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Abstract. In this paper we present a data-flow based approach to static
model analysis to address the problem of current methods being either
limited in their expressiveness or employing formalisms which complicate
seamless integration with standards and tools in the modeling domain.

By applying data-flow analysis - a technique widely used for static pro-
gram analysis - to models, we realize what can be considered a generic
“programming language” for context-sensitive model analysis through
declarative specifications. This is achieved by enriching meta models
with data-flow attributes which are afterward instantiated for models.
The resulting equation system is subjected to a fixed-point computation
that yields a static approximation of the model’s dynamic behavior as
specified by the analysis. The applicability of the approach is evaluated in
the context of a running example, the examination of viable application
domains and a statistical review of the algorithm’s performance.

1 Introduction and Motivation

Modeling languages have become a prominent instrument in the field of com-
puter science as they enable the formalization of an application domain’s con-
cepts, their properties and the relationships between them. An abstract syntax
given in the form of a meta model allows to validate and enforce structural
constraints and fosters automated processing of the formalized information, e.g.
through code generation or model transformations. In addition, the rise of mod-
eling techniques has lead to new approaches to software engineering such as the
Model-driven Architecture [1] and Model-based Testing [2].

Since their introduction, the OMG’s [3] Meta-Object Facility (MOF) and
derived languages like the Unified Modeling Language (UML) have become the
de-facto standard in industry and research alike. Building upon a common meta
meta model, the MOF’s M3 layer, a family of M2 languages has evolved with
applications ranging from software engineering to business process management.

An important factor for the popularity of modeling techniques is that they
are often perceived to provide an intuitive way for practitioners to formalize
application domains. However, the less rigorous theoretical framework can also
be a serious drawback when attempting to assert a model’s correctness: Although
the basic form of the language expressions (models) is given by the abstract
syntax (meta model), it is often necessary to enforce additional constraints on

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 707–723, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



708 C. Saad and B. Bauer

the language’s structural layout. The subset of these constraints that can be
statically verified is known as the static semantics or the well-formedness rules
of a language. To formalize these rules, a technique is required that allows to
enrich meta model elements with a specification of their static semantics.

Over time, existing formal approaches have been proposed for the purpose
of model analysis. However, this usually involves a translation of (meta) models
into logic-based representations [4, 5] resulting in a gap between the two domains
that can be difficult to manage on a technical level but may also lead to problems
on a conceptual level as model-specific semantics have to be mapped to the logic-
based systems on which the analyses are defined and executed.

This issue is addressed by the OMG’s Object Constraint Language (OCL)
which allows to annotate constraints at meta model elements and to evaluate
them for models. However, limitations of its expressiveness due to its static nav-
igational expressions are the subject of ongoing discussion [6, 7]. The closure()
operator1 introduced in version 2.3.1 (January 2012) of the specification only
applies to Set types and is limited to calculating the transitive closure of a rela-
tionship. Finally, it has been argued that OCL itself lacks a proper formalization
[8] and multiple proposals have been made to address this problem [9–11].

The approach detailed in this paper represents a generic, declarative method
for computing properties that can be derived from the structural layout of a
model. It is based on attribute grammars (AG) and data-flow analysis (DFA),
two well-understood and well-defined methods from the field of compiler con-
struction used to validate static semantics and to derive optimizations from a
program’s control-flow respectively. Data-flow analysis is a powerful method that
implicitly provides support for transitive declarations. For example, the follow-
ing (recursive) definition computes the transitive closure of the parent relation-
ship: allParents = directParent ∪ directParent.allParents. Since DFA
applies fixed-point semantics to resolve cyclic dependencies, analyses can derive
static approximations of dynamic behavior, e.g. by computing which nodes will
be visited on all paths leading to an action in an activity diagram.

In this paper we detail the approach initially outlined in [12]. Its intended
target audience are language engineers responsible for developing (model-based)
domain-specific languages (DSL) and tooling as opposed to users of the imple-
mented languages (who may also be developers in their respective domain).

The presented methodology allows to attach data-flow attributes to elements
of MOF-based meta models in a fashion similar to OCL’s derived attributes.
These attributes can then be automatically instantiated and evaluated for de-
rived models. Result computation consists of the execution of data-flow rules,
applying fixed-point evaluation semantics when necessary. Structural differences
between modeling and formal languages required an adaption of the worklist
algorithm commonly employed to solve DFA equation systems.

The proposed analysis specification language is a textual DSL which itself
is based on a meta model that is tied to the MOF. On a technical level, the

1 An example use case would be the enforcement of non-cyclic generalization hierar-
chies for Classifiers: self->closure(superClass)->excludes(self).
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presented approach therefore integrates with standards, languages and tools in
the modeling domain, avoiding the inherent difficulties in the application of
formal methods. Its applicability is evaluated in the context of several use cases.

This paper is structured as follows: In Section 2, we outline basic principles of
data-flow analysis and attribute grammars. Their suitability for model analysis
is examined in Section 3.1 through a comparison of the domains of modeling and
formal languages. Section 3.2 describes the structure and semantics of the speci-
fication language while Section 3.3 demonstrates how resulting equation systems
can be computed taking into account the adjustments made to traditional DFA.
The approach is evaluated in Section 4 and its versatility is exemplified through
several use cases in Section 5. We conclude with a survey of related work and a
summary of the approach along with an outlook on future developments.

2 Background

Data-flow analysis (DFA, [13]) is a method commonly used in compiler construc-
tion in order to derive context-sensitive information from a program’s control-
flow, usually for optimization purposes. Canonical examples for this approach
include the calculation of reaching definitions or variable liveness analysis.

Data-flow equations are annotated at control-flow nodes n ∈ N and operate on
sets containing values from a specific value domain: Applying a join operatorΔ ∈
{⋂,

⋃} to the output values calculated at neighboring nodes in the flow graph
yields the input value for each node: in(n) = Δm∈Θ(n)out(m) where Θ is either
the direct predecessor or successor relationship. By using values at preceding
nodes as input, information is propagated in a forward direction2. Inserting
the intersection operator for Δ retains only values which are contained in any
incoming set, i.e. information which reaches a node on all of its incoming paths,
while the use of the union operator aggregates results “arriving” on any incoming
path. The result out(n) is determined by removing (kill) information which
is locally destroyed and adding (gen) information which is locally generated:
out(n) = gen(n)∪ (in(n)−kill(n)). The equation system formed by the entirety
of all equation instances induces a global information flow throughout the graph
as local results are distributed along outgoing paths.

In the presence of back edges in the control-flow, the equation system contains
cyclic dependencies. This case is handled by applying fixed-point evaluation
semantics: First, all nodes are initialized with either the empty set in the case
of Δ =

⋃
, or the complete value domain for Δ =

⋂
. Then, the equations are

evaluated repeatedly until all values are stable. This indicates that the most
accurate approximation, a minimal or maximal fixed-point, has been detected.
The existence of a fixed-point itself is guaranteed if operations are monotonic
and performed on values which have a partial order with finite height.

2 Some analyses, for example the detection of live variables, require information flow
in a backwards direction in which case the process is reversed, i.e. results calculated
at successor nodes are used as the equations’ arguments.
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A canonical optimization is the worklist algorithm: Starting with the execu-
tion of the flow-equation at the entry node, each time the (re)calculation of an
equation yields a value that differs from its previous result, the equations at the
depending nodes are added to the worklist since they are the ones affected by
the new input. This process is repeated until the worklist is empty.

A second technique for static analysis used in compiler construction are at-
tribute grammars. Introduced by [14], they are used to analyze context-sensitive
information - e.g. the set of defined variables - depending on the layout of the
language expression’s syntax tree. Traditional AGs extend a context-free gram-
mar G with a set of attributes A, each of which is assigned to a (non) terminal
symbol X ∈ N ∪ T and is either of the type Inh (inherited) or Syn (synthe-
sized). The attributes can be thought of as property fields of the nodes in the
syntax trees, their values being calculated by semantic rules R assigned to the
productions that describe how an attribute value can be calculated from the
values of other attributes in the same production. Semantic rules are given in
the form Xi.a = f(...), where a is an attribute assigned to Xi and f is an arbi-
trary function that calculates a result for a based on its arguments. This leads
to information being transported from one place in the AST to another, either
bottom-up (synthesized) or top-down (inherited). Therefore, attribute grammars
can be considered to be form of data-flow analysis [15] and support the definition
of regular DFA if supplemented with fixed-point semantics [16, 17].

3 Data-Flow Based Model Analysis

3.1 Applying Data-Flow Analysis to Models

Transferring DFA to the modeling area requires a careful consideration of con-
ceptual similarities and differences between the domains of formal languages and
modeling. As discussed in [18, 19], relationships between these technical spaces
can be identified by aligning their respective layers of abstraction.

Fig. 1. Alignment of abstraction layers Fig. 2. Analysis specification/instances

Figure 1 illustrates how MOF employs a common meta meta model on the M3
abstraction layer to implement capabilities for defining M2 meta models which
represent the abstract syntax of a modeling language. Prominent examples in-
clude the Unified Modeling Language (UML) and the Business Process Modeling
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Notation (BPMN). In MOF terminology models, e.g. UML diagrams or BPMN
processes, are located on M1. A model is syntactically valid if it complies with
the syntactic restrictions defined in its meta model. A similar hierarchy is used
by formal languages, more specifically context-free grammars, which are used for
programming language specification. In addition to enforcing syntactic correct-
ness, the integrity of static semantic constraints can be validated by extending
the grammar with semantic attributes as described in Section 2.

From a conceptual view point, the analysis of instances (models / syntax trees)
therefore requires analysis specification on the language level which has to be
supported by appropriate constructs on the M3/language definition layer. In the
DFA context, a method is required which enables to assign flow equations to meta
model elementsModelM1 �MetaModelM2 alongside semantics for instantiating
and solving the analysis for arbitrary models (� signifies instanceof).

To accomplish this, an approach was chosen that mirrors the concept of at-
tribute grammars to assign semantic attributes to meta model elements. While
this could be achieved by either extending the M3 layer or the meta model with
constructs for analysis specification, this would lead to incompatibilities with
standards and tools that depend on compliance to MOF. Instead, attributes
and their instantiations are defined separately (Figure 2), allowing all artifacts
to remain unaware of the analyses. The language for analysis specifications -
termed Attributions is given by an attribution meta model (Attr.MM ) while
their instantiations are defined by a separate meta model (Instance MM ).

Computing flow-based analyses for models requires adaptations of the tradi-
tional algorithms for evaluating attribute grammars and DFA. The reason for
that is that edges in model graphs - which are instances of associations or refer-
ences defined in its meta model - denote relationships between objects which may
possess arbitrary semantics depending on the domain for which the meta model
was defined. In fact, associations between elements are often not directed, and
if they are, two elements may be connected via multiple paths with undefined
semantics in the context of flow-analysis. As such, they cannot be aligned with
edges in flow graphs which carry the implicit semantics of a control flow, making
it safe to automatically route information along incoming/outgoing paths.

In attribute grammars, attributes in syntax trees depend on results from the
same grammatical production as input. This means that different rules may
apply in different contexts depending on the production instance’s respective
neighbors in the syntax tree. In that, productions compare to classifiers in the
meta model while the occurrences of productions in the syntax tree correspond
to objects in the model. However, compared to syntax trees, the graph structure
of models does not offer an easily identifiable direction for inheritance/synthesis.

In summary, information flow in models is highly specific to an application
domain and an analysis since they don’t possess an inherent flow direction as ex-
ists for control-flow graphs and syntax trees. This problem can be circumvented
by ensuring that information is routed only along relevant, analysis-dependent
paths: To provide maximal flexibility, rather than flow-equations being auto-
matically supplied with input values depending on the context in which they
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appear, they must be able to request required input as needed. Input/output
dependencies between attribute instances are therefore encoded inside the flow-
equations, thereby superimposing the model with a (dynamically constructed)
data-flow graph. The work-list algorithm must be adapted to record dependen-
cies as they become visible through the execution of the rules and to schedule
the re-computation of unstable attribute values using this information.

3.2 Analysis Specification and Instantiation

In this section we describe the language for analysis specification and the in-
stantiation semantics in the context of a running example. They are based on
and comply to the Essential MOF (EMOF) subset of MOF and have been im-
plemented using the Eclipse Modeling Framework (EMF, [20]).

Fig. 3. Analysis meta model (Attr.MM) Fig. 4. Instantiation MM

Figure 3 shows the elementary concepts of the analysis specification meta
model: In the notion of attribute grammars, attribute occurrences indicate the
presence of attribute definitions (of the type assignment or constraint) at classes
(EClass) in the target meta model. Attribute extension containers connect these
occurrences to meta model classes through the attributedClass relationship. At-
tached to the definitions and occurrences are semantics rules (corresponding to
data-flow equations) that calculate the fixed-point initialization and iteration
values respectively. They may be defined in an arbitrary language for which the
language interpreter implements an interface to the DFA solver (cf. Section 3.3).

The instantiation meta model (cf. Figure 2) is shown in Figure 4. Each at-
tribute instance links to the occurrence from which it was instantiated and to
the model object for which it was created. Depending on the attribute definition
type, it is either an assignment instance, returning a result value complying to
the definition’s data type, or a constraint instance of type boolean indicating
whether a constraint/well-formedness rule was violated.

This is exemplified in Figure 5(a) which shows a reachability analysis an-
notated at a control-flow graph meta model. It is assumed that an attribute
definition with the id is reachable, the type boolean and the initialization
value false was specified. Two occurrences of this definition have been assigned
to the classes node and startnode, the latter overwriting the first to always
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(a) Attributed meta model (b) Abstract syntax of the attribution

Fig. 5. Reachability analysis defined for control-flow graph meta model

return true at instances of startnode. The abstract syntax of the attributed
meta model can be seen in Figure 5(b). The OCL rule uses the injected operation
is reachable()3 to request the value of this attribute at the respective prede-
cessor nodes from the DFA solver, resulting in a recursive definition in which a
node is considered to be reachable if at least one of its predecessors is reachable.

The instantiation semantics for attributes follows the EMOF semantics for the
instantiation of meta model classes: An attribution AT(MM, ATDEF , ATRULE ,
ATOCC , ATDT , ATTY PE , ATANN )4 extends a meta model MM(MMCL,
MMGEN ) given by the set of classes MMCL and their generalization relation-
ships MMGEN indicating inheritance of structural and behavioral features in
accordance to EMOF semantics. The attribution consists of attribute defini-
tions ATDEF , each possessing a data type (ATDT ) and an initialization rule
(ATRULE) assigned by the relation ATTY PE . Furthermore, the annotation re-
lation ATANN ties each occurrence in ATOCC to a class c ∈ MMCL and an
iteration rule in ATRULE .

An instantiation INST(AT, M, INSTAT , INSTLINK) contains attribute in-
stances INSTAT for an attribution AT and a model M � MM with objects MOBJ

and a relation MTY PEOF denoting their class type. For each obj ∈ MOBJ , an
attribute instance i ∈ INST exists iff there are ≥ 1 occurrences occ ∈ ATOCC

for the class type of obj or its super-types. To realize overwriting at subtypes the
most specialized type is used. This can be implemented by starting at a model
object’s concrete type and traversing the generalization hierarchy upwards. For
the first occurrence of each distinct attribute definition which is encountered an
instance is created. Multiple inheritance is only supported if generalization rela-
tions are diamond-shaped and a unique occurrence candidate can be identified.

The control-flow model in Figure 6 depicts the instances of the attribute
is reachable which are attached to the corresponding model elements. The
dashed lines indicate the implicit dependencies encoded in the flow equations.
The corresponding abstract syntax representation is shown in Figure 7.

The meta model is complemented by a concrete syntax using the Eclipse
Xtext parser/editor generator which maps grammatical symbols to meta model

3 Attribute access operations can be automatically injected into an OCL environment:
For all attribute definitions connected to a class through occurrences, an operation
is added to the class with the id of the definition and the data type as return type.

4 Multiple attributions can be merged if they extend the same meta model.



714 C. Saad and B. Bauer

Fig. 6. Attributed model Fig. 7. Abstract syntax

elements. The syntax comprises all relevant artifacts: Attribute definitions, at-
tribute extensions, semantic rules and datatypes. Except attribute extensions
(and the therein contained attribute occurrences), all objects can be cross-referenced
by other parts of the attribution. This excerpt from the language’s grammar
defines the declaration syntax for assignments and occurrences and their con-
nection to the targeted meta model classes:

Attribution returns attribution::Attribution:
’attribution’ id=ID ’{’ ( (attrDefinitions+=AttributeDefinition)∗ &

(attrSemanticRules+=SemanticRule)∗ &
(attrDataTypes+=AttrDataType)∗ &
(attrExtensions+=AttrExtension)∗ ) ’}’ ;

AttributeDefinition returns attributes::AttrDefinition:
’attribute’ (AttrAssignDefinition | AttrConstDefinition) ;

AttrAssignDefinition returns attributes::AttrAssignDefinition:
’assignment’ id=ID (name=STRING)? (‘‘[”description=STRING‘‘]”)? ’:’

dataType=[datatypes::AttrDataType]
’initWith’ initializationRule=[semanticrules::AttrSemanticRule] ’;’ ;

AttrExtension returns attributes::AttrExtension:
’extend’ attributedClass=[ecore::EClass] ’with’ ’{’ (attributes += AttrOccurrence)∗ ’}’ ;

AttrOccurrence returns attributes::AttrOccurrence:
’occurrenceOf’ definedBy=[attributes::AttrDefinition]
’calculateWith’ calculatedBy=[semanticrules::AttrSemanticRule] ’;’ ;

The following example5 specifies the attributes is reachable,
all predecessors and scc id which perform reachability analysis and
calculate a node’s transitive predecessors as well as strongly connected
component (SCC) membership.

attribution flowanalysis {
– attribute definitions (consisting of id, data type and initialization rule)
attribute assignment is reachable : OCLBoolean initWith boolean false;
attribute assignment all predecessors : OCLSet initWith set empty;
attribute assignment scc id : OCLBoolean initWith int zero;

– semantic rules (ocl rules using helper operations injected into OCL environment)
rule ocl isreachable node : standard
” self .incoming.source. is reachable()−>includes(true)”;

rule ocl allpredecessors node : imperative
” self .incoming.source ∪ self .incoming.source. all predecessors ()”;

5 Common types (e.g. OCLBoolean) and rules for trivial calculations such as
boolean true are contained in a “standard library” omitted here for lack of space.
For the same reason, imperative OCL statements were converted to formula.
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rule ocl sccid node : imperative
” self ∪ self . all predecessors () == self.incoming.source. all predecessors ()”;

– attribute occurrences (define occurrences and bind them to classes)
extend node with {
occurrenceOf is reachable calculateWith isreachable node;
occurrenceOf all predecessors calculateWith allpredecessors node ;
occurrenceOf scc id calculateWith sccid node;

}
extend startnode with {
occurrenceOf is reachable calculateWith boolean true;

}
}

3.3 Dynamic, Demand-Driven Fixed-Point Analysis

Compared to an exhaustive algorithm, a demand-driven DFA solver limits com-
putation to a subset of requested results [21]. In this context, this subset corre-
sponds to a set of requested instances INSTAT (REQ) ⊆ INSTAT , e.g. all instances
of a specific attribute, all attributes located at a given class etc. However, un-
known to the solver, transitive dependencies to instances INSTAT�INSTAT (REQ)

may exist. For example, scc id relies on all predecessors. INSTAT (REQ) must
therefore be expanded dynamically on discovery of these dependencies.

Because dependencies between attribute instances are “hidden” inside flow-
equations, traditional methods for call-graph construction [22, 23] are not appli-
cable. The dependency graph that superimposes the attributed model therefore
has to be constructed on-the-fly during the fixed-point computation using dy-
namic dependency discovery. As a side-effect, support for the inclusion of transi-
tive dependencies as described above is implicitly provided by such an algorithm.

The adapted worklist algorithm carries out the following steps: The requested
instances INSTAT (REQ) are initialized before their associated iteration rules are
executed. If a rule requests another instance’s value as input, this access is relayed
to the solver which is thereby able to record the dependency between the calling
and the called instance and at the same time can discover calls to attributes
not in INSTAT (REQ). A new iteration starts at the leaves of the constructed
dependency graph, i.e. at instances without input dependencies, and at cyclic
dependencies whose values are updated after each iteration.

As an optimization for this method in the context of flow-based model anal-
ysis, we propose a demand-driven, iterative algorithm that constructs and oper-
ates on a directed acyclic dependency graph with multiple root and leaf nodes.
Each root node represents an attribute instance not required as input by other
instances. Leaves are either instances which themselves do not depend on input
or so-called reference nodes that indicate the presence of cyclic dependencies
and are used to trigger the fixed-point computation. This method compensates
for the absence of a CFG structure by maintaining a set of starting points for
the fixed-point iterations (the leaf nodes) while the identification of independent
branches enables parallelized computation. It also provides a comprehensive rep-
resentation of the computation process useful for debugging purposes.
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(a) Recorded dependencies (b) After iteration it0 (c) Final result after it1

Fig. 8. Dependency discovery and result computation

In the first phase of the evaluation process, the DFA equations corresponding
to the instances from INSTAT (REQ) are executed. By monitoring the
input requests during the rules’ execution, the solver is able to construct an ini-
tial dependency graph from the recorded data-flow dependencies. The graph is
then converted into an acyclic representation by identifying cyclic dependencies
through a depth-first traversal strategy and replacing back edges with reference
nodes. Finally, all instances in are reset to their respective initialization value.
This is demonstrated in Figure 8(a) for the example presented in Figure 6: The
back edge between is reachable instances at nodes 3 and 2 has been replaced
by a reference node and all values have been reset to false.

In the second phase, the graph is traversed repeatedly in a bottom-up fash-
ion, starting at unstable leaf nodes. Each instance node’s iteration rule can be
executed once its input dependencies have been satisfied, i.e. all of its children
have been either executed or do not have an unstable node in their transitive
children set. Parallelization is possible if rules are executed through a working
queue to which the parents of traversed nodes are added once the aforemen-
tioned condition applies. Since rules are free of side effects, it is safe to stop
traversal at nodes if their execution yields the same result for an instance as in
the last iteration. This avoids unnecessary recalculations of stable results. Af-
ter the traversal, unstable instances at cyclic dependencies can be detected: A
reference node is classified as unstable if its result from the previous iteration
it(n−1) is different from the current iteration (itn) value at the referenced node.
As long as instances with values that differ between iteration it(n−1) and itn
are identified, a new fixed-point iteration it(n+1) is triggered starting with the
parents of the unstable reference nodes. For the first iteration it0, all leaves are
classified as unstable with the DFA initialization values representing it(n−1).

Figure 8(b) shows the result after the initial iteration with the highlighted
nodes representing the executed rules. Since is reachable at the model object
2 now differs from its previous value, the new result is transferred to the reference
node. Its predecessor, the instance at model node 3, is scheduled as starting point
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for bottom-up traversal in it1. The stable fixed point is reached after iteration
it1, shown in Figure 8(c). Since the value for model object 1 has not changed,
the traversal can be aborted without recalculation of 2 and E.

The discovery of new dependencies during the evaluation process can result
in the introduction of additional nodes, the reconnection of existing nodes or the
merging of previously separate graphs. To handle this case, the required mod-
ifications are postponed until after the current iteration itn finishes. Then, an
intermediate step itn′ is carried out in which the existing graphs are extended
by repeating the chain-building steps of phase 1 for the discovered attribute
instances. For iteration it(n+1), re-evaluation is scheduled to start at the small-
est set of leaf nodes that includes all newly created instances and nodes which
introduced new dependencies to existing instances as parents.

4 Evaluation

In this section we present our findings in the evaluation of the scalability of
the fixed-point computation for models. Both the number of rule executions in
relation to the amount of instances and the time for the analysis are indicators for
its performance aspects. The goal is a qualitative assessment of the applicability
of the approach for the analysis of large models. The evaluation employs the
attributes defined in Section 3.2 - is reachable, all predecessors and scc id

- as well as all predecessors min which calculates the dominating sets, using
equivalent bitvector-based implementations of the semantic rules. To evaluate
the scalability with respect to the amount of instances, five models have been
generated randomly to contain 50, 100, 500, 1000 and 2000 nodes. Except the
start and the final node, each node has exactly two outgoing connections to
arbitrary targets. Because each attribute is calculated for each node, the number
of results therefore amounts to four times the number of nodes. The computation
has been carried out with the algorithm described in Section 3.3 and a modified
worklist algorithm that does not construct a dependency graph to demonstrate
the unoptimized application of traditional DFA to the modeling context. The
values represent the median of 90 of 100 analysis runs (to eliminate caching
issues, the first 10% have been discarded) on an Intel i7 2,20GHz computer.

Fig. 9. Number of rule executions Fig. 10. Analysis time in ms (log. scale)
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Figure 9 shows the total amount of rules executed in the fixed-point iterations.
The time in milliseconds is pictured in Figure 10 using a logarithmic scale. From
the results it can be deduced that while the worklist method is faster at a
lower number of instances, it is soon outperformed by the dependency graph
approach. This can be explained by the overhead induced by the complex data
structures maintained by the graph-based algorithm. The dependency graph
algorithm breaks even between 100 and 500 nodes (400-2000 instances) as the
time and the amount of rule executions scales with the total number of results.

In the master thesis [24] our approach has been applied to detect illegal back-
ward data dependencies in AUTOSAR6 models. The author concludes that with
an execution time of 2.4 seconds (including pre-analysis steps) for the TIMMO-
2-USE breaking system use case, the “case study shows that the analysis tool is
able to cope with medium sized systems”.

5 Applications

The presented approach has been applied to different domains to verify its vi-
ability and versatility as a technique that supports a wide range of use cases.
The open source Model Analysis Framework7 (MAF, [25]), was developed as
a proof-of-concept platform and a reference implementation. The tooling suite
is built on top of Eclipse technology such as the Eclipse Modeling Framework,
Xtext, MDT OCL and M2M QVT. It contains a DFA solver module which can
be integrated into third party applications and an IDE that supports analysis
specification, configuration and debugging.

(a) Minimal availability (b) Maximal availability

Fig. 11. Minimal and maximal availability of d3

Multiple analyses (available from the MAF repository) have been implemented
for Eclipse’s Java Workflow Tooling8 (JWT) project - a tooling suite for mod-
eling executable business processes. In the process shown in Figures 11(a) and
11(b), resource objects have been assigned to business actions, outgoing arrows
denoting the production and incoming arrows the use of a resource.

6 http://www.autosar.org, http://www.timmo-2-use.org/
7 http://code.google.com/a/eclipselabs.org/p/model-analysis-framework/
8 http://www.eclipse.org/jwt/

http://www.autosar.org
http://www.timmo-2-use.org/
http://code.google.com/a/eclipselabs.org/p/model-analysis-framework/
http://www.eclipse.org/jwt/
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Flow-analysis can now be used to detect whether resources will be available
at steps where they are required as input. Fixed-point computation yields two
results: We can track the propagation of resources assuming that all paths are
taken (Δ =

⋃
, maximal availability) and the case where only information is

regarded arriving on all paths at once (Δ =
⋂
, minimal availability). The latter

case differs from the former if resources are created inside cycles or in diamond-
shaped (i.e. alternative) paths because not every execution of such a process
will traverse these paths. In the figures the availability of the resource d3 is
highlighted in green. The notable difference lies in node 5 where d3 will only be
available after the cycle has been traversed at least once. This is reflected in the
minimal availability result depicted in Figure 11(a). It indicates that it cannot
be guaranteed that the resource will be available at 5 on all executions of this
process. On the other hand, from Figure 11(b) we can deduce that there is at
least one path on which d3 will have been created once we arrive at this point.

By combining this information with the local input/output of each node, the
user can be given an indication about the validity of the process with respect
to resource availability. This use case can be extended in multiple ways, e.g. to
approximate how many instances of a resource must be provisioned if it can be
accessed multiple times at once in parallel execution paths.

Additional use cases which are currently being evaluated include the detection
of structural clones, the formalization of modeling guidelines and the computa-
tion of model metrics for different application domains (cf. [26]).

Currently, the Model Analysis Framework is also used in several research
projects, including the ITEA2 project VERDE9 and WEMUCS10 (IuK Bayern).

VERDE employs state-machines to derive test cases in the notion of model-
based testing (cf. Deliverables 5.3.1, 5.4.2). Subjecting them to static analysis
therefore enables early feedback to the developer on whether a model conforms
to its intended behavior. Specifically, DFA is used to compute edge coverage
information to drive test path generation and to perform a variable analysis in
the notion of compiler construction on the code embedded in the state machine’s
states and transitions. Results of static analysis are used to detect relevant test
cases, e.g. paths where variables are accessed that might not have been initialized
or adopt border case values. Applying static analysis to state machine models
presents a unified approach that enables early violation detection and indication
of potential problems as well as a focused test case generation.

The goal of the ongoing WEMUCS project is to provide methods and tools for
the development, optimization and testing of software for embedded multi-core
systems. The analysis of AUTOSAR models (cf. Section 4) is used to iden-
tify dependencies between functions (RunnableEntities) incurred by their data
accesses. The dependencies detected using DFA are used to derive a valid execu-
tion order for the entities (or to ask for manual problem resolution if this is not

9 Validation-driven design for component-based architectures,
http://www.itea-verde.org/

10 Methods and tools for iterative development and optimization of software for em-
bedded multicore systems, http://www.multicore-tools.de
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possible). Afterward, a DFA implementation of the token flow algorithm [27] is
applied to the constructed control-flow graph to cluster the entities into single-
entry-single-exit (SESE) components. These components represent parallelizable
blocks and can subsequently be used as input for a scheduling algorithm.

6 Related Work

The canonical method for formalizing the static semantics of modeling languages
is the Object Constraint Language which was recently extended with the ability
to handle transitive closures11. However, as a constraint language it is not well
suited for the derivation and approximation of context-sensitive information - a
limitation removed by the fixed-point semantics of the data-flow method.

Several attempts were made to convert UML models with annotated OCL
constraints to other technical spaces by translating constraints into satisfiabil-
ity problems [28–30]. With the existence of powerful OCL interpreters, these
methods are not strictly required for constraint evaluation, however in some
cases they provide additional features, e.g. snapshot generation [31], to validate
whether the semantics of the modeling language are preserved.

The relevance of flow-based analysis is evident from the amount of research
work that employs DFA: The authors of [32] convert UML sequence diagrams to
control-flow graphs for validation purposes while [33, 34] attempt to improve test
case generation from statecharts. Def-use relationships for UML Action Seman-
tics are derived in [35] and [36] applies DFA to identify patterns for translating
graph-oriented BPMN models into block-oriented BPEL code. While originally
given as an imperative algorithm, the SESE decomposition proposed in [27] was
easily converted to a declarative flow analysis (cf. Section 5). It can be assumed
that these methods could have profited from the presented approach as a unified
method for defining flow-based analyses in their respective domains.

Although there are many usage scenarios for DFA in the modeling area, there
exists - to our knowledge - only one approach that is directly comparable in
that it provides a generalized technique for analysis specification and evalua-
tion: JastEMF [37] translates meta models to circular reference attribute gram-
mars (CRAG) [38], an extension of traditional attribute grammars, by mapping
the containment hierarchy of the meta model to grammatical productions. Both
the cross-references between meta model elements and semantic specifications
(comparable to flow equations) are then defined as semantic attributes. CRAGs
support fixed-point evaluation semantics through designated remote and circu-
lar attributes. Compared to the flow-analysis, this method strongly relies on the
formalism of formal languages and attribute grammars, substituting the syntax
tree with the model’s containment tree to which the notion of attribute inher-
itance/synthesis is applied while the graph structure of the model has to be
specified as part of the analysis in form of reference attributes.

11 http://www.omg.org/issues/issue13944.txt

http://www.omg.org/issues/issue13944.txt


Data-Flow Based Model Analysis and Its Applications 721

7 Conclusions and Outlook

In this paper we presented an approach for static model analysis in the notion
of data-flow analysis, a well-understood technique from the field of compiler
construction. The stated goal was to provide language engineers with a unified
method for complementing (existing) model-based DSLs with static analysis ca-
pabilities. By validating well-formedness constraints and deriving static approxi-
mations of behavioral properties based on contextual, flow-sensitive information,
many aspects of modeled systems can be evaluated on a conceptual level.

To motivate the applicability of flow analysis, we studied the relationships be-
tween the area of formal languages, in which this method is traditionally applied,
and the field of modeling. Based on an alignment of the respective abstraction
layers, we proposed an analysis specification DSL that transfers the underlying
principles to the modeling domain. Because this language itself is model-based,
it closely integrates with the target domain, eliminating the need for transfor-
mations between different technological and conceptual backgrounds and thus
reducing the effort for implementation and usage. Since analyses are defined non-
intrusively and arbitrary languages can be used to specify DFA equations, full
compatibility with existing modeling languages and tools is retained and flexi-
bility is provided with regard to adaption to diverse technological ecosystems.

As opposed to traditional DFA where dependencies between flow-equation in-
stances are derived from the control flow itself, the ambiguous edge semantics in
model graphs make the automatic propagation of results along these paths im-
practical. To overcome this problem, we use a demand-driven, iterative algorithm
supporting the dynamic discovery of dependencies during solving. It allows for
partial parallelization and its performance has been evaluated experimentally.

In conclusion, this approach provides the capabilities and the versatility re-
quired to implement sophisticated analyses - as demonstrated in the context of
several use cases - along with a close integration with modeling concepts, namely
the widely-used OMG standards. It provides a generic “programming language”
for specifying declarative analyses that rely on an examination of flow-sensitive
properties. The application range also extends to structural models, e.g. com-
puting metrics for UML class diagrams such as the Attribute Inheritance Factor
(AIF) relating the inherited attributes at a class to all available attributes [39].

Next steps include the examination of additional application areas and an
evaluation of practical experiences with relation to the specification process.
The solving algorithm will be complemented with a formalized description and
in-depth evaluation. A “standard library” containing common flow analyses will
be defined to serve as starting point for custom implementations.

References

1. Object Management Group. Model-Driven Architecture (June 2003),
http://www.omg.org/mda/

2. Apfelbaum, L., Doyle, J.: Model based testing. In: Software Quality Week Confer-
ence, pp. 296–300 (1997)

http://www.omg.org/mda/


722 C. Saad and B. Bauer

3. Object Management Group (OMG) specifications, http://www.omg.org/spec
4. Malgouyres, H., Motet, G.: A UML model consistency verification approach based

on meta-modeling formalization. In: Proceedings of the 2006 ACM Symposium on
Applied Computing, pp. 1804–1809. ACM (2006)

5. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to alloy and back again. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Heidelberg
(2010)

6. Mandel, L., Cengarle, M.V.: On the expressive power of OCL. In: Wing, J.M.,
Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, p. 854. Springer, Heidelberg (1999)

7. Baar, T.: The definition of transitive closure with OCL – limitations and applica-
tions. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 358–365.
Springer, Heidelberg (2004)

8. Brucker, A.D., Doser, J., Wolff, B.: Semantic issues of OCL: Past, present, and
future. Electronic Communications of the EASST 5 (2007)

9. Cengarle, M.V., Knapp, A.: A formal semantics for OCL 1.4. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 118–133. Springer, Heidelberg
(2001)
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