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Abstract Ultrasound (US) Doppler flow-velocity imaging has been used
extensively in the diagnosis and management of carotid atherosclerosis. Doppler
ultrasound-based measurement is a well-established screening tool for the
assessment of stenosis severity. However, this method of measurement does
not provide information on carotid plaque morphology, plaque vulnerability, or
composition. In addition to stenosis severity, US-based phenotypes of carotid
atherosclerosis include intima–media thickness (IMT), and total plaque area (TPA).
More recently, vessel-wall-volume (VWV) and total-plaque-volume (TPV) have
emerged as sensitive and useful US phenotypes of carotid atherosclerosis that
measure plaque burden in 3D images. In order to accelerate the translation of
these 3D US-based carotid atherosclerosis measurements to clinical practice,
semiautomated methods of measurement are required to enable multiple observers
to be trained in shorter time periods and with decreased inter-observer variability.
This has stimulated investigators to develop accurate and robust segmentation
algorithms allowing efficient quantification of carotid atherosclerosis. In this
chapter, we demonstrate that 3D US is a viable technique for quantifying the
progression and regression of carotid atherosclerosis and describe algorithms for
segmentation of carotid vessels.
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1 Introduction

Despite more than five decades of active research since the Framingham study
first identified risk factors for atherosclerosis, it is still the second leading cause of
death in industrialized nations. Because most measurements of atherosclerosis cur-
rently in use provide indirect measurements of the disease, they may be inadequate
for use in modern patient care and management and to test new treatments. New
sensitive and specific measurements may provide critically needed and more specific
risk management tools and more sensitive ways to assess new patient treatments.

Atherosclerosis and its sequelae, stroke, and heart attack are still the leading
causes of mortality and morbidity in the developed world, and are expected to
take a growing toll in the developing world. Stroke is the most common, serious
neurological problem globally and the third leading cause of death among North
American adults. Clearly, stroke represents a staggering mortality, morbidity, and
economic cost. Improved methods to identify patients at increased risk for stroke,
and better techniques to treat and monitor them will have an enormous impact.

Many new molecular therapies and phenotypic therapeutic targets for atheroscle-
rosis are currently being investigated and developed. Parallel to the development of
new therapies, an equally important requirement is the development of treatment-
specific measurement tools or biomarkers. As the numbers of new treatments for
atherosclerosis are expected to increase rapidly, it is critical to continue to develop
and validate cost-effective, noninvasive, and direct measurements or phenotypes of
carotid atherosclerosis to use as efficacy targets for treatment and for monitoring
therapy.

The utility of ultrasound (US) imaging in diagnosis and monitoring of carotid
atherosclerosis is well established. Because it is noninvasive and technological
advances are continually improving image quality, US imaging is achieving a
greater role by providing direct views of the vessel wall and plaque. Thus, improved
and well-characterized US imaging has the potential to be used for quantification
of plaque surface morphology, volume, and composition, and therefore become the
primary carotid atherosclerosis monitoring modality in patients at risk of stroke,
who are being treated with plaque stabilization strategies.

2 3D Carotid Ultrasound Imaging

2.1 Benefits of 3D Ultrasound Imaging

Conventional 2D US imaging systems are used extensively to image the carotid
arteries and diagnose carotid disease. These US systems are highly flexible, allowing
users to manipulate hand-held US transducers freely over the neck to generate
real-time 2D images of the carotid arteries and blood flow within them. However,
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conventional 2D US systems suffer from the following disadvantages for use in
carotid disease monitoring:

• The use of conventional 2D US imaging requires users to mentally integrate
many 2D images to form an impression of three-dimensional (3D) pathology
in the carotid arteries. Although this approach can be effective, at times, it leads
to longer procedures and variability in diagnosis and monitoring changes in the
vessels.

• Monitoring progression and regression of carotid atherosclerosis in response to
nonsurgical therapy requires that the same view of the carotid arteries be images
over time periods that can be as long as a few years. Since the 2D US imaging
transducer is held and controlled manually, it is difficult to relocate of the 2D US
image at the exact location and orientation in the body when imaging a patient.
Thus, 2D US imaging is suboptimal as an accurate carotid disease monitoring
technique.

Over the past two decades, many researchers and commercial companies have
been developing efficient 3D US imaging systems for use in a wide variety of
applications [1–7]. Because 3D US systems require significant computational speed
for reconstructing and viewing of 3D US information in real- or near real-time
on inexpensive systems, progress has been slow. However, advances in low-cost
computer and visualization technology have now made 3D US imaging a viable
technology that can be used in a wide range of applications. Thus, 3D US imaging
capability is now widely available using commercial systems and ones developed
in research laboratories. The challenge now is to develop efficient and informative
3D image analysis tools for use in monitoring carotid atherosclerosis in the large
number of patients with the disease.

Before describing methods for segmentation and analysis of carotid atheroscle-
rosis, we briefly review methods used for acquiring 3D carotid US images and the
tools required for visualizing and measuring carotid disease. Further technical and
computational aspects of 3D US can be found in recent review articles and books
on the subject [8–15].

Because analysis of the carotid arteries requires at least a 4 cm length, use of real-
time 3D systems (i.e., 4D systems with 2D arrays) with small transducer apertures
cannot be used effectively. Thus, all current 3D US systems used to acquire images
of the carotid arteries make use of conventional 1D transducer arrays that produce
2D US images. To produce a 3D image of the carotid arteries, the conventional
US transducer must be moved over arteries to collect 2D images necessary to
reconstruct the 3D US image. Thus, a method to track the position and orientation
of the transducer must be used so that the acquired 2D images can be placed in their
correct position and orientation relative to each other in the 3D image. Over the past
decade, two methods have been developed to image the carotid arteries: mechanical
linear scanners and magnetically tracked free-hand scanners.
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Fig. 1 (a) Photograph of a mechanical linear scanning mechanism used to acquire 3D carotid
US images. The transducer is translated along the arteries, while conventional 2D US images are
acquired by a computer and reconstructed into a 3D image in real-time. (b) Photograph of the
system being used to scan the carotid arteries

2.2 Methods Used to Acquire 3D Carotid US Images

2.2.1 Mechanical Linear 3D Carotid Ultrasound Imaging

Linear mechanical scanners use a motorized mechanism to translate a conventional
transducer linearly along the neck over the carotid arteries, as shown in Fig. 1, and
two examples of linearly scanned 3D ultrasound images of carotid arteries with
complex plaques are shown in Fig. 2. As the transducer is moved over the carotid
arteries, transverse 2D images of the carotid arteries are acquired at regular spatial
intervals. Since a motor is used to move the transducer linearly at a constant velocity,
each acquired 2D image is spaced equally and all images are parallel to each other.
This acquisition geometry makes 3D reconstruction easy and possible in real-time.
Since mechanical mechanisms can be constructed with different lengths, the length
of the scan can be made to be 4–6 cm. Typically, we acquire 2D US images every
0.2 mm. If the 2D US images are acquired at 30 fps, a 4 cm length will require 200
2D US images, which can be collected in 6.7 s without cardiac gating.

Because the 3D carotid US image is produced from a series of equally spaced
conventional 2D US images, the resolution in the 3D image will not be isotropic.
The spatial resolution of the image transverse to the vessel axis will depend on the
resolution in the acquired 2D image plane. However, the spatial resolution in the 3D
scanning direction (i.e., along the artery) will depend on the elevational resolution
of the transducer as well as the spacing between the acquired images. The spacing
between acquired image planes can be optimized by varying the translating speed
and 2D US acquisition rate. Thus, the acquisition rate can be matched to the frame
rate of the ultrasound machine, and the velocity can be adjusted so that the sampling
interval is no more than half the elevational resolution of the transducer [16]. In
this way, the spacing between acquired images is typically not limiting the spatial
resolution. Since the elevational resolution is worse than the in-plane resolution of
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Fig. 2 Two 3D carotid ultrasound views of two different patients with complex and ulcerated
carotid plaques. For each patient, a transverse (a) and (c) and longitudinal (b) and (d) views are
shown side-by-side

the 2D US images, the resolution of the 3D US image will be the poorest in the 3D
scanning direction. Therefore, a transducer with good elevational resolution should
be used to obtain optimal results [13].

2.2.2 Free-Hand Scanning with Position Sensing

Since mechanical 3D US scanning mechanisms used for imaging the carotid arteries
tend to be bulkier than conventional 2D US transducers, 3D US scanning techniques
have been developed that do not require mechanical scanning devices. To use a
conventional 2D US transducer for 3D US imaging, the position and orientation
of the transducer must be tracked as it is moved over the carotid arteries. This can
be accomplished by mounting a sensor on the transducer to allow measurement
of the transducer’s position and orientation as the transducer is moved over the
body. In this way, the 2D US images and their relative location and orientation
recorded and used to reconstruct the 3D US image [17]. Since the locations and
orientations of the acquired 2D images are not predefined, an operator must move
the transducer over the anatomy at an appropriate speed to ensure that the spatial
sampling is proper and to ensure that the set of 2D images does not have any
significant gaps. Several approaches for free-hand scanning have been developed,
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but the approach most commonly used for carotid imaging makes use of magnetic
field sensing technology: Ascension–Bird sensor [18]; Polhemus–Fastrak sensor
[19]; and Northern Digital–Aurora sensor [20].

The magnetic field sensors approach makes use of a time-varying 3D magnetic
field transmitter, which is placed near the patient, and a small receiver containing
three orthogonal coils (with six degrees-of-freedom) mounted on the probe to sense
the strength of the magnetic field in three orthogonal direction. The position and
orientation of the transducer are calculated by measuring the strength of the three
components of the local magnetic field as each 2D US image is acquired. This
information is then used to reconstruct the 3D US image.

The magnetic field sensor 3D scanning approach allows free-hand scanning with
a small and unobtrusive device that allows the transducer to be tracked. However,
electromagnetic interference can compromise the accuracy of the tracking, and
geometric distortions in the 3D US image can occur if ferrous (or highly conductive)
metals are located nearby. Current magnetic field sensors produce excellent images
and are less susceptible to sources of error, particularly ones that use a magnetic
transmitter placed between the bed and the patient. Nonetheless, to minimize these
potential sources of error, the position of the sensor relative to the transmitter must
be calibrated accurately and precisely [21–29].

3 Carotid US Imaging Phenotypes

In this subsection, we briefly review the carotid US imaging phenotypes that
have been used recently. As discussed in Sect. 1, carotid imaging techniques are
increasingly becoming popular as tools to quantify surrogate end points of carotid
atherosclerosis due to their capability of direct measurement of plaque as opposed
to indirect measurements such as blood serum levels [30]. Such carotid imaging
phenotypes allow assessment of atherosclerotic disease progression, and reduce the
need for studying the effect of interventions on hard clinical end points, such as
stroke or myocardial infarction (MI) [31].

There have been numerous US phenotypes of carotid atherosclerosis used in the
past, which have been investigated as surrogate end points of vascular outcomes
for monitoring the progression and regression of atherosclerotic plaque burden
in patients during medical interventions. For example, Doppler ultrasound-based
measurements of stenosis [32, 33], intima–media thickness (IMT) [34, 35], total
plaque area (TPA) [36], total-plaque-volume (TPV) [37–39], vessel-wall-volume
(VWV) [40, 41], and vessel-wall-plus-plaque thickness (VWT) maps [42–44].
Although Doppler US is a widely used tool for assessing stenosis severity [45, 46],
it does not provide information on plaque morphology, plaque vulnerability, and
artery remodeling. 2D US IMT measurement, a one-dimensional measurement of
arterial thickness, is a reproducible measurement that has been shown to correlate
significantly with the risk factors of stroke [47]. However, it is not sensitive to the
changes in plaque burden, which is a stronger predictor of cardiovascular events [48,
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49]. In addition, change in IMT occurs at a rate of fraction of a millimeter per year
[50], resulting in long follow-up times in the monitoring study designs as well as
algorithms with high precision to detect significant changes in IMT.

3.1 3D Carotid US Imaging Phenotypes

Recently, there has been an increased interest in the use of area and volumetric
measurements of carotid plaque burden, because they are more reflective and
sensitive to the changes of the plaque burden [36, 51–53]. With the availability of
such measurements, it may be possible to show an effect of therapy with fewer
numbers of patients in shorter clinical trials with imaging end points as opposed to
longer clinical trials with hard end points involving large number of subjects. For
example, the results from the 6-year follow-up of the Tromsø study [54] involving
more than 6,000 subjects showed that in a general population, carotid TPA was a
stronger predictor of myocardial infarction than IMT. With a 10-year follow-up, the
study also reported that the TPA is a strong predictor of first-ever ischemic stroke
than IMT [55].

With the availability of the 3D carotid ultrasound images, several 3D volumetric
measurements have been used in clinical studies such as, 3D US TPV [37], 3D US
VWV [40], and 3D US VWT maps [42, 53].

3D US TPV is a direct volumetric measurement of plaque burden in the left
and right carotid arteries [38]. TPV measurements require an expert observer to
delineate plaque–lumen and plaque–outer wall boundaries as shown in Fig. 3.
TPV measurements encompass more of the complex plaque morphologies and
geometries than TPA measurements that are performed only in longitudinal views.
Therefore, volumetric measurements are expected to be even more sensitive than the
two-dimensional measurements, because carotid plaque progression occurs in three
dimensions. Thus, measurements of plaque volume have the potential to be more
sensitive to change than do measurements of plaque area, IMT, and carotid stenosis
[38]. Therefore, sample sizes required to test the effects of new therapies might be
smaller for measurements of plaque volume than for 1D and 2D measurements [38].

The 3D US VWV is the volume enclosed between the outer wall and the
lumen boundaries for the common carotid artery (CCA), internal carotid artery
(ICA), and less commonly for external carotid artery (ECA). The measurement of
3D US VWV requires an observer to manually outline the lumen–intima/plaque
and media–adventitia boundaries as shown in Fig. 4. The VWV measurements
have a higher reproducibility than TPV measurements [40], due to the fact that
lumen–intima/plaque and media–adventitia boundaries are more straightforward to
interpret than plaque–lumen and wall boundaries in 3D US images. In addition,
VWV boundaries measurements are more regular and circular, which may simplify
the development of semiautomated segmentation techniques.
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Fig. 3 Transverse and longitudinal views of the 3D US image are shown with overlaid manual
segmentations for the generation of 3D US VWV. (a) Transverse and longitudinal view of a 3D
carotid US image. (b) Manual delineations of the lumen and wall boundaries that are performed
on transverse slices that are 1 mm apart. (c) and (d) The surfaces generated by interpolation of the
2D contours for the lumen and vessel wall boundaries using the manual segmentations

The 3D US phenotypes discussed so far are global measurements of plaque
progression and/or wall thickening, which provide a single value of measurement
such as an area or volume. While such phenotypes provide valuable quantitative
information about global plaque burden, it does not identify the locations in the
vessel, where volumetric changes are occurring. However, identification of the
locations of change in plaque burden will enable more precise evaluation of changes
in plaque burden during medical interventions. Chiu et al. [44] proposed 3D US
VWT maps (see Fig. 5) and 3D US VWT-change maps (see Fig. 6) to quantify and
visualize local changes in plaque morphology on a point-by-point basis using the
segmented surfaces for the lumen and outer wall of the carotid arteries. To facilitate
the visualization and interpretation of these maps for clinicians, Chiu et al. [43]
proposed a technique to flatten the 3D VWT maps and VWT-change maps to 2D
(see Fig. 6).

4 Segmentation Algorithms for 3D Carotid US Images

Image segmentation is a way of partitioning an image into two or more regions,
where often the segmented region is an object of interest. To generate the volu-
metric measurements of carotid plaque burden, the outer wall, lumen, and plaque
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Fig. 4 Transverse and longitudinal views of the 3D US image are shown with overlaid manual
segmentations for the generation of 3D US TPV. (a) Manual delineations of plaque boundaries are
shown in red, which were performed on transverse views. (b) Transverse cross section of plaque
surface. (c) Longitudinal and transverse view of the plaque surface. (d) The 3D plaque surface
generated from interpolating the 2D transverse contours that are outlined manually
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Fig. 5 (a) and (b) The 3D US VWT map color-coded and superimposed on the vessel wall, and
the lumen of one patient. The red region on the VWT map (i.e., the region with maximum VWT)
corresponds to a deep depression on the lumen surface (i.e., the location of a large plaque) [44]
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Fig. 6 The VWT maps at the first and second scan, and the VWT-change maps for a single
patient. (a) The VWT map at baseline, (b) the VWT map at 3 months after baseline, and (c) the
VWT-change map for the same patient [43]

boundaries are required to be segmented from 3D US images. In particular,
for VWV and VWT measurements, the lumen and wall boundaries need to be
segmented, whereas for TPV measurement the plaque boundaries need to be
segmented. However, obtaining the lumen and outer wall boundaries prior to plaque
segmentation may help to locate the plaque boundaries more efficiently.

4.1 Requirement for Segmentation Algorithms

Unfortunately, although 3D US VWV, TPV, and VWT maps provide many advan-
tages compared to measurements of arterial wall thickening or TPA alone, they
are still not widely used in research or clinical practice because of the inordinate
amount of time required to train observers and to generate those 3D US phenotypes.
In this regard, semiautomated methods for segmentation of the carotid outer wall,
lumen, and plaque boundaries would greatly improve the time to train observers
and for them to generate 3D US phenotypes with high reproducibility. In the
following sections, the segmentation algorithms for carotid wall, lumen, and plaque
boundaries will be described.
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4.2 Segmentation of Carotid Wall and Lumen Boundaries

Currently, carotid outer wall and lumen segmentations are achieved either via
manual segmentation or semiautomated segmentation techniques. Although, fully
automated segmentation techniques are effective in some segmentation tasks of
medical imaging, there are no techniques yet developed for 3D US carotid imaging.
So far, manual segmentation is by far the most widely used technique for segmenting
the carotid wall and lumen boundaries from 3D carotid US images [40, 41, 56–
59]. However, there has been recent progress in the development of semiautomated
techniques for 3D US segmentation, which are described in Sect. 4.2.2.

4.2.1 Manual Segmentation

Figure 4 shows manual segmentations of the outer wall and the lumen boundaries
overlaid on a 3D US image and the surfaces of the outer wall and lumen for
computing 3D US VWV. Typically, 15–20 mm portion of the artery is segmented
including 10/15 mm section of the CCA from the carotid bifurcation and 5 mm
section of the ICA from the carotid bifurcation. Manual segmentations of the carotid
arteries from 3D US images are performed in transverse views. The observer first
defines the bifurcation point and the axis of the CCA and ICA. This defined axis
is used to obtain approximately orthogonal transverse slices to the artery for the
segmentation. The observer is then shown the transverse and the longitudinal views
of the artery simultaneously using multi-planar reformatting [13]. The observer first
outlines the outer wall in transverse slices that are 1 mm apart, along the section
of the artery that is to be outlined. The observer then outlines the lumen in the
transverse slices. When the segmentation of both boundaries is completed for the
CCA, the same segmentation steps are repeated for the ICA.

4.2.2 Semiautomated Segmentation Algorithms

Although, manual segmentation is still widely used for the carotid wall and
lumen segmentation, semiautomated segmentation algorithms are preferred over
the manual segmentation because manual techniques are tedious, time-consuming,
and may be subject to high operator variability. In addition, manual segmentation
demands more training and expertise from the observers. Therefore, developing
semiautomated techniques for segmentation and analysis is important for translating
the use of 3D carotid US phenotypes to clinical research and ultimately to
clinical care. However, due to the low image contrast of the boundaries and less
distinguishable intensity histograms, it is challenging for algorithms to segment 3D
carotid US images robustly (Fig. 7).

A summary of the segmentation techniques for delineating the carotid outer wall
and lumen from 3D US images is shown in Table 1. Most recent segmentation
tasks are performed using optimization-based approaches, such as, active contours
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Fig. 7 This figure illustrates the degree of overlap in the intensity histograms for the lumen, wall,
and the background. (a) Transverse view of a 3D US image with manual delineations of the lumen
and the outer wall. (b) The corresponding intensity histogram for the lumen, outer wall, and the
background region

Table 1 Previous papers describing carotid lumen and/or wall segmentations from 3D US B-mode
images

Time # images
Paper Year Dimension Lumen Wall (min) (type)

Ukwatta et al. 2011 2D Level set Level set 2.8 ˙ 0.4 21 (3D US)
Ukwatta et al. 2012 3D Level set Level set 1.72 21 (3D US)
Solovey 2010 3D Level set – – 2 (3D US)
Gill et al. 2000 3D Dynamic

balloon
model

– 30 s 1 (3D US)

Abolmaesumi
et al.

2000 2D Star algorithm – – 1 (B-mode)

Zahalka and
Fenster

2001 2D Active
contours

– 25 s/slice 2 (3D US)

Mao et al. 2000 2D Active
contours

– 0.8 s/slice 7 (B-mode)

[60], level sets [61], and active shape models [62]. In such approaches, an objective
function is defined, which describes the goodness of the segmentation. The objective
function is then minimized to locate the correct boundary. Such objective functions
typically contain two types of energy terms: external energy term, derived from
the (pre-processed) image data, and internal energy terms, derived from high-level
knowledge about the expected shape of the boundaries. A parameter is used to
determine the relative importance of each term for the segmentation. Depending
on the strength of the data term, this parameter(s) is be tuned for the segmentation
task in hand. For example, if the data term is strong, more weight can be assigned
to the data term.

As shown in Table 1, the algorithms developed for the segmentation of the carotid
artery lumen and wall can be broadly categorized into two classes, which are based
on the measurement of interest: methods that segment only the lumen boundary and
ones that segment the lumen and the outer wall boundary. In this chapter, we briefly
review all such algorithms, but focus more on the segmentation methods that are
specifically designed for segmenting both boundaries for the purpose of generating
volumetric phenotypes of plaque burden.
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2D and 3D Methods that Segment Only a Single Boundary

Some methods have been developed to delineate only the lumen boundary [63–
67]. For example, Gill et al. [64] proposed a semiautomated method based on
dynamic balloon model to segment only the lumen boundary from 3D US images,
but validated using a single image. After placing a seed mesh within the lumen, it is
inflated to find the approximate boundary using an inflation force. The mesh is then
refined using edge-based forces proximal to the lumen boundary. The algorithm
yielded a submillimeter value for the mean separation between the manual and
algorithm surface. However, the algorithm needed to be validated using multiple
images to adequately evaluate its robustness and usefulness in practice. Zahalka
and Fenster [67] proposed a lumen only segmentation method using a deformable
model with a stopping term based on the image gradient, which was validated using
only with a phantom. Solovey [66] proposed a level set-based method to segment
the lumen by incorporating a region-based term that minimizes the probability
distribution overlap and a weak geometric prior, which encourages convexity of
the boundary in a level set framework.

2D Methods that Segment Both Boundaries

Ukwatta et al. [68, 69] proposed a combined 2D segmentation method to segment
the outer wall and the lumen boundaries of the carotid arteries from 3D US images
using a modified sparse field level set method [70]. Their method is the first
semiautomated technique that was proposed to segment both the lumen and outer
wall boundaries from 3D US images for the purpose of computing volumetric
measurements of plaque burden. Therefore, the rest of this section is devoted to
describing their segmentation method.

The segmentation pipeline of their method is shown in Fig. 8. Their method
initializes the boundary close to the actual boundary by choosing four or more
anchor points xi

A, where i D 1 : : : N on each boundary on each transverse slice to be
segmented. After initialization, two level set segmentations with different energies
were used to segment the outer wall and lumen boundaries. The outer wall was
segmented initially, where the segmented outer wall contour was used to constrain
the lumen segmentation from leaking in regions with low image contrast.

Here, the level set equations [61] are reviewed before describing the particulars
of the carotid segmentation methods [68]. Let the image be defined as I W ˝ ! R,
and x 2 ˝ is a spatial variable representing a single point within the image domain
˝ � R

2. The level set is an implicit representation of a boundary defined by the
function � .x/ W ˝ ! R. The level set evolution equation is then given by:

@� .x/

@t
C rE jr� .x/j D 0; (1)
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Fig. 8 Block diagram of the segmentation pipeline [68]

where E is the objective function that defines the goodness of the segmentation and
rE denotes the speed of the evolution. A typical Chan–Vese (CV) energy term [71]
that models an object and background by their mean image intensities is given by:

E D
Z

˝
jrH .� .x//j dx

„ ƒ‚ …
Smoothness term .ES/

C �

Z
˝

H .� .x// .I .x/ � u/2 C .1 � H .� .x/// .I .x/ � v/2
dx;

„ ƒ‚ …
Global CV term .EG/

(2)

where H(x) is the regularized Heaviside function that represent the interior region
of the boundary, the exterior region of the boundary is given by (1 � H(�(x)) and u
and v are the mean image intensities of the inside and outside, respectively.

The speed equation is then obtained from the first variation of the energy function
E as follows [71]:

@� .x/

@t
D ı .� .x//

�
div

� r� .x/

jr� .x/j
�

C �
�

.I .x/ � u/2 � .I .x/ � v/2
��

(3)

where ı(�(x)) is the Dirac function, which is the derivative of the Heaviside
function. � > 0 is a parameter that determines the relative importance of the data
or the smoothness term.

Outer wall segmentation: Since the outer wall has neither a strong edge nor
consistent regional features for segmentation, a combination of various criteria was
used for the outer wall segmentation. For example, the outer wall has high image
contrast at orthogonal locations to the US beam direction, whereas the parallel
locations of the boundary would generally have low image contrast and the image
intensities of the interior and exterior of the outer wall are heterogeneous. Therefore,
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an objective function combining local region-based, edge-based energies, and user
interaction are used for the outer wall segmentation. Edge-based forces drive the
segmentation successfully in the presence of strong image gradients, whereas the
local region-based forces localize the boundary in the local neighborhood.

Let bx 2 ˝ be another independent spatial variable. The objective function EWB

for the outer wall segmentation is defined as:

EWB D ˛1

Z
˝

ı .� .x//

Z
˝

BL .x;bx/
h
H .� .bx// .I .bx/ � ux/

2 C .1 � H .� .bx/// .I .bx/ � vx/
2
i

dbx dx
„ ƒ‚ …

Local region-based energy .EL/

C
Z

˝

jrH .� .x//j dx
„ ƒ‚ …

Smoothness term .ES/

C ˛2

NPX
iD1

Z
˝

ı .� .x// Bi
A .x/

�
� .x/ � �

�
xi

A

		2
dx

„ ƒ‚ …
Anchor-point based energy .EA /

�˛3

Z
˝

ı .� .x//
BE .x/

" C j� .x/ � � .XE .x//j dx;

„ ƒ‚ …
Edge-based energy .EE /

(4)

where the parameters ˛1 � 3 > 0. The local region-based energy (EL), which was
originally proposed by Lankton and Tannenbaum [72] assumes that at each point on
the object boundary, the local interior and exterior neighborhoods can be modeled
by their mean intensities ux and vx within the circular region with radius rL defined

by BL
�
x;bx	 D

�
1 if kx �bxk < rL

0 otherwise
.

The anchor-point energy encourages the contour to pass through each anchor
point xi

A, placed by the observer, when segmentation is within a distance rA to

an anchor point, which is defined by Bi
A .x/ D

�
1 if



x � xi
A



 < rA

0 otherwise
. When the

contour points are away from the anchor point by more than rA there is no influence
by this energy term.

Similar to edge-based geometric active contours proposed by Caselles et al.
[73] and Malladi et al. [74], an edge-based energy is used, which utilizes the
edge map M(x) generated during the pre-processing stage, where BE .x/ D�

1 if 0 < kx � XE .x/k < rE

0 otherwise
, is the circular-shaped region around the point x with

a radius rE and " is a small positive constant. XE .x/ D arg min
bx2s

jj x � bx jj ; s D
b̊xI M

�bx	 D 1
�

is the nearest edge point from point x. The edge force is nonzero
when the contour is within a distance rE to the closest edge point.

By taking the first variation of the EWB (4) with respect to � we obtain the
evolving equation
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for the outer wall segmentation, where sgn(�(x)) is the signum function.
Lumen segmentation: Similar to the outer wall segmentation, a combination of

numerous criteria is used for the lumen segmentation to utilize its characteristics.
For example, the lumen boundary has an irregular shape due to the presence of
plaque and does not typically contain sharp, high contrast edges. In addition, the
intensity distribution of the interior of the lumen is fairly homogeneous. Therefore,
a combination of local region-based and global region-based forces is employed
to segment the lumen. To stop the leaking at the low-contrast boundaries, the
previously segmented outer wall boundary is used to constrain the current lumen
segmentation. The objective function ELB used to segment the LIB is given as

ELB D �1

Z
˝

ı .� .x//

Z
˝

BL .x;bx/
h
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dbx dx
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C
Z

˝

jrH .� .x//j dx„ ƒ‚ …
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NPX
iD1

Z
˝

ı .� .x// Bi
A .x/

�
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		2
dx

„ ƒ‚ …
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C�3

Z
˝

H .� .x// .I .x/ � u/2 C .1 � H .� .x/// .I .x/ � v/2
dx

„ ƒ‚ …
Global CV term .EG/

C �4

Z
˝

ı .� .x// BT .x/ dx;

„ ƒ‚ …
Boundary separation term .ET/

(6)

where the parameters �1 � 4 > 0. Similarly to the outer wall segmentation, the
smoothness energy, local region-based energy, and the anchor point-based energies
are used in the lumen segmentation. The global CV term (EG) (2) is used here to
utilize the homogeneous intensity of the lumen region.

Because the outer wall and lumen are separated by the carotid media layer, they
are enforced to have a greater or equal separation distance (dT) of 0.5 mm from each
other [75]. The boundary separation-based energy ET is given by where BT .x/ D(

1 if minbx D
�
x;bx	

< dT

0 otherwise
, and D

�
x;bx	 D jj x � bx jj ; rH

�
�MAB

�bx		 D 1.

Therefore, the term ET avoids the intersection of the outer wall and lumen.
By taking the first variation of the ELB (6) with respect to � we obtain the

evolving equation for the lumen segmentation.
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This algorithm was evaluated with 231 2D carotid US slices extracted from
21 3D US images. The algorithm segmentations were compared to the manual
segmentations on a slice-by-slice basis as shown in Fig. 9. The algorithm yielded
high Dice coefficients (DC) (>92 %), submillimeter errors for the mean absolute
distance (MAD) and maximum absolute distance (MAXD) (see Table 2 for more
details), and a comparable coefficient of variation (COV) (5.1 vs. 3.9 %) to manual
segmentations for the outer wall and lumen boundaries, respectively. The minimum
detectable difference of the algorithm in computing the VWV was comparable (64.2
vs. 50.3 mm3) to manual segmentations. Using this method, the total segmentation
time is reduced by 5.5 min in comparison to the manual segmentation (2.8 vs.
8.3 min). Out of the mean time of 2.8 min, 1.2 min is required for the computation
and the 1.6 min for the initialization by the observer. The authors also reported on a
coupled level set segmentation method to segment both boundaries simultaneously
[76] for a more robust segmentation.

This study was validated using the global metrics such as DC, MAD, MAXD,
and volume errors, which are sufficient for evaluating for 3D US VWV. However,
when the algorithm is required to be used for generating VWT maps, the algorithm
must be validated using localized techniques. Chiu et al. [77] conducted a study,
which evaluated the algorithm using standardized carotid maps for the population.

3D Methods that Segment Both Boundaries

One of the main drawbacks of the previous method proposed by Ukwatta et al. [68]
is that it still requires a considerable amount of user interaction on each slice to
obtain a good segmentation. If the user decides to segment each and every slice of
the 3D image, a 2D segmentation technique would take a long time.

Ukwatta et al. [78] described a direct 3D segmentation algorithm to delineate the
outer wall and lumen of the carotid CCA from 3D US images. The segmentation
pipeline of the algorithm is shown in Fig. 10. The algorithm uses a similar initial-
ization approach used previously for the 2D segmentation, but requires initialization
only on a smaller subset of transverse slices than used in the 2D method [68]. A
direct 3D segmentation method has the potential for reducing user interaction over
a 2D method, while increasing the robustness of the segmentation by integrating
out-of-plane image information. The 3D method used very similar energy functions
to the 2D approach and an extension to the 2D sparse field level set method.
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Fig. 9 Sample results of the lumen and wall segmentations for three patients using four anchor
points chosen from the initial eight anchor points (dashed outer contour D manual wall, dashed
inner contour D manual lumen, dotted outer contour D algorithm-generated wall, dotted inner
contour D algorithm-generated lumen). 1, 5, 7, and 10 mm indicate the distance to the BF from
each slice [68]

The algorithm-generated accuracy and intra-observer variability results are com-
parable to the previous methods, but with fewer user interactions. For example, for
the ISD of 3 mm, the algorithm yielded an average Dice coefficient of 94.4 ˙ 2.2 %
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Table 2 Overall CCA segmentation results for the segmentation algorithm [68] for 231 2D US
images extracted from 21 3D US images

Metric Outer wall segmentation Lumen segmentation

Volume error (%) 2.4 ˙ 1.9 5.8 ˙ 2.7
Dice coefficient (%) 95.6 ˙ 1.5 92.8 ˙ 3.1
MAD (mm) 0.2 ˙ 0.1 0.3 ˙ 0.1
MAXD (mm) 0.6 ˙ 0.3 0.6 ˙ 0.4

MAD is the mean absolute distance error and MAXD is the maximum absolute distance error
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energy 

- Global region-based

energy 

Wall (MAB)
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energy 
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energy 

- Local smoothness

energy 

Fig. 10 Steps involved in 3D segmentation algorithm pipeline [78], which is similar to the
previous 2D segmentation method proposed by Ukwatta et al. [68]

and 90.6 ˙ 5.0 % for the MAB and LIB and the COV of 6.8 % for computing
the VWV of the CCA, while requiring only 1.72 min (vs. 8.3 min for manual
segmentation) for a 3D US image.

4.3 Segmentation Algorithms of Carotid Plaque from 3D US
Images

The segmentation of plaque boundaries is an even more challenging task than the
lumen and outer wall segmentations due to the fuzzy boundaries of the plaque.
Unlike the measurement of 3D US TPV, which requires observers to distinguish
plaque–lumen and plaque–outer vessel wall boundaries, the measurement of 3D
US VWV requires an observer to manually outline the lumen–intima/plaque and
media–adventitia boundaries—similarly to the measurement of IMT. These bound-
aries are more straightforward to interpret than plaque–lumen and plaque–wall
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boundaries in 3D US images. Furthermore, the measurement of TPV from 3D US
images requires trained observers who are experts in 3D US image interpretation
and in distinguishing vessel wall from plaque in 3D US images.

4.3.1 Manual Segmentation

Currently, TPV measurements are obtained by manual segmentation of the plaque
[38, 39, 79–81]. Initially, the observer defines the medial axis of the artery in
longitudinal view. After familiarizing with the orientation and geometry of the
plaque using a multi-planer reformatting software, the observer outlines the plaque
boundary on transverse slices with inter-slice distance (ISD) of 1 mm. After
outlining the complete plaque, the software generates a 3D surface from these
contours. As an illustration, Fig. 3 shows some example manual segmentations of
plaque overlaid on a 3D US image, and Fig. 3 shows the reconstructed surface of
plaque for the computation of TPV. Limitations of this approach include image
interpretation and measurement differences within and between observers, long
training times for observers, and long durations to perform manual segmentations.

4.3.2 Semiautomated Segmentation Algorithms

Although, there are several methods that have been developed for 2D segmentation
of plaque from either 2D or 3D US images, there exists only one study that
describes a semiautomated tool to generate the TPV measurement. Buchanan et al.
[82] reported on a semiautomated plaque estimated method to outline the plaque
boundaries from 3D US images thereby computing TPVs. The workflow of their
method is shown in Fig. 11. For the initialization, the observer defines the beginning
and end points of the plaque in the long axis view, followed by two contours in the
transverse view to identify the regions of greatest change in shape. The algorithm
was evaluated with 22 plaques from 10 3D US images. An example comparison
of the manually and algorithm-generated plaque surfaces are shown in Fig. 12.
The algorithm plaque volume and the manual plaque volumes were significantly
correlated (r D 0.99, p < 0.001) while maintaining a mean COV of �12.0 %. One
of the main drawbacks of this method is that it currently does not use any image
information by the algorithm. After the algorithm segmentation is obtained, the
ability to adjust the segmented boundary by the user is highly desirable.

5 Future Direction

As discussed in this chapter, 3D US imaging is increasingly being used as a surro-
gate for monitoring carotid plaque burden in patients in clinical trials during medical
interventions. For example, Shai et al. [59] used 3D US VWV measurements to
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Fig. 11 User input for semiautomated TPV measurement. In the longitudinal view (and with
assistance from the axial view, not shown) the user identifies the maximum and minimum z-values
representing the end points of the plaque (Min Z and Max Z). The user identifies the mid-point
of the plaque (C1) and finally C2 and C3 are identified and generated in the axial view. Uniform
plaque geometry between C2 and C3 is assumed and a final volume is generated [82]

Fig. 12 Representative manual and semiautomated segmentation boundaries. (a) Axial view,
(b) longitudinal view. Manual (red) algorithm contours (yellow). Yellow bar D 10 mm [82]

assess the effect of dietary interventions for reducing the carotid plaque burden. The
study found that diet-mediated weight loss over a 2-year period induced significant
regression of 3D US carotid VWV, even though the effect is similar in low-fat,
Mediterranean, or low-carbohydrate diets. Krasinski et al. [41] used 3D US VWV
measurement to assess the effect of atorvastatin in reducing the carotid plaque
burden. The clinical trial had 35 subjects with carotid stenosis >60 %, where
subjects were randomly assigned to either the statin drug or placebo in a three
month trial. The results showed an increase of 70 ˙ 140 mm3 in 3D US VWV in the
placebo group and reduction of 30 ˙ 130 mm3 in the atorvastatin group. Similarly,
Ainsworth et al. [83] conducted a study to evaluate the effect of atorvastatin using
3D US TPV. They also observed significant difference of the two groups, such that
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placebo group had a progression of 16.81 ˙ 74.10 mm3 and the atorvastatin group
had a regression of 90.25 ˙ 85.12 mm3. Since the number of patients suffering from
carotid atherosclerosis and subsequently the number of novel treatments for carotid
atherosclerosis is expected to grow rapidly, it is important to continue to develop
and validate noninvasive, cost-effective, and direct measurements of atherosclerosis
for more accurately stratifying risk of stroke.

With improved strategies to treat atherosclerosis nonsurgically and cost effec-
tively, sensitive and noninvasive 3D US techniques that allow quantification of
plaque burden are becoming more important in the management of patients who
are suffering from carotid atherosclerosis. However, for translating 3D US imaging
to clinical research and subsequently to clinical care, development and validation
of semiautomated algorithms for segmentation that reduce the overall observer time
and observer variability are vital. Especially for large multicenter clinical trials, the
inter-observer variabilities of the algorithm in computing 3D US phenotypes should
be small enough to detect a significant change.

Although, algorithms have been developed that are either fully automated or
that require minimal user interaction for the segmentation of carotid computed
tomography angiography (CTA) [84], carotid black-blood MR images [85, 86],
segmentation of carotid arteries from 3D US images is a more challenging problem,
that still requires a considerable amount of user interaction. State of the art global
segmentation algorithms, such as continuous max-flow-based algorithms that have
recently been introduced to medical imaging, have been successfully applied for
segmentation of the lumen and the outer wall from black-blood MR images. Such
global optimization-based techniques that can be easily parallelized may address the
limitations of the existing segmentation methods.

Even though 3D US volumetric measurements described in this chapter are
directly correlated with the risk of stroke, they are not suggestive of plaque vulnera-
bility for rupture. However, plaque composition measurements and inflammation are
strong indicators of plaque vulnerability [87]. A plaque could remodel from a more
vulnerable plaque to a stable plaque, without essential change in size during medical
interventions [88]. Therefore, volumetric measurements alone are not adequate
to stratify plaque vulnerability to rupture and cause ischemic stroke. Although
the ability of MR imaging for plaque composition [89, 90] and inflammation
analysis [91] have been validated, the ability of 3D US to identify individual plaque
components such as fibrous, necrotic core, loose connective tissue, and calcifications
is still unclear. Therefore, future work lies in investigating the capability of 3D
US imaging to identify plaque components, which could be validated using digital
histopathology images of endarterectomy specimens and in vivo MR imaging.
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