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Abstract. Two efficient versions of a Markov clustering algorithm are
proposed, suitable for fast and accurate grouping of protein sequences.
First, the essence of the matrix splitting approach consists in optimal
reordering of rows and columns in the similarity matrix after every
iteration, transforming it into a matrix with several compact blocks
along the diagonal, and zero similarities outside the blocks. These blocks
are treated separately in later iterations, thus significantly reducing the
overall computational load. Alternately, a special sparse matrix archi-
tecture is employed to represent the similarity matrix of the Markov
clustering algorithm, which also helps getting rid of a severe amount
of unnecessary computations. The proposed algorithms were tested to
classify sequences of protein databases like SCOP95. The proposed so-
lutions achieve a speed-up factor in the range 15-300 compared to the
conventionally implemented Markov clustering, depending on input data
size and parameter settings, without damaging the partition accuracy.
The convergence is usually reached in 40-50 iterations. Combining the
two proposed approaches brings us close to the 1000 times speed-up ratio.

Keywords: Markov clustering, bioinformatics, protein sequence classi-
fication, unsupervised classification.

1 Introduction

By definition, protein families represent groups of molecules with relevant se-
quence similarity [3]. Establishing protein families in large databases is one of
the fundamental goals of functional genomics. A successful classification may
contribute to the delineation of functional diversity of homologous proteins, and
can provide valuable evolutionary insights as well [5]. Members of such protein
families may serve similar or identical biological purposes [9]. Identifying these
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families is generally performed by clustering algorithms [6], supported by pair-
wise similarity or dissimilarity measures. Well established properties of some
proteins in the family may be reliably transferred to other members whose func-
tions are not well known [8].

TRIBE-MCL is an efficient clustering method proposed for protein sequence
classification [5], based on Markov chain theory [4]. It assigns a graph structure
to the protein database such a way that each protein has a corresponding node,
while initial edge weights in the graph represent computed pairwise similarity
values, obtained via BLAST search methods [1]. Clusters are then obtained by
alternately applying two matrix operations called inflation and expansion.

In this paper we introduce two efficient approaches aimed to accelerate the
execution speed of the algorithm, without damaging the outcome of the clusters.
The first proposed approach optimizes the execution via splitting the similarity
matrix into several smallers ones once the graph has been disintegrated into
isolated subgraphs. The second one uses a special sparse matrix structure to
model the similarity matrix, reducing the computational burden by eliminating
the unnecessary computations with zeros. Further on, these two approaches are
combined in a third one, which will be formulated after the numerical tests.

The remainder of this paper is structured as follows: Section 2 takes into ac-
count the functional details of the TRIBE-MCL algorithm. Section 3 presents
the details of the proposed efficient TRIBE-MCL algorithms. Section 4 evalu-
ates and discusses the efficiency of the proposed method. Section 5 presents the
conclusions and gives some hints for further research.

2 Background

TRIBE-MCL is an iterative algorithm, which operates on a directional graph.
Each of the n nodes of the graph represents a protein sequence from the set we
wish to cluster, while each edge length Sij , i, j = 1 . . . n, shows the similarity
between protein sequences of index i and j, respectively. Edge lengths are stored
in the n×n similarity matrix S. Initial edge lengths usually come from pairwise
sequence alignment. During the iterations, S behaves as a column stochastic
matrix, whose elements represent probabilities of transitions (evolution).

The TRIBE-MCL algorithm consists of two main operations, namely the infla-
tion and expansion, which are repeated alternately until a convergence is reached,
that is, the similarity matrix becomes invariant during a cycle:

1. Inflation has the main goal to differentiate among connections within the
graph, favoring more likely direct walks along the graph in the detriment
of less likely walks. It is computed via taking each element of the similarity
matrix to the power of r > 1. The strength of this differentiation is controlled
by the so called inflation rate r: large values express the preference of likely
walks more severely, causing sudden ruptures within the graph, possibly
not in the ideal place. Low inflation rates are more likely to yield smooth
partitions, but the convergence may become rather slow.
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2. Expansion operation is intended to reveal possible longer walks along the
graph, to emphasize changes within the protein structures that happened in
two or more evolutionary steps. Expansion in achieved via matrix multipli-
cation, by taking similarity matrix S to the second power.

Auxiliary computations are also included in each iteration, in order to main-
tain the similarity matrix S as a symmetric column stochastic matrix.

Clusters are defined as connected subgraphs within the graph described by
the similarity matrix, so a stable state of the similarity matrix means that the
clusters don’t change their contents during an iteration.

In a previous paper [14], we have proposed a series of generalizations of the
conventional version of the TRIBE-MCL algorithm [5], e.g. time-variant inflation
rate, generalized inflation scheme, singleton filter, etc. These changes brought
slight improvements to the accuracy and efficiency of the algorithm.

3 Methods

In this paper we introduce two implementations of the TRIBE-MCL algorithm,
with the aim of seriously reducing its computational load, without harming the
accuracy of classification. We will test the proposed method on the proteins of
the SCOP95 database.

3.1 The SCOP95 Database

The SCOP (Structural Classification of Proteins) database [12] contains protein
sequences in order of tens of thousands, hierarchically classified into classes, folds,
superfamilies and families [2]. The SCOP95 database involved in this study, is
a subset of SCOP (version 1.69), which contains 11944 proteins, exhibiting a
maximum similarity of 95% among each other. Pairwise similarity and distance
matrices (BLAST [1], Smith-Waterman [13], Needleman-Wunsch [10], PRIDE
[7], etc.) are available at the Protein Classification Benchmark Collection [11].
In this study we employ BLAST similarity measures, because that one suppresses
low similarities, thus contributing to computational load reduction.

3.2 Matrix Splitting

Most of the computational load of the algorithm is caused by the matrix multipli-
cation, which has a theoretical complexity of O(n3). In order to reduce runtime,
it would be beneficial at any time of the execution, to separate those proteins
which no longer have any influence upon the others. This idea we employed in
the previous paper [14], where we proposed to exclude the rows and columns
of singletons from the similarity matrix in each iteration. This way we achieved
30%−50% reduction of the overall processing time, depending on the percentage
of singletons within the data.

In the following, we will formulate a more optimal separation scheme of clus-
ters. Let us denote by Σ the initial set of proteins, which is intended to be
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Data: similarity matrix S = [sij ] with 1 ≤ i, j ≤ n
Result: reordering buffer R, number of clusters q, indexes of first elements of

clusters Q1 . . . Qq

m← 0;
q ← 0;
M ← Φ;
while m < n do

Find smallest i ∈ {1, 2, ...n} such that i �∈M ;
m← m+ 1;
Rm ← i;
M ←M ∪ {i};
q ← q + 1;
Qq ← m;
fifo.push(i);
while fifo not empty do

l = fifo.pop();
for each j ∈ {1, 2, ...n} with j �∈M and slj > 0 do

m← m+ 1;
Rm ← j;
M ←M ∪ {j};
fifo.push(j);

end

end

end
Qq+1 ← n+ 1;

Algorithm 1. The subgraph identification function

Fig. 1. Permutation of columns and rows: (a) an initial graph with several connections
and the corresponding similarity matrix; (b) after a certain amount of iterations the
graph breaks into pieces; (c) reordering the rows and columns in the matrix makes
the similarity matrix contain non-zero blocks along the diagonal. At this given matrix
splitting, the reordering buffer contains R = [1, 8, 2, 4, 5, 3, 7, 6], the number of isolated
subgraphs is q = 4, while the stored indexes of first elements are Q = [1, 3, 6, 8].
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classified. At any iteration t, we may look for isolated subgraphs in the graph
represented by the similarity matrix S. Whenever we find a subset of proteins
Σ1 ⊂ Σ, corresponding to a connected subgraph isolated from the rest of the
proteins (sij = 0, ∀i ∈ Σ1 and j ∈ Σ \ Σ1), in further iterations we may treat
the proteins of Σ1 separately from the others, because the rows and columns
of S corresponding to these proteins will not interact with any other rows and
columns. If we reorder all rows and columns of the similarity matrix S such a
way, that isolated subgraphs are placed in consecutive rows and columns, we
will have a similarity matrix formed by small square shaped blocks of nonzero
elements placed along the main diagonal, and all other elements of the matrix
will be zero.

In order to implement this idea, we need to define a reordering buffer R of
size n, which will contain the permuted protein indexes corresponding to isolated
subgraphs in the graph represented by S. Further on, we need a group buffer Q
to store the indexes of initial elements of protein groups within the reordering
buffer. The latter buffer will need a time-variant size of storage (denoted by q),
but it will never exceed the limit of n items. Algorithm 1 presents the procedure
of localizing isolated subgraphs within the graph. In this procedure, M repre-
sents the set of graph nodes already found during the process. The procedure
sequentially looks for seed nodes which were not yet found and occupies the
isolated subgraph using existing connections between nodes. Figure 1 exhibits
the outcome of a column and row reordering, splitting an 8× 8 matrix into four
small matrices.

Having the isolated groups of nodes separated, we may reformulate the opera-
tions performed within each iteration as follows. For each square block along the
diagonal of reordered matrix S, that is, for each b ∈ {1, 2, . . . , q}, we consider the
subset of proteins in the connected subgraph Σb = {RQb

, RQb+1, . . . , RQb+1−1}
assuming that Qq+1 = n+ 1, and then

– inflation is computed as:

s
(new)
αβ =

(
s
(old)
αβ

)r

∀α, β ∈ Σb, (1)

– expansion is given by the formula:

s
(new)
αβ =

∑
γ∈Σb

s(old)αγ s
(old)
γβ ∀α, β ∈ Σb, (2)

– normalization is given by:

s
(new)
αβ = s

(old)
αβ

⎛
⎝ ∑

γ∈Σb

s
(old)
γβ

⎞
⎠

−1

∀α, β ∈ Σb, (3)

– symmetry is approximated as:

s
(new)
αβ = s

(new)
βα =

√
s
(old)
αβ s

(old)
βα (4)
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∀α, β ∈ Σb, α < β. After symmetrization, similarity values below ε are
reduced to 0.

The proposed matrix splitting algorithm is summarized in Algorithm 2. Two
parameters need to be set at the beginning: the inflation rate r > 1 and threshold
ε around 10−3. Generally 30-50 iterations are needed for a stable convergence.
After 15 iterations most of the clusters are in their final form.

3.3 Sparse Matrix

The sparse matrix is a memory saving representation for matrices which contain
a low amount of non-zero values. The sparse matrix stores only the non-zero
values together with its coordinates (row and column). In our case, a non-zero
element in the similarity matrix requires at least twice more bytes than an el-
ement of an two-dimensional array. Whenever using matrices of low density,
employing sparse matrices will reduce the necessary storage space.

Sparse matrices also contribute to the efficiency of the algorithm. While com-
puting the normalization of a column, zero elements are not added to the sum,
thus reducing the number of additions. In fact, a zero element can only change to
non-zero during the expansion. But also in case of the expansion, zero elements
in the input do not affect the outcome of any element of the output matrix.

In a conventional sparse matrix structure, the non-zero elements of each col-
umn are stocked in a chained list, ordered by row coordinate. Thus the sparse
matrix has an array of list head pointers, each one pointing to the first non-zero
element of the corresponding column. Each non-zero element is represented by
the structure (row, value, next). The latter variable in the structure is a pointer
to the next non-zero element in the column.

In a conventional sparse matrix, the inflation operation requires a single pars-
ing of each column and thus the power computation is only performed for non-
zero elements. The normalization needs to parse twice each column: first it com-
putes the sum of each column and then it divides all non-zero elements by the
sum of the column. Assuring matrix symmetry is more complicated, because it
requires searching for the transposed for each non-zero element.

Expansion requires a new sparse matrix for the output. During the compu-
tation of the expanded matrix, the elements of each column are determined in
such an order, that new non-zero elements are always placed at the end of the
list. That is why, it is worth to have a pointer to the tail of the column list as
well (see Fig. 2). Further on, as expansion is computed right after having made
the similarity matrix symmetric, we may approximate the element sij as:

s
(new)
ij =

n∑
k=1

sikskj ≈
n∑

k=1

siksjk , (1)

which is easier to compute as columns are way easier to parse than rows in this
data structure.
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Data: similarity matrix S = [sij ] with 1 ≤ i, j ≤ n
Result: same similarity matrix S
m← n; q ← 1; M ← Σ; Qq ← 1; Qq+1 ← n+ 1;
repeat

for b ∈ {1, 2, ...q} do
Σb ← {RQb , RQb+1, . . . , RQb+1−1};
Inflation;
for α, β ∈ Σb do

sαβ ← srαβ ;
end
Normalization;
S′ ← 0;
for β ∈ Σb do

z ← 0;
for γ ∈ Σb do

z ← z + sγβ ;
end
for α ∈ Σb do

s′αβ ← sαβ/z;
end

end
Symmetry;
for α, β ∈ Σb with α < β do

z ←
√

s′αβs
′
βα ;

if z < ε then
z ← 0;

end
sαβ ← z; sβα ← z ;

end
Normalization again, as above;
Expansion;
S ← 0;
for α, β ∈ Σb do

z ← 0;
for γ ∈ Σb do

z ← z + s′αγs
′
γβ ;

end
sαβ ← z;

end

end
Call Subgraph Identification function;

until convergence occurs;

Algorithm 2. Algorithm for Tribe-MCL via matrix splitting. S and S′ are
two instances of the similarity matrix, necessary for the correct handling of
data
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Fig. 2. Data structure used by the sparse matrix implementation

4 Results and Discussion

The main goal of protein clustering is to reveal hidden similarities among pro-
teins. When evaluating the accuracy of the output, one can count the number
of mixed clusters (those which contain proteins from two or more different fam-
ilies) and their cardinality. We have shown in the previous work [14], that the
inflation rate is the main factor to influence the amount of mixed clusters. The
approach proposed here computes exactly the same partitions as the conventional
TRIBE-MCL, in a more efficient way. That is why the evaluation of accuracy is
unnecessary in this study. The reader interested in accuracy details is referred
to [14].

We have employed the proposed algorithms to classify either the whole set
of 11944 proteins in the SCOP database, or selected subsets. At the selection
of subsets, whole families were chosen from the hierarchical data structure, in
order to keep all connections of each selected protein. The hierarchical structure
of the SCOP database was only used to select input data and verify the final
partition accuracy. Partitioning only uses the pairwise similarity data.

Fig. 3 summarizes some efficiency tests performed on a set of 908 proteins (all
families from SCOP95 which have 11 to 14 proteins): varying the inflation rates
between 1.3 and 2.0, the duration of each iteration was recorded and plot in this
figure. In case of the matrix splitting approach, after only 4-6 iterations com-
pleted, the large connected block within the similarity graph is broken into small
subgraphs, enabling us to compute subsequent iterations on very small matrices.
Late iterations are performed approximately 1000 times quicker. Although the
computation load stabilizes at a low level after the initial few iterations, the con-
vergence of the output data requires around 40-50 cycles. Without this proposed
efficient scheme, all iterations would need the same amount of computations as
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Fig. 3. The duration of the first 50 iterations, using the proposed method at various
inflation rates, to classify 913 proteins from SCOP95: (a) matrix splitting approach;
(b) sparse matrix implementation

the first one. This way we are able to approximate the speed-up ratio reached
via fragmenting the similarity matrix. On the other hand, the sparse matrix
implementation provides more efficiently computed initial loops, but the late
iterations will require more computations than the matrix splitting approach.
It is also visible that the duration of loops initially rises in the case of sparse
matrix representation, which happens due to the growing amount of non-zero
elements is the similarity matrix. After having performed 10-15 slower iterations,
the duration of later iterations stabilizes at a low level.

The above remarked trends are also visible in Fig. 4, which presents efficiency
results of the proposed methods on various data sets, using a fixed inflation rate
r = 1.5. Data sets involved in the tests reported here were chosen as all protein
families with cardinality between 10-18 (1795 proteins), 10-20 (2106 proteins), 8-
30 (3887 proteins), 5-50 (6522 proteins), 3-99 (8920 proteins), and whole SCOP95
database (11944 proteins). All efficiency tests were run on PC with quad core
Intel i7 processor running at 3.4GHz frequency.

Let us remark some trends identified from Figs. 3-4:

1. In every case, we needed a few iterations to break the similarity graph into
several small isolated subgraphs. The larger the input data set, the more
iterations are necessary. Using an inflation rate fixed at a reasonable value
(r = 1.5) with the matrix splitting approach, a set of 1000 proteins requires
3 slow loops at the beginning, while at 5000 proteins, the fourth iteration is
slow as well. One can expect that 105 proteins will need no more than 6-7
slow iterations. The trend of longer initial iterations is similar at the sparse
matrix version, but it last a longer number of iterations.
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Fig. 4. The duration of the first 50 iterations, using the proposed method with various
input data sets, plotted on logarithmic scale, using inflation rate r = 1.5: (a) matrix
splitting approach; (b) sparse matrix implementation

2. Choosing a larger inflation rate reduces the number of slow iterations. How-
ever, it is not recommended to use very high inflation rates, because they
yield small clusters in the output, which will hardly reveal any biologically
relevant protein similarities.

3. Even though larger number of initial, longer lasting loops are performed
by the sparse matrix version, this approach has the better overall runtime,
because these initial loops have lower computational burden than the first
loops of the matrix splitting approach. This is visible in Fig. 4, where the
scales on the vertical axis of the two graphs (a) and (b) are identical.

4. Theoretically both approaches perform the same computations. If the input
data set is the same, and the algorithm parameters are set equally, both ap-
proaches will lead to the same partition. Further on, we may also assert that
after any number of iterations, the current partition of the two approaches
are theoretically equivalent.

5. Based on the above assumption, we may combine the two approaches to
provide a third, even more efficient one, which performs the initial iterations
using the sparse matrix approach and switches to matrix splitting version
thereafter, always using the version which performs the iterations quicker.
Switching is performed when the largest connected subgraph is smaller than
5% of the total number of graph nodes. Table 1 refers to this switching
method as combined approach.

Table 1 gives us a summary of speed-up ratios reached on input data of
various sizes, at different inflation rates. These values were computed against
the performance of the conventional TRIBE-MCL algorithm, which computes
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Table 1. Speed-up ratios reached by the proposed efficient execution scheme

Number of Inflation Speed-up ratio
proteins rate Matrix splitting Sparse matrix Combined

908 1.3 17.87 18.65 80.4
908 1.5 26.16 30.96 150.9
908 1.7 36.67 40.36 184.1
908 2.0 49.07 52.24 339.4

1795 1.5 21.29 189.0 705.5
2106 1.5 21.48 212.7 773.1
3877 1.5 18.39 320.4 423.4
6522 1.5 18.03 327.4 356.7
8920 1.5 16.84 278.7 297.9
11944 1.5 17.30 197.7 224.9

Table 2. Amount of proteins in mixed clusters, out of 11944

Inflation Proteins in mixed clusters at the level of Total
rate classes folds superfamilies families

1.30 446 245 123 1237 2051
1.35 110 89 118 771 1088
1.40 29 50 51 507 637
1.45 0 35 39 448 522
1.50 0 8 13 356 377
1.55 0 0 10 239 249
1.65 0 0 10 184 194
1.75 0 0 0 97 97
1.85 0 0 0 31 31
2.00 0 0 0 19 19
2.10 0 0 0 3 3
2.35 0 0 0 0 0

the whole similarity matrix in every iteration, encoded in a two-dimensional
array. Even higher speed-up ratios could be reached using parallel computing.

The proposed efficient implementations enabled us to perform several tests
on the whole SCOP95 database, to evaluate the amount of obtained mixed clus-
ters depending on the algorithm’s parameters. Mixed clusters are clusters where
proteins from different families are present. We can further distinguish mixtures
at the level of classes, folds, superfamilies, and families. For example, a cluster
mixed at the level of folds contains proteins from different folds but all its pro-
teins are from the same class. Table 2 presents the amount of proteins situated
in mixed clusters for various values of the inflation rate. All these tests were run
for threshold value ε = 10−3.

As it was expected, the number of proteins in mixed clusters decreases as
the inflation rate grows. Mixtures at the level of classes, folds, superfamilies and
families vanish at r = 1.44, r = 1.52, r = 1.73, and r = 2.35, respectively.
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5 Conclusions

In this paper we have proposed two efficient implementation schemes and a
combined third efficient procedure for the graph-based TRIBE MCL clustering
method, a useful tool in protein sequence classification. With these novel for-
mulations, late iterations of the algorithm are performed up to thousands times
quicker, and the overall runtime becomes shorter by 2-3 orders of magnitude,
than in the conventional case. This speed-up is achieved without any damage of
the classification accuracy.
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14. Szilágyi, L., Medvés, L., Szilágyi, S.M.: A modified Markov clustering approach to
unsupervised classification of protein sequences. Neurocomputing 73, 2332–2345
(2010)

http://net.icgeb.org/benchmark
http://scop.mrc-lmb.cam.ac.uk/scop

	Fast Implementations of Markov Clustering for Protein Sequence Grouping
	1 Introduction
	2 Background
	3 Methods
	3.1 The SCOP95 Database
	3.2 Matrix Splitting
	3.3 Sparse Matrix

	4 Results and Discussion
	5 Conclusions
	References




