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Abstract. This paper presents an approach to developing self-adaptive
systems that takes the end users’ preferences into account for adaptation
planning, while tolerating incomplete and conflicting adaptation goals.
The approach transforms adaptation goals, together with the run-time
model that describes current system contexts and configurations, into a
constraint satisfaction problem. From that, it diagnoses the conflicting
adaptation goals to ignore, and determines the required re-configuration
that satisfies all remaining goals. If users do not agree with the solution,
they can revise some configuration values. The approach records their
preferences embedded in the revisions by tuning the weights of existing
goals, so that subsequent adaptation results will be closer to the users’
preferences. The experiments on a medium-sized simulated smart home
system show that the approach is effective and scalable.

1 Introduction

Self-adaptability is an important feature of modern software-based systems. In
adaptive systems, an adaptation agent monitors changes on a system or its
environment, plans an appropriate configuration, and reconfigures the system
accordingly [1–3]. Adaptation planning is guided by a set of policies, which
specifies the desired system configuration under different contexts [4].

Adaptation policies are likely to be incomplete and conflicting: Under some
particular context, either there may be multiple configurations that fit the goals,
or no configuration can satisfy all the goals simultaneously. Such imperfect poli-
cies are practically unavoidable. Firstly, it is difficult for developers to eliminate
all incompleteness and conflicts by enumerating every possible composition of
the contexts to add extra policies. Secondly, the system may be constructed from
existing components, each of which carries separately developed, and thus poten-
tially conflicting, policies. At runtime, imperfect policies will result in multiple
possible adaptation solutions. An adaptation agent has to choose one solution
from them, but which one is the best may depend on who is using the system.
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A promising improvement on self-adaptation is to tolerate imperfect policies,
and do adaptation planning while considering end user preferences [1, 5, 6].
This paper takes such an approach, building the method over approaches based
on models at runtime. [2, 7, 8]. By wrapping heterogeneous target systems as
standard run-time models, we implement adaptations on top of model reading
and writing, guided by model constraints in the form of OCL invariants. The
challenges of this approach are threefold: 1) How could adaptation on run-time
models and declarative model constraints be solved automatically; 2) How should
user preferences be coded and utilized in adaptation planning; 3) What is an
appropriate interface for end users to express their preferences?

The contributions of this paper can be summarized as follows.

– We design a partial evaluation semantics on OCL to automatically transform
a run-time model into a constraint satisfaction problem (CSP) [9]. The vari-
ables of CSP are the context and configuration attributes, and constraints
are from the current values of these attributes and the OCL invariants.

– We provide a novel approach to planning adaptations on CSP. We use con-
straint diagnosing to determine the optimal set of constraints to ignore, and
then use constraint solving to assign new configuration values that satisfy
the remaining constraints. User preference is reified as different weights of
the constraints, and a constraint with higher weight will more probably be
satisfied.

– We provide a straightforward way for end users to express their preference:
After each round of adaptation, we allow users to directly redress the adapta-
tion result, and in the background, we tune the weights of existing constraints
according to the user’s revision.

We evaluated the approach on a simulated smart home system. The adapta-
tion significantly reduced the number of violated goals, and after a few rounds of
preference tuning, the adaptation results became much closer to the simulated
user preferences. The approach scales to medium-sized systems: An adaptation
with 2000 constraints took 2 seconds on average. All implementation code and
experiment results are available on-line [10].

The rest of the paper is structured as follows. Section 2 gives an overview
of the approach, with a simplified running example. Sections 3 to 5 present
the three technical contributions. Section 6 shows the experiments and results.
Section 7 introduces related approaches, and Section 8 concludes the paper.

2 Approach Overview

2.1 Background and Terminology

A run-time model is a model that presents a view of some aspect of an execut-
ing system [11]. In this paper we focus on structural run-time models [7] that
present the structural composition of a system, and the attribute values of dif-
ferent compositional elements. Some of these attributes describe an observation
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of a system, such as room temperature, while some others describe ways to ma-
nipulate a system, such as the state of an electronically controllable switch. We
name these contexts and configurations, respectively. A run-time model is dy-
namically synchronized with the executing system, which means that the model
state s ∈ S (the elements and all their attribute values), at any time point, is
the snapshot of the system at this time point, and transferring the state to s′

(by giving new values to some configuration attributes) will cause the system
to change accordingly. The set of all the possible model states S is defined by a
meta-model. System adaptation based on a run-time model is a process to read
the model state s, and then plan a new state s′.

We use model constraints on run-time models as the adaptation policies to
guide the adaptation planning [1]. A model constraint is a function cons : S → B.
For a model state s ∈ S, if cons(s) = � (we use � for true and ⊥ for false) we
say s satisfies cons. The objective of an adaptation is to make the model satisfy
as many constraints as possible. From this perspective, the role played by model
constraints in our approach conforms to the definition of goal policies, as they
“directly specify desired system states” rather than “define how to achieve them”
[1, 5]. In the rest of this paper, we call these model constraints adaptation goals
in order to avoid ambiguity with the concept of constraints in CSP, as follows.

A constraint satisfaction problem (CSP) [9], or in particular a satisfiability
modulo theory (SMT), is composed of a set of variables V and a set of first order
logic constraints C over these variables. A constraint solver checks if there exists
a labelling function f : V → D that assigns a value to each variable and these
values satisfy all the constraints. If so, we say the CSP (V,C) is satisfiable, and
the solver returns such an f . Some solvers divide constraints into hard and weak
ones, i.e., C = Ch∪Cw, and weak constraints can be ignored when necessary. For
an unsatisfiable problem, the solver returns a sample of conflicting constraints
from Cw. From the samples, we can construct a diagnosis Cd ⊆ Cw, such that
(V,C − Cd) is satisfiable. This process is called constraint diagnosing [12].

2.2 Motivating Example

We use a simple smart home system as a running example throughout this paper.
Cheap but powerful sensors are now available, which collect a diversity of data
from our living environment, and devices are frequently employed to make many
household items electronically controllable. This enables and requires dynamic
adaptation of an entire home when the environment changes, in order to improve
living qualities and to save resources. At the same time, such a smart home is
a highly personalized system. For the same context, different users may expect
different adaptation effects.

Figure 1 describes a simplified domain model of smart home. The left part is a
meta-model defining the types of system elements, the context information such
as electricity price, time, room temperature, and the configuration points such
as turning on or off the water heater. The heating system can work on different
settings: 0 for off, 5 for fairly hot and 10 for very hot, etc. The right part of
Figure 1 lists five adaptation goals, i.e., “when it is cold, the heatings should
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name:String (id)
eprice:Real (context)
time: Real (context)

House

name:String (id)
temp:Real (context)
air:Int (context)

Room

room*

on:Bool (config)
WaterHeater

wh

opened:Bool (config)
Window name:String(id)

setting:Int (config) [0..10]

Heating
heating*

window*

context Room 
  inv: temp < 10 implies heating.setting->sum()  > 
    4 * heating->size();
  inv: window->forAll(e | e.opened = false) or 
    heating->forAll(e | e.level = 0);
  inv: air > 5 implies window->exists(e | e.opened)
context WaterHeater:
  inv: house.time<2 or house.time>8 or on
context House
  inv: price >15 implies (not wh.on or room.heating
    ->flatten()->forAll(e:Heating | e.setting < 4)

house

Fig. 1. Sample smart home meta-model and adaptation goals

be at sufficient settings for comfort”, “do not open window when the heating is
on”, “do open window when air quality is bad”, “keep water heater on in the
early morning”, and “when the electricity is expensive do not use water heater
and strong heating together”. The five sample goals are both incomplete and
conflicting: The first does not point out a specific value for the heating settings.
Alternatively, when it is cold and the air is bad, we can never satisfy the first
three goals simultaneously.

Guided by such goals, there may not be a single perfect adaptation decision,
and our solution is to take user preferences into account. For example, if we know
the user prefers “heating 1 to work in setting 10”, then we can choose setting
10 for this heating whenever it is one of the choices. For another example, if the
user regards the third goal has a lower priority than others (he is more tolerable
of smelly air), then when this goal conflicts with others, we sacrifice it first.

Since the smart home system targets end users who are probably without a
computer science background, it is a burden for them to add new goals or tune
the goal weights manually. Therefore, we provide a simplified interface: after each
time of adaptation, the users can further revise the configuration by changing
some of the attributes with the values they prefer. According to the revision, the
approach generates goals or tunes the weights in the background.

2.3 The Adaptation Approach with User Preference

This paper presents a dynamic adaptation approach guided by the domain model
and user preferences. Figure 2 shows the approach architecture, where solid
arrows indicate the main adaptation loop at runtime, and dashed arrows are the
post-adaptation reference recording. The trident lines are the user intervention.

The system context and configuration are captured by a run-time model [7],
such as the one shown in the left part of Figure 3. The construction and mainte-
nance of run-time models are out of the scope of this paper, and some techniques
can be found elsewhere [8, 13, 14]. Adaptation planning and preference tuning
based on runtime models have the following three activities.

The approach first transforms the current run-time model into a CSP, such
as the one shown on the right of Figure 3. It transforms each context or config-



Self-adaptation with End-User Preferences 559

adaptaion
 revision

domain 
modeling

new 
config

meta 
model
(MOF)

adaptation 
goals
(OCL)

runtime 
model

system

CSP 
generation

CSP
constraint 

solving
user 

preference

new 
config

runtime 
model' preference 

recording

domain experts end user

design time
input
temporal artifact
at runtime

persistent
artifact

activity

adaptation 
data flow

pref tuning
data flow
human 
intervention

Fig. 2. Approach overview

eprice = 20.0
time = 2

house:House

on = true
:WaterHeater

temp = 9
air = 6

liv:Room

opened=false
:Window

setting=3
h1:Heating

setting=0
h2:Heating

room

wh

window

heating heating

var: ep, time, air, temp, h1set, h2set, whon, winop
hard con: 0 ≤ h1set ≤ 10, 0 ≤ h2set ≤ 10
ep = 20.0, time = 2, air = 6, temp = 9
weak con: 1whon = T , 2h1set = 3, 3h2set = 0

4winop = F , 5temp < 10 → h1set+ h2set > 8

6winop ∨ (h1set = 0 ∧ h2set = 0)

7air > 5 → winop, 8time < 2 ∨ time > 8 ∨ whon

9ep > 15 → (¬whon ∨ (h1set < 4 ∧ h2set < 4))
weight(1-4)=4, weight(5)=20, weight(6-9)=10

Fig. 3. Sample smart home runtime model and the generated CSP

uration attribute from each model element into a variable. The hard constraints
are generated from configuration domains and current context values, as they
cannot be violated after adaptation. The weak constraints are generated from
configuration values and adaptation goals. The key technical idea here is a par-
tial evaluation of the OCL language to identify the mapping from the attributes
mentioned in OCL rules to the variables, which we will explain in Section 3.

Based on the generated CSP, the adaptation planning is to change the values
of some of the configuration variables, so that the new configuration values,
together with the current context, satisfy as many goals as possible. The planning
begins by deciding which configuration variables to change, and which goals to
ignore. This step boils down to finding an optimal diagnosis of the CSP. For
example, from the CSP in Figure 3, we can find a diagnosis (2,7,9), such that if
we change the value of h1set, we can find a solution(h1set = 9) to satisfy all
the goals except 7 and 9. Since different diagnoses lead to different adaptation
solutions, to help grade diagnoses (and the adaptation results), we assign each
weak constraint a weight, and a constraint with bigger weight is more likely to be
satisfied. The adaptation result is the one corresponding to the diagnosis with
the minimal total weight. Under the weights shown in the bottom of Figure
3, diagnosis (2,7,9) has the minimal total weight 24. Section 4 presents our
constraint diagnosing and solving approaches.
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After each automated adaptation, if users change some of the configuration
attributes, we record their preferences by tuning the weights of existing goals
or generating new ones. Following our running example, if the user revises the
adaptation result by increasing h1set to 10, we will generate a new constraint
h1set = 10. Now if in any case the adaptation engine needs to choose a value
for h1set, it will first consider the value 10. As another example, if the user also
opens the window, we will decrease the weights of 4 and 6, and increase the weight
of 7 (as will be shown in Section 5). Next time under the same circumstance,
we would find a different optimal diagnosis (2,4,6,9), and the window would be
automatically opened.

3 Transforming a Run-Time Model to CSP

This section presents how we transform the run-time model and the OCL adap-
tation goals into a CSP. The inputs of the transformation are MOF meta-model
and OCL invariants (Figure 1), and the current run-time model (Figure 3). The
output CSP is in the form of variables and first order logic (FOL) constraints
on them. The right part of Figure 3 illustrates the abstract and mathematical
form of the CSP (the concrete form is in Z3Py [15]).

We generate a variable from each context or config attribute of each model
element, i.e., genvar : M ×Elem×Attr ⇀ V . For an element e from the current
run-time model m, and an attribute a ∈ e.Class.AllAttributes that is annotated
as context or config, we get a variable v = genvar(m, e, a). From the model
instance as shown in Figure 3, we generate 8 variables listed on the right. The
constraints are generated from the domains of configuration attributes, the cur-
rent context and configuration values, and the adaptation goals. Except for goals,
the generation is straightforward, with self-explainable samples in Figure 3.

To transform the goals into FOL constraints, we replace the context and
config attributes in the OCL invariants by the corresponding variables, resolve
the static values in the run-time model, and maintain the operations between
them. The challenge is that the OCL invariants are defined in the meta-model
level, without concretely mentioning any model instances, whereas the FOL con-
straints are based on the variables that are generated from a particular model
instance. We implement the transformation by defining a new partial evaluation
[16] semantics on the OCL expressions, i.e., [[expr]]env : M → C. The seman-
tics on each expression expr is a function from a run-time model m ∈ M to a
constraint c ∈ C. Here env is an environment recording the mapping from OCL
variables to values or model elements. As a simple example, if m is the model
instance in Figure 3, then [[self.temp < 10]]{self�→liv1}(m) = t < 10, where
t = genvar(m, liv1, temp).

Figure 4 lists an excerpt of the partial evaluation semantics on some typical
forms of OCL expressions. For a data value in type of boolean, integer or real,
we directly generate the value literal (1). For an OCL variable, we find its value
from the environment and continue to evaluate this value (2). If the expression
does not mention any context or configuration properties, we execute the OCL
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1. [[val]]c(m) = literal(val); 2. [[var]]c(m) = [[c(var)]]c(m);
3. [[expr]]c(m) = [[ocleval(m, expr, c)]]c(m)
if expr does not mention any context/config attributes
4. [[expr.attr]]c(m) = genvar(m, ocleval(expr, c), attr); if attr is context/config
5. [[expr1 + expr2]]c(m) = [[expr1]]c(m) + [[expr2]]c(m);
6. [[expr1 and expr2]]c(m) = And([[expr1]]c(m), [[expr2]]c(m));
7. [[expr->sum]](m) = [[v1]]c(m) + ...+ [[vn]]c(m), v1...vi ∈ ocleval(m, expr, c);
8. [[expr1->forAll(e|expr2)]]c(m) =
And([[expr2]]c∪{e�→vi}(m),...), vi ∈ ocleval(m, expr1, c);
9. [[let e = expr1in expr2]]c(m) = [[expr2]]c∪{e �→ocleval(expr1,c)}(m);

Fig. 4. The partial evaluation semantics on OCL to generate constraints

query to get its result (normally a value), and then evaluate the result (3). If the
expression is to access a context or configuration property, we obtain the host
model element and use its accessed attribute to locate the variable in CSP (4).
For the mathematical and logical OCL operations, we generate the corresponding
FOL operation (5 and 6), following the Z3Py format (e.g., it uses And(a,b) for
conjunction). For an operation on collection, we obtain the host collection first,
and then combine the partial evaluation of each collection item (7, 8). For let
or iteration expressions where new variables are introduced (8, 9), we resolve
the variable value first and put it to the environment before evaluating the sub
expressions. Using this semantics, we transform the OCL invariants by traversing
all the model elements in the current run-time model.

4 Adaptation Planning Based on CSP

This section presents the adaptation planning based on a generated CSP (V,Ch∪
Cw). If the CSP is satisfiable we do not need to do anything for adaptation. Oth-
erwise, we plan the adaptation by constraint diagnosing and constraint solving.

In order to grade the diagnoses, we attach each weak constraint a weight,
weight : Cw → N, and the target of adaptation planning is to find the diagno-
sis with the minimal total weight. From Cd, we perform constraint solving on
(V,Ch ∪ Cw − Cd), and obtain a new configuration f which is a mapping from
each config variable to a value, where f � (Ch ∪ Cw − Cd).

Our algorithm to search for the optimal diagnosis is inspired by the work of
Reiter [17] and Greiner et al. [12] on non-weighted CSPs, which is essentially
a breadth-first searching for minimal hitting sets, each of which covers all the
sample conflicting sets returned by the solvers. With the help of the constraint
weights, we leverage a dynamic programming approach similar to the Dijkstra
shortest path algorithm.

We illustrate the basic idea of our algorithm using the sample CSP in Figure 3,
and its execution process is shown in Figure 5. We first ask the solver for an
arbitrary sample set of conflicting constraints, and it returns {4,7}, meaning
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0:() =>
{4,7}

4:(4) =>
{2,7,6}

10:(7) =>
{1,2,9,5}

4 7

8:(4,2) =>
{1,5,6,7,9}

2

14:(2,7) =>
{1,9,5}

2

14:(1,6) =>
{2,3,5}

1

18:(1,2,7) =>
{3,9,5,8}

1

24:(2,7,9) =>
√

9

18:(1,2,7) =>
x

2

12:(4,1,2) =>
{3,5,6,7}

28:(4,2,5) =>

1 5

7 6
...

14:(4,7) =>
x

9 5
... ...

3
...
...

5

1

2

3

4

5

6 7

8 910

some steps are 
ignored due to 
space limitation

Fig. 5. Sample diagnosing process

that the closed window conflicts with the “should open window” goal. To make
the CSP satisfiable, we must open the window or ignore the goal, and thus we
make (4) and (7) as two candidate diagnoses, and pick the one with the lowest
total weight to check (i.e., (4) weights 4). Here checking a candidate means that
we remove the constraints in this candidate from the original CSP, and ask the
solver for a new sample conflict set. By checking (4), we get a sample set {2,7,6},
that means if we remove 4, there is still a conflict between 2, 7 and 6 (“bad air,
open window” conflicts with “heating on, close window”). So we extend the
candidate by each of the conflicting constraints, and get three new candidates.
Now we have four unchecked candidates, i.e., (4,2), (4,7), (4,6), and (7). We also
pick the one with the lowest total weight (i.e., (4,2)) to check and expand. After
no candidates weighted 10 left unchecked, we check (7) and get {1,2,9,5}, which
leads to four new candidates. After having all the candidates under 24 checked,
we check (2,7,9), and the solver returns “satisfiable”. Its intuitive meaning is to
change the first heating, ignore the bad air and high electricity price.

Algorithm 1 lists the steps of the diagnosing algorithm. We maintain a set
cands of all the unchecked candidates, and put an empty set as the initial di-
agnosis (Line 1). The main part of the algorithm is a loop (Lines 3-17). Each
time, we take out the candidate diagnosis curr which has the minimal total
weight (Line 4). Then we check whether removing curr will make the CSP sat-
isfiable (Line 10, we skip Lines 5-10 first as they are related to optimization).
If the check succeeds, we return curr as the final diagnosis, and terminate the
algorithm (line 10), otherwise, we ask the solver to provide a new sample(Line
12). If the solver cannot find any (this only happens when the hard constraints
are conflicting), we terminate the algorithm without a solution (Line 13). After
having the new sample newsamp, we take each constraint c from it (Line 15),
expand the current candidate by adding c into it and push it into the pool (16).

We employ the following optimization. Firstly, since the diagnosis should have
an intersection with every conflicting sample [17], we cache all the samples re-
turned by the solver (Line 14). When dealing with any candidate, we first check
if it covers all the cached samples (Line 9), and if not, we use one uncovered sam-
ple from the cache to extend the candidate instead of bothering the solvers to
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Algorithm 1. Weight-based constraint diagnosing

In: Variables V , hard constraints Ch, weak constraints Cw, and weight
Out: A diagnosis Cd ⊆ Cw, with the lowest total cost

1 cands←{φ} ;
2 cache←{}, visited←{}, lastweight←− 1 ;
3 while cands is not empty do
4 curr ← pop (cands) where currweight←∑

c∈curr weight(c) is minimal ;
5 if lastweight = currweight then
6 if curr ∈ visited then continue;
7 else visited←visited ∪ {curr}
8 else lastweight←currweight, visited←{} ;
9 if ∃(s ∈ cache)[s ∩ curr = φ] then newsamp←s ;

10 else if satis(V,Ch, Cw − curr) = T then return curr as Cd;
11 else
12 newsamp ← sample(V,Ch, Cw − curr) ;
13 if newsamp = φ then throw ’conflicts in hard constraints’ ;
14 else cache←cache ∪ {newsamp} ;
15 foreach c ∈ newsamp do
16 newcand←curr ∪ {c}; push(cands, NewCand) ;

produce one. The second goal is to accelerate the set operations. We implement
cands as a heap queue, so that we can push an item or pop the smallest one in
O(log n). Since it is hard to filter identical items in a heap queue, we maintain
a list of recently visited candidates with the same particular total weight, and
use it to check if the current candidate has been visited (Lines 5-7).

5 End User Preference Recording

If users revise an adaptation result, we reify their preferences by tuning the
weights of existing constraints or generating new ones, so that the subsequent
adaptation results will be closer to the one that users preferred.

In order to tune the CSP, the first task is to identify the user’s preferred diag-
nosis corresponding to the revised configuration they provide. Formally speak-
ing, for a revised configuration f ′, the preferred diagnosis C′

d ⊆ Cw holds that
f ′ � (Ch∪Cw−C′

d). From the configuration f ′, it is straightforward to reversely
derive the diagnosis C′

d: Just find all the original weak constraints that cannot
be satisfied by the current configuration f ′, i.e., C′

d = {c ∈ Cw|¬(f ′ � c)}.
We handle the weight tuning separately for the two different containment

relationships between Cd and C′
d, as shown in Figure 6.

Firstly, if ¬(Cd ⊆ C′
d), as shown in Figure 6(a), we have three subsets namely

I: Cd − C′
d, II: C

′
d − Cd and III: Cd ∩ C′

d. III can be empty, but I and II can
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      I II III       

(a) (b)

IV 

Fig. 6. Two different conditions for constraint weight tuning

not1. We increase the weight of each constraint in I, and decrease II. In partic-
ular, weight′(c ∈ I) = weight(c)× (

∑
i∈II weight(i)/

∑
j∈I weight(j)), weight

′(c ∈
II) = weight(c) × (

∑
i∈I weight(i)/

∑
j∈II weight(j)). In this way, we change all

the weights in proportion, and switch the total weight of Cd and C′
d. The intuitive

meaning of this tuning can be illustrated by the following example. The adapta-
tion result in the last section h1set = 9 corresponds to Cd = {2, 7, 9}. Suppose
the user further modify the configuration by opening the window (winop = T ),
and this new f ′ corresponds to C′

d = {2, 4, 6, 9}. Now we have I= {7} and
II= {4, 6}. We get weight′(7) = 10 ∗ (4 + 10)/10 = 14, which means that the
user is reluctant to break constraint 7 (bad air -> open window), and we get
weight′(4) = 2 and weight′(6) = 6, indicating he does not care about 4 (keep the
window’s status) and 6 (do not open window when heating).

Secondly, if Cd ⊆ C′
d, as shown in Figure 6(b). We also decrease the weights in

IV=C′
d−Cd. However, since the weight is not negative, we cannot make the total

weight of C′
d less than that of Cd. Therefore, we introduce a set of new constraints

Cp: for each variable v ∈ V , if user modified it with a new value d, then v = d
is a constraint in Cp. Now under the new CSP (V,Cd, Cw ∪ Cp), the original
configuration f corresponds to diagnosis Cd ∪ Cp, whereas the user’s preferred
configuration f ′ still corresponds to C′

d. We make weight′(c ∈ IV) = weight(c)/2,
and weight′(c ∈ Cp) = max(

∑
i∈IV weight(i)/|Cp|, default). For example, from

the same f and Cd = {2, 7, 9}, if the users modify the result by further set
h2set = 5, then this new f ′ corresponds to C′

d = {2, 3, 7, 9}. So we have IV={3},
Cp = {10 : h2set = 5}. The intuitive meaning is that the user would like to
turn h2 to setting 5 when possible. This condition also covers Cd = C′

d, where
we only generate new constraints, without tuning any weights.

6 Evaluation

The implementation of the whole approach has two parts. We implement the
CSP generation engine by Xtend [18], reusing the Eclipse OCL library for the
parsing of OCL texts. We choose Microsoft Z3 [15] as the constraint solver, and
implement the adaptation planning and preference tuning in Python.

We use a simulated smart home system to evaluate the effect and perfor-
mance of the approach. The target system simulates a typical home similar to
the example described in Section 2, but much more complex. The setting of

1 C′
d ⊆ Cd never happens, otherwise Cd cannot be a minimal diagnosis.
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Fig. 7. Experiment setting

this simulated system is based on existing smart home projects, especially the
“Adaptive House” from University of Colorado [19], and the household level
smart grid research from our own group [20]. The table in Figure 7 summarizes
the sample system. The main run-time model corresponds to a fictitious 10-room
house with full equipments. From this run-time model, we generate a CSP that
contains 165 variables and 433 constraints.

All the implementation source code, the experiment artefacts, and the results
mentioned in this section can be found in our GitHub repository [10].

6.1 Effectiveness

On this target system, we perform two experiments to answer the following two
questions: 1) Does the adaptation make the system more consistent with adapta-
tion goals? 2) Will the adaptation results more closely match users’ preferences,
after users revise the adaptation outcome over a few iterations.

The first experiment follows the small central circle in Figure 7. We implement
“change simulator” to randomly modify the attributes in the run-time model to
simulate the system evolution. We perform adaptation planning on model with
state s, and get a new model state s′ as the adaptation result. After that, s′ is
fed to the simulator, which randomly modifies the attributes again and starts
the next round of adaptation. For each round of adaptation, we care about how
s′ is improved compared to s, in terms of what proportion of the goals violated
by s are satisfied by s′.

Figure 8(a) shows the results. We run the adaptation 100 times, each of which
is represented by a vertical arrow. The start and end points of an arrow corre-
sponds to the numbers of violated goals before and after an adaptation, respec-
tively. The x axis describes how many configuration variables are changed by
the adaptation (The adaptations with 0 changes are not displayed). We can see
that in most cases, the adaptation has a significant improvement, reducing the
number of violated goals from 10-20 to 1-4, and these improvements are mostly
achieved by modifying 6-12 configuration values.

The second experiment evaluates the effect of preference tuning. We imple-
ment another simulator to act as an imitated user, and embedded 11 preference
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Fig. 8. Effects of adaptation and user preference tuning

rules in the simulator, in the form of condition->config=value (“under a spe-
cial condition, I prefer the value of a config variable to be equal to the a
specific value”). Such a rule is either a refinement to an adaptation goal (e.g.,
“if a heating setting is greater than 0, then it should be 10”), or an insistence to
a particular goal (e.g., “whenever the air condition is bad, the window should be
opened”). As shown by the bigger circle in Figure 7, after each adaptation, the
user simulator evaluates the results. If any preference rule is violated, it picks
one and only one from them, changes the configuration value according to the
config=value part, yielding a new model s′′. After that, the system simulator
will randomly change context and configuration on s′′, and start the next round
of adaptation. Ideally, after more revisions, the automated adaptation result s′

will be less probable to violate any preference.
Figure 8(b) illustrates the results. We run the experiment 1000 times, each

time with 100 rounds of the adaptation/tuning loop as shown in Figure 7. The
solid line illustrates that for the x th round of adaptation after initialization, the
adaptation output has y possibility to violate one or more preference rules (i.e.,
1000*y times of violation is observed in the 1000 times of experiments). We can
see that the possibility of preference violation goes down very quickly. After only
10 rounds (each round with at most one refinement on one configuration!), there
is only 30% possibility to violate any preference, and after about 60 rounds, it
is less than 10%. As a comparison, we run another 1000 times of experiments
bypassing the preference tuning, and the possibility of preference violation is
shown by the dashed line. The experiment shows that the preference tuning
has a good effect even on such an exaggerated situation (almost every time the
adaptation will violate a preference rule).
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Fig. 9. Experiment results on performance

6.2 Scalability

The scalability of the whole approach mainly depends on the execution time of
the adaptation planning step, because the other two only have a linear time com-
plexity with the scale of run-time models. There are two main factors influencing
the performance of this step, i.e., the size of the weak constraints |Cw|, and the
size of the resulting diagnosis |Cd|. We show the influence of these factors respec-
tively. The experiment processes are the same as the experi1 in Figure 7. All the
experiments are performed on a MacBook Pro laptop with Intel i5 2.0GHz CPU
and 4GB memory. The software environment includes MacOS X 10.5, Microsoft
Z3, and Python 2.7.3. The weights of constraints from current configurations are
randomly chosen between 200 to 300, and for goals, the range is 2000 to 3000.

To evaluate the influence of |Cw|, we keep adding elements to the runtime
model, and this leads |Cw | growing from 30 to 957. For each run-time model,
we run the experiment for 100 times, and select the adaptation whose diagnosis
size equals to 10. The left part of Figure 9 shows the average time on each
run-time model. According to the approximate fitting curve, the time still grows
exponentially with the size of constraints, but in a quite flat way.

To evaluate the influence of |Cd|, we choose one run-time model with |Cw| =
457, and control |Cd| by making the simulator change more context and con-
figurations variables, sometimes with extreme values. We run 1000 rounds of
adaptations, and record the size of diagnosis and the execution time of each
round in the right part of Figure 9: The execution time ascends quite fast with
the increase of |Cd|, reaching a maximal 9 seconds when |Cd| = 29, though 96%
of the adaptations finished within 2 seconds.

6.3 Threats and Discussion

All the experiments are performed on the same domain model, and similar run-
time models with different sizes. Therefore the effectiveness and performance can
be affected by some specific features of this experiment system. To alleviate this
threat, we defined the run-time model and the goals independently before the
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experiments. The effectiveness of preference tuning strongly depends on the type
of preferences. A “refinement preference” rule can be only violated once on the
same element, whereas an “insistence to a goal” rule may be violated multiple
times. We designed the imitated preference rules with a balance of both types.
Note that if the preference rules themselves have conflicts, the preference tuning
is not convergent. We avoid such conflicts, imitating a “firm-minded” user who
does not change his mind on preference. The size of diagnosis currently has a
ceiling of 30. A well designed domain model with fewer conflicting goals will
significantly reduce the diagnosis size, and therefore increase the adaptation
performance.

7 Related Work

Models at runtime are widely used to support dynamic system adaptation. Gar-
lan et al. [2] and Sicard et al. [14] execute action policies on run-time architec-
ture models to achieve self-optimization and self-repair, respectively. Morin et
al. support dynamic adaptation by executing the “aspect-oriented rules” defined
on run-time models [8, 21]. We follow the same idea, executing adaptation poli-
cies on a basic type of run-time models that present only the structural system
aspects [7]. Our innovation is to tolerate conflicting policies, with the consider-
ation of end user preference. This paper is also an attempt of a novel way to
leverage models at runtime for adaptation: Based on the fact that run-time mod-
els are formal descriptions of run-time system states, we utilize a mathematical
tool, constraint solving, to achieve automated adaptation planning guided by
declarative OCL constraints defined on the models.

Salehie and Tahvildari [1] regard the consideration of user preference as an
essential aspect of self-adaptive software, but also note that the research in
this direction is still in an early stage. Maximilien et al. [6] utilize a set of user
preference policies in addition to the business policies, to improve the automated
service selection. Kephart [5] proposes to support user preference by a flexible
interpretation of adaptation policies. Our approach follows this direction by using
tunable weighted goal policies. We support a straightforward interface for end
users, conforming to Russell et al.’s principle on user experience of autonomic
computing, i.e., only showing users the understandable actions [22].

This approach has a similar motivation with goal-based adaptation approaches
[23–25], i.e., to increase the abstraction level of adaptation, but the two branches
of work address different concerns. Those approaches focus on the modelling of
adaptive systems, from a requirement perspective, and achieve this by adopting
and extending a requirement modelling concept, the goals. To implement the
adaptive systems, they link goals to lower-level modelling elements, such as tasks
[25] or operations [23], or statically calculate the potential target systems for
different contexts [24, 26]. Our approach is focused on how to plan the adaptation
at runtime from a declarative specification about the desired system. As a first
attempt, we choose model constraints as such a specification. We also name
them goals for short as they conform to the definition of “goal policy” from
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adaptive system literature, but they do not have as strong expression power as
requirement goals, such as the goal decomposition hierarchy. From this point of
view, the two branches are complementary: We will investigate how to utilize
requirement goal-based models as an input to our approach, and by doing this,
we can provide a possible way to execute the requirement goal models at runtime
without mapping them to imperative specifications.

Adaptation planning on a run-time model is similar to inconsistency fixing on
a static model under editing. Recent approaches seek the automated inference of
fixing updates by designing extra fixing semantics on the constraint languages
[27], or analysing the relation between previous editing and fixing actions with
the constraint rules [28]. Xiong et al. use constraint solving to construct the
recommended fix ranges for configuration models at runtime [29]. Instead of a
range, adaptation requires a specific value for each configuration item, and we
choose such a value with the help of user preferences.

Constraint solving has been used by others for self-adaptation. Sun et al. use
constraint solving to verify the role based access control policies [30]. White et al.
use constraint solving to guide the system configuration on feature models [31].
Sawyer et al. [26] do constraint solving on the requirement-level goals to solve
out proper configurations for all the possible contexts, and use the result to guide
run-time adaptation. Instead of analysis in advance, we use constraint solvers
at runtime, while the target model is still changing. Neema et al. [32] present
a similar constraint guided adaptation framework but our work is focused more
on the technical solution about how to solve constraints. This work is related
to the generation of CSP from class diagrams [33, 34] or OCL constraints [35].
However, we do not perform verification merely on meta-models, but also use a
model instance as a seed, based on a new partial evaluation mechanism.

8 Conclusion and Future Work

This paper reports our initial attempt towards automated system adaptation
with the consideration of end user preferences. We transform run-time models
into a CSP, and perform constraint diagnosing and solving to plan the new
system configuration. If users revise the automated calculated configurations,
we record their preferences by tuning the constraint weights, and subsequent
adaptations will then yield results closer to the users preferences.

Our future plan is to apply the approach to different domains, and evaluate the
experience from real users. Instead of supporting only the adaptation of attribute
values, we will investigate how to transform the more complicated model changes
into CSP, such as changing references between elements. In order to improve
the scalability, we are now investigating the usage of AI search techniques on
constraint diagnosis. Another important direction is to enhance the interface of
this work to both developers and end users: For developers, we will investigate
how to derive model constraints from higher-level models, such as requirement
goals; For end users, we will provide a more interactive graphical user interface
for them to revise the adaptation results.
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