules do not converge. Therefore, an interesting problem is to seek
restrictions on the manipulation moves to guarantee convergence of the associated iter-
ative rule. Restricted manipulation moves are good not only for convergence, but also
because they can be easier to accomplish for the manipulating agent. In fact, contrarily
to what we aim for in classical voting scenarios, here we do not want manipulation to be
computationally difficult to achieve. It is actually desirable that the manipulation move
be easy to compute while not requiring too much information for its computation.

An example of a restricted manipulation move is called k-pragmatists in Reijngoud
and Endriss (2012): a k-pragmatist just needs to know the top k candidates in the col-
lective candidate order, and will move the most preferred of those candidates to the
top position of her preference. To compute this move, a k-pragmatist needs very little
information (just the top k current candidates), and with this information it is compu-
tationally easy to perform the move. This move assures convergence of all positional
scoring rules, Copeland, and Maximin, with linear tie-breaking. Note that each agent
can apply this manipulation rule only once (since the top k candidates are always the
same), and this is the main reason for convergence.

In this paper we introduce two restricted manipulation moves within the scenario of
iterative voting and we analyze some of their theoretical and practical properties. Both
manipulation moves we consider are polynomial to compute and require little informa-
tion to be used. We show that convergence is guaranteed under both moves for those
rules we consider, except for STV for which we only have experimental evidence of
convergence. Moreover, we show that if a voting rule satisfies some axiomatic prop-
erties, such as Condorcet consistency or unanimity, then its iterative version will also
satisfy the same properties as well. We then perform an experimental analysis of four
restrictions on the set of manipulation strategies. For voting rules that are not Condorcet
consistent, we test whether their Condorcet efficiency (that is, the probability to elect

1 http://doodle.com/

http://doodle.com/
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the Condorcet winner) improves by adopting the iterative versions. The second param-
eter that we test is the Borda score of the winner in the truthful profile. Our results show
that, with the exception of the Borda rule, both parameters never decrease in iteration,
and a significant increase can be observed when the number of candidates is higher than
the number of voters, as it is the case in a typical Doodle poll.

The paper is organized as follows. In the first section we introduce the basic defini-
tions of iterative voting and we define two new restricted manipulation moves. The sec-
ond section contains theoretical results on convergence and preservation of axiomatic
properties, and in the third section we present our experimental evaluation of restricted
iterative voting. The last section contains our conclusions and points at some directions
for future research.

2 Background Notions

In this section we recall the basic notions of social choice theory that we shall use in this
paper, we present the setting of iterative voting, and we define three notions of restricted
manipulation moves that agents can perform.

2.1 Voting Rules

Let X be a finite set of m candidates and I be a finite set of n individuals. We assume
individuals have preferences pi over candidates in X in the form of strict linear orders,
i.e., transitive, anti-symmetric and complete binary relations. Individuals express their
preferences in form of a ballot bi, which we also assume is a linear order over X , and a
profile b = (b1, . . . , bn) is defined by the choice of a ballot for each of the individuals.
A (non-resolute) voting rule F associates with every profile b = (b1, . . . , bn) a non-
empty subset of winning candidatesF (b) ∈ 2X \∅. There is a wide collection of voting
rules that have been defined in the literature (see, e.g., Brams and Fishburn, 2002) and
in this paper we focus on the following definitions:

Positional scoring rules (PSR): Let (s1, . . . , sm) be a scoring vector such that s1 > sm
and s1 ≥ · · · ≥ sm. If a voter ranks candidate c at j-th position in her ballot, this
gives sj points to the candidate. The candidates with the highest score win. We
focus on four particular PSRs: Plurality with scoring vector (1, 0, . . . , 0), veto with
vector (1, . . . , 1, 0), 2-approval with vector (1, 1, 0, . . . , 0), 3-approval with vector
(1, 1, 1, 0, . . . , 0), and Borda with vector (m− 1,m− 2, . . . , 0).

Copeland: The score of candidate c is the number of pairwise comparisons she wins
(i.e., contests between c and another candidate a such that there is a majority of
voters preferring c to a) minus the number of pairwise comparisons she loses. The
candidates with the highest score win.

Maximin: The score of a candidate c is the smallest number of voters preferring it in
any pairwise comparison. The candidates with the highest score win.

Single Transferable Vote (STV): At the first round the candidate that is ranked first by
the fewest number of voters gets eliminated (ties are broken following a predeter-
mined order). Votes initially given to the eliminated candidate are then transferred
to the candidate that comes immediately after in the individual preferences. This
process is iterated until one alternative is ranked first by a majority of voters.
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With the exception of STV, all rules considered thus far are non-resolute, i.e., they
associate a set of winning candidates with every profile of preferences. A tie-breaking
rule is then used to eliminate ties in the outcome. In this paper we focus on linear tie-
breaking: the set X of candidates is ordered by ≺X , and in case of ties the alternative
ranked highest by ≺X is chosen as the unique outcome. Other forms of tie-breaking
are possible, e.g., a random choice of a candidate from the winning set. The issue of
tie-breaking has been shown to be crucial to ensure convergence of the iterative version
of a voting rule (Lev and Rosenschein, 2012).

2.2 Strategic Manipulation and Iterative Voting

A classical problem studied in voting theory is that of manipulation: do individuals have
incentive to misreport their truthful preferences, in order to force a candidate they pre-
fer as winner of the election? The celebrated Gibbard-Satterthwaite Theorem (Gibbard,
1973; Satterthwaite, 1975) showed that under very natural conditions all voting rules
can be manipulated. Following this finding, a considerable amount of work has been
spent on devising conditions to avoid manipulation, e.g., in the form of restrictions on
individual preferences or in the form of computational barriers that make the calcu-
lation of manipulation strategies too hard for the agents (Bartholdi and Orlin, 1991;
Faliszewski and Procaccia, 2010). In this paper we take a different stance on manipula-
tion: we consider the fact that individuals are allowed to change their preferences as a
positive aspect of the voting process, that may eventually lead to a better result after a
sufficient number of steps.

We consider a sequence of repeated elections with individuals manipulating one at a
time at each step. The iteration process starts at b0 (which we shall refer to as the truth-
ful profile) and continues to b1, . . . ,bk, . . . . A turn function τ identifies one single
individual ik that is allowed to manipulate at step k, while all other individual bal-
lots remain unchanged (e.g., τ follows the order in which individuals are given)2. The
individual manipulator uses the best response strategy: she changes her full ballot by
selecting the linear order which results in the best possible outcome based on her truth-
ful preference. In case the result of the election cannot be changed to a better candidate
for the manipulator, we say that the individual does not have incentive to manipulate.
The iterative process converges if there exists a k0 such that no individual has incentive
to manipulate after k0 steps of iteration.

The setting of iterative voting was first introduced and studied by Meir et al. (2010)
for the case of the plurality rule, and expanded by Lev and Rosenschein (2012). In their
work, the authors describe the iterated election process as a voting game, in which con-
vergence of the iterative process corresponds to reaching a Nash equilibria of the game.
They show that convergence is rarely guaranteed with most voting rules under consid-
eration, and that this property is highly dependent on the tie-breaking rule under con-
sideration. For instance, iterative plurality always converges with any tie-breaking rule,
while the iterative version of PSRs and Maximin do not always converge. The following

2 Formally, a turn function takes as input the history of moves that have been played at step k,
i.e., the sequence of profiles b0 . . .bk−1 and outputs an individual in I. A turn function is
strongly related to the notion of scheduler in weakly acyclic games (Apt and Simon, 2012).
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example shows that the iterative version of the Copeland rule does not converge even if
we choose a linear tie-breaking rule:

Example 1. Let there be two voters and three candidates, with a � b � c as tie-breaking
order. The initial profile b0 has c > b > a as the preference of voter 1 and a > c > b for
the voter 2. Candidate c wins in pairwise comparison with b, and no other candidate win
any other pairwise comparison. Thus, the winner using the Copeland rule is c. Voter 2
has now an incentive to change her preferences to a > b > c, in which case by the tie-
breaking order the winner is a, which is preferred by voter 2 in her truthful preference.
Now voter 1 is unhappy, and changes her ballot to b > c > a to force candidate b as the
winner. This results in an incentive for voter 2 to change her ballot to a > c > b, again
forcing a as winner. Finally, voter 1 changes again her ballot to c > b > a to obtain c as
winner, moving back to the initial profile and creating a cycle of iterated manipulation.

2.3 Restricted Manipulation Moves

Given that convergence is not guaranteed when voters manipulate choosing their best
response, an interesting problem is to devise suitable restrictions on the set of manipu-
lation strategies available to the agents in order to obtain convergence. Initial work on
this topic was done by Reijngoud and Endriss (2012). In this section we review their
definition and we introduce two novel notions of restricted manipulation. Let bk be the
current profile at step k, b0 be the initial truthful profile, and F be a voting rule. Assume
that τ(k) = i.

k-pragmatist (Reijngoud and Endriss, 2012): the manipulator i moves to the top of her
reported ballot the most preferred candidate following b0i among those that scored
in the top k positions.3

M1: the manipulator i moves the second-best candidate in b0i to the top of her reported
ballot bk+1

i , unless the current winnerw = F (bk) is already her best or second-best
candidate in b0i .

M2: the manipulator i moves the most preferred candidate in b0i which is above
w = F (bk) in bki to the top of her reported ballot bk+1

i , among those that can be-
come the new winner of the election.

Under the k-pragmatist restriction voters are allowed to move to the top of their re-
ported ballot the individual which they prefer amongst the top k candidates ranked
by F . M1 allows only a very simple move: switch the first and second candidate in the
manipulator’s ballot unless she is already satisfied, i.e., in case the current winner is
ranked first or second in her truthful ballot. M2 is more complex: the manipulator se-
lects those candidates that she prefers to the current winner in her current ballot at step
k; then, starting from the most preferred one in the truthful ballot, she tries to put such
candidate on the top of her current ballot and computes the outcome of the election; the
first candidate which succeeds in becoming the new winner of the manipulated election
is the one chosen for the top position of her reported ballot.

3 Note that all voting rules considered in this paper can be easily extended to output a ranking
of the candidates rather than just a single winner.
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While the choice of these restrictions may at first seem arbitrary, we believe they rep-
resent three basic prototypes of simple manipulation strategies for agents with bounded
computational capabilities and limited access to information. Indeed, when evaluating
restrictions on the set of manipulation moves we followed three criteria: (i) the con-
vergence of the iterative voting rule associated with the restriction, (ii) the information
to be provided to voters for computing their strategy, and (iii) the computational com-
plexity of computing the manipulation move at every step. An ideal restriction always
guarantees convergence, requires as little information as possible, and is computation-
ally easy to compute. Reijngoud and Endriss (2012) show convergence for PSRs using
the k-pragmatist restriction, and we shall investigate convergence results for M1 and
M2 in the following section. Let us move to the other two parameters: on the one hand,
M1 requires as little information as possible to be computed, i.e., only the winner of
the current election, and is also very easy to compute. The k-pragmatist restriction has
good properties: it is easy to compute, and the information required to compute the best
strategy is just the set of candidates which are ranked in the top k positions. M2 also
requires little information: the candidates’ final score in case of scoring rules, the ma-
jority graph for Copeland and Maximin. Instead, in the case of STV the full profile is
required. From the point of view of the manipulator, M2 is computationally easy (i.e.,
polynomial) to perform.

We conclude by defining the iterative version of a voting rule depending on the dif-
ferent assumptions we can make on the set of manipulation moves:

Definition 1. Let F be a voting rule and M a restriction on manipulation moves.
FM,τ associates with every profile b the outcome of the iteration of F using turn func-
tion τ and manipulation moves in M if this converges, and ↑ otherwise.

3 Convergence and Axiomatic Properties

In this section we prove that the iterative versions of PSR, Maximin and Copeland
converge when using our two new restrictions on the manipulation moves. We also
analyze, for a number of axiomatic properties, the behavior of the iterative version of a
voting rule with respect to the properties of the non-iterative version.

Theorem 1. FM1,τ converges for every voting rule F and turn function τ .

Proof. The proof of this statement is straightforward from our definitions. The iteration
process starts at the truthful profile b0, and each agent is allowed to switch the top can-
didate with the one in second position. The iteration process stops after at most n steps.

Theorem 2. FM2,τ converges for every turn function τ if F is a PSR, the Copeland
rule or the Maximin rule.

Proof. The winner of an election using a PSR, Copeland or Maximin is defined as the
candidate maximizing a certain score (or with maximal score and higher rank in the tie-
breaking order). Since the maximal score of a candidate is bounded, it is sufficient to
show that the score of the winner increases at every iteration step (or, in case the score
remains constant that the position of the winner in the tie-breaking order increases) to
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show that the iterative process converges. Let us start with PSR. Recall that the score
of a candidate c under PSR is

∑
i si where si is the score given by the position of c in

ballot bi. Using M2, the manipulator moves to the top a candidate which lies above the
current winner c. Thus, the position – and hence the score – of c remains unchanged, and
the new winner must have a strictly higher score (or a better position in the tie-breaking
order) than the previous one. The case of Copeland and Maximin can be solved in a
similar fashion: it is sufficient to observe that the relative position of the current winner
c with all other candidates (and thus also its score) remain unchanged when ballots
are manipulated using M2. Thus, the Copeland score and the Maximin score of a new
winner must by higher than that of c (or the new winner must be placed higher in the
tie-breaking order).

This proof generalizes to show the convergence of the M2-iterative version of any vot-
ing rule which outputs as winners those candidates maximizing a given notion of score.
While currently we do not have a proof of convergence for STV, we observed experi-
mentally that its iteration always terminates on profiles with a Condorcet winner when
a suitable turn function, which is described in the following section, is used.

Voting rules are traditionally studied using axiomatic properties, and we can inquire
whether these properties extend from a voting rule to its iterative version. We refer
to the literature for an explanation of these properties (see, e.g., Taylor, 2005). Let
us call FM

t the iterative version of voting rule F after t iteration steps (we omit the
superscript τ , indicating that these results hold for every turn function). We say that a
restricted manipulation move M preserves a given axiom if whenever a voting rule F
satisfies the axiom then also FM

t does satisfy it for all t.

Theorem 3. M1 and M2 preserve unanimity.

Proof. Assume that the iteration process starts at a unanimous profile b in which candi-
date c is at top position of all individual preferences. If F is unanimous, then F (b) = c,
and no individual has incentives to manipulate either using M1 or M2. Thus, iteration
stops at step 1 and FM1

t (b) = c and FM2
t (b) = c, satisfying the axiom of unanimity.

Theorem 4. M1 and M2 preserve Condorcet consistency.

Proof. Let c be the Condorcet winner of a profile b. If F is Condorcet-consistent then
F (b) = c. As previously observed, when individuals manipulate using either M1 or
M2 the relative position of the current winner with all other candidates does not change,
since the manipulation only involves candidates that lie above the current winner in the
individual preferences. Thus c remains the Condorcet winner in all iteration steps bk.
Since FM1

k (b) = F (bk) and F is Condorcet-consistent, we have that FM1
k (b) = c and

thus FM1
k is Condorcet consistent. Similarly for M2.

Other properties that transfer from a voting rule to its iterative version are neutrality and
anonymity (supposing the turn function satisfies an appropriate version of neutrality
and anonymity). The Pareto-condition does not transfer to the iterative version, as can
be shown by adapting an example by Reijngoud and Endriss (2012, Example 3).
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4 Experimental Evaluation of Restricted Manipulation Moves

In this section we evaluate four restrictions on the set of manipulation moves, namely
2 and 3-pragmatists, M1 and M2, under two important aspects. First, we measure
whether the restricted iterative version of a voting rule has a higher Condorcet effi-
ciency than the initial voting rule, i.e., whether the probability that a Condorcet winner
(if it exists) gets elected is higher for the iterative rather than non-iterative rule. Sec-
ond, we observe the variation of the Borda score of the winner, i.e., we compare the
average position of the current winner in the initial truthful profile at convergence with
the value of the same parameter in the initial profile. We focus on four voting rules:
plurality, STV, Borda, 2 and 3-approval. Our findings show that both parameters never
decrease by allowing iterated restricted manipulation, and that a substantial increase can
be observed in case the number of candidates is higher than the number of voters (e.g.,
in a Doodle poll). We conclude the section by reporting on some initial experiments
with real-world datasets.

4.1 Experimental Setting

We generated profiles using the Polya-Eggenberger urn model (see, e.g., Berg, 1985).
Individual ballots are extracted from an urn initially containing all m! possible ballots,
i.e., all linear orders over m candidates, and each time we draw a vote from the urn we
put it back with a additional copies of the same vote. In this way we generate profiles
with correlated preferences and we control the correlation ratio with the parameter a. In
our experiment we tested three different settings: the impartial culture assumption (IC)
when a = 0, the UM10 with 10%-correlation when a = m!

9 , and the UM50 with 50%-
correlation when a = m!. We generated 10.000 profiles for each experiment, restricting
to profiles with a Condorcet winner when testing the Condorcet efficiency.

Our results are obtained using a program implemented in Java ver.1.6.0. We model
two prototypical examples of iterative voting: in the electoral simulation we set the
number of candidates to m = 5 and the number of voters to n = 500 to model situations
in which a large population needs to decide on a small set of candidates. In the Doodle
simulation we set the number of candidates to m = 25 and the number of voters to
n = 10 to model a small group of people deciding over a number of time slots. In both
cases we performed additional experiments varying the number of voters and candidates
but keeping their ratio fixed without observing significant variation in the results.

The turn function used in our experiments associates with each voter i a dissatis-
faction index di(k), which increases by one point for each iteration step in which the
individual has an incentive to manipulate but is not allowed to do so by the turn func-
tion. At iteration step k the individual that has the highest dissatisfaction index is al-
lowed to move (in the first step, and in case of ties, the turn follows the initial order
in which voters are given). We also performed initial experiments using a sequential
turn function which assigns turns depending on the order in which individuals are given
obtaining similar results to those shown below (with the exception of STV, which does
not converge using the sequential turn function).

It is interesting to observe that the higher the correlation in the profile the smaller
the number of profiles in which iteration takes place (with the notable exception of the
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Borda rule). In Figure 1 it is shown, for the Doodle simulation, the percentage of profiles
in which iteration takes place for the three different correlation ratios considered. In the
case of plurality, convergence is reached after an average of 3 steps and a maximal of 9
steps. The figures for the other voting rules are similar.

Fig. 1. Number of profiles with iteration compared to the correlation ratio

4.2 Condorcet Efficiency

Figures 2 and 3 compare the four restrictions on manipulation moves with respect to the
Condorcet efficiency of the iterative version of the five voting rules under consideration,
respectively for the Doodle simulation and the electoral simulation. In both experiments
the correlation ratio is set at 10%.

Fig. 2. Doodle experiment with UM10: Condorcet efficiency
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Except for the case of the Borda rule, the Condorcet efficiency of the iterative ver-
sion of a voting rule always improves with respect to the non-iterative version, and the
growth is consistently higher when voters manipulate the election using M2 rather than
M1. Let us also stress that while the increase in Condorcet efficiency using M1 is mini-
mal, it is still surprising that such a simple move can result in a better performance than
the original version of the voting rule. The 2-pragmatist restriction performs quite well
with the plurality rule in both experiments. STV has the highest performance of all vot-
ing rules considered thus far with respect to Condorcet efficiency and this performance
is amplified by the use of iterated manipulation, resulting in the election of a Condorcet
winner in almost 95 percent of the cases. As remarked earlier, we observed convergence
in all profiles considered. The increase in Condorcet efficiency is more noticeable in the
Doodle simulation rather than in the electoral situation. Thus, when the number of indi-
viduals is considerably higher than the number of alternatives the iterative process leads
to a minimal increase in Condorcet efficiency.

Fig. 3. Electoral experiment with UM10: Condorcet efficiency

We also run the same two experiments with different correlation ratios: Using the
IC assumption the increase in Condorcet efficiency is more significant, while with the
UM50 assumption the results are much less perturbed by iteration. This should not
come as a surprise, given that the amount of profiles in which iteration takes place
decrease rapidly with the growth of the correlation ratio.

4.3 Borda Score

The second parameter we used to assess the performance of restricted manipulation
moves is known in the literature as the Borda score. Given a candidate c, let pi be the
position of c in the initial preference b0i of voter i (from bottom to top, i.e., if a candidate
is ranked first she gets m − 1 points, while if she is ranked last she gets 0 points). We
compute the Borda score of c as

∑n
i=1 pi.

For each voting rule and each restriction on the set of manipulation moves we com-
pared the score of the winner of the non-iterative version with that of the winner of
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the iterative version after convergence. Since the Borda rule elects by definition those
candidates with the highest Borda score, we did not evaluate the iterative version of
Borda with respect to this parameter. Our results showed that in both the Doodle and
the electoral simulation with UM10 the Borda score increases minimally if we allow
for iterated restricted manipulation, resulting in a chart similar to that in Figure 3. The
best results are in this case obtained by using M2 and 2-pragmatists restriction with
2 and 3-approval. As in the previous section, by decreasing the correlation of the gener-
ated preferences we obtain a more significant increase in the Borda score after iteration.

4.4 Real-World Datasets

We performed initial experiments using data from Preflib (Mattei and Walsh, 2013),
a library of preference datasets collected from various sources. In order to mimic the
original preference distribution, we generated 10.000 profile with 5 candidates and 500
voters drawing votes with impartial culture assumption from two original datasets: the
Netflix Prize Data (Bennett and Lanning, 2007) and the Skating Data. What we ob-
served is that preferences contained in such datasets are quite correlated, with iteration
taking place in just a handful of profiles (in the order of 5–10 per 10.000 profiles).
Experiments run on data from political elections may have a chance to lead to more
significant results, once our setting has been adapted to the case of partial orders over
candidates, as required by the electoral datasets available at present state.

5 Conclusions and Future Work

This paper studies the effect of iteration on classical voting rules by allowing individuals
to manipulate the outcome of the election using a restricted set of manipulation moves.
We provided two new definitions of manipulation moves M1 and M2 and showed that
they lead to convergence for all voting rules considered (cf. Theorem 1 and 2) except
for STV. We showed that a number of axiomatic properties, such as unanimity and Con-
dorcet consistency, are preserved in the iteration process. We evaluated experimentally
the performance of our restricted manipulation moves with respect to the Condorcet
efficiency of the iterative version of a voting rule as well as the Borda score of the win-
ner in the initial truthful profile. We performed two simulations based on prototypical
examples of iterated manipulation: the first simulation with the number of candidates
smaller but comparable to the number of voters to model scheduling with Doodle, and
the second with the number of voters much higher than that of candidates to model iter-
ated polls before a political election. With the exception of the Borda rule, we showed
that restricted manipulation in iterative voting yields a positive increase in both the Con-
dorcet efficiency and Borda score and that the best performance is obtained when the
number of candidates is higher than the number of individuals.

In future work we plan to analyze different versions of manipulation moves, and to
compare their performance with that of the existing definitions. By adapting the frame-
work defined in this paper to account for preferences expressed as partial orders it will
also be possible to exploit preference data on real-world elections, to assess with more
accuracy the effects of iterated restricted manipulation on more realistic distributions of
preferences.
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Abstract. Recent advances in planning techniques for partially observ-
able Markov decision processes have focused on online search techniques
and offline point-based value iteration. While these techniques allow
practitioners to obtain policies for fairly large problems, they assume
that a non-negligible amount of computation can be done between each
decision point. In contrast, the recent proliferation of mobile and embed-
ded devices has lead to a surge of applications that could benefit from
state of the art planning techniques if they can operate under severe
constraints on computational resources. To that effect, we describe two
techniques to compile policies into controllers that can be executed by
a mere table lookup at each decision point. The first approach compiles
policies induced by a set of alpha vectors (such as those obtained by
point-based techniques) into approximately equivalent controllers, while
the second approach performs a simulation to compile arbitrary poli-
cies into approximately equivalent controllers. We also describe an ap-
proach to compress controllers by removing redundant and dominated
nodes, often yielding smaller and yet better controllers. The compilation
and compression techniques are demonstrated on benchmark problems
as well as a mobile application to help Alzheimer patients to way-find.

Keywords: Energy-efficiency, Finite-state Controllers, Knowledge com-
pilation, Markov decision processes, Mobile Applications, POMDPs.

1 Introduction

Partially observable Markov decision processes (POMDPs) provide a natural
framework for sequential decision making in partially observable domains.
Tremendous progress has been made in recent years to develop scalable plan-
ning techniques for POMDPs. Point-based value iteration methods for factored
and continuous domains can compute good value policies for a wide range of
real-world problems [1,2]. In addition, online resources can be used to perform
a search at run time to directly select the next action or refine a precomputed
policy [3,4].

In this work, we are motivated by an emerging class of applications that pose
new challenges for POMDP solvers. We consider monitoring and assistive ap-
plications that run on smart-phones, wearable systems or other mobile devices.
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While computational resources are rapidly increasing, energy consumption re-
mains an important bottleneck due to limited battery life. This is especially
important in monitoring and assistive applications that need to be continuously
running, but should be as power efficient as possible. For such applications, on-
line planning is not an option due to the high computational costs. Computed
policies that require online belief monitoring at execution time also consume
too much energy. While it is sometimes possible to offload computation through
cloud solutions, this requires a data connection, which may not always be avail-
able or stable, and which has a high battery consumption.

An effective solution can be found by noting that a POMDP policy can be
represented very simply using a finite state controller (FSC) [5], which only re-
quires simple table look-ups during execution. However, controller optimization
is notoriously difficult. The non-convex nature of the optimization makes it dif-
ficult for many approaches (e.g., gradient ascent [6], quadratically constrained
optimization [7], bounded policy iteration [8], expectation maximization [9]) to
reliably find the global optimum. An exhaustive search of the space of controllers
can avoid local optima, but is clearly intractable [10,11].

In this paper, we describe two novel techniques for compiling an existing
POMDP policy (as generated by a point-based method, for example) into a
finite state controller (Sec. 3). The first method requires a policy specified as
a set of α-vectors and witness belief points and constructs a FSC directly that
approximates the given policy. The second method needs only a simulation of
the policy, and builds a controller incrementally by building a policy tree and
then detecting equivalent conditional plans. We also describe a novel method for
compressing a FSC into an equivalent, but smaller, FSC by removing redundant
nodes (Sec. 4). We demonstrate our techniques on a set of large benchmark
POMDP problems (Sec. 5), and we use policies generated by two state-of-the-art
point-based techniques, namely GapMin [12] and SARSOP [13]. We show how
we can construct very compact controllers that are equivalent, and sometimes
better, than the policies they are derived from. We also demonstrate our methods
on a set of POMDPs that are used to provide mobile assistance for persons with
Alzheimer’s disease for way-finding.

2 Background

A partially observable Markov decision process (POMDP) is formally defined
by a tuple 〈S,A,O, T, Z,R, b0, γ〉 which includes a set S of states s, a set A of
actions a, a set O of observations o, a transition function T (s′, s, a) = Pr(s′|s, a),
an observation function Z(o, a, s′) = Pr(o|s′, a), a reward function R(s, a) ∈ /,
an initial belief b0(s) = Pr(s) and a discount factor 0 ≤ γ ≤ 1. We assume
that the planning horizon is infinite, although the proposed algorithms can be
modified easily for finite horizon problems. The goal is to find an optimal policy
that maximizes the discounted sum of rewards. A policy π : Ht → At can be
defined as a mapping from histories Ht ≡ A0 × O1 × ... × At−1 × Ot of past
actions and observations to actions At, however this definition is problematic for
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an infinite horizon since histories may be arbitrarily long. Two approaches are
often used to circumvent this issue: i) replace histories by finite length sufficient
statistics such as beliefs or ii) represent policies as finite state controllers, which
are mappings from cyclic histories to actions.

A belief b(s) is a distribution over states reflecting the decision maker’s belief
that the process may be in each state s. We can update a belief b after executing
a and observing o according to Bayes’ theorem:

bao(s′) ∝
∑
s

b(s) Pr(s′|s, a) Pr(o|s′, a) ∀s′ (1)

Given the initial belief b0 and a history ht = 〈a0, o1, ..., at−1, ot〉, we can compute
the belief bt at time step t by repeatedly applying the above equation for each
action-observation pair in the history. Hence, we can equivalently define policies
as mappings π : B → A from beliefs to actions. The value V π(b0) of policy
π when starting in b0 is the discounted sum of expected rewards V π(b0) =∑∞

t=0 γ
tR(bt, π(bt)) where R(b, a) =

∑
s b(s)R(s, a).

We can also consider policies represented by a finite state controller π =
〈N,φ, ψ〉, which is defined by a setN of nodes n, a mapping φ : N → A indicating
which action a to execute in each node n and a mapping ψ : N × O → N
indicating that the edge rooted at n and labeled by o should point to n′. A
controller is executed by alternating between executing the action φ(n) of the
current node n and moving to the next node ψ(n, o) by following the edge rooted
at n that is labeled with the current observation o. The value αn of the controller
when starting in n is an |S|-dimensional vector computed as follows:

αn(s) = R(s, φ(n)) + γ
∑
s′,o

Pr(s′|s, a) Pr(o|s′, a)αψ(n,o)(s
′) ∀n, s (2)

Policy optimization algorithms can be classified in two broad categories: i)
offline techniques that pre-compute a policy before the start of the execu-
tion [14,15,16] and ii) online techniques that perform all their computation at
run time by searching for the best action to execute after receiving each obser-
vation [3]. Online techniques can take advantage of the history so far to focus
their computation only on the current belief. When computational resources are
not constrained and there is sufficient time between decisions to search for the
next action to execute, online techniques can perform very well and can scale
to very large problems. In contrast, offline techniques do not scale as well, but
permit the deployment of POMDP policies on mobile and/or embedded devices
with severe resource constraints due to energy, memory or CPU limitations.

Among the offline techniques, we can further classify algorithms based on the
type of policies (belief mapping or finite state controller) that they produce.
Algorithms that produce belief mappings often exploit the fact that the value
V ∗ of an optimal policy satisfies Bellman’s equation:

V ∗(b) = max
a

∑
s

b(s)
[
R(s, a) + γ

∑
s′,o

Pr(s′|s, a) Pr(o|s′, a)V ∗(bao)
]
∀b (3)
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The continuous nature of the belief space prevents us from performing value it-
eration at all beliefs and therefore the important class of point-based techniques
performs point-based Bellman backups only at a finite set of beliefs [15]. An
approximation of the value function at all beliefs is obtained by computing the
gradient in addition to the value at each belief. This allows the formation of a set
of linear value functions that are often represented by α-vectors, similar to the
value functions of controller nodes. While the details of point-based value itera-
tion are not important for the rest of this paper (see [17] for more information),
what is important to know is that they produce a set Γ of 〈αi, bi, ai〉-tuples that
associate each αi with an action ai and a witness belief bi (i.e., belief for which
αi yields the highest value: αi(bi) ≥ αj(bi) ∀j where α(b) =

∑
s b(s)α(s)). The

policy π induced by Γ is obtained by computing

π(b) = abest where best = argmax
i

αi(b) (4)

Although point-based value iteration techniques compute the set Γ offline,
they still require a certain amount of computation at each decision point. The
belief must be updated after each action and observation according to Eq. 1
(complexity O(|S|2)) and the best α-vector must be identified according to Eq. 4
(complexity O(|S||Γ |)). This amount of computation may still be prohibitive
when S and Γ are large and there isn’t enough memory, time or energy.

Alternatively, the other group of offline techniques produces policies repre-
sented as finite state controllers [10]. Since the execution of a controller merely
consists of a table lookup, they are the most convenient type of policies for de-
ployment in resource constrained applications. Unfortunately, they do not scale
as well as point-based techniques and they often lack robustness due to local
optima issues. Instead of directly optimizing a finite state controller, in this pa-
per we propose two techniques to compile policies into approximately equivalent
controllers. This has the benefit that we can use existing scalable algorithms
such as point-based value iteration to quickly obtain a good policy. In addition,
the controller compilation allows those policies to be executed on devices that
are much more constrained.

3 Controller Compilation

Kaelbling et al. [5] observed that an optimal controller can be extracted from
an optimal value function. Unfortunately, the best value functions found by
state of the algorithms are approximate/suboptimal for most problems. Hansen
wrote “it is unclear how to construct suboptimal controllers from [such value
functions]” [18]. Hence, for the past 15 years, research has focused on directly
optimizing controllers. We propose two approaches to compile suboptimal poli-
cies into approximately equivalent controllers. The first approach is limited to
policies implicitly represented by sets of α-vectors as produced by point-based
value iteration techniques. The second approach works with arbitrary policies.
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3.1 Compiling Controllers from Alpha Vectors

As explained in Sec. 2, point-based value iteration techniques produce a set
Γ of 〈αi, bi, ai〉-tuples from which a belief mapping policy is extracted. Alg. 1
shows how to compile Γ into an approximately equivalent controller 〈N,φ, ψ〉.
We create a node ni for each vector αi (Line 4). Each node ni is labeled with
the action φ(ni) = ai associated with αi (Line 5). To determine where the
edge rooted at ni and labeled with o should point to, we update the witness
bi of belief according to Eq. 1 based on action ai and observation o. Let the
resulting belief be bai,o

i . We then find which α-vector has the highest value at
bai,o
i (Line 9) and assign the corresponding node to ψ(ni, o) (Line 10). The
complexity of this compilation technique is O(|Γ |2|O||S|2), however in practice
the dependence on |O| and |S| can often be reduced by exploiting sparsity. The
overall running time is typically a fraction of the time taken by point-based
value iteration to obtain Γ . The quality of the resulting controller varies. The
compilation technique ensures that the actions selected at the first two time steps
are identical to that of the policy induced by Γ . This can be observed by noting
that the action associated with the best α-vector is selected at the first two time
steps which correspond exactly to what would be done in a policy induced by
Γ . If the set of α-vectors in Γ corresponds to the optimal value function, then
the resulting controller will also be optimal. However, when the set of α-vectors
is suboptimal, which is the case most of the time, then actions selected after
the second time step may be different than those selected by the policy induced
by Γ , leading to a controller that may be better or worse. In the next section
we describe an approach that ensures that the resulting controller is at least as
good as the original policy in the limit.

Algorithm 1. Compilation of α-vectors
into an approximately equivalent con-
troller 〈N,φ, ψ〉
alpha2fsc(Γ )

1. Let Γ be a set of 〈αi, bi, ai〉-tuples
2. N ← ∅
3. for i = 1 to |Γ | do
4. N ← N ∪ {ni}
5. φ(ni) ← ai

6. for i = 1 to |Γ | do
7. for all o ∈ O do
8. if Pr(o|bi, ai) > 0 then
9. best ← argmaxj αj(b

ai,o
i )

10. ψ(ni, o) ← nbest

11. else
12. ψ(ni, o) ← ni

13. return 〈N,φ, ψ〉

Algorithm 2. Policy Tree Generation

policyTree(π, b, depth)

1. N ← ∅
2. j ← 1
3. queue ← {〈b, 0, j〉}
4. while ¬isEmpty(queue) do
5. 〈b, d, i〉 ← removeF irst(queue)
6. N ← N ∪ {ni}
7. φ(ni) ← π(b)
8. if d = depth then
9. ψ(ni, o) ← ∗ ∀o ∈ O
10. else
11. for all o ∈ O do
12. j ← j + 1
13. addLast(queue, 〈bφ(ni)o, d+1, j〉)
14. ψ(ni, o) ← nj

15. return 〈N,φ, ψ〉
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3.2 Compiling Controllers from Arbitrary Policies by Simulation

We describe an approach to compile arbitrary policies into approximately equiv-
alent controllers. The approach simulates the policy up to a certain depth and
ensures that the controller will execute the same actions up to that depth. In the
limit, with an infinite depth, we obtain a controller that matches the policy ex-
actly. Although, as we show in the experiments, we can often obtain a controller
that is at least as good by simulating up to a reasonable depth.

The approach works in two steps: i) first we generate a policy tree up to a
certain depth, then ii) we compress the policy tree into a controller by detecting
matching subtrees. Alg. 2 shows how to generate a policy tree up to a certain
depth by simulating the policy. Since simulation does not require the policy to
be in any format, the approach works with arbitrary policies. We just need to
generate the next action given the current observation at each time step, which
is always possible since this is how all policies are executed in practice. To be
concrete, Alg. 2 shows how to generate a policy tree for policies that are belief
mappings, but we could easily modify the algorithm to work with policies that
are represented as history mappings or any other type of mapping. The algorithm
generates a policy tree in breadth first order, which will become handy in the
compression step. Since leaves do not have edges, we set ψ(n, o) to ∗ for all edges
rooted at a leaf n (Line 9).

Fig. 1 shows the policy tree generated by Alg. 2 up to a depth of 5 for the
classic tiger problem [19]. In this problem there are three actions (listen, open-
right and open-left), two observations (tiger-right, tiger-left). Nodes are labeled
with actions and edges are labeled with observations. Nodes are also numbered
according to the breadth-first order in which they were generated.

In the second step, the policy tree is compressed into a controller by identi-
fying matching conditional plans. Each node of the policy tree is the root of a
conditional plan. Conditional plans rooted at each node are compared to con-
ditional plans rooted at previous nodes in the breadth-first order. When two
conditional plans match, we replace the node with highest breadth-first index
by the node with the lowest breadth-first index. Two conditional plans are said
to match when they select the same actions in each path up until a leaf is en-
countered. Hence, conditional plans with different depths can still match since
we stop the verification as soon as a leaf is encountered in a path. Alg. 3 shows
how to verify whether two conditional plans match. Alg. 4 uses this verification
procedure to prune nodes whose conditional plans match the conditional plan of
an earlier node in the breadth-first order. This process gives rise to a controller
that is often much smaller than the original policy tree and yet ensures that the
same actions are executed up to the depth of the original policy tree.

Fig. 2 shows again the policy tree for the tiger problem with additional dashed
edges indicating that the parent node is replaced by the child node due to match-
ing conditional plans. For instance, node 4 will be replaced by node 0 since their
conditional plans match. Fig. 3 shows the resulting reduced controller once all
node substitutions indicated by dashed edges in Fig. 2 are performed. Since
leaf nodes have a trivial one-step conditional plan and they are last in the
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Algorithm 3. Equivalent Condi-
tional Plans

equivalentCP(n1, n2, φ, ψ)

1. if φ(n1) �= φ(n2) then
2. return false
3. for all o ∈ O do
4. if ψ(n1, o) �= ∗ and ¬equiva-

lentCP(ψ(n1, o), ψ(n2, o), φ, ψ)
then

5. return false
6. return true

Algorithm 4. Compilation of arbitrary π
into approx. equivalent controller 〈N,φ, ψ〉
policy2fsc(π, b, depth)

1. 〈N, φ, ψ〉 ← policyTree(π, b, depth)
2. for all ni ∈ N in increasing index i do
3. for all nj ∈ N such that j < i do
4. if equivalentCP(ni, nj , φ, ψ) then
5. N ← N \ {ni, descendents(ni)}
6. for all n ∈ N, o ∈ O do
7. if ψ(n, o) = ni then
8. ψ(n, o) ← nj

9. return 〈N, φ, ψ〉

breadth-first order, they will be replaced by interior nodes as long as there is
an interior node with the same action. Since actions eventually repeat in a large
enough tree, the compilation procedure generally produces controllers without
leaves (i.e., all nodes have a full set of edges). The breadth-first order also ensures
that Alg. 3 terminates since in each pair of conditional plans that we compare,
the one rooted at the node with the highest index is necessarily a tree of finite
depth (i.e., no loop). In addition, when we replace the node with the highest
index we can delete the entire subtree below it since there is no way to reach
that subtree other than through the node that is being replaced. This pruning
greatly improves the running time. Finally, the breadth first order also helps to
produce a small controller since nodes are always replaced by nodes with a lower
index and therefore earlier in the tree.

The complexity of Alg. 4 is quadratic in the size of the policy tree. However,
due to the pruning of subtrees each time a node is replaced, we can show that
the complexity is really linear in the size of the policy tree times the size of the
reduced controller. The experiments show that the reduced controller is often
significantly smaller than the policy tree, yielding a substantial speed up. That
being said, the linear dependence on the size of the policy tree is still significant
since the size of policy trees is exponential in the depth (i.e., O(|O|depth)). We can
often reduce the base |O| of the exponential by exploiting sparsity or considering
only observations with a probability greater than some threshold.

4 Controller Compression

Once a policy is compiled to a controller, it often contains redundant or dom-
inated nodes. Redundant nodes often occur when some observations have zero
probability, leading to multiple conditional plans with the same value. Domi-
nated nodes often occur when the original policy is suboptimal and the compi-
lation process generates suboptimal conditional plans. We describe a technique
to compress a controller while ensuring that its value does not decrease and in
some cases it increases. The idea is to prune all nodes with α-vectors that are
dominated in value by other α-vectors. This approach was first used by Hansen
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Algorithm 5. FSC Compression

fscCompression(N,φ, ψ)

1. repeat
2. Eval controller by solving (2)
3. for each n1 ∈ N do
4. for each n2 ∈ N \ {n1} do
5. if αn1(s) ≤ αn2(s) ∀s then
6. N ← N \ {n1}
7. for all n ∈ N, o ∈ O do
8. if ψ(n, o) = n1 then
9. ψ(n, o) ← n2

10. break
11. if αn1(s) ≥ αn2(s) ∀s then
12. N ← N \ {n2}
13. for all n ∈ N, o ∈ O do
14. if ψ(n, o) = n2 then
15. ψ(n, o) ← n1

16. until N doesn’t change
17. return 〈N,φ, ψ〉

Fig. 3. Controller obtained by reducing a 5-
step policy tree according to Alg. 4 for the
classic tiger problem

in his policy iteration algorithm [14]. Below, Algorithm 5 describes how to re-
peatedly compress a controller until there are no dominated nodes. The approach
alternates between policy evaluation and node substitution. The evaluation step
computes the α-vector of each node by solving a system of linear equations.
Then the α-vector of each node is compared to the α-vectors of the other nodes.
When α1(s) ≤ α2(s) ∀s then n1 can be replaced by n2. Since the value of n2 is
at least as good as that of n1 in all states, then pruning n1 and replacing it by
n2 does not lower the value of the controller. The value will go up if there is an s
such that α2(s) > α1(s). The complexity of the policy evaluation step in Alg. 5
is O(|N |3|S|3|O|), however sparsity often allows to reduce the dependence on |S|
and |O|. The complexity of the pruning step is O(|N |2|S|). Overall, compression
time is a small fraction of compilation time.

5 Experiments

We evaluate our methods using policies computed by two state-of-the-art point-
based POMDP algorithms: GapMin [12] and SARSOP [13]. GapMin returns
〈αi, bi, ai〉-tuples and therefore we can compile its policies into finite-state con-
trollers using both of our methods. SARSOP was used to compute policies for
the largest POMDP benchmarks, however it returns only α-vectors, which is
sufficient to apply policy2fsc, but not alpha2fsc (witness beliefs are also needed,
but SARSOP’s interface does not expose them). The experiments are conducted
with some benchmark problems and a real-world POMDP for smart phones.
The running time of compilation algorithms—reported in the column ‘time’—
corresponds to the time of actual compilation. The time to compute initial poli-
cies before compilation can be found in the columns ’GapMin’ or ’SARSOP’
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Table 1. Compilation of GapMin policies using: (1) alpha2fsc applied to GapMin lower
bound alpha vectors. (2) policy2fsc applied to GapMin lower bound policy (GM-LB)
and (3) policy2fsc applied to GapMin upper bound policy (GM-UB).

POMDP GapMin method depth tree size nodes value time c
4x5x2.95 GM-lb=2.08 alpha2fsc 47(58) 2.08(2.08) 0.29 2
|S|=39, |A|=4 GM-ub=2.08 GM-LB 8 287 10(17) 2.08(1.85) 0.30 1
|O|=4, γ = 0.95 time=4.96s GM-UB 8 287 10(17) 2.08(1.85) 0.29 1

|lb|=58 B&B 5 2.02 639.9
|ub|=243 EM 10 2.01 ± 0.02 66.8

QCLP 10 1.74 ± 0.11 7.7
BPI 8 0.71 ± 0.09 0.72

aloha.10 GM-lb=533.4 alpha2fsc 137(158) 533.2(533.2) 11.5 1
|S|=30, |A|=9 GM-ub=544.1 GM-LB 11 29525 390(1116) 537.6(537.5) 83.6 2
|O|=3, γ = 0.999 time=5223s GM-UB 11 29525 402(1148) 537.6(537.6) 94.5 1

|lb|=158 B&B 10 529.0∗ 24h
|ub|=406 EM 40 534.8 ± 0.25 2739

QCLP 25 534.37 ± 0.52 99.2
BPI 5 112.4 ± 1.59 0.69

chainOfChains3 GM-lb=157 alpha2fsc 10 10 10(10) 157(157) 0.26 0
|S|=10, |A|=4 GM-ub=157 GM-LB 11 11 10(10) 157(157) 0.42 0
|O|=1, γ = 0.95 time=0.86s GM-UB 11 11 10(10) 157(157) 0.26 0

|lb|=10 B&B 10 157 1.69
|ub|=1 EM 10 0.17 ± 0.06 6.9

QCLP 10 0 ± 0 0.16
BPI 10 25.7 ± 0.77 4.25

cheese-taxi GM-lb=2.481 alpha2fsc 17(22) 2.476(2.476) 0.29 1
|S|=34, |A|=7 GM-ub=2.481 GM-LB 15 167 17(24) 2.476(2.476) 0.56 1
|O|=10, γ = 0.95 time=1.88s GM-UB 15 167 17(24) 2.476(2.476) 0.55 1

|lb|=22 B&B 10 -19.9∗ 24h
|ub|=13 EM 17 -12.16 ± 2.08 337.9

QCLP 17 -18.22 ± 1.77 227.4
BPI 16 -18.1 ± 0.39 7.18

lacasa2a GM-lb=6714.6 alpha2fsc 5(5) 6714.0(6714.0) 5.15 0
|S|=320, |A|=4 GM-ub=6717.6 GM-LB 5 22621 106(421) 6715.0(6715.0) 933.9 1
|O|=12, γ = 0.95 time=54s GM-UB 5 22621 100(517) 6714.1(6714.1) 256.4 1

|lb|=5 B&B 3 6710.0 493.8
|ub|=14 EM 11 6710 ± 0.11 6485

QCLP 2 6699.9 ± 5.5 181
BPI 26 6709.3 ± 0.2 121.5

lacasa3.batt GM-lb=293.4 alpha2fsc 25(26) 292.4(292.4) 399.7 1
|S|=1920, |A|=6 GM-ub=294.7 GM-LB 4 12601 47(60) 293.1(292.7) 1451 2
|O|=36, γ = 0.95 time=5386s GM-UB 4 12697 41(48) 293.2(293.1) 1030 2

|lb|=26 B&B 5 287.0∗ 24h
|ub|=48 EM 5 293.2 ± 0.03 13331

BPI 9 293.2 ± 0.12 2102
lacasa4.batt GM-lb=291.1 alpha2fsc 10(10) 285.5(285.5) 302 0
|S|=2880, |A|=6 GM-ub=292.6 GM-LB 3 745 19(22) 287.3(287.1) 3652 1
|O|=72, γ = 0.95 time=8454s GM-UB 4 23209 87(94) 290.8(290.8) 3681 1

|lb|=10 B&B 10 285.0∗ 24h
|ub|=23 EM 3 290.2 ± 0.0 19920

BPI 6 290.6 ± 0.2 4124
hhepis6obs woNoise GM-lb=8.64 alpha2fsc 14(18) 8.64(8.64) 0.49 1
|S|=20, |A|=4 GM-ub=8.64 GM-LB 12 21 14(18) 8.64(8.64) 0.89 1
|O|=6, γ = 0.99 time=2.6s GM-UB 12 21 14(18) 8.64(8.64) 0.74 1

|lb|=18 B&B 8 8.64 4.48
|ub|=7 EM 14 0.0 ± 0.0 49.2

QCLP 14 0.16 ± 0.10 26
BPI 13 0.0 ± 0.0 1.68

machine GM-lb=62.38 alpha2fsc 5(39) 54.61(54.09) 5.53 1
|S|=256, |A|=4 GM-ub=66.32 GM-LB 9 376 26(41) 62.92(62.84) 18.5 1
|O|=16, γ = 0.99 time=3784s GM-UB 12 2864 11(159) 63.02(60.29) 86.8 2

|lb|=39 B&B 6 62.6 52100
|ub|=243 EM 11 62.93 ± 0.03 1757

QCLP 11 62.45 ± 0.22 4636
BPI 10 35.7 ± 0.52 2.14
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depending on which solver was used. High time limits were selected in order to
compute policies of high quality. Thus, this time could be considerably shorter if
one stops the planning algorithms as soon as a policy of sufficient quality is ob-
tained. This could lead to a substantial reduction of the planning/initialization
time since longer planning times (e.g., 104 seconds instead of 103 seconds in the
case of SARSOP [13]) do not usually lead to dramatically improved policies.

5.1 LaCasa Domain

We tested our approaches on three instantiations of the LaCasa domain [20,11],
which is a real-world planning task where a smart phone estimates the risk of
wandering by a dementia patient and when necessary assists the patient with
wayfinding or calls a caregiver. In this domain, it is particularly important to
minimize energy consumption since the smart phone won’t be able to assist the
patient once the battery runs out. Offloading computation to a cloud service is
not desired either since it requires a data connection (which may not always be
available or reliable) and wireless communication uses a non-negligible amount
of energy. A controller offers the best solution since computation consists of
negligible table lookups and no data connection is required.

5.2 Results

Tables 1 and 2 compare the results obtained by compiling policies produced
by GapMin and SARSOP respectively to four techniques that directly optimize
controllers: bounded policy iteration (BPI) with escape [8], quadratically con-
strained linear programming (QCLP) [7], expectation maximization (EM) with
forward search [21] and branch&bound (B&B) with isomorph pruning [11]. Pol-
icy2fsc was used in an iterative deepening fashion, starting from depth 2, up to
a depth where the resulting controller was at least as good as the original policy
or a time limit was exceeded. Hence, the time reported for policy2fsc is the cu-
mulative time (seconds) to process all compilations from depth 2 up to the depth
reported in column depth. Tree size is the size of the policy tree for that depth
(note that edges with zero probability reduce the size of the policy tree consider-
ably). Column ’nodes’ displays the number of nodes in the final controller after
compression (before compression in the parentheses). Column ’value’ shows the
value of controllers after compression (analogously, before compression in the
parentheses). Column ’c’ indicates the number of iterations of the compression
until there is no compression possible. The absence of any result for QCLP, EM
and BPI for some problems indicates that 3Gb of memory was not sufficient. A
* besides the value of B&B indicates that B&B did not complete its search in
24h and that the value reported is for the best controller found in 24h.

Table 1 compares our two compilation methods for policies computed by Gap-
Min. Method GM-LB stands for policy2fsc applied to the GapMin lower bound
policy whereas GM-UB to the upper bound policy. Results confirm that our
methods are successful in compiling POMDP policies into finite-state controllers
of approximately equivalent quality. The highest value found for each problem
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Table 2. Compilation and compression of SARSOP policies

POMDP SARSOP method depth tree size nodes value time c
baseball time 122.7s policy2fsc 7 175985 10(47) 0.641(0.641) 78.22 1
|S|=7681, |A|=6 |α| =1415 B&B 5 0.636∗ 24h
|O|=9, γ = 0.999 UB=0.642 EM 2 0.636 ± 0.0 48656

LB=0.641 BPI 9 0.636 ± 0.0 445
elevators inst pomdp 1 time 11,228s policy2fsc 11 419 20(24) -44.41(-44.41) 1357 1
|S|=8192, |A|=5 |α| =78035 B&B 10 -149.0∗ 24h
|O|=32, γ = 0.99 UB=-44.31

LB=-44.32
tagAvoid time 10,073s policy2fsc 28 7678 91(712) -6.04(-6.04) 582.2 1
|S|=870, |A|=5 |α| =20326 B&B 10 -19.9∗ 24h
|O|=30, γ = 0.95 UB=-3.42 EM 9 -6.81 ± 0.12 19295

LB=-6.09 QCLP 2 -19.99 ± 0.0 12.9
BPI 88 -12.42 ± 0.13 1808

underwaterNav time 10,222s policy2fsc 51 1242 52(146) 745.3(745.3) 5308 1
|S|=2653, |A|=6 |α| =26331 B&B 10 747.0∗ 24h
|O|=103, γ = 0.95 UB=753.8 EM 5 749.9 ± 0.02 31611

LB=742.7 BPI 49 748.6 ± 0.24 14758
rockSample-7 8 time 10,629s policy2fsc 31 2237 204(224) 21.58(21.58) 1291 1
|S|=12545, |A|=13 |α| =12561 B&B 10 11.9∗ 24h
|O|=2, γ = 0.95 UB=24.22 BPI 5 7.35 ± 0.0 78.8

LB=21.50

is bolded. Alpha2fsc compiles |lb| α-vectors into controllers with similar value,
though sometimes the value is significantly worse (e.g., lacasa4.batt and ma-
chine). In contrast, policy2fsc finds better controllers by simulating the input
policy to a larger depth, but this takes more time. It was stopped as soon as
the value of the controller matches GapMin’s lower bound or 1h was reached.
In many cases, the number of nodes is still less than or equal to the size of the
input policy (e.g., 4x5x2.95, cheese-taxi, lacasa2, machine). The direct optimiza-
tion techniques (B&B, QCLP, EM, BPI) generally take much longer and/or do
not consistently produce good controllers.

Table 2 summarizes the results for some problems that are among the largest
available benchmarks for point-based value iteration techniques that do not ex-
ploit factored representations. In this case, SARSOP was used to obtain a lower
bound policy that is then compiled by policy2fsc. Even though SARSOP re-
turned value functions with thousands of α-vectors, we compiled those policies
into considerably smaller controllers (up to 3 orders of magnitude reduction) of
the same or better quality (e.g., underwaterNav) demonstrating that our method
scales to large problems. Policy2fsc produced the best value for all problems ex-
cept underwaterNav where the direct optimization techniques produced better
controllers. This simply indicates that the policy compiled from SARSOP was
not the best as opposed to any weakness in policy2fsc.

6 Conclusion

We have presented two novel methods for compiling policies for partially ob-
servable Markov decision processes (POMDPs) into approximately equivalent
finite state controllers (FSCs). Our motivation is that these FSC representa-
tions are very useful in resource-constrained applications such as on mobile or
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wearable devices. Methods that can create FSC policies open up new possibilities
for using POMDP controllers on these devices, where battery, computation and
memory resources are at a premium. We showed how we can get very compact,
yet equivalent representations for POMDP policies as those generated by two
state-of-the-art offline planners.
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Abstract. We present an online, heuristic algorithm for learning Condi-
tional Preference networks (CP-nets) from user queries. This is the first
efficient and resolute CP-net learning algorithm: if a preference order
can be represented as a CP-net, our algorithm learns a CP-net in time
np, where p is a bound on the number of parents a node may have. The
learned CP-net is guaranteed to be consistent with the original CP-net
on all queries from the learning process. We tested the algorithm on ran-
domly generated CP-nets; the learned CP-nets agree with the originals
on a high percent of non-training preference comparisons.

1 Introduction

To support decision making, an intelligent agent often requires some way to learn
what a human user prefers and concisely represent those preferences. CP-nets
[1] offer a potentially compact qualitative representation of human preferences
that operate under ceteris paribus (“with all else being equal”) semantics. In this
paper we present a novel algorithm through which an agent learns the preferences
of a user. CP-nets are used to represent such preferences and are learned online
through a series of queries generated by the algorithm. Our algorithm builds a
CP-net for the user by creating nodes and initializing Conditional Preference
Tables (CPTs), then gradually adding edges and forming more complex CPTs
consistent with responses to queries until a confidence parameter is reached
or no further progress can occur. The algorithm does not always converge to
the original CP-net, but our experiments show that it can learn a CP-net that
closely tracks with the original for a set of outcome comparison queries not used
in the learning phase. While one could treat the model learning process as one
of replicating the structure of the original (latent) CP-net, we assume here that
this is unnecessary, as long as the preferences modeled by the two networks differ
by very little.

The problem of learning CP-nets from example data is known to be hard in gen-
eral, even for acyclic, binary CP-nets (the class we consider here), and also for sep-
arable CP-nets (such as we use in the first phase of our algorithm; see Def. 1) [2,3].
This has led to a diversity of proposed methods for learning CP-nets: a regression-
based approach [4,5], Angluin-style query learning [6,7], learning via reduction to
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2-SAT [8], and learning a CP-net indirectly via the exponentially larger prefer-
ence graph [9]. Our work builds upon this body of previous research, particularly
that of [2,3] and [8], but differs in several notable respects. First, our method is de-
signed for an active, online environment in which the agent directly interacts with
the user, rather than one in which the user’s actions can be observed over time.
Second, in our queries we allow for arbitrary outcome comparisons rather than
(as in [6,7]) restricting to swap comparisons where outcomes differ in at most one
variable. We believe our approach better reflects the rich environment in which
human decisions are often made. Third, our algorithm is robust ; unlike [8], for
example, it will always output a CP-net. Finally, given a constant bound on the
number of parents, our algorithm can learn a CP-net in polynomial time. This dif-
fers in particular from that of [9], which in the worst case is of double-exponential
complexity in the number of variables.

The remainder of our paper is organized as follows: In Sec. 2 we review the
use of CP-nets to model preferences. In Sec. 3 we present the algorithm itself,
followed by analysis in Sec. 4. Section 5 consists of a series of experiments and
significant results. We conclude with opportunities for future research.

2 Modeling Preferences with CP-nets

Consider a recommender system that assists customers in purchasing a guitar.
The customer surely cannot consider every possible guitar, but will buy one that
is satisfactory, given her preferences. Various factors differentiate the possibili-
ties, such as brand, body, and color. We assume the customer can consistently
rank alternatives: presented two guitars, she can say, “I prefer the first to the
second.” We further assume the customer can make more general comparisons,
such as, “In general, I prefer the Fender brand to Gibson.” But offered several
alternatives, that customer may ultimately prefer a specific Gibson guitar based
on other factors; that is, the user’s preferences may be conditional.

More formally, by preference, we mean a strict partial order � over a finite set
of outcomes O by a user. Such outcomes can be factored into variables V with
associated (binary) domains Dom(V): O = v1 × v2 × · · · × vn. We call o[i] the
projection of outcome o onto variable vi and o[U ] the projection onto a set of
variables U ⊆ V . Note that the number of outcomes and orderings is exponential
in the number of variables. CP-nets can offer a more compact representation.

Definition 1. A CP-net N is a directed graph. Each node vi represents a pref-
erence over a finite domain. An edge (vi, vj) indicates that the preference over
vj depends on the value of vi. If a node has no incoming edges, the preference
involving its variable is not conditioned on values represented elsewhere in the
graph. A separable CP-net is one in which no variable depends on any other.

Definition 2. A conditional preference table (CPT) is associated with each
node vi and specifies the preference over Dom(vi) as a function of the values
assigned to its parent nodes Pa(vi). If a CPT has an entry for every combina-
tion of values from the domains of its parents, we say it is complete.
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We define the size of a CPT as its number of rows. The size of a CP-net is the
sum of the sizes of its CPTs. One can observe that if a node vj has incoming edges
from k parents, each representing binary variables, then size(CPT(vj)) = 2k.
Thus size grows exponentially in the number of parents. To guarantee tractabil-
ity, we make some simplifying assumptions: 1. Cycles are disallowed. 2. We re-
strict to binary domains. 3. A maximum bound p is placed on the number of
parents a node may have: We conjecture that most human preferences are con-
ditioned on 3–5 nodes and thus feel justified in assuming such a bound.

Example 1. Consider the CP-net to the right
representing a conditional preference: The edge
from brand to color indicates that the cus-
tomer’s preference of color depends on brand.
The CPTs associated with each node provide the
ordering. In general, the customer prefers Fender
to Gibson. If a Fender is available, she prefers red,
but if only a Gibson is available, she prefers gold. Fig. 1. Simple CP-net

3 Algorithm

Our algorithm consists of two phases. First, it constructs a separable CP-net with
default CPTs. Next, it successively attempts to refine the model, adding edges
and learning more complex CPTs consistent with evidence from user queries.
(See Learn-CP-Net and its subroutine Find-Parents [Alg. 1 and 2]).

3.1 Phase 1: The Separable CP-net Basis

In Phase 1 (Alg. 1, lines 1–9), our algorithm constructs a separable CP-net basis
by asking the user to provide a default preference for each vi ∈ V . This initial
CP-net could be characterized as a first impression of the user’s preferences.

Definition 3. Let vi be a binary variable with Dom(vi) = {xi, yi}. An attribute
comparison query is one in which we ask the user whether xi � yi or yi � xi.

Here we assume that the user is able to reflect on possible outcomes and discern
what she prefers most of the time. (In our experiments, as discussed in Sec. 5.1,
we simulate the user’s response to such queries by reporting a preference that
occurs most frequently in CPT(vi).) The result is a CP-net with default CPTs
and no edges. If we were confident that the user’s preference over each attribute
did not depend on the value of any other attribute, we could returnN as the CP-
net that consistently modeled the user’s preferences. At this point, however, we
are unconfident of each node’s parentage. We maintain disjoint sets Confident
and Unconfident such that vi ∈ Confident iff enough data has been collected
via user queries to conclude that the preferences over vi are conditioned only
by its parent variables in the graph of N ; otherwise vi ∈ Unconfident . Initially
Unconfident = V and Confident = ∅.
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Example 2. Nodes body and brand have
been inserted into N along with their default
CPTs. A node and CPT must now be created
for color. The agent asks the customer,
“In general, do you prefer a guitar that is
red or gold?” The user replies that gold is
usually preferred, and a node and CPT is in-
serted. The resulting CP-net basis is shown.

Fig. 2. Separable CP-net Basis

Algorithm 1. Learn-CP-Net(V , p, q)

Input: V a set of binary variables
p maximum number of parents
q confidence threshold parameter

Global: Comparisons responses to user queries
Confident set of learned nodes

Output: N the CP-net learned from the user

1: N ← ∅
2: Comparisons ← ∅
3: Confident ← ∅
4: Unconfident ← V
5: for vi ∈ V do
6: query user: do you prefer xi  yi or yi  xi?
7: vi.CPT ← default CPT based on user response
8: insert vi into N
9: end for
10: repeat
11: for r ← 0 to p do
12: for vi ∈ Unconfident do
13: (P, C) ← Find-Parents(vi, r, q)
14: if C �= FAIL then
15: vi.CPT ← C
16: add edges from all P to vi
17: move vi from Unconfident to Confident
18: end if
19: end for
20: end for
21: until no parents added this iteration
22: return N

3.2 Phase 2: Refining the CP-net Model

In Phase 2 we refine N by discovering such conditional relationships as may
exist between variables by asking the user’s preference over pairs of outcomes.
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Algorithm 2. Find-Parents(vi, r, q)

Input: vi node representing ith variable
r the number of parents in the trials
q confidence threshold parameter

Global: Comparisons responses to user queries
Confident set of learned nodes

Output: C a CPT with 2r rows or FAIL
P newly parents discovered for vi or ∅

1: for P ∈ {all subsets of Confident of size r} do
2: (C, evidCount) ← Create-CPT(vi, P )
3: while (C �= FAIL) and (evidCount < q) do
4: (o1, o2) ← generate random query for vi
5: query user: do you prefer outcome o1 or o2?
6: add o1, o2 to Comparisons in specified order
7: (C, evidCount) ← Create-CPT(vi, P )
8: end while
9: if C �= FAIL then
10: return (P,C)
11: end if
12: end for
13: return (∅, FAIL)

Definition 4. In an outcome comparison query, we provide the user a pair of
outcomes, {o1, o2} ∈ O such that o1 �= o2. The user responds with o1 � o2,
o2 � o1 or o1 �� o2, respectively indicating that she strictly prefers the first
outcome to the second, the second to the first, or is unable to state a preference.

If the user is able to answer an outcome comparison query with either o1 � o2
or o2 � o1, we treat the response as evidence of the user’s underlying preference
model. If the user cannot state a preference, we treat that as an indication that
the two outcomes are incomparable. We expect that the user will provide consis-
tent answers to the same outcome query and hence ensure that each unordered
pair of outcomes is asked at most once. Responses are stored in a Comparisons
database, gradually adding to the evidence used to construct the model CP-net.
Outcome pairs are generated randomly, with the constraint that the pair must
be relevant to the node under consideration and not already in Comparisons .

Definition 5. For any given vi, random query is an outcome comparison query
in which o1 and o2 are selected uniformly randomly from their domains, with
the requirement that the query must be relevant to node vi: o1[i] �= o2[i]. A ran-
dom adaptive query adds the additional requirement that for all vj ∈ Confident,
o1[j] = o2[j].

Random adaptive queries provide a heuristic that may reduce the search space
for a CP-net by not continuing to analyze nodes once they are labeled Confident .
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Using random queries, our search proceeds as follows. In the repeat–until
loop of Learn-CP-Net (Alg. 1, lines 10–21), we search first for nodes that do
not need parents (i.e., nodes that represent features for which the user’s prefer-
ences are unconditional). For each target node vi ∈ V , we call Find-Parents.
If Find-Parents is confident that the preferences over vi are unconditional, it
returns (∅, C), where C is a CPT for vi consistent with all queries stored in
Comparisons ; otherwise, it returns (∅, FAIL), indicating failure. In the former
case, the default CPT of vi is replaced with C and vi is reclassified as Confident ;
in the latter, the search continues with the next Unconfident node.

As long as Unconfident �= ∅, we continue trying to refine our model with
new conditional relationships, represented as edges and correspondingly more
complex CPTs. For each remaining Unconfident node, we iterate over potential
sets of parent nodes, starting with single-parent relationships, then two parents,
three, and so on, up to the bound on parents p. If a set P of parents can be
found, edges are added from each newly discovered parent to target node vi, the
default CPT is replaced with C, and vi is reclassified as Confident . If at any
point, however, we iterate from 0 to p and fail to add parents to any node, we
stop refinement and are satisfied with the CP-net that we have thus generated to
that point, even if some nodes remain Unconfident . For such nodes, the default
CPT assigned in Phase 1 would be output in the finalized CP-net. Indeed, in the
worst case, it is possible that all of the nodes could be output with the CPTs in
their default state. However, in practice we find that this rarely happens. In all
cases, though, Learn-CP-Net will return a CP-net; it will never output failure.

Example 3. Algorithm Learn-CP-Net has determined from outcome compar-
ison queries that body and brand each has 0 parents. As such, their status was
moved from Unconfident to Confident, and the entries in their CPTs are thus
finalized. However, the status of color at this point is still undetermined.

BODY : heavy ≻ light

heavy, Gibson : gold ≻ red
heavy, Fender : gold ≻ red
light, Gibson : gold ≻ red
light, Fender : red ≻ gold

COLOR

BRAND : Gibson ≻ Fender

Fig. 3. The Fully Learned CP-net

An inspection of Comparisons
indicates that the preference over
color is not independent. Some-
times the customer prefers gold,
sometimes red. Additional queries
are generated; e.g., “Do you prefer
a heavy gold Gibson or a heavy red
Gibson?” Nonetheless, all attempts
to prove that body or brand is the
sole parent of color fail to yield a
CPT.

The algorithm next attempts to establish whether both body and brand are
parents of color. This time a CPT is produced and sufficient evidence is gath-
ered. While the user does indeed generally prefer gold, she prefers a red guitar
only if it is light and a Fender. Figure 3 shows completed CP-net N .

Subroutine Find-Parents iterates over all subsets of Confident of the speci-
fied size r. For each subset P , Find-Parents calls Create-CPT to determine
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whether P is consistent with all queries stored in Comparisons . For a given tar-
get node and set of possible parents, Create-CPT constructs a 2-SAT instance
such that (1) a satisfying assignment tells us that the target node’s values are
consistent with the given set of parents and (2) the assignment to variables gives
us the entries of the target node’s CPT. Our method for this closely follows [8],
to which the reader is referred for specifics. It should be noted that this method
converges to the original network only for a restricted class of CP-nets; however,
our objective is not to recover the original network, but to learn one that closely
approximates the original for possible outcome comparison queries. If the CPT
returned from Create-CPT is not complete, the default values from Phase 1
are used to provide the ordering. Find-Parents continues generating random
queries and calling Create-CPT until the evidence to support P as the parents
of vi reaches a specified confidence threshold q. Specifically, the evidence count
is the number of queries in Comparisons relevant to node vi, and confidence
parameter q is the number of outcome pairs required before we are confident
that P is in fact the parent set of vi. (We discuss the use of the q threshold for
minimum evidence in Section 3.2 and metrics for confidence in 5.)

4 Analysis

Theorem 1. Learn-CP-Net is resolute—that is, it is guaranteed to output a
consistent CP-net N .

Proof. (Sketch.) An initial N is created in the algorithm’s phase 1. The repeat–
until loop that follows will iterate at most once per variable. Since V is finite, the
algorithm will terminate and output a CP-net. Moreover, since edges are added
only from nodes in Confident to those in disjoint set Unconfident , N will not
contain a cycle; hence it will be consistent.

Theorem 2. The learning algorithm Learn-CP-Net is time polynomial in np

and q in the worst case.

Proof. (Sketch.) Using Tarjan’s algorithm, we implement the Create-CPT 2-
SAT algorithm in linear time [10]. Given this, the polynomial time complexity
of Learn-CP-Net and Find-Parents follows directly from Alg. 1 and 2.

5 Experiments

5.1 Experiment Design

We evaluate the effectiveness of our algorithm through an experimental ap-
proach. First, we generate a random CP-net training model NT that simulates
the preferences of a hypothetical user. We then apply Learn-CP-net to the
model, posing queries that are answered by an agent on the basis of NT . Finally,
we evaluate the success of the learned model NL in terms of the likelihood that it
will correctly predict the response of NT to a randomly drawn pair of outcomes
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from O. We assume here that a user’s preferences can be modeled by a CP-net.
(Whether human preferences can actually be modeled by CP-nets is a subject
the authors are presently exploring through interdisciplinary research.) We fur-
ther assume that the attribute variables and their binary values are common
knowledge and not additional parameters that must be learned.

A number of questions guided our experiments, such as: How many queries
are required to learn a CP-net model? Does the choice of outcome compari-
son querying strategies (random and adaptive) affect CP-net learnability? How
does quality of CP-net learning change as the size and density of its graphical
structure changes? Do algorithm runtimes conform to expectations?

To evaluate the algorithm, we generated a set of random CP-nets. Since vari-
ables and domains are common knowledge, the nodes of NT are an input to the
generation algorithm, as are the number of directed edges e in the graph and the
maximum number of parents p. (Note that while V is the same for NT and NL,
e and p may differ.) The edges of NT are inserted at random with equal proba-
bility, such that no node has more than p parents and no cycles are introduced.
Complete CPTs for each node are then generated by selecting, again uniformly
randomly, an entry xi � yi or yi � xi for each row (with the provision that the
CPT implies dependence on the value of each parent node).

Algorithm 3. Generate-Random-CP-Net(V , e, p)

Input: V a set of binary variables
e number of edges in graph
p maximum number of parents

Output: NT the randomly generated CP-net

1: initialize N : nodes V, no edges, empty CPTs
2: for k ← 1 to e do
3: add a randomly selected edge (vi, vj) to NT s.t. 1 ≤ i < j ≤ n and |Pa(vj)| ≤ p
4: end for
5: for k = 1 to |V| do
6: for each of the 2|Pa(vk)| entries in CPT(vk) do
7: insert xk  yk or yk  xk at random
8: end for
9: end for
10: return NT

Our simulations do not employ human subjects. The learning algorithm queries
an agent that answers on the basis of a given CP-net model NT . Recall that in
Phase 1, an attribute comparison query is asked for each binary variable: “In gen-
eral, do you prefer xi or yi?” We assume that the human user has the capacity to
reflect on such outcomes and determine whether she usually prefers xi or yi. An
agent that simulates such a capacity we call attribute aware.
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Definition 6. An agent is attribute aware if it replies to an attribute comparison
query with the preference that occurs in the majority of its CPT entries. If xi � yi
and yi � xi occur equally often, the agent outputs one of these at random.

Learn-CP-net also asks the user a series of outcome comparison queries :
“Do you prefer o1 � o2, o2 � o1, or neither?” In response, the agent consults
its CP-net to determine if a preference is entailed. It has been shown that, in
general, determining whether one outcome dominates another given a CP-net
(N |= o1 � o2) is hard [11]. However, [1] introduce the weaker notion of an
ordering query, which we employ in our simulations.

Definition 7. Given outcomes o1 and o2, we say o1 is consistently orderable
over o2 with respect to N iff there exists a node vi ∈ N such that (1) o1 and o2
assign the same value to all ancestors of vi and (2) o1 assigns a more preferred
value to vi than o2. A search for such a node is called an ordering query.

Rather than asking if N |= o1 � o2, an ordering query asks if N �|= o2 � o1. Note
that while N |= o1 � o2 implies N �|= o2 � o1, the reverse does not hold: it may
be that N �|= o1 � o2 and N �|= o2 � o1. As Boutilier, et al. [1] showed, ordering
queries can be answered in time polynomial in size(N ). In response to outcome
queries in our simulations, NT ’s agent answers o1 � o2 if o1 is consistently order-
able over o2, o2 � o1 if the reverse is true, and o1 �� o2 if a preference cannot be
determined. Note that, according to [1]’s definition of consistently orderability,
we could have o1 consistently orderable over o2 based on some variables, and
vice versa based on others. For purposes of answering ordering queries, we check
all variables, and say that o1 is consistently orderable over o2 if there is some
variable for which that holds, and no variables that witness that o2 is consis-
tently orderable over o1. This is a stronger condition than [1]’s. However, the
disadvantage of using ordering queries instead of dominance testing is that an
agent using the former is more likely to report that o1 �� o2, especially as n
grows large.

Our primary measure of how well the learned CP-net NL agrees with the
training model NT is to compare directly the preference ordering induced by NL

with that of NT for all unordered pairs of possible outcomes.

Definition 8. Given an outcome comparison involving o1 and o2, we say that
CP-net NL agrees with NT , disagrees, or is indecisive as follows:

NT NL : o1 � o2 o2 � o1 o1 �� o2
o1 � o2 agrees disagrees indecisive
o2 � o1 disagrees agrees indecisive

The agreement metric M is then a vector representing the percentage of total
outcome comparisons for which NL agrees, disagrees, or is indecisive w.r.t. NT .

Note that we do not include in our counts outcome comparisons for which train-
ing model NT is indecisive. Because of this, the agreement metric is not sym-
metric; that is, in general M(NT ,NL) �= M(NL,NT ).
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Since the number of outcomes is 2n for n binary variables, the number of
unordered outcome pairs {o1, o2} is O(22n). Hence, while our algorithm is of
polynomial complexity, our method of evaluation is exponential in the number
of variables if we calculate M exactly. However, we can approximate M satis-
factorily through sampling. For our sample size we chose 20 000 > z2α/2/(4ε

2),
where zα/2 is obtained from the normal distribution, ε is the desired bound of
±0.5%, and 1 − α provides a 95%-confidence interval. We calculate M exactly
for n ≤ 7 and estimate through sampling for n > 7.

5.2 Experimental Results

Tables 1 and 2 show metrics of NL w.r.t. NT over a series of experiments for n
nodes and confidence threshold q. Density δ = e/n is the desired ratio of edges
to nodes (δ = ∞ implies a maximally dense acyclic graph, given the bound p
on parents). The results shown are for p = 5 and represent averages over 30
trials. The data reflect random adaptive queries and an attribute aware agent;
our results for random non-adaptive queries (not shown) reflected slightly lower
levels of agreement [12]. Table 2 shows agreement for a higher granularity of q,
along with the choice of q in this range that maximized agreement (q∗).

Table 1. Agreement of NL with NT

Agreement Disagreement Indecision

n q=5 10 15 20 q=5 10 15 20 q=5 10 15 20

δ = 1

4 0.96 0.98 0.98 0.98 0.03 0.01 0.02 0.01 0.01 0.00 0.00 0.00
6 0.79 0.94 0.97 0.98 0.07 0.04 0.02 0.02 0.14 0.02 0.00 0.00
8 0.69 0.77 0.77 0.75 0.07 0.03 0.02 0.02 0.24 0.20 0.21 0.23
10 0.65 0.65 0.58 0.53 0.04 0.02 0.02 0.01 0.31 0.33 0.41 0.46
12 0.57 0.65 0.56 0.42 0.02 0.02 0.01 0.01 0.41 0.34 0.43 0.58

δ = 2

4 0.92 0.98 0.98 0.98 0.06 0.02 0.02 0.02 0.02 0.00 0.00 0.00
6 0.72 0.97 0.98 0.98 0.13 0.03 0.02 0.02 0.16 0.00 0.00 0.00
8 0.60 0.76 0.76 0.76 0.11 0.04 0.03 0.02 0.29 0.20 0.21 0.22
10 0.53 0.64 0.60 0.52 0.09 0.04 0.02 0.01 0.38 0.33 0.38 0.47
12 0.52 0.64 0.41 0.36 0.07 0.03 0.02 0.01 0.41 0.33 0.57 0.63

δ = 3

4 0.94 0.97 0.98 0.98 0.04 0.03 0.02 0.02 0.02 0.00 0.00 0.00
6 0.82 0.95 0.98 0.98 0.11 0.04 0.02 0.02 0.08 0.01 0.00 0.00
8 0.63 0.80 0.73 0.76 0.13 0.04 0.02 0.01 0.24 0.16 0.25 0.22
10 0.61 0.65 0.48 0.47 0.13 0.04 0.01 0.01 0.26 0.31 0.51 0.52
12 0.57 0.62 0.44 0.28 0.13 0.04 0.02 0.01 0.30 0.34 0.55 0.72

δ = ∞
4 0.91 0.98 0.98 0.98 0.06 0.02 0.02 0.02 0.03 0.00 0.00 0.00
6 0.84 0.96 0.97 0.98 0.11 0.03 0.03 0.02 0.05 0.01 0.00 0.00
8 0.66 0.76 0.76 0.75 0.13 0.03 0.02 0.01 0.21 0.21 0.22 0.24
10 0.62 0.56 0.48 0.40 0.13 0.04 0.02 0.01 0.25 0.39 0.50 0.59
12 0.54 0.54 0.37 0.26 0.13 0.04 0.01 0.01 0.33 0.42 0.61 0.74
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Table 2. Agreement for various choices of q

Agreement δ = 1

n q=6 7 8 9 10 11 12 13 14 q∗ max

6 0.90 0.90 0.91 0.96 0.96 0.97 0.97 0.97 0.97 13 97%
7 0.77 0.80 0.85 0.87 0.83 0.87 0.84 0.89 0.89 14 89%
8 0.69 0.75 0.77 0.83 0.77 0.84 0.77 0.80 0.79 11 85%
9 0.76 0.76 0.75 0.70 0.81 0.74 0.78 0.70 0.72 10 81%
10 0.61 0.69 0.70 0.72 0.66 0.70 0.69 0.68 0.60 9 72%

Table 3. Effect of decreasing p for NL below that of NT

Agreement Disagreement Indecision
n p=1 2 3 4 5 p=1 2 3 4 5 p=1 2 3 4 5

NT : p = 5, δ = ∞
6 0.33 0.42 0.67 0.86 0.96 0.05 0.03 0.03 0.03 0.03 0.63 0.55 0.30 0.11 0.00
7 0.25 0.33 0.44 0.70 0.90 0.04 0.03 0.02 0.03 0.03 0.71 0.64 0.54 0.28 0.07
8 0.19 0.24 0.34 0.55 0.76 0.03 0.02 0.02 0.02 0.03 0.78 0.74 0.64 0.43 0.21
9 0.14 0.20 0.27 0.45 0.60 0.02 0.02 0.02 0.02 0.03 0.83 0.79 0.71 0.53 0.37

Overall, the learned model exhibited a high level of agreement with the train-
ing model. For n ≤ 10 agreement was 70–90% or higher with the proper choice
of q. Significantly, we found that the learned model rarely disagreed with the
training model. As n increases, however, the learned model is increasingly likely
to be indecisive about a preference over which the training model is able to
reason. For example, for n = 20 nodes, we found that agreement ranged from
50 to 60% for q = 10, depending on density δ, but disagreement was < 1%. As
discussed in Sec. 5.1, this increased indecision as n grows results in part from
the use of ordering queries instead of dominance testing as the primary metric.

A question of particular interest was the number of queries per node required.
One can observe that an exponential number of outcome comparison queries
could be required in the worst case. However, we found that often just a few
queries—8 to 14 (even for larger values of n)—proved optimal. The choice of
q is something of an art. As the data show, increasing the number of queries
required to become confident about a node sometimes has an adverse effect on
the agreement of the learned model with the training model. We take this to be
an indication that if q is too high, then overfitting can occur.

We also explored the effect of decreasing the maximum number of parents for
the learned model below that of the training model (see Table 3). We found, for
example, that for NT a maximally dense 7-node graph with maximum 5 parents
(n = 7, p = 5, δ = ∞) and p is set to 5 for NL, agreement is 90%. If p for NL

is then reduced to 4, agreement decreases to 70%—still a modestly good result.
Furthermore, while indecision is increased, disagreement remained static.

We were also interested in the computation time required, since it is known
that learning a CP-net is NP-hard in the general case. The relative running times
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for inputs of various size (Fig. 4 provides data for the case of δ = 1) coincide with
our expectations. While the size of the training graph is the primary determinate
of running time, the number of queries required by q also plays a role. We also
observed that running time can vary significantly from model to model depending
on the preference relation that is being learned. Notice, also, that for some q
values, time complexity does not grow monotonically. When we generate queries
in order to learn the CPT for vi, those queries may be relevant to other nodes
vj in the Unconfident set. It may be that, when we come to vj , we already have
q many relevant comparisons.

6 Summary and Future Research

We have presented an algorithm for learning CP-nets from queries that is efficient
and is guaranteed to produce output. Our tests show that the output CP-nets
are close approximations to the underlying CP-nets used to generate answers
to queries, particularly if we have a close match between the parameters δ
and p.

The next step in our research plan is to extend our algorithm to handle noisy
and possibly inconsistent responses to queries.
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11. Goldsmith, J., Lang, J., Truszczyński, M., Wilson, N.: The computational com-

plexity of dominance and consistency in CP-nets. JAIR 33, 403–432 (2008)
12. Guerin, J.T.: Graphical Models for Decision Support in Academic Advising. PhD

thesis, University of Kentucky (2012)



A Stochastic Simulation of the Decision

to Retweet

Ronald Hochreiter and Christoph Waldhauser

WU Vienna University of Economics and Business
Department for Finance, Accounting and Statistics

{ronald.hochreiter,christoph.waldhauser}@wu.ac.at

Abstract. Twitter is a popular microblogging platform that sees a vast
increase in use as a marketing communication tool. For any marketing
campaign to be successful, word-of-mouth is an essential component. The
equivalent of word-of-mouth propagation in Twitter is the retweeting of
a message. So far, little focus has been put on how Twitter users arrive at
deciding which tweets to retweet and which ones to ignore. This contri-
bution offers a stochastic decision function that models a nodes decision
process. This model is embedded in a simulation of an entire communi-
cation network. The contained nodes characterizations are derived from
genuine Twitter data. A genetic algorithm is used to find a message that
is retweeted by a maximum number of nodes. We find that the stochas-
tic nature of the retweeting decision contributes to a large amount of
uncertainty. However, the genetic algorithm is able to increase the scale
on which a message is being retweeted significantly.

Keywords: Twitter, social network, message style, genetic algorithm,
deterministic optimization.

1 Introduction

Twitter is a popular microblogging platform, that has been frequently at the fo-
cal point of research. Of special interest has been the complex network structure
that characterizes Twitter networks and the specifics that govern the propaga-
tion of information within Twitter networks. But how can Twitter users style
their messages, so that they reach furthest? The answer to this question can be
put to good use in marketing and campaigning but also life-saving after disasters.

In this paper we aim at making use of that research by building a simulation
framework to enable researchers to investigate more closely the propagation of
information on Twitter. The centerpiece of the simulation is a stochastic decision
function that each node uses to determine if a tweet shall be retweeted or not.
The simulation framework is being put to the test by tasking a genetic algorithm
with composing a tweet that reaches furthest in different metrics. In that, we
differ from [7] seminal contribution by optimizing message contents instead of
optimizing target audience. The latter approach in only of limited use in the
online scenario, as Twitter authors cannot influence who will follow them.
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This paper is structured as follows. First relevant research regarding Twit-
ter’s networking structure and information diffusion is being reviewed. We then
introduce the simulation framework and describe the algorithm that was used to
obtain optimal tweets. Finally we present the results and offer some conclusions.

2 Message Diffusion in Twitter Networks

When communicating an actor seeks to get her message across [14]. A central
aspect of this process is to ensure that a message is not only received by the
original audience, but also that this audience spreads that message further on
their own accounts [10]. This process has been researched rather thoroughly from
very different aspects: medical epidemiology [5,17,13] and system dynamics [4]
to name but a few approaches fielded to tackle this complex problem. While
findings and insights differ, a common denominator is that message recipients
will resend a message if it passes a recipient’s filter, i.e. is to her liking [12].
These filters are domain specific but the common principle of message diffusion
remains true for very diverse domains.

The advent of microblogging has greatly simplified access to message diffusion
data. By looking at e.g. Twitter data, connection structure as well as message
contents and meta data are readily available in a machine readable format. This
has produced a wealth of studies relating to message diffusion on Twitter. In the
following, we will survey recent contributions to the field to distill key factors
that influence message diffusion on Twitter.

In Twitter, users post short messages that are publicly viewable online and
that get pushed to other users following the original author. It is common prac-
tice to cite (retweet) messages of other users and thus spread them within ones
own part of the network. Messages can contain up to 140 characters including
free text, URL hyperlinks and marked identifiers (hashtags) that show that a
tweet relates to a certain topic. Metadata associated with each tweet is the point
of origin, i.e. the user that posted the tweet, the time it was posted and the user
agent or interface used to post it. On top of that, the tweets relation to other
tweets is available. For each user, additional meta data is available like the age
of the account, the number of followers, a description and the location.

Twitter networks are typical for the networks of human communication. They
are more complex (i.e. structured and scale-free) than randomly linked networks
with certain users functioning as hubs with many more connections than would
be expected under uniform or normal distributions. It is useful to think of Twitter
networks as directed graphs with nodes being Twitter users and the following
of a user being mapped to the edges [8]. A tweet then travels from the original
author to all directly connected nodes. If one of the nodes chooses to retweet the
message, it is propagated further down the network.

For average users, Twitter networks’ degree distribution follows a power law
and [8,6] report the distribution’s exponent to be 2.3 and 2.4 respectively, there-
fore well within the range of typical human communication networks. However,
there are extremely popular Twitter authors (celebrities, mass media sites) that
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have many more followers than would be expected even under a power-law
distribution.

A distinguishing feature of Twitter is its small-world property. Most users are
connected to any other user using only a small number of nodes in between. See
[8] for an overview of Twitter’s small world properties. Despite their findings
that for popular users, the power-law distribution is being violated and average
path lengths between users being shorter than expected, they underscore that
homophily (i.e. similar users are more likely to be in contact) can be indeed
observed and that geographically close users are more likely to be connected.

Following the notion of message filtering introduced above, it is clear that
Twitter users are selecting messages for propagating them further according to
specific preferences. Applying these preferences for filtering purposes, they can
make use of the message contents available as listed above. Besides the number
of URLs [18,16] and hashtags [16] contained, also the free text contents are of
importance. According to [15,2], a key aspect in filtering free text is the polarity
and the emotionality of the message. [15] also point to the length of tweet being
an important predictor for its retweetability.

Beside message specific filtering criteria, also author specific filtering can oc-
cur. For instance, a Twitter user that has a past record of being retweeted often,
will be more likely to be retweeted in the future [18,19]. However, when styling
a single tweet for maximum retweetability, factors like past popularity or even
number of followers [16] cannot be influenced and are therefore not represented
in the model used.

When modeling retweet decisions, [11] focus on three elements: tweet, user and
relationship features. However, they do not directly model the decision function,
but rather consider it an unobservable effect hidden within a Markov network.
[9] follow a different trajectory, when modeling retweeting decisions as a function
of temporal, topographical or thematic proximity between nodes and message
properties. Unlike our own work, they ignore message style.

Shifting the focus from the message recipient to the message sender, spreading
a message as far as possible is a key goal. The success of a message can be mea-
sured using different metrics. In their seminal work, [18] list three possibilities:
One is the (average) speed a tweet achieves in traversing a network. Another
popularity metric is the scale, that is total number of retweets achieved. Finally,
range can be considered a popularity metric as well. Here range is the number
of edges it takes to travel from the original author to the furthest retweeter.

In this section we reviewed the latest research related to message diffusion on
Twitter. Key factors influencing the probability of a tweet being retweeted are
the polarity and emotionality of a tweet, its number of included hyperlinks and
hashtags. There are other factors influencing retweet probability, however they
are beyond the control of a message sender and therefore do not apply to the
problem at hand. In the next section we will introduce a simulation framework
that can be used to establish a Twitter-like network to analyze the diffusion
principles of messages governing them.
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3 Simulation Framework

This paper uses the concept of message filtering to simulate the diffusion of
messages in networks and Twitter serves as an example for this. As detailed
above, Twitter users are considered nodes, their following relationships edges
in the network graph. Messages they send travel from node to node along the
graph’s edges. The topographical features of this network, i.e. the distribution of
edges, follow the specifics of scale-free, small-world networks as described above.
The nodes have individual preferences that govern if a message is being passed
on or ignored. In the following we will describe the simulator used to simulate
this kind of network.

Twitter networks exhibit a number of characteristics that we discussed above.
The simulator uses these properties to generate an artificial network that very
similar to Twitter networks. To this end, the number of connections a node has
is drawn from a power-law distribution. In accordance with the findings reported
above, the distribution’s exponent is fixed 2.4. From these figures, an adjacency
matrix is constructed. As Twitter’s following relations are not required to be
reciprocal, the resulting graph is directed. Since Twitter contains many isolated
nodes, the resulting graph based on a Twitter-like power-law distribution also
contains a number of isolated nodes. However, these nodes are irrelevant for the
problem at hand, and are thus removed.

Every node is then initialized with a set of random message passing prefer-
ences. These distributions and their parameters setting these message preferences
have been established using 2,500 harvested tweets from late 2012 and spring
2013. The dimensions, and the parameters describing the distributions are given
in Table 1.

Table 1. Message and node preferences and their distributions

Parameter Mean SD

Polarity 9.82 14.8
Emotionality 2.23 0.48
Length 112.07 30.27
# URLs 0.54 0.52
# Hashtags 1.94 2.04

When a message is sent out from the original authoring node, it is passed on
initially to all first-degree followers of that node. Each follower is then evaluated,
if she will pass on the message or not. This process is repeated until all nodes
that have received the message have been evaluated.

A node’s decision on passing the message or not is based on the preferences
of that node. However, the decision is not deterministic. Rather, the probability
of a message being passed on is binomially distributed and being influenced by
the mean absolute difference between the node’s preferences (n) and and the
message’s properties (m):
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P(pass) = p =
|−→m −−→n |
Δmax

(1)

This stochastic decision model is based on the suggestions made by [3] in their
seminal work. While utility of retweeting a specific message remains constant
for any given node, the outcome is altered by the inclusion of random error.
Normative interpretation of choice theory would conclude that errors have been
made on the side of the nodes, should they chose not to retweet a message
that is to their liking. We, however, go with [3]’s fourth possible interpretation:
including the modeling of chance in the decision process.

The simulation framework described above was used to generate an artificial
Twitter-like network for use in this simulation study. To focus on the princi-
ples of message propagation, only a small network with initially 250 nodes was
generated. After removing isolated nodes, 234 nodes with at least 1 connection
remained. The average path length of that network was 6.52. The maximum of
first degree connections was observed to be at 46 nodes. This is much larger than
median and mean observed to be at 2 and 3.1, respectively.

In this section we described how an artificial Twitter-like network was built
using a power-law distribution. This network was paired with node preferences
with respect to the passing on of messages. Using a stochastic decision function,
each node uses its own preferences and a message’s properties to decide on
whether to pass it on or not. In the following we will describe a genetic algorithm
that was used to craft a message that will reach a maximum number of nodes
within that network.

4 Algorithm

In the simulated network, nodes pass on any message they encounter according
to the message properties and their own preferences regarding these properties.
If a sender now wants to maximize the effect a message has, i.e. to maximize
the retweets a tweet will experience, she has to write a message that meets
the expectations of the right, i.e. highly connected nodes. While topical choices
are obviously important as well, also the right choices regarding message style
influence the probability of a message being retweeted. In this section we present
a genetic algorithm that styles messages so that a maximum number of nodes
retweet it.

The algorithm’s chromosome are the message properties as described in Table
1. An initial population of size 50 was initialized with random chromosomes.
Using the standard genetic operators of mutations and crossover, the algorithm
was tasked to maximize the number of nodes that received the message. In the
terms introduced above, this relates to the scale of a message spreading.

To ensure that successful solutions are carried over from one generation to the
next, the top 3 solutions were cloned into the next generation. This approach
of elitism was shown by [1] to positively impact a genetic algorithm’s runtime
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behavior. Ten percent of every generation was reseeded with random values to
ensure enough fresh material in the gene pool. The remaining 85 percent of a
generation was created by crossing over the chromosomes of two solutions. To
identify solutions eligible for reproduction, tournament selection using a tourna-
ment size of 5 was implemented. Children’s genes were mutated at random. The
probability of a child being mutated was set to be at 0.05.

In this section we described a genetic algorithm that can maximize the retweet-
ability of a tweet. Using state of the art genetic operators and selection mech-
anisms, a message is being styled so that it will reach a maximum number of
nodes. In the following we describe the success the algorithm had in fulfilling
its task using sender nodes with a high, medium and low number of first-degree
connections.

5 Results

The genetic algorithm as described above was used to find optimal message
composition with respect to retweetability for three different sender nodes. The
sender nodes differed in the number of first degree connections they had. The
genetic algorithm described above was allowed to search for an optimum for 750
generations. Each optimization run was replicated 50 times with random start
values. The reported result are averages and standard errors across those 50
replications.

To evaluate the algorithm’s performance, two factors are key: the number
of generations it takes to arrive at markedly more successful messages and the
stability of the discovered solutions. While the former is important to gauge
the algorithm’s runtime behavior and suitability for real-world deployment, the
latter can reveal insights on how easy findings can be generalized across different
networks. In the following, these the results relating to these two factors across
all three node types are being described.

For highly connected nodes, the optimization quickly contributes to vastly
more successful messages. For nodes with fewer connections, there is also an
optimization effect, albeit one that takes much longer to develop. Given enough
generations, even nodes with a low degree of connectedness will be able to pro-
duce tweets that propagate further. Figure 1 depicts the clearly visible trend.
Note that the fitness development over time is not monotone as would be ex-
pected from genetic algorithms with elitism. This is rooted in the fact, that
each node decides stochastically if it retweets a message or not. So a successful
message in one generation may be very unsuccessful in the next generation.

Turning the attention towards stability, the last generation’s best solution
should be similar across all 50 replications. Table 2 gives the means and their
standard errors for all three kinds of nodes.

We will discuss these results in the next section and offer some concluding
remarks.
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Fig. 1. Mean fitness as improving over generations for three different kinds of sender
nodes. Shaded area is a 95% confidence interval derived from replicating the optimiza-
tion 50 times.

Table 2. Solution stability. Mean and Standard Error (in parentheses).

Parameter 5 nodes 10 nodes 46 nodes

Polarity 0.82 (0.16) 0.64 (0.29) 0.83 (0.13)
Emotionality 0.87 (0.13) 0.87 (0.12) 0.91 (0.07)
Length 110.2 (22.3) 101.2 (13.89) 112.28 (14.96)
# URLs 0.46 (0.58) 1.12 (0.63) 0.36 (0.53)
# Hashtags 0.68 (0.68) 1.98 (1.26) 1.36 (0.69)

6 Discussion

The evaluation results provided in the previous section exhibit a number of pecu-
liarities. Most striking is perhaps, that the genetic algorithm can much quicker
improve message styles of highly connected than for lesser connected nodes.
This phenomenon is rooted directly in the stochastic decision function used in
the retweeting model. For a highly connected node, the probability of encounter-
ing nodes that retweet a message is higher, as there are more connections. The
algorithm, therefore receives better feedback on the quality of a solution. With
a lesser connected node, a promising solution might get discarded too quickly, if
it is unfortunate enough to be rejected by too large a proportion of connected
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nodes. As a result, the algorithm requires a large number of generations to arrive
at noticeable improvements.

It is also obvious, that for higher connected nodes the effect of uncertainty is
much less pronounced. This becomes visible in the relative lack of fluctuations of
fitness between generations and the variance of fitness within a single generation.

In many applications of genetic algorithms, the stability of identified opti-
mal solutions across replications is a decisive factor. For the problem at hand,
stability is of lesser importance. When styling a message, apparently different
methods lead to nearly equal performance of the message. However, especially
the factor of emotionality appears to be very stable across replications and even
irrespective of node connectedness.

7 Conclusion

In this paper we introduced a genetic algorithm to optimize the retweetabil-
ity of tweets. To do this, we simulated a Twitter-like network and associated
each node with a set of preferences regarding message retweeting behavior. Any
node’s decision is stochastic, based on message properties coming close to the
node’s own preferences. The genetic algorithm succeeded in styling messages so
that they became retweeted more widely. Dependent on the number first-degree
connections of the sender node, the fitness of the algorithm’s terminal solution
and the speed of optimization varied.

This contribution is but a first step in an endeavor to understand the pre-
cise mechanics of message propagation on Twitter. Previous work was focused
on sender node properties. By taking message properties into account when as-
sessing retweetability, we not only ventured into uncharted territory, we also
discovered new insights regarding the feasibility of message optimization.
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Abstract. Several recent articles have defined and studied judgment aggregation
rules based on some minimization principle. Although some of them are defined
by analogy with some voting rules, the exact connection between these rules and
voting rules is not always obvious. We explore these connections and show how
several well-known voting rules such as the top cycle, Copeland, maximin, Slater
or ranked pairs, are recovered as specific cases of judgment aggregation rules.

1 Introduction

Judgment aggregation studies the problem of finding collective judgments that represent
a collection of individual judgments on several logically interrelated issues. Originating
from law and studied in social choice theory, it has now become clear that judgment
aggregation also relates to various fields of knowledge representation, such as belief
merging or nonmonotonic reasoning.

The literature on judgment aggregation has, until recently, focused much more on
impossibility or possibility theorems than on the study of specific rules, which departs
from the (admittedly much older) field of voting theory. However, several recent, inde-
pendent papers have started to explore the zoo of interesting, concrete judgment aggre-
gation rules, in particular [MO09, EGP12, NPP11, LPSvdT11, DP12, Die12].

Some of these rules were obviously defined by analogy with a well-known voting
rule; for instance, the so-called Young rule in [LPSvdT11], that looks for a minimum
number of agents to remove so that the resulting profile becomes majority-consistent, is
the obvious counterpart of the Young voting rule. For a few others, the analogy remains
clear, but the formal connection is less trivial to establish; as an example of such result,
[EGP12] show that the distance-based procedure proposed in [MO09] (and close to the
distance-based majoritarian merging operator proposed in [KPP02]), corresponds in
some sense to the Kemeny rule. For a few other rules, the analogy itself is not obvious.

The formal connection between judgment aggregation rules and voting rules makes
use of the preference agenda [DL07]: given a set of alternatives C, this agenda is com-
posed of propositions of the form “x is preferred to y”, where x and y are alternatives in
C; a profile corresponds to a set of individual judgments, whose consistency condition
corresponds to the transitivity of the individual votes. A nontrivial question is whether
the collective judgment set should be consistent with the transitivity constraint, or only
with the constraint expressing the existence of an undominated alternative.
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Section 2 introduces the judgment aggregation framework we are using. Section 3
gives some background on judgment aggregation rules, while Section 4 gives some
background on voting rules. Section 5 addresses the question of relations between vot-
ing and judgment aggregation rules in full detail: we define a formal way of mapping
a judgment aggregation rule into two voting rules, obtained by requiring the collective
judgment to be consistent with one constraint or the other.

It is rather intriguing to see which pairs of well-known voting rules correspond to the
same judgment aggregation rule. For instance, as we show, the Copeland rule comes to-
gether with the Slater rule, whereas the maximin rule comes together with the “ranked
pairs” rule. Section 6 discusses some implications of our results as well as further re-
search issues.

2 Judgment Aggregation: General Definitions

Let L be a set of well-formed propositional logical formulas, including 2 (tautology)
and⊥ (contradiction). An issue is a pair of formulasϕ,¬ϕ whereϕ ∈ L andϕ is neither
a tautology nor a contradiction. An agendaA is built up from a finite set of issues, and
has the form A = {ϕ1,¬ϕ1, . . . , ϕm,¬ϕm}. The preagenda [A] associated with A is
[A] = {ϕ1, . . . , ϕm}. A judgment on ϕ ∈ [A] is one of ϕ or ¬ϕ. A judgment set J is a
subset of A. It is complete iff for each ϕ ∈ [A], either ϕ ∈ J or ¬ϕ ∈ J .

Constraints can be specified to explicitly represent logical dependencies enforced on
agenda issues. Since we have a finite L, without loss of generality we can assume that
the constraints consist of one propositional formula (typically the conjunction of sev-
eral simpler constraints). The constraint associated to an agenda A is thus a consistent
formula Γ ∈ L. When not otherwise specified, Γ is the tautology 2. Involving con-
straints in judgment aggregation has already been considered in a few places, such as
[DL08, GE13].

A judgment set J (and more generally, a set of propositional formulas) is Γ -consistent
if and only if J ∪ {Γ} � ⊥. Let D(A, Γ ) be the set of all Γ -consistent judgment sets
(for agenda A) and D(A, Γ ) ⊂ D(A, Γ ) be the set of all judgment sets that are also
complete. We omit specifyingA and Γ when they are clear from the context.

A profile P = 〈J1, . . . , Jn〉 ∈ Dn(A, Γ ) is a collection of complete, Γ -consistent
individual judgment sets. Given I ⊆ {1, . . . , n}, the sub-profile PI is the collection
PI = 〈Ji | i ∈ I〉. In the whole paper (except at one place), we assume we have an odd
number n of voters.

A sub-agenda is a subset of issues from A, that is, a subset of A of the form
{ϕj ,¬ϕj | j ∈ J}. A sub-preagenda is a subset of [A]. Given a sub-agenda Y , the
projection of J on Y is J↓Y = J ∩Y . Given a profile P = 〈J1, . . . , Jn〉, the projection
of P on Y is P ↓Y = 〈J↓Y

1 , . . . , J↓Y
n 〉. An example is given in Figure 1. For ϕ ∈ A, the

set of agents in P with judgment sets that contain ϕ is N(P, ϕ) = #{i | ϕ ∈ Ji}.
An irresolute judgment aggregation rule, for n voters, is a function

FΓ : Dn → 2D \ {∅}, i.e., FΓ maps a profile of complete judgment sets to a nonempty
set of judgment sets. When Γ is omitted, i.e., when we note F instead of FΓ , we assume
that F is defined for any possible constraint Γ (F then defines a family of judgment
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

{p q r}
{p q r}
{p ¬q ¬r}
{p ¬q ¬r}
{¬p q ¬r}
{¬p q ¬r}
{¬p q ¬r}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
3
4
5
6
7

PI

P ↓Y

PI

Fig. 1. A profile P for 7 agents for [A] = {p, q, r} and Γ = (p ∧ q) ↔ r. The grey shaded
area depicts sub-profile PI for I = {1, 2, 3, 4}, while the dotted lined area corresponds to the
projection P ↓Y for Y = {q,¬q, r,¬r}. We have, for instance, N(P, q) = 5.

aggregation rules – one for each Γ – but by a slight abuse of language we will still call
F a judgment aggregation rule).1

The majoritarian judgment set associated with profile P contains all elements of the
agenda that are supported by a majority of judgment sets in P , i.e.,

m(P ) = {ϕ ∈ A | N(P, ϕ) >
n

2
}.

A profile P is (Γ )-majority-consistent iff m(P ) is Γ -consistent. A judgment ag-
gregation rule FΓ is majority-preserving iff, for every Γ -majority-consistent profile
P ∈ Dn, F (P ) = {m(P )}.

Given a set of formulas Σ, S ⊆ Σ is a maximal Γ -consistent subset of Σ if S
is Γ -consistent and no S′ such that S ⊂ S′ ⊆ Σ is Γ -consistent; and S ⊆ Σ is a
maxcard (for “maximal cardinality”) Γ -consistent subset of Σ if S is Γ -consistent and
no S′ ⊆ Σ such that |S| < |S′| is Γ -consistent. MaxCons(m(P ), Γ ) denotes the set
of all maximal Γ -consistent subsets of m(P ). MaxCardCons(m(P ), Γ )) denotes the
maxcard set of Γ -consistent subsets of m(P ).

3 Judgment Aggregation Rules

We recall four minimization-based judgment aggregation rules. We reuse the names
from [LPSvdT11] and indicate when a rule has appeared elsewhere with a different
name. Let P = 〈J1, . . . , Jn〉 from D(A, Γ )n.

Definition 1 (Maximal and maxcard sub-agenda rules). The maximal sub-agenda
(MSA) and the maxcard sub-agenda (MCSA) rules are defined as follows:

MSAΓ (P ) = MaxCons(m(P ), Γ ), (1)

MCSAΓ (P ) = MaxCardCons(m(P ), Γ ). (2)

1 We could have opted for the more complex notation Fn,A,Γ . However, omitting n and A will
not lead to any ambiguity.
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The MSA rule is called “Condorcet admissible set”, and the MCSA “Slater rule”, in
[NPP11].

Definition 2 (Ranked agenda). Let 	P be the weak order on A defined by: for all
ψ, ψ′ ∈ A, ψ 	P ψ′ iff N(P, ψ) ≥ N(P, ψ′). ForA = {ψ1, . . . , ψ2m} and a permuta-
tion σ of {1, . . . , 2m}, let >σ be the linear order onA defined by ψσ(1) > ... > ψσ(2m).
We say that >σ is compatible with 	P if ψσ(1) 	P ... 	P ψσ(2m). The ranked agenda
rule RAΓ is defined as J ∈ RAΓ (P ) iff there exists a permutation σ such that >σ is
compatible with 	P and such that J = Jσ is obtained by the following procedure:

S := ∅; 1
for j = 1, . . . , 2m do 2

if S ∪ {ψσ(j)} is Γ -consistent, then S := S ∪ {ψσ(j)} 3
end for; 4
Jσ := S. 5

The RA rule is called by the name “leximin rule” by [NPP11].
The next rule is defined as the distance-based rule in [EGP12], “maxweight sub

agenda” rule in [LPSvdT11], “Prototype” in [MO09], “median rule” in [NPP11], and
“simple scoring rule” in [Die12] has received much more attention that the others. Its
relationship to the Kemeny rule is considered in [EGP12] (see also [EM05]).

Definition 3 (Maxweight sub-agenda rule). Let J ∈ D(A, Γ ). The maxweight sub-
agenda rule MWA is defined as 2

MWA(P ) = arg max
J∈D(A,Γ )

WP (J) where WP (J) =
∑
ϕ∈J

N(P, ϕ).

Definition 4 (Young rule). Let MSP (P ) be the set of all maxcard Γ -majority-
consistent sub-profiles PI ∈ D|I|(A, Γ ) of P ∈ Dn(A, Γ ), namely,

MSP (P ) = {PI | there is no I ′ such that |I| < |I ′| and m(PI′) ∈ D(A, Γ )}.

The Young judgment aggregation rule is defined as

YΓ (P ) = {m(PI) | PI ∈MSP (P )}.

4 Voting Rules

Let C = {x1, . . . , xq} be a set of alternatives. An n-voter profile over C (recall that n
is assumed to be odd) is a collection V = 〈�1, . . . ,�n〉 of linear orders on C, called

2 Alternatively the rule MWA can be defined as a (Hamming) distance based rule

RdH ,
∑

(P ) = arg min
J∈D(A,Γ )

n∑
i=1

dH(Ji, J).

The equivalence between these two definitions was shown in [LPSvdT11].
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votes. An irresolute voting rule (or voting correspondence) is a function R mapping
every profile V into a nonemptyset of alternatives R(V ) ∈ 2C \ {∅}. For every pair of
alternatives (x, y) ∈ C and profile V , let nV (x, y) be the number of votes in V ranking
x above y, and let M(V ) be the majority graph associated with V , whose vertices are
C and containing edge (x, y) iff nV (x, y) >

n
2 . The alternative x ∈ C is a Condorcet

winner for V if there is an outgoing edge in M(V ) from x to every y �= x.
We now define several (irresolute) voting rules.
The Top-cycle (TC) rule maps every profile V to the set of alternatives x ⊆ C such

that for all y ∈ C \ x, there exists a path in M(V ) that goes from x to y. Equivalently,
TC(P ) is the smallest set S such that for every x ∈ S and y ∈ C \ S, we have
(x, y) ∈M(V ).

A Slater order for V is a linear order� over C maximizing the number of (x, y) s.t.
x � y iff (x, y)∈M(V ). The Slater rule maps a profile V to the set of all alternatives
that are dominating in some Slater order for M(V ).

The Copeland rule maps V to the set of alternatives maximizing the number nc(x)
of outgoing edges from x in M(V ).

The ranked pairs rule [Tid87] is defined as follows. We define first its non-neutral
version: given a tie-breaking priority, that is, a linear order ρ over {(x, y) ∈ C2, x �= y},
the linear order >ρ on {(x, y) ∈ C2, x �= y} is constructed as follows: (x, y) >ρ

(x′, y′) iff either (a) nV (x, y) > nV (x
′, y′) or (b) if nV (x, y) = nV (x

′, y′) and ρ
gives priority to (x, y) over (x′, y′). Then all pairs (x, y) are considered in sequence
according to >ρ, and we build a linear order �ρ over C starting with the pair on top of
>ρ, and iteratively adding the current pair to�ρ if it does not make it cyclic. The ranked
pairs winner for V according to ρ is the unique undominated element in�ρ. Now, x is a
winner of the neutral ranked pairs rule for V iff it is a winner of the non-neutral ranked
pairs rule for some ρ. (See [BF12] for a recent discussion on neutral and non-neutral
variants of ranked pairs.)

The maximin rule maps V to the set of alternatives that maximize

mm(x, V ) = min
y∈C\{x}

nV (x, y).

Let SY (x, V ) be the minimal number of votes whose removal from V makes x
a Condorcet winner. The Young (voting) rule maps V to the set of alternatives that
minimize SY (x, V ).

5 From Judgment Aggregation to Voting Rules

In this Section, we assume that judgment profiles contain an odd number n of individual
judgments. The reason for this assumption is that the connections to voting rules are
much easier to state, and more natural, under this assumption.

A specific type of agenda is the preference agenda associated with a set of alterna-
tives C [DL07] whose propositions are of the form xPy (“x preferred to y”).

Definition 5. The preference agenda associated with C = {x1, . . . , xq} is
AC = {xiPxj | 1 ≤ i < j ≤ q}.
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When j > i, xiPxj is not a proposition of AC , but we will write xjPxi as a short-
hand for ¬(xjPxi).

Definition 6. Let V = 〈�1, ...,�n〉 be an n-voter profile over C. With every individual
vote �i we associate the individual judgment set

J(�i) = Ji = {xPy | x �i y, for x, y ∈ C}.

The judgment aggregation profile associated with V is P (V ) = 〈J1, . . . , Jn〉.
Conversely, given a judgment set J onAC , the binary relation �J over C is defined

by: for all xi, xj ∈ C, xi �J xj if xiPxj ∈ J and xj �J xi if ¬xiPxj ∈ J .

Now we define two preference constraints: the transitivity constraint Tr and the
dominating alternative, or “winner”, constraint W .

Definition 7. We define the transitivity Tr and dominating alternative W constraints:

– Tr =
∧

i,j,k∈{1,...,m}
(
(xiPxj) ∧ (xjPxk)→ (xiPxk)

)
– W =

∨
i≤m

∧
j �=i(xiPxj)

For complete judgment sets, Tr is stronger than W , therefore, any complete Tr-
consistent judgment set is also W -consistent.

Lemma 1. Let J be a judgment set on AC .

– J is Tr-consistent iff �J is acyclic;
– J is W -consistent iff �J has at least one undominated element.

The proof is almost straightforward from Definition 6: J is Tr-consistent if �J can
be completed into a transitive order, i.e., iff �J is acyclic; J is W -consistent if some
x can be made a winner by adding the missing propositions xPy, which is possible iff
some x is undominated in �J .

As a consequence of Lemma 1, any Tr-consistent judgment is also W -consistent.
Note also that �J is a linear order if and only if J is complete and Tr-consistent.

For instance, let J = {aPb, aPc, bPc, dPb, cPe, ePb}; then

�J= {(a, b), (a, c), (b, c), (d, b), (c, e), (e, b)}

J is not Tr-consistent because bPc ∧ cPe ∧ Tr |= ¬ePb (or equivalently, �J con-
tains the cycle b �J c �J e �J b). However, it is W -consistent: a and d are both
undominated in �J .

For each x ∈ C we define W (x) =
∧

y∈C,y �=x(xPy). Note that W is equivalent to∨
x∈C W (x) and that J is W (x)-consistent iff x is undominated in �J .
Since each vote�i is a linear order, the individual judgment sets Ji are complete and

consistent with Tr (and a fortiori with W ). The collective judgment will sometimes be
required to be consistent with respect to Tr and sometimes only to be consistent with
respect to W . Lemma 2 is straightforward from Definition 6.

Lemma 2. Given a voting profile V , for all x, y ∈ C, xPy is in m(P (V )) iff
(x, y) ∈M(V ).
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Proposition 1. A voting profile V has a Condorcet winner iff m(P (V )) is W -
consistent.

Proof. From Lemma 2, xPy is in m(P (V )) iff M(V ) contains (x, y). Since n is odd,
m(P (V )) contains either xiPxj or xjPxi for all i �= j, thereforem(P (V ))∪{W} � ⊥
iff there exists x ∈ C s.t. m(P (V )) contains {xPy | y �= x}, i.e., , by Lemma 2again,
iff V has a Condorcet winner.

Note that for an even n, W -consistency would be equivalent to the existence of a
weak Condorcet winner.

Definition 8. Let
Win(J) = {x | J ∪W (x) � ⊥}

Let Γ ∈ {Tr,W} and F be a judgment aggregation rule. The voting rule RF,Γ induced
from F and Γ is defined as x ∈ RF,Γ (P (V )) if there is a J ∈ RF,Γ (P (V )) such that
x ∈ Win(J), or equivalently:

RF,Γ (P ) =
⋃

J∈FΓ (P (V ))

Win(J).

Note that J ∪ {W} � ⊥ or J ∪ {Tr} � ⊥, then Win(J) �= ∅, therefore Definition
8 is well-founded.

Thus, for every judgment aggregation rule F we have two voting rules, obtained by
requiring the collective judgment set to be acyclic, i.e., consistent with Tr, or to have a
undominated element, i.e., consistent with W .

Example 1. Let V = 〈a �1 b �1 c �1 d, b �2 c �2 a �1 d, d �3 c �3

a �3 b〉. We have P (V ) = 〈J1, J2, J3〉 with J1 = {aPb, aPc, aPd, bPc, bPd, cPd},
J2 = {bPa, bPc, bPd, cPa, cPd, aPd} and J3 = {dPa, dPb, dPc, cPa, cPb, aPb};
and we have m(P (V )) = {aPb, bPc, cPa, aPd, bPd, cPd}.

Let us choose F = MSA and Γ = Tr.
We have FTr(P (V )) = {J, J ′, J ′′}, where J = {aPb, bPc, aPd, bPd, cPd},

J ′ = {aPb, cPa, aPd, bPd, cPd} and J ′′ = {bPc, cPa, aPd, bPd, cPd}.
Now, Win(J) = {a}, Win(J ′) = {c} and Win(J ′′) = {b}.
Therefore, RMSA,Tr(P (V )) = Win(J) ∪Win(J ′) ∪Win(J ′′) = {a, b, c}.

Proposition 2.

1. RMSA,Tr = TopCycle

2. RMSA,W =

{
{c} if V has a Condorcet winner c
C otherwise

Proof. We prove the first correspondence. From Lemmas 1 and 2, J ∈ MaxCons(m
(P ), T r) iff �J is a maximal acyclic sub-graph of M(V ). Let x ∈ TC(V ); then there
exists an acyclic subrelation G of M(V ) containing, for all y �= x, a path from x to y.
G can be completed into a maximal acyclic subrelation G′ of M(V ), and x is undom-
inated in G′ (because adding an edge to any y �= x would create a cycle), therefore G′

corresponds to a maximal Tr-consistent subset J of m(P (V )), consistent with W (x),
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which means that x ∈ RMSA,Tr(V ). Conversely, if there is a J ∈ RMSA,Tr(V ) such
that x ∈ Win(J), then �J is a maximal acyclic subrelation of M(V ) in which x does
not have any incoming edge. Assume x /∈ TC(V ); then there is an y such that there
is no path from x to y in M(V ). Obviously, (x, y) �∈ M(V ), therefore, since M(V )
is complete, (y, x) ∈ M(V ). Adding (y, x) to �J results in an acyclic subrelation
of M(V ) that contains �J , therefore �J is not a maximal acyclic subset of M(V ),
contradiction.

Now we prove the second correspondence. Assume there is no Condorcet winner.
Let x ∈ C. Let S(x) be the subset of m(P (V )) defined by
{yPz|z �= x, yPz ∈ m(P (V ))}. S(x) is W -consistent, because it is consistent with
W (x). Assume S(x) is not maximal: then there is some element of m(P (V )) \ S(x)
that can be added to S(x) without violating W -consistency; now, every element of
m(P (V ))\S(x) is of the form yPx. Let S′ = S(x)∪{yPx}. S′ is not consistent with
W (x). Therefore, since it is W -consistent, it must be consistent with W (z) for some
z �= x. This implies that there is no tPz ∈ S′, therefore, no tPz ∈ S(x). Now, by
construction of S(x), this means that there is no tPz ∈ m(P (V )), which implies that
z is a Condorcet winner: contradiction.

Proposition 3.

1. RMCSA,Tr = Slater
2. RMCSA,W = Copeland

Proof. For point 1, let J ∈MCSATr(P (V )), hence J ∈ MaxCardCons(m(P ), T r)
and �J is an acyclic subrelation of M(V ). Let > be a linear order extending�J . The
number of edge reversals needed to obtain > from �J is |m(P (V )) \ J |.
This number is minimal iff J has a maximal cardinality. Consequently, > is a Slater or-
der for V . Conversely, let > be a Slater order for V and let
J = {xPy | x > y and xPy ∈ m(P (V ))}. Because > is a linear order, J is Tr-
consistent. Moreover, |m(P (V )) \ J | is the number of edge reversals needed to ob-
tain > from M(V ). Since |m(P (V )) \ J | is minimal, |J | is maximal and therefore
J ∈ MCSATr(P (V )). This one-to-one correspondence between Slater orders for V
and maxcard acyclic subgraphs of P (V ) allows us to conclude.

For point 2, let J ∈ MaxCardCons(m(P ),W ). From J ∪ {W} � ⊥ it follows
that there exists a x ∈ C s.t. for every y ∈ C, yPx �∈ J . For every y ∈ C, consider
z ∈ C, z �= x, such that yPz ∈ m(P (V )). Adding yPz to J results in a judgment set
which is still W -consistent, therefore the maximum W -consistent subsets of m(P (V ))
are of the form Jx = m(P (V )) \ {yPx, y �= x} for some x ∈ C, and such a judgment
set Jx is a maxcard W -consistent subset of m(P (V )) iff |{y | xPy ∈ m(P (V ))}| is
maximal, i.e., using Lemma 2, iff x ∈ Copeland(V ).

Example 2. Let V be such that M(V ) = {(a,b),(a,c),(b,c),(b,d),(c,d),(d,a)}, i.e.,
m(P (V )) = {aPb, aPc, bPc, bPd, cPd, dPa}. The only maxcard Tr-consistent sub-
set of m(P (V )) is J = {aPb, aPc, bPc, bPd, cPd}, and Win(J) = {a}; a is also the
only Slater winner for P . Now, m(P (V )) has two maxcard W -consistent subsets: J
and J ′ = {aPc, bPc, bPd, cPd, dPa}; Win(J ′) = {b}; a and b are also the Copeland
winners for V .
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Proposition 4.

1. RRA,Tr = ranked pairs.
2. RRA,W = maximin.

Proof. The proof of point (1) is simple, due to the similarity of the definitions of ranked
pairs and RA, and observing that adding xPy to a current Tr-consistent judgment set
without violating Tr corresponds to adding (x, y) to a current acyclic graph without cre-
ating a cycle. The proof of point (2) is more interesting. The candidate x is a maximin
winner if it maximizes mm(x, V ), or equivalently, if it minimizes maxy nV (y, x). Let
β = minxmaxy nV (y, x). (Note that we have β ≥ 1

2 when there is no Condorcet win-
ner.) Assume that x is a Maximin winner for V . In order to show that x ∈ RRA,W (V ),
we have to construct a linear order �=�σ on {xPy | (x, y) ∈ C2, x �= y}, com-
patible with 	P , such that the judgment set Jσ obtained by following �σ is such that
x ∈ Win(Jσ). Let �σ be as follows:

1. the first propositions of �σ are all uPv such that nV (u, v) > β, with ties broken
in an arbitrary manner;

2. the propositions that follow in �σ are all yPz such that nV (y, z) = β and z �= x;
3. the following propositions are all yPx such that nV (y, x) = β;
4. the rest of �σ does not matter.

We now follow step by step the construction of Jσ . During step (1) – corresponding to
considering one by one the proposition in (1) above – we consider all the propositions
uPv such that nV (u, v) > β, and all are added to S, because the resulting judgment
set is consistent with W (x), and a fortiori with W (otherwise it would be the case
that for all y, nV (y, x) > β, contradicting minx maxy nV (y, x) = β). During step
(2) all propositions yPz such that nV (y, z) = β and z �= x are considered one by
one, and they are all added to S, because the resulting judgment set is, each time,
consistent with W (x) and a fortiori with W . After steps (1) and (2), due to the fact
that β = minx maxy nV (y, x), S contains some yPz for all z �= x. Step (3) considers
all yPx such that nV (y, x) = β, and does not add them to S, because this would make
it inconsistent with W . Finally, the propositions considered in Step (4) are not of the
form yPx. Therefore, x ∈Win(Jσ) and x ∈ RRA,W (V ).

Conversely, let x ∈ RRA,W (V ). Let > be the order refining 	P such that the
judgment set obtained is J , with x ∈ Win(J). First, all formulas uPv such that
N(P, uPv) > β are added to S without creating any inconsistency with W . Then,
> must consider all propositions zPy such that N(P, zPy) = β and y �= x, and
add them all to S; at this point, for any y �= x, a proposition zPy has been consid-
ered and added to S, otherwise there would be an y such that for no z it holds that
nV (z, y) ≥ β, which would contradict β = minx maxy nV (y, x). Therefore, no propo-
sitions zPx will be added to S (or else W would be violated). Therefore, x is such that
minx maxy nV (y, x) ≤ β, hence minx maxy nV (y, x) = β: x is a maximin winner.



Judgment Aggregation Rules and Voting Rules 239

Example 3. Let n = 9 and V such that nV is as follows:

nV a b c d
a − 6 2 4
b 3 − 5 6
c 7 4 − 2
d 5 3 7 −

(3)

The weak order 	P starts with cPa and dPc (tied), then aPb and bPd, then bPc
and dPa, etc. Applying RA with Γ = W starts by adding cPa and dPc, whatever
the choice of the linear order �σ refining 	P . Next, there is a choice between aPb or
bPd. If aPb is considered first (that is, if aPb �σ bPd), then it is added to S, bPd
is not (because it would violate W -consistency), and then all other propositions except
aPd, bPd and cPd are added. The other choice is similar, replacing d by b. Therefore,
RA(P (V ),W ) contains the two judgment sets

J1 = {dPa, dPB, dPc, aPb, bPa, aPc, cPa, bPc, cPb}

and
J2 = {bPa, bPc, bPd, aPc, cPa, aPd, dPa, cPd, dPa},

with Win(J1) = d and Win(J2) = b. We check that b and d are also the maximin
winners for V .

Applying RA with Γ = W first adds cPa and dPc. Next, there is a choice between
aPb or bPd. If aPb is considered first, then it is added to S, bPd is not, then all other
propositions except aPd, bPd and cPd are added.

For MWA, it is already known that the choice of the transitivity constraint leads to
the Kemeny rule, i.e., RMWA,Tr = Kemeny. The proof can be found in [EGP12].

The choice of the W constraint leads to an unknown voting rule, for which, interest-
ingly, the winners maximizes the sum of the Borda score and a second term: if SB(P, x)
is the Borda score of P for profile P , RMWA,W is the voting rule defined by

SMWA,W (x) = SB(P, x) +
∑

y �=z �=x

max(NP (y, z), NP (z, y))

and
RMWA,W (P ) = argmax

x∈X
SMWA,W (x).

We give in Appendix an example of winner determination for this rule, which shows
that it differs from Borda.

The connection between the Young judgment aggregation rule and the Young voting
rule is less clear that is seems at first glance: because the removal of judgments (and
votes) can make the number of judgments (votes) even, the voting rule obtained from
Y together with W is not Young (even for n odd), but a weak version of Young: the
weak Young voting rule is defined as the voting rule, except that we look for a minimal
number of votes whose removal in V makes x a weak Condorcet winner (where x is a
weak Condorcet winner if for any y �= x, at least half of the voters prefer x to y).
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Proposition 5. RY oung,W = WeakY oung.

Proof. Removing a minimal number of judgments from P (V ) so as to make it consis-
tent is equivalent to removing a minimal number of votes from V so that the majority
graph contains an undominated outcome, i.e., so that there exists a weak Condorcet
winner.

RY oung,Tr does not appear to be a known voting rule. It consists of the dominating can-
didates in maximum cardinality sub-profiles of P (V ) whose majoritarian aggregation
is acyclic.

Another judgment aggregation rule defined in [LPSvdT11] is the distance-based rule
RdH ,max. Because the voting rules we obtain from it are not known voting rules, we
omit the corresponding results.

6 Discussion

We have obtained a number of correspondences between judgment aggregation rules
and pairs of voting rules. It is especially interesting to see which pairs come together.
We summarize the results here.

RF,Γ F = MSA F = MCSA F = MWA F = RA F = Y
Γ = Tr Top Cycle Slater Kemeny ranked pairs weak Young
Γ = W Copeland maximin

Note that if the assumption that profiles have an odd number of judgments sets is
relaxed, then the voting rules obtained are generally be weak versions of the usual voting
rule, strict majority being replaced by weak majority. In particular, RMCSA,W would
be Copeland0, where ties count as much as victories.

What do these results tell us? After all, these judgment aggregation rules have not
been widely studied yet (although some of them have been introduced independently
in several papers), and one may argue that they were defined in such a way that their
specialization to the preference agenda correspond to such or such voting rule, and one
may advocate that this makes these correspondence results rather pointless. This is an
important point: while the premise is not entirely false (at least for some of the rules,
such as RA), we would strongly disagree with the conclusion. The definition and study
of judgment aggregation rules is only starting, and knowing that a judgment aggrega-
tion rule specializes to a well-known voting rules (sometimes, to two well-known voting
rules) is a hint that the judgment aggregation rule is a natural generalization of interest-
ing voting rules, which is a first justification for studying it. Also, it gives insights about
the properties it may satisfy. In particular, a challenging question is the axiomatization
of judgment aggregation rules, and for this, a good start could be to start with the ax-
iomatization (when it exists) of the voting rule(s) into which the judgment aggregation
rule degenerates.

In our correspondence results, a voting rule is defined from two elements: a judgment
aggregation operator and a constraint. This is reminiscent of a recent research stream
on the distance rationalizability of voting rules (see [Bai87, Kla05a, Kla05b, MN08]
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for early works and [EFS09, EFS12] for a systematic study). There, one seeks to define
voting rules via a distance between profiles and a consensus class. In some sense, our
judgment aggregation rules play the role of distances whereas the constraint plays the
role of the consensus class. More precisely, the Tr and W constraint more or less cor-
respond to, respectively, the strong unanimity and Condorcet consensus classes, with a
noticeable difference: the definition of a consensus class bears on a profile, whereas a
constraint bears on an (individual or collective) judgment set (this may explains why
we don’t have any constraint that corresponds to the unanimity and majority consensus
classes). This is consistent with the fact that the two rules we obtain by letting Γ = W
are also rationalizable for the Condorcet consensus class (see [Kla05b] for Copeland
and [EFS09] for maximin).

The discussion about distance rationalizability leads to a very intriguing question.
One of the key questions in [EFS12] is a systematic study of which rules can be axiom-
atized by a given consensus class or a given distance. They not only show that some
rules are indeed axiomatizable via a given consensus class or a given distance function,
but also that some rules are not. This leads us to ask the following question: which vot-
ing rules are definable from a judgment aggregation rule by specializing to the prefer-
ence agenda and imposing the Tr or the W constraint? Asked this way, this question is
trivial; the judgment aggregation rule can be defined such as its application to the prefer-
ence agenda behaves exactly like the voting rule we started from. However, suppose we
ask the judgment aggregation rule to be neutral with respect to propositional symbols,
which means that if σ is a permutation of the set of propositional symbols, Jσ the judg-
ment set obtained by applying σ in every ϕ ∈ J and P (V )σ = {Jσ|J ∈ P (V )}, then
F (P (V )σ) = F (P (V ))σ . (Note that this is the case of all the rules we study here.)
Then the question becomes highly nontrivial, and we suspect that some well-known
rules will not be definable this way.

Finally, as argued three paragraphs above, the definition of judgment aggregation
rules which specialize to well-known voting rules (and thereby give them a justifica-
tion) is a bottom-up process. A subsequent top-down process would consists in apply-
ing these judgment aggregation rules (obtained as a generalization from voting rules) to
other specific agendas and/or with other constraints. We give here two examples. A first
example would consist in keeping the preference agenda and to consider constraints that
are intermediate between Tr and W , such as the judgment set being transitive on the top

k candidates; for instance, k = 2 this would be
∨

x �=y

(∧
z �=x xPz ∧

∧
z �=x,y yPz

)
. A

second example would consist in keeping an preference agenda of the form
{xPy, x, y ∈ X}, but with a very different meaning, where xPy means that x and
y are in the same equivalence class, and choose Γ as the expression of an equivalence
relation; this process will give interesting rules for aggregating equivalence relations.
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Appendix

RMWA,W

Let X = {a, b, c, d, e}, n = 25, and let V be the profile containing: 3 votes abcde, 2
votes bcade, 2 votes cabde, 2 votes edabc, 2 votes edbca, 2 votes edcab, 2 votes adebc,
2 votes deabc, 2 votes eadbc, 2 votes cbade, 2 votes cbdea, 2 votes cbead. The weighted
majority graph associated with V is:

nV a b c d e
a − 15 11 15 11
b 10 − 15 13 13
c 14 10 − 13 13
d 10 12 12 − 14
e 14 12 12 11 −

(4)

The Borda scores are respectively 52 for a (Borda winner), 51 for b, 50 for c, 48 for
d and 49 for e.

For all x ∈ X , let

SMWA,W (x) = SB(P, x) +
∑

y �=z �=x

max(NP (y, z), NP (z, y)).

We get
SMWA,W (a) = 52 + 81 = 133;
SMWA,W (b) = 51 + 82 = 133;
SMWA,W (c) = 50 + 84 = 134;
SMWA,W (d) = 48 + 83 = 131;
SMWA,W (e) = 49 + 85 = 134.

The co-winners are c and e.
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Abstract. We consider voting over combinatorial domains, where al-
ternatives are binary tuples. We assume that votes are specified as con-
ditionally lexicographic preference trees, or LP trees for short. We study
the aggregation of LP tree votes for several positional scoring rules. Our
main goal is to demonstrate that answer-set programming tools can be
effective in solving the winner and the evaluation problems for instances
of practical sizes. To this end, we propose encodings of the two problems
as answer-set programs, design methods to generate LP tree votes ran-
domly to support experiments, and present experimental results obtained
with ASP solvers clingo and clingcon.

Keywords: conditionally lexicographic preferences, social choice the-
ory, positional scoring voting rules, answer set programming.

1 Introduction

Preferences are an essential component in areas including constraint satisfaction,
decision making, and social choice theory. Modeling and reasoning about pref-
erences are crucial to these areas. Consequently, several preference formalisms
have been developed, such as penalty logic, possibilistic logic, and conditional
preference networks (CP nets, for short) [6]. Each of these formalisms provides
the user with a concise way to express her preferences.

The problem of aggregating preferences of a group of users (often referred to
as voters) is central to decision making and has been studied extensively in social
choice theory. While in the cases when the number of alternatives is small the
problems of computing the winner and of deciding whether there is an outcome
with the score higher than a given threshold are polynomially solvable for the
majority of commonly considered voting rules, the situation changes when we
consider votes over combinatorial domains of binary p-tuples. Since the number
of outcomes grows exponentially with p, applying voting rules directly is often
infeasible. Issue-by-issue voting approximates voting rules by considering only
the first choices in votes, but experiments show that the winners selected issue
by issue are often not the winners selected by common voting rules [4].

When votes are represented as conditionally lexicographic preference trees, or
LP trees, for short [1], the problem of computing the winning alternative, or
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the winner problem, is generally NP-hard, while a related problem to decide
whether there is an alternative with the score exceeding a given threshold, the
so called evaluation problem, is NP-complete [8]. Nevertheless, the two problems
arise in practice and computational tools to address them effectively are needed.
In this work we study Borda, k-approval and 2-valued (k, l)-approval scoring
rules. For the 2-valued (k, l)-approval, we obtain new complexity results. For all
three rules we encode the problems in answer-set programming [9] and study the
effectiveness of ASP solvers clingo [5] and clingcon [10] in solving the winner and
the evaluation problems. We chose these two solvers as they represent substantial
different approaches to computing answer sets. The former, clingo, is a native
ASP solver developed along the lines of satisfiability solvers. The latter, clingcon,
enhances clingo with specialized treatment of some common classes of numeric
constraints by delegating some reasoning tasks to a CP solver Gecode [12]. As
problems we are considering involve numeric constraints, a comparison of the two
solvers is of interest. To support the experimentation we propose and implement
a method to generate LP votes, of some restricted form, randomly.

The main contributions of our work are: (1) new complexity results for the
winner and the evaluation problems for a class of positional scoring rules; and
(2) demonstration that ASP is an effective formalism for modeling and solving
problems related to aggregation of preferences given as LP trees.

2 Technical Preliminaries

A vote over a set of alternatives (or outcomes) X is a strict total order � on X .
Here we consider votes over alternatives from combinatorial domains determined
by a set I = {X1, X2, . . . , Xp} of p binary issues, with each issue Xi having a
binary domain D(Xi) = {0i, 1i}. The combinatorial domain in question is the
set X (I) = D(X1)×D(X2)×. . .×D(Xp). If I is implied by the context, we write
X instead of X (I). For instance, let I = {X1, X2, X3}. A 3-tuple (01, 12, 13) is
an alternative from X (I), or simply, an alternative over I. We often write it as
011213 or just as 011. It assigns 0 to X1, 1 to X2, and 1 to X3.

Clearly, the cardinality of X (I), which we denote by m throughout the paper,
is 2p. Thus, even for moderately small values of p, eliciting precise orders over all
alternatives and representing them directly may be infeasible. Instead, in cases
when preferences have some structure, that structure can be exploited to give
rise to concise preference expressions [2,8].

In this work we study the case when votes (preferences) are given as LP trees
[1]. An LP tree T over a set I of p binary issues X1, . . . , Xp is a binary tree. Each
node t in T is labeled by an issue from I, denoted by Iss(t), and with preference
information of the form a > b or b > a indicating which of the two values a and
b comprising the domain of Iss(t) is preferred (in general the preference may
depend on the values of issues labeling the ancestor nodes). We require that
each issue appears exactly once on each path from the root to a leaf.

Intuitively, the issue labeling the root of an LP tree is of highest importance.
Alternatives with the preferred value of that issue are preferred over alternatives
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with the non-preferred one. The two subtrees refine that ordering. The left sub-
tree determines the ranking of the preferred “upper half” and the right subtree
determines the ranking of the non-preferred “lower half.” In each case, the same
principle is used, with the root issue being the most important one. We note that
the issues labeling the roots of the subtrees need not be the same (the relative
importance of issues may depend on values for the issues labeling the nodes on
the path to the root).

The precise semantics of an LP tree T captures this intuition. Given an alter-
native x1x2 . . . xp, we find its preference ranking in T by traversing the tree from
the root to a leaf. When at node t labeled with the issue Xi, we follow down to
the left subtree if xi is preferred according to the preference information at node
t. Otherwise, we follow down to the right subtree.

It is convenient to imagine the existence of yet another level of nodes in the
tree, not represented explicitly, with each node in the lowest explicitly repre-
sented level “splitting” into two of these implicit nodes, each standing for an
alternative. Descending the tree given an alternative in the way described above
takes us to an (implicit) node at the lowest level that represents precisely that
alternative. The more to the left the node representing the alternative, the more
preferred it is, with the one in the leftmost (implicit) node being the most de-
sirable one as left links always correspond to preferred values.

To illustrate these notions, let us consider an example. A group of friends in
Lexington want to make vacation plans for the next year. Having brainstormed
for a while, the group decided to focus on three binary issues. The Time (X1) of
the travel could be either summer (s or 11) or winter (w or 01), the Destination
(X2) could be either Chicago (c or 12) or Miami (m or 02) and the mode of
Transportation (X3) could be to drive (d or 13) or fly (f or 03).

Jane, a member of the group, prefers a summer trip to a winter trip, and this
preference on the issue Time is the most important one. Then for a summer
trip, the next most important issue is Destination and she prefers Chicago to
Miami, and the least important issue is Transportation. Jane prefers driving
to flying if they go to Chicago, and flying, otherwise. For a winter trip, the
importance of the remaining two issues changes with Transportation being now
more important than the destination – Jane does not like driving in the winter.
As for the Destination, she prefers to go to Miami to avoid the cold weather.
These preferences can be captured by the LP tree T in Figure 1. We note that the
trees ordering the vacation plans for summer and for winter are determined by
trees with different assignments of issues to nodes. For instance, for the summer
trips, the destination is the most important factor while for the winter trips the
mode of transportation. The tree shows that the preferred vacation plan for Jane
is to drive to Chicago in the summer and the next in order of preference is to
fly to Chicago in the summer. The least preferred plan is to drive to Chicago in
the winter.

Sometimes LP trees can be represented in a more concise way. For instance, if
for some node t, its two subtrees are identical (that is, the corresponding nodes
are assigned the same issue), they can be collapsed to a single subtree, with the
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Time

Dest

Tran Tran

s > w

c > m

d > f f > d

f > d

m > c m > c

Tran

Dest Dest

Fig. 1. An LP tree T

same assignment of issues to nodes. To retain preference information, at each
node t′ of the subtree we place a conditional preference table, and each preference
in it specifies the preferred value for the issue labeling that node given the value
of the issue labeling t. In the extreme case when for every node its two subtrees
are identical, the tree can be collapsed to a path.

Since the preferred issue at a node depends on the values of issues above, the
conditional preference table for the node t located at distance i from the root
has possibly as many as 2i rows (in general, 2j rows, where j is the number of
ancestor nodes with one child only), with each row specifying a combination of
values for the ancestor issues together with the preferred value for Iss(t) given
that combination. Thus, collapsing subtrees alone does not lead to a smaller
representation size. However, it can be achieved if there are nodes whose pre-
ferred value depends only on a limited number of issues labeling their single-child
ancestor nodes as in such cases the conditional preference table can be simplified.

Formally, given an LP tree (possibly with some subtrees collapsed), for a
node t, let NonInst(t) be the set of ancestor nodes of t whose subtrees were
collapsed into one, and let Inst(t) represent the remaining ancestor nodes. A
parent function P assigns to each node t in T a set P(t) ⊆ NonInst(t) of parents
of t, that is, the nodes whose issues may have influence on the local preference
at Iss(t). Clearly, the conditional preference table at t requires only 2|P(t)| rows,
possibly many fewer than in the worst case. In the extreme case, when an LP tree
is a path and each node has a bounded (independent of p) number of parents,
the tree can be represented in O(p) space.

If for every node t in an LP tree, P(t) = ∅, all (local) preferences are uncon-
ditional and conditional preference tables consist of a single entry. Such trees
are called unconditional preference LP trees (UP trees, for short). Similarly,
LP trees with all non-leaf nodes having their subtrees collapsed are called an
unconditional importance LP trees (UI trees, for short). This leads to a a nat-
ural classification of LP trees into four classes: unconditional importance and
unconditional preference LP trees (UI-IP trees), unconditional importance and
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conditional preference trees (UI-CP trees), etc. The class of CI-CP trees com-
prises all LP trees, the class of UI-UP trees is the most narrow one.

The LP tree T in Figure 1 can be represented more concisely as a (collapsed)
CI-CP tree v in Figure 2. Nodes at depth one have their subtrees collapsed. In
the tree in Figure 1, the subtrees of the node at depth 1 labeled Tran are not
only identical but also have the same preference information at every node. Thus,
collapsing them does not incur growth in the size of the conditional preference
table.

Time s > w

Destc > m

Tranc : d > f

m : f > d

Tran f > d

Dest m > c

Fig. 2. An CI-CP LP tree v

A set of votes (collected from, say, n voters) over a domain X is called a
profile. Among many rules proposed to aggregate a profile into a single preference
ranking representing the group, positional scoring rules have received particular
attention. For profiles over a domain with m alternatives, a scoring vector is
a sequence w = (w0, . . . , wm−1) of integers such that w0 ≥ w1 ≥ . . . ≥ wm−1

and w0 > wm−1. Given a vote v with the alternative o in position i (0 ≤ i ≤
m− 1), the score of o in v is given by sw(v, o) = wi. Given a profile V of votes
and an alternative o, the score of o in V is given by sw(V , o) =

∑
v∈V sw(v, o).

These scores determine the ranking generated from V by the scoring vector w
(assuming, as is common, some independent tie breaking rule). In this paper we
consider three positional scoring rules:

1. Borda: (m− 1,m− 2, . . . , 1, 0)
2. k-approval: (1, . . . 1, 0, . . .0) with k the number of 1’s
3. 2-valued (k, l)-approval: (a, . . . , a, b, . . . , b, 0 . . . , 0), where a and b are con-

stants (a > b) and the numbers of a’s and b’s equal to k and l, respectively.

3 The Problems and Their Complexity

Here we consider only effective implicit positional scoring rules, that is, rules de-
fined by an algorithm that given m (the number of alternatives) and i, 0 ≤ i ≤
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m − 1 (an index into the scoring vector) returns the value wi of the scoring vec-
tor and works in time polynomial in the sizes of i and m. Borda, k-approval and
(k, l)-approval are examples of effective implicit positional scoring rules.

Let us fix an effective implicit positional scoring rule D with the scoring vector
w. Given an LP profile V , the winner problem for D consists of computing an
alternative o ∈ X with the maximum score sw(V , o). Similarly, given a profile
V and a positive integer R, the evaluation problem for D asks if there exists an
alternative o ∈ X such that sw(V , o) ≥ R. In each case, w is the scoring vector of
D for m alternatives; we recall that it is given implicitly in term of an algorithm
that efficiently computes its entries.

We apply the voting rules listed above to profiles consisting of LP trees or LP
profiles, for short. We distinguish four classes of profiles, UI-UP, UI-CP, CI-UP
and CI-CP depending on the type of LP trees they consist of.

In the most restrictive case of UI-UP profiles, the evaluation problem for the
Borda rule is in P and it is NP-complete for the three other classes of profiles
[8]. The picture for the the k-approval rule is more complicated. If k = 2p−1 the
evaluation problem is in P for all four classes of profiles. However, if k equals
2p−2 or 2p−3, the problem is NP-complete, again for all four LP profile types [8]
(in fact, the result holds for a larger set of values k, we refer for details to Lang
et al. [8]). Clearly, in each case where the evaluation problem is NP-complete,
the winner problem is NP-hard.

To the best of our knowledge, the complexity of the 2-valued (k, l)-approval
rule has not been studied. It is evident that (k, l)-approval is an effective im-
plicit positional scoring rule. It turns out that, as with the k-approval rule,
for some values of the parameters, the evaluation problem for (k, l)-approval
is NP-complete. We describe two such cases here: (1) k = l = 2p−2, and (2)
k = l = 2p−3. We note that if a = 1 and b = 0, case (1) reduces to 2p−2-approval
and case (2) to 2p−3-approval. If a = 2 and b = 1, we refer to the rule in case
(1) as 2K-approval.

Theorem 1. The following problem is NP-complete: decide for a given UI-UP
profile V and an integer R whether there is an alternative o such that sw(V , o) ≥
R, where w is the scoring vector of the (2p−2, 2p−2)-approval rule.

Proof. We can guess in polynomial time an alternative o ∈ X and verify in
polynomial time that Sw(V , o) ≥ R (this is possible because (k, l)-approval is
an effective implicit scoring rule; the score of an alternative in a vote can be
computed in polynomial time once its position is known, and the position can
be computed in polynomial time be traversing the tree representing the vote). So
membership in NP follows. Hardness follows from a polynomial reduction from
the problem 2-MINSAT 1 [7], which is NP-complete. Given an instance 〈Φ, l〉 of
the 2-MINSAT problem, we construct the set of issues I, the set of alternatives
X , the profile V and the threshold R.

1 Let N be an integer (N > 1), the N-MINSAT problem is defined as follows. Given a
set Φ of n N-clauses {c1, . . . , cn} over a set of propositional variables {X1, . . . , Xp},
and a positive integer l (l ≤ n), decide whether there is a truth assignment that
satisfies at most l clauses in Φ.
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Important observations are that o is among the top first quarter of alternatives
in an LP tree L if and only if the top two most important issues in L are both
assigned the preferred values; and that o is among the second top quarter of
alternatives if and only if the most important issue is assigned the preferred
value and the second most important one is assigned the non-preferred one.
(1). We define I = {X1, . . . , Xp}, where Xis are all propositional letters occur-
ring in Φ. Clearly, the set X of all alternatives over I coincides with the set of
truth assignments of variables in I.
(2). Let Ψ be the set of formulas {¬ci : ci ∈ Φ}. For each ¬ci ∈ Ψ , we build
a+ b UI-UP trees. For instance, if ¬ci = X2 ∧ ¬X4, then we proceed as follows.
Firstly, we build a−b duplicate trees shown in Figure 3a. Secondly, we construct
b duplicate trees shown in Figure 3b. Thirdly, we build another b duplicate trees
shown in Figure 3c. (In all three figures we only indicate the top two issues since
the other issues can be ordered arbitrarily.) Denote by Vi the set of these a+ b
UI-UP trees for formula ¬ci. Then V =

⋃
1≤i≤n Vi and has n ∗ (a+ b) votes.

(3). Finally, we set R = (n− l) ∗ (a2 − ab+ b2) + l ∗ ab.
Note that the construction of V ensures that if o |= ¬ci, Sw(Vi, o) = a2−ab+b2;

otherwise if o �|= ¬ci, Sw(Vi, o) = ab. We have a2−ab+b2 > ab since (a−b)2 > 0.
Hence, there is an assignment satisfying at most l clauses in Φ if and only if there
is an assignment satisfying at least n− l formulas in Ψ if and only if there is an
alternative with the (2p−2, 2p−2)-approval score of at least R given the profile V .

Since the first equivalence is clear, it suffices to show the second. Let o be an
assignment satisfying l′ formulas in Ψ . We have Sw(V , o)−R = (l′+ l−n)∗(a2−
ab+ b2)+ (n− l′− l) ∗ ab = (l′+ l−n) ∗ (a2− 2ab+ b2) = (l′+ l−n) ∗ (a− b)2. It
follows that Sw(V , o) ≥ R if and only if l′+ l−n ≥ 0 if and only if l′ ≥ n− l.

X2 12 > 02

X4 14 > 04

(a)

X4 04 > 14

X2 02 > 12

(b)

X4 04 > 14

X2 02 > 12

(c)

Fig. 3. UI-UP LP trees

This hardness proof applies to more general classes of LP trees, namely UI-
CP, CI-UP and CI-CP, and the winner problem for those cases is NP-hard. The
evaluation problem according to (2p−3, 2p−3)-approval for the four classes of LP
trees is also NP-complete. In this case, the hardness is proven by a reduction
from an NP-complete version of the 3-MINSAT problem [11].

4 The Problems in Answer-Set Programming

The winner and the evaluation problems are in general intractable in the set-
ting we consider. Yet, they arise in practice and computational tools to handle
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them are needed. We develop and evaluate a computational approach based on
answer-set programming (ASP) [9]. We propose several ASP encodings for both
problems for the Borda, k-approval, and (k, l)-approval rules (for the lack of
space only the encodings for Borda are discussed). The encodings are adjusted
to two ASP solvers for experiments: clingo [5], and clingcon [10] and demonstrate
the effectiveness of ASP in modeling problems related to preference aggregation.
We selected

Encoding LP Trees as Logic Programs. In the winner and evaluation prob-
lems, we use LP trees only to compute the ranking of an alternative. Therefore,
we encode trees as program rules in a way that enables that computation for
a given alternative. In the encoding, an alternative o is represented by a set of
ground atoms eval(i, xi), i = 1, 2, . . . , p and xi ∈ {0, 1}. An atom eval(i, xi)
holds precisely when the alternative o has value xi on issue Xi.

If Xi is the issue labeling a node t in vote v at depth dvi , CPT (t) determines
which of the values 0i and 1i is preferred there. Let us assume P(t) = {t1, . . . , tj}
and Inst(t) = {tj+1, . . . , t�}, where each tq is labeled by Xiq . The location of t
is determined by its depth dvi and by the set of values xij+1 , . . . , xi� of the issues
labeling Inst(t) (they determine whether we descend to the left or to the right
child as we descend down the tree). Thus, CPT (t) can be represented by program
rules as follows. For each row u : 1i > 0i in CPT (t), where u = xi1 , . . . , xij , we
include in the program the rule

vote(v, dvi , i, 1) : - eval(i1, xi1), . . . , eval(ij, xij ),

eval(ij+1, xij+1 ), . . . , eval(i�, xi�)
(1)

(and similarly, in the case when that row has the form u : 0i > 1i).
In this representation, the property vote(v, dvi , i, ai) will hold true for an alter-

native o represented by ground atoms eval(i, xi) precisely when (or if, denoted
by “: -” in our encodings) that alternative takes us to a node in v at depth dvi
labeled with the issue Xi, for which at that node the value ai is preferred. Since,
in order to compute the score of an alternative on a tree v all we need to know
is whether vote(v, dvi , i, ai) holds (cf. our discussion below), this representation
of trees is sufficient for our purpose.

For example, the LP tree v in Figure 2 is translated into the logic program in
Figure 4 (voteID(v) identifies the id of the vote (LP tree)).

1 voteID(1).

2 vote(1,1,1,1).

3 vote(1,2,2,1) :- eval(1,1).

4 vote(1,3,3,1) :- eval(2,1), eval(1,1).

5 vote(1,3,3,0) :- eval(2,0), eval(1,1).

6 vote(1,2,3,0) :- eval(1,0).

7 vote(1,3,2,0) :- eval(1,0).

Fig. 4. Translation of v in ASP
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Encoding the Borda Evaluation Problem in Clingo. The evaluation and
the winner problems for Borda can be encoded in terms of rules on top of those
that represent an LP profile. Given a representation of an alternative and of the
profile, the rules evaluate the score of the alternative and maximize it or test if
it meets or exceeds the threshold.

We first show the encoding of the Borda evaluation problem in clingo (Fig-
ure 5). Parameters in the evaluation problem are defined as facts (lines 1-4):

1 issue(1). issue(2). issue(3).

2 numIss(3).

3 val(0). val(1).

4 threshold(5).

5 1{ eval(I,M) : val(M) }1 :- issue(I).

6 wform(V,I,W) :- vote(V,D,I,A), eval(I,A), numIss(P), W=#pow(2,P-D).

7 wform(V,I,0) :- vote(V,D,I,A), eval(I,M), A != M.

8 goal :- S = #sum [ wform(V,I,W) = W ], threshold(TH), S >= TH.

9 :- not goal.

Fig. 5. Borda evaluation problem encoding in clingo

predicates issue/1 s representing three issues, numIss/1 the number of issues,
threshold/1 the threshold value, together with val/1 s the two values in the is-
sues’ binary domains. Line 5 generates the search space of all alternatives over
three binary issues. It expresses that if X is an issue, exactly one of eval(X,Y)
holds for all val(Y), i.e., exactly one value Y is assigned to X .

Let o be an alternative represented by a set of ground atoms eval(i, xi), one
atom for each issue Xi. Based on the representation of trees described above, for
every tree v we get the set of ground atoms vote(v, dvi , i, ai). The Borda score
of an alternative in that tree corresponds to the rank of the leaf the alternative
leads to (in a “non-collapsed” tree), which is determined by the direction of
descent (left or right) at each level. Roughly speaking, these directions give the
binary representation of that rank, that is, the Borda score of the alternative.
Let us define sB(v, o) as a function that computes the Borda score of alternative
o given one vote v. Then one can check that

sB(v, o) =

p∑
i=1

2p−dvi · f(ai, xi), (2)

where f(ai, xi) returns 1 if ai = xi, 0 otherwise. Thus, to compute the Borda
score with regard to a profile V , we have

sB(V, o) =
n∑

v=1

p∑
i=1

2p−dvi · f(ai, xi). (3)

In the program in Figure 5, lines 6 and 7 introduce predicate wform/3 which
computes 2p−dv

i · f(ai, xi) used to compute Borda score. According to equa-
tion (3), if issue I appears in vote V at depth D and A is its preferred value, and
if the value of I is indeed A in an alternative o, then the weight W on I in V is
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2P−D, where P is the number of issues; if issue I is assigned the less preferred
value in o, then the weight W on I in V is 0. The Borda score of the alternative
is then equal to the sum of all the weights on every issue in every vote, and
this is computed using the aggregate function #sum built in the input language
of clingo (rule 8). Rule 9 is an integrity constraint stating that contradiction is
reached if predicate goal/0 does not hold in the solution. Together with rule 8,
it is ensured that the Borda evaluation problem is satisfiable if and only if there
is an answer set in which goal/0 holds.

The encoding for the Borda winner problem for clingo replaces rules 7 and 8
in Figure5 with the following single rule:

#maximize[ wform(V,I,W) = W ].

The #maximize statement is an optimization statement that maximizes the
sum of all weights (W ’s) for which wform(V,I,W) holds.

Encoding the Borda Evaluation Problem in Clingcon. In this encoding,
we exploit clingcon’s ability to handle some numeric constraints by specialized
constraint solving techniques (by means of the CP solverGecode [12]). In Figure 6
we encode the Borda evaluation problem in clingcon.

1 $domain(1..4).

2 issue(1). issue(2). issue(3).

3 numIss(3).

4 val(0). val(1).

5 threshold(5).

6 1{ eval(I,M) : val(M) }1 :- issue(I).

7 wform(V,I,W) :- vote(V,D,I,A), eval(I,A), numIss(P), W=#pow(2,P-D).

8 wform(V,I,0) :- vote(V,D,I,A), eval(X,M), A != M.

9 weight(V,I) $== W :- wform(V,I,W).

10 $sum{ weight(V,I) : voteID(V) : var(I) } $>= TH :- threshold(TH).

Fig. 6. Borda evaluation problem encoding using clingcon

Lines 2-8 are same as lines 1-7 in Figure 5. Line 9 defines the constraint
variable weight(V,I) that assigns weight W to each pair (V ,I) and line 10 defines
a global constraint by use of $sum declares that the Borda score must be at
least the threshold. Line 1 restricts the domain of all constraint variables (only
weight/2 in this case) to [1,4] as weights of issues in an LP tree of 3 issues are
20, 21 and 22.

The encoding for the Borda winner problem for clingcon replaces rules 10 in
Figure 6 with the following one rule:

$maximize{weight(V,I):voteID(V):issue(I)}.

The $maximize statement is an optimization statement that maximizes the
sum over the set of constraint variables weight(V,I).
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5 Experiments and Results

To experiment with the programs presented above and with clingo and clingcon
solvers, we generate logic programs that represent random LP trees and profiles
of random LP trees. Our algorithm generates encodings of trees from the most
general class CI-CP under the following restrictions: (1) Each LP tree has exactly
two paths with the splitting node appearing at depth ds =

⌊
p
2

⌋
; (2) Each non-

root node at depth ≤ ds + 1 has exactly one parent; (3) Each node at depth
> ds + 1 has exactly two parents, one of which is at depth < ds.

2

The algorithm starts by randomly selecting issues to label the nodes on the path
from the root to the splitting node and then, similarly, labels the nodes on each of
the two paths (different labelings can be produced for each of them). Then, for
each non-root node, the algorithm selects at random one or two parent nodes (as
appropriate based on the location of the node). Finally, the algorithmdecides local
preferences (for each combination of values of the parent issues) randomly picking
one over the other. In each step, all possible choices are equally likely. We call CI-
CPLP trees satisfying these restrictions simple. Each simple LP tree has size linear
in p. Figure 7 depicts a CI-CP tree of 4 issues in this class.

X2 12 > 02

X3

12 : 03 > 13

02 : 13 > 03

X1

12 : 11 > 01

02 : 01 > 11

X4
0201 : 14 > 04

0211 : 04 > 14

1201 : 04 > 14

1211 : 14 > 04

X4

12 : 14 > 04

02 : 04 > 14

X1
0204 : 01 > 11

0214 : 01 > 11

1204 : 11 > 01

1214 : 11 > 01

Fig. 7. A CI-CP tree of 4 issues

The goals of experimentation are to demonstrate the effectiveness of ASP
tools in aggregating preferences expressed as LP trees, and to compare the per-
formance of clingo and clingcon. We focus on three voting systems, Borda, 2p−2-
approval and 2K-approval, for both the winner and the evaluation problems.

2 The restrictions are motivated by the size of the representation considerations. They
ensure that the size of generated LP trees is linear in the number of issues.
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(d) Borda, clingcon (500votes/8issues)
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Fig. 8. Aggregating simple LP trees

All our experiments were performed on a machine with an Intel(R) Core(TM)
i7 CPU @ 2.67GHz and 8 GB RAM running Ubuntu 12.04 LTS. Each test case
(using clingo 3.0.5 or clingcon 2.0.3 ) was performed with a limit of 10 minutes.

We first consider the winner problem. In the study, we consider the compu-
tation time with a fixed number of issues (5/10/20) and for each number of
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issues we range the number of votes in a profile up to 1000 for {Borda, 2p−2-
approval, 2K-approval} × {clingcon, clingo}. Then we fix the number of votes
(500) and vary the number of issues up to 20, again for same set of settings.
Each time result in seconds is computed as the mean of 10 tests over different
randomly generated profiles of simple LP trees.

For the evaluation problem, we compare its experimental complexity with
that of the winner problem. For each of the 10 randomly generated profiles, we
compute the winning score WS and set the threshold for the evaluation problem
with a percentage of WS , starting with 5% and incremented by 5% for the
following tests until we reach the full value of WS . We run one more test with the
threshold WS+1 (there is no solution then and the overall method allows for the
experimental comparison of the hardness of the winner and evaluation problems).
That allows us to study the effectiveness of the maximization construct in clingo
(the main difference between the winner and the evaluation problems is in the
use of that construct in the encoding of the former). We again present and
compare average time results.

Varying the Number of Issues and the Number of Votes. Our experi-
ments on the winner problem for the three voting rules with the fixed number of
issues are consistent with the property that the problem is solvable in polynomial
time. Both clingo and clingcon scale up well. Figure 8a depicts the results for
the cases with 10 issues. When we fix the number of votes and vary the number
of issues the time grows exponentially with p (cf. Figure 8b), again consistently
with the computational complexity of the problems (NP-hardness).

Generally clingo is better compared to clingcon in solving the winner problem
for the three scoring rules. We attribute that first to the use of the optimization
construct in clingo, which allows us to keep the size of the ground propositional
theory low, and second to the effective way in which optimization constructs
are implemented in that system. Thus, in these examples, the main benefit of
clingcon, its ability to avoid grounding and preprocessing by “farming out” some
of the solving job to a dedicated constraint solver, does not offer clingcon the
edge. Finally, for both clingo and clingcon, Borda is the hardest rule to deal
with, especially when the number of issues is large.

Comparison of the Problems: Evaluation vs Winner. The evaluation
problem can be reduced to the winner problem, as an evaluation problem in-
stance has an answer YES if and only if the score of the winner equals or
exceeds the threshold. Thus, the evaluation problem is at most as complex as
the winner problem.

We compared the two problems by first solving the winner problem, and
then solving the evaluation problem on the same instances with the value of
the threshold growing at the step of 5% of the winner score. That gives us 20
normalized points for each instance. In the last run (point 21 on the x-axis) we
used the winner’s score plus 1 as the threshold to determine the optimality of
the winner’s score. These experiments allow us to compare the hardness of the
winner problem (more precisely, the effectiveness of solvers) with that of the
evaluation problem.
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First, we note that for clingo, the evaluation problem is harder than the
winner problem in the entire range for Borda (Figure 8c), and for the two other
rules, when the threshold is close to the winner’s score or exceeds it (Figures
8e and 8f). We attribute that to the fact that the encodings of the evaluation
problem have to model the threshold constraint with the #sum rule which, in
clingo, leads to large ground theories that it finds hard to handle. In the winner
problem encodings, the #sum rule is replaced with an optimization construct,
which allows us to keep the size of the ground theory low.

For clingcon the situation is different. Figures 8d, 8e and 8f show that the
evaluation problem is easier than the winner problem when the threshold values
are smaller than the winning score and the evaluation problem becomes harder
when the thresholds are close to it. It seems to suggest that the constraint solver
used by clingcon performs well in comparison with the implementation of the
optimization constructs in clingcon. Finally, in all cases clingcon outperforms
clingo on the evaluation problems. It is especially clear for Borda, where the
range of scores is much larger than in the case of approval rules. That poses a
challenge for clingo that instantiates the #sum rule over that large range, which
clingcon is able to avoid.

6 Conclusions and Future Work

Aggregating votes expressed as LP trees is a rich source of interesting theoretical
and practical problems. In particular, the complexity of the winner and evalua-
tion problems for scoring rules is far from being fully understood. First results
on the topic were provided by Lang et al. [8]; our work exhibited another class of
positional scoring rules for which the problems are NP-hard and NP-complete,
respectively. However, a full understanding of what makes a positional scoring
rule hard remains an open problem.

Importantly, our results show that ASP tools are effective in modeling and
solving the winners and the evaluation problems for some positional scoring rules
such as Borda, 2p−2-approval and 2K-approval. When the number of issues is
fixed the ASP tools scale up consistently with the polynomial time complexity.
In general, the tools are practical even if the number of issues is up to 15 and
the number of votes is as high as 500. This is remarkable as 15 binary issues
determine the space of over 30,000 alternatives.

Finally, the preference aggregation problems form interesting benchmarks for
ASP tools that stimulate advances in ASP solver development. As the preference
aggregation problems involve large domains, they put to the test those features
of ASP tools that attempt to get around the problem of grounding programs
over large domains. Our results show that the optimization statements in clingo
in general perform well. When they cannot be used, as in the evaluation prob-
lem, it is no longer the case. The solver clingcon, which reduces grounding and
preprocessing work by delegating some tasks to a constraint solver, performs
well in comparison to clingo on the evaluation problem, especially for the Borda
rule (and we conjecture, for all rules that result in large score ranges).
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In the future work we will expand our experimentation by developing methods
to generate richer classes of randomly generated LP trees. We will also consider
the use of ASP tools to aggregate votes given in other preference systems such
as CP-nets [2] and answer set optimization (ASO) preferences [3].
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Abstract. We introduce PREFLIB: A Library for Preferences; an online resource
located at http://www.preflib.org. With the emergence of computational
social choice and an increased awareness of the applicability of preference
reasoning techniques to areas ranging from recommendation systems to kidney
exchanges, the interest in preferences has never been higher. We hope to encour-
age the growth of all facets of preference reasoning by establishing a centralized
repository of high quality data based around simple, delimited data formats. We
detail the challenges of constructing such a repository, provide a survey of the
initial release of the library, and invite the community to use and help expand
PREFLIB.

Keywords: Preferences, Computational Social Choice, Empirical Analysis.

1 Introduction

To date, research in computational social choice has been largely theoretical. There
is, however, a growing realization of the limitations of a purely theoretical approach
to computational questions in social choice. For example, worst-case results about the
hardness of manipulation may not reflect the cost in practice to compute manipula-
tions [22–24]. On the other hand, average-case analysis (e.g. [6, 16, 25]) may need to
make additional assumptions, which can be rather simplistic and unrepresentative of
preferences met in practice. Many such analyses assume that all preferences are equally
likely; which is not supported by studies in behavioral social choice [15, 17] or studies
on real data [12, 18, 21].

While our main interest is in computational voting there are other fields which fall
in the area of preference handling and computational social choice including recom-
mender systems [19], matching [8], and fair division problems [14]. These areas have
found new and exciting application areas in modern life including matching kidney
donors [5] and allocating students to seats in classrooms. There is a growing movement
in the computational social choice community to identify and use real preference data to
test algorithms and assumptions about voting systems (e.g. [10, 11, 13, 20]). To encour-
age and facilitate more empirical studies, we discuss building a library of preferences,
PREFLIB guided by our experiences building CSPLIB [7].

Initiatives such as the UCI Machine Learning Repository [1] have fostered a greater
sense of sharing and collaboration in the machine learning and data mining communi-
ties. The contents of the UCI database focus on a broad range of problems. We hope to
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provide a similar level of community, exposure, and sharing, with PREFLIB while tak-
ing to heart the lessons learned by other communities that have created and maintained
shared tools and data.

2 Motivation

Whilst one of the prime motivations for building a preference library is to encourage
and facilitate more empirical studies in computational social choice, there are some
other related motivations.

Fig. 1. An example page from http://www.preflib.orgwith data from the 2009 Burling-
ton, Vermont mayoral elections

Benchmarking: A library can provide a common set of problems on which different
research groups can quickly compare their algorithms. For example, we can com-
pare the ability of different heuristics to compute solutions to NP-hard problems
like finding a Borda manipulation [4].

Competitions: The Netflix Prize [2] demonstrate the benefits to research that a com-
mon set of preference data can have. While the large cash prize undoubtably had a
strong impact, the Netflix data continues to be used extensively today despite the
prize having been awarded.

http://www.preflib.org
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Realism: As argued before, real world preference data could help direct the research
community onto more practical computational issues in social choice. Representa-
tion and learning of complex preference models can happen more readily with a
large corpus of preference data that is easily available.

Challenges: A benchmark library can be a forum for challenges that can help push the
technology onto new heights. For instance, it can include open problems that may
help drive research.

Insularity: The research community looking into computational social choice is rather
insular: most people work on their own problems and their own data. A common
problem library can encourage people to tackle a common set of problems, and help
break down many barriers.

The construction of a benchmark library appears to be a common rite of passage for
many research communities [1, 7]. For many reasons, it appears a good time for the
computational social choice community and, generally, the preference handling com-
munity, to take this step.

3 Challenges

There are a number of challenges in building a preference library.

Variety: Preferences come in many shapes and forms. There are qualitative and quan-
titative preferences. There are voting preferences which might be simple plurality
ballots, lists of approved candidates, lists of vetoes or complete rankings of the can-
didates. There are preferences for matching problems like hospital-resident prob-
lems and kidney exchanges. There are preferences over products in recommender
system. There are temporal preferences for scheduling problems. When domains
are large, there are combinatorial preferences which might be expressed using CP-
nets or one of the many compact preference formalisms. While we wish to include
all these in PREFLIB it will be hard to find and post high-quality datasets spanning
the entire range of preferences formalisms and domains.

Elicitation: Preferences are difficult to elicit. Users will only answer a limited number
of questions about their preferences before they expect a system to start making
good recommendations. In addition, users often have difficulty in articulating their
true preferences and may not reply truthfully. These problems are well known and
somewhat understood by other disciplines such as psychology. While we can learn
lessons from these other disciplines, elicitation remains a key challenge in the pref-
erence handling community.

Modeling: Part of the challenge in social choice is modeling users’ preferences. It
is unlikely that your or my preferences are actually a CP-net [3] or even a linear
order. These are just formalisms to approximate the complete preference functions
we actually have. The existence of a preference library may distract attention from
such important modeling issues.

Over-fitting: If the library is small, we run the risk of over-fitting. On the other hand,
collecting a lot of preference data to avoid over-fitting may require considerable
time and effort.
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Privacy and Data Silos: Sharing of many datasets may be precluded or difficult for
a variety of reasons. Medical and admissions data may need to be cleaned or
anonymized in a suitable way before it can be shared. Additionally, some
researchers may not want to share data in order to maintain exclusivity of a re-
search topic. While we hope that all researchers understand the benefit of posting
data openly and sharing, there are and will be bumps in the road.

Fortunately, none of these problems are insurmountable. In fact, the answer to many
of these problems can be found in the community rallying around a common, open stan-
dard and library. With enough contributors we can ensure a large and rich cross section
of problem instances, models, and elicitation procedures. With enough contributors the
individual time investment will be minimal. And with a focus on sharing researchers
will, hopefully, take careful consideration of their methods in order to create datasets.

Taking a page from the UCI Machine Learning Repository [1] we are maintaining a
list of research publications that use individual datasets as well as research publications
that should be cited along with the use of any particular dataset. By providing credit
and exposure to researchers who give back to the community and creating a common
resource for research within the community we hope that more groups will fully and
publicly share their data.

4 Structure of the Library

PREFLIB is currently divided into a four large sections according to overarching data
type. The following list is not exhaustive, and is just a starting point for the library.
For instance, it does not include preferences in fair division problems or preferences in
facility location problems However, we expect that PREFLIB will eventually grow to
include such preferences.

Currently PREFLIB holds over 2,000 datasets describing elections, ratings, and
matchings. We have 100’s of preferences from the Netflix Challenge, 100’s of exam-
ples of matching data from kidney matching markets. We have several real elections
including the 2007 Glasgow City Council elections, Mayoral Elections from the United
States, and elections held in Dublin. We are still expanding PREFLIB and we hope to
bring more datasets online in the coming weeks and months.

Election Data: Election data includes data from real elections and other instances
where rank orders are elicited from individuals. Currently we host a variety of rank
order preference information with sources as varied as NASA spacecraft path se-
lection to real ballots from mayoral elections in the United States.

Matching Data: Matching problems include two-sided markets (specifically stable
marriage, hospital/resident and hospital/resident with couples problems), and one-
sided markets (specifically room-mate and kidney exchange problems). We cur-
rently host synthetic data about kidney matching problems and real data related to
university course selections.

Combinatorial Data: Large, combinatorial domains introduce interesting issues re-
garding representation. Combinatorial preferences subdivide into CP-nets,
GAI-nets, and lexicographical preferences. Additionally we host single and
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multi-attribute rating data such as TripAdvisor data. Quantitative and qualitative
multi-attribute rating data is of interest to researchers in the recommendation sys-
tems area and we hope to bring more datasets in this area online in the near future.

Optimization Data: Optimization problems subdivide into max-SAT, max-CSP,
weighted-CSP and fuzzy-CSP problems.

Each dataset is posted in its original format as well as several easily induced (de-
rived from) or imbued (data added) formats. For instance, for each set of rank ordered
preference data we also include an imbued instance where each unranked candidate is
placed tied, at the end, of each ranking. We also include an induced tournament graph
for each set of rank ordered preference data. We have clearly marked each dataset as
original, induced, or imbed, respectively. We encourage caution when drawing broad
conclusions from studies on imbued or induced data, (see, e.g., [15,17] for a discussion
of potential pitfalls). However the data is interesting for testing of algorithmic results.

5 Preference Data

An important aspect of building a preference library is ensuring the preference data
is in an easily accessible and computer readable form. Here we can learn from other
domains. For instance, the propositional satisfiability community has a very successful
library, SATLIB which grew out of the Second DIMACS challenge in 1992 to 1993.
The DIMACS format is widely accepted as the standard for Boolean formulae in CNF.
Indeed, every satisfiability solver that we know about will read problems in the DI-
MACS format.

Why did DIMACS format become a standard? First, the format was in the right
place at the right time. The format was proposed at the time that there was a lot of
interest in developing new SAT solvers. There was therefore a very immediate need
to compare solvers on a set of common benchmarks. Second, the format was quickly
adopted by SATLIB and by the semi-annual SAT competition. Third, the format is very
simple. Each clause is a line in the input, made up of a sequence of positive and negative
numbers terminated by a zero. It doesn’t matter what computer language you write in,
it takes just a few minutes to write a parser to read such problems.

Another successful format is the TPTP dataset for first order theorem proving. This
is a slightly more complex format (but that is perhaps inevitable as first order problems
are more complex to specify than purely propositional problems). The TPTP library
includes a very useful tool, TPTP2X that converts TPTP problems into all the different
formats used by the main first order theorem provers. This helps compensate for the
greater complexity of the TPTP format. It means that users can quickly read problems
into whatever theorem prover they might want to try out.

Based on these experiences, we use very simple formats for expressing preference
data. We have attempted, as much as possible, to preserve a basic comma separated
(CSV) format as is possible. This has several advantages including human readability
and interoperability with outside data handling programs such as Excel, R, and Matlab.
For example, candidates in an election are represented by the numbers 1 to m, and
each preference ballot is represented by a permutation of these numbers in a comma
separated format.
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6 Datasets, Numbering and Tools

Our data comes from a variety of sources and locations. In general, we want data that
is honest and comes from real decision makers regarding things that they care about
and are incentivized to answer honestly. For example, while an anonymous surveys are
good, there is no guarantee that respondents will respond truthfully (or something not
completely random). Datasets that are derived from real elections, or real preference
data (such as Netflix), or judging on real competitions, can have far more value than
random surveys.

To understand the formatting and presentation of the data we present a full element
of one of our datasets. This particular dataset provides a partial order over the 20 skaters
in the women’s 1998 world championships B group qualifier according to their ratings
by 9 individual judges.

20
1,Maria Butyrskaya
2,Silvia Fontana
3,Vanessa Gusmeroli
4,Yankun Du
5,Anna Wenzel
6,Anna Rechnio
7,Olga Vassiljeva
8,Elena Liashenko
9,Rocia Salas
10,Tanja Szewczenko
11,Valeria Trifancova
12,Marta Andrade
13,Tatyana Malinina
14,Lucinda Ruh
15,Diana Poth
16,Mojca Kopac
17,Zuzana Paurova
18,Roxana Luca
19,Helena Pajovic
20,Yulia Lavrenchuk
9,9,9
1,1,6,20,8,13,10,3,15,12,2,17,14,16,5,4,11,7,19,9,18
1,1,6,8,10,20,3,13,14,2,15,16,17,7,5,12,11,4,18,19,9
1,1,6,3,13,8,10,20,15,2,17,12,5,7,14,16,11,4,19,18,9
1,1,6,10,13,20,3,8,2,14,15,16,17,{11,19},5,7,12,4,18,9
1,1,8,6,3,20,13,10,15,14,12,16,2,17,5,4,18,7,11,19,9
1,1,6,8,10,20,3,13,15,2,14,17,{12,16},4,5,7,11,19,18,9
1,1,6,13,8,20,10,15,3,17,5,2,16,12,7,4,14,11,18,19,9
1,1,6,13,8,20,10,3,16,15,2,17,4,14,5,12,7,11,9,19,18
1,1,6,10,8,13,3,20,15,2,14,12,17,5,16,7,4,11,19,18,9
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The first line contains the number of candidates or items in this instances. The next
set of lines are a number for each of the candidates and the real name or label for the
candidate.

The first line under the list of candidates contains information about the number of
voters. the first number is the number of actual ballots cast in the instance. The second
number is the sum of the preference count (the number of preferences expressed). In
most cases the number of ballots is the same as the sum of the vote preference count,
except where for example, we have induced a relation like generating a pairwise graph
from a set of linear orders. In this case we would have some number n of voters over
m alternatives but we would have

(n·m
2

)
as the sum of preferences since each voter

expresses a relation between each pair of elements. The final number of this line is the
number of unique preferences expressed.

The remaining lines in the file are the all of the format: count, preference list. The
first element is the number of voters expressing the preference list. In the preference list
each element is separated by a comma, and we close indifferent alternatives in { }.

In the example, each voter has selected skater 1, Maria Butyrskaya, as the best skater
in the pool. Each unique order is indicated by a single line that is comma separated.
This allows our data to be easily ported between different applications as it is delimited
in a very simple manner.

6.1 Numbering

In order to make navigating particular datasets in PREFLIB easier every individual
datafile has a unique identifier which has a common numbering format. Below is the
number for the woman’s ice-skating world championship dataset shown above along
with an explanation of the fields.

Category: Is a 2 letter category code; ED for election data, MD for matching data, CD
for combinatorial data, and OD for optimization data.

Series: Is a 5 digit Series Code which specifies the source of the data. The Skate data
shown above is number ED-00006.

Element: Is an 8 digit Element Number for each individual file of a particular exten-
sion. The example from the Skate data is 00000038, signifying that it is the 38th
dataset from the Skate set with the same file extension.

Extension: Is a unique file extension to described the type of data in the file. The list of
extensions is updated every time we obtain data in a new domain. For example, we
use soc for datasets that are complete strict orders (all candidates are ranked with
no ties between candidates) and poc for complete partial orders (all candidates are
ranked but there are some ties between some candidates).
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Fig. 2. Comparison of IC and the PREFLIB dataset. Both graphs show the average Euclidian
Distance between the empirical distribution given some number of candidates in PREFLIB and IC.
Additionally, we have plotted two hypothetical distributions: 50% MISSING assumes probability
0 for 50% of the possible strict orders and OFF 50% assumes each probability of observing a
strict order is 50% different than the prediction made by IC. The left plot is linear while the right
plot is a log scale.

6.2 Tools

In addition to the preference data on the site we plan to have a small set of tools avail-
able to the community. At this time we have no plans to create a monolithic tool chain
like Weka [9]. All of the existing toolchain is written in Python3 and includes the ability
to read, write, and process all of the data formats present on the site. Additionally, the
toolchain includes functions to generate synthetic preferences according to a number of
well studied preference cultures including the Impartial Culture, the Impartial Anony-
mous Culture, the Urn Model, and others [12, 21]. We look forward to adding support
for other program languages and models in the future as we receive feedback on the
requirements of the research community.

7 Distributions of Preferences

In collecting such a large and diverse set of preference data we hope researchers can
begin to ask questions that were not possible before due to lack of data. A central
question to the social choice community is testing the validity of generative models of
preferences. In particular, we can start to look at the Impartial Culture (IC) assumption
with more rigor than previously possible [12, 17, 21].

When looking at the data available in PREFLIB, one of the first observations that we
can make is that research in computational social choice may need expand to general-
izations of many current results for strict orders to strict orders that are not complete
rankings. The current version of PREFLIB contains 220 instances of complete strict or-
der ranking data. However, it also contains 118 incomplete strict order (SOI) ranking
data. In fact, the SOI data contains many instances of actual elections from Dublin,
Glasgow, and trade unions in the EU. These instances contain, on average, 80% in-
complete preference relations, with many votes only expressing a top alternative. There
are a number of hazards associated with dropping the incomplete votes or randomly
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Fig. 3. Comparison of IIC and the PREFLIB dataset. Both graphs show the average Euclidian Dis-
tance between the empirical distribution given some number of candidates in PREFLIB and IIC.
Additionally, we have plotted two hypothetical distributions: 50% MISSING assumes probability
0 for 50% of the possible strict orders and OFF 50% assumes each probability of observing a
strict order is 50% different than the prediction made by IIC. The left plot is linear while the right
plot is a log scale.

extending them as these procedures introduce many assumptions about the underlying
data [15]. Without generalizing our thinking to include SOI data we may leave real-
world behaviors unstudied in computational social choice.

Figures 2, 3, and 4 we compare the Impartial Culture with the SOI and SOC data
currently in the PREFLIB data base. While IC is well defined for complete strict orders,
we needed a suitable generalization to incomplete strict orders. For this, we make as few
assumptions as possible to create the Incomplete-Impartial Culture (IIC): every ordering
(including truncated orderings) has an equal probability of occurring. The probability
of observing a given ranking r for n candidates is:

Pr(r) =

(
n

∑
i=1

i!

(
n
i

))−1

.

We follow the same procedures as Tideman and Plassmann [21] and Mattei et al. [11,
12] in our study. In order to compare an empirical distribution to a generative one we
reorder the empirical distribution such that the preference order of the most frequent
vote is the labeling for the candidates (we use the most frequent complete order for re-
labeling in IIC). This procedure ensures distributions from different empirical scenarios
are comparable by giving them a uniform shape. Once we have done this we compute
the Euclidian Distance between the empirical distribution and IC or IIC, respectively.
We call this number the Euclidian Error and it gives us an idea of how near or far two
distributions are from each other.

Figure 2 and 3 shows the error of the empirical distribution on linear and log plots for
a given number of candidates. We only plot points where PREFLIB has 2 or more unique
datasets. Additionally, we have plotted two hypothetical distributions: 50% MISSING

assumes probability 0 for 50% of the possible strict orders and OFF 50% assumes each
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Fig. 4. Comparison of IC/IIC and the PREFLIB dataset. Both graphs show the average Euclidian
Distance between the empirical distribution given some number of candidates in PREFLIB and
IC/IIC respectively, including standard error bars. The left plot is linear while the right plot is a
log scale.

probability of observing a strict order is 50% different than the prediction made by
IC/IIC.

We have plotted these additional distributions to give some perspective on just how
different IC/IIC is from our empirical distribution. Most would agree that a distribution
that is always off by 50% to be a fairly poor estimate. When we look at the SOI and
SOC data we see that this bad distribution is significantly closer to IC/IIC than the
empirical distribution found in PREFLIB. These distributions show us just how much
IC/IIC diverges with SOI: falling completely outside of the projected curve for either
of the “bad” distributions once we have more than 4 or 5 candidates.

Figure 4 shows the SOC and SOI combined average difference and standard error on
linear and log plots. Here we can see that, in general, for a given number of candidates,
the empirical distribution in PREFLIB is (1) extremely variable and (2) a reasonable
distance from IC/IIC. Even with all the data we have collected so far, we are under-
sampling. Thus making it unwise to draw too many conclusions from this data. While
we are still collecting data we see that what we have currently does not support the
simplistic IC/IIC assumptions.

8 How to Contribute

One way to increase the usefulness of PREFLIB is to build a community around the
datasets. What we have presented here is only the beginning; we hope that interested
researchers will contact us with donations of data or pointers to datasets that we may
have missed while constructing the first version of the site.

In order to contribute data please contact Nicholas Mattei; we host all the data so that
it is available in a central location. We work collaboratively with all our data donors to
convert the data into a simple, CSV-like format. We post links and citations to any
donor suggested papers or external websites as well as citations that are requested to
accompany the use of particular datasets. We want to make sure that donors who take
the time and effort to work with us on posting datasets receive the recognition they
deserve for taking the time to support the community.
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We make no claims on ownership of data on the website. While we have worked
hard to only include high quality, accurate datasets we make no explicit warranties or
guarantees about the data and distribute the data “as is.”

9 Conclusion

We have introduced the first version of PREFLIB and an associated toolchain for work-
ing with preference data. We hope to provide a ongoing and valuable service to not only
the computational social choice community, but the preference handling and reasoning
community writ large. To support this mission we must have the support and donations
of the research community. We encourage anyone with interesting datasets to contact
us; we will work with you on encoding and hosting interesting data. Please help us to
grow the empirical side of of preference handling.
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Abstract. We consider the problem of fairly distributing a number of
indivisible goods among agents with additive utility functions. Among
the common criteria of fairness, we focus on envy-freeness and its weaker
notions. Instead of concentrating on envy-free allocations (which might
not always exist), we seek to find an allocation with minimum envy.
Based on a notion introduced by Chevaleyre et al. [7], we define several
problems of minimizing the degree of envy and study their approxima-
bility.

1 Introduction

We study the problem of fairly allocating a set of indivisible goods among several
agents that are assumed to have additive utility functions over bundles of goods.
This problem has received much attention in both economics and computer sci-
ence during last few years, especially due to its many applications in multiagent
resource allocation (see the survey by Chevaleyre et al. [6]).

As a most prominent interpretation of fairness, we focus on envy-freeness,
which means that no agent wants to swap her bundle of goods in an allocation
with another agent. Much of the work so far has investigated envy-freeness in
the setting where one divisible good is to be divided among the agents (the so-
called cake-cutting problem, see [5,12]). Here, however, we focus on allocating
indivisible, nonshareable goods. While envy-free allocations of a divisible good
always exist (and can even be guaranteed by a finite bounded procedure [4]),
an envy-free allocation of indivisible goods may not exist in general, assuming
that all goods must be assigned to the agents (see Example 1). Therefore, we
seek to compute allocations that ensure envy to be as small as possible. There
are several ways to define a measure of envy for a given allocation. Chevaleyre
et al. [7] proposed a framework for defining the degree of envy of an allocation
based on the degree of envy among individual agents. More formally, let π =
(π1, . . . , πn) be an allocation amongst n agents, where πi is the bundle assigned
to agent ai, 1 ≤ i ≤ n. Agent ai’s envy regarding agent aj ’s bundle is determined
by ui(πj)−ui(πi), where ui is ai’s utility function, and ai’s envy with respect to
allocation π is defined by using the aggregation functions max (maxj �=i{ui(πj)−
ui(πi)}) and sum (

∑
j �=i(ui(πj)−ui(πi))). Finally, the envy of the allocation π is

aggregated from the envy of individual agents via the aggregation functions max

P. Perny, M. Pirlot, and A. Tsoukiàs (Eds.): ADT 2013, LNAI 8176, pp. 271–284, 2013.
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and sum. Considering the optimization problems based on this measure of envy,
a drawback of this approach is that, unless P = NP, there are no approximation
algorithms for them, since the objective function might be zero (see the work
of Lipton et al. [9]). We circumvent this by defining similar notions of degree of
envy based on max and product (

∏
j �=i

ui(πj)/ui(πi)), and study approximability
of the corresponding optimization problems.

A number of papers in the literature has investigated the computation of
envy-free allocations for indivisible goods. These papers focus on either central-
ized or distributed protocols, or take into account the way in which the agents’
preferences are expressed: cardinal or ordinal. Chevaleyre et al. [7] studied a dis-
tributed protocol in which agents negotiate on the exchange of goods to reach
an allocation that is envy-free or has minimal envy. Regarding centralized pro-
tocols, Bouveret, Endriss, and Lang [2] dealt with the problem where the agents’
preferences are represented ordinally by using so-called SCI-nets, while Bouveret
and Lang [3] considered the logical aspects of representation and related com-
plexity issues. Lipton et al. [9] addressed the problem of computing allocations
with minimal envy when agents have numerical additive preferences, which cor-
responds exactly to our problem of minimizing ermax,max (which will be defined
in Section 2). Among other results, they provided a polynomial-time approxi-
mation scheme (PTAS) for the case of agents with identical utility functions
and mentioned that one can obtain even a fully polynomial-time approximation
scheme (FPTAS1) for this case if the number of agents is fixed, thus extend-
ing the corresponding result of Bazgan et al. [1] for the problem Subset-Sums

Ratio: Given a set S = {b1, . . . , bn} of positive integers, the goal is to find a
partition of S into two subsets, S1 and S2, with

∑
bi∈S1

bi ≥
∑

bi∈S2
bi such

that the ratio
∑

bi∈S1
bi/

∑
bi∈S2

bi is minimized. However, the method that gives
an FPTAS for such a problem cannot be applied for the case of agents with
different utilities.

The rest of this paper is organized as follows. Section 2 defines the notions of
degree of envy and models four optimization problems. In Section 3 we present
the main result of this paper: an FPTAS for each of our problems. In addition, we
provide a hardness of approximation result in Section 4 and an exact polynomial-
time algorithm for a restricted case in Section 5. Finally, Section 6 provides some
conclusions about the results obtained so far and lists some open questions for
future work.

2 Degree of Envy

Let A = {a1, . . . , an} be a set of agents and G = {g1, . . . , gm} be a set of
indivisible goods. Each agent ai has an additive utility function ui : 2

G → Q+,

1 A minimization problem has an FPTAS if for each ε, 0 < ε < 1, it can be approxi-
mated to a factor of 1+ε by an algorithm whose running time is polynomial in both
the input size and 1/ε. A PTAS is defined similarly, except that the running time is
required to be polynomial in the input size only. For more details on approximation
algorithms, we refer the reader to the textbook by Vazirani [13] and the references
cited therein.
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i.e., for every subset B ⊆ G, ui(B) =
∑

gj∈B ui(gj). An allocation is a partition

π of G into n subsets (π1, . . . , πn), where πi is assigned to agent ai. We now
adopt the approach of Chevaleyre et al. [7], who introduced the notion of degree
of envy in society. Their definition proceeds in three stages by first defining envy
between any two agents, then envy of any agent with respect to all other agents,
and finally envy of society. With respect to a given allocation π = (π1, . . . , πn),
the three stages of the process are as follows:

– Stage 1 (envy between any two agents): For each i and j �= i, agent ai’s
envy with respect to agent aj is defined as the ratio between ai’s utility for
the bundle assigned to aj and ai’s utility for the bundle assigned to herself:

er(i, j) =
ui(πj)

ui(πi)
.

– Stage 2 (degree of envy of any agent): Here we measure how envious any
agent ai is with respect to anyone else, where we consider two aggregation
functions, product and max:

erpro(i) =
∏

j �=i
er(i, j) and ermax(i) = maxj �=ier(i, j).

– Stage 3 (degree of envy of society): Based on the degree of envy of
individual agents, we define the degree of envy of society for allocation π,
by again considering the two aggregation functions max and product. While
the max function focuses on the most envious agent of society, the product
measures envy of society as a whole:

erpro,opt(π) =
∏n

i=1
eropt(i) and ermax,opt(π) = maxni=1er

opt(i),

where opt ∈ {max, pro}.
Here we only consider these two operators, max and product, for aggregating

degrees of envy of individual agents. However, there are also other potential
alternatives for the aggregation of individual preferences, e.g., using the leximin
ordering (see Moulin [11]).

Note that one of the two measures of envy of society given by Lipton et al. [9]
corresponds to ermax,max(π).

Now, given these notions of the degree of envy of society, we define the fol-
lowing optimization problems, where we let opt1, opt2 ∈ {max, pro}.

Minimum Envy (opt1, opt2)

Input: A set of m indivisible goods and a set of n agents, each having an
additive utility function over the bundles of goods.

Output: An allocation π that minimizes max{1, eropt1,opt2(π)}.

Note that we minimize max{1, eropt1,opt2(π)} rather than eropt1,opt2(π) in
order to make the problem fit with the common definition of objective functions
in optimization problems so that approximation algorithms can be applied to it
and analyzed in a standard manner.
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Example 1. Consider an instance with three agents and six single goods, where
each agent has an additive utility function which is given in Table 1.

Table 1. Utilities of the agents for Example 1

Resources Agent a1 Agent a2 Agent a3

r1 1 5 5
r2 2 5 4
r3 0 0 1
r4 3 1 6
r5 4 1 4
r6 3 0 2

The numbers in boldface show an allocation whose envy is minimized: π =
({r5, r6}, {r1}, {r2, r3, r4}) with

ermax,max(π) =

{
1

7
,
5

7
,
1

5
,
6

5
,
6

11
,
5

11

}
=

6

5
.

However, there is no envy-free allocation for this instance.

In comparison with other notions of fairness, it is worth noting that allo-
cations with minimum envy do not always optimize either egalitarian social
welfare (the utility of the agent who is worst off) or social welfare by Nash
(the product of the individual agent utilities), and vice versa. For instance, the
allocation π shown in Example 1 has the Nash product 7 · 5 · 11 = 385 and
thus does not maximize Nash social welfare. Also, it is not an optimal allo-
cation with respect to the egalitarian social welfare. Conversely, the allocation
π′ = ({r5, r6}, {r1, r2}, {r3, r4}) maximizes both the egalitarian and Nash social
welfare, but its envy ermax,max(π′) = 9/7 is not minimal.

3 Approximation Schemes

In this section, we prove that there is a fully polynomial-time approximation
scheme for the problem of minimizing envy, for any pair (opt1, opt2), where
opti ∈ {max, pro}, for a bounded number of agents. Our proof proceeds as
follows: We first design a pseudo-polynomial-time algorithm for our optimization
problem by using dynamic programming and then modify it in a suitable way
to obtain an FPTAS.

Let M = (A,G) be an instance of the problem in which each agent ai, 1 ≤
i ≤ n, has an additive utility function over the bundles of goods. We denote
by sij the value of good gj for agent ai. Without loss of generality, we assume
that sij ∈ N for all i and j. In Algorithm 1 below, Vj denotes the set of all
possible allocations of Gj = {g1, . . . , gj}, which assigns the first j goods in G to
agents. Each allocation in Vj is represented by a vector v = (vip) in which vip
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is the evaluation of ap’s bundle by agent ai for all i, p ∈ {1, . . . , n}. The envy of
the allocation corresponding to a vector v ∈ Vj is denoted by eropt1,opt2(v). We
denote by μk,i, 1 ≤ k, i ≤ n, a vector of dimension n2 with a 1 in the coordinate
tki and a 0 everywhere else. Note that there are totally n2 such vectors.

Lemma 1. Algorithm 1 is a pseudo-polynomial-time algorithm.

Proof. First, it is easy to see that the running time of Algorithm 1 is
O(m

∑m
j=1 ‖Vj‖), where ‖Vj‖ denotes the size of the set Vj that is created after

Step 6. Let B = max1≤i≤n

∑m
j=1 sij . Then it is important to note that the coor-

dinates of any vector of Vj are nonnegative integers not exceeding B. Therefore,

the size of any set Vj is always bounded by Bn2

. Finally, the running time of

Algorithm 1 is O(mBn2

) and thus it runs in pseudo-polynomial time. ❑

Algorithm 1. Pseudo-polynomial-time algorithm

1: V0 := {0};
2: for j := 1 to m do
3: Vj := ∅;
4: for each v ∈ Vj−1 do
5: for i := 1 to n do
6: Vj := Vj ∪ {v +

∑n
k=1 skj · µk,i}

7: end for
8: end for
9: end for
10: return vector v ∈ Vm that minimizes eropt1,opt2(v).

Let ε be any fixed number such that 0 < ε < 1, and let

λ = 1 +
ε

4mδ
,

where δ depends on n and will be determined later. Algorithm 2 below modifies
Algorithm 1 by changing the sets of vectors Vj once they have been created. This
will help us to keep the number of vectors as low as possible. Of course, that may
also make Algorithm 1 return inexact solutions, but we will still obtain a good
approximation of the solution. In more detail, we will delete some unnecessary
vectors in Vj in a way such that all remaining vectors of Vj are not equivalent
in the sense defined below.

Let K = �logλ B� and Lk = [λk−1, λk], where 1 ≤ k ≤ K. The equivalence
relation ≡ on the set Vj is defined as follows. Any two vectors x = (x1, . . . , xn2)
and y = (y1, . . . , yn2) are equivalent, denoted by x ≡ y, if for every , 1 ≤  ≤ n2,
we have either x� = y� = 0 or x�, y� ∈ Lk for some k. One can easily check that
this relation is reflexive, symmetric, and transitive and, thus, is an equivalence
relation. By this relation, each set of vectors Vj can be divided into equivalence
classes, i.e., any two vectors from the same class are equivalent with respect
to ≡. We claim that if x ≡ y then we have

y�
λ
≤ x� ≤ λy� and

x�

λ
≤ y� ≤ λx� (1)
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for all , 1 ≤  ≤ n2. Indeed, the statement is obviously true if x� = y� = 0.
Consider now the case that x�, y� ∈ Lk for some k, that is, λk−1 ≤ x�, y� ≤ λk.
We have

x�

y�
≥ λk−1

λk
=

1

λ
and

x�

y�
≤ λk

λk−1
= λ.

Algorithm 2. Fully polynomial-time approximation scheme

1: V0 := {0}; V ∗
0 := {0};

2: for j := 1 to m do
3: Vj := ∅;
4: for each v∗ ∈ V ∗

j−1 do
5: for i := 1 to n do
6: Vj := Vj ∪ {v∗ +

∑n
k=1 skj · µk,i}

7: end for
8: end for
9: V ∗

j := Reduce(Vj)
10: end for
11: return vector v∗ ∈ V ∗

m that minimizes eropt1,opt2(v∗).

By the procedureReduce(Vj), the set of vectors Vj is divided into equivalence
classes due to the relation ≡ and then some vectors are removed such that each
class contains only one vector. It is easy to see that in Algorithm 2, we do the
same steps as in the Algorithm 1, but this time the set of vectors Vj will be
created from V ∗

j−1 rather than from Vj−1 and then is modified by the procedure
Reduce applied to Vj to get the reduced set V ∗

j . Note that this procedure also

ensures that the number of vectors in V ∗
j is always bounded by Kn2

. In the
following, we will show the relationship between the two sets Vj and V ∗

j .

Lemma 2. Let Vj and V ∗
j be the two sets of vectors that have been created by

Algorithms 1 and 2, respectively. For each vector v = (vip) ∈ Vj, there always
exists a vector v∗ = (v∗ip) ∈ V ∗

j such that for all i �= p, 1 ≤ i, p ≤ n:

v∗ii ≥
vii
λj

and v∗ip ≤ λj · vip.

Proof. The proof is by induction on j. The case with j = 1 is true by Equa-
tion (1) and the fact that V ∗

1 = V1. Assume that the statement is true for j − 1.
Consider an arbitrary vector v = (vip) ∈ Vj . This vector v must be created in
line 6 of Algorithm 1 from some vector w = (wip) of the set Vj−1. Without loss
of generality, we assume that v has the form

(w11 + s1j , w12, . . . , w1n, . . . , wn1 + snj , wn2, . . . , wnn),

where vi1 = wi1 + sij for i ∈ {1, . . . , n} and vip = wip for p �= 1. Using the
inductive assumption above, there exists some vector w∗ = (w∗

ip) ∈ V ∗
j−1 such

that
w∗

ii ≥
wii

λj−1
and w∗

ip ≤ λj−1 · wip (i �= p) (2)
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for all i, p ∈ {1, . . . , n}. On the other hand, note that the vector

(w∗
11 + s1j , w

∗
12, . . . , w1n, . . . , w

∗
n1 + snj , w

∗
n2, . . . , w

∗
nn)

will also be created for Vj but may be removed by the procedure Reduce(Vj),
which outputs V ∗

j . However, there must be another vector v∗ = (v∗ip) ∈ V ∗
j such

that v∗ ≡ w∗. This yields

v∗11 ≥
1

λ
· (w∗

11 + s1j) ≥
1

λj
· w11 +

1

λ
· s1j ≥

1

λj
· (w11 + s1j) =

1

λj
· v11.

For i �= 1, we have

v∗ii ≥ (1/λ) · w∗
ii ≥ (1/λj) · wii = (1/λj) · vii

and

v∗i1 ≤ λ · (w∗
i1 + sij) ≤ λj · wi1 + λ · sij ≤ λj · (wi1 + sij) = λj · vi1.

For any p �= 1 and i �= p, we have

v∗ip ≤ λ · w∗
ip ≤ λj · wip = λj · vip.

This completes the proof. ❑

Lemma 3. The running time of Algorithm 2 is bounded polynomially in both
the input size and 1/ε.

Proof. We prove that Algorithm 2 has a running time that is polynomial in m,
|M |, and 1/ε. First, since the set V ∗

m has at most Kn2

vectors, the running time

of the algorithm is in O(mK2n2

). On the other hand, we have

K = �logλ B� =
⌈
lnB

lnλ

⌉
=

⌈
lnB

ln (1 + ε/4mδ)

⌉
<

⌈(
1 +

4mδ

ε

)
lnB

⌉
.

The above inequality follows, since f(a) = ln a−1+1/a is a continuous, increasing
function on the interval (1,∞). This function is increasing on this interval, as
f ′(a) = 1/a− 1/a2 > 0 for all a > 1. Hence, we have f(a) > f(1) = 0 for all a > 1.
By choosing a = α, the inequality follows.

Furthermore, we have |M | ≥ logB = (log e)(lnB) and thus:

K ≤
(
1 +

4mδ

ε

)
|M |
log e

.

Note that δ depends only on n and thus is constant. This implies that K is
bounded by the input size and 1/ε, completing the proof. ❑

We are now ready to prove the main result of this section.



278 T.T. Nguyen and J. Rothe

Theorem 1. For any fixed ε > 0 and any pair (opt1, opt2) with opti ∈ {max,
pro}, Algorithm 2 always produces an allocation whose envy is within a factor
of 1 + ε of the optimum.

Proof. Let v = (vip) ∈ Vm be a vector returned by Algorithm 1. By Lemma 2,
there exists a vector v∗ = (v∗ip) ∈ V ∗

m such that

v∗ii ≥
1

λm
· vii and v∗ip ≤ λm · vip (i �= p)

for all i, p ∈ {1, . . . , n}. Assume Algorithm 2 outputs a vector x. By Lemma 2 and
the fact that eropt1,opt2(v∗) ≥ eropt1,opt2(x) ≥ eropt1,opt2(v), it is easy to see that
eropt1,opt2(x) =∞ if and only if eropt1,opt2(v) =∞. In case eropt1,opt2(v) <∞,
we have vii, v

∗
ii �= 0 for all i, and so

v∗ip
v∗ii
≤ λ2m · vip

vii
(i �= p)

for all i, p ∈ {1, . . . , n}. By choosing δ appropriately, we can show that for each
pair (opt1, opt2):

max{1, eropt1,opt2(x)} ≤ (1 + ε)max
{
1, eropt1,opt2(v)

}
. (3)

Indeed, we prove the claim for the four possible cases below. Note that we have
eropt1,opt2(x) ≤ eropt1,opt2(v∗). The inequality below is very helpful and not
difficult to prove (but we omit the proof due to the space limit):

λ2mδ =
(
1 +

ε

4mδ

)2mδ

≤ e
ε/2 ≤ 1 + ε. (4)

The first inequality follows from the known inequality (1 + x/z)z ≤ ex for
all z ≥ 1. The second inequality can be proven easily as follows. Consider the
function f(x) = ex− 1− 2x on the interval [0, 1]. The derivative f ′(x) = 0 if and
only if x = ln 2. Therefore,

max
x∈[0,1]

f(x) = max{f(0), f(1), f(ln 2)} = f(0) = 0.

It follows that f(x) = ex− 1− 2x ≤ 0, or equivalently, ex ≤ 1+2x for all x ≥ 0.
Finally, choosing x = ε/2 the proof of inequality (4) is completed.

Case 1: (opt1, opt2) = (pro, pro). In this case, we have

max{1, erpro,pro(x)} ≤ max

{
1,
∏n

i=1

∏
p�=i

v∗ip
v∗ii

}
≤ max

{
1, λ2mn(n−1)

∏n

i=1

∏
p�=i

vip
vii

}
≤ λ2mn(n−1) max{1, erpro,pro(v)}.

Choosing δ = n(n− 1) and applying inequality (4), we obtain (3).
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Case 2: (opt1, opt2) = (max, pro). Here we obtain

max{1, ermax,pro(x)} ≤ maxni=1

{
1,
∏

p�=i

v∗ip
v∗ii

}
≤ maxni=1

{
1, λ2m(n−1)

∏
p�=i

vip
vii

}
≤ λ2m(n−1)max {1, ermax,pro(v)} .

Choosing δ = n− 1 and applying inequality (4), we again obtain (3).
Case 3: (opt1, opt2) = (pro,max). Now we have

max{1, erpro,max(x)} ≤ max

{
1,
∏n

i=1
maxp�=i

v∗ip
v∗ii

}
≤ max

{
1, λ2m(n−1)

∏n

i=1
maxp�=i

vip
vii

}
≤ λ2m(n−1)max {1, erpro,max(v)} .

Choosing δ = n− 1 and applying inequality (4), we obtain (3).
Case 4: (opt1, opt2) = (max,max). Finally, we have

max{1, ermax,max(x)} ≤ max

{
1,maxni=1maxp�=i

v∗ip
v∗ii

}
≤ max

{
1, λ2mmaxni=1maxp�=i

vip
vii

}
≤ λ2mmax {1, ermax,max(v)} .

Choosing δ = 1 and applying inequality (4), we again obtain (3).

This completes the proof. ❑

4 An Inapproximability Result

In this section we prove that if the number of agents is part of the input, the
problem Minimum Envy (max,max) does not have a polynomial-time approxi-
mation scheme. This result can be extended without difficulty to the other cases
of (opt1, opt2) with opti ∈ {max, pro}.

Theorem 2. There exists a constant α such that unless P = NP, there is no
polynomial-time approximation algorithm within a factor of α for the problem
Minimum Envy (max,max).

Proof. The proof is by a reduction from the well-known NP-complete problem
Exact Cover By Three Sets (X3C, for short): Given a finite set B with
‖B‖ = 3q and a collection C = {S1, . . . , Sn} of 3-element subsets ofB, does there
exist a subcollection C′ ⊆ C such that every element of B occurs in exactly one
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of the sets in C′? Let (B, {S1, . . . , Sn}) with ‖B‖ = 3q be an instance of X3C,
where we may assume that n ≥ q. We construct an instance M as follows:
There are n agents, each corresponding to one set Si, 1 ≤ i ≤ n; the set of
goods contains 2q + n single goods, where 3q “real” goods correspond to the 3q
elements of B and there are n− q “dummy” goods. For each i, 1 ≤ i ≤ n, agent
ai has utility 1 for each good in Si and utility 0 for each good in B � Si. Every
dummy good has utility 3 for all agents. We also denote by ui the additive utility
function of agent ai.

Suppose that (B, {S1, . . . , Sn}) is a yes-instance of X3C. Then there exists a
set I ⊆ {1, . . . , n}, ‖I‖ = q, such that Si ∩ Sj = ∅ for all i, j ∈ I, i �= j, and⋃

i∈I Si = B. Hence, we assign the bundle Si to agent ai for each i ∈ I, and each
dummy good to one of the n− q remaining agents. This allocation has an envy
of 1 and thus is optimal.

Conversely, if (B, {S1, . . . , Sn}) is a no-instance of X3C, we show that any op-
timal allocation for M has always envy of at least 3/2. Indeed, let π = (π1, . . . πn)
be an optimal allocation for M , and consider the following two cases for π. First,
if there is some agent ai whose bundle πi contains at least two dummy goods,
then there must be another agent ak owning a bundle πk of value at most 3.
This implies that

ermax,max(π) ≥ uk(πi)

uk(πk)
≥ 2

and thus the envy of π is at least 2 in this case. Second, consider the case that
the n− q dummy goods are assigned to n− q distinct agents and let ai be one of
these. Since there are at most q−1 disjoint sets from S1, . . . , Sn, there must be at
least one agent ak who is assigned a bundle πk of value at most 2. Furthermore,
the bundle πi of ai has utility at least 3 for agent ak. Hence,

ermax,max(π) ≥ uk(πi)

uk(πk)
≥ 3

2

To sum up, an approximation algorithm with a factor better than 3/2 will distin-
guish the yes- from the no-instances of X3C in polynomial time, contradicting
NP-hardness of X3C unless P = NP. The proof is completed. ❑

5 A Restricted Case

We next consider the problem of minimizing the envy in the special case when
there are as many agents as goods. By applying a matching technique, we will
show that one can solve this restricted case in polynomial time. The crucial point
here is that each agent will get exactly one good, for otherwise there would be
at least one agent owning nothing and thus the envy of the allocation would
be infinite. Hence, one can transfer our optimization problem into a problem of
finding a suitable maximum matching in a weighted bipartite graph. We consider
the following two variants of the matching problem: Min-Max-Matching and
Max-Pro-Matching.
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Min-Max-Matching

Input: A bipartite graphG = (X∪Y, E) and a weight function w : E → R+.

Output: A min-max-matching, i.e., a maximum matching M ⊆ E such that
maxe∈M w(e) ≤ maxe∈M′ w(e) for any other maximum matching
M′ of G.

Max-Pro-Matching

Input: A bipartite graphG = (X∪Y, E) and a weight function w : E → R+.

Output: A max-pro-matching, i.e., a maximum matching M ⊆ E that max-
imizes

∏
e∈M w(e).

Lemma 4. Given a weighted bipartite graph G, a min-max-matching of G can
be found in polynomial time.

Proof. Given a weighted bipartite graph G, a min-max-matching of value k can
be found in polynomial time as follows. Let Gk be a subgraph of G that contains
only the edges of weight less than or equal to k. Obviously, G has a min-max-
matching of value k if and only if Gk has a maximum matching. The smallest
value of k can be found by binary search. ❑

Lemma 5. Given a weighted bipartite graph G, a max-pro-matching of G can
be found in polynomial time.

Proof. We may assume that G is a complete bipartite graph, since if there
exist two vertices x, y ∈ V with (x, y) �∈ E, we can add the edge (x, y) of
weight zero to E. Moreover, by multiplying every weight w(e) by a large enough
number it suffices to consider the case when w(e) ∈ R≥1 ∪ {0}. The basic idea
is to transform the given Max-Pro-Matching instance into an instance of the
problem of finding a maximum weighted maximum matching (i.e., a maximum
matching of maximum weight), which can be solved in polynomial time (for more
details, see [10]). The weight function w′ : E → R is defined as follows:

w′(ei) =

{
logw(ei) if w(ei) �= 0

−k logΔ otherwise,

where Δ = maxei∈E w(ei) and k = min{‖X‖, ‖Y ‖}.
Without loss of generality, we can assume that M = {e1, . . . , ek} is a max-

imum matching of G with weight function w′ so that
∑k

i=1 w
′(ei) is maximal.

We now prove that M is exactly a matching of G that maximizes
∏k

i=1 w(ei).

It is easy to see that
∑k

i=1 w
′(ei) ≤ 0 if and only if there exists an edge ei ∈M

with negative weight w′(ei) = −k logΔ, i.e., w(ei) = 0. In this case, for ev-
ery maximum matchingM of G, the product of the edge weights inM is zero



282 T.T. Nguyen and J. Rothe

with respect to the weight function w. Now suppose that w(ei) > 0 for all
i ∈ {1, . . . , k}. Assume that there exists another matchingM′ = {e′1, . . . , e′k} of
G such that

∏k
i=1 w(e

′
i) >

∏k
i=1 w(ei). This implies that

log

(∏k

i=1
w(e′i)

)
> log

(∏k

i=1
w(ei)

)
or, equivalently, ∑k

i=1
logw(e′i) >

∑k

i=1
logw(ei)

which in turn is equivalent to

∑k

i=1
w′(e′i) >

∑k

i=1
w′(ei)

This is a contradiction. ❑

Theorem 3. For any pair (opt1, opt2) with opti ∈ {max, pro}, an allocation of
minimum envy can be found in polynomial time if the number of agents and the
number of goods are the same.

Proof. Let A = {a1, . . . , an} be a set of agents and G = {g1, . . . , gn} be a set of
goods, where we assume that each agent ai has an additive utility function ui

over the set of goods. Consider the following two cases:

Case 1: opt1 = max. We construct a weighted bipartite graph G = (X ∪Y,E)
in which X and Y correspond to the set of agents A and the set of goods G,
respectively. The weight w function is defined as

w((ai, gj)) =

⎧⎪⎪⎨⎪⎪⎩
maxk �=j

{
ui(gk)

ui(gj)

}
if opt2 = max

∏
k �=j

ui(gk)

ui(gj)
if opt2 = pro

It is not difficult to see that the optimal allocation for instance M corre-
sponds exactly to a min-max-matchingM of G, which can be solved exactly
by Lemma 4.

Case 2: opt1 = pro. We construct a weighted bipartite graph G = (X ∪ Y,E)
similarly as in the case 1, but this time the optimal allocation for instance
M corresponds exactly to a max-pro-matchingM of G, which can be solved
exactly by Lemma 5.

This completes the proof. ❑
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6 Conclusions and Future Work

We have studied the problem of computing minimum envy allocations of indi-
visible goods when agents have additive utilities over bundles of goods. Building
on the work of Lipton et al. [9] and Chevaleyre et al. [7], we have analyzed an
alternative metric to measure the envy between two agents and the envy of so-
ciety as well. Based on these measures, we model the optimization problems of
minimizing envy and study their approximability. Our main result shows that
these problems admit an FPTAS for the case when the number of agents is not
part of the input. We have also provided a hardness of constant-factor approxi-
mation result. For the restricted case when there are as many agents as goods,
we have presented a nontrivial polynomial-time algorithm that computes exact
allocations of minimum envy.

As future work, it would be interesting to find a (constant) approximation al-
gorithm for our optimization problems in the general case. Note that our prob-
lem Minimum Envy (max,max) is closely related to the problem Minimum

Makespan on unrelated machines, which is known to be approximable to a fac-
tor of 2, by using integer linear programming (see [8]). Therefore, we conjecture
that Minimum Envy (max,max) can be also approximated to within certain
constant factor. Regarding the negative results, there is still room for improving
the (3/2)-hardness factor obtained in Section 4.
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Abstract. In the context of Multiple Criteria Decision Aid, a decision-
maker may be faced at any time with the task of analysing one or several
sets of alternatives, irrespective of the decision he is about to make. As
in this case the alternatives may express contrasting gains and losses
on the criteria on which they are evaluated, and while the sets that are
presented to the decision-maker may potentially be large, the task of
analysing them becomes a difficult one. Therefore the need to reduce
these sets to a more concise representation is very important.

Classically, profiles that describe sets of alternatives may be found
in the context of the sorting problem, however they are either given
beforehand by the decision-maker or determined from a set of assignment
examples. We would therefore like to extend such profiles, as well as
propose new ones, in order to characterise any set of alternatives. For
each of them, we present several approaches for extracting them, which
we then compare with respect to their performance.

Keywords: multiple criteria decision aid, descriptive profiles, central
profiles, bounding profiles, separating profiles, outranking relations,
meta-heuristics.

1 Introduction

The field of Multiple Criteria Decision Aid (MCDA) focuses on modelling the
preferences of decision-makers and aims at helping them in reaching certain de-
cisions. This is not an easy task, as the entities that make the object of these
decisions are defined on multiple dimensions and in many cases express con-
trasting gains and losses on them. Many different models have been proposed in
order to reflect the subjective perspective of the decision-maker (DM) over these
entities, or alternatives. Hence we are able to distinguish at least three types of
relations between them [7]: indifference, strict preference and incomparability.

Classically, three well known types of decision problems have been defined in
MCDA [9]: choice, ranking and sorting. The first consists in finding the best al-
ternative, or the set containing the best ones, the second looks to build an order,
partial or weak, over the set of decision alternatives, while the last problem out-
puts an assignment of the alternatives to a predefined set of classes, which may
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be ordered or not. Furthermore, another type of problem, that of clustering, has
begun to receive increasing interest recently, having been specifically redefined
in the context of MCDA [5].

In all of the mentioned MCDA problem types we may be faced at some point
with one or several sets of alternatives, either as a final recommendation or
during the decision aiding process. Due to the multidimensional nature of these
alternatives and the possibility of having large sets, being able to describe them
using concise information becomes very important. In the case of the sorting
problem, the profiles that are used to describe the classes already serve this
purpose, however this is not the case for the other types of problems. We mention
the central profiles [6,1] that are used for sorting into nominal classes, as well as
the delimiting profiles [11,9] for sorting into ordered classes.

In this paper we extend the profiles that have been used in conjunction with
the problem of sorting, as well as we propose new ones, in order to be able to
reduce the information given by one or several sets of alternatives to a more
concise representation. These profiles may then be used in order for the DM
to better understand the sets of alternatives that he is confronted with, while
considering his preferences over them.

We begin by first defining the proposed profiles in Section 2. We consider only
the case where a preference model is based on an outranking relation [8]. In Sec-
tion 3 we first present several exact approaches for extracting these profiles. In
order to deal with complexity issues that would be faced when the sets of alter-
natives are of large cardinality, we especially focus on the use of meta-heuristic
approaches for constructing these descriptive profiles. The proposed approaches
are validated and compared in Section 4 over a large set of benchmarks that
contain increasingly contrasting alternatives. Finally, we conclude with a series
of remarks and perspectives for the presented work.

2 Defining the Profiles

Before defining the profiles we first present the working context. Let X be the
set of all decision alternatives that can be constructed on a set of criteria F =
{1, ..., p}. We denote with A and B two subsets of X and their cardinalities with
n and m. The evaluation of any alternative x ∈ X on any criterion i ∈ F is
denoted by xi.

We consider that the DM’s preferences are modelled using an outranking re-
lation, which we denote with S [8]. For the purpose of formally defining the
profiles, any outranking relation may be considered. While an outranking rela-
tion is used to reflect whether the DM considers an alternative to be at least
good as another, we may additionally use it to express judgements with respect
to the notions of indifference, strict preference or even incomparability [7]. Two
alternatives x and y are thus indifferent if simultaneously x outranks y and y
outranks x. An alternative x is said to be strictly preferred to another alter-
native y when x outranks y and y does not outrank x. These alternatives are
incomparable when neither of them outranks the other.
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We will consider three profiles for characterising one or several sets of alter-
natives. These are the central, bounding and separating profiles.

We define a central profile for a set A as an alternative, real or fictive,
which is indifferent to as many of the alternatives in A as possible. Based on
this definition, a central profile may be used to substitute all the alternatives in
A, due to that fact that the DM considers it indifferent to them, therefore he
cannot distinguish between them.

We model the fitness of a central profile cA with respect to the set A through:

fc(cA, A) =
1

n
·
∣∣{x ∈ A : x I cA}

∣∣ (1)

The function above is straightforward, giving the proportion of alternatives
in A that are indifferent to the central profile, inside a [0, 1] value range.

When the alternatives in A are mostly indifferent to each other, a central
profile may be able to represent them with a high degree of confidence. However,
if we consider that the alternatives in A have rather contrasting evaluations, a
central profile may not be able to represent them faithfully. For this purpose we
will consider the second type of descriptive profile, the bounding profiles.

The bounding profiles may be seen as the best and worst alternatives in A,
bounding all the rest between them with respect to the preferences of the DM.

We define the upper bounding profile of a set A as an alternative which
is either strictly preferred or indifferent to any alternative in A, but not strictly
preferred by them. In this way we may state that no alternative in A is better
than the upper bounding profile. Similarly, the lower bounding profile of A is
either strictly preferred by any alternative in A, or indifferent to them, therefore
no alternative in A may be said to be worse than the lower bounding profile. We
denote these profiles with b+A and b−A respectively.

When the upper or lower bounding profiles cannot be selected from A we may
proceed to construct them using the following functions to model their quality:

fb+(b+A, A) =
1

n · (n+ 1)
·
(
n ·

∣∣{x ∈ A : b+A S x}
∣∣+ ∣∣{x ∈ A : x S b+A}

∣∣) (2)

fb−(b−A, A) =
1

n · (n+ 1)
·
(∣∣{x ∈ A : b−A Sx}

∣∣+ n ·
∣∣{x ∈ A : x S b−A}

∣∣) (3)

Each of the two fitness measures counts the number of alternatives from A
that the considered bounding profile outranks in the first term of the sum, but
also the number of alternatives in A that are outranked by it in the second term.

Since an upper bounding profile mainly has to outrank all the alternatives
in A (hence it will be either strictly preferred or indifferent to them), the first
term has been weighted so that it dominates the second. We would also like to
have an upper bounding profile that is indifferent to as many alternatives in A
as possible, therefore the second term is also necessary.

Similarly, the lower bounding profile reverses the importance of the two terms,
as it mainly needs to be outranked by the alternatives in A (hence it will be either
strictly preferred by them or indifferent). Nevertheless, if this first condition is
met, then the lower bounding profile should also outrank the alternatives in A
in order to be indifferent to them.
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Finally, we consider two sets of alternatives, A and B, and a relation of strict
preference of the first over the second. In such a case we may consider defining
a profile that separates the alternatives between the two sets as well as possible.

We define a separating profile between a set A that is strictly preferred
to a set B, as an alternative, real or fictive, which is strictly preferred by the
alternatives in A, or at least indifferent to them, while in turn it is strictly
preferred to the alternatives in B, or at least indifferent to them.

The fitness measure for such a profile is:

fs(sAB,A,B)=
(n+m)

(∣∣{x∈A :xSsAB}
∣∣+∣∣{x∈B : sABSx}

∣∣)+∣∣{x∈A : sAB �Sx}
∣∣+∣∣{x∈B :x�SsAB}

∣∣
(n+m)(n+m+ 1)

(4)

The first term, which is multiplied with (n+m), counts the number of alter-
natives in A that outrank the separating profile and the number of alternatives
in B that are outranked by it. If all the alternatives in A and B are counted,
then the separating profile is not strictly preferred to any of the alternatives in
A, while none of the alternatives in B are strictly preferred to it. In this case,
the separating profile may be said to have been placed between the two sets of
alternatives. However, we may have certain alternatives from both sets that are
indifferent to the separating profile. In this case the separating profile may not
be considered to properly separate A and B. For this reason we have added the
second term from Equation (4), which counts the number of alternatives from
A that are not outranked by sAB, and the number of alternatives from B that do
not outrank sAB. If this term is also maximized then all the alternatives from A
will be strictly preferred to the separating profile, while all the alternatives from
B will be strictly preferred by it.

3 Algorithmic Approaches to Determine the Profiles

Several approaches to constructing the presented profiles may be considered,
from very simple ones to others that are more complex. Some of them are inde-
pendent of the preference model that is used in order to reflect the perspective
of the DM over the set of alternatives, while others are tailored for a particu-
lar type of outranking relation. We will consider in the case of the latter, the
outranking relation from [2], although the approaches that we will present may
easily be adapted to other outranking relations.

For the selected relations, the “at least as good as” comparisons are charac-
terized for all pairs of alternatives x and y and for all criteria i ∈ F by:

Ci(x, y) =

⎧⎨⎩
1 if yi < xi + qi ;
−1 if yi ≥ xi + pi ;
0 otherwise ,

(5)

where 0 ≤ qi (resp. pi ≥ qi) is a constant indifference (resp. preference) threshold
associated with the ith criterion. A weightwi > 0 is associated with each criterion
i, and the overall concordance index C(x, y) is defined as the weighted sum
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of the marginal concordances. A veto threshold vi for each criterion i is also
introduced in order to invalidate the outranking in case a very large difference
of evaluations on at least one criterion is detected in favour of the overall less
preferred alternative. Consequently, an alternative x outranks an alternative y
(xS y) iff C(x, y) > 0 and yi − xi < vi ∀i ∈ F .

3.1 Exact Approaches

One of the simplest approaches is to select an existing alternative based on how
well it performs with respect to the considered fitness measures. For instance a
central profile is selected as follows:

cA = argmax
x∈A

fc(x,A). (6)

Not only will such an approach be very fast, but it will also give the DM a
result with which he is familiar, as the profiles are real alternatives.

Nevertheless, profiles that are selected from the existing alternatives may not
always be of good quality, considering the fitness measures we have proposed.
This may easily be imagined for sets containing very contrasting alternatives.

Another simple and quick approach for building these profiles is to construct
them directly from the evaluations of the alternatives. In the case of a central
profile we may consider a simple mean operator as follows:

cAi =
1

n

∑
x∈A

xi,∀i ∈ F. (7)

This approach is only suited when the criteria are defined on quantitative
scales, however we may use a median operator when confronted with ordinal
scales.

In the case of bounding profiles, since the upper bounding profile should
mainly outrank the alternatives in A, while the lower bounding profile should
mainly be outranked by them, we may use the max and min operators:

b+Ai = max
x∈A

xi,∀i ∈ F, b−Ai = min
x∈A

xi,∀i ∈ F. (8)

A separating profile may be given as the mean between the central profiles of
the two sets:

sABi =
1

2

( 1

n

∑
x∈A

xi +
1

m

∑
x∈B

xi

)
,∀i ∈ F. (9)

While these approaches for building central, bounding or separating profiles
are simple and fast, nothing guarantees that they will find a good result with
respect to the fitness measures defined in Section 2.

A third approach is to usemathematical programs that model the outrank-
ing relations between alternatives to extract the central, bounding or separating
profiles which are optimal with respect to the fitness measures defined in Section
2. We have considered an extension of the work of [4], which may be used to
model the outranking relation presented earlier in this section, in order to de-
termine the optimal profiles in an exact way. However, due to complexity issues,
such an approach quickly becomes impractical when considering larger sets of
alternatives. As we will consider such cases for the empirical validation of the
presented algorithmic approaches in Section 4, we do not elaborate further on
the topic of using a mathematical program.
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3.2 Meta-heuristic Approach

An alternative to finding an optimal central, bounding or separating profile is to
perform a trade-off between the quality of the profile and the time required by
the approach in order to find it. Hence, we may use meta-heuristic approaches
[10], which find results that are close to the optimal one in a fraction of the time
required by exact approaches.

In our case, any single-solution meta-heuristic may be used. We present the
outline of these approaches below [10]:

Algorithm 1. Single-solution meta-heuristic

Input: Initial solution s0.
1: t = 0;
2: while not Stopping criterion satisfied do
3: N(st) = Generate(st); /* Generate candidate solutions from st */
4: st+1 = Select(N(st)); /* Select a solution to replace the current one */
5: t = t+ 1;
Output: Best solution found.

The initial solution may either be constructed randomly, or may be guided
towards a good solution. In our case we will be using the first approach of
selecting an existing alternative that maximizes the considered fitness measure.

The neighbours of the current solution will be those that contain an evaluation
change on only one criterion. This change will be either the smallest increase or
the smallest decrease of the evaluation, which would change the way in which
the profile compares on a particular criterion to the alternatives that it tries to
describe. We motivate this by the desire to be able to explore the search space
from one neighbouring solution to the next, without performing large changes
to a profile, which may lead us to miss potentially better intermediate solutions.

The selection of the new solution generally depends on the actual type of
meta-heuristic used. Nevertheless, in many cases the neighbouring solutions are
evaluated based on the fitness measure and then a selection procedure is ap-
plied. However, it may be the case that assessing the fitness of all neighbouring
solutions, or even constructing them, will increase the execution time of the ap-
proach. In such cases, certain heuristics may be used to assess the quality of
each change on the current solution. We will propose in what follows different
heuristic measures for each of the three types of profiles that have been defined
in this paper. The outranking relation which we use here is the one defined in
the beginning of this section. Note that similar heuristics can be given for other
definitions of the outranking relation.

We begin with the heuristic for increasing the evaluation of a central profile
on a particular criterion i ∈ F , considering the alternatives in set A:

hc(cA, i) =
∣∣{x∈A : xi − cAi>qi ∧ cA � Ix}

∣∣−∣∣{x∈A : xi − cAi<−qi ∧ cA � I x}
∣∣ (10)

Since the central profile should be indifferent to the alternatives in A, the
heuristic in Equation (10) may be seen as a voting procedure where each al-
ternative in A votes in favour of increasing the evaluation of cA on criterion i,
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in disfavour, or refrains from voting. This is reflected by the two terms in this
equation. The first term counts the number of alternatives which have an eval-
uation higher than that of cA by more than the qi threshold. This means that
those alternatives are not considered indifferent to cA on criterion i. Moreover,
those alternatives are preferred to it, therefore, from their perspective, the eval-
uation of cA should be increased in order for them to become indifferent. The
second term counts in a similar way the alternatives from whose perspective the
evaluation of cA on criterion i should be decreased. The alternatives which are
already indifferent with cA on criterion i do not require an increase or decrease in
the evaluation of cA Furthermore, the alternatives in A that are already overall
indifferent to cA do not take part in this process, even if their evaluations on
criterion i are not indifferent to that of cA, as this would not increase the fitness
of the central profile. The heuristic is valued in the [−n, n] interval.

The heuristic of decreasing the evaluation of cA on criterion i is −hc(cA, i).
In Figure 1 we illustrate the way in which the heuristic works, considering a

set containing only four alternatives.

Fig. 1. Detailing the heuristic for changing cA for a set A of 4 alternatives

In this example we consider a set A = {x, y, z, t} of four alternatives and their
central profile cA. We consider that none of these alternatives are at this point
overall indifferent to cA, therefore they all take part in the voting process. It is
evident that the evaluation of cA should be increased, as two alternatives from
A are in favour of this change, one is against and another refrains from voting,
therefore giving a positive value to the heuristic measure. However, we would
only add to the evaluation of cA the smallest amount which changes at least one
of the comparisons between it and the alternatives in A. The first alternative, x,
would require cA to be increased by an amount that brings the first dotted line
below the evaluation of x on i just above it. This amount is xi − cAi − pi + ε,
where ε > 0 and ε � 1, as in this case x would become only weakly preferred
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to cAi. However, this amount can be seen to be larger than the amounts that
would be required in order for the other alternatives compare differently to cA,
therefore we will not increase cAi by this amount. The use of ε is necessary
following the definition of the outranking relation. The smallest amount that
would impact the way in which at least one alternative compares to cA on i is
equal to yi−cAi−qi, which would make y become indifferent to cA on criterion i,
while all the other alternatives will remain in the same state as before. Therefore
the increase of cAi would be this amount.

Having a positive fitness value for the heuristic in Equation (10) does not
imply that we would increase its evaluation. All the operations of both increasing
and decreasing the evaluations of cA on all criteria, characterised through the
described heuristic measure, are used in the meta-heuristic approach.

We continue with the heuristic functions for increasing the evaluations of the
bounding profiles on a particular criterion in Equations (11) and (12).

hb+(b+A, i)=n·
∣∣{x∈A : xi − b+Ai>qi ∧ b+A �S x}

∣∣−∣∣{x∈A : xi − b+Ai<−qi ∧ x �S b+A}
∣∣ (11)

hb−(b−A, i)=
∣∣{x∈A : xi − b−Ai>qi ∧ b−A �S x}

∣∣−n·
∣∣{x∈A : xi − b−Ai<−qi ∧ x �S b−A}

∣∣ (12)

We find that these heuristics are defined similarly to the one for a central
profile. The first term from both counts the number of alternatives that do not
outrank each profile but have an evaluation that is above that of the profile by
more than the indifference threshold. In this case the evaluation of the profile
should be increased so that it would outrank the considered alternatives on
criterion i. Similarly, in the second term the alternatives that are not outranked
by the bounding profiles and that have their evaluations lower by more than the
indifference threshold require the evaluations of the profiles to be decreased. The
two terms are weighted so that one of them dominates the other, as is the case
with the fitness measures for these profiles.

Finally, we present the heuristic for increasing the evaluation of a separating
profile, considering the two sets A and B:

hs(sAB, i)=(n+m)·
(∣∣{x∈B : xi−sABi>qi ∧ sAB �S x}

∣∣−∣∣{x∈A : xi−sABi<−qi ∧ x �S sAB}
∣∣)

+
∣∣{x∈B : xi−sABi>−qi ∧ x S sAB}

∣∣−∣∣{x∈A : xi−sABi<qi ∧ sAB S x}
∣∣ (13)

The first term counts the alternatives from B that require the evaluation
of sAB on i to be increased in order for it to outrank them, while the second
term counts the alternatives from A that require that this evaluation is lowered
in order for them to outrank the separating profile. These terms are weighted,
as they account for the most important part of the definition of a separating
profile. The following two terms account for the alternatives in B that require
an increase in the evaluation of sAB, and those from A that require a decrease.

4 Empirical Validation

In order to be able to compare the performance of the proposed approaches for
extracting each type of profile, we have generated a large number of problem
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instances containing one or two sets of alternatives. We have fixed the size of
these sets of alternatives to 50, making them very difficult for a DM to analyse
directly.

4.1 Constructing the Benchmarks

The alternatives are defined on a number of 11 criteria which are valued on
ratio scales in the interval [0, 1]. This number has been chosen in order for
the alternatives to resemble those from real problems that are considered to
be difficult, but also allowing us to construct very diverse ones. In order to
model a wide range of potential problems, we also generate the evaluations of
the alternatives in each set so that they are increasingly contrasting. A total of
ten generators are used, which we denote alphabetically from A to J . While the
first builds each alternative using a normal distribution centred at the median
level on every criterion, the following four randomly pick for each alternative
normal distributions that are increasingly spaced apart. The following generators
are the same as the first five except that very good and very bad performance
evaluations are additionally inserted. For each alternative, two distinct criteria
are randomly picked and with a 50% probability the evaluation on the first
criterion is maximized, while with the same probability the evaluation on the
second criterion is minimized. Using each generator we have built 5 problem
instances.

The perspective of a fictive DM on these sets of alternatives is modelled using
the outranking relation from [2]. The criteria have been given equal importance
weights as we are not dealing with real decision problems, but also due to the fact
that by reducing the significance of certain criteria in favour of others we reduce
the impact that they would have on the way in which the alternatives compare
to each other. By maintaining the criteria importance weight the same for all of
the criteria, we are assuring that the benchmarks have the highest diversity in
their structures as possible. The discrimination thresholds are selected so that
evaluations that are generated using the same normal distribution are in a high
percentage indifferent. Only one veto threshold is used, which is set to three
quarters of the value range, making veto situations appear very rarely inside the
instances constructed using the first five generators.

4.2 Results

For each of the 50 problem instances that we have generated, we have constructed
the central, bounding and separating profiles using the three approaches pro-
posed in this paper. The approaches of selecting existing alternatives and that
of constructing them from the evaluations of the alternatives in the sets have
been executed only once on each benchmark, as they are deterministic.

In the case of the meta-heuristic approaches, we have selected a simulated
annealing implementation [3]. The initialisation step is given the solution of
the first of the previous approaches, while the cooling rate is fixed so that the
algorithm will run at most for one minute. This limit has been set in order to
simulate real-life conditions where the approaches of constructing these profile
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need to quickly output good results. Furthermore, a strategy using restarts had
been additionally applied. This approach has been executed 50 times over each
benchmark in order for the results with respect to the average fitness of the
profiles to be significant.

The average fitness of the three types of profiles, as well as the standard
deviations, where relevant, are presented for each of the ten types of benchmarks
in Figure 2.

A B C D E F G H I J

40

60

80

100

Central profiles

A B C D E F G H I J

97

98

99

100

Bounding profiles

A B C D E F G H I J
80

90

100

Separating profiles

Selecting existing alternatives

Constructing from evaluations

Meta-heuristic approach

Fig. 2. Average fitness of the central, bounding and delimiting profiles

Certain conclusions may be drawn for the results of finding any type of profile.
First of all, we notice that the approaches find profiles that are less fit with
respect to the considered fitness measures as we tackle problems instances that
contain increasingly contrasting alternatives. This is seen through the decrease
in fitness from the first type of benchmarks up to the fifth, as well as from the
sixth and up to the last. The two sets of benchmarks resemble strongly each
other, except that in the case of the second set we have added large performance
gains or losses for certain alternatives in the sets.

Secondly, we may notice that the approaches of building the profiles using sim-
ple operation on the evaluations of the alternatives in each set generally perform
poorer than all the rest. A few exceptions occur when constructing bounding
profiles, where the proposed approach is always able to build an upper bounding
profile that outranks all the alternatives in the set and a lower bounding profile
that is outranked by them. Any fitness results that are above these highlight
the fact that we have constructed bounding profiles that come closer to the
alternatives in the set, i.e. indifferent to them.
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The meta-heuristic approaches improve on the results given by the approach
of selecting an existing alternative from the dataset. The largest improvements
may be seen to occur for the approach of constructing a central profile, however
this is due to the nature of the fitness measure. Nevertheless, in this case we are
able to improve the results of the approach of selecting an existing alternative
by as much as 10%.

For the other types of profiles the fitness measures model two objectives,
the first dominating the other, and thus improvements over the less important
objective are less visible. Nevertheless, when the first objective is maximized
the second one becomes also very important. This is especially the case for the
bounding profiles, which we additionally want to become indifferent to as many
of the alternatives in the set as possible. We find that in this case the first
approach is already performing quite well for the first types of benchmarks, and
the meta-heuristic is not able to improve on its results.

Finally, in the case of the separating profiles, the meta-heuristic approach
performs quite well, for certain benchmark type being able to find separating
profiles that are strictly preferred by the alternatives in the first set and strictly
preferred to the alternatives in the second set.

5 Conclusions and Perspectives

In this paper we have proposed three types of profiles that may be used in order
to describe one or several sets of alternatives. Two of these profiles, the central
and separating profiles, have been extended from the context of the problem of
sorting, while the bounding profiles are new. Through them we are able to reduce
one or two sets of alternatives to a condensed representation, which would aid
a DM in understanding and dealing with these sets as a whole, especially when
we are dealing with a large number of alternatives inside them. The definitions
of these profiles make their use very intuitive.

For each of the three types of profiles we have presented three approaches
for constructing them, which we have tested over a large number of benchmarks
holding various difficulties. The results show that in most cases the approach
of selecting an existing alternative performs quite well, however using a meta-
heuristic we are able to find even better results. Furthermore, the approaches
of constructing the profiles using simple operations over the evaluations of the
alternatives in the sets in general perform worse than the others.

Although we have considered the use of a mathematical program in order to
find the optimal central, bounding or separating profiles, due to the size of the
sets of alternatives such an approach became highly impractical.

We would like to consider in the future extending these profiles for other defi-
nitions of outranking relations as well as additionally considering the credibility
degrees that are normally associated with them.

We envision the use of these profiles mainly in the problem of clustering in
MCDA [5]. As clustering may be seen as an exploratory data analysis technique,
being able describe clustering results over large sets of alternatives, using a
considerably smaller set of central, bounding or separating profiles, would greatly
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enhance the exploration and understanding of the original dataset. Furthermore,
these profiles could also be used in conjunction with the problems of choice and
ranking, provided that large groups alternatives are generated as results to these
problems. Finally, being able to summarize the information given by a set of
alternatives may additionally aid in a process of eliciting the preferences of a
DM over large sets of alternatives. We will explore these topics in the future.
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Abstract. The United States sets fishing regulations to sustain healthy fish pop-
ulations. The overall goal of the research reported on here is to increase the ef-
ficiency of the United States Coast Guard (USCG) when boarding commercial 
fishing vessels to ensure compliance with those regulations. We discuss scoring 
rules that indicate whether a given vessel might be in violation of the regula-
tions, depend on knowledge learned from historical data, and support the deci-
sion to board and inspect. We present a case study from work done in collabora-
tion with USCG District 1 (HQ in Boston). 

Keywords: Regulatory compliance, Coast Guard, Fisheries, Machine learning, 
Statistical models. 

1 Introduction 

This paper describes a targeted risk-based approach to enforcing fisheries laws in the 
United States Coast Guard First District 1 (USCG D1), based in Boston, Massachu-
setts. The work is a joint project of the Laboratory for Port Security (based at Rutgers 
University) and the Command, Control and Interoperability Center for Advanced 
Data Analysis (CCICADA, a US nationwide consortium headed by Rutgers). 

Fisheries rules and regulations have been established through a complex process 
whose key aims include preservation of the fisheries biomass. The primary mission of 
the fisheries law enforcement program is to maintain a balanced playing field among 
industry participants (professional fishing companies) through effective enforcement 
of the regulations. Over the years USCG D1 has developed an approach to fisheries 
law enforcement, which among other things includes scheduling fishing vessel in-
spections using a scoring matrix. In this paper we describe a project aimed at validat-
ing and extending the scoring matrix by further refining the ability to determine the 
risk target profile of active vessels within the population of the First District.  

Our research seeks a model that determines which vessels pose a higher safety risk 
through non-compliance with safety codes and which vessels are most likely to be 
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contravening fishing laws and regulations. The main measure of effectiveness ex-
plored here, “boarding efficiency” (BE), is defined as the fraction of recommended 
boardings that yield either a fishery or a safety violation. We also formulate other 
measures of effectiveness and study approaches to improving them. 

Currently the USCG determines whether to board a fishing vessel using a rule 
called OPTIDE (created by LCDR Ryan Hamel and LT Ryan Kowalske of USCG 
D1), which constructs a score by assigning points to known factors describing a ves-
sel, such as the time since last boarding and the vessel’s history of fisheries violations. 
The OPTIDE system recommends boarding if the sum of points exceeds a threshold. 
The developers of the method used expert opinion to select the factors in the rule, and 
to set their relative weights. The scoring matrix was developed using expert know-
ledge. This paper addresses the question: Can naïve researchers using methods of data 
analysis approach the effectiveness of such expert rules?   

The USCG made available 11 years of data on USCG boarding activities and vi-
olations incurred by commercial fishing vessels. Our project studied introducing other 
features, such as weather, seasonality, fish price, fish migration, key fish species, 
home port, and detailed vessel history. The project team worked with economic data 
such as fish market prices and considered socio-economic factors such as family fish-
ing boats in comparison to large commercial fishing vessels and fishers’ attitudes 
toward law enforcement. We looked at the seasonal variation in boardings and out-
comes. In the analysis, fisheries violations were separated from safety violations.  

Machine learning methods were used to seek other features, or combinations of 
present and added features, that might lead to decision rules increasing the BE. In 
addition, alternative models for the boarding decision were considered. One model 
poses a choice of which boat to board, within a set of K alternatives. Section 2 de-
scribes this approach. Another approach sought regression models that derive alterna-
tive weights for the same features used in OPTIDE. This method is discussed in detail 
in Section 3. Section 4 discusses alternative goals, including balanced deterrence, 
balanced policing, and balanced maintenance of safe operations. Here we discuss 
alternative measures of effectiveness, e.g., violations found per hour rather than per 
boarding. We also discuss alternative decision strategies: random strategies; varying 
the number of boats used based on weather, season, or economics; alternative search-
ing protocols to find the candidate vessels for boarding.  

2 RIPTIDE: A Machine Learning Approach 

In this section we describe a scoring rule, RIPTIDE, which loosely stands for Rule 
Induction OPTIDE. RIPTIDE extends OPTIDE by learning a more fine-grained and 
data-driven prediction and ranking model from past activity data, using a machine 
learning approach. Using the best model found so far, RIPTIDE outperforms OPTIDE 
by up to 75% with regard to a specific scoring rule, described in more detail below. A 
software package implementing RIPTIDE can be used to experiment with the learned 
models, and can be applied to rank operational data.   
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The OPTIDE rule was built based on expert judgment and intuition. It is an ab-
straction of a set of features that a commanding officer will routinely consider when 
deciding whether to board a vessel. However, to our knowledge, there had been little 
or no optimization of the rule based on historical data.  

To extend OPTIDE, we used a data-driven machine learning approach to learn a 
classification model from historic boarding activity data. RIPTIDE uses machine 
learning to automatically find regularities in past boarding activity data and encodes 
them in a model (or classifier) that can then be used to rank new, previously unseen 
candidate boarding opportunities. The classifier takes a single (new) data instance and 
applies the previously learned model to assign the new instance to one of two classes 
(e.g., “violation” or “no violation”). In doing so, the classifier estimates a probability 
that may be interpreted as the “confidence” of the prediction. This estimate is based 
on how well the model performed for similar cases on the training data. These proba-
bilities can then be used to rank instances, as does the OPTIDE risk score.  

Machine learning is built upon two core principles, data representation and genera-
lization. First, every data instance is represented in a computer-understandable form.  
This is generally done by engineering a set of features or attribute/value pairs that 
carry relevant information and that can be either directly observed or computed from 
the data. In the generalization phase, the classifier uses many data instances for which 
the class is known as training data, and seeks regularities in that data that allow it to 
predict the class of a new data instance. There are many different data representation 
schemes and learning algorithms that can be used (see, e.g., [2, 5, 9] for an overview).  

For RIPTIDE, we chose a learning algorithm called a boosted decision tree that is a 
good general-purpose tool for problems with a small to medium number of features.  
One advantage of decision trees is that the learned models are (large) ‘if-then-else’ 
statements that can be inspected by humans, and that are therefore to some extent 
understandable. This is useful for comparison to a rule-based approach such as 
OPTIDE, as the experts want to be able to decide whether they should trust such a 
model. Other learning methods such as support vector machines or neural nets pro-
duce largely if not completely opaque models, which can be judged only by their 
input/output behavior.  

Classification performance can be improved by combining multiple classifiers that 
were trained using different algorithms, features, sections of the data, etc. One such 
strategy is called boosting. In boosting, instead of learning a single decision tree, we 
learn multiple trees on different subsets of the training data. An algorithm such as 
AdaBoost [4] (for Adaptive Boosting) then learns the “best” weights for combining 
the results of those individual decision trees into an overall boosted decision tree. For 
our currently best-performing classifier (Model 58), boosting improves performance 
on a boarding tradeoff task (described below) by about 25%.  

Some 10,000 boarding activities from 2002 to the end of 2011 were used as train-
ing data and a set of about 1000 boardings in 2012 was used as a held-out test set to 
evaluate the models. To use a classifier such as RIPTIDE, one must set a threshold, 
which we can estimate from the training data. If the estimated probability of finding a 
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violation is above the threshold, we recommend boarding a vessel; otherwise, not. Let 
TP be the number of true positives, that is, cases where the score is above threshold, 
and the boarding in fact found a violation; the remaining cases where the classifier 
says “board” are the false positives FP. Standard measures of effectiveness (MOEs) 
for classifiers are recall R (the percentage of vessels having some violation that are 
flagged for boarding), precision P = TP/(TP+FP) measuring the fraction of true deci-
sions, and their harmonic mean, known as the F1 value: F1 = 2*P*R/(P+R). Picking a 
low probability threshold will give high recall but low precision; conversely, a high 
threshold will give high precision but low recall. Every choice represents a tradeoff 
between TP and FP, and what is acceptable depends on external factors such as task 
objectives and resources. Using a generic rule such as maximizing R or F1 value will 
generally not give the best compromise in practical applications. 

The best way to compare classifiers without setting a threshold is to plot ROC (Re-
ceiver Operating Characteristic) curves. An ROC curve shows the true positive rate 
(or recall) plotted against the false-positive rate, that is the ratio of false predictions to 
the number of non-violating vessels, for each possible threshold point. The curve 
shows a tradeoff space showing how many more false positives one must accept to 
get additional true positives. 

We can use the area under the ROC curve to compare different classifiers; a higher 
area under the curve generally means a better classifier. Figure 1 shows a comparison 
of ROC curves for OPTIDE and Model 58 for the held-out test data covering the year 
2012. Both models have more or less identical area under the curve (AUC) of about 
0.65, This shows that they are doing better than random choice (the dotted line with 
an AUC of 0.5), but not very much so, indicating that there is not a very strong signal 
in the data to begin with. Model 58 is doing significantly better at picking up the 
higher yield boardings (the bump at the beginning of the curve), but it loses that ad-
vantage towards lower-risk boardings. It also is much more fine-grained than 
OPTIDE, a feature we will explore in more detail below. 

In the current formulation of OPTIDE, for values of the score, the yield distribu-
tion is very flat, which can be seen in the long straight sections of the OPTIDE 
ROC curve. About 84% of all boardings fall in a very narrow band of yield close to 
the threshold level. This means a large number of ships are apparently indistin-
guishable. Our analysis of the data suggests that there are no standout “red flags” 
that positively indicate that a ship might be in violation of some regulation. Even 
among vessels having the highest risk score, only one third of boardings yield a 
violation. This means we cannot assign a strong meaning to any of the OPTIDE risk 
categories. 

Instead of focusing on absolute risk scores with a global interpretation, we  
explore an alternative MOE: How well can a model select among a small set of 
alternative vessels? For example, a set of ships may be encountered more or less 
simultaneously, calling for an informed decision as to which ships to board, given 
available time and resources. Technically, this calls for ranking the boats in the 
small candidate set. 
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Fig. 1. ROC curves for OPTIDE and Model 58 for the held-out test data in 2012. Model 58 is a 
weighted combination of 20 different tree models, found using AdaBoost. 

To evaluate ranking performance we consider the following MOE. Given a test set 
of boarding activities such as the 2012 held-out set, we randomly pick a set (or buck-
et) of size k and rank the elements in the bucket according to our model. We then pick 
the top-ranked boarding activity in the bucket (choosing randomly in case of ties) and 
test whether it actually had a violation or not. We repeat this experiment many times 
and compute the fraction of trials in which we picked a winner (i.e., a boarding with a 
violation). The probability of picking a winner is strongly dependent on the bucket 
size, since smaller buckets have a smaller chance of containing a vessel with a very 
high score. For example, for the held-out set of 1002 boardings of which 14% yielded 
a violation, the probability that a random set of two boardings contains at least one 
with a violation is about 26%, for 5 it is 53%, for 10 it is 78% and for 20 it is 97% 
(almost certain). Note that this high probability doesn't mean that it is easier to find 
one with a violation; that aspect still requires a good ranking function to find the best 
item in the bucket. Since all of our analysis is based on data collected under historical 
boarding policies, and, more recently, OPTIDE, the practical implications of the find-
ings in this section remain to be explicated in future work, which our USCG partners 
are currently undertaking in exploration of our new ideas. 

Table 1 shows the results of these experiments. It compares our currently best 
model, Model 58, to OPTIDE and two other models. Model 58 includes features not 
used in OPTIDE, such as distance to coast and vessel subtype. An alternative model 
(Model 57) omits a feature (distance to coast) and still a third model (Model 48) adds 
something called observed activity as a feature. The top of Table 1 shows standard 
AUC and Max-F1 metrics, and all models perform fairly similarly. In the lower por-
tion, we show results on ranking experiments with bucket sizes ranging from 2 to 50. 
We find that our best model improves up to 76% over OPTIDE for a bucket size of 
20, where we have an almost 45% chance to pick a winner, and even for a more rea-
listic bucket size of 10, the improvement is still a good 38%. This shows that the  
apparently small advantage of RIPTIDE at higher levels of yield can become a sub-
stantial improvement if it is possible to batch the candidate vessels and choose the 
most likely one to board.  
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Table 1. Evaluation results for OPTIDE and several alternate models 

  Random OPTIDE Model 
57 

Model 
48 

Model 
58 

58 vs. 
OPTIDE 

N-Thresh  15 135 191 206  

Max-F1  0.301 0.300 0.310 0.328 +9.0% 

AUC  0.648 0.626 0.656 0.646 -0.3% 

Bucket Size Choose 1 of k 

5 0.135 0.210 0.217 0.236 0.243 +15.9% 

10 0.135 0.237 0.279 0.311 0.328 +38.5% 

15 0.135 0.244 0.328 0.364 0.393 +60.9% 

20 0.135 0.251 0.363 0.403 0.443 +76.4% 

25 0.134 0.261 0.399 0.440 0.484 +85.1% 

30 0.135 0.276 0.422 0.466 0.516 +86.8% 

35 0.135 0.290 0.447 0.488 0.542 +86.6% 

40 0.134 0.307 0.464 0.505 0.567 +84.7% 

50 0.137 0.336 0.492 0.542 0.601 +78.9% 

 
We have developed a small RIPTIDE software suite that can be used to classify 

and rank potential boardings based on the best models found so far, and to retrain 
models if necessary. RIPTIDE builds upon the Weka toolkit [5] and adds a number of 
methods for data translation and various other tasks. RIPTIDE is purely Java based 
and can be run on Linux, MacOS and Windows platforms  

Using the RIPTIDE approach in practice will require the users to retrain the ma-
chine learning models at regular intervals, perhaps on a yearly basis, to ensure that 
significant changes in behavior are incorporated. This would be an uncomplicated 
task, as long as the basic set of features to consider remains the same or similar. The 
actual implementation of RIPTIDE is experimentally underway at the USCG. 

3 DE-OPTIDE 

In this section, we describe an alternative approach that utilizes regression methods in 
statistics and the historical data to derive alternative weights for the same features 
used in OPTIDE. Based on this approach, a new decision rule was developed, called  
Data-Enhanced OPTIDE (DE-OPTIDE). We compare its performance with the origi-
nal OPTIDE rule.  

An underlying assumption of OPTIDE is that probability of a violation is related to 
an underlying score that is a weighted sum of some predictor variables X1, X2, …., Xn 
(i.e., features used in the OPTIDE rule). The decision is made to board if the score 
exceeds a threshold. This assumption, plus potential random errors, leads us directly 
to a statistical model called a logistic regression model (see [6]). Logistic regression is 
an instance of a generalized linear model [1, 8]. It allows one to analyze and predict a 
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discrete outcome (known as a response variable), such as group membership, from a 
set of variables (known as predictor variables) that may be continuous, discrete, di-
chotomous, or a mix of any of these. Generally, the response variable is dichotomous, 
such as presence/absence or success/failure. In our case the response variable is the 
violation indicator (presence/absence) of a vessel.  

When sample data from such a model are available, we can perform a statistical 
analysis to estimate the unknown coefficients and thus estimate the relationship be-
tween the response and predictor variables. We can then use the logistic regression 
model to predict the category to which new individual cases are likely to belong.  

We assume a violation is related to an underlying latent score S which is a 
weighted sum of some predictor variables plus potential errors, i.e., S = W1X1 + W2X2 
+ … +WnXn + error, where the Ws are weights describing the contributions of the 
feature and the random “error” follows a normal distribution with mean 0 and va-
riance σ². As with the tree-based rules, if the score of a vessel exceeds a certain thre-
shold value, the vessel should be boarded. Mathematically, these assumptions lead to 
the aforementioned logistic regression [3,10]. We used logistic regression and the data 
set available to us to estimate the coefficients W1, W2, …, Wn and we then used these 
weights to create a new decision rule. Since the new decision rule uses the same fea-
tures as in the original OPTIDE rule but their weights are determined by the historical 
data, we call the new rule a Data-Enhanced OPTIDE (DE-OPTIDE) rule.  

We note that in the original OPTIDE matrix, all of the features are categorical. Al-
though some of them are naturally continuous, they are categorized or binned for the 
analysis, which may cause some loss of information. We therefore performed an addi-
tional analysis using the same set of features, but retaining continuous values for 
some of the features. Using the continuous versions does somewhat improve the per-
formance of the DE-OPTIDE rule. In treating the features as continuous, we em-
ployed standard imputation techniques for missing data.  

In our analysis, we randomly split the entire boarding data set available to us into 
two subsets: 50% used for training and 50% used for validating. We fit the logistic 
regression model to the training data and used the estimated probabilities to determine 
a new decision rule. Then we applied the new rule to the remaining 50% of data to 
assess its effectiveness. In the new decision rule, the threshold for boarding was cho-
sen by either setting a required percentage of vessels to be boarded, or setting a target 
boarding efficiency. To control variation caused by the random 50-50 splitting, the 
calculations were repeated 10 times. Therefore, the results we describe do not corres-
pond to a single unique boarding rule. 

Starting with just categorical data, we explored the relationship between the Board-
ing Efficiency BE and the percentage of recorded boardings (that is, the fraction of all 
records in the data set for which boarding is recommended, at a given threshold). 
Results are shown in Figure 2. When applied to the data that was not used to train the 
model, DE-OPTIDE yields a somewhat higher or similar BE compared to OPTIDE 
for almost the entire range of recorded boarding percentages. For DE-OPTIDE, effi-
ciency ranges from 20% to 35%, and setting the threshold to reduce the number of 
boardings yields higher efficiency. This is because the rule ranks vessels by their 
probability of yielding violations. Therefore, when fewer are boarded, the average 
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chance of finding a violation is higher. In choosing the threshold for the decision rule 
one may need to take into account not just efficiency but also the fraction of recorded 
boardings. 

 

Fig. 2. Boarding Efficiency vs. percentage of recorded boardings using both OPTIDE and DE- 
OPTIDE for different thresholds (test data 50%). The results are based on 10 repetitions of the 
random selection of training data. 

We also compared the efficiency of DE-OPTIDE with that of OPTIDE using 
another MOE. The threshold for DE-OPTIDE was chosen based on examining the 
efficiency of the procedure over different percentages of recorded boardings. We 
found that efficiency for DE-OPTIDE with a decreasing percentage of recorded 
boardings starts to increase when the percentage of recorded boardings is less than 
10%. Thus, we chose the threshold corresponding to 10% of recorded boardings for 
DE-OPTIDE.  

We also explored an alternative way of selecting the threshold for OPTIDE, i.e.,  
letting threshold correspond to 10% of the recorded boardings (RBs), as we did with 
DE-OPTIDE. We found that the efficiency of the DE-OPTIDE procedure reaches 
32%, compared to 24% efficiency of OPTIDE when using an adjusted threshold (due 
to our data omitting values for some of the OPTIDE features) and 27% if we use 
OPTIDE with threshold corresponding to 10% of RBs. We recognize that the USCG 
would not cut boardings to one tenth of the current level. However, some combination 
of this rule in a randomized or mixed strategy for boarding might be effective. Note 
that selecting vessels for boarding purely at random yields only 16% efficiency. 

Figure 3 presents the ROC curves for both the OPTIDE and DE-OPTIDE rules. 
This plot helps to illustrate the performance of these two decision rules as the thre-
shold is varied over the entire range of possible values. The ROC curve for OPTIDE 
has an area of 0.576 under the curve, while that for DE-OPTIDE has AUC = 0.605. 
Again, this indicates that the DE-OPTIDE rule is somewhat better than the OPTIDE 
rule. These plots are based on a single random selection of the training data. Plots 
from nine other repetitions are similar. 
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Fig. 3. The ROC curves for both the OPTIDE and DE-OPTIDE rule for various choices of 
thresholds (test data =50%). The plots are each based on a single run. Plots for 9 other runs 
show the points for DE-OPTIDE lying almost always above those for OPTIDE itself. 

Next we used logistic regression treating certain features as continuous. We com-
puted the relationship of the BE to the percentage of recorded boardings under the 
modified DE-OPTIDE rule using some continuous features, a rule we call DE-
OPTIDE-C. DE-OPTIDE-C achieves better efficiency than OPTIDE. For OPTIDE, 
efficiency ranges from 20% to 30%. For DE-OPTIDE-C efficiency rises to almost 
35% at levels below 10% of recorded boardings. As with the discussion of batching in 
Section 2, it is not known whether the set of candidates could be expanded enough for 
such a lower fraction of sightings to yield an acceptable number of boardings. 

We also compared the efficiency of DE-OPTIDE-C to that of OPTIDE using alter-
native ways of setting the threshold. The efficiency of the DE-OPTIDE-C procedure 
reaches 34%, compared to 32% for DE-OPTIDE. 

4 Other Approaches 

In this section we consider other MOEs, e.g., violations per hour of enforcement ac-
tivity rather than violations per boarding. We also mention alternative decision strate-
gies: random strategies; changing the number of patrol boats based on factors such as 
weather, season, or economics; and varying the protocols for finding candidates for 
boarding. 

4.1 Other Ways of Measuring Effectiveness 

The models discussed so far consider all violations to be equally important. From the 
perspective of deterrence, this is plausible. But in terms of economic impact on fishe-
ries and lives saved it may be more appropriate to group violations into classes 
i=1,2,…,.I and seek to maximize the sum Σwixi where xi is the number of violations in 
class i. For this to be meaningful the weights must be defined on an interval or ratio 
scale, and not be simply ordinal [12,13]. 
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The “denominator” in the MOE has been “boardings.” Alternatively, we may want 
to measure effectiveness against time. Time is spent both in boarding and in seeking 
the next candidate. The choice of which to use will lead to different decisions. Sup-
pose (based on the scoring rule) Vessel A has estimated 12% yield (probability a vi-
olation will be found) and the predicted time for the boarding is 4 hours. Vessel B has 
15% yield and predicted boarding time 6 hours. If efficiency is violations per board-
ing (VPB), Vessel A has 0.12 VPB, and Vessel B has 0.15 VPB.  We prefer to board 
Vessel B. If efficiency is violations per hour (VPH), then Vessel A has 0.12/4=0.03 
VPH, and Vessel B has 0.15/6=.025 VPH. So we prefer to board Vessel A. In fact, 
boarding time varies randomly, according to some rule that could be estimated from 
data. One might also include in the denominator time spent seeking the next  
candidate. 

4.2 Other Kinds of Enforcement Strategies 

The OPTIDE-class rules discussed here are deterministic. Randomized strategies 
make it harder for intentional violators. The variation in goals discussed in Section 4.1 
might be incorporated into a randomized mixture: e.g. 30% of time use OPTIDE, 40% 
of time use VPB, and 30% of time use VPH. 

We can model the boarding decision as a choice between boarding and seeking fur-
ther targets. For simplicity we suppose that a patrol boat meets a fishing vessel every 
T minutes, and must immediately decide whether to board it. That the decision to 
board must be made immediately is based on observations from [7] that fishermen can 
and do modify their behavior when they observe Coast Guard boats, seeking to limit 
the violations found if boarded. One boat every T minutes is a simplifying model of 
the random rate at which a patrol will encounter fishing vessels. 

Suppose the yield p varies uniformly from 0 to 1. Suppose boarding takes time tT. 
What value of p should be the threshold for boarding? It can be shown that under 
certain assumptions, the optimal choice is  

2 2(2 2) (2 2) 4

2

t t t
p

t

+ − + −
=   

As boarding time tT increases, the threshold yield p increases. This confirms the intui-
tion that the longer boarding takes, the pickier one must be in boarding.  More realis-
tic models for T,t, and the distribution of p can be developed from log data. 

Finally, we considered patrol strategies, using analogies to ecology where the  
limiting resource is the energy available to predators [11]. In particular, we have 
compared pure pursuers and pure searchers. The former expend little or no energy in 
seeking food; they wait until sufficiently valuable prey (sufficiently risky vessel) is in 
sight and then act (e.g. anolis lizards). Pure searchers (e.g., warblers) spend time and 
energy prowling to seek food; when they sight it they decide whether to try to catch it 
and in that case spend little time on pursuit. We studied when a pure searcher should 
adopt the patient strategy of waiting for the “best” type of food (vessel with highest 
risk score) or the impatient strategy of waiting for a while for the “best” type of food 
and then choosing what is available. 
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4.3 Bringing in Other Goals of Fisheries Law Enforcement 

In addition to efficiency of boardings, fisheries law enforcement seeks other goals: 
balanced deterrence, balanced policing, and balanced maintenance of safe operations. 
To balance deterrence, the USCG might seek to board all vessels at least once a year.  
This would require, at times, boarding a low yield vessel. When should this be done?  
Should the rule depend on recent prior boardings? Suppose Vessel A has an estimated 
yield of 13% and has been boarded twice in the past year while Vessel B has a 15% 
yield and has been boarded six times in the past year. In some cases we might prefer 
to board A rather than B. We might want to board neither, and wait for some boat that 
has not been examined in two years.  

We have developed a simple model representing a tradeoff between balance and 
yield. The score is based on three parameters, y(v) = the yield assigned to Vessel v,  
D(v) = days since Vessel v was last boarded, and α, a model parameter. The modified 
score is S(v) = y(v) + αD(v). The probability y(v) depends on an initial class probability 
for that boat and on its boarding history. The class probability reflects differences that 
affect the probability of violation. Explicitly, we take y for a vessel with b past board-
ings and u “successful” past boardings to be y = f(b,u) + .05Z where Z is uniformly 
distributed between −1 and 1, and f(b,u) is presumed to come from observed data. 

We ran simulations of this model, with five candidates per day, selected uniformly 
at random from the 100 vessels having the highest score at the start of the day. We do 
not simply take the five with highest scores because they might not all be accessible: 
the patrol might stay in a particular area and not all boats are fishing each day. Run-
ning the model 20 times for 1095 simulated days (3 years), and for each α between 
.0001 and .001 (incrementing α by .0001), we found the average output. A scatter plot 
comparing average number of observed violations over the entire 3-year period to 
average number of vessels boarded in the last year of the simulation can offer predic-
tions on what the outcome might be under different scoring rubrics. Future work will 
consider more general scoring metrics.  

5 Conclusions 

Our analysis supports several conclusions. First, the existing OPTIDE approach ex-
tracts a nearly optimal rule based on the data that are used in it. The ROC curves pro-
duced by state of the art techniques for learning rules are somewhat above the curve 
for the existing OPTIDE rule.  If the number of vessels considered could be increased, 
operation at a higher threshold for boarding would likely result in discovering a larger 
absolute number of violations per year, contributing to both fishery management and 
safety goals. Second, automated methods, as described in this paper, can be used to 
extract optimal rules by analysts who have no subject area expertise in this domain. 
Indeed, such methods can find decision rules that perform as well as, or somewhat 
better than, models that require substantial knowledge of the data and domain exper-
tise to develop. This means that as the USCG considers adding additional variables to 
the rules that trigger boardings, the automated methods used here can assess, in ad-
vance, the effectiveness of using that additional data. All that is required is to develop 
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a data set in which the values of those new variables are reported along with the exist-
ing key variables and the results of the boarding. Finally, we have identified ways in 
which the objectives of the scoring rule work can be made more complex and closer 
to the operational realities of the USCG. Preliminary theoretical work has produced 
simple models showing how to include those realities in the computation of the more 
sophisticated yield representing complex goals of fisheries law enforcement. 

We presented the results described here to USCG D1 in a briefing to the highest-
level Coast Guard leadership. The results were very well received and are in the 
process of being implemented in USCG D1. In addition, the USCG Research and 
Development Center is working with D1 to explore modifications in the methods that 
would make them applicable to other Coast Guard districts around the country. 
 
Acknowledgements. This report was made possible by a grant from the U.S. Coast 
Guard District 1 Fisheries Law Enforcement Division to Rutgers University. The 
statements made herein are solely the responsibility of the authors. 

We extend a special thanks to LCDR Ryan Hamel and LT Ryan Kowalske for 
working with us on this project, for their support and patience throughout this process. 
Thanks also to CCICADA researchers Andrew Philpot and William Strawderman. 

References 

1. Agresti, A.: Categorical Data Analysis. Wiley Interscience, New York (2002) 
2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) 
3. Finney, D.J.: Probit Analysis, 3rd edn. Cambridge University Press, Cambridge (1971) 
4. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth In-

ternational Conference on Machine Learning, San Francisco, pp. 148–156 (1996) 
5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA 

data mining software: An update. SIGKDD Explorations 11(1) (2009) 
6. Hilbe, J.M.: Logistic Regression Models. Chapman & Hall/CRC Press, London (2009) 
7. King, D.M., Porter, R.D., Price, E.W.: Reassessing the value of U.S. Coast Guard at-sea fi-

shery enforcement. In: Ocean Development & International Law, vol. 40, pp. 350–372. 
Taylor and Francis, London (2009) 

8. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, 
London (1989) 

9. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997) 
10. Morgan, B.J.T.: Analysis of Quantal Response Data. Chapman and Hall, London (1992) 
11. Roberts, F.S., Marcus-Roberts, H.: Efficiency of energy use in obtaining food II: Animals. 

In: Marcus-Roberts, H., Thompson, M. (eds.) Life Science Models, pp. 286–348. Springer, 
New York (1983) 

12. Roberts, F.S.: Limitations on conclusions using scales of measurement. In: Barnett, A., 
Pollock, S.M., Rothkopf, M.H. (eds.) Operations Research and the Public Sector,  
pp. 621–671. Elsevier, Amsterdam (1994) 

13. Roberts, F.S.: Measurement Theory, with Applications to Decisionmaking, Utility, and the 
Social Sciences. Cambridge University Press, Cambridge (2009) 



Computing Convex Coverage Sets
for Multi-objective Coordination Graphs

Diederik M. Roijers1, Shimon Whiteson1, and Frans A. Oliehoek2

1 Informatics Institute, University of Amsterdam, The Netherlands
{d.m.roijers,s.a.whiteson}@uva.nl

2 Dept. of Knowledge Engineering, Maastricht University, The Netherlands
frans.oliehoek@maastrichtuniversity.nl

Abstract. Many real-world decision problems require making trade-offs between
multiple objectives. However, in some cases, the relative importance of the ob-
jectives is not known when the problem is solved, precluding the use of single-
objective methods. Instead, multi-objective methods, which compute the set of
all potentially useful solutions, are required. This paper proposes new multi-
objective algorithms for cooperative multi-agent settings. Following previous ap-
proaches, we exploit loose couplings, as expressed in graphical models, to coordi-
nate efficiently. Existing methods, however, calculate only the Pareto coverage set
(PCS), which we argue is inappropriate for stochastic strategies and unnecessar-
ily large when the objectives are weighted in a linear fashion. In these cases, the
typically much smaller convex coverage set (CCS) should be computed instead.
A key insight of this paper is that, while computing the CCS is more expensive
in unstructured problems, in many loosely coupled settings it is in fact cheaper
to compute because the local solutions are more compact. We propose convex
multi-objective variable elimination, which exploits this insight. We analyze its
correctness and complexity and demonstrate empirically that it scales much better
in the number of agents and objectives than alternatives that compute the PCS.

Keywords: Multi-agent systems, Multi-objective optimization, Game theory,
Coordination graphs.

1 Introduction

In cooperative multi-agent systems, agents must coordinate their behavior in order to
maximize their common utility. Key to making coordination efficient is exploiting the
loose couplings common to such tasks: each agent’s actions directly affect only a subset
of the other agents. Such independence can be captured in a graphical model called a co-
ordination graph, and exploited using methods such as variable elimination [8,9]. This
paper considers how to address cooperative multi-agent systems in which the agents
have multiple objectives, i.e., the utility is vector-valued. Many real-world problems
have multiple objectives, e.g., maximizing performance of a computer network while
minimizing power consumption [16].

The presence of multiple objectives does not in itself necessitate special solution
methods. In many cases, the vector-valued utility function can be scalarized, i.e., con-
verted to a scalar function. Subsequently, the original problem may be solvable with
existing single-objective methods. However, this approach is not applicable when the
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parameters of the scalarization are not known in advance. For example, consider a
company that produces different resources whose market prices vary. If there is not
enough time to re-solve the decision problem for each price change, then we need multi-
objective methods that compute a set of solutions optimal for all possible scalarizations.

This paper focuses on one-shot decision-making problems, for which several meth-
ods [5,6,12] have been developed. For instance Rollón [14] introduces an algorithm
that we refer to as multi-objective variable elimination (MOVE), which solves multi-
objective coordination graphs by iteratively solving local problems to eliminate agents
from the graph. However, these methods all compute the Pareto coverage set (PCS),
i.e., the Pareto front, of deterministic strategies.

In this paper, we argue that the PCS is often not the most appropriate solution con-
cept. In the common case where the scalarization function is linear, the PCS is typically
much larger than necessary. In addition, when joint strategies can be stochastic, the PCS
is inadequate, even if the scalarization function is nonlinear.

To address these issues, we propose new methods that compute an alternative solu-
tion concept, the convex coverage set (CCS). The CCS is the exact solution set when the
scalarization function is linear, and often much smaller than the PCS. In addition, it is
a sufficient set of deterministic strategies from which to construct all optimal stochastic
strategies. A key insight of this paper is that, while the CCS is more costly to compute
than the PCS for nongraphical problems, it is often less costly to compute for loosely
coupled problems because the local CCSs are much smaller than the local PCSs.

Thus, the main contribution of this paper is that it shows—both theoretically and
empirically—that large speedups can be obtained when solving multi-objective coor-
dination graphs by using the CCS as the solution concept. In particular, we 1) analyti-
cally show that the local CCSs can be much smaller than local PCSs, 2) present convex
MOVE (CMOVE), an extension to MOVE that efficiently computes the CCS, 3) analyze
the correctness and complexity of CMOVE in terms of the size of the coverage sets, and
4) demonstrate empirically that CMOVE scales much better than previous algorithms.1

2 Multi-objective Coordination Graphs

We formalize our problem setting as a multi-objective extension to coordination graphs
[8]. In particular, a multi-objective coordination graph (MO-CoG) is a tuple 〈D,A,U〉:
D = {1, ..., n} is the set of n agents; A = Ai × ...×An is the joint action space (the
Cartesian product of the finite action spaces of all agents) and U =

{
u1, ...,uρ

}
is the

set of ρ, d-dimensional local payoff functions. The total team payoff is the (vector) sum
of local payoffs, with a limited scope e, i.e., the subset of agents that participate in it:
u(a) =

∑ρ
e=1 u

e(ae). We use ui to indicate the value of the i-th objective.
A team strategy π is a probability distribution over joint actions A → [0,1]. In gen-

eral strategies are stochastic. Every joint action gets assigned a probability 0 ≤ π(a) ≤
1, and the probabilities for all joint actions together sum to 1,

∑
a∈A π(a) = 1. The

value of a strategy uπ is the expected (vector-valued) utility of the strategy uπ =∑
a∈A π(a)u(a). A deterministic strategy is a special case of a strategy in which one

1 A preliminary version of this work was presented in [13].
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joint action a has probability 1 and the rest probability 0. We refer to the set of all
vectors for all possible strategies as V .2

Fig. 1. (a) A MO-CoG factor graph, (b) after eliminating agent 3 by adding f3, and (c) after
eliminating agent 2 by adding f4

The decomposition of u(a) into local payoff functions can be represented as a factor
graph containing agents (variables) and local payoff functions (factors), with edges
connecting local payoff functions to the agents in their scope. Figure 1a shows a factor
graph for the payoff function u(a) =

∑ρ
e=1 u

e(ae) = u1(a1, a2) + u2(a2, a3).
We assume there exists a scalarization function f that converts uπ to a scalar pay-

off uπ
w = f(uπ,w). This function is parameterized by a weight vector w, which is

unknown when the MO-CoG is solved but known when the agents must select a strat-
egy. The solution to a MO-CoG is the coverage set (CS) [2], i.e., all strategies π and
associated values uπ that are optimal for some w:

CS(V) =
{
uπ : uπ∈V ∧ ∃w∀π′ uπ

w ≥ uπ′
w

}
.

For convenience, we assume that the coverage set contains both the values and asso-
ciated strategies. What the CS looks like depends on what strategies are allowed, and
what we know about the scalarization function.

A minimal assumption about the scalarization function is that it is monotonically
increasing in all objectives (i.e., if the value for one objective increases while the val-
ues for the other objectives stay constant, the scalarized value cannot go down). This
assumption ensures that objectives are actually objectives, i.e., having more of them is
better. In this case, the CS is called the Pareto coverage set (PCS) or Pareto front:

PCS(V) =
{
uπ : uπ∈V ∧ ¬∃π′ uπ′ �P uπ

}
,

where�P indicates Pareto dominance (P-dominance): greater or equal in all objectives
and strictly greater in at least one objective. Note that computing P-dominance3 requires
only comparing pairs of vectors [7].

A highly prevalent scenario is that, in addition to knowing that the scalarization
function is monotonically increasing, we also know that it is linear, f = w ·uπ. This is

2 MO-CoGs are similar to the multi-objective weighted constraint satisfaction problems (MO-
WCSPs) considered in [15]. However, MO-WCSPs consider only deterministic strategies and
bounded, integer-valued payoffs. In addition, they consider constraints, the absence of which
in Mo-CoGs has important implications for our complexity analysis (see Section 6).

3 P-dominance is often called pairwise dominance in the POMDP literature.



312 D.M. Roijers, S. Whiteson, and F.A. Oliehoek

the case in, e.g., clinical trials [11] or resource gathering [1]. In this case, all we need is
the convex coverage set (CCS):4

CCS(V) =
{
uπ : uπ∈V ∧ ∃w∀π′ w · uπ ≥ w · uπ′}

.

Vectors not in the CCS are C-dominated. In contrast to P-domination, C-domination
cannot be tested for with pairwise comparisons because it can (in the setting of deter-
ministic strategies) take two or more vectors to C-dominate a vector: a vector can be
dominated over the entire weight-space, but not necessarily always by the same vector,
as indicated in Figure 2 (right). The CCS contains all strategies that could be optimal
for some weight in a linear scalarization, i.e., all strategies that are not C-dominated.
Anything in the PCS but not in the CCS is C-dominated and cannot be useful given
the assumption of a linear scalarization function. Because we assume the linear scalar-
ization is monotonically increasing, we can represent it without loss of generality as a
convex combination of the objectives: i.e., the weights are positive and sum to 1. Since
such linear functions are a subset of monotonically increasing functions, the CCS is a
subset of the PCS.

Many multi-objective methods, e.g., [5,6,12,14] simply assume that the PCS is the
appropriate solution set. However, which CS one should use depends what one can as-
sume about how utility is defined with respect to the multiple objectives, i.e., which
scalarization function is used to scalarize the vector-valued payoffs. We argue that in
many situations, one can assume that the scalarization function will be linear. For exam-
ple, when the different objectives are products and/or resources that need to be bought
and sold on a market, every objective will be associated with a current unit price on the
market, leading to linear trade-offs. In such cases one should use the CCS.

In addition, the choice of solution concept also depends on whether only determinis-
tic strategies are considered or whether stochastic ones are also permitted. We consider
this issue in the next section.

3 Deterministic versus Stochastic Strategies

When we allow only deterministic strategies, i.e., one joint action is chosen with prob-
ability 1, the PCS and CCS can be quite different. In Figure 2 (left) the values of de-
terministic strategies are represented as points in value-space, for a two-objective MO-
CoG. The strategy A is in both the CCS and the PCS. B, however, is in the PCS, but not
the CCS, because there is no weight for which a linear scalarization of B’s value would
be optimal, as shown in Figure 2 (right), where the scalarized value of the strategies are
plotted as a function of the weight on the first objective (w2 = 1− w1). C is in neither
the CCS nor the PCS: it is Pareto-dominated by A. We refer to the deterministic PCS
as the PCS of deterministic strategies, i.e., the PCS when only deterministic strategies
are allowed. We refer similarly to the deterministic CCS.

As discussed in Section 2, stochastic strategies are linear combinations of determin-
istic strategies. The value of a stochastic strategy is thus also a linear combination of the

4 The convex coverage set is often called the convex hull. We avoid this term because it is
imprecise: the convex hull (a term from graphics) is a superset of the convex coverage set.
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Fig. 2. The CCS (filled circles at left, and solid black lines at right) versus the PCS (filled cir-
cles and squares at left, and both dashed and solid black lines at right) for twelve random 2-
dimensional payoff vectors

value vectors of the deterministic strategies it is a mixture of: uπ =
∑

a∈A π(a)u(a).
Therefore, the optimal values (for both linear and nonlinear monotonically increasing
scalarization functions [17]) lay on the convex upper surface spanned by the strate-
gies in the deterministic CCS, as indicated by the black lines in Figure 2 (left). In the
stochastic case, the PCS and CCS are thus identical. Furthermore, the values for the
stochastic PCS/CCS can be constructed from the values in the deterministic CCS. The
stochastic PCS/CCS is thus very different from the deterministic PCS and the determin-
istic CCS. While the deterministic PCS and deterministic CCS contain finite numbers
of strategies, the stochastic PCS/CCS contains inifinitely many strategies.

However, when we know that the scalarization function is linear, we do not actually
need the entire stochastic CCS: for each weight, there exists a deterministic strategy that
is optimal. For every optimal strategy in the stochastic CCS there exists a deterministic
strategy that is just as good, because a linear combination of the values of two or more
deterministic strategies never yields a larger scalarized utility for any w, than one of
the constituent deterministic strategies: w · uπ =

∑
a π(a)(w · u(a)). By contrast,

when the scalarization function is monotonically increasing (but not necessarily linear),
the full stochastic PCS is required. This is a problem, because it contains infinitely
many strategies. However, all values on the stochastic PCS can be attained by making
a stochastic mixture from the strategies on the deterministic CCS [17]. Note that these
mixtures (all points on the black lines in Figure 2 (left)) dominate all points, like B,
that are in the deterministic PCS but not the deterministic CCS. Therefore the CCS can
be used to create all possible values on the PCS of stochastic strategies, and is more
compact than the deterministic PCS.

It might of course be the case that the problem setting is restricted to deterministic
solutions. For example in the medical domain [11], it can be unethical to treat patients
based on a stochastic strategy. However, in most settings, stochasticity is permissable
and the aim is to optimize the expected return.

Therefore, in this paper we present methods for computing the strategies in the de-
terministic CCS because it is an appropriate solution concept, not only when the scalar-
ization function is linear, but also any time stochastic strategies are considered, even if
the scalarization function is nonlinear, as shown in Table 1. For brevity, in the rest of the
paper, we refer to the deterministic CCS as simply the CCS, to deterministic strategies
as joint actions, and to the set of values of all deterministic strategies as V .
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Table 1. Motivating scenarios

Linear scalarization functions Monotonically increasing
scalarization functions

Deterministic
strategies

Deterministic CCS Deterministic PCS

Stochastic
strategies

Deterministic CCS Deterministic CCS

4 Nongraphical Convex Approach

One way to compute the CCS, is to ignore the graphical structure, calculate the set of all
possible payoffs for all joint actions V , and prune away the C-dominated joint actions.
To determine the set V , we first translate the problem to a set of value set factors (VSFs),
F . Each VSF f is a function mapping local joint actions to sets of payoff vectors.
Initially, the VSFs are constructed from the local payoff functions such that fe(ae) =
{ue(ae)}, i.e., each VSF maps a local joint action to the singleton set containing only
that action’s local payoff. We can now define V in terms of F using the cross-sum
operator over all VSFs in F for each joint action a: V(F) =

⋃
a

⊕
fe∈F fe(ae).5 The

CCS can now be calculated by applying a pruning operator CPrune (described below)
that removes all C-dominated vectors from a set of value vectors, to V :

CCS(V(F)) = CPrune(V(F)) = CPrune(
⋃
a

⊕
fe∈F

fe(ae))

The CCS contains the all the vectors that are maximizing for some w:

∀a
(
∃w s.t. a = argmax

a∈A
w · u(a)

)
=⇒ u(a) ∈ CCS(V(F)) (1)

This is exactly the same problem as in partially observable Markov decision processes
(POMDPs) [7], where the optimal α-vectors (corresponding to the value vectors uπ)
for all beliefs (corresponding to the weight vectors w) must be found. Therefore, we
can use pruning operators from the POMDP literature. Algorithm 1 describes our im-
plementation of CPrune, which is based on [7] with the modification that, in order to
improve runtime guarantees, we first pre-prune to the PCS using the PPrune operator
shown in Algorithm 2, which computes the (deterministic) PCS in O(d|Vdet||PCS|)
by running pairwise comparisons.

Next, we maintain a partial CCS (U∗), which is constructed as follows: we select a
random vector u from the set of candidate vectors U ′ and test whether there is a weight
vector w for which it is better than the vectors in U∗ by solving the linear program
shown in Algorithm 3. If so, we find the best vector v for w in U ′ and move v to
U∗. If there is no weight for which u is better, we remove u from U ′ (because it is
C-dominated).

The runtime of the CPrune operator we use is O(d|Vdet||PCS| + |PCS|P (d
|CCS|)), where P (d|CCS|) is a polynomial in the size of the CCS and the number

5 The cross-sum of two sets A and B contains all possible vectors that can be made by summing
one payoff vector from each set: A⊕B = {a+ b : a ∈ A ∧ b ∈ B}.
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of objectives d, which is the runtime of the linear program that tests for C-domination
(Algorithm 3).

Algorithm 1. CPrune(U)
U ′ = PPrune(U)
U∗ = ∅
while notEmpty(U ′) do

select random u from U ′

w ← findWeight(u,U∗)
if w=null then

remove u from U ′

else
move best v for weight w from U ′ to
U∗

return U∗

Algorithm 2. PPrune(U)
U∗ ← ∅
while U �= ∅ do

u ← the first element of U
foreach v ∈ U do

if v P u then
u ← v // Continue with v in-
stead of u

Remove u, and all vectors Pareto-
dominated by it, from U
Add u to U∗

return U∗

5 Exploiting Loose Couplings

In the previous section, we showed that, for the nongraphical approach, computing the
CCS is more expensive than computing the PCS. In this section, we show that, by
exploiting the MO-CoG’s graphical structure, we can often compute the CCS much
more efficiently. In particular, we solve the MO-CoG as a series of local subproblems,
by iteratively eliminating agents, and thereby manipulatingF . The key idea is, for each
agent elimination, to compute a local CCS (LCCS), pruning away as many vectors
as possible at the lowest possible level. This minimizes the number of payoff vectors
that are calculated at the global level, which can greatly speed computation. Here we
describe the elim operator for eliminating agents used by CMOVE in Section 6.

To eliminate agent i, we define Fi, the set of relevant VSFs with i in scope. Then,
for each possible local joint action of ni, agent i’s neighbors, we define an LCCS
that contains the payoffs of the C-undominated responses of agent i to the given lo-
cal joint action of ni. In other words, it is the CCS of the subproblem that arises
when considering only Fi and fixing a specific local joint action of ni. To compute
the LCCS, we must consider all payoff vectors and prune the dominated ones. If we
fix all actions in ani except ai, the set of all payoff vectors for this subproblem is:
Vi(Fi, ani) =

⋃
ai

⊕
fe∈Fi

fe(ae), where ae is formed from ai and the appropriate
part of ani . The corresponding LCCS is thus the undominated subset of Vi(Fi, ani):

LCCSi(Fi, ani) = CCS(Vi(Fi, ani)).

Using these LCCSs we can define a new VSF, fnew conditioned on the actions of
the agents in ni: ∀ani fnew(ani )
LCCSi(Fi, ani). The elim operator replaces the
VSFs in Fi in F by this new factor:

elim(F ,i) = (F \ Fi) ∪ {fnew(ani)}.
Theorem 1. elim preserves the CCS: ∀i ∀F CCS(V(F)) = CCS(V(elim(F ,i))).

Proof sketch. The linear scalarization function distributes over the local payoff func-
tions: w · u(a) = w ·

∑
e u

e(ae) =
∑

e w · ue(ae). Thus, when eliminating agent



316 D.M. Roijers, S. Whiteson, and F.A. Oliehoek

Algorithm 3. findWeight(u,U)

max
x,w

x

subject to w · (u− u′)− x ≥ 0, ∀u′ ∈ U
d∑

i=1

wi = 1

if x > 0 return w else return null

Algorithm 4. elim(F ,i, prune1, prune2)

U∗, ni ← ∅, set of neighboring agents of i
Fi ← the subset of f functions involving i
fnew(ani) ← a new factor
foreach ani ∈ Ani do

fnew(ani) ← LCCSi(Fi, ani , prune1,
prune2).

F ← F \ Fi ∪ {fnew}
return V∗

i, we divide the set of VSFs into non-neighbors (nn), in which agent i does not par-
ticipate, and neighbors (ni) such that: w · u(a) =

∑
e∈nn w · ue(ae) +

∑
e∈ni w ·

ue(ae). Now, following (1), the CCS contains maxa∈A w · u(a) for all w. elim
pushes this maximization in: maxa∈Aw · u(a) = maxa−i∈A−i

∑
e∈nn w · ue(ae) +

maxai∈Ai

∑
e∈niw · ue(ae). elim replaces the agent-i factors by a term fnew(ani)

that satisfies w · fnew(ani) = maxai

∑
e∈ni

w · ue(ae) per definition, thus preserving
the maximum for all w and thereby preserving the CCS.

Since LCCS⊆ LPCS⊆ Vi, where LPCS is the local PCS, elim not only reduces the
problem size, it can do so more than is possible when considering only P-dominance.
Consequently, focusing on the CCS can lead to considerable speedups.

6 Convex MOVE

We now present Convex Multi-Objective Variable Elimination (CMOVE), which im-
plements elim using pruning operators, iteratively applies it to compute the CCS, and
outputs the correct joint actions for each payoff vector in the CCS. It is an extension to
Rollón’s Pareto-based MOVE (which we denote PMOVE) [14].

Like PMOVE, CMOVE eliminates agents in sequence, solving local subproblems
along the way. The most important difference is that CMOVE computes the CCS, which
can lead to smaller subproblems and thus much better computational efficiency. In ad-
dition, we identify three places where pruning can take place, yielding a more flexible
algorithm with different trade-offs. Finally, we use a tagging scheme instead of the
backwards pass employed by Rollón, which greatly simplifies the algorithm without
effecting its runtime.

CMOVE is also related to multi-objective methods for GAI networks [6] and influ-
ence diagrams [12]. However, like PMOVE, these methods compute only the PCS.

6.1 Algorithm

We first present an abstract version of CMOVE, which leaves the pruning operators un-
specified. The choice of these operators leads to specific variants with different trade-
offs between pruning effort and local problem sizes. As before, CMOVE first translates
the problem into a set of vector-set factors (VSFs), F . Next, it iteratively eliminates
agents using elim. The elimination order can be determined using techniques devised
for regular VE [10]. Algorithm 4 shows our implementation of elim, parameterized
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with two pruning operators, prune1 and prune2, corresponding to two different prun-
ing locations inside LCCSi(Fi, ani , prune1, prune2), which is implemented as fol-
lows. First we define a new cross-sum-and-prune operator A⊕̂B = prune1(A ⊕ B),
which we can apply sequentially in the definition of the LCCS operator:

LCCSi(Fi, ani , prune1, prune2) = prune2(
⋃
ai

⊕̂
fe∈Fi

fe(ae)).

Applying prune1 to each cross-sum of two sets, via the ⊕̂ operator, leads to incremental
pruning [4]; prune2 prunes at a coarser level, after the union.

CMOVE applies elim iteratively until no agents remain, resulting in the CCS. An
example of how this works is presented in Section 6.3.

Pruning can also be applied at the very end, after all agents have been eliminated,
which we call prune3. In increasing level of coarseness, we thus have three pruning
operators: incremental pruning (prune1), pruning after the union over actions of the
eliminated agent (prune2), and pruning after all agents have been eliminated (prune3).

There are several ways to implement the pruning operators that lead to correct in-
stantiations of CMOVE. One can use both PPrune (Algorithm 2) as well as CPrune

(Algorithm 1) as long as either prune2 or prune3 is CPrune. (Note that if prune2
computes the CCS, prune3 is not necessary.) In this paper, we consider Basic CMOVE,
which does not use prune1 and prune3 and only prunes at prune2 using CPrune, as
well as Incremental CMOVE, which uses CPrune at both prune1 and prune2.

6.2 Tagging Scheme

Once CMOVE computes the CCS, we need to retrieve the joint actions that generate
these values. In single-objective VE, this is typically done with a backwards pass that
constructs a joint action by iterating through the eliminated agents in reverse order.
However, doing so in the multi-objective setting is more complex, because the partial
joint actions in the LCCSs need to be matched with the different values in the CCS
instead of just backtracking a single optimal solution that automatically belongs to the
optimal value. Consequently, the backwards pass used in Rollón’s implementation of
PMOVE [14] is fairly complex. However, we can obviate the need for a backwards pass
by using a tagging scheme: when eliminating an agent i, CMOVE tags all the vectors
in the LCCSs with the appropriate action of this agent. The payoff vectors are stored as
a tuple containing both the payoff vector and a partial joint action. CMOVE combines
the tags of agent i with the tags already present in Fi. For example, in Figure 1, factor
f3 contains payoff vectors tagged with an action of agent 3 and factor f4 contains
tags with actions of both agents 2 and 3. Doing this for every agent in the elimination
sequence builds the complete joint action for each payoff vector in the CCS. Replacing
the backwards pass with this tagging scheme reduces by about half the number of lines
of pseudocode needed to describe the algorithm.

6.3 Example

Consider the example in Figure 1a, using the payoffs defined by Table 2. First, CMOVE
creates the VSFs f1 and f2 from u1 and u2 (not shown). To eliminate agent 3, it creates
a new factor f3(a2) by computing the LCCSs for every a2 and tagging each element
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of each set with the action of agent 3 that generates it. For ȧ2, CMOVE first generates
the set {(3,1)ȧ3 , (1,3)ā3}. Since both of these vectors are optimal for some w, neither
is removed by pruning and thus f3(ȧ2) = {(3,1)ȧ3 , (1,3)ā3}. For ā2, CMOVE first
generates {(0,0)ȧ3 , (1,1)ā3}. CPrune determines that (0,0)ȧ3 is dominated and conse-
quently removes it, yielding f3(ȧ2) = {(1,1)ā3}. CMOVE then adds f3 to the graph
and removes f2 and agent 3, yielding the factor graph shown in Figure 1b.

Table 2. The two-dimensional pay-
off matrices for u1(a1, a2) (left) and
u2(a2, a3) (right)

ȧ2 ā2
ȧ1 (4,1) (0,0)
ā1 (1,2) (3,6)

ȧ3 ā3
ȧ2 (3,1) (1,3)
ā2 (0,0) (1,1)

CMOVE then eliminates agent 2 by combin-
ing f1 and f3 to create f4. For f4(ȧ1), CMOVE
must calculate the LCCS of:

(f1(ȧ1,ȧ2)⊕ f3(ȧ2)) ∪ (f1(ȧ1,ā2)⊕ f3(ā2)).

The first cross sum is {(7,2)ȧ2ȧ3 , (5,4)ȧ2ā3}
and the second is {(1,1)ā2ā3}. Pruning their
union yields f4(ȧ1) = {(7,2)ȧ2ȧ3 , (5,4)ȧ2ā3}.
Similarly, for ā1 taking the union yields
{(4,3)ȧ2ȧ3 , (2,5)ȧ2ā3 , (4,7)ā2ā3}, of which the LCCS is f4(ā1) = {(4,7)ā2ā3}.
Adding f4 results in the factor graph in Figure 1c.

Finally, CMOVE eliminates agent 1. Since there are no neighboring agents left, Ai

contains only the empty action. CMOVE takes the union of f4(ȧ1) and f4(ā1). Since
(7,2){ȧ1ȧ2ȧ3} and (4,7){ā1ā2ā3} dominate (5,4){ȧ1ȧ2ā3}, the latter is pruned, leaving
CCS = {(7,2){ȧ1ȧ2ȧ3}, (4,7){ā1ā2ā3}}.

6.4 Analysis

We now analyse the correctness and complexity of CMOVE.

Theorem 2. MOVE correctly computes the CCS.

Proof. The proof works by induction on the number of agents. The base case is the
original MO-CoG, where each fe(ae) from F is a singleton set. Then, since elim

preserves the CCS (see Theorem 1), no necessary vectors are lost. When the last agent
is eliminated, only one factor remains; since it is not conditioned on any agent actions
and is the result of an LCCS computation, it must contain one set: the CCS.

Theorem 3. The computational complexity of CMOVE is

O( n |Amax|wa (wf R1 + R2) +R3 ), (2)

where wa is the induced agent width, i.e., the maximum number of neighboring agents
(connected via factors) of an agent when eliminated, wf is the induced factor width,
i.e., the maximum number of neighboring factors of an agent when eliminated, and R1,
R2 and R3 are the cost of applying the prune1, prune2 and prune3 operators.

Proof. CMOVE eliminates n agents and for each one computes a value (set) in a new
payoff function for each joint action of the eliminated agent’s neighbors. CMOVE com-
putes O(|Amax|w) fields per iteration, calling prune1 for each adjacent factor, and
prune2 once after taking the union over actions of the eliminated agent. prune3 is
called only once, after eliminating all agents.
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Thus, unlike nongraphical approaches, CMOVE is exponential only in the induced
width, not the number of agents. In this respect, our results are similar to those for
PMOVE [14]. However, those earlier complexity results do not make the effect of prun-
ing explicit. Instead, the complexity bound makes use of problem constraints, which
limit the total number of possible different value vectors. However, in practice such
bounds are very loose or even impossible to define. Therefore, we instead give a de-
scription of the computational complexity that makes explicit the dependence on the
effectiveness of pruning. Even though such complexity bounds are not better in the
worst case (i.e., when no pruning is possible), they allow greater insight into the run-
times of the algorithms we evaluate, as is apparent in our analysis of the experimental
results in Section 7.

Theorem 3 demonstrates that the complexity of CMOVE heavily depends on the
runtime of its pruning operators, which in turn depends on the sizes of the input sets.
The input set of prune2 is the union of what is returned by a series of applications of
prune1, while prune3 uses the output of the last application of prune2. Therefore, we
need to balance the effort of the lower-level pruning operators with that of the higher-
level ones, which occur less often but are dependent on the output of the lower-level
pruning operators. The bigger the LCCSs, the more can be gained from lower-level
pruning. We compare different variants of CMOVE in the experimental section.

7 Experiments

In this section, we present an empirical analysis of CMOVE. The first goal of these
experiments is to show that CMOVE, by exploiting the graphical structure to compute
the CCS, can solve MO-CoGs substantially faster than both nongraphical methods and
those that compute the PCS. To this end, we compare Basic CMOVE and Incremental
CMOVE to the nongraphical method described in Section 4 and PMOVE.

We first present results on randomly generated MO-CoGs, in order to examine per-
formance on MO-CoGs with widely varying properties. We then present results on
Mining Day, a problem we propose as a MO-CoG benchmark, in order to establish
that CMOVE performs well on a MO-CoG derived from a realistic scenario. The exper-
iments use a C++ implementation that employs the lp solve library (v5.5) to solve
linear programs.

7.1 Random MO-CoGs

We employ a generation procedure for random MO-CoGs that is based on the following
inputs: n, the number of agents; d, the number of payoff dimensions; ρ the number
of local payoff functions; and |Ai|, the action space size of the agents, which is the
same for all agents. First, a fully connected graph with local payoff functions connected
to two agents is created. Then, local payoff functions are randomly removed, while
checking that the graph remains connected, until only ρ remain. The values in each
local payoff function are real numbers drawn independently and uniformly from the
interval [0,10]. All algorithms are tested on the same set of randomly generated MO-
CoGs for each value of n, d, ρ, and |Ai| that is considered.

To compare CMOVE, PMOVE, and the nongraphical method, we tested them on
random MO-CoGs with an increasing number of agents, with the average number of
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Fig. 3. Runtimes (ms) for the nongraphical method, PMOVE and CMOVE with standard errors
(error bars) (top) and the corresponding number of vectors in the PCS and CCS (bottom)

factors per agent held at ρ = 1.5n and the number of dimensions d = 5. Figure 3 (top
left) shows the results, averaged over 85 MO-CoGs for each number of agents. These
results demonstrate that, as the number of agents grows, using MOVE becomes key
to containing the computational cost of solving the MO-CoG. CMOVE outperforms
the nongraphical method from 12 agents onwards. At 25 agents, Basic CMOVE is 38
times faster. CMOVE also does significantly better than PMOVE. Though it is one
order of magnitude slower with 10 agents (238ms (Basic) and 416ms (Incremental)
versus 33ms on average), its runtime grows much more slowly than that of PMOVE.
At 20 agents, both CMOVE variants are faster than PMOVE and at 28 agents, Basic
CMOVE is almost one order of magnitude faster (228s versus 1,650s on average), and
the difference increases with every agent.

While CMOVE’s runtime grows much more slowly than that of the nongraphical
method, it is still exponential in the number of agents, a counterintuitive result since the
worst-case complexity is linear in the number of agents. There are two reasons for this.
First, CMOVE is exponential in the induced width, which increases with the number
of agents, from 3.1 at n = 10 to 6.0 at n = 30 on average, as a result of the MO-
CoG generation procedure. Second, CMOVE’s runtime is polynomial in the size of the
CCS, and this size grows exponentially (Figure 3 (bottom left)). The fact that CMOVE
is much faster than PMOVE can be explained by the sizes of the PCS and CCS, as the
former grows much faster than the latter. At 10 agents, the average PCS size is 230 and
the average CCS size is 65. At 30 agents, the average PCS size has risen to 51,745while
the average CCS size is only 1,575.

Figure 3 (top middle) compares the scalability of the algorithms in the number of ob-
jectives, on random MO-CoGs with n = 20 and ρ = 30, averaged over 100 MO-CoGs.
CMOVE always outperforms the nongraphical method. Interestingly, the nongraphical
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method is several orders of magnitude slower at d = 2, grows slowly until d = 5, and
then starts to grow with about the same exponent as Pareto MOVE. The reason is that
enumeration of all the joint actions and payoff vectors takes approximately constant
time while the time it takes to prune increases exponentially. When d = 2, CMOVE
is an order of magnitude slower than PMOVE (163ms (Basic) and 377 (Incremental)
versus 30ms). However, when d = 5, both CMOVE variants are already faster than
PMOVE and at 7 dimensions they are respectively 3.7 and 2.7 times faster. This hap-
pens because the CCS grows much more slowly than the PCS (Figure 3 (bottom mid-
dle)). The difference between Incremental and Basic CMOVE decreases as the number
of dimensions increases, from a factor 2.3 at d = 2 to 1.3 at d = 7.

Overall, these results indicate that CMOVE shows large speedups over PMOVE for
more than a minimal number of agents. The runtime of Incremental CMOVE grows
more slowly than that of Basic CMOVE and seems favorable for large numbers of
agents and high dimensions.

7.2 Mining Day

In Mining Day, a mining company mines gold and silver (objectives) from a set of
mines (local payoff functions) spread throughout a geographical region (Figure 4). The
mine workers live in villages also spread throughout this region. The company has one
van in each village (agents) for transporting workers and must determine every morning
to which mine each van should go (actions). However, vans can only travel to nearby
mines (graph connectivity). Workers are more efficient if there are more workers at the
mine: there is a 3% efficiency bonus per worker such that the amount of each resource
mined per worker is x · 1.03w, where x is the base rate per worker and w is the number
of workers at the mine. The base rate of gold and silver are properties of a mine. Since
the company aims to maximize revenue, the best strategy depends on the prices of gold
and silver, which fluctuate and are not known when the plan must be computed.

Fig. 4. The Mining Day problem

To generate a Mining Day instance with v villages (agents), we randomly assign 2-
5 workers to each village and connect it to 2-4 mines. Each village is only connected
to mines with a greater or equal index, i.e., if village i is connected to m mines, it is
connected to mines i to i+m− 1. The last village is connected to 4 mines and thus the
number of mines is v+3. The base rates per worker for each resource at each mine are
drawn uniformly and independently from [0,10].

The results for the mining day problem are shown in Figure 3 (top right). The runtime
of the nongraphical method grows exponentially with the number of agents. At only 13
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agents, the runtime is already more than 30s. By contrast, both CMOVE and PMOVE
are able to tackle problems with over 100 agents within that timeframe. In addition,
the runtime of PMOVE grows much more quickly than that of CMOVE. In this two-
dimensional setting, Basic CMOVE is better than Incremental CMOVE. Basic CMOVE
and PMOVE both have runtimes of around 2.8s at 60 agents, but at 100 agents, Basic
CMOVE runs in about 5.9s and PMOVE in 21s. Even though Incremental CMOVE is
worse than Basic CMOVE, its runtime still grows a lot slower than PMOVE, and beats
PMOVE when there are many agents.

The difference between PMOVE and CMOVE results from the relationship between
the number of agents and the sizes of the CCS, which grows linearly, and the PCS,
which grows polynomially (Figure 3 (bottom right)). The induced width remains around
4 regardless of v. These results demonstrate that, when the CS grows linearly (or poly-
nomially) in the number of agents, MOVE can solve MO-CoGs with many more agents
than the nongraphical approach. In problems where the CCS grows more slowly than
the PCS, CMOVE can solve MO-CoGs with many more agents than PMOVE.

8 Conclusions and Future Work

In this paper, we proposed the CMOVE algorithm for multi-objective coordination
graphs. Unlike previous methods, it computes the convex coverage set (CCS) rather
than the Pareto coverage set (PCS). Not only does this provide the optimal solution
when the scalarization function is linear or stochastic strategies are allowed, it also
greatly reduces computational costs.

Using two variants of CMOVE – based on the trade-off between pruning effort and
and smaller intermediate results – we analyzed CMOVE’s complexity in terms of the
different pruning operators that can be used to compute the local CCSs. Our empiri-
cal study showed that CMOVE can tackle multi-objective problems much faster than
methods that compute the PCS. The runtime of CMOVE grows much more slowly than
that of PMOVE because the CCS grows much more slowly than the PCS. Therefore,
we conclude that computing the CCS is key to keeping large MO-CoGs tractable.

In future work, we hope to develop approximate techniques for MO-CoGs. The work
of [5], which converts graphs to trees and applies max-plus [9] to approximate the PCS,
could be extended to approximate the CCS. Alternatively, an efficient multi-objective
version of max-plus for graphs with loops could also approximate the CCS. In addition,
loosening the definition of the CCS, in the spirit of the ε-approximate Pareto front [3],
could also yield efficient approximations. Finally, we hope to develop a multi-objective
version of sparse cooperative Q-learning [9] that would use CMOVE as a subroutine
to tackle sequential multi-objective multi-agent tasks.
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Abstract. We present a practical, model checking based, approach to verifying
whether a set of ceteris paribus preference statements is equivalent to or is sub-
sumed by another. We translate a given pair of sets of preference statements into
a labeled transition system (LTS) and reduce the problem of determining whether
one set of preference statements is equivalent to or is subsumed by the other to
verifying the appropriate computation-tree temporal logic (CTL) formulas in the
resulting LTS. Whenever the two sets of preference statements are not equivalent,
our method outputs a dominance relationship that is induced by one and not by
the other. Our approach is applicable to all preference languages based on ceteris
paribus semantics including CP-nets, TCP-nets, CI-nets and CP-Theories.

1 Introduction

Many practical applications of preference reasoning call for effective approaches to de-
termining whether one set preference statements is equivalent to another, i.e., induces
the same set of preferences over a set of alternatives as another, or whether one set
of preferences subsumes another i.e., induces a set of preferences that includes those
induced by the other. For example, preference equivalence and preference subsump-
tion testing are of central importance in determining the substitutability of preference
profiles

The ceteris paribus semantics [10] interpret the preference statements in terms of
an induced preference graph, where the nodes correspond to alternatives and edges or
flips correspond to dominance of one alternative over another with respect to the given
preferences. It is known [11] that dominance testing between alternatives with respect
to a set of preference statements can be reduced to reachability in the corresponding
induced preference graph. On the other hand, verifying the equivalence of two sets
of preferences amounts to checking the equality of the transitive closure of the cor-
responding induced preference graphs, or verifying the one-to-one correspondence of
dominance between all pairs of alternatives in the respective induced preference graphs.
Because dominance testing is PSPACE-complete [12], the complexity of equivalence
testing is arguably PSPACE-complete (because equivalence testing can be reduced to
testing dominance between all-pairs of alternatives). However, the recent success of
model checking [13–15] approach to dominance testing [11] and the closely related
problem of preference-based ordering a set of alternatives [16] (which is NP-hard [8])
offers the hope that a similar approach could be effective for preference equivalence
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testing and preference subsumption testing. Model checking based approach to prefer-
ence reasoning benefits from (i) a succinct encoding of the dominance relations induced
by a set of preference statements without having to explicitly enumerate them; (ii) the
specialized data structures (e.g., BDDs) and algorithms used by modern model check-
ing software [15] for efficient exploration of large state spaces.

Against this background, we present the first approach to preference equivalence
and preference subsumption testing for preference languages based on ceteris paribus
semantics which include CP-nets [17], TCP-nets [5], CP-Theories [6] and CI-nets [7].
We model the preferences induced by two sets of ceteris paribus preference statements
within a single labeled transition system [18], and generate a single computation-tree
temporal logic (CTL) [18] formula that verifies the equivalence or subsumption of the
preferences they induce over the alternatives. Whenever the induced preferences are not
equivalent, our method automatically produces a dominance relationship that is induced
by one and not by the other. Our approach is generic and can be used to verify equiv-
alence and subsumption for any two sets of ceteris paribus statements, not necessarily
expressed in the same preference language. Preliminary experiments indicate feasibil-
ity of our approach for preferences expressed over up to 30 variables (which exceeds
the requirements of many applications in practice) in a few seconds using the NuSMV
model checker.

2 Ceteris Paribus Preference Languages

Let V = {Xi | 0 < i ≤ n} be a set of preference variables or attributes, each with
a domain Di such that Xi = vi ∈ Di is a valid assignment to the variable Xi. Let
O = ΠiDi be the set of all alternatives, where γ ∈ O is a complete assignment to all
the variables, denoted by the tuple γ := 〈γ(X1), γ(X2), . . . , γ(Xn)〉 s.t. ∀Xi ∈ V :
γ(Xi) ∈ Di. The partial assignment of γ to a subset V ′ ⊆ V of variables is denoted
γ(V ′).

A direct specification of a binary preference relation � over O requires the user to
compare up to O(D2n) pairs of outcomes, is prohibitively expensive to be useful in
practical applications. Qualitative preference languages offer succinct expression for
the specification of preferences over the alternatives O in terms of (a) intra-variable
preferences for each variable over its respective domain, denoted by �i⊆ Di × Di;
and (b) the relative importance of the variables, denoted by � ⊆ V × V . Such prefer-
ences can also be conditioned on the valuation of one or more variables. For example,
Xj = vj : vi �i v

′
i represents a conditional intra-variable preference for Xi, and Xi

is said to depend on Xj , the parent of Xi. CP-nets[17] allow the specification of a set
of conditional intra-variable preferences, while TCP-nets [5] further allow conditional
relative importance preferences over pairs of variables. Other related languages include
CP-Theories [6] that allow relative importance of one variable over a set of other vari-
ables; and more recently, CI-nets [7] that allow unconditional, monotonic intra-variable
preferences, and conditional relative importance preferences over sets of attributes. For
each preference statement in a language, the ceteris paribus semantics induces a set of
flips or improvements (or analogously, worsenings) for each alternative. The seman-
tics for the various languages differ in terms of the set of flips they induce over the
alternatives [19, 12].
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Fig. 1. P1 and Induced Preference Graphs δ(P1),δ−(P1)

To keep the discussion simple, we focus on CP-nets to introduce our approach to
preference equivalence testing and preference subsumption testing. However our ap-
proach is sufficiently general to be applicable to any language based on ceteris paribus
(or equivalently, flipping sequence-based) semantics including TCP-nets, CI-nets, and
CP-Theories.

Definition 1 (Ceteris Paribus Semantics for CP-nets [17]). Let P be a CP-net con-
sisting of a set of conditional intra-variable preference statements of the form c : vi �i

v′i for some Xi ∈ V , where c is an assignment to a set C ⊆ V of (parent) variables. An
alternative α is said to be preferred to another β with respect to a statement c : vi �i v

′
i

in P if and only if

i. (α(C) = β(C) = c) ∧ (α(Xi) = vi) ∧ (β(Xi) = v′i);
ii. ∀Xj ∈ V \ {Xi} : α(Xj) = β(Xj).

The preference of α over β induced by a preference statement as above is called an
improving flip1 from β to α. Given a set P of preference statements in a, α is said to
dominate (i.e., preferred to) β with respect to P , denoted α �P β, if and only if there is
a sequence of alternatives β = γ1, γ2 . . . γn = α such that for all 1 ≤ i ≤ n, there is an
improving flip from γi to γi+1 with respect to some preference statement in P . Such a
sequence is called an improving flipping sequence from β to α. The set of all improving
flipping sequences (and hence the dominance relationships) between alternatives can be
represented as a directed graph, namely the induced preference graph.

Definition 2 (Induced Preference Graph [17]). Given a set P of preference state-
ments, its induced preference graph δ(P ) = G(N,E) is constructed as follows. The
nodes N correspond to the set of all alternatives O. Each directed edge (α, β) ∈ E
from alternative α to alternative β corresponds to an improving flip from α to β with
respect to some preference statement in P .

Definition 3 (Inverse Induced Preference Graph). Given a set P of preference state-
ments, the inverse induced preference graph δ−(P ) is constructed by generating δ(P )
and reversing the direction of edges.

Figure 1 shows a CP-net P1, its induced preference graph δ(P1) where the edges
are directed toward the preferred alternatives, and its inverse induced preference graph
δ−(P1) where the edges are directed away from the preferred alternatives. Because A’s
preference depends on the valuation of B and vice versa, P1 is said to have a depen-
dency cycle. When the preferences are consistent, i.e., no alternative dominates itself,

1 Note that the improving flip is defined differently for more expressive languages such as TCP-
nets, CP-Theories and CI-nets.
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the induced preference graph is a DAG representing the strict partial order induced
over the alternatives. Note that even though a P1 has a dependency cycle (A is a par-
ent of B and vice versa), δ(P1) is a DAG, thus illustrating the fact that the preferences
induced by a set of preference statements can be consistent, even if there are cyclic
dependencies in the CP-net.

3 Preference Reasoning Using Model Checking

Because our approach to preference equivalence testing and preference subsumption
testing builds on the model checking approach to dominance testing [11] and for
preference-based ordering of alternatives [16], we briefly summarize the basic frame-
work for casting problems of reasoning about preferences as problems in model
checking.

The Model. Given a set P of preference statements, the induced preference graph δ(P )
is first encoded as an input labeled transition system (LTS), more specifically a Kripke
structure [18] K(P ) to a model checker such as NuSMV [15].

Definition 4 (Kripke Structure). A Kripke structure is a tuple 〈S, S0, T, L〉where S is
a set of states described by the valuations of a set of propositional variables P , S0 ⊆ S
is a set of initial states, T ⊆ S×S is a transition relation such that ∀s ∈ S : ∃s′ ∈ S :
(s, s′) ∈ T , and L : S → 2P is a labeling function such that ∀s ∈ S : L(s) is the set of
propositions that are true in s.

The central idea is to map each node in δ(P ) (i.e., an alternative) to a set of states in
K(P ) and each flip in δ(P ) to a set of transitions between the corresponding states in
K(P ). For each preference variable Xi used in P , there is a state variable xi in K(P ).
Thus the sets of states in K(P ) generated by the different valuations of xi correspond
to the set of alternatives. Another set of auxiliary variables his (corresponding to the
xis) are used to label the transitions between states: hi = 0 in a transition implies Xi

cannot change; otherwise Xi may change. Each of the his in the transition from a state s
in K(P ) (corresponding to alternative γ in δ(P )) to a state s′ in K(P ) (corresponding
to alternative γ′ in δ(P )) holds true if the valuation of the corresponding preference
variable xi changes in an improving flip from γ to γ′ according to the ceteris paribus
semantics (see Definition 1). Thus, the semantics of each preference statement in P is
directly encoded as a set of guarded transitions in K(P ). If there is a valid flip from γ
to γ′ in δ(P ) where a set V ′ of variables change values, then there is a transition from
a corresponding state s to another state s′ in K(P ). Thus, the guard conditions enable
only the transitions in K(P ) that correspond to valid flips in δ(P ). Note that a state
in K(P ) may also contain transitions to itself (self-loops) because hi = 1 does not
necessarily imply that xi will change; rather, it allows non-deterministic choice for the
valuation of xi to change. Therefore, we use another state variable g to indicate global
change, which is set to 1 whenever any of the xi’s have changed in a transition; and
0 otherwise. Thus, g is used to indicate whether a transition in K(P ) corresponds to a
flip in δ(P ).

Figure 2 shows the Kripke structure K(P1) for the CP-net P1 in Figure 1. Note that
each node in δ(P1) (i.e., an alternative) corresponds to two states in K(P1) that dif-
fer only in their valuation for g. The state āb̄g is unreachable (grayed out) because the
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Fig. 2. K(P1): Kripke encoding for the semantics of P1

model is initialized with g = 0 and there is no improving flip to āb̄ in δ(P1). Each edge
in δ(P1) corresponds to a set of transitions in K(P1), e.g., the edge from ab to ab̄ corre-
sponds to two transitions, namely from abg and abḡ to ab̄g. The transitions are labeled
to indicate the valuations of ha and hb (guards) that enable them. The valuations of his
are non-deterministically set by the model checker. Whenever their valuations allow a
improving flip, there is a transition from one state to another in the Kripke structure
K(P1); and otherwise, there is a self-loop or a transition to a state with (̄g) in K(P1).
In Figure 2, we only label the transitions that correspond to improving flips (showing
the values of his that enable them); the labels for transitions that do not correspond to
improving flips are not shown for easy readability.

Dominance Testing. For any path in δ(P ) there exists a corresponding path in the
Kripke structure K(P ). Leveraging this fact, Santhanam et al. test whether α �P β
[11] by generating a temporal logic (CTL) formula ϕ corresponding to a test of non-
reachability of α from β in δ(P ), i.e., ϕ has a model in K(P ) if and only if α ��P

β. Hence, whenever the dominance holds, the model checker automatically returns a
path from a state in the Kripke structure K(P ) corresponding to β, to another state
corresponding to α, which corresponds to an improving flipping sequence (a path in
δ(P )) from β to α. Recently, [16] used a similar idea to order over alternatives based
on a given set of preferences.

4 Verifying Preference Equivalence and Preference Subsumption

We now turn to the problem of verifying the preference equivalence and preference
subsumption relationships between two sets of preferences. We first formally define
preference equivalence and preference subsumption.

Definition 5 (Preference Equivalence & Subsumption). Let P1 and P2 be two con-
sistent CP-nets over a set of variables V . Let �1� and �2� represent the transitive
closures of the preference relations �1 and �2 induced by P1 and P2 respectively over
the set of alternatives.

i. P1 is said to preference subsume P2, denoted P1 4 P2 or P2 � P1, iff ∀γ, γ′ :
γ �2 γ′ ⇒ γ �1 γ′, or equivalently�1� ⊇ �2�.

ii. P1 is said to be preference equivalent to P2, denoted P1 ≡ P2 iff P1 4 P2 ∧P2 4
P1.
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Fig. 3. P2 and Induced Preference Graphs δ(P2),δ−(P2)

In the above, equivalence and subsumption of P1 and P2 are defined in terms of
the transitive closures of the respective induced preferences, namely �1� and �2� that
represent the set of all improving flipping sequences for P1 and P2, and not simply
in terms of �1 and �2 that represent only the set of improving flips induced by the
respective preference statements in P1 and P2. This is necessary because the dominance
relation is transitive.

Figure 3 shows a CP-net P2 with its induced preference graph δ(P2). From the pref-
erence statements of P1 and P2, it may appear that P2 subsumes P1, i.e., P1 � P2,
because the only difference between them is the preference over variable A: in P1 it is
conditioned on b = 1, whereas in P2 it is unconditional. On the other hand, it may not
be as intuitive to conclude that P2 � P1. However, this is indeed the case: P1 � P2

and P2 � P1, i.e., P1 ≡ P2, because the induced preference graphs δ(P1) and δ(P2)
are equivalent in terms of the reachability between any pair of alternatives. The uncon-
ditional preference over A in P2 gives rise to an additional edge in δ(P2) from āb̄ to
ab̄ that has no corresponding edge in δ(P1), but the same has a corresponding path in
δ(P1): āb̄ → āb → ab → ab̄, which makes δ(P1) and δ(P2) (and hence P1 and P2)
equivalent.

In other words, verifying the semantic equivalence of two sets P1 and P2 of pref-
erence statements is tantamount to checking that for each edge from γ to γ′ in δ(P1),
there exists a corresponding path from γ to γ′ in δ(P2) and vice-versa. It is worth noting
here that the above holds for any preference language that has a flipping-sequence based
(ceteris paribus) semantics. Because dominance testing is PSPACE-complete even for
CP-nets, the simplest and the least expressive among the ceteris paribus preference
languages, equivalence testing is arguably PSPACE-complete for any of the more ex-
pressive preference languages such as TCP-nets, CI-nets, etc.

5 Verifying Equivalence and Subsumption via Model Checking

We now proceed to describe a novel model checking based approach to verifying the
equivalence and subsumption of two sets of preferences. Given two sets of preference
statements P1 and P2, we first consider preference subsumption testing, i.e., verifying
whether P1 � P2, since preference equivalence testing, i.e., checking whether P1 ≡ P2

amounts to verifying whether P1 � P2 ∧ P2 � P1. Verifying P1 � P2 amounts to
verifying that for each edge (γ, γ′) in δ(P1) there is a corresponding path from (γ, γ′)
in δ(P2). This can be reduced to verifying a reachability property in a graph, namely
the combined induced preference graph of P1 and P2, denoted δ(P1, P2), that embeds
the semantics of P1 and P2.

Definition 6 (Combined Induced Preference Graph). Given two sets P1 and P2 of
preference statements over a set of variables V , the combined induced preference graph
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Fig. 4. Combined Induced Preference Graph δ(P1, P2) and its Kripke structure encoding
K(P1, P2)

δ(P1, P2) is a directed graph G(N,E) with a labeling function L that is constructed
as follows. The nodes N correspond to the set of alternatives generated by V . There is
an edge eγ,γ′ = (γ, γ′) ∈ E if and only if there is an edge from γ to γ′ in δ(P1) or
δ−(P2), and it is associated with a label

L (eγ,γ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{1} if γ′ �1 γ and γ ��2 γ′

{2} if γ �2 γ′ and γ′ ��1 γ

{1, 2} if γ′ �1 γ and γ �2 γ′

(1)

Note that in the graph δ(P1, P2), each edge (γ, γ′) ∈ E corresponds to an improving
flip from γ to γ′ induced by P1, a worsening flip from γ to γ′ induced by P2, or both.
Figure 4(a) shows the combined induced preference graph δ(P1, P2) with respect to the
CP-nets P1 and P2 shown in Figures 1 and 3 respectively, consisting of the edges in
δ(P1) (solid arrows, labeled 1) and those in δ−(P2) (dotted arrows, labeled 2).

Recall that verifying P1 � P2 is equivalent to verifying that for each edge (γ, γ′) in
δ(P1) there exists a corresponding path from (γ, γ′) in δ(P2), or in other words, there
exists a corresponding path from (γ′, γ) in δ−(P2). Therefore, in terms of the combined
induced preference graph δ(P1, P2), P1 � P2 holds whenever the following holds. For
each edge from γ to γ′ in δ(P1, P2) that includes label {1}, there exists a path from γ′

to γ such that each edge in the path includes the label {2}. This condition forms the
basis of our model checking based approach to preference subsumption testing.

Lemma 1. P1 � P2 if and only if for each edge eγ,γ′ ∈ δ(P1, P2) such that L (eγ,γ′) ⊇
{1}, there is a path γ1 → γ2 → . . .→ γn in δ(P1, P2) such that γ1 = γ′, γn = γ, and
∀1 ≤ i < n : L (eγi,γi+1) ⊇ {2}.

5.1 Kripke Structure Encoding of δ(P1, P2)

In order to verifyP1 � P2, we first construct a Kripke structure K(P1, P2) that encodes
the combined induced preference graph δ(P1, P2). The state space of K(P1, P2) is con-
structed using (a) a set of preference variables, namely xi’s; and (b) a set of auxiliary
change variables, namely hi’s.
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Preference and Auxiliary Change Variables. The valuation of xi in a state s ∈ S,
denoted s(xi) corresponds to the valuation of the preference variable Xi ∈ V , i.e.,
a state s corresponds to an alternative γ = 〈s(x1), s(x2), . . . , s(x|V |)〉. The xi’s are
modeled as state variables, while the hi’s are modeled as input variables, i.e., used to
label the transitions in K(P1, P2).

The transition relation T ⊆ S × S of K(P1, P2) is implicitly specified in terms
of whether and how each of the state variables (xi’s) can individually change values.
The preference statements of P1 and P2 specify exactly how and under what conditions
the value of each xi can change; and the ceteris paribus interpretation requires that all
other variables remain unchanged. Recall from Section 3 that the valuations of hi’s are
used as guards to precisely enable only those transitions in K(P1, P2) that satisfy these
conditions, i.e., correspond to valid flips in δ(P1, P2) (see Section 3). Formally, for any
two states s, s′ ∈ S, we define t = (s, s′) ∈ T (denoted s→ s′) if one of the following
conditions hold.
1. Improving flip:

∃Xi ∈ V : t(hi) = 1 ∧
(
s′(xi) �1

i s(xi) ∨ s(xi) �2
i s′(xi)

)
∧ ∀Xj ∈ V \ {Xi} : t(hj) = 0 ∧ s(xj) = s′(xj)

where s(.) and t(.) denote the labels on the state s and the transition t respectively.
2. Non flip: ∀Xi ∈ V : s(xi) = s′(xi)

In the above, rule (1) enables a transition corresponding to a flip of a variable Xi ∈
V with respect to the ceteris paribus interpretation of a preference statement. Rule 2
enables transitions between states corresponding to the same alternative.

Remark 1. Note that the above encoding of δ(P1, P2) in terms of K(P1, P2) applies
to CP-nets (Definition 1). The ceteris paribus semantics of other preference languages
such as TCP-net, CI-net, CP-Theories, etc. can be similarly modeled by including ad-
ditional guard conditions that enable transitions corresponding to the allowed flips in
the respective languages. In particular, previous works have modeled the semantics of
TCP-net [11] and CI-nets [16].

Global Change Variables. Recall that the purpose of encoding δ(P1, P2) in terms
of K(P1, P2) is to compute subsumption by verifying the condition of Lemma 1. To
achieve this, we must be able to distinguish the transitions in the model (corresponding
to flips) induced by P1 and P2. Hence, we introduce two additional state variables g1
and g2 to label the destination states of any transition as follows. For any edge from γ to
γ′ such that L (eγ,γ′) ⊇ {i} in δ(P1, P2), there exists a corresponding transition from
a state s to a state s′ in K(P1, P2) such that the valuations of xi’s in s and s′ correspond
to the alternatives γ and γ′; and s′(gi) = 1. As a result, g1 = 1 in the destination state
of a transition in K(P1, P2) that corresponds to an improving flip in δ(P1), and g2 = 1
in the destination state of a transition that corresponds to a worsening flip in δ−(P2);
otherwise they are assigned to 0 in the destination state. The following rule encodes
this semantics. (

s′(g1) = 1⇔ (∃Xi ∈ V : s′(xi) �1
i s(xi))

)
∧(

s′(g2) = 1⇔ (∃Xi ∈ V : s(xi) �2
i s′(xi))

)
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The variables g1 and g2 are modeled as state variables, and hence the states S of
K(P1, P2) are defined by the valuations of propositionsPV = {xi|Xi ∈ V }∪{g1, g2}.
Hence, each alternative γ in δ(P1, P2) corresponds to a set Sγ = {s|s↓V = γ} of
states, where s↓V denotes the projection of a state s described by PV onto the set of
variables {xi|Xi ∈ V } ⊆ PV . The variables g1 and g2 are initialized to 0 in K(P1, P2),
whereas xi’s are uninitialized, i.e., the model checker non-deterministically chooses and
explores all possible combinations of assignments to xi’s. Hence the set of start states
S0 corresponds to the set of alternatives.

The above encoding is succinct in the sense that we do not explicitly specify each
node and edge in δ(P1, P2) to construct the state space of K(P1, P2). Because the hi’s
are input variables in the Kripke model, all possible valuations of hi’s are automati-
cally considered and non-deterministically explored by the model checker. Thus, the
transitions in K(P1, P2) correspond to valid flips in δ(P1, P2). The following holds by
construction of K(P1, P2) from δ(P1, P2).

Lemma 2. Given CP-nets P1 and P2, and the Kripke structure K(P1, P2) = 〈S, S0,
T, L〉 (constructed from δ(P1, P2) = G(N,E) associated with labeling function L ),

1. ∀γ, γ′, i ∈ {1, 2} : (γ, γ′) ∈ E ∧L (eγ,γ′) ⊇ {i}
⇒ ∃s→ s′ : s↓V = γ ∧ s′↓V = γ′ ∧ s′(gi) = 1

2. ∀s, s′ ∈ S : s → s′ ∧ s↓V �= s′↓V ⇒ ∃i ∈ {1, 2}, γ, γ′ : s↓V = γ ∧ s′↓V =
γ′ ∧ (γ, γ′) ∈ E ∧L (eγ,γ′) ⊇ {i}

Figure 4(b) shows the Kripke structure K(P1, P2) corresponding to δ(P1, P2) for
our running example. The start states are marked with transitions without any source
state. For clarity, the transitions between states corresponding to the same alternative
are not marked, and the valuations of input variables a0 and b0 are not shown in the
transitions. States corresponding to the same valuation of a and b are placed within
dotted boxes. Further, transitions from the set of all states in a dotted box to the same
destination state with a different valuation of a and b (in a different dotted box) are
combinedly represented by a single arrow from dotted box to the destination state, e.g.,
the arrow from the dotted box containing the states corresponding to āb̄ indicates the
presence of transitions from all states in the box to ābg1ḡ2.

6 Querying K(P1, P2) for Subsumption

We have already seen that verifying P1 � P2 is equivalent to verifying that for each
edge from γ to γ′ in δ(P1, P2) that includes the label {1}, there exists a path from γ′

to γ such that each edge in the path includes the label {2} (Lemma 1). Because the set
of start states S0 in K(P1, P2) corresponds to the set of alternatives in δ(P1, P2), the
above reduces to verifying the following property in K(P1, P2) by Lemma 2.

For each state s ∈ S0 in K(P1, P2), if there exists a transition to a state s′ with
s′(g1) = 1, then there exists a path s′ = s1 → . . . → sn → s′′ in K(P1, P2)
such that ∀1 < i ≤ n : si(g2) = 1 and s↓V = s′′↓V .

Our objective is to express the above property in the language of Computation Tree Tem-
poral Logic, CTL (see [18]), and automatically verify the temporal property with respect
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to K(P1, P2) using a model checker such as NuSMV. One interesting and subtle chal-
lenge in realizing our objective stems from the fact that the condition requires checking
the existence of paths starting from a state s and ending at a state s′′ such that s↓V = s′′↓V .
However, CTL allows the specification and verification of temporal properties only with
respect to states explored in the future, and therefore it is not possible to reference the
start state s in the temporal property (which is necessary to ensure s↓V = s′′↓V ).

We address this challenge by introducing a set of copy variables, namely x0
i ’s that are

modeled in SMV model checker as input variables in K(P1, P2) and hence not stored
as part of the state. They are initialized with the valuations of the respective xi’s at the
start of model exploration, and are constrained to remain invariant in the model; i.e., if
the valuation of xi at a start state s ∈ S0 is vi, then x0

i remains equal to vi in all states
along all paths starting from s. In other words, if the model checker begins exploration
at state s, then the propositional formula ψ =

∧
i(xi = x0

i ) can be used to refer to s↓V .
Proceeding further, the following CTL formula encodes the condition for P1 � P2.

ϕ : AX
(
g1 ⇒ EX E

[
g2 U (ψ ∧ g2)

] )
We use p̄ to denote the negation of the proposition p. According to the semantics of
CTL [18], a state s in a Kripke structure is said to satisfy (a) EX ψ if there exists a
path s = s1 → s2 . . . such that s2 satisfies ψ; (b) AX ψ if for all paths such that
s = s1 → s2 . . ., s2 satisfies ψ; and (c) E [ψ1Uψ2] if there exists a path s = s1 → s2 . . .
such that ∃i ≥ 1 : si satisfies ψ2, and ∀j < i : sj satisfies ψ1.

Therefore, ϕ holds in K(P1, P2) whenever the following holds. For each transition
s → s′ ∈ T such that s′(g1) = 1 (i.e., whenever AX g1 holds), there exists a transition
s′ → s′′ (i.e., EX ) such that s′′ satisfies E

[
g2 U (ψ ∧ g2)

]
. That is, there is a path

s′′ = s′′1 → s′′2 → s′′k . . . → s′′n such that g2 holds in all states till a state s′′n, where ψ
also holds, is reached. Recall that, propositional formula ψ is satisfied in states where
the valuations of the preference variables are same as those in the start state (denoted
by s in this case; see above). Note that if there are no transitions s → s′ such that
s′(g1) = 1, then ϕ trivially holds in s.

Theorem 1. K(P1, P2) satisfies ϕ if and only if P1 � P2.

Proof. By Lemma 2, there exists a sequence of transitions in K(P1, P2) if and only if
there exists a path in δ(P1, P2), namely s↓V = γ1 → γ2 → . . .→ γn = s↓V such that
L (eγ1,γ2) ⊇ {1} and ∀2 ≤ i < n : L (eγi,γi+1) ⊇ {2}. Because we do not initialize
the xi’s in the model, the model checker verifies the satisfaction of ϕ with respect to
each start state in S0 (corresponding to an alternative in δ(P1, P2)) according to the
semantics of CTL. Hence the result follows from Lemma 1.

Extracting a Proof of Non-subsumption. The model checker returns true whenever
ϕ is satisfied, i.e., P1 � P2. Suppose that P1 �� P2. The model checker will then return
false, and provide the justification/proof of unsatisfiability, essentially presenting a
sequence that satisfies the negation of the ϕ (see above), which is:

¬ϕ : EX
(
g1 ∧ AX ¬E

[
g2 U (ψ ∧ g2)

] )
The proof is presented in the form of a transition s→ s′ that corresponds to a flip from
γ = s↓V to γ′ = s′↓V such that (a) s′ satisfies g1 (implying that there is a path from s
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aa > bba >: ab

ba

ba ba

ab
ba

ba ba

Fig. 5. P3 and the graphs δ(P3) and δ(P1, P3)

to s′ as per P1) and (b) s′ satisfies AX ¬E
[
g2 U (ψ ∧ g2)

]
(implying that there is

no path from s′ back to any state s′′ with s′′ ↓V = s ↓V as per P2). In other words, the
transition s→ s′ corresponds to a flip from γ to γ′ induced by P1 but not by P2.

Verifying Equivalence. P1 ≡ P2 can be computed by verifying both ϕ and the follow-
ing formula in K(P1, P2).

ϕ′ : AX
(
g2 ⇒ EX E

[
g1 U (ψ ∧ g1)

] )
Note that ϕ′ verifies P2 � P1. Hence by Definition 5, P1 ≡ P2 iff ϕ ∧ ϕ′ is verified in
K(P1, P2).

In our running example (Figure 4), the formula ϕ ∧ ϕ′ is verified in K(P1, P2),
proving that P1 ≡ P2. Now consider another CP-net P3 and its relationship with P1

shown in Figure 5. Note that ϕ′ is verified in K(P1, P3), i.e., P3 � P1. However ϕ is
not, and the model checker returns false, with a path s→ s′ such that s↓V = āb̄ and
s′↓V = āb, which corresponds to a flip induced by P1 but not by P3. This provides the
proof for P1 �� P3 and hence for P1 �≡ P3.

In summary, our approach is generic and can be used to verify equivalence and sub-
sumption for any two sets of ceteris paribus statements, not necessarily expressed in the
same preference language. Given two sets of preference statements P1 and P2, if there
are |V | nodes and |E| edges in δ(P1, P2), then there are O(|V |) states and O(|E|) tran-
sitions in K(P1, P2) by construction. Hence, the complexity of computing preference
subsumption (and equivalence) is (|V | + |E|) × |ϕ|) as per the CTL model checking
complexity [18]. Preliminary experiments indicate the feasibility of our approach for
preferences expressed over up to 30 variables in a few seconds.

7 Summary and Discussion

We have described a novel practical approach to verifying whether a set of ceteris
paribus preference statements is equivalent to or is subsumed by another. This offers,
to the best of our knowledge, the first practical method to determining if the prefer-
ences held by a pair of agents agree with each other; and determining the sources of
disagreement if they don’t. Given two sets of preference statements, our model check-
ing approach involves: (i) Constructing a Kripke structure that encodes the preferences
induced by both sets of preference statements, and (ii) Verifying a computation-tree
temporal logic (CTL) formula in the model to verify preference subsumption (and pref-
erence equivalence). Whenever the two sets of preference statements are not equivalent,
our method outputs a dominance relationship that is induced by one and not by the other.

Our method can be extended to identify the set of all dominance relationships be-
tween alternatives in which the two sets of preferences differ. This can be achieved by
iteratively relaxing the CTL formulas and verifying them against the model which suc-
cessively produces newer proofs of non-equivalence. Preliminary experiments indicate
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feasibility of our approach for preferences expressed over up to 30 variables in less
than a minute. In this paper, we have illustrated our model checking approach to testing
preference subsumption and preference equivalence using the language of CP-nets [17];
however, it is applicable to all languages based on ceteris paribus semantics, i.e., those
for which the semantics of the dominance relation can be given in terms of reachability
within a graph of alternatives, including TCP-nets [5], CP-Theories [6] and CI-nets [7].
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Abstract. Learning the parameters of a Majority Rule Sorting model
(MR-Sort) through linear programming requires to use binary variables.
In the context of preference learning where large sets of alternatives and
numerous attributes are involved, such an approach is not an option in
view of the large computing times implied. Therefore, we propose a new
metaheuristic designed to learn the parameters of an MR-Sort model.
This algorithm works in two phases that are iterated. The first one con-
sists in solving a linear program determining the weights and the major-
ity threshold, assuming a given set of profiles. The second phase runs a
metaheuristic which determines profiles for a fixed set of weights and a
majority threshold. The presentation focuses on the metaheuristic and
reports the results of numerical tests, providing insights on the algorithm
behavior.

1 Introduction

Multiple criteria sorting procedures aim at assigning alternatives evaluated on
multiple criteria to a category selected in a set of pre-defined and ordered cate-
gories. In this article we investigate the Majority Rule Sorting procedure (MR-
Sort), a simplified version of the ELECTRE TRI sorting model [1, 2]. MR-Sort
is directly inspired by the work of Bouyssou and Marchant who provide an ax-
iomatic characterization [3, 4] of non-compensatory sorting methods. The general
principle of MR-Sort is to assign alternatives by comparing their performances
to those of profiles delimiting the categories. An alternative is assigned to a cat-
egory “above” a profile if and only if it is at least as good as the profile on a
(weighted) majority of criteria.

For using MR-Sort, several parameters need to be determined: the perfor-
mance vector associated to each profile, the criteria weights and a majority
threshold. It is not easy for a decision maker (DM) to assess such parameters.
He often prefers to provide typical examples of assignments of alternatives to
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categories. Several papers have been devoted to learning the parameters of such
models on the basis of assignment examples. Mathematical programming tech-
niques for learning part or all the parameters of an ELECTRE TRI model are
described in [5–9] while [10] proposes a genetic algorithm designed for the same
purpose. Learning the parameters of a MR-Sort model is dealt with in [11, 12].

None of these proposals can be considered suitable to our case, since we want
to deal with large sets of assignment examples, having in mind the kind of sorting
problems encountered in the field of preference learning [13], more precisely
in the monotone learning subfield. [11] needs computing times as long as 25
seconds to learn the parameters of a MR-Sort model involving 5 criteria and
3 categories from a learning set containing 100 examples. This is no wonder
since their algorithm is based on the resolution of a mixed integer program
(MIP) in which the number of binary variables grows linearly with the number
of examples. The experimental results in [11] show that the computing time
increases very quickly with the number of examples.

From the previous work related to parameters learning for ELECTRE TRI
models, we retain two main lessons. Firstly, learning only the weights and the
majority threshold of a MR-Sort model can be done by solving a linear program
without binary variables as done in [6]. On the other hand, as demonstrated in
[7], learning only the profiles of such models by means of linear programming
does require binary variables.

Based on these observations, we have designed an algorithm that computes
the parameters of a MR-Sort model in order to assign as many as possible
alternatives in the learning set to their category. This algorithm has two main
components that are used repeatedly and alternatively. The first component
learns optimal weights and majority threshold, in case the profiles limiting the
categories are fixed. The second component adjusts the profiles for given weights
and majority threshold.

To assess the new algorithm, we have set up a series of numerical experiments
much in the spirit of [11]. The simulation experiments were designed in order to
address the following questions:

Algorithm Performance. Given a MR-Sort model involving n criteria and p
categories and a set of assignment examples compatible with this model, how
fast does the algorithm find parameters of an MR-Sort model which restores
the original assignments ?

Model Retrieval. Given a MR-Sort model involving n criteria and p categories
and a set of assignment examples compatible with this model, how many
examples are required to obtain a model that is close to the original one?

Tolerance for Errors. Given a set of assignments, obtained through a MR-
Sort model, in which errors have been added, to what extent do the errors
perturb the algorithm?

Idiosyncrasy. Each alternative of a set is assigned to a category by a rule that
is not a MR-Sort rule (actually, they are assigned by an additive sorting
rule). What’s the ability of the algorithm to find a MR-Sort model restoring
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as many examples as possible ? In other terms, is MR-Sort flexible enough
to reproduce assignments by another type of sorting rule?

In the next section of this paper, we briefly recall the precise definition of the
MR-Sort procedure. In section 3, we describe the algorithm that we have devel-
oped. Numerical experiments designed for testing the algorithm are described,
their results summarized and commented on in section 4. We finally conclude
this paper with some perspectives for further research in view of improving the
current version of the algorithm.

2 MR-Sort Procedure

The MR-Sort procedure is a simplified version of the ELECTRE TRI procedure
[1, 2], based on the work of Bouyssou and Marchant developed in [3, 4].

Let X be a set of alternatives evaluated on n criteria, F = {1, 2, ..., n}. We
denote by aj the performance of alternative a ∈ X on criterion j. The categories
of the MR-Sort model, delimited by the profiles bh−1 and bh, are denoted by
Ch, where h denotes the category index. We convene that the best category Cp

is delimited by a fictive upper profile, bp, and the worst one by a fictive lower
profile, b0. The performances of the profiles are denoted by bh,j, with j = 1, ..., n.
It is assumed that the profiles dominate one another, i.e.:

bh−1,j ≤ bh,j h = 1, . . . , p; j = 1, . . . , n.

Using the MR-Sort procedure (without veto), an alternative is assigned to a
category if its performances are at least as good as the performances of the
category’s lower profile and worse than the performances of the category’s upper
profile on a weighted majority of criteria. In the former case, we say that the
alternative is preferred to the profile, while, in the latter, it is not. Formally, an
alternative a ∈ X is preferred to profile bh, and we denote it by aSbh, if the
following condition is met:

aSbh ⇔
∑

j:aj≥bh,j

wj ≥ λ,

where wj for j ∈ F are nonnegative weights attached to the criteria and satisfying
the normalization condition

∑
j∈F wj = 1; λ is the majority threshold ; it satisfies

λ ∈ [1/2, 1]. The preference relation S can be seen as an outranking relation
without veto [2, 14, 15].

The condition for an alternative a ∈ X to be assigned to category Ch is
expressed as follows:∑

j:aj≥bh−1,j

wj ≥ λ and
∑

j:aj≥bh,j

wj < λ (1)

The MR-Sort assignment rule described above involves pn+1 parameters, i.e.
n weights, (p − 1)n profiles evaluations and one majority threshold. Note that



Learning a Majority Rule Model from Large Sets of Assignment Examples 339

the profiles b0 and bp are conventionally defined as follows: b0,j is a value such
that aj ≥ b0,j for all a ∈ X and j ∈ F ; bp,j is a value such that aj < bp,j for all
a ∈ X and j ∈ F .

A learning set is a subset of alternatives A ⊆ X for which an assignment for
each alternative is known. For h = 1, . . . , p, Ah denotes the subset of alternatives
a ∈ A which are assigned to category Ch. The subsets Ah are disjoint; some of
them may be empty.

3 The Algorithm

3.1 Learning of All the Parameters

As demonstrated in [11], the problem of learning the parameters of a MR-Sort
model on the basis of assignment examples can be formulated as a mixed integer
program (MIP) but only instances of modest size can be solved in reasonable
computing times. The MIP proposed in [11] contains m · (2n + 1) binary vari-
ables, with n, the number of criteria, and m, the number of alternatives. A
problem involving 1000 alternatives, 10 criteria and 5 categories requires 21000
binary variables. For a similar program in [12], it is mentioned that problems
with less than 400 binary variables can be solved within 90 minutes. Following
these observations, we understand that MIP is not suitable for the applications
we want to deal with. In [10], a genetic algorithm was proposed to learn the
parameters of an ELECTRE TRI model. This algorithm could be transposed
for learning the parameters of a MR-Sort model. However, it is well known [16]
that genetic algorithms which take the structure of the problem into account to
perform crossovers and mutations give better results. It is not the case of the
genetic algorithm proposed in [10] since the authors’ definitions of crossover and
mutation operators are standard.

Learning only the weights and the majority threshold of an MR-Sort model on
the basis of assignment examples can be done using an ordinary linear program
(without binary or integer variables). On the contrary, learning profiles evalu-
ations is not possible by linear programming without binary variables. Taking
these observations into account, we propose an algorithm that takes advantage of
the ease of learning the weights and the majority threshold by a linear program
and adjusts the profiles by means of a dedicated heuristic.

The algorithm uses the following components (see Algorithm 1):

1. a heuristic for initializing the profiles;
2. a linear program learning the weights and the majority threshold, given the

profiles;
3. a dedicated heuristic adjusting the profiles, given weights and a majority

threshold.

In the next subsections we describe in more detail these three elements. The al-
gorithm uses the latter two components iteratively: starting from initial profiles,
we find the optimal weights and threshold for these profiles by solving a linear
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program; then we adjust the profiles, using the heuristic, keeping the weights
and threshold fixed; the profile adjustment operation is repeated Nit times. We
call main loop the optimization of the weights and threshold followed by Nit

iterations of the profiles adjustment operation. The main loop is executed until
a stopping criterion is met.

Since the process of alternating the optimization of the weights and threshold,
on the one hand, and several iterations of the (heuristic) optimization of the pro-
files, on another hand, is not guaranteed to converge to a good set of parameters,
we implement the algorithm as an evolutionary metaheuristic, evolving, not a
single MR-Sort model, but a population of them. The number of models in the
population is denoted by Nmodel . After each application of the main loop to all
models in the population, we assess the resulting population of models by using
them to assign the alternatives in the learning set. The quality of a MR-Sort
model is assessed by its classification accuracy:

CA =
Number of assignment examples restored

Total number of assignment examples
.

At this stage, the algorithm reinitializes the
⌊
Nmodel

2

⌋
models giving the worst

CA. The stopping criterion of the algorithm is met either once the classification
accuracy of some model in the population is equal to 1 or after a maximum
number of iterations No (fixed a priori).

Algorithm 1. Metaheuristic to learn all the parameters of an MR-Sort model

Generate a population of Nmodel models with profiles initialized with a heuristic
repeat

for all model M of the set do
Learn the weights and majority threshold with a linear program, using the
current profiles
Adjust the profiles with a metaheuristic Nit times, using the current weights
and threshold.

end for
Reinitialize the

⌊
Nmodel

2

⌋
models giving the worst CA

until Stopping criterion is met

3.2 Profiles Initialization

The first step of the algorithm consists in initializing a set of profiles so that it
can be used to learn a set of weights and a majority threshold. The general idea of
the heuristic we designed to set the value bh,j of the profile bh on criterion j is the
following. We choose this value in order to maximize the discriminating power
of each criterion, relatively to the alternatives in the learning set A. More pre-
cisely, we set bh,j in such a way that alternatives ranked in the category above bh
(i.e. Ch+1) typically have an evaluation greater than bh,j on criterion j and those
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ranked in the category below bh (i.e. Ch), typically have an evaluation smaller
than bh,j. In setting the profile values, the proportion of examples assigned to
a category is taken into account so that the alternatives assigned to categories
which are not often represented in the learning set have more importance. Note
the initial value of a profile bh is determined by only considering the examples
assigned to the category just below and just above the profile i.e. the examples
belonging respectively to the subsets Ah and Ah+1 in the learning set A. The
reason for this option is to balance the number of categories above and below the
profile that are taken into account for determining this profile. For profiles b1 and
bp−1, the only way of satisfying this requirement is to consider only one category
above and one category below the profile. For guaranteeing an equal treatment
of all profiles, we chose to consider only Ch and Ch+1 for determining bh.

The heuristic works as follows:

1. For each category Ch, compute the frequency πh with which alternatives a

in the learning set are assigned to category Ch : πh = |Ah|
|A| .

2. For each criterion, the value of the profile bh,j is chosen s.t.:

maxbh,j
[|a ∈ Ah+1 : aj ≥ bh,j| − |a ∈ Ah+1 : aj < bh,j |] (1− πh+1)

+ [|a ∈ Ah : aj < bh,j| − |a ∈ Ah : aj ≥ bh,j|] (1 − πh).

The profiles are computed in descending order.

3.3 Learning the Weights and the Majority Threshold

Assuming that the profiles are given, learning the weights and the majority
threshold of a MR-Sort model from assignment examples is done by means of
solving a linear program. The MR-Sort model postulates that the profiles dom-
inate each other, i.e. bh+1,j ≥ bh,j for all h and j, and the inequality is strict
for at least one j. The constraints derived from the alternatives assignments are
expressed as follows:∑

j:aj≥bh−1,j
wj − xa + x′

a = λ ∀a ∈ Ah, h = 2, ..., p− 1∑
j:aj≥bh,j

wj + ya − y′a = λ− δ ∀a ∈ Ah, h = 1, ..., p− 2∑n
j=1 wj = 1; λ ∈ [0.5; 1] wj ∈ [0; 1] ∀j ∈ F

xa, ya, x
′
a, y

′
a ∈ R+

0

The value of xa − x′
a (resp. ya − y′a) represents the difference between the sum

of the weights of the criteria belonging to the coalition in favor of a ∈ Ah w.r.t.
bh−1 (resp. bh) and the majority threshold. If both xa− x′

a and ya− y′a are pos-
itive, then the alternative a is assigned to the right category. In order to try to
maximize the number of examples correctly assigned by the model, the objective
function of the linear program minimizes the sum of x′

a and y′a, i.e. the objective



342 O. Sobrie, V. Mousseau, and M. Pirlot

function is min
∑

a∈A(x
′
a + y′a). Note however that such an objective function

does not guarantee that the maximal number of examples are correctly assigned.
Failing to do so may be due to possible compensatory effects between constraints,
i.e. the program may favor a solution involving many small positive values of x′

a

and y′a over a solution involving large positive values of a few of these variables.
Such a compensatory behavior could be avoided, but at the cost of introducing
binary variables indicating each violation of the assignment constraints. We do
not consider such formulations in order to limit computing times.

3.4 Learning the Profiles

Learning the profiles by using a mathematical programming formulation requires
binary variables, leading to a mixed integer program [7]. As we want to deal with
problems involving large learning sets, 10 criteria and 3 to 5 categories, MIP is
not an option. Therefore we opt for a randomized heuristic algorithm which is
described below.

Consider a model having 2 categories and 5 criteria and assume that two
alternatives are misclassified by this model. The one, a′, is assigned in category
C1 by the DM and in C2 by the model, while the other one, a′′, is assigned in
category C2 by the DM and in C1 by the model. Assuming fixed weights and
majority threshold, it means that the profile delimiting the two categories, is
either too high or too low on one or several criteria. In Figure 1, the arrows
show the direction in which moving the profile in order to favor the correct
classification of a′ or a′′. δa

′
j (resp. δa

′′
j ) denotes the difference between the profile

value b1,j and the alternative evaluations a′j (resp. a′′j ) on criterion j.

C1

C2

crit. 1 crit. 2 crit. 3 crit. 4 crit. 5

b0

b1

b2

a′

a′′

δa
′

1
δa

′
2

δa
′

3 δa
′

4

δa
′

5

δa
′′

4
δa

′′
5

δa
′′

2

w1 = 0.2

w2 = 0.2

w3 = 0.2

w4 = 0.2

w5 = 0.2

λ = 0.8

Fig. 1. Alternative wrongly assigned because of profile too low or too high

Based on these observations, we define several subsets of alternatives for each
criterion j and each profile h and any positive value δ:
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V +δ
h,j (resp. V −δ

h,j ) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ)
on j results in a correct assignment. For instance, a′′ belongs to the set V −δ

1,4

on criterion 4 for δ ≥ δa
′′

4 .

W+δ
h,j (resp. W−δ

h,j ) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh of +δ (resp. −δ)
on j strengthens the criteria coalition in favor of the correct classification
but will not by itself result in a correct assignment. For instance, a′ belongs
to the set W+δ

1,1 on criterion 1 for δ > δa
′

1 .

Q+δ
h,j (resp. Q−δ

h,j) : the sets of alternatives correctly classified in Ch+1 (resp.
Ch+1) for which moving the profile bh of +δ (resp. −δ) on j results in a
misclassification.

R+δ
h,j (resp. R−δ

h,j) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh of +δ (resp. −δ)
on j weakens the criteria coalition in favor of the correct classification but
does not induce misclassification by itself. For instance, a′′ belongs to the
set R+δ

1,2 on criterion 2 for δ > δa
′′

2 .

T+δ
h,j (resp. T−δ

h,j ) : the sets of alternatives misclassified in a category higher
than Ch+1 (resp. in a category lower than Ch) for which the current profile
evaluation weakens the criteria coalition in favor of the correct classification.

In order to formally define these sets we introduce the following notation. Al
h

denotes the subset of misclassified alternatives that are assigned in category Cl

by the model while the DM assigns them in category Ch. A
>l
<h denotes the subset

of misclassified alternatives that are assigned in category higher than Cl by the
model while the DM assigns them in a category below Ch. And similarly for
A<l

>h. Finally, σ(a, bh) =
∑

j:aj≥bh,j
wj . We have, for any h, j and positive δ:

V +δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

V −δ
h,j =

{
a ∈ Ah

h+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ
}

W+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj ≥ λ
}

W−δ
h,j =

{
a ∈ Ah

h+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj < λ
}

Q+δ
h,j =

{
a ∈ Ah+1

h+1 : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

Q−δ
h,j =

{
a ∈ Ah

h : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ
}

R+δ
h,j =

{
a ∈ Ah

h+1 : bh,j + δ > aj ≥ bh,j
}

R−δ
h,j =

{
a ∈ Ah+1

h : bh,j − δ < aj < bh,j
}

T+δ
h,j =

{
a ∈ A>h+1

<h+1 : bh,j + δ > aj ≥ bh,j
}

T−δ
h,j =

{
a ∈ A<h

>h : bh,j − δ < aj ≤ bh,j
}

To avoid violations of the dominance rule between the profiles, on each criterion
j, +δ or −δ is chosen in the interval [bh−1,j, bh+1,j]. We define the value P (b+δ

h,j)
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which aggregates the number of alternatives contained in the sets described
above as follows:

P (b+δ
h,j) =

kV |V +δ
h,j |+kW |W+δ

h,j |+kT |T+δ
h,j |+kQ|Q+δ

h,j |+kR|R+δ
h,j |

dV |V +δ
h,j |+dW |W+δ

h,j |+dT |T+δ
h,j |+dQ|Q+δ

h,j |+dR|R+δ
h,j |

with kV , kW , kT , kQ, kR, dV , dW , dT , dQ and dR fixed constants. We define
similarly P (b−δ

h,j). In the definition of P (b+δ
h,j) (resp. P (b−δ

h,j)), the coefficients
weighting the number of elements in the sets in the numerator are chosen so as to
emphasize the arguments in favor of moving the value bh,j of profile bh to bh,j+δ
(resp. −δ), while the coefficients in the denominator emphasize the arguments
against such a move. The values of the coefficients are empirically set as follows:
kV = 2, kW = 1, kT = 0.1, kQ = kR = 0, dV = dW = dT = 1, dQ = 5, dR = 1.

The value bh,j of profile bh on criterion j will possibly be moved to the value aj
of one of the alternatives a contained in V +δ

h,j , V
−δ
h,j , W

+δ
h,j or W−δ

h,j . More precisely,
it will be set to aj or a value slightly below or slightly above aj . The exact new
position of the profile is chosen so as to favor a correct assignment for a.

All such values aj are located in the interval [bh−1,j, bh+1,j]. A subset of such
values is chosen in a randomized way. The candidate move corresponds to the
value aj in the selected subset for which P (bΔh,j) is maximal, Δ being equal to
aj − bh,j (i.e. a positive or negative quantity). To decide whether to make the
candidate move, a random number r is drawn uniformly in the interval [0, 1] and
the value bh,j of profile bh is changed if P (bΔh,j) ≤ r.

This procedure is executed for all criteria and all profiles. Criteria are treated
in random order and profiles in ascending order.

Algorithm 2 summarizes how this randomized heuristic operates.

Algorithm 2. Randomized heuristic used for improving the profiles

for all profile bh do
for all criterion j chosen randomly do

Choose, in a randomized manner, a set of positions in the interval [bh−1,j , bh+1,j ]
Select the one such that P (bΔh,j) is maximal
Draw uniformly a random number r from the interval [0, 1].
if r ≤ P (bΔh,j) then

Move bh,j to the position corresponding to bh,j +Δ
Update the alternatives assignment

end if
end for

end for

4 Numerical Experiments

4.1 Performance of the Algorithm

Our first concern is to measure the performance of the algorithm and its conver-
gence, i.e. how many iterations are needed to find a model restoring a majority
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of assignment examples and how much time is required to learn this model? To
measure this, an experimental framework is set up:

1. An MR-Sort model M is generated randomly. The weights are uniformly
generated as described in [17], i.e. n−1 random numbers are uniformly drawn
from the interval [0, 1] and ranked s.t. rn = 1 > rn−1 ≥ ... ≥ r1 > 0 = r0.
Then weights are defined as follows: wj = rj − rj−1, with j = 1, ..., n. The
majority threshold is uniformly drawn from the interval [1/2, 1]. For the
profiles evaluations, on each criterion p − 1 random numbers are uniformly
drawn from the interval [0, 1] and ordered s.t. r′p−1 ≥ ... ≥ r′1. Profiles
evaluations are determined by bh,j = r′h, h = 1, ..., p − 1. Using model M
as described by (1), each alternative can be assigned to a category. The
resulting assignment rule is referred to as sM .

2. A set of m alternatives with random performances on the n criteria is gen-
erated. The performances are uniformly and independently drawn from the
[0, 1] interval. The set of generated alternatives is denoted by A. The alter-
natives in A are assigned using the rule sM . The resulting assignments and
the performances of the alternatives in the set A are given as input to the
algorithm. They constitute the learning set.

3. On basis of the assignments and the performances of the alternatives in A,
the algorithm learns a MR-Sort model which maximizes the classification
accuracy. The model learned by the metaheuristic is denoted by M ′ and the
corresponding assignment rule, sM ′ .

4. The alternatives of the learning set A are assigned using the rule sM ′ . The
assignment resulting from this step are compared to the one obtained at step
2 and the classification accuracy CA(sM , sM ′) is computed 1

We test the algorithm with models having 10 criteria and 3 to 5 categories
and learning sets containing 1000 assignment examples. These experiments are
done on an Intel Dual Core P8700 running GNU/Linux with CPLEX Studio
12.5 and Python 2.7.3.

In Figure 2, the average value of CA(sM , sM ′) obtained after repeating 10
times the experiment is shown. When the number of categories increases, we
observe that the algorithm needs more iterations to converge to a model restoring
correctly all assignment examples. This experiment shows that it is possible to
find a model restoring 99% of the assignment examples in a reasonable computing
time. On average two minutes are required to find the parameters of a model
having 10 criteria and 5 categories with Nmodel = 10, No = 30 and Nit = 20.

4.2 Model Retrieval

This experiment aims at answering the following question: How many assign-
ment examples are required to obtain the parameters of a model which restores

1 To assess the quality of a sorting model, other indices are also used, like the area
under curve (AUC). In this paper, we use only the classification accuracy (CA) as
quality indicator.
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Fig. 2. Evolution of the classification accuracy of the learning set of a model composed
of 10 criteria and a variable number of categories (Nmodel = 10;No = 30;Nit = 20)

correctly a majority of assignment examples? This question has been already
covered in [11] for models having no more than 5 criteria and 3 categories. To
answer this question for models with more parameters we add a step to the test
procedure described above:

5. A set of 10000 random alternatives, B, is generated analogously to 2. We
call this set, the generalization set. Alternatives of the set B are assigned by
models M and M ′. Finally the assignment obtained by models M and M ′

are compared and the classification accuracy CA(sM , sM ′) is computed.

Figure 3(a) and 3(b) show the average, min and max CA(sM , sM ′) of the
generalization set after learning the parameters of models having 10 criteria
and 3 or 5 categories on the basis of 100 to 1000 assignment examples. Figure
3(a) shows that 400 examples are sufficient to restore on average 95 % of the
assignments for models having 3 categories, 10 criteria while 800 examples are
needed for ones having 5 categories, 10 criteria (see Figure 3(b)). As expected,
the higher the cardinality of the learning set, the more CA(sM , sM ′) is high in
generalization.

4.3 Tolerance for Errors

To test the behavior of the algorithm when the learning set is not fully compatible
with a MR-Sort model, a step is added in the test procedure after generating
the assignment examples:

2’ A proportion of errors is added in the assignments obtained using the model
M . For each alternative of the learning set, its assignment is altered with
probability P , the altered assignment example is uniformly drawn among
the other categories. We denote by s̃M the rule producing the assignments
with errors.

Tolerance for errors is tested by learning the parameters of a MR-Sort model
having 5 categories and 10 criteria on the basis of 1000 assignment examples
generated using s̃M . In Figure 4(a), the average classification accuracy of the
learning set is shown for 10 test instances with 10 to 40 % of errors in the
learning set. We observe that CA(s̃M , sM ′) converges to 1 − P when there are
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Fig. 3. Evolution of the classification accuracy on the generalization set. A 10 criteria
with 3 or 5 categories model has been learned on the basis of learning sets containing
from 100 up to 1000 assignment examples (Nmodel = 10;No = 30;Nit = 20).

errors in the learning set. Among the assignment examples badly assigned by
the model, a majority corresponds to altered examples. To see to what extent
the errors affect the algorithm, we generate a generalization set that is assigned
both by the rule sM and sM ′ . The resulting sets are compared and CA(sM , sM ′)
is computed. In Figure 4(b), average, minimal and maximal CA(sM , sM ′) are
shown for 10 test instances. We observe that for small numbers of errors, i.e. less
than 20 %, the algorithm tends to modify the model s.t. CA(sM , sM ′) is altered
on average by the same percentage of error in generalization. When there are
more than 20% of errors in the learning set, the algorithm is able to find a model
giving a smaller proportion of assignment errors in generalization.

0 1 2 3 4 5 6 7 8 9 10

40

50

60

70

80

Number of iterations

C
A
(s̃

M
,s

M
′ )
(i
n
%
)

10 % of errors
20 % of errors
30 % of errors
40 % of errors

(a) Learning set

5 10 15 20 25 30 35 40

60

70

80

90

100

Incompatible examples in the learning set (in %)

C
A
(s

M
,s

M
′ )
(i
n
%
)

1000 examples; 5 categories; 10 criteria

(b) Generalization set

Fig. 4. Evolution of the classification accuracy (CA(s̃M , sM′)) for the alternatives in
the learning set (a) and the generalization set (b). A 5 categories and 10 criteria model
is inferred on the basis of 1000 assignment examples containing 10 to 40 % of errors
(Nmodel = 10;No = 30;Nit = 20)

4.4 Idiosyncratic Behavior

This experiment aims at checking if an MR-Sort model is able to represent
assignments that have been obtained by another sorting rule based on an additive
value function (AVF-Sort model). In such a model, a marginal utility function
uj is associated to each criterion. In the chosen model, utility functions are
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piecewise linear and monotone. They are split in k parts in the criterion range
[gj∗, g∗j ], with gj∗ the less preferred value and g∗j the most preferred value on j,
s.t. u(gj∗) = 0 and u(g∗j ) = 1. The end points of the piecewise linear functions

are given by glj = gj∗ + l
k

(
g∗j − gj∗

)
, with l = 0, ..., k. Marginal utility of an

alternative a on criterion j is denoted by uj(aj). The score of an alternative is
given by the global utility function which is equal to U(a) =

∑n
j=1 wjuj(aj),

with U(a) ∈ [0, 1] and
∑n

j=1 wj = 1. The higher the value of U(a), the more a

is preferred. Categories are delimited by ascending global utility values βh, s.t.
an alternative a is assigned in category h iff βh−1 ≤ U(a) < βh with β0 = 0 and
βp = 1+ ε, ε being a small positive value. Such an additive model is used in the
UTADIS method [18, 19]. We study the ability of our metaheuristic to learn an
MR-Sort model from a learning set generated by an AVF-Sort model. To do so,
we replace step 1 by:

1. A sorting model M based on an additive value function is randomly gener-
ated. To generate the weights, the same rule as for the MR-Sort model is
used. For each value function, k − 1 random are uniformly drawn from the
interval [0, 1] and ordered s.t. rk = 1 ≥ rk−1 ≥ ... ≥ r1 ≥ 0 = r0, then end
points are assigned as follows u(glj) = rl, with l = 0, ..., k. For the category
limits βh, p−1 random numbers are uniformly drawn from the interval [0, 1]
and then ordered s.t. rp−1 ≥ ... ≥ r1. Category limits are given by βh = rh,
h = 1, ..., p− 1. The assignment rule is denoted by s∗M .

Once the model generated, the alternatives are assigned by the model M and
the metaheuristic tries to learn a MR-Sort model from the assignments obtained
by M . To assess the ability of the heuristic to find a MR-Sort model restoring
the maximum number of examples, we test it with 1000 assignment examples,
on models composed of 10 criteria and 2 to 10 categories. We choose to use an
AVF-Sort model in which each additive value function is composed of 3 segments.
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Fig. 5. Evolution of the classification accuracy (CA(s∗M , sM′)) for alternatives in the
learning set (a) and the generalization set (b). A 5 categories and 10 criteria model is
inferred on the basis of altered assignment examples. An MR-Sort model is learned on
the basis of assignment examples obtained with an AVF-Sort model having 10 criteria
and 2 to 10 categories.
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This experiment is repeated 10 times. Figure 5(a) presents the average, mini-
mum and maximum CA(s∗M , sM ′) of the learning set. The plot shows that the
MR-Sort model is able to represent on average 80% of the assignment examples
obtained with an AVF-Sort model when there are no more than 5 categories. We
perform a generalization by assigning 10000 alternatives through the AVF-Sort
model, M and through the learned MR-Sort model, M ′. Figure 5(b) shows the
average, minimum and maximum classification accuracy of the generalization
set. These results confirm the behavior observed with the learning set. The abil-
ity to represent assignments obtained by an AVF-Sort model with an MR-Sort
model is limited, even more when the number of categories increases.

5 Conclusions and Further Research

In this paper we presented an algorithm that is suitable to learn a MR-Sort model
from large sets of assignment examples. Unlike the MIP proposed in [11], it is
possible to learn a model composed of 10 criteria and 5 categories that restore
99% of the examples of assignments in less than two minutes for a learning set
composed of 1000 alternatives with no error.

In the case of a learning set containing a proportion of assignment errors,
the experimentations showed that the algorithm finds a model giving on av-
erage a smaller or equal proportion of errors in generalization. We also found
that assignment examples obtained by an AVF-Sort model are quite difficult to
represent with an MR-Sort model. Further researches have to be done with the
AVF-Sort model to see if it is able to learn a model that restore correctly a set
of assignment examples obtained by an MR-Sort model.

The metaheuristic described in this paper does not cover MR-Sort models with
vetoes. Learning the parameters of a MR-Sort model with vetoes deserves to be
studied and will improve a bit the ability of the model to represent assignments.

Acknowledgment. The authors thank two anonymous referees for their help-
full comments which contributed to improve the content of this paper. The usual
caveat applies.
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méthodes et applications. PhD thesis, LAMSADE, Université Paris Dauphine,
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Abstract. We introduce a new variant of hedonic coalition formation
games in which agents have two levels of preference on their own coali-
tions: preference on the set of “roles” that makes up the coalition, and
preference on their own role within the coalition. We define several sta-
bility notions and optimization problems for this model. We prove the
hardness of the decision problems related to our optimization criteria
and show easiness of finding individually stable partitions. We introduce
a heuristic optimizer for coalition formation in this setting. We evalu-
ate results of the heuristic optimizer and the results of local search for
individually stable partitions with respect to brute-force MaxSum and
MaxMin solvers.

Keywords: coalition formation, computational complexity, hedonic
games, optimization.

1 Introduction

Consider the online game, League of Legends, developed by Riot Games, Inc.
According to a recent market research study, League of Legends is the most
played PC video game in North America and Europe by number of hours played
per month [10], with 70 million registered users and an average of 12 million
daily active players [15]. Players sign on, and are matched with other players
with similar Elo ratings. Once matched in a team of 3 or 5, they each choose
an avatar (called a “champion”) from a finite set. Each team then plays against
another team, competing for Elo improvement.

The game experience could be enhanced if teams were matched on the basis of
strategic combinations of champions. This is not only our hypothesis but also the
observation of Riot Games. A senior user research employee for Riot Games, user
name davin, recently commented that “we don’t have a single way of playing the
game. ... So when you match people together, you’d need some way of pairing
together players who have agreed on a particular strategy or want to play in
a certain way.”[16] There are two criteria upon which players might express
preferences: the combination of champions on which they would like to play, and
the individual champion they would prefer to play on a given composition. These
could be expressed separately or conditionally.

P. Perny, M. Pirlot, and A. Tsoukiàs (Eds.): ADT 2013, LNAI 8176, pp. 351–362, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



352 M. Spradling et al.

Matching players by their preferences on their own teams is a hedonic coalition
formation game [11]. Hedonic coalition formation games are characterized by
agents’ utilities depending only on the coalition they are assigned to, not on
others. A game consists of a set of agents and their preferences for their possible
roles and team compositions.

One of the aspects of the partitioning problem for League of Legends is the
two-stage team formation: Players may be matched based on their shared interest
in a team consisting of roles A, B, and C, but it may transpire that all three wish
to play role A. A better partition algorithm would also use players’ preferences
on individual roles. We refer to this notion of a hedonic game as a Roles and
Teams Hedonic Game (RTHG).

Recent work on hedonic coalition games has touched on notions comparable to
stability in the stable marriage problem [11,4,6,14,1], etc. It is known that finding
certain stable coalitions for hedonic games is NP-hard (see, for instance, [8,2]).
Some papers considered restrictions on preferences that allow stable partitions,
others presented heuristic algorithms for finding stable partitions.

Due to the two-stage team formation procedure in RTHG, we observe that
the notions of Nash stable (NS) and individually stable (IS) partitions are quite
different in this model compared to other hedonic games. We propose definitions
for NS and IS partitions which address both the stability of role assignments
within coalitions and permutations of agents within coalition assignments.

A different problem of optimizing social utility has also been investigated. In
graphical games with unbounded treewidth, very recent work has been done to
address the bi-criteria problem of maximizing both stability and social utility
[13]. We provide hardness results for the decision problems related to Perfect,
MaxSum and MaxMin partitions in RTHG. We define Nash stability and indi-
vidual stability in this setting and show that individually stable partitions can
always be found in time polynomial in the size of the input. We introduce a
quadratic time greedy heuristic optimizer for coalition formation and compare
to brute-force MaxSum and MaxMin solvers and the results of local search for
individually stable partitions.

2 Roles and Teams Hedonic Games

Definition 1. An RTHG instance consists of:

– P : a population of agents;
– m: a team size (we assume that |P |/m is an integer);
– R: a set of available team member roles;
– C: a set of available team compositions, where a team composition is a set

of m not necessarily unique roles in R;
– U: a utility function vector 〈u0, . . . , u|P |−1〉, where for each agent p ∈ P ,

composition t ∈ C, and role r ∈ R there is a utility function up(t, r) with
up(t, r) = −∞ if r /∈ t.

A solution to an RTHG instance is a partition π of agents into teams of
size m.
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Table 1. Example RTHG instance with |P | = 4, m = 2, |R| = 2

〈r, t〉 up0(r, t) up1(r, t) up2(r, t) up3(r, t)

〈A,AA〉 2 2 0 0
〈A,AB〉 0 3 2 2
〈B,AB〉 3 0 3 3
〈B,BB〉 1 1 1 1

3 Related Work: Hedonic Partition Games

The original motivation for studying hedonic games was economic [11], but there
are also many computational applications. Saad et al. have proposed hedonic
coalition formation game models for a variety of multi-agent settings, including
distributed task allocation in wireless agents [17], communications networks [18],
and vehicular networks [19], among others.

In anonymous hedonic games [5], agents have preferences over group size and
are matched to teams for a single type of activity. The group activity selec-
tion problem (GASP) includes preferences over a variety of activities given
the number of agents engaged in the activity [9]. Agents in these games are
homogeneous—every member of a coalition is equivalent. In RTHG, agents are
heterogeneous while team size and group activity are fixed for a given instance.
An RTHG agent holds preferences over its own role and the roles of its team-
mates. Furthermore, while GASP preferences are binary, RTHG agent prefer-
ences are not guaranteed to be.

Desirable partitioning in additively separable hedonic games (ASHG) [3] has
been investigated. ASHGs allow for agents to place values on each other, making
the agent population heterogeneous. The value an agent places on its coalition
in such a game is the sum total value it gives other agents in its coalition. This
model considers agent-to-agent valuation, but these values are fixed for any given
agent-to-agent relation. ASHGs do not consider the context of the composition
an agent is in. In RTHG, values are placed on team compositions and roles rather
than individual agents.

Each agent has a variable role in RTHG and has preferences over which role
to select for itself given a team composition.

For instances where |C|m is smaller than |P |, the required input data for
RTHG instances will be smaller than the required input for ASHG. Input for an
ASHG instance requires each agent to hold a specific utility for each other agent
within the population. This could be represented as a |P | × |P | matrix of utility
values, U , where U [i, j] is the utility that pi holds for pj . In RTHG, the input
can be represented as a |C|m × |P | matrix. While there are millions of players
in League of Legends [15], there are only around 10 basic roles to potentially fill
(Healer, Mage, Assassin, etc.) and a maximum team size of 5. The input required
for team formation in this setting will be orders of magnitude smaller in RTHG
than if this game were treated as an ASHG.
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Consider the following setting. In capstone computer science courses, students
are sometimes grouped into equally-sized project teams. For a team of five stu-
dents, one student may prefer a team of 2 skilled programmers, 1 designer, and
2 writers. Her second choice might be 1 programmer, 2 designers, 2 writers. In
the first case, the student wants to be a programmer. In the second, she wants
to be a designer, and definitely not a programmer.

This problem can be modeled as an RTHG. The GASP model does not apply.
The ASHG model allows students to express utility values for each other, but
ASHG preferences are context-free agent-to-agent assessments. Huxley may wish
to join Clover’s coalition when she needs a programmer, but not when she needs
a writer. In RTHG, an agent need only express preferences on which roles and
compositions she prefers. This self-evaluation may be easier to accurately poll.

Matching students to groups in a manner that optimizes utility for the class
would be a useful endeavor. In a perfect world, each student would be matched
to his or her most-preferred team. We show that such a perfect partition is not
always possible in RTHG.

A MaxSum partition would, in a utilitarian fashion, optimize the sum total
utility of the resulting coalitions. A MaxMin partition would take an egalitarian
approach. It is unclear which metric (MaxSum or MaxMin) would best raise
teaching evaluations in capstone computer science courses.

4 Evaluation of Solutions

Perfect partitions for general hedonic games have been defined such that each
agent is in one of her most preferred coalitions [1].

For RTHG, we define a perfect partition to be one in which each agent gets
a most-preferred coalition composition and role within that composition. Note
that, in the general RTHG model, there may be multiple equivalently-valued
compositions and roles. Therefore these preferences are not necessarily strict.

Definition 2. A perfect partition is a partition of agents to coalitions so that,
for each p ∈ P , up(r, t) = min{up(r, t) : r ∈ R ∧ t ∈ C}.

A perfect partition is impossible for some RTHG instances. Consider an RTHG
instance where m = 2 and P = {Alice,Bob}. Both Alice and Bob strictly prefer
the team composition of 〈Mage, Assassin〉 with the role Assassin to all other
〈r, t〉 pairs. No perfect partition is possible.

We consider the following notions of utility optimization.

Definition 3. Given an instance I of RTHG, a MaxSum partition is one that
achieves the maximum value of Σi<|P |upi .

MaxSum is a utilitarian optimality criterion.

Definition 4. Given an instance I of RTHG, a MaxMin partition is one that
achieves the maximum value of minp∈P up.
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MaxMin is an egalitarian optimality criterion.
In most hedonic game variants, a partition is considered Nash stable (NS)

iff no agent pi can benefit by moving from her coalition to another (possibly
empty) coalition T . A partition is considered individually stable (IS) iff no agent
can benefit by moving to another coalition T while not making the members of
T worse off [1]. These definitions of stability do not fit well with RTHG.

Because team sizes in RTHG are fixed at m, an agent cannot simply choose
to leave her coalition and join another. Rather, if an agent pi is to move from
coalition S to T , she must take the position (role in a particular coalition)
of another agent pj in T . This could be done as a swap, or it could be a more
complex set of moves made among several agents. Note that should someX ⊆ P
collaboratively change positions, this permutation would not change the utilities
of the compositions for the agents in X . All existing compositions remain intact.

Definition 5. A partition π is Nash team stable (NTS) iff no set X ⊆ P of
agents can improve the sum of their utilities by a new permutation of their po-
sitions in their coalitions.

A partition π is individually team stable (ITS) iff no set X ⊆ P of agents
can improve the sum of their utilities by a new permutation of their positions in
their coalitions without reducing the utility of the partition for any single agent
in X.

There will always be a NTS partition πNTS where all agents select the same
role. In this case, no agent can improve her utility by changing positions since the
new position would be identical to her previous position. Some RTHG instances
may lack a non-uniform NTS partition πNTSNU , where rpi �= rpj for at least one
pair of agents pi, pj . Consider the following RTHG instance:

Table 2. RTHG instance with |P | = 2, m = 2, |R| = 2 where no πNTSNU exists

〈r, t〉 up0(r, t) up1(r, t)

〈A,AA〉 1 1
〈A,AB〉 1 1
〈B,AB〉 0 0
〈B,BB〉 1 1

No πNTSNU exists in this instance. Consider each of the two possible non-
uniform partitions:

– π0, where rp0 = B and rp1 = A. p0 prefers to swap positions. Not NTS.
– π1, where rp0 = A and rp1 = B. p1 prefers to swap positions. Not NTS.

To construct an individually team stable partition πITS , start with any parti-
tion π of I and iteratively improve it until no improvements are possible. At that
point, the resulting partition will be ITS. To find an improvement, if one exists,
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construct a graph G = 〈V,Eb ∪ Er〉, where the vertices correspond to players,
and there is an edge in Eb from pi to pj iff upi(ri, ti) = upi(rj , tj), and there is
an edge in Er from pi to pj iff upi(ri, ti) > upi(rj , tj). If there exists a cycle in
the graph containing as least one edge er ∈ Er, then the partition is not ITS.

Another movement option in RTHG is for an agent to remain within her
coalition but change roles. This converts the existing composition to another the
agent may prefer. Note that this would change the utility of the composition for
her coalition, but otherwise does not affect the utility of the partition for any
agent outside of her coalition.

Definition 6. A partition π is Nash role stable (NRS) iff no agent pi can im-
prove her utility by changing from her current role r to a new role r′.

A partition π is individually role stable (IRS) iff no agent pi can improve her
utility by changing from her current role r to a new role r′ without reducing the
utility of any other agent in her coalition.

Some RTHG instances may lack a NRS partition πNRS . Consider the following
RTHG instance:

Table 3. RTHG instance with |P | = 2, m = 2, |R| = 2 where no πNRS exists

〈r, t〉 up0(r, t) up1(r, t)

〈A,AA〉 0 1
〈A,AB〉 1 0
〈B,AB〉 1 0
〈B,BB〉 0 1

No πNRS exists in this instance. Consider each of the four possible partitions:

– π0, where rp0 = A and rp1 = B. p1 prefers to switch to role A. Not NRS.
– π1, where rp0 = B and rp1 = A. p1 prefers to switch to role B. Not NRS.
– π2, where rp0 = A and rp1 = A. p0 prefers to switch to role B. Not NRS.
– π3, where rp0 = B and rp1 = B. p0 prefers to switch to role A. Not NRS.

An IRS partition πIRS of an RTHG instance I can be found in time polynomial
in |I|. Given any partition π of I, perform a local search where the neighborhood
is one individual in one coalition changing her role and improvement is evaluated
in terms of changes to that coalition’s utility. Since this improves the overall
utility of the partition, there are a limited number of possible improvements;
when no improvements are possible, the partition is IRS.

Definition 7. A partition π is Nash stable (NS) iff it is both NTS and NRS.
A partition π is individually stable (IS) iff it is both ITS and IRS.
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A NS partition πNS may not always exist for some RTHG instances, given
that a partition πNRS may not exist.

An IS partition πIS of an RTHG instance I can be found in time polynomial
in |I|. Given any partition π of I, alternatively perform IRS local search and
ITS local search until neither finds an improvement. The resulting partition π′

will be IS.

Theorem 1. Every instance of RTHG has an IS partition. Not every instance
of RTHG has a NS partition.

5 Complexity

Definition 8. An instance of Special RTHG is an instance of RTHG such that
for each agent p ∈ P , each t ∈ C, and each r ∈ t; up(t, r)→ {0, 1} and up(t, r) =
1 only if t is uniform, namely it consists of m copies of a single role r.

In other words, each agent finds some non-empty set of single-role team com-
positions acceptable (utility 1), and no other types of team compositions accept-
able.

Definition 9. The language Perfect RTHG consists of those instances of
RTHG for which a perfect partition exists, and Perfect Special RTHG con-
sists of those instances of Special RTHG for which a perfect partition exists.

In Special RTHG instances, the question of a perfect partition reduces to
the problem of finding a MaxMin partition, or the decision problem of whether
there’s a partition with MaxMin value m.

Consider the Exact Cover problem:
GIVEN a set S ⊆ P({1, ..., r}) where all elements of S have size 3,
IS THERE a subset T ⊆ S such that T partitions {1, ..., r}?

Exact Cover is NP-complete [12].

Theorem 2. Perfect Special RTHG is NP-complete.

Proof. To show that Perfect Special RTHG is in NP, consider the following
NP algorithm. Given an instance of Perfect Special RTHG, guess a partition
and evaluate its MaxMin value. To compute the MaxMin value, compute the
utility of each of the |P |/m coalitions (time O(mt) for each coalition, where t is
the complexity of table lookup for an individual’s utility for a particular team
and role), stopping and rejecting if any coalition has utility 0, else accepting.
This checking is in time polynomial in the size of the input.

To show NP-hardness, we show that Exact Cover ≤P
m Special Perfect

RTHG. In other words, given an instance E = 〈r, S〉 of Exact Cover, we
construct an instance RE of Special Perfect RTHG such that E ∈ Exact

Cover iff RE ∈ Special Perfect RTHG.
RE will have the property that, for each agent, the only acceptable teams are

uniform, i.e., consist of m copies of a single role. Thus, the question is whether
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they can be assigned to an acceptable team; the role for that team will be
acceptable.

Consider E = 〈r, S〉. For each set in S, RE will have a role and a corresponding
team composition. P = {1, ..., r}. The desired team size is m = 3. Each agent i
desires those team compositions s such that i ∈ s.

There is an exact cover of {1, ..., r} iff there is an assignment of agents to
teams of size 3 such that each team corresponds to an element of S.

Therefore, the Perfect Special RTHG problem is NP-hard.

Corollary 1. The general case of Perfect RTHG is NP-hard.

Proof. We observe that if there were a fast algorithm to decide the general case of
Perfect RTHG then this same algorithm would also decide Perfect Special

RTHG.
Therefore the general case of Perfect RTHG is NP-hard.

Definition 10. The language MaxSum RTHG consists of pairs 〈G, k〉, where
G is an instance of RTHG, k is an integer, and the MaxSum value of G is
≤ k; MaxSum Special RTHG consists of those instances of Special RTHG
for which the MaxSum value is |P |.

Definition 11. The language MaxMin RTHG consists of pairs 〈G, k〉, where
G is an instance of RTHG, k is an integer, and the MaxMin value is ≤ k;
MaxMin Special RTHG consists of those instances of Special RTHG for which
the MaxMin value is m.

Theorem 3. MaxMin RTHG and MaxSum RTHG are both NP-hard.

Proof. A Special RTHG partition π for G is perfect iff
∑

p∈P up(π) = |P |
iff MaxMin(π) = m iff 〈G, |P |〉 ∈ MaxSum RTHG iff MaxSum(π) = |P | iff
〈G,m〉 ∈ MaxMin RTHG. Therefore MaxMin RTHG and MaxSum RTHG

are both NP-hard.

6 Greedy Heuristic Partitioning

By modeling agents as voters in an election and their preferences over team
compositions and roles as votes, the scoring voting rule can be applied to hold
a series of elections and democratically (but not necessarily optimally) assign
agents to teams. A voting rule is a function mapping a vector a of voters’ votes
to one of the b candidates in a candidate set c.

Definition 12. [7] We define scoring rules for elections as follows. Let a =
〈a1, · · · , am〉 be a vector of integers such that a1 < a2 < . . . < am. For each
voter, a candidate receives a1 points if it is ranked first by the voter, a2 points if
it is ranked second, etc. The score sc of candidate c is the total number of points
the candidate receives .



Roles and Teams Hedonic Game 359

For our procedure, a |C|m × |P | matrix of agent utility values becomes the
candidate set c. An “election” is run upon the candidate set to select the most-
preferred coalition. A set of m voters with the highest utility for that coalition
is selected to form a team and removed from the population. Their votes are
removed, and a new election is held on the reduced candidate set. This procedure
continues until all |P | agents have been matched to |P |/m teams. We assume that
m evenly divides |P |. The following pseudocode describes this greedy algorithm:

Algorithm 1. GreedyRTHGPartiton(RTHG instance G, empty partition π)

for |C| compositions c0 → c|C|−1 do
for m positions r0 → rm−1 ∈ ci do

calculate the sum of agent votes on 〈ci, rj〉. O(|P |)
end for

end for
for |P |/m coalitions t0 → t|P |/m−1 to assign to π do

find the set of compositions Cmax for which the sum of total votes is maximized.
O(|C| ·m)
select one composition ci uniformly at random from within the set.
for m positions r0 → rm−1 ∈ ci do

find the set of agents Pmax(ci, rj) for whom the individual agent’s vote for
〈ci, rj〉 is maximized. This takes time O(|P |/m), given that the population
shrinks by m agents as each team is formed and removed.
select one agent pj uniformly at random from within the set.
add agent pj to the coalition tk.
for |C| compositions c0 → c|C|−1 do

for m positions r0 → rm−1 ∈ ci do
remove agent pj ’s vote from the population, decrementing the sum total
vote on 〈ci, rj〉.

end for
end for

end for
append team tk to the partition π.

end for

Observation 4. The time complexity of GreedyRTHGPartiton is O(|P |2/m),
or O(|P | · |C| ·m) if |P | < |C| ·m2.

7 Testing and Results

For our experiments we chose Strictly Ordered RTHG instances. In a Strictly Or-
dered RTHG instance, each agent’s first choice of composition or role is weighted
equivalently to other agents’ first choices, as is her second choice, etc. The system
does not value one agent’s preferences over another.

Two hundred and forty instances of Strictly Ordered RTHG were generated
by a uniformly random procedure we developed. This number of cases allowed us



360 M. Spradling et al.

to test |P | ranging from 6 to 15 agents, |R| ranging from 3 to 6, and m ranging
from 3 to 5.

We began with |P | = 6, |R| = 3, and m = 3 in the minimal case. Ten random
preference matrices were generated with these arguments. We then incremented
|R| by 1 and generated ten new random preference matrices, up to |R| = 6. This
process was repeated for 〈m, |P |〉 = 〈4, 8〉, 〈5, 10〉, 〈3, 12〉, 〈4, 12〉, 〈5, 15〉. These
upper bounds were chosen because larger inputs dramatically increased the time
required for the brute force solvers to process the data.

Optimal results were calculated for each of these instances by MaxSum and
MaxMin brute force implementations we developed. There are

O(|P |! · (|C|+ |P |/m)|P |/m)

possible partitions in an instance of RTHG. We generate all of them and find the
MaxSum and MaxMin values for each instance considered. Our implementation
of GreedyRTHGPartiton ran each instance 500 times, in order to limit random
error. For the same instances, IS solutions were constructed by our implementa-
tion of ISLocalSearch. Fifty initial partitions were selected uniformly at random
for each instance as starting points for ISLocalSearch. We compared the mean
utilities of partitions generated by GreedyRTHGPartiton and ISLocalSearch to
the optimal results as |P | increased.

Computations were run on a machine using 8 GB of RAM and a 2.50 GHz
Intel(R) Core(TM) i5-3210MCPU. MaxSum andMaxMin brute force algorithms
were implemented in C++, while GreedyRTHGPartiton and ISLocalSearch were
implemented in Python 3.3.

Results are presented in Figures 1 and 2. We show the percentages by which
GreedyRTHGPartiton and ISLocalSearch overestimate optimal MaxSum and

Fig. 1. Percent underestimate of op-
timal MaxSum and MaxMin using
GreedyRTHGPartiton as |P | increases

Fig. 2. Percent underestimate of opti-
mal MaxSum and MaxMin using ISLo-
calSearch as |P | increases
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MaxMin for each test case. The lower the percent overestimation the better.
Each figure shows the mean overestimation as |P | increases.

GreedyRTHGPartiton produces consistently better results for estimating Max-
Sum compared to MaxMin. The greedy heuristic may leave a very poor coali-
tion at the end, lowering MaxMin performance. Suppose there are 6 agents
A,B,C,D,E, and F being matched to 3 teams each of size 2. The best coalition
is AB, while the four worst coalitions are CDCE,CF, and EF. If A and B
form a coalition together in the first iteration, then the remaining two coalitions
selected will be among the worst possible. It may transpire that CD is the next
team to be formed, even if EF happens to be the worst coalition of all.

Total utility is balanced out by strong selections made at the beginning, raising
the performance against MaxSum. In our experiments, GreedyRTHGPartiton
underestimates MaxSum utility by 68.38% and MaxMin by 105.76% on average.

ISLocalSearch performance against MaxMin and MaxSum optimal solutions
is close. There is an approximately linear increase in overestimation as |P | in-
creases, because there are increasingly many local optima as the size of the
input increases. In our experiments, ISLocalSearch underestimates the MaxSum
optimal utility by 93.62% and the MaxMin optimal by 90.88% on average.

To test the stability of GreedyRTHGPartition solutions, we ran each of its
outputs as input to the ISLocalSearch algorithm. We included an additional 80
inputs with |R| = 5 and m = 5, with |P | increased for every 10 inputs. The
results are shown in Figures 3 and 4. Defining Q as the number of iterations
required for ISLocalSearch to form an IS partition from GreedyRTHGPartition,
Q increases as |P | increases. The speed with which Q grows relative to |P | is
the ratio Q/|P |. This is the number of local search iterations required per unit
population. This ratio decreases at |P | increases, suggesting that fewer local
searches per unit population are required as |P | grows.

Fig. 3. Number of local searches to find
IS partition as |P | increases

Fig. 4. Number of local searches per
unit population as |P | increases
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Abstract. In an era of overwhelming choices, recommender systems aim
at recommending the most suitable items to the user. Preference han-
dling is one of the core issues in the design of recommender systems and
so it is important for them to catch and model the user’s preferences as
accurately as possible. In previous work, comparative preferences-based
patterns were developed to handle preferences deduced by the system.
These patterns assume there are only two values for each feature. How-
ever, real-world features can be multi-valued. In this paper, we develop
preference induction methods which aim at capturing several preference
nuances from the user feedback when features have more than two values.
We prove the efficiency of the proposed methods through an experimen-
tal study.

1 Introduction

Choosing the right or the best option is often a demanding and challenging task
for the user when there are many available alternatives (e.g., a customer in an
online retailer). Recommender systems aim at recommending the most suitable
items to the user. However, the recommended items proposed by the system may
not match the users’ needs as recommender systems might miss on the users’
preferences (see, e.g., [1]). One approach which ensures that the system is kept
aware of the user needs is to establish a conversation between the user and the
system by means of conversational recommender systems.

Preference handling is one of the core issues in the design of recommender
systems and so it is important for them to catch and model the user’s prefer-
ences as accurately as possible. In fact, preferences aim at offering the user the
ability to express her relative or absolute satisfaction when faced with a choice
between different options. One of the major approaches in today’s recommender
systems is utility functions which assign a numerical score to each data item [2].
A second major approach is the relational preference structures [3] as the user
may wish to state simple comparisons. She may want to make no explicit quan-
tification of preference or utility, leaving the preference purely qualitative. This
could be the case for example in a travel problem, where there is a large number
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of possible attributes involving times, transportation means and locations that
vary from one user to another. In such a case, the user may want to say that she
likes to travel to a country during the summer in that country, with all other
attributes being equal. The user will then avoid having to communicate an accu-
rate numerical model. It has also been claimed that the qualitative specification
of preferences is more general than the quantitative one, as not all preference
relations can be expressed by scoring functions [4].

In this paper, we look for elaborate and generic comparative preferences-based
induction methods that we can prove to be efficient in practice with conversa-
tional recommender systems that suggest multi-valued feature products to the
user.

The rest of the paper is organized as follows. In Section 2, we give an overview
of conversational recommender systems and how preferences are handled in these
systems. Then, Section 3 describes the framework of preference dominance that
will be used in this paper. The conversational recommender system we are using
is detailed in Section 4. A fundamental step in the process of recommending
for conversational recommender system is preferences induction. We introduce a
number of preference induction methods in Section 5. We performed experimen-
tations which allowed us to assess the efficiency of these methods with regards to
the obtained results which we discussed in Section 6. In Section 7, we conclude
the paper with possible extensions of the proposed approaches.

2 Related Work

2.1 Conversational Recommender Systems

Generally speaking, people do not state their preferences up-front because ini-
tially they only have a vague idea of the product they would like to have [5].
Usually, criteria about the product the customer would like to purchase are
specified during the dialogue with the seller. This is still the case even for knowl-
edgable customers in the domains where expert users need to be assisted because
available products dynamically change. A distinctive example is the list of special
offers (e.g., flight tickets) which change frequently.

Conversational recommender systems [5] recognise that their users may be
willing and able to provide more information on their constraints and prefer-
ences, over a dialogue. The main difference with the single-shot recommenda-
tion scenario is that in the case where the user is not satisfied she can revise her
request.

2.2 Preference Handling in Conversational Recommender Systems

The acquisition of preferences is a central challenge in interactive systems like
recommender systems [6]. There are two major approaches in today’s recom-
mender systems: utility functions [2] and relational preference structures [3]. A
utility function assigns a numerical score to each item. Relational preference
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structures link pairs of items through the notions of “is preferred to” and “is
equally preferable as” thus leading to qualitative preference orderings. Typi-
cally, the task of the recent online conversational recommenders is to elicit the
customer requirements, while interacting with her, in a personalized way.

Critiquing [7] is an interaction model that allows users to build their prefer-
ences by examining or reviewing examples shown to her by the system. The user
feedback employed in conversational recommender systems was also studied in
[8] through two comparison-based recommendation approaches: More Like This
(MLT) and Partial More Like This (PMLT). Their role is to induce preferences
when the user reacts to the recommended items. They both generate preference
statements stating the preference of features that mark the selected item over
those that characterize the rejected items during an interaction stage. Informa-
tion Recommendation [9] is a recommendation approach that aims at suggesting
to the user how to reformulate her queries to a product catalogue in order to
find the products that maximize her utility. In [9], the authors showed that, by
observing the queries selected by the user among those suggested, the system
can make inferences on the true user utility function and eliminate from the
set of suggested queries those with an inferior utility. Authors in [10] proposed a
novel use of the formalism of preference elicitation in [9]. They invoked compara-
tive preferences-based patterns to handle the preferences deduced by the system.
These patterns assume there are only two values for each feature. However, real-
world features can be multiple-valued. In this paper, we investigate preference
induction methods which can handle the user preferences in a conversational
recommender for products with multiple-valued features.

3 CP-Tree-Based Dominance

Products in online databases need to be compared by pairs, through dominance
testing, to find out which options are dominated and to eliminate them con-
sequently . In this paper, dominance testing is based on some structure called
cp-trees which were introduced in [11].

3.1 Description of a CP-Tree

A cp-tree is a directed rooted tree. Associated with each node N in the tree is
a set of variables YN . Let γ be the maximum number of variables in YN . The
cp-tree represents a form of lexicographic order where the importance ordering
on nodes and their assignments depends on more important nodes and their
assignments.

Example 1. Let V = {X,Y, Z} be a set of variables whose domains are as follows.
X = {x1, x2}, Y = {y1, y2} and Z = {z1, z2} respectively. Figure 1 represents
an example of a cp-tree with γ = 1. Each node in the cp-tree depicted in Figure
1 is labeled with a variable. The root is labeled by X as the most important
variable. Each node is also associated with a preference ordering of the values of
the variable. We can see the total pre-order of the outcomes below the cp-tree.
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Fig. 1. A cp-tree σ, along with its associated ordering �σ on outcomes, with γ = 1
(i.e., with at most one variable associated with a node)

3.2 CP-Tree-Based Dominance

Let Γ be a set of comparative preference statements. Let �Γ be the associated
preference relation of Γ on outcomes. Let α and β be two outcomes. The following
definition is based on [11].

Definition 1. α dominates β if and only if all possible cp-trees (every cp-tree
represents a total pre-order) that satisfy Γ , prefer α over β. In other words,
α �Γ β holds if every cp-tree σ that extends all preferences in Γ has α come
before β.

In this paper, we are using a dominance testing as stated in Definition 1 and
which can check, in polynomial time, whether α �Γ β.

4 The Case Study: A “Select and Get More Products”
Conversational Recommender System

The product search, which needs a filter-based retrieval, can take place in tan-
dem with preference elicitation. This motivates our present work which suggests
a conversational recommender system that guides the user towards her target
through a simple conversation during which the system can deduce different
forms of comparative preferences from the user feedback.

4.1 The Advisor

The advisor helps the user identify a suitable product to purchase among the
relatively large set of available products. The proposed system in this paper can
be regarded as an instance of a kind of system in which the user is repeatedly
shown products and criticises one or more of the shown products, until she finds
a product that she is keen to have. During the interaction with the user, the
advisor infers preference relations from the user’s selections at each step. The
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selected potential products that are shown to the user are meant to best match
these preference relations.

The user’s preferences are stored in a kind of user model which is progressively
updated by the system as the dialogue continues. Having that user model, the
system starts to be able to determine whether certain products dominate others
and to suggest to the user those that are not dominated. Dominance is computed
as described in Section 3.2. The advisor asks little from the user who will only
select one of the products shown to her. This will steer the user smoothly towards
her target.

4.2 Products

We assume that the products are modeled with a collection of n multi-valued
features V = {F1, . . . , Fn}. The features are intended to relate to a set of prod-
ucts that the user is interested in choosing between. For example, if the product
is a hotel, one feature might be the size of a swimming pool in the hotel (e.g.,
the swimming pool can be small, medium or large).

4.3 Dialogue

Let Ω be the global set of products. Let K (i.e., 9) be the maximum number of
products shown to the user in each step of the dialogue.

Initially, the user is shown the first K non-dominated products retrieved from
Ω and selects a product P . The interaction between the user and the recom-
mender system proceeds as follows:

– The recommender system analyzes the current product P and induces some
constraints on the user’s preferences with particular regard to differences
between P and the products the user might have selected. The nature of the
induced preferences depends on the induction method used.

– From the second step of the dialogue, the system computes K non-dominated
products among the remaining products. In fact, the system keeps retriev-
ing products from those remaining in the database and not yet checked by
the system then pruning the dominated ones until finding a set of K non-
dominated products or there are no more products remaining in Ω. The
system adds the product that the user selected in the previous step of the
dialogue to the set of non-dominated products already computed. Since K is
set to 9 in these experiments, the user is shown 10 products. If the number
of products remaining in the database is less than K then we select the non-
dominated among the remaining products and we show them to the user
with the product chosen in the previous step.

– The user selects a product which becomes the new current product P .

The sequence of steps stated above is repeated until the user is satisfied with
P (by either choosing the same product a number of times (set to 3) or she gets
the most preferred product with regards to her true preferences) or the set of
remaining products in Ω is empty.
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5 Induction of Constraints on Preferences within the
System

Each time the user reviews a product, the recommender system, described in
Section 4 induces some of the user’s preferences. There are several induction
methods that specify patterns of preference statements that can be induced
from the user’s selection. In this section, we discuss a number of these methods.

5.1 Constraint Language

Let V be a set of variables. Wilson [11] presented comparative preference theories
which involve preference statements ϕ of the form p > q||T where p and q are the
respective assignments to sets of variables P and Q, and T is a set of variables
(P ⊆ V , Q ⊆ V and T ⊆ V ). Such a statement expresses a preference for an
assignment p over another assignment q with variables T held constant. We are
specifically using Wilson’s preference language to allow the system to handle the
preferences induced from the user selection.

5.2 Preferences Deduction within the System

This section explains what the system induces when it observes the product that
the user selects and the remaining products that were shown but not selected
by the user. We adopt approaches which are based on comparative preference
and partially inspired from MLT and PMLT approaches briefly described in
Section 2.2. We have derived three patterns of preference statements that the
system can induce when the user makes her selection. Let V = {F1, . . . , Fn}
be a set of n variables that represent features. Let C and R be two products.
The combinations of feature values in the two products are denoted as follows.
C={fC

1 . . . fC
n } and R={fR

1 . . . fR
n } where fC

i and fR
i are the two respective

values that C and R have for the feature Fi (i={1, . . . , n}).
When the user chooses a product C and rejects another product R among

a set of K non-dominated products that are shown to her, the system induces
preference statements whose form depends on the following inference methods.

– Basic: A straightforward kind of preference to be induced is to express
the preference of the features values combination included in C over the
combination of values included in R. Thus, we model the following preference
statement fC

1 . . . fC
n ≥ fR

1 . . . fR
n ||∅.

– Lex-Basic: Lexicographic preference models are regarded as simple and
reasonably intuitive preference representations, and so lexicographic order-
ing can be well-understood by humans that use it to make preference deci-
sions [12]. This is why we adopt a lexicographic model of the Basic format
described above. This pattern allows the system to induce unconditional
preference statements with regards to Basic.
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Let U ⊆ V be the set of features for which C and R have the same values
(i.e., C and R agree on U). Let S ⊆ V be the set of features for which C
and R have different values. The combinations of features values of C and
R can be represented by assignments us and us′ respectively, with u is the
assignment to U (i.e., u ∈ U), and s and s′ are the respective assignments
to S of C and R which differ on each feature: s(F ) �= s′(F ) for all F ∈ S.
Instead of stating the preference of us over us′ as in Basic (i.e., us > us′||∅),
the idea is to induce a preference statement saying partial assignment s is
preferred over partial assignment s′ with all remaining features in V (i.e.,
features not in S) being equal. Then, the induced preference statement can
be written as s > s′||U , the corresponding unconditional statement.

– Every-Selected-Value:We induce the preference statements fC
i ≥ fR

i ||V \
{Fi}, for every value fC

i assigned to feature Fi in the chosen product C and
for any value fR

i assigned to feature Fi in a rejected product R.
This states the superiority of every feature value taken by the chosen product
C (i.e., fC

i ) over any other value (of the same feature) that appears at least
in one rejected product R (i.e., fR

i ).

– Cond-Selected-Value: We induce the preference statements f̂C
i ≥ fR

i ||V \
{Fi}. f̂C

i represents every value assigned to feature Fi in the chosen product
C without being present in any rejected product R. fR

i represents every
value assigned to feature Fi in a rejected product R.

This states the superiority of every feature value f̂C
i taken by the chosen

product C, and which does not appear in any rejected product R, over any
other possible value fR

i (of the same feature) that appears at least in one
rejected product R. The difference with Every-Selected-Value form is that the

preferred feature value f̂C
i needs to be present in the chosen product C and

it should not appear in any rejected product R while Every-Selected-Value
involves all feature values in C.

Let ΦB , ΦLB , ΦESV and ΦCSV be the sets of preference statements induced
by the system with Basic, Lex-Basic, Every-Selected-Value and Cond-
Selected-Value respectively. We shall notice that any cp-tree that satisfies
ΦLB will also satisfy ΦB as preference statements in ΦLB imply statements in
ΦB. We also notice that the set of preference statements in ΦCSV is included
in ΦESV . Thus, all cp-trees that agree with statements in ΦESV also agree with
statements in ΦCSV . The set of cp-trees SΦB that satisfy ΦB is likely to be larger
than the set of models SΦLB . This can explain a weaker inference for Basic with
regards to Lex-Basic. The set of models that agree with statements in ΦESV

will necessarily be smaller than the set of models satisfying ΦCSV as ΦESV ⊆
ΦCSV . Thus, this will probably make the dominance relation based on ΦESV

stronger than the dominance relation based on ΦCSV .

Example 2. Let V = {F1, F2, F3} be a set of features whose domains are as
follows. F1 = {f1

1 , f
2
1 , f

3
1 }, F2 = {f1

2 , f
2
2 }, F3 = {f1

3 , f
2
3 , f

3
3 , f

4
3 }. Let us assume
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that the user is initially shown the three following products: f1
1 f

1
2 f

2
3 , f

2
1 f

1
2 f

3
3

and f2
1 f

1
2 f

1
3 . Then, the user chooses f2

1 f
1
2 f

3
3 . The system will induce prefer-

ences in a format that depends on which among the methods introduced above
is used. For Basic, the system induces the set of statements Φ1 = f2

1 f
1
2 f

3
3 ≥

f1
1 f

1
2 f

2
3 ||∅, f2

1 f
1
2 f

3
3 ≥ f2

1 f
1
2 f

1
3 ||∅. For Lex-Basic, the system induces the set of

statements Φ2 = {f2
1f

3
3 ≥ f1

1 f
2
3 || {F2}, f3

3 ≥ f1
3 ||{F1, F2}. For Every-Selected-

Value, the system induces the set of statements Φ3 = {f2
1 ≥ f1

1 ||{F2, F3}, f3
3 ≥

f2
3 ||{F1, F2}, f3

3 ≥ f1
3 ||{F1, F2}. For Cond-Selected-Value, the system induces

the set of statements Φ4 = f3
3 ≥ f2

3 ||{F1, F2}, f3
3 ≥ f1

3 ||{F1, F2}.
Let us suppose now that the system wants to show other undominated prod-

ucts to the user who is not yet satisfied with her selection. The system has three
other products in the database and it will check whether they are dominated.
Let α = f2

1 f
2
2 f

3
3 and β = f1

1 f
2
2f

1
3 be two of them.

For Basic, α ��Φ1 β as we can identify cp-trees which satisfy preference state-
ments in Φ1 and prefer β over α. An example illustrating this is a cp-tree σ
with root node associated with variable F2 (and value ordering e.g., such that
f1
2 � f2

2 ), and associated with value f2
2 is a child node with variable F1 and local

ordering such that f1
1 � f2

1 .
For Lex-Basic, α �Φ2 β as all cp-trees that satisfy preference statements in

Φ2 have nodes F1 with a local ordering such that f2
1 ,F1 f1

1 , and nodes F3 with
a local ordering such that f3

3 ,F3 f1
3 and f3

3 ,F3 f2
3 . All these cp-trees prefer α

over β as any product that has f2
1 and f3

3 as values for F1 and F3 respectively
will be preferred over any product that has f1

1 and f1
3 for F1 and F3 respectively.

For Every-Selected-Value, with a similar justification as α �Φ2 β, α �Φ3 β.
For Cond-Selected-Value, α ��Φ4 β as there exist cp-trees which satisfy Φ4

but prefer β over α. The cp-tree σ described above is an illustrative example.

6 Experimentation and Results

This section describes experiments to assess the inference methods presented
in Section 5.2. By these experiments we aim at showing the applicability and
efficiency of these methods since this is the first time it is applied in the context
of recommender system with multi-valued features. These experiments illustrate
how a recommender system can exploit the expressiveness of comparative pref-
erences and their relatively fast preference dominance engine.

6.1 Experiment Design

We report experiments with simulated users. The ultimate evaluation and vali-
dation of the preference dominance approaches for conversational recommender
systems should be performed online. However, experiments with real users can-
not be used to extensively test alternative newly-deployed interaction control
algorithms. Indeed,a number of researchers pointed out the limitations of off-
line experiments and their evaluation mechanisms, whereas others argued that
off-line experiments are attractive because they allow comparing a wide range
of approaches at an affordable cost [13].
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We make assumptions concerning the behaviour of users. For a simulated
user to make choices about which among the recommended products is the best
one for her to have, she must be assigned a set of true preferences. The user’s
true preferences are represented either in the weights vector model by randomly
generating weights vectors over product features or in the cp-tree model by
randomly generating cp-trees over product features. The weights are related to
product features; they are randomly selected real numbers in the interval [0,1].
The cp-trees representing the user’s true preferences have the same structure as
the cp-tree described in Section 3.1.

We have generated random products with n (e.g., 10) variables having three
values each. Four recommenders use the four induction methods while other four
recommenders consider four combinations of these approaches. For each pairing
of a user with a recommender system, we ran 1,000 simulated dialogues. In
total then, we are reporting results for 8 ways of inducing the user’s preferences
× 2 ways of representing the user’s true preferences × 1,000 dialogues, which
is 16,000 runs of the system. Experiments were run as a single thread on Dual
Quad Core Xeon CPU, running Linux 2.6.25 x64, with overall 11.76 GB of RAM,
and processor speed 2.66 GHz.

6.2 Pruning

The recommender system considered in this work will keep only those products
which are not dominated regarding the user’s preferences collected so far during
the dialogue between the user and the system. In the experiments, we compare
the pruning rates achieved by the eight recommender systems. As mentioned in
Section 4.3, in each step of the dialogue, the goal of the system is to show a
(predefined) number of non-dominated products to the user. Thus, the system
selects K non-dominated products from a subset of L products among those
remaining in the global set of products and not yet retrieved by the system. The
pruning rate is defined as the proportion of K in L.

6.3 Discussion of Results

The capability of pruning dominated combinations of features is an important
success key of a conversational recommender system. But, the pruning capac-
ity is not sufficient to make a conversational recommender system prevail over
another. For instance, when the system prunes a large number of products, the
user-system dialogue could be longer and the user might take more time to meet
her target. Therefore, several factors might determine how good a conversational
recommender system is. These factors include the pruning rate (Pruning), the
running time (Time), the dialogue length (Steps) and the shortfall (Fall). The
running time records, in milliseconds (ms), the time spent in checking the dom-
inance of the products. The shortfall expresses how far is the preference of the
product the user ended up with from the best product (in the database) the
user could have obtained (in percentage). Table 1 and Table 2 give the results
of the experiments with the true preferences of the simulated users represented
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Table 1. Averages (over 1,000) of the pruning rates, the computation time, the number
of steps per dialogue and the shortfalls for each induction method and each combination
of induction methods (users as weights vectors)

Induction methods Pruning (%) Time (ms) Steps Fall (%)

Basic 3.03 0.017 6.06 0.068

Lex-Basic 27.73 0.03 5.59 0.064

Every-Selected-Value 55.09 0.027 4.94 0.052

Cond-Selected-Value 0.42 0.008 6.1 0.069

Basic + Every-Selected-Value 55.09 0.036 4.94 0.052

Basic + Cond-Selected-Value 5.17 0.018 6 0.069

Lex-Basic + Every-Selected-Value 55.09 0.049 4.94 0.052

Lex-Basic + Cond-Selected-Value 30.42 0.033 5.52 0.065

as weights vectors and cp-trees respectively. The measures shown are averaged
over 1, 000 dialogues.

Table 1 shows that, the amount of pruning increases as the preference state-
ments induced become less conservative (from Basic to Every-Selected-Value).
For example, pruning goes from 3.03% Basic to 55.09% Every-Selected-Value.
Lex-Basic has also significantly improved its pruning rate with regards to Basic
(27.73% versus 3.03%) after unconditioning the preference statements that were
conditional in Basic. The exception to this is Cond-Selected-Value case (0.42%)
which is probably due to the fact that the system induces much less preference in-
formation about the user. In fact, experiments have shown that one feature value
that is seen in the chosen product is likely to be in at least one of the rejected prod-
ucts which makes the system refrain from inducing a preference statement that
involves that feature value when Cond-Selected-Value is adopted. Thus, Cond-
Selected-Value implies preference statements that would be satisfied by a quite
large set of models which makes the inference weaker. Cond-Selected-Value has
the smallest pruning rate with no positive effect on the shortfall. Every-Selected-
Value distinguishes itself by having the best pruning capability (55.09%) and the
shortest dialogue (4.94) that did not prevent it from having the best shortfall
(0.052%).

When combined with a more conservative method as Basic or Lex-Basic, Every-
Selected-Value takes longer period of time (0.036ms and 0.049ms versus 0.027ms)
even though the pruning and the dialogue length are still the same. We can also see
the running time is increasing with the pruning rate. In fact, this conversational
recommender system keeps retrieving products from the database and trying to
gather a predefined number of undominated products. A high pruning rate usually
indicates that the number of products retrieved is quite large. This involves more
pairwise comparisons between products and so takes more time.

Table 2 gives the results of the experiments with the true preferences of the
simulated users represented as cp-trees. The measures shown are averaged over
1,000 dialogues. A look at Table 2 shows that we can infer similar conclusions



Comparative Preferences Induction Methods 373

to the deductions made from results in Table 1. We can see that all the pruning
rates are higher than the pruning percentages in Table 1 as well as the shortfall
percentages. These differences can be explained by the nature of the user’s true
preferences and the way the user satisfaction is computed for both preference
models (i.e., weights vectors and cp-trees). The shortfalls are all very small. It
may be that Basic has the smallest shortfall (i.e., 0.187) in the second setting
because it is the most cautious, i.e., it makes the weakest assumptions on the
preferences.

Table 2. Averages (over 1,000) of the pruning rates, the computation time, the number
of steps per dialogue and the shortfalls for each induction method and each combination
of induction methods (users as cp-trees)

Induction methods Pruning (%) Time (ms) Steps Fall (%)

Basic 18.68 0.049 9.558 0.187

Lex-Basic 64.83 0.045 5.482 0.642

Every-Selected-Value 74.74 0.039 4.383 0.646

Cond-Selected-Value 1.28 0.015 11.211 0.640

Basic + Every-Selected-Value 74.74 0.048 4.383 0.646

Basic + Cond-Selected-Value 21.18 0.052 9.52 0.642

Lex-Basic + Every-Selected-Value 74.74 0.064 4.383 0.646

Lex-Basic + Cond-Selected-Value 65.19 0.046 5.435 0.641

7 Conclusions and Perspectives

Recommender systems are gaining momentum in the e-commerce applications
market to face the “information overload” problem. This progressively reveals an
increasing need to enable those recommender systems with suitable preference
formalisms and dominance engines that can efficiently handle and reason with the
user preferences while conversing with her (see, e.g., [10]). We specify new prefer-
ence induction methods based on a recently developed preference language (i.e.,
comparative preference theories). We implemented these methods for a conversa-
tional recommender system to handle the user’s preferences when recommending
multi-valued feature products. We showed that these methods allow the system
to capture preference nuances and various forms of preferences without giving up
the attractive computational properties of the preference dominance relation.

As a continuation of this work, we will consider similar preference induction
methods to be integrated with different critiquing-based recommender systems.
Extending the conclusion to a more general scope, in the future, we intend to look
for more elaborate and intuitive preference elicitation formalisms that we can prove
to be efficient in practice with conversational recommenders. These formalisms will
adapt with the different dialogue strategies the conversational recommenders go
through. They can be part of an intelligent query selection strategy to drive the
elicitation process in the recommenders.
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Abstract. Congestion occurs when there is competition for resources
by selfish agents. In this paper, we are concerned with smoothing out
congestion in a network of resources by using personalized well-timed in-
centives that are subject to budget constraints. To that end, we provide:
(i) a mathematical formulation that computes equilibrium for the re-
source sharing congestion game with incentives and budget constraints;
(ii) an integrated approach that scales to larger problems by exploiting
the factored network structure and approximating the attained equilib-
rium; (iii) an iterative best response algorithm for solving the uncon-
strained version (no budget) of the resource sharing congestion game;
and (iv) theoretical and empirical results (on an illustrative theme park
problem) that demonstrate the usefulness of our approach.

1 Introduction

Competition for resources by autonomous agents typically leads to congestion
if the agents access these resources in an uncoordinated fashion [1]. It is hence
common for a network to experience congestion even when the average demand
for a resource is much less than its capacity. Researchers have generally taken
three approaches to address this issue. The first approach is to use the theory
of mechanism design, where a central authority designs rules of agent interac-
tions [2–4] by taking agent incentives into account . By designing appropriate
rules, the central authority can obtain desirable goals such as maximizing social
welfare. This assumes that the central authority defines and controls the rules
of interaction. However, in this paper, we consider scenarios where the basic set-
tings (rules) of the environment cannot be modified (like preferences of people
going to a theme park or theme park configuration or communication protocols
in a computer network).

Secondly, researchers have investigated the use of penalties or incentives on
certain resources to discourage or encourage interactions that will lead to de-
sirable goals. A central authority can alter the demand for certain resources by
tweaking the amount of penalty or incentive for those resources. Much of the
initial work in this area, especially in transportation applications [5, 6], assumes
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that every agent using the same resource will get the same penalty or incentive.
A good example is the use of toll gates on roads. [7] and [8] provide further ex-
amples of settings where using external penalties or incentives affect the utilities
involved. More recently, researchers have relaxed this assumption and imple-
mented penalties or incentives that are probabilistic in nature [9]. For example,
a public radio listener will be entered in a draw for a free iPad if he/she donates
to the radio station.

Finally, Monderer and Tennenholtz have studied the problem of minimizing
incentive needed to sufficiently incentivize agents to take desirable strategies
(that are inputs to the problem) [10]. While there are similarities, we differ from
this work in multiple ways: (1) Our focus is on finding an equilibrium strategy
that is closest to the set of desired strategies given a budget; (2) we assume that
the total amount of incentives that can be used must be within a given budget;
and (3) our desirable strategies are specified at an aggregate level with respect
to a set of agents. For instance, “no more than 10 agents can consume resource
3” as opposed to “agent 2 should take strategy 3”. These differences preclude the
applicability of their approach on problems with budget constraints and large
number of agents.

These differences are motivated by a crowd congestion control problem in an
actual theme park. Through interviews with park operators, we learnt that they
can provide well-timed incentives to specific patrons through mobile devices
to change their behavior and thereby ease congestion (long queues at certain
attractions). Naturally, the (monetary) incentives must be within a given budget.
Lastly, the park operators are interested in specifying aggregated desirable levels
of congestion instead of individualized desirable strategies.

More precisely, we are interested in the problem on how best to distribute
incentives among different agents at different time points so that certain re-
source congestion thresholds are satisfied at equilibrium and that the incentives
distributed are within a given budget. We make the following contributions:

(1) We introduce a non-linear mathematical programming formulation and show
how it can be linearized into a mixed-integer linear program (MILP) to com-
pute the equilibrium for a networked congestion game with incentives and
budget constraints.

(2) We exploit the factored network structure to drastically reduce the complex-
ity of enumerating the space of agent strategies and provide an enhancement
to compute approximation equilibria to scale up the MILP.

(3) We provide a scalable iterative best response algorithm to solve a version of
the game without budgets while minimizing the overall incentive required.

(4) Lastly, we provide theoretical and empirical results showing that congestion
is reduced at equilibrium on an illustrative theme park problem.

2 Model: NRSG

We provide the Network Resource-Sharing Game (NRSG), which builds on the
Resource Sharing (RS) model [11] and network cost-sharing games [12]. A NRSG



Hamiltonian Mechanics 377

is similar to a network cost-sharing game except for positive rewards in NRSGs
compared to positive penalties in cost-sharing games. An NRSG is the tuple:〈

N,V , E , {U i
v}i∈N,v∈V , {si}i∈N , H

〉
N = {1, 2, . . . , n} represents the set of agents.

V represents the resources and also the vertices in a graph that are connected by
the edges in E . This graph constrains certain orders of consuming resources
or connections between resources.

U i
v represents the utility obtained by agent i when it consumes one unit of
resource v. For a joint strategy a =

〈
a1, a2, · · · , ai, · · ·an

〉
, where ai is the

action of agent i, the utility obtained by agent i is given by

ui(a1, · · · , ai, · · · , an) =
U i
ai

σa(ai)
(1)

where σ(a)(a
i) =

∑
k≤n I(ak = ai), with I(ak = ai) = 1 if ak = ai and 0

otherwise. While we focus on this definition of utility, our approaches can be
trivially modified to work with any non-increasing function over number of
agents consuming a resource.

si represents the starting vertex for agent i.

H represents the time horizon of the problem.

The goal in an NRSG is to find Nash equilibrium strategies for all individ-
ual agents, that is, no agent has an incentive to deviate from its strategy. It
should be noted that this repeated game cannot be represented by a single-shot
decision-making problem [12] because a resource selection path (of length H)
cannot be considered as an independent resource. Also, it should be noted that
this is not a single stage game repeated multiple times due to the following rea-
son: (a) Utility can change over time (e.g., preferences for rollercoasters before
and after lunch are different). (b) There exists a network structure on how re-
sources can be utilised. (c) There can be domain-specific constraints (e.g., each
resource/attraction can only be visited once or should visit at least 3 of my 5
preferred attractions). Note that these constraints are all linear.

A pure strategy for an agent i is the sequence of resources selected at each
time step, and the set of all pure strategies is given by Πi = {πi | πi =〈
ai1, a

i
2, · · · , aiH

〉
, ∀t : ait ∈ V}. We do not have edges as part of the strategy,

because, given a source and destination vertex, the edge is uniquely determined.
A mixed strategy can be defined as a probability distribution over all possible
pure strategies Δ(Πi).To provide better understanding of the concepts, we will
use the following toy example throughout the paper.

Example 1. We consider a theme park with four attractions (resources) A =
{A1, A2, A3, A4} that is being visited by eight patrons (agents) P={P1, · · · , P8}.
For ease of explanation, we assume that the service rate of each attraction di is 1
for all attractions. Let the utility for all patrons in getting serviced at an attrac-
tion is the same, which is as follows: U = {2, 3, 5, 7}. The horizon H for decision
making is 1 and the ideal minimum queue length γ∗

i desired by the theme park
operator is 2 for all attractions i.
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3 Incentivized Budget Constrained Equilibrium

In this section, we represent the problem of finding a Nash equilibrium in an
NRSG with incentives and budget constraints as an optimization problem. Tra-
ditionally, iterative best response mechanisms such as fictitious play [13] have
been used to compute equilibrium solutions in congestion game models. The
presence of budget constraints and desired congestion levels preclude the appli-
cation of such methods.

Our approach provides personalized incentives constrained by a budget so as
to achieve certain properties of resource congestion like ensuring that all queue
lengths at attractions are no less than a minimum queue length or no greater
than a maximum queue length. Examples of personalized incentives are freebies
at an attraction if it is visited at a certain time. The key assumption in our
approach is that such incentives increase the utility for individual agents.

We use the following notation to describe the optimization problem, where
lower case letters such as x represent variables, bold letters such as x represent
vectors, bold and upper case letters such as X represent sets of vectors:

U i
j is the utility at resource j for agent i. Uj is the utility at resource j (if it is
the same for all agents i).

xi
j,t is a binary variable indicating whether agent i has selected (= 1) resource j
at time t.

xi is the strategy of agent i:⎛⎜⎜⎝
xi
1,1 xi

1,2 ... xi
1,H

xi
2,1 xi

2,2 ... xi
2,H

... ... ... ...
xi
|V|,1 xi

|V|,2 ... xi
|V|,H

⎞⎟⎟⎠
where |V| and H are number of resources and horizon, respectively.

x is the strategy profile of all players over all resources and the entire horizon:
x = (x1,x2, . . . ,xn)

Xi is the set of all possible strategies for agent i:
Xi = {xi |

∑
j x

i
j,t ≤ 1, xi

j,t ∈ {0, 1}, ∀t ≤ H}
Δ is the matrix of incentives of all agents,Δ = (Δ1, ....Δn),

Δi =

⎛⎜⎜⎝
δi1,1 δi1,2 ... δi1,H
δi2,1 δi2,2 ... δi2,H
... ... ... ...

δi|V|,1 δ
i
|V|,2 ... δ

i
|V|,H

⎞⎟⎟⎠
where δij,t is a decision variable representing the incentive agent i obtained
at resource j time t.

B is a constant representing the total amount of budget available for incentives.

m is index of a policy of an agent in the set Xi.
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min
X,Δ

Γ such that

ui
j,t =

xi
j,t · Uj

max
{∑

k x
k
j,t, 1

}+xi
j,t ·δij,t ∀i, j, t (2)

um,i
j,t =

xm,i
j,t · Uj

max
{∑

k �=i x
k
j,t+xm,i

j,t, 1
}+xm,i

j,t ·δ
i
j,t ∀m, i, j, t (3)

∑
j,t

ui
j,t ≥

∑
j,t

um,i
j,t , ∀m, i (4)

∑
i,j,t

fj(δ
i
j,t) ≤ B (5)

Γ ≥ γ∗
j −

∑
i

xi
j,t ∀j, t (6)

∑
j

xi
j,t ≤ 1 ∀i, t (7)

xi
j,t ≤ xi

k,t−1 ∀(k, j) ∈ E (8)

xi
j,t ∈ {0, 1} ∀i, j, t (9)

Fig. 1. Non-Linear Optimization Problem

xm,i
j,t is a value representing if agent i chooses resource j and at time t under

agent i’s mth policy.

γ∗
j is a constant representing the preferred number of agents selecting resource
j at any time step.

Figure 1 shows the optimization problem formulated as a non-linear mixed-
integer program. For ease of explanation, we assume that all agents consuming
a resource get the same utility Uj . However, the optimization problem and the
proceeding linearization can be trivially adapted to have a different utility for
each agent U i

j . The key aspects of the optimization problem are:

• No Incentive to Deviate: Constraint 4 ensures that when all agents follow
their equilibrium strategies, the overall utility (including the allocated incen-
tive) ui

j,t of agent i obtained by following its equilibrium strategy is no less

than the utility um,i
j,t obtained by any other strategy m for all resources j and

time steps t.

• Budgeted Incentives: Constraint 5 ensures that the total amount of all
incentives is bounded by the budget B. One key assumption here is that the
function fj is a linear function and δmax =

∑
j δ

max
j is a constant computed

from the following expression:
∑

j fj(δ
max
j ) = B.

• Desired Resource Congestion Properties: These properties are inputs
to the problem and can be constraints on the minimum or maximum number
of agents consuming a resources. Constraint 6 represents the constraint for
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ui
j,t = wi

j,t + δij,t ∀i, j, t (10)

0 ≤ wi
j,t ≤ xi

j,t · Uj ∀i, j, t (11)

0 ≤ δij,t ≤ xi
j,t · δmax ∀i, j, t (12)

wi
j,t − wk

j,t ≤ (2− xi
j,t − xk

j,t) · Uj ∀i, j, t, k (13)

wk
j,t − wi

j,t ≤ (2− xi
j,t − xk

j,t) · Uj ∀i, j, t, k (14)∑
k

wk
j,t = Uj · αj,t ∀j, t (15)

∑
k x

k
j,t

N
≤ αj,t ≤

∑
k

xk
j,t, ∀j, t (16)

αj,t ∈ {0, 1} ∀j, t (17)

Fig. 2. Linearization Constraints for Constraint 2

the minimum number of agents γ∗
j at any resource j, where Γ represents the

maximum deviation from the desired consumption.

• Deviation Minimization: The maximum deviation from the desired con-
gestion properties Γ is minimized in the objective.

• Network Structure: Consraint 8 enforces the network structure.

While this optimization problem can model incentives accurately, there are two
key issues: (1) Non-linear constraints in constraints 2 and 3 prevent scalability
to larger problems, and (2) enforcing the equilibrium for each agent requires
enumerating over all possible pure strategies possible for each agent, which can
be exponential in the horizon and the number of resources. To address these
issues, we propose three methods that increase the scalability considerably.

3.1 Linearizing the Non-linear Constraints

As indicated earlier, the utility function can be any non-increasing piecewise con-
stant or piecewise linear function over number of agents for us to employ similar
linearization tricks on the utility function that will be explained in this section.
Figure 2 shows the equivalent linear constraints to the non-linear constraints
in constraint 2. The same techniques can be applied to linearize constraint 3.
Using these linearized constraints, the optimization problem in Figure 1 can be
represented as a mixed-integer linear program (MILP). Furthermore, for each
agent, we introduce new variables wi

j,t and δij,t to represent the unincentivized

utility and incentive, respectively. Thus they sum up to the overall utility ui
j,t

(constraint 10). The intuitions for the linearization constraints are as follows:

• Constraints 11, 12: If an agent i is not consuming resource j at time t (xi
j,t = 0),

then the unincentivized utility wi
j,t and incentive δij,t are zero.

• Constraints 13, 14: If an agent i is consuming resource j at time step t (xi
j,t =

1), then its unincentivized utility wi
j,t is equal to the unincentivized utility
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wk
j,t of any other agent k that consumes the same resource at the same time

(xk
j,t = 1).

• Constraints 15-17 account for the “max” in the denominator of constraint 2.

Example 2. At equilibrium, the number of agents at attractions A1,A2,A3 and
A4 is 1, 1, 2 and 4, respectively for Example 1. That is to say, attraction A4 is
more crowded than any other attractions. We can use the optimization problem
above to help reduce the congestion at A4. Suppose the theme park operator
provided the minimum queue length γa, which is 2 for all attractions a, and the
budget B, which is 5. Then, the resulting equilibrium (along with the incentives
in terms of utility that is same for all agents selecting the same attraction) is

A1 = {P2, P3}, δP2
A1,1 = 1.33;A3 = {P6, P7}, δP6

A3,1 = 0

A2 = {P4, P5}, δP4
A2,1 = 0.83;A4 = {P1, P8}, δP1

A4,1 = 0

The number of agents at each attraction now is 2, which satisfies the minimum
queue length, and so is the criterion for equilibrium.

3.2 Exploiting Factored Structure

We exploit the factored structure of the NRSG graph to solve the MILP faster.
This efficiency comes about due to the reduction in the number of elements in
the set Xi for every agent i and thus the number of equilibrium constraints
(Constraint 4). The basic definition for X i is given by:

Xi={xi |
∑
j

xi
j,t≤1, xi

j,t∈{0, 1}, ∀t ≤ H}

We can update the expression to exploit the graph structure:

Xi={xi |
∑
j

xi
j,t≤1, xi

j,t ≤
∑

k|(k,j)∈E
xi
k,t, x

i
j,t∈{0, 1}, ∀t ≤ H}

Furthermore, if the graph is fully connected, that is, agents can consume any re-
source at any time step (a reasonable assumption for theme parks, where patrons
can go to any attraction at any time step), then the equilibrium constraints on

constraint 4 can be replaced with
∑

j u
i
j,t ≥

∑
j u

m,i
j,t for all m, i and t. The key

difference is that the new constraints sums over resources j only as opposed to
over resources j and time steps t. This difference yields a reduction in number
of equilibrium constraints from |V|H to |V| ·H .

3.3 Finding ε-Nash Equilibrium Solutions

The MILP representation provides the flexibility to compute an approximate
Nash Equilibrium. If we modify the equilibrium constraints on Line 4 to ε +∑

j,t u
i
j,t ≥

∑
j,t u

m,i
j,t for all m and i. Then, the resulting Nash equilibrium is an

ε-Nash equilibrium, where each agent has an incentive of at most ε to deviate
from the equilibrium strategy.
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Example 3. An ε-equilibrium strategy with ε = 0.1 to the problem in Example
2 is given by

A1 = {P2}, uP2
A1,1 = 2;A3 = {P6, P7, P8}, uP6

A3,1 = 1.66

A2 = {P3}, uP3
A2,1 = 3;A4 = {P1, P4, P5}, uP1

A4,1 = 2.33

This solution is not a true equilibrium because patron P8 can switch to attraction
A4 to gain an additional 0.09 units of utility but it is an ε-Nash Equilibrium
because the gain by changing strategy for each agent is less than ε = 0.1.

4 Incentivized Unconstrained Equilibrium

In this section, we provide a technique for solving the problem where: (1) there
is no constraint on the budget; (2) there are hard constraints on the desired
consumption of resources; and (3) the goal is to minimize the total amount of
incentive required to achieve the equilibrium. This problem is similar to the
problem solved by the k-implementation approach [10]. However, the main dif-
ferences are that we assume that agents can be individually incentivized and
desired strategies are specified at an aggregate level in our work (e.g., “no more
than 200 agents can consume resource 3”) as opposed to specific strategies in [10]
(e.g., “agent 2 should take strategy 5”).

The optimization problem mentioned in Figure 1 with the linearized con-
straints can be easily modified to solve the unconstrained problem. Here, we
provide another approach that is more scalable and based on the more typical
iterative best response mechanism that also allows for mixed strategies in the
equilibrium. Figure 3 shows the best response linear program for each agent i.
We use the following additional variables:

pij,t is the probability of agent i choosing resource j at time t.

pi is the mixed strategy of agent i similar to how xi is the pure strategy of agent
i in the previous MILP.

u∗i is the utility of best response strategy of agent i given strategies of other
agents.

ui is the utility of a strategy of agent i given the strategies of other agents.

In this approach, at each iteration and for each agent i, we fix the policies of
all other agents and compute the best response strategy pi that satisfies the con-
straint on desired resource consumption (constraint 21) and the required incen-
tive δi to incentivize agent i to take that strategy. The incentives are computed
in constraint 18 as the difference in utility for the best strategy u∗i (without the
constraint on desired resource consumption) and the current utility (with the
constraint on desired resource consumption) ui. We continue this process until
convergence. We do not yet have a proof for guaranteed convergence. However,
if the iterative best response process converges, then we obtain an equilibrium
strategy.
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min
Pi

δi such that

δi = u∗i − ui (18)

u∗i = max
xi

∑
j,t

xi
j,t · Uj∑

k �=i p
k
j,t + xi

j,t

(19)

ui =
∑
j,t

pij,t · Uj∑
k �=i p

k
j,t + 1

(20)

∑
k

pkj,t ≤ γ∗
j ∀j, t (21)

∑
j

pij,t ≤ 1 ∀t (22)

0 ≤ pij,t ≤ 1 ∀j, t (23)

Fig. 3. Best Response Linear Program for Agent i

5 Theoretical Results

We now show that the welfare of any equilibrium solution is at least one half of
the optimal social welfare in an NRSG in two steps: (1) We show that the social
utility function in NRSGs is sub-modular, and (2) we show that the NRSG game
is a utility system [14] and, hence, the Price of Anarchy, PoA (Ratio of social
welfare for the worst equilibrium solution to the optimal social welfare) is at
least 1

2 . Note that an NRSG with incentives is an NRSG and hence the bounds
hold even when we are providing incentives.

Proposition 1. Social utility for a joint strategy x in NRSG is sub-modular.

Proof Sketch: Let Q be the set of all agents and F : 2Q → R be the social
utility function. The social utility for a joint policy x given a set Q of agents is:

F(Q) =
∑
i∈Q

∑
j,t x

t
i,j · Uj∑

k∈Q,j,t x
t
k,j

For A ⊆ B, we show that F(A ∪ {p})−F(A) ≥ F(B ∪ {p})−F(B). �

Definition 1. A utility system represents a game where:

• Social and private utilities are in the same standard unit;

• Social utility function is sub-modular; and

• Private utility of an agent ≥ change in social utility if the agent declined to
participate in the game.

Proposition 2. PoA for NRSGs is at least 1
2 .

Proof Sketch. We show that NRSG is a utility system and hence from Vetta
et al. [14], PoA for utility systems is at least 1

2 . �
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Fig. 4. Results for Incentivized Budget Constrained Problems

6 Experimental Results

We now describe our experimental results for the problem with incentives on the
theme park problem described in Example 1. We performed two sets of exper-
iments: one on problems with incentive budgets and one on problems without.
For problems with incentive budgets, we only have the linearized optimization
problem of Figure 1 (referred to as BC-MILP). For problems without incen-
tive budgets and desired congestion levels, we have the iterative best response
(referred to as IBR) and we compare it to a modified BC-MILP-Mod .

There are a number of different parameters that we experimented with, namely
the number of agents n, the horizon H , the number of resources |V|, budget B,
desired maximum or minimum consumption of any attraction γ∗ and finally the
approximation parameter ε. If not explicitly stated, the default values for some
of the parameters are as follows: H = 1, |V| = 4, B = 2, γ∗ = n

|V|±p ·n (depend-

ing on whether we have constraints on maximum or minimum consumption)
with a default value of 10% for p and ε = 0. Due to space constraints, we only
show representative results. We conducted our experiments on a machine with
a 2.40GHz CPU and 6GB of RAM.

6.1 Incentivized Budget Constrained Problems

In this set of problems, we demonstrate some of the key results with the BC-
MILP. Figure 4(a) shows the runtimes, where we vary n and ε. We only show
the runtimes for one combination of budget and γ∗ parameter as the trends here
are similar for other parameters. We make two observations:

(1) As the number of agents increases, the runtime increases as expected.With the
increase in the number of agents, the number of variables and constraints in the
MILP increases and hence the increase in runtime.However, we are able to solve
problems with up to 100 agents with the BC-MILP approach. By exploiting
homogeneity in agents (future work), we hope to increase this significantly.

(2) As ε increases, even by a small value, the runtime decreases significantly.1

With the increase in ε, the problem becomes simpler as the MILP can

1 Note that ε is an absolute error on utility and not a percentage error.
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Table 1. BC-MILP-Mod vs. IBR

No. of BC-MILP-Mod IBR
agents (γ∗) runtime (sec) incentive social welfare runtime (sec) incentive social welfare

10 (3) 8.42 2.25 19.25 0.41 6.80 19.14
12 (3) 44.01 5.75 22.75 0.42 9.79 22.54
14 (4) 123.64 4.00 21.00 0.70 7.55 20.90
16 (4) 1105.45 6.80 23.80 0.48 10.07 23.67
18 (5) 4001.52 5.16 22.16 0.67 8.10 22.10
20 (5) 8312.05 7.50 24.50 0.54 10.26 24.42

return solutions with larger deviations from the Nash equilibrium. Thus,
these results show the tradeoff between computation time and solution qual-
ity in terms of distance from the optimal solution.

Figure 4(b) shows the runtimes, where we vary n and H with ε = 0.3. As
expected, the runtime increases with increasing horizon. We are able to solve
problems with 20 agents and horizon 5 in less than 4 minutes.

Figure 4(c) shows the variance in resource consumption of each agent (as a
percentage of n), where we vary n from 10 to 30, and B from 2 to 7. The nice
observation from this result is that the average variance decreases as the budget
increases. In other words, we have a better load balance, even at equilibrium
strategies, when the budget B increases.

6.2 Incentivized Unconstrained Problems

We first show the performance comparison of the IBR algorithm with the BC-
MILP algorithm modified to suit the unconstrained budget and incentive mini-
mization setting (referred as BC-MILP-Mod). The BC-MILP-Mod thus finds a
solution with the least required incentive. Table 1 shows the results. IBR con-
verged and that implies that an equilibrium solution is found in both cases. The
results show that IBR is at least one order of magnitude faster than BC-MILP-
Mod but finds solutions that requires much higher incentive and slightly lower
social welfare, thus highlighting the tradeoff between the two approaches.

To demonstrate the scalability of the IBR algorithm, we increased the num-
ber of agents up to 500 and we were still able to solve the problem within 20
seconds. We also computed runtimes for the IBR approach while varying re-
sources, however, there was no significant change in runtime when the number
of resources was less than or equal to 10. Finally, we computed the the overall
incentive required as a mapping of the ideal resource consumption (γ∗) param-
eter p. We varied p from 5%-15% and computed the overall incentive required
with n varying between 100 to 300. As expected, the incentive decreased as the
constraint on resource consumption was relaxed.

7 Conclusion

Congestion is common in resource networks that exist in domains as varied as
transportation, computer networks and theme parks. In this paper, we aim to
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smooth out the congestion by using well-timed incentives that are constrained by
a budget and are personalized to resource consumers. To that end, we provided
an efficient mixed-integer linear formulation that can exploit network structure
and is amenable to bounded approximation schemes. We also provide a scalable
alternative to solve the incentives problem when there is no constraint on the
budget and the goal is to find an equilibrium strategy with the least incentive.
Our experimental results demonstrate the scalability of our approaches and on an
illustrative problem, we also show that there is less congestion when the budget
increases and the incentive required increases as the constraints on resource
congestion become tighter.
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Abstract. Orienteering problems (OPs) are typically used to model
routing and trip planning problems. OP is a variant of the well known
traveling salesman problem where the goal is to compute the highest re-
ward path that includes a subset of nodes and has an overall travel time
less than the specified deadline. Stochastic orienteering problems (SOPs)
extend OPs to account for uncertain travel times and are significantly
harder to solve than deterministic OPs. In this paper, we contribute a
scalable mixed integer LP formulation for solving risk aware SOPs, which
is a principled approximation of the underlying stochastic optimization
problem. Empirically, our approach provides significantly better solu-
tion quality than the previous best approach over a range of synthetic
benchmarks and on a real-world theme park trip planning problem.

1 Introduction

Motivated by competitive orienteering sports, Orienteering Problems (OPs) [15]
represent the problem of path selection, where the reward accumulated by visit-
ing a subset of nodes in the path is the maximum for the condition that overall
travel time to traverse the path does not violate the deadline. While OPs have
been used to represent problems like vehicle routing [7] and production schedul-
ing [2], in this work, we are motivated by the problem of tourist trip design
problems similar to the one described in Vansteenwegen et al. [16,1]. Specifically,
we address the problem of providing risk sensitive route guidance to visitors at
theme parks [10], where the presence of queues at nodes lead to stochastic travel
time between nodes.

As OP assumes deterministic edge lengths, they are insufficient to represent
the route guidance problem at theme parks. Thus, researchers have extended
OPs to stochastic OPs (SOPs), where edge lengths are now random variables
that follow a given distribution. The goal is to find a sequence that maximizes
the sum of utilities from vertices in the sequence [4]. In this paper, we consider
the risk aware SOP [10], where the goal is to compute a path that maximizes
the overall reward while enforcing a risk aware deadline constraint. That is, we
compute paths where the probability of violating the deadline is less than a given
risk parameter, α.

Lau et al. [10] introduced a local search approach for solving such risk aware
SOPs. While such an approach is scalable, it is adhoc and does not provide any
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a priori or posteriori guarantees with respect to optimal solution. To address
these limitations, we provide a principled optimization based approach that em-
ploys ideas from the sample average approximation technique to solve stochastic
optimization problems [12].

In order to illustrate the utility of our approach, we provide comparisons with
the local search approach on a synthetic benchmark set introduced in the lit-
erature [4] and also on a real theme park navigation problem, where the travel
times are computed from a year-long data set of travel times at a popular theme
park in Singapore. The results are quite encouraging—our approach provides
significant and consistent increase in solution quality (more than 50% for some
synthetic benchmarks and more than 100% for real-world problems) when com-
pared against the local search approach of [10].

2 Background: OPs and SOPs with Chance Constraints

The orienteering problem (OP) [15] is defined by a tuple 〈V,E, T,R, v1, vn, H〉,
where V and E denote the vertices and edges respectively of the underlying
graph. T : vi × vj → R+ ∪ {0,∞} specifies a finite non-negative travel time
between vertices vi and vj if eij ∈ E and ∞ otherwise; and R : vi → R+ ∪ {0}
specifies a finite non-negative reward for each vertex vi ∈ V . A solution to an
OP is a Hamiltonian path over a subset of vertices including the start vertex v1
and the end vertex vn such that the total travel time is no larger than H . Solving
OPs optimally means finding a solution that maximizes the sum of rewards of
vertices in its path. Researchers have shown that solving OPs optimally is NP-
hard [7]. In this paper, we assume that the end vertex can be any arbitrary
vertex. The start and end vertices in OPs are typically distinct vertices.

Researchers have proposed several exact branch-and-bound methods to solve
OPs [9] including optimizations with cutting plane methods [11,6]. However,
since OPs are NP-hard, exact algorithms often suffer from scalability issues.
Thus, constant-factor approximation algorithms [3] are necessary for scalability.
Researchers also proposed a wide variety of heuristics to address this issue includ-
ing sampling-based algorithms [15], local search algorithms [7,5], neural network-
based algorithms [17] and genetic algorithms [14]. More recently, Schilde et al.
developed an ant colony optimization algorithm to solve a bi-objective variant
of OPs [13].

The assumption of deterministic travel times is not a valid one in many
real-world settings and thus researchers have extended OPs to Stochastic OPs
(SOPs) [4], where travel times become random variables that follow a given dis-
tribution. The goal is to find a path that maximizes the sum of expected utilities
from vertices in the path. The random variables are assumed to be independent
of each other.

Existing research has focussed on two different objectives in obtaining solu-
tions for a SOP. The first objective by Campbell et al. [4] is to maximize sum
of expected utilities of visited nodes. The expected utility of a vertex is the dif-
ference between the expected reward and expected penalty of the vertex. The
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expected reward (or penalty) of a node is the reward (or penalty) of the vertex
times the probability that the travel time along the path thus far is no larger
(or larger) than H . More formally, the expected utility U(vi) of a vertex vi is

U(vi) = P (ai ≤ H)R(vi)− P (ai > H)C(vi)

where the random variable ai is the arrival time at vertex vi (that is, the travel
time from v1 to vi), R(vi) is the reward of arriving at vertex vi before or at H
and C(vi) is the penalty of arriving at vertex vi after H . Campbell et al. have
extended OP algorithms to solve SOPs including an exact branch-and-bound
method and a local search method based on variable neighborhood search [4].
Gupta et al. introduced a constant-factor approximation algorithm for a special
case of SOPs, where there is no penalty for arriving at a vertex after H [8].

The approach by [4] suffers from many limitations. Firstly, it is a point esti-
mate solution which does not consider the “risk” attitude with respect to violat-
ing the deadline. By “risk”, we refer to probability of completing the path within
the deadline. In other words, a risk-seeking user will be prepared to choose a
sequence of nodes that have a large utility, but with a higher probability of not
completing the path within the deadline, compared to a risk-averse user who
might choose a more “relaxed” path with lower utility. Secondly, the underlying
measurement of expected utility is not intuitive in the sense that a utility value
accrued at each node does not usually depend on the probability that the user
arrives at the node by a certain time; but rather, the utility is accrued when the
node is visited.

Given the above consideration, Lau et al. [10] proposed a second objective
where we maximize accumulated reward while satisfying a chance constraint to
account for the risk of exceeding the horizon. This allows the user to tradeoff risk
against total utility. More precisely, given a value 0 ≤ α ≤ 1, we are interested
in obtaining a path, where the probability of failing to complete the entire path
within a deadline H is less than α. Formally,

prob(an > H) ≤ α (1)

where an is the arrival time at the last vertex of the path.

3 Deterministic Approximation for Chance Constrained
Optimization

In this section, we provide a brief overview of the sample average approximation
(SAA) technique for solving stochastic optimization problems [12]. The stochas-
tic orienteering problem is an instance of the stochastic optimization problem,
where the risk sensitive behavior is often encoded in the form of chance con-
straints. An example of such an optimization problem is given below:

min
x∈X
{g(x) := EP

[
G(x,W )

]
} (2)

s.t. prob
{
F (x,W ) ≤ 0

}
≥ 1− α (3)
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where X is the feasible parameter space, W is a random vector with probabil-
ity distribution P and α ∈ (0, 1). The above stochastic optimization problem is
called a chance constrained problem [12]. Notice that the objective function is
an expectation due to the unobserved random variable W . Similarly, the con-
straint function F (·) is also a random variable due to its dependence on W . The
parameter α can be interpreted as the parameter to tune the risk seeking or risk
averse behavior.

It may seem that such an optimization problem is too unwieldy to solve.
Fortunately, a number of techniques do exist that transform such stochastic
optimization problem into a deterministic problem in a principled manner. One
such technique is called sample average approximation [12] or SAA. We describe
a brief outline below; further details can be found in [12]. Interestingly, the SAA
technique can also provide stochastic bounds on the solution quality and thus,
provides a principled approximation.

The main idea behind the SAA is to generate a number of samples for the
random vector W . Let us denote these samples as W i. First, we define the
following indicator-like function that returns 1 if the argument is positive and 0
otherwise.

I(t) =

{
1 if t > 0

0 if t ≤ 0
(4)

We generate N samples for the random variable W . Based on these samples, we
define the approximate probability of constraint violation for a particular point
x as follows:

p̂N(x) =
1

N

N∑
i=1

I
(
F (x,W i)

)
(5)

Now the stochastic optimization is reformulated (approximately) as the following
deterministic optimization problem:

min
x∈X

1

N

N∑
i=1

G(x,W i) (6)

s.t. p̂N (x) ≤ α′ (7)

The parameter α′ plays the role of α in the above optimization problem. Typ-
ically, we set α′ < α to get a feasible solution. Often, the above optimization
problem can be formulated as a mixed-integer program and thus, can be solved
using CPLEX. Based on the number of samples and the parameter α′, several
bounds for the solution quality and feasibility can be derived [12].

4 Solving SOP with Chance Constraints

In this section, we first formulate the SOP problem with chance constraints (see
Section 2) as an optimization problem. We then employ the SAA scheme to get a
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Table 1. Formulation of chance constrained SOP as a mathematical program

max
π

∑
i,j

πijRi (8)

s.t.

πi,j ∈ {0, 1}, ∀vi, vj ∈ V (9)∑
j

πji ≤ 1, ∀vi ∈ V (10)

∑
j

πij ≤ 1, ∀vi ∈ V (11)

∑
j

π1j = 1;
∑
j

πjn = 1 (12)

∑
j

πij −
∑
j

πji =

⎧⎪⎨
⎪⎩

1 if i = 1;

−1 if i = n;

0 otherwise;

, ∀vi ∈ V (13)

ri ≤ rj − 1 + (1− πij) ∗M ∀vi, vj ∈ V (14)

r1 = 1, rn = n, ri ∈ [1, n] ∀vi ∈ V (15)

Pr
(∑

i,j

πijTij ≥ H
)
≤ α (16)

deterministic approximation. For each directed edge (vi, vj), the binary variable
πij denotes whether the edge (vi, vj) is in the final path. The random variable
Tij denotes the travel time for traversing the directed edge (vi, vj). We assume
that the underlying distribution for each variable Tij is provided as input. The
parameter Ri represents the reward obtained on visiting the node vi.

Table 1 shows the mathematical program for chance constrained SOPs. We
next describe its structure. We designate the start node with id 1 and the desti-
nation node with n. The objective function seeks to maximize the overall reward
obtained based on nodes visited. Constraints (10)-(11) specify that there is a
single incoming and outgoing active edge for each node. Constraint (13) denotes
the flow conservation.

To ensure that there are no cycles in the path, we introduce a new set of vari-
ables ri for each node vi to denote its rank in the final path. For instance, if the
rank of the source node is 1, then any node connected immediately from source
will be ranked greater than 1 and so on. Such monotonically increasing ranking
of nodes will enforce that no cycles are generated. The constraint (14) models
this ranking scheme. The parameter M is a large constant used to maintain the
consistency of the constraint.

Constraint (16) denotes the chance constraint. The total duration of the SOP
is denoted as

∑
i,j πijTij , which is a random variable as each Tij is a random

variable. The parameter H denotes the input deadline. The chance constraint
states that the probability of violating the deadline should be no greater than
α ∈ (0, 1), another input parameter. This constraint is not linear and in general, a
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closed form expression is not readily available. We next show how to determinize
this constraint using SAA in the MIP framework.

For each edge of the graph, we generate Q samples for the duration random
variable Tij , denoted by tqij . We represent the function I(·) of Eq. (4) using the
following linear constraints:

zq ≥
∑

ij πijt
q
ij −H

H
∀q ∈ Q (17)

zq ∈ {0, 1} ∀q ∈ Q (18)

where we have introduced auxiliary integer variables zq for each sample q. Using
these auxiliary variables, the constraint (7) is represented as:∑

q z
q

Q
≤ α′ (19)

where α′ is a parameter that is set by the user and is generally smaller than
the parameter α as used in constraint (16). The setting of α′ is critical and
we will provide a detailed discussion about the same in our experimental re-
sults section. To summarize, we get a deterministic mixed-integer program cor-
responding to the stochastic program of Table 1 by replacing the stochastic con-
straint (16) using Q samples for each random variable corresponding an edge,
introducing auxiliary integer variables zq for each SAA sample and using linear
constraints (17), (18) and (19). The following theoretical results establish the
convergence guarantees for the SAA technique:

Theorem 1 ([12]). Let v� be the optimal solution quality, v̂N be the quality of
the SAA problem, x� be the optimal solution, x̂N be the SAA solution and the
parameter α′ = α, then v̂N → v� and x̂N → x� as N →∞.

The next theorem provides convergence results regarding the feasibility of the
solution w.r.t. the chance constraint.

Theorem 2 ([12]). If x̂N be the feasible solution of the SAA problem and
α′ < α, then the probability that x̂N is a feasible solution of the true problem
approaches one exponentially fast with the increasing number of samples N .

5 Experimental Results

To illustrate the effectiveness of our approach, referred to as MILP-SAA, for
solving the SOP, we provide experimental results on a synthetic benchmark set
employed in the literature [4] and a real world theme park decision support prob-
lem introduced by Lau et al. [10]. We measure the performance of our approach
with respect to the solution quality and the probability of constraint violation
by varying problem parameters. Our results are quite encouraging—the MILP-
SAA approach provides significant increase in solution quality (more than 50%
for some synthetic benchmarks and more than 100% for real-world problems)
when compared against the local search approach of [10], all the while keeping
the probability of constraint violation within the specified limit (=α).
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5.1 Synthetic Benchmark Set

Firstly, we provide the comparison on the benchmark set introduced by Lau et
al. [10]. In this set, we vary the following key problem parameters:

• The graph structures are taken from existing work [4] and the number of
nodes (|V |) in these graphs vary in the following range: 〈20, 32, 63〉. The
reward obtained by visiting a node is chosen randomly between 1 and 10.

• The probability of constraint violation or the α parameter of Eq.16 is varied
as: 〈0.3, 0.25, 0.2, 0.15, 0.11〉. Corresponding to each setting of α, we use the
parameter α′ (≤ α, see Eq. (19)) from the values 〈0.2, 0.15, 0.1, 0.05, 0.01〉.
• As in the previous work [10], we employ a gamma distribution, f(x; k, θ), for
modeling the travel time of an edge or the random variable Tij .

f(x; k, θ) =
1

θk
1

Γ (k)
xk−1e

x
θ , x > 0, k, θ > 0

The k parameter is randomly selected for different edges, the theta (θ) pa-
rameter is varied as: 〈1, 2, 3〉.
• Finally, we also test for a range of the deadlines H . For each instance,
we calculate approximately the total time required to visit all the nodes
and then set the deadline H to be the following fraction of the total time:
〈20%, 25%, 30%, 35%〉.
We do not modify the parameters of the local search algorithm provided in

Lau et al. [10], as it was shown to work across a wide variety of problems. With
the MILP-SAA, we compute a 90% optimal solution to ensure easy scalability
to larger problems. Also, to understand the performance of our approach better,
we employ the following settings for the algorithm:

• The number of samples (Q) used by MILP-SAA is varied as: 〈25, 30, 35, 40〉
• The number of sample sets generated for each problem is 15. This corresponds
to the initial random seeds used to sample the travel time from the gamma
distribution.

While we obtained results for all the combination of parameters, we only show
a representative set of results due to space constraints. We show results where
one parameter is modified while keeping other parameters set to their default
value. The default values for different parameters are as:

θ = 1;α = 0.3;α′ = 0.1;H = 25%;Q = 40; (20)

The local search approach always provides a solution with the specified limit α.
For the MILP-SAA, we empirically determine the actual probability of constraint
violation for a particular solution π, say β, by generating 1000 complete samples
for edge duration and computing the fraction of samples for which the solution
violated the deadline H . Ideally, the probability β should be less than α for the
solution to be valid, which is indeed the case for most problem instances for
MILP-SAA.
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(a) |V |=20 (b) |V |=32 (c) |V |=63

Fig. 1. Effect on reward as the horizon budget is varied

Runtime: In this paper, we do not provide detailed results on run-time1 be-
cause both approaches were able to solve all the problems within less than 10
minutes. Local search was able to obtain solutions on the most difficult of prob-
lems within a few seconds. On the other hand, we were able to compute solutions
by using MILP-SAA approach within 10 minutes on the most difficult problem
(63 nodes, H = 20%, Q = 70, α′ = 0.01, θ = 3). When number of samples is
less than or equal to 40, we obtain solutions within 2 minutes. There exist ex-
pected patterns, such as run-time increasing with decreasing horizon budget and
increasing number of samples, however, due to space constraints, we would not
be going through those in this paper.

Horizon Budget: Figure 1 shows the effect of varying horizon on the overall
reward for the three graph configurations. The X-axis shows the horizon as the
percentage of total time required to visit all the nodes. A 20% horizon budget
indicates that on an average, only about 20% of all the nodes can be traversed.
The primary Y -axis (left side) indicates the reward obtained and the secondary
Y -axis (right side) indicates the probability of constraint violation. The bars
indicate the reward obtained by local search and MILP-SAA. In addition, the two
lines represent the probability of constraint violation. The legend ‘Alpha’ denotes
the α parameter and ‘Beta’ denotes the empirically computed probability of
constraint violation for the MILP-SAA solution using 1000 samples. We make
the following observations:

• MILP-SAA outperforms the local search in terms of reward consistently and
significantly for several cases. In addition, this difference in performance is
significant and consistent in the 63 node case. For instance, for the 25%
horizon budget case for 63 nodes in Figure 1(c), the reward difference is close
to 100, indicating about 50% improvement over the local search. This also
implies the traversal of an additional 10 nodes2 in the worst case and 20
nodes in the average case.

1 We conduct our experiments on an Intel Core i5 machine with 1.8 GHz processor
speed and 8 GB RAM.

2 Reward for nodes is drawn from a uniform distribution with minimum value of 1
and maximum value of 10.
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(a) |V | = 20 (b) |V | = 32 (c) |V | = 63 (d) Higher Samples

Fig. 2. Effect on reward as the number of samples is varied

• In most of the cases, the variance in performance of local search is much
higher than the variance of MILP-SAA. This is an important observation,
especially for the few cases where local search dominates MILP-SAA. Thus,
MILP-SAA was highly consistent in providing good solution quality.

• As the horizon budget is increased, the problem becomes less constrained
and the difference in the reward values between the two approaches reduces.
This is as expected.

• As the horizon budget is decreased, the problem is more constrained and
hence the actual probability of constraint violation (β) increases. Specifically,
20% horizon budget is a difficult problem to solve for the 32 and 63 node
problems when MILP-SAA employs 40 samples only. This is reflected in the
β values, which are greater than the α = 0.3 threshold. As we show later
in this section, this can be addressed by increasing the number of samples
(> 40) or reducing the α′ value employed (< 0.1).

Number of Samples: We now show the effect of increasing the number of SAA
samples on reward in Figure 2, while setting all the other parameters to their
default value as in Eq. (20). We make the following key observations:

• As the number of SAA samples is increased, the β value reduces. This is as
expected as with the increasing number of samples, the SAA approximation
becomes tighter.

• There is only a minor reduction in reward values obtained by MILP-SAA
with the increasing number of samples. This shows that MILP-SAA can find
a good solution that minimizes the probability of constraint violation even
with increased problem complexity with the higher number of samples.

• Figure 2(d) shows the effect of increasing the number of samples for 20%
horizon budget setting. We see that with 60 SAA samples, the probability
of constraint violation β is smaller than α. Thus, increasing the number of
samples can provide a feasible solution.

Alpha′ and Theta: Figures 3 and 4 indicate the impact of changing α′ and
the θ parameter of the gamma distribution on the performance of MILP-SAA in
comparison to local search. The remaining parameters are fixed to their default
setting (20).
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(a) |V | = 20 (b) |V | = 32 (c) |V | = 63

Fig. 3. Effect on reward as α′ is varied

(a) |V | = 20 (b) |V | = 32 (c) |V | = 63

Fig. 4. Effect on reward as θ is varied

• As expected, with the increase in α′, the empirical probability of constraint
violation, β, increases. However, the increase in accumulated reward is mini-
mal for increased α′ values. This shows that a smaller value of α′ is preferable
to limit the probability of constraint violation.

• For a fixed budget percentage, as we increase the θ parameter of the gamma
distribution, local search on average performs slightly better (albeit with
higher standard deviation) than MILP-SAA in smaller problems (20 and
32 nodes). However, on the 63 node problems, we see that MILP-SAA is
significantly better over all the values of θ.

5.2 Real World Theme Park Problem

Lau et al. [10] introduced the route guidance problem for experience management
at theme parks. Based on a year long data set of wait times at attractions in
the theme park, they constructed best fit gamma distributions for travel times
between attractions. In their work, the problem was formulated as a dynamic
SOP and hence, there was a different travel time distribution for different time
interval of the day. In contrast, we model the problem as a SOP and based on the
same data set, we compute best fit gamma distributions for travel times between
nodes over the entire time horizon. Extending our approach for dynamic SOPs
remains an important area for future work.
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(a) Horizon Budget (b) Number of Samples (c) Alpha′ (α′)

Fig. 5. Solution quality comparisons on real-world theme park SOP

Figure 5 provides the results on the real world data set when horizon budget,
number of samples and α′ parameters are varied. Due to space constraints, we
are unable to show the results where only one parameter is varied in each set
of graphs. In fact, we show results with different values of α (0.1,0.15, 0.2) to
indicate that, unlike in the synthetic data set, we do not get cases where β
exceeds α.

• MILP-SAA consistently obtains higher average reward solutions in compar-
ison to local search. In some cases, the reward improvement in using MILP-
SAA was more than 100%. For instance, if we consider the case with 20%
horizon budget in Figure 5 (a), the actual reward improvement is more than
125 and the simulated probability of constraint violation, β, is well below
the α. Similarly, in Figure 5(c), we obtain more than 100% improvement in
solution quality over the local search approach, all the while keeping the β
within the limit.

• In most cases, the standard deviation in the solutions obtained with local
search is significantly higher in comparison with MILP-SAA.

• Even with 25 samples, we obtain sufficiently stable solutions where the em-
pirical probability of failure, β, is less than the α.

• As the parameter α′ employed by MILP-SAA approach is increased in Fig-
ure 5(c), as expected, the overall reward accumulated and probability of
constraint violation increases.

To summarize, using extensive experiments, we analyzed a number of im-
portant properties of the MILP-SAA approach, such as the number of samples
required and the effect of parameter α′ on the feasibility and quality of the so-
lution. Our approach provided significantly better results than the local search
technique for both synthetic and real-world benchmarks.

6 Summary

In this paper, we have presented a new optimization based approach for solving
risk aware Stochastic Orienteering Problems, where chance constraints represent
risk attitude towards violating the given deadline. By approximating chance
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constraints with deterministic linear constraints, we provide a scalable approach
that provides confidence based guarantees on solution quality. In addition, we
show that our approach provides significantly superior strategies in comparison
to an existing local search approach over a wide range of real world and synthetic
problems.
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Abstract. Multi-armed bandit problems are challenging sequential decision
problems that have been widely studied as they constitute a mathematical frame-
work that abstracts many different decision problems in fields such as machine
learning, logistics, industrial optimization, management of clinical trials, etc. In
this paper we address a non stationary environment with expected rewards that are
dynamically evolving, considering a particular type of drift, that we call resets, in
which the arm qualities are re-initialized from time to time. We compare different
arm selection strategies with simulations, focusing on a Bayesian method based
on Thompson sampling (a simple, yet effective, technique for trading off between
exploration and exploitation).

1 Introduction

The multi-armed bandit problem is a general framework that can represent several dif-
ferent sequential decision problems. Essentially, a multi-armed bandit is a a slot ma-
chine with n arms (representing possible decisions), each associated with a different
and unknown expected payoff (reward). The problem is to select the optimal (or near-
optimal) sequence of arms to pull in order to maximize reward (in expectation). Previ-
ous rewards obtained from earlier steps are taken into account in order to identify arms
that are associated with high payoff; but since reward is uncertain, several pulls of the
same arms are usually necessary to assess the quality of an arm with some confidence.
A key concept in bandit problems is the trade-off between exploitation (pulling the arm
with the highest estimated expected payoff) and exploration (focusing on getting more
information about the expected payoffs of the other arms).

A large number of works have addressed bandit problems [12,11,2,9,14,10]. In par-
ticular, large attention has been given to methods (including heuristics) that are compu-
tationally fast and produce a decision about the next arm to pull in very short time. This
include action-value strategies, but also the family of UCB methods [1].

Thompson sampling is a simple and effective strategy for multi armed bandits. It
can be implemented very efficiently and it is based on principled Bayesian reasoning.
Essentially, this strategy maintain a probabilistic estimate on the value of the arms, and
select arms according to their probability of being the optimal arm (it is a randomized
selection strategy). This idea was first described eighty years ago [13]. However, it has
been surprisingly neglected until it has been recently rediscovered [7,8,5,9], showing
its effectiveness in a number of different settings.

Most of the works on bandits assume a stationary distribution of rewards. In many
situations, however, one cannot expect the quality of the different arms to be constant.

P. Perny, M. Pirlot, and A. Tsoukiàs (Eds.): ADT 2013, LNAI 8176, pp. 399–410, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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If the values of the different possibilities change with time (non stationarity) the situa-
tion is that of dynamic bandits (also called restless in the literature [3]). In this work, in
particular, we consider the situation in which drastic changes in the quality of an arm
occur (we say that the arm is “reset”). This can model situations of drastic drift, but also
situations in which an arm is substituted with a new one (for example in the problem of
choosing a seller in electronic commerce, where vendors can suddenly disappear and
new ones arrive).

The goal of this work is to show how probability matching with Thompson sampling
can be efficiently implemented in non stationary domains (in particular in the case of
resets) and to evaluate its performance compared to a number of classic bandit methods.

2 Bayesian Bandits

In bandit problems, one is accumulating rewards from an unknown distribution. There
are different possible views on this problem, mainly distribution-free methods (such as
the UCB family of strategies [1]) aiming at providing bounds on the worst-case perfor-
mance, and Bayesian methods (aiming at optimizing average performance). Bayesian
bandit strategies maintain an estimation of the goodness of the different arms in term of
probability distributions (known as “beliefs”) on the value of the arm. A prior (usually
uninformative) is given, that is updated using Bayes rules every time an arm is pulled
and a reward is observed.

In order to specify a Bayesian approach for bandit problems, we need to address two
issues. First, we need to represent distribution information in a practical way. Second,
we need to define a strategy that based on the current belief picks the next arm to pull.

More formally, at each round t we have to choose an action (arm) a ∈ A, where
|A|=n, obtaining reward rt; each arm is associated with a probability density P (r|a)
that dictates an average reward μa =EP (r|a)[r|a]; the “best” arm is the one associated
with μ∗ = maxa∈A μa. Since the true distribution P (r|a) is not known with certainty,
one will often pull suboptimal arms. Let a[t] be the arm pulled at time t. One can state
that the goal of a strategy for bandit problems is to maximize long-term (either dis-
counted or undiscounted) cumulative reward

∑
t=1,..,T rt, or alternatively, minimize

cumulative expected regret, defined as
∑

t=1,..,T μ∗−μa[t]. Expected regret is the dif-
ference between the expected reward associated with the best arm and that of choice
made; cumulative expected regret is the sum of this quantity over time.

The Bayesian approach maintains a belief on the possible reward distributions.
Assuming a particular type of distribution, we write P (r|a; θ) to explicitly express
the dependency over a set of parameters θ. The belief is then a distribution P (θ)
over the possible instantiations of the parameters θ; that is updated whenever a new
pair action-reward (a, r) is observed. The belief Belt(θ) at time t is the probability
P (θ|(a[1], r1), .., (a[t−1], rt−1)) conditioned to the whole history of pulls and rewards.
The posterior Bel(θ|a[t], rt) becomes the new belief Belt+1(θ) (taking the role of
“prior”) for the timestep t+ 1.

When considering a Bayesian approach, as we do here, a fundamental issue is that
to update the beliefs whenever a new reward is obtained (this essentially mean to apply
Bayes theorem). A practical way to do that is to choose distributions of particular forms,
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so that they are easy to update. In this paper we focus on Bernoulli bandits, where the
reward associated to an arm follows a Bernoulli distribution. Bernoulli bandits can for
instance model click behavior and purchase activity in electronic commerce settings [5].
The sequence of rewards/penalties obtained from each arm forms a Bernoulli process
with (unknown) probability qa of “success” (and probability 1− qa of “failure”). Thus,
in the Bernoulli case, possible rewards are in {0, 1} and the parameters θ of the model
are the elements of the vector q={q1, ..., qn} of the success probabilities for each of the
n arms; qa is also the expected reward of the arm (μa=E[r|a] = qa) and q∗=maxa qa
is the (true) optimal arm. The q values are not known with certainty, and a belief is
maintained. Let ta(k) be the timestep in which arm a was used for the k-th time; the
belief Belt(qa) is the probability P (qa | rta(1), rta(2), ...) conditioned to the rewards
obtained when using arm a.

In order to facilitate the operation of Bayesian update, we use the Beta distribution
for representing beliefs. The Beta distribution is a conjugate prior for the Binomial dis-
tribution; we can therefore implement Bayesian reasoning very efficiently. We maintain
two sets of hyper-parameters (α1, ..., αn) and (β1, ..., βn). The distribution Beta(αi, βi)
is the prior belief for arm i. Whenever a success is observed (reward is 1) after pulling
arm i, we increment the corresponding αi; if, on the contrary, we observe a failure (re-
ward is 0) we increment the corresponding βi. If one assumes an uniform prior, then
the initial α0 and β0 are set to 1, but a different choice is possible. 1

Based on the current information about the value of the arms, a strategy needs to
select the next arm to pull. Traditional methods, such as action-value strategies and the
UCB-1 method, based their selection on the empirical mean alone 2. Bayesian strategies
use the current belief distribution P (q) = P (q1, ..., qn) to select the next arm. We now
discuss, in the next Section, probability matching with Thompson sampling as a method
for arm selection. Then, in Section 4, we adapt this method for environments with resets.

3 Probability Matching with Thompson Sampling

The idea of Thompson sampling is to choose the arm that maximizes the expected re-
ward with respect to a randomly drawn belief. It is a Bayesian method because the
current belief (about the q values of the arms) is used directly in order to decide which
arm to pull. This technique is also known as “probability matching” and it is based on
the intuition that if the number of pulls for a given arm matches its (estimated) proba-
bility of being the optimal arm, one can have a good compromise between exploitation
and exploration. It is consistent with intuition: if one arm has very low chances of being
a good arm (probability of optimality close to zero), it will be (almost) never pulled;
similarly if an arm is very likely to be the best, it will be pulled very often. Thompson
sampling has been showed to be effective in the context of stationary Bernoulli ban-
dits [7,5]. Moreover, it has been showed [8] to be effective in the presence of Brownian
motion.

1 α and β are often called “pseudo-counts” for this reason.
2 UCB-tuned considers the sample variance as well; however in Bernoulli events the variance is

a simple function of the mean.
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Algorithm 1. Thompson sampling: general case

Bel0(θ) ← P (θ) (Initialize belief to some initial distribution);
Set t ← 0;
while true do

Sample θ̂ ∼ Belt(θ) ∀i 1 ≤ i ≤ n;

Select arm a ← argmaxi E[r|θ̂i] ;
Observe reward rt;
Bayesian update: Belt+1(θ) ← Belt(θ|rt);
t ← t+ 1;

end

Algorithm 2. Bayesian Bernoulli bandits with Thompson sampling

Initialize pseudo-counts: (αi, βi) ← (α0, β0) ;
while true do

Sample q̂i ∼ Beta(αi, βi) ∀i ∈ {1, ..., n};
Select arm a ← argmax q̂i;
Observe reward rt;
αa ← αa + rt;
βa ← βa + (1− rt);

end

Formally, for Bernoulli bandits, assume indicator variable Iopti (q) to yield 1 iff qi=
q∗ and 0 otherwise. Probability matching with Thompson sampling is a randomized
strategy that consists, at any time t, in pulling arm i with probability equal to P opt(i),
being the probability that the arm i is optimal according to the current beliefs. For each
arm i, this is

P opt(i) =

∫
Iopti (q)P (q)dq =

∫ 1

0

...

∫ 1

0

Iopti (q1, ..., qn)
∏
i

P (qi) dq1...dqn. (1)

(where we use the fact the q values are probabilistically independent) Since the value
P opt might not be easy to compute, in practice, the rule is implemented in the following
way (that is what is more strictly referred as Thompson sampling). In each round, a set
of parameter q̂ is sampled from the posterior P (q|r1, ..., rt), and the arm with highest
value q̂∗ is chosen. Conceptually, this means that the agent instantiates the value of
the arms randomly according to his beliefs in each round, and then he acts optimally
according to this instantiation (the general algorithm is shown in Algorithm 1 and the
algorithm specific to Bernoulli bandits in Algorithm 2). An advantage of Thompson
sampling is the absence of tuning parameters, in contrast with most (if not all) heuristic
methods, where setting the right value for the parameters is crucial.

Thompson sampling is particularly simple to implement in the case of Bernoulli ban-
dits assuming Beta priors. The set of hyper-parametersαi and βi are initially initialized
according to prior information (setting them all to 1 coincides to an uniform prior).
Bayesian update consists in updating the hyper-parameter in the following way: when
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Algorithm 3. Particle Filter reset-aware Thompson for Bayesian Bernoulli
bandits

Data: Prior hyper-parameters (pseudo-counts): α0, β0

Initialize set of particles Pi = (q1i , ..., q
L
i ) for each i uniformly in Beta(α0, β0);

Set time t ← 0;
while true do

for each arm i in 1,...,n do
for each particle j in 1,...,L do

while rand() < preset do
resample qji ∼ Beta(α0, β0);

end
end
Sample a particle from each particle set: q̂i ∼ Pi ∀i;

end
Select arm a ← argmaxi q̂i;
Observe reward rt;
Pa ← ImportanceSampling(Pa, rt) ;
t ← t+ 1;

end

arm i is pulled, αi is incremented if a positive reward (r = 1) is observed, otherwise
in the case of no reward (r = 0) βi is incremented. The decision of the arm to pull
consists in sampling the values for the qi according from Beta with the current value
hyper-parameters, and selecting the highest one.

4 Reset-Aware Thompson Sampling

In this paper, we consider dynamic (restless) bandits, focusing on the particular of re-
wards that can drastically change from time to time (resets). This can model situations
like a new user of a electronic commerce website, or when a supplier changes own-
ership. In our analysis, we assume that there exists a (fixed) probability preset under
which the payoffs are changed, and reset rewards are re-sampled according to the prior
Beta(α0, β0), with hyper-parameters α0 and β0 (prior pseudo-counts).

The principle of Thompson sampling can be extended to the case of presence of re-
sets. The key issue in using Thompson is being able to sample from the posterior. The
problem is now that we cannot anymore represent the posterior by simply maintain-
ing a vector of pseudo-counts. We will show however that we can still use Thompson
sampling from the posterior distribution, considering two different methods.

4.1 Particle Filter Thompson

This method (Algorithm 3) computes an unbiased estimation of the belief distribution
of the quality of each arm using particles. Belt(q) is approximated by a set of particles:
a set of L particles is associated to each arm (each particle is a scalar between 0 and 1,
representing a particular hypothesis about the value qi). The approximation is unbiased,
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Algorithm 4. Geometric-Beta reset-aware Thompson sampling for Bayesian
Bernoulli bandits

Data: Prior pseudocount: α0, β0

Initialize history log;
Set time t ← 0;
while true do

for each arm i in 1,...,n do
t̄i ← lastUse(i, t);
while rand() < 1− preset do

t̄i ← lastUse(i, t̄i);
end
αi ← α0+ number of sucessful pulls of arm i between time t̄i and t;
βi ← β0+ number of unsucessful pulls of arm i between time t̄i and t;
Sample q̂i ∼ Beta(αi, βi);

end
Select arm a ← argmax q̂i;
Observe reward rt;
Log results;
t ← t+ 1;

end

meaning that for a large number of particles, the mean of the distribution converges to
the true mean. The belief is propagated during time using a particle filer, composed of
two parts: a transition model (that simulates the dynamics; i.e. the possibility that an
arm can be reset) and an observation filtering, where using importance sampling, a new
set of particles is selected from the old ones, favoring the particles that better explain
the observed reward.

The transition model (the innermost loop in Algorithm 3) iterates over the particles
of each arm and substitutes a particle with a new one (sampled from the prior) with
probability preset. In the observation filtering model, particles are weighted by the like-
lihood of the observed reward given their hypothesis: qi if rt =1 and 1 − qi otherwise
(if rt = 0). The weights are used to resample a new set of L particles; the new par-
ticles represent an approximation of the posterior distribution. At any given time-step,
Thompson sampling is realized by sampling exactly one particle for each arm uniformly
at random from the associated particles, and pulling the arm whose sampled particles
has the highest value.

4.2 Geometric-Beta Thompson

The key insight of this method is what it matters is the last time that the arm was reset.
The belief distribution of the value of the arm assuming the arm was reset at time t̂
is a Beta distribution with hyper-parameters dictated by the number of successes and
failures since t̂. Let xi

t be 1 if the arm i is pulled at time t (0 otherwise), and rt be
the reward received at time t. Following our intuition, and assuming Beta priors and a
probability of drift preset, we approximate the probability distribution (belief) Belt(q)
of the value of an arm i at time t with the following:
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t∑
k=1

preset(1−preset)k · fBeta

(
q ;α0+

t∑
m=k

rm xi
m, β0+

t∑
m=k

(1−rm)xi
m

)

where fBeta(x;α, β) is the density of the Beta distribution with parameters α and β.
We now adapt Thompson sampling for the case of resets by sampling, independently,

for each arm, the time of the last reset. At each time step, for each arm, we indepen-
dently sample a time-step t̄i from a geometric distribution, parameterized by preset the
reset probability, in order to decide “how far in the past we should go” to set the tem-
poral “window” that it will be used to compute the hyper-parameters αi and βi. Let
lastUse(i, t) be a function that returns the last time-step t′ before t in which arm i was
pulled. We repeat the following procedure: we sample a uniform random number be-
tween 0 and 1 and, while it is lower than preset, we set t̂i ← lastUse(i, t̂i) and repeat
the loop. The sampled time-step will be used to derive the pseudo-counts that will be
used for Thompson sampling.

Considering the history of previous pulls, we consider the interval from t̂i to the
current t, and count the number of successful and unsuccessful pulls (for arm i). The
belief distribution of the value of the arm i assuming the arm was reset at time t̂i can be
modeled as a Beta distribution with hyper-parameters dictated by the number of success
and failures since t̂. Using our notation, the meta-parameters are αi=α0+

∑t
t′=t̄i

rt′x
i
t′

and βi=β0 +
∑t

t′=t̄i
(1−rt′)xi

t′ . The complete algorithm is shown in Algorithm 4; the
computation of pseudo-counts can be made more efficient by maintaining a cumulative
sum at each time step. We note that this is a (biased) approximated method: in general
the belief (posterior probability) of an arm being reset at a time-step is not independent
from the belief for the arm value (for example, if an arm has given reward 1 for 10 times
and then we observe reward 0 for several times since then, our estimation for a reset at
timestep 11 becomes much higher).

5 Experiments

In order to evaluate the effectiveness of different methods, we need to define some eval-
uation metrics. In principle, one would like to be able to accumulate as much reward
as possible. Cumulative reward is therefore a natural criterion. It is also interesting to
compare the reward obtained following a policy with that of always pulling the “best”
arm (that of course is not known with certainty by the bandit strategy). Expected re-
gret for a single pull of a Bernoulli bandit is R = q∗−qa, and cumulative expected
regret is

∑
t=1,..,T q∗− qa[t] for a particular run of the algorithm. We remark that all

algorithms make choices (on which arm to pull) based on the history of rewards ob-
tained, often including some explicit randomization (that is the case of epsilon-greedy
methods, and also Thompson sampling). In theory, each strategy could be measured
according to its expected expected regret (in expectation over possible history of pulls
and rewards obtained) and expected expected reward, but these measures are extremely
hard to calculate analytically. Therefore, with simulations, we compare the different
strategies according to their average performance, in particular the values obtained for



406 P. Viappiani

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

1400

number of pulls

cu
m

ul
at

iv
e 

re
gr

et

 

 

PF−Thompson
GB−Thompson
Thompson
UCB−tuned
UCB−1
Epsilon−greedy
Greedy

Fig. 1. Regret; preset=0.001, n = 2
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Fig. 2. Fraction of optimal arm selection;
preset=0.001, n = 2
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Fig. 3. Reward vs number
of arms; preset = 0.001;
(α, β)=(1, 1)
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Fig. 4. Reward vs number
of arms; preset = 0.001;
(α, β)=(2, 1)
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Fig. 5. Reward vs number
of arms; preset = 0.001;
(α, β)=(1, 2)

cumulative expected reward averaged over a large number of runs (this choice allows
to directly compare the degradation of total reward when preset increases).

In the following experiments we evaluate Thompson sampling and some classic ban-
dit strategies in presence of resets, in a variety of settings. We are interested to verify
whether probability matching, implemented with Thompson sampling as presented in
this paper, is an effective strategy for balancing exploration and exploration. At any
time-step, let μ̄i be the empirical mean and σ̄i the sample variance of the rewards ob-
served when pulling arm i. We compare the following strategies for choosing the next
arm to pull:

Thompson sampling with Particle-filter: (indicated as PF-Thompson in the plots be-
low) our strategy, described in Algorithm 3, using a particle filter to estimate the
belief distribution (we use 10000 particles in our simulations).

Geometric-Beta Thompson sampling: (indicated as Thompson-reset in the plots) our
probability matching reset-aware strategy using Thompson sampling in two steps,
sampling first from a Geometric distribution and then from Beta (see Algorithm 4).
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Fig. 6. Reward vs preset; n=2, (α, β)=(1, 1)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

prob. drift

to
ta

l r
ew

ar
d

 

 

Fig. 7. Reward vs preset; n=2, (α, β)=(2, 1)
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Fig. 8. Reward vs preset; n = 10, (α, β) =
(1, 1)
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Fig. 9. Reward vs preset; n = 10,(α, β) =
(2, 1)

(Standard) Thompson sampling: probability matching with Thompson sampling. A
set of hyper parameters α and β (a pair for each arm) are maintained as explained
above. A value qi ∼ Beta(αi, βi) is sampled for each arm and the arm a =
argmaxi qi with maximal value is pulled (see Algorithm 2).

UCB-tuned: The strategy is a modification of UCB-1 that is claimed to be more effec-
tive in practice; the index associated to each arm is the following:

τi= μ̄i+

√√√√ ln(t)

mi
min

(
0.25, σ̄2+

√
2ln(t)

mi

)

where mi is the number of times arm i has been pulled.

UCB-1: Each arm i is associated with an index τi = μ̄i +
√

log 2t
mi

; the arm i∗ =

argmax τi with highest index is picked.
Greedy strategy: This basic strategy always selects the currently best performing arm

according to the empirical mean: i∗ = argmax μ̄. Greedy always exploits, there-
fore it will often lead to suboptimal choices. In order to force some exploitation,
especially at the beginning, the empirical mean of each arm is biased by adding 1
to both to the numerator and the denominator.
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Epsilon-Greedy: This random strategy selects the currently best performing arm i∗

(wrt empirical mean) with probability 1−ε and any other arm j �= i∗ is selected with
probability ε

n (with ε=0.05 in the simulations below).

The initial rewards are sampled from a Beta prior; we consider the following possible
values for the prior hyper-parameters (α0, β0) shared by all arms: (1, 1) equivalent to
a uniform distribution, (2, 1), and (1, 2). We simulate the behavior of each strategy; at
each step of the simulation our Bayesian strategies choose which arm to pull based on
the current belief, a reward is sampled and the belief is updated; the other non-Bayesian
methods only keep aggregate information (sample mean and variance of each arm).
We let simulations proceed for a relatively long time (10000 steps) in order to be able
to witness the effect of (possibly multiple) resets. In order to compare the strategies
in the fairest possible way (and reducing noise), at each run a complete history of the
reward dynamics is generated beforehand, and experienced by all strategies in the same
manner. Experimental results are averaged over 300 runs.

First, let’s consider a specific setting with 2 arms and preset = 0.001 (this means
we can expect approximately around 10 resets per arm during each simulation). We
show the cumulative regret obtained by each of the strategy as function of the number
of pulls in Figure 1. PF-Thompson clearly dominates all other methods; the approx-
imated strategy Thompson-reset beats the other methods, but it is significantly worse
than PF-Thompson. Action-value methods and UCB methods fail to effectively adapt
to the reward dynamics. We also note that regret is practically stable for PF-Thompson,
but it actually increases for the other strategies (this is due to the drift). We also show
the fraction of optimal arm selection (Figure 2): the Thompson strategies are constantly
selecting the true highest performing arm with high probability. The fraction of opti-
mal arm selection decreases over time for action value methods, only UCB-1 remains
somewhat competitive.

We evaluated the impact of the number of arms on total reward. The results are shown
in Figures 3, 4, and 5 for prior hyper-parameters (α0, β0) set to (1, 1), (2, 1) and (1, 2),
respectively. The reset-aware Thompson strategy with particle filter (PF-Thompson) is
dominating in most of the settings. The Geometric-Beta version is also very efficient in
many settings (in particular when considering 2 arms); however, when considering 10
arms, it seems that either UCB-1 (in some settings) or UCB-tuned (in other settings)
are better.

We also considered the impact of changing preset on the total cumulative reward
(obtained with 10000 pulls) when fixing the number of arms (Figures 6, 7, 8, and 9).
Surprisingly, UCB-1 is the best performing strategy when considering 10 arms and a
high reset probability. When prior hyper-parameters are optimistic (α0 = 2, β0 = 1),
also UCB-tuned becomes very effective for preset ≥ 0.003 and 10 arms.

Overall, our reset-aware Thompson sampling is an effective technique for bandit
problems with presence of resets. In particular, the version based on particle-filtering
is particularly effective, and it is dominating the other strategies in most of the settings
we tested. However, it is not the best strategy in all the cases; UCB-1 and UCB-tuned
are surprisingly competitive in a small number of settings (but perform very poorly in
others).
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6 Discussion and Conclusion

Multi-armed bandits are the quintessential problem facing the exploration/exploitation
tradeoff. In this paper we addressed the problem of non-stationary multi armed bandits
with resets, a form of drift that will typically occur (relatively) rarely but it is associated
with drastic changes in the value of the choices. In our specific setting, a reset occur
with a fixed i.i.d. probability at each step and, in case of reset, the value of the arm is
reassigned to a random value sampled from a prior distribution.

We compared different strategies for multi armed bandits, aimed at achieving a good
compromise between exploitation and exploration in presence of resets, evaluating them
with respect to cumulative reward and regret. We simulated a number of bandit prob-
lems, with different values for the reset probability preset, the number of arms and the
initial priors. In particular we showed how Thompson sampling can be effective in case
of resets. Differently from drift-aware techniques based on computing pseudo-counts in
fixed temporal windows [8], our is a principled solution that use Thompson sampling
form the right posterior.

We stress that, while much interest in the Bandit community is about theoretical
bounds, we are instead particularly interested in practical efficacy. We show, with sim-
ulations, how our strategy based on Thompson sampling is effective in practical cir-
cumstances. Thompson sampling is particularly appealing because of its simplicity
and (when using conjugate-prior distributions) its efficient implementation. A practi-
cal problem is that generally one cannot assume that the reset probability is known
a priori. Moreover, realistic domains will possibly include different type of drifts at
the same type; for instance, one could consider dynamic values generated by random
walks. We plan to investigate techniques for simultaneously learning the “drift” (the
reset probability preset in our case) while estimating the value of the arms.

Our work is related to the Mortal bandit problem of Chakrabarti et al. [4], where arms
may “die” and become unavailable, while at the same time new arms may appear. In our
model, an arm that is reset could be viewed as dead arm substituted with a new one, but
our problem is more challenging as we do not observe which arm dies. Gittins indices
[6] are a solution to the bandit problems, and in principle can be used for dynamic
settings as well. However they are computationally intensive to compute.

Other directions for future works include bandits with continuous rewards, further
experimental evaluation, theoretical analysis of the worst-case.
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Abstract. We investigate robust decision-making under utility uncertainty, using
the maximin criterion, which optimizes utility for the worst case setting. We show
how it is possible to efficiently compute the maximin optimal recommendation in
face of utility uncertainty, even in large configuration spaces. We then introduce a
new decision criterion, setwise maximin utility (SMMU), for constructing optimal
recommendation sets: we develop algorithms for computing SMMU and present
experimental results showing their performance. Finally, we discuss the problem
of elicitation and prove (analogously to previous results related to regret-based
and Bayesian elicitation) that SMMU leads to myopically optimal query sets.

1 Introduction

Reasoning about preferences [9] is an important component of many systems, including
decision support and recommender systems, personal agents and cognitive assistants.
Because acquiring user preferences is expensive (with respect to time and cognitive
cost), it is essential to provide techniques that can reason with partial preference (utility)
information, and that can effectively elicit the most relevant preference information.
Adaptive utility elicitation [3] tackles the challenges posed by preference elicitation by
representing the system knowledge about the user in the form of beliefs, that are updated
following user responses. Elicitation queries can be chosen adaptively given the current
belief. In this way, one can often make good (or even optimal) recommendations with
sparse knowledge of the user’s utility function.

Since utility is uncertain, there is often value in recommending a set of options from
which the user can choose her preferred option. Retrieving a “diverse” set of recom-
mended options increases the odds that at least one recommended item has high utility.
Intuitively, such a set of “shortlisted” recommendations should include options of high
utility relative to a wide range of “likely” user utility functions (relative to the current
belief) [10]. This stands in contrast to some recommender systems that define diversity
relative to product attributes. “Top k” options (those with highest expected utility) do
not generally result in good recommendation sets.

Recommendation systems can be classified according to the way they represent the
uncertainty about the user preferences (encoded by an utility function) and how such
uncertainty is aggregated in order to produce recommendations that are believed to have
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high utility. A common approach [4,10,3,14] is to consider a distribution over possible
user preferences, and make recommendations based on expected utility. Another line of
work [1,2,3,13] assumes no probabilistic prior is available (the strict uncertainty setting)
and provides recommendations using the minimax regret criterion. The latter approach
makes robust recommendations; regret measures the worst-case loss in utility the user
might incur by accepting a given recommendation instead of the true optimal option.

In this paper, we take an approach similar to the second setting; we cast decision-
making as a problem of optimization under strict uncertainty and we produce robust
recommendations based on the maximin utility criterion. Maximin [15,11] is the most
pessimistic decision criterion; the recommended decision or option is the one that leads
to the highest utility in the worst case. It is a well-known concept and we believe it is
worth studying it from an utility elicitation perspective. While we recognize that max-
imin might not be the right decision criterion in many circumstances due to its intrinsic
pessimism, we argue it is apt for high-stakes decisions requiring the strongest guaran-
tees. As in works on regret-based utility elicitation, in our setting the uncertainty over
possible utility functions is encoded by a set of constraints (usually obtained through
some form of user feedback, such as responses to elicitation queries of the type: “Which
of these products do you prefer ?”). Differently from regret, the recommendation en-
sures that a certain level of utility is attained.

In order to provide recommendation sets that efficiently cover the uncertainty over
possible user preferences, we define a new setwise maximin utility criterion, formal-
izing the idea of providing a set of recommendations that optimize the utility of the
user-selected option in the context of our framework. We show how linear and mixed
integer programming techniques can be used to efficiently optimize both singleton rec-
ommendations and sets in large configuration spaces, and more computationally effi-
cient heuristic techniques motivated by our theoretical framework. Finally, we discuss
the problem of interactive elicitation (which can be viewed as active preference learn-
ing) and how to identify queries that are myopically optimal with respect to a non-
probabilistic analogue of value of information.

2 Decision-Making with Maximin Utility

Much work in AI, decision analysis and OR has been devoted to effective elicitation
of preferences [1,4,12]. Adaptive preference elicitation recognizes that good, even op-
timal, decisions can often be recommended with limited knowledge of a user’s utility
function [1]; and that the value of information associated with elicitation queries is of-
ten not worth the cost of obtaining it [3]. This means we must often take decisions in
the face of an incompletely specified utility function.

These approaches all represent the uncertainty about the user’s utility function ex-
plicitly as “beliefs”. In the case of strict uncertainty (no probabilistic prior is available),
the belief takes the form of a set of possible utility functions, usually implicitly encoded
by constraints [1,13]. In this work, we adopt the notion of maximin utility as our de-
cision criterion for robust decision making under utility function uncertainty. Maximin
utility (like minimax regret [1,2,13]) relies on relatively simple prior information in the
form of bounds or constraints on user preferences.
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2.1 Basic Setting

The setting is that of [13]: we consider a multi-attribute space as, for instance, the space
of possible product configurations from some domain (e.g., computers, cars, apartment
rentals, etc.). Products are characterized by a finite set of attributes X = {X1, ...Xn},
each with finite domains Dom(Xi). Let X ⊆ Dom(X ) denote the set of feasible con-
figurations. Attributes may correspond to the features of various apartments, such as
size, neighborhood, distance from public transportation, etc., with X defined either by
constraints on attribute combinations (e.g., constraints on computer components that
can be put together), or by an explicit database of feasible configurations (e.g., a rental
database). Let x ∈ X be a feasible configuration, and xi the value of the i-th attribute.

The user has a utility function u : Dom(X ) → R. In what follows we will assume
either a linear or additive utility function depending on the nature of the attributes [8].
In both additive and linear models, u can be decomposed as follows1:

u(x) =
∑
i

fi(xi) =
∑
i

λivi(xi)

where each local utility function fi assigns a value to each element of Dom(Xi). In
classical utility elicitation, these values can be determined by assessing local value
functions vi over Dom(Xi) that are normalized on the interval [0, 1], and importance
weights λi (

∑
i λi = 1) for each attribute [6,8]. This sets fi(xi) = λivi(xi) and en-

sures that global utility is normalized on the interval [0, 1]. A simple additive model in
the rental domain might be: u(Apt) = f1(Size) + f2(Distance) + f3(Nbrhd). 2

Since a user’s utility function is not generally known, we write u(x;w) to emphasize
the dependence of u on parameters that are specific to a particular user. In the additive
case, the values fi(xi) over ∪i{Dom(Xi)} serve as a sufficient parameterization of u
(for linear attributes, a more succinct representation is possible). The optimal product
for the user with utility parameters w is argmaxx∈Xu(x;w). The goal of a decision
aid system is to recommend, or help the user find, an optimal, or near optimal, product.

2.2 Singleton Recommendations

Assume that using some prior knowledge, we determine that the user’s utility function
w lies in some bounded set W .3 Such prior knowledge might be obtained through some
interaction with a user (the exact form of W will be defined in section 3.1). We define:

Definition 1. Given a set of feasible utility functionsW , the minimum utilityMU (x;W )
of x ∈ X is defined as:

MU (x;W ) = min
w∈W

u(x;w)

1 In our notation, we use bold lowercase for vectors.
2 Our presentation relies heavily on the additive assumption, though our approach is easily gen-

eralized to more general models such as GAI [6,2].
3 We assume that W is topologically closed. Otherwise one should substitue min and max with
inf and sup in the definitions below.
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Definition 2. The maximin utility MMU (W ) of W and a corresponding maximin op-
timal configuration x∗

W are defined as follows:

MMU (W ) = max
x∈X

MU (x;W ) = max
x∈X

min
w∈W

u(x;w)

x∗
W = argmax

x∈X
MU (x;W ) = argmax

x∈X
min
w∈W

u(x;w)

Intuitively, MU (x;W ) is the worst-case utility associated with recommending con-
figuration x; i.e., by assuming an adversary will choose the user’s utility function w
from W to minimize the utility. The maximin optimal configuration x∗

W is the configu-
ration that maximizes this minimum utility. Any choice that is not maximin optimal has
strictly lower utility than x∗

W for some w ∈ W .
In problems where the items or choices are explicitly listed in a database, we can in

principle iterate over all candidate items, compute their minimum utility (this requires
solving a linear program defined in Section 3.1), and pick the item with the highest value
for recommendation. In configuration problems, the product space X is formulated as
a constraint satisfaction problem (CSP) or mixed integer program (MIP). In Section 3.1
we show how computing maximin utility in configuration domains can be formulated
as a mathematical programming problem and solved using techniques such as Bender’s
decomposition and constraint generation, adapting techniques developed for minimax
regret optimization [1,2].

2.3 Recommendation Sets: The Setwise Maximin Utility Criterion

Suppose we wish to pick a subset Z ⊆ X of size k to present to the user and want to
quantify the minimum utility obtained by restricting the user’s decision to options in
that set. In the maximin utility criterion, we choose the set of k options first, and then
the adversary picks the utility function w such that it minimizes the utility of the best
of the k options. We assume Z is restricted to subsets of X of cardinality k without
making this explicit. In practical circumstances, constraints on the user interface design
might lead to the choice of k.

Definition 3. Let W be a feasible utility set, Z ⊆ X. Define:

SMU (Z;W ) = min
w∈W

max
x∈Z

u(x;w)

SMMU (W ) = max
Z⊆X

min
w∈W

max
x∈Z

u(x;w)

Z∗
W = argmax

Z⊆X
min
w∈W

max
x∈Z

u(x;w)

The setwise minimum utility(SMU) of a set Z of k options reflects the intuitions
above. Setwise maximin utility (SMMU) is SMU of the minimax optimal set Z∗

W , i.e.,
the set that maximizes SMU (Z,W ).

Setwise maximin utility has some intuitive properties. SMU is monotone with re-
spect to set inclusion: adding new items to a recommendation set cannot decrease SMU
(Observation 1). Incorporating options that are known to be dominated given W does
not change setwise maximin utility (Observation 2).

Observation 1. SMU (A ∪B;W ) ≥ SMU (A;W ).
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Observation 2. If u(a, w) > u(b, w) for some a,b ∈ Z and all w ∈ W , then
SMU (Z ∪ {b};W ) = SMU (Z;W ).

Observation 3. MU and SMU can be explicitly expressed as the minimization over
different utility spaces

MU (A;W1∪W2)=min{MU (A;W1),MU (A;W2)}
SMU (A;W1∪W2)=min{SMU (A;W1), SMU (A;W2)}

The computation of SMU is made with respect to the item x ∈ Z with highest utility,
when the utility value is computed according to w ∈ W . Due to this, the different
choices of x ∈ Z define a partition of the utility space, where a partition with respect to
a given x is the region of W where the utility of x is highest among the options in Z.
More formally,

W [Z → xi] = {w ∈ W : u(xi;w) ≥ u(xj ;w) ∀j �= i, 1 ≤ j ≤ k}

That is, W [Z → xi] is the region of w where the utility of xi is at least as high as
any other option in Z. (the regions W [Z → xi], xi ∈ Z, partition W if one ignores
ties). We call this the Z-pseudo-partition4 of W . Using the Z-pseudo-partition, we can
rewrite SMU (this will be useful for optimization):

Observation 4. Let Z = {x1, . . . ,xk}. Then

SMU (Z,W ) = min
x∈Z

min
w∈W [Z→x]

u(x, w) = min
i=1≤...≤k

MU (xi;W [Z→ xi])

We use a similar notation to express the combination of two partitions: W [Z1 →
xi,Z2→xj ] = W [Z1→xi] ∩W [Z2→xj ].

We introduce a transformation that modifies a given recommendation set Z in such
a way that SMU cannot decrease and usually increases. This will be used as a heuristic
for efficiently generating recommendation sets. It will also be useful when discussing
elicitation. Define the transformation T to be a mapping that updates a given recom-
mendation set Z in the following way: (a) First we construct the Z-pseudo-partition of
W ; (b) we then compute the single recommendation that has maximin utility in each re-
gion of the pseudo-partition of W ; (c) finally, we let T (Z) be the new recommendation
set consisting of these new recommendations. Note that T (Z) may have cardinality less
than |Z| = k.

Definition 4. Let Z = {x1, . . . ,xk}. We define T (Z) = {x∗
W [Z→x1]

, . . .x∗
W [Z→xk]

}

We will discuss optimization of a recommendation set below in Section 3.2.

4 The definition of the Z-partition first appeared in [13], in the context of recommendations
based on the minimax regret crierion.
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3 Maximin Utility Optimization

In this section we formalize the problem of generating recommendations (both sin-
gle recommendations and setwise recommendations) using mathematical programming
techniques (linear programming models and mixed integer programming models).
These optimization techniques are adaptation of techniques previously proposed [1,13]
for minimax regret. We note that maximin is faster to compute than minimax regret.

3.1 Optimization of Singleton Recommendations

In the following we assume the utility to be linear in w: u(x;w) = w ·x. In this case W
is a convex polytope effectively represented by a set of constraints (whenever the user
answers a query, new constraints are added) that we denote with Constraints(W).

MU(x, W). Given configuration x and the space of possible utility functions W (en-
coded by linear constraints), the minimum utility of x can be found by minimizing the
function w · x =

∑
1≤i≤n xi · wi, subject to Constraints(W), and w⊥

i ≤ wi ≤ w�
i for

all i ∈ {1 . . . n}, which is solvable by linear programming.

MMU(W). Given the possible utility functions W (encoded by linear constraints), the
problem is to find the configuration x∗

W that is associated with maximin utility. In order
to “break” the maximin optimization, we make use of Benders decomposition:

max
x,δ

δ

s.t. δ ≤ w · x ∀w ∈ GEN (1)

In this model, δ corresponds to the maximin utility of the optimal recommendation
x∗
W . Constraint 1 ensures that δ is less than the utility of choice x for each w. The

optimization is exact when GEN=W in constraint 1. However, all the constraints over
W need not be expressed for each of the (continuously many) w∈W . Since maximin
utility is optimal at some vertex of W , we only need to add constraints for all vertices
Vert(W ) of W , but they can still be exponential. We apply constraint generation in
order to solve the MIP much more efficiently, as very few of the vertices are usually
needed. This procedure works by solving a relaxed version of the problem above—the
master problem— using only the constraints corresponding to a small subset GEN ⊂
Vert(W ). We then test whether any constraints are violated in the current solution. This
is accomplished by computing the minimum utility of the returned solution (the slave
problem). If MU is lower than what was found in the master problem, a constraint was
violated. The constraint (corresponding to the choice wa of the adversary) is added to
the master problem, tightening the MIP relaxation. The master problem is recomputed,
and this process is repeated until no violated constraint exists.

3.2 Optimization of Recommendation Sets

SMU(Z, W). Given a set Z and a space of possible utility functionsW , by observation 4
the setwise minimum utility of Z can be found by solving k (k being the cardinality of
Z) optimization problems. Using the Z-partition of W, we computeMU (x,W [Z → x])
for each x ∈ Z, using the LP model shown above. We then take the (arithmetic) mini-
mum of the results: minx∈Z MU (x,W [Z→ x]).
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SMMU(W). Given utility space W , we can compute the maximin optimal set (of car-
dinality k) using the following MIP.

max δ

s.t. δ ≤
∑

1≤j≤k

vjw ∀w ∈ GEN (2)

vjw≤w · xj ∀j ≤ k,w ∈ GEN (3)

vjw≤w	Ijw ∀j ≤ k,w ∈ GEN (4)∑
1≤j≤k

Ijw = 1 ∀w ∈ GEN (5)

Ijw ∈ {0, 1} ∀j ≤ k,w ∈ GEN

Decision variables: xj , δ, Iw, vw

In this model, δ corresponds to the setwise maximin utility of the optimal set Z∗
W .

w� is some upper bound on the values taken by the weight parameters. Constraints 2,
3 and 4 ensures that δ is less than the utility of the best option in {x1, ...,xk} for each
w, by introducing a variable v (for each w and each element of the set) to represent
the value of minimum utility for the item selected, and indicators Iw to represent the
selection. Only one vw will be different from zero for each w, and since the objective
function is maximized, the optimization will set vjw = w ·xj for the j such that Ijw=1;
constraint 4 enforces 0 in the other cases. Constraint 5 ensures that only one of the k
items is selected for each utility function w.

We employ constraint generation in a way analogous to the single item case. At each
step of the optimization, we compute the setwise minimum utility, solved using a series
of LPs (as discussed above).

Alternative Heuristics. Setwise optimization requires solving a large number of MIPs
using constraint generation strategies. We present a number of heuristic strategies that
are computationally less demanding.

– The current solution strategy (CSS) proceeds as follows. Consider wa, the adver-
sary’s utility parameters minimizing the utility of x∗

W , the current maximin opti-
mal recommendation; u(x∗

W ;wa) = MU (x∗
W ;W ). Let’s further consider xa =

argmaxx∈X u(x;wa). CSS will return the set ZCSS = {x∗
W ,xa}. We extend this

to sets with cardinality greater than two. Considering a set Z, define wa(Z) =
argminw∈W maxx∈Z u(x;w) and xa(Z) = argmaxx∈X u(x;wa(Z)). We start
by initializing Z to be ZCSS , the set of size two returned by the current solu-
tion strategy, and then iteratively add one element (k − 2 times) by setting Z :=
Z ∪ xa(Z).

– The query iteration strategy (QIS) directly applies the T operator until a fixed point
is reached. A fixed point is such that SMU (T (Z);W ) = SMU (Z;W ). We start
QIS with the solution found by CSS.

3.3 Evaluation of Optimization Strategies

Using randomly generated elicitation data we ran a number of experiments using the al-
gorithms described above. For all experiments, we generated constraints on the
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Table 1. Computation times and utility values for our strategies (averaged over 30 instances). On
the rightmost columns, setwise minimum utility values of the sets retrieved by each strategy. A
dash means that one or more instances for this set of parameters timed out. Note that for set size
1, all three approaches reduce to MMU in this case.

Computation time Setwise utility
n. of features set size exact SMMU CSS QIS exact SMMU CSS QIS

5 1 0.1s n.a. n.a. 0.188 n.a. n.a.
5 2 0.1s 0.1s 0.2s 0.349 0.321 0.347
5 3 0.1s 0.1s 0.3s 0.366 0.356 0.366
5 4 0.2s 0.2s 0.4s 0.366 0.363 0.366
5 5 0.2s 0.2s 0.5s 0.366 0.366 0.366
10 1 0.1s n.a. n.a. 0.218 n.a. n.a.
10 2 0.2s 0.1s 0.3s 0.375 0.305 0.332
10 3 0.3s 0.1s 0.3s 0.389 0.369 0.376
10 4 0.5s 0.2s 0.5s 0.391 0.385 0.385
10 5 - 0.3s 0.6s - 0.392 0.392
15 1 0.1s n.a. n.a. 0.213 n.a. n.a.
15 2 0.5s 0.1s 0.4s - 0.268 0.290
15 3 - 0.2s 0.5s - 0.314 0.322
15 4 - 0.2s 0.7s - 0.359 0.368
15 5 - 0.3s 0.8s - 0.371 0.375

possible options using random binary constraints of the form ¬f1 ∨ ¬f2 where f1 and
f2 are features. We also assume some prior knowledge of user preferences, represented
by random utility constraints of the form w · xk ≥ w · xl, where xk and xl are ran-
dom assignments ∈ [0, 1]m (not necessarily feasible options) sampled with uniform
probability over all possible assignments. The user’s preference values w1 . . . wn are
random and normalized such that

∑
iwi=1. All experiments were run on a laptop with

a 2.5GHz Core 2 Duo processor and 2GB ram, with all mathematical programs solved
with CPLEX, version 12.2.

First, we ran experiments to determine how the runtime of the algorithms are affected
by increasing the problem size (number of features) and the size (cardinality) of the
recommendation sets. This was done by running the algorithms on instances ranging
from 5 to 15 features, with 30 experiments performed on each size. 5 As seen in Table 1,
runtime of exact SMMU computation becomes rapidly higher, and we were unable
to perform experiments with more than 15 features, as several of the 30 experiments
per size would time out. In contrast to this we see that the runtime of the CSS and
QIS algorithms increase much more gradually. In another experiment, we compared
the average runtimes of our strategies when fixing the set size, and varying the number
of features in the problem domain (Figure 1).

We then investigated whether the computational effort is worth it in terms of utility
increase. In the rightmost column of Table 1, we show how our strategies perform on
different problem settings. Showing a set of items, instead of a single top item, is very
beneficial: the minimum utility roughly doubles with five items instead of a single one.
Moreover, the set-wise utility values of our approximate strategies (CSS and QIS) are
very close to optimal SMMU.

5 For comparison, we include the “degenerate” case of set size equal 1, corresponding to re-
trieving the single best recommendation according to maximin.
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Fig. 1. Average runtime of maximin utility optimization for an increasing number of features.
Averaged over 30 instances per size, with set size k = 3.

4 Utility Elicitation

Usually, utility information is not readily available, but must be acquired through an
elicitation process. Since elicitation can be costly, it is important to ask queries elicit-
ing the most valuable information. Our setwise criterion can be used directly for this
purpose, implementing a form of preference-based diversity. This stands in contrast to
“product diversity” typically considered in many recommender systems. And unlike re-
cent work in polyhedral conjoint analysis [12], which emphasizes volume reduction of
the utility polytope W , our maximin utility-based criterion is sensitive to the range of
feasible products and does not reduce utility uncertainty for its own sake.

4.1 Optimal Myopic Elicitation

In general, there is a tension between recommending the best options to the user, and
acquiring informative feedback from the user. While in the recommendation task the
goal is to retrieve the best possible options to show to an user, in the elicitation task
the objective is to identify candidate queries with high information value, so that better
recommendations can be made when the user’s response is incorporated in the model.
The two tasks, recommendation and elicitation, considered separately in classic deci-
sion theory, are interleaved in decision aid tools such as conversational recommender
systems where the user is in control.

Here, we consider choice queries requiring a user to indicate which choice/product
is preferred from a set of k options. Hence, we can view any set of products as either a
recommendation set or query (or choice) set. Given a set, one can evaluate the value of
the set as a recommendation set and as a query set. Recently, Viappiani and Boutilier
[14,13] showed how these two problems are connected to each other, under both a
Bayesian framework and when using minimax regret. In the following we show the
same connection with maximin utility used as criterion.
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Any set Z can be interpreted as a choice query: we simply allow the user to state
which of the k elements xi ∈ Z she prefers. We refer to Z interchangeably as a query
or a choice set. The choice of some xi ∈ Z refines the set of feasible utility functions
W by imposing the k − 1 linear constraints u(xi;w) > u(xj ;w), j �= i.

When treating Z as a choice set (as opposed to a recommendation set), we are not
interested in its maximin utility, but rather in how much a query response will increase
maximin utility. In our distribution-free setting, the most appropriate measure is pos-
terior maximin utility, a measure of the value of information of a query. We define:

Definition 5. The worst case posterior maximin utility (WP) of Z = {x1, . . . ,xk} is

WP(Z,W ) = min[MMU (W [Z → x1]), . . . ,MMU (W [Z → xk])]

which can be rewritten as: WP(Z,W ) = minx∈Zmaxx′∈X minw∈W [Z→x] u(x
′,w).

An optimal query set is any Z that maximizes worst case posterior maximin utility
MaxWP(W ) = maxZ⊆X WP(Z,W )

Intuitively, each possible response xi to the query Z gives rise to updated beliefs about
the user’s utility function. We use the worst-case response to measure the quality of the
query (the updated W with lowest maximin utility). The optimal query is the query that
maximizes this value. We observe:

Observation 5. WP(Z;W ) ≥ SMU (Z;W ).

We now consider the transformation T introduced earlier (see Definition 4). Using
Observation 3 and Observation 4, we prove the following.

Observation 6. Let Z = {x1, . . . ,xk}. Let W 1, ...,W l be any partition of W .

WP(Z,W ) =min
i

MMU (W [Z→ xi]) = min
i

MU (x∗
W [Z→xi]

,W [Z→ xi])

=min
i,j
{MU (x∗

W [Z→xi]
,W [Z→ xi] ∩W j)}

In particular, if we consider T (Z) = {x′
1, . . . ,x

′
k} where x′

i = x∗
W [Z→xi]

and its
induced partition on W , the expression above becomes the following.

WP(Z,W ) = min
i,j

{MU (x∗
W [Z→xi]

,W [Z → xi;T (Z) → x′
j ]}

Using this, we can now prove the following lemma:

Lemma 1. SMU (T (Z),W ) ≥WP(Z,W )

From observation 5 and lemma 1 it follows that SMU (T (Z),W ) ≥ SMU (Z,W ),
supporting our use of T as a local search optimization strategy.

Theorem 7. Let Z∗
W be a maximin optimal recommendation set. Then Z∗

W is an opti-
mal choice set: WP(Z∗

W ,W ) = MaxWP(W ).
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Fig. 3. Comparison of CSS and QIS. Results av-
eraged over 30 instances, with set size k=3.

4.2 Evaluation of the SMMU Criterion for Preference Elicitation

We simulated the interaction between a recommender system and a user; at each run
a new utility function is randomly sampled. At each cycle the system asks a choice
query presenting a set of items to the simulated user and the item with highest utility is
selected; this is used by the system to produce a new set of items in the next cycle. Due
to the high computation time of the exact method, we focused on CSS and QIS. 6

In figure 2 we present the “true” utility loss by comparing, after each query answer,
the utility of the optimal singleton recommendation according to MMU with utility
of the true optimal recommendation (according to the utility function of the simulated
user), as a function of the number of queries. The CSS and QIS algorithms have compa-
rable performance, both improving utility loss when more queries are asked, but stalling
approximately after 8 queries. In figure 3 we plot the minimum utility guarantee as a
function of the number of queries. It quickly increases with the first 4-5 queries, but
after that there is little improvement. While our theoretical results show that there is a
connection between the problem of generating recommendations and queries, our ex-
periments seem to indicate that maximin is generally unable to effectively elicit useful
utility information beyond the first cycles. This is due to the extremely pessimistic na-
ture of maximin and the “absorbing” nature of worst-case posterior maximin utility: in
many situations there is no query leading to an improvement of maximin in the worst
case (one needs to rely on ad-hoc tie-breaking strategies in these cases). It might be
useful to adopt a non-myopic approach, or an alternative decision criterion. Further in-
vestigation is required to make long-term preference elicitation with maximin effective
and avoiding stalling. 7

6 These were performed using larger instances, with 30 features per instance, 40 binary feature
constraints and 40 utility constraints.

7 We note that it is of course possible to use maximin as a decision criterion, while resorting to
other strategies (perhaps based on regret or on probabilistic methods) for elicitation.
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5 Discussion

In this paper we have developed a novel formalization for decision-making under util-
ity uncertainty using the maximin utility criterion. This approach provides the highest
degree of robustness, as the recommendation is guaranteed to yield the highest utility
in the worst case. We addressed the problem of generating recommendation sets intro-
ducing a new decision criterion, setwise maximin utility, that formalizes the intuition
that the best recommendation set is the one that is maximally “diverse” in a decision-
theoretic way. Adapting ideas from [1,13], we developed computational methods for
optimizing sets according to this new criterion, as well as heuristics useful for large
problem domains.

Following analogous models available for the minimax regret and Bayesian frame-
works [13,14], we showed the connection between the problem of generating optimal
recommendation sets and myopically optimal elicitation queries. Our setwise maximin
criterion (a natural extension of maximin to sets), in addition to providing robust recom-
mendation sets, also serves as a means of generating myopically optimal choice queries
(asking the user to pick his most preferred option in a set). In our experiments we evalu-
ated the performance of our optimization methods on randomly generated data, showing
that there is often value in recommending a set of options (instead of a single recom-
mendation) to the user, and that recommendation sets can be efficiently optimized in
practice. We also experimented with interactive utility elicitation, with elicitation driven
by the (set-wise) maximin optimization; however in this setting the myopic elicitation
with choice queries is not very effective (differently from [13,14]).

In this work we consider the value of a set with respect to its capacity of “covering”
the uncertainty associated with the partially known user utility function. The underlying
assumption is that the user is looking for a single item to pick or purchase, and a set is
shown to increase the chance that at least one item has high utility. We underline that
there are works[5,7] that consider recommendation sets with a different semantics (the
problem of recommending a set of options accounting for positive or negative synergies
between options). It would be interesting to consider their setting with a principled
decision-theoretic view.

We conclude with a remark about the choice of the decision criterion. Maximin is
very pessimistic; indeed expected utility may yield better recommendations in many
cases. However, when a decision maker requires guarantees on the worst-case perfor-
mance (e.g. in critical decisions with high stakes), she must be willing to sacrifice “av-
erage” utility. This is the price to pay for the (strong) worstcase guarantees of maximin.

Acknowledgments. The fist author would like to acknowledge Craig Boutilier for dis-
cussion about recommendation sets, minimax regret and utility elicitation. While he
was not involved in this paper, his works on minimax regret (including joint works
with the first author) laid down fundamental ideas that have been adapted to the max-
imin criterion here. We also thank the anonymous reviewers for valuable comments and
suggestions.
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Appendix

Proof of Observation 5. Considering the definition of WP(Z,W ) and the equation for
SMU (Z,W ) in observation 4, we see that they are the same except that WP(Z,W ) picks a
maximizing x′ ∈ X after x∈Z has been picked. Since X includes all options, x′ can at worst
be x.

Proof of Lemma 1. Let T (Z) = {x′
1, . . . ,x

′
k} where x′

i = x∗
W [Z→xi]

. The previous observa-
tions allow to write WP and SMU compactly

WP(Z,W ) = min
i,j

[MU (x′
i,W [Z → xi, T (Z) → x′

j ])] (6)

SMU (T (Z),W ) = min
i,j

[MU (x′
j ,W [Z → xi, T (Z) → x′

j ])] (7)
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We now compare the two expressions componentwise. Consider the utility space W [Z →
xi, T (Z) → x′

j ]: if i = j then the two MU components are the same. If i �= j, consider any w ∈
W [Z → xi, T (Z) → x′

j ]. Since w ∈ W [T (Z) → x′
j ], we must have u(x′

j ;w) > u(x′
i;w).

Therefore MU (x′
j ,W [Z → xi, T (Z) → x′

j ]) ≥ MU (x′
i,W [Z → xi, T (Z) → x′

j ]). In the
expression of SMU (T (Z)) (Eq. 7), each element is no less than its correspondent in the WP(Z)

expression (Eq. 6). Thus SMU (T (Z),W ) ≥ WP(Z,W ).

Proof of Theorem 7. Suppose Z∗
W is not an optimal query set, i.e., there is some Z′ such that

WP(Z′,W ) > WP (Z∗
W ,W ). If we apply transformation T to Z′ we obtain a set T (Z′),

and by the results above we have: SMU (T (Z′),W )) ≥ WP(Z′,W ) > WP(Z∗,W ) ≥
SMU (Z∗

W ,W ). This contradicts the (setwise) maximin optimality of Z∗
W . If T (Z′) has lower

cardinality than the initial set, then a set of the original cardinality can be constructed in arbitrary
way, since MMU is montone.
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Abstract. We study possible winner problems related to uncovered set and Banks
set on partial tournaments from the viewpoint of parameterized complexity. We
first study the following problem, where given a partial tournament D and a sub-
set X of vertices, we are asked to add some arcs to D such that all vertices in
X are included in the uncovered set. Here we focus on two parameterizations of
the problem: parameterized by |X| and parameterized by the number of arcs to
be added to make all vertices of X be included in the uncovered set. In addition,
we study a parameterized variant of the problem to decide whether we can make
all vertices of X be included in the uncovered set by reversing at most k arcs.
Finally, we study some parameterizations of a possible winner problem on par-
tial tournaments, where we are given a partial tournament D and a distinguished
vertex p, and asked whether D has a maximal transitive subtournament with p
being the 0-indegree vertex. These parameterized problems are related to Banks
set. For all these parameterized problems studied in this paper, we achieve XP
results, W-hardness results as well as FPT results along with a kernelization
lower bound.

1 Introduction

A tournament can be expressed as a directed graph where between every pair of ver-
tices there is exactly one arc. Tournaments play a significant role in voting systems
due to their nice expression ability in many winner determination problems. For exam-
ple, tournaments can perfectly illustrate the Condorcet winner determination problem
(when the number of voters is odd): create a vertex for each candidate and add an arc
(v, u) between two vertices v and u if more than half of the voters prefer v to u. Then,
the Condorcet winner is the candidate who has an arc to every other candidate. Sev-
eral other winner determination methods are also based on tournaments, such as Banks,
Slater, and Schwartz winners [14,4]. However, in practical settings, we might not be
able to access the full information of an election to build the tournament. For example,
the number of candidates is too huge to give a full preference at once, or, consider an
online voting where in each time only part of the votes is submitted. In these cases, a
partial tournament may be a useful tool, and thus, the problems of deciding which can-
didates have positive possibility to win the election should be of particular importance

� Supported by the DFG Excellence Cluster (MMCI) and the China Scholarship Council (CSC).
�� Supported by the DFG Excellence Cluster (MMCI).
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(A partial tournament is a tournament with some arcs missing). Partial tournaments
also appear in settings, where a given election cannot specify a relationship between
two candidates. For example, we have an election to select the Condorcet winner. If the
number of voters is even, then, it is possible that for two candidates v and u, exactly
half of the voters prefer v to u and the others prefer u to v.

Tournament solutions have wide applications in decision-making problems and in so-
cial choice area. Informally, a tournament solution maps a tournament to a non-empty
set of vertices in the tournament. Banks set and uncovered set are two of the most im-
portant tournament solutions which have been extensively studied from the viewpoints
of game theory, economics, computational complexity, etc. Banks set is named by its
introducer Banks [2]. Given a tournament, a candidate (a vertex in the tournament)
v is a Banks winner, if there is a maximal transitive subtournament with v being the
0-indegree vertex. Here, “transitive” means that for every three vertices v, u, w in a
tournament D, the existence of arcs (v, u) and (u,w) in D implies that (v, w) is in
D. The Banks set then contains all Banks winners. Clearly, if there is a Condorcet win-
ner, then the Banks winner coincides with the Condorcet winner. The uncovered set of a
tournament is a maximal subset C of candidates such that no candidate outsideC domi-
nates a candidate in C. Here, a candidate v dominates a candidate u if all out-neighbors
of u are also out-neighbors of v. Thus, an uncovered set includes exactly all vertices
each of which can reach any other vertex in no more than two steps (a precise defini-
tion is in the next section). The vertices in an uncovered set are called kings from the
viewpoint of graph theory. It is well-known that every tournament contains at least one
king. Moreover, if the Condorcet winner exists, then the uncovered set contains only the
Condorcet winner. Uncovered set has some advantages compared with Banks set. For
example, determining whether a candidate is a Banks winner is NP-hard [19], while
computing the uncovered set is solvable in polynomial time [14]. Selecting the elements
from the uncovered set as the winners of the given tournament has been independently
suggested by Fishburn [12] and Miller [15].

1.1 Parameterized Complexity

Parameterized complexity was introduced by Downey and Fellows [9] as a tool to deal
with hard problems. A parameterized problem is a language Σ∗ × Σ∗, where Σ is a
finite alphabet. The first component is called the main part of the problem while the
second component is called the parameter. Throughout this paper, the parameter is a
positive integer. Parameterized problems have the following main hierarchy:

FPT ⊆ W [1] ⊆ W [2], ...,⊆ XP
whereFPT includes all parameterized problems which admitO(f(k)·|I|O(1))-time al-
gorithms, whileXP includes all parameterized problems which admit O(f(k)·|I|g(k))-
time algorithms. Here, I is the main part of the instance, k is the parameter, and f(k)
and g(k) are computable functions depending only on k. There are also parameterized
problems beyond XP . For example, the k-colorable problem which is to determine
whether an undirected graph admits a proper k-coloring of the vertices has no algo-
rithm of the form O(f(k) · |I|g(k)), unless P = NP [10]. Finally, classes between
FPT and XP are defined based on FPT -reductions.
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Given two parameterized problems Q and Q′, an FPT -reduction from Q to Q′ is
an algorithm that takes as input an instance (I, k) of Q and outputs an instance (I ′, k′)
of Q′ such that

(1) the algorithm runs in f(k) · |I|O(1) time, where f is a computable function in k;
(2) (I, k) is a true-instance of Q if and only if (I ′, k′) is a true-instance of Q′; and
(3) k′ ≤ g(k), where g is a computable function in k.

A problem isW[i]-hard if all problems inW[i] can be FPT -reducible to the prob-
lem. From the practical point of view,W[1] is the basic class of parameterized problems
which unlikely admit FPT -algorithms.

Kernelization is a main technique to derive FPT algorithms. Formally, a kerneliza-
tion for a parameterized problem Q is a polynomial-time algorithm that reduces a given
instance (I, k) of Q to a new instance (I ′, k′) of Q such that

(1) (I, k) is a true-instance if and only if (I ′, k′) is a true-instance;
(2) k′ ≤ k; and
(3) |I ′| ≤ f(k), where f is a computable function in k.

The new instance (I ′, k′) is called the problem kernel, while the function f(k) is
the kernel size. Moreover, if f is a polynomial function, we call (I ′, k′) a polynomial
kernel. Intuitively, a kernelization shrinks the original instance to a new equivalent and
sized-bounded instance without changing the solvability. It is folklore that a parame-
terized problem is in FPT if and only it has a kernelization. For more background on
kernelization, we refer to [13,3].

1.2 Motivation and Our Contribution

In this paper we study some parameterized problems related to uncovered set and
Banks set on partial tournaments. We first study the possible winners of uncovered
set problem [1]: given a partial tournament and a subset X of vertices, we are seeking
for a completion of D such that all vertices in X become kings, or equivalently, all
vertices in X are in the uncovered set. For convenience, in the following we use the
terminology “kings” instead of “uncovered set”. We study the problem with the size of
X as the parameter. The motivation is based on the observation that in practical set-
tings, one is mostly interested to make few vertices, which correspond to candidates,
to become winners. We prove that this problem is in XP ; thus, when the size of X
is bounded by a constant, it can be solved in polynomial time. In addition, we study
two variations of possible winners of uncovered set problem where we are asked to
make all vertices of X kings by modifying few number of arcs. We study two kinds of
modifications: adding arcs and reversing arcs. In the “adding arcs” case we are allowed
to add at most k arcs to the partial tournament, while in the “reversing arcs” case we
are allowed to reverse at most k arcs in the partial tournament. For both problems, k
is the parameter. These two parameterized variations could illustrate a bribery strategic
behavior. For example, consider a politician in a political election who wants to make
one of his accomplices win the election. Then, the arc reversal and arc addition prob-
lems illustrate the case where the politician has limited money and to bribe voters to
change the pairwise compared relationship between every two candidates needs a cost.
We prove that, somewhat surprising, both the variations areW[2]-hard, even when X
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contains only a single vertex. Furthermore, ourW[2]-hardness proof for the “reversing
arcs” case applies to the special case where the input is a tournament and X contains
only a single vertex. These results imply that the problems of finding the minimum
number of arcs which are needed to add (resp. to reverse) to make all vertices of X
kings are beyond XP , when consider the size of X as the parameter. Finally, we study
a possible winner problem related to Banks set on partial tournaments, where we are
given a partial tournament D and a distinguished vertex p, and asked whether D has a
maximal transitive subtournament with p being the 0-indegree vertex. This problem is
a natural generalization of Banks winner to partial tournaments. Here we study three
parameterizations. The first parameter we study is the size of the subtournament we are
looking for. We prove that this parameter leads to a W[2]-hardness result. Then, we
study the parameter defined as the number of candidates who defeat p. We show that
the problem isW[1]-hard with this parameter. Finally, we consider the Copeland score
of p (the number of candidates defeated by p) as the parameter. Different from the pre-
vious results, we show that the problem with the Copeland score of p as the parameter
is in FPT . Furthermore, we prove that the problem does not have a polynomial kernel
unless the polynomial hierarchy collapses to the third level.

1.3 Preliminaries

A directed graph D is a pair (V,A) where V is the set of vertices and A is the set of
arcs. An arc from a vertex v to a vertex u is denoted by (v, u). We say v is the tail
of (v, u) and u is the head of (v, u). For simplicity, we also use A(D) and V (D) to
denote the set of arcs and the set of vertices of D, respectively. For a vertex v, we
use N−(v) and N+(v) to denote its in-neighbors and out-neighbors, respectively, that
is, N−(v) = {u | (u, v) ∈ A(D)} and N+(v) = {u | (v, u) ∈ A(D)}. The in-
degree and out-degree of v, denoted by d−(v) and d+(v), are the sizes of N−(v) and
N+(v), respectively. Meanwhile, we say that v is a d−(v)-indegree vertex or a d+(v)-
outdegree vertex. The subgraph induced by a subset S ⊆ V (D), denoted by D[S], is
D[S] = (S, {(u, v) | u ∈ S, v ∈ S, (u, v) ∈ A(D)}).

A partial tournament is a directed graph such that |{(v, u), (u, v)} ∩ A(D)| ≤ 1
for all v, u ∈ V and (v, v) �∈ A(D) for all v ∈ V . If there is no arc between two
vertices v and u in D, then we call (v, u) and (u, v) missing arcs. A tournament is a
partial tournament without missing arcs. A tournament D is a completion of a partial
tournament D′ if V (D) = V (D′) and A(D′) ⊆ A(D).

A tournament D is transitive if there is an ordering (v1, v2, ..., vn) of V (D) such
that there is no arc (vj , vi) with j > i (or, equivalently, for every three vertices v, u, w,
(v, u) ∈ A(D) and (u,w) ∈ A(D) implies (v, w) ∈ A(D)). Clearly, there is a unique
0-indegree vertex in every transitive tournament (the first one in the ordering). For a
partial tournament and a subset S ⊆ V (D), we say D[S] is a maximal transitive sub-
tournament of D if D[S] induces a transitive tournament and no other vertices outside
S can be added to S to form a bigger induced transitive tournament.

For two vertices v and u, we say v can reach u if (v, u) ∈ A(D) or there is a
w ∈ V (D) \ {v, u} with (v, w) ∈ A(D) and (w, u) ∈ A(D). In the former case we
say v reaches u directly, while in the latter case we say that v reaches u by (or through)
w. A king in a directed graph is a vertex which can reach all other vertices. For a subset
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X ⊆ V (D) and a vertex v ∈ V (D), v is a serf with respect to X if v can be reached by
all vertices in X \ {v}.

In the following, when we say “adding an arc”, we mean to add an arc between two
vertices which have no arc between them. Thus, adding an arc to a partial tournament
still results in a partial tournament. Reversing an arc (v, u) ∈ A(D) is the operation that
firstly deletes (v, u) from D, and then adds a new arc (u, v) to D. The parameterized
problems studied here are defined as follows.

Possible Winners of Uncovered Set (PWU)
Input: A partial tournament D = (V,A) and a subset X ⊆ V .
Parameter: |X |.
Question: Is there a completion of D such that all vertices in X are kings?

PWU-ADD (resp. PWU-REVERSE)
Input: A partial tournament D = (V,A) and a subset X ⊆ V .
Parameter: A positive integer k.
Question: Can we add (resp. reverse) at most k arcs such that all vertices in X are
kings?

Transitive Winner on Partial Tournaments (TW)
Input: A partial tournament D = (V,A) and a vertex p ∈ V .
Parameter: A positive integer k.
Question: Is there a subset S ⊆ V of size k such that D[S] is a maximal transitive
tournament with p being the 0-indegree vertex?

TW-INDEGREE (resp. TW-OUTDEGREE)
Input: A partial tournament D = (V,A) and a vertex p ∈ V .
Parameter: |N−(p)| (resp. |N+(p)|).
Question: Is there a subset S ⊆ V such that D[S] is a maximal transitive tournament
with p being the 0-indegree vertex?

1.4 Related Work

In [1], the authors studied possible and necessary winner problems in partial tourna-
ments for diverse tournament solution concepts. They mainly considered three topics:
deciding whether a given candidate is a possible (resp. a necessary) winner, and decid-
ing whether a given subset of candidates equals the set of winners in some completion.
For the possible winners of uncovered set (PWU) 1 defined as above, they proved that
this problem is NP-hard by a reduction from SAT. However, the problems of deciding
whether a given candidate is a possible winner or a necessary winner for uncovered
set are both polynomial-time solvable [1]. Moreover, computing the uncovered set is
polynomial-time solvable [14].

As for the problems related to Banks set, in spite of the polynomial-time solvability
of computing a Banks winner, deciding whether a distinguished candidate is a Banks

1 In their paper, they use PSWUC to denote the problem.
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winner is NP-hard [19]. The latter problem is also related to the DUAL DIRECTED

FEEDBACK VERTEX SET (DUAL-DFVS) problem. In DIRECTED FEEDBACK VERTEX

SET (DFVS), we are given a directed graph D and a positive integer parameter k, and
asked to decide whether there is a subset of vertices of size k whose removal results in
a directed graph without a cycle. In DUAL-DFVS, we are given a directed graph and a
positive integer parameter k, and asked whether there is a subgraph of size k containing
no cycle. DFVS has been proved FPT [5] over a long time of studying. In particular,
when restricted to tournament, DFVS has an O(k3) kernel [6]. By a dichotomy theorem
from [18], DUAL-DFVS is W[1]-hard. However, when restricted to tournaments this
problem is FPT [17]. It is well-known that a tournament contains no cycle if and only
if it is transitive. These problems are also related to Slater set problems, where the main
task is to reverse minimum number of arcs so that a given tournament become transitive.
We refer to [14] for detailed complexity results about problems on Slater set.

2 Problems Related to Uncovered Set

It is easy to see that all problems except PWU defined above are in XP : try all possi-
bilities of selecting a subset of size k in V , A or {(v, u) | (v, u) �∈ A(D)}, where k is
the parameter of the corresponding problem. All these algorithms run in O(|I|2k) time,
where I is the size of the given partial tournament and k is the related parameter; and
thus, these problems are in XP . However, showing a problem is in XP is not always a
easy work, as stated by Downey, Fellows and Stege in their seminal paper [10].

“Knowing that a problem is inXP has some practical value and can be difficult
to show.”

In the following, we show that PWU is also in XP .

Theorem 1. PWU is in XP .

Proof. We prove the theorem by giving an XP-algorithm. The following lemma is
useful for illustrating our algorithm. Let E = (D = (V,A), X) be an instance of PWU.

Lemma 2. Let v ∈ X be a serf with respect to X in D and E ′ = (D′ = (V,A′), X)
be a new instance with A′ = A ∪ {(v, u) | {(v, u), (u, v)} ∩ A = ∅, u ∈ V \X}, then
E is a true-instance if and only if E ′ is a true-instance.

Proof. It is clear that if E ′ is a true-instance, then E must be a true-instance. To prove
the other direction, note that adding an arc from some vertex u ∈ V \X to v is to make
v reachable by some vertex w ∈ X \ {v} through u. However, since v is already a serf
with respect to X , such an arc addition is then unnecessary. However, adding the arc
(v, u) for u ∈ V \X to the partial tournament would make v reach further vertices. �

Our algorithm first tries all possibilities of completions of D[X ]. Clearly, there can
be at most 2|X|·(|X|−1)/2 such possibilities. In each of the completions, there may
have some pairs (u,w) with (u,w) ∈ A(D[X ]) such that w does not reach u. For
all these pairs, we further try all possibilities of making w reach u by some vertex
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v ∈ V \ X (thus, there are at most |V \ X | possibilities for each pair and totally at
most |V \ X ||X|·(|X|−1)/2 possibilities for all pairs), by adding one or two new arcs
between {w, u} and v. Meanwhile, if there is no chance to make w reach u, then we
give up the possibility. Clearly, if the given instance is a true-instance, then at least one
of the possibilities leads to a “yes” answer. We have totally at most 2|X|·(|X|−1)/2 · |V \
X ||X|·(|X|−1)/2 possibilities. Now, in each case, D[X ] induces a tournament and every
vertex v ∈ X is a serf with respect to X . Then, due to Lemma 2, we can safely add all
missing arcs between X and V \X with tails in X and heads in V \X . It remains to
add arcs between vertices in V \X to make the vertices in X kings. For convenience,
let’s give a formal definition of the remaining part first.

PWU
Input: A partial tournament D = (V,A) and a subset X ⊆ V such that D[X ] induces a
tournament, every vertex v ∈ X is a serf with respect to X in D and there is no missing
arcs between X and V \ X , that is, {(v, u), (u, v)} ∩ A �= ∅ for all v ∈ X and all
u ∈ V \X .
Question: Is there a completion of D such that all vertices in X are kings?

In the following, we prove that PWU is solvable in polynomial time. We begin with
a useful observation.

Observation. Let v and u be two vertices in V \ X with missing arcs between them.
If there is a vertex x ∈ X such that x can reach v directly but x cannot reach u, then
every true-instance has a solution containing the arc (v, u).

The observation is correct; since adding an arc (v′, u′) between v′, u′ ∈ V \X to the
partial tournament is to make some vertex w ∈ X reach u′ by v′. Since x cannot reach
u, all vertices in X which can directly reach u must also directly reach x. Therefore,
no vertex in X needs an arc from u to v to reach v; since all such vertices have already
reached v by x. Thus, adding (v, u) is the optimal choice.

Based on the above observation, we can solve PWU in polynomial time as showed
in Algorithm 1.

Algorithm 1. A polynomial-time algorithm for PWU
1 forall the vertices x ∈ X do
2 Let Vx = {v ∈ V \ X | (x, v) ∈ A(D)} be the set of vertices that x can reach directly;
3 Let Vx̄ = {v ∈ V \ X | (v, x) ∈ A(D), �y ∈ V with (x, y) ∈ A(D) and (y, v) ∈ A(D)} be the

set of vertices that x cannot reach;
4 if Vx = ∅ and Vx̄ �= ∅ then
5 Return “No”
6 else
7 forall the v ∈ Vx and u ∈ Vx̄ with {(v, u), (u, v)} ∩ A(D) = ∅ do
8 Add (v, u) to D
9 end

10 end
11 end
12 Return “Yes” if all vertices in X are kings and return “No” otherwise;
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In summery, PWU is inXP ; since there are at most 2|X|·(|X|−1)/2·|V \X ||X|·(|X|−1)/2

instances of PWU and PWU can be solved in polynomial time. �

With the above theorem, we can trivially get the following result.

Corollary 3. PWU is polynomial-time solvable if the size of the given subset X is
bounded by a constant.

Now we study the problems of deciding whether we can make all vertices of X
kings by adding (resp. reversing) at most k arcs. The following results are somewhat
interesting compared with Corollary 3. In particular, we prove that both PWU-ADD and
PWU-REVERSE areW[2]-hard even when X contains only one single vertex. Further-
more, ourW[2]-hardness proof for PWU-REVERSE applies to the case that the input is
a tournament and X contains only one single vertex. These results imply that the prob-
lem of finding the minimum number of arcs which are needed to add to the given partial
tournament (resp. to reverse in the given (partial) tournament) to make all vertices of X
kings is beyond XP , in the case that |X | is the parameter.

Theorem 4. PWU-ADD isW[2]-hard even when |X | = 1.

Proof. We prove the theorem by an FPT -reduction from SET COVER which has been
provedW[2]-hard (Theorem 13.29 of [16]).

SET COVER

Input: A base set S = {s1, s2, ..., sn} and a collection C of subsets of S, C =
{c1, c2, ..., cm}, ci ⊆ S for 1 ≤ i ≤ m, and

⋃
1≤i≤m ci = S.

Parameter: A positive integer t
Question: Is there a subset C′ ⊆ C of size at most t which covers all elements in S,
that is,

⋃
c∈C′ c = S.

Given an instance E = (S,C, t) of SET COVER, we construct an instance E ′ = (D =
(V,A), X, k) of PWU-ADD as follows.

The partial tournamentD contains n+m vertices one to one labeled by the elements
in S ∪ C together with further two vertices {x, y}. We further use S and C to denote
the sets of vertices labeled by the elements in S and C, respectively. For each c ∈ C,
there is an arc (y, c) ∈ A(D). For each s ∈ S, there is an arc (s, x) ∈ A(D) and
an arc (s, y) ∈ A(D). For each pair {s, c} where s ∈ S and c ∈ C, there is an arc
(c, s) ∈ A(D) if s ∈ c, and an arc (s, c) ∈ A(D) otherwise. In addition, there is an
arc (x, y) ∈ A(D). Finally, we add arbitrary arcs in D[S] and D[C] to make both D[S]
and D[C] complete (subtournament of D). See Fig. 1. We set X = {x} and k = t.

Due to the construction, a vertex c ∈ C can reach a vertex s ∈ S only if c covers s,
that is, s ∈ c. Meanwhile, x can reach every vertices in C by y but cannot reach any
vertex in S. In order to make x a king, we must add some arcs from x to C to make x
reach all vertices in S. We prove that E is a true-instance if and only if the new instance
E ′ is true.
⇒: Suppose that E is a true-instance and C′ be a solution of E . Then, it is easy to

verify that we can make x a king by adding arcs (x, c) in D for all c ∈ C′; thus, E ′ is a
true-instance.
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C

S

X

c

s s′

x

y

s ∈ c s′ �∈ c

to all C

from all S
from all S

Fig. 1. The graph illustrates the
construction for PWU-ADD.
Here, D[S] and D[C] are made
complete arbitrarily. The thick
arcs labeled with “from all S”
mean that there is an arc (s, x)
and an arc (s, y) for all s ∈ S.
The thick arc labeled with “to
all C” means that there is an arc
(y, c) for all c ∈ C. Finally, there
is an arc (c, s) if s ∈ c and an arc
(s, c) otherwise, for every c ∈ C
and s ∈ S.

⇐: Suppose that E ′ is a true-instance and B is a solution for E ′. Let C′ = {v |
(x, v) ∈ B}. Clearly, C′ is a subset of C. We claim that C′ is a solution for E : the only
way to make x reach a vertex s ∈ S is to add an arc from x to some vertex c ∈ C which
can cover s. Since x is a king after adding all arcs in B to the given instance, x can
reach every s ∈ S by at least one vertex c ∈ C′ which covers s, implying C′ is a set
cover for E . �

The following theorem shows the parameterized complexity of the problem to decide
whether we can make a certain set of vertices kings by reversing at most k arcs.

Theorem 5. PWU-REVERSE is W[2]-hard even when the input is a tournament and
X contains only a single vertex.

Proof. The reduction is from DOMINATING SET ON TOURNAMENTS which has been
provedW[2]-hard [8].

Dominating Set on Tournaments (DST)
Input: A tournament T .
Parameter: A positive integer t.
Question: Does T have a dominating set of size at most t? Here, a dominating set C for
a tournament T is a subset of the vertices of T such that every vertex outside C has at
least one of its in-neighbors in C.

Given an instance E = (T, t) of DST, we construct an instance E ′ = (T ′, X =
{x}, k = t) for PWU-REVERSE as follows. T ′ contains a copy of T , which is denoted
by T̄ , together with a further vertex x having an arc from every vertex in T̄ , that is,
(v̄, x) ∈ A(T ′) for all v̄ ∈ V (T̄ ). We will use v̄ to refer to the copy of the vertex
v ∈ V (T ). It is easy to verify that if T has a dominating set C of size at most t, then
reversing the arcs {(v̄, x) | v ∈ C}makes x a king. To show the other direction, we first
observe that if E ′ is a true-instance, then there is a solution such that all reversed arcs
are between x and V (T̄ ). The observation is correct since each reversal of an arc (v̄, ū)
with v̄, ū ∈ V (T̄ ) can be replaced by a reversal of the arc (v̄, x) to form a new solution.
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Now suppose that E ′ is a true-instance and B is a solution (represented by a set contain-
ing all reversed arcs) containing only arcs between x and V (T̄ ). Let T ′′ be the tourna-
ment obtained from T ′ by reversing all arcs in B. We claim that C = {v | (v̄, x) ∈ B}
is a dominating set of T (the size of C is clearly at most t). To this end, we need to
show that, in the tournament T , every vertex which is not in C has at least one of its
in-neighbors in C. Let u be any arbitrary vertex in V (T ) \ C. Due to the construction,
there is an arc (ū, x) in T ′′. Since x is a king in T ′′, we know that x reaches ū by some
vertex v̄ with (x, v̄) ∈ T ′′. Due to the construction, (x, v̄) is in T ′′ only if (v̄, x) is in
B, or equivalently, v ∈ C. Since (v̄, ū) ∈ A(T̄ ) and T̄ is a copy of T , (v, u) ∈ A(T ).
Therefore, we can conclude that every vertex u outside C has at least one vertex v ∈ C
with (v, u) ∈ A(T ), which completes our proof. �

3 Problems Related to Banks Set

In this section, we study problems of deciding whether a distinguished vertex p is con-
tained in a maximal transitive subtournament with p being the 0-indegree vertex. We
first prove that TW isW[2]-hard by a reduction from a variant of SET COVER, which
is defined as follows.

t-MULTICOLORED SET COVER, (t-MSC)
Input: A base set S = {s1, s2, ..., sn} and a collection C = {c1, c2, ..., cm} of subsets
of S, each of which having a color from {1, 2, ..., t}, and

⋃
1≤i≤m ci = S.

Parameter: t
Question: Is there a subset C′ ⊆ C such that C′ includes exactly one from the same
colored subsets and C′ covers all elements of S, that is,

⋃
c∈C′ c = S. We call such a

C′ a t-multicolored set cover.

Lemma 6. t-MSC isW[2]-hard.

Proof. The proof is by an FPT -reduction from SET COVER. Given an instance E =
(S,C, t) of SET COVER we construct a collection C by taking t copies c1, c2, ..., ct of
each c ∈ C, and then color each ci with color i ∈ {1, 2, ..., t}. The constructed instance
for t-MSC is E ′ = (S,C, t). It is straightforward to verify that E has a set cover of size
t if and only if E ′ has a t-multicolored set cover. �

With theW [2]-hardness of t-MSC we now prove the hardness of TW.

Theorem 7. TW isW[2]-hard.

Proof. We prove the theorem by an FPT -reduction from t-MSC. Given an instance
E = (C, S, t) of t-MSC where C is the colorful collection, S is the base set and t is the
parameter, we construct an instance E ′ = (D = (V,A), p, k) of TW as follows. Let Ci

be the collection of subsets in C colored by i ∈ {1, 2, ..., t}.
D contains n + m vertices one to one labeled by the elements in S ∪ C together

with the distinguished vertex {p}. We further use S and C to denote the sets of vertices
labeled by the elements in S and C, respectively. For every s ∈ S and c ∈ C, there
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is an arc from c to s if s ∈ c and an arc from s to c otherwise. In addition, there is an
arc from s to p for all s ∈ S and an arc from p to c for all c ∈ C. Finally, there is an
arc (c, c′) for all c ∈ Ci and c′ ∈ Cj with i < j. See Fig 2. The parameter is set to
k = t+ 1. We now prove that E is a true-instance if and only if E ′ is a true-instance.

C

S

C1 C2 Ct

s �∈ c s ∈ c p

from all S

to all C

Fig. 2. Illustration of construction for TW

⇒: Suppose that E is a true-instance and C′ is a solution. Clearly, C′ ∪ {p} induces
a transitive tournament with p being the 0-indegree vertex. Due to the construction, for
each vertex s ∈ S, C′ contains at least one of its in-neighbors; thus, no vertex in S can
be added to C′ ∪ {p} to make a bigger transitive tournament (since otherwise, there
would be a triangle), implying that C′ ∪ {p} is maximal in D.
⇐: Suppose that E ′ is a true-instance and B ∪ {p} is a solution which induces a

maximal transitive tournament with p being the 0-indegree vertex. Clearly, B ⊆ C.
Due to the maximality of D[B ∪ {p}], N−(s) ∩ B �= ∅ for all s ∈ S, implying that at
least one subset in B covers s; thus, B must be a set cover of E . By the construction,
there is no arc in D[Ci] for all i ∈ {1, 2, ..., t}, thus, exactly one from each Ci can be
in B. Therefore, B must be a t-multicolored set cover for D. �

In the following, we study two further parameterizations of finding a Banks winner
in a partial tournament. First, we study the parameter |N−(p)|, that is, the number of
candidates who defeat p in a pairwise comparison. We show that this problem isW[1]-
hard.

Theorem 8. TW-INDEGREE isW[1]-hard.

Proof. We prove the theorem by an FPT -reduction from t-MULTICOLORED CLIQUE

which has been proved W[1]-hard [11]. An undirected graph is a tuple G = (V,E)
where V is the vertex set and E is the edge set. An edge between two vertices u and
v is denoted by {u, v}. A clique Q (resp. An independent set I) in G is a subset of V
such that there is an (resp. no) edge between every pair vertices of Q (resp. I).

t-MULTICOLORED CLIQUE

Input: An undirected graph G = (V,E) with each vertex having a color from
{1, 2, ..., t}, such that the vertices with the same color induce an independent set.
Parameter: t.
Question: Does G have a clique including vertices of all t colors?
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Let E = (G, t) be an instance of t-MULTICOLORED CLIQUE. Let Vi be the set of all
vertices in G with color i. We construct an instance E ′ = (D = (N−(p) ∪ N+(p) ∪
{p}, A), p, |N−(p)|) for TW-INDEGREE from E as follows.

Firstly, we construct the set of vertices as follows: N+(p) = V (G), N−(p) =
{c1, c2, ..., ct} (corresponds to colors); thus, D has totally |V (G)| + t + 1 vertices.
For each v ∈ N+(p) we add an arc (p, v), and for each v ∈ N−(p) we add an arc
(v, p). For each ci, there is an arc (v, ci) for all v ∈ Vi and an arc (ci, v) for all v ∈ Vj

with j �= i. In addition, there are some arcs between Vi and Vj for i �= j. Precisely,
for two vertices v ∈ Vi and u ∈ Vj with 1 ≤ i < j ≤ t, there is an arc (v, u) in D if
there is an edge between v and u in G. See Fig. 3. In the following, we prove that E is
a true-instance if and only if E ′ is a true-instance.

V (G)

Colors

V1 V2 Vi Vt

v

u
{v, u} ∈ E

c1 c2 ci ct

p

Fig. 3. Illustration of construction for TW-INDEGREE

(⇒:) Suppose that E is a true-instance and Q is a clique including all t colors, that is
{u, v} ∈ E for all u, v ∈ Q and |Q∩Vi| = 1 for all 1 ≤ i ≤ t. Due to the construction,
Q induces a transitive tournament in D. Moreover, the induced transitive tournament is
maximal in D[N+(p)] since there is no arc in D[Vi] for all 1 ≤ i ≤ t. Since Q∩Vi �= ∅
and Vi = N−(ci) for all 1 ≤ i ≤ t, every ci has an in-neighbor in Q; thus, D[Q∪ {p}]
is a maximal transitive tournament in D with p being the 0-indegree vertex.

(⇐:) Suppose that E ′ is a true-instance and Q ∪ {p} induces a maximal transitive
tournament in D with p being the 0-indegree vertex. Due to the construction, Q induces
a clique in G. Since there is no arc in each D[Vi] for 1 ≤ i ≤ t, there can be at most
one vertex of Vi in Q. Due to the maximality of D[Q ∪ {p}], at least one vertex of Vi

must be in Q for all 1 ≤ i ≤ t (since otherwise, ci can be added to D[Q ∪ {p}] to form
a bigger transitive subtournament). In summery, we conclude that Q is a clique of G
including all colors. �

The last parameter we study is |N+(p)|, that is, the Copeland score of p.

Theorem 9. TW-OUTDEGREE is in FPT .

The proof for Theorem 9 is trivial: if there is a solution, it must be totally included in
N+(p)∪{p}. Thus, the problem can be solved by trying all 2|N

+(p)| subsets of N+(p)
and checking whether at least one of them together with p forms a maximal transitive
tournament with p being the 0-indegree vertex. The algorithm implies a 2|N

+(p)|-size
kernel: if the input partial tournament D contains at most 2|N

+(p)| vertices then we are
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done; otherwise, solve the problem in polynomial time (note that 2|N
+(p)| ≤ |V (D)|)

and return a trivial true- or false-instance according to the output of the algorithm. One
would ask whether the kernel can be improved greatly. The following theorem shows
that, however, the kernel size cannot be improved to polynomial unless the polynomial
hierarchy collapses to the third level.

Theorem 10. TW-OUTDEGREE does not admit a polynomial kernel unless the polyno-
mial hierarchy collapses to the third level (PH =

∑3
P ).

To prove the theorem, we need some new definitions. We say that a parameterized
problem Q is polynomial parameter reducible to a parameterized problem Q′, if there
exists a polynomial-time algorithm with an instance (I, k) of Q as input, where k is the
parameter, and this algorithm outputs an instance (I ′, k′) of Q′ such that (1) (I, k) is a
true-instance of Q if and only if (I ′, k′) is a true-instance of Q′; and (2) k′ ≤ Poly(k),
where Poly(k) is a polynomial function in k.

The following lemma, which has been successfully used for proving non-existence
of polynomial kernels for many problems, is the main tool to prove Theorem 10.

Lemma 11. ([7]) Let Q and Q′ be two parameterized problems and Q̃ and Q̃′ be the
unparameterized versions of Q and Q′, respectively. Suppose that Q̃ is NP-hard and
Q̃′ is in NP . Moreover, Q is polynomial parameter reducible to Q′. Then, if Q′ has a
polynomial kernel, then Q has a polynomial kernel.

In order to show the non-existence of a polynomial kernel for a specific problem Q,
it suffices to derive a polynomial parameter reduction from a parameterized problem
which does not have a polynomial kernel (under some assumption which is unlikely to
happen) to Q.

In the following, we prove Theorem 10 using the above lemma. In fact, the reduction
from t-MSC to TW in the proof of Theorem 7 has already implied that TW-OUTDEGREE

does not admit a polynomial kernel. This holds because the t-MULTICOLORED SET

COVER problem with parameter |C|, the size of the collection of subsets, is FPT but
does not admit a polynomial kernel unless the polynomial hierarchy collapses to the
third level. Formally, the following problem is FPT and does not admit a polynomial
kernel unless the polynomial hierarchy collapses to the third level.

|C|-MULTICOLORED SET COVER, (|C|-MSC)
Input: A base set S = {s1, s2, ..., sn} and a collection C = {c1, c2, ..., cm} of subsets
of S, each of which having a color from {1, 2, ..., t}, and

⋃
1≤i≤m ci = S.

Parameter: |C|
Question: Is there a subset C′ ⊆ C such that C′ includes exactly one from the same
colored subsets and C′ covers all elements of S.

The following lemma can be derived from the non-existence of polynomial kernels
for the colored version of the small universe hitting set problem shown in [7].

Lemma 12. |C|-MSC has no polynomial kernel unless the polynomial hierarchy col-
lapses to the third level.
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The following lemma directly follows from the proof of Theorem 7.

Lemma 13. |C|-MSC is polynomial parameter reducible to TW-OUTDEGREE.

Lemmas 11, 12 and 13 together then proves Theorem 10.

4 Concluding Remarks

In this paper, we study some possible winner(s) problems related to uncovered set and
Banks set on partial tournaments from the viewpoint of parameterized complexity. We
show some XP results,W-hardness results as well as FPT results along with a ker-
nelization lower bound. See Table. 1 for a summery of our results.

Table 1. A summery of the results. The precise definitions of the problems are in Subsection 1.3.

PWU XP
PWU-ADD W[2]-hard even when |X| = 1

PWU-REVERSE W[2]-hard even on tournaments and with |X| = 1

TW W[2]-hard
TW-INDEGREE W[1]-hard
TW-OUTDEGREE FPT but no polynomial kernel unless PH =

∑3
P

There remain several open problems for future research. For instance, we do not
know whether PWU is FPT or W-hard. In addition, it would be interesting to study
further standard parameterizations for problems related to tournament solution.

Acknowledgement. We sincerely thank the anonymous referee(s) of ADT 2013 for
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Mousseau, Vincent 336

Nguyen, Trung Thanh 271
Nicosia, Gaia 1
Niedermeier, Rolf 30

Oliehoek, Frans A. 309
Olteanu, Alexandru-Liviu 285
Ozbas, Birnur 297

Pacifici, Andrea 1
Paquet, Marc 130
Pferschy, Ulrich 1
Pirlot, Marc 101, 336
Poupart, Pascal 193

Rienstra, Tjitze 86
Ries, Bernard 57
Roberts, Fred S. 297
Roijers, Diederik M. 309
Rolland, Antoine 15
Rossi, Francesca 181
Rothe, Jörg 71, 271

Sacaleanu, Bogdan 154
Santhanam, Ganesh Ram 324



442 Author Index

Slavkovik, Marija 230
Sobrie, Olivier 336
Spradling, Matthew 351

Tounsi, Lamia 154
Trabelsi, Walid 363
Truszczynski, Miroslaw 244
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