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Abstract. The fuzzy c-means proposed by Dunn and Bezdek is one
of the most popular methods of fuzzy clustering. Clusters obtained by
the fuzzy c-means are in the Voronoi sets when crisp reallocation rule is
applied. This means that a part of a larger cluster may be assigned to
a smaller one when there are clusters of different sizes. Therefore, some
methods using variables for controlling cluster sizes have been proposed.
In this paper, we study their theoretical properties and compare them
using numerical examples.

1 Introduction

Fuzzy clustering means a method of clustering with fuzzy membership function
for clusters. Fuzzy c-means proposed by Dunn [1] and Bezdek [2] is the most
popular one, which we call here the standard fuzzy c-means (SFCM). SFCM has
a simple objective function, and thus it has been studied by many authors and
many different methods of fuzzy clustering have been proposed.

A major drawback to SFCM clustering is that it tends to make clusters of
equal sizes. Namely, a part of a large cluster is misclassified as one of a smaller
cluster if volumes of clusters are out of balance. Therefore some approaches
using variables controlling cluster sizes have been proposed for tackling such a
problem, and we discuss three methods here. One is derived from a modified
entropy-based fuzzy c-means [3]. Another is a fuzzy extension of the maximum
likelihood procedure [4], and the third is fuzzy c-means proposed by Ichihashi et
al. [5], whose results are expected to be similar to those of the Gaussian mixture
model.

All of these methods can solve the problem of cluster sizes. Nevertheless, there
is no comparative study of these methods from theoretical viewpoint, and these
methods are still open to discuss. The purpose of this paper is to study theoretical
properties of these methods. We discuss them based on classifier functions [6]
and thus our conclusions have generality.
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We first show SFCM as a basic algorithm of fuzzy c-means and three methods
using variables for controlling cluster sizes in Section 2. Further, we show theo-
retical properties of these methods based on classifier functions in Section 3. We
apply these methods to illustrative examples and show effectiveness and these
properties with brief interpretations in Section 4. Finally, Section 5 concludes
the paper.

2 Fuzzy c-Means with Cluster Sizes

In this section, we show the standard fuzzy c-means (SFCM) introduced by
Dunn [1] and Bezdek [2] and algorithms with variables for cluster sizes [3,4,5].

2.1 Fuzzy c-Means

Let X = {x1, . . . , xn} be a set of objects for clustering. They are points in the
p-dimensional Euclidean space Rp. Let V = {v1, . . . , vc} be a set of centers of
cluster i and let U = (uik) be an c × n matrix of fuzzy membership of xk to
cluster i. xk and vi are both p-dimensional vectors, i.e., xk = (x1

k, . . . , x
p
k)

T and
vi = (v1i , . . . , v

p
i )

T .
SFCM is based on minimization of the following objective function:

Jsfcm =
c∑

i=1

n∑

k=1

(uik)
mdik, (1)

where dik is dissimilarity between xk and vi; m is fuzzy parameter which is larger
than 1. Note that the objective function is obviously equal to that of k-means if
the fuzzy parameter m is 1. The constraint of U is

U = {(uik) : uik ∈ [0, 1],

c∑

i=1

uik = 1, ∀k}. (2)

Unless noted otherwise, dik is the squared Euclidean norm:

dik = ‖xk − vi‖2 =

p∑

l=1

(xl
k − vli)

2. (3)

The following iterative algorithm for minimizers Jsfcm is used.

Step 1. Generate c initial values for centroids V .
Step 2. Calculate optimal U that minimizes Jsfcm .
Step 3. Calculate optimal V that minimizes Jsfcm .
Step 4. If (U, V ) is convergent, stop; else return to Step 2.

The optimal solutions of Step 2 and Step 3 are given by the Lagrangian
multiplier method.
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uik =

(
1

dik

) 1
m−1

∑c
j=1

(
1

djk

) 1
m−1

(4)

vi =

∑n
k=1(uik)

mxk∑n
k=1(uik)m

(5)

Note that eq.(4) excludes the case when dik = 0 holds. If this is the case, then
uik = 1 and ujk = 0 (∀j �= i) .

In Step 4 we judge that the solution is convergent when U or V is unchanged.

2.2 Variables for Controlling Cluster Sizes

SFCM with crisp reallocation by the maximum membership rule may fail to
divide accurately if there are unbalanced clusters like those in Fig.1 in Section
4. In the case of Fig.1, even if each centroids are at center of each circle, about
4.0 percent area of the left side of larger cluster must be assigned to the smaller
one when crisp reallocation rule is applied. Therefore, three methods using vari-
ables for controlling cluster sizes have been proposed [3,4,5] for tackling such a
problem.

The objective functions proposed in [3],[4] and [5], respectively, are as follows,

Jfcma =

c∑

i=1

n∑

k=1

(αi)
1−m(uik)

mdik (6)

Jpfcm =

c∑

i=1

n∑

k=1

(uik)
m{dik − λ log(αi)} (7)

Jefca =

c∑

i=1

n∑

k=1

uik

{
dik + λ log

(
uik

αi

)}
, (8)

where A = (α1, . . . , αc) is a variable for controlling cluster sizes, and λ is a
positive parameter. The constraint for A is

A =

⎧
⎨

⎩A = (α1, . . . , αi) :

c∑

j=1

αj = 1;α ≥ 0, 1 ≤ i ≤ c

⎫
⎬

⎭ . (9)

Let us denote these three algorithms using the above objective functions as
FCMA, PFCM and EFCA respectively. Jfcma has three variables U , V , and A,
hence the following algorithm with three steps should be used.

Step1. Generate c initial values for V and A.
Step2. Calculate optimal U that minimizes Jfcma .
Step3. Calculate optimal V that minimizes Jfcma .
Step4. Calculate optimal A that minimizes Jfcma .
Step5. If (U, V,A) is convergent, stop; else return to Step2. .

PFCM and EFCA also use the same algorithm. The optimal solutions of each
steps can be computed by the Lagrangian multiplier method.
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Solutions for Jfcma

uik =
αi

(
1

dik

) 1
m−1

∑c
j=1 αj

(
1

djk

) 1
m−1

(10)

vi =

∑n
k=1(uik)

mxk∑n
k=1(uik)m

(11)

αi =
(
∑n

k=1(uik)
mdik)

1
m

∑c
i=1(

∑n
k=1(uik)mdik)

1
m

(12)

Solutions for Jpfcm

uik =

(
1

dik−λ logαi

) 1
m−1

∑c
j=1(

1
djk−λ logαj

)
1

m−1

(13)

vi =

∑n
k=1(uik)

mxk∑n
k=1(uik)m

(14)

αi =

∑n
k=1(uik)

m

∑c
i=1

∑n
k=1(uik)m

(15)

Solutions for Jefca

uik =
αi exp(− dik

λ )
∑c

j=1 αj exp(− djk

λ )
(16)

vi =

∑n
k=1 uikxk∑n
k=1 uik

(17)

αi =

∑n
k=1 uik

n
(18)

3 Classifier Function

After finishing clustering, we are able to set a value of membership to a new
object by classifier function. In the case of SFCM, the following is considered [6].

Us
i (x) =

(
1

d(vi,x)

) 1
m−1

∑c
j=1

(
1

d(vj ,x)

) 1
m−1

. (19)

This function is simply derived from the optimal solution of uik, where vi (i =
1, . . . , c) are the converged centroids. A classifier function helps us to consider
the theoretical properties of clustering because it is defined in the whole space.



196 Y. Komazaki and S. Miyamoto

We can convert the result of fuzzy clustering to crisp clusters by regarding an
object having the maximum value of membership to cluster i as a member of
cluster i.

Now, a region of cluster i in SFCM is represented as the following.

Us
i (x) > Us

j (x) (20)

⇔
(

1

d(vi, x)

) 1
m−1

>

(
1

d(vj , x)

) 1
m−1

(21)

⇔ d(vi, x) < d(vj , x) (22)

Hence, the region of cluster i is

Ri = {x ∈ Rp : d(vi, x) < d(vj , x), j �= i} (23)

It shows that the result of SFCMmakes the Voronoi regions whose representative
point is vi. Now, as x approaches infinity in a region of cluster i, we obtain

lim
‖x‖→∞

Us
i (x) =

1

c
. (24)

In this way, we make characteristics of method clear by analyzing its classifier
function. The classifier function of three methods using variables controlling size
of clusters is the following.

Ua
i (x) =

αi

(
1

d(vi,x)

) 1
m−1

∑c
j=1 αj

(
1

d(vj ,x)

) 1
m−1

(25)

Up
i (x) =

(
1

d(vi,x)−λ logαi

) 1
m−1

∑c
j=1

(
1

d(vj,x)−λ logαj

) 1
m−1

(26)

Ue
i (x) =

αi exp
(
− d(vi,x)

λ

)

∑c
j=1 αj exp

(
− d(vj ,x)

λ

) (27)

The next propositions show theoretical properties of these classifier functions.

Proposition 1. As x approaches infinity in an unbounded region Ri, then

lim
‖x‖→∞

Ua
i (x) = αi (28)

lim
‖x‖→∞

Up
i (x) =

1

c
(29)

lim
‖x‖→∞

Ue
i (x) = 1 (30)

is obtained.
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These can be confirmed visually by Fig.2 in Section 4.

Proposition 2. As x approaches vi, uik approaches unity in FCMA, however
it doesn’t approach unity in PFCM or EFCA, namely,

lim
x→vi

Ua
i (x) = 1 (31)

lim
x→vi

Up
i (x) =

1

1 + Cp
< 1 (32)

lim
x→vi

Ue
i (x) =

1

1 + Ce
< 1, (33)

where

Cp =

c∑

j=1,j �=i

(
λ logαi

d(vj , x)− λ logαj

) 1
m−1

(34)

Ce = α−1
i

c∑

j=1,j �=i

αj exp

(
−d(vj , x)

λ

)
. (35)

The proofs of Proposition 1 and 2 are obvious and thus the detail is omitted.

Proposition 3. The region of cluster i is multiplicatively weighted Voronoi
region[7] in FCMA, and locally additively weighted Voronoi in EFCA and PFCM.
Each representative point of the regions is vi (i = 1, . . . , c). Multiplicatively
weighted Voronoi region i is defined as

Ri =

{
x ∈ Rp :

d(vi, x)

wi
<

d(vj , x)

wj
, j �= i

}
, (36)

and additively weighted Voronoi region i is defined as

Ri = {x ∈ Rp : d(vi, x)− wi < d(vj , x)− wj , j �= i}, (37)

where wi > 0 (i = 1, . . . , c) are weights of the region i.

Proof. Each boundary between cluster i and cluster j given by Ui(x) = Uj(x) is
as follows.

FCMA

Ua
i (x) = Ua

j (x)

⇔ αi

(
1

d(vi, x)

) 1
m−1

= αj

(
1

d(vj , x)

) 1
m−1

⇔ αm−1
i

1

d(vi, x)
= αm−1

j

1

d(vj , x)

⇔ d(vj , x)

αm−1
i

=
d(vj , x)

αm−1
j

(38)
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PFCM

Up
i (x) = Up

j (x)

⇔
(

1

d(vi, x)− λ logαi

) 1
m−1

=

(
1

d(vj , x) − λ logαj

) 1
m−1

⇔ d(vi, x)− λ logαi = d(vj , x)− λ logαj

⇔ d(vi, x)− λ log
1

αj
= d(vj , x)− λ log

1

αi
(39)

EFCA

Ue
i (x) = Ue

j (x)

⇔ αi exp

(
−d(vi, x)

λ

)
= αj exp

(
−d(vj , x)

λ

)

⇔ logαi − d(vi, x)

λ
= logαj − d(vj , x)

λ

⇔ d(vi, x)− λ log
1

αj
= d(vj , x)− λ log

1

αi
(40)

The above indicates that FCMA makes multiplicatively weighted Voronoi
region with weights αm−1

i , while PFCM and EFCM make locally additively
weighted Voronoi region with weights λ log(1/αi) (for cluster j �= i). ‘Locally’
means that a weight of a region is dependent on a pair of clusters, in other words,
the weight of a region between region i and j is different from the weight of the
region considering between regions i and k.

Note that these propositions imply that the region of cluster i (i = argmaxi αi)
is infinite while the region of cluster j (j = 1, . . . , c, j �= i) is finite in FCMA.
Additionally, the boundary is locally linear (hyper-plane) when the dissimilarity
function d is defined as the squared Euclidean norm, while boundary is locally
hyperbolic when d is defined as the Euclidean norm in PFCM or EFCM.

4 Numerical Examples

The purpose of this paper is to give theoretical properties of methods with
variables for controlling cluster sizes, hence we show only the result of simple
illustrative examples in this section, and omit the result of applying to real
examples.

4.1 First Data Set

Figure 1 is an artificially generated data set with two groups: one has 20 objects
randomly in a circle with the radius of 1.0 , the other has 180 objects randomly
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Fig. 1. Artificially generated data set with two groups: one has 20 objects in circle
with the radius of 1.0, the other has 180 objects in circle with the radius of 3.0 and
the distance between the centers of two circles is 5.0

in a circle with the radius of 3.0 and the distance between the centers of two
circles is 5.0.

Figure 2 shows the results of clustering the data set as shown in Fig.1 (c = 2)
with SFCM, FCMA, PFCM and EFCA, respectively, and with λ = 5.0,m =
1.6. In the figure, the objects of two clusters are displayed in small squares
or small circles, and the centroids are cross marks. The contours denote the
membership value, and increment is 0.1. Solid line in the contours, which shows
the membership value is 0.5, indicates the boundary between two clusters. This
data set has two clusters, which are small and large. SFCM makes a Voronoi
diagram when the maximum membership rule is applied, thus a part of large
cluster is misclassified as a part of smaller cluster as shown in Fig.2(a) while
three methods consider these cluster sizes and succeed in having good clusters
as shown in Fig.2(b)-(d).

Centroid Inside and Outside of Its Region. PFCM and EFCA represent
cluster sizes by additive weights, while FCMA represents them by multiplica-
tive weights, whereby PFCM and EFCA may output an odd result: there is no
centroid in its region. Such a result is shown when d(vi, vj) < |λ log(αi/αj)|.
Figure 3 shows the results of clustering data in Fig.1 by PFCM and EFCA,
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Fig. 2. Clusters when (a)SFCM, (b)FCMA, (c)PFCM and (d)EFCA were applied to
the data set shown as Fig.1. A part of larger cluster is misclassified as a part of larger
cluster in SFCM while FCMA, PFCM and EFCA succeed in having good clusters.
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Fig. 3. Clusters when (a)PFCM and (b)EFCM with too large λ were applied to the
data set shown as Fig.1. The centroid of smaller cluster is out of its region.
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where λ = 7.75 and λ = 8.20 respectively. In these case, |λ log(αi/αj)| = 31.29,
d(vi, vj) = 26.18 in Fig.3(a), and |λ log(αi/αj)| = 25.54, d(vi, vj) = 23.14 in
Fig.3(b), therefore the centroid of a smaller cluster is in the region of a larger
cluster. Note that FCMA doesn’t output such results because multiplicative
weights are used, however it is not flexible since it has only one parameter m.

4.2 Second Data Set

Figure 4 shows an artificially generated data set with three groups: one has
180 objects randomly in a circle with the radius of 3.0 , another has 80 objects
randomly in a circle with the radius of 2.0 and the other has 20 objects randomly
in a circle with the radius of 1.0.

Figure 5 shows the results of clustering the data set in Fig.4 (c = 3). The
contours denote the membership value of the largest cluster. This data set has
three clusters, which are small, medium and large. In this case, no matter what
value of m or initial V , SFCM fails in a good classification: a centroid in small
group side is pulled by larger cluster since SFCM tries to make clusters equally
as shown in Fig.5(a). On the other hand, the three methods are able to succeed
as shown in Fig.5(b)-(d). These results indicate that these methods may work
well when there are three ore more clusters.

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Fig. 4. Artificially generated data set with three groups: one has 180 objects in circle
with the radius of 3.0, another has 80 objects in circle with the radius of 2 and the
other has 20 objects in circle with the radius of 1.0
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Fig. 5. Clusters when (a)SFCM, (b)FCMA, (c)PFCM and (d)EFCA were applied
to the data set shown as Fig.4. The centroid of small cluster side is pulled by large
cluster in SFCM while FCMA, PFCM and EFCA succeed in having good clusters.

5 Conclusion

In this paper, we described three methods with variables for controlling cluster
sizes, and showed their theoretical properties using their classifier functions.
Furthermore we applied these methods to illustrative examples and showed that
these methods worked well. Each of the methods outputted different results
though all of these methods were able to handle the cluster sizes.

From a practical viewpoint, the terms of covariance variables within clusters
should also be used [6,5] with appropriate parameters. However we omitted dis-
cussion of this topic in this paper for simplicity. Besides, there are rooms for
further discussion of the combination of the kernel method or the addition of
constraints in semi-supervised clustering and comparison with other approaches,
for example conditional FCM [8,9], whose constraint of membership is continu-
ously updated during clustering, for our future works.
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