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Abstract After presenting an introduction to a more traditional graph-based
2D segmentation technique, this chapter presents an in-depth overview of two
state-of-the-artgraph-based methods for segmenting three-dimensional structures in
medical images: graph cuts and the Layered Optimal Graph Image Segmentation of
Multiple Objects and Surfaces (LOGISMOS) approach. In each case, an overview
of the underlying optimization problem is presented first (i.e., the formulation of an
energy/cost function and the specified constraints), followed by the graph-based
representation of the optimization problem which enables the globally optimal
solution to be found in polynomial time. In particular, in the 2D case, a 2D boundary
segmentation optimization problem is transformed into that of finding a minimum-
cost path in a graph. In the graph-cuts approach, a 3D object/background labeling
problem is transformed into that of finding a minimum s–t cut in a graph, and in
the LOGISMOS approach, a single or multiple 3D surface segmentation problem is
first transformed into that of finding a minimum-cost closure in a graph (which is
further transformed into finding a minimum s–t cut in a graph). For each approach,
example applications and extensions are also presented.
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1 Introduction

Segmentation problems in medical imaging often require the precise identification
of multiple boundaries/regions in volumetric images. Graph-based segmentation
approaches are becoming increasingly popular for the automated delineation of
medical structures/objects of interest within three-dimensional images, in part, due
to the ability of many of the more recent approaches (such as graph cuts [1–6]
and the Layered Optimal Graph Image Segmentation of Multiple Objects and
Surfaces (LOGISMOS) approach [7–11]) to efficiently produce globally optimal
three-dimensional segmentations in a single pass (and correspondingly not get stuck
in local optima). In addition, graph-based approaches such as LOGISMOS enable
the simultaneous optimal detection of multiple surfaces in volumetric images, which
is important in many medical image segmentation applications.

In this chapter, after presenting an introduction to a more traditional 2D
segmentation technique in Sect. 2 (which is still very useful in its own right
for 2D boundary delineation problems), we present an in-depth overview of two
state-of-the-art-graph-based methods for segmenting three-dimensional structures
in medical images: graph cuts (Sect. 3) and the LOGISMOS approach (Sect. 4).
In each case, an overview of the underlying optimization problem is presented
first (i.e., the formulation of an energy/cost function and the specified constraints),
followed by the graph-based representation of the optimization problem which
enables the globally optimal solution to be found in polynomial time. In particular,
in the 2D case, a 2D boundary segmentation optimization problem is transformed
into that of finding a minimum-cost path in a graph. In the graph-cuts approach, a 3D
object/background labeling problem is transformed into that of finding a minimum
s–t cut in a graph, and in the LOGISMOS approach, a single or multiple 3D surface
segmentation problem is first transformed into that of finding a minimum-cost
closure in a graph (which is further transformed into finding a minimum s–t cut in a
graph). For each approach, we also present example applications and extensions.

2 2D Boundary Delineation as a Minimum-Cost Path
Problem

2.1 The 2D Single Boundary Optimization Problem

For our first example graph-based segmentation approach, we will describe how one
can formulate a single 2D boundary segmentation problem as a minimum-cost path
problem. While many of the high-level concepts discussed in this section (such as
the formulation of an optimization problem with constraints) and the transformation
to a well-known graph problem are similar to that discussed in later sections, the
graph-based path problem representation in the 2D case is often much more intuitive
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Fig. 1 Three candidate boundaries (in red) for the minimum-cost-path-based approach shown on
a small image grid. While all three examples seem to contain reasonable boundaries to separate the
top and bottom of the image, only (a) would be a feasible boundary using a smoothness constraint,
�, of 1. (b) Is not feasible because some of the columns have more than one boundary point
defined. (c) Is not feasible because the change in boundary position from column 6 to column 7
and from column 7 to column 8 has a magnitude of 2 and the smoothness constraint requires a
maximum change of 1 unit. However, (c) would be feasible if � were defined to be 2

to understand. For simplicity, we will only consider the case in which we desire to
find an optimal boundary that is defined from the leftmost column of an image to
the rightmost column of an image. In particular, we assume that only one boundary
point should exist from each column of the image so that the desired boundary can
be written by the function f .x/ mapping each column (x-position) to a desired
y-value within the image. We also define a smoothness constraint that requires that
the boundary’s position between neighboring columns does not change more than a
given constant: jf .xC1/�f .x/j � � for 0 � x � Nx �2, where Nx is the number
of columns of the image. Figure 1 provides an example of a feasible boundary
and two non-feasible boundaries in a small image when � D 1. While such
feasibility constraints may initially seem quite limiting, it is important to remember
that many common transforms, such as a Cartesian-to-polar transform, may be used
to enable the desired boundaries to satisfy these constraints. For example, use of
polar coordinates can make the boundaries of roughly circular objects, such as the
boundaries of the heart, the boundaries of vessel walls, and the boundaries of the
optic disc/cup, satisfy such constraints (Figs. 2b, c and 3).

From the original image I.x; y/, we also assume that we can define a cost image,
c.x; y/, reflecting each pixel’s unlikeliness of belonging to the boundary. The cost
E.f / of a feasible boundary f .x/ can correspondingly be defined as follows:

E.f / D
Nx�1X

xD0

c.x; f .x//: (1)

Thus, the optimization problem we desire to solve is to find the minimum-cost
(according to Eq. (1)) boundary f .x/ subject to the feasibility constraints.
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Fig. 2 Example applications for the 2D single boundary optimization problem. (a) Single retinal
boundary (in red) on spectral-domain optical coherence tomography slice (no transformation
necessary). (b) Optic cup boundary (in blue) on spectral-domain optical coherence tomography
projection image (Cartesian-to-polar transform necessary). (c) Left ventricular boundary (in
yellow) on magnetic resonance imaging slice (Cartesian-to-polar transform necessary)

to polar 
coordinates

from polar 
coordinates

cost image

Fig. 3 Example use of Cartesian-to-polar transform to enable the desired boundary to satisfy
the feasible constraints required for the 2D single boundary optimization problem (e.g., that one
boundary point exists in each column of the image and that the boundary is sufficiently smooth).
The boundary is found from a cost image defined in polar coordinates using a minimum-cost path
approach, with the final boundary being obtained with a polar-to-Cartesian transform

2.2 Graph Representation of the 2D Single Boundary
Optimization Problem

The 2D single boundary optimization problem as defined in Sect. 2.1 can be readily
transformed into a minimum-cost path problem within a node-weighted graph
(Fig. 4). Each pixel in the cost image, c.x; y/, becomes a node with weight given by
the intensity value. Because of this direct correspondence between pixels and nodes,
we can label each node with its corresponding .x; y/ position. Directed edges are
added for each “feasible” transition from a boundary point from one column to the
next column. In particular, given a smoothness constraint �, for each node .x; y/, a
directed edge is added to nodes .xC1; y��/, .xC1; y��C1/, . . . , .xC1; yC�/

(as long as these destination nodes exist). If a destination node does not exist (as on
the boundaries), no directed edge is added. Finding the minimum-cost path in such
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Fig. 4 Example construction of graph for finding minimum-cost boundary according to Eq. (1).
(a) Small example cost image c.x; y/. (b) Node-weighted graph representation when the
smoothness constraint, �, is 1. Edges reflect allowed transitions between boundary points. The
minimum-cost path from any node in the leftmost column to any node in the rightmost column will
correspond to the minimum-cost 2D boundary in the image. (c) Highlighted (in yellow) minimum-
cost path in graph

a node-weighted graph directly corresponds to finding the minimum-cost boundary
in the original image.

While a number of approaches exist for finding minimum-cost paths in general
graphs, the simple structure of this graph (including its acyclic nature) makes
a dynamic programming approach a good choice for finding the minimum-cost
path. In fact, in implementing this approach, one does not even need to explicitly
define the nodes/edges and can simply use an implicit definition of the underlying
graph (e.g., given a node position, you can use a simple formula to determine
the neighboring nodes). Figure 5 illustrates the basic concepts of a dynamic
programming approach. When � D 1, you can define the following recursive
definition for the cost of the minimum-cost path p.x; y/ from any node in the first
column (x D 0) to node at position .x; y/:
8
ˆ̂̂
<̂

ˆ̂̂
:̂

c.x; y/ xD0.basecase/

minŒp.x � 1; y/; p.x � 1; y C 1/� C c.x; y/ x > 0I y D 0

minŒp.x � 1; y � 1/; p.x � 1; y/; p.x � 1; y C 1/� C c.x; y/ x > 0I 0 < y < Ny�1

minŒp.x � 1; y � 1/; p.x � 1; y/� C c.x; y/ x > 0I yDNy � 1

(2)

Here, Ny is the number of rows in the image. A similar recursive definition can
be defined for other values of �. Note that the nodes/edges are defined “implicitly”
by directly writing the recursive formula for the path costs.

Because of this recursive definition, the path costs can be efficiently found by
computing the path-cost values p.x; y/ one column at a time from x D 0 to
x D Nx � 1. Conceptually, in computing each path-cost value, one also keeps
track of the predecessor “node” that provided the minimum (although this is not
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Fig. 5 Use of dynamic programming to find minimum-cost path corresponding to the optimal
boundary when � D 1. (a) Cost image, c.x; y/ with highlighted column 2 (note that the leftmost
column is column 0). (b) Computation of minimum-cost path costs for all of the nodes in column
3. For each node, the minimum-cost path value is computed by adding the cost image value to
the path-cost value of the predecessor [for a non-boundary case and � D 1, the predecessors of
node .x; y/ are nodes .x � 1; y � 1/, .x � 1; y/ and .x � 1; y C 1/] with the minimum path-cost
value. Arrows are shown to indicate each selected predecessor node. (c) Highlighted minimum-cost
path. The minimum-cost path is found by selecting the node in the last column of p.x; y/ with the
smallest value and then backtracking (i.e., following the predecessor arrows) until reaching a node
in the first column

absolutely necessary as determining this node can be done in constant time by
simply re-examining all of the values). Finding the actually minimum-cost path
involves simply finding the smallest value in the last column and then backtracking
through the predecessor nodes until reaching a node in the first column.

If the underlying boundary is roughly circular such that a Cartesian-to-polar
transform was used in creating the cost image (meaning that boundaries define
one radial value per angle), it is also useful to require that the found boundary
be “closed” (i.e., a smoothness constraint exists from the last column to the first
column). With a dynamic programming approach, one option for enforcing this is
to separately find the minimum-cost path from each of the starting nodes in the first
column to the set of nodes in the last column that would obey the constraint by
setting the node weights of all other nodes in the first column and the weight of
all non-feasible nodes in the last column to 1. The overall minimum-cost path can
then be found as the smallest out of these Ny minimum-cost paths.

3 3D Object Segmentation Using Graph Cuts

3.1 The Graph-Cut Optimization Problem (A Labeling
Problem)

In this section, we describe the graph-cut approach of Boykov et al. [1–6] for
segmenting a 3D object within a 3D image. While the 2D single boundary
segmentation problem discussed in Sect. 2 and the single and multiple surface
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segmentation problems to be discussed in Sect. 4 are inherently formulated to
focus on the detection of an object boundary or set of object boundaries (with
the number of boundaries specified a priori), the optimization problem associated
with the graph cut approach is inherently formulated as a labeling problem (i.e.,
determining the set of pixels/voxels that should be labeled as object). One example
corresponding difference is that it is possible that the “object” to be segmented will
be disconnected using the standard formulation of the graph-cut approach, whereas
the feasibility constraints prevent this in the surface-based methods. (In some
applications, preventing such disconnections is desirable, and in other applications,
it is not desirable.)

More specifically, in the graph-cut approach, if P is the set of voxels in the
image, we assume that each voxel p 2 P has a cost Rp.“obj00/ and Rp.“bkg00/
associated with being labeled as an object voxel or background voxel, respectively.
We furthermore assume that each neighboring pair of voxels fp; qg 2 N , where
N is the set of pairs of neighboring voxels, has a cost Bp;q associated with the
pair of voxels having different labels. Our goal is to find the optimal labeling A D
.A1; A2; : : : ; AjPj/ to assign each voxel p to a label Ap where Ap is “bkg” or “obj”
to minimize the following “energy” or “cost” function:

E.A/ D � � R.A/ C B.A/ ; (3)

where R.A/ is the regional term given by

R.A/ D
X

p2P

Rp.Ap/ ; (4)

and B.A/ is the boundary term given by

B.A/ D
X

fp;qg2N

Bp;q � ıAp¤Aq
; (5)

where ıAp¤Aq
is 0 if the label of Ap is equal to that of Aq and 1 otherwise. � provides

the relative weighting between the regional cost terms and the boundary cost terms.
Figure 6 provides example regional (i.e., object/background) and boundary costs

associated with a small toy image and Fig. 7 provides two example labelings and
their associated costs based on Eq. (3).

3.2 Direct Representation of the Graph-Cut Optimization
Problem as a Minimum s–t Cut Problem

The graph-cut optimization problem discussed in Sect. 3.1 can be readily formulated
as a minimum s–t cut problem in an edge-weighted graph [2, 6]. In an s–t cut
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(Bp;q) for use in a graph-cuts approach
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Fig. 7 Two example labelings and associated total costs from toy example from Fig. 6. For
simplicity, the weighting � in Eq. (3) between region and boundary costs is set to 1

formulation, you have an edge-weighted graph with two terminal nodes: s and t .
A cut of .S; T / of the graph is a partition of the nodes V into two disjoint sets:
S and T (T D V � S ) with the requirement that s 2 S and t 2 T . The cost of
a cut is defined as the summation of the weights of the edges from nodes in S to
nodes in T (intuitively the edges that are “cut” in the separation) [12]. The goal
in a minimum s–t cut problem is to find the cut with the minimum cost. Once the
problem is formulated as a minimum s–t cut problem, many algorithms exist for
finding the globally optimal solution in low-order polynomial time [4].
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Fig. 8 Example graph representation and minimum cut from regional and boundary costs shown
in Figs. 6 and 7. Graph example adapted from examples presented by Boykov et al. [2, 6]

In transforming the graph-cut optimization problem into a minimum s–t cut
problem, first, a node p is added for every voxel in the image and edges are added
between each pair of nodes corresponding to neighborhood voxels with weight Bp;q

(these edges between neighbors are often referred to as “n-links” as their weights
correspond to the neighbor discontinuity costs). Next, two extra “terminal” nodes,
s (the “obj” terminal) and t (the “bkg” terminal), are added to the graph and for
each voxel in the image (corresponding to node p in the graph), two edges are
added (often called “t-links” for “terminal”): fs; pg and fp; tg. The weight of each
edge between “obj” terminal s and node p, fs; pg, is given by the background cost
value for the associated voxel (times a constant): � � Rp.“bkg00/. The weight of each
edge between node p and “bkg” terminal t , fp; tg, is given by the object cost value
for the associated voxel (times a constant): � � Rp.“obj00/. When determining the
minimum s–t cut of this constructed graph, the nodes remaining connected to the
“obj” terminal s correspond to the voxels belonging to the segmented object (i.e.,
the voxels that should be given a label “obj”). Figure 8 illustrates the graph and
associated minimum cut associated with the toy example shown in Figs. 6 and 7.
The associated labeling (segmentation) associated with the cut is also shown. The
edges cut include the edges from the nodes in the final object set (with a label “obj”)
to the background terminal t (with each p in this set contributing ��Rp.“obj00/ to the
cut cost), the edges from object terminal s to the nodes in the final background set
(with label “bkg”, with each p in this set contributing � � Rp.“bkg00/ to the cut cost)
and each of the edges between a node in the object set and a node in the background
set (with each such pair of edges fp; qg contributing Bp;q to the cut cost). Thus,
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with the above graph construction, the value of the minimum-cut corresponds to the
value of the minimal labeling according to Eq. (3).

Note that the above formulation assumes an undirected edge-weighted graph, but
many s–t cut algorithms are inherently designed for directed edge-weighted graphs.
However, the conversion to the corresponding directed graph is straightforward. In
particular, each edge fs; pg between terminal s and node p becomes directed with
s as the tail and p as the head. Similarly, each edge fp; tg between node p and
terminal t becomes directed with p as the tail and t as the head. Each edge fp; qg
between neighbors p and q becomes two edges (each with the same weight): one
from node p to node q and one from node q to node p.

When using graph cuts approaches, it is also common to specify a set of “seed”
object and background voxels (i.e., voxels you wish to constrain as being labeled
as object and background, respectively). Let O be the set of object seeds and B be
the set of background seeds. You can enforce this constraint in the minimum s–t cut
graph representation by modifying the edge weight from s to every node in O to
have a weight of infinity (intuitively, ensuring the edges from the object terminal to
those nodes that correspond to seed object voxels will not be cut) and modifying
the edge weight of every node in B to t to have a weight of infinity (intuitively,
ensuring the edges from nodes that correspond to seed background voxels and the
background terminal will not be cut). It is also common to modify the weight of
edges fs; pg where p 2 B and fp; tg where p 2 O to have a weight of zero,
but this is not theoretically necessary (assuming the original weights were also not
infinity).

3.3 Example Applications and Extensions

3.3.1 Multi-Label (Multi-Region) Extensions

A multi-label extension of the original graph cuts energy function in Eq. (3) follows:

E.A/ D � �
X

p2P

Rp.Ap/ C
X

fp;qg2N

Bp;q.Ap; Aq/ � ıAp¤Aq
; (6)

where A 2 fobj1; obj2; : : : ; objN gjPj is a multi-object image labeling. However,
unfortunately, solving this particular multi-label problem is NP-hard in the general
case [3, 6]. Thus, approximation algorithms, such as the ˛ˇ-swap algorithm and
the ˛-expansion algorithm, have been proposed for efficiently obtaining a close-
to-optimal solution [3]. At a high level, both the ˛ˇ-swap algorithm and the
˛-expansion algorithm are examples of a local search approach (Fig. 9), where,
after assigning an arbitrary initial labeling as the current candidate solution, a best
“neighboring” solution is generated and saved as the current candidate solution if
it has a lower cost based on Eq. (6). The generation of “neighboring” candidate
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 = initial (arbitrary) labeling
 while not converged:

A = E
if E(A) < E( ):

return 

-swap: choose any two labels 
,  and allow each pixel labeled 
 or  to keep its current label or 

-expansion: allow each pixel to 
keep its current label or switch to 
the label 

Fig. 9 The ˛ˇ-swap algorithm and the ˛-expansion algorithm are two local search approaches for
efficiently determining a close-to-optimal solution to the multi-label graph cuts problem with the
energy function of Eq. (6) [3]. In both cases, determination of the best “neighboring” solution can
be obtained by solving a single graph cuts problem

solutions (and saving them as the current solution if they have a lower cost) is
repeated until convergence. The key clever idea behind both approaches is in the
efficient generation of the best “neighboring” solution. In the ˛ˇ-swap algorithm,
a neighboring candidate solution is one in which, after an arbitrary selection of
any two labels ˛ and ˇ, every pixel with label ˛ or ˇ maintains its current label
or switches (“swaps”) to the other label (Fig. 10). In the ˛-expansion algorithm, a
neighboring candidate solution is one in which after arbitrary selection of label ˛

every pixel maintains its current label or switches to the label ˛ (Fig. 11). With either
definition of a neighboring solution, determination of the best neighboring solution
can be obtained by solving a single graph cut problem as only a binary labeling
choice needs to be made at each voxel location (i.e., ˛ versus ˇ for the ˛ˇ-subset of
voxels in the ˛ˇ-swap algorithm and ˛ versus “original label” for all voxels in the ˛-
expansion algorithm). In practice, the ˛-expansion algorithm is often more effective
than the ˛ˇ-swap algorithm, but care must be taken to ensure that submodularity
requirements of the cost function are satisfied [3, 13].

While approximation algorithms discussed above may work well for solving
the multi-label optimization problem for certain application domains, by recog-
nizing special cases (e.g., through additional geometric constraints) of the multi-
label/multi-region labeling problem, certain multi-label/multi-region problems can
be actually solved optimally. (Of course, the binary graph cuts formulation using
the energy term of Eq. (3) is an obvious example of a special case.) For example,
through the addition of specific geometric interaction constraints (in part, motivated
from the multi-surface graph-based approach discussed in Sect. 4) such as the fact
that “region C contains region A,” “region D contains region B,” and “region C
excludes region D,” Delong and Boykov [13] have proposed a formulation of the
multi-region graph cuts approach for which an optimal solution can be found with a
single graph cut.
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Fig. 10 Two example ˛ˇ-swap moves from initial input labeling on the left. In this example, ˛

and ˇ were arbitrarily selected as obj2 and obj4, respectively. Valid neighboring solutions are thus
labelings where any pixels originally labeled as obj2 keep their original label or change to label
obj4 and any pixels originally labeled as obj4 keep their original label or change to label obj2.
(Pixels with labels other than obj2 and obj4 must keep their original label.) The binary nature of
these moves means that the best move can be determined with a single graph cut
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Fig. 11 Two example ˛-expansion moves from initial input labeling on the left. In this example,
˛ was arbitrarily selected as obj4. Valid neighboring solutions are thus labelings where any pixels
keeps its original label or changes to label obj4 (thus “expanding” the number of pixels labeled as
obj4). The binary nature of these moves means that the best move can be determined with a single
graph cut

3.3.2 Co-segmentation of Tumors in PET–CT Images

Positron emission tomography–computed tomography (PET–CT) has revolution-
ized modern cancer imaging. The integrated PET–CT, by adding precise anatomic
localization to functional imaging, currently provides the most accurate information
available on tumor extent and distribution for various common cancers. It has been
increasingly playing an indispensable role in cancer treatment planning, therapy
response assessment, and tumor staging. This section presents an optimal co-
segmentation method for tumor delineation from PET–CT scans with the extension
of the graph-cut method [14].

Modeling PET–CT Co-segmentation. The basic idea is to formulate the simul-
taneous segmentation of tumor from PET–CT scans as minimizing the Markov
Random Field (MRF) energy function, which consists of a data fidelity term and
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a boundary smoothness term. The data fidelity term measures how well voxels fit
into the object or background model. The boundary term penalizes the discontinuity
between the object and background. More precisely, the MRF energy functions
commonly used for segmentation on the individual PET and CT images (denoted
by IPET and ICT, respectively) are as follows:

EPET.f P / D
X

p2IPET

DP
p .f P

p / C �1

X

.p;q/2NP

V P
pq .f P

p ; f P
q / (7)

ECT.f C / D
X

p2ICT

DC
p .f C

p / C �2

X

.p;q/2NC

V C
pq .f C

p ; f C
q / (8)

DP
p .f P

p / is the individual penalty for assigning a voxel p to “object” or “back-
ground” in the PET IPET; V P

pq .f P
p ; f P

q / is the penalty for assigning labels f P
p and

f P
q to two neighboring voxels p and q according to the neighborhood setting NP .

DC
p .f C

p / and V C
pq .f C

p ; f C
q / have the same meaning for ICT. Most close voxels are

expected to have the same label (“object” or “background”). Thus, one may expect
no penalty if neighboring voxels have the same label and a penalty wpq otherwise.
We can then apply the graph cut method in Sect. 3.2 to segment the target tumor
from PET and CT, respectively, by minimizing the energy functions EPET.f P / and
ECT.f C /, which, however, does not utilize the information from the other modality.

To co-segment the tumor from both PET and CT scans, an additional PET–CT
context term EPET–CT is introduced to the energy function, which penalizes the
segmentation difference between two image datasets. Without loss of generality
(WLOG), assume that the PET and CT images are well registered. Let .p; p0/ denote
a pair of corresponding voxels in IPET and ICT. The label difference is penalized
with ıpp0.f P

p ; f C
p0 / for p and p0, with

ıpp0.f P
p ; f C

p0 / D
(

g.p; p0/ if f P
p ¤ f C

p0

0 if f P
p D f C

p0

; (9)

where g.p; p0/ > 0 is employed to penalize the disagreement between labels of
corresponding voxels p and p0. The PET–CT context term then takes the form:

EPET��CT.f P ; f C / D
X

.p;p0/ with p2IPET ;p02ICT

ıpp0.f P
p ; f C

p0 / (10)

Note that the PET–CT context constraint is soft with ıpp0.f C
p ; f P

p0 / < C1.
It is not assumed that the tumor contour in CT is identical to that in PET. Hence,
the uncertainties of imaging and registration are accommodated in this model. The
energy function of the co-segmentation is then defined as follows:

Ecs.f
P ; f C / D EPET.f P / C ECT.f C / C EPET–CT.f P ; f C / (11)
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Fig. 12 Graph construction of G with two subgraphs GCT and GPET for the co-segmentation of
PET–CT images [14]. Three types of arcs are introduced. The orange arcs (n-links) encode the
boundary terms; the brown arcs (t -links) encode data terms; and the green arcs (d -links) enforce
the PET–CT context term in the co-segmentation energy function

Most previous co-segmentation algorithms in computer vision [15–18] work
on a pair of images with similar (or nearly identical) foregrounds and unrelated
backgrounds, and explicitly make use of histogram matching, which makes the
models computationally intractable. Batra et al. recently applied the graph cut
method for co-segmentation [19], in which a common appearance model is assumed
across all the segmented images. However, the PET and CT images may not have
such a common appearance model. The co-segmentation scheme here provides a
more flexible PET–CT context term EPET–CT to make use of the dual modalities
information.

Optimization. The co-segmentation problem is solved by extending the graph cut
method in Sect. 3.2 with a computation of a minimum-cost s–t cut in a transformed
graph G, which admits a globally optimal solution in low-order polynomial time.

The graph G consists of two node-disjoint subgraphs GPET and GCT, each being
used for the search of the tumor in the PET IPET and the CT ICT. The construction
of each GPET and GCT follows the graph cut method in Sect. 3.2 to encode the energy
terms EPET and ECT, respectively. To enforce the PET–CT context term EPET–CT,
additional inter-subgraph arcs are introduced between GPET and GCT. For every pair
of corresponding voxels .p; p0/ with p 2 ICT and p0 2 IPET, two directed arcs are
added between the corresponding nodes of the two subgraphs in opposite directions.
The weight of each arc is assigned to penalize the labeling difference of the two
voxels p and p0 (i.e., ıpp0.f P

p ; f C
p0 / with f P

p 6D f C
p0 ). Figure 12 illustrates the

construction of the graph G, with green arcs encoding the PET–CT context term
EPET–CT.
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Fig. 13 Typical tumor segmentation in the transverse (left), coronal (middle), and sagittal (right)
views [14]. (a–c) 2D slices of a 3D CT image with the reference standard (red) and outlines of
spherical initialization (green and yellow). (d–f) Proposed co-segmentation results in the CT image.
(g–i) Co-segmentation results in the PET image

As shown in [14], the minimum-cost s–t cut C � D .A�; A
�
/ in G defines an

optimal delineation of tumor in both PET and CT images. The target tumor volume
on the CT image includes those voxels whose corresponding nodes in GC T belong
to the source set A�. Similarly, the segmented tumor volume on the PET image is
given by those voxels whose associated nodes in GPET belong to the source set A�.

Typical lung tumor segmentation in three (transverse, coronal and sagittal) views
are shown in Fig. 13. The co-segmentation method demonstrated accurate PET and
CT segmentation results [14].
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Fig. 14 Optimal surface
detection. (a) An example 3D
retinal optical coherence
tomography (OCT) image
with surfaces of interest
specified. (b) The schematic
surfaces and the orientation

4 Optimal Layered Graph Search for Image Segmentation

This section presents the theory of the optimal layered graph search method[7–
11], also sometimes called the LOGISMOS approach, which is applicable to the
multi-surface segmentation of terrain-like surfaces (represented by orthogonal n-D
graphs), tubular objects (cyclic regular and irregular graphs), objects with complex
shapes, and multiple partially interacting objects. WLOG, we focus on using terrain-
like surfaces and 4-neighborhoods to discuss the optimal layered graph search
method. However, the simpler principles used for this illustration are directly
applicable to arbitrarily irregular surfaces.

4.1 Optimal Surface Detection Problems

Let I be a given 3D volumetric image with size of n D X �Y �Z. For each .x; y/

pair, 0 � x < X and 0 � y < Y , the voxels with different z-coordinates, that is, the
voxel subset fI .x; y; z/ j 0 � z < Zg, form a column parallel to the z-axis, denoted
by Col.x; y/. Two columns are neighboring if their .x; y/-coordinates satisfy some
neighborhood conditions. For example, under the 4-neighboring setting, the column
Col.x; y/ is neighboring to Col.x0; y0/ if jx � x0j C jy � y0j D 1. Henceforth,
a model of the 4-neighboring setting is used; this simple model can be easily
extended to other neighboring settings. Each of the target terrain-like surfaces
contains one and only one voxel in each column of I (Fig. 14). The feasibility of
the target surfaces is governed by the surface smoothness and separation constraints.
The surface smoothness constraint is specified by two smoothness parameters,
�x and �y, which define the maximum allowed change in the z-coordinate of a
surface along each unit distance change in the x and y dimensions, respectively.
If I .x; y; z0/ and I .x C 1; y; z00/ (resp., I .x; y C 1; z00/) are two (neighboring)
voxels on a feasible surface, then jz0 � z00j � �x (resp., jz0 � z00j � �y) (Fig. 15a). In
multiple surface detection, for each pair of the target surfaces S and S 0, we use two
parameters, ıl � 0 and ıu � 0, to represent the surface separation constraint, which
defines the relative positioning and the distance range of the two surfaces. That is,
if I .x; y; z/ 2 S and I .x; y; z0/ 2 S 0, we have ıl � z0 � z � ıu for every .x; y/
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Fig. 15 The surface feasibility. (a) The surface smoothness constraint. (b) The surface separation
constraint

Fig. 16 Example schematic cost of two surfaces for the optimal surface detection problem. The
two surfaces divide the volume into three regions

pair (Fig. 15b). A set of � surfaces S D fS1; S2; : : : ; S�g are considered feasible
if each individual surface in the set satisfies the given surface-specific smoothness
constraints and if each pair of surfaces satisfies the surface separation constraints.

Each voxel I .x; y; z/ may be considered as having an edge-based real valued
cost bi .x; y; z/ (called an on-surface cost) associated with it for each target surface
Si . As shown in Fig. 14b, the � surfaces form � C 1 regions fR0; R1; : : : ; R�g.
For each region Ri (i D 0; 1; : : : ; �), every voxel I .x; y; z/ is assigned a real-
valued region-based cost ci .x; y; z/ (called an in-region cost). The edge-based cost
of each voxel in I is inversely related to the likelihood that it may appear on
a desired surface, while the region-based costs ci .�/ (i D 0; 1; : : : ; �) measure
the inverse likelihood of a given voxel preserving the expected regional properties
(e.g., homogeneity) of the partition fR0; R1; : : : ; R�g. Then, the total energy E .S /

induced by the � surfaces in S is defined as (Fig. 16)

E .S / D
�X

iD1

bi .Si / C
�X

iD0

ci .Ri / D
�X

iD1

X

I .x;y;z/2Si

bi .x; y; z/ C
�X

iD0

X

I .x;y;z/2Ri

ci .x; y; z/:

(12)
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The optimal surface detection (OSD) problem on medical images is: Given a
3D image I and an integer � > 0, find a feasible set of � surfaces S D
fS1; S2; : : : ; S�g, such that the total cost E .S / is minimized.

The OSD problem (for which � D 1) was first proposed for the cardiac border
detection by Thedens et al. [20, 21]. In the past decades, variations of the OSD
problem have been studied extensively in theoretical computer science, computer
vision, and operations research. The most related problems include the metric
labeling problem in theoretical computer science or so-called MRF optimization
problem in computer vision, which introduces an additional pairwise penalty
energy in the objective function. The metric labeling problem captures a broad
range of classification problems where the quality of a labeling depends on the
pairwise relations between the underlying set of objects, such as image restoration
[3,22], image segmentation [23–26], visual correspondence [27,28], and deformable
registration [29]. After introduced by Kleinberg and Tardos [30], it has been studied
extensively in theoretical computer science [30–34]. The best known approximation
algorithm for the problem is an O.log L/ (L is the number of labels) [30, 33] and
has no ˝.

p
log L/ approximation unless NP has quasi-polynomial time algorithms

[32]. Due to the application nature of the problem, researchers in image processing
and computer vision have also developed a variety of good heuristics that use
classical combinatorial optimization techniques, such as network flow and local
search (e.g., [22–24, 27, 35]), for solving some special cases of the metric labeling
problem. This section focuses on polynomial-time solutions to the OSD problem.

4.2 Overview of the OSD Algorithms

The basic idea for solving the OSD problem is to formulate it as computing a
minimum-cost closed set in a directed graph with arbitrary node weights. A closed
set C in a directed graph with real-valued node weights is a subset of graph nodes
such that there is no arc from a node in C to a node in the complement of C . The cost
of a closed set C is simply the total sum of the weights of all nodes in C . It is well
known that a minimum-cost closed set can be computed in low-order polynomial
time by solving a minimum s–t cut problem [25, 36]. The solution to the OSD
problem is built upon novel observations that capture the self-closure structures of
the OSD problem, which relate the target problem to the minimum-cost closed set
problem. The OSD algorithm uses the following three major steps:

• Graph construction. Construct a node-weighted directed graph G D .V; E/,
which consists of � node-disjoint subgraphs Gi D .Vi ; Ei /. Each subgraph
Gi is used for identifying the i th surface in I . The construction hinges on
the self-closure structures of the OSD problem. The surface smoothness and
separation constraints are enforced with graph arcs; while the optimality of the
solution is encoded with node weights.
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• Computing a minimum-cost closed set. Compute a minimum-cost nonempty
closed set C � in G, which is solvable by computing a minimum s–t cut in an
arc-weighted directed graph transformed from G.

• Surface recovery. The set of � optimal surfaces is recovered from the minimum-
cost closed set C � with each surface being specified by the envelop of C � \ Vi .

4.3 Optimal Single Surface Detection

This section presents the algorithm for solving the optimal single surface detection
(OSSD) problem (in which � D 1).

To facilitate the discussion of transforming the OSD to a minimum-cost closed
set problem, we introduce the concept of bottom-most neighbors and the intra-layer
self-closure structure of the OSSD problem. For a voxel I .x; y; z/ and each neigh-
boring column Col.x0; y0/ of Col.x; y/, the bottom-most neighbor of I .x; y; z/ on
Col.x0; y0/ is the voxel on Col.x0; y0/ with the smallest z-coordinate that can appear
together with I .x; y; z/ on the same feasible surface in I (Fig. 17a). Note that the
bottom-most neighbor of I .x; y; z/ on Col.x C 1; y/ (resp., Col.x; y C 1/) is the
voxel I .xC1; y; maxfz��x; 0g/ (resp, I .x; yC1; maxfz��y; 0g/). For a feasible
surface S , denote by S.x; y/ the z-coordinate of the voxel I .x; y; z/ on the surface
S . We say that a voxel I .x; y; z/ is below a surface S if S.x; y/ > z, and denote by
BL.S/ all the voxels of I that are on or below S . A key observation is that for any
feasible surface S in I , the bottom-most neighbors of every voxel in BL.S/ are
also contained in BL.S/ (Fig. 17b). This intra-layer self-closure property relates
our target problem to the minimum closed set problem. In our approach, instead of
finding an optimal surface S� directly, we seek in I a voxel set BL.S�/, which
uniquely defines the surface S�.

4.3.1 Graph Construction

The construction of the directed node-weighted graph G D .V; E/ hinges on the
intra-layer self-closure structure of the OSSD problem. Every node v.x; y; z/ 2
V represents one and only one voxel I .x; y; z/ 2 I . G can thus be viewed as
a geometric graph defined on a 3D grid. Arcs are added to G to make sure that
each closed set includes all the nodes associated with the corresponding surface
voxels plus all those below the surface. This is done by adding two types of arcs:
intracolumn arcs and intercolumn arcs. The intracolumn arcs ensure that all nodes
below a given node (within one column) are also included in the closed set. The
intercolumn arcs ensure that the smoothness constraints are satisfied. As an example
in Fig. 17c, we consider the added arcs for one node v not involved in boundary
conditions to avoid cluttering the exposition of our key ideas. It will be associated
with two intracolumn arcs: one directed towards the node below it in the column
and one from the node above it (red arcs in Fig. 17c). Two intercolumn arcs will
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Fig. 17 Modeling single surface detection. An example 2D slice from a 3D image is used. The
surface smoothness parameter �x D 1. (a) Dashed line arrows point to lowest-neighbors of a
voxel. (b) Illustrating the intra-layer self-closure structure. The surface S is a feasible one while
S 0 is not. The red line arrow indicates the violation of the smoothness constraint for S 0. (c) The
constructed graph enforces the surface geometry. The minimum-cost closed set in (d) consisting
of all purple nodes defines the optimal surface in (e)

also exist for each neighboring column in the x-direction (y-direction): one directed
to the bottom-most neighbor of v on the neighboring column and one from the node
on the neighboring column whose bottom-most neighbor on the column of v is node
v (green arcs in Fig. 17c).

To finish the construction of the graph G, we need to encode the energy
function Eq. (12) by assigning appropriate weights to the nodes in G. For each node
v.x; y; z/ 2 V corresponding the voxel I .x; y; z/, its weight w.x; y; z/ is defined
as follows:

w.x; y; z/ D
(

b.x; y; z/ C Œc0.x; y; z/ � c1.x; y; z/� ifz D 0;

Œb.x; y; z/ � b.x; y; z � 1/� C Œc0.x; y; z/ � c1.x; y; z/� ifz > 0:

(13)

The following theorem is the key for solving the OSSD problem as computing a
minimum-cost nonempty closed set in G.

Theorem 1 ([7, 8]). (1) Any finite nonempty closed set C in G specifies a feasible
surface S in I whose total cost E .S/ differs from the cost of C by a constant. (2)
Any feasible surface S in I corresponds to a nonempty closed set C in G whose
cost differs from E .S/ by a constant.
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4.3.2 Computing a Minimum-Cost Nonempty Closed Set

It is well known that a minimum-cost closed set in a directed node-weighted graph
can be computed by solving a minimum s–t cut problem [25,36]. However, if there
is no “negative” cost closed set, the minimum-cost closed set is empty, which offers
little useful information for recovering the target surface. In fact, we need to find a
minimum-cost “nonempty” closed set.

Based on the construction of G, the bottom-most nodes of all columns form
a closed set C0, that is, C0 D fv.x; y; 0/ j 0 � x < X; 0 � y < Y g. Note
that C0 is a subset of any nonempty closed set in G. If the minimum-cost closed
set in G is empty, it indicates that the cost of every nonempty closed set in G is
non-negative. We do the following transformation to reduce the cost of each closed
set by a constant and to make sure that at least one closed set whose cost is negative
after the transformation. Let C be the total cost of nodes in C0; If C � 0, choose
arbitrarily a node v.x0; y0; 0/ 2 C0 and assign a new weight w.x0; y0; 0/ � C � 1 to
v.x0; y0; 0/. After this transformation, the total cost of the closed set C0 is negative.
Since C0 is a subset of any nonempty closed set in G, the cost of any nonempty
closed set is reduced by .C C 1/. Hence, the minimum-cost nonempty closed set in
G is not changed after the transformation and it is not empty. Thus, we can simply
apply the algorithm in [25, 36] to find the minimum-cost closed set C � in G after
performing the transformation. C � is then a minimum-cost nonempty closed set in
G before the transformation.

4.3.3 Surface Recovery

From a minimum-cost nonempty closed set C �, an optimal surface S� in I can
be defined as follows. For each .x; y/-pair, let C .x; y/ � C be the set of nodes
on the column Col.x; y/ of G. Due to the construction of G, we have C0 � C �.
Thus, C .x; y/ is not empty. Let zx;y denote the largest z-coordinate of the nodes
in C .x; y/. Then, the optimal surface S� is defined as S.x; y/ D zx;y for every
.x; y/-pair. Figure 17e shows an example of an optimal surface defined by a
minimum-cost closed set in Fig. 17d.

4.4 Optimal Multiple Surface Detection

This section presents the algorithm for solving the Optimal Multiple Surface
Detection (OMSD) problem, i.e., simultaneous detection of � > 1 interrelated
surfaces in a 3D image I such that the total cost of the � surfaces is minimized.

In simultaneously detecting multiple distinct but interrelated surfaces, the opti-
mality is not only determined by the inherent costs and smoothness properties of the
individual surfaces, but also confined by their interrelations (i.e., the surface separate
constraints). Obviously, computing each of the � surfaces individually using our
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algorithm in Sect. 4.3 does not work well. The solution thus obtained might even be
infeasible. In addition, the integration of the region-based costs makes the problem
more complicated.

To efficiently solve the OMSD problem, the intrinsic common characteristics
of the smoothness and the separation constraints are explored to extend the OSSD
technique to multiple surface detection. Assume that S D fS1; S2; : : : ; S�g is a
feasible set of � surfaces in I with SiC1 being “on top” of Si . For each pair of
the sought surfaces, Si and SiC1, two parameters ıl

i � 0 and ıu
i � 0 are used

to specify the surface separation constraint (note that the separation constraint can
be defined between any pair of the surfaces in S ). First, consider each individual
surface Si 2 S . Recall that BL.Si/ denotes the subset of all voxels of I that are
on or below Si . As in Sect. 4.3, we observe that each BL.Si/ also has the intra-
layer self-closure structure. However, the OMSD problem is more involved since
the � surfaces in S are inter-related. The following observation reveals the common
essential structure between the smoothness and the separation constraints, leading
to further study the closure structure between the BL.Si / and BL.SiC1/. One may
view the 3D image I as a set of X 2D slices embedded in the yz-plane. Thus, a
feasible surface S of I is participated into X z-monotone curves with each in a 2D
slice. Observe that each feasible z-monotone curve is subjective to the smoothness
constraint in the corresponding slice, and any pair of adjacent z-monotone curves
expresses to meet the analogical separation constraints. This observation suggests
that the surface separation constraint in a d -D image may be viewed as the surface
smoothness constraint in the .d C 1/-D image consisting of the stack of a sequence
of � d -D images. Hence, we intend to map the detection of � optimal surfaces in
d -D to the problem of finding a single optimal surface in .d C 1/-D. To distinguish
the self-closure structures, define below the upstream and downstream voxels of
any voxel I .x; y; z/ in I for the given surface separation parameters ıl

i and ıu
i : if

I .x; y; z/ 2 Si , then the i th upstream (resp., downstream) voxel of I .x; y; z/ is
the voxel on column Col.x; y/ with the smallest z-coordinate that can be on SiC1

(resp., Si�1). Together with the intra-layer self-closure structures, the following
inter-layer self-closure structure is the key for solving the OMSD problem: Given
any set S of � feasible surfaces in I , the i th upstream (resp., downstream) voxel of
each voxel in BL.Si / is in BL.SiC1/ (resp., BL.Si�1/), for every 1 � i < � (resp.,
1 < i � �). Both the intra-layer and inter-layer self-closure structures together
bridge the OMSD problem and the minimum closed set problem.

4.4.1 Graph Construction

The graph G D .V; E/ constructed for solving the OMSD problem consists of �

node-disjoint subgraphs fGi D .Vi ; Ei/ W i D 1; 2; : : : ; �g. Each Gi is constructed
as in Sect. 4.3 to reflect the intra-layer self-closure structure of each surface and is
used for searching the i th surface Si . Every node vi .x; y; z/ 2 Vi represents one
and only one voxel I .x; y; z/. The intracolumn and intercolumn arcs are added in
Ei to reflect the intra-layer self-closure structure of surface Si , which enforce the
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Fig. 18 Modeling multiple surface detection. An example 2D slice from a 3D image is used.
Two surfaces are sought and the distance in between ranges from ıl D 1 to ıu D 2. The
surface smoothness parameter �x D 1. (a) Illustrating the inter-layer self-closure structure. For
the visualization purpose, the slice is duplicated and the sought two surfaces are visualized in the
two separated slices. The red dashed line arrows point to the upstream voxels and the blue dashed
line arrows point to the downstream voxels. S1 and S2 are two feasible surfaces, but S1 and S 0

2 are
not. The red line arrow with a mark “X” indicates the violation of the surface separation constraint.
(b) The constructed graph to enforce the surface separation constraints (arcs are only shown for
the first and the last columns). The envelopes of the minimum-cost closed set in (c) consisting of
all shaded nodes defines the optimal surfaces in (d)

monotonicity and the smoothness constraint of each sought surface. The separation
constraints between any two surfaces Si and Sj are enforced in G by a set of arcs
Es , connecting the corresponding subgraphs Gi and Gj , in a way to reflect the
inter-layer self-closure structure. Suppose for the two sought surfaces Si and Sj ,
the prior knowledge puts Si below Sj (Fig. 18a in which i D 1 and j D 2).
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Fig. 19 Schematic showing how the assignment of node weights encodes the total in-region cost
of the objective function E .S /

Assume that the distance between Si and Sj ranges from ıl
ij D 1 to ıu

ij D 2. For
convenience, denote by Coli .x; y/ (Colj .x; y/) the column of nodes in Gi (Gj )
corresponding to the column Col.x; y/ of voxels in I . The separation constraints
between Si and Sj are incorporated into G in the following way. For each node
vi .x; y; z/ on Coli .x; y/ with z < Z � ıl

ij, as illustrated in Fig. 18b, an arc is

put in Es from vi .x; y; z/ to vi .x; y; z C ıl
ij/ in Gi (red arcs in Fig. 18b). Note

that I .x; y; z C ıl
ij/ is the upstream voxel of I .x; y; z/ (red dashed line arrows

in Fig. 18a). On the other hand, each node vj .x; y; z/ on Colj .x; y/ with z � ıl
ij

has an arc in Es to vi .x; y; zo/ 2 Coli .x; y/ with zo D maxf0; z � ıu
ijg (blue

arcs in Fig. 18b). I .x; y; zo/ is the downstream voxel of I .x; y; z/ (blue dashed
line arrows in Fig. 18a). The node set of G is the union of the node sets of the �

subgraphs (i.e., V D [�
iD1Vi ), and the arc set of G is the union of the arc sets of all

the subgraphs plus Es (i.e., E D [�
iD1Ei [ Es).

To encode the objective function E .S / in the graph model, we assign the node
weight for each node vi .x; y; z/ as follows:

wi .x; y; z/ D
�

bi .x; y; z/ C Œci�1.x; y; z/ � ci .x; y; z/� if z D 0,
Œbi .x; y; z/�bi.x; y; z � 1/� C Œci�1.x; y; z/�ci .x; y; z/� for z > 0.

(14)

Figure 19 illustrates the intuition behind the node weight assignment to encode
the objective function, in which two surfaces are simultaneously detected. Readers
are referred to [8] for the formal proof.

4.4.2 Computing a Minimum-Cost Nonempty Closed Set

Note that our goal is to compute a minimum-cost nonempty closed set in G, which
can be used to define an optimal set of � surfaces in I . However, the constructed
graph G so far does not yet work for this purpose. In the graph construction above
for Gi and Gj , the node vi .x; y; z/ with z � Z � ıl

ij has no arc to any node on

Colj .x; y/, and there is no arc from the node vj .x; y; z/ with z < ıl
ij to any node

on Coli .x; y/. Those nodes are called deficient nodes. The voxels corresponding to
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the deficient nodes cannot be on any corresponding feasible surfaces. We need to
remove those deficient nodes from G. Otherwise, if a closed set C in G includes
a deficient node as the topmost node on a column that is in C , which is possible,
then it does not define a set of � feasible surfaces in I . However, the removal
of deficient nodes may in turn cause other nodes in G to become deficient (i.e.,
the voxels associated with those nodes cannot be on any corresponding feasible
surfaces). We can apply the deficient node pruning scheme in [8] to remove all the
deficient nodes as well as those recursively caused by their removal, resulting in
a graph G0 without any deficient nodes. Note that in the resulting graph G0 if any
column Coli .x; y/ D ;, then there is no feasible solution to the OMSD problem.
We thus assume in the rest of this section that the OMSD problem admits feasible
solutions. For each .x; y/-pair and every i D 1; 2; : : : ; �, let zbot

i .x; y/ and ztop
i .x; y/

be the smallest and largest z-coordinates of the nodes on the column Coli .x; y/ of
G0, respectively. The deficient node pruning process may remove some useful arcs
whose ending nodes need to be changed. For any node vi .x; y; z/ with z < zbot

i .x; y/

in G, if it has an incoming arc, the ending node of the arc needs to be changed to
the node vi .x; y; zbot

i .x; y// in G0.
Denote by Z0 the set of the bottom-most nodes (i.e., whose z-coordinate is z <

zbot
i .x; y/) of every column Coli .x; y/ in G0. Z0 in fact is a closed set in G0, and

for any nonempty closed set C 0 in G0, Z0 is a subset of C 0 [8]. Thus, the same
transformation as that for the OSSD problem can be applied to compute a minimum-
cost nonempty closed set C 0� in G0.

4.4.3 Surface Recovery

From the minimum-cost nonempty closed set C 0� in G0, we define an optimal
set S � of � surfaces, S � D fS�

1 ; S�
2 ; : : : ; S�

� g, as follows. Let C � denote the
corresponding node set of C 0� in G. Recall that we search for each surface S�

i in
the subgraph Gi D .Vi ; Ei/. For each i D 1; 2; : : : ; �, let Ci D C \Vi . Considering
any .x; y/-pair, denote by Ci .x; y/ the set of nodes of Ci that are on Coli .x; y/ of
Gi . Then, the voxel I .x; y; z/ corresponding to the “top” node in Ci .x; y/ (i.e., the
node whose z-coordinate is the largest among those in Ci .x; y/) is on the i th optimal
surface S�

i . We thus define an optimal set S � of � surfaces from the minimum-cost
nonempty closed set C 0�.

Theorem 2 ([8]). The OMSD problem is solvable by computing a minimum-cost
closed set in a derived graph.

4.5 Optimal Surface Detection with Shape and Context Priors

Up to this point, in the OSD framework, only node weights are employed in the
graph to represent the desired segmentation properties, and the desired surface
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smoothness is hard-wired as connectedness of neighboring columns. This represen-
tation limits the ability to incorporate a broader variety of a prior knowledge. The
connectedness of one voxel to the voxels of its neighboring columns is basically of
equal importance in the OSD framework discussed above, which prevents us from
fully utilizing image edge information as well as from taking full advantage of shape
priors. To make full use of prior information, an arc-weighted graph representation
has been proposed, which utilizes the weights of both graph nodes and arcs to
incorporate a wider spectrum of constraints [37]. Two additional pairwise terms
are added into the energy function, which encode the shape and the context prior
information using a set of convex functions. For optimization, the new pairwise
terms are enforced by adding specific weighted arcs in the graph. A globally optimal
solution is then computed by solving a single maximum flow problem in the graph,
which corresponds to optimal surfaces.

4.5.1 Incorporation of Shape and Context Priors

To simplify the notation, we use p.x; y/ or simply p to denote a column Col.x; y/

in I . For surface Si , let Si.p/ denote the z-coordinate of the voxel of the column
p on Si .

The shape prior of a surface is incorporated by enforcing the surface height
changes between pairs of neighboring columns. More specifically, for any pair of
neighboring columns p and q, the shape change of surface Si between p and q can

be measured by hi
pq D Si.p/ � Si .q/. Assume that h

i

pq represents the learned shape
change model. The deviation of the shape changes from the learned model (that is,

jhi
pq � h

i

pqj) is penalized by a convex function fs.h
i
pq � h

i

pq/. In addition, we can

enforce the possible ranges of the shape change deviations with jhi
pq � h

i

pqj � �i
pq

(namely, a hard shape constraint), where �i
pq is a given shape change deviation

parameter between columns p and q for surface Si .
For a set of surfaces, the context prior is enforced by penalizing the surface

distance changes between two adjacent surfaces. Let Si and Sj be two adjacent
surfaces in the set of � target surfaces, and without loss of generality, assume that
Si is on the top of Sj . The surface distance between Si and Sj on column p is

defined as d
ij
p D Si .p/ � Sj .p/. Denote by d

ij
p the learned prior surface distance

model. As for the shape prior constraint, the deviation of the surface distances from

the learned model (i.e., d
ij
p � d

ij
p) is penalized by a convex function fc.d

ij
p � d

ij
p/.

We may also enforce the possible range of the surface distance deviation on each

column p, for instance, jd ij
p � d

ij
pj � ı

ij
p , which is called a hard context constraint.

Two additional terms are added into the energy function E .S / (see Eq. (16)) to
incorporate the shape and context priors, with
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E .S / D
�X

iD1

X

I .x;y;z/2Si

bi .x; y; z/ C
�X

iD0

X

I .x;y;z/2Ri

ci .x; y; z/ C

�X

iD1

X

.p;q/2Ns

fs.h
i
pq � h

i

pq/

„ ƒ‚ …
shape prior penalty term

C
X

p

X

.i;j /2Nc

fc.d ij
p � d

ij
p/

„ ƒ‚ …
context prior penalty term

; (15)

where Ns denotes the pairwise neighboring relation of all columns in the image I
and Nc specifies a set of interacting surface pairs for which the surface context
constraint needs to be enforced. The problem is to find an optimal set S of �

surfaces, such that (1) each surfaces satisfies the hard shape constraint; (2) each
pair of surfaces satisfies the hard context constraint; and (3) the energy E .S / in
Eq. (15) is minimized. We call this problem an OMSD with both shape and context
priors (OMSD-P).

The basic idea for solving the OMSD-P problem is to transform it to computing
a so-called minimum-cost s-excess set in a directed graph. Instead of forcing no
arc leaving the sought node set as in the minimum-cost closed set problem, the
minimum s-excess problem [7, 25, 38] charges a penalty onto each arc leaving the
set (i.e., the tail of the arc is in the set while the head is not). More precisely, given a
directed graph G0 D .V 0; E 0/, each node v0 2 V 0 having an arbitrary weight w0.v0/
and each edge e0 D .u0; v0/ 2 E 0 having a non-negative cost c0.u0; v0/, the minimum-
cost s-excess problem seeks a node subset X 0 � V 0 such that the cost �.X 0/ of
X 0, with �.X 0/ D P

v02X 0 w0.v0/ C P
.u0 ;v0/2E0

u0
2X 0 ;v0

2V 0
�X 0

c0.u0; v0/, is minimized. Our

goal is to construct a both arc- and node-weighted graph so that: (1) the feasibility
of the sought surfaces is enforced with the graph structure; (2) the total on-surface
and in-region cost of the surfaces is encoded as the total node-weight of the s-excess
set; and (3) the total shape-prior penalty and the context-prior penalty is encoded as
the total cost of the cut induced by the s-excess set. The minimum-cost s-excess
problem can be solved by using a maximum flow algorithm [25].

4.5.2 Arc-Weighted Graph Construction

We construct a graph G D .V; E/ consisting of � node-disjoint subgraphs fGi D
.Vi ; Ei/ j i D 1; 2; : : : ; �g to transform the OMSD-P problem into computing a
minimum-cost s-excess set in G. Note that the hard shape and context constraints
in the OMSD-P problem are essentially the same as the surface smoothness and
separation constraints in the OMSD problem. Each subgraph Gi is constructed as in
Sect. 4.4 for the OMSD problem. The hard shape constraint is enforced between any
two neighboring columns in Gi ; and the hard context constraint is encoded between
the corresponding columns in Gi and Gj for any two interacting surfaces Si and
Sj . To translate to the minimum-cost s-excess problem, we assign a C1 weight to
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each arc added so far to the graph G. We next put additional arcs in G to incorporate
both the shape prior penalty term and the context prior penalty term.

Let p.x; y/ and q.x0; y0/ denote any two neighboring columns in I . For
the shape prior penalty term, we want to “distribute” the shape prior penalty

fs.h
i
pq � h

i

pq/ to arcs between the two adjacent columns Coli .p/ and Coli .q/ in
Gi . Two intertwined questions need to be answered: (1) how to put arcs between
the two columns; and (2) how to assign a non-negative cost to each arc (negative arc
weights make the minimum-cost s-excess problem computationally intractable)?
Fortunately, the convexity of fs.�/ can be used to resolve the problems. Define the
(discrete equivalent of) second derivative of fs.�/ as

Œfs.�/�00 D Œfs.� C 1/ � fs.�/� � Œfs.�/ � fs.� � 1/�:

The first derivative of fs.�/, Œfs.�/�0 D fs.� C 1/ � fs.�/, will be used to guide the

introduction of new arcs between Coli .p/ and Coli .q/. Consider each � D hi
pq �h

i

pq

with ��i
pq < � < �i

pq. We distinguish the following three cases for all possible z
(0 � z < Z). Note that we do not show the boundary conditions to avoid cluttering
the exposition of the key ideas.

• If Œfs.�/�0 � 0, an arc with a weight of Œfs.�/�00 is added from vi .x; y; z/ to

vi .x
0; y0; z � h

i

pq � �/.
• If Œfs.�/�0 � 0, an arc with a weight of Œfs.�/�00 is added from vi .x

0; y0; z/ to

vi .x; y; z C h
i

pq C �/.
• Assume that fs.�/ has its minimum at �0. We put in an arc from vi .x; y; z/ to

vi .x
0; y0; z � h

i

pq � �0/ whose weight is Œfs.�
C
0 /�00 WD fs.�0 C 1/ � fs.�0/. In

addition, an arc with a weight of Œfs.�
�
0 /�00 WD fs.�0 � 1/ � fs.�0/ is introduced

from vi .x
0; y0; z/ to vi .x; y; z C h

i

pq C �0/ .

Figure 20 shows an example graph construction for incorporating the shape prior
penalty term.

The context prior penalty term is enforced in a similar way by introducing
weighted arcs between corresponding subgraphs. Suppose Si and Sj are two
interacting surfaces. For each column p.x; y/ in I , by making use of the (discrete

equivalent of) second derivative of fc.�/, the context prior penalty fc.d
ij
p � d

ij
p/ is

distributed to the arcs between the corresponding columns Coli .p/ and Colj .p/ in
the subgraphs Gi and Gj , respectively. An example construction is shown in Fig. 21.

4.5.3 Computing a Minimum-Cost s-Excess Set

From the construction of the graph G and the argument for the OMSD problem in
Sect. 4.4, to show that a minimum-cost s-excess set can be used to define an optimal
set of � surfaces for the OMSD-P problem, we need to demonstrate that: (1) the total
weight of the arcs cut by a feasible surface Si between two neighboring columns
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Fig. 20 Arc-weighted graph construction for the incorporation of the shape prior penalty on
surface Si between neighboring columns p and q [37]. The intra-column arcs are shown in orange

with C1 weight. The hard shape constraint jhi
pq �h

i

pqj � �i
pq is enforced by green arcs. Here we

suppose h
i

pq D 0 and �i
pq D 2. The shape prior penalty is incorporated by arcs with dashed lines

(brown, purple, yellow, and gray). Here we assume that Œfs.0/�0 D 0 and fs.0/ D 0. The target
surface Si cuts arcs with weight Œfs.1/�00 (brown) and Œfs.0

C/�00 D fs.1/ � fs.0/ (yellow). The
total weight is equal to fs.2/

Fig. 21 Arc-weighted graph construction for the incorporation of the context prior constraints
between subgraphs Gi (red) and Gj (blue) on column p [37]. The hard context constraint jd ij

p �
d

ij
pj � ı

ij
p is incorporated by green arcs. Here d

ij
p D 1, ı

ij
p D 1. The context-prior penalty is

enforced by gray and purple arcs. Assume that Œfc.0/�0 D 0 and fc.0/ D 0. The pseudo-surface S

(connecting Si and Sj ) cuts arcs with weight Œfc.0C/�00 (gray). The total weight is equal to fc.1/

Coli .p/ and Coli .q/ equals the shape prior penalty fs.h
i
pq � h

i

pq/; and (2) the total
weight of the arcs cut by the pseudo-surface of two interacting surfaces Si and Sj

(connecting the node vi .p/ 2 Coli .p/ on the surface Si and the corresponding node
vj .p/ 2 Colj .p/ on the surface Sj for all the columns p) equals the context prior

penalty fc.d
i
pq � d

i

pq/. The reader is referred to [7] for the detailed proof.
A minimum s-excess set X � in G can then be computed by using a minimum s–

t cut algorithm [7,25]. If the minimum s-excess set in G thus obtained is empty, we
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can first apply on G the same transformation as in Sect. 4.4 to compute a minimum
nonempty s-excess set in G.

4.5.4 Surface Recovery

The minimum s-excess set X � can be used to specify an optimal set of � surfaces
as in Sect. 4.4.

4.6 Layered Graph Search for Segmentation of Objects
with Complex Shapes

This section generalizes the OSD framework for solving the problem of detecting
boundary surfaces for objects with complex topologies. Several key issues need
to be resolved for the success of this generalization: (i) how to obtain relevant
information about the target object boundaries; (ii) how to capture such information
by a graph; and (iii) how to search the graph for the optimal surfaces of the target
objects. The following five steps constitute the general strategy to address these
three key issues.

Step 1: Pre-segmentation. Image segmentation frequently starts with the local-
ization of the object of interest (to distinguish the object from other objects
in the image). Given an input 3D/4D image, a pre-segmentation obtains an
approximation to the (unknown) surfaces for the target object boundaries.
Such approximate surface detection methods are generally available, e.g., using
parametric deformable models (cf. [39–42]), geometric deformable models
(cf. [43–45]), and other similar approaches. The pre-segmentation gives useful
information about the topological structures of the target objects.

Step 2: Mesh Generation. From the resulting approximate surfaces, a mesh is
constructed. The mesh is used to specify the structure of a graph GB, called
base graph. GB defines the neighboring relations among voxels on the sought
(optimal) surfaces. Trivial surface geometries (e.g., terrain-like, tubular, or
spherical surfaces) may not need a pre-segmentation and allow a direct definition
of a mesh.

Step 3: Image Resampling. For each voxel v on the sought surfaces, a vector of
voxels is created that is expected to contain v. This is done by resampling the
input image along a ray intersecting every vertex u of the mesh (one ray per
mesh vertex). These voxel vectors produced by the resampling form a new image.
A big challenge for image resampling is how to avoid column interference (see
Fig. 22). A few methods based on medial axes [46, 47] and the electric lines of
force (ELF) [11] have been developed for resolving this problem. Steps 1–3 were
developed for solving the issue (i) from the (i)–(iii) list presented at the beginning
of this section.
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EdgesFig. 22 Illustrating image
resampling with column
interferences [46].
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introduce disordered
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Step 4: Graph Construction. A weighted directed graph G is built using the
vectors of voxels (columns) in the resampled image. Each column corresponds to
a list of nodes in G. G is a geometric graph since it is naturally embedded in a d -
D space (d � 3). The neighboring relations among voxels on the sought surfaces
are represented by the adjacency relations among the columns of G, as specified
by the edges in the base graph GB. Each column contains exactly one voxel on
the sought surface. The edges of G enforce constraints on the sought surfaces,
such as smoothness and inter-surface separation. The node costs of G can encode
edge-based and region-based cost functions. This step solves the issue (ii).

Step 5: Graph Search. The OSD scheme ensures that the sought optimal surfaces
correspond to a structure of interest in the weighted directed graph G (as proven
in [7–9]). The sought optimal surfaces are obtained by searching for a minimum-
cost closed set in G. This step solves the issue (iii).

4.7 Example Applications and Extensions

4.7.1 Segmentation of Retinal Layers in Optical Coherence Tomography
Volumes

Ophthalmology has recently witnessed a transformation with the relatively recent
(since 2007) commercial availability of volumetric spectral-domain optical coher-
ence tomography (SD-OCT) images of the eye. The retinal layers are one important
structure within SD-OCT images of the back of the eye as these layers often change
in the presence of blinding diseases such as glaucoma, diabetic retinopathy, and age-
related macular degeneration. For example, the retinal nerve fiber layer and ganglion
cell layer are known to thin in glaucoma. The need for multiple layered surfaces
within SD-OCT volumes makes the graph search approach discussed in Sect. 4.4 an
excellent choice for their segmentation [10]. For example, Fig. 23 illustrates the use
of the graph search approach (with both on-surface and in-region cost terms) for the
simultaneous segmentation of seven major surfaces within an SD-OCT slice of the
macular region. While the segmentation result of Fig. 23 was obtained through the
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Automatically generate on-surface and in-region cost images.
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y
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Fig. 23 Example simultaneous segmentation of seven layered surfaces from SD-OCT slice using
the multisurface graph-theoretic approach [7, 9, 10]. Given the input image, seven on-surface cost
images and eight in-region cost images are first automatically generated. Given these cost images,
along with feasibility constraints, the graph-based approach finds the optimal set of surfaces. While
2D images are shown for illustrative purposes, in practice the cost functions and generated and
layer segmentations are obtained in 3D

simultaneous segmentation of all seven surfaces using the graph search approach, in
practice, the surface segmentation often occurs in groups with the “easier” bounding
surfaces being simultaneously segmented first (e.g., surfaces f1, f6, and f7 from
Fig. 23) followed by the simultaneous segmentation of the more difficult interior
surfaces [10,48]. In addition, a multi-resolution approach is often used for efficiency
purposes [49,50] with up to 11 surfaces commonly being segmented, depending on
the ophthalmic application. The cost functions for use in the segmentation of the
retinal layers have been both designed primarily “by hand” [10,51] (e.g., specifying
an edge-based filter for bright-to-dark and dark-to-bright on-surface edge-based
terms) in possible combination with learning the parameters for specifying the
relative importance between in-region and on-surface cost terms as in [10] and/or
using a machine-learning approach for a more complete automated design on the
cost function terms [52].

In specifying the feasibility constraints for use for the simultaneous segmentation
of the retinal layers, instead of specifying global smoothness and surface-interaction
constraints (as described in the early versions of the graph search approach),
one can specify varying constraints such that each location (i.e., each pair of
neighboring columns for smoothness constants and each column for surface-
interaction constraints) has its own (potentially different) values for the constraint
[10]. The particular values of these location-specific constraints can be learned from
a training set [10] to enable, for example, greater changes in surface position to be
allowed near the expected location of the fovea of the macula and the cup of the optic
nerve head. Soft smoothness constraints can also be imposed through the addition
of arc-weighted edges [37] as discussed in Sect. 4.5.

4.7.2 Segmentation of Prostate and Bladder in Computed Tomography
Scans

This section shows how to apply the OSD framework for the segmentation of
prostate and bladder in CT images [53–55]. The segmentation of pelvic structure is
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Fig. 24 Workflow for simultaneous segmentation of the bladder and the prostate

particularly difficulty. It involves soft tissues that present a large variability in shape
and size. Those soft tissues also have similar intensity and have mutual influence
in position and shape. To overcome these difficulties, multiple constraints (i.e., the
shape prior and the context prior) are incorporated into the segmentation process
using the method in Sect. 4.6. The workflow is shown in Fig. 24.

Initial Model. First, a pre-segmentation step is performed to construct an initial
model for each target object, which contains the basic topological information.
A 3D geodesic active contour method [56] is conducted for pre-segmentation of
the bladder. Three user-defined points are required as an initial input. The prostate
shows a much better coherency in shape than the bladder. Hence the mean shape
of the prostate is computed from the training set of manual contours. Then an
approximate bounding box of interest for the prostate is interactively defined and
the obtained mean shape is roughly fitted into the never-before seen CT images
using rigid transformations as the initial model of the prostate. Note that the
model only serves to provide basic topological structural information; thus accurate
segmentation is not required at this stage. Overlapping between the models of
the bladder and the prostate is also allowed, which can be resolved in the graph
optimization step. From the pre-segmentation results, two triangulated meshes
M1.V1; E1/ and M2.V2; E2/ are constructed respectively using an isosurfacing
algorithm (Fig. 25), where Vi (i 2 1; 2) denotes the vertex set of Mi and Ei denotes
the edge set of Mi .

Graph Construction. The weighted graph Gi .N; A/ is built from the triangulated
mesh Mi as follows. For each vertex v 2 Vi , a column of K nodes n.v; k/ is created
in Gi , denoted by p.v/ (Fig. 25b). The positions of nodes reflect the positions
of corresponding voxels in the image domain. The length of the column is set
according to the required search range. The number of nodes K on each column
is determined by the required resolution. The direction of the column is set as the
triangle normal. The nodes on the same column are connected by the intra-column
arc from n.v; k/ to n.v; k � 1/ with an infinity weight, as described in Sect. 4.3.
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Fig. 25 (a) Triangulated meshes for the bladder (yellow) and the prostate (blue) based on initial
models. (b) Corresponding graph construction. An example 2D slice is presented. p.v/ represents
the column with respect to the vertex v on the mesh. Dots represent nodes ni 2 Gi . Two subgraphs
G1 and G2 are constructed for the segmentation of the bladder and the prostate, respectively.
Note that in the interacting region (dashed box), for each column p.v1/ 2 G1, there exists a
corresponding column p.v2/ 2 G2 with the same position. The inter-surface arcs (purple) between
corresponding columns enforce the surface context constraints in the interacting region

The intra-column arcs make sure that the surface containing exactly one node in
each column.

Each column also has a set of neighbors, i.e., if .v; u/ 2 Ei , then p.v/ and p.u/

are neighboring columns. The shape prior penalty serves to keep the topology of the
original shape model. Specifically, for any pair of neighboring columns p and q, the
shape change is defined by hi

pq D Si .p/ � Si.q/. Note that the graph is constructed

based on the mesh of the initial shape model. Thus the original shape prior h
i

pq is
equal to 0. The shape prior penalty of surface Si is set as fs.h

i
pq/, where fs.�/ is

a convex function penalizing the shape changes of Si on p and q. For bladder and
prostate segmentation, the penalty function is set with the form: fs.h

i
pq/ D ˇ �.hi

pq/2,
where ˇ is a parameter learned from the training data. The shape prior is enforced
by introducing additional arcs as in Sect. 4.5.

To avoid the overlapping of two target surfaces, a “partially interacting area”
is defined according to the distance between two meshes, which indicates that the
two target surfaces may mutually interact with each other at that area. To model
the context relation, for each column p.v1/ 2 G1 in the partially interacting area,
there exists a corresponding column p.v2/ 2 G2 with the same position in I , and
the target surfaces S1 and S2 both cut those columns, as shown in Fig. 25b. For
implementation, a one-to-one correspondence between two surface meshes needs
to be computed on the partially interacting region. We project the pre-segmented
prostate surface mesh on the interacting region to the mesh of the pre-segmented
bladder boundary surface. Then we use the projected mesh patch to replace the
original bladder surface mesh on the interacting region. Thus, a one-to-one mesh
correspondence on the interacting region is established since the two new meshes on
that area have exactly the same topological structure. In this way, two graphs share
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the same nodes’ positions in the partially interacting area. The non-overlapping
constraint is enforced in the area as the hard context prior constraint by adding arcs
between corresponding columns using the approach proposed in Sect. 4.5. No soft
context prior penalties are introduced in our energy.

The optimal set S of two surfaces corresponding to the bladder and the prostate
can then be found by minimizing the following energy through the constructed
graph:

E .S / D
2X

iD1

Eboundary.Si / C
2X

iD0

Eregion.Ri / C
2X

iD1

Eshape.Si / (16)

The boundary energy term serves as an external force, which drives the mesh
towards the best fit to the image data. The shape energy term functions as an internal
force, which keeps the shape of the original model and restricts the flexibility of the
mesh. To incorporate the learned regional information, an additional region energy
term is added in our energy function. Specifically, two surfaces for the bladder
and the prostate naturally divide the volume into three regions denoted by R0, R1,
and R2, which corresponds to the region enclosed by the bladder surface S1, one
between S1 and the prostate surface S2 at the partially interacting area, and the
region enclosed by S2, respectively. Our region energy term Eregion.Ri / reflects the
region property of all voxels inside Ri . An example cost function design for this
application can be referred to [55].

The illustrative results in three views are displayed in Fig. 26a–d. The 3D repre-
sentation is shown in Fig. 26e. From all views, the proposed algorithm produces a
very good delineation of both the bladder and the prostate in the 3D space. The
shape prior constraints succeed to keep the original topological structure of the
target organs. No overlapping of the bladder and the prostate is found due to the
enforcement of the context constraints.

4.7.3 Robust Delineation of Pulmonary Tumors Using Surface-Region
Context

This section presents a segmentation method that integrates the graph cut method
with the OSD method for segmenting the target objects of an arbitrary shape
mutually interacting with terrain-like surfaces [57]. This scenario widely exists in
the medical imaging field. For instance, lung tumors may be in touch with lung
parenchyma or close to the diaphragm (Fig. 27a), and fluid and fluid-associated
abnormalities may appear in between the retinal layers (Fig. 27b). The delineation
of such a target object could be very challenging due to the similar intensity profiles
of the surrounding tissues. However, in that setting, the boundary surfaces of the
adjacent structures of the target object can serve as valuable prior information to
help separate the target object from those structures. It is expected to be promising
to simultaneously segment those boundary surfaces together with the target object.
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Fig. 26 Typical slices of the simultaneous segmentation result of the bladder (yellow) and the
prostate (blue) in 3D CT images. (a and b) Transverse view. (c) Sagittal view. (d) Coronal view.
(e) 3D representation of the segmentation result

Fig. 27 Examples of surface and region interactions [57]. (a) Example slices of a lung tumor
(red) in megavoltage cone-beam CT. The tumor is attached/adjacent to the diaphragm (green).
(b) Example slices of a fluid-filled region (green) in retinal optical coherence tomography (OCT).
The fluid region is surrounded by intraretinal layers

The computational feasibility is achieved by integrating the graph cut method in
Sect. 3 and the OSD method in Sect. 4. The integration of those two methods into
one single optimization process, yet still admitting globally optimal solutions, will
certainly become a more powerful tool for medical image analysis.

We illustrate the method using lung tumor segmentation on Mega-Voltage Cone
Beam CT (MVCBCT) images. WLOG, assume that the CBCT image I is oriented
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Fig. 28 A sketched example
of a 2D slice from a 3D
image [57]. The terrain-like
surface S is shown in blue
and the tumor region R of
arbitrary shape is shown in
brown. Col.p/ and Col.q/

indicate two neighboring
columns in the image, and
S.p/ D 2 and S.q/ D 3

such that the target surface S intersects each column Col.p/ of p.x; y/ in I , and
the target tumor is below the surface (Fig. 28). The same principles used for this
illustration are directly applicable to multiple pairs of surfaces and regions with
interactions between those two types of targets. The method can also handle the
case when the tumor region is above the target surface [57].

The neighborhood setting of those columns is specified by Ns . Let S.p/ denote
the height (z-coordinate) of the surface S on the column Col.p/. The OSD method
is adopted to compute the surface S . Each voxel v.x; y; z/ 2 I is associated with
an on-surface cost b.x; y; z/, which is inversely related to the likelihood that the
desired surface S indeed contains the voxel. We can also incorporate the shape prior
of the target surface S as in Sect. 4.5. The optimal surface S can be computed by
minimizing the following energy function:

Es.S/ D
X

v.x;y;z/2S

b.x; y; z/ C
X

.p;q/2Ns

hpq.S.p/ � S.q//; (17)

where hpq.�/ is a convex function.
The graph cut method in Sect. 3 is employed to segment the target tumor region

R. Let fv denote the label of each voxel v 2 I : fv D 1 means that v belongs to
the target tumor region R and fv D 0 means that v is in the background. The MRF
energy Ec for segmenting the tumor region R can be expressed as follows:

Ec.f / D
X

v2I

Dv.fv/ C
X

.vi ;vj /2Nc

Vi;j .fvi ; fvj /; (18)

where Nc defines the neighboring setting between voxels, and Dv.�/ and Vi;j .�; � � � /
are the data term and the boundary term in the graph cut method (Sect. 3),
respectively.

The geometric interaction relation between the boundary surface S and the target
tumor region R is to enforce that R is at least d > 0 voxels “below” S . Denote by
�v the penalty of a tumor voxel v 2 R that violates the interaction constraint. We
introduce a surface-region interaction penalty term Esurf�tumor, which is the total
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Fig. 29 The surface-region interaction constraint in which the region R tends to be positioned
“lower” than the terrain-like surface S [57]. For voxels v 2 R and S.p/�z.v/ < d with v 2 Col.p/

(yellow voxels), a penalty �v is enforced; d is set as 1

penalty of those tumor voxels that violates the interaction constraint (Fig. 29). More
specifically, let z.v/ denote the height (z-coordinate) of voxel v 2 I , and v is on
the column Col.p/ of p.x; y/ (that is, the x- and y-coordinates of v is x and y,
respectively). Then, if v 2 R and S.p/ � z.v/ < d , a penalty �v is enforced. Hence,

Esurf�tumor.S; f / D
X

v2I

X

v2Col.p/
S.p/�z.v/<d

�v � fv: (19)

To enforce the boundary surface prior, we co-segment the tumor region as well as
the boundary surface by minimizing the energy function E .S; f /, with

E .S; f / D Es.S/ C Ec.f / C Esurf�tumor.S; f /: (20)

To optimize the energy function E .S; f /, two subgraphs, Gc D .Nc; Ac/

and Gs D .Ns; As/, are constructed to encode the terms Ec.f / and Es.S/,
respectively, using the approaches in Sects. 3 and 4.5. For each voxel v.x; y; z/ 2 I ,
denote by nc.x; y; z/ (ns.x; y; z/) the node in Gc (Gs) corresponding to v. The
surface-region penalty term Esurf�tumor is incorporated by adding directed arcs
between the corresponding nodes of the two subgraphs with a weight of the penalty
for violating the interaction constraint. More specifically, for each voxel v.x; y; z/, a
directed arc from nc.x; y; z/ to ns.x; y; zCd/, whose weight is �v, is added between
the two subgraphs Gc and Gs (Fig. 30). Note that we do not consider the boundary
conditions here to avoid cluttering the exposition of the key ideas.

Once the graph is constructed, a globally optimal solution can be found by
solving a single maximum flow problem, which minimizes the total energy E .S; f /

in a low-order polynomial time [57].
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Fig. 30 The introduced arcs in the constructed graph to enforce the surface-region interaction
constraint. The node column Cols.p/ (Colc.p/) in the subgraph Gs (Gc) corresponds to the column
Col.p/ of voxels in the input image. The green arcs introduced to enforce the interaction constraint.
The two arcs with a red cross indicate the penalties for the present surface violating the interaction
constraint

Fig. 31 A typical tumor segmentation result [57]. (a) One 2D slice of 3D MVCBCT image
with outlines of spherical initialization. (b) Manual segmentation of the lung tumor—independent
standard. (c) Simultaneous region-and-surface segmentation of the diaphragm (green) and the lung
tumor (blue) using the reported approach showing excellent segmentation performance—the Dice
similarity coefficient (DSC) is 0:878. (d) The 3D representation of the diaphragm (green) and the
tumor (blue)
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Fig. 32 Performance comparison on a difficult case. (a) Independent standard obtained by manual
segmentation and shown in one 2D slice of the 3D volume. (b) Tumor segmentation failure
resulting from the conventional graph cut method—DSC D 0:70. (c) Tumor segmentation obtained
using the method that simultaneously segments the tumor (blue) and the lung boundary surface
(shown in yellow and green in two orthogonal directions)—DSC D 0:84

Figure 31 shows a typical tumor segmentation result on a pulmonary MVCBCT
dataset. Figure 32 demonstrates a segmentation result on a difficult case, in which
the tumor is closely adjacent to the lung boundary surface from two directions.
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