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Abstract Osteoarthritis is a degenerative joint disorder that predominantly affects
cartilage and subchondral bone. Magnetic resonance imaging (MRI) provides a
noninvasive means to detect pathologic alterations in these two tissues. In this
chapter, we provide an overview of MRI techniques to evaluate cartilage and
subchondral bone macrostructure, and cartilage biochemical composition [T1rho
mapping, T2 mapping, 23Na MRI, glycosaminoglycan chemical exchange satu-
ration transfer, diffusion tensor imaging (DTI)]. The ability to detect early and
short-term changes in the knee joint in vivo will allow new insight into the
pathogenesis of osteoarthritis and may permit early diagnosis of osteoarthritis in
at-risk subjects. This knowledge and capability should ultimately accelerate the
discovery and testing of novel therapies to treat osteoarthritis, a disease which
represents an enormous socioeconomic and health burden on society.

1 Osteoarthritis Epidemiology

According to the Centers for Disease Control, osteoarthritis (OA) affects 46 million
Americans [1]. Joint deformity, pain, and decreased mobility are the main morbidi-
ties, resulting in an estimated $127 billion in annual costs [2]. The risk of disability
attributable to knee OA alone is as great as that due to cardiac disease and greater
than that due to any other medical condition in elderly persons [2]. Despite great
efforts by the pharmaceutical industry and academia, no therapy exists to prevent or
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reverse the structural damage of osteoarthritis, and interventions are limited to pain
control and, ultimately, joint replacement.

2 Pathological Alterations in Cartilage and Subchondral
Bone

In the healthy synovial joint, articular cartilage is the primary weight-bearing sur-
face (2–4 mm in thickness) and is composed of an extracellular, fluid-filled matrix
of type 2 collagen fibrils and proteoglycans (aggrecan) in which chondrocytes
are sparsely distributed [3]. Proteoglycans cross-link collagen fibrils and serve
to provide tensile and compressive strength to the matrix [4]. Deep to articular
cartilage is a layer of corticalized bone, the subchondral bone plate, which itself
is buttressed by subchondral trabecular bone, an intricately connected 3D-network
of trabecular plates and rods (50–200 �m in dimension) [5]. The microarchitecture
of this trabecular network can be characterized quantitatively in terms of trabecular
number, thickness, separation, connectivity, and plate-to-rod ratio, and it is altered
in states of high bone turnover or in response to mechanical loading at the joint [6].

Though originally conceptualized as a disorder of articular cartilage, osteoarthri-
tis is now recognized as a disorder involving abnormal mechanical loading at the
joint and damage to nearly all articular structures (menisci, synovium, ligaments),
but especially articular cartilage and subchondral bone [7, 8]. Degeneration in
articular cartilage is initially manifested by loss of proteoglycans and disruption
of the type 2 collagen network [3, 9]. This results in loss of tensile and compressive
strength of the cartilage matrix, and is followed by morphologic defects such as
ulceration of the superficial layer of cartilage and decreased cartilage thickness
[3, 9].

In parallel, subchondral bone structure is markedly altered. Beyond the radio-
graphic demonstration of subchondral bone sclerosis, ex vivo histomorphometric
and high-resolution micro-computed tomography (CT) studies reveal thickening of
the subchondral bone plate and remodeling of trabecular bone microarchitecture,
including increased trabecular thickness and number, and decreased trabecular
separation in OA subjects compared to controls [5, 10–13]. Such trabecular bone
micro-architectural alterations are believed to affect the biomechanical competence
of bone in ways that cannot be predicted by bone density or bone volume fraction
measurements alone [6, 10].

The ability to magnetic resonance imaging (MRI) to noninvasively monitor
pathologic alterations in both cartilage and bone in OA subjects in vivo (and without
the use of ionizing radiation such as in computed tomography studies) provides great
insight into the pathogenesis of OA.
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Fig. 1 High-resolution axial
7 T MR image (3-D FLASH,
TR/TE D 26/4 ms,
0.234 � 0.234 � 1 mm) shows
up to full thickness cartilage
loss (arrow) at the median
ridge of the patella in a
patient with osteoarthritis

3 Morphological MRI of Osteoarthritis

3.1 Cartilage

On conventional MRI, numerous sequences exist to evaluate articular cartilage
morphology [9]. The most commonly used sequences include fat-suppressed three-
dimensional gradient-recalled echo techniques [14, 15] and fast-spin echo tech-
niques without or with fat-suppression [16, 17]. These techniques have reported
sensitivities and specificities for the detection of morphologic cartilage defects near
or greater than 90 % in the knee when arthroscopy is used as the gold standard for
comparison [14, 16].

Fat-suppressed T1-weighted gradient-echo images depict subchondral bone as
dark, cartilage as hyperintense, and synovial fluid as lower in signal intensity
(Fig. 1). Because a 3-D dataset can be obtained, they are considered ideal for
quantitative assessment of cartilage thickness and volume [9]. One drawback is that
they are time-consuming (6–15 min) especially when high-resolution images (0.3–
0.4 mm in-plane, 1–2 mm slice thickness) are obtained. In addition, gradient-echo
images are not ideal for the evaluation of other joint tissues, such as ligaments and
menisci.

Fast-spin echo images (Fig. 2) are typically performed with proton density
weighting and depict cartilage as intermediate in signal intensity, fluid as hyper-
intense, and subchondral bone as hyper- or hypointense depending on whether
fat-suppression is used. Because fast-spin echo images are 2-D, they are not used
for quantitation of cartilage thickness and volume, but they can be used to assess
other joint structures, such as ligaments and menisci.
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Fig. 2 Coronal clinical 7 T
MR image (fast-spin echo,
TR/TE D 1,800/26 ms,
0.5 � 0.5 � 2 mm) shows
marked cartilage loss within
the medial compartment
(arrow) and osteophyte
formation (arrowhead)

3.2 Subchondral Bone

Because conventional MRI sequences only depict subchondral bone as hyperintense
or hypointense, the evaluation of subchondral bone is limited to assessment of the
size, spatial distribution, and pattern of subchondral bone marrow lesions (BMLs).
These BMLs can reflect edema, hemorrhage, vascularity, or fibrosis. BMLs are
typically evaluated on fluid-sensitive fat-suppressed sequences. They can be semi-
quantitatively assessed according to the whole organ MRI score [18]. Alternatively,
it is also possible to quantify the volume of BMLs [19].

BMLs are associated with overlying cartilage defects [20]. Baseline BML
volume has been shown to correlate with longitudinal changes in cartilage thickness
[21] and predict later cartilage volume loss [22]. Enlarging BMLs are especially
associated with cartilage loss [23]. Finally, BMLs in the knee are associated with
knee pain [24, 25].

4 Advanced MRI of Osteoarthritis

4.1 Cartilage

4.1.1 T2 Mapping

Cartilage T2 relaxation value mapping is a potential tool to quantitatively assess
cartilage water content and collagen architecture in vivo (Fig. 3) [9, 26–28]. T2
values reflect the dipolar interaction of water protons, which have limited mobility in
the highly anisotropic cartilage extracellular matrix. In early cartilage degeneration,
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Fig. 3 Sagittal T2 map of the
medial knee compartment
shows elevated cartilage T2
values (arrow) in a patient
with osteoarthritis

there is evidence for loss of the normal collagen framework [29] and increased water
content [30, 31], both of which lead to increased cartilage T2 values [32, 33]. The
potential value of T2 mapping as a biomarker for early cartilage degeneration is
highlighted by its inclusion in the MRI protocol for the osteoarthritis initiative [34],
a nationwide National Institutes of Health-funded observational study that aims to
better understand how to prevent and treat osteoarthritis.

The T2 map is generated by: (1) obtaining a series of multiecho spin-echo
images, (2) fitting the signal intensity of each pixel to a mono-exponential decay to
compute the T2 value for each pixel, and (3) representing each pixel’s T2 value with
a color scale to create a “map,” which is typically overlaid onto the anatomic image
of the joint. At 3 Tesla, T2 values of knee cartilage ranges from approximately 30 to
50 ms. There is a well-known spatial variation in cartilage T2 values with higher T2
values closer to the articular surface [26, 35]. In addition, collagen orientation [36]
and mechanical loading can also affect T2 values [37, 38], the latter likely through
altered water content. Some recent promising studies have provided evidence that
elevated knee cartilage T2 values at baseline may predict cartilage morphologic
abnormalities at 2 years [39] and 3 years [40].

4.1.2 T1rho Mapping

Cartilage T1rho relaxation value mapping is a potential tool to quantitatively assess
cartilage proteoglycan content in vivo (Fig. 4) [41–43]. The T1rho value reflects
low frequency spin interactions (100 Hz–10 kHz) and is also known as T1 or spin
lattice relaxation in the rotating frame. While cartilage T1 and T2 values are intrinsic
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Fig. 4 Sagittal T1rho map of
the medial knee compartment
shows spatial variation in
cartilage T1rho values
(arrow) in a patient with
osteoarthritis

properties of a tissue, cartilage T1rho values are determined by both the tissue
properties and MRI sequence parameters, in particular, the amplitude of the spin-
locking pulse.

To perform T1rho mapping, the transverse magnetization is prepared using a
long duration, lower power radiofrequency pulse known as the spin-lock pulse.
The duration of this pulse is known as the time of spin-lock. It is during the time
of spin-lock that the transverse magnetization undergoes relaxation with a rate of
1/T1rho. Multiple different types of molecular interactions (J-coupling, chemical
shift, dipole–dipole, chemical exchange) contribute to the T1rho relaxation [41].
Similar to the T2 map, the T1rho map is generated by representing each pixel’s
T1rho value using a color look-up table and generation of a color map, which is
overlaid onto an anatomic image.

In bovine cartilage specimens, T1rho values change linearly with changes in
proteoglycan content [43], but there is also some evidence that collagen content
may affect T1rho values as well [44]. In human cartilage specimens with normal T2
values, T1rho values correlate with cartilage proteoglycan content [45]. The high
dynamic range of cartilage T1rho values in osteoarthritic human cartilage specimens
suggest that it may be well-suited to monitor small changes in cartilage molecular
composition and thus disease progression in humans [42]. In humans in vivo,
elevated T1rho values correlate with cartilage degeneration [33], and altered T1rho
values may serve as a marker for arthroscopically confirmed outerbridge grade 1
and 2 cartilage lesions [46]. Finally, one recent study has provided evidence that
elevated knee cartilage T1rho values at baseline may predict cartilage morphologic
abnormalities at 2 years [39].



Advanced MRI of Cartilage and Subchondral Bone in Osteoarthritis 183

Disadvantages of T1rho mapping include long scan times to acquire images with
different spin-lock times and possible issues with specific absorption rate/energy
deposition at higher field strength.

4.1.3 Delayed Gadolinium Enhanced MRI of Cartilage

Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) is a method to assess
cartilage proteoglycan content. Ions within the interstitial fluid of the cartilage
extracellular matrix are distributed in relation to matrix levels of negatively charged
glycosaminoglycans. Therefore, after administration of the anionic contrast agent
Gd-DTPA2–, the degree of penetration of Gd-DTPA2– into the cartilage extracellular
matrix is inversely related to matrix glycosaminoglycan content [3, 9]. Since Gd has
a T1 shortening effect, cartilage T1 relaxation values can be used to estimate Gd
concentration and thus cartilage glycosaminoglycan content.

To perform dGEMRIC, the patient is first injected intravenously with a dose of
Gd-DTPA2– (0.2 mM/kg, twice the recommended clinical dose) and is asked to
exercise (e.g., walk on a treadmill) for approximately 10 min. The MRI and T1
mapping is performed 60–90 min after the contrast injection. Together, joint motion
and the delay of imaging facilitates the entry of contrast into the joint. The T1
map is computed from a series of images with different T1 weighting. The recent
development of a B1 insensitive two-dimensional (D) T1 mapping sequence [47]
and a method to correct for B1 inhomogeneity in a 3-D variable flip-angle gradient-
echo sequences [48] may allow for more accurate calculation of T1 values. The T1
maps are reported as the dGEMRIC index, with lower values corresponding to lower
glycosaminoglycan levels.

In vitro and in vivo studies have shown that dGEMRIC measurements correlate
well with reference standard measurements of glycosaminoglycans [49, 50]. In one
cross-sectional study of patients with hip dysplasia, the dGEMRIC index correlated
significantly with pain and severity of the hip dysplasia and differed significantly
between mild, moderate, and severe dysplasia groups [51]. Other studies have pro-
vided evidence that a low dGEMRIC index at baseline may predict the development
of osteoarthritis on radiographs at 6 years [52] or the later development of joint
failure in patients undergoing periacetabular osteotomies [53]. Because of the wide
intra- and inter-subject variation in dGEMRIC indices, a standardized dGEMRIC
score (z-score based on number of standard deviations from the mean T1 value in
the region of interest) has been proposed to increase the sensitivity for detection of
abnormalities [54].

Disadvantages of dGEMRIC include the need for administration of an intra-
venous contrast agent, which is contraindicated in patients with renal dysfunction
due to the increased risk of nephrogenic systemic sclerosis and the long examination
time due to the delay after contrast injection.
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Fig. 5 Sagittal sodium
concentration map of the
medial knee compartment
shows markedly decreased
cartilage sodium content
(arrow) in a patient with
osteoarthritis

4.1.4 Sodium MRI

Sodium MRI is another method to evaluate cartilage proteoglycan content (Fig. 5).
Because of the negative fixed charged density of glycosaminoglycans in the cartilage
extracellular matrix, positively charged sodium ions penetrate into the interstitial
fluid of the cartilage matrix in relation to the levels of glycosaminoglycans [4,
41]. That is, the lower cartilage glycosaminoglycan content results in lower sodium
signal on MR images.

The sodium signal is approximately 4,000 times less than the proton signal
[55]. This is because: (1) the sensitivity of MRI for sodium ions is only 9.2 %
that of the MR sensitivity for protons and (2) the concentration of sodium ions
in vivo is approximately 366 times lower than the water proton concentration. In
addition, it should be noted that in intermediate regimes such as biological tissues,
the nonspherical sodium nucleus demonstrates a quadrupolar interaction with
surrounding electric field gradients. This results in multiple quantum coherences
and biexponential T2 relaxation rates, with 60 % of the sodium signal relaxing
rapidly (T2 valueD 1–2 ms) and 40 % of the sodium signal relaxing more slowly
(T2 valueD 8–15 ms).

To perform sodium MRI, a dedicated coil tuned to the sodium Larmor frequency
is required. Furthermore, because of sodium’s rapid transverse relaxation and
the already low baseline low signal-to-noise ratio of sodium MRI, imaging is
facilitated by the implementation of ultrashort echo time (UTE) sequences and by
the performance of imaging at high field (3 Tesla) and ultra high field (7 Tesla).

In trypsin-treated bovine cartilage specimens, cartilage proteoglycan content
correlates strongly with sodium signal on MR images [56]. Because of the negative
fixed charged density of proteoglycans in cartilage, it is possible to quantify cartilage
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sodium concentration [57]. And in vivo, osteoarthritis subjects have demonstrated
lower cartilage sodium concentration compared to healthy subjects [4, 58]. The
recent development of a fluid-suppressed sodium inversion recovery sequence
[59, 60] may improve the quantitation of sodium concentration in cartilage, since
synovial fluid also contains sodium and can potentially confound results (Fig. 5).

Disadvantages of sodium MRI include the need for dedicated radiofrequency
coils tuned to the sodium Larmor frequency and the lower spatial resolution/longer
imaging times that result from low SNR.

4.1.5 Glycosaminoglycan Chemical Exchange Saturation Transfer

Glycosaminoglycan chemical exchange saturation transfer (gagCEST) has been
proposed as a method to assess cartilage proteoglycan content [61, 62]. The basis of
gagCEST is the detection of the magnetization associated with amide and hydroxyl
groups of GAG molecules. Normally, the protons of these groups exchange with
water protons. If this exchange is slow, then saturation of the exchange protons of
the hydroxyl groups with a long RF pulse leads to attenuation of the water signal in
proportion to the concentration of the hydroxyl groups and thus GAG molecules.
A two-frequency irradiation approach has been proposed to discriminate CEST
effects from magnetization transfer asymmetry effects [63].

Disadvantages of gagCEST include the need for high field strength, the critical
dependence on Bo field homogeneity, and the possible challenges of isolating
gagCEST effects from magnetization transfer effects.

4.1.6 Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) represents a potential means to assess both cartilage
proteoglycan and collagen content [64–67]. The rationale behind DTI is that
proteoglycan and collagen restrict the motion of water molecules in different
manners, which are reflected in diffusion parameters. Proteoglycans do not have
anisotropy and restrict the displacement of water molecules in all directions, which
can be reflected in the parameter mean diffusivity. Collagen fibers demonstrate
anisotropy as they are oriented parallel to the articular surface superficially and
perpendicular to subchondral bone in the deep cartilage layer. Water diffusion
preferentially occurs along the direction of the collagen fibers, and this can be
reflected by the parameter fractional anisotropy.

To perform DTI, multiple magnetic field gradients are applied in several direc-
tions to acquire a series of diffusion-weighted images. Each set of images provides
information about diffusivity in that direction; their combination produces a map
of the diffusion tensor. Eigenvalues and eigenvectors describe the magnitude and
directions of the diffusion tensor, which can be represented by an ellipsoid. Mean
diffusivity is calculated from the average of the three diffusion tensor eigenvalues.
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Fig. 6 Axial high-resolution
7 T MR image (3-D FLASH,
TR/TE D 26/5.1 ms,
0.234 � 0.234 � 1 mm) of
trabecular bone
microarchitecture of the knee
shows osteophyte formation
(arrow) and decreased
trabecular number and
connectivity (circle) in the
medial femoral condyle of a
patient with osteoarthritis

Fractional anisotropy also is calculated from the diffusion tensor eigenvalues, and it
reflects the degree of anisotropy within a voxel.

DTI in cartilage demands high SNR. Thus imaging is facilitated by the move
to higher field strength. Recently, in a small study involving ten patients with
osteoarthritis, Raya et al. [64] showed that ADC and FA calculated from DTI
may provide high sensitivity and specificity for the detection of patients with
osteoarthritis.

4.2 Subchondral Bone

4.2.1 MRI of Bone Microarchitecture

The use of advanced MRI techniques combined with digital image analysis methods
to quantify bone microarchitecture could provide additional insight into the role
of subchondral bone in osteoarthritis pathogenesis. MRI of bone microarchitecture
is indirect. The MRI scanner detects magnetization from mobile water and fat
protons from within the marrow space and bony trabeculae, which contains solid-
state protons that are devoid of signal, are outlined by the hyperintense surrounding
marrow.

Because trabeculae are small (100–200 �m thick), MRI of bone microarchi-
tecture requires imaging with high-resolution and voxel sizes that are on the
order of the size of the trabeculae (Fig. 6). As a result, high-resolution MRI
of bone microarchitecture is a high-SNR demand technique that is facilitated by
imaging at higher field strength [68]. Different types of MRI pulse sequences have
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been used for imaging bone microarchitecture, including fast large angle spin-
echo, steady-state free precession, and gradient-recalled echo techniques [6]. Bone
microarchitecture analysis can be performed with digital image analysis methods
such as fuzzy distance transform [69], digital topological analysis [70], and finite
element analysis [71], which allow quantification of morphologic, topologic, and
mechanical properties of bone, respectively.

In the presence of knee malalignment, high-resolution MRI studies reveal ele-
vated bone microarchitectural parameters (bone formation) associated with cartilage
loss within the diseased compartment [72]. There is also bone loss within the
contralateral compartment [72]. An inverse correlation has also been demonstrated
between cartilage T1rho and T2 values and apparent trabecular number, separation,
and bone volume fraction [73]. Finally, it is possible to detect two-year longitudinal
changes in bone microarchitectural parameters in subjects with OA, implying that
disease progression can be monitored [74].

5 Conclusions

MRI provides a noninvasive means to detect and monitor pathologic alterations in
cartilage and subchondral bone on the macrostructural, microstructural, and even
biochemical level in subjects with osteoarthritis. The ability to detect these changes
in vivo will allow new insight into the pathogenesis of osteoarthritis and permit
early diagnosis of osteoarthritis in subjects who are at risk. This knowledge and
capability should ultimately accelerate the discovery and testing of novel therapies
to treat osteoarthritis, a disease which represents an enormous socioeconomic and
health burden on society.
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