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Abstract One of the major challenges in the post-genomic era is to accurately
model the interactions taking place in most cellular processes. Detailed charac-
terization of such interactions is critical for understanding the principles of living
cell molecular machinery on the system biology level. This book chapter contains
a review of the multiscale protein biological function prediction algorithms that
are founded on protein sequence analysis, three-dimensional structure comparison,
biological function annotation, and finally molecular interactions. We include
diverse computational methods used to predict the biological function for a given
biomolecule using multiscale features, and more generally to model a meta-learning
prediction system to analyze the impact of micro-dynamics on global behavior
for selected biological systems, with important roles in chemistry, biology, and
medicine.

1 Introduction

Many fundamentally important biological processes are inherently multiscale in
nature. These include biophysical phenomena like protein-folding, protein–protein,
protein–peptide interactions, protein–ligand docking, and posttranslational modifi-
cations (PTMs), to name a few examples. They are intimately coupled to molecular
level micro-dynamics, yet their long-time behavior or spatially distant characteris-
tics are related to mesoscale processes. Diverse mathematical methodologies have
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been developed recently for modeling such nonlocal biological processes using
varying resolution, or granularity of a model. This book chapter contains a review
of the multiscale protein biological function prediction algorithms that are founded
on protein sequence analysis, three-dimensional structure comparison, biological
function annotation, and finally molecular interactions. The presented approaches
span different scales of description of biomolecules, starting from single atoms,
ending with a network biology context of biomolecules. We provide a variety of
different applications of the proposed methodology to biomedical and biophysical
problems. We include diverse computational methods used to predict the biological
function for a given biomolecule using multiscale features, and more generally to
model a meta-learning prediction system to analyze the impact of micro-dynamics
on the global behavior for selected biological systems, with important roles in
chemistry, biology, and medicine.

Modern molecular biology provides a vast amount of experimentally verified
information, mostly coming from high-throughput studies, such as the Human
Genome Project [1, 2], where large-scale sequencing is taking place. In typical drug
design procedure pharmaceutical companies perform high-throughput screening
studies, where biological activity on the selected protein targets is performed for
hundreds of thousands of small chemical molecules. Typical microarray experi-
ments store relative expression profiles for thousands of genes in selected time
points. Collecting and verifying currently available experimental data is therefore
an important goal of bioinformatics, a rapidly developing computational discipline,
which focuses on completing the functional annotation of proteins, inhibitors,
DNA/RNA molecules, genes, or more generally all types of biomolecules that can
be found in living cells.

Yet, proteins or other molecules are not single, acting-alone entities, they are
often working together by forming either stable, permanent complexes with others
(like in the case of ribosome), DNA/RNA strains, or ligands (natural metabolites),
or interacting transiently with each other, with RNA/DNA molecules, and with
small chemical entities. Therefore, a more general term, namely Interactome, was
introduced that describes the whole universe of molecular interactions in cells,
including the protein–protein, protein–ligand, and protein–DNA/RNA interactions.
Systems biology addresses those issues, by experimental and theoretical analysis of
interactions between biomolecules. Whole proteomes experimental high-throughput
techniques rapidly populate available databases with a large amount of average
quality data. Such data has to be further validated to qualify each data source con-
tributing to the completion of the interactome. Those collaborative approaches are
significantly limited by both time and total cost required for obtaining an accurate
and complete map of protein interactions. Therefore, computational methods are
beginning to be used to automate the procedure of the careful selection of high
quality subsets of available data.

On the other hand, the gap between the number of known protein sequences
and the number of crystallized structures is growing rapidly. A three-dimensional
structure determines the protein’s function; therefore, computational techniques
have to be used in order to narrow the gap by predicting structures using only
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sequence information. However, despite recent progress in the protein structure
prediction community, greatly facilitated by the Critical Assessment of Protein
Structure Prediction (CASP) experiment [3], the prediction of the three-dimensional
protein structures from their amino acids sequence remains one of the major
challenges in modern molecular biology. Therefore, the computational methods
have to be designed in order to facilitate the functional annotation of proteins based
only on partial biological information describing biomolecules (such as sequences,
in the case of proteins). Such bio-algorithms are typically tested on a smaller
number of examples that are very well characterized by various complementary
experimental methods. In the case of proteins, the subset of known proteins
with crystallized three-dimensional structures, where both protein sequence and
structure is directly linked to performed protein biological function. The ability
to learn knowledge on a smaller subset of available data, and apply it on diluted
and very noisy biological information, performing data mining during large-scale
experimental studies, is the core idea behind machine learning techniques applied
in bioinformatics.

Those automatic algorithms nevertheless are focused on characterizing specific,
pre-defined features of biomolecules, even if they are trying to study and predict
interactions between those components of biological systems. Systems biology is
trying to understand how these interactions lead to the function and behavior of that
system (for example, the enzymes and metabolites in a metabolic pathway). The
living cell is not just the collection of the above-mentioned life building blocks,
described by their features, or functional annotations. The complex biological
systems have to be understood on a higher level, where the organization of those
single modules, or biomolecules, is emerges from their individual behaviors, or
characteristics. In order to do so, first the interacting agents have to be described, as
is done usually in typical low-throughput molecular biology experiments. Secondly,
the interactions between those bio-agents have to be characterized, for example, by
collecting data in high-throughput studies. Then, computational methods have to
be applied in order to combine both levels of description and link agents and their
interactions in order to better understand the biological complexity of life.

Summarizing, the proteins, genes, small chemical molecules, inhibitors, metabo-
lites are linked in cells with varying scales of molecular interactions, such as
protein–protein, protein–ligand, and protein–DNA/RNA. Those interactions are
taking place in most cellular processes; therefore, detailed characterization of the
interaction repertoire is critical for understanding the principles of living cell
molecular machinery on the system biology level. The major challenge in the post-
genomic era is to accurately model the organization of those genetic networks,
signaling and metabolic pathways, and details of molecular interactions between
proteins and their natural or artificial inhibitors, and to understand how they
contribute to cellular and organism phenotypes.
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1.1 The Goal of the Research

The main goal of the research work presented here is to undertake the challenge
of automatically acquiring, storing, organizing, refining, analyzing, and finally
building useful working hypotheses for those enormous bioinformatics datasets,
especially in the context of multiscale protein function prediction. The integration
of those experimental results with previously stored biological knowledge has to
be done efficiently, allowing for detection of false or erratic information; both
in previously acquired data objects and in newly processed ones. Therefore, new
theoretical algorithms have to be introduced, and a new design of the previously
used approaches is needed to handle those challenges on the whole genome scale.
Due to limitations of traditional machine learning algorithms, various methods of
meta-learning or computational intelligence are used to address those bioinformatics
problems with very promising results. The importance and successes of those
approaches over a diverse range of bioinformatics applications should encourage
other scientists to apply these methods to their research.

Computational intelligence methods including traditional machine learning
approaches, ensemble methods, artificial neural networks (ANNs), evolutionary
algorithms, fuzzy systems, or cognitive computing have been developed during
several decades of development. The recent development of CI and the ensemble
learning research field is now extensively performed via hybridization and
extensions of those algorithms, also in the context of bioinformatics and biomedical
applications. This work is aimed at unification of both theoretical algorithms from
computer sciences and their applications in biology, with meta-learning based bio-
algorithms as the bridge between those two worlds.

2 Methods

This work is focused on various interdisciplinary applications of machine learning
and data-mining techniques in bioinformatics. The computational methods are
used to predict the biological functions for a given biomolecule in various scales,
and more generally to model and analyze the selected biological systems. This
section includes a description of selected machine learning, clustering, and compu-
tational intelligence algorithms, together with their applications in protein function
annotation, protein structure prediction, the identification of proteins interactions
with small chemical molecules, and finally the analysis of interactions in living
cells. The computational methods presented here are based on various machine
learning algorithms, dynamic programming methods, several clustering techniques,
or similarity searchers. Novel consensus techniques are used to extend classical
machine learning algorithms in many applications. Such an approach is inspired
by meta-server applications in the protein structure prediction field. Those novel
algorithms are now starting to be popular both in biomedical and bioinformatics
applications under the general name of meta-approaches or meta-learning.
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2.1 Meta-learning

The Meta-learning term is proposed in the context of computational intelligence as
the successful combination of distributed intelligence approaches with traditional
machine learning. It is useful in processing of metadata during typical machine
learning experiments, when multiple algorithms are used to perform large-scale data
mining. The metadata information can include various properties of the learning
problem, performance measures of each learning algorithm, the structure of training
data, or different patterns that can be deduced from the data. Therefore, the goal is to
improve classical learning algorithms by combining different learning algorithms to
effectively solve a given learning problem. Such meta-learning approaches are able
to better resemble real world problems, allow to significantly improving the overall
performance of learning algorithms. The flexibility of each machine learning algo-
rithm is crucial in order to effectively store, organize, and process the acquired data.
Each algorithm has its own inductive bias; often it is based on a preselected set of
training data features, descriptors, also a set of assumptions about the nature of data.
Therefore, it is able to build classification model only if its internal characteristics
match the nature of external training data. This means that a learning algorithm may
perform very well on one learning problem, but very badly on the next one.

The design of meta-model can be performed at least on three different scales. The
microscale meta-learning approach combines several different machine learning
algorithms, and builds the consensus between them. In the mesoscale solutions the
larger number of independent methods is coupled with different representations of
training data by performing feature selection process. In the macro-scale the whole
semi-infinite ensemble of learning methods is trained on available data. The con-
struction of meta-learning solution can therefore be drawn in three different layers:

(a) Microensembles are constructed using several classification methods combined
into single consensus system, for example, by weighted voting procedure [4].
Such method was extensively used by us in applications’ papers. We have
reported 10 % improvement of error rate over the mean results for the wide
range of various interdisciplinary applications.

(b) Mesoscopic ensembles may be implemented using standard software, where
different machine learning methods are combined with features selection
procedure [5]. The decrease of prediction error for the population of learning
agents is linked with the distribution of quality of single methods, or statistical
influence of selected features on the global meta-result.

(c) Macroscopic meta-learning solution can be approximated as semi-infinite
learning ensemble, where mean-field theory can be used to get analytical
stationary solutions for such system [6, 7].

The applications considered in this work focus on several examples from
computational molecular biology that has become increasingly popular in modern
research. It provides an excellent overview of machine learning approaches in
the context of the complex bioinformatics problems with enormous amount of
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Fig. 1 Structure of the
HLA-DR1 peptide-binding
site is illustrated as a sample
application of meta-learning
prediction system. Top view
of the peptide-binding site,
with HLA-DR1 residues in
contact with the peptide
indicated in yellow and red
for the alpha and beta chain,
respectively. The peptide
residues are colored by atom
type, with oxygen in red,
nitrogen in blue, and carbon
atoms in green. The alpha and
beta chains of HLA-DR1 are
indicated in pale-blue and
pink, respectively

heterogeneous biological data. Apart from the theoretical foundations of meta-
learning, the bioinformatics defines practice of this theoretical framework in the
context of many biomedical engineering applications (for an example, see Fig. 1).

One can distinguish three major components of typical bioinformatics workflow,
namely the biological data processing, features sampling and preparation, extrac-
tion of features (data acquisition), the clustering of relevant features or objects,
extraction of similarities between various types of their descriptors (data clustering),
and finally the construction of the ensemble of either different machine learning
(ML) methods or similar/identical ML methods trained on different subsets of
training data, and then the construction of consensus solution that is able to boost
theoretical methods quality and precision (meta-learning). The actual treatment of
the input training data in the meta-learning procedure is different from previous
approaches. The ultimate goal of learning is to discover the relationships between
the variables of a system (input, output, and hidden) from direct samples of the
system. Most methods assume single representation of training data. Here, during
data clustering one builds the set of multiple hypotheses by manipulating the
training examples, input data points, target output (the class labels) of the training
data, and by introducing randomness into the training data representation. Such
approach provides the solid background for more advanced statistical analysis, the
background noise extraction, and most informative features selection.

Although quite a few identifiers have been developed in this regard through
various approaches, such as clustering, support vector machine (SVM), ANN, or
K-nearest neighbor (KNN), and many other classifiers the way they operate the
identification is basically individual. Yet, the proper approach usually takes into
account the opinions from several experts rather than rely on only one when they
are making critical decisions. Likewise, a sophisticated identifier should be trained
by several different modes. A consensus of different classifiers often outperforms a
single classifier: a learning algorithm searches the hypothesis space to find the best
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possible hypothesis. When the size of training set is small, a number of hypotheses
may appear to be optimal. An ensemble will average the hypotheses reducing
the risk of choosing the wrong one. In addition, most classifiers perform a local
search often getting stuck in local optima; multiple starting points provide a better
approximation to the unknown function. Finally a single classifier may not be able
to represent the true unknown function. A combination of hypotheses, however, may
be able to represent this function. This is the core idea of brainstorming, which is the
core procedure of the Meta-Learning approach. Our consensus approach is similar
to other ensemble methods, yet differently from bagging, or boosting, it focuses of
the use of heterogeneous set of algorithms in order to capture even remote, weak
similarity of the predicted sample to the training cases.

In the following, we present the theoretical framework of the brainstorming
consensus strategy followed by various applications of different computational
intelligence, machine learning, or consensus learning techniques in several practical
problems from chemo- and bio-informatics. The foundations of the brainstorming
approach, namely the consensus between different types of machine learning
algorithms, are described in the context of practical applications to prediction of
PTMs of proteins and biological activity of small chemical molecules.

2.2 Theoretical Framework of Brainstorming

In general, we define brainstorming as a n�star quality consensus scheme as CN
n ,

where N is the number of individual prediction routines or classifiers participating
in the specific consensus strategy, and n (1 � n � N) is the quality of prediction.
More specifically, 1�star prediction says that any one of the possible N classifiers
predicts the test sequence to be positive for the class type under consideration, and
N�star represents that all classifiers agreed to the decision. Along this principle, we
can consider the example of a neural network classifier, and we define the 10�star
quality consensus prediction C10

n as the consensus over ten variations of hidden
neurons (neurons in the single hidden layer are varied from 2 to 20 in steps of 2) for
a specific performance measure. We designed three different performance measures
in our work, one based on the area under the receiver operating characteristic (ROC)
curve or the AUC measure, the others being the optimum recall (R) and precision (P)
measures. C10

n is defined over the optimum AUC performance. Similarly, we define
C20

n that combines 20 network predictions from AUC and R, and C30
n that combines

30 network predictions from AUC, R and P optimized networks. In the following
we first discuss the C10

n consensus algorithm and then describe the other variations.
Let nA

k , nR
k , nP

k be the MLP networks with K neurons in the hidden layer,
designed to generate optimum AUC score (A), recall (R), and precision (P)
scores, respectively, over the test dataset. Let pA

k , pR
k , pP

k be the prediction results
corresponding to the networks nA

k , nR
k , nP

k for any unknown test pattern, where:

pA
k D

�
1I test pattern is classified as positive by nAk
0I otherwise
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Similarly, pR
k , pP

k also generate binary prediction decisions based on the
classification confidence of the corresponding MLP classifiers nR

k and nP
k ,

respectively. Now the general n � star consensus is designed as CN
n , where

n D minimum number of networks advocating for a test fragment to be positive.
The sum of prediction scores is defined as SN

p . For example, in case of C10
n

if S10
p D

X
k

pA
k I k D 2 to 20 in steps of 2, a test pattern is said to

be predicted with n � star quality if n � S10
p . Similarly, for C20

n , we estimate

S20
p D

X
k

pA
k C

X
k

pR
k and for C30

n , S30
p D

X
k

pA
k C

X
k

pR
k C

X
k

pP
k , where

k D 2 to 20 in steps of 2 in all cases.
In another variation of the brainstorming meta-learning strategy, more consensus

prediction models are designed. C3
n is defined as the consensus among three best

A, R, P networks. C9
n and C12

n are defined as the consensus over the best networks
across different feature sets.

For C3
n we first define a function Max _ AUC _ over _ Testdata (MAT) to select

the best performing network in any given optimization category. The performance is
evaluated in terms of maximum AUC score over the unbiased test dataset. Therefore,
we first compute nA

MAT D MAT(nA
k ); k D 2 to 20 in steps of 2. Similarly, we compute

nR
MAT D MAT(nR

k ) and nP
MAT D MAT(nP

k ). The corresponding prediction scores are
for the three selected networks are defined as pA

MAT, pR
MAT and pP

MAT, respectively,
and the sum of prediction scores as, S3

p D pA
MAT C pR

MAT C pP
MAT.

In the case of C9
n we use the MAT function separately for the three different

feature sets, viz., HQI-8, HQI-24, and HQI-40 [5, 8]. We define the function
MAT � HQI � 8 to generate three best performing nets as nA

MAT� HQI � 8 D MAT �
HQI � 8(nA

k ); k D 2 to 20 in steps of 2, and likewise nR
MAT � HQI � 8 and nP

MAT � HQI � 8.
In the same way three best networks are generated by each of the functions
MAT � HQI � 24 and MAT � HQI � 40. The sum of the corresponding prediction
scores is then defined as:

S9
p D pA

MAT�HQI�8 C pR
MAT�HQI�8 C pP

MAT�HQI�8 C pA
MAT�HQI�24 C pR

MAT�HQI�24

C pP
MAT�HQI�24 C pA

MAT�HQI�40 C pR
MAT�HQI�40 C pP

MAT�HQI�40:

Similarly, for C12
n we use four different MAT function separately for the four

different feature sets, viz., MAT � HQI � 8, MAT � HQI � 24, MAT � HQI � 40,
and MAT � AMS3 � 10. The sum of the corresponding prediction scores is then
defined as:

S12
p D pA

MAT�HQI�8 C pR
MAT�HQI�8 C pP

MAT�HQI�8 C pA
MAT�HQI�24 C pR

MAT�HQI�24

C pP
MAT�HQI�24 C pA

MAT�HQI�40 C pR
MAT�HQI�40 C pP

MAT�HQI�40

C pA
MAT�AMS3�10 C pR

MAT�AMS3�10 C pP
MAT�AMS3�10:

As discussed before, n-star quality result is obtained for any specific class type
between the ANNs in any of the six ways, viz., C10

n , C20
n , C30

n , C3
n, C9

n, or C12
n . We
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assign the statistical significance based on “how many ANNs agree that selected
fragment is predicted as Positive for a given class type.”

3 Case Studies

3.1 Prediction of Proteins Biological Function Using Sequence
and Structural Similarity Searches

The sequence and structural similarity provide the important tool to infer the
biological function of a protein. The structural similarity is able to recover twice
as more distant relationships than sequence based methods, at the same error
rate. Therefore, in [9] work we analyzed the ability of EC (enzyme classification)
number prediction that describes the biological function for a given protein [9, 10].
The 3D-Hit structure comparison software developed in [11] provides a unique
opportunity to perform fast comparison for a query protein structure in order to find
its structural homologs. In another work [12], the Meta-BASIC protein sequence
similarity method was modified and applied in order to find sequence homologs for
proteins of medicinal relevance. The remote homology detection by Meta-BASIC
uses both sequences and predicted secondary structure for similarity assignment. We
provided the estimation of the upper limit of the number of molecular targets in the
human genome that represent an opportunity for further therapeutic treatment. The
druggability is defined here as the ability to bind small-molecule drug, therefore,
being likely protein target for screening studies.

The sequence similarity searches were able to find around �6,300 human
proteins that were similar to sequences of known protein targets as collected from
DrugBank database. Therefore, our bioinformatics method estimates the size of
druggable human genome to be around 20 % of human proteome. Those predicted
protein targets from whole human genome present the unique opportunity for
the virtual or experimental high-throughput screening. Figure 2 shows the three-
dimensional structure of human glutathione S-transferase in complex with inhibitor.

3.2 Consensus Prediction of Protein Secondary Structures
Using Two-Stage Multiclass SVMs

Secondary structure prediction is also crucial for understanding the variety of
protein structures and performed biological functions. Prediction of secondary
structures for new proteins using their amino acid sequences is of fundamental
importance in bioinformatics. We proposed [13] a novel technique to predict
protein secondary structures based on position-specific scoring matrices (PSSMs)
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Fig. 2 Three-dimensional
structure of human
glutathione S-transferase in
complex with inhibitor

and physicochemical properties of amino acids [14]. It is a two-stage approach
involving multiclass SVMs as classifiers for three different structural conformations,
viz., helix, sheet, and coil. In the first stage, PSSMs obtained from PSI-BLAST
[15] and five specially selected physico-chemical properties of amino acids are
fed into SVMs as features for sequence-to-structure prediction. Confidence values
for forming helix, sheet, and coil that are obtained from the first stage SVM
are then used in the second stage SVM for performing structure-to-structure
prediction. The two-stage cascaded classifiers (PSP_MCSVM) are trained with
proteins from RS126 dataset. The classifiers are finally tested on target proteins
of critical assessment of protein structure prediction experiment-9 (CASP9) [3].
PSP_MCSVM with brainstorming consensus procedure performs better than the
prediction servers like Predator [16], DSC [17], SIMPA96 [18], for randomly
selected proteins from CASP9 targets. The overall performance is found to be
comparable with the current state-of-the art tools.

3.3 Prediction of PTMs Using Local Sequence Motifs

We developed a tool that predicts the position of various PTM sites in proteins
using only sequence information. Initial study published in [19] was focused on
phosphorylation sites identification, and the extended work covering all known types
of posttranslational single residue modifications was presented in [20]. Both ver-
sions of the method use the ensemble of SVM machine learning algorithms trained
using different representations of training objects, i.e. 9-amino acid long fragments
of protein sequences dissected around posttranslationally modified sites. Those
fragments were extracted from Swiss-Prot database as experimentally confirmed
to be phosphorylated by any kinase.
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The different representations are build as vectors in a multidimensional abstract
space of short sequence fragments linked with different physico-chemical features
of amino acids, the sequence profile dissected from the whole protein homology
alignments, local structural conformation, etc. Those multiple representations are
combined with SVM algorithms (linear, polynomial, and radial kernel functions) to
provide statistical models for PTM site predictors.

3.4 Automotif Server Version 3.0

In [4] we replaced the SVM method with ANNs (multilayer perceptron), also
simplifying the selection of representations. We presented the recent update of
AMS algorithm for identification of PTM sites in proteins based only on sequence
information, using ANN method. The query protein sequence is dissected into
overlapping short sequence segments. Ten different physico-chemical features
describe each amino acid; therefore, nine residues long segment is represented
as a point in a 90-dimensional space. The database of sequence segments with
experimentally confirmed PTM sites are used for training a set of ANNs. The
efficiency of the classification for each type of modification and the prediction
power of the method is estimated here using recall (sensitivity), precision values,
the area under ROC curves, and leave-one-out cross validation (LOOCV) tests.
The significant differences in the performance for differently optimized neural
networks are observed, yet the AMS 3.0 tool (http://ams3.bioinfo.pl) integrates
those heterogeneous classification schemes into the single consensus scheme, and
it is able to boost the precision and recall values independent of a PTM type in
comparison with the currently available state-of-the-art methods.

3.5 Automotif Server Version 4.0

The 2011 update of the Auto-Motif Service (AMS 4.0) predicts a wide selection
of 88 different types of the single amino acid PTMs in protein sequences [5].
The selection of experimentally confirmed modifications is acquired from the
latest UniProt and Phospho.ELM databases for training. The sequence vicinity of
each modified residue is represented using amino acids physicochemical features
encoded using high quality indices (HQI) obtained by automatic clustering of known
indices extracted from AA index database [8]. For each type of the numerical
representation, the method builds the ensemble of multilayer perceptron (MLP)
pattern classifiers, each optimizing different objectives during the training (for
example, the recall, precision, or area under the ROC curve (AUC)). The consensus
is built using brainstorming technology, which combines multi-objective instances
of machine learning algorithm, and the data fusion of different training objects
representations, in order to boost the overall prediction accuracy of conserved short

http://ams3.bioinfo.pl
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sequence motifs. The performance of AMS 4.0 is compared with the accuracy of
previous versions, which were constructed using single machine learning methods
(ANNs, SVM). Our software improves the average AUC score of the earlier version
by close to 7 % as calculated on the test datasets of all 88 PTM types. Moreover,
for the selected most-difficult sequence motifs types it is able to improve the
prediction performance by almost 32 %, when compared with previously used
single machine learning methods. Summarizing, the brainstorming consensus meta-
learning methodology on the average boosts the AUC score up to around 89 %,
averaged over all 88 PTM types. Detailed results for single machine learning
methods and the consensus methodology are also provided, together with the
comparison to previously published methods and state-of-the-art software tools.

3.6 Protein Alignment Method Using Sequence-Structure
Motifs

Defining blocks forming the global protein structure on the basis of local structural
regularity is a very fruitful idea, extensively used in description, and prediction
of structure from only sequence information. Over many years the secondary
structure elements were used as available building blocks with great success.
Specially prepared sets of possible structural motifs can be used to describe
similarity between very distant, nonhomologous proteins. The reason for utilizing
the structural information in the description of proteins is straightforward. Structural
comparison is able to detect approximately twice as many distant relationships as
sequence comparison at the same error rate.

In our previous paper [21] we provided a new fragment library for local
structure segment (LSS) prediction called FRAGlib which is integrated with a
previously described segment alignment algorithm SEA. A joined FRAGlib/SEA
server provides easy access to both algorithms, allowing a one stop alignment
service using a novel approach to protein sequence alignment based on a network
matching approach. The FRAGlib used as secondary structure prediction achieves
only 73 % accuracy in Q3 measure, but when combined with the SEA alignment,
it achieves a significant improvement in pairwise sequence alignment quality, as
compared to previous SEA implementation and other public alignment algorithms.
The FRAGlib algorithm takes 2 min to search over FRAGlib database for a
typical query protein with 500 residues. The SEA service aligns two typical
proteins within around 5 min. The joined FRAGlib/SEA server will be a valuable
tool both for molecular biologists working on protein sequence analysis and for
bioinformaticians developing computational methods of structure prediction and
alignment of proteins.
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3.7 Prediction of Protein–Protein Interaction Prediction Using
Domain–Domain Affinities and Frequency Tables

Protein–protein interactions control most of the biological processes in a living
cell. In order to fully understand protein functions, knowledge of protein–protein
interactions is necessary. Prediction of PPI is challenging, especially when the
three-dimensional structure of interacting partners is not known. We proposed a
novel knowledge-based prediction method [22], which predicts interactions between
two protein sequences by exploiting their domain information. We trained a two-
class SVM on the benchmarking set of pairs of interacting proteins extracted
from the Database of Interacting Proteins [23]. The method considers all possible
combinations of constituent domains between two protein sequences, unlike most
of the existing approaches. Moreover, it deals with both single-domain proteins
and multi-domain proteins; therefore, it can be applied to the whole proteome in
high-throughput studies. Our machine learning classifier, following a brainstorming
consensus approach, achieves accuracy of 86 %, with specificity of 95 %, and
sensitivity of 75 %, which are better results than most previous methods that
sacrifice recall values in order to boost the overall precision. Our method has on
average better sensitivity combined with good selectivity on the benchmarking
dataset.

4 Summary and Future Directions

First, we performed an extensive review of different physico-chemical features of
proteins that have a dramatic impact on their role in a cell. In addition, several
computational methods are used for extending the acquired experimental knowledge
to unknown or newly sequenced proteins, where no structural information is
available. The work sheds some light on details of the fundamental link between
a protein’s sequence, structure, and its function performed in the living cell. This
systems biology approach is further validated on known high quality experimental
examples.

In the second step of our analysis, we limited the discussion to those cases
where the three-dimensional structures of both a protein and its metabolites, or
interaction partners, are known. We evaluated the various algorithms that are trying
to predict the correct structure of the protein–protein or protein–ligand complexes,
and estimate their binding affinity value by scoring the strength of interactions. The
results were later used as the foundation of the effective protocol for docking, within
the optimization technique based on multiple linear regression (MLR).

The ultimate goal of those computational approaches is to provide the method-
ology for automatic characterization of interaction partners, using either amino
acids sequences (or full atom representations) and/or three-dimensional structures
(if some structural information is known). We focused here on practical applications
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of the theoretical methods, also elucidating the software or web interfaces needed
to run them in the high-throughput predictions on the whole genome scale. The
proposed general validation of theoretical methods on real life, experimental data
provides the best estimation of their accuracy. We compared here various clustering,
machine learning or statistical methods for bioinformatics knowledge acquisition,
processing and mining. In addition, we presented a novel computational intelligence
algorithm, namely the brainstorming meta-learning technique applied to various
problems from bioinformatics and chemoinformatics. It covered the analysis of
interactions of proteins, functional links between protein function, structure and
sequence, and other applications in the context of the life sciences.

In this book chapter, we are more focused on applications than on the theoretical
foundation of meta-learning. This extensive review of applications of meta-learning
is focused on bioinformatics, an enormously rich application field for mathematical
methods. The complexity of scientific problems and the large amount of hetero-
geneous biological data provide an excellent test-ground for machine learning
approaches in a real-life context. In return, bioinformatics, while using different
theoretical methods, can also offer serious advances in theoretical computational
intelligence. Most computational approaches are based on comparative molecular
similarity analysis of proteins with known and unknown characteristics.

Eventually, the broader goal of this project is to develop a multiscale com-
putational model of the entire life cycle of living organisms. In this process,
both the bottom-up and the top-down approaches need to converge to delineate
the underlying functionalities of cellular processes. The real-time analysis of
incoming time-dependent non-equilibrium data performed by modern large-scale
data-mining techniques, or computational intelligence algorithms, provides the
theoretical framework, which in turn allows for better understanding the flexibility
of learning mechanisms observed in real biological systems. Recent advances
in theoretical neuroscience allow for better understanding of the brain structure,
dynamics and performed basic cognitive functions on the biology level (see Fig. 3).
We hypothesize that those two presently distant areas of science, namely cognitive
science and computational intelligence, will eventually merge into a single research
area, where complex and time-dependent meta-learning systems, inspired by the real
mammalian brain structure, can be used as the implementation of cognitive systems.

The crucial point here is that in addition to learning algorithms the coupling
to sensors has to be provided in order to allow the artificial system (or modeled
biological one) to perform the effective cognitive process when discovering the
world that surrounds it. The ultimate goal of artificial intelligence studies, i.e., a
constantly evolving meta-learner that in real time accumulates acquired information
in the form of processed knowledge, is still long way from the present state
of research. Both theoretical algorithms and hardware resources (computers or
specialized accelerators) have to be improved in order to perform instant, rapid
learning using different algorithms, when new input is presented to the system.
Only then will the “intelligent” system be able to answer most of our expectations
focusing on computational intelligence.
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Fig. 3 (a) The confocal images of nuclei in living cells with selected active genes marked by
fluorescent proteins. (b) Segmented view of a single nucleus. This type of data modality links the
molecular view described in our chapter with imaging techniques, applied to living systems. Data
courtesy: Nencki Institute of Experimental Biology, Warsaw, Poland

References

1. Watson, J.D.: The human genome project: past, present, and future. Science 248, 44–49 (1990)
2. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H.,

Merril, C.R., Wu, A., Olde, B., Moreno, R.F.: Complementary DNA sequencing: expressed
sequence tags and human genome project. Science 252, 1651–1656 (1991)

3. Moult, J., Fidelis, K., Kryshtafovych, A., Tramontano, A.: Critical assessment of methods of
protein structure prediction (CASP)—round IX. Proteins 79, 1–5 (2011)

4. Basu, S., Plewczynski, D.: AMS 3.0: prediction of post-translational modifications. BMC
Bioinformatics 11, 210 (2010)

5. Plewczynski, D., Basu, S., Saha, I.: AMS 4.0: consensus prediction of post-translational
modifications in protein sequences. Amino Acids 43(2), 573–582 (2012)

6. Plewczynski, D.: Mean-field theory of meta-learning. J. Stat. Mech. 11, P11003 (2009)
7. Plewczynski, D.: Landau theory of meta-learning. In: Security and Intelligent Information

Systems, vol. 7053, pp. 142–153. Springer, Heidelberg (2012)
8. Saha, I., Maulik, U., Bandyopadhyay, S., Plewczynski, D.: Fuzzy clustering of physicochemi-

cal and biochemical properties of amino acids. Amino Acids 43, 583–594 (2012)
9. von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L., Shakhnovich, E.: PDB-UF:

database of predicted enzymatic functions for unannotated protein structures from structural
genomics. BMC Bioinformatics 7, 53 (2006)

10. von Grotthuss, M., Plewczynski, D., Vriend, G., Rychlewski, L.: 3D-Fun: predicting enzyme
function from structure. Nucleic Acids Res. 36, W303–W307 (2008)
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