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Preface

This volume contains papers presented at the 10th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2013), held in Barcelona,
Catalonia, Spain, November 20–22. This conference followed MDAI 2004
(Barcelona, Catalonia, Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tar-
ragona, Catalonia, Spain), MDAI 2007 (Kitakyushu, Japan), MDAI 2008
(Sabadell, Catalonia, Spain), MDAI 2009 (Awaji Island, Japan), MDAI 2010
(Perpinyà, Catalonia, France), MDAI 2011 (Changsha, China), and MDAI 2012
(Girona, Catalonia, Spain) with proceedings also published in the LNAI series
(Vols. 3131, 3558, 3885, 4617, 5285, 5861, 6408, 6820, and 7647).

The aim of this conference was to provide a forum for researchers to discuss
theory and tools for modeling decisions, as well as applications that encompass
decision making processes and information fusion techniques.

The organizers received 40 papers from 17 different countries, from Europe,
Asia, and America, 24 of which are published in this volume. Each submission
received at least two reviews from the Program Committee and a few external
reviewers. We would like to express our gratitude to them for their work. The
plenary talks presented at the conference are also included in this volume.

The conference was supported by the Universitat Oberta de Catalunya,
Universitat Autònoma de Barcelona, the Catalan Association for Artificial Intelli-
gence (ACIA), the European Society for Fuzzy Logic and Technology (EUSFLAT),
the Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT), the UN-
ESCO Chair in Data Privacy, the Spanish MINECO (TIN2011-15580-E), and the
Spanish MEC (ARES - CONSOLIDER INGENIO 2010 CSD2007-00004).

September 2013 Vicenç Torra
Yasuo Narukawa

Guillermo Navarro-Arribas
David Meǵıas
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Jordi Serra-Ruiz
Montse Mir
Isabel Carol

Additional Referees

Slawomir Zadrozny
Montserrat Batet
Sergio Martinez Lluis
Milosz Kadzinski
Daniel Abril

David Nettleton
Albert Sabaté
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A Way to Choquet Calculus

Michio Sugeno

European Centre for Soft Computing,
33600 Mieres, Asturias, Spain

michio.sugeno@gmail.com

Abstract. The aim of this talk is to suggest Choquet Calculus as a new
research paradigm. We deal with Choquet integrals on the non-negative
real line. The Choquet integral is a non-additive integral of a function
with respect to the fuzzy measure (or capacity) derived from the Cho-
quet functional. Most of the previous studies on Choquet integrals have
been devoted to a discrete case. The calculation of discrete Choquet
integrals is quite easy. It is, however, not the case for continuous Cho-
quet integrals. We begin with a representation theorem of the Choquet
integral of a non-negative, continuous and increasing function with re-
spect to a general fuzzy measure. Then, restricting fuzzy measures to
a class of distorted Lebesgue measures, we consider Choquet integral
equations. A distorted Lebesgue measure is a fuzzy measure generated
by a monotone transformation of the Lebesgue measure with an increas-
ing function called ‘generator’. For the distorted Lebesgue measure, it is
shown that the Choquet integral equation is formulated as the Volterra
integral equation of the first kind. For a case where the integrand is not
increasing, we suggest a method of ‘increasing arrangement’ by which
a non-increasing function can be transformed to an increasing function
equivalent up to the Choquet integral.

Concerning the Choquet integral equation with respect to the dis-
torted Lebesgue measure, we pose three problems: (i) calculating Cho-
quet integrals, (ii) solving Choquet integral equations and (iii) identifying
fuzzy measures. It is found that all the problems can be solved by ap-
plying the Laplace transformation. Through the processes solving these
problems, we present a way to Choquet calculus. First, a concept of the
derivatives of functions with respect to fuzzy measures is introduced to
solve Choquet integral equations where the differentiability of functions
with respect to fuzzy measures is discussed. We show basic properties of
the derivative in contrast with those of the Choquet integral. Then, we
consider differential equations with respect to distorted Lebesgue mea-
sures. In order to solve them, we introduce a concept ‘m-exponential
function’ as an extension of the ordinary exponential function where m
means a generator for a distorted Lebesgue measure, and show some ex-
amples to solve differential equations: nonhomogeneous first order and
homogeneous second order.

Next we discuss a relation of the Choquet integral equation with the
Abel integral equation, and also show a relation of Choquet calculus with
fractional calculus which is one of the recent advanced topics in engineer-
ing. Fractional calculus is, however, not a new research field and in fact
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we can go back to the end of the 17th Century when Leibniz gave a com-
ment on the possibility of semi derivative. Since then many distinguished
mathematicians like Laplace, Fourier, Abel, Liouville, Cauchy, Riemann
and Laurant contributed to fractional calculus. Yet there have been given
no adequate interpretations, in particular, on fractional derivatives. In
this talk we point out that fractional calculus is a very particular case
of Choquet calculus and give a fuzzy-measure-theoretic interpretation
on fractional calculus. For instance the Mittag-Leffler function used to
solve fractional differential equations is found to be a special case of our
m-exponential function.

In addition we present a Leibniz-like rule for the derivative of a prod-
uct function. Finally we give the definition of conditional distorted
Lebesgue measures and show their basic properties.



Preference-Based Optimization Using

Rank-Dependent Aggregation Functions

Patrice Perny

LIP6, UPMC, Paris, France

Abstract. The developments of Decision Theory in the last decades
have provided a variety of sophisticated preference models for decision
making in complex environments (Multicriteria Decision Making, So-
cial Choice, Uncertainty and Risk). Among them, Rank-Dependent Ag-
gregation Functions such as OWA, WOWA, RDU, and more generally
Choquet integrals received much attention due to their descriptive pos-
sibilities. However, when the set of feasible solutions has a combinatorial
structure and/or is implicitly defined (e.g. by a set of constraints), the
optimization of a rank-dependent aggregation function raises new al-
gorithmic issues due to the particular structure of preferences to deal
with. The aim of this presentation is to provide an overview of typical
problems to overcome when dealing with such decision models and to
present solution methods either based on combinatorial algorithms or
on mathematical programming. Examples will be chosen in various con-
texts such as multiobjective/multiagent combinatorial optimization and
decision under risk or ambiguity.



Decision Making in an Interval-Valued

Setting

H. Bustince

Public University of Navarra

bustince@unavarra.es

Abstract. In a multicriteria decision making problem a set of n alter-
natives a1, . . . an and a set of m experts e1, . . . , em are provided. Each
expert expresses his/her preferences by means of a n×n preference ma-
trix in which entry ij expresses how much alternative a1 is preferred to
alternative aj . In this way, we have m preference matrices that must be
merged into a single one (aggregation phase). This aggregated matrix,
which is also of dimension n× n is called collective preference matrix.

For the exploitation phase of the collective preference matrix there
exist several different methods. Many of them aggregate the preferences
for each of the alternatives to obtain a single number. Then, the alter-
natives are ranked by means of this number and the best located one is
chosen as the best alternative. In particular, the weighted vote is one of
the most widely used methods following this methodology.

However, in some situations problems may arise that make it difficult
to arrive at a final decision. For instance, it could happen that it is not
possible to distinguish between two of the alternatives since they get the
same value in the final ranking. Or, if the values of the preferences of
one alternative over another are around 0.5,–which means indifference of
one alternative against another–, it may not exist enough information to
decide which is the best alternative.

In these situations it could be useful to consider the use of interval-
valued preferences. To do so, the value of the actual preference of the
expert is considered to be a point inside the preference interval, whereas
the length of the interval is a measure of the lack of certainty of the
expert when he/she provides the preference value.

However, the use of intervals to express preferences gives raise to a
new problem. Namely, contrary to the case of the real numbers in [0,1],
it does not exist a natural linear order between intervals. This means
that:
1. The definition of interval-valued aggregation is not straightforward.
2. There could exist intervals which are not comparable, which means

that the intervals obtained from the exploitation phase may not be
suitably ranked.

In order to avoid this problem, in [1] authors propose the so-called ad-
missible orders, which are linear and defined in terms of two aggregation
functions. This admissible orders allow to extend the notion of aggre-
gation function to the interval-valued setting, overcoming the difficulties
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that arise with fuzzy methods in the above mentioned situations. In
particulatr, they allow to define Choquet integrals in a general way, not
based just in the consideration separately of the lower and the upper
bounds of the intervals.

Reference

[1] H. Bustince, J. Fernandez, A. Kolesárová, R. Mesiar, Generation of linear
orders for intervals by means of aggregation functions, Fuzzy Sets and Sys-
tems, Volume 220, 1 June 2013, Pages 69-77
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Theory and Applications of Non-additive
Measures and Corresponding Integrals

Endre Pap

University of Novi Sad, 21000 Novi Sad, Serbia,
Óbuda University, H-1034 Budapest, Hungary,
Singidunum University, 11000 Belgrade, Serbia

pape@eunet.rs

Abstract. Itis given an short overview of some recent results in the theory of
non-additive measures and corresponding integrals. It is presented the univer-
sal integral, which include among others, Lebesgue, Choquet, Sugeno, pseudo–
additive, Shilkret integrals. Related pseudo-integral a generalization of Lp space
is introduced. Many useful applications illustrate the power of non-additive mea-
sures and corresponding integrals.

Keywords: Non-additive measure, pseudo-additive measure, universal integral,
Choquet integral, Sugeno integral, pseudo-additive integral, decision making,
utility theory, nonlinear equation, fuzzy number.

1 Introduction

Introducing non-additive measure, called also fuzzy measure or capacity, and
the corresponding integrals, e.g., Choquet, Sugeno, idempotent integrals, see
[9,16,19,24,25,32,35], generalized measure theory have been developed. This theory,
contrary to classical measure theory, deals with modeling of certain phenomena involv-
ing interaction between criteria. The Choquet and Sugeno integrals have wide applica-
tions as aggregation functions, see [13,34,35]. Recently, the universal integral, whose
special cases are all the mentioned integrals, has been proposed in [18]. In the frame-
work of the pseudo-analysis, we present a generalization of Lp space and related conver-
gences of sequences of measurable functions, see [7,29]. The main tools are the Hölder,
Minkowski and Markov inequalities for the pseudo-integral, see [4]. The inequalities
for integrals based on non-additive measures, e.g., Choquet, Sugeno, pseudo-integral
have been recently given, see for an overview [28]. Specially, in [3,4,27,28] inequal-
ities with respect to pseudo-integrals were considered. The convergence of decision
variables were presented in [8]. Several convergence concepts based on the Sugeno and
Choquet integrals are observed, see [35,36].

2 Non-additive Measures

Let X be a non-empty set, A be a σ-algebra of subsets of X . A set function m : A →
[0,∞] is said to be continuous from below, if limn→∞ m(An) = m(A) whenever An ↗ A;
continuous from above, if limn→∞ m(An) = m(A) whenever An ↘ A and there exists n0

with µ(An0) < ∞; continuous, if m is continuous from below and above.

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 E. Pap

Definition 1. A monotone measure on A is an extended real valued set function m :
A → [0,∞] satisfying the following conditions:
(i) m(∅) = 0;
(ii) m(A) � m(B) whenever A⊂ B and A,B ∈ A .

When m is a monotone measure, the triple (X ,A ,m) is called a monotone measure
space. There are many special type of non-additive measures with some additional prop-
erties, e.g., null-additive, subadditive, superadditive, submeasure, pseudo-additive, see
[9,24,25,32,35].

For simplicity, we use the following notations:

– F (X ,A) denote the set of all A-measurable functions f : X→ [0,∞] ;

– For each number a ∈ ]0,∞] , M (X ,A)
a is the set of all monotone measures satisfying

m(X) = a, and denote by

M (X ,A) =
⋃

a∈]0,∞]

M (X ,A)
a ;

– S is the class of all measurable spaces, and

D[0,∞] =
⋃

(X ,A)∈S

M (X ,A)×F (X ,A).

An equivalence relation between pairs (m1, f1) , (m2, f2) ∈ D[0,∞] was introduced
in [18].

Definition 2. Two pairs (m1, f1) ∈ M (X1, A1) × F (X1,A1) and (m2, f2) ∈ M (X2,A2) ×
F (X2,A2) satisfying

m1 ({x ∈ X1 | f1 (x)≥ t}) = m2 ({x ∈ X2 | f2 (x)≥ t})

for all t ∈ ]0,∞] , will be called integral equivalent.

3 Non-additive Integrals

We have by [18,32].

Definition 3. A pseudo-multiplication is a function⊗ : [0,∞]2 → [0,∞] with the follow-
ing properties:

(i) it is non-decreasing in each component, i.e., for all a1,a2,b1,b2 ∈ [0,∞] with a1 ≤
a2 and b1 ≤ b2 we have a1⊗ b1 ≤ a2⊗ b2,

(ii) 0 is an annihilator of, i.e., for all a ∈ [0,∞] we have a⊗ 0 = 0⊗ a = 0,
(iii) has a neutral element different from 0, i.e., there exists an e ∈ ]0,∞] such that, for

all a ∈ [0,∞] we have a⊗ e = e⊗ a = a.
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The universal integral is introduced using axioms ([18]).

Definition 4. A function I : D[0,∞]→ [0,∞] is called a universal integral if the following
axioms hold:

(i) for any measurable space (X ,A) the restriction of the function I to M (X ,A) ×
F (X ,A) is non-decreasing in each coordinate;

(ii) there exists a pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] such that for all pairs
(m,c ·1A) ∈D[0,∞] (where 1A is the characteristic function of the set A)

I(m,c ·1A) = c⊗m(A) ;

(iii) for all integral equivalent pairs (m1, f1) , (m2, f2) ∈D[0,∞] we have

I(m1, f1) = I(m2, f2) .

The Choquet, Sugeno and Shilkret integrals are particular cases of the preceding in-
tegral. In the following theorem are given the smallest and the greatest universal integral
based on ⊗ ([18]).

Theorem 1. Let ⊗ : [0,∞]2 → [0,∞] be a pseudo-multiplication on [0,∞] . Then the
smallest universal integral I⊗ and the greatest universal integral I⊗ based on ⊗ are
given by

I⊗ (m, f ) = sup
t∈]0,∞]

(t⊗m({x ∈ X | f (x) � t})) ,

I⊗ (m, f ) = essup
m

f ⊗ sup
t∈]0,∞]

m({x ∈ X | f (x) � t}) ,

where
essup

m
f = sup{t ∈ [0,∞] | m({x ∈ X | f (x) � t}) > 0} .

For further results on non-additive integrals see [9,13,22,24,25,34,35].

4 Pseudo-additive Measures and Corresponding Integrals

Let [a,b] be a closed (in some cases semiclosed) subinterval of [−∞,∞]. The full order
on [a,b] will be denoted by 
. This can be the usual order of the real line, but it can
be another order. The operation ⊕ (pseudo-addition) is a commutative, non-decreasing
(with respect to 
 ), associative function ⊕ : [a,b]× [a,b] → [a,b] with a zero (neu-
tral) element denoted by 0. Denote [a,b]+ = {x : x ∈ [a,b] ,0 
 x}. The operation �
(pseudo-multiplication) is a function � : [a,b]× [a,b]→ [a,b] which is commutative,
positively non-decreasing, i.e., x 
 y implies x� z 
 y� z, z ∈ [a,b]+, associative and
for which there exist a unit element 1 ∈ [a,b], i.e., for each x ∈ [a,b] ,1� x = x. We
assume 0� x = 0 and that � is distributive over⊕. The structure ([a,b] ,⊕,�) is called

a semiring (see [24,25]). For x ∈ [a,b]+ and p ∈ ]0,∞[, the pseudo-power x(p)
� is de-

fined in the following way. If p = n is an integer then x(n)
� = x� x� ...� x︸ ︷︷ ︸

n−times

. Moreover,
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x
( 1

n )
� = sup

{
y | y(n)

� ≤ x
}

. Then x
( m

n )
� = x(r)

� is well defined for any rational r ∈ ]0,∞[,

independently of representation r = m
n = m1

n1
, m, n, m1, n1 being positive integers (the

result follows from the continuity and monotonicity of �). Due to continuity of �, if p

is not rational, then x(p)
� = sup

{
x(r)
� | r ∈ ]0, p[ , r is rational

}
. If � is idempotent, then

x(p)
� = x for any x ∈ [a,b] and p ∈ ]0,∞[ .

A set function m : A → [a,b]+ is a ⊕-measure if there hold m(∅) = 0, and

m(A∪B) = m(A)⊕m(B)

for A,B ∈ A such that A∩B = ∅, see [26]. An ⊕ - measure m is σ- ⊕ - measure if

m

(
∞⋃

i=1

Ai

)
=

∞⊕
i=1

m(Ai)

holds for any sequence (Ai) of pairwise disjoint sets from A .
Pseudo-integral with respect to a σ-⊕-measure m of a simple function s is given by

∫ ⊕

X
s� dm =

n⊕
i=1

ai�m(Ai),

and of a bounded measurable function f : X → [a,b], is given by

∫ ⊕

X
f � dm = lim

n→∞

∫ ⊕

X
sn� dm,

where (sn)i∈N is sequence of simple functions converging to f . We have by [29].

Definition 5. Let A be a non-empty set. A function d⊕ : A×A→ [a,b]+ is a pseudo-
metric on A if there hold

(PM1) d⊕ (x,y) = 0 iff x = y, for all x,y ∈ A,
(PM2) d⊕ (x,y) = d⊕ (y,x) , for all x,y ∈ A
(PM3) there exists c ∈ [a,b]+ such that for all x,y,z ∈ A it holds

d⊕ (x,y)
 c� (d⊕ (x,z)⊕ d⊕ (z,y)) .

Example 1. (i) Let ([a,b] ,⊕,�) be the semiring with generated pseudo-operations by
an increasing and continuous function g. Here we have x�y = g−1(g(x) ·g(y)), and

therefore x(p)
� = g−1 (gp (x)). If the function d⊕ : [a,b]× [a,b]→ [a,b] is defined by

d⊕ (x,y) = g−1 (|g(x)− g(y)|) ,
then d⊕ is the pseudo-metric on [a,b] and c = 1.

(ii) In the semiring ([a,b] ,⊕,�) where x⊕ y = sup(x,y) , x� y = g−1(g(x)g(y)) and
g is an increasing and continuous function. The function d⊕ : [a,b]× [a,b]→ [a,b]
defined also by (1) is the pseudo-metric on [a,b] and c = g−1 (2). In [8] the semir-
ing ([−∞,∞[ ,sup,+) are considered. The pseudo-metric is defined by d⊕ (x,y) =
log |ex− ey| . The condition (PM3) is fulfilled for c = log2.
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Let ([a,b] ,⊕,�) be a semiring and (X ,A) be a measurable space, m a σ-⊕-measure
with the corresponding pseudo-integral, see [16,17,19,20,23,24,26]. We define for 0 <
p < ∞ and u,v : X → [a,b] measurable functions

Dp⊕ (u,v) =

(∫ ⊕

X
(d⊕ (u,v))

(p)
� � dm

)( 1
p

)
�

.

If p = ∞, then

D∞⊕ (u,v) = inf{α ∈ [a,b] | m({x ∈ X | d⊕ (u(x) ,v(x)) � α}) = 0} .
Similarly as in the classical measure theory, we consider the equivalence classes of

functions which are equal almost everywhere with respect to σ-⊕-measure m on X . By
Minkowski inequality [4] the function Dp⊕ is a pseudo-metric on Lp

⊕. Due to Hölder
inequalities [4] we have the following theorem, obtained in [29].

Theorem 2. Let x⊕ y = sup(x,y) and x� y = g−1(g(x)g(y)). Let m be a σ-⊕-measure
and p and q be conjugate exponents with 1 � p � ∞. If u ∈ Lp

⊕ and v ∈ Lq
⊕, and

generator g : [a,b]→ [0,∞] of the pseudo-addition ⊕ and pseudo-multiplication � is
an increasing function, then u� v ∈ L1⊕.

We have introduce various notions of convergence related to a σ-⊕-measure and
pseudo-integral in the pseudo-Lp space. The relationships among these types of conver-
gence were considered in [29] using the Minkowski type inequality [4].

5 Applications

Very briefly we present few applications of non-additive measures and corresponding
integrals.

5.1 Decision Making

Decision making occurs in almost all fields of human activities, and it is devoted to ag-
gregating scores or preferences on a given set of alternatives, the scores or preferences
being obtained from several decision makers, voters, experts, etc., see [13,34]. Multi-
criteria decision making follows the spirit of multiattribute utility theory. Main step in
multicriteria decision making is the aggregation, where quantities to be aggregated are
most often scores on criteria for a given alternative. The Choquet integral play special
role, since the notions of importance index, interaction index, tolerance, veto and favor,
etc., can be well handled by monotone measures and the Choquet integral. The situa-
tion is similar for multiobjective optimization, although the main difference is related
to huge number of alternatives, which make most often an infinite set. The theoreti-
cal framework for decision with several persons is social choice theory, e.g., voting
procedures as Borda count and the Condorcet rule. Voters give scores to candidates,
representing in some sense the intensity of their preference, permits to escape Arrow’s
theorem, but formally amounts to using methods of multicriteria decision making, up to
the difference that most often, voters are anonymous, and thus symmetric aggregation
functions have to be chosen.
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5.2 Pattern Recognition and Classification

One popular approach to classification of objects and pattern recognition is data or
sensor fusion, see [13,31]. To classify a given (unknown) object, one transforms the
measurements given by the sensors or the values of the attributes into confidence de-
grees of belonging to some class, and then an aggregation of the confidence degrees is
performed. The Choquet integral, due to its versatility, has often been used with success
in practical applications.

Image analysis is a hard task that often sensor (or method) fusion is used. Again, the
Choquet integral has been widely used. The second place where aggregation functions
appear in image processing is filtering, where Choquet integral filters have been used
also for texture recognition.

5.3 Hybrid Utility Function

A generalization of the utility theory of von Neumann-Morgenstern in the paper [10] is
obtained. The basic tool was a characterization of the pairs of continuous t-norm T and
t-conorm S such that the former is conditionally distributive over the latter (related with
a number a ∈ [0,1]), see [16]. Let PS,a be the set of ordered pairs (α,β) given by

PS,a = {(α,β) | (α,β) ∈]a,1[2,α + β = 1 + a}
∪{(α,β) |min(α,β) � a,max(α,β) = 1}.

A hybrid mixture set is a quadruple (G ,M,T,S) where G is a set, (S,T ) is a pair
of continuous t-conorm and t-norm, respectively, which satisfy the condition condi-
tional distributivity and M : G2×PS,a → [0,1] is a function (hybrid mixture operation)
given by

M(x,y;α,β) = S(T (α,x),T (β,y)),

where x,y ∈ [0,1] are utilities and (α,β) is a pair of degrees of plausibility from PS,a.
There is completely described in [10] the behavior of the decision maker related to the
mixture M.

5.4 Generalization of Portmanteau Theorem

Theorem of Portmanteau type for pseudo-weak convergent sequences of capacity func-
tionals for sequence of random closed sets obtained in [15], see also [6,30]. Random
set theory is a part of abstract mathematical analysis and it is applied in many fields as
image processing, mathematical morphology, expert system, theoretical statistic, etc. A
generalization of the notion of the weak convergence of sequences of probability mea-
sures is introduced in [15]: A sequence of capacity functionals (Fn)n∈N pseudo-weak
converges to capacity functional F if and only if for each continuous, bounded function
f : R→ [0,∞] we have

lim
n→∞

∫ ⊕
f � dFn =

∫ ⊕
f � dF.

Among other results it proved in [15] the following theorem.
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Theorem 3. If a sequence of capacity functionals (Fn)n∈N pseudo-weak converges to
capacity functional F, then limsup

n
Fn(C) � F(C) for all closed sets C ⊆ R.

5.5 Fuzzy Logics and Fuzzy Numbers

For a t-norm T , see [16], the strong negation c given by c(x) = 1− x, and with the
t-conorm S dual to T given by S(x,y) = c

(
T (c(x),c(y)

)
, we obtain the basic logic

connectives in a [0,1]–valued logic: conjunction: x∧T y = T (x,y), disjunction:
x∨T y = S(x,y). The implication is introduced in different ways, see [16].

The arithmetical operations with fuzzy numbers is based on Zadeh extension prin-
ciple. Let T be an arbitrary but fixed t-norm and ∗ a binary operation on R. Then the
operation ∗ is extended to fuzzy numbers A and B by A∗T B(z) = supx∗y=z T (A(x),B(y))
for z ∈ R. Some usual operations with fuzzy numbers are following: Addition is ob-
tained for ∗ = +: A⊕T B(z) = supx+y=z T (A(x),B(y)), and multiplication for ∗ = ·:
A�T B(z) = supx·y=z T (A(x),B(y)). We remark that multiplication and addition are gen-
eralized pseudo-convolutions of the second type based on semiring ([0,1],max,T ).

5.6 Fractals Dimensions

We present special max-measures in the framework of fractal dimension, see [11]. One
of the oldest and most important is the Hausdorff dimension defined for an arbitrary
subset of Rn. For a subset F of Rn, nonnegative number s and arbitrary δ > 0 we define
first set function

H s
δ (F) = inf{

∞

∑
i=1

d(Ui)
s | {Ui} is δ− cover for F},

where d(A) = sup{‖xy‖ | x,y ∈ A} for A⊂Rn and ‖x‖= (x2
1 + · · ·+x2

n)1/2, and δ-cover
of the set F is a family of sets {Ui} with the property F ⊂ ∪∞

i=1Ui and d (Ui) < δ for
i ∈ N. Then H s(F) = limδ→0 H s

δ (F) is called s-dimensional Hausdorff measure of the
set F. Hausdorff dimension of the set F is given by

DimHF = inf{s |H s(F) = 0}= sup{s |H s(F) = ∞}.
Hausdorff dimension is a σ- max-measure on 2R

n
(in the theory of fractals this property

is called countable stability).
The second type is the so-called box-counting measure or Kolmogorov entropy, for

which we give the following definition: The upper and lower box-counting measure of
subset F of Rn is given by

dimBF = limδ→0
logNδ(F)

− logδ
, dimBF = limδ→0

logNδ(F)

− logδ
,

respectively, while the dimensions of the box- counting measure for F is given by

DimBF = lim
δ→0

logNδ(F)

− logδ
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(if there exists the limit), where Nδ(F) is the minimum number of closed balls of radius
δ that cover F. Upper box-counting measure dimB is finitely max-measure, and dimB is
not. Box-counting measure in general is not a σ-max-measure. For example, if we take
a the set of rational numbers F between 0 and 1, then we have that the box-counting
measure of each rational number as singleton set is zero, but the box-counting measure
for F is equal 1, since F is a dense subset of the interval [0,1].

5.7 Nonlinear Partial Differential Equations in Control Theory

In the classical linear mathematics all methods of solutions of linear equations are based
on linear supperposition principle. Unfortunately, this method can not apply on nonlin-
ear equations. But taking other operations instead of the usual addition and multiplica-
tion we can extend the previous superposition principle. We illustrate this on nonlinear
partial differential equations.

We have that if u1 and u2 are solutions of the following general Hamilton-Jacobi
equation

∂u(x, t)
∂t

+ H

(
∂u
∂x

,x, t

)
= 0,

where H is a convex function,then (λ1�u1)⊕(λ2�u2) is also a solution of the preced-
ing Hamilton-Jacobi equation, with respect to pseudo-operations⊕ = min and � = +
(pseudo linear superposition principle). More details can be found in [19,24]. It is solved
by pseudo-weak solution, see [19], avoiding the use of the ”viscosity solution” method.

6 Conclusion

We have given a very brief presentation of a part of the theory of non-additive mea-
sures and corresponding integrals, as a generalization of the classical measure theory.
We illustrate the application in very different fields (decision making, pattern recog-
nition and classification, utility theory, random sets, fuzzy logics, fuzzy sets, fractal
dimension, nonlinear partial differential equations), although the range of applications
is much wider.

Acknowledgments. The authors are supported in part by the Project MPNRS 174009,
and by the project ”Mathematical models of intelligent systems and their applications ”
of Academy of Sciences and Arts of Vojvodina supported by Provincial Secretariat for
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Abstract. Restricting the domains of definition of social choice func-
tions is a classical method to test the robustness of impossibility results
and to find conditions under which attractive methods to reach collective
decisions can be identified, satisfying different sets of desirable proper-
ties. We survey a number of domains that we have recently explored, and
exhibit results emerging for functions defined on them. In particular, we
have identified a condition called top monotonicity under which the core
of voting rules is non-empty, a second one called sequential inclusion
where individual and group strategy-proofness become equivalent, and
still a third condition called intertwinedness where the strategy-proofness
of social choice functions is guaranteed as soon as they satisfy very simple
monotonicity and invariance requirements.

Keywords: Strategy-proofness, group strategy-proofness, single-peaked
preferences, separable preferences, top monotonicity, sequential inclu-
sion, reshuffling invariance, monotonicity, intertwined domains.

1 Introduction

Social choice theory has a tradition of delivering impossibility results, but these
are starting points for further, more constructive work. Indeed, impossibility
results usually open the gate toward further understanding of design issues that
eventually lead to positive proposals and to the characterization of rich classes
of collective decision-making procedures. The crucial difference between positive
and negative results is in most cases related to the domain of definition of the
social choice rules under consideration. Arrow’s impossibility theorem and the
Gibbard-Satterthwaite theorem (Gibbard, 1973, and Satterthwaite, 1975) are
the two most classical examples of impossibility results, and both are predicated
on social choice rules defined for the universal domain of preference profiles: they
hold for functions that must take values for any possible combination of agent’s
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preferences over alternatives. By contrast, when social choice rules are defined
in the restricted domain of single-peaked preferences, then the impossibilities
turn into possibilities, and simple majority, among others, emerges as a fully
satisfactory social welfare function generating strategy-proof social decisions as
well (Black, 1948 and Moulin, 1980).

Single-peakedness is the best known, but not the only domain restriction un-
der which the Arrowian aggregation difficulties can be overcome. Others are, for
example, the restriction to single-crossing families of preferences, or to sets of
profiles satisfying an intermediateness condition (Gans and Smart, 1996, Grant-
mond, 1978, Rothstein, 1990, Saporiti, 2009). Likewise, majority voting operates
adequately within these domains, but other social choice rules may also be satis-
factorily used (Austen-Smith and Banks, 1999). Characterizing the social choice
rules that operate properly, in some well defined sense, under given domain re-
strictions, is a very fruitful approach to examine social welfare issues: Arrow’s
impossibility paves the way, but then positive characterization results follow.
Similarly, the Gibbard-Satterthwaite theorem establishes that one may not ex-
pect to find nontrivial strategy-proof social choice rules operating on universal
domains, but opens the door to different possibility results. We know the form
of all the social choice rules that are strategy-proof when agent’s preferences are
single-peaked in different contexts (Moulin, 1980; Sprumont, 1991), but also of
those that meet this condition under separable preferences (Barberà, Sonnen-
schein, and Zhou, 1991, Barberà, Gul, and Stacchetti, 1993, Barberà, Massó,
and Neme, 1997, 1999, Barberà, Massó, and Serizawa, 1998, Serizawa, 1996),
single-plateaued preferences (Berga, 1998), single-dipped (Barberà, Berga, and
Moreno, 2012b,c; and Manjunath, 2013), for example.

The purpose of this expositional paper is to introduce the reader to three
families of domains that we have identified in recent work as being sufficient
(and close to necessary) to guarantee that social choice rules defined on them can
satisfy a variety of desirable properties. In the spirit of our previous remarks, we
shall present three puzzles in social choice, and show that their solution depends
on the domain of preference profiles for which our relevant social choice rules
are defined.

Here are the questions we want to address:

1. Is there a common root to the conditions of single-peakedness, single-
crossing and intermediateness? It is known that voting equilibria under qualified
majority rules can be guaranteed within these three domain restrictions and that,
in addition, these equilibria are of similar form. We shall present the domain of
top monotonic profiles that contains all three, and for which the existence of
voting equilibria with essentially the same traits is still guaranteed.

2. What is the connection between individual and group strategy-proofness?
It is known that for some domain restrictions, both conditions become equivalent,
while in others individual strategy-proofness is a strictly weaker requirement. We
shall present a domain condition called sequential inclusion where equivalence is
implied, and that is “almost necessary” for the equivalence to hold.
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3. When can strategy-proofness be guaranteed by the sole satisfaction of
two simple and natural conditions of monotonicity and invariance? We shall
exhibit a “connectedness” condition defining what we call intertwined domains
and that ensures strategy-proofness thanks to these two conditions alone, while
proving that in other cases it may be necessary to add further and less natural
requirements.

Since the main purpose of this paper is expositional, we shall provide the results
without their proofs, and refer for those to the original papers. After a brief section
with general definitions, we devote one section to each of the puzzles that we just
stated. In each one of them we try to motivate our question, describe the classes
of domains for which we can provide definite answers and offer an example of al-
ternative domains where social choice rules would fail to meet our requirements.

2 The Setup and Some Definitions

Let A be a set of alternatives and N = {1, ..., n} be a finite set of agents.
Let R be the set of all preorders (complete, reflexive, and transitive binary
relations) on A and Ri ⊆ R be the set of admissible preferences for agent
i ∈ N . Denote by P ⊆ R the set of all antisymmetric preorders. We denote by
Ri ∈ Ri an admissible preference relation and let as usual, Pi and Ii be the strict
and the indifference part of Ri, respectively. When all the admissible preferences
for individual i are strict, we will use the notation Pi, instead of the general
expression Ri. A preference profile, denoted by R = (R1, ..., Rn), is an element
of ×i∈NRi. For C ⊆ N we will write the profile R = (RC , RN\C) ∈ ×i∈SRi when
we want to stress the role of coalition C. Then the subprofiles RC ∈ ×i∈CRi

and RN\C ∈ ×i∈S\CRi denote the preferences of agents in C and in N\C,
respectively.

For any Ri ∈ Ri and x ∈ A, define the lower contour set of Ri at x
as L(Ri, x) = {y ∈ A : xRiy} . Similarly, the strict lower contour set at x is
L(Ri, x) = {y ∈ A : xPiy}.

For any Ri ∈ Ri and B ⊆ A, we denote by t(Ri, B) the set of maximal
elements of Ri on B. That is, t(Ri, B) = {x ∈ B : xRiy for all y ∈ B}. We call
t(Ri, B) the top of i in B or the peak on B when it is a singleton.

For any x, y ∈ A and R ∈ ×i∈NRi, let P (x, y;R) ≡ {i ∈ N : xPiy} and
R(x, y;R) ≡ {i ∈ N : xRiy}. That is, the set of agents who strictly (respectively,
weakly) prefer x to y according to their individual preferences in R.

A social choice function is a function f : ×i∈NRi → A. Let Af denote the
range of the social choice function f . We say that f is onto if Af = A.

We are interested in social choice functions that are nonmanipulable, either
by a single agent or by a coalition of agents. We first define what we mean
by a manipulation and then we introduce the well known concepts of strategy-
proofness and group strategy-proofness.

Definition 1. A social choice function f is group manipulable on ×i∈NRi at
R ∈ ×i∈NRi if there exists a coalition C ⊆ N and R′

C ∈ ×i∈CRi (R′
i �= Ri

for any i ∈ C) such that f(R′
C , RN\C)Pif(R) for all i ∈ C. We say that f is
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individually manipulable if there exists a possible manipulation where coalition
C is a singleton.

Definition 2. A social choice function f is group strategy-proof on ×i∈NRi if
f is not group manipulable for any R ∈ ×i∈NRi. Similarly, f is strategy-proof
if it is not individually manipulable.

Next we introduce the notions of a preference aggregation rule, voting rule
and voting equilibrium. We follow closely Austen-Smith and Banks (1999) since
our results will extend those that they present in Chapter 4 of their book.

Definition 3. A preference aggregation rule is a map, F : ×i∈NRi → B, where
B denotes the set of all reflexive and complete binary relations on A. We denote
by RF the image of profile R under preference aggregation rule F .

Definition 4. Given any two profiles R,R′ ∈ ×i∈NRi and x, y ∈ A, a prefer-
ence aggregation rule F is:
(1) neutral if and only if [∀a, b ∈ A, P (x, y;R) = P (a, b;R′) and P (y, x;R) =
P (b, a;R′)] imply xRF y if and only if aRF b;
(2) monotonic if and only if [P (x, y;R) ⊆ P (x, y;R′), R(x, y;R) ⊆ R (x, y;R′)
and xPF y] imply xP ′

F y.

A neutral preference aggregation rule treats all alternatives equally when mak-
ing pairwise comparisons. Monotonicity implies that if x is socially preferred to
y and then some people change their preferences so that the support for x does
not decrease, while the support for y does not increase, then x must be still
socially preferred at the new profile.

One can always associate to each preference aggregation rule a family of or-
dered pairs of coalitions that represent the ability of different groups of agents
in determining the social preference relation.

Definition 5. The decisive structure associated with a preference aggregation
rule F , denoted by D(F ), is a family of ordered pairs of coalitions (S,W ) ⊆ N×N
such that (S,W ) ∈ D(F ) ⇔ S ⊆W and ∀x, y ∈ A, ∀R ∈ ×i∈NRi, [xPiy ∀i ∈ S
and xRiy ∀i ∈ W → xPF y].

We now notice that we could have started to define our preference aggregation
rule by first providing a family of ordered pairs of coalitions.

Definition 6. A set D ⊂2N × 2N is
(1) monotonic if (S,W ) ∈ D, S ⊆ S′ ⊆ W ′ and S ⊆ W ⊆ W ′ imply
(S′,W ′) ∈ D
(2) proper if (S,W ) ∈ D, S′ ⊆ N\W and W ′ ⊆ N\S imply (S′,W ′) /∈ D.
Definition 7. Given a proper set D, the preference aggregation rule induced by
D, denoted FD, is defined as ∀x, y ∈ A, xPFDy ⇔ [∃(S,W ) ∈ D : xPiy ∀i ∈ S
and xRiy ∀i ∈ W ]1.

1 Notice that the requirement that D is proper guarantees that fD is well defined.
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It is useful to state the connections between preference aggregation rules and
decisive structures, because one is closer to the language of social choice and
the other is closer to that of public economics and political economy. More
precisely, one can ask when it is the case that a decisive structure and a preference
aggregation rule can be used interchangeably as being the primitives. This will
happen when the decisive structure associated with F induces F again. Austen-
Smith and Banks (1999) define voting rules as those preference aggregation rules
that have this property, and provide a characterization for them.

Definition 8. A preference aggregation rule F is a voting rule if F = FD(F ).

Proposition 1. A preference aggregation rule is a voting rule iff it is neutral
and monotonic.

In this survey we concentrate on the study of voting rules and their equilibria,
which we now define.

Definition 9. Let F be a preference aggregation rule and R ∈ ×i∈NRi. The
core of F at R, CF (R,S) is the set of maximal elements in S ⊆ A under the
binary relation RF . Elements in the core of a voting rule will be called voting
equilibria.

3 Top Monotonicity

In this section we provide a condition on preference profiles, that we call top
monotonicity. This condition, when satisfied by all profiles in a domain, guar-
antees that voting functions on that domain generate games with a non empty
core. Moreover, these core elements, or voting equilibria, are generalized medians
in the distribution of preferences for the agents. Furthermore, the classical do-
mains of single-peaked, single-plateaued, single crossing or intermediate (order
restricted) profiles are all included within this larger domain.

Voting rules are included among the methods that will fail to satisfy Arrow’s
theorem, when defined on the universal domain. When restricted to operate on
the classical domains that we mention, they produce voting equilibria that are,
in addition, nicely expressed as the medians of the distribution of voter’s best
elements. Our result unifies these possibility results by showing that, although
the classical domains are different from each other, they all share one basic
feature: they all satisfy our condition of top monotonicity. Moreover, this fact is
sufficient to understand why the equilibria under these different restrictions also
share the common structural fact of being closely linked to medians.

This section summarizes results that were first stated and proven in Barberà
and Moreno (2011) where the authors propose a new condition on preference
profiles over one-dimensional alternatives, called top monotonicity. And where
they prove that top monotonicity can be viewed as the common root of a bunch
of classical domain restrictions, which had been perceived in the literature as
rather different and unrelated to each other.
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We additionally assume that individual preferences are continuous binary re-
lations on A. Let us introduce some notation: For each preference profile R, let
A(R) be the family of sets containing A itself, and also all triples of distinct
alternatives where each alternative is top on A for some agent k ∈ N according
to R.

Now we present top monotonicity.

Definition 10. A preference profile R is top monotonic iff there exists a linear
order > of the set of the alternatives, such that
(1) t(Ri, A) is a finite union of closed intervals for all i ∈ N , and
(2) For all S ∈ A(R), for all i, j ∈ N , all x ∈ t(Ri, S), all y ∈ t(Rj , S), and any
z ∈ S

yRiz if z ∈ t(Ri, S) ∪ t(Rj , S)
[z < y < x or z > y > x] → and

yPiz if z /∈ t(Ri, S) ∪ t(Rj , S).

When convenient, we’ll say that a preference profile is top monotonic relative
to >.

We can begin by comparing top monotonicity with single-peakedness and
single-plateauedness to see that it represents a significant weakening of these
conditions. Single-peakedness requires each agent to have a unique maximal
element. Moreover, it must be true for any agent that any alternative y to the
right (left) of its peak is strictly preferred to any other that is further to the right
(left) of it. In particular, this implies that no agent is indifferent between two
alternative on the same side of its peak. Hence, indifference classes may consist
of at most two alternatives (one to the right and one to the left of the agent’s
peak).

In contrast, our definition of top monotonicity allows for individual agents to
have nontrivial indifference classes, both in and out of the top. In that respect,
it allows for many more indifferences than single-plateaued preferences do. Most
importantly, top monotonicity relaxes the requirement imposed on the ranking of
two alternatives lying on the same side of the agent’s top. Under our preference
condition, this requirement is only effective for triples where the alternative that
is closest to the top of the agent is itself a top element for some other agent.
Moreover, the implication is only in weak terms when the alternative involved
in the comparison is top for one or for both agents.

A similar, although less direct comparison can be made between top mono-
tonicity and intermediateness or order restriction. The original conditions in-
volve comparisons between pairs of alternatives, regardless of their positions
in the ranking of agents. Top monotonicity is also a strict weakening of these
requirements, involving the comparison of only a limited number of pairs.

We now state a first result showing that top monotonicity is a common root
for a lot of typical preferences restrictions, as it is implied by any of them.

Theorem 1. (see Theorem 1 in Barberà and Moreno, 2011) If a preference
profile is either single-peaked, single-plateaued, single crossing or order restricted,
then it also satisfies top monotonicity.
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We now show that top monotonicity guarantees the existence of voting equi-
libria under any voting rule, and that these will be closely connected to an
extended notion of the median voter. Before stating this second result of the
paper, we introduce some additional notation, and we propose an extension of
the notion of median.

Let > be a linear order of the set of alternatives and R be a preference profile.
For any z ∈ A, we define the following three sets

N{z} = {j ∈ N : z ∈ tj(A)},

N{z}− = {k ∈ N : z > x for all x ∈ tk(A)},
and

N{z}+ = {h ∈ N : z < x for all x ∈ th(A)}.
We remark that when R is top monotonic relative to >, and z is in the top of

some agent i, then N{z} �= ∅ and the three sets (N{z}− , N{z}, N{z}+) constitute
a partition of the set of voters N . Indeed, N{z} contains all voters, including i,
for whom z is in the top. N{z}− (resp. N{z}+) contains all voters for which all
top elements are to the left (resp. to the right) of z. Clearly, then, these three
sets are disjoint. To prove that their union contains all elements of N , suppose
not. For some agent l, z should not be in l′s top, while some alternatives x and
y, one to the right and one to the left of z, should belong to the top of l. But
then, by top monotonicity we would have zRlx and also zRly. Since x and y are
both top for l, so is z, a contradiction2.

Let n, n{z}, n{z}− , and n{z}+ be the cardinalities of N , N{z}− , N{z} and
N{z}+ , respectively. From the remark above, we know that if z is in the top of
some agent, then n{z} + n{z}− + n{z}+ = n. The following definition will allow
us to establish an analogue of the classical median voter result for the case of
top monotonic profiles.

Definition 11. Let F be a voting rule. An alternative z is a weak F -median
top alternative in a top monotonic profile R relative to an order > of the set of
alternatives iff
(1) z is a top alternative in R for some agent, and
(2) (N{z}− , N{z}− ∪N{z}) /∈ D(F ) and (N{z}+ , N{z} ∪N{z}+) /∈ D(F ).3

2 Notice that our definition of top monotonicity does not preclude the possibility that
an agent’s top might be non-connected relative to the order of >. Informally, what
it demands is that, if an agent has two peaks with a valley in between, then no other
agent’s peak lies in that valley. In that sense also, our condition is less demanding
than that of single plateaued, where we assumed that the tops are connected.

3 When f is the majority rule we say that an alternative z is a weak median top alter-
native in a top monotonic profile � relative to an order > of the set of alternatives
iff
(1) z is a top alternative in � for some agent, and
(2) n{z}− + n{z} � n{z}+ and n{z} + n{z}+ � n{z}− .
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We will denote by WMF (R) the set of weak F -median top alternatives at
that profile. We define m− and m+ as the lowest and the highest elements in
this set according to the order > at that profile.

Definition 12. An alternative z is an extended weak F -median in a top mono-
tonic profile R relative to an order > of the set of alternatives iff m− � z � m+.

It is not hard to prove that extended medians in our sense always exist. We
will denote by MF (R) the set of extended weak F -median alternatives at that
profile.

We can now state the following result.

Theorem 2. (see Theorem 1 in Barberà and Moreno, 2011)
(1) Let F be a voting rule. Whenever a profile of preferences R is top monotonic
relative to some order >, CF (R) is not empty and CF (R) ⊆MF (R).
(2) If the profile of preferences R is peak monotonic, WMF (R) ⊆ CF (R).

4 Sequential Inclusion

In this section we define a domain condition that we call sequential inclusion.
Social choice functions defined on domains that meet this condition will have the
property that individual and group strategy-proofness become equivalent. That
is, all individual strategy-proof social choice functions on domains satisfying
sequential inclusion will also be immune to group manipulation.

Our research was prompted by the observation that this equivalence does
not only trivially hold under the universal domain, where only dictatorial so-
cial choice functions can be strategy-proof, but also for much more interesting
domains, like those of single-peaked preferences. However, both conditions are
not equivalent in other contexts, where non trivial strategy-proof social choice
functions do exist and yet are subject to manipulation by groups. What we do
is to provide an (almost) exact frontier between those cases when the domain
of definition of a social choice function does guarantee the equivalence between
both properties, and those where it does not.

This section summarizes results that were first stated and proven in Barberà,
Berga, and Moreno (2010). Our focus will be on specific cases where it is possible
to at least define satisfactory strategy-proof social choice functions. The main
question addressed in our paper was what is needed then to hope for the stronger
and much more reassuring property of group strategy-proofness to also hold?

We start by defining our condition on preference profiles, called sequential in-
clusion, and we establish the equivalence between individual and group strategy-
proofness for social choice functions defined on domains satisfying that condition.
Let us introduce some notation.

Definition 13. Given a preference profile R ∈ ×i∈NRi and a pair of alterna-
tives y, z ∈ A, we define a binary relation � (R; y, z) on P (y, z;R) as follows:

i � (R; y, z)j if L(Ri, z) ⊆ L(Rj , y).
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Note that the binary relation � must be reflexive but not necessarily complete.
As usual, we can define the strict and the indifference binary relations associated
to �. Formally, i ∼ j if L(Ri, z) ⊆ L(Rj , y) and L(Rj , z) ⊆ L(Ri, y). We say
that iP j if L(Ri, z) ⊆ L(Rj , y) and ¬[L(Rj , z) ⊆ L(Ri, y)].

We can now define our main condition.

Definition 14. A preference profile R ∈ ×i∈NRi satisfies sequential inclusion
if for any pair y, z ∈ A the binary relation � (R; y, z) on P (y, z;R) is complete
and acyclic. A domain ×i∈NRi satisfies sequential inclusion if any preference
profile in this domain satisfies it.

Since sequential inclusion is a property on preference profiles, it follows that
if a domain satisfies sequential inclusion each subdomain inherits the same prop-
erty. Remarkably, this condition does not require domains to be large in size,
contrary to others, like ”richness” (see Dasgupta, Hammond, and Maskin [5],
Le Breton and Zaporozhets [12]) or our own condition of indirect sequential
inclusion defined in Barberà, Berga, and Moreno (2010).

We now present our first main result.

Theorem 3. (see Theorem 1 in Barberà, Berga, and Moreno, 2010) Let
×i∈NRi be a domain satisfying sequential inclusion. Then, any strategy-proof
social choice function on ×i∈NRi is group strategy-proof.

A surprising result for the case of three alternatives is that when there are
at most three alternatives at stake, any strategy-proof social choice function is
group strategy-proof: This is mainly due to the fact that in such framework
any preference profile satisfies sequential inclusion (see Corollary 1 in Barberà,
Berga, and Moreno, 2010).

In our paper, we also provide another condition, weaker than sequential inclu-
sion and called indirect sequential inclusion, that still guarantees the equivalence
between individual and group strategy-proofness (see Theorem 2 in Barberà,
Berga, and Moreno, 2010). It is no longer a condition on individual profiles.
Rather, it requires that, given a profile within the domain, some other profile,
conveniently related to the first one, does indeed satisfy our previous require-
ment. That is why we say that profiles that meet our new condition satisfy
indirect sequential inclusion. The new definition allows us to incorporate new
and interesting domains into our list of those guaranteeing equivalence. The in-
terested reader can check the more cumbersome concept of indirect sequential
inclusion in Definition 8 in Barberà, Berga, and Moreno (2010).

It is also worth mentioning the partial necessity result we obtain in our work:
sequential inclusion is almost necessary to guarantee that individual and group
strategy-proofness become equivalent (see Theorem 4 in Barberà, Berga, and
Moreno, 2010).

To finish this section we present a simple example that illustrates how our
results would fail on alternative domains. We exhibit one domain, that of sep-
arable preferences, that violates both direct and indirect sequential inclusion.
This is because we can find a social choice function that is strategy-proof but
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not group strategy-proof on the mentioned domain. In view of Theorem 4 this
proves that indirect sequential inclusion fails (thus, also the direct version).

Example 1. Two candidates a and b may be elected to join a club.4 Alternatives
in this problem are sets of candidates: A = {∅,a, b, {a, b}}.
Given a preference on sets, candidates are called good if they are better than
the empty set, when chosen alone, and bad otherwise. Preferences are separable
if adding a good candidate to any set makes the union better, and adding a bad
one makes the union worse. The set of individual separable preferences is the
same for each agent i ∈ N :

R1 R2 R3 R4 R5 R6 R7 R8

∅ ∅ a a b b {a, b} {a, b}
a b ∅ {a, b} ∅ {a, b} a b
b a {a, b} ∅ {a, b} ∅ b a

{a, b} {a, b} b b a a ∅ ∅

Consider the social choice function, called voting by quota one: each agent de-
clares her best set of objects and any object that is mentioned by some agent is
selected.

This social choice function is clearly strategy-proof. Yet notice that for a pro-
file where R1 = R3, R2 = R5 and for any other agent Ri = R1 the outcome would
be {a, b}, whereas agents 1 and 2 could vote for ∅ and get a preferred outcome.
Thus, it is not group strategy-proof since any pair of agents can manipulate it.

5 Intertwined Domains

In this section we define and study two conditions on social choice functions that
we find especially attractive: reshuffling invariance and monotonicity. Reshuffling
invariance and monotonicity are always necessary for strategy-proofness, what-
ever the domain of definition of the functions, but need not be sufficient. Because
of that, we ask ourselves the following question: can we identify domains of pref-
erences having the property that, when functions are defined on these domains,
then our conditions are equivalent to strategy-proofness? We answer this ques-
tion in the positive. For those domains that we call intertwined, and for any
possible social choice function defined on them, the equivalence holds.

For this study we consider the set of alternatives to be finite and, for sake of
simplicity, we assume that agents’ preferences are strict.

This section presents results originally obtained in Barberà, Berga,
and Moreno (2012a).

4 The example easily extends to any set of candidates: just take profiles as we have
just defined and extend individual preferences such that the relative ordering among
a, b, {a, b} and the empty set are like in the above table and any other object is bad.
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Definition 15. A social choice function f satisfies monotonicity on ×i∈NPi

if and only if for any P ∈ ×i∈NPi such that f(P ) = x, and for any P ′ ∈ ×i∈NPi

satisfying the following conditions

(i) for any i ∈ N , for any y ∈ A\{x}; [xPiy ⇒ xP ′
iy] , and

(ii) for any i ∈ N , for any y, z ∈ A\{x}; [yPiz ⇔ yP ′
iz].

then, f(P ′) = x.

In words: If an alternative x is chosen by a social choice function f at profile
(Pi, PN\{i}), and P ′

i is a new preference where x has improved its position then
f must still choose x.

Definition 16. Let Pi ∈ Pi and x ∈ A. We say that P ′
i ∈ Pi is a x-reshuffling

of Pi if L(Pi, x) = L(P ′
i , x).

In words: P ′
i is a x-reshuffling of Pi if it results from keeping all alternatives

that were worse than x and no other, as still being worse, though maybe in a
different order.

Definition 17. A social choice function f satisfies reshuffling invariance
on ×i∈NPi if and only if for any P ∈ ×i∈NPi such that f(P ) = x, and for
any (P ′

i , PN\{i}) ∈ ×i∈NPi such that P ′
i is a x-reshuffling of Pi, then f(P ′

i ,
PN\{i}) = x.

In words: If an alternative x is chosen at a profile, x must be chosen at any
other profile obtained from an x-reshuffling of agent i’s preferences.

We now introduce our notion of intertwined domains. Whether a domain is
intertwined or not will turn out to be crucial to determine whether the different
conditions we are interested in may or may not be equivalent, when applied to
social choice functions defined on such domains.

Before we provide a formal definition, let us describe the condition informally.
For any i ∈ N , select any two (strict) preferences Pi and P ′

i , and any two
alternatives x and y, where xPiy (the relationship between the two in P ′ can be
any). Suppose that there exists in our domain a third preference P i such that
one can transform Pi into P i, through a sequence of changes in the positions of
alternatives, such that these changes, at each step, simply consist in lifting the
position of y, or of reshufflings around y. Suppose that one can also transform
P ′
i into P i through another sequence of the same type of transformations, this

time with liftings of x and reshufflings around x. We will then say that Pi and
P ′
i are (x, y)-intertwined.
A domain of preferences will be intertwined if and only if any two of the

preferences it contains are intertwined for any two alternatives.
Even more informally, we can say that an intertwined domain is one where

one can travel from any pair of preferences to some intermediary preference just
by lifting and reshuffling alternatives.

We now proceed to our formal definitions.
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Definition 18. Let Pi, P i ∈ Pi and x ∈ A. We say that P i is a x-direct
transform of Pi if either P i is a x-reshuffling of Pi or P i is a x-monotonic
transformation of Pi.

Definition 19. Let Pi, P i ∈ Pi and x ∈ A. We say that P i is a x-transform
of Pi if there exist a sequence of preferences P1, P2, ..., PT such that P1 = Pi,
PT = P i, and for any t ∈ (1, T ], each Pt is a x-direct transform of Pt−1.

Definition 20. Let Pi, P
′
i ∈ Pi, x, y ∈ A where xPiy. We say that Pi is (x, y)-

intertwined with P ′
i if there exists P i ∈ Pi such that P i is both a y-transform

of Pi and a x-transform of P ′
i .

Definition 21. A set of individual preferences Pi is intertwined if for any
Pi ∈ Pi, for any x, y ∈ A such that xPiy, and any P ′

i ∈ Pi, Pi is (x, y)-
intertwined with P ′

i .

Definition 22. A domain ×i∈NPi is intertwined if for any agent i, Pi is
intertwined.

We are now ready to state our equivalence result.

Theorem 4. (see Theorem 1 in Barberà and Moreno, 2012a) Any social choice
function defined on an intertwined domain is strategy-proof if and only if it
satisfies monotonicity and reshuffling invariance.

As we already proved in Proposition 1 (1) in Barberà, Berga, and Moreno
(2012a), let us remark that monotonicity and reshuffling invariance, our two in-
dependent conditions, are necessary for any social choice function defined on any
domain to be strategy-proof. However, as we show in the following example our
conditions are not always sufficient to guarantee strategy-proofness: there exist
social choice functions satisfying both of them which are nevertheless manipu-
lable; clearly the domain of preferences is crucial as Theorem 4 states.

Example 2. (borrowed from the proof of Proposition 1 (3) in Barberà, Berga,
and Moreno, 2012a)

Consider the framework in Example 1
Our example refers to a social choice function defined on the domain of sep-

arable preferences for the case of two candidates, four alternatives and three
voters:

Define the social choice function as the Borda count on A with tie breaking.
Voters rank the four alternatives, and each alternative gets three points whenever
a voter ranks it first, two when ranked second, one when third and none if last.
The choice is the alternative with the highest sum of points, if unique. As for
possible ties, notice that, in our example, when there is a tie for first position.
there may be at most one voter for whom none of the tied alternatives is the best
for him. If there is such an individual, the tie is broken in favor of that alternative
that he prefers. Otherwise, the tie is broken according to a pre-determined order
of alternatives, say O : {a, b}, b, a,∅.
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Notice that the only cases where the antecedents of reshuffling invariance and
monotonicity would apply are those where we change a preference to another
having the same top. Given that, it is easy to see that both conditions are
respected in our example.

Yet, observe that the function is still manipulable. To see that, let P =
(P 1, P 6, P 7), P ′ = (P 6, P 6, P 7). Then, f(P ) = b (b and {a, b} have the same
score and agent 1 breaks the tie) and f(P ′) = {a, b} (b and {a, b} have the same
score but all agents have b or {a, b} as best alternative, so we use O). Thus,
agent 1 manipulates f at P ′ via P 1.

To finish this section two comments are in order. First, with strict prefer-
ences and under intertwined domains, our two conditions are not only equiv-
alent to strategy-proofness but also to strong positive association (Muller and
Satterthwaite, 1977). However, strong monotonicity (Moulin, 1988) is weaker
than monotonicity and reshuffling invariance conditions (see Proposition 5 in
Barberà, Berga, and Moreno, 2012a). Second, let us mention that, in general,
intertwinedness and (indirect) sequential inclusion are independent. However,
intertwinedness implies indirect sequential inclusion when the set of individual
preferences are strict and equal for all agents (see Proposition 6 in Barberà,
Berga, and Moreno, 2012a).

6 Concluding Remarks

Our main message is that every specific social choice problem deserves a careful
analysis of domains on which we need to define the method to be used, since
this may open the doors to attractive possibility results. We have exemplified
this message by presenting three domains that we have found worth studying
and hope that the readers find them useful for their further work.
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Barberà, S., Berga, D., Moreno, B.: Individual versus group strategy-proofness: when
do they coincide? J. Econ. Theory 145, 1648–1674 (2010)
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Barberà, S., Gul, F., Stacchetti, E.: Generalized Median Voter Schemes and Commit-
tees. J. Econ. Theory 61, 262–289 (1993)
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Barberà, S., Massó, J., Serizawa, S.: Strategy-proof Voting on Compact Ranges. Games
Econ. Beh. 25(2), 272–291 (1998)
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Abstract. This paper discusses weighted quasi-arithmetic means from
viewpoint of a combined index of utility functions and weighting func-
tions, which represent stochastic risk in economics. The combined index
characterizes decision maker’s attitude and background risks in stochas-
tic environments by conditional expectation representations of weighted
quasi-arithmetic means. The first-order stochastic dominance and risk
premium are demonstrated using weighted quasi-arithmetic means and
aggregated mean ratios, and they are characterized by the combined in-
dex. Finally, examples of weighted quasi-arithmetic mean and aggregated
mean ratio for various typical utility functions are given.

1 Introduction

This paper deals with weighted quasi-arithmetic means of an interval. Weighted
quasi-arithmetic means are important tools in subjective estimation of data in
decision making such as management, artificial intelligence and so on ([3–5]), and
it is also strongly related to utility and stochastic risk in economics ([6]). Kol-
mogorov [9] and Nagumo [10] studied the aggregation operators and Aczél [1] de-
veloped the theory regarding weighted aggregation. Yoshida [12–15] has studied
weighted quasi-arithmetic means of an interval by utility functions and weighting
functions from viewpoint of subjective decision making. In relation to decision
making, a weighted quasi-arithmetic mean is defined as follows. For a continu-
ous strictly increasing function f : [a, b] �→ (−∞,∞) as decision maker’s utility
function and for a continuous function w : [a, b] �→ (0,∞) as weighting function,
a weighted quasi-arithmetic mean on a closed interval [a, b] is given by

f−1

(∫ b

a

f(x)w(x) dx

/∫ b

a

w(x) dx

)
.

Hence, it represents a mean value given by real number c(∈ [a, b]) satisfying

f(c)

∫ b

a

w(x) dx =

∫ b

a

f(x)w(x) dx

in the first mean value theorem for integration. We investigate the weighted
quasi-arithmetic means by a combined index regarding utility functions and
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weighting functions extending the results in Yoshida [13–15]. Weighting functions
are corresponding to stochastic risk in economics. Using conditional expectation
representations of weighted quasi-arithmetic means, the combined index charac-
terizes decision maker’s attitude and background risk in stochastic environments.
The first-order stochastic dominance and risk premium are also demonstrated
using weighted quasi-arithmetic means and aggregated mean ratios.

In Section 2, we give the definitions of weighted quasi-arithmetic means and
aggregated mean ratios of weighted quasi-arithmetic means by interior ratios,
and we show the relation among weighted quasi-arithmetic mean, aggregated
mean ratio and decision maker’s preference/attitude based on his utility and
weighting. In economics, decision maker’s attitudes, for example risk neutral,
risk averse and risk loving, are characterized by Arrow-Pratt index of utility
functions([2, 11, 7, 8]), and risks in stochastic environments are given as an in-
dex of weighing functions. In Section 3, this paper characterizes weighted quasi-
arithmetic means and mean ratios by not only utility functions but also weighing
functions as a combined index. Next we investigate properties of weighted quasi-
arithmetic means and aggregated mean ratios regarding combinations of util-
ity functions and weighting functions. Representing weighted quasi-arithmetic
means by conditional expectations, we investigate relation between the index
for stochastic risks and risk premium in economics. We also discuss the first-
order stochastic dominance using weighted quasi-arithmetic means. Finally, in
Section 4, we show a lot of examples of the weighted quasi-arithmetic means
and the aggregated mean ratios with various typical utility functions, and we
demonstrate their relations with the classical quasi-arithmetic means.

2 Weighted Quasi-Arithmetic Means and Their
Properties

In this section, we introduce weighted quasi-arithmetic means and aggregated
mean ratios with utility functions and weighting functions, and we discuss suf-
ficient conditions on utility functions and weighting functions to characterize
decision maker’s attitude based on quasi-arithmetic mean and aggregated mean
ratio. Let D be a fixed interval which is not a singleton and we call it a domain.
Let C(D) be the set of all nonempty bounded closed subintervals of D and let
C(D)< := {[a, b] ∈ C(D)|a < b}. Let f : D �→ (−∞,∞) be a continuous strictly
increasing function for utility, and let w : D �→ (0,∞) be a continuous function
for weighting. For a closed interval [a, b] ∈ C(D)<, a mapping Mf

w : C(D) �→ D
given by

Mf
w([a, b]) := f−1

(∫ b

a

f(x)w(x) dx

/∫ b

a

w(x) dx

)
(1)

is called weighted quasi-arithmetic mean with specified weighting w. For a closed
interval [a, b] ∈ C(D)< we define an interior ratio θfw(a, b) from a position of
weighted quasi-arithmetic mean Mf

w([a, b]) on the interval [a, b] by

θfw(a, b) :=
Mf

w([a, b])− a

b− a
. (2)
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Dujmović [3–5] studied a conjunction/disjunction degree, which is a similar type
of ratio in the power case, for computer science. This paper discusses their char-
acterizations from viewpoint of economics. Hence we have the following results.

Lemma 1 ([13]). Let f and g be two C2-class utility functions on D. Let
[a, b] ∈ C(D)<. Then the following (a) – (c) are equivalent.

(a) f ′′/f ′ ≤ g′′/g′ on (a, b).
(b) Mf

w([c, d]) ≤Mg
w([c, d]) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

(c) θfw(c, d) ≤ θgw(c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

When we may choose two utility functions f and g as decision makers’ utilities,
Lemma 1 says that utility f yields more risk averse results than g if f ′′/f ′ ≤
g′′/g′ on (a, b). Similarly inequality θfw(a, b) ≤ θgw(a, b) implies that aggregated
mean ratio θfw(a, b) is more risk averse than θgw(a, b). Hence −f ′′/f ′ is called
Arrow-Pratt index and it implies the degree of decision maker’s absolute risk
aversion in micro-economics ([2, 11]). The following lemma implies the properties
of weighted quasi-arithmetic mean Mf

w and ratio θfw concerning weighting w.

Lemma 2 ([14, 15]). Let w : D �→ (0,∞) and v : D �→ (0,∞) be two C1-
class weighting functions. Let [a, b] ∈ C(D)<. Then the following (a) – (c) are
equivalent.

(a) w′/w ≤ v′/v on (a, b).
(b) Mf

w([c, d]) ≤Mf
v ([c, d]) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

(c) θfw(c, d) ≤ θfv (c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

Arrow-Pratt index −f ′′/f ′ indicates the degree of absolute risk aversion, and
the index −w′/w is related to background risks of stochastic environments in
economics ([8, 15]). In next section, using representation of conditional expecta-
tions, we characterize a combination of Arrow-Pratt index −f ′′/f ′ and stochastic
risk index −w′/w.

3 Decision Making under Risk

In this paper, we focus on weighting functions w as risk factors of stochastic
environments in weighted quasi-arithmetic mean (1) and we characterize it in
relation to conditional expectation. Let D be a fixed domain and let f : D �→
(−∞,∞) be a fixed continuous strictly increasing function for utility. Let (Ω,P )
be a probability space, where P is a non-atomic probability measure on Ω.

Definition 1. For random variables X and Y on Ω, it is said that random
variable X is dominated by random variable Y in the sense of the first-order
stochastic dominance if

P (X < x) ≥ P (Y < x) for any real number x. (3)
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Hence the following result is well-known for the first-order stochastic domi-
nance in economics (Arrow [2], Gollier [7], Eeckhoudt et al. [8]).

Lemma 3. Let X and Y be random variables on Ω. Then, random variable
X is dominated by random variable Y in the sense of the first-order stochastic
dominance if and only if it holds that

E(f(X)) ≤ E(f(Y )) (4)

for any increasing utility function f : (−∞,∞) �→ (−∞,∞) satisfying tail con-
dition limx→±∞ f(x)(P (X < x)− P (Y < x)) = 0.

The first-order stochastic dominance (3) means that stochastic environment
X is risky than stochastic environment Y , and it shows in (4) that all decision
makers estimate stochastic environment X smaller than stochastic environment
Y with respect to their expected utilities. Then decision makers prefer stochastic
environment Y to stochastic environment X with their any increasing utility
functions f . Let X be a real random variable on Ω with a C1-class density
function w on (−∞,∞). Since conditional expectation of utility f(X) is

E(f(X) | a < X < b) =
E(f(X)1{a<X<b})

P (a < X < b)
=

∫ b
a
f(x)w(x) dx∫ b
a w(x) dx

, (5)

it holds that

Mf
w([a, b]) = f−1

(∫ b
a
f(x)w(x) dx∫ b
a w(x) dx

)
= f−1(E(f(X) | a < X < b)) (6)

for real numbers a, b (a < b), where 1{·} implies the characteristic function of a
set. From Lemma 2 and (6), we have the following result together with Lemma 3.

Lemma 4 ([13]). Let X and Y be random variables on Ω which have C1-class
density functions w and v on (−∞,∞) respectively. If

w′

w
≤ v′

v
on (−∞,∞), (7)

then random variable X is dominated by random variable Y in the sense of the
first-order stochastic dominance.

Eq. (7) is a sufficient condition for the first-order stochastic dominance (3)
where stochastic environment X is risky than stochastic environment Y . Hence
we find that (7) is useful to estimate risk-levels of stochastic environments and it
is easy to check in actual problems. In this paper, we call −w′/w stochastic risk
index. We note that the first-order stochastic dominance (3) is a risk criterion
in global area D = (−∞,∞) for stochastic environments and it is represented
by integrals in (4), however stochastic risk index −w′/w can measure risks even
in local areas because it is represented by differentials.
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Next we discuss risk premiums regarding risk averse in financial management
([7, 8]). For simplicity, in this paper we take initial wealth is zero. Let [a, b] ∈
C(D)<. Let X be a random variable on Ω, which implies a stochastic environment
with some risk. Decision making with utility f is called risk averse on (a, b) if

E(f(X) | a < X < b) ≤ f(E(X | a < X < b)). (8)

A sufficient condition for risk averse is that utility function f is concave. Let w
be a density function on D for random variable X . Hence, in the following (9),
real number πf

w(a, b) is called risk premium on (a, b) ([7, 8]) if it satisfies

E(f(X) | a < X < b) = f(−πf
w(a, b)). (9)

Eq.(9) means that decision maker accepts the risk arising from random variable
X by paying risk premium πf

w(a, b).

Lemma 5 ([15]). Let f be a continuous strictly increasing utility function on
D. Let X be a random variable on Ω which has C1-class density function w on
D. The risk premium in (9) is given by

πf
w(a, b) = −Mf

w([a, b]). (10)

Then we obtain the following two theorems. Theorem 1 gives an equivalence
relation between combined index and weighted quasi-arithmetic means, and The-
orem 2 gives an equivalence relation between combined index and risk premiums.

Theorem 1. Let [a, b] ∈ C(D)<. Let f and g be C2-class strictly increasing
utility functions on D. Let X and Y be random variables on Ω which have C1-
class density functions w and v respectively. Then the following (a) – (c) are
equivalent.

(a) f ′′/f ′ + 2w′/w ≤ g′′/g′ + 2 v′/v on (a, b).
(b) Mf

w([c, d]) ≤Mg
v ([c, d]) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

(c) θfw(c, d) ≤ θgv(c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

Theorem 2. Let [a, b] ∈ C(D)<. Let f and g be C2-class strictly increasing
utility functions on D. Let X and Y be random variables on Ω which have C1-
class density functions w and v respectively. Then the following (a) and (b) are
equivalent.

(a) f ′′/f ′ + 2w′/w ≤ g′′/g′ + 2 v′/v on (a, b).
(b) πf

w(c, d) ≥ πg
v(c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

From Theorems 1 and 2, we find that combined index

f ′′

f ′ + 2
w′

w
(11)

must be essential risk index of stochastic market where decision makers partici-
pates in.
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4 Examples

In this section, we give examples for weighted quasi-arithmetic means which are
presented in the previous sections. When we give a fixed domain D, a continuous
strictly increasing function f : D �→ (−∞,∞) and a fixed continuous function
w : D �→ (0,∞), we can define weighted quasi-arithmetic mean Mf

w([a, b]) of
an interval [a, b] ∈ C(D) by (1). We check movement of aggregated mean ratio
θfw(a, b), which is given by (2), with respect to parameters a and b in local regions
and global regions in each example. First we discuss several examples of utility
functions f .

Example 1.

(i) (Linear case) Let D = (−∞,∞) and take utility function f(x) = x for
x ∈ D. Then f ′′(x)/f ′(x) = 0. For a closed interval [a, b] ∈ C(D)<, we
define risk neutral weighted mean Nw([a, b]) and its aggregated mean ratio
νw(a, b) by

Nw([a, b]) :=

∫ b

a

x w(x) dx

/∫ b

a

w(x) dx (12)

and

νw(a, b) :=
Nw([a, b])− a

b− a
=

∫ b

a

(x− a)w(x) dx

/∫ b

a

(b− a)w(x) dx. (13)

Take weighting function w(x) = c0 +c1x+c2x
2 + · · ·+cnx

n on D = (0,∞)
with positive constants c0, c1.c2, · · · , cn. Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= 2

∑n−1
k=0 (k + 1)ck+1x

k∑n
k=0 ckx

k
. (14)

For [a, b] ⊂ D such that a < b, we have

Nw([a, b]) =

∑n
k=0

1
k+2ck(bk+2 − ak+2)∑n

k=0
1

k+1ck(bk+1 − ak+1)
.

From Yoshida [13, Theorem 5.10], it holds that limb↓a νw(a, b) = lima↑b
νw(a, b) = 1/2,

lim
a↓0

νw(a, b) =

∑n
k=0

1
k+2ckb

k+2∑n
k=0

1
k+1ckb

k+1
and lim

b→∞
νw(a, b) =

n + 1

n + 2
.

(ii) (Power case) Take utility function f(x) = xr and weighting function
w(x) = xα on D = (0,∞) with constants r, α satisfying r �= 0. Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
=

r − 1

x
+

2α

x
. (15)
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Hence we can deal with not only r > 0 for increasing function f(x) = xr but
also r < 0 for decreasing function f(x) = xr. For [a, b] ⊂ D such that a < b,

weighted quasi-arithmetic mean is given by the following M
(r)
(α)([a, b]) :=

Mf
w([a, b]):

M
(r)
(α)([a, b]) =

(
(1 + α)(b1+α+r − a1+α+r)

(1 + α + r)(b1+α − a1+α)

)1/r

if r �= 0, α �= −1, α + r �= −1. The limiting values regrading r and α are

lim
α→−r−1

M
(r)
(α)([a, b]) = ab

(
r(log b− log a)

br − ar

)1/r

if r �= 0,

lim
α→−1

M
(r)
(α)([a, b]) =

(
r(log b− log a)

br − ar

)−1/r

if r �= 0,

lim
r→0

M
(r)
(α)([a, b]) = exp

(
bα+1 log b− aα+1 log a

bα+1 − aα+1
− 1

α + 1

)
if α �= −1,

lim
α→−1

lim
r→0

M
(r)
(α)([a, b]) =

√
ab,

lim
r→−∞M

(r)
(α)([a, b]) = a,

lim
r→∞M

(r)
(α)([a, b]) = b.

From Yoshida [13, Corollary 5.4] we also have

θfw(a, b) � νw(a, b) if r � 1.

From Yoshida [13, Theorems 5.9 and 5.10], it holds that limb↓a θfw(a, b) =
lima↑b θfw(a, b) = 1/2 and

lim
a↓0

θfw(a, b) = lim
b→∞

θfw(a, b) =

(
1 + α

1 + α + r

)1/r

.

(iii) (Logarithmic case) Take concave utility function f(x) = r log x and weight-
ing function w(x) = xα on D = (0,∞) with constants r, α satisfying r > 0.
Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= − 1

x
+

2α

x
. (16)

For [a, b] ⊂ D such that a < b, we can check

Mf
w([a, b]) = exp

(
bα+1 log b− aα+1 log a

bα+1 − aα+1
− 1

α + 1

)
,

and Yoshida [13, Corollary 5.4] implies θfw(a, b) < νw(a, b). Yoshida [13,
Theorems 5.9 and 5.10] also imply limb↓a θfw(a, b) = lima↑b θfw(a, b) = 1/2
and

lim
a↓0

θfw(a, b) = lim
b→∞

θfw(a, b) = exp

(
− 1

α + 1

)
.
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(iv) (Exponential case) Take convex utility function f(x) = esx and weighting
function w(x) = xα on D = (0,∞) with constants r, α satisfying s > 0.
Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= s +

2α

x
. (17)

For [a, b] ⊂ D such that a < b, we can check

Mf
w([a, b]) =

1

s
log

(
(1 + α)(Γ (1 + α,−sb)− Γ (1 + α,−sa))

s1+α(b1+α − a1+α)

)
and Yoshida [13, Corollary 5.4] implies νw(a, b) < θfw(a, b), where we put
Γ (α + 1, z) =

∫∞
z

xαe−xdx for z ≥ 0. From Yoshida [13, Theorem 5.9], we

obtain limb↓a θfw(a, b) = lima↑b θfw(a, b) = 1/2.
(v) Take utility function f(x) = xr and weighting function w(x) = xαe−βx on

D = (−∞,∞), where r �= 0. Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
=

r − 1

x
+ 2
(α
x
− β
)

(18)

for x ∈ D. Then for [a, b] ∈ C(D)< we have

Mf
w([a, b]) =

(
Γ (1 + α + r, βb)− Γ (1 + α + r, βa)

βr(Γ (1 + α, βb)− Γ (1 + α, βa))

)1/r

,

where Γ (·, ·) is defined by Γ (c, z) :=
∫∞
z xc−1e−x dx for c > 0.

(vi) Take utility function f(x) = esx and weighting function w(x) = xαe−βx

on D = (−∞,∞), where s �= 0. Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= s + 2

(α
x
− β
)

(19)

for x ∈ D. Let [a, b] ⊂ D = (−∞,∞) such that a < b. Then, for [a, b] ∈
C(D)< we have

Mf
w([a, b]) =

1

s
log

(
β1+α(Γ (1 + α, (β − s)b)− Γ (1 + α, (β − s)a))

(β − s)1+α(Γ (1 + α, βb)− Γ (1 + α, βa))

)
.

(vii) Take utility function f(x) = xresx and weighting function w(x) = xαe−βx

on D = (−∞,∞), where r �= 0. Then

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
=
−r + (r + sx)2

(r + sx)x
+ 2
(α
x
− β
)

(20)

for x ∈ D. Let [a, b] ⊂ D = (−∞,∞) such that a < b. Then for [a, b] ∈
C(D)< we have Mf

w([a, b]) =

r

s
L

(
s

r

(
β1+α(Γ (1 + α + r, (β − s)b)− Γ (1 + α + r, (β − s)a))

(β − s)1+α+r(Γ (1 + α, βb)− Γ (1 + α, βa))

)1/r
)
,

where L is the inverse function of function x �→ xex.
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(viii) Take utility function f(x) = esx and weighting function w(x) = e−βx−γx2

on D = (−∞,∞), where s �= 0. We have

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= s− 2(β + 2γx)

for x ∈ D. Let [a, b] ⊂ D = (−∞,∞) such that a < b. Then for [a, b] ∈
C(D)< it holds that

Mf
w([a, b]) =

1

s
log

⎛⎝exp
(

(β−r)2−β2

4γ

)(
erf
(

β−r+2γb
2
√
γ

)
− erf

(
β−r+2γa

2
√
γ

))
erf
(

β+2γb
2
√
γ

)
− erf

(
β+2γa
2
√
γ

)
⎞⎠ ,

where erf(z) := 2√
π

∫ z
0 e−x2

dx.

Next we give three examples as applications of Theorems 1 and 2. The fol-
lowing examples show the cases that two decision making with utilities f and g
are compared.

Example 2.

(i) (Square root case and logarithmic case) Let domain D = (0,∞). Take con-
cave utility functions f(x) =

√
x and g(x) = log x on D and take weighting

functions w(x) = xαe−βx−x2/4 and v(x) = λe−λx. Then we have

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= − 1

2x
+

2α

x
− 2β − x, (21)

g′′(x)

g′(x)
+ 2

v′(x)

v(x)
= − 1

x
− 2λ. (22)

Therefore it follows

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
≤ g′′(x)

g′(x)
+ 2

v′(x)

v(x)
⇐⇒ x2 − 2(λ− β)x− 2α− 1

2
≥ 0

for x ∈ D. If (λ− β)2 + 2λ + 1/2 ≤ 0,

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
≤ g′′(x)

g′(x)
+ 2

v′(x)

v(x)
for all x ∈ D.

If (λ− β)2 + 2λ + 1/2 > 0,

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
≤ g′′(x)

g′(x)
+ 2

v′(x)

v(x)
⇐⇒ x ∈ (−∞, x−] ∪ [x+,∞),

where x± := λ − β ±√(λ− β)2 + 2λ + 1/2. From Theorem 1, we obtain
θfw(a, b) < θgv(a, b) for [a, b] ∈ C(D) such that a < b, where θfw(a, b) is
aggregated mean ratio given by f(x) and θgv(a, b) is aggregated mean ratio
given by g(x). This shows that f(x) is more risk averse than g(x) as decision
making.
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(ii) (Exponential case and logarithmic case) Let domain D = (0,∞). Take
concave utility functions f(x) = 1− e−2λx and g(x) = log x on D and take

weighting functions w(x) = 1√
2πσ2

exp
(
− (x−μ)2

2σ2

)
and v(x)=

√
x e−βx−x2/2.

Then we have

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
= −2(x− μ + λσ2)

σ2
, (23)

g′′(x)

g′(x)
+ 2

v′(x)

v(x)
= −2(x + β). (24)

Therefore, if σ2 �= 1,

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
≤ g′′(x)

g′(x)
+ 2

v′(x)

v(x)
⇐⇒ x

{≤ x3 if σ2 > 1
≥ x3 if σ2 < 1,

where x3 = (λ−β)σ2−μ
σ2−1 . If σ2 = 1,

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
≤ g′′(x)

g′(x)
+ 2

v′(x)

v(x)
for all x ∈ D ⇐⇒ μ + β − λ ≤ 0.

From Theorem 1, we obtain θfw(a, b) < θgv(a, b) for [a, b] ⊂ (0, 1] such that
a < b and we also obtain θfw(a, b) > θgv(a, b) for [a, b] ⊂ [1,∞) such that
a < b, where θfw(a, b) is aggregated mean ratio given by f(x) and θgv(a, b)
is aggregated mean ratio given by g(x). This shows that f(x) is more risk
averse than g(x) in the region (0, 1) and that f(x) is more risk loving
than g(x) in the region (1,∞). This example shows that decision makers’
attitudes are comparable in each local area using the index f ′′/f ′ +2w′/w.

(iii) (Weighted quasi-arithmetic means and conditional expectations) Finally we
show the relation between weighted quasi-arithmetic means and conditional
expectations and their application to economics. We give an example for
Theorems 1 and 2 by normal distributions on stochastic environments. Let
domain D = (0,∞). Take concave utility functions f(x) = xr and g(x) = xs

on D. Let random variables X and Y have normal distributions on Ω
with density functions w and v respectively as follows: Let μX and μX

be the means and let σX and σY be the standard deviations for w and v
respectively,

w(x) =
1√

2πσ2
X

exp

(
− (x− μX)2

2 σ2
X

)
and

v(x) =
1√

2πσ2
Y

exp

(
− (x− μY )2

2 σ2
Y

)
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for real numbers x. Then we have

f ′′(x)

f ′(x)
+ 2

w′(x)

w(x)
≤ g′′(x)

g′(x)
+ 2

v′(x)

v(x)

⇐⇒ r − 1

x
− 2(x− μX)

σ2
X

≤ s− 1

x
− 2(x− μY )

σ2
Y

⇐⇒ (r − s)σ2
Xσ2

Y − 2(σ2
XμY − σ2

Y μX)x + 2(σ2
X − σ2

Y )x2 ≤ 0

⇐⇒ x ∈ D≤ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−∞,∞) if σX < σY and η ≤ 0
(−∞, x−] ∪ [x+,∞) if σX < σY and η > 0
[x−, x+] if σX > σY and η < 0
∅ if σX > σY and η ≥ 0
[x4,∞) if σX = σY and μX < μY

(−∞, x4] if σX = σY and μX > μY

(−∞,∞) if σX = σY and μX = μY ,

where x4 =
(r−s)σ2

X

2(μY −μX ) , η := (σ2
XμY − σ2

Y μX)2 − 2(r − s)(σ2
X − σ2

Y )σ2
Xσ2

Y ,

x± :=
σ2
XμY −σ2

Y μX±√
η

(r−s)σ2
Xσ2

Y
. By Theorems 1 and 2 we get Mf

w([a, b]) ≤Mf
v ([a, b])

and πf
w(a, b) = −Mf

w([a, b]) ≥ −Mf
v ([a, b]) = πf

v (a, b) for subintervals
[a, b] ⊂ D≤. Further if σX < σY and η ≤ 0, all agents prefers stochastic
environment Y to stochastic environment X for his any increasing utility f ,
i.e. it holds that E(f(X)) ≤ E(f(Y )) for any increasing utility function f ,
which is equivalent that X is dominated by Y in the sense of the first-order
stochastic dominance.

5 Conclusions

We have analyzed weighted quasi-arithmetic means with utility functions and
weighting for random factors in stochastic environments. We have investigated a
lot of examples of weighted quasi-arithmetic means and aggregated mean ratio
for various typical utility functions. Stochastic dominance is a risk criterion in a
global area for stochastic environments. Using combined index f ′′/f ′ + 2w′/w,
we can analyze risks even in local areas. Combined index f ′′/f ′ + 2w′/w will be
useful and easy to calculate in actual problems.
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Abstract. Depending on the representation setting, different combination rules
have been proposed for fusing information from distinct sources. Moreover in
each setting, different sets of axioms that combination rules should satisfy have
been advocated, thus justifying the existence of alternative rules (usually moti-
vated by situations where the behavior of other rules was found unsatisfactory).
These sets of axioms are usually purely considered in their own settings, without
in-depth analysis of common properties essential for all the settings. This paper
introduces core properties that, once properly instantiated, are meaningful in dif-
ferent representation settings ranging from logic to imprecise probabilities. The
following representation settings are especially considered: classical set repre-
sentation, possibility theory, and evidence theory, the latter encompassing the two
other ones as special cases. This unified discussion of combination rules across
different settings is expected to provide a fresh look on some old but basic issues
in information fusion.

1 Introduction

In information fusion, each piece of information is assumed to come from a different
source (measurement device or expert opinion) and the fusion is a process aiming at
grasping what is known about a situation being observed. This contrasts with preference
aggregation where preferences merely reflect what some agent would like the result to
be, and the aggregation process is more about building compromises than finding what
the true state of a situation is. The pieces of information to be fused may be inconsistent,
and are often pervaded with uncertainty, which must be reflected on the result.

The information fusion problem is met in different representation settings, ranging
from the merging of logical knowledge/belief bases supposed to encode the states of
mind of agents about the perception of a situation ([11] in classical logic, [1] in pos-
sibilistic logic for the merging of stratified or prioritized bases), to numerical-based
frameworks, such as, probability theory [20], evidence theory [17], possibility the-
ory [10], or imprecise probability theory [22]. It is worth-noticing that all the above-
mentioned settings can handle epistemic uncertainty and incomplete knowledge with
the exception of probability theory that often accounts with variability and randomness,
while the Bayesian approach to subjective probability yields a questionable representa-
tion of incomplete information [5]. In that respect, it is important to keep in mind the
fact that, formally speaking, evidence theory encompasses both probability theory and

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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possibility theory as particular cases; in turn, evidence theory can be seen as a particular
imprecise probability system [23]; and binary-valued possibility theory is nothing but a
Boolean representation for imprecise pieces of information at work in propositional or
epistemic logic.

It is striking to observe that the information fusion problem until now has been dis-
cussed independently in each setting. Sometimes, specific postulates that govern fusion
operations are provided [21,11,14]. Moreover in each setting, various combination rules
have been advocated as behaving properly (on the basis of good properties) as opposed
to the unsatisfactory behavior of other rules. In practice, we are faced with many com-
bination rules (their number is still increasing!), and several postulate systems. It is
worthwhile to provide a more unified view of the problem.

In this paper, we aim to propose common properties of fusion operators valid in any
setting. They do account for various existing axiomatic systems proposed in specific
settings. These properties are stated at the semantic level, rather than at the syntac-
tic one (unlike [11]), since probabilistic settings do not have a well-established logical
counterpart. Moreover, the semantical level is especially appropriate for laying bare the
practical meaning of the combination rules. This provides a common ground for a ra-
tional exploration of fusion methods, despite the heterogeneity of existing frameworks.
Particular instantiations of these common properties in the different settings are then
considered.

The rest of the paper is organized as follows. The next section introduces eight core
properties, before considering their instantiations, in Section 3 in the classical set repre-
sentation and in the possibility theory setting, and in Section 4 in the context of evidence
theory, in which many different combination rules have been proposed. These proper-
ties provide a basis for comparing these alternative rules.

2 Core Properties

In order to define a set of required properties that make sense in different settings rang-
ing from logic to imprecise probability, we consider an abstract notion of information
item, denoted by T , supplied by sources. Let Ω = {ω1, ..., ω|Ω|} be a finite, non-empty
set of possible worlds (e.g. the range of some unknown quantity), one of which is the
true one. There are n experts/sources and the ith expert/source is denoted by i. Let Ti

be the information provided by i, e.g., Ti may be a basic belief assignment, a possibility
distribution, or a knowledge base. T = f(T1, . . . , Tn) denotes the fusion result using
aggregation operator f over a set of information items Ti. To any information item, we
associate the following features:

– The subset S(T ) ⊆ Ω, called the support of T , contains the set of values considered
possible by information T . It means that ωi �∈ S(T ) ⇐⇒ ωi is impossible.

– Its core C(T ) ⊆ Ω contains the set of values considered fully plausible according to
information T . The idea is that, by default, if information T is taken for granted, a
first guess for the value of x should be an element of C(T ). Clearly, C(T ) ⊆ S(T ).

– Internal Consistency An information item T is said to be weakly (resp. strongly)
consistent if S(T ) �= ∅ (resp. C(T ) �= ∅) otherwise information T is totally (resp.
weakly) inconsistent. In the following, we assume C(T ) �= ∅ for each source.
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Strong consistency is assumed for inputs of a merging process, and weak consis-
tency at worst for the output.

– Mutual consistency T and T ′ are said to be weakly mutually consistent when
S(T ) ∩ S(T )′ �= ∅ and strongly so when C(T ) ∩ C(T )′ �= ∅.

– Information ordering: T  T ′ expresses that T provides at least as much informa-
tion as T ′. In particular, T  T ′ should imply S(T ) ⊆ S(T ′).

– Plausibility ordering: If consistent, information T induces a partial preorder !T

expressing relative plausibility: ω!T ω′ means that ω is at least as plausible as (or
dominates) ω′ according to T . We write ω ∼T ω′ if ω !T ω′ and ω′ !T ω. Of
course, if ω∈S(T ), ω′ �∈S(T ), then ω "T ω′ (ω is strictly more plausible than ω′).

The vacuous information, expressing total ignorance is denoted by T�. Then the plau-
sibility ordering is flat: S(T�) = C(T�) = Ω and ω ∼T� ω′ ∀ω, ω′ ∈ Ω.

The process of merging information items, supplied by sources whose reliability
levels are not known, is guided by a few first principles (already in [21]):

– It is a basically symmetric process as the sources play the same role and supply
information of the same kind;

– We try to use as many information items as possible in the fusion process, so as to
get a result that is as precise and useful as possible. However, the result should not
be arbitrarily precise, but faithful to the level of informativeness of the inputs.

– Information fusion should try to solve conflicts between sources, while neither dis-
missing nor favoring any of them without a reason.

These principles are implemented in the postulates listed below, called core properties,
which are meant to be natural minimal requirements, independent of the actual repre-
sentation framework.

Property 1: Unanimity.
When all sources agree on some results, then the latter should be preserved. Mini-
mal conditions are
(a) Possibility preservation. If for all sourcesω is possible, then so should the fusion
result assert: if ∀i, ω ∈ S(Ti) then ω ∈ S(f(T1, ..., Tn)).
(b) Impossibility preservation. If all sources believe that a possible world ω is im-
possible, then this ω cannot become (even slightly) possible after fusion. This can
be expressed as S(f(T1, ...Tn)) ⊆ S(T1) ∪ ... ∪ S(Tn).

Property 2: Informational Monotonicity.
If a set of agents provides less information than another set of non-disagreeing
agents, then fusing the former inputs should not produce a more informative result
than fusing the latter. The weakest such requirement is:
Weak Informational Monotonicity. if ∀i, Ti  T ′

i , then f(T1, ...Tn)  f(T ′
1, ...T

′
n),

provided that all the inputs are globally strongly mutually consistent.
Property 3: Consistency Enforcement.

This property requires that fusing individually consistent inputs should give a con-
sistent result. At best: C(f(T1, ...Tn)) �= ∅. At least: S(f(T1, ...Tn)) �= ∅.
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Property 4: Optimism.
In the absence of specific information about source reliability, one should assume
as many sources as possible are reliable, in agreement with their observed mutual
consistency. In particular: If ∩n

i=1C(Ti) �= ∅ then f(T1, ..., Tn)  Ti, ∀i = 1,...,n.
In general, it should be assumed that at least one source is reliable.

Property 5: Fairness. The fusion result reconciles all sources. Hence, the result of the
fusion process should keep something from each input, i.e.,
∀i = 1,...,n,S(f(T1,...,Tn)) ∩ S(Ti) �= ∅.

Property 6: Insensitivity to Vacuous Information.
Sources that provide vacuous information should not affect the fusion result:
fn(T1, . . . , Ti−1, T

�, Ti+1, . . . , Tn) = fn−1(T1, . . . , Ti−1, Ti+1, . . . , Tn)
Property 7: Commutativity.

Inputs from multiple sources are treated on a par, and the combination should be
symmetric (up to their relative reliability).

Property 8. Minimal Commitment.
The result of the fusion should be as little informative as possible (in the sense of
 ) among possible results that satisfy the other core properties.

Some comments are in order. The general core properties proposed here have coun-
terparts in properties considered in different particular settings ; see especially [21] and
also [11]. Let us further discuss each of them.

Possibility and impossibility preservation can be found in possibility theory [14] and
imprecise probability [21]. It makes sense to request more than possibility preservation:
plausibility preservation, replacing supports by cores [21]. The strongest form of Una-
nimity (Prop. 1) is idempotence: if ∀i, Ti = T , f(T1, ..., Tn) = T . However, while it
makes sense if sources are redundant, adopting it in all situations forbids reinforcement
effects to take place when sources are independent [9]. Our Unanimity properties mini-
mally respect the agreement between sources. A slightly more demanding requirement
which leaves room for reinforcement effects can be: Local Ordinal Unanimity: ∀ω and
ω′, if ω is at least as plausible as ω′, then so should it be after fusion. e.g., ω dominates
ω′. Formally: if ∀i, ω !Ti ω

′, then ω !f(T1,...,Tn) ω
′.

Informational Monotonicity (Prop.2), adopted as a general property in [14] should
be restricted to when information items supplied by sources do not contradict each
other. Indeed, if conflicting, it is always possible to make these information items less
informative in such a way that they become consistent. In that case the result of the
fusion may become very precise by virtue of Optimism Prop. 4, and in particular,
more informative than the union of the supports of original precise conflicting items
of information.

Consistency enforcement (Prop. 3) is instrumental if the result of the merging is to
be useful in practice: one must extract something non-trivial, even if tentative, from
available information. It is a typical requirement from the logical area [11] and a prop-
erty taken for granted by numerical approaches (viz. Dempster rule of combination, but
also for imprecise probabilities [21]). Still, when the representation setting is refined
enough, there are gradations in consistency requirements, and Prop. 3 can be interpreted
in a flexible way. For example, the re-normalisation of belief functions or possibility
distributions obtained by merging is not always compulsory, even if sub-normalisation
expresses a form of inconsistency.
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Optimism (Prop. 4) underlies the idea of making the best of the available informa-
tion: If items of information are globally consistent with each other, there is no reason
to question the reliability of the sources. It is again a typical assumption in logical
settings [11], but Walley [21] tries to formulate a similar property. In case of strong
inconsistency, this assumption is not sustainable. Note that in the latter case (in par-
ticular if ∩n

i=1S(Ti) = ∅), and under the Impossibility Preservation property (1b),
the support of the result should be at worst the union of the supports of inputs, i.e.,
S(f(T1, ...Tn)) ⊆ S(T1) ∪ ... ∪ S(Tn), now assuming that at least one source is reli-
able (still a form of optimism in the presence of inconsistency). The latter requirement
sounds natural for two sources only, but may be found overcautious for many sources.
In particular, Optimism will lead to replace any group K of strongly consistent sources,
by a single source that is more informative than and in agreement with each of them.

Fairness (Prop. 5) ensures that all input items participate to the result. At the same
time, it favors no source by forbidding any input to be derived from the output result in
the case of inconsistency. Note that different versions of the Fairness property can be
found in the literature. In particular, a form of this property was already suggested by
Walley [21] for imprecise probabilities. In the logical setting [11], the counterpart of the
condition S(f(T1,...,Tn))∩S(Ti) �= ∅ is required to hold either for each i, or for none.
The possibility that it holds for none sounds highly debatable using supports, from a
knowledge fusion point of view, while it may be acceptable when fusing preferences,
which is more a matter of trade-off, or when supports are changed into cores.

Insensitivity to Vacuous Information (Prop. 6) looks obvious, not to say redundant,
but dispensing with it may lead to uninformative results. It appears again in the Walley
postulates [21] for merging sets of probabilities. Prop. 6 implicitly admits that a non
informative source is assimilated to one that does not express any opinion, and is typical
of information fusion. It excludes probabilistic fusion rules like averaging, since it is
sensitive to vacuous information (represented, e.g., by a uniform distribution).

Commutativity (Prop. 7) is characteristic of fusion processes as opposed to revision
where prior knowledge may be altered by input information. In contrast, information
fusion deals with inputs received in parallel. So, commutativity makes sense, if no in-
formation is available on the reliability of sources.

Minimal Commitment is a very important postulate that applies in many circum-
stances. It is central in all uncertainty theories handling incomplete information under
different terminologies, including in logic-based approaches (where it is implicit). It
considers as possible any state of affairs not explicitly discarded. It is called principle
of minimal specificity in possibility theory [10], principle of Minimal Commitment in
evidence theory [19], and it underlies the so-called natural extension in imprecise prob-
ability theory [22]. This is a cautious principle that is nicely counterbalanced by the
Optimism postulate, and this equilibrium is sometimes useful to characterise the unic-
ity of fusion rules: Optimism provides an upper limit to the set of possible worlds and
Minimal Commitment a lower limit.

Some other properties may be required in aggregation processes, such as associativ-
ity, which makes computation more efficient, but lacking associativity is not a fatal flaw
in itself (e.g., the MCS rule below), if the rule can be defined for n sources.
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3 Merging Set-Valued Information: Hard Constraints

The most elementary setting one may first consider is the one of sets, whereby any in-
formation item is a subset of possible worlds, which restricts the unknown location of
the true state, the simplest account of an epistemic state. Let us assume that the infor-
mation items Ti are classical subsets. Then S(Ti) = Ti, the relation  is set inclusion,
and ω "T ω′ if ω ∈ T and ω′ �∈ T , while ω ∼T ω′ if ω, ω′ ∈ T or ω, ω′ �∈ T .

If the inputs are globally consistent, i.e., if ∩i=1,nTi �= ∅, one should have the inclu-
sion f(T1,..., Tn) ⊆ ∩n

i=1Ti by Prop. 4 (Optimism). By Possibility preservation (1a),
∩n
i=1Ti ⊆ f(T1, ..., Tn). Thus, f(T1, ..., Tn) = ∩n

i=1Ti in case of global consistency.
Let us now consider the case of two inconsistent pieces of information T1 and T2 such
that T1 ∩ T2 = ∅. By Prop. 5 (Fairness), one should have f(T1, T2) ∩ T1 �= ∅ and
f(T1, T2) ∩ T2 �= ∅. Moreover by Impossibility preservation (1b), one should have
f(T1, T2) ⊆ T1 ∪ T2. This leads to f(T1, T2) = A1 ∪ A2 with ∅ �= Ax ⊆ Tx for
x = 1, 2. Minimal Commitment leads us to take Ax = Tx for x = 1, 2.

This reasoning clearly extends to the case of more than two pairwise inconsistent
information pieces: by Fairness, f(T1, ..., Tn) should be of the form A1 ∪ ... ∪ An,
∅ �= Ai ⊆ Ti for i = 1, . . . , n. Let I ⊂{1,..,n}be a maximal consistent subset (MCS)
of sources, i.e., T I = ∩i∈ITi �= ∅ and T I ∩ Tj = ∅ if j �∈ I . Then the partial result
should be Aj = ∩i∈ITi, ∀j ∈ I by Minimal Commitment and Optimism. Given two
MCSs I and I ′, T I∩T I′

=∅. Hence at most one subset I of sources is correct. Optimism
dictates that at least one subset I of sources is so. We thus get the general combination
rule

f(T1, ..., Tn) =
⋃

I∈MCS({1,...,n})

⋂
i∈I

Ti (1)

where MCS({1, . . . , n}) is the set of maximal consistent subsets of sources. It was first
proposed by [15]. It satisfies all core properties.

This rule exhibits an apparent discontinuity when moving from a consistent situation
to an inconsistent one, since shrinking two subsets that overlaps may lead from situa-
tions with more and more precise fusion results to a situation with an imprecise result.
However, nothing forbids independent sources to provide information pieces having a
narrow intersection. But such a precise result may sometimes become all the more de-
batable as its precision increases. Some approaches cope with inconsistency in fusion
problems by a similarity-based enlargement of the supports and cores of information
pieces [16].

4 Possibility Theory

The possibility theory framework is a graded extension of the previous setting. Sub-
sets are replaced by possibility distributions π, which are mappings from Ω to [0, 1]
that rank-order interpretations (ω !T ω′ if π(ω) ≥ π(ω′)). The support is S(π) =
{ω|π(ω) > 0} and the core is C(π) = {ω|π(ω) = 1}. A strongly consistent pos-
sibility distribution is such that C(π) �= ∅. The consistency degree Cns(πi, πj) =
maxω min(πi(ω), πj(ω)) between two distributions ranges from 1 when there is a
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commonω that is fully possible, to 0 when the supports do not overlap. The information
ordering is relative specificity (πi  πj ⇐⇒ πi ≤ πj ).

The most basic combination rules extend conjunction and disjunction, especially the
Minimum rule min(π1, ..., πn) and the Maximum rule max(π1, ..., πn); other conjunc-
tions can be t-norms t such as product instead of min, which creates a reinforcement
effect. The conjunctive rules do not obey the strong form of consistency enforcement.

The latter property justifies the renormalized conjunctive fusion rule (RCF) [8]∧̂
(π1, ..., πn) =

∧
(π1, ..., πn)

Cns(π1, ..., πn).
(2)

It is undefined as soon as Cns(π1, ..., πn) = 0 (strong conflict). When
∧

is product, this
rule is well-known and is associative, but associativity is generally not preserved with
other t-norms. This kind of fusion rule is used in logic-based merging using distances
[11] instead of possibility distributions (see [1] for the connection between the two
approaches). However this kind of rule cannot cope with strongly mutually inconsistent
sources. We can extend the MCS rule in at least two ways:

MCS1(π1, ..., πn) = max
I∈MCS({C(π1),...,C(πn)})

∧
i∈I

πi (3)

MCS0(π1, ..., πn) = max
I∈MCS({S(π1),...,S(πn)})

∧̂
i∈I

πi (4)

In fact, each of MCS1, MCS0 selects maximal consistent subsets in a specific way.
Once this principle is chosen, the same reasoning holds as in the crisp case, and we
obtain for the above three rules for merging possibility distributions:

Proposition 1. The RCF rule (2) does not satisfy Consistency Enforcement nor Fair-
ness (when undefined). The extended-MCS rules (3,4) satisfy all core properties.

MCS1 is much demanding on mutual consistency of sources and yields plain disjunc-
tion if cores of πi are disjoint. MCS0 is less demanding and more optimistic: it yields∧̂

(π1, ..., πn) if all supports overlap.
Another fusion rule for possibility distribution that applies the classical MCS rule to

all cuts of the input possibility distributions has been recently proposed [4]. It satisfies
all basic postulates but it yields a belief function, as resulting cuts are no longer nested.

5 Evidence Theory

In evidence theory, a piece of information is modeled by a basic belief assignment (bba)
m which is a mapping from 2Ω to [0, 1] such that

∑
A⊆Ω m(A)=1. A bba is consistent

if m(∅) �= 0. A is called a focal element of m if m(A)> 0. Let Fm be the set of focal
elements of m. Let S(m) denote the union of the focal elements: if Fm ={A1,..., An},
then S(m)=

⋃n
i=1 Ai is the support of m. The vacuous bba mΩ is such that m(Ω) = 1.

From a bba m, two dual functions, bel and pl called belief and plausibility functions
respectively, are defined as bel(A) =

∑
B⊆A m(B), and pl(A) =

∑
B∩A �=∅m(B),

while the commonality function q is defined by q(A) =
∑

A⊆B m(B).



44 D. Dubois et al.

Evidence theory is rich enough to include as particular cases i) sets (when there
is one focal element), ii) probabilities (when focal elements are singletons), and iii)
possibility theory (when focal elements are nested). The contour functionCm of the bba
m, which is the plausibility function of the singletons, Cm(ω) =

∑
A⊆Ω,ω∈Am(A),

reduces to a possibility distribution πm = Cm when focal elements are nested, and then
pl(A) = maxω∈A πm(ω) is a possibility measure. The contour function reduces to a
probability distribution if the focal elements are singletons.

We now examine issues related to plausibility and information ordering, and incon-
sistency between bbas.

Plausibility Ordering. In evidence theory, from a representation point of view the
contour function is a natural option for comparing possible worlds (ω1 !con

m ω2 iff
Cm(ω1) ≥ Cm(ω2)). In addition to this standard ordering, we define a more basic
partial ordering relation on possible worlds induced by the bba.

Definition 1. Let ω1, ω2 ∈ Ω. Then ω1 dominates ω2 w.r.t. m, denoted by w1 !dom
m ω2

iff for any A ⊆ Ω \ {ω1, ω2}, m(A ∪ {ω1}) ≥ m(A ∪ {ω2}).

Proposition 2. !dom
m is a reflexive and transitive relation. Moreover ω1 !dom

m ω1 im-
plies Cm(ω1) ≥ Cm(ω2).

Inconsistency. The degree of inconsistency (or conflict) of two bbas m1 and m2

is measured by the mass received by the empty set as the result of the conjunction
of m1 and m2 viewed as random sets: m1∧2(∅) =

∑
A∩B=∅ m1(A)m2(B). It is the

counterpart of 1 − Cns(π1, π2) using product instead of min. However, it has been
pointed out in [12] that m1∧2(∅) is not a convincing measure of conflict, since two
identical bba’s usually have a non zero degree of conflict. To get a more satisfactory
measure of conflict one may avoid using productsm1(A)m2(B) that presuppose source
independence, and replace them by a joint mass x(A,B) whose marginals are m1 and
m2[6]. Then we can define a better inconsistency index, such that Inc(m,m) = 0:

Inc(m1,m2) = inf
x

∑
B∈F1,C∈F2:B∩C=∅

x(B,C)

Note that Inc(m1,m2) = 0 whenever there exists a joint mass x(A,B) whose
marginals are m1 and m2 that assigns zero mass to all disjoint focal sets, which cor-
responds to saying that the two credal sets (families of probabilites) {P : P (A) ≥
Bel1(A), ∀A} and {P : P (A) ≥ Bel2(A), ∀A} have a non-empty intersection [2]. So
we can call this index one of probabilistic consistency. Its calculation requires the use
of linear programming. It is easy to see that Inc(m1,m2) ≤ m1∧2(∅).

Alternatively we can adopt definitions that do not rely on numerical values of bba’s:
two mass functions m and m′ with focal sets F and F ′ are said to be

– Weakly mutually consistent if ∃E ∈ F , E′ ∈ F ′ : E ∩ E′ �= ∅ (note that it implies
that m1∧2(∅) < 1, hence Inc(m1,m2) < 1 as well)

– Strongly (or logically [3]) mutually consistent if ∀E ∈ F , ∀E′ ∈ F ′ : E ∩ E′ �= ∅
(note that it does imply that Inc(m1,m2) = m1∧2(∅) = 0).
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Information Ordering. In the literature, different information orderings in evidence
theory have been proposed for comparing the information contents of bba’s (see e.g.
[7]). We here only consider the one that can be expressed in terms of mass functions, and
echoes the above inconsistency index. It is the strongest information ordering among
those previously introduced in the literature.

Definition 2 (Specialization). Let m1 and m2 be two bbas over Ω, m1 is a specializa-
tion of m2 (denoted by m1  s m2) if and only if there exists a joint mass x(A,B) whose
marginals are m1 and m2 , such that x(A,B) = 0 whenever A � B,A ∈F1, B ∈F2.

We are in a position to propose one possible instantiation of the basic fusion postulates,
for two sources here, denoting by m12 the result:

1. Unanimity Possibility and impossibility preservation.
2. Weak Information Monotonicity: If m1 and m2 are strongly consistent, and

moreover m1  s m
′
1, m2  s m

′
2 then m12  s m

′
12

3. Consistency enforcement:
–
∑

E⊆S m12(E) = 1 (strong version)
–
∑

E⊆S m12(E) > 0 (weak version)
4. Optimism

– If m1 and m2 are strongly mutually consistent, then m12  s mi, i = 1, 2.
– There exists a joint bba x(·, ·) whose marginals are m1 and m2, such that
m12  s m1 ⊕m2, with m1 ⊕m2(E) =

∑
F,G:E=F∪G x(F,G).

5. Fairness: Each mi should be weakly consistent with m12.
6. Insensitivity to Vacuous Information: If m1(Ω) = 1 then m12 = m2

7. Symmetry: m12 = m21

8. Minimal Commitment: m12 should be minimally specific for specialization.

5.1 Checking Some Existing Combination Rules

Several rules have been proposed in evidence theory for merging information, apart
from the well-known Dempster’s rule of combination. We first focus on the main rules.

mDem(C) =

∑
A,B:A∩B=C m1(A)m2(B)

1−∑A,B:A∩B=∅m1(A)m2(B)
(Dempster’s rule) (5)

mSm(C) =
∑

A,B⊆Ω,A∩B=C

m1(A)m2(B) (Smets’ rule) (6)

mY a(C) =

{∑
A,B:A∩B=C m1(A)m2(B) if C �= Ω (Yager’s rule)

m1(Ω)m2(Ω) +
∑

A∩B=∅ m1(A)m2(B) if C = Ω
(7)

mDP (C) =
∑

A,B:A∩B=C

m1(A)m2(B) +
∑

A,B:A∪B=C,A∩B=∅
m1(A)m2(B). (8)

All four fusion rules presuppose independence between sources, as an additional as-
sumption, which enforces the choice of x(·, ·) = m1(·) ·m2(·). It reduces the scope of
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the Minimal Commitment axiom to the choice of a set-theoretic combination for focal
sets. The main difference between Dempster’s rule and the three other rules respectively
proposed in [19] (see also [18]) [24], [8] concern the way the mass (m1 ⊗m2)(∅) =∑

A,B:A∩B=∅m1(A)m2(B) is re-allocated. In Dempster’s rule, the renormalization
by division enforces strong consistency of the result, when the two bba’s are weakly
mutually consistent (otherwise the operation is not defined). Smets’s rule simply keeps
this mass on ∅, whilst Yager’s rule assigns it to Ω.

All four fusion rules coincide with each other if the two bba’s are strongly con-
sistent. Then all postulates are satisfied. When

∑
A∩B=∅ m1(A)m2(B) = 1, mDem

is not defined due to a total conflict between the sources, which violates the Consis-
tency Enforcement postulate, like for the normalized conjunctive rule of possibility the-
ory. When the two bba’s are weakly mutually consistent, the result is consistent since
mDem(∅) = 0. Dempster’s rule of combination is over-optimistic in case of weak con-
sistency; it may fail to satisfy the second Optimism condition, due to renormalization (it
would satisfy it if we replace it by the weaker condition S(m12) ⊆ S(m1) ∪ S(m2)).

In Smets rule, the mass assigned to the empty set mS(∅) may be different from 0.
Smets rule does not respect the consistency enforcement principle, even if it is always
defined, since it may deliver the plain empty set in case m1 and m2 are strongly incon-
sistent. Like Dempster rule of combination, Smets’ rule is purely conjunctive, hence
does not behave in agreement with the postulates in case of partial mutual inconsistency.
The Fairness axiom formally fails with this fusion rule like for Dempster’s, because it
is not compatible with the failure of the consistency enforcement postulate.

Yager’s rule is similar to Smets’ rule except that (m1⊗m2)(∅) is added to mY a(Ω)
instead of leaving it in mY a(∅), just changing conflict into ignorance (a form of renor-
malization). It does not respect Unanimity, nor Optimism and in particular impossibility
preservation is clearly violated. In fact, this rule is far too cautious in the presence of
conflicts.

Three of the four above rules are conjunctive, while the last one, proposed in [8]
extends the basic fusion rule (1) for sets to belief functions (hence it is a special case
of the MSC rule). It is a hybrid rule, like Yager’s, that contains both conjunctive and
disjunctive elements. It is more informative than Yager’s. This fusion rule satisfies all
fusion postulates like the MCS fusion rule for two sets, which it generalizes.

Dempster rule and Smets rule are associative, while the others are not. However,
Dubois and Prade combination rule can be readily extended to n > 2 sources using the
MCS rule on all n-tuples of focal sets.

We may complement Unanimity with Local Ordinal Unanimity with respect to dom-
inance ordering: for two possible worlds ω and ω′, ω !dom

1 ω′ and ω !dom
2 ω′ then

ω !dom
12 ω′. Indeed, we can prove the following:

Proposition 3. Smets, Yager and Dempster combination rules obey Local Ordinal Una-
nimity with respect to the dominance ordering.

It is still unclear whether this result holds for the 4th fusion rule. The above results are
summarized by the following Table 5.1 (all above rules are symmetric).
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rule/Prop Una Mono Cons Opti Fair Vacuous Min-Com
Dempster Yes1 Yes Strong1 No3 Yes1 Yes No3

Smets Yes2 Yes No Yes No Yes Yes1

Yager No Yes Strong No Yes Yes Yes
DP Yes Yes Strong Yes Yes Yes Yes

– 1. Only when there is no strong global inconsistency
– 2. Trivially in case of strong global inconsistency
– 3. Overoptimistic in case of weak inconsistency

All the fusion rules considered above assume source independence but can be ex-
tended by replacing the product of bba’s m1(F )m2(G) by a suitably chosen joint mass
function x(E,F ) whose marginals are m1 and m2 [3]. The main difference is that
we can replace strong consistency by probabilistic consistency, that is all four fusion
rules would coincide with m12(E) =

∑
E=F∩G x(E,F ) if m1 and m2 are mutually

consistent in the sense that Inc(m1,m2) = 0. However there may be several mini-
mally specific fusion rules, some of which are idempotent [3], if we leave the choice of
x(E,F ) open.

6 Concluding Remarks

In this paper, we have provided a general framework for analyzing fusion operators pro-
posed in different settings, in a unified way. Due to space limitation, we have concen-
trated the presentation on three types of representation using classical sets, possibility
theory, and evidence theory respectively, considering only a representative sampling of
operators. It is clear that the analysis may be applied more systematically, as well as to
other settings, whether numerical (such as imprecise probabilities [22,21]), ordinal[13]
or yet logical [11]. The latter case comes down to viewing the set of models of a knowl-
edge base K as the core C(TK) of the corresponding information item TK . We did
not discuss the case of single probability distributions as they only support weighted
arithmetic means [20], which violates Insensitivity to Vacuous Information (assuming
the latter is expressed by uniform probability distributions). When distinct, they always
conflict, but taking their convex hull satisfies all postulates [21]. Beyond our core prop-
erties, that are usually completely intuitive, and should be satisfied by any reasonable
fusion rule, other less universal properties, may make sense in specific contexts. For
instance a discontinuous fusion rule in a continuous setting is questionable (e.g. Demp-
ster’s rule is oversensitive to small changes of input values). Some properties are useful
in some situations but not possessed by many rules (e.g., idempotency when sources
are redundant). Moreover, when the representation setting becomes richer, more op-
tions are available for expressing the properties with various strengths. Adapting the
basic postulates to prioritized merging is another line for further work.
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Abstract. Microaggregation is a cardinality-constrained clustering
problem that arose in the context of data privacy. In microaggregation,
the number of clusters is not fixed beforehand, but each cluster must have
at least k elements. We illustrate in this paper that microaggregation can
be applied for decision making in areas other than privacy. Specifically,
we focus on the service facility location problem and on game theory
(coalition formation and social choice).
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1 Introduction

Microaggregation [2,4] is a clustering problem that originally arose in data
anonymization for privacy protection. Rather than fixing beforehand the number
of desired clusters, in microaggregation one fixes the minimum size of clusters.
Clusters are formed using a criterion of maximum within-cluster similarity and
each cluster should contain at least k elements. In the anonymization application,
elements are records corresponding to individual respondents and the records in
a cluster are replaced by the centroid cluster before publication; this ensures
that an individual’s published record is indistinguishable from the records of at
least another k − 1 individuals (k-anonymity).

The optimal solution to the microaggregation problem is defined to be the
one that maximizes the sum of within-cluster similarities, while respecting the
constraint that all clusters must contain at least k elements. Finding an optimal
solution for the microaggregation problem can be done in polynomial time only
if the data elements are one-dimensional [7]. In the general multi-dimensional
case, the problem has been shown to be NP-hard [14].

Several heuristics have been published in the literature that provide good
solutions to the microaggregation problem. Most of them deal with numerical
elements (e.g. see survey in [8]), but extensions for ordinal and nominal data
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have also been proposed [4,5,6]. Some of the proposed heuristics are approxi-
mations [3,11] in the sense that they can be proven to yield solutions within a
specific bound of the optimal solution.

The motivation of this paper is to explore applications of microaggregation
other than anonymization; in particular, we describe several applications to de-
cision making.

1.1 Contribution and Plan of This Paper

As pointed out above, the microaggregation problem is a well-studied NP-hard
problem and several efficient heuristics aimed at solving it have been proposed.

Although microaggregation arose in the field of data anonymization, it is a
general problem that can also arise in many other application areas. In this
paper, we explore the use of microaggregation in facility location and game the-
ory. Specifically, Section 2 describes how the location of service facilities can be
viewed as a microaggregation problem. Section 3 illustrates two uses of microag-
gregation in game theory: detecting natural coalitions in cooperative games and
reducing the number of strategies to facilitate rational social choice. Conclusions
and avenues for future research are outlined in Section 4.

2 Microaggregation and Service Facility Location

A well-known problem in operations research is the simple plant location problem
(SPLP), also known under a variety of alternative names (warehouse location
problem [9], uncapacitated facility location problem [10], etc.). The most popular
statement of this problem is as follows:

– Let I = {1, · · · ,m} be a set of candidate locations for industrial plants
producing some product. A plant can be opened in any location i ∈ I at a
cost fi. Each opened plant can provide an unlimited amount of product.

– Let J = {1, · · · , n} be a set of customers such that customer j needs an
amount bj the product.

– Let cij be the unit transportation cost from plant i to customer j.
– The problem is to decide at which locations should plants be opened and

the quantity xij of product to be supplied by plant i to customer j.

Mathematically, the SPLP can be formulated as the following constrained
minimization problem:

min

⎛⎝ n∑
i=1

n∑
j=1

cijxij +
m∑
i=1

fiyi

⎞⎠
subject to

m∑
i=1

xij = bj , ∀j ∈ J
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0 ≤ xij/bj ≤ yi and yi ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J

where yi indicates whether a plant is opened at location i (yi = 1) or not
(yi = 0).

Imagine now that, instead of industrial plants that produce some products,
we want to find locations for service facilities that must give service to users.
Examples of such service facilities could be hospitals, schools, sports facilities,
etc. Let us call this problem the service facility location problem (SFLP). Let us
point out some fundamental differences between the SPLP and the SFLP, which
make the heuristics designed for SPLP unsuitable for SFLP:

– Whereas the SPLP assumes that what is transported is the product, what
is transported in SFLP are the users who must reach their service facility
to use it. Hence, even if transportation costs were extremely low in terms
of money, users do not wish to travel long distances to reach their service
facility.

– For the above reason, each user wishes their service facility to be as close
as possible to them. However, for cost reasons, opening a service facility at
each single user’s location is not affordable. Rather, for the investment to be
justified, each service facility must be shared by at least k users.

From the above observations, it follows that the SFLP is in fact a microag-
gregation problem, because:

1. Clusters of at least k user locations must be formed in order to locate a
service facility at the centroid of each cluster.

2. The Euclidean distance from each user location to the location of the cor-
responding service facility must be as small as possible. This amounts to
maximizing the sum of within-cluster similarities as pointed above, for the
special case of within-cluster similarity being the inverse of the sum of the
Euclidean distances from the user locations in a cluster to the cluster cen-
troid where the facility is located.

Being equivalent to a multivariate microaggregation problem (locations are
bivariate), the SFLP is an NP-hard problem [14]. Any microaggregation heuristic
for multivariate numerical data (e.g. [2,4,3,11]) can be used to find a reasonably
good solution to the SFLP. In fact, the approximation heuristic in [3] offers a
solution that can be proven to be within a factor of (2k− 1) max(2k− 1, 3k− 5)
of the optimal one, where optimality means minimum sum of within-cluster
Euclidean distances from locations to centroids. Even better, the more recent
approximation heuristic in [11] offers a solution within a factor of 8(k− 1) of the
optimal one. The actual solutions returned by all the above-mentioned heuristics
are usually very close to the optimal solution; in particular they are much closer
than guaranteed by the theoretical approximation bounds (which are worst-
case).

Since most microaggregation heuristics run in time quadratic in the number
n of elements (user locations in our case), it may be necessary to use blocking
for large n. In the SFLP blocking means that, rather than solving the problem
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latitude

longitude

Fig. 1. Variable-size microaggregation with k = 3 to obtain a solution of the service
facility location problem with n = 12 users. Black dots indicate user locations and
white dots indicate proposed service facility locations.

for all users/citizens in a large geographic area (e.g. a country), one would in-
dependently solve instances of the problem in manageable subdivisions of the
large area (e.g. in each state, province, county, etc.).

Figure 1 depicts an example with n = 12 users, a minimum of k = 3 users
needed to justify a new service facility and service facility locations obtained
with variable-size microaggregation.

3 Microaggregation and Game Theory

In game theory, a cooperative game is a game in which groups of players, called
coalitions, may enforce cooperative behavior. Hence, the game can be viewed
as a competition between coalitions of players, rather than between individual
players.

We first give some background on game theory (Section 3.1). Then we describe
how microaggregation can be used to detect natural coalitions in cooperative
games (Section 3.2), and to reduce the number of strategies to facilitate rational
social choice (Section 3.3).

3.1 Background on Game Theory

A game is a protocol between a set of n players, {P1, · · · , Pn}. Each player Pi

has her own set of possible strategies, say Si. To play the game, each player i
selects a strategy si ∈ Si. We will use s = (s1, · · · , sn) to denote the vector of
strategies selected by the players and S = Πn

i=1Si to denote the set of all possible
ways in which players can pick strategies.

The vector of strategies s ∈ S selected by the players determines the outcome
for each player, which can be a payoff or a cost. In general, the outcome will
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be different for different players. To specify the game, we need to state for each
player a preference ordering on these outcomes by giving a complete, transitive,
reflexive binary relation on the set of all strategy vectors S. The simplest way
to assign preferences is by assigning, for each player, a value for each outcome
representing the payoff of the outcome (a negative payoff can be used to represent
a cost). A function whereby player Pi assigns a payoff to each outcome is called
a utility function and is denoted by ui : S −→ R.

For a strategy vector s ∈ S, we use si to denote the strategy played by Pi and
s−i to denote the (n−1)-dimensional vector of the strategies played by all other
players. With this notation, the utility ui(s) can also be expressed as ui(si, s−i).

A strategy vector s ∈ S is a dominant strategy solution if, for each player Pi

and each alternate strategy vector s′ ∈ S, it holds that

ui(si, s
′
−i) ≥ ui(s

′
i, s

′
−i) (1)

In plain words, a dominant strategy s is the best strategy for each Pi, inde-
pendently of the strategies played by all other players.

A strategy vector s ∈ S is said to be a Nash equilibrium if, for any player Pi

and each alternate strategy s′i ∈ Si, it holds that

ui(si, s−i) ≥ ui(s
′
i, s−i)

In plain words, no player Pi can change her chosen strategy from si to s′i and
thereby improve her payoff, assuming that all other players stick to the strate-
gies they have chosen in s. A Nash equilibrium is self-enforcing in the sense that
once the players are playing such a solution, it is in every player’s best interest
to stick to her strategy. Clearly, a dominant strategy solution is a Nash equi-
librium. Moreover, if the solution is strictly dominant (i.e. when the inequality
in Expression (1) is strict), it is also the unique Nash equilibrium. See [13] for
further background on game theory.

3.2 Detecting Natural Coalitions in Cooperative Games

We assume in this section that the set of strategy vectors is finite, i.e.

S = {s1, · · · , sm}

We can represent each player Pi as an m-dimensional vector ui(S) whose com-
ponents specify the normalized payoffs the player obtains under each strategy,
according to his/her utility function ui(·):

ui(S) =

(
ui(s

1)

maxm
l=1 ui(sl)

, · · · , ui(s
m)

maxm
l=1 ui(sl)

)
We now can cluster vectors ui(S) to obtain clusters of players with “similar”
interests, in the sense that they derive similar payoffs from the various strategies.
Two important remarks are in order here:
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– Clusters indicate “natural” coalitions, in the sense that players with similar
interests may tend to rally: they wish to enforce the same strategy vectors
and avoid the same strategy vectors1.

– The “centroid player” of each cluster could be taken as the prototypical
player representing the coalition of players in the cluster. In this way, a co-
operative game involving the natural coalitions can be approximately trans-
formed into a non-cooperative game between prototypical players. Finding
solutions in non-cooperative games (that is, dominant strategy vectors or
Nash equilibria mentioned above) is normally easier.

If a single cluster containing all players is created, the homogeneity of that
cluster is likely to be low and the prototypical player of that cluster is unlikely to
accurately represent the interests of all players. On the other hand, if some clus-
ters are much smaller than others, the coalitions corresponding to the smaller
clusters will have much less power to enforce dominant strategies or equilib-
ria than the coalitions corresponding to the larger clusters. Hence, there is a
tradeoff between the coalition power and the representativeness of the prototyp-
ical player. Resorting to microaggregation to form clusters ensures bounds on
coalition sizes:

– If a fixed-size microaggregation heuristic is chosen (e.g. MDAV, [4]) then
the sizes of all coalitions are k except for one coalition having size at most
2k− 1. Choosing this kind of heuristics establishes equal power (size) for all
coalitions as a primary goal and prototype representativeness as a secondary
goal.

– If a variable-size microaggregation heuristic is used (e.g. [3,11]), then the
sizes of all coalitions lie between k and 2k − 1, where the precise sizes are
automatically selected by the heuristic in order to maximize within-cluster
homogeneities. Choosing this kind of heuristic establishes prototype repre-
sentativeness as a primary goal and equal power as a secondary goal.

Figure 2 depicts an example with two strategies, 12 players and three natural
coalitions that can be formed when using variable-size microaggregation with
k = 3.

3.3 Facilitating Social Choice

Social choice is a theoretical framework that studies how to combine individual
preferences, interests or welfares to reach a collective decision or social welfare
in some sense [1]. The Nakamura number [12] measures the degree of rationality
of collective decision rules, such as voting rules. If the number of alternatives
(candidates, options, etc.) to choose from is less than the Nakamura number,

1 We discard here coalitions including players with similar utilities for the highest-
paying strategy vectors only. The reason is that these are weaker coalitions, because
they will break up if players not in the coalition manage to enforce a strategy vector
that is not among the highest-paying ones for the coalition.
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s1

s2

Fig. 2. Toy example with 12 players being clustered into 3 natural coalitions, for m = 2
strategy vectors s1 and s2, and variable-size microaggregation with k = 3. Black dots
indicate actual players; white dots indicate the prototype player for each coalition; all
coordinates are assumed to be normalized.

then the voting rule will identify “best” alternatives without any problem. In
contrast, if the number of alternatives is greater than or equal to the Nakamura
number, the voting rule will fail to identify “best” alternatives for some pattern
of voting (i.e. for some tuple of voters’ preferences), because a voting paradox
will arise: a cycle of preferences will appear, like alternative a being socially
preferred to alternative b, b to c and c to a.

The above discussion motivates the relevance of being able to reduce the num-
ber of alternatives in such a way that the new alternatives are as representative
as possible of the old alternatives. We propose to use microaggregation to im-
plement such a reduction.

Let us assimilate voters to players and alternatives to strategy vectors. We
can represent each strategy vector sj as an n-dimensional vector u(sj) whose
components specify the normalized payoffs sj brings to each player, according
to the players’ utility functions u1(·) to un(·):

u(sj) =

(
u1(s

j)

maxm
l=1 ui(sl)

, · · · , un(sj)

maxm
l=1 ui(sl)

)
We now can cluster vectors u(sj) to obtain clusters of “similar” strategy

vectors, in the sense that they provide similar payoffs to players/voters. The
“centroid strategy” of each cluster can be taken as the prototypical strategy
that will be used to replace the strategies in the cluster, thereby reducing the
total number of strategies/alternatives.

If a single cluster containing all strategies is created, the homogeneity of that
cluster is likely to be low and the prototypical strategy of that cluster is unlikely
to accurately represent the interests of all players/voters (for example, think of
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u1

u2

Fig. 3. Toy example with n = 2 voters/players with utility functions u1 and u2 in
which 12 original alternatives/strategy vectors are reduced to 3 prototype alterna-
tives/strategy vectors, using variable-size microaggregation with k = 3. Black dots
indicate original strategies; white dots indicate prototype strategies; all coordinates
are assumed to be normalized.

a country with a single party). On the other hand, if one goes for a less dra-
matical reduction of alternatives, it would seem fair to reduce the granularity of
all original alternatives to a similar level, perhaps with more similar alternatives
being included in larger clusters. This is exactly what variable-size microaggre-
gation heuristics (e.g. [3,11]) offer: the sizes of all clusters lie between k and
2k − 1, where the precise sizes are automatically selected by the heuristic in
order to maximize within-cluster homogeneities. Choosing this kind of heuristic
seeks to obtain prototype strategies with similar representativeness of the origi-
nal strategies. The smallest possible value of k ought to be taken that brings the
final number of alternatives/strategy vectors below the desired threshold (for
example, the Nakamura number of the game).

Figure 3 shows a toy example with n = 2 voters/players where 12 original
alternatives/strategy vectors are reduced to 3 prototype alternatives/strategies,
using variable-size microaggregation with k = 3.

4 Conclusions

Although microaggregation was a problem that arose and was studied in the
context of data anonymization, we claim that it is relevant in other application
domains. In this paper, we have sketched its application to decision making.
Specifically, microaggregation heuristics have been shown to offer solutions to
the service facility location problem. Also, microaggregation can be helpful in
game theory. Indeed, in cooperative games it helps detecting natural coalitions
(players with similar interests). In social choice it can be used to reduce the
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number of alternatives with minimum loss of information, in order to facilitate
rational voting.
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Abstract. Even though elements in the Pareto set of a given multi-objective
problem represent optimal solutions, additional information may be available
about a preference on these solutions. We propose to use the Pareto frontier ob-
tained for a problem to discard dominated solutions and a fuzzy system to order
the non-dominated ones.

1 Introduction

In single-objective optimization problems, we are interested in optimizing a single func-
tion by either maximization or minimization. In multi-objective optimization, we have
a set of different objectives that need to be optimized simultaneously. When some of
them are conflicting, usually there exists no single optimal solution, but rather a family
of trade-offs (non-dominated solutions), which need not be the global optimum solution
of any of the objectives when taken separately [7]. In this case, the quality of a solution
to the problem is no longer assessed by a single value but by a set of values, each of
which corresponding to a certain goal.

The complete set of non-dominated solutions is called a Pareto set; the set of values
of the multi-objective function associated to those solutions is called the Pareto frontier.
In real-world problems, it is very often impracticable to determine the complete Pareto
set, either because the search space is infinite, or because obtaining a solution is a costly
process. Moreover, more often than not, what is obtained is only an estimate of the
Pareto set, formed by the collection of non-dominated solutions obtained in the process.

After the Pareto set (or its estimate) is found for a problem, usually a single solu-
tion has to be chosen by the decision-maker. To select this solution, a subset can be
extracted to be examined in light of other criteria than the objective functions them-
selves. Sometimes it is possible to create this subset by making a visual inspection of
the Pareto frontier (or its estimate) and select the most interesting ones. However, in
problems with a large number of objectives, the visualization of the Pareto frontier is
often hard or even impossible.

Automatically choosing a single element from the Pareto set obtained from a given
problem has been addressed by several papers in the literature. A straightforward
method consists in the choosing the solution whose evaluation is closer to the baricenter
of the points in the frontier. Another consists in taking the solution whose evaluation
is the closest to the origin of the Cartesian coordinates system for the problem, con-
sidering that the objective functions are all positive. A more complex method consists
in adopting as the final solution for a problem, the one that results on the smallest loss

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 58–69, 2013.
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for each of the objectives individually [9]. As stated by [4], these approaches produce
a ranking on the basis of an arbitrary criterion of merit, obtained by combining the
multiple decision criteria into one scalar index.

Another way to order solutions in a Pareto set is to consider user preferences on the
search space. Fuzzy Sets Theory and Possibility Theory [5] are the basis of systems that
use imperfect information furnished by an expert, in the form of rules and preferences,
to solve problems in all kinds of fields. The combination between multi-objective op-
timization and fuzzy systems has been addressed by several authors, but few in what
regards ranking the Pareto set (see [3] a survey). Many of these works use the fuzzy sets
framework to help a method, such as genetic algorithms, ant colonies optimization, etc,
to obtain the Pareto set itself (see [2] for a survey).

Here we are interested in using fuzzy sets to order a set of non-dominated solutions,
according to the following general strategy, inspired from one proposed in [8] for robot
control (see also [1]):

1. Find feasible solutions, according to the problem criteria and available data.
2. Find a sufficiently large set of non-dominated solutions.
3. Order these solutions incorporating subjective knowledge.
4. Find the most preferred solution, using other criteria.

We propose to use a fuzzy system to assign user satisfaction degrees to the compound
objective values. Then we take the optimal solutions found for the problem and order
them according to the satisfaction degree that were obtained by the objective function
values calculated for each of these solutions. In problems for which the selection of the
final solution is taken by a group of decision-makers, a fuzzy system can be created to
model the preferences of each of these decision-makers individually, and then combine
the results to obtain a single final ordering.

This paper is organized as follows. In Section 2 we formally address multi-objective
problems, defining solution dominance, Pareto sets and Pareto frontiers, and in
Section 3 we give a brief introduction to fuzzy sets theory and fuzzy systems. Then in
Section 4, we propose a general framework to optimization based on the one proposed
in [8] and show how fuzzy systems can be used to implement this general approach.
Section 5 brings a brief discussion about how the proposed approach could be useful in
a real-world application and Section 6 finally brings the conclusion. The concepts are
illustrated using a simple example presented in Section 2.

2 Multi-objective Problems

In single-objective optimization problems, we are interested in optimizing a function
f : S → Ω, by either maximization or minimization. We call f a cost function or
an objective function and S and Ω are respectively called the search and the objective
spaces. If f is the objective function of a minimization problem, s0 ∈ S is an optimal
solution for that problem when

∀s ∈ S, f(s) ≥ f(s0)
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It is worthy noting that for some problems, there exist several optimal solutions in
set S, all of them attaining the same optimal value for f .

If a problem has I goals to achieve, the objective function is not modelled by a single
mathematical function but rather by a set of objective functions {f1, f2, ..., fI}, where
∀i, fi : S → Ωi. This (compound) objective function is then a mapping F : S → Ω,
where Ω = Ω1 × ...×ΩI .

A minimization problem can be generally stated as:

Minimize fi(s); i = 1 to I ,
Subject to:

gk(s) ≤ 0; k = 1 to K (Inequality constraints)
hl(s) = 0; l = 1 to L (Equality constraints)
smin ≤ s ≤ smax (Boundary conditions)

Below, we first present an example that will be used in the remaining of the text.
Then we define some important concepts, such as solution dominance, Pareto set and
Pareto frontier.

2.1 Running Example

In the following, we present a very simple example to better illustrate what would be
conflicting objectives in a multi-objective problem. Let us suppose we want to fly from
one city to the other, possibly with stops, at a given date. We only consider trips that cost
at most R$ 1000 and last at most 20 hours. Formally, we have the following functions,
variables and sets:

– s ∈ S
– fcost : S → [1, 1000]
– fduration : S → [1, 20]

Variable s identifies a trajectory (a path), consisting of sequence of legs, each of which
identified with data such as the departure and arrival cities, the airport names, the time
schedule, the air company used in that leg, etc. All possible trajectories between two
cities at a given time are collected in set S. Functions fcost and fduration respectively
describe the total cost and duration of the trajectory. The following table brings exam-
ples of trajectories.

Let us further suppose that we want to minimize the cost of the ticket and the
total duration of the journey. Our compound objective function is thus F : S →
[1, 1000]× [1, 20]. Formally, our optimization problem is stated as:

Minimize fcost(s) and fduration(s)
s ∈ S

2.2 Pareto Frontier and Pareto Sets

In the following we define the dominance relation between any two solutions, the Pareto
frontier and the Pareto set, in a multi-objective problem.
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Table 1. Fragment of trajectories data base; optimal solutions are indicated by “×” and non-
optimal ones with “•”

s cost duration

t1 × 401 8
t2 × 400 15
t3 × 200 19
t4 • 610 8
t5 • 270 19
t6 • 210 20

By definition, a solution s ∈ S dominates a solution s′ ∈ S in a minimization
framework when:

1. s is not worse than the s′ in any of the objectives of the problem, i.e.

∀i ∈ [1, I], fi(s) ≤ fi(s
′)

2. s is strictly better than s′ in relation to at least one goal, i.e.

∃i ∈ [1, I], fi(s) < fi(s
′)

In our example, we want to minimize the cost and duration of the trip. The ideal solu-
tion would be a single trajectory s0 in S that minimizesF (s) = (fcost(s), fduration(s)).
In practice, it may be impossible to reach this global objective, as the fastest route is
rarely the most economical.

Considering only the trajectories in Table 1, we see that the set of non-dominated
solutions is given by {t1, t2, t3}. The remaining do not belong to that set because tra-
jectory t4 is dominated by t1, whereas t5 and t6 are dominated by t3.

The Pareto set (PS) of the problem consists of all the non-dominated solutions in S.
Formally, we have:

PS = {s ∈ S | � s′ ∈ s, s is dominated by s′}

Let PS = {s1, s2, ..., sp} be a Pareto set with p elements. The Pareto frontier (PF) is
defined as:

PF = {F (s1), F (s2), ..., F (sp)}
Note that the Pareto set and Pareto frontier only exist as such when all the solutions

are known, otherwise we only have estimates, because a new solution may dominate
solutions that were not dominated previously.

3 Fuzzy Systems

Fuzzy Sets Theory was proposed by Professor Lofti Zadeh at the University of Califor-
nia in 1965 [13] to address the vagueness aspect of information (see also [5]). It later
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Fig. 1. Cost and duration of flights in the trajectories problem: the points correspond to non-
dominated solutions and the crosses to the dominated ones

gave rise to a large number of concepts, operations and measures that are applicable to
all kinds of disciplines in science.

Fuzzy sets theory is the starting point in the development of several types of fuzzy
systems. Fuzzy Inference systems (FIS) are described as universal approximators that
can be used to model the nonlinear relationships between inputs and outputs. Most of
these systems are a particular case of the class of Rule-Based Systems, that use rules of
thumb of the type “ If <premise 1> and ... and <premise n > then <conclusion>. Usu-
ally, four main tasks are carried out in the execution of such type of systems: encoding
fuzzification (or encoding), inference, composition and defuzzification (or decoding)
[12]. A FIS can be created by encoding the knowledge of an expert in a particular field,
or through the use of a learning algorithm, such as Neural Networks.

In the following, we briefly present some basic definitions from fuzzy sets theory
and a basic FIS framework. We then extend the running example in a fuzzy context.

3.1 Basic Definitions and FIS Framework

A fuzzy set A defined on a universe of discourse X is characterized by a membership
function A : X → [0, 1]1. The value A(x) indicates the degree of compatibility of
element x in X to the concept expressed by fuzzy set A: A(x) = 0 indicates that x
is not compatible with A, A(x) = 1 indicates that x is fully compatible with A, and
0 < A(x) < 1 indicates x is only partially compatible with A.

Many of fuzzy rule-based systems use a rule base R = {R1, ..., Rm} of the type Rj :
If x1 = A1,j and . . . and xn = An,j then yj = Bj , where each xi (respec. y) takes
value in its respective domain Xi (respec. Y ). Each xi is called a linguistic variable and
have a set of ki fuzzy sets (called fuzzy terms) Ti = {Ti,1, ...Ti,ki} associated to it. For
every rule Rj in R, we have ∀i, j, Ai,j ∈ Ti.

Let x∗ = {x∗
1, ..., x

∗
n} denote the input vector, i.e., each x∗

i denotes the realization
of variable xi ∈ Xi. Let # : [0, 1]2 → [0, 1] (respect. ⊥ : [0, 1]2 → [0, 1]) be a T-norm
(respec. T-conorm), an operator that is commutative, associative and monotonic, with 1
(respec. 0) as neutral element.

1 Here we use the same word to name a fuzzy set and its membership function.
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Inference in such systems can be seen as a function FIS_solution : X → Y ,
usually calculated as described below.

� Step 1: The compatibility between the i-th premise of rule Rj with its correspond-
ing input x∗

i is calculated as

αi,j = Ai,j(x
∗
i ), 1 ≤ i ≤ n, 1 ≤ j ≤ m (1)

� Step 2: The global compatibility of rule Rj , with x∗ is calculated as:

αj = #(α1,j , ... , αn,j), 1 ≤ j ≤ m (2)

� Step 3: A fuzzy set Cj is calculated as the value for y according to rule Rj , given
x∗, using an implication function I (see below) as:

Cj(y) = Imp(αj , Bj(y)), ∀y ∈ Y (3)

� Step 4: Using an operator∇, the various Cjs are aggregated as single fuzzy set C,
representing the global solution of the problem given x∗

0, as:

C(y) = ∇(C1(y), ... Cm(y)), ∀y ∈ Y (4)

� Step 5: A single value y∗ from Y is calculated as the solution of the problem vector
x∗, a process known as deffuzification, as

FIS_solution : X → Y (x∗) = y∗ = def(C), (5)

where def : F(y) → Y and F(y) is the set of fuzzy sets that can be constructed
on Y .

Function Imp is usually either a T-norm or a residuated implication operator [5]. When
Imp is a T-norm, ∇ is usually a T-conorm. When Imp is a residuated implication
operator,∇ is usually a T-norm.

3.2 Extension of the Running Example

Let us now suppose that the level of satisfaction of a given user with respect to a given
trajectory, can be modelled using a fuzzy rule based system, as follows.

– Input variables cost ∈ [1, 1000] and duration ∈ [1, 20]
– Output variable satisfaction ∈ [0, 10]
– Tcost = {Cheap,Medium,Expensive}
– Tduration = {Short,Medium,Long}
– Tsatisfaction = {V eryBad,Bad,Medium,Good, V eryGood}
Table 2 and Figure 2 respectively bring the rule base and the fuzzy terms for our

problem, for a traveller for whom flight cost is more important than flight duration. Fig-
ure 3 depicts the output surface FIS_solution obtained using the so-called Mamdani
fuzzy system [5], with# = min and Imp = max. We can clearly see that the preferred
solutions are those that with low cost and short flight duration.
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Table 2. Rule base for our problem; rows and columns refer to cost and duration, respectively

Short Medium Long
Expensive Bad VeryBad VeryBad
Medium Good Medium Bad
Cheap VeryGood VeryGood Medium

a) b) c)

Fig. 2. Fuzzy terms for the trajectories problem: a) Tcost, b) Tduration and c) Tsatisfaction

4 A Proposal to Order Pareto Sets

In the following we propose a general approach to order the solutions in the Pareto set
associated with a given multi-objective problem. Then we study how fuzzy systems can
be used as a means to implement the general approach.

4.1 A General Algorithm to Order Pareto Sets

In complex problems, an optimization algorithm O does not generate the complete
search space S of a given problem, but a subset SO ⊆ S. Consequently, the Pareto
set PS, containing the optimal solutions from S is usually also not completely gen-
erated. Moreover, more often than not, instead of a subset of PS, at the end of the
execution of O, we obtain a set of solutions PSe ⊆ SO that represents only an estimate
of PS. It is interesting to note that set PSe may not grow monotonically with SO. In
other words, if more solutions are visited, i.e. SO is enlarged to a set SO

′, the previous
set of non-dominated solutions PSe may not be a subset of PSe′ , because solutions
previously considered optimal may become dominated by those in SO

′ − SO.
Here we are interested in ordering set PSe found by a generic optimization algo-

rithm, according to the preferences of a user, modeled by a function called SAT , ab-
breviated from “satisfaction”. We propose the following algorithm to order solutions in
a Pareto sets, inspired on [8] (see also [1]).

ALGORITHM
LetS andΩ be the search and objective spaces, respectively. LetPS be the Pareto set for
S, according to the problem characteristics and available data. Let F = {f1, f2, ..., fI},
where ∀i, fi : S → Ωi, be the set of objective functions that have to be optimized. Let
Q = {q1, q2, ..., qJ}, where ∀j, qj : S → Γj , be a set of functions that are not the
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Fig. 3. Two views of output surface FIS_solution for the trajectories problem

subject of optimization. Let SAT : Ω1× ...×Ωm×Γ1× ...×Γk → [0, 1] be a function
that models the user satisfaction with the options in S. Let O be an algorithm that aims
at optimizing the functions in F .

1. Find a set of solutions SO ⊆ S, by applying an algorithm O on the available data.
2. Gather the non-dominated solutions PSe ⊆ SO , according to the set of objective

functions {f1(s), ..., fI(s)}.
3. Apply function SAT : Ω1 × ... × ΩI × Γ1 × ... × ΓJ → [0, 1], to the options

in PSe.
4. Order the pairs (solution, evaluation) of the set {(s, eval(s)) | s ∈ PSe, eval(s) =

SAT (f1(s), ..., fI(s), q1(s), ..., qJ (s))}.
5. Choose the final solution from the ordered set.

Note that the user preference may take into account not only the functions to be
optimized but also others, that although not subject to optimization, are relevant to the
user. In our problem, those functions could for instance model that the user, although
only wanting to optimize cost and duration, prefers trajectory with only a small number
of stops, or companies in which the user is a frequent traveller, etc.

For many problems, the final solution is simply the first one in the ordered set. But
for some complex problems, obtaining the ordered set is just a step towards selecting
the final solution, that will depend on other criteria than minimality of the objective
functions, as will be described in Section 4.

Function SAT may be the result of another system, such as learning systems, e.g.
neural networks, knowledge-based systems, e.g. fuzzy systems, or data mining, such as
case-based reasoning systems. In the following we propose a fuzzy approach to model
the preferences of a user, in which function SAT is the output of a fuzzy inference
system.

4.2 Ordering Pareto Sets with Fuzzy Systems

A fuzzy rule-based system can be used to model a satisfaction function SAT . For that,
we just have to make

∀s ∈ S, SAT (s) = FIS_solution(f1(s), ..., fI(s), q1(s), ..., qJ (s)),
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where SAT is defined in the algorithm formulated in 4.1 and FIS_solution is calcu-
lated by Equation (6) in 3.1, associating each function in F ∪Q with an input variable
x ∈ X in the fuzzy system.

In our example, variables cost and duration in X are associated to functions fcost
and fduration in F , respectively, and Q = ∅. The satisfaction calculated for the tra-
jectories in Table 1 are found in Table 3. Trajectory t1 clearly stands out among the
optimal solutions. We see that many optimal trajectories are considered as desirable as
dominated ones, which shows that optimization and preference do not necessarily go
together. Function SAT implemented by the fuzzy system was capable of distinguish-
ing between t1 and t4 that have the same duration but a large difference in cost. In the
same way, t1 is considered clearly better than t2, that has practically the same cost but
differs significantly on cost duration.

Table 3. Ordered fragment of trajectories data base with SAT function evaluation; optimal solu-
tions are indicated by “×” and non-optimal ones with “•”

s fcost fduration SAT

t1 × 401 8 5
t2 × 400 15 2.5
t3 × 200 19 2.5
t5 • 270 19 2.5
t6 • 210 20 2.5
t4 • 610 8 .8

Similar approaches could be used here, instead of the adopted Mamdani model, such
as the fuzzy residuated implication approach proposed in [10]. Moreover, the output
surface could also be obtained using an approach that combines preference modeling,
using the Sugeno integral, with a fuzzy inference system as described in Section 3, but
employing a fuzzy residuated implication approach [6]. The advantage in this case is
that the system would be able to incorporate existing preferences by a user in relation
to the objectives.

Here we have used only the objective functions as the input of the fuzzy system, but
it is possible to also incorporate other variables of interest. In our trajectories example,
we could for instance take into account the air companies, the distance to the airports,
etc.

5 A Potential Application

This work has been conceived to help engineers from the Brazilian National Institute
for Space Research to select equipment layouts to be adopted in a given satellite. Figure
4 brings the evaluations of a set of solutions for the allocation of eight objects (batter-
ies, transponders, etc)on one of the satellite panels, obtained by the evolutionary-based
multi-objective optimizer M-GEO [7]. The problem is described using six project vari-
ables (mass, dissipated heat and three geometric dimensions). The solutions are evalu-
ated considering three conflicting objectives: obtaining the center of mass of the system
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(the equipments) close to a target one (f1), obtaining a homogeneous distribution of
heat inside the satellite (f2), and minimizing the sum of the distances between equip-
ments inside a subsystem (f3), in order to reduce the length of cables connecting them
(see details in [11]).

Having a set of solutions in hand, the engineers select a small set for visual inspec-
tion, and consider other criteria than the ones used in the basic problem descriptor. Then
these solutions can suffer small (in most cases) modifications using past experience on
other similar problems. Figure 5 brings a set of six solutions, whose evaluations are
depicted in Figure 4b. The set consists of the three best single objective solutions (best
solution for each objective in the Pareto frontier), two based on the frontier baricenter
and one calculated using the Minimal Loss Criterion [9].

It is important to select a reasonably small set of solutions to be further examined,
because the the examination process of each solution is very time-consuming. Choosing
which solutions to check is made difficult by several factors. One of them is the fact that
the influence of each object in the layout cannot be appreciated by the objective functions,
since they are an aggregation of other functions on those objects. Moreover, in problems
with three objective functions visualizing the evaluation of the solutions is already both-
ersome; with more dimensions it becomes impossible. The problem described here is a

a)

b)

Fig. 4. Evaluation of a spacecraft equipment layout problem solutions (the larger the bubble, the
higher the value of objective function f3) for: a) all solutions b) selected solutions (Source: [11])
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Fig. 5. Solutions for the problem of allocating objects inside a satellite, considering 3 objective
functions, corresponding to the evaluations depicted in Figure 4b (Source: [11])

simplification of a more complex one, that involves the allocation of objects on panels
disposed in three dimensions.

The proposed approach in this kind of application is interesting for various reasons.
First of all, the solutions can be ranked according to knowledge that is available but
not otherwise considered in the phase of solution selection. Moreover, such a system
can be used in an interactive manner, by changing the rules or terms to privilege one
or other objective. Finally, more than one expert can create a fuzzy system and either
the satisfaction surfaces or the rankings can be aggregated to produce a better overall
ordering of optimal solutions.

6 Concluding Remarks

In many applications involving multi-objective problems, it is important to guaran-
tee optimality of at least one of a set of conflicting objectives. Once the set of non
dominated-solutions (the Pareto set or an approximation of it) is found, it is often nec-
essary to extract a subset of these solutions to be examined more closely, to finally
choose a single solution to be implemented. On the other hand, it is often the case that
there exists available knowledge about the preferred solutions to the problem at hand
that can be modelled by means of fuzzy rules and terms. In a nutshell, in this work we
propose to use a multi-objective optimizer to discard dominated solutions and a fuzzy
system to order the non-dominated ones.
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One of the main advantages of the proposed approach is that available knowledge
about the problem can be easily incorporated in the task of ordering non-dominated
solutions. Moreover, fuzzy systems allow for interactively which gives flexibility to the
end user. As future work, we intend to adapt the proposed approach in the creation of
spacecraft equipments layouts, incoportaing available knowledge that is not taken into
account by the optimization procedure adopted so far [11].

Acknowledgments. The authors would like to thank Gilberto Pedro da Silva Júnior for
implementing the fuzzy system for the running example and F. Souza, E.M. Rocco and
W.A. Santos for discussions on the use of fuzzy systems for the spacecraft equipment
layout problem.
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Abstract. Combat survivability is an important objective in military
air operations, which involves not being shot down by e.g. enemy aircraft.
This involves analyzing data and information, detecting and estimating
threats, and implementing actions to counteract threats. Beyond visual
range missiles can today be fired from one hundred kilometers away.
At such distances, missiles are difficult to detect and track. The use of
techniques for recognizing hostile aircraft behaviors can possibly be used
to infer the presence and for providing early warnings of such threats. In
this paper we compare the use of dynamic Bayesian networks and fuzzy
logic for detecting hostile aircraft behaviors.

Keywords: Threat assessment, situation recognition, behavior recogni-
tion, behavior detection, Bayesian networks, fuzzy logic.

1 Introduction

Combat survivability is in military operations concerned with survival of the own
aircraft and entails analyzing data and information, detecting and estimating
threats, and implementing actions to counteract detected threats. Threats can
be defined as elements designed to inflict damaging effects, force undesirable
maneuvers or degrade system effectiveness [1]. Two main types of threats that
can affect the combat survivability of an aircraft can be discerned: enemy ground
and sea based firing units and enemy fighter aircraft [2]. Although both types of
threats are important to consider, this paper focuses on threats in the air, i.e.
threats posed to the own aircraft by enemy aircraft.

The threat of an enemy aircraft can be determined as a combination of two
parameters: intent and capability [3, 4], where capability refers to an opposing
agent’s ability to inflict injury or damage, and intent refers to the will or de-
termination of an enemy to do so [4]. Determining the capability of an enemy
entails platform identification and from this inferring the capabilities of the plat-
form in relation to the own aircraft [3]. Intent is more difficult to determine since
it cannot often be directly observed, and instead involves reasoning around the
future behavior of the enemy based on its behavior [3].

Beyond visual range (BVR) missiles can today be fired from more than
100kms, and at such distances it can be very hard to detect and track them

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 70–81, 2013.
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directly with the on-board sensor systems. In order to get early warnings of
such imminent threats, the behavior of enemy aircraft can be analyzed to pos-
sibly infer the action of firing long-range air-to-air missiles. This can be cast as
a situation recognition problem [5, 6] which in its essence concerns defining a
number of relations that in sequence or in parallel define situation types that
are of interest and then try to identify instances of these in data.

1.1 Related Work

Both deterministic and probabilistic methods have been used for addressing the
problem of detecting complex patterns. Deterministic approaches include the use
of logic and temporal constraint propagation for situation and chronicle recog-
nition in e.g. environment surveillance and networks surveillance applications
[7, 8]. The use of chronicle recognition and temporal constraint propagation has
also been investigated in air scenarios [9]. Also related is work on complex event
recognition using rule based approaches with extensions for modeling temporal
constraints [10]. A rule-based approach has also been proposed for recognition
of behaviors in maritime surveillance applications [11]. Deterministic recognition
of complex behaviors has also been addressed using Petri nets, for e.g. complex
event recognition in video surveillance [12, 13], for modeling plan and activ-
ity prototypes in automated scene recognition [14], and for multi-agent activity
recognition in basketball games [15]. Petri nets have also been investigated for
situation recognition in surveillance scenarios [16, 6].

Probabilistic approaches for detecting complex behaviors include the use of
hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs) for
recognizing traffic situations [17]. The use of Bayesian networks (BNs) is also
popular in the surveillance domain, e.g. for detecting insider threats in infor-
mation systems [18], for signature based detection of maritime situations [19].
Highly related is also work on using and constructing DBNs for recognition [20].
Besides the use of graphical models the problem of recognizing interesting situ-
ations has also been addressed using fuzzy logic [21].

Also related is work on threat evaluation in ground based air defense situa-
tions. In threat evaluation, the objective is to estimate the level of threat that
individual (enemy) objects pose to one’s own defended assets [4]. The threat
evaluation problem has been addressed using e.g. rule-based systems [22, 23],
BNs [24–26], evidential networks [27], DBNs [28, 29] and fuzzy logic [30–32]. A
main difference compared with this work, is that the focus here is on explicitly
representing specific situations that evolve over time.

1.2 Problem

This paper focuses on intent inference based on recognized aircraft behaviors
that play out over time. A number of requirements can be identified: (1) there
can be multiple types of interesting situations thereof the interest to make use
of methods for describing situations at an abstract level, (2) situations may play
out over time requiring representations that allow for temporal relations, (3)
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sensor data does not provide a perfect nor complete view of the world, which
puts requirements on methods to be able to cope with uncertainty, and (4) it
can be important to continuously get estimates that represents the likelihood,
or similar, that a specific situation is possibly taking place.

In previous work [33] we have investigated the use of DBNs for detecting
one type of hostile aircraft behavior. This paper compares the use of DBNs
and fuzzy logic on this task. Situation types defined using fuzzy logic has the
advantage of being defined in human interpretable terms, thus possibly making
it easier to define interesting situations for human experts. Furthermore, in the
DBN approach we relied upon crisp variable discretization. Fuzzy logic allows for
fuzzy discretization, which can be beneficial. However, DBNs allow for temporal
relations to explicitly be used, which classical fuzzy logic does not.

2 The Interesting Situation

One type of interesting BVR situation is coupled to the behavior of firing long
range air-to-air missiles. This situation has previously been discussed in [33] and
is illustrated in figure 1.

Fig. 1. Illustration of the interesting situation. A, B, and C denote three different
phases of the situation (adapted from [33]).

The purpose in the first phase (A) is to move the launching aircraft (a/c) so
that the target is within its weapon range. The range of the weapon is highly de-
pendent on the velocity of the carrier and to maximize weapon range the velocity
of the launching a/c needs be aligned, at least horizontally, with line-of-sight to
hit point. The hit point is where the target will be located when the missile ar-
rives sometime in the future. The next phase (B) begins shortly after launching
the missile. In this phase the launching a/c turns to decrease the opponent’s
weapon range while maintaining radar to missile data link communication and
radar coverage of the target. It is important to uphold communication with the
missile to continuously transmit target data since the missile is not capable to
track the target by itself at this distance. The last phase (C) starts when the
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heading has changed to such a degree that radar field of view limit is reached.
Turning more would yield loss of radar to missile communication and a loss of
radar coverage of the target.

2.1 Variables for Detection

The information that is available to the recognition process is track data, in-
cluding position and velocity of target, provided by the onboard sensor systems.
Additional information may also be received over data links. Recognition how-
ever takes place at a more abstract level, and the process of defining a situation
recognition system involves (1) defining which measures to use and how these
can be extracted or calculated from data, and (2) defining symbols and situation
types using the defined measures. The first of these steps is based on previous
work [33] and is here recapitulated. The definition of symbols and patterns is
carried out in sections 3 and 4 for DBNs and fuzzy logic, respectively.

In previous work [33] three measures were used when defining a DBN for rec-
ognizing the interesting situation: distance between the target and the own a/c
(D), distance at closest point of approach of the two platforms (DCPA), and
relative angle between the two platforms (RA). Distance and DCPA are coupled
to phase A. The first criterion in this phase can be calculated using the Euclidean
distance (a maximum weapon range of 100km is assumed), D. The second cri-
terion in the first phase is that a weapon fired from the present position of the
target should have a future interception point with the own a/c. This can be
estimated using DCPA which denotes the distance between two objects at their
closest point of approach (CPA), given their present positions and velocities. In
the second and third phases of the situation, the enemy platform should turn,
but not too much. The relative angle (RA) was used for capturing both of these
phases.

DCPA can be calculated using equation 1, where TCPA (time to CPA) can
be calculated using equation 2, p1 is our position, p2 the position of the enemy, v1
our velocity, v2 the velocity of the enemy, and vr the relative velocity between
the two platforms. Note that since the interest here is to calculate a future
interception distance between us and a weapon fired from the enemy platform,
the velocity vector of the enemy needs to be normalized and then multiplied
with the assumed weapon speed. RA can be calculated using equation 3, where
p1 is our position, p2 is the position of the enemy and where v is the velocity
vector of the enemy.

DCPA = D(p1 + v1 · TCPA, p2 + v2 · TCPA) (1)

TCPA =

{
−

−−−−→
p2−p1·vr

|vr |2 if vr · vr > 0 ∧ |vr| > 0

∞ otherwise
(2)

RA = cos−1(
−−−−→
p2 − p1 · v) (3)
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3 Detection Using Dynamic Bayesian Networks

A BN [34] enables for a compact representation of a full joint probability dis-
tribution and is constructed as a directed acyclic graph, where nodes represent
random variables and where edges denote conditional dependence between vari-
ables. For each node, a joint probability distribution is formed together with its
direct ancestors, referred to as conditional probability tables. BNs can be seen
as representing cause and effect relations amongst nodes, and given evidence for
some variables that have been observed (information variables), the posterior
probability distributions for other variables can be determined (hypothesis vari-
ables). Although classical BNs allow for causal relations to be modeled, they do
not allow for modeling temporal dynamics.

A DBN [35] on the other hand allows for modeling dynamic systems. DBNs are
a generalization of HMMs and BNs which allows for causal time dependencies to
be modeled. In a DBN a set of time slices is depicted. In addition to conditional
dependencies to other nodes in the same time slice, nodes are in DBNs also able
to have dependencies to nodes in previous time slices (not necessarily restricted
to only the previous time slice).

3.1 Random Variables, Discretization and Network Structure

The experiments presented in this paper have used the DBN presented in [33],
and is only briefly recapitulated here. The three variables presented in section
2.1, distance (D), distance at closest point of approach (DCPA), and relative an-
gle (RA) have been used for defining information variables in the DBN. Related
to the first phase are the two random variables WithinWeaponRange (WWR)
and WeaponInterceptionDistance (WID), defined in equations 4 and 5 where S
denotes the own a/c, and where T denotes the enemy platform. The second and
third phases of the situation are captured by a single random variable InRadar-
Coverage (IRC), which is defined in equation 6.

WWR =

{
True if D(S, T ) < 100000

False otherwise,
(4)

WID =

⎧⎪⎨⎪⎩
Short if DCPA < 500

Medium if DCPA < 5000

Large otherwise,

(5)

IRC =

⎧⎪⎨⎪⎩
Inside if RA < 45

OnEdge if 45 ≤ RA ≤ 65

Outside otherwise.

(6)

In addition to these, two hypothesis variables have also been identified: Mis-
sileLaunched and MissileInAir. MissileInAir is the main hypothesis variable that
we want to calculate the likelihood of since it indicates the likelihood of the
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situation taking place. The MissileLaunched variable is used for separation of
the first phase from the combined second and third phases. The DBN is shown
in figure 2. Additional aspects that could be included are e.g. target platform
type, identity, origin, radar and missile boundaries and general threat level.

Fig. 2. A DBN describing the interesting situation. The DBN has five nodes, three
information nodes and two hypothesis nodes (adapted from [33]).

4 Detection Using Fuzzy Logic

Fuzzy logic is based on the concept of fuzzy sets which are sets that in contrast
to crisp sets do not have clearly defined boundaries. In classical set theory, an
element is either a member of a set or it is not a member of a set. In fuzzy set
theory, elements can have a degree of membership in a set. Formally, given a
universe of discourse X , a fuzzy set A in X is defined as a set of ordered pairs
A = {x, μA(x)|x ∈ X}, where x is an element in X and where μA(x) → [0, 1] is
a membership function denoting the degree of membership that the element x
has in the fuzzy set A.

The process of using fuzzy inference involves three steps: fuzzification, infer-
ence, and defuzzification. In the first step, numerical input variables are mapped
to fuzzy sets using membership functions (often specified using graphs) and fuzzy
linguistic terms (e.g. high, medium). In the second step, a set of fuzzy rules and
operators are used to make inferences. The result of the inference step is one or
more fuzzy sets which in the third step are converted back to numerical output.

4.1 Fuzzy Variables, Membership Functions and Rules

The implemented fuzzy inference system uses the same set of input variables as
the DBN; distance (D), DCPA, and relative angle (RA). Two primary output
variables have been defined, Launch and Guide. These refer to missile launch
opportunity and missile guidance, respectively. Additionally, two more input
variables have been defined to capture the temporal aspects of the situation,
WL (Weapon Launched) and WG (Weapon Guidance). The first of these, WL
takes on the maximum value of the Launch parameter from previous time steps.
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The reasoning is that once a launch opportunity has been detected, then it will
still have been valid in the past in the next time step. The second of these, WG,
is assigned the output of the guide parameter in the previous time step. The
reasoning for this is that something is being guided over time and this variable
tries to capture the temporal aspects of this. Finally, a third output parameter
has been defined, WIA (Weapon In Air), and this is actually the output fuzzy
set that we are interested in using for inferring the possibility of a missile having
been launched. The rules that have been used in the fuzzy inference system are
shown below, and the membership functions for variables are shown in figure 3.

1. D == Close && DCPA == Short => Launch = True (1)

2. D == Far => Launch = False (1)

3. D == Close && DCPA == Medium => Launch = True (0.5)

4. DCPA == Long => Launch = False (1)

5. D == Close && RA == Edge => Guide = True (1)

6. RA == Outside => Guide = False (1)

7. D == Far => Guide = False (1)

8. D == Close && WG == True => Guide = True (0.5)

9. D == Close && WL == True && WG == True => WIA = True (1)

10. WL == False => WIA = False (1)

11. WG == False => WIA = False (1)

12. WG == False => Guide = False (0.25)

Fig. 3. Membership functions used in the fuzzy inference system. The same member-
ship function is used for the variables Launch, Guide, WL, WG, and WIA.
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5 Experimental Results

5.1 Experimental Setup

Two situations have been simulated using Matlab (figure 4), one in which the
interesting behavior occurs and another where only parts of the interesting sit-
uation occurs. The two situations have been used to carry out two experiments,
one in which the two techniques are used directly on the output of the simulated
tracks, and one in which a measurement model has been used to add noise to
the data. The DBN has been defined evaluated using Genie [36] and the fuzzy
inference system has been implemented in the fuzzy logic toolbox in Matlab.

Fig. 4. Illustration of one situation representing the gimbal turn (A) and one situation
not representing the gimbal turn (B). In the figures, Own a/c represents the position
of the own aircraft, Enemy a/c represents the position of the enemy, and in (A) Missile
path depicts the path of the missile, from Enemy a/c to Own a/c (adapted from [33]).

5.2 Detection Using Ground Truth Data

Figure 5 illustrates the results for the two approaches when using ground truth
data (both situations a and b). As can be seen, the shapes of the curves are
similar although represented using different measures. The output from the fuzzy
inference system however rises more quickly for both situations, compared to the
output from the DBN. It is also interesting to note that the output from the
fuzzy inference system is more plateau like. This can however depend on the
DBN smoothing the output since the curve has been calculated as a whole in
Geenie. In case the output had been iteratively calculated for each time step,
then the output might have been slightly different.

5.3 Detection Using Noisy Data

Figure 6 illustrates the results for the two approaches when using noisy data.
Again, for the first situation (a), the shapes of the curves are similar for the
first of the two situations. Even the fluctuations from time 50 and onwards have
some resemblance. For the second situation (b) there is however some difference
between the output from the two approaches. The fuzzy logic approach behaves
very similar to the case of ground truth data, rise and plateau until the enemy
a/c overturns. The output from the DBN however stops rising rather quickly.
Again, a reason for this may be coupled to smoothing.
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Fig. 5. Results of using the fuzzy inference system (to the left) and the DBN (to the
right) on the data set that represents the interesting situation (a) and on the data set
that does not represent the situation (b)

Fig. 6. Results when using the fuzzy inference system and the DBN on the noisy data
representing the interesting situation (a) and when using noisy data that does not
represent the situation (b)
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6 Conclusion

Combat survivability is an important objective in military air operations, which
involves not being shot down by e.g. enemy aircraft. This involves analyzing data
and information, detecting and estimating threats, and implementing actions to
counteract detected threats. BVR missiles can today be fired from more than
100kms, and at such distances it can be very hard to detect and track them
directly with the onboard sensor systems. In order to get early warnings of such
imminent threats, techniques for detecting enemy behaviors can be used.

In this paper we have carried out an initial experiment to compare the use of
fuzzy logic and DBNs on the task of recognizing one type of interesting air-to-air
missile launch behavior. In the experiment, the two techniques behave similarly.
The output from using the fuzzy logic approach is more similar with and with-
out noise compared to the output of the DBN, suggesting that the fuzzy logic
approach is more stable when using noisy data. As an effect however, the DBN
seems to better separate the two situations when using noisy data. This may
however be an effect of smoothing. It is not certain that the same differentiation
would have been achieved if the DBN were to be iteratively queried as more data
becomes available. More experiments are needed to look into this.

Future work will be carried out on in four directions: (1) investigate more
carefully how the techniques behave when varying the amount and type of noise,
(2) investigate if and how the techniques can be used for recognizing multi-actor
situations, (3) carry out investigations using other types of scenarios as well as
real-world data, and (4) investigate other techniques, e.g. temporal fuzzy logic.
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Abstract. Nowadays Web 2.0 provides users a unique framework not
only to find information but also to express their opinions and collab-
orate and interact in real time. Web 2.0 includes applications such as
blogs, wikis, RSS, pod-casting, mashups, and social networks. These ap-
plications aggregate the collective intelligence of millions of users and
therefore new tools to develop decision making processes adapted to the
new virtual environments need to be developed. In this contribution we
analyse how Web 2.0 tools are used to improve cooperation and social
decision making in the enterprise context and what are the challenges
that need to be accomplished to take fully advantage of them.

Keywords: Decision making, Web 2.0, Enterprise 2.0

1 Introduction

We live in a world where technology has changed the way people communicate,
interact, get information and do business. Web 2.0 is the common term for
advanced Internet technologies and applications including social networks, blogs,
wikis, RSS, podcasting and mashups. All these tools and applications are often
known as Social Media Technologies, SMT [12]. One of the most significant
differences between traditional Web and the Web 2.0 is that in the latter the
content is user generated, and there is greater collaboration among Internet
users.

Web 2.0 communities provide a framework to collaborate, negotiate, com-
municate, and interact allowing their users to take advantage of values such
as democratic participation, collaboration, collective intelligence and knowledge
sharing on a massive scale beyond geographical barriers. All these values are
extremely useful in social decision making processes which consist on the extrac-
tion and aggregation of individuals’ information to generate a global solution.
Therefore Web 2.0 communities are considered as very powerful tools for deci-
sion support systems. This enormous on-line collective provides two potential
benefits: Firstly, such a large, dispersed population captures statistical collective
intelligence which leads to the knowledge generation through the weighted aver-
aging of independent, individual judgements; and secondly, some systems benefit
from the ability to amplify expertise. That is , if each individual in a collective
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is more likely than not to be correct, then as the size of the group scales, the
probability of the collective decision being correct moves toward certainty [5].
From the point of view of the industry many believe that understanding these
new applications and technologies and using their benefits early will stand orga-
nizations in good stead to greatly improve internal business and decision making
processes.

In this paper we analyse how the Web 2.0 communities are used to improve
collaboration and decision making in the enterprise contexts. So, the paper is
set out as follows. Section 2 describes how the most outstanding Web 2.0 tech-
nologies have become very powerful tools to support decision making systems.
Section 3 shows the utilization of the SMT in enterprise contexts, discussing its
advantages and drawbacks. In Section 4 we present current trends and challenges
of the utilization of SMT technologies in collaborative environments. And finally,
Section 5 points out our conclusions.

2 Web 2.0 Communities

New Web 2.0 technologies have provided a new framework in which virtual com-
munities can be created in order to collaborate, communicate, share information,
resources and so on. This very recent kind of communities aggregates the col-
lective intelligence of their users existing on the Web to extract information
such as behaviours, opinions, popularity, trends, knowledge and customs [16].
Particularly, some of the most common on-line Web 2.0 communities are:

1. Folksonomy is a tool for information retrieval which connects users to re-
sources via tags. A tag can be seen as an interpretation that a user makes
about a particular resource. Folksonomies are generated indicating the pop-
ularity of a particular term to describe a particular resource. Folksonomies
such as del.icio.us provide the user with a personalized view of the emergent
structure of the Web and the user’ self interest improves its ability to do
the same for others. Another example of folksonmy is CiteULike, a social
bookmarking site for academic context which organizes users’ favourite pa-
pers into a personal library that any other user can consult. Thus, every
user’s library serves as that user’s bookmarks as well as an impersonal rec-
ommendation list for other users who have liked one or more resources in
that library.

2. Recommender systems manage information overload by acting as a search
function to provide a personalized subset of the total collection. They are
personalized because they track each user behavior, pages viewed, purchases,
and ratings to come up with recommendations. Most recommender systems
rely on an item-item algorithm, which calculates the distance between each
pair of items according to how closely users who have rated them agree. Dis-
tances between pairs of items are usually based on the ratings of thousands or
millions of users, so they tend to be relatively stable over time. Some popular
recommender systems are: Amazon which offers personalized suggestions to
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their on line shoppers, Netflix which suggests videos to watch, Facebook’s
friend suggestions, Last.fm which ic a popular music website based in the
United Kingdom, and Pandora which builds personalized music streams.

3. Discussion forums represent Web online discussion communities where
users share information or discuss about selected topics. In many of these
communities some simple group decision making schemes, as referendum
or voting systems are usually used. For example, services like PollDaddy
allow to create online surveys and polls where users can vote about the best
alternative to choose for a given decision problem. Moreover Smartocracy
[13] is a social software system for collective decision making. The system is
composed of a social network that links individuals using trust degrees and
allows to make good decisions and a decision network that links individuals
to their voted-on solutions.

4. Wiki is a server software that allows users to freely create and edit Web
page content using any Web browser. It is a highly distributed way to gather,
create, and share knowledge. Its main purpose is to capture the collective
knowledge held by participants such that the resulting documents transcend
the abilities of individual contributors. The result is a network of collabo-
ratively generated documents that contains the authorial wisdom of all its
contributors. Wikis provide a new way of solving problems based on a trans-
formation on the way the knowledge is generated, shared and stored. There
are no any automatic mechanism to leverage Wikis in decision making en-
vironments. However their capability of organizing and storing information
from multiple users in a dynamic way converts them in a excellent comple-
mentary tool to support decision making processes. The most outstanding
example of a Siki based system is the online encyclopedia Wikipedia. In [1]
a consensus model designed for Web 2.0 communities and its application
in Wikipedia were presented. This model is aimed to minimize the main
problems that this type of communities present such as low and intermittent
participation rates, difficulty of establishing trust relations and so on. This
model includes some delegation and feedback mechanisms to improve the
speed of the process and its convergence towards a solution of consensus.

5. Social networks are the major achievements of the Web 2.0 technologies.
They are Web sites where people create their own virtual spaces (or home
page), on which they post pictures, write blogs, share ideas, and link to
other Web locations which they find interesting. As a result, they form on-
line communities comprised of people who share similar interests. There is
a wide range of social networks with different targets, from Web sites to
share personal information with friends, to places where you can expose
your professional capabilities, or even places to share your opinions about
your trips.

3 Enterprise 2.0

It is widely known that incorporating social business is becoming imperative to
improve customer communication and engagement, build loyal partner networks
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and improve internal collaboration. Enterprise 2.0 refers to the deployment of
Web-based social software tools and services, such as Wikis, blogs, forums, RSS
feeds, opinion polls, community chats and social networking, to facilitate enter-
prise collaboration. It includes social and networked modifications to corporate
Intranets and other classic software platforms used by large companies to orga-
nize their communication.

3.1 Using Popular Web 2.0 Tools in the Business Context

Most popular social networks can facilitate knowledge management and transfer
in complex, dynamic enterprise environments by developing new relationships
between colleagues of the firm or from other firms, advertising new products as
well as attracting prospective clients [12]. Some examples are:

1. Facebook: Using Facebook in the organizational environment leads to es-
tablish relationships with colleagues inside across the firm and outside the
firm providing a way of expertise sourcing an sharing. It offers the possi-
bility of advertise products, spreads the employees’ network and attracts
prospective customers or clients.

2. Twitter: In an enterprise context, Twitter is useful for employees to share
expertise, post progress updates and rapidly disseminate information. It is
interesting to note the rise of Twitter in all types of enterprise social net-
working.

3. LinkedIn: It is a professional oriented social networking site that allows
users to share expertise and gain new insights from discussions with like-
minded professionals in private groups. In many companies LinkedIn is used
both to recruit talents and identify sales leads. For example, IBM provides
knowledge sharing via LinkedIn answers and its own social network.

4. Blogs: A blog is as a web based journal authored by one of multiple writers,
which serves as a platform to articulate thoughts , feelings, ideas observa-
tions and issues of relevance. Readers can contribute responding to posts
as comments. Blogs sparks conversation and debate and enables to share
knowledge and information.

5. RSS feeds: They provide a channel for subscribing to content sharing
common social tags. That enables visibility of content and allows information
providers to syndicate their content.

6. Google aps (Google Docs and Google Groups): Google Docs allows
users to create word-processing, spreadsheet and presentation applications
that are Web-hosted and can be remotely accessed by any authorized user.
These documents can be edited simultaneously by multiple users. On the
other hand, Google groups allow an extension of Google Docs into collabo-
ration space where users can create, share, and work on documents as well
as start discussions, upload multi-media files and manage content.

7. Wiki: Wiki technology is increasingly being used in corporate environments
to facilitate a variety of organisational tasks that include the codification
of organisational knowledge and the formulation of corporate communities
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of practice, as well as more specific processes such as the development of
collaborative information systems, the interactions of the enterprise with
third parties, management activities and organisational response in crisis
situations [11].

3.2 Enterprise SMT Based Tools

While social networking’s success among consumers is well-known, enterprise so-
cial media tools are still struggling to gain a place in organizations. However com-
panies are starting to recognize the potential value that enterprise social media
technology can deliver, particularly around departmental and cross-department
collaboration [8]. Enterprise social media technology adapts and combines fea-
tures such as employee profiles, activity streams, microblogging, discussion fo-
rums, Wikis, groups of friends, tagging, rating and reviewing of content for
workplace use with the primary goals of better connecting members of an or-
ganization and promoting knowledge-sharing between different employees and
departments.

Although Facebook and LinkedIn have avoided tailoring their products for
corporate use, there is a wide range of tools supporting enterprise collaboration
which goes from point solutions like Yammer and Socialcast to SaaS-based solu-
tions like Salesforce.com’s or Chatter, and solutions from well known companies
like Microsoft, IBM, and Cisco. In the Gartner, Inc.’s 2012 Magic Quadrant for
Social Software in the Workplace we can find 21 ESN Vendors classified as niche
players, challengers, visionaries and leaders. Among them we can highlight:

1. Cisco’s WebEx Social: This tool provides a secure, business-focused
Facebook-like experience compatible with other Cisco’s communications
platforms, such as WebEx conferencing, Jabber and Cisco Unified Com-
munications Manager. This tool is mainly focused on networking, employees
can follow one another, and finding an expert in an area becomes as simple
as a Google search.

2. Microsoft’s Yammer and SharePoint: On the one hand, SharePoint is
a repository of business documents and institutional knowledge. Files can be
uploaded, shared, archived and edited, while Wikis and discussion threads
can help capture conversations for posterity. On the other hand, Yammer
covers real-time interactions with a series of mobile and Web applications
that combine the simplicity of Twitter with more extensive features, such as
organizational chart mapping, polls and groups. Microsoft is working on the
integration of both platforms.

3. IBM connections: It is a secure social software platform that helps em-
ployees engage with networks of expertise, and integrates business processes.
Users can quickly set up their own profiles, create and manage groups and
share files, status updates and wiki pages. Users can access this platform
everywhere from desktop or mobile devices. Over time, connections become
an expertise repository. That is, it allows users seeking out and finding the
answer to their questions or else quickly discovering who might have the
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answer based on profiles or past discussions. The key capabilities of these
platform include Activity stream with the most relevant events on the user’s
network and social analytics for connection components which provides new
trends in content, social activity and expertise for better decision-making. It
also provides a team oriented platform to keep in touch all the members in
a project including also the main tasks and milestones for the project.

4. Socialtext: It is a social software which provides the employees with facili-
ties to create, share and manage content, and effectively collaborate within
their enterprise. It offers capabilities to generate and edit content, such as
blogs, wikis, activities, etc., and automates the ability to create pages and
track their progress along the way. Moreover it helps employees to find the
most relevant people in their network to connect and collaborate with. So-
cialtext makes it easy to integrate with other enterprise tools such as CRM
(Customer relationship management), ERP (Enterprise resource manage-
ment), HR and content management systems.

5. Jive: It is a social business platform which enables people to connect, collab-
orate and communicate from anywhere. From the point of view of the em-
ployees inside companies Jive provides collaborative employees’ networks.
Externally, it supports customer communities to improve service, support
and customer satisfaction. This platform also encourages the engagement
and participation by using built-in game mechanics and rewards. Moreover
it provides on-line support to quickly capture and share new ideas by brain-
storming including voting and rating mechanisms and includes task planning
tools.

6. Salesforce.com: It is a cloud based software which provides a Customer
Relation Management platform as well as engage clients, employees and sales
representatives on a social network. It includes a social networking plug-
in that enables the user to join the conversation about their company on
social networking Web sites, provides analytical tools and other services
including email, chat, and accesses to customers’ entitlement and contracts.
This solution is comprised of several tools: Sales, Service Cloud, Data Cloud
(including Jigsaw), Collaboration Cloud (including Chatter) and Custom
Cloud. The sales cloud is a real time collaborative tool which enables users to
control all the relevant information related to the company’s sales process. It
is designed to manage marketing campaign spending and performance across
a variety of channels from a single application, tracks opportunity-related
data including milestones, decision makers and customer communications.
Chatter is a real-time collaboration platform which provides the users with
updates via a real-time news stream. Users can also form groups and post
messages on each other’s profiles to collaborate on projects.

Table 1 summarizes the main characteristics of the tools explained above.

3.3 Advantages of Enterprise 2.0

Using SMT in the companies context exhibites substantial benefits which range
from the way in which the information is spread and shared to the new way
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Table 1. Enterprise 2.0 Tools

Tool Main characteristics

Cisco’s WebEx social Facebook like experience
Focus on networking

Microsoft’s Yammer Real time communications
Mobile version
Microbloging
Support for groups collaboration
Polling system

Microsoft SharePoint On line repository of business document
wiki
discussion threads

IBM connections Social software platform
users’ profile
document sharing
Activity stream
team support
social analytics
wiki

Social text facilities to create, share and manage content
user’s profile
expert finding

Jive provides collaborative employees’ networks
supports customer communities
Encourages the engagement using built-in game mechanics and rewards.
On line support to brainstorming
Polling system
tasks planning tools

Salesforce.com Cloud based solution
Social network for employees,clients,and sales representatives
Analytical tools
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in which the problems are solved taking advantage of the collective intelligence
and fostering the mass collaboration [15]. In the following subsections these
advantages are analysed posing some real examples of companies which leverage
Web based collaboration tools.

1. Improving Communication, Collaboration, and Advertising: Among
the various possible outcomes of incorporating SMT is the possibility to easily
share information within different departments of an organisation allowing a
constant stream of user defined data and developing an ambient awareness of
other’s behaviours as well as increasing the potential discovery of knowledge
from previously unconnected sources. SMT also makes possible the exchange of
information outside the organizational boundaries, with organizations and insti-
tutions that have a previous relationship with the company, offering a mechanism
whereby contractors can develop and maintain relationships and share knowl-
edge and information beyond the exact terms of the service agreement regardless
of the affiliation or geographical dispersion. In such a way, companies can obtain
customers’ feedback.

These ways of communication are also exploited to advertise products and
attract new clients, and therefore, reducing the advertising cost while targeting a
bigger audience. In such a way, Social networking sites give businesses a fantastic
opportunity to widen their circle of contacts allowing organizations to reach out
and select groups or individuals and target them and their network of contacts
personally boosting the companies reputation. Some examples of the corporate
use of social networks for marketing activities can be found in [17,9].

Companies can use Wikis to supplement regular collaboration tools within its
global teams and cross department collaboration. Blogs for communication and
sharing within the members of the company but also with the clients and RSS
feeds for news and business information dissemination. Using forums and dis-
cussion groups firms can also obtain feedback from their customers about their
products and identify what should they improve or even get ideas about new
products. In a recent survey about using SMT in the working environment ma-
jority of the respondents agree on that social communities could improve collab-
oration project work helping employees to get quicker answer to their questions
and to easily find experts on relevant topics. Moreover they felt that the use
of SMT could help with information overload by lowering the amount of email
traffic, diverting instead to more open approaches of communication.

2. Support to Decision Making: SMT based tools can provide support for
managerial decision making through analysis of the data collected in social net-
works. Typical examples include identifying key performers, locating experts,
soliciting ideas, developing possible solutions to complex problems (e.g., using
the answer functions on LinkedIn), and analyzing managerial connection net-
works to facilitate succession planning. Furthermore, some data from SMT are
analysed by firms using data mining and machine learning procedures to track
behaviours and explore new trends to recognize current problems and develop
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new products. Some examples of companies which use SMT for managerial is-
sues are: (i) Deloitte Touche Tohmatsu’s social network (D Street), which was
established to assist the company’s human resource management team in down-
sizing and regrouping, building networks of experts, and retaining talents [3]; (ii)
Hoover Inc. has established a social network that makes use of Visible Path’s
relationship management technology to identify target business users to build
relationships and discover ways to reach specific users; (iii) Ypodimatopoulos et
al. presented in [18] a problem-solving application for discovering expertise by
leveraging the professional social network of its employees.

3. Training and Learning: Some companies employ virtual worlds, for train-
ing purposes since they allow training via virtual simulation. For example, Cisco
makes use of Second Life on its virtual campus for product training and executive
briefings, and IBM offers training exercises to its field service teams through the
simulation of project management and customer interaction in virtual worlds.
Not only enterprises but also other well-known institutions such universities
leverage social technologies to develop virtual campus in which students and
professors can collaborate and share information.

4. Knowledge Management: These applications involve employee-driven ac-
tivities such as knowledge discovery, idea creation, maintenance, sharing, trans-
fer, and dissemination. Areas of application include the discovery of experts and
the mapping of communities of expertise. These large-scale activities are known
as crowdsourcing, collective intelligence, mass collaboration, and the power of the
crowd [10]. A good example is innocentive.com, a social network that attracts the
participation of a huge community of scientists to solve science-related problems,
usually for a cash reward.

Furthermore, many companies have created retiree corporate social networks
to take advantage of their knowledge and expertise. These former employees
possess huge amounts of knowledge that can be used for productivity increases
and problem solving.

3.4 Risk of Using Social Media Technology in the Enterprise 2.0

The threats and the exposure to security and business risks, arising from careless
employees engaging in online communities is now an issue of great relevance for
enterprises: Employees can disclose not only their personal information but also
confidential business data. In this context, enterprises face not only productivity
loss due to employee spending time using SMT; a greater concern is the possible
threat of information leakage caused by incautious posts or explicit references to
private business information [14]. The audience of SNs is so broad that besides
customers, business competitors, and partners, also hackers may access such in-
formation, potentially gaining competitive advantages and causing the targeted
enterprise financial losses, both in the short and long term. The risk of attackers
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exploiting SMT data warehouses is on the rise, due also to the tools available to
them (e.g. data aggregator and data mining tools). In table 2 we summarize the
main pros and cons of using SMT in the work place.

Table 2. Pros and concerns of using Enterprise 2.0 tools

Pros Cons

Expanding market research Security risks
Low cost marketing Viruses and malware
Expertise source Low productivity
More eficient communications inside and outside the firm High investment in social software
On line training and learning Reputation and legal liability
Sharing expertise Information leackage
Better organization of knowledge Employees reluctance to use SMT
Faster way to attract new clients
Easily select groups or individuals and target them personally
Easily way to keep up to date
Improving collaboration

4 Trends and Future Work

We are at the very beginning of the utilization of SMT technologies in collabora-
tive environments such as the enterprise. Therefore, there are still many potential
research issues. Most of them are especially aimed to bridge the gap between big
data and big strategy, that is to take advantage of the massive volume and detail
of information captured by enterprises, the rise of multimedia, social media, and
the Internet of Things.

4.1 Development of New Tools to Support Computer Assisted
Decision Making Adapted to the Web 2.0 Communities

We identify as a key challenge the development of new tools and algorithms to
support computer assisted decision making taking advantage of web 2.0 technolo-
gies, and integrate these tools in the already existing platforms. These tools should
be able to provide better ”participation architectures” that allow sharing data,
trusting user as co-developers, harnessing collective intelligence, etc... as well as
overcome some of the inherent problems of the Web 2.0 communities such us large
user base, heterogeneity in the users’ background, low and intermittent participa-
tion rates, the dynamism of the Web 2.0 frameworks and difficulty of establishing
trust relations. Moreover some validation tools must be developed to assess the
quality of the decision process and the validity of the obtained results.

4.2 Expertise Seeking Using Web 2.0 Technologies

A a key aspect in many business and engineering contexts is the appropriate
selection of the experts and the way their opinions are aggregated depending on
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their background, expertise and the quality of the opinions provided. In many
big companies they have a huge staff world wide and sometimes, they struggle to
find the most suitable experts to be integrated in a work team or take part in a
decision making process. Therefore, new tools to find experts using companies’
staff data-bases or web-based scientific- academical networks such as Google
Schoolar, the Web of Knowledge or DBLP need to be developed. In such a way,
the selection of experts whose background really fits the problem to be solved
would be ensured.

4.3 Using Big Data to Improve the Decision Making Process

Many decision making problems require gathering and analysing information
to define the problem and identify possible solutions. To do so, it is required to
obtain the opinion of people such as clients, prospective users or even knowing the
general opinions and trends. Traditionally, to get clients information companies
use polls. However it is necessary to develop more sophisticated on line polling
systems in which the specific profile of each survey respondent would be taken
into account to aggregate the results.

Another effective way to gather information is to extract the knowledge from
corporate databases or from the Web 2.0 communities, such as Internet forums,
groups of bloggers, social network services, etc, which provides a platform in
which users can collectively contribute and also generate massive content. Such
an enormous amount of data it is widely known as ’Big Data’. One of the most
straightforward manners of taking advantage of Big Data, is by creating trans-
parency, that is, organizing raw data in such a way that making them more
accessible and easy to understand in a timely manner. For example, by cluster-
ing similar objects, by showing the evolution of certain features along the time,
or even by identifying possible trends. Properly understanding entire datasets
could also lead to substantially improve the decision making process [19]. To
do that, new ways of organizing and extract knowledge from Big Data need to
be developed. These tools would provide the experts with a high level insight
about a huge entire dataset helping them to make the most appropriate decision
minimizing the risks.

5 Conclusions

We have analysed how the Web 2.0 tools can be used to improve cooperation
and social decision making in the enterprise context. We have presented the most
popular Web 2.0 technologies and shown their application in enterprise domains.
We have also analysed the concept of Enterprise 2.0, discussing its character-
istics. We have explained which are the main social tools specially designed to
support the Enterprise 2.0. Finally, some current trends, open questions and
prospects in the topic have been pointed out.
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Abstract. Spoken term detection is a task in artificial intelligence where
user-entered keywords are to be looked for in a huge audio database. In
one common approach the recordings are first converted into phoneme-
sequences, and the actual search is performed in this space. During
search, instead of performing the default multiplication of basic phoneme
operation probabilities, applying a triangular norm can significantly
improve system accuracy. We used an application-oriented method for
triangular norm representation and tuning, namely the logarithmic ge-
nerator function. In practice this proved to be quite successful and led
to a relative error reduction score of 16%.
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1 Introduction

Among the range of fuzzy functions, triangular norms (or t-norms) [7] have a sig-
nificant number of successful applications in the literature, especially in artificial
intelligence (AI) problems such as image enhancement [4], image blending [13],
classifier combination [3], speech recognition [9], and multimodal biometrics [14].
What is common among these AI tasks, and what makes them a good area for ap-
plying t-norms, is that they usually rely on aggregating lower-level probabilities
(outputs of single classifiers, phoneme probabilities of short excerpts of speech,
confidence scores of different biometrical identifier systems etc.). The standard
approach for this aggregation is to simply calculate the product of these in-
dividual probability values (naive Bayes approach), relying on the assumption
that these components are independent. While this assumption leads to a nice
and elegant mathematical formulation and also behaves well in practice, in most
cases it is clearly false, which calls for the use of other operators. However, these
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operators still have to express an AND-like relation of the arguments. Triangular
norms are just the conjunctive operators of fuzzy logics, and they are an ideal
choice for such tasks.

In this paper we will focus on an AI task, that of spoken term detection
(STD, sometimes also referred to as keyword spotting or KWS), which is a quite
recent topic within speech technology. It seeks to provide a way to search for user-
entered keywords in a huge archive of audio recordings. Recent approaches [27,28]
view this task in a dictionary-independent way, where search is performed only
by relying on the acoustic model and using only general language information
(e.g. probability values of consecutive phoneme pairs or triplets). This rules out
the approach of simply performing automatic speech recognition (ASR [25]) on
the recordings, storing the resulting word sequence, and performing a text search
in this textual representation, since this approach prevent users from finding
words (usually proper nouns) which were not present in the dictionary used in
the speech recognition step.

One common approach in STD is to represent the recordings as mere phoneme-
sequences, to which the phonemes of the search term are matched one by one.
The overall probability of such a phoneme-sequence pairing is usually computed
as the product of the individual probability values. In this paper we experimented
with triangular norms when performing this aggregation; among the wide range
of possible t-norms we chose an application-oriented representation.

In this paper we will describe the STD problem, focusing on the approach u-
sing phoneme-sequences. Then we will describe the t-norm representation chosen
(the logarithmic generator function), present the test results, and finally analyze
them.

2 The Spoken Term Detection Task

In the spoken term detection task we seek to find the user-entered natural lan-
guage expressions (terms or keywords) in an audio database (the set of record-
ings). An STD method returns a list of hits, each of which contains the point
of occurrence, the term found, and a probability value that can be used to rank
the hits. In contrast to other information retrieval tasks, in STD the order of
the hits does not matter; the probability value of the returned hits is only used
to filter the hit list further by using a decision threshold, keeping just the more
probable elements.

In STD, a user expects a quick response for his input, thus we have to scan
hours of recordings in a few seconds (or less). To achieve this, the task is usu-
ally separated into two distinct parts. In the first one, steps requiring intensive
computation are performed without knowing the actual search term, resulting in
some intermediate representation. Then, when the user enters the keyword(s), a
(quick) search is performed in this representation. We will focus on the approach
where the intermediate representation is the most probable phoneme sequence,
since it permits a very quick search while still retaining good accuracy [20].
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The most probable phoneme sequence for each recording is usually generated
by some standard speech recognition technique. Then, for a term w with the
phonemes w1, w2, . . . , wn, we look for all the non-overlapping phoneme sequences
(L) for which

P (w|L) ≥ Pmin, (1)

where Pmin is a threshold set previously. Making the standard assumption that
the successive phonemes are independent, we get

P (w|L) =

n∏
i=1

P (wi|li) ≥ Pmin, (2)

where l1, . . . , ln are the phonemes of the phoneme sequence L. To compensate for
errors in the phoneme sequence representations, phoneme insertions, deletions
and substitutions are allowed. This means that wi or li can be empty (λ), so

P (w|L) =

m∏
i=1

P (wi|li) ≥ Pmin, (3)

where by omitting the wi = λ values from the sequence w1, . . . , wm we get the
term w, and without the li = λ values l1, . . . , lm forms L. P (wi|λ) represents the
probability of deleting phoneme wi (if wi �= λ), P (λ|li) means the probability of
inserting phoneme li (if li �= λ), while P (wi|li) is the probability of substituting
wi for li in the case where neither wi nor li is λ (but it may be that wi = li). The
optimal pairs can be found by calculating the edit (or Levenshtein) distance [22].
The probability values of the phoneme operations can be computed from the
errors of the phoneme recognizer: after performing phoneme classification on
recordings with known real phonetic transcriptions, the probability values of
phoneme insertions, deletions and substitutions can be readily calculated by
comparing the resulting phoneme sequences to ground truth ones (i.e. from the
confusion matrix [21,10]).

Note that in equations (2) and (3) we made the assumption that the consecu-
tive phonemes are independent, which allowed us to decompose P (w|L) into a
product of lower-level probability values. This assumption is clearly false owing
to the continuous motion of the vocal chords, the tongue and the mouth [31],
so we can replace product with other operators as long as they behave well
in practice. As triangular norms also represent AND-like relations of values in
the range [0, 1], which is just what we need for combining probability values
of phoneme operations (insertions, deletions and substitutions), we may expect
them to work well in this task. Furthermore, several norms (e.g. [5,26,1,6]) have
one or more parameters, allowing us to fine-tune them to the actual problem.
For these reasons, we will apply t-norms in the STD task.

3 The Logarithmic Generator Function

One advantage of using triangular norms is their tunability: they can be adapted
to the requirements of the given problem. With respect to this, however, there



Using the Logarithmic Generator Function in Spoken Term Detection 97

could be great differences among various t-norm families depending on how the
range of triangular norms they contain matches the ideal performance needed
for our actual application [11]. On the basis of our earlier findings [9,12] it is
usually better to concentrate on the additive generator function f [26,17], since
we have plenty of room to adjust it to suit our actual needs. This can be viewed
as triangular norm construction [18,8], with respect to the criterion that the
applied triangular norm representation must be easy to handle.

Recall that a strict, continuous and Archimedean triangular norm T can be
written in the form

T (x, y) = f−1
(
f(x) + f(y)

)
, (4)

where f is the additive generator of T , and it is a continuous, strictly decreasing
function on the interval [0, 1]; f(0) = ∞ and f(1) = 0. Moreover, for a given
T , f is unique up to a scalar factor, so the triangular norm applied can also be
represented by its generator function. If we could find a suitable way to model
this function f , we could fine-tune its behaviour to suit our needs. To achieve
an optimal performance we have to find a flexible yet simple representation,
preferably one which is application-oriented.

The additive generator is widely examined in the literature (e.g. [19,23,18]).
However, for an actual application we need an application-oriented approach in-
stead of a theory-oriented solution, as we have to pay attention also to computer
arithmetics (like the ability of avoiding underflowing, being able to easily handle
values in a different order of magnitude, etc.). Due to these reasons we chose
the logarithmic generator function for triangular norm representation, which we
will describe next.

3.1 The Logarithmic Generator Function

To understand the logic of the logarithmic generator function [12], we should
first consider its application context. In a typical case we have a number of
probability estimates as input (p1, p2, . . . , pk), and a t-norm T ; and we need to
calculate

T k(p1, p2, . . . , pk) = T (. . . T (T (p1, p2), p3), . . . , pk). (5)

Now using the transcript T (x, y) = f−1(f(x) + f(y)) we have that

T k(p1, p2, . . . , pk) = f−1
( k∑

i=1

f(pi)
)
. (6)

In our environment, and in most artificial intelligence tasks, to avoid numerical
underflowing, instead of a probability value p we use the cost value c = − log p.
This step also implies that we use cost addition instead of probability mul-
tiplication, and perform (aggregated) cost minimization instead of probability
maximization. The triangular norms, however, work only on probability values.
To overcome this difficulty, first we incorporate this conversion into Eq. (6), i.e.
we will use

− log
(
f−1
( k∑

i=1

f(e−ci)
))

. (7)
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It is straightforward to include the calculation of the negative exponential into
f ; hence, the logarithmic generator function is defined as

φ(x) = f(e−x). (8)

Now we can write

φ−1
( k∑

i=1

φ(ci)
)

= − log
(
f−1
( k∑

i=1

f(e−ci)
))

(9)

= − logT (e−c1, e−c2 , . . . , e−ck), (10)

so using the logarithmic generator function φ(x) in exactly the same way as
we used the additive generator function f(x) will lead to a calculation of the
same triangular norm T , only with the corresponding cost values instead of the
probabilities both as arguments and as the result. As f(x) : [0, 1] → [0,∞) was
a strictly decreasing function with f(1) = 0, the logarithmic generator function
φ(x) : [0,∞] → [0,∞] is strictly increasing, and φ(0) = 0. The additive generator
function is unique up to a multiplicative constant for any given T t-norm, so the
same is true for the logarithmic generator function.

3.2 Representing the Logarithmic Generator Function

Now we will turn to modeling this logarithmic generator function. Almost any
representation could be used for this task; we chose to model it with a piecewise
linear one for two basic reasons. First, it is quite simple to handle: both φ and
φ−1 can be implemented very easily. Second, it is a very flexible representation:
the family of all strict t-norms with a piecewise linear logarithmic generator
φ : [0,∞] → [0,∞] with finitely many breakpoints, such that limx→∞ φ′(x) = 1,
is dense in the family of all strict t-norms with respect to the topology of uniform
convergence. A proof of this just involves a standard compactness argument.

Henceforth let φ = φm1,...,mN
a1,...,aN

: [0,∞] → [0,∞] be the piecewise linear, strictly
increasing function with break points on the domain as 0 = a0 < a1 < . . . <
aN < aN+1 = ∞ and with positive steepness values m1 < . . . < mN , respec-
tively, and mN+1 = limx→∞ φ′(x) = 1. That is,

φ(x) = (x− aj)mj+1 +

j∑
i=1

(aj − aj−1)mj , aj ≤ x < aj+1. (11)

If the ai control points are fixed, φ can be described by a vector of N steepness
values, making it easy to optimize. Furthermore, the function φ is unique up to a
positive multiplicative constant; by setting mN+1 to 1, we fix exactly one of these
equivalent representations. The actual function f (and hence, the triangular
norm T ) can be easily calculated from φ, being a piecewise exponential function
with N + 1 negative exponents. It will be continuous, but not smooth (except
when m1 = . . . = mN = 1, which is just the product case).
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Fig. 1. A (smoothed) histogram of the − log p values encountered during performing
STD, and the suggested positioning of the N = 8 control points

This way, by keeping all the aj values fixed, this problem can be simplified
to that of a maximization task in an N -dimensional space: we seek to maximize
the accuracy of the spoken term detection system as a function of m. As for the
choice of the control points, we have the possibility to set them at values where
they represent our problem as accurately as possible. Since it is also nontrivial,
next we will present a method for control point assignment.

3.3 The Choice of Control Points

Optimizing the logarithmic generator function means performing a search in an
N -dimensional vector space. To aid this search process we should avoid the pre-
sence of irrelevant or redundant dimensions, so we should try to give each one the
same importance. The main idea behind the general method introduced for this
purpose in [12] is to create statistics of the values occurring during use, i.e. note
which x and y values are passed to the T (x, y) operator (and thus to the generator
function f). Owing to the commutative property we do not need to distinguish
between the two arguments x and y. Next, we calculate a histogram of the − log
of recorded values: for each value we note how many times it appears. Afterwards,
we divide this histogram into N + 1 parts with equal-sized areas: the control
points will be the borders between these regions (see Fig. 1). This way about
the same number of evaluations will fall into each region between two adjacent
control points, making each steepness value (roughly) equally important. An
advantage of this method is that it is quite general regarding the actual task,
since it requires only a statistic of appearing cost values, and it also has only
parameter (N).

Now we have presented the logarithmic generator function, which allows us
to represent and fine-tune a triangular norm in an application-oriented manner.
We have also described a general methodology to fit it into a given problem by
positioning the ai control points. Next, we will focus on the actual application.
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4 Experiments and Results

Having defined the problem and the logarithmic generator function, we turn to
the testing part: we introduce the evaluation methodology, the testing environ-
ment and the way of testing, then present and analyze the test results.

4.1 The Evaluation Metrics

A Spoken Term Detection system returns a list of hits for a query. Given the
correct list of hits, we should rate the performance of the system to compare dif-
ferent configurations. In STD, instead of standard information retrieval metrics
such as precision (the ratio of correct hits found to the hits returned) and recall
(the ratio of correct hits found to all the correct hits), usually some other, albeit
similar measures are used. Here, we will mainly use the Actual Term-Weighted
Value (ATWV) [24], which is defined as

ATWV = 1− 1

T

T∑
t=1

(
PMiss(t) + βPFA(t)

)
, (12)

where T is the number of terms, PMiss (t) is the probability of missing the term
t (in fact, the opposite of recall for the term t) and PFA(t) is the probability of
getting a false alarm. These values are defined as

PMiss(t) = 1− NC(t)

NT (t)
and PFA(t) = 1− NFA(t)

Tspeech −NT (t)
, (13)

where NC(t) is the number of correct hits returned, NFA(t) is the number of false
alarms, NT (t) is the total number of real occurrences of term t, and Tspeech is
the duration of recordings in seconds. Usually the penalty factor for false alarms
(β) is set to 1000. A system achieving perfect detection (having precision and
recall scores of 100%) has an ATWV score of 100%; a system returning no hits
has a score of 0%; while a system which finds all occurrences, but produces 3.6
false alarms for each term and speech hour also has a score of 0% [24]. An older
and more permissive metric is the Figure-of-Merit (FOM), which is the mean of
recall scores when we allow only 1, 2, . . . 10 false alarms per hour per keyword.

Note that although ATWV uses all the hits returned, a threshold value was
still used, namely Pmin from Eq. (3). A carelessly chosen threshold constant
leads to a worse ATWV score than optimal; due to this, usually it is worth
calculating max-ATWV (or MTWV), which is a (theoretical) upper bound of
ATWV, where we take the maximal ATWV score of all N -best lists of the hit
list returned. It summarizes the performance of the system if the probability
threshold Pmin has been optimally chosen. Fortunately, the metric FOM does
not rely on this threshold value.
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Table 1. The accuracy values obtained when using different kinds of triangular norms

Development Set Test Set
T-norm used N MTWV FOM ATWV MTWV FOM

Log. gen., optimized for MTWV
8 71.32% 89.81% 65.38% 67.43% 86.67%
16 68.44% 88.15% 64.21% 67.43% 87.31%

Log. gen., opt. MTWV + FOM
8 70.71% 91.13% 69.22% 69.75% 88.55%
16 65.25% 92.79% 65.86% 66.03% 90.11%

Product (baseline) 57.31% 91.13% 63.29% 63.78% 89.96%

4.2 The Testing Environment

We used audio recordings of Hungarian news broadcasts taken from 8 different
TV channels for testing. The 70 broadcasts were divided into three groups: the
first, largest one (about 5 hours long) was used for training purposes. The second
part (about 1 hour long) was the development set: these recordings were used
to fine-tune the t-norm and get the corresponding threshold. The third part
was the test set (about 2 hours long), used for the final evaluation of system
performance. We chose 25 words and expressions as search terms, coming up in
the news recordings quite frequently; they varied between 6-16 phonemes (2-6
syllables) in length. The phoneme sequence intermediate representations were
produced by Artificial Neural Networks [2] used in two consecutive steps [29],
applying the standard MFCC +Δ+ΔΔ feature set [15] with phoneme bigrams
as a dictionary-independent language model, using the HTK tool [30].

4.3 The Testing Process

To set the control point ai values, we used the histogram-based method described
in Section 3.3. It requires a statistic of the actual probability values, which was
obtained in a simple way. Assuming that the distribution of the phonemes of
search terms mirror those of the recordings, we calculated the ratio of the occur-
rence of each phoneme in the training data set. Next, we chose two phonemes
according to this distribution, and noted the probability values of deleting the
first phoneme, inserting the second one, and replacing the first phoneme by the
second one. This process was repeated 100 000 times, some white Gaussian noise
was added to the generated values to smooth the resulting discrete values, and
we chose the control points based on this histogram.

We performed the optimization of the steepness values by using the freely
available Snobfit package [16]. We maximized for just the MTWV metric, and for
the MTWV and FOM metric combined, and experimented with N = 8 and N =
16 control points, which meant a total of 4 tests. We optimized it by performing
STD on the development set; the steepness values associated with the optimal
score were then evaluated on the test set, using the corresponding threshold
value. To ensure stability, we took all the vectors that produced an optimal score
on the development set, and calculated their mean for each steepness mi. In the
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Fig. 2. The product t-norm (left) and the optimized t-norm using the logarithmic
generator function (right). The x and y axes show the two argument probability values,
while the z axis show the resulting cost value (i.e. -log p).

end, we got five scores for each case: MTWV and FOM for the development set,
and ATWV (using the threshold value we got on the development set), MTWV
(using the optimal threshold for the test set) and FOM for the test set.

4.4 Results

Table 1 lists the accuracy scores obtained using the logarithmic generator func-
tion. Examining the scores attained on the development set, we can see that
all the optimized metric values significantly increased compared to the baseline
scores. The settings N = 16 produced somewhat worse scores than N = 8,
which is probably due to the curse of dimensionality: the number of tests re-
quired increases exponentially with the number of dimensions. Turning to the
test set results, we see that in some cases the ATWV score is much lower than
MTWV, reflecting threshold instability (i.e. Pmin obtained on the development
set was not optimal for the test set). In general, error reduction in the test
set was not as successful, which could be partly due to overfitting: the opti-
mization resulted in a development set-specific t-norm. To avoid this side effect,
incorporating other metrics (in our case FOM) into the objective function of
optimization seems to be a good idea, as in these cases there were only minor
differences in the corresponding MTWV and ATWV scores. This is probably
because different evaluation metrics measure the performance of a configuration
in a somewhat different manner; in our case ATWV focuses on the top of the
hit list, whereas FOM takes less probable hits into account as well. Trying to
satisfy both metrics at the same time might result in a more balanced hit list,
being better in general.

We should also stress that the resulting MTWV and ATWV scores exceeded
those of the product norm in every case. Focusing on the case N = 8 when we
optimized both for MTWV and FOM, we achieved an ATWV score of 69.22%,
which, compared to the baseline score of 63.29%, means a relative error reduction
score over 16%, this being quite a significant improvement in STD accuracy.
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The product t-norm and the best-performing logarithmic generator function
can be seen in Figure 2 (where, to emphasize the differences between the two
norms, the z axis has a log scale). It can be seen that the two norms are quite
different, reflecting the fact that the product operator is suboptimal for this task,
and, unlike the logarithmic generator function, it could not be tuned either.

5 Conclusions

In a common approach of spoken term detection, user-entered queries are pro-
cessed by matching their phonemes to the phonemes of recordings one at a time.
In this task usually the phoneme operations are assumed to be independent,
hence the product of their probabilities is taken; but using a triangular norm in-
stead of multiplication can improve the system accuracy. In this work we applied
an application-oriented representation of t-norms, and achieved a significant im-
provement in system accuracy and resulted in a relative error reduction of 16%
this way.
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24. Pinto, J., Hermansky, H., Szöke, I., Prasanna, S.: Fast approximate spoken term
detection from sequence of phonemes. In: Proceedings of SIGIR, Singapore (2008)

25. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall
(1993)

26. Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities.
Publ. Math. Debrecen 8, 169–186 (1961)
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Abstract. In computer vision the facial expression recognition descrip-
tors extracted from raw images are categorized as structural or appear-
ance descriptors. A lot of effort has been done in the literature for
improving both type of descriptors for making them more robust; in
most cases, both types of descriptors have been used separately. In this
work we propose a hybrid model that uses both descriptors for emo-
tion inferring. Our model is based in detecting Action Units and uses
a probabilistic approach for emotion prediction based on an ensemble
of Support Vector Machine classifiers. Fully detailed inner workings of
the method are provided for experiment replication as well as detailed
results to assess emotion inferring performance.

Keywords: Computer Vision, Machine Learning, Emotion Analysis.

1 Introduction

Emotions are essential in our everyday lives. Whether intentionally or uninten-
tionally, humans express different kinds of emotion during their daily routine in
very different scenarios and situations.

Emotion expression has a lot to do with non-verbal body language. However,
the expression of the face has a crucial role in emotions, being probably the
most important part of the body when dealing with them. Actually, some basic
emotions could be inferred just by analyzing the movements of the face; for this
reason, trying to detect emotions based on the expression of the face is a common
practice.

Ekman and Friesen (both psychologists) developed, back in 1978, the Facial
Action Coding System (FACS) [1]: a complete system to define in a quite formal
approach all the movements that a person can do with the muscles of its face.
The most important feature of FACS is that, since it is based just on human
anatomy, there is no room for subjectivity or different interpretations due to
different cultural backgrounds.

The FACS basic units are called Action Units (AU). each one of them (there
are up to 46) defines a single movement that human beings are able to do with
their faces. Figure 1) shows some examples of Action Units.

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 105–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Some examples of Action Units, they correspond, respectively, to AU#1
(inner brow raiser), AU#2 (outer brow raiser), AU#15 (lip corner depres-
sor), AU#20 (lip stretcher) and AU#27 (mouth stretch). (Extracted from
http://www.cs.cmu.edu/∼face/facs.htm).

It is known that a particular emotion can be expressed as a combination of
some Action Units, while an emotion could be inferred given the set of all the
Action Units involved in it. Our system is based in these ideas: emotions based
on the detection of Action Units.

There are some Action Units that are relatively easy to detect by analyzing
the movement of certain key points, like the ones located in the eyebrows or in
the lips; however, some of them are easier to be detected using the appearance
(the intensity value of a point in the image) rather than its movement or its
location.

For instance, figure 2 shows a person performing, among others, Action Units
#1 (inner brow raiser), #2 (outer brow raiser) and #27 (mouth stretch); all of
them are suitable to be detected by analyzing the movement (how its location
varies along a video) of certain key points such as the ones located on the eye-
brows and on the lips. On the other hand, figure 2 also shows a person doing
(among others) Action Unit #9 (nose wrinkle): this Action Unit is extremely
difficult to detect just by tracking the movement of the key points involved in
it. Rather than that, it is much easier to be detected analyzing the evolution of
the appearance of the nose region.

Fig. 2. Left column person doing (among others) Action Units #1 (inner brow raiser),
#2 (outer brow raiser) and #27 (mouth stretch); all of them should be detected an-
alyzing the movement of some particular points. Right column person doing (among
others) Action Unit #9 (nose wrinkle); it is very difficult to detect this Action Unit
analyzing just the movement of key points, instead of it the evolution of the appearance
of the nose region should be used. (Original images from Cohn-Kanade database).

Our method uses a two-layer approach hybrid model that takes advantage of
both approaches: the fist step learns predictive models for each one of the Action
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Units using separately both structural and appearances descriptors; the second
step involves a probabilistic approach so that the Action Units detection results
are combined by means of a probabilistic weighted ensemble of binary classifiers.
Additionally, we will introduce a probabilities table relating emotions and Ac-
tion Units classifiers, our results show consistency with the accepted psychology
model that establishes the relationship between Action Units activation and the
emotion being detected.

We briefly discuss previous work on face expression recognition (including
both face detection and used descriptors) in section 2. The inner workings of the
method are explained in depth in section 3 while the experimental settings and
the results are detailed within section 4. Finally, results are briefly discussed in
section 5.

2 State of the Art

Most of the facial expression recognition systems available in the literature, for
instance [2], [3], [4], [5] and [6], are composed (among others) by two main phases.

The first one is face detection. The vast majority of existing images of faces
have a cluttered background potentially including other objects apart from the
face itself. The task of the face detector is to get rid of the background objects
and pick just the region of the image in which the face is located. Currently face
detection can be considered a solved problem for the frontal view case, although
locating faces in unconstrained pose and in presence of occlusions is still an
active research topic.

The second is the extraction of visual characteristics (descriptors) from the
detected face. It is desirable that any descriptor could be invariant to illumi-
nation changes and rotation. On the other hand, regarding with dimensionality
reduction, the size of the descriptor should be significantly smaller than the
image size.

Among the most commonly used descriptors in computer vision are Gabor
filters [7], SIFT [8], histograms of oriented gradients [9] (HOG), local binary
patterns [10], and so on.

2.1 Face Detection and Facial Emotion Detection

One of the most widely used algorithms for face detection is the one developed
by Viola and Jones [11]. The algorithm proposed in [11] detects faces almost in
real time.

Viola-Jones algorithm uses the concept of integral image: instead of working
with the pixel intensities they compute a set of features that recall Haar Basis
functions. This computation involves just a few operation per pixel. The algo-
rithm takes advantage of a machine learning approach in which many predictive
models are built by selecting a small set of relevant features using AdaBoost [12];
then, a set of more complex models are build in a cascade fashion in order to
speed up the detection process by focusing on the relevant regions of the image
(see figure 3).

A more recent face detection algorithm was introduced by Ramanan and
Zhu [3]. In [3] not only the face is detected, but also the pose is estimated and
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Fig. 3. Results of Viola-Jones algorithm ran on famous Lenna image. (Extracted from
http://www.mathworks.es).

the landmark or key points of the face are located. Therefore, Ramanan-Zhu
algorithm proposes a unified approach to solve the three tasks simultaneously
by encoding elastic deformation of faces using mixtures of trees (see figure 4).

Fig. 4. Results of Ramanan-Zhu algorithm on a ”wild” image. The algorithm is able
to detect faces in a wide variety of positions and orientations. (Extracted from [3]).

Regarding to the descriptors usage for achieving emotion detection: examples
of facial emotion detection using appearance descriptors can be found in [10],
[13] and [14]. On the other hand, [15], [5] and [4] make use of facial landmarks
and structural descriptors. Finally, a hybrid approximation by means of using
simultaneously both descriptors is found in [2].

3 Emotion Detection Method

3.1 Structural Descriptors

Structural descriptors have to do with the location (rather than its color in-
tensity) of certain key points (we call them landmark points) on the image. In
particular, the structural descriptors we used are based in the work done by
Rojas et al. [6].
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Not all the points on the face are equally relevant for Action Units detection
purposes. Ideally, we are interested in points that suffer enough variation from
one Action Unit to another; for instance, the center of the left eyebrow has much
more variation than the tip of the nose, therefore we will be more interested in
this first landmark rather than in the second one.

Concretely, we have defined the structural descriptors only over the landmarks
depicted in figure 5.

Fig. 5. Most significant landmarks that have been used for building the structural
descriptors. (Original image from Cohn-Kanade database).

Let us describe the structural descriptor extracted from one particular frame
ft that belongs to a particular video F having T frames:

Let Pt = {pt1, ..., ptk} : ∀i = 1, ..., k pti ∈ N2
0 be the k locations of the landmarks

points within a particular frame ft. For this particular frame the structural
descriptor is defined as the concatenation of four blocks:

The first block is the difference between the position of a landmark with the
same landmark on the first frame. It is defined as:

pti − p0i ∀i = 1, ..., k

The second block are the differences among all the landmarks within the same
frame. It is defined as:

Itfd = pti − ptj : ∀i, j = 1, ..., k : i �= j

The third block contains the differences defined in second block with respect
to the first frame. It is defined as:

Fad = Itfd − I0fd

Finally, the fourth block comprises again the differences defined in second
block but now with respect to the previous frame. It is defined as:

Fpd = Itfd − It−1
fd
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3.2 Appearance Descriptors

Unlike structural descriptors, appearance descriptors are computed with the
intensity values of a particular region of the image rather than the location of
the landmark points.

We decided to use a bank of 12 Gabor filters to extract the appearance de-
scriptor of a particular frame. The different Gabor filters belonging to the bank
are parametrized according to scale λ = {11 × 11, 24 × 24, 37 × 37} and angle
θ = {0, π2 ,−π

2 , pi}. Therefore, our Gabor filters are defined as:

G(θ, λ) = exp

(
−x2 + γ2y2

2σ2

)
cos

(
2πx

λ

)
where x = i cos θ + j sin θ, y = −i sin θ + j cos θ ∀i, j = 1, ..., N being N the
size of the particular filter according to its scale.

Let ft be a particular frame that belongs to a video F having T frames.
Let G(θ, λ) be a Gabor filter with λ scale and θ angle.

The appearance descriptor for image ft, call it f̂t, is obtained by filtering ft
with G(θ, λ) ∀λ = {11× 11, 24× 24, 37× 37}, ∀θ = {0, π2 ,−π

2 , pi}.
As we did with the structural descriptor, the final appearance descriptor will

be defined by the concatenation of two blocks using the differences of the filtered
image with the previous ones, as follows:

The first block is about the difference between the current frame and the
initial one, it is defined as:

f̂t − f̂0

The second block contains the difference between the current frame and the
previous one, it is defined as:

f̂t − f̂t−1

Finally, since not all the regions of the face are equally important, and also due
to dimensionality reduction purposes, we do not use the whole face; we use in-
stead the regions corresponding to eyes, nose and mouth (see figure 6). Given the
high redundancy of the Gabor filters response, and still with the aim of reducing
(even more) the dimensionality, Principal Component Analysis (PCA) is applied
by picking dimensions (components) so that 95% of the data variance is kept.

3.3 Action Units Detection

Support Vector Machines (SVM) were introduced by Vapnik [16] and have been
successfully proven in many pattern recognition and machine learning tasks.
SVMs try to find the maximum-margin hyper-plane that separates positive and
negative examples for a specified class. In our case, when training a SVM for a
particular Action Unit, positive examples of the SVM would be the ones con-
taining the corresponding Action Unit, while the negatives ones are those that
do not contain it.

In order to perform Action Units detection a classifier is trained for each Ac-
tion Unit with a one-vs-all strategy using a SVM with linear kernel. Furthermore,
for each one of the Action Units two SVMs are learned, one using the appearance



Emotion Detection Using Hybrid Structural and Appearance Descriptors 111

Fig. 6. Regions of the face being used for the appearance descriptor based on Gabor
filters. (Original image from Cohn-Kanade database).

descriptor and another using the structural descriptor of the images. All clas-
sifiers are trained using the well-known Cohn-Kanade database in its extended
version [2].

In all the classifiers the cost parameter is optimized by means of a cross-
validation process on the training set. This parameter controls how strict is the
classifier when accepting errors (misclassified data). Optimizing the cost guaran-
tees that the classifier will have no over-fitting and, therefore, it will generalize
some knowledge or patterns (and not just memorizing it) from the data it has
been trained with.

Let AUS = {AU1, ..., AUk} be the set of k action units that have to be learned.
The Action Unit detection process ends up with 2k classifiers separated in two
blocks, half of them using the structural descriptors and the other half using the
appearance ones, as follows:

– CS = {cs1, ..., csk}: set of classifiers using structural descriptors so that csi ∈
CS is a classifier that uses structural descriptors for learning AUi ∈ AUS.

– CA = {ca1, ..., cak}: set of classifiers using appearance descriptors so that
cai ∈ CA is a classifier that uses appearance descriptors for learning AUi ∈
AUS.

3.4 Table of Probabilities for Emotion Inferring

The emotions that we want to infer are the seven basic emotion categories.
Concretely this set is E = {Anger, Contempt,Disgust, Fear,Happy, Sadness,
Surprise}.

Let C = {CS ∪CA} : |C| = 2k being c(x) the output of classifier c ∈ C given
input x.

Let TEi = {tei1, ..., teip} be the test subset containing examples in which
emotion Ei ∈ E is present.
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Let TOP be the |E| × |C| table of probabilities so that columns are ordered
as:

cs1, ca1, cs2, ca2, ..., csk, cak

being

TOPij = P (cj(x) predicted AU is present | Ei present in x) =

#{cj(teim); cj(teim) = 1} ∀m = 1, ..., p

|TEi|
∀i = 1, ..., |E| ∀j = 1, ..., |C|

Inferring the Emotion of a New Example
Let im be a new image example in which a single emotion e ∈ E is present.

Let r ∈ {0, 1}|C| so that:

ri =

{
0 if ci predicts that its corresponding action unit is present in im
1 if ci predicts that its corresponding action unit is not present in im

∀i = 1, ..., 2k

Once r is set the emotion that is finally inferred according to:

arg max
e

r · TOPe,·

Emotion Recognition Process Overview
In figure 7 a summary of the whole emotion recognition process is shown. It
depicts all the steps that are followed from the original images to the Action
Units classifiers and, afterwards, the table for emotion inferring.

Fig. 7. Summary of the whole emotion recognition process
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4 Experimentation and Results

4.1 Experimental Setting

Let us introduce within this section the inner workings of the tools we have been
using for both Action Units classifiers training and emotion inferring.

Action Units classifiers have been trained using the Cohn-Kanade database
(CK) [2]: regarding with Action Units detection, it contains 593 posed sequences
in which full FACS coding of peak expression frames is provided. CK database
include 118 different participants from 18 to 50 years, being the 69% of them
female, 81% Euro-American, 13% Afro-American and 6% other groups. All image
sequences were digitalized into 640× 490 pixel matrices with 8-bit gray-scale or
24-bit color values.

As previously stated, the classifier used is the linear kernel Support Vector
Machine, particularly the LIBSVM implementation [17]. The cost parameter is
optimized using cross-validation on the training set and then the classifier is
retrained with all the training set using the best cost.

The calculation of each one of the cells TOPij of the table of probabilities is
done by means of a leave-one-out person-independent cross-validation, as follows:

Let IND = {ind1, ..., ind118} be the set of different individuals present in CK
database. Each one of the indn ∈ IND has its own image sequences.

The classifier cj ∈ C is trained |IND| times. The n-th iteration uses the
sequences sTR ∈ IND\{indn} as the training set and the sequences sTE ∈ indn
as the test set. As stated before, each built classifier for each iteration makes,
at the same time, another cross-validation process (this time over IND \ {indn}
sequences) so that the cost parameter is optimized.

The calculation of the whole table of probabilities TOP using the CK database
involves no more than 20 seconds in a standard desktop computer.

The TEi set described within section 3.4 is formed by all the sequences sTE

(for all the |IND| iterations) containing the emotion Ei ∈ E. Predicting a test
example e involves very few computations, in particular: running all the c ∈ C
AU classifiers using e as input and computing one scalar product for each Ei ∈ E.

4.2 Emotion Detection Results

The heatmap of figure 8 shows a representation of the table of probabilities for
emotion inferring: the rows represent the emotions while the columns represent
the different classifier for Action Units detection using whether structural or
appearance descriptors.

Using the Table of Probabilities depicted on figure 8 the emotion of all the
sequences of the CK database has been inferred. The matrix in figure 9 shows a
comparison of the prediction results with the ground truth gives us the confusion
matrix shown on figure 9.

5 Discussion

Analyzing the Table of Probabilities, depicted in heat-map style on figure 8,
we observe that these probabilities are completely coherent with the accepted
emotion description in terms of facial action units.
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Fig. 8. Heatmap representation of the Table of Probabilities for emotion inferring

anger contempt disgust fear happiness sadness surprise
anger 0.73 0.04 0.00 0.00 0.00 0.23 0.00

contempt 0.07 0.64 0.00 0.00 0.07 0.14 0.07
disgust 0.25 0.01 0.68 0.00 0.05 0.01 0.00
fear 0.00 0.00 0.00 0.75 0.25 0.00 0.00

happiness 0.00 0.03 0.00 0.09 0.88 0.00 0.00
sadness 0.00 0.09 0.00 0.00 0.00 0.91 0.00
surprise 0.00 0.00 0.00 0.07 0.01 0.06 0.85

Fig. 9. Confusion matrix resulting from the emotions predictions of the CK database
using the Table of Probabilities

For instance, happiness is expected to contain Action Unit #12: as expected,
both classifiers for this action have a very high probability to be activated (see
probabilities on figure 8).

On the other hand, an interesting phenomenon happens with disgust emotion:
it is expected to have Action Units #9 or #10: looking at the Table of Probabil-
ities we can see that both classifiers for Action Unit #9 have high probability,
however, for the Action Unit #10 just the appearance classifier has high prob-
ability; this means that is easier to detect this Action Unit using appearance
descriptors rather than using the structural ones. It must be said that this is
very suitable since in Action Unit #10 (upper lip raiser, see figure 10) there is
not a clear trajectory of any landmark point that helps to detect it, however
there is a noticeable change on the region around the lower part of the nose.

Regarding with the confusion matrix shown in figure 9 we want to remark
that an accuracy of 0.77 is a very promising result since we are dealing with a
7-class problem, in this sense we improve largely the chance accuracy.

There are some emotions that have better results than the others. Happiness,
sadness and surprise are the ones that have more accuracy (> 0.85) while others
like anger, contempt or disgust have a lower one (< 0.65). An effort in both
finding better descriptors and improving the classifiers has to be done to improve
the detection of these emotions.

An example of this difficulty can be found in disgust emotion: while the 64%
of examples containing this emotion are well classified, the 25% of them are
classified as anger. This is happening because both emotion are, in some way,
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Fig. 10. Detail of person performing Action Unit #10: upper lip raiser. (Extracted
from http://www.cs.cmu.edu/∼face/facs.htm).

similar and then, for some examples, the classifiers are not able to detect the
differences among them.

6 Conclusion

We introduced a probabilistic weighted ensemble to infer emotions from video
based on Action Unit Detection. Yet simple, the model intrinsically correlates
with the intuitive idea of where appearance and structural descriptors should be
used given its nature. We have also explained both structural and appearance
descriptors and in which situations one should be more convenient instead of the
other.

Finally, the results of the whole method using the Cohn-Kanade database are
introduced: both the Table of Probabilities and the confusion matrix to asses
the quality of the predictions.
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Abstract. Self-Training methods are a family of methods that use some
supervised method to assign class labels to the unlabeled examples. The
resulting model is useful to predict the classification of unseen new do-
main objects. Most common supervised methods used inside self-training
are the inductive ones. In this paper we propose to use the lazy learning
method LID to assign classes to the unlabeled examples. A lazy approach
such as the one of LID allows to reason by similarity around the labeled
examples. Thus, when an unlabeled example is classified as belonging
to a class we are sure that it shares relevant features with some labeled
examples.
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1 Introduction

Classification problems are those that handle domain objects that can be grouped
in classes [5]. The goal of classification is to characterize univocally each one of
the classes by means of one or more descriptions. There are many learning me-
thods that can be used to solve classification problems and most of them take
into account a set of known examples to build a model of the domain. These
known examples are labelled since the class to which they belong is known. One
of the most common families of learning methods used to build domain models
are the inductive learning methods. In these methods, given the set of known
examples belonging to a class Ci, the goal is to build a generalized description
for Ci (commonly a disjunction of several descriptions) that is satisfied by all
the examples of Ci and none of the examples belonging to the other classes. The
more amount of examples are known the more accurate the induced model is.

However with the growth availability of data a new problem appears: some of
the known examples are not labelled. In fact, what happens is that the majority
of the known examples are not labelled. This means that inductive learning
methods are not longer applied since only a few of the examples can be used
to build the domain model and therefore that model is not accurate enough.
A different approach in these cases could be the use of unsupervised learning
methods such as clustering methods that are able to handle both labeled and
unlabelled examples. The main concern in this situation is that they cannot
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take great benefit of the labeled examples. This is the main motivation of using
Semi-supervised learning methods.

Semi-supervised learning methods are mainly concerned to deal with a huge
amount of data the majority of which are not labeled. In [12] there is an excellent
survey about semi-supervised learning methods. In that paper authors classify
semi-supervised learning methods as transductive when the goal is to construct a
domain model, and inductive when the goal is to classify unseen objects. Because
we are interested on predict classifications, in this paper we focus on inductive
methods. These methods, according to [12] can be classified in the following
three families:

– Generative methods. They are probabilistics and assume that a domain
model is an identifiable mixture distribution [10] in a way that assume that
examples have a distribution from which labels to the unlabeled examples
can be assigned. If the assumed distribution is not the one fitting the ex-
amples, the final model could be totally incorrect; otherwise, these methods
have a good performance. The most common algorithm on this family is the
Expectation-Maximization (EM) algorithm [7].

– Self-training. The basic idea is to assess the classification of unlabeled exam-
ples from the classes of labeled examples. Thus a supervised learning method
is used to classify the unlabeled examples which are then added to the set of
labeled examples. Algorithms used in this family are, for instance inductive
learning methods such as ID3 [11].

– Co-training [4]. The idea is to split the attributes involved in the descriptions
of the known examples in two disjoint subsets. Each one of these subsets is
given to a classifier in order to propose a class for the object. Thus, each
classifier proposes a class label according to the information that it has about
the object. When the two classifiers agree on the class the unlabeled object
is then labeled as belonging to that class.

Behind these methods there is the idea of selection of unlabeled examples. It
has been proved [8] that an intelligent selection of either the unlabeled methods
to be labeled or the split of attributes in the case of co-training, can significantly
improve the accuracy of the final model.

Authors working on semi-supervised learning assume that the process of la-
beling is a time-consuming task; therefore, the goal is how to automatically take
benefit of the unlabeled data. Clearly, what we need is to label them, therefore
it is necessary to explore how to assign labels to all these unlabeled examples
or, at least, to a majority of them.

In this paper we focus on self-training. We assume we have a huge amount
of data and only a few of them are labeled, however we would use all them
to predict the classification of unseen objects. Self-training uses a supervised
learning method on the labelled examples in order to assign class labels to the
unlabeled examples. The labeling process is commonly performed using either an
inductive learning method or the k-NN method in the context of support vector
machines [9]. In our approach we propose to use a lazy learning method called
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Function LID (p, SDi , Di, C)
if stopping-condition(SDi)

then return class(SDi)
else fd := Select-attribute (p, SDi , C)

Di+1 := Add-attribute(fd, Di)
SDi+1 := Discriminatory-set (Di+1, SDi)
LID (p, SDi+1 , Di+1, C)

end-if
end-function

Fig. 1. The LID algorithm: p is the problem to be solved, Di is the similitude term, SDi

is the discriminatory set associated with Di, C is the set of solution classes, class(SDi)
is the class Ci ∈ C to which all elements in SDi belong.

LID [2] to label the examples. This method, in addition to classify an object is
capable to give an explanation of the proposed classification. Such explanation
is, in fact, a description similar to the ones produced by inductive methods.
As we already suggested in [1] we can store these descriptions and finally we
obtain a partial model of the domain. In the current paper we do not use these
descriptions but only the labelled examples, however in the future we plan to
experiment with these descriptions and with partial models of the domain.

The paper is organized as follows. First in Section 2 we introduce LID, the
lazy learning method that we use in our experiments. In Section 3 we explain
how to perform self-training with LID. In Section 4 we describe the experiments
we carried out and the obtained results. The paper ends with the conclusions
and the future work.

2 The Lazy Induction of Descriptions Method

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant attributes of a new prob-
lem and searches in a case base for cases sharing these relevant attributes. The
problem is classified when LID finds a set of relevant attributes whose values are
shared by a subset of cases all of them belonging to a same class. The description
formed by these relevant features is called similitude term and the set of cases
satisfying the similitude term is called discriminatory set.

Given a problem for solving p, the LID algorithm (Fig. 1) initializes D0 as
a description with no attributes, the discriminatory set SD0 as the set of cases
satisfying D0, i.e., all the available cases, and C as the set of solution classes
into which the known cases are classified. Let Di be the current similitude term
and SDi be the set of all the cases satisfying Di. When the stopping condition
of LID is not satisfied, the next step is to select an attribute for specializing Di.

The specialization of Di is achieved by adding attributes to it. Given a set
F of attributes candidate to specialize Di, LID selects the most discriminatory
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attribute in F using a distance measure. Such distance is used to compare each
partition Pf induced on SDi by an attribute f with the correct partition Pc.
The correct partition has as many sets as solution classes. Each attribute f ∈ F
induces in SDi a partition Pf with as many sets as the number of different values
that f takes in the cases contained in SDi . Given a distance measure Δ and two
attributes f and g inducing respectively partitions Pf and Pg, we say that f
is more discriminatory than g iff Δ(Pf ,Pc) < Δ(Pg,Pc). This means that the
partition Pf is closer to the correct partition than the partition Pg.

Let fd be the most discriminatory attribute in F . The specialization of Di

defines a new similitude term Di+1 by adding to Di the attribute fd. The new
similitude term Di+1 = Di∪{fd} is satisfied by a subset of cases in SDi , namely
SDi+1 . Next, LID is recursively called with SDi+1 and Di+1. The recursive call of
LID has SDi+1 instead of SDi because the cases that are not satisfied by Di+1 will
not satisfy any further specialization. Notice that the specialization reduces the
discriminatory set at each step, i.e., we get a sequence SDn ⊆ SDn−1 ⊆ . . . ⊆ SD0 .

The selection of the most discriminatory attribute is heuristically done using
the LM distance [6] over the candidate attributes. Let us recall its definition:
Let X be a finite set of objects; P = {P1, . . . , Pn} be a partition of X in n sets;
and Q = {Q1, . . . , Qm} be a partition of X in m sets. The LM distance between
them is computed as follows:

LM(P ,Q) = 2− I(P) + I(Q)

I(P ∩ Q)

where

I(P) = −
n∑

i=1

pilog2pi; pi =
|Pi|
|X |

I(Q) = −
m∑
j=1

pj log2pj; pj =
|Qj|
|X |

I(P ∩ Q) = −
n∑

i=1

m∑
j=1

pij log2pij ; pij =
|Pi ∩Qj |
|X |

Given a partition P on a set X , I(P) is the average information of P and it
measures the randomness of the distribution of elements of X over the n classes
of the partition. The quantity represented by I(P ∩ Q) is the mutual average
information of the intersection of the partitions P and Q.

LID has two stopping situations: 1) all the cases in the discriminatory set
SDj belong to the same solution class Ci, or 2) there is no attribute allowing the
specialization of the similitude term. When the stopping condition (1) is satisfied
p is classified as belonging to Ci. When the stopping condition (2) is satisfied,
SDj contains cases from several classes and p cannot be uniquely classified. The
outcome of LID in the stopping condition (1) is both a class label and a similitude
term, which justifies the classification of p. The last similitude term can also be
interpreted as a partial description of the class Ci. It is partial because all the



A Lazy Learning Approach for Self-training 121

examples satisfying it belong to the class Ci, however there are examples in Ci

that do not satisfy this similitude term; therefore, it does not characterizes all
the class.

3 Self-training with LID

In this section we explain how to perform self-learning with LID. Given a set
of labeled examples L and a set of unlabeled examples U the goal is to use the
examples in L to label those in U . At the end of labelling process, the set of
the labeled examples, L and those in U newly labeled, can be used to predict
the classification of unseen examples. A self-training method uses the labeled
examples with a supervised learning method to assign labels to (some) examples
of U . In our approach, the supervised method we use is LID. The common self-
training algorithm is the following:

1. Select (randomly) an example ui ∈ U .
2. Run LID to classify ui. Let s be the solution proposed by LID.
3. If s is a multiple solution (more than one class), then ui cannot be classified.

Actualize U = U − {ui} and go to step 1.
4. If s is one class then assign s as the label for ui. Let Ds be the description

given by LID to explain the classification of ui.
5. Retrieve the subset Us of the uk ∈ U satisfying Ds and assign to all of them

the label s.
6. Actualize U = U − Us and go to step 1

The general idea of a self-training method is to assign a class label to each
one of the examples in U . Commonly, self-training methods assign labels to all
the examples in U . The use of LID has two main differences with respect to the
use of any other method. The first one is that at the end of the labelling process
some examples in U can remain unlabeled. This happens when LID finishes with
the stopping condition (2), i.e., when it cannot find a unique solution class and
gives a multiple classification. The second difference is that LID does not need
to be run for all the examples in U . Let us suppose that LID has classified an
example ui ∈ U as belonging to the class Ci because of the similitude term Di.
All other examples in U that satisfy Di will also be classified as belonging to Ci.
So, in fact, it is not necessary to run LID for all the examples in U .

Behind the step 5 of the previous algorithm there is the idea of local approx-
imation. The object ui has been classified as belonging to the class s because it
shares important features with some labeled examples belonging to s. The de-
scription Ds is a pattern describing the part of the problem space around ui and
this subset of labeled examples; therefore, we assume that all the other examples
satisfying this pattern will also belong to s. Notice that, by construction, any of
the labeled examples satisfying Ds belong to a class different than s. We also
want to remark that at the end of the process some of the unlabeled examples
can remain unlabeled.
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Table 1. Number of domain objects, attributes and classes of the UCI datasets used
in the experiments

Dataset �Objects �Attributes �Classes

Monks1 432 6 2
Monks2 432 6 2
Monks3 432 6 2

Solar Flare 1066 10 2
Vehicle 1728 6 4

Many semi-supervised learning methods can only deal with binary domains,
i.e., those having only two solution classes. Our approach is not aware of the
number of classes of the domain since it explores areas of the problem space
around the known problems.

As we pointed out in [1], the set of all Dj gives us a partial model of the
domain which can be used for prediction in the same way that inductive models.
We do not experiment now with that model but only use the examples in L
and those of U newly labeled to predict the class of unseen objects, i.e., we
take a lazy approach for classify new objects. In the next section we explain the
experimentation.

4 Experiments

The goal of the experiments is to prove that using a lazy learning approach
such as LID to assign labels to unlabeled examples is a good approach. We used
5 data sets from the UCI repository [3]: Monks1, Monks2, Monks3, Solar Flare
and Vehicle (Table 1 shows the characteristics of these domains). We chosen these
domains mainly because they have a “reasonable” number of domain objects al-
though most of them have only two solution classes. Other data sets having more
classes, as for instance Soybean that has 17 classes, have not enough number of
objects to experiment with a semi-supervised approach. However, the data set
Vehicle is a good example of data set having more than two classes and help us
to prove the feasibility of our approach.

First of all we separated a 10% of the domain objects to form the test set TS
to be used for prediction. Then, we need to determine the sets L and U . Thus,
from all the remaining examples we randomly selected a proportion p to act as
the set L and for the rest we deleted their class label and considered them as
unlabeled. Next step has been to apply the self-training procedure described in
previous section to increase the number of labelled examples. Finally, with all
the labeled examples (those already labeled at the beginning and the new ones)
as case base, we used LID to predict the class of the objects in TS.

With this basis we carried out several trials. First we experimented with
different values of p in order to check some changes depending of the proportion
of labeled and unlabeled examples. Thus we taken p to be 5%, 10% and 15% of
the available objects (i.e., excluding those in TS). For each one of these values
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Table 2. Comparison of the predictivity accuracy average of the experiments between
LID in mode supervised and self-training with LID taking the 5%, 10%, and 15% of
labeled examples. Between parenthesis is also show the percentage of multiple classifi-
cations.

Dataset LID 5% 10% 15%

Monks1 96.582 (17.177) 65.845 (21.744) 66.413 (12.397) 67.042 (13.248)
Monks2 48.620 (24.233) 56.814 (13.027) 57.842 (16.702) 56.961 (19.083)
Monks3 100 (0) 85.347 (15.179) 92.550 (5.391) 95.229 (5.650)

Solar Flare 81.966 (42.453) 80.384 (9.339) 77.399 (10.596) 89.731 (7.989)
Vehicle 95.984 (5.652) 78.874 (13.272) 83.105 (12.927) 84.829 (12.971)

we performed 10 trials. In each trial we chosen randomly the elements of L. This
allows us to obtain results that are independent of the labeled examples in L.
Finally, we repeated all the experiments picking up different examples to form
the test set.

Table 2 shows the accuracy average of all the experiments and also the accu-
racy of LID when all the objects are labeled. The accuracy has been computed
without taking into account the percentage of multiple answers, i.e., we con-
sidered multiple answers as a no classification. That is to say, results have to
be read as follows: when the systems gives a unique solution, the X% of times
is the correct one. Between parenthesis there is also the percentage of multiple
classifications.

Concerning accuracies, we seen that the semi-supervised approach is compa-
rable to the lazy learning approach. Best results for semi-supervised approach
are obtained with 15% of labeled data improving the results of LID in Monks2
and Solar Flare and being very similar in Monk3. This result was expected since
as many labeled examples we have better should be the final model. We also
seen than semi-supervised approach produces low percentage of multiple classi-
fications. This is specially important in Monks2, where LID produces very bad
results.

In a general view we can see that using the semi-supervised approach the
accuracy decreases. This is an expected fact because the classification is made
with a low percentage of examples having labels that can be assured as correct
(since the other ones have labels automatically assigned). Focusing on the con-
crete data sets, we seen that the accuracy on the Solar Flare highly increases
taking the semi-supervised approach. This increment is explained by the fact
that there are less multiple classifications probably due to the regularities of the
domain, allowing the construction good local approximations around labelled
examples. Concerning Monks2 and Vehicle, we seen that supervised and the
semi-supervised approaches give similar results. This could be due to the inverse
reason that for the Solar Flare: these two domains are less regular and the fron-
tiers of the classes are not clear. The data sets Monks1 and Monks3 have the
expected behavior since the semi-supervised approach is less accurate than LID
and the accuracy increases as much as labelled examples are available.
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It is also clear that the examples contained in the labeled set L highly influ-
ences the process of labeling. Since we chosen randomly the examples in L, if
one class Ci is not well represented by these examples, then the unseen examples
belonging to Ci will not be well classified.

Table 3 shows the average of correct classifications of the examples in U . For
Solar Flare and Vehicle the percentage of correct classifications is high, meaning
that in these case we can obtain a good model domain with self-training. This
good model is reflected on the accuracy results and, as we already mentioned,
in the Solar Flare the accuracy is even better than using LID on the data set
completely labeled. For all three Monks data sets, we see that there are many
errors in labeling examples. By a detailed analysis of the trials we have seen that,
depending on the examples of the set L, sometimes all the examples of one of
the classes have been erroneously labeled. Therefore the case base on which LID
is working to classify unseen objects is biased toward one of the classes. In other
words, LID is capable to classify correctly examples of one class but the ones in
the other class sometimes produce errors. Monks data set is balanced, that is to
say, there is the same number of objects in both classes. Therefore we also see
that despite the incorrect labeling of one of the classes, LID is robust enough
to correctly classify unseen objects of that class, otherwise the high accuracy
achieved in Monks3 could not be explained.

5 Conclusions and Future Work

In this paper we introduced an approach for self-training that uses a lazy learning
method called LID for labeling known examples without class label. The novelty
is the use of a symbolic method as LID since other approaches using lazy learning
methods such as the k-NN, work on the context of support vector machines
or probabilistic models. We experimented on several well known data sets and
the results prove the feasibility of the approach. The expected behavior is that
the accuracy of the semi-supervised approach decreases with respect the one
exhibited by a supervised approach (i.e., with all the known examples labeled).
Using the description that LID builds to explain the classification, we obtain
good patterns allowing to classify some unlabeled examples. In some domains,
as for instance in Monks2 and in Solar Flare they allow to increase the accuracy.

We take a lazy approach for predict the class of unseen domain objects. How-
ever it should also possible to use the descriptions build by LID to form a partial

Table 3. Percentage of correct classifications of the examples in U using LID taking as
case base the set L

Dataset 5% 10% 15%

Monks1 42.090 61.957 59.706
Monks2 38.111 47.800 48.879
Monks3 54.404 42.600 52.533

Solar Flare 73.156 78.786 66.049
Vehicle 74.347 76.717 70.574
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model of the domain. The idea is to store these descriptions during the self-
training process. Each one of the descriptions is associated to a class, i.e., is a
partial description of a class. Therefore, when an unseen example matches one
of the descriptions it can be classified as belonging to that class.
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Abstract. Although recommender systems and reputation systems
have quite different theoretical and technical bases, both types of systems
have the purpose of providing advice for decision making in e-commerce
and online service environments. The similarity in purpose makes it nat-
ural to integrate both types of systems in order to produce better on-
line advice, but their difference in theory and implementation makes the
integration challenging. In this paper, we propose to use mappings to
subjective opinions from values produced by recommender systems as
well as from scores produced by reputation systems, and to combine the
resulting opinions within the framework of subjective logic.

1 Introduction

Recommender systems [1] and reputation systems [8,14] are similar in the sense
that both collect data of members in a community in order to provide advice to
those members. However, there are also fundamental differences. Recommender
systems assume that different people inherently have different tastes, and hence
value things subjectively. In contrast, reputation systems assumption that all
members in a community value things under the same criteria, i.e. objectively.
Said differently, when a recommender system indicates that a user probably does
not like a given resource, it does not mean that there is anything wrong with
it. However, when a reputation system produces a low value for a resource, one
can assume that its quality is poor. We use the term “resource” to denote the
thing (or item) being rated. The purpose of recommender systems is mainly
to generate suggestions about resources that a user a priori is not aware of
but would probably be interest in. The purpose of reputation systems is to
provide advice about resources that the user already is aware of and interested in.
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On this background there is a strong potential for combining the two types of
systems.

However, it is quite challenging to make an effective integration of the output
results produced by recommender and reputation systems, given the following
three-fold. First, in general the advices generated from different systems are
distinct and heterogeneous. This is because different systems may use different
forms of feedback and evaluate the performance based on different criteria. Sec-
ond, the result from reputation systems reflects the collective opinions of a whole
community whereas the result from recommender systems only represents the
collective opinions of a local community, i.e. the users with similar preference.
Third, the uncertainty of the generated advice should be taken into considera-
tion. The uncertainty is typically due to the small number of received ratings,
and will hinder the usefulness of ratings in decision making. To address these
issues, we propose to use mappings to subjective opinions from the respective
output results of recommender and reputation systems, so that the outputs are
homogeneous and hence can be easily integrated and fused. Subjective logic [11]
is a probabilistic framework capable of coping with the uncertainty in evidences.

We denote recommendation values and reputation scores as the outputs de-
rived from recommender systems and reputation systems, respectively. Reputa-
tion systems produce reputation scores, e.g. in the range 0 – 5 stars. We assume
a Bayesian/Dirichlet reputation system where the collected feedback ratings can
be converted to subjective opinions, see Section 4.1 for details. Besides, a rec-
ommender system derives predictive recommendation values in the range [0, 1]1,
which will be converted to subjective opinions, see Section 4.2 for details. To
integrate both reputation scores and recommendation values, we introduce the
CasMin operator in Section 5. Finally, in Section 5.3 we show via an example
that the advice produced by our approach is better than that produced by ei-
ther a recommender system or a reputation system alone. To the authors’ best
knowledge, our work is the first effort in the literature to fuse outputs from
recommender systems and reputation systems in order to produce better advice.

2 Related Work

Both recommender systems and reputation systems have been extensively and
separately studied for decades. Recommender systems, as an essential component
of e-commerce and online service applications, provide users with personalized
high-quality recommendations to mitigate the well-known information overload
problem. Collaborative filtering (CF) is a widely adopted technique to generate
recommendations using the ratings of like-minded users [1]. The basic principle
is that users with similar tastes in the past will also favour the same resources in
the future. CF techniques can be classified into memory-based and model-based
approaches. However, CF inherently suffers from two severe issues: data sparsity
and cold start [1], due to the fact that users – especially new users – typically

1 The ratings given by users are normalized in the range [0,1] if necessary.
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have rated only a few resources. The uncertainty of predictions arises from such
conditions where none or only few ratings are available for recommendations.

Many approaches have been proposed to reduce the uncertainty and improve
the accuracy of recommendations. One direction of work is to develop new sim-
ilarity measures in order to identify more reliable similar users [2]. However, the
uncertainty due to few ratings of similar users cannot be handled. Model-based
approaches [12,15] generally handle these issues better than memory-based ap-
proaches in terms of efficiency and accuracy. This is because global rating data
is used to train a prediction model whereas memory-based approaches work on
local rating data. The main drawback is that the trained static model is diffi-
cult to adapt to real-time increasing ratings. Another direction is to incorporate
social relationships, such as trust-aware recommender systems [13]. The under-
lying principle assumption is that trust and taste are strongly and positively
correlated [8]. Our work follows this general direction, i.e. to integrate taste
and trust. The difference is that our approach takes the global perspective of
resources (reputation scores) rather than the local perspective of users (social
ties). In addition, the integration that we study is based on directly fusing taste
and trust, rather than on moderating taste recommendations with trust.

Attacks against recommender systems are usually summarized as shilling at-
tacks [3,4] where bogus rating profiles are injected to promote or degrade some
resources. Although effective methods have been designed for memory-based CF,
the research on robust model-based CF are not well studied [4]. Reputation sys-
tems are often built upon the assumption that user feedback may be fake and
unreliable, and that various kinds of attacks could be conducted to influence the
formation of reputation scores [10].

Reputation systems also suffer from the cold start problem. Remember that
reputation systems generate scores based on feedback (or ratings) from members
in a community [14,8]. When only little feedback is available, it is like a cold start
situation where the derived reputation scores will be less reliable. Uncertainty
can also increase when feedback greatly conflicts [17]. Users also tend to give
mostly positive feedback which results in the derived reputation scores being
less distinguishable and hence less useful.

In a nutshell, combining scored from both recommender systems and repu-
tation systems can provide users with more accurate and robust online advice
than either of the scores can in isolation. However, to date the integration of the
two types of systems has not been studied in the literature.

3 Subjective Opinions

In this section, we will first introduce the notation and formation of subjective
opinions used for fusing taste and trust. We also depict the mappings to binomial
opinions from the multinomial ratings which is the common form of feedback in
reputation systems and recommender systems.
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3.1 Opinions Formation and Representation

A subjective opinion expresses belief about states of a state space called a “frame
of discernment” or “frame” for short. In practice, a state in a frame can be
regarded as a statement or proposition, so that a frame contains a set of state-
ments. Let X = {x1, x2, . . . , xk} be a frame of cardinality k, where xi (1 ≤ i ≤ k)
represents a specific state. An opinion distributes belief mass over the reduced
powerset of the frame denoted as R(X) defined as:

R(X) = P(X) \ {X, ∅} , (1)

where P(X) denotes the powerset of X and |P(X)| = 2k. All proper subsets of X
are states of R(X), but the frame X and the empty set ∅ are not states of R(X),
in line with the hyper-Dirichlet model [5]. R(X) has cardinality κ = 2k − 2.

An opinion is a composite function that consists of a belief vector b, an uncer-
tainty parameter u and base rate vector a that take values in the interval [0, 1]
and that satisfy the following additivity requirements.

Belief additivity: uX +
∑

xi∈R(X)

bX(xi) = 1. (2)

Base rate additivity:
k∑

i=1

aX(xi) = 1, where xi ∈ X. (3)

The opinion of user A over the frame X is denoted as ωA
X = (bX , uX ,aX),

where bX is a belief vector over the states ofR(X), uX is the complementary un-
certainty mass, and aX is a base rate vector over X , all seen from the viewpoint
of belief owner A.

The belief vector bX has (2k−2) parameters, whereas the base rate vector aX

only has k parameters. The uncertainty parameter uX is a simple scalar. Thus, a
general opinion contains (2k +k−1) parameters. However, given that Eq.(2) and
Eq.(3) remove one degree of freedom each, opinions over a frame of cardinality
k only have (2k + k− 3) degrees of freedom. The probability projection of hyper
opinions is the vector EX expressed as:

EX(xi) =
∑

xj∈R(X)

aX(xi/xj) bX(xj) + aX(xi) uX , ∀xi ∈ R(X) (4)

where aX(xi/xj) denotes relative base rate, i.e. the base rate of subset xi relative
to the base rate of (partially) overlapping subset xj , defined as follows:

aX(xi/xj) =
aX(xi ∩ xj)

aX(xj)
, ∀ xi, xj ⊂ X. (5)

Equivalent probabilistic representations of opinions, e.g. as Beta pdf (proba-
bility density function) or a Dirichlet pdf, offer an alternative interpretation of
subjective opinions in terms of traditional statistics [11].
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The term hyper opinion is used for a general opinion [11]. A multinomial
opinion is when the belief vector bX only applies to elements xi ∈ X , not in
R(X). Binomial opinions apply to binary frames and have a special notation
as described below. Let X = {x, x} be a binary frame, then a binomial opinion
about the truth of state x is the ordered quadruple ωx = (b, d, u, a) where:

b, belief: belief mass in support of x being true;
d, disbelief: belief mass in support of x (NOT x);
u, uncertainty: uncertainty about probability of x;
a, base rate: non-informative prior probability of x.

The special case of Eq.(2) in case of binomial opinions is expressed by Eq.(6).

b + d + u = 1. (6)

Similarly, the special case of the probability expectation value of Eq.(4) in case
of binomial opinions is expressed by Eq.(7).

Ex = b + au. (7)

Binomial and multinomial opinions can be visualised as a point inside a sim-
plex. Binomial opinions can thus be visualised as a point inside an equal sided
triangle, and a trinomial opinion as a point inside a tetrahedron.

3.2 Mapping to Binomial Opinions

Multinomial opinions represent a generalisation of binomial opinions, and hyper
opinions represent a generalisation of multinomial opinions. It can be necessary
to project hyper opinions onto multinomial opinions, or to project multinomial
opinions onto binomial opinions. For example, a reputation system where ratings
are given in the form of 1-5 stars can represent reputation scores as multinomial
opinions over a frame of five states, each of which represents a specific number
of stars. In this case, a reputation score represented as a multinomial opinion
can be projected to a binomial opinion over a binary frame, as explained below.

Let X = {x1, . . . , xk} be a frame where the k states represent linearly in-
creasing rating levels, e.g. so that xi represents an i-star rating. Let Y = {y, y}
be a binary frame where y and y indicate high quality and low quality of a re-
source, respectively. Assume that a reputation score or recommendation value
is represented as the multinomial opinion ωX = (bX , uX ,aX) over the frame X ,
and that a binomial opinion ωy = (by, dy, uy, ay) over Y is required. The linear
projection from the multinomial opinion ωX on X onto the binomial opinion ωy

on Y is defined by: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
uy = uX

by =
∑k

i=1 bxi

(i−1)
(k−1)

dy = 1− by − uy

ay =
∑k

i=1 axi

(i−1)
(k−1)

(8)
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where (i−1)
(k−1) indicates the relative weight, and hence the belief in a higher level

xi will have more weight in the formation of binary belief and base rate. As the
default base rates on X is defined by axi = 1/k, the default base rate of y is
computed as follows:

ay =

k∑
i=1

1

k

(i − 1)

(k − 1)
=

1

k(k − 1)

k∑
i=1

(i− 1) =
1

k(k − 1)

k(k − 1)

2
= 1/2 . (9)

The advantage of the projection of Eq.(8) is to provide the flexibility of
analysing reputation scores and recommendation values independently of the
frame cardinality.

4 Determining Opinions

This section details the procedures to derive subjective opinions, i.e. reputation
scores and recommendation values from reputation systems and recommender
systems, respectively.

4.1 Opinions Derived from Reputation Systems

A reputation system generally applies to services or goods that can be rated on
one or multiple aspects, such as the set (expected quality, seller communication,
shipment timeliness, shipment charges) in case of eBay.com. In case only a single
aspect can be rated, it is typically the overall quality of a specific service or
target. Each aspect can be rated with a specific level out of l levels such as 1 to
5 stars. It is also common that an aspect is rated with only two possible levels
such as Thumbs Up and Thumbs Down.

Opinions for each aspect can be derived from such ratings. The frame for each
aspect is the set of discrete rating levels, so that in case ratings can be given as 1
to 5 stars the frame has five states. Let X denote the frame of cardinality k, r(xi)
be the number of ratings of type xi, and ωX = (bX , u,aX) be a multinomial
opinion on X . The more ratings collected, the smaller the uncertainty becomes.
The opinion ωX can be determined from the ratings r(xi) according to Eq.(10):

∀xi ∈ X

⎧⎪⎨⎪⎩
b(xi)=

r(xi)
W +

∑
κ
i=1 r(xi)

u = W
W +

∑κ
i=1 r(xi)

(10)

where W = 2 is the non-informative prior weight with default value dictated
by the requirement of having a uniform pdf (probability density functions) over
binary frames when no evidence other than the domain base rate is available.
The value would e.g. be W = 3 in case it were required to have a uniform
pdf over a ternary frame. However, higher values for W make the probability
distribution less sensitive to new evidence, so the value W = 2 is adopted [16].

eBay.com
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An opinion derived according to Eq.(10) can thus represent a reputation score
which can be mapped to a probability value, or to a simple user friendly repre-
sentation e.g. in the form of 1 to 5 stars. A reputation score can also be adjusted
as a function of time, reliability of the rater, etc. [6].

A rating is expressed as a specific level corresponding to a singleton state in
the frame. In case there are more than two rating levels, the derived opinions
are multinomial. In case only two types of ratings can be given, e.g. as Thumbs
Up and Thumbs Down, the frame is binary so the opinions are binomial.

Reputation scores represented as multinomial opinions can be mapped to a
binomial opinion according to Eq.(8) by assuming that each rating level corre-
sponds to a value in the range [0, 1], for more details see [9].

4.2 Opinions Derived from Recommender Systems

As an example, we describe a user-based CF method to generate recommenda-
tions [1]. The task of CF methods is to predict the preference (or rating) of a
given resource (or item) for an active user, based on the rating histories of the
active user as well as other participants in the community.

We keep the symbols s, v for users and i, j for items. Let rv,i denote a rating
given by user v on item i, and let Iv denote the set of items that user v previously
has rated. The mean rating of user v is computed by:

rv =
1

|Iv|
∑
i∈Iv

rv,i . (11)

Let Ns,j denote the neighbourhood of an active user s constrained by having
rated item j, i.e. the set of users who have rated (some of) the same items as
user s and who have also rated the specific target item j. In general, only the
top-K most similar users will be selected as the neighbourhood. The prediction
ps,j for user s on target item j is computed by:

ps,j = rs + κ
∑

v∈Ns,j

w(s, v)(rv,j − rv), (12)

where κ is a normalisation factor and w(s, v) represents the similarity between
users s and v. There are several ways to compute user similarity, where the most
commonly used method is the Pearson correlation coefficient [1]:

w(s, v) =

∑
i∈Is,v

(rs,i − rs)(rv,i − rv)√∑
i∈Is,v

(rs,i − rs)2
∑

i∈Is,v
(rv,i − rv)2

, (13)

where Is,v represents the set of items that both users s and v has rated, and
w(s, v) is located in the range of [−1, 1]. A problem for similarity computation
is that in case of none or only few commonly rated items, i.e. the size of Iu,v is
small, the computed similarity is not reliable which results the predicted value
uncertain. This problem is called cold start. However, when representing predic-
tions in terms of subjective opinions, the degree of uncertainty can be explicitly
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expressed. Below is described a method by means of which subjective opinions
can be derived from raw CF predictions.

The derivation is based on three intuitive assumptions. First, the uncertainty
of the derived prediction opinion as expressed by Eq.(10) is a decreasing function
of the number of ratings by similar users in Ns,j . Second, the probability expec-
tation value of the derived prediction opinion as expressed by Eq.(7) is equal
to the prediction of Eq.(12). Third, Eq.(6) also holds. Thus the set of equations
below emerges. ⎧⎪⎪⎨⎪⎪⎩

us
j = W

W+
∑

v∈Ns,j

|Is,v|

ps,j= bsj + aus
j

1 = bsj + dsj + us
j

⇒

⎧⎪⎪⎨⎪⎪⎩
us
j=

W
W+

∑

v∈Ns,j

|Is,v |

bsj = ps,j − aus
j

dsj= 1− bsj − us
j

(14)

where W = 2 is the non-informative prior weight. As before Ns,j is the neigh-
bourhood of user s constrained by having rated item j, and Is,v is the set of
items that both users s and v have rated.

Although Eq.(14) is obtained from a user-based CF method, it can be easily
adapted to item-based methods by:⎧⎪⎪⎨⎪⎪⎩

us
j = W

W+
∑

i∈Ns,j

|Ui,j |

ps,j= bsj + aus
j

1 = bsj + dsj + us
j

⇒

⎧⎪⎪⎨⎪⎪⎩
us
j=

W
W+

∑

i∈Ns,j

|Ui,j |

bsj = ps,j − aus
j

dsj= 1− bsj − us
j

(15)

where Ns,j is the neighbourhood of item j, i.e. the set of items that have been
rated by the users who also rated target item j as well as (some of) items rated
by user s, and Ui,j is the set of users who rated both items i and j. As before,
generally only the top-K most similar items will be selected as the neighbourhood
for rating prediction.

5 Combining Recommender and Reputation Values

After obtaining the subjective opinions from reputation systems and recom-
mender systems respectively, the question is how they can be combined. We
present the cascading minimum common belief fusion (CasMin) as a relatively
conservative operator for fusing rating levels expressed as opinions. The detailed
algorithm of CasMin fusion is also given below, and the usage is exemplified at
the end of this section.

5.1 Cascading Minimum Common Belief Fusion

Various belief fusion models can be used to model specific situations. It is often
challenging to determine the correct or the most appropriate fusion operator for
a specific situation, see e.g. [7] for a discussion. We now present a new fusion
model called Cascading Minimum Common Belief Fusion (CasMin) which is
applicable when the states in the frame represent ordered levels.
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When fusing belief masses on the highest order state in the frame, the greatest
belief mass in one argument is reduced to match the belief mass in the other
argument to produce the mutual minimum belief mass on that state. The amount
of belief mass removed from the greatest belief mass is cascaded to the belief mass
of the next inferior state in the frame and so forth until the lowest order state in
the frame is reached. Belief mass from the least arguments can also be matched
by uncertainty mass from the other argument, so that uncertainty typically is
reduced, and belief mass in the lowest order states typically is increased.

An example situation is company investment where weighted ratings are given
by analysts expressed as (1) strong sell, (2) sell, (3) hold, (4) buy, (5) strong buy.
An investor might want to determine conservative company ratings based on
the CasMin fusion model, so that in case a single analyst gives a low rating
to a company on a specific level then the CasMin rating on that level is low
even if all the other analysts give a high rating to the same company on that
level. The conservative property of this fusion operator is useful in situations
of possible bias in the arguments such as market analysis, where analysts tend
to avoid negative opinions as they typically receive flack from the management
teams and pressure that they may lose access to the companies that they cover.

The case that we are interested in is about giving advice that is confirmed
by both recommendation values and reputation scores for resources. CasMin fu-
sion provides a conservative fusion model for this situation because it takes the
smallest of reputation score and recommendation value on each level, starting
from the highest level, and on each level cascading the overshooting values down
to the level below. A high CasMin fusion result, i.e. with large scores/values for
high levels, can only be obtained when both reputation scores and recommen-
dation values are high. In this way, the advice produced by CasMin fusion will
be more conservative than that provided by reputation systems or recommender
systems alone. We will describe the details of CasMin fusion in next sub section.

5.2 CasMin Fusion Operator

Let X = {x1, . . . xk} be an ordered frame where xk is considered to be the highest
order state predefined by a recommender or reputation system. The reduced
powerset of X is denoted R(X) with cardinality κ. Assume that there are two
opinions ωA

X and ωB
X over the frame X where the superscripts A and B represent

the belief owners. The two opinions can be mathematically merged using the

CasMin operator which in expressions is denoted as: ω
(A↓B)

X = CasMin(ωA
X , ωB

X).
The CasMin operator requires binomial or multinomial opinions, so in case

of hyper opinion arguments, first project to binomial or multinomial opinions as
described by Eq.(16), where the beliefs of the hyper opinion ω′

X are denoted as
b′X , and the the beliefs of the multinomial opinion ωX are denoted as bX .

bX(xi) =
∑

xj∈R(X)

aX(xi/xj) b
′
X(xj) , ∀xi ∈ X, (16)

With multinomial opinions arguments the CasMin fusion operation proceeds
according to the algorithm of Fig.1. Specifically, it first acts on the belief on the
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highest level state xk and finally on the belief on lowest level state x1. Line 2
ensures that the belief on the A-argument is always greater than that of the B-
argument, by executing a swap operation if necessary. For each level xi, there are
two possible cases, i.e. whether the A-argument’s belief is less than or equal to
the sum of the B-argument’s belief and uncertainty (lines 3-7) or not (lines 8-13).
In either case, (a part of) the B-argument’s uncertainty can compensate for it’s
belief value being less than that of the A-argument (lines 4, 9-10). The remaining
minimum belief value will be assigned to both A and B’s arguments (lines 5,
12), and then the differences between the new and previous belief values (lines 6,
11) will be cascaded to the next inferior state xi−1 (line 14). This procedure will
be repeated until the frame is finished. Finally, user A’s new opinion represents
the fused result and will be returned (line 16).

1. FOR i = k to 2 DO {
2. IF bAX(xi) ≤ bBX(xi) THEN {Swap(ωA

X , ωB
X);}

3. IF uB
X > (bAX(xi)− bBX(xi)) THEN {

4. uB
X = uB

X − (bAX(xi)− bBX(xi));

5. bBX(xi) = bAX(xi);
6. bcascade = 0;
7. }
8. ELSE {
9. bBX(xi) = bBX(xi) + uB

X ;
10. uB

X = 0;

11. bcascade = bAX(xi)− bBX(xi);

12. bAX(xi) = bBX(xi);
13. }
14. bAX(xi−1) = bAX(xi−1) + bcascade;
15. }
16. ω

(A↓B)

X = ωA
X ;

Fig. 1. Algorithm for the CasMin belief fusion operator

The CasMin operator is commutative, associative and idempotent, and a to-
tally uncertain opinion acts as the neutral element for the CasMin operator.

5.3 Example

We consider the case of providing advice about hotels through a web site such
as e.g. tripadvisor.com. It is assumed that a recommender system tracks user
preferences, and that a reputation system allows users to rate hotels.

With the method described in Eq.(10) the reputation system can produce
scores expressed as multinomial opinions. With the method described in Eq.(8)
the multinomial opinions can be transformed into binomial opinions.

tripadvisor.com
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The recommender system can also use a multi-aspect and multi-level repre-
sentation of ratings. A user can rate general satisfaction high even if another
aspect such as cleanliness is rated low, e.g. in case cleanliness is not an impor-
tant preference for the user. The recommender system is thus able to identify
hotels that match the users personal preference. The recommendation values for
each hotel and each user are expressed as binomial opinions using Eq.(14) or
Eq.(15).

The recommender system identifies a list of hotels based on the ratings given
by the user and other travelers. The recommender system can predicted that the
user will like the hotels because other users with similar tastes have rated the
hotels with satisfaction. In contrast, the reputation system offers community-
wide scores for each hotel. The CasMin operator produces conservative results
in the sense that hotels must simultaneously have high recommendation values
and high reputation scores. The numerical example of Table 1 illustrates the
result of fusing two such opinions according to the CasMin algorithm of Fig.1.

Table 1. Fusion of reputation scores and recommendation values

Rep. Multinomial Binomial Rec. CasMin
Hotel Ratings Rep. Score Rep. Score Value Advice

r(x5) = 50 bx5 = 0.65 b = 0.81 b = 0.1 b = 0.30
r(x4) = 10 bx4 = 0.13 d = 0.16 d = 0.7 d = 0.70

Hotel I r(x3) = 10 bx3 = 0.13 u = 0.03 u = 0.2 u = 0.00
r(x2) = 0 bx2 = 0.00
r(x1) = 5 bx1 = 0.06

uX = 0.03

r(x5) = 5 bx5 = 0.06 b = 0.16 b = 0.7 b = 0.19
r(x4) = 0 bx4 = 0.00 d = 0.81 d = 0.1 d = 0.61

Hotel II r(x3) = 10 bx3 = 0.13 u = 0.03 u = 0.2 u = 0.20
r(x2) = 10 bx2 = 0.13
r(x1) = 50 bx1 = 0.65

uX = 0.03

r(x5) = 50 bx5 = 0.65 b = 0.81 b = 0.7 b = 0.81
r(x4) = 10 bx4 = 0.13 d = 0.16 d = 0.1 d = 0.19

Hotel III r(x3) = 10 bx3 = 0.13 u = 0.03 u = 0.2 u = 0.00
r(x2) = 0 bx2 = 0.00
r(x1) = 5 bx1 = 0.06

uX = 0.03

Table 1 shows the results of analysing three separate hotels called Hotel I, II
and III, respectively. In case of Hotel I and Hotel II where the recommendation
values and reputation scores are in conflict, the fused belief value is small. The
only strong result is for Hotel III where both the recommendation value and
reputation score are positive. In addition, as shown in cases of Hotel I and Hotel
III, it is often the case for reputation systems that the scores have a strong posi-
tive bias, reducing the utility and discriminating power of the reputation system.
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The advantage of combining recommender systems and reputation systems is to
amplify the discriminating power.

6 Conclusions

Since both recommender systems and reputation systems support decision mak-
ing we believe that combining both types of systems may produce better advice
than any individual systems can do alone. However, the significant differences
in the underlying theory and implementation make such integration challenging.
In this paper, we proposed a method to represent reputation scores and recom-
mendation values within the framework of subjective logic. We also proposed the
new CasMin fusion operator in order to fuse the results from recommender and
reputation systems in a conservative fashion, i.e. so that high results can only
be obtained when both reputation scores and recommendation values are high
for a given resource. The proposed method was illustrated with a hypothetical
example. In future research we intent to apply the method to real data in order
to judge its usefulness.
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Abstract. Frequent Itemset Mining, or just pattern mining, plays an
important role in data mining, aiming for the discovery of frequent co-
occurrences in data. However, existing techniques still suffer from two
bottlenecks that difficult the analysis and actual application of their re-
sults: they usually return a large number of patterns, and these patterns
usually do not reflect user expectations. The most accepted and com-
mon approach to minimize these drawbacks is to define the user needs
through constraints, and use them to filter and return less but more in-
teresting patterns. Several types of constraints have been proposed in
the literature, along with some algorithms that are able to incorporate
them. However, there is no unified algorithm able to push any type of
constraint. In this work we propose to push constraints into pattern min-
ing through the use of a pattern-tree structure to efficiently store, check
and prune the patterns. We define in detail a set of strategies to push
each type of constraint, and a generic algorithm that is able to combine
these strategies and incorporate any constraint into a pattern-tree.

Keywords: Pattern Mining, Pattern-Tree, Constraints, Monotonicity.

1 Introduction

An important line of research that has gained attention in recent years consists
in the development of data mining techniques that are able to incorporate the
existing domain knowledge into the search process. Indeed, one of the common
criticisms pointed out to data mining, in particular to pattern mining, is the
fact that it generates a huge number of patterns, independent of user expertise,
making it very hard to understand and use the results.

The use of constraints to filter the results is the most common and used
approach to focus the algorithms only on what is really interesting. They are an
efficient way to reduce the number of returned patterns and increase the efficacy
of pattern mining, by returning less but more interesting results, in the user and
application points of view.

Several types of constraints have been proposed in the literature, along with a
set of different algorithms that are able to push each individual type of constraint.
How to enforce these constraints into pattern mining is non trivial, and depends
heavily on the constraint in question. Fortunately, studies show that a large
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number of constraints in pattern mining have some particular properties that
allow the exploration of efficient strategies to prune the search space.

In this paper we propose set of strategies to push constraints that follow cer-
tain properties into pattern mining algorithms, through the use of a tree to store
the patterns. We also propose a generic algorithm, named CoPT (Constraint
Pushing into a Pattern-Tree), that combines and implements these strategies
and is able to incorporate any constraint, taking advantage of its properties. By
filtering the results according to the user constraints, CoPT returns less and
more interesting results.

We formalize the problem in section 2, and describe the existing constraint
properties in section 3. Section 4 presents the proposed strategies and algorithm,
and experiments are shown in section 5. Finally, section 6 concludes the work.

2 Problem Statement

The oldest and most studied constraint in pattern mining (PM) is the minimum
support threshold [1], which states that, to be interesting, a pattern must have
a support higher than the given threshold. In fact, what we call traditional PM
corresponds to the discovery of frequent itemsets from data. Hence, constrained
PM is perceived as the use of constraints beyond the minimum support, i.e. the
discovery of frequent itemsets that satisfy some constraints.

Formally, let I = {i1, i2, . . . , im} be a set of distinct literals, called items. A
subset of items is denoted as an itemset. A superset of an itemset X is also an
itemset, that contains all items in X and more. The support of an itemset X is
the number of occurrences in the dataset, and X is frequent if its support is no
less than a predefined minimum support threshold: sup(X) ≥ σ ∈ [0, 1].

Definition 1. A constraint C is a predicate on the powerset of I [9], i.e.
C : 2I �→ {true, false}. An itemset X satisfies a constraint C, if C(X) = true.

A pattern corresponds to a frequent itemset that satisfies the constraint C, i.e.
if sup(X) ≥ σ ∧ C(X) = true. And the problem of constrained frequent pattern
mining is to find all patterns in a dataset.

3 Constraints

Constraints are a common way to represent user expectations [2]. Essentially,
constraints are filters on the data or on the results, that capture application
semantics and allow the users to somehow control the search process and focus
de algorithms on what is really interesting.

The use of constraints in data mining is mostly associated with the PM task. In
this context, constraints are an efficient way to reduce the number of patterns and
increase the efficacy of the mining process, by returning less but more interesting
results, in the user and application points of view.

There are many types of constraints. According to their semantics and form,
they can be divided in several categories, from content constraints, filtering the
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content of the discovered patterns, to length constraints, limiting the number of
items in each pattern, and to more complex types, such as temporal constraints,
taking into account the temporal dimension.

How to enforce these constraints into pattern mining is non trivial, and de-
pends heavily on the constraints in question. Performing an extensive search is
not a viable solution mostly due to the size of the search space.

Fortunately, studies show that constraints have some properties that provide
efficient strategies to prune the search space and improve the selection of patterns
that satisfy them. These “nice” properties [8] are described next.

In its basis, a constraint can be anti-monotonic, monotonic, or none.

Anti-monotonicity (AM). A constraint is said anti-monotonic if and only if,
whenever an itemset X violates it, so does any superset of X.

The minimum support threshold is the best known and simple example of
an AM constraint [1], according to which an itemset is frequent if its support
is greater or equal to a user defined threshold. It is AM in the sense that if an
itemset is infrequent, so does any of its supersets.

Anti-monotonicity, if used actively, can drastically reduce the search space
[10,7,8,3]. It allows the algorithms to prune earlier, with less effort, minimizing
the computational cost, and at the same time maximizing the efficacy of the
results. However, it is not possible to ensure the efficiency of pushing this type
of constraints, since it depends on their selectivity [3]: the less selective, the less
can be discarded, and the less efficient it usually is.

Monotonicity (M). A constraint is said monotonic if and only if, whenever
an itemset X satisfies it, so does any superset of X.

An example is an item constraint of the type C(X) = ({i, j} ⊆ X). If an
itemset satisfies the constraint (i.e. contains all the known items), all supersets
also satisfy it, because they contain the same items and more. However, if an
itemset violates it, a superset can satisfy it, by introducing the missing items.

Monotonic constraints can also be used to improve the efficiency of pattern
mining, by avoiding multiple unnecessary tests [10,7,8,3].

In addition, constraints can also be, at the same time, succinct.

Succinctness (S). In its essence, a constraint is succinct if it is possible to
enumerate all possible patterns, based only on items from the alphabet I [7].

A simple example is the value constraint C(X) = (X.price ≤ e 100). It is
succinct because we can select from the alphabet all items X1 with price ≤
e 100, and the itemsets that satisfy the constraint are exactly only those in the
strict powerset of X1. This is a succinct anti-monotonic constraint (SAM), since
supersets of itemsets with some item with price > e 100 will never satisfy it.

Taking into account the succinctness of a constraint allows the algorithms
to prune more and earlier, in the case of SAM constraints, and to avoid more
constraint checks, in the case of a SM constraint [7,5,3].

There are, of course, constraints that are not overall anti-monotonic neither
monotonic, and therefore it is not easy to push them in an efficient way. However,
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with some assumptions, many of them can be converted and treated as that. In
this sense, constraints can also be prefix-monotone or mixed-monotone.

Prefix-Monotonicity. A constraint is prefix-monotone1 if there is an order of
items that allows the algorithms to treat it as anti-monotonic or monotonic [9].
By fixing an order on items, each transaction can be seen as a sequence, and
therefore we can use the notion of prefixes and suffixes, as the first or last items
in the ordered transaction, respectively.

A constraint is prefix-monotone, if it is prefix anti-monotonic (PAM) or prefix
monotonic (PM). Formally, a constraint C is prefix anti-monotonic (resp. prefix
monotonic) if there is an order R over the set of items, and assuming each
itemset X = i1i2...in is ordered accordingly to order R, such that, whenever
an itemset X violates (resp. satisfies) C, so does any itemset with X as prefix
(X ′ = X ∪ {in+1} = i1i2...inin+1).

For example, an aggregate constraint like C(X) = (avg(X) ≥ 20), is not
monotonic neither anti-monotonic. But, if we order the items in a value-
descending order, an itemset X has higher average than its supersets X ′. This
means that, if X violates C, also will all its supersets X ′. Thus, C is prefix anti-
monotonic. With a similar reasoning, the same C is prefix monotonic if items
are ordered in a value-ascending order. In this case, if X satisfies C, also all its
supersets X ′.

Mixed-Monotonicity. A constraint is mixed-monotone if it can be considered
both anti-monotonic and monotonic, at the same time, for different groups of
possible values (positive and negative)[6].

Formally, let the set of items I be divided into two disjoint groups based
on their monotonicity relating to a constraint C: let IAM be the set of anti-
monotonic items, and IM , the set of monotonic items. Then, a constraint is
mixed monotone if, for any itemset X : (a) whenever X satisfies C, all supersets
of X formed by adding items from the IM group, also satisfies C; and (b)
whenever X violates C, all supersets of X formed by adding items from the
IAM group, also violates C.

This property was proposed in particular for sum constraints of the form
sum(X)θv, where itemset X may contain positive or negative numerical values
(or zero), v is also a positive or negative constant (or zero), and θ ∈ {>,≥, <,≤}.
The aggregate constraint C(X) = (sum(X) ≥ v), for example, is monotonic for
positive values (including zero), and anti-monotonic for negative values.

Most of existing constraints fall into one of these properties. This makes it
possible to generalize and create strategies for pushing constraints that follow
them. There are several algorithms for pushing constraints of a specific type or
that have a specific property. The problem is that those algorithms are specific,
and there is no general algorithm capable of incorporating any constraint, and
still taking advantage of constraint properties at the same time.

1 Prefix-monotone constraints were first proposed with the name of convertible con-
straint [9,8].
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Srikant et al. [10,11] were the first to introduce item constraints, the first
different from minimum support. They proposed three apriori-based algorithms,
MultipleJoins, Reorder and Direct, that are able to deal with boolean combina-
tions of these constraints, i.e. of the form i ∈ S or i �∈ S. Succinct constraints
were first proposed by Ng et al. [7], as well as an apriori-based algorithm, called
CAP (Constrained APriori). Later on, [5] proposed FPS (FP-tree based mining
of Succinct constraints) that uses the same approach but in a pattern-growth
algorithm. These algorithms are only able to push succinct constraints. Pei et
al. [9] proposed prefix-monotone constraints as well as a pattern growth algo-
rithm, FIC (Frequent Itemset mining with Convertible constraints), that is able
to push them into the discovery process, by growing only valid prefixes. Finally,
mixed monotone constraints were recently proposed by Leung et al. [6], in partic-
ular for sum constraints, along with a pattern-growth algorithm FPM (Frequent
Pattern mining for Mixed monotone constraints).

4 Push Constraints in a Pattern Tree

In this paper we propose a set of strategies to push constraints that have nice
properties into pattern mining, through the use of a pattern-tree structure. These
are post-processing strategies that, combined with the properties of the pattern-
tree, make it possible to efficiently filter the results accordingly to any constraint.

We also propose an algorithm, called CoPT (Constraint Pushing into a
Pattern-Tree), that implements these strategies and is able to incorporate any
of those constraints and therefore return less and more interesting results. As a
post-processing algorithm, any traditional pattern mining algorithm can be used
before to search for frequent itemsets, and its results, kept in a pattern-tree, can
be processed directly by CoPT.

A pattern-tree is a compact prefix tree structure that holds information about
patterns. Each node contains an item and a support, and edges link items that
occur together, forming the itemsets. Therefore, each node in a pattern-tree
corresponds to an itemset, composed of the items from the root to this node,
and the support attached to this node. As a prefix tree, itemsets that share the
same prefix also share the same nodes corresponding to that prefix.

Since there are often a lot of sharing of frequent items among patterns, the
size of the tree is usually much smaller than having them in a list or a table,
and the search for an itemset is usually much faster.

Note that if an itemset (a, b, c) : 5 is a frequent itemset, then both a, b, c,
(a, b), (a, c) and (b, c) are also frequent, with support higher or equal to 5, and
therefore they are also in the pattern-tree. This means that, for each itemset in
the tree, all elements of its strict powerset are also in the tree. This may seam
undesirable or redundant at a first look, but it is a important property that
facilitates the pruning of the tree while searching.
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4.1 Constraint Pushing Strategies

In order to push constraints into a pattern-tree, we define a set of strategies that
can be used, based on constraint properties. A naive approach is to perform a
simple depth-first search (DFS) to traverse the tree and test all nodes for all
types of constraints (note that, when we test a node for a constraint, we mean
that we test the itemset corresponding to that node). However, not all nodes need
to be tested. For example, if an itemset of a node violates an AM constraint,
no superset will satisfy it, and therefore there is no need to test the children
of that node, neither to keep them in the tree. Hence, we can take advantage
of constraint properties and perform a constrained DFS, stopping the search at
some points and avoiding unnecessary tests.

Another possible approach is to push the constraint right before inserting
each itemset in the pattern-tree. However, while this may be better in terms of
memory, because the pattern-tree would be smaller, this means that we have to
test every itemset. By scanning the tree, we may skip the constraint checking of
a lot of itemsets.

Furthermore, constraints can be used, not only to filter the results, but also
to prune the pattern-tree and remove invalid itemsets for future accesses.

We describe next the strategies for pushing constraints with each property.

Anti-Monotonicity: Pushing an AM constraint (CAM ) is pretty straightfor-
ward. While performing a DFS, if the node:

(a) Satisfies CAM : keep it in the tree and return it as a pattern;
(b) Violates CAM : there is no need to search its subtree because all supersets

also violate the constraint. Therefore we can prune the tree and remove this
node, as well as all of its children.

Monotonicity: To incorporate a monotonic constraint (CM ), we cannot remove
nodes that violate it, because the supersets of this node (its children) can satisfy
it. So, while traversing the tree, if the node:

(a) Satisfies CM : keep it in the tree and return it as a pattern. Do the same
for each node in its subtree, without testing for the constraint; (Note that if
we are just pruning the tree, not yet returning the patterns, we do not even
need to scan the subtree, because all supersets satisfy the constraint, and
there is nothing to remove.)

(b) Violates CM : If it is a leaf node (has no supersets), we can remove it, as well
as all parents that become a leaf because of this elimination. If it is not a
leaf, continue the search to its children, since they can satisfy the constraint.

Succinctness: In the presence of a succinct constraint, we can apply the strate-
gies for CAM or CM , whether it is succinct anti-monotonic (CSAM ) or succinct
monotonic (CSM ), respectively. However, the succinctness of a constraint allow
us to know, from the outset, which items satisfy or not satisfy the constraint.
Therefore, we can use that to take advantage of this property, and obtain a more
efficient search.
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With this in mind, we can first divide the items into two groups: items that
satisfy or are necessary to the satisfaction of the constraint, Is; and items that
violate, or are not necessary to the satisfaction of the constraint, Iv. And before
inserting itemsets into the pattern-tree, we can order the itemsets according to
those groups.

CSAM : With a SAM constraint, single items that violate it can be discarded.
If we order items in itemsets so that Iv appears before Is (Iv closer to the
root and Is to the leafs), when applying the CAM strategy, we only need to
check the first level of the pattern-tree. If the node violates the constraint,
remove it and its sub-tree; if the node satisfies, all of its children will also
satisfy, because they belong to Is, so we can return all of them as patterns,
without testing for the constraint.

CSM : In the case of a SM constraint, Is contains the mandatory items and Iv

the optional items. If an itemset with items from Is satisfy the constraint,
all of its supersets formed by adding items from Is or Iv also satisfy it.
Itemsets with items only from Iv violate the constraint. In this sense, if we
order itemsets so that items from Is appear first than items from Iv, when
applying the CM strategy, we only need to do it until the first node from Iv,
because if we arrive to a node like this and still need to test the constraint,
it means it has not been satisfied by items from Is, and next items also
cannot satisfy it because they are optional, therefore we do not need to test
anything more.

Prefix-Monotonicity: Since prefix-monotone constraints can only be treated
as AM (CPAM ) or M (CPM ) constraints if items are ordered by a particular
order, we just need to sort the itemsets according to that order before inserting
them in the pattern-tree, and apply the CAM or CM strategy, respectively. Oth-
erwise, we have to traverse the whole tree and check all nodes for the constraint.

Mixed-Monotonicity: Mixed-monotone constraints (CMix) are both AM and
M , for different groups of values. In this case, we just have to divide the items
into those groups: IAM and IM , and put IM before IAM in the tree, i.e. sort
itemsets so that items from the IM group appear above items from IAM . The
idea is to start with the CM strategy, until a node that satisfies it, or a node from
IAM appears. From that node, we can apply the CAM strategy and prune invalid
nodes from its sub-tree. So, for each node, start with the monotone strategy:

1. Monotone strategy: If the itemset:

(a) Satisfies CMix: Keep it in the tree and return it as a pattern. We can
now change to the anti-monotone strategy and proceed;

(b) Violates CMix: If it is a leaf, remove it, as well as all parents that become
a leaf. If it is a node from IAM , remove it, and all its sub-tree. Otherwise,
continue to its children.

2. Anti-monotone strategy: If the itemset satisfies the constraint, keep it in the
tree and return it as a pattern. If it violates the constraint, prune the tree
from this node removing it and all its children.
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4.2 Algorithm

Since there are a lot of similarities between the strategies presented above, they
can be combined into one single generic strategy or algorithm. We propose there-
fore the algorithm CoPT (Constraint Pushing into a Pattern-Tree), that is able
to efficiently and effectively push any constraint into a pattern-tree.

Algorithm 1. CoPT Pseudocode

Input: Support σ, Dataset D, Constraint C
Output: All frequent itemsets that satisfy C

if C has order then
order ← best order for C

p-tree ← empty tree with order order
run a pattern mining algorithm with σ and D, and insert results into the p-tree
L ← pushConstraint(p-tree, C)
return L

Patterns ← pushConstraint(Pattern-Tree p-tree, Constraint C)
L ← ∅
for all Node N , children of the root of p-tree do

remove? ← push(N , C, {}, L)
if remove? is true then

remove N from root
return L

boolean ← push(Node N , Constraint C, Itemset itset, Patterns L)
isPattern? ← true, current ← itset ∪N.item : N.support
if Constraint is not null then

if C is Succinct and N.item ∈ C.Iv then
return true // remove this node

if current satisfies C then
if C is Monotonic or C is Succinct then

if C is Mixed then
Change C to AM for next children

else
C ← null // no need to test any children

else
if C is Anti-monotonic then

return true
isPattern? ← false

if isPattern? is true then
L ← L ∪ current

for all Node T , children of N do
remove? ← push(T , C, current, L)
if remove? is true then

remove T from N
if isPattern? is false and N is leaf then

return true
return false
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The pseudo-code of the algorithm is presented in Algorithm 1.
Essentially, to push a constraint, CoPT first checks what is the order of items

for that constraint, and creates an empty pattern-tree with it (if there is no order,
items are put in the pattern-tree in a support-descending order, which is known
to improve the compactness of the tree [4]). Then a traditional pattern mining
algorithm can run over the dataset to get frequent itemsets. While running it,
results are inserted in the pattern-tree (note that the algorithm does not need
any change. Only the pattern-tree knows how to sort and insert the itemsets).
After that, we can push the constraint into the pattern-tree.

So, following function push, for each node, current corresponds to the itemset
composed of items from root to this node, and until proved otherwise, it is a
pattern. If there is no constraint to check (e.g. a CM already satisfied), add it
as a pattern and do the same for all children. Otherwise, (1) if the constraint
C is succinct (SAM or SM) and the node violates it, it can be removed; (2) if
current satisfies C: (a) C is mixed and we can change the strategy to AM ; (b) C
is monotonic and no child needs testing; or (c) C is succinct AM , and only the
first level of the tree needs testing. (3) if current violates C, it is not a pattern,
and if C is AM we can prune the tree from here. After checking the constraints,
if the node was not pruned, we can test its children. Finally, after pushing C
into the children, if the node is not a pattern and is a leave, we can remove it.

5 Performance Evaluation

The goal of these experiments is to analyze the behavior of our algorithm in the
presence of all types of constraints, and prove that CoPT is able to effectively
and efficiently push them into a pattern-tree, taking advantage of its properties.

In these experiments we use a transaction database automatically generated
by the program developed at IBM Almaden Research Center [1]. The dataset
has 10k transactions, with an average of 25 items per transaction and a domain
of 1000 items (with values from zero to 1000). In addition, in order to test the
mixed-monotone constraint, we consider an equivalent dataset but with negative
values, by making values vary from −500 to 500.

We analyze the time needed to push the constraints on these datasets, as
well as the size of the pruned pattern-tree and the number of constraint checks
the algorithm needed to make. Since the behavior of the algorithm can depend
on the selectivity of the constraints, we use it in our experiments. Selectivity is
defined as the ratio of frequent itemsets that violate the constraint, over the total
number of frequent itemsets, i.e. how much we can filter. We also tested several
minimum supports, and since results are consistent, we present the results for
a support of 0.5%, and results presented correspond to the average of several
runs with different constraints with equivalent selectivity. Also, to have a term of
comparison, we test our algorithm against a version that checks all nodes for the
constraints (i.e. not taking into account constraint properties), named CoPT+.

The traditional pattern mining algorithm used was FP-Growth [4], since it is
an efficient algorithm that does not suffer from the candidate generation problem.
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The computer used to run the experiments was an Intel Core i7 CPU at 2GHz
(Quad Core), with 8GB of RAM and using Mac OS X Server 10.7.5 and the
algorithm was implemented using the Java (JVM version 1.6.0 37).

As the basis of our algorithm, the pattern-tree plays an important role in
these experiments. Independently of the constraint, the size of the pattern-tree
after pushing the constraint is most of the times smaller than the original one,
because it does not contain leaves that violate it. As the selectivity increases,
the more itemsets violate the constraint. In the case of an AM constraint (either
AM , SAM or PAM), the number of nodes in the final pattern-tree corresponds
to the number of frequent itemsets that satisfy the constraint (the number of
patterns). In the case of M constraints (M , SM , PM and Mix), this might not
be true, since nodes that violate the constraint have to be kept if there is some
superset that satisfy the constraint.

In fact, the time needed by the traditional unconstrained pattern mining algo-
rithm corresponds to the bulk of time needed: about 5 hours for these settings.
After having the patterns in a pattern tree, and due to its compact nature,
it is fast (compared to pattern mining) to look for patterns that satisfy some
constraint, even constraints with no nice properties (CoPT+) and with less se-
lectivity. Fig. 1, 3 and 5 show the time needed for pushing AM , M and Mix
constraints into a pattern-tree, respectively. We can see there that pushing con-
straints taking into account their properties (CoPT ) takes less time than testing
all nodes (CoPT+), for every constraint property. For all AM and Succinct con-
straints, as the selectivity increases, the time needed to prune the tree decreases,
since they can eliminate earlier more itemsets that violate it. On the contrary, M
and SM constraints tend to increase the time needed, because they take more
time until finding itemsets that satisfy it (so that they can stop checking the
constraint). The time is therefore related to the number of constraint checks.

These constraint checks are also an important part of the algorithm, since
theoretically, taking advantage of constraint properties results in less tests. Fig.
2, 4 and 6 show interesting results about that. For AM constraints (AM and
PAM), the number of tests decreases with the increase of selectivity, because
the number of itemsets that violate and can be discarded increases. For M
constraints (both M and PM) the trend is reversed. This happens because the
M strategy only stops checking when itemsets satisfy the constraints. If there are
more itemsets that violate (more selectivity), more itemsets need to be tested.
Using the succinctness of constraints brings the most improvements, both in
time needed and in constraint checks avoided. The number of tests for succinct
constraints does not depend on the selectivity, because only and all nodes of the
first level of the tree need to be tested (in this case, about 800 nodes). Note that
the tree has more than 300 thousand nodes, and only 800 need to be checked.
Finally, Mix constraints have a “mix” of the behavior of M and AM constraints.
As the selectivity increases, more itemsets belonging to both groups of values
violate the constraint, and the more violating itemsets from IAM , the more can
be pruned, but the more violating itemsets from IM , the more constraint checks
are required. Hence, there is a tradeoff between both strategies.



Pushing Constraints into a Pattern-Tree 149

Fig. 1. Time with AM Fig. 2. Checks with AM

Fig. 3. Time with M Fig. 4. Checks with M

Fig. 5. Time with Mixed Fig. 6. Checks with Mixed
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6 Conclusions

In this paper, we propose a new set of post-processing strategies for pushing
constraints into pattern mining, through the use of the efficient pattern-tree
structure. These strategies take advantage of constraint properties, so that we
can filter earlier the frequent itemsets that satisfy each constraint, and avoid
unnecessary tests. We also propose a general algorithm, named CoPT , that
combines the defined strategies and is able to push any constraint into a pattern-
tree, and still taking advantage of their properties.

Experimental results show that the algorithm is effective and efficient. It needs
a small amount of time to push and prune the pattern-tree, even for constraints
with small selectivity, and checks much less nodes and needs less time than an
approach that does not take into account constraint properties.

Despite the benefits of CoPT , it is a post-processing approach. This means
that some traditional pattern mining algorithm must run first to discover all
frequent itemsets. This usually takes much time, and results in a large quantity
of frequent itemsets that need to be again evaluated. As future work, we intend
to create a more balanced approach and use the strategies proposed here to filter
itemsets during the actual discovery process.

This work is partially supported by FCT – Fundação para a Ciência e a
Tecnologia, under research project D2PM (PTDC/EIA-EIA/110074/2009) and
PhD grant SFRH/BD/64108/2009.
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Abstract. In this paper, the quadratic regularized and standard fuzzy
c-means clustering algorithms (qFCM and sFCM) are generalized with
respect to hard c-means (HCM) regularization. First, qFCM is general-
ized from quadratic regularization to power regularization. The relation
between this generalization and sFCM is then compared to the relation be-
tween other pairs of methods from the perspective of HCM regularization,
and, based on this comparison, sFCM is generalized through the addition
of a fuzzification parameter. In this process, we see that other methods
can be constructed by combining HCM and a regularization term that can
either be weighted by data-cluster dissimilarity or not. Furthermore, we
see numerically that the existence or nonexistence of this weighting deter-
mines the property of these methods’ classification rules for an extremely
large datum. We also note that the problem of non-convergence in some
methods can be avoided through further modification.

Keywords: fuzzy c-means clustering, regularization.

1 Introduction

The hard c-means (HCM) clustering algorithm [1] splits datasets into well-
separated clusters by minimizing the sum of squared distances between data and
cluster centers. This concept has been extended to fuzzy clustering, in which
datum membership is shared among all cluster centers rather than restricted
to a single cluster. To derive fuzzy clustering, the objective function of HCM
is transformed into nonlinear functions. Specifically, Dunn’s algorithm replaces
linear membership weights with squared ones, and creates cluster centers based
on weighted means [2]. Bezdek generalized Dunn’s method to use the power of
membership as weights [3], resulting in what is commonly known as the fuzzy
c-means (FCM) algorithm. Pal and Bezdek [4] suggested taking the exponent
from 1.5 to 2.5. To distinguish this algorithm from the many variants that have
since been proposed, we hereafter refer to it as the standard FCM (sFCM).

Another fuzzy approach to cluster analysis is the regularization of the ob-
jective function of HCM. Recognizing that HCM is singular, and that a proper
cluster cannot be obtained by the Lagrangian multiplier method, Miyamoto

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 152–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and Mukaidono introduced a regularization term (an entropy term [5] or a
quadratic term [6]) with a positive parameter into its objective function, resulting
in entropy-regularized FCM (eFCM) and quadratic-regularized FCM (qFCM).
Honda and Ichihashi proposed another fuzzy approach to use nonlinear mem-
bership weights with entropy [7] to create FCMse.

In this paper, qFCM and sFCM are generalized from the unified perspective
of HCM regularization. First, qFCM is generalized from quadratic regulariza-
tion to power-regularization. This generalization is motivated from how Bezdek
generalized sFCM for use with fuzzification weights other than quadratic func-
tion [3], the fixed weight used by Dunn [2]. This generalization is useful because
another value of the exponent than two has the possibility to improve its clus-
tering accuracy than qFCM, which is similar to Pal and Bezdek [4] suggested
for sFCM taking the exponent from 1.5 to 2.5. Next, the relation between sFCM
and pFCM is compared to the relation between eFCM and FCMse with respect
to HCM regularization, and sFCM is generalized using an additional fuzzifica-
tion parameter. In this process, we will see that all of the methods considered
in this paper can be constructed by combining HCM and a particular regular-
ization term which can either be weighted by data-cluster dissimilarity or not.
Whether the term is weighted in this way determines the classification rule for an
extremely large datum: a weighted regularization term yields a fuzzy member-
ship value, while an unweighted regularization term yields a crisp membership
value. This prospective is significant because it provides an unified view of clas-
sification rule for many variants of fuzzy clustering. We will also see how both
FCMse and generalized sFCM can become unstable and non-convergent, and
how these deficiencies can be addressed. Since the motivation of this paper is
mainly methodological similar to [5]–[7], only simple illustrative examples are
shown as [5]–[7] by which we can see the properties of classification rule of the
proposed methods.

The rest of this paper is organized as follows: in section 2, notation and
conventional methods are introduced; in section 3, basic concepts are presented,
along with the proposed generalizations of qFCM and sFCM; in section 4, some
illustrative examples are provided; and in section 5, some concluding remarks
are offered.

2 Preliminaries

2.1 Notation and Hard c-Means

Let X = {xk ∈ Rp | k ∈ {1, · · · , N}} be a dataset of p-dimensional point.
The membership by which xi belongs to the i-th cluster is denoted by ui,k

(i ∈ {1, · · · , C}, k ∈ {1, · · · , N}) and the set of ui,k is denoted by u, also known
as the partition matrix. The cluster center set is denoted by v = {vi | vi ∈
Rp, i ∈ {1, · · · , C}}. The squared Euclidean distance between the k-th datum
and the i-th cluster center is denoted by di,k = ‖xk − vi‖22. HCM is obtained by
solving the following optimization problem:
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minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k, (1)

subject to
C∑
i=1

ui,k = 1. (2)

and the updating equations of the memberships and the cluster centers are
given as

ui,k =

{
1 (xk belongs to the i-th cluster),

0 (otherwise),
(3)

vi =(

N∑
k=1

ui,kxk)/(

N∑
k=1

ui,k). (4)

The algorithm is a 2-step iteration consisting of the calculation of memberships
ui,k and cluster centers vi [1].

The standard Fuzzy c-means (sFCM) is obtained by solving the following
optimization problem:

minimize
u,v

C∑
i=1

N∑
k=1

um
i,kdi,k (5)

subject to Eq. (2), where m is an additional weighting exponent. If m = 1,
sFCM is reduced to HCM. The larger the m, the fuzzier the memberships will
be, so m can be considered the fuzzification parameter. sFCM was first proposed
by Dunn [2] using a fuzzification parameter fixed at m = 2, and was extended
by Bezdek [3] for m > 1. An iterative algorithm is used to derive a clustering
partition. From the necessary conditions for optimality, new cluster centers are
derived from the weighted centers using

vi = (
N∑

k=1

um
i,kxk)/(

N∑
k=1

um
i,k), (6)

and memberships are calculated under the constraint of Eq. (2) using

ui,k =

⎧⎪⎨⎪⎩
1/(di,k/dj,k)1/(m−1) (Ik = ∅),
1/|Ik| (Ik �= ∅, i ∈ Ik),

0 (Ik �= ∅, i ∈ Ik),

(7)

where Ik is a set of indices such that di,k = 0. This classification function has a
maximum (ui(x)=1) for the cluster center vi, and ui(x) moves toward 1/C as
‖x‖ → +∞. sFCM will be generalized in a later section. Hereafter, all conven-
tional methods are presented only with the corresponding optimization problems
and the property of their classification rules.
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Another approach to fuzzifying membership is regularization of the objective
function of HCM, as accomplished by Miyamoto and Mukaidono through the
introduction of a regularization term with positive parameter λ into the objective
function. Using the entropy term [5] or the quadratic term [6], respectively, the
entropy-regularized FCM (eFCM) and quadratic regularized FCM (qFCM) are
defined as

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

ui,k log(ui,k), (8)

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

u2
i,k, (9)

subject to Eq. (2). The classification function of eFCM has features differing from
those of sFCM [5]. Notably, ui(x) does not have the maximum value ui(x) = 1
on the cluster center, and ui(x) moves toward 1 as ‖x‖ → +∞, so the maximum
membership value may be given for a data-point that is not particularly close to
the cluster center. In contrast, the classification function of qFCM is piecewise
linear [6]. If a center is sufficiently far from x and another center is nearer to x
than vi, then ui(x) = 0. Note that eFCM will be used as a point of comparison
for other methods introduced in this paper. qFCM will be generalized later in
this paper.

As further another fuzzification approach, Honda and Ichihashi proposed non-
linear membership weights other than the um

i,k used in sFCM [7]. With the entropy
term, the optimization problem of FCM for nonlinear membership weights is

minimize
u,v

C∑
i=1

N∑
k=1

(ui,k + λ−1ui,k log(ui,k))di,k (10)

subject to Eq. (2). This method is referred to as FCMse. The classification func-
tion of FCMse has the feature that the maximum value of membership (ui = 1)
is not assigned to cluster centers (as with eFCM), and ui moves toward 1/C
as ‖x‖ → +∞ (as with sFCM). FCMse will be used to motivate the proposed
methods in comparison to eFCM with respect to HCM regularization.

3 Proposed Methods

3.1 Basic Concept

In this paper, qFCM and sFCM are generalized from the unified perspective of
HCM regularization. First, qFCM is generalized from quadratic regularization
to power-regularization, yielding

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

um
i,k. (11)
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Note that the second term in the objective function is extended from the
quadratic for membership ui,k in qFCM to m-th power. The algorithm derived
in the next subsection is referred to as power-regularized fuzzy c-means (pFCM).
If m = 2, of course, pFCM reduces to qFCM. This generalization is similar to
Bezdek’s generalization of sFCM for fuzzification parameter m > 1 [3] from
Dunn’s method with the fuzzification parameter fixed to m = 2 [2].

Next, we see an interpretation of the relation between eFCM and FCMse that
differs from the one originally given in [7]. The objective function of FCMse,
Eq. (10), is equivalently described as

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

ui,k log(ui,k)di,k. (12)

Contrasting this formula and the objective function of eFCM, Eq. (8), we note
that the first term of both FCMse and eFCM is the objective function of HCM
given by Eq. (1), and the second term is the regularization by entropy, which
for eFCM is weighted only by λ, In eFCM, the singular situation in which only
crisp memberships are obtained in HCM is regularized by the negative entropy
with an optimal value of ui,k = 1/C. Combined with HCM and the negative
entropy, optimal membership is determined by the balance of the crisp-power
of HCM and the fuzzy-power of the negative entropy. This balance is controlled
by the fuzzification parameter λ. Applying this interpretation to FCMse, both
the fuzzification parameter λ and data-cluster dissimilarity di,k contribute to
the balance of crisp- and fuzzy-powers. Thus, an extremely large ‖x‖ has an
extremely fuzzy membership based on the strength of the fuzzy-power of regu-
larizer, whereas in eFCM, an extremely large ‖x‖ has a very crisp membership,
since the regularizer is weighted only by constant value of λ.

This comparison also applies to sFCM and pFCM. The objective function of
pFCM given by Eq. (11), is equivalently described with constraint (2) as

Eq. (11) ⇔minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

um
i,k − λ−1N (13)

⇔minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

um
i,k − λ−1

N∑
k=1

C∑
i=1

ui,k (14)

⇔minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

(um
i,k − ui,k). (15)

The objective function of sFCM given by Eq. (5), is equivalently described as

Eq. (5) ⇔minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k +

C∑
i=1

N∑
k=1

(um
i,k − ui,k)di,k. (16)

Comparing Eqs. (15) and (16), the first term of both pFCM and sFCM is the
objective function of HCM given by Eq. (1), and the second term is the regular-

ization by
∑C

i=1

∑N
k=1(um

i,k−ui,k) in which the regularizer of pFCM is weighted
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only by λ, while the regularizer of sFCM is weighted only by data-cluster dissim-
ilarity di,k. Therefore, just as the regularizer of FCMse is weighted not only by
di,k but also by λ, sFCM can be generalized into adopting another fuzzification
parameter λ, as expressed by

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

(um
i,k − ui,k)di,k. (17)

The algorithm based on this objective function, which is derived in the next
subsection, is referred to as generalized standard fuzzy c-means (gsFCM). Note
that if λ = 1, gsFCM is reduced to sFCM. In pFCM, the singularity in HCM
is regularized by the second term with the optimal value of ui,k = 1/C. Com-
bined with HCM and the regularizer, the optimal membership is determined by
the balance of the crisp-power of HCM and the fuzzy-power of the regularizer.
This balance is controlled by the fuzzification parameter λ. Applying this in-
terpretation to gsFCM, data-cluster dissimilarity di,k contributes to the balance
of crisp- and fuzzy-powers. Thus, an extremely large ‖x‖ (data-cluster dissimi-
larity is also extremely large) has an extremely fuzzy membership, whereas for
pFCM, an extremely large ‖x‖ has an extremely crisp membership because the
regularizer is parametrized only with constant value of λ.

Based on these points, four methods in FCM—namely, gsFCM (including
sFCM), eFCM, FCMse, and pFCM (including qFCM)—are constructed by com-
bining HCM and a regularization term, where the regularizer weighted by data-
cluster dissimilarity produces gsFCM or FCMse, and the regularizer not weighted
by data-cluster dissimilarity produces eFCM or qFCM. It will be shown that this
difference in weightedness determines whether the classification for an extremely
large ‖x‖ is fuzzy or crisp: specifically, we will see that gsFCM and FCMse, in
which the regularizer is weighted by data-cluster dissimilarity, both yields fuzzy
membership for an extremely large ‖x‖, whereas eFCM and qFCM, in which
the regularizer is not weighted by data-cluster dissimilarity, both yields crisp
membership for an extremely large ‖x‖. These considerations are summarized
in Table 1.

Table 1. Fuzzy c-Means Framework from Regularization View of Hard c-Means

Weight by Dissimilarity
between Data and Cluster(di,k)

With Without

um
i,k − ui,k gsFCM (sFCM) pFCM (qFCM)

Regularization Term
ui,k log(ui,k) FCMse eFCM

Classification Rule for ‖x‖ → +∞ 1/C 1 or 0
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3.2 Power-Regularized Fuzzy c-Means

pFCM is obtained by solving the optimization problem (11) subject to Eq. (2)
and ui,k ≥ 0. The optimal cluster center is derived in the same manner as HCM,
eFCM, qFCM and FCMse, according to Eq. (4).

The optimal membership is derived from the following Karsh-Kuhn-Tucker
(KKT) conditions:

di,k + mλ−1um−1
i,k − γk − δi,k = 0, (18)

δi,kui,k = 0, (19)

ui,k ≥ 0, (20)

δi,k ≥ 0, (21)

C∑
i=1

ui,k = 1, (22)

where (γ, δ) = (γ1, · · · , γN , δ1,1, · · · , δC,N ) is the KKT vector. From Eq. (18), we
have

um−1
i,k =

λ

m
(γk − di,k + δi,k). (23)

Eq. (19) implies that δi,k = 0 or ui,k = 0. If ui,k = 0, Eqs. (21) and (23) imply
that δi,k is described both by γk and di,k as δi,k = di,k − γk ≥ 0 ⇔ di,k ≥ γk. If
δi,k = 0, Eqs. (20) and (23) imply that γk ≥ di,k, and that in this case, ui,k is
calculated by

ui,k =
( λ
m

(γk − di,k)
) 1

m−1

. (24)

Based on the above, ui,k can be described as

ui,k =

⎧⎨⎩
(

λ
m (γk − di,k)

) 1
m−1

(γk ≥ di,k),

0 (γk < di,k).
(25)

Since ui,k is not decreasing for γk and satisfies

lim
γk→+∞ ui,k(γk) = +∞, lim

γk→−∞ui,k(γk) = 0, (26)

there exists a unique γk satisfying condition (22), which implies that we have the
unique optimal solution ui,k for the optimization problem (18–22), where ui,k(γk)
stands for the value ui,k depending on γk (See Fig. 1). It is difficult, however, to
calculate the optimal value of γk directly, so we utilize the bisection method as
follows. First, we establish γk = min1≤i≤C{di,k} as a lower bound of γk satisfying
condition (22), since ui,k(γk) = 0 for all i ∈ {1, · · · , C}. Next, we establish

γk = max1≤i≤C{di,k}+ mλ−1

Cm−1 as an upper bound of γk satisfying condition (22),



Generalization of Quadratic Regularized 159

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-1  0  1  2  3  4  5  6  7  8

u i
,k

(γ
k)

 a
nd

 u
1,

k(
γ k

)+
u 2

,k
(γ

k)
+

u 3
,k

(γ
k)

γk

d1,k d2,k d3,k

u1,k(γk)
u2,k(γk)
u3,k(γk)

u1,k(γk)+u2,k(γk)

Fig. 1. ui,k(γk) with (m,λ) = (3.0, 1.0), d1,k = 1, d2,k = 3, and d3,k = 7: γk is
determined as

∑3
i=1 ui,k(γk) = 1

since ( λ
m (γk − max1≤i≤C{di,k})) 1

m−1 = 1/C ⇔ γk = max1≤i≤C{di,k} + mλ−1

Cm−1

⇒ ui,k(γk) ≥ 1/C for all i ∈ {1, · · · , C}, which implies
∑C

i=1 ui,k(γk) ≥ 1.
Using these lower and upper bounds, the value of γk satisfying condition (22) is
obtained using following algorithm:

Algorithm 1

Step 1. Let γ−
k and γ+

k be min1≤i≤C{di,k} and max1≤i≤C{di,k} + mλ−1

Cm−1 , re-
spectively.

Step 2. Let γ̃k be (γ−
k + γ+

k )/2. If |γ−
k − γ+

k |is sufficiently small, terminate
this algorithm and let the optimal γk be γ̃k.

Step 3. If
∑C

i=1 ui,k(γ̃k) > 1, let γ+
k = γ̃k. Otherwise, let γ−

k = γ̃k. Go to
Step. 2.

With the resulting value of γk, optimal membership is described by Eq. (25).
Based on these points, we propose the following power-regularized fuzzy c-

means algorithm (pFCM):

Algorithm 2 (pFCM)
Step 1. Give the number of cluster C and the fuzzification parameter (m,λ),
and set the initial cluster centers set v.

Step 2. Calculate γk by Algorithm 1.
Step 3. Calculate u by Eq. (25).
Step 4. Calculate v by Eq. (4).
Step 5. Check the stopping criterion for (γ, u, v). If the criterion is not sat-
isfied, go to Step. 2.

3.3 Generalized Standard Fuzzy c-Means

gsFCM is obtained by solving the optimization problem (17) subject to Eq. (2)
and ui,k ≥ 0. The zero point of the derivative of the objective function with
respect to vi yields the updating equation for vi,
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vi =

∑N
k=1((1− λ−1)ui,k + λ−1um

i,k)xk∑N
k=1((1− λ−1)ui,k + λ−1um

i,k)
. (27)

Given the KKT conditions of the optimal solution of memberships,

(1 − λ−1)di,k + mλ−1di,ku
m−1
i,k − γk − δi,k =0, (28)

δi,kui,k =0, (29)

ui,k ≥ 0, (30)

δi,k ≥ 0, (31)

C∑
i=1

ui,k =1, (32)

the updating equation of the membership is derived in a way similar to that of
pFCM, yielding the following algorithm for gsFCM:

Algorithm 3 (gsFCM)
Step 1. Give the number of cluster C and fuzzification parameter (m,λ), and
set the initial cluster centers v.

Step 2. Calculate γk by the following sub-algorithm:
(a) Let γ−

k and γ+
k be (1− λ−1) min1≤i≤C{di,k} and

λ−1mmax1≤i≤C{di,k}(1/Cm−1 + (λ− 1)/m), respectively.
(b) Let γ̃k be (γ−

k +γ+
k )/2. If |γ−

k −γ+
k |is sufficiently small, terminate

this algorithm and let the optimal γk be γ̃k.
(c) If

∑C
i=1 ui,k(γ̃k) > 1, let γ+

k = γ̃k. Otherwise, let γ−
k = γ̃k. Go to

Step. 2b.
Step 3. Calculate the memberships as

ui,k =

{
( λγk

mdi,k
− λ−1

m )1/(m−1) (γk ≥ (1− λ−1)di,k),

0 (γk ≤ (1− λ−1)di,k).
(33)

Step 4. Calculate v by Eq. (27).
Step 5. Check the stopping criterion for (γ, u, v). If the criterion is not sat-
isfied, go to Step. 2.

3.4 Modification of gsFCM and FCMse

In deriving the updating equation of vi of gsFCM, the following optimization
problem is solved:

minimize
v

N∑
k=1

((1− λ−1)ui,k + λ−1)um
i,kdi,k. (34)

Though the coefficient of ‖vi‖22,
∑N

k=1((1−λ−1)ui,k +λ−1um
i,k), must be positive

for vi to have an optimal value, it may be non-positive depending on the given
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fuzzification parameter λ and the updating value of the membership ui,k. In this
case, vi has no optimal value, and the derived updating equation Eq.(27) does
not minimize the objective function. gsFCM in this case will prove to be unstable
and non-convergent. This problem occurs also in FCMse, since the coefficient of
‖vi‖22 of FCMse,

∑N
k=1(ui,k + λ−1)ui,k log(ui,k)) may also be non-positive.

One way to avoid such cases in gsFCM is to modify the objective function
by adding a positive value to the coefficient of di,k, ((1 − λ−1)ui,k + λ−1um

i,k).

Since this coefficient has minimal value λ−1m− 1
m−1 (1 − λ)

m
m−1 (m−1 − 1), the

modification is given by

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k

+ λ−1
C∑
i=1

N∑
k=1

(um
i,k − ui,k + m− 1

m−1 (1 − λ)
m

m−1 (1−m−1))di,k. (35)

This modified objective function always yields the optimal cluster centers

vi =

∑N
k=1((1 − λ−1)ui,k + λ−1(um

i,k + m− 1
m−1 (1− λ)

m
m−1 (1−m−1)))xk∑N

k=1((1− λ−1)ui,k + λ−1(um
i,k + m− 1

m−1 (1− λ)
m

m−1 (1 −m−1)))
, (36)

and the same membership as Eq. (33).
Similarly, the objective function of FCMse can be modified as

minimize
u,v

C∑
i=1

N∑
k=1

(ui,k + λ−1ui,k log(ui,k) + exp(λ− 1))di,k (37)

yielding optimal cluster centers

vi =

∑N
k=1(ui,k + λ−1(ui,k log(ui,k) + exp(−λ− 1)))xk∑N
k=1(ui,k + λ−1(ui,k log(ui,k) + exp(−λ− 1)))

(38)

and the same membership as the original FCMse.

4 Numerical Example

In this section, illustrative examples are provided for the sake of comparing
the characteristic features of the proposed fuzzification with conventional algo-
rithms. The first set of examples use an artificial triangle-shaped dataset consist-
ing of 400 points in two-dimensional space (Fig. 2). Partitioning this dataset into
4 clusters via FCM algorithms with different types of fuzzification, which fol-
lows the experimental mannar in [7], reveals the difference of classification rules
among different types of fuzzification. The derived fuzzy classification functions
are shown in Figs. 3–6, with the gray scale indicating the maximum member-
ship value, i.e., the degree of membership in the nearest cluster indicated by
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the circles. For eFCM, ui(x) moves toward 1 as ‖x‖ → +∞ (see Fig. 3), while
for FCMse, ui(x) moves toward 1/C as ‖x‖ → +∞ (see Fig. 4). In the results
of the proposed methods (Figs. 5 and 6), gsFCM with λ = 1 and pFCM with
(m,λ) = (2, 2) coincide with sFCM and qFCM, respectively. The larger the
fuzzification parameter m and the smaller the fuzzification parameter λ become,
the fuzzier the membership will be.
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Fig. 2. Triangle-shaped
Dataset
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Fig. 3. eFCM with λ = 0.2
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Fig. 4. FCMse with λ =
2.4
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(a) (m,λ) = (1.1, 0.85)
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(b) (m,λ) = (1.5, 0.85)
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(c) (m,λ) = (2.0, 0.85)
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(d) (m,λ) = (1.1, 1.0)
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(e) (m,λ) = (1.5, 1.0)
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(f) (m,λ) = (2.0, 1.0)
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(g) (m,λ) = (1.1, 8.0)
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(h) (m,λ) = (1.5, 8.0)
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(i) (m,λ) = (2.0, 8.0)

Fig. 5. gsFCM including sFCM
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(a) (m,λ) = (1.3, 0.07)
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(b) (m,λ) = (2.0, 0.07)
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(c) (m,λ) = (5.0, 0.07)
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(d) (m,λ) = (1.3, 1.0)
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(e) (m,λ) = (2.0, 1.0)
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(f) (m,λ) = (5.0, 1.0)

Fig. 6. pFCM including qFCM
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Fig. 8. u1(x) of pFCM for
Line-Data
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Fig. 9. u1(x) of gsFCM for
Line-Data
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Fig. 10. modified gsFCM with (m,λ) =
(2.0, 0.8)
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Fig. 11. modified FCMse with λ = 2.3

The next set of examples show the shape of the classification functions of
gsFCM and pFCM near the clusters’ border for an artificial, line-shaped dataset
consisting of 9 points in two-dimensional space (Fig. 7) partitioned into two
clusters. The derived fuzzy classification functions with a given set of fuzzification
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parameters are shown in Figs. 8 and 9. In pFCM (Fig. 8), the classification
function is generally “s”-shaped in 0 < ui(x) < 1, where only the case m = 2.0
(qFCM) is piecewise-linear. In gsFCM (Fig. 9), we see the following three cases:
(1) If λ < 1, ui(x) is greater than 0 and less than 1; (2) If λ = 1, there are
isolated points of x satisfying ui(x) ∈ {0, 1}; and (3) If λ > 1, there are regions
of x satisfying ui(x) ∈ {0, 1}.

The final set of examples illustrate the modified gsFCM and modified FCMse,
and make use of the same triangle-dataset shown in Fig. 2. Note that the rea-
son gsFCM for (m,λ) = (2.0, 0.8) and FCMse for λ = 2.4 do not converge is

that the coefficients of ‖vi‖22,
∑N

k=1((1 − λ−1)ui,k + λ−1um
i,k) for gsFCM and∑N

k=1(ui,k + λ−1ui,k log(ui,k)) for FCMse are not positive. For the same param-
eters, respectively, the modified gsFCM and the modified FCMse do converge,
and their classification functions, shown in Figs. 10 and 11, are similar to the
cases of gsFCM with (m,λ) = (2.0, 0.85) and FCMse with λ = 2.3, as shown in
Figs. 5(c) and 4, respectively.

5 Conclusion

In this paper, qFCM and sFCM were generalized from the unified perspective
of HCM regularization. First, qFCM was generalized from quadratic regulariza-
tion to power-regularization. Next, the relation between sFCM and pFCM was
compared with the relation between eFCM and FCMse in regards to HCM regu-
larization, and sFCM was generalized with an additional fuzzification parameter.
Through this process, we saw that all subsequent methods could be constructed
by combining HCM and a particular regularization term, where each regular-
izer yields two methods: on in which the regularizer is weighted by data-cluster
dissimilarity and one in which it is not. We observed numerically that the exis-
tence or nonexistence of this weighting determines whether the membership of
an extremely large datum will be fuzzy or crisp, respectively. This unified view
can be used to investigate FCM variants other than those presented here, and
for constructing further FCM variants in the future.

In future work the classification function for gsFCM and pFCM, observed
numerically in this paper, will be analyzed theoretically, as was done for con-
ventional methods in [5] and [6]. Further generalization of FCM variants should
then resolve the following proposition:

Proposition 1. If a function
∑C

i=1 f(ui,k) has a minimal point ui,k = 1/C
subject to Eq. (2), then, the classification function of the obtained clustering
algorithm solving the optimization problem

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

f(ui,k) (39)
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has the property that membership approaches crispness for ‖x‖ → +∞, and the
optimization problem

minimize
u,v

C∑
i=1

N∑
k=1

ui,kdi,k + λ−1
C∑
i=1

N∑
k=1

f(ui,k)di,k (40)

has the property that membership approaches 1/C for ‖x‖ → +∞.
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Abstract. Regression analysis has a long history and switching regres-
sion models is a derived form that can output multiple clusters and
regression models. Semi-supervision is also useful technique for improv-
ing accuracy of regression analysis. However, there is one problem: the
results have a strong dependency on the predefined number of clusters.
To avoid these drawbacks, we proposed semi-supervised sequential re-
gression models which we call SSSeRM that are related to the algorithm
of sequential extractions. In sequential extractions process, one cluster is
extracted at a time using a method of noise-detection, and the number
of clusters are determinate by automatically. In this paper, we extend
the capability of SSSeRM for handling non-linear structures by using
kernel methods. Kernel methods can handle non-linear data and we pro-
pose two kernel regression algorithms (sequential kernel regression mod-
els and semi-supervised sequential kernel regression models) which can
output clusters and regression models without defining cluster number.
We compare these methods with the ordinary kernel switching regression
models and semi-supervised kernel switching regression models and show
the effectiveness of the proposed method by using numerical examples.

Keywords: kernel regression, switching regression models, semi-
supervised clustering, pairwise constraints, sequential clustering.

1 Introduction

Regression analysis is a statistical technique and has a long history [1–3]. Its basic
model is to estimate one regression model that describes relationships between
a dependent variable and one or more independent variables. However, it often
occurs that describing the whole data by using one regression model cannot
capture characteristics of data appropriately. In such cases, typical method is
to classify data into multiple classes and do regression analysis in each class
respectively, and this is known as c-regression problem which is used in many real
applications. The famous method of c-regression for classification is Switching
Regression Models (SRM) [4, 5]. Another useful method for data analysis is

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 166–178, 2013.
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semi-supervised clustering [6–8] whereby we can add prior information of data
set to clustering procedure.

There is an important problem related to those algorithms, that is, the number
of clusters must be defined before the algorithms run and this number can be
a sensitive factor to the clustering results. To solve this problem, “sequential
extraction” algorithms have been developed by several researchers [9–11] and
one method [11] proposed by one of the authors is related to noise clustering
[12, 13]. The advantage of “sequential extraction” is that the algorithm can
output clusters without setting predefined cluster number.

In our previous work [14], we proposed Semi-Supervised Sequential Regression
Models (SSSeRM) which consist SRM, semi-supervision, and “sequential extrac-
tion”. In SSSeRM, we can use of prior information and have multiple regression
models automatically.

However, it is difficult to handle data with non-linear structures by SSSeKRM.
For this view, we focus on kernel methods [15–17]. Kernel methods were used
in various fields and in this paper, we compare four algorithms related to ker-
nel methods by numerical examples. Four algorithms are called Kernel Switch-
ing Regression Models (KSRM), Semi-Supervised Kernel Switching Regression
Models (SSKSRM), Sequential Kernel Regression Models (SeKRM), and Semi-
Supervised Sequential Kernel Regression Models (SSSeKRM). New algorithms
we proposed in this paper are SeKRM and SSSeKRM.

The rest of this paper is organized as follows: we describe each algorithm
in Section 2, numerical examples are given in Section 3, and the paper finally
concludes in Section 4.

2 Algorithms

We first define some notations. We assume data set (x1, y1), . . . , (xn, yn) in which
x1, . . . ,xn ∈ Rp are data of the independent variable x, y1, . . . , yn ∈ R are those
of the dependent variable y, and n is the number of data. In is n×n dimensional
identity matrix. The number of clusters is denoted by c, and C(i)(i = 1, . . . , c)
means the number i cluster. Moreover, uki is the membership grade of (xk, yk)
belonging to C(i) and we denote membership matrix U = (uki)(k = 1, . . . , n,
i = 1, . . . , c).

2.1 Kernel Swtiching Regression Models

Kernel Switching Regression Models (KSRM) are based on Kernel Regression
(KR) and Switching Regression Models (SRM). KR is the combination of ridge
regression and kernel methods and the objective function of KR is following:

JKR(α) = (y −Kα)T (y −Kα) + λαTKα (1)

where K is the kernel matrix, α is the regression parameter, and λ is the regu-
larization parameter. K is defined as follows:
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K =

⎛⎜⎜⎜⎝
k(x1,x1) k(x2,x1) . . . k(xn,x1)
k(x1,x2) k(x2,x2) . . . k(xn,x2)

...
...

. . .
...

k(x1,xn) k(x2,xn) . . . k(xn,xn)

⎞⎟⎟⎟⎠ (2)

where K is a positive definite matrix. There are various types of kernels and we
use the Gaussian kernel

k(x,x′) = exp(−β‖x− x′‖2) (3)

in this paper. The optimal solutions for α and output function f(x;α) are
calculated as follows:

α̂ = (K + λIn)−1y (4)

f(x; α̂) = yT (K + λIn)−1

⎛⎜⎜⎜⎝
k(x,x1)
k(x,x2)

...
k(x,xn)

⎞⎟⎟⎟⎠ (5)

Next, we introduce Switching Regression Models (SRM) [4, 5]. SRM are very
useful for real applications since they can output multiple clusters and regres-
sion models simultaneously. The aim of SRM is to determine the c regression
models. In this paper, we assume that data have multiple non-linear structures,
so we consider the combination of KR and SRM and call them Kernel Switching
Regression Models (KSRM). The aim of KSRM is to output c kernel regression
models:

y = f(i)(x;α(i)) + ei, i = 1, . . . , c. (6)

and the objective function of kernel switching regression models uses the next
equation:

JKSRM (U, α) =

n∑
k=1

c∑
i=1

uki(yk − f(i)(xk;α(i)))2. (7)

We use alternate optimization for KSRM since there are two parameters U and α
that we optimize. The algorithm of kernel switching regression models (KSRM)
is the following one:

Procedure: Kernel Switching Regression Models
KSRM1: Set the initial value U .
KSRM2: Calculate regression parameter α(i) and output function f(i)(x;α(i))

of the corresponding clusters.
KSRM3: Calculate membership matrix U .
KSRM4: If the clusters are convergent, stop; else go to KSRM2.
End of KSRM
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The optimal solutions for α and U are as follows:

α(i) = (K(i) + λIn(i) )−1y(i) (8)

f(i)(x;α(i)) = (y(i))T (K(i) + λIn(i))−1

⎛⎜⎜⎜⎜⎝
k(x,x

(i)
1 )

k(x,x
(i)
2 )

...

k(x,x
(i)

n(i))

⎞⎟⎟⎟⎟⎠ (9)

uki = 1 ⇐⇒ α(i) = arg min
α(l)

(yk − f(l)(xk;α(l)))2 (10)

ukj = 0, j �= i (11)

The calculations of α(i) and f(i)(x;α(i)) in (8) and (9) are different from those

of the ordinary kernel regression in (4) and (5). In equations (8) and (9), n(i) is
the number of data set related to C(i), that means

n(1) + n(2) + . . . n(c) = n. (12)

In(i) is n(i) × n(i) dimensional identity matrix. K(i) is n(i) × n(i) dimensional

kernel matrix, x
(i)
k and y(i) (k ∈ (1, 2, . . . , n(i))) are generated by sorting data

set in C(i):
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)

n(i) ∈ Rp (13)

y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)

n(i))
T ∈ Rn(i)

(14)

For example, if n = 4, C = 2, (u11, u21, u31, u41) = (1, 0, 1, 0), and (u12, u22, u32,

u42) = (0, 1, 0, 1), then n(1) = 2, n(2) = 2, (x
(1)
1 ,x

(1)
2 ) = (x1,x3), (x

(2)
1 ,x

(2)
2 ) =

(x2,x4), y(1) = (y1, y3)T , y(2) = (y2, y4)T , and K(1), K(2) are calculated as
follows:

K(1) =

(
k(x

(1)
1 ,x

(1)
1 ) k(x

(1)
2 ,x

(1)
1 )

k(x
(1)
1 ,x

(1)
2 ) k(x

(1)
2 ,x

(1)
2 )

)
,K(2) =

(
k(x

(2)
1 ,x

(2)
1 ) k(x

(2)
2 ,x

(2)
1 )

k(x
(2)
1 ,x

(2)
2 ) k(x

(2)
2 ,x

(2)
2 )

)
.

2.2 Semi-Supervised Kernel Switching Regression Models

Semi-supervised clustering are famous methods for adding prior information and
one method is to use pairwise constraints [6–8]. Pairwise constraints consist of
must-link and cannot-link and each of them represents the following relationship:

must-link: two objects should be in the same cluster.
cannot-link: two objects should not be in the same cluster.

In this paper, we use pairwise constraints for semi-supervision. We apply COP
K-means [6] to kernel switching regression models (KSRM) and call them Semi-
Supervised Kernel Switching Regression Models (SSKSRM). In the same way
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as COP K-means, the pairwise constraints are not violated during the clus-
tering process in this paper. The algorithm of semi-supervised kernel switching
regression models (SSKSRM) is as follows:

Procedure: Semi-Supervised Kernel Switching Regression Models
SSKSRM1: Set the initial value U .
SSKSRM2: Calculate regression parameter α(i) and output function

f(i)(x;α(i)) of the corresponding clusters.
SSKSRM3: Calculate membership matrix U such that violation of pairwise

constraints is false. If no such cluster exists, fail.
SSKSRM4: If the clusters are convergent, stop; else go to SSKSRM2.
End of SSKSRM

The difference from KSRM is about updating cluster assignments in SSKSRM3.
If U violates pairwise constraints, we continue to search another U that satisfy
all pairwise constraints. If there is no such U , the algorithm stops and partition
output is empty. The algorithm of checking violations of pairwise constraints in
SSKSRM is as follows:

Procedure: checking violations of pairwise constraints in SSKSRM
1: For all (x, x′) in must-link, if x ∈ C(i), x′ ∈ C(j) (i �= j), then return true.
2: For all (x, x′) in cannot-link, if x, x′ ∈ C(i), then return true.
3: Else return false.
End

2.3 Sequential Kernel Regression Models

One of the authors has proposed different algorithms for sequential extraction
of clusters [11] and we developed some derivative methods in other works [14,
18, 19]. In these algorithms, one cluster is extracted at a time. The extraction
process continues until no sufficient data exist.

Sequential Kernel Regression Models (SeKRM) use the next objective function:

JSeKRM (U, α(s)) =

n∑
k=1

uks(yk − f(s)(xk;α(s)))2 +

n∑
k=1

uk0δ. (15)

Note that there are only two clusters: uks is the membership belonging to the
number s cluster extracted by SeKRM and uk0 is the membership belonging to
the noise cluster 0; δ > 0 is a parameter which means every object has a constant
dissimilarity δ from the noise cluster. This algorithm applies a variation of noise
clustering [12, 13] to extract regression models sequentially.

The optimal solution of U is calculated as follows:

(uks, uk0) =

{
(1, 0), (yk − f(s)(xk;α(s)))2 ≤ δ)

(0, 1), (yk − f(s)(xk;α(s)))2 > δ)
(16)

and the optimal solution α(s) for regression models is calculated as same as that
in KSRM.
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X is assumed as a data set which we aim to analyze. We apply sequential
clustering to kernel switching regression models, and call it sequential kernel
regression models (SeKRM).

Procedure: Sequential Kernel Regression Models
SeKRM1: Set the initial data set X(0) = X , s = 1, the initial value U .
SeKRM2: Calculate regression parameterα(s) and output functionf(s)(x;α(s))

of the corresponding clusters.
SeKRM3: Calculate membership matrix U .
SeKRM4: If the clusters are convergent, stop and extract cluster C(s) that

belongs to the elements with uks = 1; else go to SeKRM2.
SeKRM5: Let X(s) = X(s−1)−C(s). If X(s) does not have sufficient elements

to extract one more cluster, stop; otherwise go to SeKRM2.
End of SeKRM

2.4 Semi-supervised Sequential Kernel Regression Models

Semi-Supervised Sequential Kernel Regression Models (SSSeKRM) are the com-
binations of semi-supervision and SeKRM which are explained in Section 2.2
and Section 2.3. If there are prior information, the performance of SeKRM is
more likely to become better by using prior information. The objective function
of SSSeKRM is same as SeKRM in Section 2.3. The difference is checking viola-
tions of pairwise constraints about membership U in the process. The algorithm
of SSSeKRM is as follows:

Procedure: Semi-Supervised Sequential Kernel Regression Models
SSSeKRM1: Set the initial data set X(0) = X , s = 1, the initial value U .
SSSeKRM2: Calculate regression parameter α(s) and output function

f(s)(x;α(s)) of the corresponding clusters.
SSSeKRM3: Calculate membership matrix U such that checking violations

of pairwise constraints is false. If no such cluster exists, fail.
SSSeKRM4: If the clusters are convergent, stop and extract cluster C(s) that

belongs to the elements with uks = 1; else go to SSSeKRM2.
SSSeKRM5: Let X(s) = X(s−1) − C(s). If X(s) does not have sufficient ele-

ments to extract one more cluster, stop; otherwise go to SSSeKRM2.
End of SSSeKRM

We note that checking violations of pairwise constraints in SSSeKRM should be
different from SSKSRM in Section 2.2, which is as follows:

Procedure: checking violations of pairwise constraints in SSKSRM
1: For all (x, x′) in must-link, repeat 1.1–1.2.
1.1: If x ∈ C(0) and x′ ∈ C(s), return true.
1.2: If x ∈ C(s) and x′ ∈ C(0), return true.
2: For all (x, x′) in cannot-link, if x, x′ ∈ C(s), then return true.
3: Else return false.
End



172 H. Tang and S. Miyamoto

To summarize, we do not judge x, x′ ∈ C(0) where (x, x′) in cannot-link to be
the violation of constraints, since other clusters can subsequently be extracted
from the noise cluster C(0).

3 Experiments

We show numerical examples of clustering for an artificial data set. The pur-
pose to show an example is to clearly show differences among the four methods
(KSRM, SSKSRM, SeKRM, SSSeKRM) and for this purpose two-dimensional
data is used, since we can view differences at a glance. This artificial dataset
contains two clusters with non-linear structure.

Figure 1 shows the results using KSRM where two clusters are assumed. Fig-
ures 2 and 3 show overall results and the sequentially extracted clusters using
SeKRM. Figures 4 and 5 show SSKSRM (must-link) and SSKSRM (cannot-link)
where two clusters are assumed. Figures 6 − 8 show overall results and the se-
quentially extracted clusters using SSSeKRM (must-link). Figures 9 − 11 show
overall results and the sequentially extracted clusters using SSSeKRM (cannot-
link). Must-link is represented as bullet (•) in Figures 4, 6 − 8 and cannot-link
is represented as triangle (&, ') in Figures 5, 9− 11. For verifying the effect of
semi-supervision, we use two different settings both of must-link and cannot-link,
In Figures 4− 6, 9, left figure and right figure have different prior information of
semi-supervision. Prior information of must-link in Figure 4 (left) and Figure 6
(left), Figure 4 (right) and Figure 6 (right), and prior information of cannot-link
in Figure 5 (left) and Figure 9 (left), Figure 5 (right) and Figure 9 (right) are
same.
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Fig. 1. Two kernel regression models us-
ing kernel switching regression models
(KSRM), where two clusters are assumed
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Fig. 2. Overall results of sequential kernel
regression models (SeKRM), where ◦ and
solid line represent the first extracted clus-
ter, and + and dashed line represent second
extracted cluster
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Fig. 3. First (left) and second (right) extracted cluster of sequential kernel regression
models (SeKRM)
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Fig. 4. Two kernel regression models using semi-supervised kernel regression models
(SSKSRM, must-link), where two clusters are assumed, • represents must-link, and ◦,
•, and solid line represent the first cluster, and + and dashed line represent second
extracted cluster (left figure), • is in the second cluster and the rest of it is as same as
left figure (right figure)

In all figures, solid line and dashed line represent regression curves of cluster
1 and cluster 2 respectively. Circle (◦) is in cluster 1 and plus (+) is in cluster
2. Bullet (•) is included in cluster 1 (Figures 4 (left) and 6 (left)), and in cluster
2 (Figures 4 (right) and 6 (right)). Triangle(up) (&) is in cluster 1 and trian-
gle(down) (') is in cluster 2. In Figures 4− 11, we set kernel parameter β = 0.5
and noise parameter δ = 0.0625.

From those figures, we find two points about each kernel algorithms. One
is that the results of non-sequential algorithms (KSRM and SSKSRM (Fig-
ures 1,4,5)) and sequential algorithms (SeKRM and SSSeKRM (Figures 2,6,9))
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Fig. 5. Two kernel regression models using semi-supervised kernel regression models
(SSKSRM, cannot-link), where two clusters are assumed, � and � represent cannot-
link, and ◦, �, and solid line represent the first cluster, and +, �, and dashed line
represent the second cluster
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Fig. 6. Overall results of semi-supervised sequential kernel regression models
(SSSeKRM, must-link), where ◦, •, and solid line represent the first extracted clus-
ter, and + and dashed line represent the second extracted cluster (left figure), • is in
the second cluster and the rest of it is as same as left figure (right figure)

are almost same (comparisons between KSRM (Figure 1) and SeKRM (Figure
2), SSKSRM (must-link) (Figure 4) and SSSeKRM (must-link) (Figure 6), and
SSKSRM (cannot-link) (Figure 5) and SSSeKRM (cannot-link) (Figure 9) ).
The other is that the outputs (clusters and regression models) can be modified
by adding pairwise constraints (the difference between KSRM (Figure 1) and
SSKSRM (Figures 4 and 5), or SeKRM (Figure 2) and SSSeKRM (Figures 6
and 9)).



Semi-supervised Sequential Regression Models with Pairwise Constraints 175

−2 −1 0 1 2 3

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

−2 −1 0 1 2 3

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

−2 −1 0 1 2 3

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

−2 −1 0 1 2 3

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Fig. 7. First extracted cluster of semi-supervised sequential kernel regression models
(SSSeKRM, must-link)
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Fig. 8. Second extracted cluster of semi-supervised sequential kernel regression models
(SSSeKRM, must-link)

To summarize, our proposed algorithms SeKRM and SSSeKRM can handle
non-linear structure without predefining cluster number and SSSeKRM can han-
dle prior information by adding pairwise constraints.

4 Conclusions

We have developed four algorithms ( Kernel Switching Regression Models
(KSRM), Semi-Supervised Kernel Regression Models (SSKSRM), Sequential Re-
gression Models (SeKRM), and Semi-Supervised Sequential Regression Models
(SSSeKRM) ) and compared them by numerical examples.

From the experiments, we find two points about kernel methods: one is that
the results of sequential kernel algorithms (SeKRM and SSSeKRM) are almost
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Fig. 9. Overall results of semi-supervised sequential kernel regression models
(SSSeKRM, cannot-link), where ◦, �, and solid line represent the first extracted clus-
ter, and +, �, and dashed line represent the second extracted cluster
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Fig. 10. First extracted cluster of semi-supervised sequential kernel regression models
(SSSeKRM, cannot-link)

the same as non-sequential methods (KSRM and SSKSRM) and we can obtain
clusters and regression models automatically; the other is that we can also use
prior information by adding semi-supervisions (pairwise constraints) to modify
results in sequential kernel methods.

Generally, real world problems have many data with many dimensions and
complex structures. As a future work, we will apply our algorithms to those
data. Additionally, we also plan to extend SSSeKRM by using penalty functions
as pairwise constraints.
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Fig. 11. Second extracted cluster of semi-supervised sequential kernel regression mod-
els (SSSeKRM, cannot-link)
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Abstract. We deal with algorithmic aspects and implementation issues
of query execution in relational similarity-based databases. We are con-
cerned with a generalized relational model of data in which queries can be
matched to degrees taken from scales represented by complete residuated
lattices. The main contribution of this paper are optimization techniques
for efficient evaluation of queries involving similarity-based restrictions.
In addition, we present experimental evaluation of the proposed tech-
niques showing their efficiency compared to naive approaches.
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1 Introduction and Related Work

In this paper, we deal with similarity-based queries and imperfect matches which
are treated in a generalization of the Codd model of data [8, 12, 24] which results
by considering complete residuated lattices as structures representing degrees of
matches. In our previous work [2–4], we have investigated the model from the
point of view of data representation, querying, and similarity-based functional
dependencies in data. So far, we have not considered important issues related to
efficiency of the model, namely, in context of query execution. This paper deals
with issues related to efficiency and presents preliminary results.

In contrast to the classic Codd model of data, the model we are concerned with
allows users to formulate queries which can be matched to degrees, leaving the
ordinary yes/no matches particular cases. Analogously, the model allows users
to formulate soft constraints which are allowed to be satisfied to degrees (for
instance, a constraint can be violated a little but not too much). Such concepts
are appealing if users query relational databases containing data defined on
domains whose values may be compared (by rational observers) according to
their similarity or closeness. In that case, users may be interested not only in the
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ordinary exact matches but also in imperfect matches which take the similarities
into account. Typical examples of queries involving similarity are “Show cars
with engines similar to V8 360-hp 5.7L”, “Show high quality wines sold for
approximately $150”, “Show patients with symptoms similar to dry cough”, and
the like. An important aspect of the similarity-based querying which stems from
our model is that it can provide answers in cases where the ordinary counterparts
of queries yield no answer. Indeed, in many practical situations, it may happen
that an ordinary query is not matched at all (e.g., “Show cars sold for $15,000”)
but its similarity-based counterpart (e.g., “Show cars sold for approximately
$15,000”) is matched by existing data to high degrees (e.g., by “cars offered for
slightly less than $15,000”). Needless to say, this qualitative extension of the
ordinary relational queries improves a user-machine interaction and is especially
interesting in supporting a decision process (e.g., helping answer questions like
“Which car in the price category around $15,000 should I buy?”).

In order to apply the model, there is a need to have efficient ways to exe-
cute (interpret) similarity-based queries. Of course, the similarity-based queries
described above can be mimicked in an ordinary relational database and imple-
mented for instance by ordinary SQL queries [2] but the main drawback of this
approach is its efficiency. In fact, the present RDBMSs lack the ability to opti-
mize such queries which leads to inefficient query executions involving full table
scans suitable only for small data. In this paper, we show ways to improve the
naive executions of similarity-based queries and outline their implementation in
a software prototype of our query language RESIQL [22].

Related to our approach are various approaches to relational databases with
ranking and explicit scores (degrees) assigned to tuples in relations. For instance,
there are substantial results in probabilistic databases [6, 9–11, 18] which unlike
our model aim at processing uncertain data (in our model, data are certain but
are allowed to match queries to degrees). Various ranking approaches were pro-
posed on top of the classic relational model (RM), most notably RankSQL [23],
see also [20] for a survey of approaches. Our approach differs in the way in which
it incorporates the ranking into the relational model—instead of developing an
extension on top of the classic RM, we develop the model using a more general
metamathematics under which the ranks and similarities on domains naturally
emerge, see Section 2 for details. Our paper is related to and exploits some ideas
from the influential paper [15] on monotone query execution since the type of
queries we consider in this paper are in fact monotone. There have been many
results concerned with “fuzzy data” which started with [5, 25] and can be seen as
extensions of the RM from the viewpoint of fuzzy logics in the wide sense, deal-
ing with fuzzy sets stored in databases. In contrast, we do not consider “fuzzy
data” (in fact, we do not impose any restrictions on domains) and our approach
is more connected to fuzzy logics in the narrow sense [17].

This paper is organized as follows. In Section 2 we briefly introduce the gener-
alized model and in Section 3 we describe the proposed optimization techniques
and make some implementation notes. Furthermore, in Section 4 we present an
experimental evaluation of the proposed optimizations.
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2 Generalized Relational Model of Data

We outline here the foundations of our model and introduce notions necessary
for understanding of the basic type of queries considered in this paper and the
optimization techniques, details can be found in [3, 4].

Our model can be seen as a generalization of the classic RM which results by
substituting the two-element Boolean algebra which is the implicit structure of
yes/no matches (in fact, truth degrees assigned to formulas) in the classic RM by
a more general structure, namely a (complete) residuated lattice [16]. Hence, our
model departs from the yes/no matches and allows general “degrees of matches”
upon which we build the generalized relational model. In the classic RM, the
concept of a relation on a relation scheme R (a finite set of attributes), which is
considered as a finite subset of a Cartesian product

∏
y∈R Dy of domains Dy of

attributes y ∈ R can be identified with an indicator function

D :
∏

y∈R Dy → {0, 1} (1)

so that for only finitely many tuples r ∈ ∏y∈R Dy we have D(r) = 1. If D is
viewed as a result of query Q, then D(r) = 1 is interpreted so that “the tuple r
matches the query Q”. In our model, we replace {0, 1} by a set L of degrees which
is assumed to be equipped with a partial order ≤ so that 〈L,≤〉 is a complete
lattice, i.e., an arbitrary subset of L has its infimum (greatest lower bound) and
supremum (least upper bound) in L. We adhere to the comparative meaning of
degrees from L (higher degrees represent better matches) as it is usual in fuzzy
logics in the narrow sense (FLns), see [14, 17, 19]. Under this assumption, we
may replace (1) by

D :
∏

y∈R Dy → L (2)

so that for only finitely many tuples r ∈ ∏y∈RDy we have D(r) �= 0. Clearly,
(2) is a map which assigns to each r a value D(r) from L, we call the value the
rank of r in D and if D is interpreted as a result of a query Q, then D(r) is the
degree to which r matches the query Q. The notion of a relation on a relation
scheme which appears in the ordinary RM can be then seen as a particular case
of (2) for L = {0, 1} with its natural ordering (i.e., 0 < 1).

Furthermore, the lattice of degrees should be equipped with operations to ag-
gregate degrees. Such operations and in particular (truth functions of) general
conjunctions appear in our model as we consider counterparts to relational op-
erations like the natural join. Indeed, in the ordinary RM, for relations D1 and
D2 on relation schemes R ∪ S and S ∪ T such that R,S, T are pairwise disjoint,
we consider the natural join of D1 and D2 as a relation on R ∪ S ∪ T , denoted
by D1 �� D2 which consists of concatenation of all joinable tuples from D1 and
D2. Identifying the relations with their indicator functions as in (1) and using
the usual notation for tuple concatenation (i.e., rs stands for the set-theoretic
union of maps r and s, see [24]), we have (D1 �� D2)(rst) = 1 iff D1(rs) = 1 and
D2(st) = 1. Therefore, we may rewrite the natural join as follows

(D1 �� D2)(rst) = D1(rs) ⊗D2(st), (3)
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where ⊗ is a binary operation ⊗ : {0, 1}2 → {0, 1} which coincides with the truth
function of the logical connective “conjunction” in the usual sense (i.e., 1⊗1 = 1
and 1⊗ 0 = 0⊗ 1 = 0⊗ 0 = 0). Thus, for considering analogues of natural joins
in our model, we need a reasonable generalization of ⊗. A reasonable choice is
a binary operation ⊗ : L2 → L which is commutative, associative, neutral with
respect to 1 (full match), and is distributive over arbitrary suprema, i.e.,

a⊗∨i∈I bi =
∨
i∈I(a⊗ bi) (4)

holds true for any a ∈ L and all bi ∈ L (i ∈ I). As a consequence, ⊗ is monotone
which is a desirable property since then better results of subqueries (e.g., D1 and
D2) yield better results of composed queries whose results are computed by ⊗ as
in case of (3). As it is well known, (4) together with the fact that 〈L,⊗, 1〉 is a
commutative monoid is equivalent to stating that for ⊗ there exists a (uniquely
given) binary operation→: L2 → L satisfying the following adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (5)

for all a, b, c ∈ L. Recall that the adjointness of ⊗ and → is a crucial property
of structures of degrees used in FLns, see [1, 16, 19]. Altogether, our structure
of degrees which replaces the two-element Boolean algebra shall be a (complete)
residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉 (with a ≤ b iff a ∧ b = a as usual).
Note that we have justified the presence of ⊗ by the need to have a reasonable
generalization of a natural join in our model. Analogously, one can say that
→ is crucial for expressing a “graded containment” which is essential, e.g., for
expressing queries like “all As are Bs” which involve universal quantification.

There are wide benefits of using complete residuated lattices as structures for
degrees of matches. First, the structures are reasonably strong (the adjointness
ensures that L and ⊗ and → have reasonable properties). Second, the class of
residuated lattices is large and includes popular t-norm based structures [21]
defined of the real unit interval, finite structures (finite scales of degrees includ-
ing, e.g., the well-known Likert scale), and various nonlinear structures. Third,
with residuated lattices we get reasonable logical background for our model. As
a consequence, database instances can be seen as safe interpretations of (many-
sorted) predicate languages [7, 19], predicate formulas (with free variables) can
be seen as prescribing queries in our model, and evaluation of the formulas in
structures can be seen as a way of query evaluation, see [4] for details.

Following the previous arguments, the basic notion which appears in our
model and which replaces the ordinary notion of a relation on a relation scheme
is introduced as follows.

Definition 1 (ranked data tables). Let L be a complete residuated lattice,
R ⊆ Y be a finite set of attributes (a relation scheme). Then, any map D of the
from (2) such that for only finitely many tuples r ∈ ∏y∈R Dy we have D(r) �= 0
is called a ranked data table (an RDT).

In order to be able to express similarity-based queries, we assume that each
domain Dy is equipped with a similarity L-relation [1], i.e., a map≈y: Dy×Dy →
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L which assigns to each pair of values d1, d2 ∈ Dy a degree d1 ≈y d2 to which
d1 is similar to d2. We assume that each ≈y is at least reflexive (d ≈y d = 1 for
all d ∈ Dy) and symmetric (d1 ≈y d2 = d2 ≈y d1 for all d1, d2 ∈ Dy). Therefore,
we sometimes call RDTs ranked data tables over domains with similarities to
emphasize the presence of similarities in our model.

This is the basic framework in which we present the topics of efficient query
execution. Let us stress again that unlike the approaches which build a ranking
system on top of the classic RM as [20, 23], we introduce a generalized model
(from the FLns perspective) which is in our opinion a conceptually clean way to
cope with issues related to ranking and imperfect matches.

3 Query Execution

In this paper, we consider algebraic queries consisting of arbitrary combinations
of operations which are counterparts to the classic restrictions (selections), pro-
jections, and joins which are explained in detail in the following subsections. The
operations represent an important fragment of monotone operations that appear
in our model and correspond to the most-widely used operations in relational
query languages [13, 24].

Our goal is, given a query which can be seen as a term (a relational algebra
expression as in [24]) consisting of (i) symbols for restrictions, joins, and pro-
jections and (ii) relation symbols (i.e., names of ranked data tables), describe
execution of the query in a database instance (interpreting relation symbols by
concrete RDTs and providing similarities on domains) so that tuples matching
the query are listed in a descending order according to their ranks. The rationale
is obvious—users who query the database want to see the best matches first and
may want to stop searching in the results if either a desirable result is found
or no desirable result is found after seeing a predefined number of best results.
Thus, the basic principle of querying in our model is essentially the same as in
the approach to monotone query evaluation proposed by Fagin and it is tempting
to exploit the algorithm described in [15] (Fagin algorithm).

Note that [15] deals primarily with combination of queries obtained from
independent subsystems. From our point of view, it deals with combinations of
atomic subqueries. Our situation is technically more involved since we want to
allow an arbitrary nesting of relational expressions. As a result, query execution
in our model can be seen as a recursive application of a modification of the Fagin
algorithm. Moreover, in order to apply the Fagin algorithm for similarity-based
restrictions, we need to devise ways to efficiently list elements of domains similar
to a given value (again, in a descending order according to their similarity). This
and related issues are outlined in the following subsections.

3.1 Similarity-Based Restrictions

We consider the following operation of a similarity-based restriction: For an RDT
D on R, attribute y ∈ R, and d ∈ Dy, we define a similarity-based restriction
σy≈d(D) of D by y ≈ d by



184 P. Krajca and V. Vychodil

(
σy≈d(D)

)
(r) = D(r) ⊗ (r(y) ≈y d), (6)

for all tuples r ∈ ∏y∈RDy. Hence, if D is a result of query Q, the rank given
by (6) is a degree to which “r matches Q and its y-value is similar to d”.
Clearly, σy≈d(· · ·) is a counterpart to the restriction (selection) which appears
in the classic RM and utilizes domain similarities instead of domain equalities.
In the proposed language RESIQL [22], the corresponding query is written as
Q WHERE (y ~~ d) with Q being a relational expression, optionally followed by a
clause TOP k, meaning that only k best matches should be shown.

Note that both D(r) (for any r) and r(y) ≈y d (for any r) can be seen as
two subqueries which are aggregated by ⊗. The operation ⊗ which appears
in (6) is monotone and strict in sense of [15], i.e., we may utilize the Fagin
algorithm to list tuples with the highest k ranks if we can supply adequate
functions implementing the “sorted access” and “random access” for both the
subqueries. In a more detail, in case of D, the “sorted access” means listing one
by one in descending order based on rank, the tuples r such that D(r) > 0. If D
is stored in a database, this can be efficiently done based on indexing tuples in
D by ranks (e.g., by an ordinary B-tree index). The “random access” in case of
D means for any r, we can retrieve D(r). Again, this can be efficiently done for
a stored D based on a primary key (and the associated index). If D results from
a subquery, we assume that both the sorted and random accesses are provided
by evaluation of the subquery.

Considering the subquery which involves comparing similarity of y-values or
tuples r with a fixed value d, we may argue as follows: The “random access”
is tantamount to computing values of ≈y which we assume are supplied along
with the data. Hence, the random access is trivial (and depends on the definition
supplied by users). On the contrary, the “sorted access” which means listing for
a given d one by one in descending order based on similarity with d, the values
from the domain Dy (which appear in the RDT D), represents a serious issue.
Indeed, the virtue of our model is that it gives users quite a large freedom to
choose similarity relations which best fit their needs (we have postulated just
reflexivity and symmetry) which from the computational point of view can be
seen as an obstacle for providing optimization on the general level since we
cannot make specific assumptions on properties of the user-defined similarities.
Nevertheless, we try to give a description of the “sorted access” for the most
common scenarios which may occur.

Basically, there are two major types of domains with similarities deserving
our attention—the domains of ordinal data (values that are naturally ordered)
and domains of nominal data (finitely many distinct values). For both the cases,
we now focus on the issue of obtaining a predefined number of values which are
most similar to a specified value which is the core of the “sorted access”.

Domains of Ordinal Data For domains of ordinal data, we can consider a general
family of similarities for which we can implement an efficient “sorted access” by
an algorithm which involves traversing data table with two cursors. Our approach
is based on the following property of similarities:
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Definition 2. Let � be a strict total order on D. Similarity ≈: D ×D → L is
called monotone with respect to � if, for all elements d1, d2, d3 ∈ D such that
d1 � d2 � d3 we have d1 ≈ d3 ≤ d1 ≈ d2 ∧ d2 ≈ d3.

The monotony with respect to � is a desirable property which can be ex-
ploited to speed up the database access using B-tree indexes. On domains which
are subsets of real numbers, one can define similarities monotone with respect
to the genuine strict ordering of reals by computing the absolute difference be-
tween values, and subsequently, map the difference to L using an antitone scaling
function. In a more general setting, one can check the following:

Theorem 1. Let f : R → R be injective and monotone (or antitone) and let
s : R→ L be antitone. Then, ≈ defined by

d1 ≈ d2 = s
(|f(d1)− f(d2)|) (7)

is monotone w.r.t. <. ,-
The algorithm can be now described as follows:

Input: Assume we have an index over attributes y1, . . . , yn of RDT D so that
the values of yn are indexed based on a total strict order �; assume we are
given domain elements d1 ∈ Dy1 , . . . , dn ∈ Dyn , and a similarity ≈yn which is
monotone with respect to �. Furthermore, assume that L is linearly ordered.

Output: The result is a given number of tuples which are the best matches with
respect to the following condition which generalizes the condition in (6):

(y1 = d1)⊗ · · · ⊗ (yn−1 = dn−1)⊗ (yn ≈yn dn), (8)

i.e., each output tuple r satisfies r(y1) = d1, . . . , r(yn−1) = dn−1 (here = denote
identities on domains which are equal to 1 for d1 and d2 iff d1 and d2 are identical)
and such tuples are listed one by one in descending order based on r(yn) ≈yn dn.

Initialization: The ranked data table D is traversed with two cursors, one moving
forward and the second moving backward. First, both cursors are moved to a
first tuple fully satisfying condition (8), i.e., satisfying condition:

(y1 = d1)⊗ · · · ⊗ (yn−1 = dn−1)⊗ (yn = dn), (9)

If no such tuple exists, both cursors are moved to the next closest tuple, w.r.t.
the order given by attributes y1, . . . , yn. Afterwards, the backward moving cursor
moves to a preceding tuple.

Computation: Tuples are fetched using both cursors. During that, it is necessary
to decide between cursors which tuple shall be returned to ensure that tuples are
returned in the descending order according to their ranks. The fetch operation
evaluates the similarity-based condition yn ≈yn dn for the current tuple of each
cursor and the tuple having the highest rank is returned (i.e., the tuple and the
similarity degree are appended to the output) and the corresponding cursor is
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moved to the next tuple in its direction. If the condition yn ≈yn dn evaluates to
zero, or if the cursor cannot move to the next tuple because there are no more
tuples in its direction, it is no longer considered as a valid cursor and only the
remaining cursor is used.

Termination: The computation phase terminates if either a predefined number
of tuples has been returned or if both cursors are considered invalid.

Proof (Correctness of the algorithm). The algorithm terminates after finitely
many steps. The monotony from Definition 2 ensures that the two cursors moving
in the opposite directions cannot “skip” a tuple with a value which is more similar
to dn than any of the listed values because this would mean that the RDT D
contains values d1 � d2 � d3 such that d1 ≈ d3 � d1 ≈ d2 or d1 ≈ d3 � d2 ≈ d3,
violating the monotony. Hence, if a tuple such that yn ≈yn dn = 0 is reached, it
is certain that in the given direction is no tuple with a nonzero rank. ,-
Remark 1. Let us note that the algorithm can handle more complex conditions
than (8). Namely, the similarity ≈yn can be replaced by some other types of
L-relations of domains. For instance, one can use <, ≤, and ≥ (with the usual
bivalent interpretation) or a more complex expression preserving monotony of
the similarity, e.g., (yn ≈yn dn) ∨ (yn < dn) which may be understood as pre-
scribing a degree to which “the value of yn does not exceed dn too much”.

Domains of Nominal Data Domains of nominal data can be viewed as relatively
small finite sets (compared to typical sizes of RDTs) of values and the similari-
ties among their values are provided by users as an enumeration (typically, the
similarities are given by an expert in a particular domain).

Exploiting the finiteness of such domains, we can represent similarities on the
domains by RDTs. In a more detail, for ≈y on a finite domain Dy with |Dy| = n
we can consider an RDT Dy on relation scheme {y, y′} over domains Dy′ = Dy

such that Dy(r) = r(y) ≈y r(y′), i.e., it is an RDT where rank indicates similarity
of two values from the given domain. Observe that Dy is indeed an RDT since it
contains finitely many (at most n2 or n(n− 1)/2 if the reflexivity and symmetry
of ≈y are exploited) tuples with nonzero ranks. Therefore, Dy can be seen as a
materialized similarity relation ≈y.

Now, an efficient execution of a similarity-based restriction like (6) can be
reduced to an efficient execution of a natural join. Indeed, we can write

σy≈d(D) = D �� π{y}(σy′=d(Dy)), (10)

where σy′=d(Dy) denotes an ordinary equality-based restriction to tuples from
Dy whose y′-values are exactly d, π{y}(· · ·) is a projection onto the attribute y
as in the usual sense (the ranks are preserved, cf. Section 3.3), and �� is defined
as in (3). Thus, the similarity-based restriction is expressed by a natural join
(which is in fact a semijoin because y belongs to the relation scheme of D).

For readers familiar with RESIQL [22], we note here how this particular ap-
proach can be used in the language. For instance, for a domain of “car engines”
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(consisting of finitely many engine types), we create an RDT named engine sim
corresponding to Dy above and define an operator ~~engine which specifies the
similarity on the domain as follows:

CREATE OPERATOR engine ~~engine engine AS

RANK FROM engine sim WHERE value1 = $1 ∧ value2 = $2

OTHERWISE 0.0::rank
RETURNS rank;

Note that in the above statement, the RANK FROM-clause is a scalar expression [22]
for retrieving the rank of a tuple in a ranked data tables. Retrieving similarity of
two individual values is fast because the tuple encoding similarity of the values
is found based on an index. In order to optimize restrictions based on similarity,
our implementation of the language transforms queries like

RETRIEVE cars WHERE engine ~~engine ’V8 360-hp 5.7L’ TOP 5;

to equivalent queries of the following form:

RETRIEVE cars
NATURAL JOIN [value2 AS engine FROM

engine sim WHERE value1 = ’V8 360-hp 5.7L’]

TOP 5;

which are then efficiently executed. Note that the previous RETRIEVE-statement
is in fact a direct application of (10) which is formalized in RESIQL.

3.2 Natural Joins

In the previous section, we have seen that efficient execution of certain similarity-
based restrictions depends on efficient processing of natural joins. A natural join
of D1 and D2 in our model is introduced as in (3) with D1 and D2 being arbitrary
RDTs and ⊗ taken from L. In RESIQL, natural joins (of relational expressions
Q1 and Q2) are expressed as Q1 NATURAL JOIN Q2.

The algorithm for efficient execution of natural joins is based on modification
of the Fagin algorithm. In order to make the computation efficient, we assume
as in the ordinary case that both D1 and D2 have an index on the set of all
common attributes. Under this assumptions, we may use a modification of the
Fagin algorithm which consists of three phases, cf. [15]:

Sorted Access Phase: Retrieve tuples from D1 and D2, respectively, in the
descending order according to their ranks. Denote the sets of retrieved tuples by
R1 and R2, respectively. Continue with enlarging R1 and R2 until

J = {〈rs, st〉 | rs ∈ R1 and st ∈ R2} (11)

has at least k elements.

Random Access Phase: For each rs ∈ R1 retrieve all values D2(st) > 0 and
store rst; For each st ∈ R2 retrieve all values D1(rs) > 0 and store rst.
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Computation Phase: Take the set S of all tuples rst stored in the previous step,
sort the set according to D1(rs)⊗ D2(st) and output first k records.

Remark 2. Note that the proposed algorithm differs from the basic Fagin algo-
rithm mainly in considering pairs of joinable tuples (in the sorted access phase)
instead of the same objects which are retrieved from both D1 and D2 as it is
in [15]. The random access phase is adjusted accordingly and the computation
phase remains the same as in [15]. Using the same argument as in [15], one can
show based on upwards closed collections of tuples that the algorithm is correct.
We postpone further analysis to an extended version of this paper.

3.3 Projections

If D is an RDT on T , the projection πR(D) of D onto R ⊆ T is defined by

(πR(D))(r) =
∨{D(rs) | s ∈∏y∈T\R Dy

}
(12)

for each tuple r ∈ ∏y∈R Dy. In this case, the efficient implementation of the
operation is straightforward: Retrieve tuples rs from D in the descending or-
der according to their ranks and if r has not been seen in any previous step,
then output r with rank D(rs). If L is linear, the algorithm is correct. For non-
linear L the algorithm must be adjusted to properly compute a supremum of
incomparable degrees (we omit details here).

3.4 Notes on Further Optimizations

By combination of similarity-based restrictions, natural joins, and projections,
we can derive various similarity-based operations including similarity-based joins,
semijoins, and closures. As a consequence, the optimizations we have introduced
for these three fundamental operations can be utilized for the derived operations.

Furthermore, the query execution can be improved by applying laws repre-
sented by rewriting rules to simplify algebraic expressions in much the same way
as the ordinary RDBMS. The key difference is that not all laws that hold in the
ordinary RM can be applied in our model since the underlying logic is weaker
than the Boolean logic. Nevertheless, a lot of important rules used to simplify
queries are still valid. For instance, πS(σy≈d(D)) = σy≈d(πS(D)) provided thatD
is an RDT on R and y ∈ S ⊆ R. Analogously, σy≈d(D1 �� D2) = σy≈d(D1) �� D2

whenever D2 is an RDT on R2 and y �∈ R2. Many of the important laws are con-
sequences of (4) and thus the adjointness property which justifies our selection
of residuated lattices as the structures of ranks.

4 Experimental Evaluation and Conclusions

We have developed an experimental implementation of RESIQL in Java which
incorporates optimizations outlined in this paper. Their efficiency can be viewed
from two angles: (1) from the viewpoint of the overall query execution time, and
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Table 1. Average number of fetched tuples

index scan full table scan actual result
dataset fetched tuples std. dev. fetched tuples std. dev. tuples std. dev.

cars 191.3 169.3 4,707.0 0.0 186.3 169.3
wine quality 776.7 566.4 5,320.0 0.0 772.0 566.1
bank 835.5 1,559.8 45,211.0 0.0 830.5 1559.8
adult 6,519.9 4,297.8 48,813.0 0.0 6,514.9 4297.9

Table 2. Average time to process similarity-based query (in milliseconds)

index scan full table scan
dataset time std. dev. time std. dev.

cars 4.57 2.75 14.88 2.86
wine quality 8.27 5.07 17.23 2.57
bank 11.52 16.24 139.49 8.85
adult 39.99 24.65 165.61 15.69

(2) from the viewpoint of the number of tuples that have to be fetched from the
physical database file. The second point of view is important since reading of
data from physical files is usually the most demanding operation in real database
management systems.

To assess the proposed algorithms from these two viewpoints, we have pre-
pared a set of experiments using real-world datasets from the UCI Machine
Learning Repository (wine quality, bank, adult) and our own dataset (cars).
For one attribute in each dataset we had defined a nontrivial similarity and run
one thousand random similarity-based queries. All experiments were performed
twice—with and without an index over utilized attributes which had forced the
database system to use our index scan algorithm and the naive full table scan
algorithm, respectively.

Summary of the results is presented in Table 1 and Table 2. Apparently, the
naive table scan algorithm is outperformed by our index scan algorithm both in
terms of the overall execution time and also in terms of the number of tuples
fetched from physical files, which, in fact, is very close to the number of tuples
in the result set (see Table 1, third group of columns).

Conclusions. We have proposed algorithms for efficient execution of similarity-
based queries in a generalized relation model of data which supports imperfect
matches. We have focused mainly on algorithmic aspects connected to similarities
defined on domains of ordinal and nominal data. The algorithms were proposed
so that query results are obtained consecutively by ranks in the descending
order without the need to make full tables scans and exploiting the usual B-
tree indexes. The positive impact on the query execution performance has been
demonstrated by experiments. This paper is an initial study of algorithmic issues
in the model which will be continued in the future.
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Abstract. The fuzzy c-means proposed by Dunn and Bezdek is one
of the most popular methods of fuzzy clustering. Clusters obtained by
the fuzzy c-means are in the Voronoi sets when crisp reallocation rule is
applied. This means that a part of a larger cluster may be assigned to
a smaller one when there are clusters of different sizes. Therefore, some
methods using variables for controlling cluster sizes have been proposed.
In this paper, we study their theoretical properties and compare them
using numerical examples.

1 Introduction

Fuzzy clustering means a method of clustering with fuzzy membership function
for clusters. Fuzzy c-means proposed by Dunn [1] and Bezdek [2] is the most
popular one, which we call here the standard fuzzy c-means (SFCM). SFCM has
a simple objective function, and thus it has been studied by many authors and
many different methods of fuzzy clustering have been proposed.

A major drawback to SFCM clustering is that it tends to make clusters of
equal sizes. Namely, a part of a large cluster is misclassified as one of a smaller
cluster if volumes of clusters are out of balance. Therefore some approaches
using variables controlling cluster sizes have been proposed for tackling such a
problem, and we discuss three methods here. One is derived from a modified
entropy-based fuzzy c-means [3]. Another is a fuzzy extension of the maximum
likelihood procedure [4], and the third is fuzzy c-means proposed by Ichihashi et
al. [5], whose results are expected to be similar to those of the Gaussian mixture
model.

All of these methods can solve the problem of cluster sizes. Nevertheless, there
is no comparative study of these methods from theoretical viewpoint, and these
methods are still open to discuss. The purpose of this paper is to study theoretical
properties of these methods. We discuss them based on classifier functions [6]
and thus our conclusions have generality.
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c© Springer-Verlag Berlin Heidelberg 2013



Variables for Controlling Cluster Sizes on Fuzzy c-Means 193

We first show SFCM as a basic algorithm of fuzzy c-means and three methods
using variables for controlling cluster sizes in Section 2. Further, we show theo-
retical properties of these methods based on classifier functions in Section 3. We
apply these methods to illustrative examples and show effectiveness and these
properties with brief interpretations in Section 4. Finally, Section 5 concludes
the paper.

2 Fuzzy c-Means with Cluster Sizes

In this section, we show the standard fuzzy c-means (SFCM) introduced by
Dunn [1] and Bezdek [2] and algorithms with variables for cluster sizes [3,4,5].

2.1 Fuzzy c-Means

Let X = {x1, . . . , xn} be a set of objects for clustering. They are points in the
p-dimensional Euclidean space Rp. Let V = {v1, . . . , vc} be a set of centers of
cluster i and let U = (uik) be an c × n matrix of fuzzy membership of xk to
cluster i. xk and vi are both p-dimensional vectors, i.e., xk = (x1

k, . . . , x
p
k)T and

vi = (v1i , . . . , v
p
i )T .

SFCM is based on minimization of the following objective function:

Jsfcm =
c∑

i=1

n∑
k=1

(uik)mdik, (1)

where dik is dissimilarity between xk and vi; m is fuzzy parameter which is larger
than 1. Note that the objective function is obviously equal to that of k-means if
the fuzzy parameter m is 1. The constraint of U is

U = {(uik) : uik ∈ [0, 1],

c∑
i=1

uik = 1, ∀k}. (2)

Unless noted otherwise, dik is the squared Euclidean norm:

dik = ‖xk − vi‖2 =

p∑
l=1

(xl
k − vli)

2. (3)

The following iterative algorithm for minimizers Jsfcm is used.

Step 1. Generate c initial values for centroids V .
Step 2. Calculate optimal U that minimizes Jsfcm .
Step 3. Calculate optimal V that minimizes Jsfcm .
Step 4. If (U, V ) is convergent, stop; else return to Step 2.

The optimal solutions of Step 2 and Step 3 are given by the Lagrangian
multiplier method.
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uik =

(
1

dik

) 1
m−1

∑c
j=1

(
1

djk

) 1
m−1

(4)

vi =

∑n
k=1(uik)mxk∑n
k=1(uik)m

(5)

Note that eq.(4) excludes the case when dik = 0 holds. If this is the case, then
uik = 1 and ujk = 0 (∀j �= i) .

In Step 4 we judge that the solution is convergent when U or V is unchanged.

2.2 Variables for Controlling Cluster Sizes

SFCM with crisp reallocation by the maximum membership rule may fail to
divide accurately if there are unbalanced clusters like those in Fig.1 in Section
4. In the case of Fig.1, even if each centroids are at center of each circle, about
4.0 percent area of the left side of larger cluster must be assigned to the smaller
one when crisp reallocation rule is applied. Therefore, three methods using vari-
ables for controlling cluster sizes have been proposed [3,4,5] for tackling such a
problem.

The objective functions proposed in [3],[4] and [5], respectively, are as follows,

Jfcma =

c∑
i=1

n∑
k=1

(αi)
1−m(uik)mdik (6)

Jpfcm =

c∑
i=1

n∑
k=1

(uik)m{dik − λ log(αi)} (7)

Jefca =

c∑
i=1

n∑
k=1

uik

{
dik + λ log

(
uik

αi

)}
, (8)

where A = (α1, . . . , αc) is a variable for controlling cluster sizes, and λ is a
positive parameter. The constraint for A is

A =

⎧⎨⎩A = (α1, . . . , αi) :

c∑
j=1

αj = 1;α ≥ 0, 1 ≤ i ≤ c

⎫⎬⎭ . (9)

Let us denote these three algorithms using the above objective functions as
FCMA, PFCM and EFCA respectively. Jfcma has three variables U , V , and A,
hence the following algorithm with three steps should be used.

Step1. Generate c initial values for V and A.
Step2. Calculate optimal U that minimizes Jfcma .
Step3. Calculate optimal V that minimizes Jfcma .
Step4. Calculate optimal A that minimizes Jfcma .
Step5. If (U, V,A) is convergent, stop; else return to Step2. .

PFCM and EFCA also use the same algorithm. The optimal solutions of each
steps can be computed by the Lagrangian multiplier method.



Variables for Controlling Cluster Sizes on Fuzzy c-Means 195

Solutions for Jfcma

uik =
αi

(
1

dik

) 1
m−1

∑c
j=1 αj

(
1

djk

) 1
m−1

(10)

vi =

∑n
k=1(uik)mxk∑n
k=1(uik)m

(11)

αi =
(
∑n

k=1(uik)mdik)
1
m∑c

i=1(
∑n

k=1(uik)mdik)
1
m

(12)

Solutions for Jpfcm

uik =

(
1

dik−λ logαi

) 1
m−1

∑c
j=1( 1

djk−λ logαj
)

1
m−1

(13)

vi =

∑n
k=1(uik)mxk∑n
k=1(uik)m

(14)

αi =

∑n
k=1(uik)m∑c

i=1

∑n
k=1(uik)m

(15)

Solutions for Jefca

uik =
αi exp(− dik

λ )∑c
j=1 αj exp(− djk

λ )
(16)

vi =

∑n
k=1 uikxk∑n
k=1 uik

(17)

αi =

∑n
k=1 uik

n
(18)

3 Classifier Function

After finishing clustering, we are able to set a value of membership to a new
object by classifier function. In the case of SFCM, the following is considered [6].

Us
i (x) =

(
1

d(vi,x)

) 1
m−1

∑c
j=1

(
1

d(vj ,x)

) 1
m−1

. (19)

This function is simply derived from the optimal solution of uik, where vi (i =
1, . . . , c) are the converged centroids. A classifier function helps us to consider
the theoretical properties of clustering because it is defined in the whole space.
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We can convert the result of fuzzy clustering to crisp clusters by regarding an
object having the maximum value of membership to cluster i as a member of
cluster i.

Now, a region of cluster i in SFCM is represented as the following.

Us
i (x) > Us

j (x) (20)

⇔
(

1

d(vi, x)

) 1
m−1

>

(
1

d(vj , x)

) 1
m−1

(21)

⇔ d(vi, x) < d(vj , x) (22)

Hence, the region of cluster i is

Ri = {x ∈ Rp : d(vi, x) < d(vj , x), j �= i} (23)

It shows that the result of SFCM makes the Voronoi regions whose representative
point is vi. Now, as x approaches infinity in a region of cluster i, we obtain

lim
‖x‖→∞

Us
i (x) =

1

c
. (24)

In this way, we make characteristics of method clear by analyzing its classifier
function. The classifier function of three methods using variables controlling size
of clusters is the following.

Ua
i (x) =

αi

(
1

d(vi,x)

) 1
m−1

∑c
j=1 αj

(
1

d(vj ,x)

) 1
m−1

(25)

Up
i (x) =

(
1

d(vi,x)−λ logαi

) 1
m−1

∑c
j=1

(
1

d(vj,x)−λ logαj

) 1
m−1

(26)

Ue
i (x) =

αi exp
(
− d(vi,x)

λ

)
∑c

j=1 αj exp
(
− d(vj ,x)

λ

) (27)

The next propositions show theoretical properties of these classifier functions.

Proposition 1. As x approaches infinity in an unbounded region Ri, then

lim
‖x‖→∞

Ua
i (x) = αi (28)

lim
‖x‖→∞

Up
i (x) =

1

c
(29)

lim
‖x‖→∞

Ue
i (x) = 1 (30)

is obtained.
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These can be confirmed visually by Fig.2 in Section 4.

Proposition 2. As x approaches vi, uik approaches unity in FCMA, however
it doesn’t approach unity in PFCM or EFCA, namely,

lim
x→vi

Ua
i (x) = 1 (31)

lim
x→vi

Up
i (x) =

1

1 + Cp
< 1 (32)

lim
x→vi

Ue
i (x) =

1

1 + Ce
< 1, (33)

where

Cp =

c∑
j=1,j �=i

(
λ logαi

d(vj , x)− λ logαj

) 1
m−1

(34)

Ce = α−1
i

c∑
j=1,j �=i

αj exp

(
−d(vj , x)

λ

)
. (35)

The proofs of Proposition 1 and 2 are obvious and thus the detail is omitted.

Proposition 3. The region of cluster i is multiplicatively weighted Voronoi
region[7] in FCMA, and locally additively weighted Voronoi in EFCA and PFCM.
Each representative point of the regions is vi (i = 1, . . . , c). Multiplicatively
weighted Voronoi region i is defined as

Ri =

{
x ∈ Rp :

d(vi, x)

wi
<

d(vj , x)

wj
, j �= i

}
, (36)

and additively weighted Voronoi region i is defined as

Ri = {x ∈ Rp : d(vi, x)− wi < d(vj , x)− wj , j �= i}, (37)

where wi > 0 (i = 1, . . . , c) are weights of the region i.

Proof. Each boundary between cluster i and cluster j given by Ui(x) = Uj(x) is
as follows.

FCMA

Ua
i (x) = Ua

j (x)

⇔ αi

(
1

d(vi, x)

) 1
m−1

= αj

(
1

d(vj , x)

) 1
m−1

⇔ αm−1
i

1

d(vi, x)
= αm−1

j

1

d(vj , x)

⇔ d(vj , x)

αm−1
i

=
d(vj , x)

αm−1
j

(38)
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PFCM

Up
i (x) = Up

j (x)

⇔
(

1

d(vi, x)− λ logαi

) 1
m−1

=

(
1

d(vj , x) − λ logαj

) 1
m−1

⇔ d(vi, x)− λ logαi = d(vj , x)− λ logαj

⇔ d(vi, x)− λ log
1

αj
= d(vj , x)− λ log

1

αi
(39)

EFCA

Ue
i (x) = Ue

j (x)

⇔ αi exp

(
−d(vi, x)

λ

)
= αj exp

(
−d(vj , x)

λ

)
⇔ logαi − d(vi, x)

λ
= logαj − d(vj , x)

λ

⇔ d(vi, x)− λ log
1

αj
= d(vj , x)− λ log

1

αi
(40)

The above indicates that FCMA makes multiplicatively weighted Voronoi
region with weights αm−1

i , while PFCM and EFCM make locally additively
weighted Voronoi region with weights λ log(1/αi) (for cluster j �= i). ‘Locally’
means that a weight of a region is dependent on a pair of clusters, in other words,
the weight of a region between region i and j is different from the weight of the
region considering between regions i and k.

Note that these propositions imply that the region of cluster i (i = arg maxi αi)
is infinite while the region of cluster j (j = 1, . . . , c, j �= i) is finite in FCMA.
Additionally, the boundary is locally linear (hyper-plane) when the dissimilarity
function d is defined as the squared Euclidean norm, while boundary is locally
hyperbolic when d is defined as the Euclidean norm in PFCM or EFCM.

4 Numerical Examples

The purpose of this paper is to give theoretical properties of methods with
variables for controlling cluster sizes, hence we show only the result of simple
illustrative examples in this section, and omit the result of applying to real
examples.

4.1 First Data Set

Figure 1 is an artificially generated data set with two groups: one has 20 objects
randomly in a circle with the radius of 1.0 , the other has 180 objects randomly
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Fig. 1. Artificially generated data set with two groups: one has 20 objects in circle
with the radius of 1.0, the other has 180 objects in circle with the radius of 3.0 and
the distance between the centers of two circles is 5.0

in a circle with the radius of 3.0 and the distance between the centers of two
circles is 5.0.

Figure 2 shows the results of clustering the data set as shown in Fig.1 (c = 2)
with SFCM, FCMA, PFCM and EFCA, respectively, and with λ = 5.0,m =
1.6. In the figure, the objects of two clusters are displayed in small squares
or small circles, and the centroids are cross marks. The contours denote the
membership value, and increment is 0.1. Solid line in the contours, which shows
the membership value is 0.5, indicates the boundary between two clusters. This
data set has two clusters, which are small and large. SFCM makes a Voronoi
diagram when the maximum membership rule is applied, thus a part of large
cluster is misclassified as a part of smaller cluster as shown in Fig.2(a) while
three methods consider these cluster sizes and succeed in having good clusters
as shown in Fig.2(b)-(d).

Centroid Inside and Outside of Its Region. PFCM and EFCA represent
cluster sizes by additive weights, while FCMA represents them by multiplica-
tive weights, whereby PFCM and EFCA may output an odd result: there is no
centroid in its region. Such a result is shown when d(vi, vj) < |λ log(αi/αj)|.
Figure 3 shows the results of clustering data in Fig.1 by PFCM and EFCA,
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Fig. 2. Clusters when (a)SFCM, (b)FCMA, (c)PFCM and (d)EFCA were applied to
the data set shown as Fig.1. A part of larger cluster is misclassified as a part of larger
cluster in SFCM while FCMA, PFCM and EFCA succeed in having good clusters.
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Fig. 3. Clusters when (a)PFCM and (b)EFCM with too large λ were applied to the
data set shown as Fig.1. The centroid of smaller cluster is out of its region.
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where λ = 7.75 and λ = 8.20 respectively. In these case, |λ log(αi/αj)| = 31.29,
d(vi, vj) = 26.18 in Fig.3(a), and |λ log(αi/αj)| = 25.54, d(vi, vj) = 23.14 in
Fig.3(b), therefore the centroid of a smaller cluster is in the region of a larger
cluster. Note that FCMA doesn’t output such results because multiplicative
weights are used, however it is not flexible since it has only one parameter m.

4.2 Second Data Set

Figure 4 shows an artificially generated data set with three groups: one has
180 objects randomly in a circle with the radius of 3.0 , another has 80 objects
randomly in a circle with the radius of 2.0 and the other has 20 objects randomly
in a circle with the radius of 1.0.

Figure 5 shows the results of clustering the data set in Fig.4 (c = 3). The
contours denote the membership value of the largest cluster. This data set has
three clusters, which are small, medium and large. In this case, no matter what
value of m or initial V , SFCM fails in a good classification: a centroid in small
group side is pulled by larger cluster since SFCM tries to make clusters equally
as shown in Fig.5(a). On the other hand, the three methods are able to succeed
as shown in Fig.5(b)-(d). These results indicate that these methods may work
well when there are three ore more clusters.

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Fig. 4. Artificially generated data set with three groups: one has 180 objects in circle
with the radius of 3.0, another has 80 objects in circle with the radius of 2 and the
other has 20 objects in circle with the radius of 1.0
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Fig. 5. Clusters when (a)SFCM, (b)FCMA, (c)PFCM and (d)EFCA were applied
to the data set shown as Fig.4. The centroid of small cluster side is pulled by large
cluster in SFCM while FCMA, PFCM and EFCA succeed in having good clusters.

5 Conclusion

In this paper, we described three methods with variables for controlling cluster
sizes, and showed their theoretical properties using their classifier functions.
Furthermore we applied these methods to illustrative examples and showed that
these methods worked well. Each of the methods outputted different results
though all of these methods were able to handle the cluster sizes.

From a practical viewpoint, the terms of covariance variables within clusters
should also be used [6,5] with appropriate parameters. However we omitted dis-
cussion of this topic in this paper for simplicity. Besides, there are rooms for
further discussion of the combination of the kernel method or the addition of
constraints in semi-supervised clustering and comparison with other approaches,
for example conditional FCM [8,9], whose constraint of membership is continu-
ously updated during clustering, for our future works.
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Abstract. The fuzzy non-metric model is one of the clustering meth-
ods in which the membership grade of each datum to each cluster is
calculated directly from dissimilarities between data. The cluster center
which is referred to as representative of cluster is not used in fuzzy non-
metric model. This paper discusses a new possibilistic approach for non-
metric model from the viewpoint of being in the cluster. In the previous
study, new possibilistic clustering and its variant have been proposed by
using L1-regularization. These possibilistic clustering methods with L1-
regularization induce a change in the membership function. Two types of
non-metric model based on possibilistic approach named L1-regularized
possibilistic non-metric model are proposed in this paper. Next, the way
of sequential extraction algorithm is also discussed. Moreover, the results
of sequential extraction based on proposed methods are shown.

Keywords: possibilistic clustering, non-metric model, L1-
regularization, sequential cluster extraction.

1 Introduction

The aim of data analysis is to discover important structures from massive and
complex databases. Clustering is one of the data analysis method which divides a
set of objects into some groups called clusters. Objects classified in same cluster
are considered similar, while objects classified in different cluster are considered
dissimilar. Fuzzy c-means clustering (FCM) is the most well-known clustering
method [1–3]. Possibilistic clustering (PCM) is also well-known as one of the
useful methods as well as FCM. Because PCM is robust against noise and outliers
which negatively affect clustering results[4]. The robustness for noise or outliers
is essential for clustering methods to be useful in real world applications [5].
A procedure of sequential cluster extraction has been proposed by using this
drawback [5, 6]. A proposal of algorithms extracting ”one cluster at a time” is
based on the idea of noise clustering [7]. Sequential cluster extraction does not

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 204–213, 2013.
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need to determine the number of clusters in advance. This advantage is quite
important for massive and complex data sets to detect dense cluster.

The fuzzy non-metric model (FNM) is also one of the clustering method in
which the membership grade of each datum to each cluster is calculated directly
from dissimilarities between data [8]. The cluster center which is referred to
as representative of cluster is not used in FNM. Then, data space need not
necessarily be Euclidean space. Therefore, relational data is handled in FNM and
other relational clustering methods such as Ref. [10]. Some studies for handling
relational data have been discussed [11, 12].

A constraint for membership grade is considered in FCM, while it is not
considered in PCM. In order to obtain nontrivial solutions, particular addi-
tional terms with respect to membership grade are considered in PCM. L1-
regularization is well-known as useful technique and applied to induce the sparse-
ness, that is, small variables are calculated as zero [13]. In the field of cluster-
ing, sparse possibilistic clustering method has been proposed by introducing
L1-regularization [14]. This method induces the sparseness with calculating the
small membership grade as zero. This means that it induces the sparseness from
the viewpoint of not being in the cluster. It should be also considered that the
sparseness for being in the field of clustering. From that sense, crisp possibilistic
c-means clustering (CPCM) has been proposed and described its classification
function [15]. The way of sequential cluster extraction by CPCM has also been
proposed.

In this paper, we will propose two types of non-metric model based on possi-
bilistic approach with L1-regularization named L1-regularized possibilistic non-
metric model (L1PNM) from the viewpoint of handling relational data and con-
structing sequential extraction algorithm. This paper is organized as follows: In
section 2, we introduce some symbols and fuzzy non-metric model. In section 3,
we propose two types of L1-regularized possibilistic non-metric model (L1PNM).
In section 4, we show the algorithm of sequential extraction. In section 5, we show
the results of sequential extraction based on proposed method. In section 6, we
conclude this paper.

2 Preparation

A set of objects to be clustered is given and denoted by X = {x1, . . . , xn} in
which xk (k = 1, . . . , n) is an object. In most cases, x1, . . . , xn are p-dimensional
vectors .p, that is, a datum xk ∈ .p. A cluster is denoted as Ci(i = 1, . . . , c). A
membership grade of xk belonging to Ci and a partition matrix is also denoted
as uki and U = (uki)1≤k≤n, 1≤i≤c.

2.1 Fuzzy Non-metric Model

Fuzzy non-metric model (FNM) and entropy based FNM (EFNM) are based
on optimizing an objective function under the constraint for membership grade
[8, 9].
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We consider following two objective functions J and Je.

J(U) =

c∑
i=1

n∑
k=1

n∑
t=1

(uki)
m(uti)

mrkt,

Je(U) =
c∑

i=1

n∑
k=1

n∑
t=1

ukiutirkt + λ
c∑

i=1

n∑
k=1

uki log uki.

here, m > 1.0 and λ > 0.0 is fuzzification parameters and rkt means a dissim-
ilarity measure between xk and xt. One of the examples of rkt is the squared
L2-norm between data:

rkt = ‖xk − xt‖2.
J is the objective function of FNM [8] and Je is the one of EFNM [9].
Probabilistic constraint for FNM and EFNM is as follows:

Uf =

{
(uki) : uki ∈ [0, 1] ,

c∑
i=1

uki = 1, ∀k

}
.

2.2 Algorithm of Fuzzy Non-metric Model

The algorithm of FNM and EFNM is described as Algorithm 1.

3 L1-Regularized Possibilistic Non-metric Model

3.1 Objective Function and Optimal Solution

The objective functions ofL1-regularized possibilistic non-metric model (L1PNM)
and entropy based method (EL1PNM) are based on the one of FNM and EFNM.
We consider following objective function for L1PNM:

Jlp(U) =

c∑
i=1

n∑
k=1

n∑
t=1

(uki)
m(uti)

mrkt + γ

c∑
i=1

n∑
k=1

|1− uki|

m > 1.0 and γ > 0.0 are the parameters of L1PNM. The condition Up for FNM
is written as follows:

Up =
{

(uki) : uki ∈ [0, 1] , ∀k
}
, (1)

where, we have omitted original constraint 0 <
∑n

k=1 uki ≤ n. dki is as follows:

dki =

n∑
t=1

(uki)
m
rkt. (2)

The main problem of constructing the algorithm of L1PNM is how to derive
the optimal solution of uki. Each membership uki could be solved separately
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Algorithm 1. Algorithm of FNM and EFNM

STEP1 Set initial values for uki and parameters.
STEP2 Calculate dki for FNM as follows:

dki =
n∑

t=1

(uki)
m rkt

and for EFNM as follows:

dki =
n∑

t=1

ukirkt

STEP3 Calculate uki ∈ U for FNM as follows:

uki =

(
1

dki

) 1
m−1

∑c
l=1

(
1

dkl

) 1
m−1

and for EFNM as follows:

uki =
exp (−dki/λ)∑c
l=1 exp (−dkl/λ)

STEP4 If convergence criterion is satisfied, stop. Otherwise go back to STEP2.

in L1PNM procedure because of the condition Up. First, we will consider the
following semi-objective function:

Jki
lp (uki) = (uki)

m
dki + γ |1− uki| .

We will decompose 1 − uki = ξ+ − ξ−, in order to obtain partial derivatives
with respect to uki where all element of ξ+ and ξ− are nonnegative. The semi-
objective function is rewritten by using decomposition method [16] as follows:

Jki
lp (uki) = (uki)

m
dki + γ

(
ξ+ + ξ−

)
.

Constraints are as follows:

1− uki ≤ ξ+, 1− uki ≥ −ξ−, ξ+, ξ− ≥ 0.

Introducing the Lagrange multipliers β+, β−, ψ+, and ψ− ≥ 0, Lagrangian
Llp is as follows:

Llp = (uki)
m
dki + γ

(
ξ+ + ξ−

)
+ β+

(
1− uki − ξ+

)
+ β− (−1 + uki − ξ−

)− ψ+ξ+ − ψ−ξ−. (3)

From ∂Llp

∂ξ+ = 0 and ∂Llp

∂ξ− = 0,

γ − β+ − ψ+ = 0, γ − β− − ψ− = 0. (4)
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Since ψ+, ψ− ≥ 0, conditions 0 ≤ β+ ≤ γ and 0 ≤ β− ≤ γ are obtained from
(4). Substituting (4) into (3), the Lagrangian Llp is simplified as follows:

Llp = (uki)
m dki + β(1− uki). (5)

Here, β = β+ − β− and satisfies −γ ≤ β ≤ γ.

From ∂Llp

∂uki
= 0,

uki =

(
β

mdki

) 1
m−1

. (6)

Substituting (6) to (5), the Lagrangian dual problem is written as follows:

Llp
d =

(
β

mdki

) m
m−1

dki + β

{
1−
(

β

mdki

) 1
m−1

}
.

From
∂Llp

d

∂β = 0, this dual problem is solved as,

β = mdki. (7)

The optimal solution of primal problem is derived by considering (6), (7) and
−γ ≤ β ≤ γ. In the case of β < 0 is not realized since mdki is always positive.
Second, the case of 0 ≤ β ≤ γ, the optimal solution is uki = 1 since β = mdki.

Third, the case of γ < β, the optimal solution is uki =
(

γ
mdki

) 1
m−1

. Finally, the

optimal solution for uki of L1PNM is derived as follows:

uki =

⎧⎨⎩1 0 ≤ dki ≤ γ
m(

γ
mdki

) 1
m−1 γ

m < dki
(8)

3.2 Entropy Based L1PNM

Next, we will consider the objective function of entropy based L1-regularized
possibilistic non-metric model (EL1PNM). We consider the following objective
function for EL1PNM:

Jelp(U) =

c∑
i=1

n∑
k=1

n∑
t=1

ukiutirkt + λ

c∑
i=1

n∑
k=1

uki (log uki − 1) + γ

c∑
i=1

n∑
k=1

|1− uki|.

here, λ > 0.0 and γ > 0.0 are the parameters of EL1PNM. The constraint for
uki remain the same as (1). dki is as follows:

dki =

n∑
t=1

ukirkt. (9)
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In order to derive the optimal solution of uki for EL1PNM, we will consider
the following semi-objective function as well as L1PNM:

Jki
elp(uki) = ukidki + λuki (log uki − 1) + γ |1− uki| .

As the same procedure of L1PNM, the Lagrangian Lelp is simplified as follows:

Lelp = ukidki + λuki (log uki − 1) + β(1− uki). (10)

Here, −γ ≤ β ≤ γ is considered.

From ∂Lelp

∂uki
= 0,

uki = exp

(
−dki − β

λ

)
. (11)

Substituting above to Lelp, the Lagrangian dual problem is written as follows:

Lelp
d = β − λ exp

(
−dki − β

λ

)
.

From
∂Lelp

d

∂β = 0, this dual problem is solved as,

β = dki. (12)

The optimal solution of primal problem is derived as the same procedure of
L1PNM. In the case of β < 0 is not realized since dki is always positive. Second,
the case of 0 ≤ β ≤ γ, the optimal solution is uki = 1 since β = dki. Third, the

case of γ < β, the optimal solution is uki = exp
(
− dki−γ

λ

)
. Finally, the optimal

solution for uki of EL1PNM is derived as follows:

uki =

⎧⎨⎩
1 0 ≤ dki ≤ γ

exp

(
−dki − γ

λ

)
γ < dki

(13)

3.3 Algorithm of Proposed Method

The algorithm of L1PNM is described as Algorithm 2. Eqs. A, B used in each
algorithm follow Table 1.

Algorithm 2. Algorithm of L1PNM

L1PNM1 Set initial values and parameters.
L1PNM2 Calculate dki by using Equation A.
L1PNM3 Calculate uki ∈ U by using Equation B.
L1PNM4 If convergence criterion is satisfied, stop. Otherwise go back to L1PNM2.
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Table 1. The dissimilarity dki and optimal solution of ukifor L1PNM and EL1PNM

Algorithm Eq. A Eq. B

L1PNM (2) (8)
EL1PNM (9) (13)

4 Sequential Extraction Algorithm

The objective function of PCM can be minimized separately because probabilis-
tic constraint used in FCM is not considered [5]. This implies the drawback that
the cluster centers calculated by PCM would be completely the same. The se-
quential extraction procedure is constructed by considering this drawback. The
basis of this procedure has been already proposed [5] and discussed [6]. We con-
sider the sequential extraction algorithm by L1PNM. The datum has small dki
allocated near the data has small rkt. Then, the membership grade of such data
could be calculated as uki = 1. These data should be considered in one cluster
which satisfies uki = 1. Therefore, L1PNM can extract one cluster at a time
by minimizing the objective function in the case of c = 1. The algorithm of
sequential extraction by L1PNM is described as Algorithm 3.

Algorithm 3. Sequential cluster extraction algorithm based on L1PNM

STEP 1 Give X, initial values uki and parameters m or λ and γ.
STEP 2 Repeat L1PNM algorithm with c = 1 until convergence criterion is satisfied.
STEP 3 Extract {xk | uki = 1} from X.
STEP 4 If X = ∅ or convergence criterion is satisfied, stop. Otherwise, give initial

values and go back to STEP2.

5 Numerical Examples

We show the numerical examples of sequential extraction with butterfly data set
and polaris data set described in Figs. 1 and 2. The butterfly data set consists
of 15 data point and two attributes and should be classified into two clusters.
The polaris data set which consists of 51 data point and two attributes should
be classified into three clusters.

These figures are results of conventional entropy based FCM with λ = 0.5 [2].
In these figures, •, ×, + are clusters and � means cluster centers.

We set the fuzzification parameter λ = 100 used in EL1RPNM. First, we show
the results of butterfly data set by sequential cluster extraction with γ = 20.0
and γ = 30.0 described Figs. 3 and 4, respectively. Next, we show the results of
polaris data set by sequential extraction with γ = 70.0, γ = 80.0, γ = 90.0, and
γ = 100.0 described in Figs. 5, 6, 7, and 8, respectively.
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Fig. 1. Butterfly data (n = 15, p = 2)
should be classified into two clusters

Fig. 2. Polaris data (n = 51, p = 2)
should be classified into three clusters

Fig. 3. Sequential cluster extraction by
EL1PNM with λ = 100.0, γ = 20.0,
number of extracted cluster is 4

Fig. 4. Sequential cluster extraction by
EL1PNM with λ = 100.0, γ = 30.0,
number of extracted cluster is 2

The value displayed on each data point means the order of extracting clus-
ters. These results shows that the large λ induces the broad area which satisfies
uki = 1 and extracts small number of clusters. It is verified that the sequen-
tial extraction algorithm by L1PNM and EL1PNM are strongly depended on
initial values and fail to extract suitable clusters from these results and other
experimental results. Therefore, the other sequential clustering methods which
is robust for initial values have to be considered for handling the data set which
consists of only dissimilarities between data and relational data.
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Fig. 5. Sequential cluster extraction by
EL1PNM with λ = 100.0, γ = 70.0,
number of extracted cluster is 6

Fig. 6. Sequential cluster extraction by
EL1PNM with λ = 100.0, γ = 80.0,
number of extracted cluster is 4

Fig. 7. Sequential cluster extraction by
EL1PNM with λ = 100.0, γ = 90.0,
number of extracted cluster is 3

Fig. 8. Sequential cluster extraction by
EL1PNM with λ = 100.0, γ = 100.0,
number of extracted cluster is 2

6 Conclusions

In this paper, we have proposed L1-regularized possibilistic non-metric model
(L1PNM) and entropy based L1PNM (EL1PNM). We have moreover shown the
results of sequential cluster extraction based on proposed method.
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In future works, we will consider other sequential clustering methods which is
robust for initial values for handling data set which only consists of dissimilarities
between data or relational data.
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lalo@ms.sapientia.ro
2 Budapest University of Technology and Economics, Department of Control

Engineering and Information Technology, Budapest, Hungary
3 Petru Maior University of T̂ırgu-Mureş, Romania

Abstract. Two efficient versions of a Markov clustering algorithm are
proposed, suitable for fast and accurate grouping of protein sequences.
First, the essence of the matrix splitting approach consists in optimal
reordering of rows and columns in the similarity matrix after every
iteration, transforming it into a matrix with several compact blocks
along the diagonal, and zero similarities outside the blocks. These blocks
are treated separately in later iterations, thus significantly reducing the
overall computational load. Alternately, a special sparse matrix archi-
tecture is employed to represent the similarity matrix of the Markov
clustering algorithm, which also helps getting rid of a severe amount
of unnecessary computations. The proposed algorithms were tested to
classify sequences of protein databases like SCOP95. The proposed so-
lutions achieve a speed-up factor in the range 15-300 compared to the
conventionally implemented Markov clustering, depending on input data
size and parameter settings, without damaging the partition accuracy.
The convergence is usually reached in 40-50 iterations. Combining the
two proposed approaches brings us close to the 1000 times speed-up ratio.

Keywords: Markov clustering, bioinformatics, protein sequence classi-
fication, unsupervised classification.

1 Introduction

By definition, protein families represent groups of molecules with relevant se-
quence similarity [3]. Establishing protein families in large databases is one of
the fundamental goals of functional genomics. A successful classification may
contribute to the delineation of functional diversity of homologous proteins, and
can provide valuable evolutionary insights as well [5]. Members of such protein
families may serve similar or identical biological purposes [9]. Identifying these
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families is generally performed by clustering algorithms [6], supported by pair-
wise similarity or dissimilarity measures. Well established properties of some
proteins in the family may be reliably transferred to other members whose func-
tions are not well known [8].

TRIBE-MCL is an efficient clustering method proposed for protein sequence
classification [5], based on Markov chain theory [4]. It assigns a graph structure
to the protein database such a way that each protein has a corresponding node,
while initial edge weights in the graph represent computed pairwise similarity
values, obtained via BLAST search methods [1]. Clusters are then obtained by
alternately applying two matrix operations called inflation and expansion.

In this paper we introduce two efficient approaches aimed to accelerate the
execution speed of the algorithm, without damaging the outcome of the clusters.
The first proposed approach optimizes the execution via splitting the similarity
matrix into several smallers ones once the graph has been disintegrated into
isolated subgraphs. The second one uses a special sparse matrix structure to
model the similarity matrix, reducing the computational burden by eliminating
the unnecessary computations with zeros. Further on, these two approaches are
combined in a third one, which will be formulated after the numerical tests.

The remainder of this paper is structured as follows: Section 2 takes into ac-
count the functional details of the TRIBE-MCL algorithm. Section 3 presents
the details of the proposed efficient TRIBE-MCL algorithms. Section 4 evalu-
ates and discusses the efficiency of the proposed method. Section 5 presents the
conclusions and gives some hints for further research.

2 Background

TRIBE-MCL is an iterative algorithm, which operates on a directional graph.
Each of the n nodes of the graph represents a protein sequence from the set we
wish to cluster, while each edge length Sij , i, j = 1 . . . n, shows the similarity
between protein sequences of index i and j, respectively. Edge lengths are stored
in the n×n similarity matrix S. Initial edge lengths usually come from pairwise
sequence alignment. During the iterations, S behaves as a column stochastic
matrix, whose elements represent probabilities of transitions (evolution).

The TRIBE-MCL algorithm consists of two main operations, namely the infla-
tion and expansion, which are repeated alternately until a convergence is reached,
that is, the similarity matrix becomes invariant during a cycle:

1. Inflation has the main goal to differentiate among connections within the
graph, favoring more likely direct walks along the graph in the detriment
of less likely walks. It is computed via taking each element of the similarity
matrix to the power of r > 1. The strength of this differentiation is controlled
by the so called inflation rate r: large values express the preference of likely
walks more severely, causing sudden ruptures within the graph, possibly
not in the ideal place. Low inflation rates are more likely to yield smooth
partitions, but the convergence may become rather slow.



216 L. Szilágyi and S.M. Szilágyi

2. Expansion operation is intended to reveal possible longer walks along the
graph, to emphasize changes within the protein structures that happened in
two or more evolutionary steps. Expansion in achieved via matrix multipli-
cation, by taking similarity matrix S to the second power.

Auxiliary computations are also included in each iteration, in order to main-
tain the similarity matrix S as a symmetric column stochastic matrix.

Clusters are defined as connected subgraphs within the graph described by
the similarity matrix, so a stable state of the similarity matrix means that the
clusters don’t change their contents during an iteration.

In a previous paper [14], we have proposed a series of generalizations of the
conventional version of the TRIBE-MCL algorithm [5], e.g. time-variant inflation
rate, generalized inflation scheme, singleton filter, etc. These changes brought
slight improvements to the accuracy and efficiency of the algorithm.

3 Methods

In this paper we introduce two implementations of the TRIBE-MCL algorithm,
with the aim of seriously reducing its computational load, without harming the
accuracy of classification. We will test the proposed method on the proteins of
the SCOP95 database.

3.1 The SCOP95 Database

The SCOP (Structural Classification of Proteins) database [12] contains protein
sequences in order of tens of thousands, hierarchically classified into classes, folds,
superfamilies and families [2]. The SCOP95 database involved in this study, is
a subset of SCOP (version 1.69), which contains 11944 proteins, exhibiting a
maximum similarity of 95% among each other. Pairwise similarity and distance
matrices (BLAST [1], Smith-Waterman [13], Needleman-Wunsch [10], PRIDE
[7], etc.) are available at the Protein Classification Benchmark Collection [11].
In this study we employ BLAST similarity measures, because that one suppresses
low similarities, thus contributing to computational load reduction.

3.2 Matrix Splitting

Most of the computational load of the algorithm is caused by the matrix multipli-
cation, which has a theoretical complexity of O(n3). In order to reduce runtime,
it would be beneficial at any time of the execution, to separate those proteins
which no longer have any influence upon the others. This idea we employed in
the previous paper [14], where we proposed to exclude the rows and columns
of singletons from the similarity matrix in each iteration. This way we achieved
30%−50% reduction of the overall processing time, depending on the percentage
of singletons within the data.

In the following, we will formulate a more optimal separation scheme of clus-
ters. Let us denote by Σ the initial set of proteins, which is intended to be
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Data: similarity matrix S = [sij ] with 1 ≤ i, j ≤ n
Result: reordering buffer R, number of clusters q, indexes of first elements of

clusters Q1 . . . Qq

m ← 0;
q ← 0;
M ← Φ;
while m < n do

Find smallest i ∈ {1, 2, ...n} such that i �∈ M ;
m ← m+ 1;
Rm ← i;
M ← M ∪ {i};
q ← q + 1;
Qq ← m;
fifo.push(i);
while fifo not empty do

l = fifo.pop();
for each j ∈ {1, 2, ...n} with j �∈ M and slj > 0 do

m ← m+ 1;
Rm ← j;
M ← M ∪ {j};
fifo.push(j);

end

end

end
Qq+1 ← n+ 1;

Algorithm 1. The subgraph identification function

Fig. 1. Permutation of columns and rows: (a) an initial graph with several connections
and the corresponding similarity matrix; (b) after a certain amount of iterations the
graph breaks into pieces; (c) reordering the rows and columns in the matrix makes
the similarity matrix contain non-zero blocks along the diagonal. At this given matrix
splitting, the reordering buffer contains R = [1, 8, 2, 4, 5, 3, 7, 6], the number of isolated
subgraphs is q = 4, while the stored indexes of first elements are Q = [1, 3, 6, 8].
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classified. At any iteration t, we may look for isolated subgraphs in the graph
represented by the similarity matrix S. Whenever we find a subset of proteins
Σ1 ⊂ Σ, corresponding to a connected subgraph isolated from the rest of the
proteins (sij = 0, ∀i ∈ Σ1 and j ∈ Σ \ Σ1), in further iterations we may treat
the proteins of Σ1 separately from the others, because the rows and columns
of S corresponding to these proteins will not interact with any other rows and
columns. If we reorder all rows and columns of the similarity matrix S such a
way, that isolated subgraphs are placed in consecutive rows and columns, we
will have a similarity matrix formed by small square shaped blocks of nonzero
elements placed along the main diagonal, and all other elements of the matrix
will be zero.

In order to implement this idea, we need to define a reordering buffer R of
size n, which will contain the permuted protein indexes corresponding to isolated
subgraphs in the graph represented by S. Further on, we need a group buffer Q
to store the indexes of initial elements of protein groups within the reordering
buffer. The latter buffer will need a time-variant size of storage (denoted by q),
but it will never exceed the limit of n items. Algorithm 1 presents the procedure
of localizing isolated subgraphs within the graph. In this procedure, M repre-
sents the set of graph nodes already found during the process. The procedure
sequentially looks for seed nodes which were not yet found and occupies the
isolated subgraph using existing connections between nodes. Figure 1 exhibits
the outcome of a column and row reordering, splitting an 8× 8 matrix into four
small matrices.

Having the isolated groups of nodes separated, we may reformulate the opera-
tions performed within each iteration as follows. For each square block along the
diagonal of reordered matrix S, that is, for each b ∈ {1, 2, . . . , q}, we consider the
subset of proteins in the connected subgraph Σb = {RQb

, RQb+1, . . . , RQb+1−1}
assuming that Qq+1 = n + 1, and then

– inflation is computed as:

s
(new)
αβ =

(
s
(old)
αβ

)r
∀α, β ∈ Σb, (1)

– expansion is given by the formula:

s
(new)
αβ =

∑
γ∈Σb

s(old)αγ s
(old)
γβ ∀α, β ∈ Σb, (2)

– normalization is given by:

s
(new)
αβ = s

(old)
αβ

⎛⎝∑
γ∈Σb

s
(old)
γβ

⎞⎠−1

∀α, β ∈ Σb, (3)

– symmetry is approximated as:

s
(new)
αβ = s

(new)
βα =

√
s
(old)
αβ s

(old)
βα (4)
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∀α, β ∈ Σb, α < β. After symmetrization, similarity values below ε are
reduced to 0.

The proposed matrix splitting algorithm is summarized in Algorithm 2. Two
parameters need to be set at the beginning: the inflation rate r > 1 and threshold
ε around 10−3. Generally 30-50 iterations are needed for a stable convergence.
After 15 iterations most of the clusters are in their final form.

3.3 Sparse Matrix

The sparse matrix is a memory saving representation for matrices which contain
a low amount of non-zero values. The sparse matrix stores only the non-zero
values together with its coordinates (row and column). In our case, a non-zero
element in the similarity matrix requires at least twice more bytes than an el-
ement of an two-dimensional array. Whenever using matrices of low density,
employing sparse matrices will reduce the necessary storage space.

Sparse matrices also contribute to the efficiency of the algorithm. While com-
puting the normalization of a column, zero elements are not added to the sum,
thus reducing the number of additions. In fact, a zero element can only change to
non-zero during the expansion. But also in case of the expansion, zero elements
in the input do not affect the outcome of any element of the output matrix.

In a conventional sparse matrix structure, the non-zero elements of each col-
umn are stocked in a chained list, ordered by row coordinate. Thus the sparse
matrix has an array of list head pointers, each one pointing to the first non-zero
element of the corresponding column. Each non-zero element is represented by
the structure (row, value, next). The latter variable in the structure is a pointer
to the next non-zero element in the column.

In a conventional sparse matrix, the inflation operation requires a single pars-
ing of each column and thus the power computation is only performed for non-
zero elements. The normalization needs to parse twice each column: first it com-
putes the sum of each column and then it divides all non-zero elements by the
sum of the column. Assuring matrix symmetry is more complicated, because it
requires searching for the transposed for each non-zero element.

Expansion requires a new sparse matrix for the output. During the compu-
tation of the expanded matrix, the elements of each column are determined in
such an order, that new non-zero elements are always placed at the end of the
list. That is why, it is worth to have a pointer to the tail of the column list as
well (see Fig. 2). Further on, as expansion is computed right after having made
the similarity matrix symmetric, we may approximate the element sij as:

s
(new)
ij =

n∑
k=1

sikskj ≈
n∑

k=1

siksjk , (1)

which is easier to compute as columns are way easier to parse than rows in this
data structure.
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Data: similarity matrix S = [sij ] with 1 ≤ i, j ≤ n
Result: same similarity matrix S
m ← n; q ← 1; M ← Σ; Qq ← 1; Qq+1 ← n+ 1;
repeat

for b ∈ {1, 2, ...q} do
Σb ← {RQb , RQb+1, . . . , RQb+1−1};
Inflation;
for α, β ∈ Σb do

sαβ ← srαβ ;
end
Normalization;
S′ ← 0;
for β ∈ Σb do

z ← 0;
for γ ∈ Σb do

z ← z + sγβ ;
end
for α ∈ Σb do

s′αβ ← sαβ/z;
end

end
Symmetry;
for α, β ∈ Σb with α < β do

z ←
√

s′αβs
′
βα ;

if z < ε then
z ← 0;

end
sαβ ← z; sβα ← z ;

end
Normalization again, as above;
Expansion;
S ← 0;
for α, β ∈ Σb do

z ← 0;
for γ ∈ Σb do

z ← z + s′αγs
′
γβ ;

end
sαβ ← z;

end

end
Call Subgraph Identification function;

until convergence occurs;

Algorithm 2. Algorithm for Tribe-MCL via matrix splitting. S and S′ are
two instances of the similarity matrix, necessary for the correct handling of
data
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Fig. 2. Data structure used by the sparse matrix implementation

4 Results and Discussion

The main goal of protein clustering is to reveal hidden similarities among pro-
teins. When evaluating the accuracy of the output, one can count the number
of mixed clusters (those which contain proteins from two or more different fam-
ilies) and their cardinality. We have shown in the previous work [14], that the
inflation rate is the main factor to influence the amount of mixed clusters. The
approach proposed here computes exactly the same partitions as the conventional
TRIBE-MCL, in a more efficient way. That is why the evaluation of accuracy is
unnecessary in this study. The reader interested in accuracy details is referred
to [14].

We have employed the proposed algorithms to classify either the whole set
of 11944 proteins in the SCOP database, or selected subsets. At the selection
of subsets, whole families were chosen from the hierarchical data structure, in
order to keep all connections of each selected protein. The hierarchical structure
of the SCOP database was only used to select input data and verify the final
partition accuracy. Partitioning only uses the pairwise similarity data.

Fig. 3 summarizes some efficiency tests performed on a set of 908 proteins (all
families from SCOP95 which have 11 to 14 proteins): varying the inflation rates
between 1.3 and 2.0, the duration of each iteration was recorded and plot in this
figure. In case of the matrix splitting approach, after only 4-6 iterations com-
pleted, the large connected block within the similarity graph is broken into small
subgraphs, enabling us to compute subsequent iterations on very small matrices.
Late iterations are performed approximately 1000 times quicker. Although the
computation load stabilizes at a low level after the initial few iterations, the con-
vergence of the output data requires around 40-50 cycles. Without this proposed
efficient scheme, all iterations would need the same amount of computations as
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Fig. 3. The duration of the first 50 iterations, using the proposed method at various
inflation rates, to classify 913 proteins from SCOP95: (a) matrix splitting approach;
(b) sparse matrix implementation

the first one. This way we are able to approximate the speed-up ratio reached
via fragmenting the similarity matrix. On the other hand, the sparse matrix
implementation provides more efficiently computed initial loops, but the late
iterations will require more computations than the matrix splitting approach.
It is also visible that the duration of loops initially rises in the case of sparse
matrix representation, which happens due to the growing amount of non-zero
elements is the similarity matrix. After having performed 10-15 slower iterations,
the duration of later iterations stabilizes at a low level.

The above remarked trends are also visible in Fig. 4, which presents efficiency
results of the proposed methods on various data sets, using a fixed inflation rate
r = 1.5. Data sets involved in the tests reported here were chosen as all protein
families with cardinality between 10-18 (1795 proteins), 10-20 (2106 proteins), 8-
30 (3887 proteins), 5-50 (6522 proteins), 3-99 (8920 proteins), and whole SCOP95
database (11944 proteins). All efficiency tests were run on PC with quad core
Intel i7 processor running at 3.4GHz frequency.

Let us remark some trends identified from Figs. 3-4:

1. In every case, we needed a few iterations to break the similarity graph into
several small isolated subgraphs. The larger the input data set, the more
iterations are necessary. Using an inflation rate fixed at a reasonable value
(r = 1.5) with the matrix splitting approach, a set of 1000 proteins requires
3 slow loops at the beginning, while at 5000 proteins, the fourth iteration is
slow as well. One can expect that 105 proteins will need no more than 6-7
slow iterations. The trend of longer initial iterations is similar at the sparse
matrix version, but it last a longer number of iterations.
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Fig. 4. The duration of the first 50 iterations, using the proposed method with various
input data sets, plotted on logarithmic scale, using inflation rate r = 1.5: (a) matrix
splitting approach; (b) sparse matrix implementation

2. Choosing a larger inflation rate reduces the number of slow iterations. How-
ever, it is not recommended to use very high inflation rates, because they
yield small clusters in the output, which will hardly reveal any biologically
relevant protein similarities.

3. Even though larger number of initial, longer lasting loops are performed
by the sparse matrix version, this approach has the better overall runtime,
because these initial loops have lower computational burden than the first
loops of the matrix splitting approach. This is visible in Fig. 4, where the
scales on the vertical axis of the two graphs (a) and (b) are identical.

4. Theoretically both approaches perform the same computations. If the input
data set is the same, and the algorithm parameters are set equally, both ap-
proaches will lead to the same partition. Further on, we may also assert that
after any number of iterations, the current partition of the two approaches
are theoretically equivalent.

5. Based on the above assumption, we may combine the two approaches to
provide a third, even more efficient one, which performs the initial iterations
using the sparse matrix approach and switches to matrix splitting version
thereafter, always using the version which performs the iterations quicker.
Switching is performed when the largest connected subgraph is smaller than
5% of the total number of graph nodes. Table 1 refers to this switching
method as combined approach.

Table 1 gives us a summary of speed-up ratios reached on input data of
various sizes, at different inflation rates. These values were computed against
the performance of the conventional TRIBE-MCL algorithm, which computes
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Table 1. Speed-up ratios reached by the proposed efficient execution scheme

Number of Inflation Speed-up ratio
proteins rate Matrix splitting Sparse matrix Combined

908 1.3 17.87 18.65 80.4
908 1.5 26.16 30.96 150.9
908 1.7 36.67 40.36 184.1
908 2.0 49.07 52.24 339.4

1795 1.5 21.29 189.0 705.5
2106 1.5 21.48 212.7 773.1
3877 1.5 18.39 320.4 423.4
6522 1.5 18.03 327.4 356.7
8920 1.5 16.84 278.7 297.9
11944 1.5 17.30 197.7 224.9

Table 2. Amount of proteins in mixed clusters, out of 11944

Inflation Proteins in mixed clusters at the level of Total
rate classes folds superfamilies families

1.30 446 245 123 1237 2051
1.35 110 89 118 771 1088
1.40 29 50 51 507 637
1.45 0 35 39 448 522
1.50 0 8 13 356 377
1.55 0 0 10 239 249
1.65 0 0 10 184 194
1.75 0 0 0 97 97
1.85 0 0 0 31 31
2.00 0 0 0 19 19
2.10 0 0 0 3 3
2.35 0 0 0 0 0

the whole similarity matrix in every iteration, encoded in a two-dimensional
array. Even higher speed-up ratios could be reached using parallel computing.

The proposed efficient implementations enabled us to perform several tests
on the whole SCOP95 database, to evaluate the amount of obtained mixed clus-
ters depending on the algorithm’s parameters. Mixed clusters are clusters where
proteins from different families are present. We can further distinguish mixtures
at the level of classes, folds, superfamilies, and families. For example, a cluster
mixed at the level of folds contains proteins from different folds but all its pro-
teins are from the same class. Table 2 presents the amount of proteins situated
in mixed clusters for various values of the inflation rate. All these tests were run
for threshold value ε = 10−3.

As it was expected, the number of proteins in mixed clusters decreases as
the inflation rate grows. Mixtures at the level of classes, folds, superfamilies and
families vanish at r = 1.44, r = 1.52, r = 1.73, and r = 2.35, respectively.
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5 Conclusions

In this paper we have proposed two efficient implementation schemes and a
combined third efficient procedure for the graph-based TRIBE MCL clustering
method, a useful tool in protein sequence classification. With these novel for-
mulations, late iterations of the algorithm are performed up to thousands times
quicker, and the overall runtime becomes shorter by 2-3 orders of magnitude,
than in the conventional case. This speed-up is achieved without any damage of
the classification accuracy.
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Abstract. The paper considers evaluation of rules with particular inter-
estingness measures being Bayesian confirmation measures. It analyses
the measures with regard to their agreement with a statistically signifi-
cant dependency between the evidence and the hypothesis. As it turns
out, many popular confirmation measures were not defined to possess
such a form of agreement. As a result, even in situations when there is
only a weak dependency in data, measures could indicate strong con-
firmation (or disconfirmation), encouraging the user to take some un-
justified actions. The paper employs a χ2-based coefficient allowing to
assess the level of dependency between the evidence and hypothesis in
experimental data. A method of quantifying the level of agreement (con-
cordance) between this coefficient and the measure being analysed is
introduced. Experimental results for 12 popular confirmation measures
are additionally visualised with scatter-plots and histograms.

Keywords: Interestingness measures, Bayesian confirmation, statistical
dependency.

1 Introduction

Regardless of the application domain, a crucial step in discovering knowledge
from data is the evaluation of induced patterns [2,10,17,23]. Evaluation of pat-
terns in form of if-then rules is often done using quantitative measures of inter-
est (e.g. rule support, confidence, gain, lift) [10,23]. Among such interestingness
measures, an important role is played by a group called Bayesian confirmation
measures. Generally, they express the degree to which a rule’s premise (also re-
ferred to as the conditional part or evidence) confirms its conclusion (also referred
to as the decision part or hypothesis) [5,9]. To narrow down the field of avail-
able confirmation measures, various properties of such measures are introduced
and analysed. Popular properties of confirmation measures include monotonicity
property, Ex1 property and its generalization to weak Ex1, logicality L prop-
erty and its generalization to weak L, and a group of symmetry properties (for
a survey refer to [5,7,12,13]).

Let us stress that the property analysis becomes much more complex when we
assume that it is conducted upon data that may be error-prone. But in practice,
the existence of possible data errors is a real phenomenon and must be taken into
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account, so that insignificant, accidental conclusions could be eliminated [14].
Unfortunately, at times the popular confirmation measures may indicate strong
confirmation or strong disconfirmation, while there is only a weak dependency
in data [22]. Such indications are potentially dangerous, since they may lead to
unjustified, and thus inappropriate, user actions. To examine this aspect of the
confirmation measures, the paper assesses the significance of the dependency
between the evidence and the hypothesis in experimental data, and introduces
a method of quantifying the level of agreement (referred to as concordance)
between this assessment and the measure being analysed.

The rest of the paper is organized as follows. Section 2 describes the concept
of Bayesian confirmation and defines popular measures. An overview of common
measure properties is presented in Section 3. Section 4 discusses hazards of using
the confirmation measures under observational errors, including methodology
aimed at assessing the (χ2-based) level of dependency between the evidence
and the hypothesis in data. Moreover, it introduces concordance between the
χ2-based coefficient and confirmation measures. Last but not least, it provides
experimental evaluations of the selected confirmation measures. Final remarks
and conclusions are contained in Section 5.

2 Bayesian Confirmation Measures

In this paper, we consider evaluation of patterns represented in the form of rules.
The starting point for such rule induction process (rule mining) is a sample of a
larger reality, often represented in the form of a data table. Formally, a data table
(dataset) is a pair S = (U,A), where U is a non-empty finite set of objects, called
the universe, and A is a non-empty finite set of attributes providing descriptions
to the objects.

A rule induced from the dataset consists of a premise “if E” (referring to
an existing piece of evidence, E) and a conclusion “then H” (referring to a
hypothesised piece of evidence, H). Below, we shall use the common, shortened
denotation E → H (read as “if E, then H”).

To evaluate the patterns induced from datasets with respect to their relevance
and utility, quantitative interestingness measures have been proposed and anal-
ysed [10]. This paper concentrates on a group of interestingness measures called
Bayesian confirmation measures. They quantify the degree to which the evidence
in the rule’s premise E provides support for or against the hypothesised piece
of evidence in the rule’s conclusion H [9].

In the context of a particular dataset, the relation between E and H may be
quantified by four non-negative frequencies a, b, c and d, briefly represented in
a 2 × 2 contingency table (Table 1). As an illustration, let us recall a popular
folk statement that “all ravens are black”, formalized as a rule “if x is a raven,
then x is black”, often used by Hempel [15]. Regarding that rule, the frequencies
may be interpreted as follows: a is the number of black ravens, b is the number
of black non-ravens, c is the number of non-black ravens, and d is the number of
non-black non-ravens. Observe that a, b, c and d can thus be used to estimate
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probabilities: e.g. the probability of the premise is expressed as P (E) = (a+c)/n,
the conditional probability of the conclusion given the premise is P (H |E) =
P (H ∩ E)/P (E) = a/(a + c), and so on.

Table 1. An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a+ c

¬E b d b+ d

Σ a+ b c+ d n

The group of confirmation measures that we shall present and analyse consists
of interestingness measures that satisfy the property of Bayesian confirmation.
Formally, for a rule E → H , an interestingness measure c(H,E) has the property
of Bayesian confirmation when it satisfies the following conditions:

c(H,E)

⎧⎨⎩
> 0 when P (H |E) > P (H) (confirmation) ,
= 0 when P (H |E) = P (H) (neutrality) ,
< 0 when P (H |E) < P (H) (disconfirmation) .

(1)

Thus, the confirmation is interpreted as an increase in the probability of the
conclusion H provided by the premise E (similarly for the neutrality and the
disconfirmation).

Let us stress that the list of alternative, non-equivalent measures of Bayesian
confirmation is quite large [5,8]. The commonly used confirmation measures are
presented in Table 2 (for brevity, some definitions are only formulated for two
of the main defined situations: confirmation and disconfirmation; in the case of
neutrality their values default to zero).

3 Properties of Bayesian Confirmation Measures

To discriminate between interestingness measures and help to choose a suitable
one for a particular application, many properties have been proposed and com-
pared in the literature [7,10,17,11]. Properties group the measures according to
similarities in their behaviour. Among commonly used properties of confirmation
measures there are such properties as:

– Property M , ensuring monotonic dependency of a measure on the number
of objects satisfying (supporting) or not the premise and/or the conclusion
of the rule [12,23], so that the measure is non-decreasing with respect to a
and d, and non-increasing with respect to b and c. Thus, e.g. arrival of new
objects supporting the rule (or counterexamples, respectively) to the dataset
cannot lower (increase) the value of the measure.

– Property Ex1, and its generalization weak Ex1, assuring that any conclu-
sively confirmatory rule is assigned a higher value than any rule which is not
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Table 2. Popular confirmation measures

D(H,E) = P (H |E)− P (H) =
a

a+ c
− a+ b

n
[6]

M(H,E) = P (E|H)− P (E) =
a

a+ b
− a+ c

n
[18]

S(H,E) = P (H |E)− P (H |¬E) =
a

a+ c
− b

b+ d
[4]

N(H,E) = P (E|H)− P (E|¬H) =
a

a+ b
− c

c+ d
[19]

C(H,E) = P (E ∧H)− P (E)P (H) =
a

n
− (a+ c)(a+ b)

n2
[3]

F (H,E) =
P (E|H)− P (E|¬H)

P (E|H) + P (E|¬H)
=

ad− bc

ad+ bc+ 2ac
[16]

Z(H,E) =

⎧⎪⎪⎨
⎪⎪⎩
1− P (¬H |E)

P (¬H)
=

ad− bc

(a+ c)(c+ d)
in case of confirmation

P (H |E)

P (H)
− 1 =

ad− bc

(a+ c)(a+ b)
in case of disconfirmation

[5]

A(H,E) =

⎧⎪⎪⎨
⎪⎪⎩

P (E|H)− P (E)

1− P (E)
=

ad− bc

(a+ b)(b+ d)
in case of confirmation

P (H)− P (H |¬E)

1− P (H)
=

ad− bc

(b+ d)(c+ d)
in case of disconfirmation

[13]

conclusively confirmatory, and any conclusively disconfirmatory rule is as-
signed a lower value than any rule which is not conclusively disconfirmatory
[5,13].

– Logicality L, and its generalization weak L, indicating conditions under
which measures should obtain their maximal/minimal values [5,9,13]. An-
other property closely related to L, Ex1 and their generalizations is maxi-
mality/minimality proposed in [11].

Searching for measures that possess property Ex1, Crupi et al. [5] have proposed
measure Z(H,E). Later, as its likelihoodist counterpart, measure A(H,E) has
been proposed in [13] (for definitions see Table 2). It has been proved in [13] that
neither measure Z(H,E) nor A(H,E) satisfies weak Ex1, however new measures
enjoying weak Ex1 can be derived from Z(H,E) and A(H,E). They are denoted
as c1(H,E), c2(H,E), c3(H,E), and c4(H,E) (for definitions see Table 3; brevity
comments similar to that of Table 2 apply here). Measures c1(H,E) and c2(H,E)
are defined using parameters α and β, where α+β = 1 and α > 0, β > 0. Observe
that parameters α and β can be used to closen the new measure to Z(H,E) or
A(H,E), i.e. to Bayesian or likelihoodist inspirations.
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Table 3. Derived confirmation measures

c1(H,E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α+ βA(H,E) in case of confirmation when c = 0

αZ(H,E) in case of confirmation when c > 0

αZ(H,E) in case of disconfirmation when a > 0

−α+ βA(H,E) in case of disconfirmation when a = 0

c2(H,E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α+ βZ(H,E) in case of confirmation when b = 0

αA(H,E) in case of confirmation when b > 0

αA(H,E) in case of disconfirmation when d > 0

−α+ βZ(H,E) in case of disconfirmation when d = 0

c3(H,E) =

{
A(H,E)Z(H,E) in case of confirmation

−A(H,E)Z(H,E) in case of disconfirmation

c4(H,E) =

{
min(A(H,E), Z(H,E)) in case of confirmation

max(A(H,E), Z(H,E)) in case of disconfirmation

4 Using Bayesian Confirmation Measures in Error-Prone
Situations

4.1 The Property of Concordance

In real-life situations the existence of possible errors must be taken into account.
Thus, we should look for a statistically significant dependency between the evi-
dence and the hypothesis, which may be quantified and measured with different
tools. A good and popular one is the two-dimensional χ2 test, often used to test
for the independence of two discrete-valued variables. The popular alternatives
to this test include the Cramer’s V coefficient, the Yule’s Q coefficient or the
Fisher coefficient [20].

For 2× 2-sized contingency tables, of the form [ a c
b d ], as used in defining con-

firmation measures, a coefficient χ2
0 = n(ad−bc)2

(a+b)(c+d)(a+c)(b+d) is defined. This co-

efficient is approximately χ2-distributed and ranges from 0 to n. To make it
n-independent, it is scaled down (divided) by n, producing a value belonging to
the interval [0, 1]. This version of the coefficient will be further referred to as the
“scaled-down χ2

0” and denoted as χ2
01.

In practice, two potentially unfavourable situations can concern the confirma-
tion measure applied to a contingency table created from error-prone data:

– the value of c(H,E) indicates either weak confirmation or weak disconfir-
mation, while there is a strong dependency between the evidence and the
hypothesis,

– the value of c(H,E) indicates either strong confirmation or strong discon-
firmation, while there is only a weak dependency between the evidence and
the hypothesis.
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To counteract those, there arises a need to evaluate the concordance between
confirmation measures and statistical significance of the evidence-hypothesis de-
pendency. For such an evaluation to be useful, it should provide continuous
measurements, the higher the more the measure c(H,E) ‘agrees’ with the level
of dependency between the evidence and the hypothesis. This evaluation may
be performed using different statistical tools, and in this study we use linear
Pearson correlation between |c(H,E)| (the absolute value of c(H,E)) and χ2

01,
denoted as r(|c(H,E)|, χ2

01). Taking |c(H,E)| into account (thus ignoring the
sign of c(H,E)) is essential, as it is the absolute value of the confirmation mea-
sure, and not its sign, that determines the ‘strength’ of c(H,E) (i.e. the degree to
which the premise of a rule evaluated by the measure confirms or disconfirms its
conclusion). Potential alternatives to the linear Pearson correlation include the
Spearman rank correlation coefficient [21] or mutual information measures [1].

What is specific about the property of concordance is that it is a representative
of continuous-type properties: it can be quantified as the agreement with the level
of dependency between E and H .

The relation between χ2
01 coefficient and a given confirmation measure c(H,E)

may be additionally visualized, which is easily done with a scatter-plot of c(H,E)
against χ2

01. Each such scatter-plot will fit a 2 × 1-sized rectangular envelope,
with its axes ranging from −1 to +1 (horizontal, c(H,E)) and from 0 to 1
(vertical, χ2

01), as illustrated in Figure 1, with lighter and darker regions and
graded transitions between them. Given a measure c(H,E), the points of the
c(H,E)-versus-χ2

01 scatter-plot should possibly occupy the darker regions of the
figure, while possibly avoiding any of the lighter ones.

−1 −0.5 0 0.5 1
0.0

0.5

1.0

Fig. 1. The desirable (darker) and undesirable (lighter) regions of the
c(H,E)-versus-χ2

01 scatter-plot of c(H,E)

4.2 The Experimental Set-Up

Given n > 0 (the total number of observations), the dataset is generated as the
set of all possible [ a c

b d ] contingency tables satisfying a + b + c + d = n. The set
is thus exhaustive and non-redundant (i.e. it contains exactly one copy of each
contingency table satisfying the above condition).
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The exact number t of tables in the set is t = (n+ 1)(n+ 2)(n+ 3)/6. This value
grows quickly, although polynomially, not exponentially; e.g. the number of all
tables for n = 128 equals t = 366145. Unfortunately, the number t can become
considerable: for n about 1000 (a typical number of objects in a benchmark
classification data set) t exceeds hundreds of millions.

After having set the total number of observations n to 128, the following
operations were performed:

– the exhaustive and non-redundant set of [ a c
b d ] contingency tables satisfying

a + b + c + d = n was generated,
– the values of the 12 selected confirmation measures (with c1(H,E) and

c2(H,E) defined for α = β = 0.5) for all the generated tables were cal-
culated,

– the values of the χ2
01 coefficient for all the generated tables were computed,

– the correlations between the absolute values of each of 12 selected confirma-
tion measures and the χ2

01 coefficient (i.e. concordances) were established.

Similar steps (but with n decreased to 32 to facilitate the rendering process) led
to the charts, i.e. scatter-plots of c(H,E) against χ2

01 (Figure 2) and so called
triple-region histograms of c(H,E) (Figure 3). The triple-region histograms show
the distribution of the measure, with each bar additionally displaying the number
of points situated above (upper white region), on (dark region) or below (lower
white region) the |c(H,E)| = χ2

01 line. Characteristically, the size of the lower
region always exceeds considerably the size of the upper region, while the dark
region is only a thin, horizontal strip (with the notable exception of c3(H,E),
for which only the dark region exists).

Table 4. The coefficients of the χ2
01-concordance of the 12 selected confirmation mea-

sures

c(H,E) r(|c(H,E)|, χ2
01) c(H,E) r(|c(H,E)|, χ2

01)

D(H,E) 0.713 Z(H,E) 0.694
M(H,E) 0.713 A(H,E) 0.694
S(H,E) 0.912 c1(H,E) 0.697
N(H,E) 0.912 c2(H,E) 0.697
C(H,E) 0.908 c3(H,E) 1.000
F (H,E) 0.711 c4(H,E) 0.957

4.3 The Experimental Results

The conducted experiments revealed interesting results of both generic and spe-
cific nature [22]. The following remarks concern the χ2

01-concordance (as quan-
tified by the Pearson correlation coefficient r) of the measures (see Table 4 and
Figures 2 and 3):
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Fig. 2. Scatter-plots of the 12 selected confirmation measures against χ2
01 (left-hand

column: measures D(H,E), M(H,E), S(H,E), N(H,E), C(H,E), F (H,E); right-
hand column: measures Z(H,E), A(H,E), c1(H,E), c2(H,E), c3(H,E), c4(H,E);
c1(H,E) and c2(H,E) defined with α = β = 0.5)

– measure c3(H,E) enjoys an ideal χ2
01-concordance, which is due to the fact

that |c3(H,E)| = χ2
01,

– the concordance of the other measures ranges from 0.957 (c4(H,E)) down to
0.694 (Z(H,E) and A(H,E)), in result of which all of them can be referred
to as approximately concordant,

– the absolute values of the approximately concordant measures tend to exceed
those of χ2

01.

A conclusion is that not all of the measures possess ideal concordance. The less
concordant measures should thus be used with some care, especially when applied
to real-life, error-prone data, as the may express either strong confirmation or
strong disconfirmation in statistically insignificant situations.

It is especially interesting that measures c1(H,E) and c2(H,E), which depend
on the value of the α parameter, i.e. the free parameter that is used to define
these measures (the β parameter is, on the other hand, constrained, as β = 1−α),
evince varying shapes of their corresponding scatter-plots, see Figure 4. This will
necessarily influence their correlations with the χ2

01 coefficient.
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−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

−1 −0.5 0 0.5 1
0

0.2

0.4

Fig. 3. Triple-region histograms of the 12 selected confirmation measures c(H,E) in
relation to χ2

01 (left-hand column: measures D(H,E), M(H,E), S(H,E), N(H,E),
C(H,E), F (H,E); right-hand column: measures Z(H,E), A(H,E), c1(H,E), c2(H,E),
c3(H,E), c4(H,E); c1(H,E) and c2(H,E) defined with α = β = 0.5)
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Fig. 4. Scatter-plots of measures c1(H,E) and c2(H,E) against χ2
01, defined for various

values of α (left-hand column: α = 0.2, α = 0.4; right-hand column: α = 0.6, α = 0.8),
see Figure 2 for α = 0.5

Because, by definition, most values of these measures belong to the interval
(−α,+α), see Figure 4 (more details can be found in [22]), their concordances
are then also changed accordingly, see Figure 5. This means that the α parameter
can be directly used to control this aspect of these two measures. In particular,
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Fig. 5. The concordances of c1(H,E) and c2(H,E), as influenced by the changing α

when α → 1.0, measures c1(H,E) and c2(H,E) approach measures Z(H,E)
and A(H,E), respectively, in which case they also acquire their corresponding
concordances (which is, in both cases, 0.694).

For more detailed analyses of these (and other) properties of the confirmation
measures see [22].

5 Conclusions

The paper considers Bayesian confirmation measures, which have become the
subject of numerous, intensive studies. What is characteristic of these studies is
that virtually all of them were confined to environments that had been explicitly
or implicitly assumed to be free from observational errors. In real-life situations,
however, the existence of such errors must be taken into account and properly
approached. This goal is in this paper accomplished with the χ2 test, commonly
used to examine for the dependence between two discrete-valued variables.

The actual amount of how concordant a confirmation measure is with the level
of dependency between the evidence and the hypothesis is quantified with the
Pearson correlation coefficient between the measure and an introduced χ2

01 coef-
ficient. The relations between the measures and χ2

01 are additionally illustrated
by scatter-plots and specialized, triple-region histograms.

The general conclusion is that most measures possess rather high, although
not ideal, concordance. The scatter-plots and the triple-region histograms of
these measures reveal particular situations in which they express either strong
confirmation or strong disconfirmation in statistically insignificant situations.
This means that they should be used with special care in error-prone environ-
ments. Interestingly enough, the concordance of the parametrized confirmation
measures, c1(H,E) and c2(H,E), is influenced by the parameters used in their
definitions, so it may be controlled to some extent. Measure c3(H,E), a notable
exception amongst the 12 selected confirmation measures, enjoys full concor-
dance, so its indications may assumed to be safest in this particular respect.
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Abstract. In this paper we study the permutability of the composition of fuzzy
consequence operators when they are induced by fuzzy relations using the usual
Zadeh’s compositional rule. In particular, we study the case of fuzzy indistin-
guishability operators and fuzzy preorders. We study the connection between the
permutability of the fuzzy relations and the permutability of their induced fuzzy
operators.

Keywords: Permutability, Indistinguishability operator, Fuzzy Preorder, Fuzzy
Consequence Operator.

1 Introduction

Composition of fuzzy operators often appears in fields like fuzzy mathematical mor-
phology or approximate reasoning. In fuzzy mathematical morphology, fuzzy operators
are used as morphological filters for image processing [7,8]. In approximate reasoning,
fuzzy consequence operators perform the role of deriving consequences from certain
premises and relations [6,9,10,12]. These two fields are closely related and several re-
sults can be transfered from one field to the other. We refer the reader to [11] for further
details. In a previous paper [5] we studied the composition of fuzzy consequence oper-
ators and fuzzy interior operators in a general context. This paper continues the work
we started there. We study the case of fuzzy operators induced by fuzzy relations. The
aim is to connect the permutability of the generating relations with the permutability of
the induced operators.

We will focus on the case of fuzzy operators induced by fuzzy indistinguishability
operators and fuzzy preorders through Zadeh’s compositional rule. These cases are par-
ticularly important since the induced fuzzy operators are fuzzy consequence operators.
Our paper is organized as follows:

In Section 2 we set the framework. We recall the main definitions and results that
will be used throughout the paper and we state some results and definitions from our
previous work that will also be needed.

In Section 3 we first study the permutability of general fuzzy preorders and then we
focus on the case of fuzzy indistinguishability operators.

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 237–247, 2013.
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In Section 4 we relate the permutability of fuzzy relations with the permutability of
their respective Zadeh’s induced operators. We study the case of fuzzy consequence
operators induced by fuzzy preorders and fuzzy indistinguishabilities.

In Section 5 we analyze another approach to permutability of fuzzy preorders.
Finally, in Section 6 we present the conclusions.

2 Preliminars

The structure 〈L,∧,∨,∗,→,0,1〉 is said to be a complete residuated lattice in the sense
of Bělohlávek [2] when:

1. 〈L,∧,∨,0,1〉 is a complete commutative lattice, where 0 denotes the least element
and 1 denotes the greatest one

2. (L,∗) is a commutative monoid i.e. ∗ is associative, commutative and with neutral
element 1,

3. the operations ∗ and→ satisfy the adjointness property:

x∗ y≤ z ⇔ x≤ y→ z

where ≤ denotes the lattice ordering.

The following holds for every complete commutative residuated lattice:

Proposition 1. [2] Let 〈L,∧,∨,∗,→,0,1〉 be a complete commutative residuated lat-
tice. The following conditions hold for each index set I:

1. x∗∨i∈I yi =
∨

i∈I(x∗ yi)
2. x∗∧i∈I yi ≤∧i∈I(x∗ yi)

We will work in the usual 〈[0,1],∧,∨,∗,→,0,1〉 where ∧ and ∨ are the usual infi-
mum and supremum, ∗ is a left continuous t-norm and → is the residuum of ∗ defined
for ∀a,b ∈ X as a→ b = sup{γ ∈ [0,1] | a ∗ γ ≤ b}.

In this paper, X will be a non-empty classical universal set and [0,1]X will be the set
of all fuzzy subsets of X with truth values in [0,1]. Ω ′ will denote the set of fuzzy oper-
ators defined from [0,1]X to [0,1]X and Γ ′ will denote the set of fuzzy binary relations
defined in X .

Definition 1. [12] A fuzzy operator C ∈Ω ′ is called a fuzzy consequence operator or
fuzzy closure operator (FCO for short) when it satisfies for all μ ,ν ∈ [0,1]X :

1. Inclusion μ ⊆C(μ)
2. Monotony μ ⊆ ν ⇒C(μ)⊆C(ν)
3. Idempotence C(C(μ)) = C(μ)

Ω will denote the set of all FCO.



Permutability of Fuzzy Consequence Operators Induced by Fuzzy Relations 239

The inclusion of fuzzy subsets is given by the pointwise order, i.e. μ ⊆ ν if and only
if μ(x)≤ ν(x) for all x ∈ X .

Given two fuzzy operators C1, C2 we say that C1 ≤ C2 if C1(μ) ⊆C2(μ) for all
μ ∈ [0,1]X .

Definition 2. A fuzzy relation on a set X is a map R : X×X −→ [0,1]. A fuzzy relation
on X is said to be:

(R) Reflexive if R(x,x) = 1 ∀x ∈ X
(S) Symmetric if R(x,y) = R(y,x) ∀x,y ∈ X
(T) ∗-Transitive if R(x,y)∗R(y,z)≤ R(x,z) ∀x,y,z ∈ X

A fuzzy relation satisfying (R) and (T) is called a fuzzy preorder. If it also satisfies (S),
then it is called a fuzzy similarity or indistinguishability operator. Given R,S ∈ Γ ′, we
say that R≤ S if and only if R(x,y)≤ S(x,y) for all x,y ∈ X.

For a given fuzzy relation R ∈ Γ ′, a fuzzy subset μ of X is called ∗-compatible with
R if μ(x)∗R(x,y)≤ μ(y) for all x,y ∈ X .

Definition 3. [4] Let g be a fuzzy operator and R a fuzzy relation. We will say that g is
∗-concordant with R if all the subsets from the image of g are ∗-compatible with R.

Every fuzzy relation induces a fuzzy operator using Zadeh’s compositional product:

Definition 4. Let R ∈ Γ ′ be a fuzzy relation on X. The fuzzy operator induced by R
through Zadeh’s compositional rule is defined by

C∗R(μ)(x) = sup
w∈X
{μ(w)∗R(w,x)} (1)

Every fuzzy operator also induces a fuzzy relation:

Definition 5. Let C be a fuzzy operator in Ω ′. The fuzzy relation induced by C is given
by

RC(x,y) = C({x})(y) (2)

where {x} denotes the singleton x.

It is well-known [10] that for any fuzzy relation R, RC∗R = R. However, in general
conditions C∗RC

�= C.

In a previous paper [4] we extended the operator induced through Zadeh’s composi-
tional rule to a more general one which is generated through the same rule but using a
fuzzy operator and a fuzzy relation. The generator operator performs a selection among
the fuzzy subsets before applying the operator induced through Zadeh’s rule.

Definition 6. Let g ∈ Ω ′ be a fuzzy operator and let R ∈ Γ ′ be a fuzzy relation on X.
We define the operator Cg

R induced by g and R as

Cg
R(μ)(x) = sup

w∈X
{g(μ)(w)∗R(w,x)} (3)

R and g are called the generators of Cg
R.
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3 Permutability of Fuzzy Preorders and Fuzzy Indistinguishability
Operators

Once we have set the framework, let us recall the concept of permutability between
fuzzy relations. Permutability of fuzzy relations is considered with the sup-∗ product.

Definition 7. Let R,S ∈ Γ ′ be fuzzy relations on a set X and ∗ a t-norm. The sup-∗
composition of R and S is the fuzzy relation defined for all x,y ∈ X by

R◦ S(x,y) = sup
w∈X

{R(x,w)∗ S(w,y)} (4)

Definition 8. Let R,S ∈ Γ ′ be fuzzy relations. We say that R and S are permutable or
that R and S permute if R◦ S = S ◦R where ◦ is the sup-∗ composition.

Permutability of preorders is closely related to the transitive closure of a fuzzy rela-
tion. The transitive closure of a fuzzy relation R is the smallest upper approximation of
R which is ∗-transitive [1]. More precisely,

Definition 9. Let R be a fuzzy relation. We define the transitive closure R of R as the
fuzzy relation given by

R = inf
S∈Γ̂
R≤S

{S} (5)

where Γ̂ denotes the set of all ∗-transitive fuzzy relations in X.

The explicit formula for the transitive closure is given by R = supn∈N Rn where the
power of R is defined using the sup-∗ product. It is easy to see that R is transitive [1].
The ∗-transitive closure also preserves reflexivity and symmetry. Hence, the transitive
closure of a reflexive fuzzy relation is fuzzy preorder and the transitive closure of a
reflexive and symmetric relation is an indistinguishability operator.

It was proved in [14] that two ∗-indistinguishability operators defined on a finite
set X permute if and only if E ◦F is an ∗-indistinguishability operator. In this case,
E ◦ F = max(E,F). We extend this result to general fuzzy preorders and any set X ,
finite or not.

Lemma 1. Let R and P be two fuzzy ∗-preorders on a set X. Then, R◦P≤max(R,P).

Proof.

R◦P≤max(R,P)◦max(R,P)≤ sup
n∈N

(max(R,P))n = max(R,P).

,-
Theorem 1. Let R and P be two fuzzy ∗-preorders on X. Then, R and P are permutable
if and only if R◦P and P◦R are fuzzy ∗-preorders. In this case, R◦P coincides with the
∗-transitive closure max(R,P) of max(R,P).

Proof. Assume first that R◦P = P◦R and let us show that they are fuzzy preorders.
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reflexivity: R◦P(x,x) = supw∈X{R(x,w)∗P(w,x)} ≥ R(x,x)∗P(x,x) = 1
∗-transitivity: Since R is ∗-transitive, supw∈X{R(x,w)∗R(w,y)} ≤ R(x,y).
The same holds for P. Thus,

R◦P(x,y)∗R◦P(y,z) = sup
w∈X
{R(x,w)∗P(w,y)} ∗ sup

h∈X
{R(y,h)∗P(h,z)}

= sup
w,h∈X

{R(x,w)∗P(w,y)∗R(y,h)∗P(h,z)}

≤ sup
w,h∈X

{R(x,w)∗ (P◦R)(w,h)∗P(h,z)}

= sup
w,h∈X

{R(x,w)∗ (R◦P)(w,h)∗P(h,z)}

= sup
w,h,y∈X

{R(x,w)∗R(w,y)∗P(y,h)∗P(h,z)}

= sup
y∈X
{sup

w∈X
{R(x,w)∗R(w,y)} ∗ sup

h∈X
{P(y,h)∗P(h,z)}}

≤ sup
y∈X
{R(x,y)∗P(y,z)} = R◦P(x,z).

Since R ◦ P ≥ R and R ◦ P ≥ P we have that R ◦ P ≥ max(R,P). As R ◦ P is a
fuzzy preorder, it follows that R ◦P ≥ max(R,P). From Lemma 1, we get R ◦P =
max(R,P) = P◦R .

Conversely, assume that R ◦P and P ◦R are fuzzy ∗-preorders. A similar argument
than the used above proves that both of them are greater than or equal to the ∗-transitive
closure of their maximum max(R,P). From Lemma 1, R ◦P = max(R,P) = P ◦R .
Hence, R and P permute. ,-

Notice that it is not deduced from the previous results that if R◦P is a fuzzy preorder
then R and P permute. We need both compositions to be fuzzy preorders in order to find
permutability between them. Let us present an example to illustrate that the composition
in one direction is not enough to ensure permutability between fuzzy preorders.

Example 1. Let Q and R be the following min-preorders. Notice that R ◦Q is also a
min-preorder but Q◦R is not. R and P do not permute.

Q =

⎛⎝ 1 0.4 0.5
0.6 1 0.5
0.3 0.3 1

⎞⎠

R =

⎛⎝ 1 0.3 0.6
0.7 1 0.75
0.4 0.3 1

⎞⎠

R◦Q =

⎛⎝ 1 0.4 0.6
0.7 1 0.75
0.4 0.4 1

⎞⎠

Q◦R =

⎛⎝ 1 0.4 0.6
0.7 1 0.75
0.4 0.3 1

⎞⎠
Now, let us focus on the case indistinguishability operators.
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Corollary 1. Let E and F be two ∗-indistinguishability operators on X. Then, E and
F are permutable if and only if E ◦F is a ∗-indistinguishability operator. In this case,
E ◦F coincides with the ∗-transitive closure max(E,F) of max(E,F).

Proof. Since E and F are fuzzy preorders, Theorem 1 ensures that they permute if
and only if E ◦F = max(E,F) = F ◦E . Since max(E,F) is reflexive and symmetric,
max(E,F) is an indistinguishability operator. ,-

4 Permutability of Fuzzy Operators Induced by Fuzzy Relations

We are ready to study permutability between fuzzy operators. We consider the usual
composition.

Definition 10. Let C,C′ be fuzzy operators. We say that C and C′ are permutable or
that C and C′ permute if C ◦C′ = C′ ◦C where ◦ denotes the usual composition.

When the operators are induced by fuzzy relations, composition of fuzzy operators
can be described as follows.

Proposition 2. Let R,S be two fuzzy relations and let C∗R and C∗S be the corresponding
fuzzy operators induced through Zadeh’s rule. Then,

C∗R ◦C∗S = C∗S◦R (6)

where S ◦R denotes the sup-∗ product composition of fuzzy relations.

Proof. For all μ ∈ [0,1]X and all x ∈ X we have

C∗R ◦C∗S(μ)(x) = C∗R(C∗S(μ))(x) = sup
w∈X

{C∗S(μ)(w) ∗ R(w,x) }

= sup
w∈X

{ sup
z∈X
{ μ(z) ∗ S(z,w)} ∗ R(w,x) }

= sup
w,z∈X

{ μ(z) ∗ S(z,w) ∗ R(w,x) }

= sup
z∈X

{ μ(z) ∗ sup
w∈X
{ S(z,w) ∗ R(w,x) } }

= sup
z∈X

{ μ(z) ∗ S ◦R(z,x) } = C∗S◦R(μ)(x).

,-
Remark 1. Notice that Definition 6 and the proof of Proposition 2 provide several forms
to write composition of induced fuzzy operators:

C∗R ◦C∗S = C∗S◦R = C
C∗S
R (7)

They will be used to characterize permutability.

We are ready to focus on the case when the relation is a fuzzy preorder or indistin-
guishability. It is well known that fuzzy operators induced from fuzzy relations through
Zadeh’s compositional product are fuzzy consequence operators if and only if the rela-
tion is a fuzzy preorder [9].
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Proposition 3. [9] Let R ∈ Γ ′ be a fuzzy relation. Then, C∗R is a FCO if and only if R is
a fuzzy preorder.

Notice here, that not every FCO can be writen in the form C∗R for a certain fuzzy pre-
order.

Proposition 4. [9] Let R,P be fuzzy preorders, then C∗R = C∗P if and only if R = P.

In a previous paper [5] we established the following characterization of the per-
mutability of fuzzy consequence operators:

Theorem 2. [5] Let C,C′ be fuzzy consequence operators. Then, C and C′ permute if
and only if C ◦C′ and C′ ◦C are fuzzy consequence operators. In this case, C ◦C′ =
max(C,C′).

Here, max(C,C′) denotes the closure of the operator max(C,C′). That is, the smallest
FCO which is greater than or equal to max(C,C′). This concept was first defined for
general lattices [15] and later introduced by Zadeh in the fuzzy context.

Definition 11. Let C : [0,1]X −→ [0,1]X be a fuzzy operator. We define the fuzzy clo-
sure C of C as the fuzzy operator given by

C = inf
φ∈Ω
C≤φ

{φ} (8)

It is natural to think that permutability of fuzzy preorders is connected to the per-
mutability of their consequences. The relation between permutability of fuzzy preorders
and permutability of their induced consequence operators can be summarized in the fol-
lowing theorem.

Theorem 3. Let R,P be fuzzy preorders. Then,

C∗R ◦C∗P = C∗P ◦C∗R ⇔ R◦P = P◦R

Proof. Assume that C∗R ◦C∗P = C∗P ◦C∗R. From Theorem 2 it follows that both C∗P◦R and
C∗R◦P are FCO. According to Propositions 3 and 4, P◦R and R◦P are fuzzy preorders
and P◦R = R◦P thus R and P permute.

Conversely, assume R ◦P = P ◦R. By Theorem 1 both are fuzzy preorders, thus
C∗P◦R and C∗R◦P are FCO. According to Theorem 2, C∗R and C∗P permute. ,-
Corollary 2. If P ◦R and R ◦P are fuzzy preorders, then R and P permute and their
consequences also permute.

Let us focus on the particular case of the fuzzy consequence operators induced by
indistinguishability operators. If the relation is an indistinguishability operator, the in-
duced fuzzy operator behaves especially well. We refer the interested reader to [13] for
further details.

Proposition 5. Let E be a fuzzy indistinguishability operator and let C∗E be the fuzzy
operator induced through Zadeh’s compositional rule. Then,
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1. C∗E is a fuzzy consequence operator.
2. C∗E(

⋃
i∈I μi) =

⋃
i∈I C∗E(μi) for any index set I and all μi ∈ [0,1]X .

3. C∗E({x})(y) = C∗E({y})(x) for all x,y ∈ X where {x} denotes the singleton of x.
4. C∗E(α ∗ μ) = α ∗C∗E(μ) for any constant α ∈ [0,1] and μ ∈ [0,1]X .

Proposition 6. There is a bijection between the set of ∗-indistinguishability operators
and the set of fuzzy operators satisfying the conditions of Proposition 5.

Corollary 3. Let C ∈Ω ′ be a fuzzy operator satisfying all the properties of Proposition
5. Then, there exists a fuzzy indistinguishability relation E such that C∗E = C.

Differently from general fuzzy preorders, every operator satisfying conditions of
Proposition 5 can be writen in the form C∗E for a certain indistinguishability E .

Corollary 4. Let C∗E ,C∗F be fuzzy operators satisfying all the properties form Proposi-
tion 5. Then,

C∗E = C∗F ⇔ E = F

Even if C∗E and C∗F do not permute, their composition always satisfy the following
properties.

Proposition 7. Let E,F be indistinguishability operators. Then, C∗E◦F satisfies proper-
ties 2, 4 of Proposition 5. Moreover, it satisfies the inclusion and monotony properties
from the definition of FCO.

Proof. Since both C∗E and C∗F satify properties 2 and 4, it follows that

C∗E(C∗F(
⋃
i∈I

μi)) = C∗E(
⋃
i∈I

C∗F(μi)) =
⋃
i∈I

C∗E(C∗F (μi))

for any index set I and all μi ∈ [0,1]X and

C∗E(C∗F(α ∗ μ)) = C∗E(α ∗C∗F(μ)) = α ∗C∗E(C∗F(μ))

for any constant α ∈ [0,1] and μ ∈ [0,1]X . ,-

Permutability of C∗E and C∗F can be characterized as follows:

Theorem 4. Let E, F be ∗-indistinguishability operators. Then, their consequences C∗E
and C∗F permute if and only if E ◦F is an indistinguishability operator.

Proof. It directly follows from Corollary 1 and Theorem 3. ,-

Corollary 5. Let C,C′ be fuzzy operators satifying all the conditions of Proposition 5.
Then, C and C′ permute if and only if C ◦C′ also satisfies all these conditions.
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5 Another Approach to Permutability of Fuzzy Preorders

We have shown that two preorders R and P permute if and only if their consequences
permute. For that, we need both R◦P and P◦R to be fuzzy preorders. For indistinguisha-
bility operators, the symmetric property facilitates the way. We need just to find that one
of the compositions is an indistinguishability operator to get both of them. In this sec-
tion, we study permutability of general fuzzy preorders from a different approach. We
will need some results from [4]. The proofs can be found there.

Theorem 5. Let R ∈ Γ ′ be a reflexive fuzzy relation and let g ∈ Ω ′ be a FCO. If g is
∗-concordant with R, the operator Cg

R induced by g and R is also a FCO.

Proposition 8. Let R,P be fuzzy preorders and let C∗R and C∗P be their respective in-
duced FCO. If C∗R is ∗-concordant with P and C∗P is ∗-concordant with R, then P and R
permute.

Proof. It directly follows from Theorems 5 and 3. ,-
We would like to show under which conditions two fuzzy preorders permute. For

that, let us recall the definition of the fuzzy the preorder generated for a fuzzy operator
C that we introduced in [4]:

Definition 12. Let C be a fuzzy operator in Ω ′. The fuzzy relation Rc
c induced by C is

given by
Rc

c(x,y) = inf
μ∈[0,1]X

{C(μ)(x)→C(μ)(y)} (9)

The following theorem is adapted from [3]:

Theorem 6. Let {μi}i∈I ⊆ [0,1]X be an arbitrary family of fuzzy subsets. Then,

R(x,y) = inf
i∈I
{μi(x)→ μi(y)} (10)

is the largest fuzzy preorder for which every fuzzy subset of the family {μi}i∈I is ∗-
compatible with.

Notice that {μi}i∈I is also ∗-compatible with S for every fuzzy relation S smaller
than or equal to (10).

According to Theorem 6, the fuzzy relation Rc
c induced by a fuzzy operator C defined

in (9) gives an upper bound which is sufficient for an operator and a relation to be ∗-
concordant. In fact, if a fuzzy relation S is smaller than or equal to RC

C for a certain fuzzy
operator C, every fuzzy subset of the image of C will be compatible with S.

Proposition 9. Let S be a fuzzy relation such that S≤ Rc
c for a certain C ∈Ω ′. Then, C

is ∗-concordant with S.

Corollary 6. Let R,P be fuzzy preorders and let C∗R and C∗P be their respective induced
FCO. If

R≤ R
c∗P
c∗P

and P≤ R
c∗R
c∗R

then, R and P permute.
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6 Conclusions

In this paper we have proved that given two fuzzy ∗-preorders R and P on a general set
they permute if and only if their compositions in both directions are fuzzy preorders,
that is, if R ◦ P and P ◦ R are fuzzy perorders. In this case, their composition is the
∗-transitive closure of their maximum. If the preorders are ∗-indistinguishability oper-
ators, we only require one of the compositions to be an indistinguishability operator in
order to ensure that they permute.

We have also shown that composition of fuzzy operators induced by fuzzy relations

can be described in different ways. More precisely, C∗R ◦C∗S = C∗S◦R = C
C∗S
R .

We have proved that for any pair of fuzzy preorders, they permute if and only if
their consequences also do. Therefore, C∗R and C∗S permute if and only if R◦P and P◦R
are fuzzy perorders. If R and P are indistinguishability operators, their consequences
permute if and only if the composition of the relations in one direction is an indistin-
guishability operator.

Finally, we have given an alternative approach to permutability for general fuzzy pre-
orders. We have connected permutability of fuzzy preorders to the crossed concordance
between their consequences. Finally, we have found an upper bound which is sufficient
for two fuzzy preorders to permute.
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Abstract. This paper focuses on the two definitions of fuzzy multisets
by Yager and Minamoto, respectively, and examines their difference in
the framework of granular hierarchical structures generated from free
monoids. Then we can conclude that, in order to define the basic order
on the set of multisets on interval (0, 1], the Yager definition adopts the
one induced just from the range N, the set of natural numbers, while the
Miyamoto definition uses one generated from both the domain (0, 1] and
the range N through the notion of cuts.

1 Introduction

The theory of multisets[1, 5, 6, 16] and its extensions to fuzzy and rough
multisets[2, 4, 8, 10, 11, 15, 18] is now widely agreed as one of important tools in
the areas of computer science[9, 17], database and data mining[2, 7], and decision
making[3, 8, 14].

There are many definitions of fuzzy multisets and, among them, the two def-
initions by Yager[18] and Miyamoto[10], respectively, are elementary ones. In
order to examine the difference of the two definitions in the same framework,
in this paper, we reformulate the two definitions in a unified way in granular
hierarchical structures proposed by the authors[12].

2 Preliminaries

In this section, we briefly describe some elementary concepts and symbols which
we use in later sections. Let U be a universal set in what follows,

2.1 Free Monoids

The basic structure we use in this paper is well known as a free monoid. A free
monoid is a tuple 〈U∗, •, ε〉, which is generated from U using the concatenation
operation • with the empty string ε as the identity element with respect to •.

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 248–259, 2013.
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Of course, the operation • is associative and ε is the unit element with respect
to •. Every element in U∗ is called a finite sequence or string. Symbol • is often
abbreviated unless confusion arises as like st = s • t.

There are several ways of constructing free monoids and, among them, we
adopt here the definition as a direct sum of Cartesian products:

Definition 1. U∗ def
=
∑

n∈N
Un, where let U0 = {ε}.

For elements in U∗, say (x0, . . . , xn−1) ∈ Un and (y0, . . . , ym−1) ∈ Um (n,m ∈
N), operation of concatenation • is defined by

(x0, . . . , xn−1) • (y0, . . . , ym−1)
def
= (x0, . . . , xn−1, y0, . . . , ym−1) ∈ Un+m.

The operation • is obviously associative and ε is the unit element with respect
to •. By the definition, (x0, . . . , xn−1) = x0 • · · · • xn−1 (= x0 · · ·xn−1). Let

xk = (

k︷ ︸︸ ︷
x, · · · , x ) for k ∈ N+ = N \ {0} and x0 = ε.

In this paper, we adopt the following definition of substrings, which is the
same as the concept of subsequences of the usual numerical sequences.

Definition 2. Given strings s = x0 · · ·xn−1 and t = y0 · · · ym−1 (x0, . . . , xn−1,
y0, . . . , ym−1 ∈ U), where n,m ∈ N, n = {0, 1, . . . , n−1} and m = {0, 1, . . . ,m−
1}, s is said to be a substring of t, denoted s ≤∗ t, just in case there exists an
order-preserving injection ϕ : n→ m such that xk = yϕ(k) for every k ∈ n.

The relation ≤∗ is a partial order on U∗, thus a structure 〈U∗,≤∗〉 is a partially
ordered set. In general, however, it does not form a lattice because there do not
necessarily exist the join and meet of two strings.

2.2 Finite Näıve Subsets

The power set P(U) of U is defined by

P(U)
def
= {X | X ⊆ U},

where ⊆ is the usual inclusion relation, P(U) is well-known to form a Boolean
algebra with intersection ∩, union ∪, complement C and the least and greatest
elements ∅ and U .

Every subset in P(U) is usually identified with its corresponding element in
the following set of putting

2U
def
= {χ | χ : U → 2},

where 2 = {0, 1}. In fact, 2U forms a Boolean algebra and an isomorphism ϕ
from P(U) to 2U as a Boolean algebra is given by, for a subset X ∈ P(U),

ϕ(X)(x) =

{
1, if x ∈ X,
0, otherwise.

and thus we identify P(U) with 2U . The mapping ϕ(X) is often called the
characteristic function of X .
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In this paper, we define the set of näıve subsets by

Definition 3. P (U)
def
= {X ∈ P(U) | |X | < ∞}. where | · | denotes the

cardinality.

In general, P (U) is not necessarily a Boolean algebra but a distributive lattice.
When U is finite, we have P (U) = P(U) and thus P (U) is a Boolean algebra..

2.3 Finite Fuzzy Sets

Let I = [0, 1]. Following Zadeh[19], the founder of fuzzy set theory, by a fuzzy
set on U , we mean a mapping μ : U → I, which is usually called membership
function and the class of fuzzy sets on U is just the following set of putting:

IU = {μ | μ : U → I}.
In this paper, we deal with its finitery subclass:

Definition 4. F (U)
def
= {μ ∈ IU | |μ−1(I+)| <∞}, where I+ = (0, 1].

We call every element in F (U) a finite fuzzy set, or simply fuzzy set unless
confusion arises, on U .

A partial order (inclusion relation) on F (U) is derived from the natural order
≤I on I by

μ ⊆F μ′ def⇔ ∀x ∈ U(μ(x) ≤I μ′(x)),

and then, its compatible meet (intersection) and join (union) of two fuzzy sets
are defined in a pointwise way, by, for every x ∈ U ,

(μ ∩F μ′)(x)
def
= minI{μ(x), μ′(x)},

(μ ∪F μ′)(x)
def
= maxI{μ(x), μ′(x)}

for fuzzy sets μ, μ′ ∈ F (U), where minI and maxI denote the maximum and
minimum elements, respectively, with respect to the order ≤I .

F (U) has the least element 0F with respect to ≤F defined by 0F (x) = 0 for
every x ∈ U and F (U) is a distributive lattice with the least element 0F . When
U is finite, F (U) has the greatest element 1F defined by 1F (x) = 1 for every
x ∈ U and F (U) and complement C : F (U) → F (U) defined by μC(x) = 1−μ(x)
for every x ∈ U . F (U) is known to form a pseudo-Boolean algebra.

2.4 Finite Multisets

By a multiset on U , we mean a mapping χ̃ : U → N, which is usually called count
function and the class of multisets on U is just the following set of putting:

NU = {χ̃ | χ̃ : U → N}.
In this paper, we deal with its finitery subclass:
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Definition 5. M(U)
def
= {χ̃ ∈ NU | |χ̃−1(N+)| < ∞}, where N+ = N \ {0} =

{1, 2, . . .}.
We call every element in M(U) a finite multiset, or simply multiset unless con-
fusion arises, on U .

A partial order (inclusion relation) on M(U) is derived from the natural order
≤N on N by

χ̃ ⊆M χ̃′ def⇔ ∀x ∈ U(χ̃(x) ≤N χ̃′(x)),

and then, its compatible meet (intersection) and join (union) of two multisets
are derived in a pointwise way by, for every x ∈ U ,

(χ̃ ∩M χ̃′)(x)
def
= minN{χ̃(x), χ̃′(x)},

(χ̃ ∪M χ̃′)(x)
def
= maxN{χ̃(x), χ̃′(x)}

for multisets χ̃, χ̃′ ∈ M(U), where minN and maxN denote the maximum and
minimum elements, respectively, with respect to the order ≤N.

With respect to ≤M , M(U) has the least element 0̃ defined by 0̃(x) = 0 for
every x ∈ U , but it does not have the greatest element and so, in general, we
cannot give a natural definition of a complement-like operation on M(U). Thus
a structure 〈M(U),∩M ,∪M , 0̃〉 is a distributive lattice with the least element 0̃.
Similarly, from the natural operations + (sum) and × (product), we also define
the following addition and multiplication between multisets χ̃ , χ̃′ by

(χ̃ +M χ̃′)(x) = χ̃(x) + χ̃′(x),

(χ̃×M χ̃′)(x) = χ̃(x)× χ̃′(x),

respectively. Each of +M and ×M satisfies distributivity with ∩M or ∪M , re-
spectively, and so both 〈M(U),∩M ,∪M ,+M 〉 and 〈M(U) \ {0̃},∩M ,∪M ,×M 〉
are distributive-lattice-ordered commutative monoids.

2.5 Finite Fuzzy Multisets

Yager[18] defined a fuzzy multiset on U as the following mapping

μ̃ : U →M(I+),

where M(I+) is the set of finite multisets on I+. Note that non-belongingness is
not counted so the range is the multisets on I+ = I \ {0}. Thus the set of fuzzy
multisets is the following set of putting:

M(I+)U = {μ̃ | μ̃ : U →M(I+)}.

In this paper, we deal with its finitery subclass:

Definition 6. FM(U)
def
= {μ̃ ∈M(I+)U | |μ̃−1(M(I+) \ {0̃})| <∞}.
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We call every element in FM(U) a finite fuzzy multiset, or simply fuzzy multiset
unless confusion arises, on U . Also we call every element in M(I+) a fuzzy
multigrade.

Yager[18] proposed a definition of an inclusion relation (partial order) on
FM(U) naturally derived from the standard one on M(I+) in an essentially
similar way that partial orders on F (U) and M(U) are derived from the ones on
I+ and N, respectively.

Definition 7 (Yager order[18]). For fuzzy multigrades g̃, g̃′ ∈M(I+),

g̃ ≤YM g̃′ def⇔ ∀α ∈ I+(g̃(α) ≤N g̃′(α)),

which we call the Yager order on M(I+) in this paper.

Then it is extended to the following inclusion on FM(U), which we also call the
Yager inclusion on FM(U):

Definition 8 (Yager inclution[18]). For fuzzy multisets μ̃, μ̃′ ∈ FM(U),

μ̃ ⊆YFM μ̃′ def⇔ ∀x ∈ U (μ̃(x) ≤YM μ̃′(x))

⇔ ∀x ∈ U ∀α ∈ I+(μ̃(x)(α) ≤N μ̃′(x)(α)).

Note that the Yager order and thus inclusion are defined only using the natural
order on N.

Example 1

{{1/0.5, 2/1}/x, {1/0.2}/y}= μ̃ ⊆Y FM μ̃′ = {{1/0.5, 5/1}/x, {1/0.2, 1/1}/y},
{{1/0.5}/x, {1/0.2}/y}= μ̃ �⊆Y FM μ̃′ = {{1/0.8}/x, {1/0.6}/y}.

The Yager inclusion has the infimum and supremum of two fuzzy multisets and
thus its compatible operations of intersection and union are respectively intro-
duced in a pointwise way: for fuzzy multisets μ̃, μ̃′ ∈ FM(U)

(μ̃ ∩YFM μ̃′)(x)
def
= μ̃(x) ∩M μ̃′(x),

(μ̃ ∪YFM μ̃′)(x)
def
= μ̃(x) ∪M μ̃′(x),

for every x ∈ U .

Miyamoto[10] pointed out that, although the class of the usual fuzzy sets can
be embedded into the class of fuzzy multisets, the usual fuzzy set inclusion and
operations are not compatible with the ones for fuzzy multisets. In fact, F (U)
can be embedded into FM(U) by the following injection E : for μ ∈ F (U)

E(μ)(x)(α) =

{
1, if α = μ(x),
0, otherwise,

for any x ∈ U and α ∈ I+. Two orders, however, are not compatible with each
other.
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Example 2. For μ = {0.5/x, 0.2/y} and μ′ = {0.8/x, 0.6/y}, we have μ ⊆F μ′.
But {{1/0.5}/x, {1/0.2}/y} = E(μ) �⊆Y FM E(μ′) = {{1/0.8}/x, {1/0.6}/y} as
shown in the previous example.

By this incompatibility, the subclass E(F (U)) is closed neither with respect to
∩YFM nor to ∪YFM . The reason is that, while, in general, the domain U of M(U)
is neutral from a structural point of view of U , the domain I+ of M(I+) has
its original linear order ≤I+ , which is not considered in the definitions of Yager
order and inclusion for fuzzy multisets.

3 Granular Hierarchical Structures

We proposed in [12] granular hierarchical structures of finite näıve subsets and
multisets where they are derived from free monoids and homomorphisms. Then,
we can represent finite näıve subsets and multisets as equivalence classes of
strings with respect to some appropriate equivalence relation based on a homo-
morphism. In what follows, we assume the following function

ct∗ : U × U∗ → N,

which gives us the number of symbol x ∈ U appearing in string s ∈ U∗.

3.1 U∗ and M(U)

Firstly, a mapping m : U∗ →M(U) defined by

m(s)(x)
def
= ct∗(x, s)

is a subjective homomorphism where concatenation • is preserved as addition
+M :

m(ε) = 0̃,

m(s • s′) = m(s) +M m(s′),

for s, s′ ∈ U∗. Then an equivalence relation ∼mU , or simply ∼m, on U∗ is
naturally defined by

s ∼m s′ ⇔ m(s) = m(s′)

and M(U) is isomorphic to U∗/ ∼m as a monoid. Operation •m on U∗/ ∼m

naturally induced from U∗, in a well-defined way, by

[s]m •m [s′]m = [t]m s.t. t ∈ m−1(m(s) +M m(s′)),

is commutative, where s,s′ ∈ U∗ and [s]m denotes the equivalence class of s with
respect to ∼m. Further two operations are induced from U∗ by

[s]m ∩m [s′]m = [t]m s.t. t ∈ m−1(m(s) ∩M m(s′)),

[s]m ∪m [s′]m = [t]m s.t. t ∈ m−1(m(s) ∪M m(s′)),
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respectively, and we can easily show structure 〈U∗/ ∼m, •m,∩m,∪m, [ε]m〉 forms
a distributive-lattice-ordered commutative monoid with the least element [ε]m.
Hence we have

M(U) ∼= U∗/ ∼m (as a distributive-lattice-ordered commutative monoid).

3.2 M(U) and P (U)

Secondly, a mapping p : M(U) → P (U) defined by

p(χ̃)(x)
def
= minN{1, χ̃(x)}

is a subjective homomorphism where the least element, multiset intersection and
union are preserved:

p(0̃) = ∅,
p(χ̃ ∩M χ̃′) = p(χ̃) ∩ p(χ̃′),
p(χ̃ ∪M χ̃′) = p(χ̃) ∪ p(χ̃′),

for χ̃, χ̃′ ∈M(U). Then we can introduce an equivalence relation ∼pU , or simply
∼p, on M(U) naturally defined by

χ̃ ∼p χ̃′ ⇔ p(χ̃) = p(χ̃′)

and P (U) is isomorphic to M(U)/ ∼p as a distributive lattice by the lattice
isomorphism theorem. Here note that we also have

p(χ̃ +M χ̃′) = p(χ̃) ∪ p(χ̃′),

which means that addition +M together with ∪M collapses to set union ∪. Then
we can similarly define meet ∩p, join ∪p, and 0p = [0̃]p is the least element of
M(U)/ ∼p. Now we can easily show structure 〈M(U)/ ∼p,∩p,∪p, 0p, 〉 forms a
distributive lattice with the least element and we easily have

P (U) ∼= M(U)/ ∼p (as a distributive lattice).

When U is finite, we can further introduce complement Cp on M(U)/ ∼p by

([χ̃]p)Cp = [χ̃′]p s.t. χ̃′ ∈ p−1(p(χ̃)C),

where χ̃, χ̃′ ∈M(U) and [χ̃]p denotes the equivalence class of χ̃ with respect to
∼p. and the greatest element of M(U)/ ∼p is also defined by

1p = [χ̃]p s.t. χ̃ ∈ p−1(U).

Now we can easily show structure 〈M(U)/ ∼p,∩p,∪p,
Cp , 0p, 1p〉 forms a Boolean

algebra and we have

P (U) ∼= M(U)/ ∼p (as a Boolean algebra).
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Fig. 1. Granular hierarchical structure generated from free monoid

3.3 U∗ and P (U)

Finally, by composing the above two homomorphisms m and p, we have another
homomorphism

p ◦m : U∗ → P (U)

and the following isomorphism:

P (U) ∼= (U∗/ ∼m)/ ∼p (as a Boolean algebra or distributive lattice).

3.4 Granular Hierarchical Structures

Thus we have the granular hierarchical structures shown in Figure 1. Those three
isomorphisms introduced in this subsection give us the following results:

Theorem 1 (Murai et al.[12])

1. For any multiset χ̃ ∈M(U), there exists a string s ∈ U∗ such that χ̃ = [s]m.
2. For any näıve subset X ∈ P (U), there exists a multiset χ̃ ∈M(U) such that

X = [χ̃]p.
3. For any näıve subset X ∈ P (U), there exists a string s ∈ U∗ such that

X = [[s]m]p.

Example 3. For universes U and V , given a mapping f : U → V , we can extend
its domain and range to the sets of strings, finite multisets, and finite näıve
subsets, respectively, in the following steps.

1. f∗ : U∗ → V ∗ such that, for a string s = x1 · · ·xn ∈ U∗,

f∗(s) = f∗(x1 · · ·xn) = f(x1) · · · f(xn) and f∗(ε) = ε.

2. fm : M(U) →M(V ) such that, for a finite multiset χ̃ = [s]mU ,

fm(χ̃) = fm([s]mU ) = [f∗(s)]mV .

3. fp : P (U) → P (V ) such that, for a finite näıve subset X = [χ̃]pU = [[s]mU ]pU ,

fp(X) = fp([χ̃]pU ) = [fm(χ̃)]pV = [fm([s]mU )]pV = [[f∗(s)]mV ]pV .

These extensions are illustrated as the commutative diagram in Figure 2.



256 T. Murai et al.

U∗ mU
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M(U)
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�� M(V )
pV

�� P (V )

Fig. 2. Extension of mapping in granular hierarchical structure

4 Fuzzy Multisets in Granular Hierarchical Structures

In this section, we try to define fuzzy multisets as families of a kind of α-cuts
(α ∈ I) in granular hierarchical structures.

4.1 Extension of α-Cuts

First we remark the usual α-cut of a fuzzy set is represented by composition of
mappings. Let us define a mapping ᾱ : I → 2 by, for g ∈ I,

ᾱ(g) =

{
1, if g ≥ α,
0, otherwise.

Then an α-cut of fuzzy set μ ∈M(U) is represented by the composition ᾱ ◦ μ ∈
P (U).

We extend the above mapping to fuzzy multigrade cases by the way de-
scribed in Example 3. However, we need a slight modification on ᾱ because
non-belongingness is usually not counted in both crisp and fuzzy multisets (cf.
[18, 10]). So we replace the domain by I+ and adopt ε instead of 0 in the range.
That is, the mapping ᾱ : I+ → {1, ε} is defined by, for any α ∈ I+,

ᾱ(g) =

{
1, if g ≥ α
ε, otherwise,

where we use the same symbol ᾱ unless confusion arises.
Now we extend the mapping ᾱ using Example 3.

1. ᾱ∗ : (I+)∗ → {1, ε}∗ such that, for g1, . . . , gn ∈ I+,

ᾱ∗(g1 · · · gn) = ᾱ(g1) · · · ᾱ(gn)

where note that {1, ε}∗ = {1k | k ∈ N} = {10(= ε), 11, 12, · · · } ∼= N, so ᾱ∗ is
a finite multiset on (I+)∗.

2. ᾱM : M(I+) →M({1, ε}) such that, for [g1 · · · gn]mI+ ∈M(I+)

ᾱM ([g1 · · · gn]mI+ ) = [ᾱ∗(g1 · · · gn)]m{1,ε} = [ᾱ(g1) · · · ᾱ(gn)]m{1,ε} ,

where note that M({1, ε}) = {[ι1 · · · ιn]m | ιk ∈ {1, ε}} = {[1k]m | k ∈ N} =
{[10]m, [11]m, [12]m, . . .} ∼= N, which means ᾱM is a finite multiset on M(I+).

Definition 9 (α-cuts of fuzzy multisets). For a fuzzy multiset μ̃ ∈ FM(U)
and an α ∈ I+, the α-cut of fuzzy multiset μ̃ is the composition ᾱM ◦ μ̃.
By this usage, the α-cut of fuzzy multiset is a multiset on U .
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I+ ��

ᾱ

		

(I+)∗ ��

ᾱ∗

		

M(I+)

ᾱm

		
{1, ε} �� N �� N

Fig. 3. Extensions of an abstract α-cut in granular hierarchical structure

4.2 Miyamoto Order and Inclusion

Using the above mapping ᾱM , we can define the new partial order between fuzzy
multigrades.

Definition 10 (Miyamoto order[10]). For fuzzy multigrade g̃, g̃′ ∈M(I+),

g̃ ≤MM g̃′ def⇐⇒ ∀α ∈ I+ (ᾱM (g̃) ≤N ᾱM (g̃′)).

≤MM is a partial order on M(I+), and we call this order the Miyamoto order
on M(I+). Then, it can be naturally extended to the new inclusion relation on
FM(U).

Definition 11 (Miyamoto inclusion[10]).For fuzzymultisets μ̃, μ̃′ ∈ FM(U).

μ̃ ⊆MFM μ̃′ def⇐⇒ ∀x ∈ U(μ̃(x) ≤MM μ̃′(x))

⇐⇒ ∀x ∈ U ∀α ∈ I+ (ᾱM ◦ μ̃(x) ≤N ᾱM ◦ μ̃′(x))

⇐⇒ ∀x ∈ U ∀α ∈ I+ (ᾱM (μ̃(x)) ≤N ᾱM (μ̃′(x))).

We call this inclusion relation the Miyamoto inclusion on FM(U) because it is
just the same one he defined using sequences of decreasing order (Miyamoto[10]).

Example 4. Fuzzy multigrades g̃ = [0.5•1•0.2]mI+ and g̃′ = [1•0.2•0.5•0.5]mI+

obviously satisfies the Yager order, that is, g̃ ≤YM g̃′, because

1 = g̃(0.2) ≤N g̃′(0.2) = 1,
1 = g̃(0.5) ≤N g̃′(0.5) = 2,

1 = g̃(1) ≤N g̃′(1) = 1.

Next, let us apply ᾱM to the above g̃, g̃′, then we have

for 0 < α ≤ 0.2, 3 = ᾱM ([0.5 • 1 • 0.2]
mI+ ) ≤N ᾱM ([1 • 0.2 • 0.5 • 0.5]

mI+ ) = 4,

for 0.2 < α ≤ 0.5, 2 = ᾱM ([0.5 • 1 • 0.2]
mI+ ) ≤N ᾱM ([1 • 0.2 • 0.5 • 0.5]

mI+ ) = 3,

for 0.5 < α ≤ 1, 1 = ᾱM ([0.5 • 1 • 0.2]
mI+ ) ≤N ᾱM ([1 • 0.2 • 0.5 • 0.5]

mI+ ) = 1.

and thus they satisfy the Miyamoto order g̃ ≤MM g̃′. We have the same result if
we adopt sequences of decreasing order as representative elements of equivalence
classes:

for 0 < α ≤ 0.2, 3 = ᾱM ([1 • 0.5 • 0.2]
mI+ ) ≤N ᾱM ([1 • 0.5 • 0.5 • 0.2]

mI+ ) = 4,

for 0.2 < α ≤ 0.5, 2 = ᾱM ([1 • 0.5 • 0.2]
mI+ ) ≤N ᾱM ([1 • 0.5 • 0.5 • 0.2]

mI+ ) = 3,

for 0.5 < α ≤ 1, 1 = ᾱM ([1 • 0.5 • 0.2]
mI+ ) ≤N ᾱM ([1 • 0.5 • 0.5 • 0.2]

mI+ ) = 1.
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Example 5. Fuzzy multigrades g̃ = [0.5]mI+ , g̃′ = [1]mI+ does not satisfy the
Yager order that is, g̃ �≤YM g̃′, because

1 = g̃(0.5) ≤N g̃′(0.5) = 0,
0 = g̃(1) ≤N g̃′(1) = 1.

But, by applying barαM to them, we have

for 0 < α ≤ 0.5, 1 = ᾱM ([0.5]mI+ ) ≤N ᾱM ([0.5]mI+ ) = 1,
for 0.5 < α ≤ 1, 0 = ᾱM ([0.5]mI+ ) ≤N ᾱM ([1]mI+ ) = 1.

and thus they satisfy the Miyamoto order g̃ ≤MM g̃′.

5 Concluding Remarks

Through the examination in this paper, when defining the basic order on the
set M(I+), we have found that the Yager definition adopts the one induced just
from the range N, while the Miyamoto definition uses one generated from both
the domain I+ and the range N through the notion of cuts. Such choice would
depend on the context of given problems.

We plan to describe the decomposition theorem for fuzzy multisets and ap-
plications to decision making in future tasks. The idea in this paper also can be
applied to rough multisets as illustrated in Figure 4 because the rough set oper-
ators [R] and 〈R〉 generated from an equivalence relation R on U (Pawlak[13])
are mappings on P (U). Further it can be extended to rough fuzzy multisets and
other hybridizations of those extended näıve set concepts.

M(U)
p ��

[R],〈R〉
		

�

P (U)

[R],〈R〉
		

M(U)
p

�� P (U)

Fig. 4. Rough multisets in a granular hierarchical structure
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tures of Finite Näıve Subsets and Multisets. Int. J. Reasoning-based Intelligent
Systems 4(3), 118–128 (2012)

[13] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer,
Dordrecht (1991)
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Mapping Based on Mixed-Integer Optimization
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Abstract. Isometric feature mapping (Isomap) demonstrated notewor-
thy performance for nonlinear dimensionality reduction in a wide range
of application domains. To improve the scalability of the algorithm a
fast variant, called Landmark Isomap (L-Isomap), has been proposed in
which time-consuming computations are performed on a subset of points
referred to as landmarks. In this paper we present a novel method for
landmark selection to be framed within the L-Isomap procedure. It is
based on a mixed-integer problem aimed at finding a set of landmarks
which are representative of dense regions of points in the input space
which mostly contain samples of the same class. The optimization model
is solved by a heuristic algorithm based on Lagrangian relaxation with
subgradient method. Computational experiments performed on bench-
mark data sets highlighted the effectiveness of the proposed landmark
selection algorithm which, combined with L-Isomap, provided promising
results in terms of classification accuracy and computational effort.

Keywords: Isometric feature mapping, landmark selection, mixed-integer
optimization, classification.

1 Introduction

Dimensionality reduction is aimed at finding meaningful low-dimensional repre-
sentations of high dimensional data. As a preprocessing step it plays a prominent
role for both unsupervised tasks, such as clustering or data visualization, and
supervised learning.

For dimensionality reduction several linear and nonlinear approaches have
been proposed. Classical methods addressing linear data projections are Prin-
cipal Component Analysis [1] and Metric Multidimensional Scaling [2]. Within
the family of nonlinear techniques manifold learning algorithms have recently
drawn great interest, being able to handle data with intrinsic nonlinear struc-
tures. Representative methods include Isometric Feature Mapping [3], Locally
Linear Embedding [4] and Laplacian Eigenmaps [5].

Manifold learning techniques try to unveil the low-dimensional manifold, em-
bedded in the high-dimensional Euclidean space, along which data are sup-
posed to lie. Given a set of m points Sm = {xi, i ∈ M = {1, 2, . . . ,m}} ⊂ .n

which lie on or close to a nonlinear manifold M of unknown dimension d,

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 260–271, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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with d 0 n, they aim at finding a function f : M → .d mapping Sm into
Dm = {zi, i ∈M = {1, 2, . . . ,m}} ⊂ .d such that some geometrical proper-
ties are preserved in the projection. In the context of classification manifold
learning methods have been successfully applied for diversified purposes, such
as neuroimaging data analysis [6], banks’ rating prediction [7], face and speech
recognition [8,9]. An empirical comparison of these techniques for microarray
data classification is presented in [10].

Isometric feature mapping (Isomap) finds an embedding which attempts to
preserve the global geometrical properties of the data in the low-dimensional
space. To this aim, it computes the geodesic distance between each pair of points,
defined as the length of the shortest path between the corresponding vertices in
a weighted neighborhood graph, and derives the data projection by the eigen-
decomposition of the m × m matrix of squared geodesic distances. When the
number of samples increases, however, computing all the shortest paths and the
spectral decomposition of the full distance matrix may be too time-expensive,
limiting the scalability of the algorithm. To overcome this drawback a fast va-
riant called Landmark Isomap (L-Isomap) was proposed in [11], in which the
geodesic distances are computed between the m points and a subset of l dis-
tinguished samples, indicated as landmarks. Multidimensional scaling is then
applied to the resulting l×m distance matrix to find the landmarks embedding,
and a fixed linear transformation is finally used to project the remaining points
in the d-dimensional space.

Design the set of landmarks to be framed within the L-Isomap algorithm is
still an open question. Some authors resorted to clustering methods, such as
self-organizing map [12] and fuzzy c-means [13], or to weighting schemes defined
on the distance between points and their neighbors [14]. An interesting approach
based on integer optimization was developed in [15] and effectively applied for
analysing protein interactions [16]. It relies on the approximate solution of a
minimum set covering problem, which finds a minimum set of landmarks whose
neighborhoods cover the entire set of points.

In this paper we present a novel method for landmark selection based on
mixed-integer optimization. The proposed model identifies a set of l points
achieving an optimal trade-off between two distinct objectives. From one side, it
searches for points endowed with highly cohesive neighborhoods. From the other
side, it favors the selection of close samples whose neighborhoods mostly contain
points of the same class. The combination of these two objectives is aimed at
finding a set of landmarks which are representative of dense regions of points in
the input space which are also homogeneous in terms of class membership. The
optimization problem is solved by a heuristic algorithm based on Lagrangian
relaxation with subgradient method. Experiments conducted to evaluate the
usefulness of the new model for landmark selection highlighted the potential of
the proposed method which, combined with L-Isomap, exhibited promising per-
formances in terms of classification accuracy and computational effort compared
to the original Isomap algorithm.
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The remainder of the paper is organized as follows. Section 2 offers a brief
overview of isometric feature mapping and of its fast L-Isomap variant. Section 3
describes the mixed-integer problem proposed for landmark selection. Section 4
illustrates the experimental settings and the computational results concerning
the classification of six benchmark data sets. Conclusions and future extensions
are discussed in section 5.

2 Isometric Feature Mapping

Isometric feature mapping (Isomap) represents an extension of metric multi-
dimensional scaling (MDS) to nonlinear manifolds. Unlike MDS which builds
low-dimensional representations based on the Euclidean distance among points,
Isomap tries to preserve the global geometric properties of the data by finding
an embedding in which the geodesic distance between two points in the input
space is as close as possible to the Euclidean distance between their projections
in the target space. The geodesic distance is defined by the length of the short-
est curve connecting two points on the underlying manifold, which is generally
unknown in advance. For this reason, the geodesic distance between two points
is approximated by the shortest path computed between the corresponding ver-
tices in a weighted neighborhood graph, whose nodes represent data points and
edges neighborhood relations. The embedding in the low d-dimensional space is
therefore obtained by performing the singular value decomposition of the matrix
of squared geodesic distances.

Within the original Isomap algorithm two different criteria were proposed for
building the neighborhood graph [3]. According to the first, which is the one
adopted in this study, two nodes are connected by an edge if one of them is
among the k nearest neighbors of the other. As an alternative, an edge is added
between two nodes if their Euclidean distance is smaller than a given threshold
ε; this second rule is tantamount to defining for each point a neighborhood
composed by all the samples lying within a ε-radius hypersphere. In both cases
a weighted neighborhood graph is obtained in which the weight of an edge equals
the Euclidean distance between its endpoints.

The Isomap algorithm can be summarized as follows.

Procedure. Isomap(Sm, d, k or ε)

1. Build the neighborhood graph by connecting each point of Sm to at most k
nearest neighbors (or to the points lying within a ε-radius hypersphere).

2. Compute the matrix G of the geodesic distances estimated by the length the
shortest paths between each pair of vertices in the neighborhood graph.

3. Find the embedding in the low d-dimensional space by applying multidimen-
sional scaling. To this aim, first compute the square m-dimensional matrix
K = −HSH/2, where S is the matrix of squared geodesic distances and H
is the centering matrix of size m. Then, consider the d-dimensional diagonal
matrix Λ composed by the first d largest eigenvalues of K and the m×d ma-
trix V of associated eigenvectors. Finally, find the embedding of the points
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as Z = VΛ1/2, where Z is a m × d matrix whose rows are the projections
zi, i ∈M, of the points in the low d-dimensional space.

Isometric feature mapping has been successfully applied to the analysis of
several high-dimensional real world and artificial data sets. When the number
of points increases, however, the algorithm may turn out to be too expensive
in terms of computational effort. From one side, it requires to find the matrix
G of the geodesic distances between each pair of nodes in the neighborhood
graph, with a time complexity of O

(
km2 logm

)
if the Dijkstra’s algorithm is

used. From the other side, it performs the eigendecomposition of the full m×m
matrix K with a complexity of O

(
m3
)
.

To overcome these inefficiencies, a fast extension indicated as Landmark Isomap
(L-Isomap) was presented in [11]. In the proposed variant, l data points are first
designated to be the landmarks or prototypes. Then, the shortest paths from each
point to the landmarks are computed and classical MDS is applied to the result-
ing l × m distance matrix, in order to obtain the landmarks embedding in the
low-dimensional space. The projections of the remaining points are finally derived
by an affine linear transformation of their squared distances to the landmarks. As
observed in [17], for a d-dimensional embedding at least d+ 1 prototypes must be
chosen. In practice, it is recommended to select rather more landmarks than the
strict minimum to ensure stability, even though substantial computational savings
are obtained when l 0 m.

In this paper we propose a novel method for isolating landmark points based
on mixed-integer optimization. In particular, once the neighborhood graph is
built we solve a mixed-integer problem whose solution returns a set of prototypes
which are subsequently fed into the L-Isomap algorithm for the data embedding.
Before describing the optimization model, however, we are required to provide
some final details about the Isomap implementation concerning the estimate of
d, the choice of the parameters regulating the neighborhood size and the out-of
sample extension.

2.1 Parameters Selection

Evaluating the dimensionality d of the projection space is still an open issue
for which no dominant techniques currently exist. The most straightforward
way, suggested in [3] and used in the present work, is to consider the curve
of residual variance and select the dimension at which the curve flattens. The
residual variance is defined by 1 − R2 (G,D), where G is the geodesic distance
matrix, D is the matrix of Euclidean distances in the projection space and R is
the linear correlation coefficient over all entries of G and D.

In the Isomap procedure the shortest path between each pair of vertices can be
computed only if the neighborhood graph is connected. This requirement makes
the algorithm highly sensitive to the choice of its parameters. In particular, too
small values of k or ε may create holes in the manifold and disconnect the graph.
On the contrary, too large values may cause inappropriate connections among
distinct folds and may result into misleading projections, especially for data
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sets affected by noise or outliers. To overcome these drawbacks and to obtain a
connected graph without unnaturally increasing the value of k we resorted to the
linkage paradigm proposed in [18], for which the separate subgraphs are joined
by computing a minimum spanning tree among the points that best represent
the centroids of the single components.

2.2 Out-of-Sample Extension

For classification tasks, as those addressed in this study, the use of manifold
learning techniques for dimensionality reduction requires an out-of-sample em-
bedding method to project new data points in the low-dimensional space. To this
aim one may resort to general regression neural networks [19] or to multi-output
kernel ridge regression (KRR) [20], which represents a generalization of linear
ridge regression based on kernel functions.

KRR can achieve an ideal trade-off between bias and variance of the estimates
leading to a more precise approximation of the mapping, and has proven to be
rather effective in combination with a supervised variant of Isomap compared to
regression neural networks [18]. For this reason we applied multi-output kernel
ridge regression based on the radial basis function kernel for out-of-sample data
projections.

3 Mixed-Integer Optimization for Landmark Selection

This section provides a description of the mixed-integer problem for landmark
selection and of the heuristic procedure adopted for its solution.

The proposed method identifies a subset of points achieving an optimal trade-
off between two distinct objectives. From one side, it searches for points endowed
with highly cohesive neighborhoods, in order to retain as landmarks samples
which are intimately related to their k nearest neighbors. From the other side,
it favors the selection of close points whose neighborhoods contain, for the most
part, samples of the same class. The combination of these two objectives is aimed
at finding a set of landmarks which are representative of dense regions of points
in the input space which are also homogeneous in terms of class membership.

Let L be the index set of landmarks and Ki the index set of the k nearest
neighbors of xi, i ∈ M, including also i. Let ȳi denote the estimated class
of neighborhood Ki, defined as the class label of the majority of its points,
and I the index set of the pair of points whose neighborhoods have the same
estimated class: I = {(i, j) ∈ M, i < j : ȳi = ȳj}. Finally, define the family of
binary variables

pi =

{
1 if i ∈ L
0 otherwise

, i ∈ M (1)

each taking the value 1 if and only if the corresponding point represents a land-
mark.
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To determine the set L we formulate the following optimization problem

max
p,q

δ
∑
i∈M

cipi − (1− δ)
∑

(i,j)∈I
dijqij (LS)

s. to qij ≥ pi + pj − 1 (i, j) ∈ I (2)

pi ∈ {0, 1} i ∈M, qij ≥ 0 (i, j) ∈ I

where dij is the Euclidean distance between xi and xj in the input space, ci is the

cohesion coefficient of neighborhood Ki, defined as ci =
(∑

r,h∈Ki,r<h drh

)−1

,

i ∈ M, and δ ∈ (0, 1) is a parameter controlling the trade-off between the
objective function terms. Notice that the continuous variable qij takes the value
1 only when xi and xj are both selected, in light of the constraints (2). In
all the other cases, qij = 0 due to the maximization of the objective function.
Furthermore, the parameter δ exerts a relevant influence on the cardinality l
of the set L. Indeed, for a fixed k the number of selected landmarks generally
increases as δ approaches 1.

Model LS can be solved to optimality by means of standard mixed-integer pro-
gramming algorithms. When large scale instances are considered, however, exact
methods are computationally expensive and heuristic procedures are required.
Among the most effective approaches we focused on Lagrangian relaxation with
subgradient optimization [21].

To this aim, we relaxed constraints (2) by means of the nonnegative La-
grangian multipliers λij , (i, j) ∈ I. As observed in [22], by imposing the condi-
tion λij ≤ (1− δ) dij on each multiplier it is possible to set qij = 0, (i, j) ∈ I,
and obtain the following simplified Lagrangian problem

L (λ) = max

⎧⎨⎩∑
i∈M

fipi +
∑

(i,j)∈I
λij : pi ∈ {0, 1} i ∈ M

⎫⎬⎭ , (LR)

where

fi = δci −
∑

i,j∈M, ȳi=ȳj ,1≤j<i

λji −
∑

i,j∈M, ȳi=ȳj,i<j≤m

λij (3)

is the reduced cost associated to xi. For a given multiplier vector λ an optimal
solution to LR is given by pi (λ) = 1 if fi > 0 and pi (λ) = 0 otherwise. The
Lagrangian dual problem LD associated to LR consists of finding a vector λ∗

which minimizes the upper bound L (λ):

min {L (λ) : 0 ≤ λij ≤ (1− δ) dij (i, j) ∈ I} . (LD)

Since finding λ∗ is generally time-consuming for large scale instances, it is ad-
visable to determine a near-optimal solution to LD by using the subgradient
method, which generates a sequence {λ0,λ1, . . .} of nonnegative multiplier vec-
tors where λ0 is arbitrarily defined.
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The subgradient method can be summarized as follows.

Procedure. Subgradient method(LB,T ,αmin)

1. Define the starting vector λ0 and set UB = L
(
λ0
)
. Set t = 0 and α = 10−2.

2. Compute the current optimal solution of the Lagrangian problem z̃
(
λt
)

and

the upper bound L
(
λt
)
. Set UB = min

{
UB,L

(
λt
)}

.

3. Compute the subgradient vector s
(
λt
)

for the current solution z̃
(
λt
)
. If

s
(
λt
)

= 0 output λt and stop (in this case z̃
(
λt
)

is an optimal solution).
Otherwise, compute a new Lagrangian multiplier vector

λt+1 = min

{
max

{
0,λt + α

LB − L
(
λt
)∥∥s (λt

)∥∥2 s
(
λt
)}

, (1− δ)E

}
(4)

where α > 0 is a given step-size parameter and E is the matrix of Euclidean
distances in the input space.

4. If UB has not improved in the last T iterations with the current value of
α > 0 set α = 0.5α. If α ≤ αmin output λt and stop. Otherwise, set t = t+ 1
and return to Step 2.

In our implementation the starting multiplier vector was set to λ0 = 0 whereas
the lower bound LB on the optimal solution, provided in input, was fixed to
the objective function value of problem LS obtained by letting pi = 1, i ∈ M.
Finally, we set T = 20 and αmin = 5 · 10−4.

4 Experiments

To investigate the performance of the proposed landmark selection method we
performed computational experiments concerning the classification of six bench-
mark data sets. Our purpose was to determine whether the fast variant based on
L-Isomap with the LS model may be effectively used for dimensionality reduction
when it is combined with a classical supervised learning algorithm represented
by the 1-nearest neighbor classifier (1NN). In particular we intended to com-
pare, in terms of classification accuracy, the quality of the data embedding when
the projections were built on the entire set of data, as in the original Isomap
procedure, and on the subset of distinguished landmarks.

Four alternative methods were considered in our tests. The first was given
by the 1NN classifier directly applied to each data set in the original input
space. The second resorted to the classical Isomap algorithm for dimensionality
reduction. The last two methods, denoted as L-IsomapLS and L-IsomapSC, im-
plemented the fast variant of Isomap based, respectively, on the LS and the set
covering (SC) problem for landmark selection, where the SC problem was solved
by means of the greedy algorithm described in [16]. Notice that for Isomap-
based methods 1NN was used to classify the projection of each data set in the
low d-dimensional space.

The experimental framework comprised two main phases. First, the
intrinsic dimensionality d of the manifold was estimated for each data set.
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Train the 1NN 
classifier on the 

training set 
embedding 

Learn the 
mapping from 
the input to the 
target space

Embed the test 
set in the

d-dimensional 
space

Embed the 
training set in the

d-dimensional 
space

Classify the 
test set 

embedding 
and evaluate 
the accuracy

Fig. 1. Embedding and classification scheme for each pair of training and test set
within cross-validation for Isomap-based methods.

Then cross-validation was applied in order to evaluate the classification accuracy.
For methods based on dimensionality reduction three additional steps, depicted
in Figure 1, were performed within cross-validation, for each pair of training
and test set. Specifically, the d-dimensional embedding of the training data was
first computed. Then, the function mapping the training set into its projection
was approximated by multi-output kernel ridge regression and was used to find
the low-dimensional representation of the test set. Finally, the 1NN classifier
was trained on the projected training set and its accuracy was evaluated on the
embedded test set.

Experiments were performed on six data sets publicly available from the
UCI Machine Learning Repository [23]: Spectf Heart (Spectf), Musk, Red Wine
Quality (Wine), Madelon, Waveform Database Generator (Waveform) and Page
Blocks Classification (Pageblocks). As indicated in Table 1, these data sets differ
in terms of number of points and attributes and were chosen with the aim of
analyzing the effect of landmark selection on both small and larger sets of data.
Before the tests a preprocessing step was conducted in which duplicate samples
were removed and all attributes were standardized. The final size of each data
set is provided in Table 1.

To automatically estimate the dimensionality d of the embedding space we
considered the curve of residual variance generated by Isomap and searched for
the dimension at which the curve ceased to decrease significantly. The intrinsic
dimensionality d evaluated for each data set is indicated in Table 1.

The most promising parameters of each method were empirically found by
minimizing the classification error rate in a preliminary 3-fold cross-validation
run. In order to limit the grid search for Isomap-based methods, the number k
of nearest neighbors was varied in the interval [2, 1/10m] with a step size of 2.
For L-IsomapLS the parameter δ regulating the trade-off between the objective
function terms took values in the interval [0.2, 0.8] with step 0.2. Finally, for
KRR the regularization coefficient was fixed to 10j, j ∈ [−3,−1], and the radial
basis function kernel parameter to 10j, j ∈ [−5,−3].
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Table 1. Description of the data sets. The last column indicates the dimensionality of
the projection space estimated for each data set.

Data set Points Attributes Classes d

Spectf 267 44 2 4

Musk 476 166 2 8

Wine 1359 11 6 6

Madelon 2600 500 2 4

Waveform 5000 40 3 10

Pageblocks 5406 10 5 8

The classification accuracy was evaluated by means of ten times stratified 3-
fold cross-validation by using the best parameters identified in the exploratory
run. To guarantee a fair comparison the same folds for training and testing were
used for all methods. The computational results are detailed in Table 2 where,
for each method, the first row reports the average classification accuracy and the
second the corresponding standard deviation. For L-Isomap algorithms the value
in the third row indicates the average percentage of training points selected as
landmarks and used for data embedding.

From the results of Table 2 some empirical conclusions can be drawn. Resort-
ing to dimensionality reduction by means of Isomap and its variants induced
an improvement in accuracy with respect to the base case represented by 1NN
applied in the original input space. Not surprisingly, the best performance was
most often achieved by the Isomap-based classifier, for which the low-dimensional
representations were built on the whole set of training samples.

As indicated in Table 2, the proposed L-IsomapLS algorithm dominated its
counterpart based on the minimum set covering problem in terms of prediction
accuracy. Despite the fast extensions both resorted to a restricted percentage of
points for data embedding, on some data sets L-IsomapLS provided better results
with an even smaller number of landmarks. This remarkable behavior may be
ascribed to two main reasons. The landmark selection model in L-IsomapLS uses
the class labels of the points to define the estimated class of each neighborhood.
This may positively affect the quality of the data projection and enhance the
performance in the subsequent classification task. Moreover, by means of the δ
parameter L-IsomapLS is capable of properly tuning the number of distinguished
landmarks. This may represent a potential advantage over L-IsomapSC especially
when dimensionality reduction is applied to data sets affected by noise or outliers.

Compared to the original Isomap algorithm, L-IsomapLS exhibited a mild
degradation of the classification performance, except for the Wine data set
on which it provided the highest prediction accuracy. The slight loss in accu-
racy, however, was counterbalanced by the computational saving entailed by
L-IsomapLS for projecting the data in the reduced space. Benefits in terms of
computational effort clearly grew with the size of the data set. As an example,
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Table 2. Classification results of ten times 3-fold cross-validation. For each data set,
the average accuracy is indicated in the first row. The standard deviation and the
average percentage of training points selected as landmarks are reported in the second
and the third row, respectively.

Method

Data set 1NN Isomap L-IsomapSC L-IsomapLS

Spectf 0.691 0.818 0.798 0.813

0.021 0.016 0.015 0.013
20.2 9.7

Musk 0.841 0.886 0.861 0.876

0.010 0.008 0.010 0.011
18.4 23.6

Wine 0.508 0.527 0.515 0.533

0.011 0.008 0.011 0.008
9.1 2.5

Madelon 0.537 0.644 0.580 0.619

0.007 0.005 0.006 0.003
14.5 20.3

Waveform 0.729 0.776 0.754 0.770

0.004 0.002 0.002 0.002
6.4 5.1

Pageblocks 0.946 0.966 0.954 0.961

0.001 0.001 0.001 0.001
6.5 10.8

the two largest sets of data, Waveform and Pageblocks, were projected in ap-
proximately 40 seconds by Isomap and in less than 5 seconds by L-IsomapLS.
These preliminary results open the way to the use of L-IsomapLS as a valuable
alternative to Isomap for the embedding of large data sets, being able to pro-
duce effective low-dimensional representations with considerable savings in the
computing time.

5 Conclusions and Future Extensions

The paper presents a novel method for landmark selection to be framed within
the Isomap algorithm for nonlinear dimensionality reduction in the context of
classification. It relies on a mixed-integer problem aimed at finding a set of
landmarks which are representative of dense regions of points in the input space
which mostly contain samples of the same class. The optimization model is solved
via an approximation algorithm based on Lagrangian relaxation with subgradi-
ent method. Computational experiments performed on six data sets empirically
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demonstrated the potential of the proposed method in terms of classification
accuracy and computational effort.

In light of the promising results on the benchmark data sets the present study
could be extended in several directions. First, it would be worthwhile to extend
the evaluation of the proposed method to massive data sets containing several
thousands of samples. Furthermore, other optimization models for landmark se-
lection could be developed and investigated. Finally, it would be useful to anal-
yse the effectiveness of alternative heuristic procedures for solving the proposed
mixed-integer problem.
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Abstract. Clustering which is one of the pattern recognition methods is a tech-
nique automatically classifying data into some clusters. Various types of cluster-
ing are divided broadly into hierarchical and non-hierarchical clustering and crisp
and fuzzy set theories have been applied to non-hierarchical clustering. Recently,
clustering based on rough set theory has been attracted. Rough clustering repre-
sents a cluster by using two layers, i.e., upper and lower approximations. This
paper proposes a c-regression method based on rough set representation which
does regression analysis and clustering at the same time. Moreover, its effective-
ness is shown through numerical examples.

1 Introduction

Computer system data has become large-scale and complicated in recent years due to
progress in hardware technology, and the importance of data analysis techniques has
been increasing accordingly. Clustering, which means a data classification method with-
out any external criterion, has attracted many researchers as a significant data analysis
technique.

Hathaway et al. proposed Hard and Fuzzy c-Regression (HCR and FCR) [1], which
are clustering methods based on conventional regression model. With HCR and FCR,
linear regression models are derived and belongingness or the membership grade of
each object to each regression model is calculated. That is, those algorithms execute
regression and clustering at same time.

FCR is a fuzzified HCR and fuzzy set representation plays very important role in
FCR. Fuzzy set representation allows that an object belongs to two or more clusters.
The belongingness is represented as a real value in a unit interval [0, 1]. Therefore,
fuzzy set representation can be regarded as more flexible than HCR.

On the other hand, it is pointed out that “the fuzzy degree of membership may be
too descriptive for interpreting clustering results.” [2] In such cases, rough set repre-
sentation is a more useful and powerful tool [3,4]. The basic concept of the rough set
representation is based on two definitions of lower and upper approximations of a set.
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The lower approximation means that “an object surely belongs to the set” and the upper
one means that “an object possibly belongs to the set”. Clustering based on rough set
representation could provide a solution that is less restrictive than conventional cluster-
ing and more descriptive than fuzzy clustering [5,2], and therefore the rough set based
clustering has attracted increasing interest of researchers [6,7,8,9,10,11,2].

This paper proposes new clustering algorithms based on regression analysis and
rough set representation and evaluate the algorithms through numerical examples.

2 Rough Sets

Let U be the universe and R ⊆ U × U be an equivalence relation on U. R is also called
indiscernibility relation. The pair X = (U,R) is called approximation space. If x, y ∈ U
and (x, y) ∈ R, we say that x and y are indistinguishable in X.

Equivalence class of the relation R is called elementary set in X. The family of all
elementary sets is denoted by U/R. The empty set is also elementary in every X.

Each finite union of elementary sets in X is called composed set in X. The family of
all composed sets is denoted by Com(X).

Since it is impossible to distinguish each element in an equivalence class, we may
not be able to get a precise representation for an arbitrary subset A ⊂ U. Instead, any
A can be represented by its lower and upper bounds. The upper bound A is the least
composed set in X containing A, called the best upper approximation or, in short, upper
approximation. The lower bound A is the greatest composed set in X containing A,
called the best lower approximation or, briefly, lower approximation. The set Bnd(A) =
A − A is called the boundary of A in X.

The pair (A, A) is the representation of an ordinary set A in the approximation space
X, or simply a rough set of A. The elements in the lower approximation of A definitely
belong to A, while elements in the upper bound of A may or may not belong to A.

From the above description of rough sets, we can define the following conditions for
clustering:

(C1) An object x can be part of at most one lower approximation.
(C2) If x ∈ A, x ∈ A.
(C3) An object x is not part of any lower approximation if and only if x belongs to two

or more boundaries.

3 c-Regression

In this section, we explain regression analysis and its error evaluation. Next, we show
some representative methods of c-regression.

3.1 Regression

Regression is a way to obtain a regression model which presents the best relation be-
tween given variables x and y.
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x = (x1, . . . , xp) ∈ Rp, y ∈ R, and β ∈ Rp+1 mean independent variable, dependent
variable, and regression coefficient, and it is assumed that objects (x1, y1), . . . , (xn, yn)
are given. By using a regression model f (x; β), the object (xk, yk) is denoted by

yk = f (xk; β) + εk.

εk means an error between the regression model and each dependent variable yk. In
regression analysis, a regression model which minimizes the error εk is derived. We can
consider various functions as f (x; β). In this paper, we consider the linear regression
model.

In c-regression, i regression models f (x, βi) (i = 1, . . . , c) are considered and each
cluster Ci is represented by the i-th regression model. The regression model is defined
as follows:

f (x; β) =
p∑

j=1

β
j
i x j + β

p+1
i .

By putting z = (x1, . . . , xp, 1)T , we can rewrite the above equation as follows:

f (x; βi) = zTβi.

(•)T means transposition.
The clustering problem is which object xk belongs to which cluster Ci.

3.2 Error Evaluation

There are some approaches to evaluate errors between each pair (xk, yk) and regression
models. Two of most popular approaches are least square deviation (LS) and least ab-
solute deviation (LAD). LS minimizes

∑n
k=1(dki)2 and LAD minimizes

∑n
k=1 |dki|. Here,

dki = yk − f (xk; βi).

From here, LS-(name of the method) and LAD-(name of the method) mean the
method with LS and LAD as error evaluation, respectively.

3.3 RKR

Peters proposed RKR (Rough k-Regression) [10] which is not based on optimization of
objective function. RKR is inspired by RKM (Rough k-Means) by Lingras [2].

Algorithm 1 (RKR)

RKR1 Give initial lower and upper approximations.
RKR2 Calculate the optimal regression coefficients.
RKR3 Update lower and upper approximations.
RKR4 If the stop criterion satisfies, finish. Otherwise back to RKR2.
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LS-RKR
βi is calculated as follows:

βi =

⎛⎜⎜⎜⎜⎜⎝
n∑

k=1

ukizkzT
k

⎞⎟⎟⎟⎟⎟⎠
−1 n∑

k=1

ukiykzk,

where

uki =

⎧⎪⎪⎨⎪⎪⎩
w, (xi ∈ Ci)

w. (xi ∈ Bnd(Ci))

w and w are given constants and w + w = 1.
Here, we introduce the notations νki and uki. νki and uki means the belongingness of

xk to Ci and Bnd(Ci), respectively. Those are calculated as follows:

νki =

⎧⎪⎪⎨⎪⎪⎩
1, ((Tk = φ) ∧ (i = p))

0, (otherwise)

uki =

⎧⎪⎪⎨⎪⎪⎩
1, ((Tk � φ) ∨ ((i = p) ∧ (i ∈ Tk)))

0. (otherwise)

Here,

p = arg min
i
|dki|,

Tk =

{
i | |dki|
|dkp| ≤ threshold. i � p, i = 1, . . . , c

}

threshold is an arbitrary constant.

LAD-RKR
The optimal solution to βi can be calculated from solving the following linear program-
ming problem for each i:

n∑

k=1

ukirki → min, (1)

s.t. yk − f (xk; βi) ≤ rki,

yk − f (xk; βi) ≥ −rki,

rki ≥ 0, (k = 1, . . . , n)

where

uki =

⎧⎪⎪⎨⎪⎪⎩
w, (xi ∈ Ci)

w. (xi ∈ Bnd(Ci))

w and w are given constants and w + w = 1.
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How to calculate νki and uki is same as LS-RKR.
The two parameters w and threshold give The both methods LS-RKR and LAD-RKR

flexibility. That is an advantage of the both methods that we can obtain various outputs.
On the other hand, we do not know how to determine the parameters because there is

no standard of those parameters. Moreover, there is no evaluation criteria for their out-
puts in RKR. Outputs of many clustering algorithms based on optimization of objective
function strongly depend on initial values, therefore we have to evaluate the outputs
by certain criteria. Those matters are disadvantages of RKR. So, we will propose new
clustering algorithms based on rough set representation and regression model, which
overcome the above disadvantages of RKR.

4 Proposed Method: RCR

In this section, we propose RCR ((Rough c-Regression) based on optimization of ob-
jective function. RCR is based on optimization of objective function. In our algorithm,
the number of parameters is one and the objective function can be used as evaluation
criteria for the outputs.

The flow of algorithms of LS-RCR (LS-Rough c-Regression) and LAD-RCR (LAD-
Rough c-Regression) are same, so we call those algorithms as RCR in a lump. Here,
N = {νki | k = 1, . . . , n, i = 1, . . . , n} and U = {uki | k = 1, . . . , n, i = 1, . . . , n}.
Algorithm 2 (RCR)

RCR1. Give initial lower and upper approximations and calculate the optimal re-
gression coefficients.

RCR2. Calculate N and U which minimize the objective function with fixing β.
RCR3. Calculate β which minimizes the objective function with fixing N and U.
RCR4. If the stop criterion satisfies, finish. Otherwise back to RCR2.

LS-RCR
The objective function of LS-RCR is defined as follows:

J(N,U, β) =
c∑

i=1

n∑

k=1

(νkiw + ukiw)d2
ki

The constraints are as follows:

νki ∈ {0, 1}, uki ∈ {0, 1},
w + w = 1,

c∑

i=1

νki = 0⇒
c∑

i=1

uki ≥ 2, (2)

c∑

i=1

uki = 0⇒
c∑

i=1

νki = 1.
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Those constraints obviously satisfy the above conditions C1, C2 and C3. Actually, (2)
is rewritten as

c∑

i=1

νki = 0⇒
c∑

i=1

uki = 2.

When an object belongs to some boundaries, its belonging to two boundaries makes the
objective function minimize in comparison with three or more boundaries.

Now, we describe how to calculate the optimal solutions to νki and uki. For each
object xk, we first assume that xk belongs to the lower approximation of a cluster which
corresponds to the closest regression model f (x, βp), that is,

p = arg min
i

d2
ki.

In this case, the objective function is calculated as follows:

Jν = νkpwd2
kp.

Next, We assume that xk belongs to two boundaries. In this case, we can find the closest
regression model f (x, βp) and the second closest one f (x, βq), that is,

q = arg min
i,i�p

d2
ki.

The objective function is calculated as follows:

Ju = ukpwd2
kp + ukqwd2

kq.

Finally, νki and uki is calculated as follows:

νki =

⎧⎪⎪⎨⎪⎪⎩
1, ((Jν < Ju) ∧ (i = p))

0, (otherwise)

uki =

⎧⎪⎪⎨⎪⎪⎩
1, ((Jν > Ju) ∧ ((i = p) ∨ (i = q)))

0. (otherwise)

Next, we consider the optimal solution to βi. From ∂J
∂β

j
i

= 0, we obtain

βi =

⎛⎜⎜⎜⎜⎜⎝
n∑

k=1

(νkiw + ukiw)zkzT
k

⎞⎟⎟⎟⎟⎟⎠
−1

·
n∑

k=1

(νkiw + ukiw)ykzk.

LAD-RCR
The objective function of LAD-RCR is defined as follows:

J(N,U, β) =
c∑

i=1

n∑

k=1

(νkiw + ukiw)|dki|.
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The constraints are the same as LS-FCR.
The optimal solutions to νki and uki can be obtained by replacing d2

ki in LS-FCR to
|dki|.

The optimal solution to βi is calculated from solving the following linear program-
ming problem:

n∑

k=1

(νkiw + ukiw)rki → min,

s.t. yk − f (xk; βi) ≤ rki,

yk − f (xk; βi) ≥ −rki,

rki ≥ 0. (k = 1, . . . , n)

5 Numerical Examples

5.1 Preparation

Evaluation of Outputs of RKR
RKR has no evaluation criteria, so we can not evaluate the outputs of RKR. Therefore,
we consider the objective function of RCR and the following function based on the
objective function of HCR as the evaluation criterion as follows:

J =
c∑

i=1

n∑

k=1

⎛⎜⎜⎜⎜⎝νkid
2
ki +

uki∑c
j=1 uk j

d2
ki

⎞⎟⎟⎟⎟⎠ (3)

(Name of the method)-R and (name of the method)-H in the results means that the
objective function of RCR and (3) are used as the evaluation criterion, respectively.

Datasets
We prepare two artificial datasets and one real dataset to compare the proposed meth-
ods with the conventional ones. All datasets are in two-dimensional Euclidean space.
Artificial dataset 1 consists of two line shaped clusters and 20 messed noise objects,
and each cluster has 100 objects (Fig. 1). Artificial dataset 2 consists of two line shaped
clusters which are very close to each other and 15 noise objects at random, and each
cluster has 15 objects (Fig. 2). The real dataset represents GDP and energy consumption
of Asian countries from 1973 to 1992 (Fig. 3). Horizontal and vertical axes mean real
GDP (109$) and primary energy consumption (106ton), respectively.

Evaluation Method
As quantitative evaluation, we show the total sum of errors L, i.e.,

L =
n∑

k=1

c∑

i=1

u′ki (dki)2 .



Rough c-Regression Based on Optimization of Objective Function 279

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

’reg-outlier20.dat’

Fig. 1. Artificial dataset 1
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Fig. 3. GDP dataset

Here u′ki means belongingness of xk to Ci after assigning all xk to their final clusters.
Therefore, u′ki ∈ {0, 1}. The noise objects are not included into the calculation. In case
of RKR and RCR, we calculate L by two ways. One is that L is calculated without no
noise objects which belong to certain boundaries, and another is that L is calculated
with the object.

Parameters
In each algorithms, we prepare 1000 initial values and set parameters as m = 3, c = 2
for the artificial datasets, c = 3 for GDP dataset, w = 0.7 and threshold = 1.1 in RKR,
and w = 0.7 or w = 0.8 in RCR.

5.2 The First Artificial Dataset

Table 1 shows the total sum of errors by each methods. The values in parentheses in
the table means total sum of errors between no noise objects which belong to certain
boundaries and the closest regression model.

From the results, it is obvious that least absolute deviation is more robust than least
square deviation. In particular, the proposed algorithms output better results. The reason
is that the belongingness of noise objects to each clusters is obviously larger than w in
case of RKR and RCR. For instance, the belongingness of noise objects to clusters in
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LAD-FCR is about 0.5 and the belongingness in LAD-HCR is 1, while w in LAD-RCR
is 0.3 or 0.2. In other words, the parameter w (w) is very important role in RCR.

Table 1. Total sum of errors for Artificial dataset 1

Method Total sum of errors
LS-HCR 1.934552
LS-FCR 2.120955

LS-RKR-H 1.747893 (1.955494)
LS-RKR-R 1.706390 (1.964700)

LS-RCR (w = 0.7) 1.651619 (1.956077)
LS-RCR (w = 0.8) 1.139004 (2.013713)

LAD-HCR 0.040824
LAD-FCR 0.043938

LAD-RKR-H 0.040824 (0.040824)
LAD-RKR-R 0.040824 (0.040824)

LAD-RCR (w = 0.7) 0.037886 (0.037886)
LAD-RCR (w = 0.8) 0.033636 (0,033636)

5.3 The Second Artificial Dataset

Table 2 shows the total sum of errors by each methods. The values in parentheses in
the table means total sum of errors between no noise objects which belong to certain
boundaries and the closest regression model. The results for this dataset also show that
least absolute deviation is better than least square deviation.

Moreover, the results show the outputs by LS-RCR are similar to LS-HCR or S-
FCR. The reason is that RCR has essentially three kinds of belongingness, νki, uki, and
w. The larger w is, the more easily objects belong to boundaries, because RCR is based
on optimization of objective function. Objects easily belong to lower approximations
when w = 0.7, and consequently, the output by RCR is similar to HCR. On the other
hand, objects easily belong to boundaries when w = 0.8, and the output by RCR is
similar to FCR.

For the dataset, the best output is by LAD-RCR with w = 0.8. The reason is that there
is a few objects which must be considered when solving linear programming problem
for each cluster and consequently the optimal solutions can be easily calculated. In
addition, it is important that w has a big influence on the outputs by RCR.

5.4 GDP Dataset

We normalize original data into [0, 1]× [0, 1] and apply each algorithms. Table 3 shows
the total sum of errors by each methods. The values in parentheses in the table means
total sum of errors between no noise objects which belong to certain boundaries and
the closest regression model. From the results, we can not see large difference between
least square deviation and least absolute one. It can be considered to be better to apply
least square deviation with considering calculation cost.
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Table 2. Total sum of errors for Artificial dataset 2

Method Total sum of errors
LS-HCR 0.373295
LS-FCR 0.156386

LS-RKR-H 0.373295 (0.373295)
LS-RKR-R 0.327269 (0.392041)

LS-RCR (w = 0.7) 0.327269 (0.392041)
LS-RCR (w = 0.8) 0.125412 (0.157550)

LAD-HCR 0.183568
LAD-FCR 0.049798

LAD-RKR-H 0.183568 (0.183568)
LAD-RKR-R 0.183568 (0.183568)

LAD-RCR (w = 0.7) 0.143662 (0.183568)
LAD-RCR (w = 0.8) 0.001095 (0.001095)

Table 3. Total sum of errors for GDP dataset

Method Total sum of errors
LS-HCR 0.229599
LS-FCR 0.232759

LS-RKR-H 0.219475 (0.229734)
LS-RKR-R 0.219475 (0.219475)

LS-RCR (w = 0.7) 0.217145 (0.229859)
LS-RCR (w = 0.8) 0.163177 (0.231176)

LAD-HCR 0.238877
LAD-FCR 2.083101

LAD-RKR-H 0.238877 (0.238877)
LAD-RKR-R 0.230992 (0.239120)

LAD-RCR (w = 0.7) 0.223766 (0.239134)
LAD-RCR (w = 0.8) 0.034578 (0.938140)

Moreover, it is obvious that the outputs by LAD-FCR and LAD-RCR with w = 0.8
are incorrect. We can consider three reasons. The first is that each object belongs to all
clusters by LAD-FCR and consequently, the regression models gather. The second is
that objects easily belong to boundaries by LAD-RCR and then, the outputs by LAD-
RCR with w = 0.8 is similar to LAD-FCR. The third is that objects are dense nearby
origin, so it is difficult to classify those object clearly.

The cluster which is represented by a line with the largest slope can be regarded as a
group of energy-consuming advanced countries, and the cluster which is represented by
a line with the smallest slope can be regarded as a group of energy-conservation coun-
tries. The belongingness of each country depends on error evaluation. For instance,
Nepal belongs to a group of middle countries with least square deviation, while it be-
longs to a group of energy-conservation countries with least absolute deviation. How-
ever, there is little difference between total sum of errors by least square deviation an
least absolute one. Therefore, we can interpret it as the possibility that Nepal could be
either.
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6 Conclusion

This paper proposed new c-regression based on optimization of objective function and
rough set representation, and evaluate the proposed algorithms through numerical ex-
amples.

We believe that LAD-RCR is useful in comparison with other algorithms. LAD-RCR
reduces the influence of noise objects by making those objects belong to boundaries.
Consequently, LAD-RCR derives better regression model. If boundaries is considered
as noise clusters, RCR can be regarded as a kind of noise clustering.

When least absolute deviation is used instead of least square deviation, the RCR
algorithm has an advantage of robustness against noise, while calculation cost increases
because linear programming problems must be solved to calculate the optimal solutions.
Moreover, there is another disadvantage that it is harder to obtain good results than least
square deviation. We think that this causes the linear programming problems.

The parameter w has a big influence on the results in the proposed methods. There-
fore, when the proposed methods are used, it is necessary to choose an adequate value
of w.

In future papers, we have to consider two matters. The first is about boundaries of
RCR. In the proposed algorithms, each object belongs to just two boundaries when it
does not belong to any lower approximations. Then, we have to evaluate the validity.
The second is about way to choose error evaluation. There are no indication for it. The
indication is necessary when we use RCR, so we have to consider it.
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Abstract. In this paper, we address the problem of edge selection for
networked data, that is, given a set of interlinked entities for which many
different kinds of links can be defined, how do we select those links that
lead to a better classification of the dataset. We evaluate the current
approaches to the edge selection problem for relational classification.
These approaches are based on defining a metric over the graph that
quantifies the goodness of a specific link type. We propose a new metric to
achieve this very same goal. Experimental results show that our proposed
metric outperforms the existing ones.

1 Introduction

Classification is the problem of assigning new instances (or samples) to a set
of given categories or classes. It is a supervised machine learning task, where a
set of already classified samples is used to infer a function that maps samples
to classes. This inferred function is then used to try to classify new previously
unseen samples, for which the class is unknown.

As with many other supervised machine learning tasks, samples are made of
a vector of features or attributes that describes them. For instance, a sample
describing a candidate for a job may contain the following features: candidate’s
GPA, the number of years of experience in a similar job, and the number of
languages the candidate is able to fluently speak. For the samples in the training
set, that is, the samples that will be used to train the classifier, the associated
class label is also known. Following with the previous example, candidates that
applied in the past for a similar position in the company can be classified de-
pending on whether they got the job or they did not. For a new candidate, for
which it is not known if he will be hired, we can use an inferred classifier over
the training samples to make a prediction for the probability of him being hired,
that is, we can try to predict its class label.

Many real world problems deal with samples that have a large number of de-
scriptive features. Usually these many features include both redundant features
and irrelevant ones. Trying to learn from this kind of datasets may be prob-
lematic. On one hand, the time needed to train the classifier increases with the
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size of the feature space. On the other hand, learning with irrelevant features
may lead to overfitting, and thus decreased performance when evaluating unseen
samples. It is thus interesting to try to reduce the number of features describing
the samples before attempting to train the classifier. The problem of selecting
a subset of features to work with from all the available ones is know as feature
subset selection.

Networked data contains information about entities and the relationships be-
tween those entities. Networked data can be found almost everywhere: from au-
thorship networks, that link authors sharing a common paper, to the now very
popular Online Social Networks, where users are mainly linked by friendship.
When working with networked data, a problem similar to the feature subset se-
lection appears: the edge selection problem. Given a set of entities which can be
linked by many kinds of edges describing different relationships between those
entities, which of those relationships will lead to a better classification accu-
racy? Edge selection is specially critical if we study classifiers for homogeneous
networks, that is, networks modeling just one type of edges.

In this paper, we focus on the edge selection problem for relational classifi-
cation. When doing classification, the usual goal that we want to achieve is to
maximize the accuracy of the built classifier. For this reason, in this paper we fo-
cus on selecting those edges that will maximize classification accuracy on unseen
samples. We review the current proposals that tackle the problem and propose
a new metric for edge selection. Then, we evaluate and compare the results of
our proposal with the existing ones using a series of datasets already known by
the relational learning community, and show that our proposal is able to better
identify the edges leading to the best classification performance.

The rest of the paper is organized as follows. Section 2 reviews the State of
the Art. Section 3 defines the problem that we want to deal with and specifies
the notation that is then used through the rest of the paper. After that, Section
4 presents the proposed metric and Section 5 shows the experimental results
supporting the usage of the proposed metric. Finally, Section 6 presents the
conclusions and points out some lines for future work.

2 State of the Art

The traditional feature subset selection problem has been approached from two
different perspectives. In the wrapper approach [1,2], the feature subset selection
algorithm exists as a wrapper around the induction algorithm. The induction al-
gorithm is taken into account during the feature selection process in order to
evaluate the impact of choosing a specific set of features in classification accu-
racy. The induction algorithm is used as a black box, i.e., no knowledge on how
the algorithm works is needed. Since exhaustively testing all possible subset se-
lections may be impractical, the problem of feature selection is then translated
into a search problem in the feature space. On the contrary, filter approaches
[3,4,5] do not take into account the induction algorithm being used in the classi-
fication process. Instead, filter approaches try to evaluate the importance of the
features from the data itself alone.
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Some initial ideas about the problem of automatic edge selection appear in [6],
where the authors identify the problem. They propose different methods to tackle
the problem and try to compare their success on being able to identify the best
edges for a series of datasets. However, this comparison is just preliminary work
on the problem and lacks a systematic approach and a broad experimentation
supporting the results.

First, the authors propose to compute the (edge) assortativity as defined
previously in [7] for all the candidate edge sets El and select the edges that lead
to the highest assortativity value. Assortativity is the tendency of the entities
in a network to be connected to other entities that are like them in some way.
When dealing with social networks, assortativity is usually known as homophily.
Assortativity mixing can be computed according to an enumerative characteristic
or a scalar characteristic. In the latter case, degree assortativity is of special
interest because of its consequences on the structure of the network. The authors
in [6] make use of the first alternative, assortativity according to an enumerative
characteristic, where assortativity will be related to the class label of the nodes
for which the classification will take place.

Because the assortativity metric as defined by [7] measures assortativity across
edges and not across nodes, a node assortativity metric is also defined in [6]. This
node assortativity is computed in a similar way, now using a matrix based on
the node assortativity following previous works [8].

3 Problem Definition and Notation

Networked datasets are usually represented by graphs, where entities are mapped
to nodes and edges describe relationships among them. Let us denote by G =
(V,E) the graph representing a given networked dataset. The set V = {vi, for i =
1, · · · , n} contains the nodes of the graph. On the other hand, E is the set of
edges, pairs of different elements of V , representing the relationships between
those nodes. Given a set of nodes V , many different sets of edges El can be
defined based on different relationships arising in the studied dataset. Since we
are dealing with weighted graphs, edges are pairs of vertexes with an associated
weight, e = (vi, vj , wij) s.t. (vi, vj) ∈ V ×V and wij ∈ R. Because we are dealing
with undirected graphs, symmetry is assumed, e = (vi, vj , wij) = (vj , vi, wji).

Let us denote by Γ (vi) the set of adjacent nodes of vi, that is, Γ (vi) =
{vj ∈ V s.t. ∃e = (vi, vj) ∈ E}. We will use the words entities, nodes, or
vertexes interchangeably through the rest of this paper, as we will do with edges,
relationships, and links.

Classification problems consist on assigning samples of an input set into a
given number of categories. We denote our category set as C = {ck, for k =
1, · · · ,m}. Then, the classification process will assign a value in C to each node vi
from the input dataset. Let us define the ground of truth mapping, cat : V → C,
that assigns each node in the graph to its class.

Given a graph G = (V,E), let us denote by Vtrain ⊂ V the set of labeled
samples used as the training set. We then define the test set Vtest as the rest of
the nodes, so Vtest = V � Vtrain.
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Classification accuracy is defined as the percentage of samples the classifier is
able to correctly predict:

accuracy(cat, catpred, Vtest) =
|vi ∈ Vtest s.t catpred(vi) = cat(vi)|

|Vtest|

where Vtest is a given set of samples that have not been seen before by the
classifier, cat the ground of truth mapping, and catpred the mapping that the
classifier has learned by analyzing the samples on the training set Vtrain.

4 A Silhouette Based Metric for Edge Selection

As we already mention, we focus on the edge selection problem for classification
scenarios. Given a set of vertexes V and a series of candidate edge sets El, for
l = 0, · · · , L, the edge selection problem that we want to tackle consists on
selecting one of the El which leads to the best classification accuracy. Note that
we are not interested in selecting the edges that better represent the data: we
focus our goal in selecting those edges that will allow the classifier to achieve the
best performance.

Figure 1 presents a toy example of the IMDB dataset (used in the experimental
part of this paper). Nodes represent movies and edges describe relationships
between these movies. A movie can be linked to another using three different
kinds of edges, which indicate whether they share a director, a producer, or an
actor. For instance, movies 1 and 2 have at least one director and one actor
in common, whereas movies 3 and 4 have the same producer. Note that the
homogeneous graph obtained when selecting only the actor edges is very different
from the graph obtained when selecting just the producer edges (or even when
selecting all the available edges, regardless of their type). Since the obtained
graphs present important dissimilarities, it is thus interesting to study which of
the alternatives will enable to better classify the nodes and how to identify it.

The idea of tackling the feature selection problem with a wrapper approach,
by taking into consideration the induction algorithm used in the classification
process, or with a filter approach, by focusing in the data alone to make the
decision, can also be applied to the edge selection problem. In this paper, we
evaluate different metrics to be used within the filter paradigm to create homo-
geneous networks with the straight forward methodology of selecting the edges
presenting the highest value for the studied metric. That is, given a set of ver-
texes V and a series of candidate edge sets El, we define a metric s over the
graph Gl = (V,El), compute it for all the available edge sets l = 0, · · · , L, and
select the edge set that maximizes the metric value. The selected edge set Elmax

is thus:

{Elmax s.t. s((V,Elmax )) ≥ s((V,El))∀l = 0, . . . , L}
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director
director

actor

actor

producer

Fig. 1. An example of a graph with nodes from two different classes linked by relation-
ships of three different kinds

4.1 General Overview

The proposed metric derives from two different ideas that have already been
used in the past for similar purposes: aggregation operators and silhouette plots.

Aggregation operators have been proposed to model relational data [8,9]. Re-
lational data contains information about entities and their relationships. These
relationships include a huge amount of information that can not be discarded
when analyzing the data. However, when using traditional machine learning tech-
niques, dealing with these relationships supposes a challenge because it usually
implies having to work with high-dimensional categorical attributes representing
these relationships. Aggregation operators can be then used to create features
representing this data.

Aggregation usually leads to information loss. For this reason, one of the
characteristics that we have to take into account when selecting aggregation
operators is the amount of information that is lost. Moreover, when creating
aggregation operators for relational classification problems, we want the results
of the aggregation to be that instances from the same class are similar while
instances from different classes are distant.

Silhouettes [10] were created in the context of cluster analysis. A silhouette
plot is a graphical display that represents how well samples in a cluster fit in
that cluster by taking into account the distance between the sample and other
samples in the same cluster, and the distance between the sample and samples
in other clusters. Intuitively, the closer a sample is to others in the same cluster
and the further it is from samples in other clusters, the better fit it is in that
cluster.

Silhouette is mainly used for cluster validation, i.e., given a specific partition
of the data, it is a useful tool to determine if the partition is good for that
data or, on the contrary, a different number of clusters will lead to a better
partitioning. However, silhouette plots can also be used in classification, where
the number of classes is fixed. In this case, silhouette values are useful to assess
how difficult a certain classification process will be. We take advantage of this
characteristic, and try to evaluate how difficult the classification process will be
depending on the selected edge sets.
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4.2 Metric Detailed Description

Given a graph Gl = (V,El) and a mapping cat between nodes in V and their
categories in C, we compute the silhouette based metric as follows.

First, let us map each sample in V to its corresponding node class vector. The
node’s vi class vector CV (vi) is defined as the vector of summed linkage weights
to each of the classes in C:

CV (vi)k =
∑

vj∈Γ (vi) s.t cat(vj)=ck

wij

CV is thus a vector with m components (recall that m = |C|). Given the
nodes’ class vectors and a specific distance function dist, we can then compute
the mean distance between a node and all samples in a given class ck.

dist(vi, ck) =

∑
vj∈V s.t cat(vj)=ck,vj �=vi

dist(vi, vj)

|{vj ∈ V s.t cat(vj) = ck, vj �= vi}| (1)

When cat(vi) �= ck, the formula gives the mean distance between the sample
and all samples in another class. When cat(vi) = ck, it provides the mean dis-
tance between the sample and other samples in the same class. Intuitively, the
higher the first value and the lower the second one, the easier the sample will be
to classify. Let us quantify this idea by defining the silhouette value for a given
sample, vi:

s(vi) =
minck∈C,ck �=cat(vi){dist(vi, ck)} − dist(vi, cat(vi))

max{minck∈C,ck �=cat(vi){dist(vi, ck)}, dist(vi, cat(vi))}
This takes into account the mean distances from a sample to all the other

classes, and consider the worst case by selecting the nearest class. It is also
useful to define the silhouette value for a given class ck, which is just the mean
silhouette values of the samples in that class:

s(ck) =
1

|{vj ∈ V s.t cat(vj) = ck}|
∑

vj∈V s.t cat(vj)=ck

s(vj)

Finally, the silhouette value for a whole graph is defined as the mean silhouette
values of all its nodes:

s(G) =
1

|V |
∑
vi∈V

s(vi)

Notice that Equation 1 is based on a distance metric between nodes. In Sec-
tion 5, we experiment with three different distance functions: cosine distance
scos, Euclidean distance sEucl, and Manhattan distance sManh, and compare
the results obtained for the different configurations.
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5 Experimental Results

In this section, we evaluate the ability of the proposed metric to select the
edges leading to the best classification accuracy. We also compare the results of
using our silhouette based metric with those achieved when using other metrics
in the literature. In order to make the results as general as possible, we make
this evaluation using multiple datasets already known by the community and
different relational classifiers that have been proposed in the past.

5.1 Datasets

The original datasets used in the experiments described in this paper can be
found in [11] together with a more detailed description of their content. Table 1
presents a short summary of the characteristics of each dataset. A total of 14
different graphs can be created with this datasets.

For each original graph, we create additional test data by modifying the
weights of the edges. The procedure to obtain different new edge sets for each
graph can be described as follows:

1. We select a given graph G = (V,E0), i.e., a set of nodes V and the existing
set of edges of the original graph, E0.

2. We select a scoring function scorefunc and apply it to every pair of nodes
(vi, vj) ∈ V × V in the graph.

3. We compute the new weights w′ by using the chosen scoring function over
the edges of the graph w′

ij = scorefunc(vi, vj) ∗ wij .

4. We obtain a new graph Gl = (V,El), where El are the new edges with
weights w′.

Table 1. Original datasets

Dataset |C| Edge set |V | |E0|
WebKB Cornell 7 Cocitations 351 26832
WebKB Cornell 7 Links 351 1393
WebKB Texas 7 Cocitations 338 32988
WebKB Texas 7 Links 338 1002
WebKB Washington 7 Cocitations 434 30462
WebKB Washington 7 Links 434 1941
WebKB Wisconsin 7 Cocitations 354 33250
WebKB Wisconsin 7 Links 354 1155

IMDb 2 All 1441 48419
IMDb 2 Prodco 1441 20317

Industry 12 Pr 2189 13062
Industry 12 Yh 1798 14165

Cora 7 All 4240 71824
Cora 7 Cite 4240 22516
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Table 2. Scoring functions

Label Scoring function Definition

E1 Number of common neighbors scoreCN (vi, vj) = |Γ (vi) ∩ Γ (vj)|
E2 Jaccard Index scoreJI(vi, vj) =

|Γ (vi)∩Γ (vj )|
|Γ (vi)∪Γ (vj )|

E3 Adamic-Adar scoreAA(vi, vj) =
∑

vk∈Γ (vi)∩Γ (vj )
1

log (|Γ (vk)|)

E4 Preferential Attachment scorePA(vi, vj) = |Γ (vi)||Γ (vj)|
E5 Clustering Coefficient scoreCC(vi, vj) =

|{e=(vk,vl)∈E s.t. vk,vl∈Γ (vi)∩Γ (vj)}|
|Γ (vi)∩Γ (vj )|(|Γ (vi)∩Γ (vj)|−1)

We use 5 scoring functions which are shown in Table 2. There are a few
considerations to notice about these functions. First, all the scoring functions
are defined for every pair of nodes of the graph, independently of whether an edge
exists or not between the pair of nodes. Second, when evaluating the function
for a pair of nodes, they take into account the existing relationships in their
neighborhood but they are indifferent about the weights of these relationships.
Third, the scoring functions are symmetric, in the sense that scorefunc(vi, vj) =
scorefunc(vj , vi). Finally, the chosen scoring functions have a common goal: they
quantify, somehow, the strength of the relationship between the evaluated nodes.
They do so by describing their neighborhood and measuring key aspects of its
structure.

There are also a few considerations to take into account regarding the method-
ology for computing the new weights. On one hand, by directly multiplying the
original weight by the result of the scoring function we ensure that no new edges
are created. Recall that the scoring function is defined for every pair of nodes
of the graph, whether they share a link or not. On the other hand, we allow all
scoring functions to eliminate not relevant edges by assigning them a score of 0.

Following this procedure, we are able to obtain 14 vertex sets, each of one
with 6 different sets of vertexes E0, E1, · · · , E5, a total of 14× 6 = 84 different
graphs. Through the rest of the paper, we will make use of all these 84 graphs
in the experiments, and compare the results obtained when dealing with each of
the 6 possible edge configurations for each dataset.

5.2 Experimental Setup

Since we want to evaluate the ability of different metrics to select the edge set
that will lead to the highest classification accuracy, we need to assess the accu-
racy obtained when using the different edge sets. However, for a given dataset,
classification accuracy is not a constant value since it is affected by the specific
relational classifier used in the process. For this reason, we do the experiments
with different relational classifiers.

We make use of the Netkit toolkit, which contains implementations for the
most known classifiers. By using Netkit, we are able to systematically test dif-
ferent classifiers and compare the results. Classifiers in Netkit are comprised
by a local classifier (LC), a relational classifier (RL), and a collective inference
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procedure (CI). Each of the different modules1 can be instantiated with many
components. In our experiments, we allow the LC to be instantiated with either
classpriors (cp) or uniform (unif); the RL component can be instantiated with
Weighted-Vote Relational Neighbor Classifier (wvrn), its Probabilistic version
(prn), the Class-distribution Relational Neighbor Classifier (cdrn-norm-cos),
and Network-Only Bayes Classifier (no-bayes); the IC module can be specified
with Relaxation Labeling (relaxLabel), Iterative Classification (it), or without
any inference method (null). This give us 2×4×3 = 24 different full classifiers.
For the rest of the paper, we will use the term full classifier (fc) to refer to a
specific instantiation of the three modules (LC-RC-CI).

In order to evaluate classification accuracy, we try to classify each of 86 graphs
with all 24 full classifiers. For each experiment, that is, for a given graph and
a given full classifier, we repeat the process of selecting new train and test sets
100 times and define the accuracy of the full classifier with respect to a given
graph and a labeled ratio r as the mean of the accuracy over the test set of these
100 different runs. We repeated the process for different labeled ratios (train set
sizes): 20%, 35%, 50%, and 65%.

5.3 Metric Comparison

In this section, we compare the performance of the different metrics with re-
spect to selecting the best edge set, that is, the edge set that leads to the best
classification accuracy. We evaluate the two assortativity variants as defined in
[6], edge assortativity (AE) and node assortativity (AN ), and compare them
with the proposed silhouette based metric using as distance functions the cosine
distance (scos), euclidean distance (sEucl), and Manhattan distance (sManh).

We are interested in analyzing which metric is better correlated with classi-
fication accuracy. Given a set of nodes V and many different sets of edges El

for l = 0, · · · , L, the ideal metric should have a perfect positive correlation with
classification accuracy, that is, the metric should return higher values when clas-
sification accuracy is high and lower values when classification accuracy is also
low. With this kind of metric, we could simply select as the best edge set the
one showing the highest value of the specific metric.

The Kendall τ rank correlation coefficient [12] is a measure of rank correla-
tion, i.e., a measure of the similarity of the orderings of two measured quanti-
ties. Kendall’s τ ranges from −1 to 1, with −1 expressing a negative correlation
between the two variables (one increases with the decrease of the second), 0
expressing that the two variables are independent, and 1 expressing a perfect
positive correlation between the two variables (one increases with the increase
of the second). Since we are interested in deciding whether the function that
describes the relationship between accuracy and the analyzed metric is mono-
tonically increasing (without being concerned about finding the exact function
that describes this relationship), we can use Kendall’s τ to compare the different
metrics.
1 Readers can refer to the original Netkit paper [6] for a full explanation of these
modules.
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Table 3. Kendall’s τ rank correlation coefficient between accuracy and each of the
metrics (r=0.35)

Full classifier AN AE scos sEucl sManh

cprior-wvrn-it 0.3945 0.3764 0.5829 0.3649 0.3844
cprior-prn-it 0.2878 0.2238 0.2203 0.2020 0.2146
cprior-nobayes-it 0.3021 0.2536 0.2513 0.3133 0.3121
cprior-cdrn-norm-it 0.4616 0.4142 0.5347 0.4314 0.4280
cprior-wvrn-relaxLabel 0.2958 0.2616 0.4624 0.3810 0.3890
cprior-prn-relaxLabel 0.2734 0.2553 0.3620 0.2840 0.3104
cprior-nobayes-relaxLabel 0.2837 0.2536 0.2765 0.3649 0.3626
cprior-cdrn-norm-relaxLabl 0.3549 0.3133 0.4739 0.4360 0.4257
cprior-wvrn-null 0.3073 0.2742 0.4796 0.3787 0.3878
cprior-prn-null 0.2906 0.2691 0.3574 0.2817 0.3092
cprior-nobayes-null 0.2941 0.2570 0.2800 0.3546 0.3488
cprior-cdrn-norm-null 0.3612 0.3115 0.4687 0.4343 0.4251
unif-wvrn-it 0.3742 0.3555 0.5374 0.3647 0.3761
unif-prn-it 0.2786 0.2169 0.2042 0.1985 0.2065
unif-nobayes-it 0.2924 0.2450 0.2186 0.2978 0.2932
unif-cdrn-norm-it 0.4232 0.3735 0.4504 0.3769 0.3701
unif-wvrn-relaxLabel 0.3440 0.3247 0.5221 0.3775 0.3890
unif-prn-relaxLabel 0.3050 0.2823 0.3419 0.2628 0.2869
unif-nobayes-relaxLabel 0.3090 0.2651 0.2685 0.3328 0.3316
unif-cdrn-norm-relaxLabl 0.3377 0.3041 0.4131 0.3890 0.3775
unif-wvrn-null 0.3325 0.3155 0.5106 0.3890 0.3993
unif-prn-null 0.3101 0.2886 0.3471 0.2714 0.2920
unif-nobayes-null 0.3124 0.2616 0.2708 0.3236 0.3190
unif-cdrn-norm-null 0.3406 0.3012 0.4033 0.4045 0.3919

Table 3 shows the Kendall’s τ rank correlation coefficient between classifica-
tion accuracy and each of the proposed metrics for every full classifier2, when
setting the training set size to 35%.3 The presented results take into account all
the possible edge sets for each of the datasets, that is, the 6 different El for the
14 datasets. Each of the presented values represents the correlation between the
metrics over these graphs and the 100−run mean accuracy (over the test sets)
obtained when classifying those graphs. Even though datasets from very different
nature are compared together, obtained τ coefficients are quite high. For all the
possible configurations and analyzed metrics, τ coefficients are positive values,
which denotes that there exists a positive correlation between the analyzed met-
rics and classification performance. Regarding the strength of this correlation,
bold numbers denote the highest correlation achieved for the listed fc. Note that
edge assortativity, AE , is beaten for all configurations. On the other hand, node
assortativity, AN , presents better correlation with accuracy for two fc configura-
tions using prn as the relational classifier module and iterative as the collective
inference method. For the rest of the fc configurations, silhouette based metrics
show better correlation with accuracy. Regarding the used distance function, the
cosine distance exhibits the highest correlation for almost all fc. The exceptions
are two fc for which AN stands out and all the fc using network only Bayes as
the relational module, for which using sManh leads to the best correlation.

2 Since classification performance differs from one full classifier to another, it is thus
interesting to analyse it w.r.t each full classifier.

3 Due to space constraints, we omit the results for the other training set sizes. These
results are similar to the presented ones.
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Table 4. A detailed example of the usage of Kendall’s τ coefficient using Cora-cite
dataset classified with cprior-wrn-it with r = 0.35%

Edge set Accuracy Accuracy rank scos scos rank

E0 0.715 1 0.525 1

E1 0.521 4 0.373 5

E2 0.348 6 0.206 6

E3 0.524 3 0.383 4

E4 0.515 5 0.391 3

E5 0.673 2 0.453 2

τ 0.733

Although using the proposed metric with euclidean distance, sEucl, does not
yield to the best correlation for any fc, it is important to notice that the results
are very similar to those showed when using Manhattan distance, sManh. The
mean difference between the correlations showed for sManh and sEucl is just
0.0109, so there is no significant difference between using euclidean or Manhattan
distances when evaluating the different edge sets.

Table 4 presents an example of how the τ coefficients are used for evaluating
the different metrics. In the example, the displayed accuracy values are computed
using cprior-wrn-it full classifier over the Cora-cite dataset (for a training set
size of 0.35) for each of the available edge sets. We can also find the corresponding
scos values. Taking into account the scos results, we will predict that the best
edge set will be the original edge set, E0, followed by E5, E4, E3, E1, and finally
E2. We can observe that the predictions are quite accurate, with E0 being the
best choice followed by E5, and E2 being the worst choice. However, there are
three of the edge sets, E1, E3 and E4 for which the predicted order is not exactly
the same. Note that the three edge sets lead to very similar accuracy results, with
less that 1% difference, and this is also reflected by the scos values, which are
also very close. The obtained τ correlation coefficient for the set of accuracy and
scos values is 0.733, denoting that there is a strong positive correlation between
the two variables, although not a perfect one.

6 Conclusions and Further Research

We have presented a metric that is able to identify which edge set will lead to the
best classification accuracy for a given classification problem over a relational
dataset. Experimental results show that the proposed metric outperforms the
ones being currently used for the same purpose.

Experimental results also indicate that classification accuracy, and thus cor-
relation between accuracy and the studied metrics, strongly depends on the
specific full classifier being used. At the same time, the full classifier obtaining
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the best accuracy also depends on the specific dataset that is being classified,
i.e., there is no configuration for the three modules of the classifier that works
better than all the other for all datasets. All these facts suggest that using wrap-
per approaches, which take into consideration the classification algorithm, are
more adequate than filter approaches for tackling the edge selection problem for
relational classification.

This paper opens new lines for future work. It would be interesting to adapt
and evaluate the wrapper approaches currently used on traditional non-relational
domains to the now almost omnipresent networked datasets. Expanding this
work to cover not only edge selection to create homogeneous networks but also
to create heterogeneous graphs, where different kinds of entities and relationships
are distinguished, is also a natural continuation of this work.
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Abstract. Most of recent anonymization algorithms for networks are
based on edge modification, i.e., adding and/or deleting edges on a net-
work. But, no one considers the edge’s relevance in order to decide which
edges may be removed and which ones must be preserved. Considering
edge’s relevance can help us to improve data utility and reduce infor-
mation loss. In this paper we analyse different measures for quantifying
edge’s relevance. Also, we present a new simple metric for edge’s rele-
vance on medium or large networks.

Keywords: Anonymization, Edge Relevance, Edge Modification, Net-
works, Graphs.

1 Introduction

In recent years, as more and more network data has been made publicly available,
anonymization on network data has become an important concern. Backstrom
et. al. [1] point out that the simple technique of anonymizing networks by re-
moving the identities of the nodes before publishing the actual network does not
guarantee privacy. To deal with this problem, some methods have been developed
for network anonymization.

Most of these methods are based on edge modification. That is, methods that
anonymize by modifying (adding and/or deleting) edges on a network. There
are two basic approaches to anonymize a network via edge modification. First,
randomization is the simplest way to anonymize a network by edge modification.
Randomization methods are based on adding random noise on original data to
hinder re-identification processes. Hay et al. [5] proposed a method to anonymize
unlabelled networks which is based on removing and then adding false edges at
random. Ying et al. [3] proposed a method which divides the network into blocks
according to the degree sequence and implements modifications (by adding and
removing edges) on the nodes at high risk of re-identification, not at random
over the entire set of nodes. Both methods do not change the set of vertices and
preserve the number of edges on anonymized networks.

V. Torra et al. (Eds.): MDAI 2013, LNAI 8234, pp. 296–307, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The second way to anonymize a network by edge modification is based on
edge addition and deletion to meet desired objective functions. Among others,
one widely adopted strategy is based on the concept of k-anonymity [2]. Several
works use edge modifications to meet k-anonymity model. Among others [14]
[8], Liu and Terzi [7] modify the network structure (by adding and removing
edges) to ensure that all nodes satisfy the k-anonymity for the degrees of the
nodes. Pei and Zhou [15] modify the network structure to meet k-anonymity for
1-neighbourhood sub-network of the objective nodes.

Edge modification techniques are widely used in network’s anonymization.
Nevertheless, none of these works consider the edge’s relevance. Edge’s relevance
can help us to decide which edges can be removed or modified and which ones
must be preserved. If we want to preserve the network properties, such as average
distance, diameter, node centrality and more, we have to find the most relevant
edges and preserve them from removing or modifying processes. Thus can lead
anonymization methods to a better data utility and less information loss.

In this paper we use different metrics for edge’s relevance in order to analyse
the effect of edge deletion on network structure. We work with simple, undirected
and unlabelled networks. We want to define a metric for edge’s relevance which
can help us to preserve the most important edges on network. This metric has
to lead an edge modification process to remove the less important edges, keeping
the basic network structural and spectral properties.

This paper is organized as follows. In Section 2, we review different metrics
for edge’s relevance. Section 3 presents our experimental framework, including
structural and spectral metrics for network assessment and data sets used in
our experiments. In Section 4, we show the experiments and discuss the results.
Finally, in Section 5, we discuss conclusions and future work.

2 Metrics for Edge’s Relevance

Let G(V,E) be a simple network, where V is the set of nodes and E the set
of edges in G. We use vi ∈ V to refer to node i and e = (i, j) to refer to an
undirected edge between nodes vi and vj . We define n = |V | to denote the
number of nodes and m = |E| to denote the number of edges.

We consider the following metrics for quantifying edge’s relevance:
Edge betweenness (EB) is defined as the number of the shortest paths that

go through an edge in a network [4]. An edge with a high edge betweenness
score represents a bridge-like connector between two parts of a network, and the
removal of which may affect the communication between many pairs of nodes
through the shortest paths between them. The edge betweenness of edge (i, j)
is defined by:

EB(i,j) =
1

n2

∑
st

g
(i,j)
st

gst
(1)

where g
(i,j)
st is the number of shortest paths from node s to t that pass through

edge (i, j), and gst is the total number of shortest paths from node s to t.
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Link salience (LS) [16] is defined as a linear superposition of all shortest
path trees (SPTs). It quantifies the fraction of SPTs each link participates in.
The salience of an edge (i, j) is computed as follows:

LS(i,j) =
1

n

n∑
k=1

Tij(vk) (2)

where T (vk) is the shortest path tree (SPT) rooted at node vk. T (vk) can be
represented as a matrix with elements:

Tij(vk) =

{
1 if

∑n
l=1 σij(vl, vk) > 0

0 otherwise
(3)

where σij(vl, vk) is equal to 1 if edge (i, j) is on the shortest path from vk to
vl, and otherwise is equal to 0. Despite the apparent similarity between edge
betweenness and link salience, both quantities capture very different qualities of
edges. Salience is insensitive to a position of an edge, acting as a uniform filter.

Calculating both above metrics of all the vertices on a network involves calcu-
lating the shortest paths between all pairs of vertices. This takes Θ(n3) time with
the Floyd-Warshall algorithm. On a sparse network, Johnson’s algorithm may
be more efficient, taking Θ(n2log(n) +nm) time. So, both metrics are not useful
for large networks, since every time we remove an edge we must re-calculate all
edges’ values. Therefore, we present a new simple metric for quantifying edge
relevance, called edge neighbourhood centrality.

Edge neighbourhood centrality (NC) of an edge (i, j) is defined as the
fraction of nodes which are neighbours of vi or vj , but not of vi and vj simulta-
neously. The edge neighbourhood centrality is computed as follows:

NCij =
(Γ (vi) ∪ Γ (vj))− (Γ (vi) ∩ Γ (vj))

n
(4)

where Γ (vi) is the 1-neighbourhood of node vi. Note that this metric can be
computed on Θ(m) using the adjacency matrix representation of the network.
An edge with high score is a bridge-like for neighbourhood nodes. All measures
presented above are in range [0,1].

3 Experimental Set Up

Our experiments use edge betweenness (EB), link salience (LS) and edge neigh-
bourhood centrality (NC) to evaluate all edges on each network. For each edge
metric, we evaluate all edges of the network. One by one, we remove each edge
from the network and then we compute the error introduced in the network
by comparing some network characteristic metrics on original and on modified
networks.
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3.1 Datasets

Four different data sets are used in our experiments. Table 1 shows a summary
of the network’s main features. The networks considered are the following ones:

– Zachary’s Karate Club [10] is a network widely used in the literature. The
network shows the relationships among 34 members of a karate club.

– American College Football [4] is a network of American football games be-
tween Division IA colleges during regular season Fall 2000.

– Jazz Musicians [11] is a network of jazz musicians and their relationships.
– C.Elegans [12] is a list of edges of the metabolic network of C.elegans.

Table 1. Basic properties for selected networks

Network Nodes Edges Av. degree Av. distance Diameter

Zachary’s Karate Club 34 78 4.588 2.408 5

American College Football 115 613 10.661 2.508 4

Jazz Musicians 198 2,742 27.697 2.235 6

CElegans 453 2,025 8.940 2.663 7

3.2 Network Characteristic Metrics

We analyse the following structural and spectral metrics in order to quantify the
noise introduced by edge deletion. Structural metrics are related to topological
characteristics whereas spectral metrics are based on spectral characteristics.

Structural Metrics

Average distance (AD) is defined as the average of the distances between each
pair of nodes in the network. It measures the minimum average number of edges
between any pair of nodes. Formally, it is defined as:

AD(G) =

∑n
i,j=1 d(vi, vj)(

n
2

) (5)

where d(vi, vj) is the length of the shortest path from vi to vj , meaning the
number of edges along the path.

Diameter (D) is defined as the largest minimum distance between any two
nodes in the network. Formally:

D(G) = max(d(vi, vj)), ∀i �= j (6)

Average distance and diameter evaluate the entire network as a unique score.
We compute the error on these network metrics as follows:

εij(m) = |m(G) −m(G−)| (7)
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where m is one of the network characteristic metrics, G is the original network
and G− is the network without edge (i, j).

However, the following ones are node structural metrics, i.e., they evaluate
specific structural properties for each node of the network.

Node Betweenness centrality (CB) measures the fraction of shortest paths
that go through each vertex. This measure indicates the centrality of a node
based on the flow between other nodes in the network. A node with a high value
indicates that this node is part of many shortest paths in the network, which
will be a key node in the network structure. Formally, we define the betweenness
centrality of a node vi as:

CB(vi) =
1

n2

∑
st

gvist
gst

(8)

where gvist is the number of shortest paths from s to t that pass through node vi,
and gst is the total number of shortest paths from s to t.

Closeness centrality (CC) is defined as the inverse of the average distance
to all accessible nodes. Formally, we define the closeness centrality of a node vi
as:

CC(vi) =
n∑n

j=1 d(vi, vj)
(9)

Transitivity or Clustering coefficient (T) is a measure widely used in the
literature. The clustering of each node is the fraction of possible triangles that
exist. For each node the clustering coefficient is defined by:

T (vi) =
2tri(vi)

deg(vi)(deg(vi)− 1)
(10)

where tri(vi) is the number of triangles through node vi and deg(vi) is the degree
of node vi.

And we compute the error on node metrics by:

εij(m) =

√
1

n
((g1 − g−1 )2 + . . . + (gn − g−n )2) (11)

where gi is the value of the metric m for the node vi of G and g−i is the value of
the metric m for the node vi of G−.

Spectral Metrics

We also focus on two important eigenvalues of the network spectrum.
The largest eigenvalue of the adjacency matrix A is the value of λ1,

where λi are the eigenvalues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The eigenvalues of A
encode information about the cycles of a network as well as its diameter.

The second eigenvalue of the Laplacian matrix L is the value of μ2,
where μi are the eigenvalues of L and 0 = μ1 ≤ μ2 ≤ . . . ≤ μm ≤ m.
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The eigenvalues of L encode information about the tree structure of the net-
work, where μ2 is an important eigenvalue and it can be used to show how good
the communities separate, with smaller values corresponding to better commu-
nity structures.

4 Experimental Results

In this section we analyse the correlation based on Pearson correlation coefficient
between each edge metrics and all network characteristic metrics. A high corre-
lation points that removing edges with high score based on edge metric produces
larger noise on modified network, while removing edges with low score produces
fewer noise. On the other hand, a low correlation value suggests that removing
edges with high or low score does not imply introducing more or less noise on
modified data. We discuss in the next three sections the three edge metrics: edge
betweenness, link salience, and edge neighbourhood centrality. Results on the
four networks described in Section 3 are reported, and Figure 1 displays the
results for the network Karate, which is the one that can be better visualized
because it is the smallest dataset.

4.1 Edge Betweenness

Here we use the edge betweenness (EB) as a measure to quantify edge’s relevance.
As we can see on Table 2, average distance shows very high correlation for Karate
and Football networks and high correlation for Jazz and CElegans. Correlation
values between EB and diameter are low because diameter is much stabler than
EB. Figure 1 (a) shows EB score for each edge (solid line) and the error on
diameter (dashed line) introduced by this each removal on Karate network. Only
twice the diameter has been modified, nevertheless it was when quiet high-scored
edges were deleted from network.

Node betweenness presents very high correlation values, obtaining an average
value of 0.97. On Figure 1 (b) we can see EB and node betweenness values.
Clearly, EB is closely related to node betweenness centrality. On the other hand,
closeness centrality presents lower values than node betweenness, except on Foot-
ball network.

Results for transitivity, λ1 and μ2 are quite different. Pearson correlation
values are low or very low on all datasets, except for transitivity on Football
and λ1 on Karate network. For example, correlation value between EB and
transitivity is -0.10 on Karate (Figure 1 (c)), which means that there is not
relation between EB and transitivity. I.e., removing edges with low EB score may
introduce higher noise on network than removing edges with high EB score. This
is because important EB-based edges are local bridges, so removing them we do
not destroy any triangle, while low EB-based score edges are part of a triangle,
so removing them we decrease the transitivity measure of the all involved nodes
on this triangle.



302 J. Casas-Roma, J. Herrera-Joancomart́ı, and V. Torra

Table 2. Pearson correlation values between EB and network characteristic metrics

Metric Karate Football Jazz CElegans Average

Average Distance 0.83 0.93 0.79 0.73 0.82

Diameter 0.44 0.25 0.32 0.20 0.30

Node Betweenness 0.94 0.99 0.98 0.96 0.97

Closeness 0.44 0.95 0.37 0.25 0.50

Transitivity -0.10 0.57 0.28 0.22 0.29

λ1 0.26 -0.04 -0.11 0.42 0.21

μ2 0.61 0.09 0.07 0.08 0.21

Average 0.52 0.55 0.42 0.41 0.47

4.2 Link Salience

The second measure for edge’s relevance is link salience (LS). A small set of nodes
are scored with high salience value, LS ≈ 1. These nodes form the skeleton of
the network whereas the others have low salience values, configuring a bi-modal
distribution [16].

Table 3 presents the correlation values between LS and network characteristic
metrics. Average distance shows good correlation values, but lower than the
ones showed above. Once again, correlation values between LS and diameter
presents low score. Node betweenness achieves high score, but lower than EB
correlation on all networks. However, closeness gets a good score, even better
than correlation with EB.

Like above metric, the correlation between LS and transitivity, λ1 and μ2

are not clear. They score very low values, suggesting that using salience as a
edge’s relevance does not guarantee better data utility and lower information
loss. Figure 1 (d) exemplifies it.

Table 3. Pearson correlation values between LS and network characteristic metrics

Metric Karate Football Jazz CElegans Average

Average Distance 0.61 0.80 0.82 0.79 0.75

Diameter 0.20 0.10 0.13 0.22 0.16

Node betweenness 0.67 0.86 0.84 0.56 0.73

Closeness 0.45 0.86 0.53 0.33 0.54

Transitivity 0.17 0.53 0.36 0.32 0.34

λ1 -0.10 -0.08 -0.17 0.01 0.09

μ2 0.48 0.04 0.09 0.04 0.16

Average 0.38 0.47 0.42 0.32 0.40

The correlation values between salience and the structural and spectral anal-
ysed metrics is lower, in general, than the ones obtained between EB and the
same metrics.
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(a) EB and diameter values.
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(b) EB and node betweenness centrality
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(c) EB and transitivity values.
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(d) LS and μ2 values.
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(e) NC and average distance values.
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(f) NC and closeness centrality values.

Fig. 1. Pairs of edge relevance metrics and network characteristics metrics on Karate
network. EB stands for edge betweenness, LC stands for link salience and NC stands
for edge neighbourhood centrality.
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4.3 Edge Neighbourhood Centrality

Finally, we test our new simple metric for quantifying edge’s relevance. As we
can see on Table 4, average distance presents a moderate correlation on all net-
works, except Football where the correlation is not clear. Figure 1 (e) illustrates
values for NC and average diameter on Karate network. Neither diameter shows
correlation with NC.

Once again, node betweenness keep on moderate scores on all networks, expect
Football. Closeness and transitivity do not achieve good results on Karate, Jazz
nor CElegans, but they achieve quite better scores on Football network. Figure
1 (f) depicts values of NC and closeness. Finally, λ1 and μ2 present irregular
values, showing weak correlation on some networks.

Table 4. Pearson correlation values between NC and network characteristic metrics

Metric Karate Football Jazz CElegans Average

Average Distance 0.55 0.63 0.18 0.52 0.47

Diameter 0.24 0.07 0.03 -0.03 0.09

Node betweenness 0.75 0.78 0.36 0.46 0.59

Closeness 0.33 0.69 0.01 0.06 0.27

Transitivity -0.06 0.51 -0.09 0.09 0.19

λ1 0.41 -0.05 0.43 0.52 0.35

μ2 0.48 0.21 0.35 0.19 0.31

Average 0.40 0.42 0.21 0.27 0.32

4.4 Summary

Average distance is a metric related to path lengths. Edge betweenness, as we
have seen, is the edge metric which captures average distance the best, scoring
the highest correlation values for this metric. Hence, removing important edge-
betweenness-based edges affects it in a significant way.

Also we have seen that diameter is a stable metric with respect to network
perturbation. So, it is difficult to correlate any of our edge’s relevance metrics
with diameter, although we have seen on Figure 1 (a) that diameter perturbation
occurs when an important edge is removed from the network. It suggests that
both EB and NC identify an important local bridge, and removing it produces
and increment on several shortest paths along the network.

Node betweenness and closeness are widely used for clustering and commu-
nity detection algorithms, so edge-modification-based anonymization algorithms
must consider which edges remove or modify in order to reduce information loss
and preserve data utility for clustering purposes. All metrics get a good correla-
tion values, but the best one is EB. Clearly, EB and node betweenness are closely
correlated. Some edges with high EB score are local bridges. So, removing them
we introduce a high noise on node betweenness and closeness metrics. On the
other hand, transitivity is not affected by removing local bridges and probably
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this measure is affected by removing edges which participates on many triangles
(that is, edges with low value of EB, LS and NC).

Finally, both spectral measures (λ1 and μ2) do not have high correlation
with any edge’s relevance metric. The best one is NC, which achieves moderate
scores on all networks. But, using EB and LS the results are not clear. The
noise introduced are not correlated with the score of these edge metrics. The
eigenvalues of the adjacency matrix encode information about the cycles of a
network as well as its diameter [6]. The maximum degree, chromatic number,
clique number, and extend of branching in a connected network are all related
to λ1. The eigenvalues of L encode information about the tree-structure of the
network [13].

Edge betweenness has been proved as a good edge’s relevance metric. The val-
ues of correlation are larger than others on several cases, showing that removing
or modifying edges with high values of edge betweenness introduce large noise
on important structural and spectral metric.

Link salience, although is a good metric for visualizing and understanding
network structure (skeleton), does not achieve the same results as edge between-
ness. Despite it gets good results for structural metrics, it fails to achieve good
results on spectral metrics.

Finally, neighbourhood centrality shows good results on all structural and
spectral metrics. The results are not as good as the ones achieved with edge
betweenness, but the complexity is very low for this metric. Therefore, it is a
good metric to estimate edge’s relevance on medium or large networks.

5 Conclusions

In this paper we have shown that anonymization processes should consider which
edges might be removed or modified and which ones must be preserved, because
the noise introduced on networks may be too large.

As we have seen in our experiments, edge betweenness is the best metric for
quantifying edge’s relevance. Edge betweenness identifies the most important
edges, which may not be removed or modified, and the least important edges,
which can be removed or modified. Edge’s relevance can help edge-modification-
based anonymization processes to achieve better results, raising data utility and
reducing information loss. So, incorporating edge’s relevance on edge modifica-
tion processes can lead us to produce a more useful anonymized networks.

Although edge betweenness has proved to be a good metric to quantify edge’s
relevance, it is based on shortest path between all pair of nodes and it implies a
high computational cost. Therefore, it is not a good metric for medium or large
networks. To deal with this, we have proposed a new simple metric for edge’s
relevance, called edge neighbourhood centrality. It is very simple and can be
applied to medium or large networks. This metric has showed good results on
all structural and spectral metrics.

Many interesting directions for future research have been uncovered by this
work. It may be interesting to extend this work to other network types, for
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example, considering weighted or directed networks. Also, it may be interesting
to create anonymization algorithms based on edge’s relevance features. Then,
these new algorithms can be compared with existing ones in terms of data utility,
information loss and privacy.
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Baró, Xavier 105
Becceneri, José Carlos 58
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Szilágyi, Sándor Miklos 214

Tang, Hengjin 166
Torra, Vicenç 296
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