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Subtelomeres are an unusual part of primate genomes, enriched in genes, repeti-
tive DNA, structural polymorphisms, and chromosome rearrangements. As 
with subtelomeres of other orders, such genomic variation in primates can lead 
to genetic diversity, the birth of new genes, and an explosion of gene families. 
However, rearrangements in human subtelomeres can also alter developmentally 
critical genes, causing intellectual disability and birth defects. Analysis of subtelo-
meric breakpoints has revealed “hot spots” of chromosome breakage that may be 
initiated by specific types of repetitive DNA abundant in subtelomeres. In most 
cases, subtelomeric breaks are repaired by non-homologous end-joining and 
DNA replication processes, rather than homologous recombination. Comparative 
genomic studies of orthologous subtelomeres in closely related primates show 
even greater diversity between species, consistent with the rapid evolution of chro-
mosome ends.

8.1  Primate Subtelomere Organization

Primate subtelomeres are enriched in repetitive elements, including segmen-
tal duplications (SDs), satellite DNA, tandem repeats, and degenerate telomere 
repeats (Riethman et al. 2004; Linardopoulou et al. 2005) (Fig. 8.1). Though this 
repetitive structure may be important for subtelomere biology and evolution, it 
has made assembling these parts of the genome a challenge. Although the human 
genome assembly is more “complete” than other primate genomes, in the most 
recent build (GRCh37/hg19), only 17 of 46 of chromosome ends have traversed 
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subtelomeric sequences to reach the end of the chromosome, terminating in per-
fect telomeric repeats, (TTAGGG)n. Other primate genomes [chimpanzee (The 
Chimpanzee Sequencing and Analysis Consortium 2005), orangutan (Locke et al. 
2011), and rhesus (Gibbs et al. 2007)] have been assembled using at least some com-
parisons to the human genome, so sequence gaps in the human reference genome 
as well as non-aligning regions between species are likely to remain as gaps in the 
assemblies of non-human primate genomes. In addition, subtelomeric sequences are 
incredibly polymorphic, and only a handful of subtelomeric alleles have been cap-
tured in the reference genome assembly (Trask et al. 1998; Linardopoulou et al. 
2005). Thus, despite the successes assembling more and more primate genomes, 
the subtelomeric genome assemblies of human and non-human primates remain 
largely incomplete. Most subtelomeric genomic studies have focused on particu-
lar subtelomeres for the comparative analysis of primates. Here, we will describe 
human subtelomeric organization and discuss the limited non-human primate sub-
telomeric data for a subset of chromosome ends.

Human subtelomeres are made up of two major zones: a terminal region 
consisting of SDs and an adjacent region of chromosome-specific (non-dupli-
cated) sequences (Fig. 8.2). SDs are operationally defined as DNA sequences 
1 kb or larger that have another copy in the genome with ≥90 % identity. They 
make up more than 5 % of the human genome and are preferentially located 
at pericentromeres and subtelomeres (Bailey et al. 2002). In human subtelom-
eres, SDs occupy the terminal 5–300 kb of chromosomes. Each SD is shared 
between a subset of chromosome ends, and individual SDs range from 3 to 
50 kb each (Linardopoulou et al. 2005). Copies of the same SD are 88–99.9 % 
identical and are occupy between 2 and 18 different chromosome ends, consist-
ent with recent duplications that have rapidly spread to multiple chromosomes. 

Fig. 8.1  Repeat content and gene density of human chromosome 9. Tandem repeats (green), 
percent GC (gray), segmental duplications (black), and genes (blue) are shown along the length 
of chromosome 9 as represented in the UCSC Genome Browser (http://genome.ucsc.edu/)

http://genome.ucsc.edu/
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Fluorescence in situ hybridization (FISH) analyses have shown that subtelom-
eric SDs are highly polymorphic, varying in copy number and chromosomal 
location from person to person (Trask et al. 1998; Linardopoulou et al. 2005). 
Given the number of subtelomeric SDs in the genome and the degree of poly-
morphism, it is likely that each human has a unique repertoire of subtelomeric 
SD sequence.

Many of the genes in subtelomeric SDs are part of gene families, such as 
 odorant and cytokine receptors, tubulins, and transcription factors (Linardopoulou 
et al. 2005). The redundancy of duplicated subtelomeric genes may allow some 
copies to acquire new functions and some copies to mutate, while other cop-
ies retain their original function. Frequent interchromosomal exchanges can also 
juxtapose parts of different subtelomeric genes, potentially creating novel hybrid 
genes. The olfactory receptors (ORs) are a striking example of a gene family that 
expanded in primate subtelomeres. There are over 900 OR genes in the human 
genome, a subset of which are found at subtelomeric locations (Glusman et al. 
2001). Some subtelomeric ORs are no longer functional and have become pseu-
dogenes, whereas other ORs are transcribed in certain tissues, such as olfactory 
epithelium and testis (Linardopoulou et al. 2001).

Just proximal to subtelomeric SDs begins a region of chromosome-specific 
DNA (Fig. 8.2). Some deletions and duplications of this region have been 
detected in phenotypically normal individuals, suggesting that, like in the SD 
zones, some variation in the chromosome-specific regions is tolerated (Ballif 
et al. 2000; Ravnan et al. 2006; Redon et al. 2006; Balikova et al. 2007; Mills 
et al. 2011). Nevertheless, larger rearrangements of the chromosome-specific sub-
telomeric regions are associated with intellectual disability and birth defects 
(Ravnan et al. 2006; Ballif et al. 2007; Martin et al. 2007; Shao et al. 2008). 
Such rearrangements were originally identified by chromosome banding 
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Fig. 8.2  Human subtelomere organization. The terminal 1 Mb of chromosome 9q has a dis-
tal SD zone and an adjacent chromosome-specific zone. Segmental duplications (orange, 
yellow, and gray), percent GC (gray), assembly gaps (black), tandem repeats (green), 
and genes (blue) are shown as in the UCSC Genome Browser (http://genome.ucsc.edu/). 
Interstitial telomere sequences (ITS, gray vertical lines) were identified by RepeatMasker 
(http://www.repeatmasker.org). Breakpoints of subtelomeric rearrangements that cause intellec-
tual disability (black vertical lines) were fine-mapped in (Luo et al. 2011)
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and FISH (National Institutes of Health and Institute of Molecular Medicine 
Collaboration 1996; Knight et al. 2000) and are now detected via genomic 
microarrays (Rudd 2011). Studies of clinically relevant copy number varia-
tion (CNV) have shown that subtelomeric rearrangements are overrepresented 
among CNVs that cause intellectual disability. For example, microarray anal-
ysis of 15,749 developmentally disabled individuals revealed that 16.3 % of 
pathogenic chromosome anomalies lie within the terminal 5 Mb of chromo-
some ends (Kaminsky et al. 2011), which accounts for only 7 % of the human 
genome. These chromosome rearrangements include deletions, duplications, 
and unbalanced translocations that are typically hundreds of kb to several Mb 
in size and include tens to hundreds of genes.

Loss, gain, and mutation of genes in the chromosome-specific zone of sub-
telomeres can cause a clinically recognized phenotype. Studies of patients with 
common phenotypic features and overlapping CNVs have pinpointed critical 
regions and genes associated with disease in a given subtelomere. The 9q subtelo-
meric deletion syndrome was first identified in patients with overlapping deletions, 
including the EHMT1 gene, which is responsible for the phenotype, as EHMT1 
mutations cause a typical 9q deletion phenotype (Harada et al. 2004; Stewart  
et al. 2004; Kleefstra et al. 2006). Terminal deletions of chromosome 22q cause 
the 22q13 deletion syndrome, and mutations in the SHANK3 gene in the critical 
region also cause those language disorders associated with the syndrome (Phelan 
et al. 2001; Wilson et al. 2003; Durand et al. 2007). Given the gene density at 
chromosome ends (Fig. 8.1), a host of candidate genes could be responsible for 
other “subtelomeric syndromes.”

8.2  Subtelomeric Hot Spots and Rearrangement 
Mechanisms

Analysis of subtelomeric breakpoints has revealed recurrent sites of chromosome 
breakage. Given the enrichment of particular types of repeats in subtelomeres, 
such “hot spots” are likely related to DNA sequence and/or chromatin structure. 
Though not all types of repetitive DNA are linked to chromosome breakage, tan-
dem repeats, trinucleotide repeats, satellite DNA, and G-rich sequences are known 
to underlie chromosomal fragility at other loci (Sutherland 2003; Bacolla et al. 
2006; Zhao et al. 2010) and are strong candidates for DNA sequence-dependent 
causes of subtelomeric rearrangement. Uncovering how such sequences could 
form secondary structures that might interfere with cellular processes, including 
recombination and DNA replication, is crucial to untangling the molecular mecha-
nisms that give rise to subtelomeric rearrangements.

One of the best examples of a subtelomeric hot spot lies in chromosome band 
22q13.3. Rearrangements of this subtelomere have been independently identi-
fied in numerous studies, and fine-mapped breakpoints cluster between exons 8 
and 9 of the SHANK3 gene (Wong et al. 1997; Anderlid et al. 2002; Bonaglia et 
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al. 2006, 2011; Durand et al. 2007; Philippe et al. 2008; Dhar et al. 2010; Luo 
et al. 2011; ). At least 13 published terminal deletion breakpoints lie in this 1.2-
kb hot spot, which is made up of G-rich tandem repeats that are predicted to 
form G-quadruplexes. G-rich sequences that contain four tracts of at least three 
guanines separated by other bases can form G-quadruplexes by pairing between 
the four G-rich tracts (Huppert and Balasubramanian 2005; Burge et al. 2006). 
Such G-rich sequences can assemble highly stable G-quadruplexes in vitro 
(Neaves et al. 2009; Sanders 2010), and without specific helicases to unwind 
them, G-quadruplexes can cause chromosome breakage and genomic instabil-
ity in vivo (Kruisselbrink et al. 2008; Ribeyre et al. 2009). Human subtelom-
eres are G-rich (Fig. 8.1), and there are many subtelomeric loci that contain the 
G-quadruplex consensus sequence, G3–5N1–7G3–5N1–7G3–5N1–7G3–5 (Huppert and 
Balasubramanian 2005). Although functional studies of fragility at the 22q13.3 hot 
spot are still lacking, the recurrent breakpoints and predicted G-quadruplex motifs 
are suggestive of a region that is particularly susceptible to double-strand breaks 
(DSBs). It is likely that other subtelomeric rearrangement breakpoints are also 
caused by DSBs in G-rich sequences that assemble G-quadruplexes or other sec-
ondary structures.

Another indicator of elevated DSBs in subtelomeres comes from studies of 
sister chromatid exchange (SCE) in chromosome ends. The rate of SCE is sig-
nificantly elevated in telomeres and subtelomeres, as demonstrated using a fluo-
rescence method called chromosome orientation FISH (CO-FISH) (Cornforth 
and Eberle 2001; Londono-Vallejo et al. 2004; Rudd et al. 2007). Seventeen 
percent of all SCE occurs in the most terminal ~100 kb of chromosomes, trans-
lating to a 160-fold elevation of the rate of subtelomeric SCE compared with 
the rest of the genome (Rudd et al. 2007). More direct evidence of DSBs at 
chromosome ends comes from chromatin immunoprecipitation studies of the 
DSB-binding protein, γ-H2AX (d’Adda di Fagagna et al. 2003). In senescent 
primary cells, γ-H2AX is enriched 60 kb–1.5 Mb from the telomere, across 
different chromosome ends (Meier et al. 2007). These physical measure-
ments of DSBs suggest that subtelomeres incur more breaks than other parts 
of the genome, consistent with the concentration of breakpoints in human 
subtelomeres.

DSBs in subtelomeres may be resolved via various DNA repair pathways, 
and analyses of breakpoint junctions in the chromosome-specific and SD 
zones provide insight into the rearrangement mechanisms that have shaped 
these regions. There are two major types of DNA repair, one that requires long 
stretches of sequence homology (homologous recombination) and one that 
does not (non-homologous repair). Comparing subtelomeric breakpoint junc-
tions to the pre-rearrangement genomic state can distinguish the two types of 
DNA repair. A large-scale analysis of over 100 subtelomeric breakpoints in the  
chromosome-specific zone revealed that three of 21 sequenced breakpoint junc-
tions were the product of homologous recombination between interspersed 
repeats, including LINE and Alu elements. The remaining 18 rearrangements 
did not involve significant sequence homology at the junctions and were formed 
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via non-homologous end-joining (NHEJ) and DNA replication processes (Luo 
et al. 2011). Other studies of subtelomeric breakpoint junctions in chromosome-
specific zones have also found a preponderance of NHEJ versus homologous 
recombination (Ballif et al. 2003, 2004; Gajecka et al. 2006, 2008; Bonaglia  
et al. 2006; Yatsenko et al. 2009).

A similar trend regarding homologous and non-homologous repair is evident 
in subtelomeric junctions in the SD zone. This part of the genome is organized 
as a patchwork of SDs shared between a subset of chromosome ends; however, 
subtelomeric SDs are not organized in a random manner. Instead, subtelom-
eric SDs are almost always in the same orientation and relative order, suggesting 
translocation, rather than transposition, as the mechanism of sequence transfer 
(Linardopoulou et al. 2005). The alignment of paralogous SDs in human sub-
telomeres highlights the interchromosomal sequence transfers responsible for the 
highly polymorphic organization of subtelomeric SDs. Forty-nine out of 53 SD 
breakpoint junctions are the product of NHEJ, while only four are mediated by 
homologous recombination (Linardopoulou et al. 2005). Thus, non-homologous 
DNA repair is the predominant mechanism underlying subtelomeric breakpoints in 
the chromosome-specific and SD zones.

8.3  Subtelomere Evolution

Investigations into the subtelomeric differences between species have also given 
us insight into the DNA breakage and repair processes involved in this rapidly 
evolving part of the genome. Comparative genomic analyses of the great apes 
have shown that although most orthologous sequences are highly conserved, 
chromosome ends are far more diverse. Since most primate subtelomeres are 
not sequenced, comparative studies have relied on a combination of FISH, PCR, 
chromosome flow-sorting, and BAC sequencing to generate syntenic maps of 
these regions (Monfouilloux et al. 1998; Trask et al. 1998; Martin et al. 2002; 
Fan et al. 2002; Ventura et al. 2003, 2011; Linardopoulou et al. 2005; Rudd et al. 
2009). Detailed analyses of several chromosome ends have found that subtelom-
eric sequences vary dramatically in copy number and genomic location between 
closely related species; however, the reticulate nature of subtelomeric DNA 
exchanges complicates the interpretation of the DNA sequence transfers that have 
shaped modern-day primate chromosome ends. Chromosome fissions and fusions 
that give rise to the birth and death, respectively, of subtelomeres are ideal for 
teasing apart the steps involved in subtelomere evolution. Fissions and fusions 
punctuate subtelomeric events, making it possible to track a given subtelomere 
before and after a major chromosomal change.

Human chromosome 2, for example, is the product of a head-to-head fusion of 
two ancestral chromosomes that remained separate in the other great apes (Yunis 
and Prakash 1982; Ijdo et al. 1991; Fan et al. 2002). The fused chromosome 2 
inactivated one centromere and two telomeres, and the human 2q13–2q14.1 
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fusion site is marked by inverted telomere repeats and subtelomeric SDs that once 
resided at two independent chromosome ends (Fig. 8.3). These SDs are paralo-
gous to several human subtelomeres, including 9p and 22q, consistent with mul-
tiple  interchromosomal exchanges (Fan et al. 2002; Linardopoulou et al. 2005). 
The inverted telomere repeats at the fusion site are not perfect telomere arrays, 
but rather are 14 % diverged from the canonical telomere repeat, (TTAGGG)n. 
This could be due to the rapid divergence of perfect telomere repeats post-fusion, 
or it could indicate that the chromosomal fusion occurred at degenerate telomere 
repeats in the subtelomeres of the ancestral chromosomes, rather than as a fusion 
of the most terminal telomere sequences (Fan et al. 2002).

A chromosomal fission in the ancestor of great apes gave rise to human chro-
mosomes 14 and 15 (Fig. 8.3). Rhesus macaque chromosome 7 represents the 
ancestral locus, in which regions orthologous to human chromosomes 15 and 14 
are arranged in a head-to-tail configuration. After the fission of the ancestral chro-
mosome, one new pericentromere (on chromosome 14) and one new subtelomere 
(on chromosome 15) were created at the fission site (Wienberg et al. 1992; Ventura 
et al. 2003; Rudd et al. 2009). In addition, the ancestral centromere inactivated, 
two new centromeres activated, and both chromosomes 14 and 15 acquired acro-
centric short arms with new telomeres (Fig. 8.3). Since its birth at the chromo-
some fission, the 15q subtelomere has engaged in rampant sequence transfers. The 
orthologous regions of the 15q subtelomere in four great apes and an Old World 
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Fig. 8.3  Chromosome fission and fusion in primates. Centromeres are represented as circles, 
telomeres are represented as arrowheads, and segmental duplications are represented as colored 
rectangles. a The chromosome fusion that gave rise to human chromosome 2 resulted in inactiva-
tion of one centromere (open circle) and the fusion of two telomeres (gray). b The chromosome 
fission (red squiggly line) in the ancestor of the great apes resulted in the birth of three new tel-
omeres and two new centromeres (red) and the inactivation of one centromere (open circle). New 
segmental duplications (green and blue) were transferred to the 15q subtelomere post-fission
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monkey exist as completely different genomic structures in each species (Rudd  
et al. 2009). Terminal deletions, interstitial deletions, duplications, and inter-
chromosomal exchanges have created a unique subtelomeric configuration in the 
genomes of rhesus macaque, orangutan, gorilla, chimpanzee, and human. The fis-
sion site was home to at least 21 olfactory receptor (OR) genes in the ancestral 
chromosome, and since the fission, ORs have been gained and lost in a lineage-
specific manner in the genomes of all the great apes (Rudd et al. 2009).

Like human subtelomeres, non-human primate subtelomeres are also enriched 
in satellite DNA and SDs. However, different classes of repetitive DNA have 
expanded in different species, typical of concerted evolutionary processes. 
Heterochromatic “caps” of chromosome ends have been seen in chimpanzee and 
gorilla, but not in human (Yunis and Prakash 1982; Royle et al. 1994). Recent 
sequence analyses of chimpanzee and gorilla subtelomeres have revealed that 
both species have a 32-bp satellite at chromosome ends, but SDs that make up 
the chimpanzee caps are derived from the chromosome 2 fusion site, whereas the 
gorilla subtelomeric SDs are derived from a chromosome 10 sequence (Ventura  
et al. 2011).

Analysis of the SDs in the human genome assembly also provides information 
on the evolutionary timing of primate subtelomeres. Fifty percent of human sub-
telomeric SD sequence is >98.7 % identical to another chromosome end, indicat-
ing that the sequence transfer occurred since human and chimpanzee diverged 
(Linardopoulou et al. 2005). Further, FISH analysis of a subset of human subtelom-
eric SDs revealed variation in copy number and genomic location between individu-
als and heterozygosity for subtelomeric SDs within a single individual (Trask et al. 
1998; Linardopoulou et al. 2005). Such data are consistent with subtelomeric SDs 
being one of the most rapidly evolving regions of the human genome.

Rearrangements in primate subtelomeres are a source of variation and disease. 
Although small rearrangements represent normal polymorphism, larger gains and 
losses involving dosage-sensitive genes can cause intellectual disabilities and birth 
defects, making these regions particularly relevant to studies of human disease and 
diversity. Though subtelomeric variation is recognized in the human genome, the 
causes of DSBs in chromosome ends are unknown. Functional studies of the DNA 
sequences underlying subtelomeric breakpoints are a crucial next step to discover-
ing the risk factors and mechanisms of subtelomeric rearrangements.
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