
Ana Moreira Bernhard Schätz Jeff Gray
Antonio Vallecillo Peter Clarke (Eds.)

 123

LN
CS

 8
10

7

16th International Conference, MODELS 2013
Miami, FL, USA, September/October 2013
Proceedings

Model-Driven
Engineering Languages
and Systems

Lecture Notes in Computer Science 8107
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ana Moreira Bernhard Schätz Jeff Gray
Antonio Vallecillo Peter Clarke (Eds.)

Model-Driven
Engineering Languages
and Systems

16th International Conference, MODELS 2013
Miami, FL, USA, September 29 – October 4, 2013
Proceedings

13

Volume Editors

Ana Moreira
Universidade Nova de Lisboa, Caparica, Portugal
E-mail: amm@fct.unl.pt

Bernhard Schätz
fortiss / Technische Universität München, Germany
E-mail: schaetz@fortiss.org

Jeff Gray
University of Alabama, Tuscaloosa, AL, USA
E-mail: gray@cs.ua.edu

Antonio Vallecillo
Universidad de Málaga, Spain
E-mail: av@lcc.uma.es

Peter Clarke
Florida International University, Miami, FL, USA
E-mail: clarkep@cis.fiu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41532-6 e-ISBN 978-3-642-41533-3
DOI 10.1007/978-3-642-41533-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013950213

CR Subject Classification (1998): D.2, F.3.2-3, D.3, K.6.3, I.6.3-5, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2013). This year’s
MODELS edition took place in the “Magic City” of Miami, a renowned region
for education and research. As the MODELS community celebrated its 16th

birthday, this major hub for culture, entertainment, arts, and fashion offered a
unique stage for hosting the international diversity of participants who attended
MODELS.

Since its beginnings, the use of models has always been a core principle in
computer science. Recently, model-based engineering has gained rapid popular-
ity across various engineering disciplines. The pervasive use of models as the core
artifacts of the development process, and model-driven development of complex
systems, has been strengthened by a focus on executable models and automatic
transformations supporting the generation of more refined models and imple-
mentations. Software models have become industrially accepted best practices
in many application areas. Domains like automotive systems and avionics, inter-
active systems, business engineering, games, and Web-based applications com-
monly apply a tool-supported, model-based, or model-driven approach toward
software development. The potential for early validation and verification, cou-
pled with the generation of production code, has been shown to cover a large
percentage of implemented functionality with improved productivity and relia-
bility.

This increased success of using models in software and systems engineering
also opens up new challenges, requiring collaborative research across multiple
disciplines, ranging from offering suitable domain-specific modeling concepts to
supporting legacy needs through models. The MODELS conference is devoted
to model-based development for software and systems engineering, covering all
types of modeling languages, methods, tools, and their applications. MODELS
2013 offered an opportunity for researchers, practitioners, educators, and stu-
dents to come together, to reflect on and discuss our progress as a community,
and to identify the important challenges still to be overcome.

The MODELS community was challenged to demonstrate the maturity and
effectiveness of model-based and model-driven engineering, and to explore their
limits by investigating new application areas and combinations with other emerg-
ing technologies. This challenge resulted in papers submitted to the MODELS
2013 Foundations and Applications Tracks.

The program of MODELS 2013 had a strong mix of research and application
papers that demonstrate the advances in this thriving field, anchored by three
keynote sessions. Our first keynote speaker was Charles Simonyi from Intentional
Software, who talked about “The Magic of Software.” Charles is a well-known
high-tech pioneer, philanthropist, and space traveler. He was the chief architect

VI Preface

of Microsoft Word, Excel and other widely-used application programs. He left
Microsoft to found Intentional Software, which aims to develop and market com-
puter software for knowledge processing. His passion for science and for space
has led him to travel into space twice aboard the Soyuz spacecraft, becoming
the fifth space tourist and the first ever to fly twice. Despite this, we found that
his opinions are practical and down to earth!

Our second keynote speaker was Constance Heitmeyer, who leads the Soft-
ware Engineering Section of the Naval Research Laboratory’s (NRL.s) Center
for High Assurance Computer Systems. She talked about “Model-Based Devel-
opment of Software Systems: A Panacea or Academic Poppycock?” Her talk was
an interesting view of software modeling from the perspective of transitioning re-
search results to software practice. Among other things, she is the chief designer
of NRL’s SCR (Software Cost Reduction) toolset, a set of tools for modeling,
validating, and verifying complex software systems, which has been transferred
to over 200 industry, government, and university groups.

We were also honored with a keynote presentation by Professor Bernd Brügge,
a renowned expert and well-known speaker from the Technische Universität
München and Carnegie Mellon University. He discussed a challenging topic in his
talk “Creativity vs. Rigor: Informal Modeling Is OK,” showing how it is possible
to include informal modeling techniques in project courses with real customers
involving a large number of students at the sophomore and even freshmen level,
without compromising the ideas of model-driven software development.

The Foundations Track papers provide significant contributions to the core
software modeling body of knowledge in the form of new ideas and results that
advance the state of the art. Two categories of Foundations Track papers are
included in these proceedings: Technical Papers, describing original scientifically
rigorous solutions to challenging model-driven development problems, and Ex-
ploratory Papers, describing new, non-conventional modeling research positions
or approaches that challenge the status quo and describe solutions that are based
on new ways of looking at software modeling problems.

The Applications Track papers demonstrate the relevance and effectiveness of
the model-based paradigm of engineering. They include two categories of papers:
Application Papers, providing a realistic and verifiable picture of the current
state of the practice in model-based engineering and explore the problems en-
countered by the industrial adoption of model-based techniques, and Empirical
Evaluation Papers, evaluating existing problem cases or scientifically validated
proposed solutions through empirical studies, experiments, case studies, or sim-
ulations.

Following the successful format initiated in 2012, we used a Foundations
Program Committee and an Applications Program Committee to evaluate all
the papers. A separate Program Board (PB) also convened to help ensure that
all reviews received by the authors provided constructive feedback, and to check
that the selection process was as rigorous and fair as possible. In the 2013 review
process each paper was reviewed by at least three members of the Program
Committees; the reviews were monitored by a PB member assigned to the paper.

Preface VII

Each paper was extensively discussed at the online Program Committee (PC)
meeting, giving due consideration to author responses. A physical PB meeting
was held as a satellite event of ICSE 2013, in San Francisco, during May 24–25,
2013, to finalize the selection of papers by making acceptance decisions on those
papers for which online PC discussions did not converge on a clear decision.

For MODELS 2013, we received a total of 180 full papers from the 236 ab-
stracts submitted. From these, 130 papers were submitted to the Foundations
Track and 50 to the Applications Track. Out of the 130 papers, the PC and PB
accepted 30 papers and invited four for resubmission. Of the 50 Applications
Track papers, 12 were accepted and one was invited to be improved and resub-
mitted. All five papers invited for resubmission were accepted after a second
round of evaluations. This results in a total number of 47 papers accepted, with
a 26% acceptance rate.

The PC chairs also conducted an author survey to obtain feedback on the
quality of reviews. We received 112 responses from authors of Foundations Track
papers and 44 responses from Applications Track authors. Authors were asked
to evaluate the usefulness of the reviews. Over 76% of the respondents indicated
that their reviews were either useful or very useful. Feedback like this helps
us determine the effectiveness of the MODELS review process and we greatly
appreciate the effort of the authors who submitted completed survey forms.

In addition to the invited talks and technical sessions, MODELS 2013 fea-
tured the traditional set of satellite events which this year included 18 workshops,
ten tutorials, two sessions dedicated to tool demonstrations, one panel on “Ab-
straction Challenges,” and one evening session devoted to posters of emergent
ideas. The Educators and Doctoral Symposia also occurred again at MODELS
2013, providing the premier venue for both educators and doctoral students
working on topics related to model-driven engineering. For the first time in its
history, MODELS hosted the ACM Student Research Competition (SRC), spon-
sored by Microsoft Research. The ACM SRC is a forum for undergraduate and
graduate students to showcase their research, exchange ideas, and improve their
communication skills while competing for prizes at MODELS 2013.

Organizing MODELS 2013 involved the considerable effort of over 100
hard-working members of the Organizing Committee and the various selec-
tion committees. A list of the Organizing Committee and selection commit-
tees for the satellite events can be found on the MODELS 2013 website
(http://www.modelsconference.org/). We thank them all for their expertise,
time, and commitment across several years of planning and coordination.

We are particularly grateful to the Foundations PC, the Applications PC
and the PB for their continued observance in maintaining the quality of the
MODELS program. We also thank the additional reviewers who contributed to
the MODELS 2013 review process. We extend special thanks to Gregor Engels
(MODELS Steering Committee Chair) and all the other members of the Steering
Committee for their support during the planning and execution of MODELS
2013. We appreciate the helpful assistance from Geri Georg, who served as the

VIII Preface

MODELS Steering Committee Chair during the early phases of the MODELS
2013 formation.

Our special gratitude goes to the local Miami team at Florida International
University, including the excellent group of student volunteers, for their hard
work behind the scenes to make this conference happen. Organizing a conference
represents almost two years of hard work and complete dedication.

We thank all the authors who submitted papers to MODELS, and we con-
gratulate those authors whose papers appear in these proceedings. These papers
reflect the quality of the current state of the art in software modeling research
and practice.

A special word of gratitude is due to Richard van de Stadt for his CyberChair
support. He went far beyond the call of duty in providing innovative responses to
the many challenges presented him and was a tireless collaborator and companion
on this exciting journey.

No conference would be viable without sponsors. We sincerely thank all of
our generous supporters, especially our gold sponsors CEA-List and Microsoft
Research, silver sponsors Intentional Software, Tata Consulting Services and
Siemens, and the rest of the contributing and supporting companies and orga-
nizations including the OMG, Springer, CEUR, Greater Miami Convention and
Visitors Bureau, and society sponsors IEEE, IEEE Computer Society, ACM and
ACM SIGSOFT.

We are convinced that everyone had both an exciting and stimulating time in
Miami, and left with new ideas and enthusiasm to broaden the MODELS com-
munity and strengthen the application of models in the engineering of software
systems.

August 2013 Ana Moreira
Bernhard Schätz

Jeff Gray
Antonio Vallecillo

Peter Clarke

Organization

General Chairs

Jeff Gray University of Alabama, USA
Antonio Vallecillo Universidad de Málaga, Spain

Foundations Track Program Chair

Ana Moreira Universidade Nova de Lisboa, Portugal

Applications Track Program Chair

Bernhard Schätz Fortiss, and Technische Universität München,
Germany

Local Chair

Peter Clarke Florida International University, USA

Industry Liaison

Magnus Christerson Intentional Software, USA

Workshop Chairs

Fabio Costa Universidade Federal de Goiás, Brazil
Eugene Syriani University of Alabama, USA

Tutorial Chairs

Jordi Cabot École des Mines de Nantes/Inria, France
Jörg Kienzle McGill University, Canada

Panel Chairs

Silvia Abrahão Universitat Politècnica de València, Spain
Isidro Ramos Universitat Politècnica de València, Spain

X Organization

Demonstration Chairs

Yan Liu Concordia University, Canada
Steffen Zschaler King’s College London, UK

Poster Chairs

Benoit Baudry Inria/IRISA, France
Sudipto Ghosh Colorado State University, USA

ACM Student Research Competition Chairs

Ethan Jackson Microsoft Research, USA
Davide Di Ruscio Università dell’Aquila, Italy

Publicity Chairs

James Hill IUPUI, USA
Martina Seidl Johannes Kepler University, Austria

Social Media Chairs

Ralf Lämmel Universität Koblenz-Landau, Germany
Vadim Zaytsev CWI, The Netherlands

Publications Chair

Manuel Wimmer Vienna University of Technology, Austria

Educators’ Symposium Chairs

Perdita Stevens University of Edinburgh, UK
Timothy Lethbridge University of Ottawa, Canada

Doctoral Symposium Chair

Martin Gogolla University of Bremen, Germany

Student Volunteers Chair

Jonathan Corley University of Alabama, USA
Raymond Chang Lau Florida International University, USA

Organization XI

Web Chair

Robert Tairas Vanderbilt University, USA

Program Board

Lionel Briand SnT Centre, Université du Luxembourg,
Luxembourg

Jean-Michel Bruel CNRS/IRIT, Université de Toulouse, France
Krzysztof Czarnecki University of Waterloo, Canada
Jürgen Dingel Queen’s University, Canada
Gregor Engels University of Paderborn, Germany
Robert France Colorado State University, USA
Martin Gogolla University of Bremen, Germany
Jean-Marc Jézéquel IRISA, France
Richard Paige University of York, UK
Dorina Petriu Carleton University, Canada
Bernhard Rumpe RWTH Aachen University, Germany
Jon Whittle Lancaster University, UK

Program Committee: Foundations Track

Vasco Amaral Universidade Nova de Lisboa, Portugal
Daniel Amyot University of Ottawa, Canada
João Araújo Universidade Nova de Lisboa, Portugal
Colin Atkinson University of Mannheim, Germany
Mira Balaban Ben-Gurion University, Israel
Benoit Baudry INRIA, France
Nelly Bencomo INRIA Paris-Rocquencourt, France
Xavier Blanc Université Bordeaux, France
Ruth Breu University of Innsbruck, Austria

Jordi Cabot École des Mines de Nantes/Inria, France
Alessandra Cavarra University of Oxford, UK
Siobhán Clarke Trinity College Dublin, Ireland
Jane Cleland-Huang DePaul University, USA
Juan de Lara Universidad Autónoma de Madrid, Spain
Alexander Egyed Johannes Kepler University, Austria
Rik Eshuis Eindhoven University of Technology,

The Netherlands
Lidia Fuentes Universidad de Málaga, Spain
Alessandro Garcia PUC-Rio, Brazil
Geri Georg Colorado State University, USA
Sébastien Gérard CEA List, France

XII Organization

Holger Giese Hasso Plattner Institute,
University of Potsdam, Germany

John Grundy Swinburne University of Technology, Australia
Øystein Haugen SINTEF, Norway
Zhenjiang Hu National Institute of Informatics, Japan
Heinrich Hussmann Ludwig-Maximilians-Universität München,

Germany
Gerti Kappel Vienna University of Technology, Austria
Gabor Karsai Vanderbilt University, USA
Ingolf Krueger UC San Diego, USA
Thomas Kühne Victoria University of Wellington, New Zealand
Yvan Labiche Carleton University, Canada
Philippe Lahire University of Nice, France
Yves Le Traon University of Luxembourg, Luxembourg
Hong Mei Peking University, China
Dragan Milicev University of Belgrade, Serbia
Raffaela Mirandola Politecnico di Milano, Italy
Pierre-Alain Muller University of Haute-Alsace, France
Gunter Mussbacher Carleton University, Canada
Ileana Ober IRIT Université de Toulouse, France
Alfonso Pierantonio Università degli Studi dell’Aquila, Italy
Gianna Reggio DIBRIS - University of Genoa, Italy
Gustavo Rossi LIFIA, Argentina
Pete Sawyer University of Lancaster, UK
Andy Schürr Technische Universität Darmstadt, Germany
Arnor Solberg SINTEF, Norway
Friedrich Steimann Fernuniversität in Hagen, Germany
Gabriele Taentzer Philipps-Universität Marburg, Germany
Dániel Varró Budapest University of Technology

and Economics, Hungary
Michael Whalen University of Minnesota, USA
Tao Yue Simula Research Laboratory, Norway
Steffen Zschaler King’s College London, UK

Program Committee: Applications Track

Silvia Abrahão Universitat Politènica de València, Spain
Alfred Aue Cap Gemini, Germany
Balbir Barn Middlesex University, UK
Brian Berenbach Siemens AG, USA
Fernando Brito e Abreu DCTI, ISCTE-IUL, Portugal
Tony Clark Middlesex University, UK
Alessandro Garcia PUC-Rio, Brazil
Andreas Graf itemis AG, Germany
Pavel Hruby CSC, Denmark

Organization XIII

Jürgen Kazmeier Siemens AG, Germany
Cornel Klein Siemens AG, Germany
Tihamer Levendovszky Vanderbilt University, USA
Pieter Mosterman MathWorks, USA
Oscar Pastor Universitat Politècnica de València, Spain
Isabelle Perseil INSERM, France
Rob Pettit The Aerospace Corporation, USA
Alexander Pretschner Technische Universität München, Germany
Wolfram Schulte Microsoft, USA
Bran Selic Malina Software Corporation, Canada
Ketil Stølen SINTEF, Norway
Stephan Thesing Eurocopter Deutschland GmbH, Germany
Juha-Pekka Tolvanen MetaCase, Finland
Mario Trapp Fraunhofer IESE, Germany
Markus Völter independent/itemis, Germany

Steering Committee

Gregor Engels (Chair) University of Paderborn, Germany
Lionel Briand (Vice Chair) University of Luxembourg, Luxembourg
Silvia Abrahão Universitat Politènica de València, Spain
Jean Bézivin University of Nantes, France
Ruth Breu University of Innsbruck, Austria
Jean-Michel Bruel IRIT, France
Krzysztof Czarnecki University of Waterloo, Canada
Laurie Dillon Michigan State University, USA
Jürgen Dingel Queen’s University, Canada
Geri Georg Colorado State University, USA
Jeff Gray University of Alabama, USA
Øystein Haugen SINTEF, Norway
Heinrich Hussmann University of Munich, Germany
Thomas Kühne Victoria University of Wellington, New Zealand
Ana Moreira Universidade Nova de Lisboa, Portugal
Pierre-Alain Muller University of Haute-Alsace, France
Oscar Nierstrasz University of Bern, Switzerland
Dorina Petriu Carleton University, Canada
Rob Pettit The Aerospace Corp., USA
Gianna Reggio University of Genoa, Italy
Bernhard Schätz Technical University of Munich, Germany
Wolfram Schulte Microsoft Research, USA
Andy Schürr Technical University of Darmstadt, Germany
Steve Seidman Texas State University, USA
Jon Whittle Lancaster University, UK

XIV Organization

Gold Sponsors

Silver Sponsors

Organizational Sponsors

Additional Reviewers

Mathieu Acher
Saeed Ahmadi Behnam
André Alexandersen Hauge
Abeer Al-Humaimeedy
Shaukat Ali
Anthony Anjorin
Nesa Asoudeh
Thomas Baar
Ankica Barisic
Bruno Barroca
Amel Bennaceur
Gregor Berg
Gábor Bergmann
Alexander Bergmayr
Thomas Beyhl
Erwan Bousse

Petra Brosch
Fabian Büttner
Juan Cadavid
Franck Chauvell
Bruno Cafeo
Emanuela Cartaxo
Fernando Castor
Dan Chiorean
Antonio Cicchetti
Harald Cichos
Elder Cirilo
Mickael Clavreul
Roberta Coelho
Philippe Collet
Arnaud Cuccuru
Duc-Hanh Dang

Organization XV

Frederik Deckwerth
Andreas Demuth
Johannes Dyck
Maged Elaasar
Brian Elvesæter
Gencer Erdogan
Claudiu Farcas
Emilia Farcas
João Faria
Kleinner Farias
Ali Fatolahi
Adrián Fernández
Nicolas Ferry
Martin Fleck
Frédéric Fondement
László Gönczy
Sebastian Gabmeyer
Nadia Gámez
Achraf Ghabi
Cláudio Gomes
Miguel Goulão
Stefanie Grewenig
Everton Guimarães
Annegret Habel
Evelyn Haslinger
Regina Hebig
Ábel Hegedüs
Christopher Hénard
Stephan Hildebrandt
Ákos Horváth
Florian Hölzl
Emilio Insfran
Muhammad Zohaib Iqbal
Martin Johansen
Teemu Kanstren
Jacques Klein
Uira Kulesza
Leen Lambers
Arnaud Lapitre
Marius Lauder
Yan Li
Malte Lochau
Azzam Maraee
Tanja Mayerhofer
Hossein Mehrfardx

Massimiliano Menarini
Zoltán Micskei
Dongyue Mou
Tejeddine Mouelhi
Stefan Neumann
Phu Nguyen
Alexander Nöhrer
Toacy Oliveira
Aida Omerovic
Ana Paiva
Marc Palyart
Mike Papadakis
Sven Patzina
Gilles Perrouin
Hendrik Radke
Isidro Ramos
István Ráth
Daniel Ratiu
Alexander Reder
Filippo Ricca
Alessandro Rossini
Jesús Sánchez Cuadrado
Nicolas Sannier
Fredrik Seehusen
Filippo Seracini
Luis Silva
Bjornar Solhaug
Daniel Strüber
Arnon Sturm
Wuliang Sun
Sabine Teufl
Alessandro Tiso
Juha-Pekka Tolvanen
Damiano Cosimo Torre
Catia Trubiani
Sara Tucci-Piergiovanni
Gergely Varro
Steffen Vaupel
Thomas Vogel
Shuai Wang
Sebastian Wilms
Manuel Wimmer
Ernest Wozniak
Qin Zhang
Xiang Zhang

Keynote Abstracts

The Magic of Software

Charles Simonyi

Intentional Software, USA

Abstract. Software allows for many models of computation. We cre-
ate models to understand and reason about these computations (e.g.,
did the aircraft change its course because there was a hill in front of
it or because a model indicated the presence of a hill?). As computers
and software become more and more ubiquitous, the tangible world and
computer models of the world are merging. We are re-designing our basic
systems from networks, cars and aircrafts, to financial and health sys-
tems to reduce their costs and increase their effectiveness using software
that, by necessity, must incorporate a model of the environment and its
characteristics. Models can also take us outside of this reality and let
us explore alternative timelines — what we call simulation. Today, pro-
gramming languages are the primary way to communicate our intentions
of these systems in software. Notation, syntax and semantics make the
mental programming language models concrete for us as humans. But
the computer does not really need the notation, syntax and semantics
models of the software in the same way as we humans do. In this talk,
we will trace the magic of software that enabled this progression from
Moore’s law, through computer languages, to the Digital Artifacts of
today. We will investigate it carefully and come to some surprising con-
clusions that question the mainstream thinking around software models.
What if we let go of some of our learned beliefs about software models
and think differently about models of instructing computers?

Model-Based Development of Software:

A Panacea or Academic Poppycock

Constance Heitmeyer

Center for High Assurance Computer Systems
Naval Research Laboratory, USA

Abstract. In recent years, the use of models in developing complex soft-
ware systems has been steadily increasing. Advocates of model-based de-
velopment argue that models can help reduce the time, cost, and effort
needed to build software systems which satisfy their requirements and
that model-based approaches are effective not only in system develop-
ment but throughout a system’s life-time. Thus the problem addressed
by researchers in software and system modeling encompasses not only the
original construction of a complex system but its complete life-cycle. This
talk will address significant issues in model-based system and software
development, including: What is the current and future role of models in
software system development? What benefits can we obtain from the use
of models not only in development but throughout the system life-cycle?
What are the barriers to using models in software system development
and evolution? What are the major challenges for system and software
modeling researchers during the next decade?

Creativity vs Rigor:

Informal Modeling is OK

Bernd Brügge

Technische Universität München, Germany

Abstract. Single large project courses with clients from industry have
been established as capstone courses in many software engineering cur-
ricula. They are considered a good way of teaching industry relevant
software engineering practices, in particular model-based software devel-
opment.

One particular challenge is how to balance between modeling and
timely delivery. If we focus too much on modeling, the students do not
have enough time to deliver the system (“analysis paralysis”). If we focus
too much on the delivery of the system, the quality of the models usually
goes down the drain. Another challenge is the balance between informal
models intended for human communication and specification models in-
tended for CASE tools. I argue that teachers often put too much weight
on the rigor of the models, and less on the creative and iterative aspects
of modeling. Modeling should be allowed to be informal, incomplete and
inconsistent, especially during the early phases of software development.
I have been teaching capstone courses for almost 25 years, initially at the
senior and junior level. During this time excellent automatic build and
release management tools have been developed. They reduce the need
for heroic delivery efforts at the end of a course, especially if they are
coupled with agile methods, allowing the teacher to spend more time
on the creative aspects of modeling. I will use several examples from
my courses to demonstrate how it is possible to include informal mod-
eling techniques in project courses with real customers involving a large
number of students at the sophomore and even freshmen level without
compromising the ideas of model-driven software development.

Table of Contents

Tool Support 1

Industrial Adoption of Model-Driven Engineering: Are the Tools Really
the Problem? . 1

Jon Whittle, John Hutchinson, Mark Rouncefield,
H̊akan Burden, and Rogardt Heldal

Generic Model Assist . 18
Friedrich Steimann and Bastian Ulke

Adding Spreadsheets to the MDE Toolkit . 35
Mārtiņš Francis, Dimitrios S. Kolovos, Nicholas Matragkas, and
Richard F. Paige

Dependability

Model-Driven Extraction and Analysis of Network Security Policies 52
Salvador Mart́ınez, Joaquin Garcia-Alfaro, Frédéric Cuppens,
Nora Cuppens-Boulahia, and Jordi Cabot

SafetyMet: A Metamodel for Safety Standards . 69
Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege

A Generic Fault Model for Quality Assurance . 87
Alexander Pretschner, Dominik Holling, Robert Eschbach, and
Matthias Gemmar

Comprehensibility

Towards an Operationalization of the “Physics of Notations” for the
Analysis of Visual Languages . 104

Harald Störrle and Andrew Fish

Teaching Model Driven Engineering from a Relational Database
Perspective . 121

Don Batory, Eric Latimer, and Maider Azanza

Big Metamodels Are Evil: Package Unmerge - A Technique for
Downsizing Metamodels . 138

Frédéric Fondement, Pierre-Alain Muller, Laurent Thiry,
Brice Wittmann, and Germain Forestier

XXIV Table of Contents

Tool Support 2

Integrating Modeling Tools in the Development Lifecycle with OSLC:
A Case Study . 154

Maged Elaasar and Adam Neal

Recommending Auto-completions for Software Modeling Activities 170
Tobias Kuschke, Patrick Mäder, and Patrick Rempel

Automatically Searching for Metamodel Well-Formedness Rules in
Examples and Counter-Examples . 187

Martin Faunes, Juan Cadavid, Benoit Baudry,
Houari Sahraoui, and Benoit Combemale

Testing

Testing M2T/T2M Transformations . 203
Manuel Wimmer and Loli Burgueño

An Approach to Testing Java Implementation against Its UML Class
Model . 220

Hector M. Chavez, Wuwei Shen, Robert B. France, and
Benjamin A. Mechling

Automated Test Case Selection Using Feature Model: An Industrial
Case Study . 237

Shuai Wang, Arnaud Gotlieb, Shaukat Ali, and Marius Liaaen

Semantics Evolution 1

Customizable Model Migration Schemes for Meta-model Evolutions
with Multiplicity Changes . 254

Gabriele Taentzer, Florian Mantz, Thorsten Arendt, and
Yngve Lamo

Fine-Grained Software Evolution Using UML Activity and Class
Models . 271

Walter Cazzola, Nicole Alicia Rossini, Mohammed Al-Refai, and
Robert B. France

Supporting the Co-evolution of Metamodels and Constraints through
Incremental Constraint Management . 287

Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed

Verification

Model Checking of UML-RT Models Using Lazy Composition 304
Karolina Zurowska and Juergen Dingel

Table of Contents XXV

Behavioural Verification in Embedded Software, from Model to Source
Code . 320

Anthony Fernandes Pires, Thomas Polacsek, Virginie Wiels, and
Stéphane Duprat

Formal Verification Integration Approach for DSML 336
Faiez Zalila, Xavier Crégut, and Marc Pantel

Product Lines

Composing Your Compositions of Variability Models 352
Mathieu Acher, Benoit Combemale, Philippe Collet, Olivier Barais,
Philippe Lahire, and Robert B. France

Constraints: The Core of Supporting Automated Product Configuration
of Cyber-Physical Systems . 370

Kunming Nie, Tao Yue, Shaukat Ali, Li Zhang, and Zhiqiang Fan

Defining and Validating a Multimodel Approach for Product
Architecture Derivation and Improvement . 388

Javier González-Huerta, Emilio Insfrán, and Silvia Abrahão

Evolution 2

Evolution of the UML Interactions Metamodel . 405
Marc-Florian Wendland, Martin Schneider, and Øystein Haugen

A Graph-Pattern Based Approach for Meta-Model Specific Conflict
Detection in a General-Purpose Model Versioning System 422

Asha Rajbhoj and Sreedhar Reddy

On the Complex Nature of MDE Evolution . 436
Regina Hebig, Holger Giese, Florian Stallmann, and Andreas Seibel

Semantics

Simplification and Correctness of UML Class Diagrams – Focusing on
Multiplicity and Aggregation/Composition Constraints 454

Mira Balaban and Azzam Maraee

Specification of Cyber-Physical Components with Formal Semantics –
Integration and Composition . 471

Gabor Simko, David Lindecker, Tihamer Levendovszky,
Sandeep Neema, and Janos Sztipanovits

Endogenous Metamodeling Semantics for Structural UML 2
Concepts . 488

Lars Hamann and Martin Gogolla

XXVI Table of Contents

Domain-Specific Modeling Languages

Computer Assisted Integration of Domain-Specific Modeling Languages
Using Text Analysis Techniques . 505

Florian Noyrit, Sébastien Gérard, and François Terrier

Towards the Notation-Driven Development of DSMLs 522
Laurent Wouters

Validation of Derived Features and Well-Formedness Constraints in
DSLs: By Mapping Graph Queries to an SMT-Solver 538

Oszkár Semeráth, Ákos Horváth, and Dániel Varró

Models@RT

Self-adaptation with End-User Preferences: Using Run-Time Models
and Constraint Solving . 555

Hui Song, Stephen Barrett, Aidan Clarke, and Siobhán Clarke

Runtime Model Based Management of Diverse Cloud Resources 572
Xiaodong Zhang, Xing Chen, Ying Zhang, Yihan Wu, Wei Yao,
Gang Huang, and Qiang Lin

The Semantic Web as a Software Modeling Tool: An Application to
Citizen Relationship Management . 589

Borislav Iordanov, Assia Alexandrova, Syed Abbas,
Thomas Hilpold, and Phani Upadrasta

Design and Architecture

Concern-Oriented Software Design . 604
Omar Alam, Jörg Kienzle, and Gunter Mussbacher

Analyzing Enterprise Models Using Enterprise Architecture-Based
Ontology . 622

Sagar Sunkle, Vinay Kulkarni, and Suman Roychoudhury

Analyzing the Effort of Composing Design Models of Large-Scale
Software in Industrial Case Studies . 639

Kleinner Farias, Alessandro Garcia, Jon Whittle, and Carlos Lucena

Model Transformation

Parallel Execution of ATL Transformation Rules . 656
Massimo Tisi, Salvador Mart́ınez, and Hassene Choura

Table of Contents XXVII

Transformation of Models Containing Uncertainty . 673
Michalis Famelis, Rick Salay, Alessio Di Sandro, and
Marsha Chechik

Automated Verification of Model Transformations in the Automotive
Industry . 690

Gehan M.K. Selim, Fabian Büttner, James R. Cordy,
Juergen Dingel, and Shige Wang

Model Analysis

Data-Flow Based Model Analysis and Its Applications 707
Christian Saad and Bernhard Bauer

Contract-Aware Slicing of UML Class Models . 724
Wuliang Sun, Robert B. France, and Indrakshi Ray

Usability Inspection in Model-Driven Web Development:
Empirical Validation in WebML . 740

Adrian Fernandez, Silvia Abrahão, Emilio Insfrán, and
Maristella Matera

System Synthesis

Model-Driven Approach for Supporting the Mapping of Parallel
Algorithms to Parallel Computing Platforms . 757

Ethem Arkın, Bedir Tekinerdogan, and Kayhan M. İmre

Compositional Synthesis of Controllers from Scenario-Based
Assume-Guarantee Specifications . 774

Joel Greenyer and Ekkart Kindler

Author Index . 791

Industrial Adoption of Model-Driven

Engineering: Are the Tools Really the Problem?

Jon Whittle1, John Hutchinson1, Mark Rouncefield1,
H̊akan Burden2, and Rogardt Heldal2

1 School of Computing and Communications, Lancaster University, Lancaster, UK
2 Computer Science and Engineering,

Chalmers University of Technology and University of Gothenburg,
Gothenburg, Sweden

Abstract. An oft-cited reason for lack of adoption of model-driven en-
gineering (MDE) is poor tool support. However, studies have shown that
adoption problems are as much to do with social and organizational fac-
tors as with tooling issues. This paper discusses the impact of tools on
MDE adoption and places tooling within a broader organizational con-
text. The paper revisits previous data on MDE adoption (19 in-depth
interviews with MDE practitioners) and re-analyzes the data through the
specific lens of MDE tools. In addition, the paper presents new data (20
new interviews in two specific companies) and analyzes it through the
same lens. The key contribution of the paper is a taxonomy of tool-related
considerations, based on industry data, which can be used to reflect on
the tooling landscape as well as inform future research on MDE tools.

Keywords: model-driven engineering, modeling tools, organizational
change.

1 Introduction

When describing barriers to adoption of model-driven engineering (MDE), many
authors point to inadequate MDE tools. Den Haan [1] highlights “insufficient
tools” as one of the eight reasons why MDE may fail. Kuhn et al. [2] identify
five points of friction in MDE that introduce complexity; all relate to MDE tools.
Staron [3] found that “technology maturity [may] not provide enough support
for cost efficient adoption of MDE.” Tomassetti et al.’s survey reveals that 30%
of respondents see MDE tools as a barrier to adoption [4].

Clearly, then, MDE tools play a major part in the adoption (or not) of MDE.
On the other hand, as shown by Hutchinson et al. [5,6], barriers are as likely
to be social or organizational rather than purely technical or tool-related. The
question remains, then, to what extent poor tools hold back adoption of MDE
and, in particular, what aspects – both organizational and technical – should be
considered in the next generation of MDE tools.

The key contribution of this paper is a taxonomy of factors which capture how
MDE tools impact MDE adoption. The focus is on relating tools and their tech-
nical features to the broader social and organizational context in which they are

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J. Whittle et al.

used. The taxonomy was developed by analyzing data from two separate studies
of industrial MDE use. In the first, we interviewed 19 MDE practitioners from
different companies. In the second, we interviewed a further 20 MDE practition-
ers in two different companies (10 per company). The two studies complement
each other: the first is a broad but shallow study of MDE adoption across a
wide range of industries; the second is a narrower but deeper study within two
specific companies with different experiences of applying MDE. Neither study
was limited to tooling issues; rather, they were both designed to capture a broad
range of experiences related to MDE use and adoption and, in both, we used
qualitative methods to allow key themes to emerge from the data. We focus in
this paper only on emergent themes related to MDE tools.

The literature has relatively little to say about non-technical factors of MDE
tooling. There have been a number of surveys of MDE tools (e.g., [7,8,9]) but they
focus on classifying tools based on what technical functionalities they provide.
More recently, Paige and Varró report on lessons learned from developing two
significant (academic) MDE tools [10]. Again, however, very little is said about
understanding users’ needs and the users’ organizational context: the authors
simply state “Try to have real end-users; they keep you honest” and “Rapid
response to feedback can help you keep your users.”

Indeed, there is a distinct lack of knowledge about how MDE tools are actually
adopted in industry and what social and organizational, as well as technical,
considerations need to be in place for a tool to succeed. This paper makes a
first attempt to redress the balance. Section 2 discusses existing literature on
tools, with a focus on understanding users’ needs and organizational context.
Section 3 describes the methodological details of our studies. Section 4 presents
our taxonomy, based on emerging themes from our first study of MDE adoption.
Section 5 discusses our second study and relates its findings to the taxonomy.
Finally, the paper discusses how the taxonomy can be used to advance research
and development of MDE tools (Section 6).

2 Context and Related Work

Tools have long been of interest to those considering the use of technology in in-
dustrial settings. In research on computer supported cooperative work (CSCW),
there have been two distinctive approaches. On the one hand there are those in-
terested in how individuals use tools and, in particular, how to design tools that
are intuitive and seamless to use. This reflects a Heideggerian difference between
tools that are ‘ready to hand’ (they fade into the background) and ‘present at
hand’ (focus is on the tool to the detriment of the ‘real’ issue) [11] [12, p. 109].
In contrast, another approach, exemplified by Grudin [13] and Brown [14], con-
siders how organizations use tools and argues that failure can be attributed to:
a disparity of benefit between tool users and those who are required to do un-
recognized additional work to support tools; lack of management understanding;
and a failure by designers and managers to recognize their limits. In a comment
that might cause some reflection for MDE tool developers, Brown [14] suggests

Industrial Adoption of Model-Driven Engineering 3

that (groupware) tools are generally useful in supporting existing everyday or-
ganizational processes, rather than radical organizational change.

The issue of how software development should be organized and supported has
long been discussed and remedies have often, though not always, included par-
ticular tools, techniques, and practices. For example, whilst Merisalo-Rantanen
et al. [15] found that tools facilitated fast delivery and easy modification of
prototypes, amongst the core values of the ‘agile manifesto’ was a focus on “in-
dividuals and interactions over processes and tools” and a number of studies [16]
emphasized the importance of organizational rather than technical factors.

However, when considering MDE tools there is little in the way of systematic
evaluation. Cabot and Teniente [9] acknowledge MDE tools but suggest that
they have several limitations regarding code generation. Selic [17] talks about the
important characteristics of tools for the success of MDE, suggesting that some
MDE tools “have now reached a degree of maturity where this is practical even
in large-scale industrial applications”. Recently, Stahl et al. [18] have claimed
that MDE does not make sense without tool support. Two studies [19,2] identify
the impact of tools on processes and organizations, and vice versa, but the main
focus is on introducing MDE in large-scale software development.

There have been two recent, and very different, studies about the experience
of developing and deploying MDE tools. Paige and Varró [10] conclude that:
“using MDD tools – in anger, on real projects, with reported real results, is now
both feasible and necessary.” However, it is significant that this study is about
academic MDE tools. In contrast, Clark and Muller [20] use their own commer-
cial experiences to identify lessons learned about tool development, in cases that
might be considered technical successes but were ultimately business or organi-
zational failures: “The last decade has seen a number of high profile commercial
MDD tools fail . . . these tools were expensive to produce and maintain . . . there
are number of open-source successes but it is not clear that these systems can
support a business model”. In terms of specific lessons with regard to tools, this
one stands out: “ObjeXion and Xactium made comparable mistakes. They were
developing elegant tools for researchers, not pragmatic tools for engineers”.

3 Study Method

The key contribution of the paper is a taxonomy of MDE tool-related issues.
The taxonomy has been developed based on two sets of interviews: a set of
19 interviews from 18 different companies carried out between Nov 2009 and
Jul 2010, and a set of 20 interviews carried out in two companies between Jan
and Feb 2013. Our method was to use the first set to develop the taxonomy;
the second to validate the taxonomy. The two sets are complementary: the first
provides broad, shallow coverage of 10 different industrial sectors; the second
provides narrow, deep coverage of two companies.

Our first set of interviews is the same set used in earlier publications [5,6].
However, prior publications gave a holistic view of the findings and did not in-
clude data on tools. The procedure for selecting and carrying out the interviews

4 J. Whittle et al.

has been described elsewhere [6]. All interviewees came from industry and had
significant experience of applying MDE in practice. The interviews were semi-
structured, taking around 60 minutes each, and all began with general questions
about the participant’s background and experience with MDE. All interviews
were recorded and transcribed. In total, we collected around 20 hours of conver-
sation, amounting to over 150,000 words of transcribed data.

The second set consists of 10 interviews at Ericsson AB and 10 interviews
at Volvo Cars Corporation. The interviewees at Ericsson came from the Radio
Base Station unit, which has been involved in MDE since the late 1980s while
the interviewees at Volvo represent a new unit that has just started to use MDE
for in-house software development for electrical propulsion. The interviews cover
more than 20 hours of recorded conversation and were conducted in the same
semi-structured fashion as the first set.

Analysis of the interview transcripts was slightly different in each case. The
first set was used to develop the taxonomy. Each transcript was coded by two
researchers. The initial task was to simply go through the transcripts looking
for where the respondents said anything about tools; these fragments were then
coded by reference to particular ideas or phrases mentioned in the text – such
as ‘cost’ or ‘processes’. The average reference to tool issues per transcript was
11 with 3 being the lowest and 18 being the highest. Inter-coder reliability was
computed using Holsti’s formula [21], dividing the number of agreements by the
number of text fragments. For this research, the average inter-coder agreement
was 0.86 (161/187). The researchers then grouped the initial coding into broad
themes relating to ‘technical’, ‘organizational’ and ‘social’ issues.

The second set was used to validate the taxonomy. Researchers read the tran-
scripts looking for tool-related issues and then mapped those to the proposed
taxonomy. Any deviations from the taxonomy were noted.

4 A Taxonomy of MDE Tool Considerations

This section presents the taxonomy, developed from the first set of interviews.
Our analysis process resulted in four broad themes, each broken into categories at
two levels of detail: (i) Technical Factors – where interviewees discussed specific
technical aspects of MDE tools, such as a missing feature or technical consid-
erations of applying tools in practice; (ii) Internal Organizational Factors – the
relationship between tools and the way a company organizes itself; (iii) External
Organizational Factors – influences from outside the company which may affect
tool use and application; (iv) Social Factors – issues related to the way people
perceive MDE tools or tool stakeholders.

Tables 1-4 form the taxonomy. Each category is briefly defined in the tables,
and an example of each sub-category is given. Numbers in brackets are the
number of interviewees who commented on a particular sub-category (max. 19).
Care should be taken when interpreting these numbers – they merely reflect
what proportion of our participants happened to talk about a particular issue.
They do not necessarily indicate relative importance of sub-categories because

Industrial Adoption of Model-Driven Engineering 5

one interviewee may have talked in depth about a sub-category whereas another
may have mentioned it only briefly. A deeper analysis would be required to
produce sub-category weightings. The reader should also avoid the temptation
to make comparisons between factors based on the table.

The following subsections present highlights from each theme: we have picked
out particularly insightful or relevant experiences from the interview transcripts.
We quote from the transcripts frequently; these are given italicized and in quo-
tation marks. Quotes are taken from the transcripts verbatim. Square brackets
are used to include contextual information.

The taxonomy is a data-driven, evidence-based description of issues that in-
dustrial MDE practitioners have encountered in practice when applying or de-
veloping MDE tools. We make no claim that the taxonomy covers all possible
tool-related issues; clearly, further evidence from other practitioners may lead
to an extension of the taxonomy. We also do not claim that the sub-categories
are orthogonal. As will be seen later, some examples of tool use can be classified
into multiple sub-categories. Finally, we do not claim that this is the ‘perfect’
taxonomy. It is simply one way of structuring the emerging themes from our
data, and the reader is welcome to re-structure the themes into an alternative
taxonomy which better fits his/her purposes.

The taxonomy can be used in a variety of ways. It can be used as a check-
list of issues to consider when developing tools. It can be used as a framework
to evaluate existing tools. Principally, however, we hope that it simply points
to a range of technical, social and organizational factors that may be under-
represented in the MDE research community.

4.1 Technical Factors

Table 1 presents the set of categories and sub-categories that relate to technical
challenges and opportunities when applying MDE tools. There are six categories.

Category Descriptions. The first, Tool Features, details specific tool func-
tionalities which interviewees felt impacted on project success. These include
support for modeling system behavior, architectures, domain-specific modeling,
and flexibility in code generation. Code Generation Templates, for example,
refers to the ability to define one’s own code generation rules, whereas Scoped
Code Generation refers to an incremental form of code generation where only
model changes are re-generated. The second category, Practical Applicability,
contains issues related to how tools can be made to work in practice. The issues
range from tool support for very large models (scaleability), to the impact of
using multiple tools or multiple versions of tools together, to the general matu-
rity level of tools and how flexibly they can be adapted into existing tool chains.
The third category concerns Complexity, which includes Accidental Complexity,
where the tools introduce complexity unnecessarily. The fourth category is Hu-
man Factors and includes both classical usability issues but also bigger issues
such as whether the way tools are designed (and, in particular, the kinds of ab-
stractions they use) match the way that people think. The final two categories

6 J. Whittle et al.

Table 1. Technical Categories

Category Sub-Category

Tool Features
Specific functionalities offered
in tools

- Modeling Behavior (1)
- Action Languages (1)
- Support for Domain-Specific Languages (6)
- Support for Architecture (3)
- Code Generation Templates (6)
- UML Profiles (1)
- Scoped Code Generation (2)
- Model Analysis (5)
- Reverse Engineering Models (3)
- Sketching Models (1)
- Refactoring Models (1)

Practical Applicability
Challenges of applying tools in
practice

- Tool Scaleability (1)
- Tool Versioning (1)
- Chaining Tools Together (2)
- Industrial Quality of Generated Code (8)
- Flexibility of Tools (3)
- Maturity of Tools (1)
- Dealing with Legacy (2)

Complexity
Challenges brought on by exces-
sive complexity in tools

- Tool Complexity (4)
- Language Complexity (5)
- Accidental Complexity Introduced by Tools (1)

Human Factors
Consideration of tool users

- Whether Tools Match Human Abstractions (4)
- Usability (4)

Theory
Theory underpinning tools

- Theoretical Foundations of Tools (1)
- Formal Semantics (2)

Impact on Development
Impact of tools on technical suc-
cess criteria

- Impact on Quality (2)
- Impact on Productivity (4)
- Impact on Maintainability (3)

concern the way that the lack of formal foundations leads to sub-optimal tools
and the reported perceptions about how tools impact quality, productivity and
maintainability.

Observations. One very clear finding that comes out of our analysis is that
MDE can be very effective, but it takes effort to make it work. The majority of
our interviewees were very successful with MDE but all of them either built their
own modeling tools, made heavy adaptations of off-the-shelf tools, or spent a lot
of time finding ways to work around tools. The only accounts of easy-to-use,
intuitive tools came from those who had developed tools themselves for bespoke
purposes. Indeed, this suggests that current tools are a barrier to success rather
than an enabler and “the fact that people are struggling with the tools. . . and
succeed nonetheless requires a certain level of enthusiasm and competence.”

Industrial Adoption of Model-Driven Engineering 7

Our interviewees emphasized tool immaturity, complexity and lack of usability
as major barriers. Usability issues can be blamed, at least in part, on an over-
emphasis on graphical interfaces: “. . . I did an analysis of one of the IBM tools
and I counted 250 menu items.” More generally, tools are often very powerful,
but it is too difficult for users to access that power; or, in some cases, they do
not really need that power and require something much simpler: “I was really
impressed with the power of it and on the other hand I saw windows popping up
everywhere. . . at the end I thought I still really have no idea how to use this tool
and I have only seen a glimpse of the power that it has.”

These examples hint at a more fundamental problem, which appears to be true
of textual modeling tools as well: a lack of consideration for how people work and
think: “basically it’s still the mindset that the human adapts to the computer,
not vice-versa.” In addition, current tools have focused on automating solutions
once a problem has been solved. In contrast, scant attention has been paid to
supporting the problem solving process itself: “so once the analyst has figured
out what maps to what it’s relatively easy. . .However, what the tools don’t do is
help the analyst figure out what maps to what.”

Complexity problems are typically associatedwith off-the-shelf tools. Of partic-
ular note is accidental complexity –which can be introduced due to poor considera-
tion of other categories, such as lack of flexibility to adapt the tools to a company’s
own context. One interviewee described how the company’s processes had to be
significantly changed to allow them to use the tool: a lack of control over the code
generation templates led to the need to modify the generated code directly, which
in turn led to a process to control these manual edits. Complexity also arises when
fitting an MDE tool into an existing tool chain: “And the integration with all of
the other products that you have in your environment. . . ” Despite significant in-
vestment in providing suites of tools that can work together, this is clearly an area
where it is easy to introduce accidental complexity.

It is ironic that MDE was introduced to help deal with the essential com-
plexity of systems, but in many cases, adds accidental complexity. Although this
should not be surprising (cf. Brooks [22]), it is interesting to describe this phe-
nomenon in the context of MDE. For the technical categories, in almost every
case, interviewees gave examples where the category helped to tackle essential
complexity, but also other examples where the category led to the introduction of
accidental complexity. So, interviewees talked about the benefits of code genera-
tion, but, at the same time, lamented the fact that “we have some problems with
the complexity of the code generated. . . we are permanently optimizing this tool.”
Interviewees discussed how domain-specific languages (DSLs) should be targeted
at complex parts of the system, such as where multiple disciplines intersect (“if
you have multiple disciplines like mechanical electronics and software, you can
really use those techniques”) whilst, at the same time realizing that the use of
DSLs introduces new complexities when maintaining a standard DSL across a
whole industry: “their own kind of textual DSL [for pension rules]. . .And they
went to a second company and the second company said no our pension rules are
totally different.” Clearly, as well known from Brooks, there is no silver bullet.

8 J. Whittle et al.

Table 2. Internal Organizational Categories

Category Sub-Category

Processes
Adapting tools to processes
or vice-versa

- Tailoring to a Company’s Existing Processes (5)
- Sustainability of Tools over the Long Term (3)
- Appropriating Tools for Purposes

They Were Not Designed For (3)
- Issues of Integrating Multiple Tools (6)
- Migrating to different tool versions (3)
- Offsetting Gains: Tools bring gains

in one aspect but losses in another (2)
- Whether Maintenance is carried out

at the Code or Model Level (3)

Organizational Culture
Impact of cultural attitudes
on tool application

- Tailoring to a Company’s Culture (4)
- Inertia: Reluctance to Try New Things (1)
- Over-Ambition: Asking Too Much of Tools (1)
- Low Hanging Fruit: Using Tools

on Easy Problems First (6)

Skills
Skills needed to apply tools

- Training Workforce (11)
- Availability of MDE Skills in Workforce (4)

4.2 Internal Organizational Factors

Category Descriptions. Table 2 gives the set of internal organizational cat-
egories. The first, Processes, relates to how tools must be adapted to fit into
existing processes or how existing processes must be adapted in order to use
tools. Tailoring to Existing Processes concerns the former of these; the remaining
sub-categories the latter. Sustainability of tools concerns processes for ensuring
long term effectiveness of tools, taking into account changes needed to the tools
as their use grows within the organization. Appropriation is about how tool use
changes over time, often in a way not originally intended. Integration Issues are
where new processes are needed to integrate MDE tools with existing tools. Mi-
gration Issues are about migrating from one tool to another or from one tool
version to another. Offsetting Gains is where a tool brings benefits in one part of
the organization but disadvantages in another part of the organization. Mainte-
nance Level is about processes that either mandate model-level changes only, or
allow code-level changes under certain constraints. The Organizational Culture
category relates to the culture of an institution: to what extent tools need to be
adapted to fit culture (Tailoring to Existing Culture), cultural resistance to use
new tools (Inertia), a lack of realistic expectations about tool capabilities (Over
Ambition), and attitudes that look for quick wins for new tools to prove them-
selves (Low Hanging Fruit). The third category concerns Skills — both training
needs (Training) and how existing skills affect adoption (Availability of Skills).

Industrial Adoption of Model-Driven Engineering 9

Observations. Our interviews point to a strong need for tailoring of some sort:
either tailor the tool to the process, tailor the process to the tool, or build your
own tool that naturally fits your own process. Based on our data, it seems that,
on balance, it is currently much easier to do the latter. Some tool vendors actively
prohibit tailoring to the process, but rather a process is imposed by the tool for
business reasons: “. . . the transformation engines are used as services. . . we don’t
want to give our customers the source code of the transformation engines and
have them change them freely. That’s a business question.”

When introducing MDE tools, one should think carefully where to introduce
them. One company reported, “We needed to find a way to let them incrementally
adopt the technology.” The solution was to first introduce reverse engineering of
code into models, as the first part of a process of change management. Another
company introduced MDE tools by first using them only in testing. The ‘perfect’
MDE tool may not always be necessary. For example, one company used MDE
where the user interface was not so critical: “cases which are internal applications
. . . where the user interface is not such an issue . . . that’s where you get the
maximum productivity from a tool like ours.”

There is a danger, though, in believing that one “killer application” of an MDE
tool leads to another: “prior to that they had used the technology successfully in a
different project and it worked and they were very happy, so they thought, ok, this
could be applied to virtually any kind of application.” It is not easy to identify
which applications are appropriate for MDE tools and which are not. Apart from
obvious industries where MDE has been applied more widely than others (cf.
the automotive industry), we do not have a fine-grained way of knowing which
MDE tools are appropriate for which jobs.

A curious paradox of MDE is that it was developed as a way to improve
portability [23]. However, time and again issues of migration and versioning
came up in our interviews: “[XX] have burned a lot of money to build their
own tool which they stopped doing because they lost their models when the [YY]
version changed.”

This migration challenge manifests itself slightly differently as ‘sustainabil-
ity’ when considering strategies for long-term tool effectiveness. It was often
remarked by our interviewees that an MDE effort started small, and was well
supported by tools, but that processes and tools broke down when trying to
roll out MDE across a wider part of the organization: “the complexity of these
little [DSL] languages started to grow and grow and grow. . . we were trying to
share the [code generation] templates across teams and versioning and releasing
of these templates was not under any kind of control at all.” One of our inter-
viewees makes this point more generally: “One of the things people forget about
domain specific languages is that you may be able to develop a language that
really is very well suited to you; however, the cost of sustaining just grows and
it becomes eventually unacceptable because a language requires maintenance, it
requires tooling, it requires education.”

10 J. Whittle et al.

Table 3. External Organizational Categories

Category Sub-Category

External Influences
Factors which an organiza-
tion has no direct control
over

- Impact of Marketing Issues (1)
- Impact of Government/Industry Standards (4)

Commercial Aspects
Business considerations im-
pacting on tool use and ap-
plication

- Business Models for Applying MDE (3)
- Cost of Tools (5)
- How to Select Tools (2)

4.3 External Organizational Factors

Category Descriptions. External organizational factors (Table 3) are those
which are outside the direct control of organizations. External Influences include
the impact of government or industry-wide standards on the way tools are devel-
oped or applied, as well as ways in which marketing strategies of the organization
or tool vendors impact on the use and application of tools. Commercial Aspects
include how the cost of tools affects tool uptake, how selection of tools can be
made based on commercial rather than technical priorities, and how the use of
tools relates to a company’s business model.

Observations. External influences clearly have an impact on whether tools –
any kind of tool, not just MDE – are adopted in an organization. Our interviews
show that the tool market is focused only on supporting models at an abstraction
level very close to code, where the mapping to code is straightforward. This is
clearly somewhat removed from the MDE vision. Unfortunately, there is also a
clear gap in the way that vendors market their tools and their real capabilities
in terms of this low-level approach. As a result, many MDE applications fail due
to expectations that have not been managed properly.

Data on the impact of the cost of tools seems to be inconclusive. Some inter-
viewees clearly found cost of tools to be a prohibitive factor. In one case, the
high cost of licenses led a company to hack the tool’s license server! For the most
part, however, companies do not seem to point to tool costs as a major factor:
the cost of tools tends to be dwarfed by more indirect costs of training, process
change, and cultural shift: “. . . it takes a lot of upfront investment for someone
to learn how to use the tools and the only reason I learnt how to use them was
because I was on a mission.”

Government or industry standards can both positively and negatively affect
whether tools are used or not. MDE tools can help with certification processes:
“they looked at the development method using the modeling tools and said, well,
it’s a very clear and a very comprehensive way to go and they accepted that.” In
other cases, interviewees reported that MDE tools can make certification more
difficult as current government certification processes are not set up to deal with

Industrial Adoption of Model-Driven Engineering 11

Table 4. Social Categories

Category Sub-Category

Control
Impact of tools on whether stake-
holders feel in control of their
project

Ways of Interacting with Tool Vendors (2)
Subverting Tools: Workarounds

Needed to Apply Them (1)

Trust
Impact of trust on tool use and
adoption

Trust of Vendors (4)
Engineers’ Trust of Tools (6)
Impact of Personal Career Needs (1)

auto-generated code. Sometimes, external legal demands were a main driver for
the use of MDE tools in the first place: “with the European legal demands, it’s
more and more important to have traceability.”

4.4 Social Factors

Category Descriptions. When it comes to MDE tools, social factors
(Table 4) revolve around issues of trust and control. Tool vendors, for exam-
ple, have different business models when it comes to controlling or opening up
their tools (Interacting with Tool Vendors). Subverting Tools is when a com-
pany looks for creative solutions to bring a tool under its control. The data has
a lot to say about Vendor Trust, or how perceptions of vendors influence tool
uptake. Engineers’ Trust also affects tool success: typical examples are when
programmers are reluctant to use modeling tools because they do not trust code
generated. Career Needs refers to how the culture of the software industry may
disadvantage MDE: an example is the ubiquitous use of consultants who are not
necessarily inclined to take the kind of long term view that MDE needs.

Observations. At a very general level, our data points to ways in which different
roles in a development project react to MDE tools. One cannot generalize, of
course, but roughly speaking, software architects tend to embrace MDE tools
because they can encode their architectural rules and easily mandate that others
follow them. Code ‘gurus’, or those highly expert programmers in a project,
tend to avoid MDE tools as they can take away some of their control. Similarly,
‘hobbyist programmers’, those nine-to-fivers who nevertheless like to go home
and read about new programming techniques, also tend to avoid MDE because
it risks taking away their creativity. Managers respond very differently to MDE
tools depending on their background and the current context. For example, one
manager was presented with a good abstract model of the architecture but took
this as a sign that the architects were not working hard enough!

One much-trumpeted advantage of MDE is that it allows stakeholders to
better appreciate the big picture. Whilst this is undoubtedly true, there are also
cases where MDE tools can cloud understanding, especially of junior developers:

12 J. Whittle et al.

“we’d been using C and we were very clear about the memory map and each
engineer had a clear view. . .But in this case, we cannot do something with the
generated code so we simply ask the hardware guys to have more hard disc.”

Similar implications can arise when companies become dependent on vendors.
Vendors often spend a lot of time with clients customizing tools to a particular
environment. But this can often cause delays and cost overruns and takes control
away from the client: “And suddenly the tool doesn’t do something expected and
it’s a nightmare for them. So they try to contact the vendor but they do not really
know what’s going on, they are mostly sales guys.”

MDE asks for a fundamental shift in the way that people approach their
work. This may not always be embraced. One example is where MDE tools
support engineers in thinking more abstractly, and, in particular, tackling the
harder business problems. But engineers may not feel confident enough to do
this: “when you come to work and you say, well, I could work on a technical
problem or I could work on this business problem that seems not solvable to me,
it’s really tempting to go work on the technical stuff.” MDE tools require up-
front investment to succeed and the return on this investment may not come
until the tool has been applied to multiple projects. There is a tension here
with the consultancy model which is often the norm in MDE: “So they felt
that, let me do my best in this one project. Afterwards, I am moving into some
other project. . . [in a] consultancy organization, you measure yourself and you
associate yourself with things in a limited time.”

5 A Study of MDE Practice in Two Companies

This section presents insights from our second set of data: 20 additional inter-
views in Ericsson AB and Volvo Cars. Interviewees at Ericsson were users of
Rational Software Architect RealTime Edition (RSA/RTE). At Volvo Cars, in-
terviewees used Simulink. This set of interviews was carried out independently of
the development of the taxonomy. The taxonomy was used in coding the second
set of transcripts but any deviations from the taxonomy were noted.

5.1 Technical Factors

The second study clearly shows that MDE tools can both reduce and increase
complexity. Ericsson employees found benefits of using RSA/RTE because of
the complex aspects of the radio base station domain, such as synchronous/
asynchronous message passing: “It takes care of these things for you so you can
focus on the behavior you want to have within a base station.” Interestingly, this
interviewee has now moved to a new project where all development is done using
C++ and a lot of time is spent on issues that were dealt with by the tool before.
And it is a constant source of error. On the other hand, “I don’t think you gain
advantage in solving all kinds of problems in modeling.” There is a danger of
over-engineering the solution: “You would try to do some smart modeling, or
stuff and you would fail. After a while you would end up in a worse place than
if you had done this in C++”.

Industrial Adoption of Model-Driven Engineering 13

5.2 External Organizational Factors

Both companies illustrate how external organizational factors impact on MDE
success. The functionality of Ericsson’s radio base stations is accessed by Tele-
coms companies such as AT&T through an API. The API is developed using
RSA/RTE by 7-8 software engineers. The changes to the API are managed by a
forum which is responsible for ensuring that the accepted changes are consistent
and that they make sense for the customers: “We do have a process for how to
change it and we review the changes very carefully. For new functions, we want
it to look similar, we want to follow certain design rules and have it so it fits
in with the rest.” This example illustrates how MDE can be effectively used to
manage external influences: in this case, Ericsson models the API as a UML
profile and manages it through MDE.

At Volvo, the automotive standard AUTOSAR1 has made the choice of de-
velopment tool a non-issue; Simulink is the standard tool: “. . . a language which
makes it possible to communicate across the disciplinary borders. That the system
architect, the engineer and the tester actually understand what they see.”

5.3 Internal Organizational Factors

One Ericsson employee notes the importance of internal organizational support
for MDE tools: “Tool-wise I was better off five years ago than I am today. . . then
we had tool support within the organization. And they knew everything. Today,
if I get stuck there is no support to help me.” The quote comes from a sys-
tem architect at Ericsson who concludes that the tools are difficult to use since
they are so unintuitive. The threshold for learning how to produce and consume
models can be overcome but it requires an organization where developers are
not exposed to different tools between projects.

According to another employee at Ericsson, it is necessary to change the
existing processes and culture in order to make the most out of MDE tools:
”I think actually that the technology for doing this [MDE] and the tools, as
the enablers, they are more advanced than the organizations that can use them
. . .Because the organizations are not mature to do it there are few users of those
tools and then the usability is poor.”

At Volvo a substantial effort has been made in order to enable the transition
from Simulink as a specification and prototype tool into a code generation tool;
due to the properties of the code generator different design rules are suitable
for readability versus code generation. Migrating from one tool to another also
requires that old processes are updated: “When it comes to TargetLink – a
competitor to Simulink – we have the knowledge of good and bad design patterns.
For Simulink, that is something we are currently obtaining, what to do and not,
in Simulink models.”

1 AUTomotive Open System ARchitecture; www.autosar.org/

www.autosar.org/

14 J. Whittle et al.

5.4 Social Factors

It seems that the effort put into tailoring the tools to the existing organization
has paid off at Volvo since the domain experts trust the tools to deliver: “I do like
it. In quite a lot of ways. Especially for the kind of software we are developing.
It’s not like rocket science, really. It’s like systems where you have a few signals
in, you should make a few decisions, make some kind of output. It is not that
difficult applications. There are no complex algorithms. . .And for that I think
Simulink is very sufficient. . . I like it.”

At Ericsson, interviewees commented that the main difference between work-
ing with RSA/RTE and code is that the latter is well-documented on the web:
“You can find examples and case studies and what not in millions.” But when
searching for tool-specific help on UML, “you basically come up empty-handed.”

5.5 Taxonomy Validation

The study at Ericsson and Volvo is in itself revealing about MDE practice. How-
ever, for the purposes of this paper, it serves primarily to validate our taxonomy.
In only one case did we find that an extension to the taxonomy was necessary.
This was on the role that an open community can play in supporting MDE. As
discussed in Section 5.4, the lack of online support forums for MDE can lead to
feelings of isolation and, in turn, lack of engagement with MDE. We therefore
extend our taxonomy to reflect this – by adding a new category, Open Commu-
nity, with sub-category, Developer Forums, in Table 4. The other issue is that it
can be difficult to pick a single sub-category to which a statement applies. Of-
ten, a single statement overlaps multiple sub-categories. This, however, was not
unexpected. Issues of MDE adoption and tool use are complex and involve many
dependencies, so it would be unrealistic to expect a taxonomy with completely
orthogonal sub-categories.

6 Discussion and Conclusions

Through two separate studies of MDE practitioners, comprising a total of 39
interviews, we have developed a taxonomy of technical, social and organizational
issues related to MDE tool use in practice. This taxonomy serves as a checklist
for companies developing and using tools, and also points to a number of open
challenges for those working on MDE tool development. We now discuss some
of these challenges, which have emerged from the data.

Match tools to people, not the other way around. Most MDE tools are de-
veloped by those with a technical background but without in-depth experience
of human-computer interaction or business issues. This can lead to a situation
where good tools force people to think in a certain way. We recommend that the
MDE community pay more attention to tried-and-tested HCI methods, which
can help to produce more useful and usable tools. There is empirical work on
studying MDE languages and tools, but this is rarely taken into account.

Industrial Adoption of Model-Driven Engineering 15

Research should avoid competing with the market. The research community
should focus on issues not already tackled by commercial vendors. Our study
found that the majority of tools support the transition from low level design to
code. However, many bigger issues of modeling – such as support for early design
stages and support for creativity in modeling – are relatively unexplored.

Finding the right problem is crucial. Our studies suggest that finding the right
place for applying MDE is a crucial success factor. However, there is very little
data about which parts of projects are good for MDE and which are not. Nor
is there data about which tools are right for which jobs. In general, even the
research community has not clearly articulated how to decide what to model
and what not to model, and what tools to use or not to use.

More focus on processes, less on tools. The modeling research community
focuses a lot on developing new tools and much less on understanding and im-
proving processes. A particular case is the importance of tailoring. Very little
research has been carried out on how best to tailor: what kinds of tailoring go
on, how tools can or cannot support this, and how to develop simpler tools that
can fit into existing processes with minimal tailoring.

Open MDE Communities. There is a distinct lack of open MDE developer
forums. Those who do take the plunge with MDE are left feeling isolated, with
nowhere to go to get technical questions answered or to discuss best practice.
There are few examples of ‘good’ models online which people can consult, and ef-
forts towards repositories of such models (cf. [24]) have achieved limited success.
There is a chicken-and-egg dilemma here: if MDE is widely adopted, developer
communities will self-organize; if it is not, they will not.

The big conclusion of our studies is that MDE can work, but it is a struggle.
MDE tools do not seem to support those who try. We need simpler tools and
more focus on the underlying processes. MDE tools also need to be more resilient:
as with any new method, MDE is highly dependent on a range of technical, social
and organizational factors. Rather than assuming a perfect configuration of such
factors, MDE methods and tools should be resilient to imperfections.

For themost part, our sub-categories are already known and have been noted ei-
ther in the literature or anecdotally. France andRumpe [25], for example, point out
that “Current work on MDE technologies tends to focus on producing implemen-
tation. . . from detailed design models”. Aranda et al. [19] found that tailoring of
processes is critical for MDE. Similarly, Staron found that organizational context
has a huge impact on the cost effectiveness of MDE [3]. Indeed, many of our obser-
vations about organizational aspects of MDE adoption are not necessarily specific
to MDE but are true of technology adoption generally. However, the contribution
of the taxonomy is that it brings all of the factors – both technical andnon-technical
– together in one place to act as a reference point.

This paper began with the question: “Are tools really the problem?” The
answer appears to be both yes and no. MDE tools could definitely be better.
But good tools alone would not solve the problem. A proper consideration of
people and organizations is needed in parallel. As one of our interviewees noted:
“Wait a second, the tools are really interesting, I agree, but to me it’s much more
about what is the process and the technique and the pattern and the practice.”

16 J. Whittle et al.

Acknowledgments. The authors would like to thank all those who took part in
the interviews, including those who facilitated the study at Ericsson and Volvo.

References

1. Den Haan, J.: 8 reasons why model-driven approaches (will) fail (2008),
http://www.infoq.com/articles/8-reasons-why-MDE-fails

2. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study of forces and
frictions affecting large-scale model-driven development. In: [26], pp. 352–367

3. Staron, M.: Adopting model driven software development in industry – a case study
at two companies. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 57–72. Springer, Heidelberg (2006)

4. Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., Reggio, G.: Maturity of soft-
ware modelling and model driven engineering: A survey in the Italian industry. In:
Baldassarre, M.T., Genero, M., Mendes, E., Piattini, M. (eds.) 16th International
Conference on Evaluation & Assessment in Software Engineering, EASE 2012, Ciu-
dad Real, Spain, May 14-15, pp. 91–100. IET - The Institute of Engineering and
Technology (2012)

5. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in
industry. In: [27], pp. 633–642

6. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: [27], pp. 471–480

7. Pérez-Medina, J.L., Dupuy-Chessa, S., Front, A.: A survey of model driven en-
gineering tools for user interface design. In: Winckler, M., Johnson, H. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 84–97. Springer, Heidelberg (2007)

8. de Sousa Saraiva, J., da Silva, A.R.: Evaluation of MDE tools from a metamodeling
perspective. In: Principal Advancements in Database Management Technologies,
pp. 105–131. IGI Global (2010)

9. Cabot, J., Teniente, E.: Constraint support in MDA tools: A survey. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 256–267. Springer,
Heidelberg (2006)

10. Paige, R.F., Varró, D.: Lessons learned from building model-driven development
tools. Software and System Modeling 11(4), 527–539 (2012)

11. Chalmers, M.: A historical view of context. Computer Supported Cooperative
Work 13(3), 223–247 (2004)

12. Dourish, P.: Where the action is: the foundations of embodied interaction. MIT
Press, Cambridge (2001)

13. Grudin, J.: Why CSCW applications fail: Problems in the design and evaluation
of organization of organizational interfaces. In: Greif, I. (ed.) CSCW, pp. 65–84.
ACM (1988)

14. Brown, B.: The artful use of groupware: An ethnographic study of how Lotus Notes
is used in practice. Behavior and Information Technology 19(4), 263–273 (1990)

15. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is extreme programming just old
wine in new bottles: A comparison of two cases. J. Database Manag. 16(4), 41–61
(2005)

16. Robinson, H., Sharp, H.: The social side of technical practices. In: Baumeister,
H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp. 100–108.
Springer, Heidelberg (2005)

http://www.infoq.com/articles/8-reasons-why-MDE-fails

Industrial Adoption of Model-Driven Engineering 17

17. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

18. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software
development - technology, engineering, management. Pitman (2006)

19. Aranda, J., Damian, D., Borici, A.: Transition to model-driven engineering - what
is revolutionary, what remains the same? In: [26], pp. 692–708

20. Clark, T., Muller, P.-A.: Exploiting model driven technology: a tale of two startups.
Software and System Modeling 11(4), 481–493 (2012)

21. Holsti, O.R.: Content Analysis for the Social Sciences and Humanities. Addison-
Wesley Publishing Company, Reading (1969)

22. Brooks Jr., F.P.: The mythical man-month – essays on software engineering, 2nd
edn. Addison-Wesley (1995)

23. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

24. France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H.C., Jensen, A.C.:
Repository for model driven development (ReMoDD). In: Glinz, M., Murphy, G.C.,
Pezzè, M. (eds.) 34th International Conference on Software Engineering, ICSE
2012, Zurich, Switzerland, June 2-9, pp. 1471–1472. IEEE (2012)

25. France, R.B., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Briand, L.C., Wolf, A.L. (eds.) International Conference on
Software Engineering, ICSE 2007, Track on the Future of Software Engineering,
FOSE 2007, Minneapolis, MN, USA, May 23-25, pp. 37–54 (2007)

26. France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): MODELS 2012. LNCS,
vol. 7590. Springer, Heidelberg (2012)

27. Taylor, R.N., Gall, H., Medvidovic, N. (eds.): Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May
21-28. ACM (2011)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 18–34, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Generic Model Assist

Friedrich Steimann and Bastian Ulke

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org, Bastian.Ulke@feu.de

Abstract. Model assist is a feature of modelling environments aiding their users
with entering well-formed models into an editor. Current implementations of
model assist are mostly hard-coded in the editor and duplicate the logic
captured in the environment’s validation methods used for post hoc checking of
models for well-formedness. We propose a fully declarative approach which
computes legal model assists from a modelling language’s well-formedness
rules via constraint solving, covering a large array of assistance scenarios with
only minor differences in the assistance specifications. We describe an
implementation of our approach and evaluate it on 299 small to medium size
open source models. Although more research will be needed to explore the
boundaries of our approach, first results presented here suggest that it is
feasible.

1 Introduction

Code assist is considered a major asset of integrated development environments such
as Eclipse [4] or Visual Studio [29]: while the developer types a name, the
environment computes a list of declared entities to which the name could refer, and
suggests corresponding completions of the typing. This assistance goes as far as
suggesting names before the typing has begun — for this, code assist collects from all
declared entities the names of those that may occur in the place of the cursor without
making the code ill-formed, and presents the resulting list to the developer, who is to
make a selection. Where code is already ill-formed, code assist provides a list of
possible corrections (in Eclipse referred to as quick fixes), from which the developer
can select.

Model assist as we define it here (but see Section 6 for how it has been defined
differently) is code assist applied to models: whenever the modeller is to make
reference to some existing model element, the modelling environment will present a
choice from which the modeller can select. Just like for code assist, for model assist to
be maximally useful it should not offer choices that make a model ill-formed, and
should be able to propose fixes for ill-formed models.

Contemporary modelling environments such as EMF [5], IBM RSA [10], or
Papyrus [18] extract type information from the modelling language’s metamodel to
restrict model elements that can be referenced at a given position. For instance, where

 Generic Model Assist 19

the metamodel requires a class, the modelling environment will present the list of all
classes that are currently defined by the model. However, more involved well-
formedness rules, for instance that the generalization relationship of classifiers must
not be circular, are either ignored when collecting the candidates presented for
selection, or are hard-coded into the model editor, causing an untoward duplication of
validation logic which is not only tedious, but also prone to inconsistencies and errors.

To improve on this situation, we have devised and implemented a uniform
framework for computing well-formed model completions, changes, and fixes (here
collectively referred to as model assists) from the well-formedness constraints
specified with the metamodel. Our approach works by representing the subjects of
assists (usually — but not limited to — references to other model elements) with
constraint variables, and by letting a constraint solver solve the constraints that a well-
formedness checker would merely check. Because constraint solving is undirected in
the sense that every constraint variable can serve as input as well as as output, our
approach is generic in that a single specification of well-formedness serves the
implementation of all model completions, changes, and fixes constrained by this
specification.

The remainder of our paper is organized as follows. In Section 2, we motivate our
work by presenting various different model assistance scenarios all governed by the
same conditions of well-formedness, suggesting that devising a toll for each scenario
individually is indeed undesirable. In Section 3, we describe the theoretical basis of
our approach to generic model assist, whose implementation in the Refacola
constraint language and framework we sketch in Section 4. Section 5 presents the
results of a systematic evaluation on 299 open source models. A discussion of related
work concludes.

2 Motivation

To motivate our work, we use the example of sequence diagrams that must be well-
formed with respect to the class diagram of Figure 1. The class diagram defines two
(unrelated) classes, C1 and C2, each defining operations (methods; o1, o2, and o3).

A sequence diagram can refer to, or use, the elements of a class diagram as
follows:

1. A lifeline (representing an object and depicted as a vertical line) can refer to a
class as the classifier of the object.

2. A message sent to an object (depicted as an arrow pointing to the object’s lifeline)
can refer to an operation that is associated with the message.

For a sequence diagram to be well-formed, the operation associated with a message
must be owned1 by the classifier associated with the lifeline to which the message is
directed.

1 It could also be inherited. However, we do not deal with inheritance here; the reader interested

in how it can be handled using the same means as we will be using is referred to [28].

20 F. Steimann and B. Ulke

C1

o1

o2

C2

o3

Fig. 1. Class diagram used for model completion

2.1 Model Completion

Based on the class diagram of Figure 1, Figure 2 depicts four different completion
scenarios for sequence diagrams:

SCENARIO 1: A message is sent to a lifeline using class C1 as its classifier. This
restricts the operations that can be associated with the message to the operations of C1.
Specifically, when the modeller completes the model by selecting an operation
(currently represented by the question mark), a choice has to be made between o1 and
o2 (the operations of C1; cf. Figure 1). ♦

SCENARIO 2: A message associated with o2 is sent to a lifeline with unspecified
classifier. To complete this model, a selection from {C1, C2} (the only two available
classes in Figure 1) needs to be made. Since only C1 owns operation o2, model
completion should present only C1 for selection. ♦

SCENARIO 3: A message with as yet unspecified operator is sent to a lifeline whose
classifier is also not yet specified. This model is completed by choosing from a set of
pairs of operators and classifiers, namely {(o1, C1), (o2, C1), (o3, C2)}. ♦

SCENARIO 4: For a message associated with o2, the target lifeline needs to be selected.
Correct model completion can offer only the lifeline associated with classifier C1 for
selection, since it is the only one that has operation o2 available. ♦

While model completion for each of the above scenarios is easily conceived and
implemented, doing so for each scenario separately may lead to maintenance
problems (e.g., when the language specification changes) and inconsistent behaviour,
and doing it for all scenarios in one requires complex case analyses and is therefore
error-prone.

2.2 Controlled Model Change

Change of a model is also subject to well-formedness conditions. We call a change
that is guaranteed to preserve well-formedness a controlled change, and add
controlled changes to the portfolio of functions to be offered by model assist.

:C1

?

:?

o2

(2)(1)
:?

?

(3)
:C1 :C2

o2

(4)

?

Fig. 2. Four scenarios of completing a sequence diagram. Question marks mark as yet missing
entries (references with open target) subject to completion.

 Generic Model Assist 21

While simply checking whether an intended change leaves a model well-formed is
trivial, we strive for assistance enabling intended changes that require other,
secondary changes to keep the model well-formed. The following scenarios illustrate
this.

SCENARIO 5: Consider that after the completion of Scenario 2, the modeller decides to
call operation o3, rather than o2, on the object represented by the lifeline. Alone, this
change would make the model ill-formed. However, if complemented by a change of
the classifier associated with the lifeline, C1, to C2, well-formedness is restored. ♦

SCENARIO 6: Starting again from the completed Scenario 2, consider that the modeller
decides to change the classifier of the lifeline receiving the message, C1, to C2. As
above, this change would make the model ill-formed. However, if complemented by a
move of message o2 to classifier C2, well-formedness is preserved. ♦

The alert reader will have noticed that the above scenarios complement each other in
that each one offers a solution that the other one lacks: in case of Scenario 5, an
alternative solution would be to move o3 to C1, and in case of Scenario 6, an
alternative solution would be to replace the call of o2 with a call of o3. Indeed,
specifying the mechanics of each scenario of controlled change separately likely leads
to inconsistency.

2.3 Model Fixing

If a model is ill-formed, the modelling environment usually associates ill-formedness
with a single property2 of a single model element. A simple fix procedure healing ill-
formedness is then to treat the property as “to be completed” and proceed as for
model completion. However, the cause of the error may equally lie in other properties
involved in the violated well-formedness condition, as suggested by the following
scenario.

SCENARIO 7: Assume that in Scenario 4, the message is sent to the object represented
by the right lifeline (with classifier C2) so that the model is ill-formed (C2 has no
operation o2; cf. Figure 1). This can be fixed by changing the operation associated
with the message to o3, or by moving o2 to C2, or by changing the classifier of the right
lifeline to C1, or by redirecting the message to the left lifeline. ♦

Although all four fixes possible for this scenario differ fundamentally from a user
perspective (and indeed amount to rather different models), they are all motivated by
the same well-formedness condition. As for model completion and controlled
changes, implementing them separately is tedious and error-prone.

2 In both UML and OCL, a property is either an attribute or a reference [15, 16] (the latter also

being referred to as an opposite association end in [16]).

22 F. Steimann and B. Ulke

LifelineMessage
1

Classifier Operation
ownerlifeline classifier

1 1

operation1

Fig. 3. Metamodel underlying well-formedness rule (1)

2.4 Combining Completions and Fixes with Controlled Changes

The number of possible completions and fixes can be increased by combining them
with controlled changes. For instance, in Scenario 1, all three operations can be
offered for completion, provided that the completion procedure is allowed to change
the classifier of the lifeline from C1 to C2. Even though we will use this in our
evaluation in Section 5, generally granting model completion and fixing arbitrary
changes will lead to excessive numbers of choices to select from.

3 A Declarative Approach to Model Assist

We introduce our approach to generic model assist using the example of model
completion, generalizing it to controlled model changes and fixes along the way.

3.1 Deriving Model Completions from Well-Formedness Rules

The well-formedness condition informally introduced above is formally expressed as

 ∀ m ∈ Message : m.operation.owner = m.lifeline.classifier (1)

meaning that the owner of the operation associated with every message m of a model
must be the classifier of the lifeline to which the message is directed (see Figure 3 for
the underlying metamodel).3 An obvious way to compute legal model completions is
therefore to first generate all possible completions exploiting the type information of
Figure 3 and then to exclude from these those violating (1). However, for large
models and more than one well-formedness rule involved, this generate-and-test
procedure will become prohibitively expensive, especially when more than one
reference is to be completed (as in Scenario 3). A more goal directed procedure is
therefore needed.

As it turns out, using (1) and the model to be completed, the legal completions can
be directly inferred. For instance, in case of Scenario 1, we have

3 Other works, including [6, 8, 11], rely on name-based binding, here meaning that a name is

attached to the message and requiring that this name equals the name of some operation
(establishing the binding through equality of names). The same could also be done for binding
a classifier to a lifeline. However, we have chosen to represent the binding through an explicit
link (a reference) here, since this conforms more closely to the UML metamodel [15].

 Generic Model Assist 23

m1.lifeline = l1 l1.classifier = C1
m1.lifeline.classifier = C1

 [Figure 2 (1)]

m1.operation.owner = m1.lifeline.classifier
m1.operation.owner = C1

 [Eq. (1)]

o1.owner = C1 o2.owner = C1 o3.owner = C2
m1.operation = o1 ∨ m1. operation = o2

 [Figure 1]

where m1 denotes the message and l1 denotes the lifeline in Figure 2 (1). Analogous
inferences can be performed for the other completion scenarios (but have been
omitted here for a lack of space); they produce precisely the required solutions.

3.2 Model Completion as Constraint Solving

The above derivations of legal model completions are easily done on paper, yet for a
tool they need to be automated. As we will see, this can be trusted to a constraint
solver. For this however, we must translate well-formedness rules to constraints
accepted by a constraint solver first.

An expression of the form e.r (such as m1.operation), where e is a model element
and r is a property (a reference or an attribute; cf. Footnote 2) of e, directly translates
to a constraint variable v whose domain is that of e.r. An expression of the form
e1.r = e2 (such as m1.operation = o2) directly translates to a constraint v = e2, fixing the
value of the constraint variable v (representing e1.r) to e2. Note that only constraint
variables whose values are not fixed can be assigned new values by the constraint
solver (and can thus be the subject of completion).

An expression of the form e.r1.r2 represents an indirection (or, in modelling terms,
a navigation path) that cannot be translated directly to a constraint variable. The
reason for this is that which (whose model element’s) reference e.r1.r2 represents
depends on the value (target) of the constraint variable v representing e.r1. Following
[25, §4.2], however, we can translate a well-formedness rule such as (1) involving
indirection (here: two indirections) into one without, in case of (1) to

∀ m ∈ Message ∀ o ∈ Operation ∀ l ∈ Lifeline :
(m.operation = o ∧ m.lifeline = l) → o.owner = l.classifier

(2)

Applying (2) to the model defined by Figure 1 and Figure 2, Scenarios 1–3, where we
have that Operation = {o1, o2, o3} and Lifeline = {l1}, we get the constraint set (by
unrolling the quantifiers)

 {(m1.operation = o1 ∧ m1.lifeline = l1) → o1.owner = l1.classifier,
 (m1.operation = o2 ∧ m1.lifeline = l1) → o2.owner = l1.classifier,
 (m1.operation = o3 ∧ m1.lifeline = l1) → o3.owner = l1.classifier}

(3)

which contains no indirections. When complemented by the constraints fixing the
targets (values) of references as provided by the model to be completed, a constraint
solver will compute all legal model completions. For instance, for Scenario 1, the
constraint set (3) is complemented by the set

 {o1.owner = C1, o2.owner = C1, o3.owner = C2, m1.lifeline = l1, l1.classifier = C1}

24 F. Steimann and B. Ulke

for which the solver computes the solutions m1.operation = o1 and m1.operation = o2.
For Scenario 2, l1.classifier = C1 is replaced by m1.operation = o2; for Scenario 3, both
are dropped. For Scenario 4, (2) unrolls to 6 constraints (3 for l1 and 3 for l2) to which
the fixing constraints must be added. Thus, a simple transformation to constraints
amenable to constraint solving lets us compute all legal model completions.

Mapping well-formedness rules involving indirection (navigation paths) may be
simple, yet it introduces considerable complexity to the constraint solving process, by
introducing disjunctions (in the form of implications) and by increasing the number of
constraints. However, we maintain that navigation is at the heart of modelling, and
any implementation of model assist that does not support it will be of limited value. In
particular, all systems that are limited to the completion of (value-typed) attributes (as
opposed to references; cf. Section 6) fall into this category.

Constraint generating and solving as described above also solves the problems of
controlled model changes and fixes. The only difference lies in specifying which
properties of a model are to be changed (either to user-provided new values or to
values computed by the constraint solver) and which are to remain constant.

3.3 Specifying Model Assists: Intended and Allowed Changes

In modelling, properties can be optional, meaning that they may, but need not be
provided. For instance, in a meta-model like that of Figure 3, attaching a classifier to a
lifeline l could be optional, in which case “target not specified” would be represented by
l.classifier = null. However, even if the modeller chooses to not provide a classifier, she
still has made a choice. This is to be distinguished from “target not yet specified” or “to
be completed”, for which no special value exists. Therefore, the subjects of model
completion must be specified explicitly as input to the completion process.

For controlled model changes and fixes this is not sufficient. A controlled change
involves and intended change of a property which is to be specified by the user.
However, as suggested by Scenarios 5 and 6, for an intended change to be feasible the
solver must be allowed to change the values of other properties, the so-called allowed
changes [24]. If the allowed changes are not limited, the solver will produce too many
solutions (most of which — even though correct — will appear far-fetched); it they
are too limited, they may prevent intended changes that the user would want to see.
For model fixing, the situation is roughly analogous: although it has no intended
change, it requires the allowed changes to be specified, to limit the fix proposals to
the ones accepted by the user as reasonable. Section 5 will provide examples of this.

3.4 Generating the Constraints

Once it is clear which properties are to be changed and which are to be kept constant,
all constraints constraining the variable properties need to be generated. A simple
approach here is to generate all constraints from a model; however, this solution may
not only be prohibitively expensive both in terms of time and space, it may also lead
to an unsolvable constraint system, namely when the model is ill-formed in another
place than the one in which the completion, change, or fix is to be applied. Therefore,
the constraint generation process must be carefully crafted.

 Generic Model Assist 25

4 Implementation

To utilize previous work on constraint generation, we implemented constraint-based
model assist as described here on top of our refactoring constraint language and
framework Refacola [24]. The Refacola language allows the specification of constraint-
generating rules based on a specification of the target language (e.g., Java or UML; see
Section 5 for details), while the Refacola framework takes over generation of the
constraints from an artefact in the target language (a program or a model), their
submission to a constraint solver, and the writing back of the solution (new values of
properties) to the artefact. The constraint generation algorithm of Refacola takes care
that only the constraints needed for a specific problem are created, by first generating all
constraints directly constraining the initial changes (the refactoring intent in case of
refactoring and the properties to be completed, changed, or fixed in our current setting),
and then recursively generating all constraints further constraining the allowed changes
constrained by the previous generations of constraints [24]. To reduce the depth of
recursion, the generator performs a form of constraint propagation (arc consistency
basically) combined with an evaluation of constraints at generation time where possible
[26]. Both means are especially effective when the constraint variables have small
domains, particularly when indirection is involved.

Interestingly, to adapt Refacola to model assist as described here, we had to introduce
null as a possible value of references (see above), which was not needed for program
refactoring. Null values are problematic because they may appear in navigation paths
(indirections), where they would cause a runtime error (the equivalent of a null pointer
exception), a notion foreign to constraint solving. To avoid this, we adopted the Null
Object pattern [30] and set the value of null.r to null for all references r.

Table 1. Statistical data describing the 299 models from [1] used in our evaluation

NUMBER OF: CLASSES REFERENCES OPPOSITES CONTAINMENTS

average 48 50 23 14
standard deviation 102 91 37 28
maximum 699 778 222 250
total 14335 15005 6772 4327

5 Evaluation

We deemed that an evaluation of our approach required its systematic application to

1. a significant number of open source models and
2. a significant number of non-trivial well-formedness rules applying to the open

source models.

We demanded openness of models to allow others to repeat our experiments.
Significant numbers of both models and well-formedness rules are required to lower
the bias towards the concrete instances selected. Non-trivial well-formedness rules are
needed to show the power of our approach.

26 F. Steimann and B. Ulke

public boolean validateEReference_ConsistentOpposite(EReference eReference, …) {
 EReference eOpposite = eReference.getEOpposite();
 iif (eOpposite != nnull) {
 iif (eReference.getEContainingClass() != nnull) {
 EReference oppositeEOpposite = eOpposite.getEOpposite();
 iif (oppositeEOpposite != eReference) {
 rreturn false; // this.eOpposite.eOpposite is not this reference
 }
 EClassifier eType = eReference.getEType();
 iif (eType != nnull) {
 EClass oppositeEContainingClass = eOpposite.getEContainingClass();
 iif (oppositeEContainingClass != nnull && oppositeEContainingClass != eType) {
 rreturn false; // this.opposite is not a feature of the type of this ref.
 }
 }
 }
 …
 }
 return true;
}

Fig. 4. Ecore validation method comprising two well-formedness rules (from [5]; slightly
edited for clarity of presentation)

Much to our disillusionment, however, satisfying these constraints proved difficult.
Open source model portals such as ReMoDD [21] or The Open Model Initiative [17] do
not provide machine-readable models in sufficient numbers, and in the few cases in
which models used different diagram types, the corresponding views were not
integrated, providing no opportunities for model assist of the kind suggested by the
scenarios of Section 2. In terms of availability, the situation is better when turning to the
metamodelling level: for instance, the AtlanMod Metamodel Zoo [1] contains some 300
metamodels4 expressed in the EMF metamodel Ecore [5] (which serves as a meta-
metamodel here). However, metamodels, which are structural by nature, consist of class
diagrams only, so that class diagrams need to be completed against themselves. Due to a
lack of alternatives, we nevertheless decided to perform our evaluation using these;
some relevant measures of the size of the models are given Table 1.

A closer analysis of the 54 well-formedness rules of Ecore (implemented in 37
non-empty validation methods) revealed that most deal with trivial conditions for
which our model assist cannot demonstrate its power, such as the well-formedness of
strings, the uniqueness of names, or the consistency of multiplicities ([20] reports
similar findings). In fact, only 5 of the 54 well-formedness rules constrained
references (rather than attributes). These rules dealt with opposite references
(implementing bi-directional relationships) and containment.

The implementation of two of the rules constraining opposite references in Ecore is
shown in Figure 4. The two rules are comprised in one validation method, where each
rule is defined as the path leading to one return of false. The implementation is based
on the metamodel shown in Figure 5, using getter methods to access the references.

EReference
containment

eOpposite

EClass

eContainingClass

eType 0..1
0..1

Fig. 5. Excerpt of the Ecore metamodel as used by the validation method of Figure 4.

4 302 as of Nov. 29, 2012; 3 of these could not be loaded into EMF.

 Generic Model Assist 27

language ecore
kinds
 EStructuralFeature <: ENTITY { eType, lowerBound, upperBound }
 EReference <: EStructuralFeature { eOpposite, eContainingClass, containment }
 EClass <: ENTITY
properties
 eType : EClass
 eLowerBound, eUpperBound : Integer
 eOpposite : EReference
 eContainingClass : EClass
 containment : Boolean
queries
 owner(EReference, EClass)
 has-type(EReference, EClass)
 all-references(EClass, EReference)

rules

 "consistent opposite 1"
 for all
 eReference : EReference eOpposite : EReference eContainingClass : EClass
 if
 owner(eReference, eContainingClass)
 then
 (eReference.eOpposite = eOpposite aand eReference.eOpposite != nnull) ->
 (eContainingClass != nnull -> eReference = eOpposite.eOpposite)

 "consistent opposite 2"
 for all
 eReference : EReference eOpposite : EReference
 always
 (eReference.eOpposite = eOpposite aand eOpposite != nnull
 aand eReference.eType != nnull) -> (eOpposite.eContainingClass = nnull
 oor eOpposite.eContainingClass = eReference.eType)

 "consistent opposite 4"
 ffor all
 r : EReference q : EReference
 aalways
 (r.eOpposite != nnull aand r.eOpposite = q)
 -> nnot (q.containment aand r.containment)

 "consistent containment"
 for all
 r, r2, q : EReference r_eContainingClass, r_referenceType : EClass
 if
 owner(r, r_eContainingClass), has-type(r, r_referenceType),
 all-references(r_referenceType, r2)
 then
 (r.containment aand r_eContainingClass != nnull) ->
 (r2.eOpposite = r oor r2.eOpposite = nnull or r2.lowerBound = 0 oor
 (r2.eOpposite = q -> nnot q.containment))

 "opposite must not be self"
 ffor all r : EReference aalways r.eOpposite != r

Fig. 6. Transcription of Ecore validation rules to constraint rules in Refacola

The transcriptions of 4 of the 5 Ecore well-formedness rules into Refacola
constraint rules are shown in Figure 6. This includes the two rules of Figure 4, in
Figure 6 labelled “inconsistent opposite 1” and “2”. The 5th Ecore rule was irrelevant
for our endeavour; instead, we added a rule “opposite must not be self” to conform to
a validation rule implemented in the Ecore editor alone (cf. Section 5.5).

The constraint rules (listed in the rules section of Figure 6) are preceded by a
language specification of Ecore in Refacola declaring the relevant kinds of model
elements together with their properties and their domains (note the analogy to a
metamodel), as well as a list of queries used by the rules. Each rule has a name (for
identification only) and is introduced by the declarations of the variables representing
the model elements to which the rule applies. The rule itself is either an axiom
(introduced by always) or has a head (introduced by if) and a body (then). The head

28 F. Steimann and B. Ulke

consists of queries binding the variables to concrete model elements and the body lists
the constraints to be generated for the model elements bound by the queries. For
instance, rule “consistent opposite 1” will instantiate the constraint in its body with
every triple (r, r′, c) of two references and a class such that owner(r, c).

5.1 Checking Well-Formedness

Since our goal is to replace current validation methods and the logic implemented by
various forms of model assist by a single well-formedness specification, we first
checked whether our Refacola implementations could replace Ecore’s built-in
validation methods. For this, we generated all constraints constraining each property
of each model element, and checked whether the constraints were satisfied if and only
if the validation method for this property passed (60,020 checks in total). We found
that both approaches identified the same 462 violations in the 299 metamodels,
meaning that for the given models, the constraint rules of Figure 6 and Ecore’s
validation methods are equivalent.

5.2 Fixing Ill-Formed Models

To fix existing violations, we defined the following fix specifications (cf. Section 3.3)
to be applied to every reference r for which ill-formedness has been detected:

• fix inconsistent opposite allow change of r.eOpposite.eOpposite to arbitrary
references, allow change of r′.eOpposite to null for all r′ ∉ {r, r.eOpposite}, and
allow change of r.eOpposite.eType to arbitrary type

• fix inconsistent containment allow change of r.containment and, if r.eOpposite is
not null, of r.eOpposite.containment

The number of applications of each fix specification, how often application was
successful (i.e., whether the model could be fixed using it), the average number of
properties changed per fix, the average number of alternative solutions per successful
application, the average number of constraints generated, and the average times for
both generating and solving the constraints are shown in Table 2. As can be seen,
fixing inconsistent opposite, if possible, always had a unique solution. Fixing
inconsistent containment was always possible, with either 3 (8 times) or only 1
solution.5

5 Fixing inconsistent opposite was impossible when the opposite reference was defined in a

superclass of the class serving as the type of the original reference. Automatically fixing
these situations would require changeability of eType or of eContainingClass, but this would
lead to numerous fix alternatives in the cases easily fixed. Similarly, the number of
alternative fixes for fixing inconsistent containment can be increased by allowing the change
of the containment flags of the opposites of the other references to false. Generally, however,
offering complex fixes like this to the modeller must be carefully traded against the cognitive
load imposed on her by proposing solutions that are difficult to reconstruct, and that are
rarely demanded.

 Generic Model Assist 29

Table 2. Performance of computing fixes, completions, and controlled changes

ASSIST APPLI

CATIO

NS

SUCC

ESSFU

L

if successful CONSTRAINTS

GENERATED

TIME [MSEC]*

SOLUTIONS Δ generating solving

∅ σ ∅ ∅ σ ∅ σ ∅ σ

fix incons. opposite 144 138 1 0 1.22 1080 465 655 534 2.9 7.3

fix incons. containm. 318 318 1.05 0.31 1.04 0.80 0.4 202 290 0.3 2.0

complete opposite 8232 711 2.8 2.5 2 914 764 2406 3370 124 62

compl. opp. and type 14335 3081 2.7 4.2 3 667 644 1531 2168 9 30

change opposite 6772 5597 1 0 5.3 3 1 345 251 62 37

change containment 2713 1894 1 0 1.7 0 0 216 189 0 0

Δ : number of changes made in the model; ∅ : average; σ : standard deviation

* timed on a contemporary laptop with Windows 7 operating system and Intel i7 CPU clocked at 2.8 GHz,
using the Choco constraint solver [3]

As can be seen, the number of constraints generated for fixing inconsistent

opposites (1080) is rather large. This is so because inconsistent opposites includes the
case in which a reference is the declared opposite of more than one other reference, in
which case fixing requires selection of one of these references, and setting eOpposite
of the remaining to null. Since the constraint generation process starts from the first
reference for which the violation is reported, without knowledge of the other
violations related to it, constraints for all references need to be generated. However,
despite the large number of constraints, the times required for generating and solving
them stayed within reasonable bounds (0.7 s on average; the maximum time required
for a fix was 3.3 s). The very low numbers of constraints generated for fixing
inconsistent containment (0.8 on average) is due to the algorithm employed for
constraint generation (see Section 4); this “shift of duty” is reflected in the (by
comparison) long times required to generate the constraints (200 ms vs. 2 ms on
average).

5.3 Completing Incomplete Models

Unlike ill-formedness, incompleteness is not a property that can be derived from a
model (cf. Section 3.3). Therefore, we have to simulate incompleteness of the models
used in our evaluation. For this, we define two simulated completion scenarios:

• complete opposite. A reference’s opposite that is currently null is assumed as
being “to be completed”. For completion, we allow changes of further references’
opposites currently null so that they can oppose the reference to be completed
(otherwise, we would get no candidates for a well-formed completion).

• complete opposite and type of new reference. A new reference is inserted in a
class, with its opposite and type to be completed. As possible targets of the
completion, we allow references whose opposite is null, and allow the change of
this opposite to target the new reference. To further restrict the opposites, we
require that their type is the host class of the new reference.

30 F. Steimann and B. Ulke

We applied the first completion scenario to each reference whose opposite was
null, and the second scenario to each class in each of the 299 models fixed as above.
The results are also shown in Table 2. As can be seen, the success rate of both
completions, as well as the number of alternatives available for completion
(“solutions”) is rather low, which is however owing to the construction of the
completion scenarios and does not reflect a limitation of our approach. That the
number of constraints generated does not rise quadractically when compared to fixing
inconsistent opposite (as one might expect because of the “active” indirection) is due
to the restriction of the change of r.eOpposite.eOpposite to r, which the constraint
generation algorithm sketched in Section 4 exploits. As above, this is reflected in the
time required for generating the constraints, which averages at 2.4 s and 1.5 s,
respectively; although both times appear too long for practical use, profiling showed
that on average, approx. 80% of the time needed for generating the constraints was
spent on querying the model (and that the number of queries issued to generate the
constraints grows quadratically with the number of references in a model). However,
our current implementation of querying has considerable unexploited potential for
optimization.

5.4 Well-Formedness Preserving Change of Models

To probe the feasibility of controlled model changes as described in Section 2.2, we
define the following two evaluation scenarios:

• Change opposite to a reference that has no or a different opposite We change the
target of r.eOpposite, t, to a new target, t′. For this to work, r.eType, t′.eOpposite,
and t′.eType must be changeable. To account for the fact that old opposites must
be set to null, eOpposite may be changed to null for all other references than r or t′.

• Change containment We toggle the containment flag for references for which it is
currently false. To enable this change, we allow the change of lowerBound
attributes to 0 (rule “consistent containment” in Figure 6).

We applied the first change to all 6772 references of the 299 models that had an
opposite assigned, using a randomly chosen reference as its new opposite, and the
second change to all 2713 references whose containment flag was set to false. The
results are again shown in Table 2.

The intended changes were possible in 83% and 70% of all cases, resp., and always
had a single solution. The numbers of additional (allowed) changes necessary to
maintain well-formedness ranged between 1 and 6 and 1 and 4, resp., clearly
demonstrating the utility of this assist. The numbers of constraints generated are small
throughout, as are the times required for constraint generation and solving. This is due
to the effective absence of indirection in both scenarios (the “middle” variables are
fixed).

5.5 Discussion

Our evaluation shows that the same constraints used for well-formedness checking
can indeed be used to compute fixes, completions, and controlled changes of a model.

 Generic Model Assist 31

Where no changes of “middle” references in a navigation expression are required, our
approach is fast; otherwise, the disjunctions (cf. Section 3.2) take their toll.

Compared to the cost incurred by duplicate implementation, the overhead that
comes with adding a constraint solver to a modelling environment should quickly pay.
Indeed, we found that where the Ecore editor considers the conditions of well-formed-
ness implemented in the Ecore validation methods, it uses its own implementation.
For instance, when changing the target of an eOpposite in the EMF editor, the
eOpposite of the old opposite, and eOpposite of the new opposite’s old opposite, are
automatically set to null6. In our approach, this necessary change is computed by the
constraint solver, using the same constraint rules that are used for well-formedness
checking. Apart from the initial and maintenance effort required by duplication, the
separation between editor and well-formedness checking can also lead to
inconsistencies: for instance, we found that the Ecore model editor prevents
r.eOpposite from referring to r, whereas no validation rule exists that flags this
condition in a model that is, for instance, loaded from a file (reported as
https://bugs.eclipse.org/401313).

The boundaries of our approach appear to be the boundaries of constraint solving.
To save the translation of OCL well-formedness rules into the constraint rules of
Refacola (cf. [2] for a similar undertaking), we are currently exploring the mechanics
of generating solver constraints from OCL expressions directly. However, this means
porting the elaborate constraint generation algorithms of Refacola to a different
environment, which means a major investment.

6 Related Work

As has been noted in [13], work on model assist is surprisingly rare. Model
completion for domain-specific model editors as proposed in [22, 23], like our own
work, relies on the metamodel of a language, and on solving the constraints provided
to specify well-formedness of its instances. However, given that it can create new
model elements by itself, it seems that the work’s true scope is model synthesis7,
which is rather different from our intent, namely to assist the modeller in making the
next atomic modelling step (which is either to enter a missing property value or to
change an existing one or to locally fix a problem). To the best of our knowledge the
work does not cover indirection, and has not been evaluated on real models; given the
combinatorial complexity of the endeavour (especially when indirection is involved),
performance figures provided for small examples suggest that it will not scale.

Janota et al. show how a class diagram backed by constraints can be instantiated by
presenting the user with a continuous stream of computed edit options in such a way
that all well-formed instances can be generated [11]. While the systematic rigour of
the approach is intriguing, it requires a start-up processing step that could be
considered prohibitively expensive (NP-hard [11]). Also, we maintain that the typical
modelling process will be discontinuous, that is, model elements will be added and

6 org.eclipse.emf.ecore.provider.EReferenceItemProvider.addEOppositePropertyDescriptor(.)
7 This goal is shared by other works, including [8, 9, 11, 12, 13, 14, 19].

32 F. Steimann and B. Ulke

changed in different diagrams (and diagram types) in no specific order, even
invalidating well-formedness temporarily. This will only be supported by more
flexible model assistance, as for instance offered by [8, 13]. The former uses a Prolog
representation of the model for computing next possible edit operations in the context
of multiple partial specifications; although no performance problems are reported, it is
not clear why the approach should not suffer from the same combinatorial explosion
as others, particularly since no special measure to counter it are described. The latter
uses hyperedge replacement grammars to compute possible connections between the
edges of a hypergraph representing an incomplete model. However, since the sizes of
the computed completions (which may involve the introduction of new nodes) are not
limited per se, a maximum size has to be provided to remain reasonably efficient. To
our knowledge, the approach has also not been evaluated on realistic model
completion scenarios.

Egyed et al. present an approach to the generation of changes fixing
inconsistencies in a UML model, without introducing new ones [7]. Basically, their
fixes are computed using a generate-and-test approach, which is made feasible by
profiling the evaluation of consistency rules [6], enabling them to determine directly
which constraints are affected by each possible fix. In our approach, this step is
replaced by the “smart” constraint generation process described in [24, 26] which
makes sure that starting from a number of properties to be changed, only those
constraints that — directly or indirectly (through additional changeable properties)
constrain these properties are generated. Any change satisfying all generated
constraints (i.e., any change suggested by a constraint solver) is thus guaranteed to not
introduce new inconsistencies. The number of possible fixes is reduced by fix
specifications, constraining the (kinds of) properties that may be changed by a fix.

Badger [20] uses regression planning to compute a sequence of actions resolving
one or more inconsistencies in a model. Like our own approach, Badger utilizes
standard well-formedness rules and does not require the writing of special
resolution rules. However, the inconsistencies the evaluation of Badger relies on
involve no indirections (which present a hard problem) so that the results are not
comparable. The Beanbag language [31] allows the extension of OCL-like
consistency relations with fixing behaviour specifying how changes leading to
model inconsistencies are to be compensated with other, repairing changes. This is
somewhat similar to our controlled changes. However, as noted in [20], the
extensions “pollute” well-formedness rules with resolution information, making
them single purpose. Neither Beanbag nor Badger suggest whether and how their
approaches extend to model completion.

Model assist is also related to model refactoring in that like model assist, model
refactoring must not make a model ill-formed. However, model assist differs from
model refactoring in that it contributes to, or changes, the meaning of a model, while
refactoring preserves it. Model assist may thus be considered a reduced form of model
refactoring in which the goal of meaning preservation has been relaxed to the
(weaker) goal of well-formedness preservation [25, 27].

 Generic Model Assist 33

7 Conclusion

We have shown how the well-formedness rules of a modelling language, if
formulated as constraint generating rules, cannot only be used for well-formedness
checking, but also for providing various forms of assistance to the modeller. Due to a
shortage of publically available models that utilize different diagram types, we have
evaluated our proposal on 299 metamodels taken from the AtlanMod Ecore
Metamodel Zoo [1], using 6 different model assist scenarios relating to the definition
of bidirectional relationships. Results indicate that our approach is practically
feasible.

Acknowledgments. This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant STE 906/4-2.

References

1. AtlanMod Ecore Metamodel Zoo, http://www.emn.fr/z-info/atlanmod/
index.php/Ecore

2. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A tool for the formal verification of
UML/OCL models using constraint programming. In: Proc. of ASE, pp. 547–548 (2007)

3. CHOCO Team choco: an Open Source Java Constraint Programming Library (Research
Report 10-02-INFO, Ecole des Mines de Nantes, 2010)

4. Eclipse, http://www.eclipse.org
5. EMF Metamodel Version 2.8.1, http://www.eclipse.org/modeling/emf
6. Egyed, A.: Instant consistency checking for the UML. In: Proc. of ICSE, pp. 381–390

(2006)
7. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing

inconsis-tencies in UML design models. In: Proc. of ASE, pp. 99–108 (2008)
8. Hessellund, A., Czarnecki, K., Wąsowski, A.: Guided development with multiple domain-

specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

9. Hill, J.H.: Measuring and reducing modeling effort in domain-specific modeling languages
with examples. In: Proc. of ECBS, pp. 120–129 (2011)

10. IBM Rational Software Architect, http://www-01.ibm.com/software/rati
onal/products/swarchitect/

11. Janota, M., Kuzina, V., Wąsowski, A.: Model construction with external constraints: An
interactive journey from semantics to syntax. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 431–445. Springer, Heidelberg
(2008)

12. Kuschke, T., Mäder, P., Rempel, P.: Recommending auto-completions for software
modeling activities. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 170–186. Springer, Heidelberg (2013)

13. Mazanek, S., Maier, S., Minas, M.: Auto-completion for diagram editors based on graph
grammars. In: Proc. of VL/HCC, pp. 242–245 (2008)

14. Nechypurenko, A., Wuchner, E., White, J., Schmidt, D.C.: Applying model intelligence
frameworks for deployment problem in real-time and embedded systems. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 143–151. Springer, Heidelberg (2007)

34 F. Steimann and B. Ulke

15. Object Management Group Unified Modeling Language Superstructure Version 2.3,
http://www.omg.org/spec/UML/2.3/Superstructure

16. Object Management Group Object Constraint Language Version 2.2,
http://www.omg.org/spec/OCL/2.2

17. http://www.openmodels.org
18. Papyrus UML Editor, http://www.eclipse.org/papyrus/
19. Pati, T., Feiock, D.C., Hill, J.H.: Proactive modeling: auto-generating models from their

semantics and constraints. In: Proc. of DSM, pp. 7–12 (2012)
20. Pinna Puissant, J., Van Der Straeten, R., Mens, T.: Badger: A regression planner to resolve

design model inconsistencies. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H.,
Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 146–161. Springer, Heidelberg
(2012)

21. ReMoDD, http://www.cs.colostate.edu/remodd
22. Sen, S., Baudry, B., Vangheluwe, H.: Domain-specific model editors with model

completion. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 259–270. Springer,
Heidelberg (2008)

23. Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with
automatic model completion. Simulation 86(2), 109–126 (2010)

24. Steimann, F., Kollee, C., von Pilgrim, J.: A refactoring constraint language and its
application to Eiffel. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 255–280.
Springer, Heidelberg (2011)

25. Steimann, F.: Constraint-based model refactoring. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 440–454. Springer, Heidelberg (2011)

26. Steimann, F., von Pilgrim, J.: Constraint-based refactoring with foresight. In: Noble, J.
(ed.) ECOOP 2012. LNCS, vol. 7313, pp. 535–559. Springer, Heidelberg (2012)

27. Steimann, F.: From well-formedness to meaning preservation: Model refactoring for
almost free. SoSyM (in print)

28. Tip, F., Fuhrer, R.M., Kiezun, A., Ernst, M.D., Balaban, I., De Sutter, B.: Refactoring
using type constraints. ACM Trans. Program. Lang. Syst. 33(3), 9 (2011)

29. Visual Studio, http://www.microsoft.com/visualstudio/
30. Woolf, B.: Null Object. In: Pattern Languages of Program Design, vol. 3. Addison-Wesley

(1998)
31. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic model

incon-sistency fixing. In: Proc. of ESEC/SIGSOFT FSE, pp. 315–324 (2009)

Adding Spreadsheets to the MDE Toolkit

Mārtiņš Francis, Dimitrios S. Kolovos,
Nicholas Matragkas, and Richard F. Paige

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK

{mf550,dimitris.kolovos,nicholas.matragkas,
richard.paige}@york.ac.uk

Abstract. Spreadsheets are widely used to support software develop-
ment activities. They have been used to collect requirements and soft-
ware defects, to capture traceability information between requirements
and test cases, and in general, to fill in gaps that are not covered satis-
factorily by more specialised tools. Despite their widespread use, spread-
sheets have received little attention from researchers in the field of Model
Driven Engineering. In this paper, we argue for the usefulness of model
management support for querying and modifying spreadsheets, we iden-
tify the conceptual gap between contemporary model management lan-
guages and spreadsheets, and we propose an approach for bridging it. We
present a prototype that builds atop the Epsilon and Google Drive plat-
forms and we evaluate the proposed approach through a case study that
involves validating and transforming software requirements captured us-
ing spreadsheets.

1 Introduction

Spreadsheets are arguably one of the most versatile and ubiquitous tools in the
software world. In software development, spreadsheets are often used to collect
requirements [1] and software defects, to capture traceability information be-
tween requirements and test cases, and in general to fill in gaps not covered by
other components of typical engineering tool-chains. Although one can reason-
ably argue that using spreadsheets instead of more sophisticated task-specific
tools is more often than not a sub-optimal choice, their use in practice is too
widespread to ignore. Despite their popularity among practitioners, spreadsheets
have received little attention from researchers in the field of Model-Driven En-
gineering (MDE).

In this paper we propose an approach for treating spreadsheets as first-class
models in MDE processes, by providing support for seamlessly integrating them
in MDE workflows alongside traditional models (e.g. EMF-based models). Our
approach enables engineers to perform a range of model management operations
on spreadsheets including model (cross-) validation, model-to-model transforma-
tion and code generation. We evaluate the proposed approach on a case study in
which requirements captured in a spreadsheet are validated for their correctness

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 35–51, 2013.
© Springer-Verlag Berlin Heidelberg 2013

36 M. Francis et al.

and used to generate requirements graphs. By doing so, we demonstrate that it
is feasible, practical and beneficial to treat spreadsheets and (metamodel-based)
models uniformly using the same set of tools.

The remainder of the paper is organised as follows. Section 2 provides a dis-
cussion on the background and motivation of this work. Section 3 discusses
the challenges involved in bridging spreadsheets and contemporary OCL-based
model management languages, and proposes a language-independent solution
to the problem. Section 4 illustrates a prototype that implements the proposed
solutions and enables the model management languages of the Epsilon platform
to query and modify Google Spreadsheets; this in turn enables a range of model
management operations (including transformations) to be carried out. Section
5 evaluates the usefulness of the proposed approach using a comprehensive case
study, Section 6 provides an overview of related work, and Section 7 concludes
the paper and provides directions for further work.

2 Background and Motivation

MDE elevates models to first-class artefacts of the software development process,
and proposes the use of automated model management (code generation, model
transformation etc.) to try to enhance both the productivity of developers and
the quality of the produced artefacts. While MDE is conceptually not restricted
to a particular type of models, over the last few years approaches to MDE
have converged on the automated management of models adhering to 3-layer
metamodeling architectures, and most notably on models captured using the
facilities provided by the the Eclipse Modelling Framework [2].

The majority of contemporary model management languages - including lan-
guages such as Acceleo, ATL, Kermeta, QVT and OCL - provide built-in sup-
port for EMF-based models. Using EMF as a de facto modelling framework has
reduced unhelpful diversity and enhanced interoperability between MDE tools.
However, in our view, for MDE tools to appeal to a wider audience of developers,
they need to provide first-class support for other types of structured artefacts
that developers commonly use to store meta-information. We first made this
argument in [3], where we argued that providing support for schema-less XML
documents would be beneficial for the wider adoption of MDE among software
development practitioners. Our rationale is two-fold: first, meta-information de-
scription formats that do not require 3-layer architectures are generally simpler
to learn and adopt, and can be used as a stepping stone for moving on to more
powerful modelling architectures (e.g. EMF) once developers are convinced of the
benefits of MDE. Second, there is already a significant amount of legacy meta-
information captured in such formats for MDE researchers and tool providers to
ignore.

Following this argument, in this work we have focused on providing support for
integrating spreadsheets in MDE processes. Our intention is to enable engineers
to use spreadsheets in the context of automated model management operations
(such as model validation, transformation and code generation) in a conceptually

Adding Spreadsheets to the MDE Toolkit 37

uniform manner to models, i.e., that does not artificially impose transforming
from/to an intermediate representation format (e.g. transforming behind the
scenes spreadsheets to EMF models and vice versa).

The first challenge of providing support for managing spreadsheets with con-
temporary model management tools and languages lies in the different metaphors
used by the two. Model management languages – influenced by 3-layer metamod-
elling architectures – typically provide an object-oriented syntax for manipulat-
ing information organised in terms of objects and relationships, whereas spread-
sheets are structured in terms of worksheets, rows and columns. For spreadsheets
to be manipulable by contemporary model management tools and languages, this
gap needs to be bridged.

The other challenge is related to efficient querying of spreadsheets. Spread-
sheet management tools typically provide highly efficient built-in query function-
ality (e.g. find all rows in worksheet X where the value of the second column is
larger than Y) which need to be reused in model management languages. The al-
ternative – encoding spreadsheet queries using naive iterations and comparisons
in model management languages – is undesirable (in terms of reimplementation
effort) and likely inefficient.

3 Querying and Modifying Spreadsheets Using
OCL-Based Languages

In this section we propose an approach for addressing these challenges at a
conceptual level. Our approach comprises two separate aspects: querying and
modifying spreadsheets. As such, it is in principle applicable both to side-effect
free languages such as OCL and to transformation languages such as ATL [4],
Kermeta [5], QVTo and EOL [6].

3.1 Querying Spreadsheets

Spreadsheets are organised into multiple tabular worksheets. Each worksheet
typically has a name and a theoretically unbounded number of rows (numbered
from 1 to ∞) and columns (titled incrementally using letters of the latin alpha-
bet i.e. A,B, . . . , AA,AB . . . , AAA, . . .). To bridge the gap between this data
organisation paradigm and the object-oriented style of OCL-based model man-
agement languages we propose using worksheet names as (meta-)class names,
and the values of the first cell of each column (e.g. A1, B1 etc.) as property
names. Using only these assumptions, the spreadsheet illustrated in Figure 1, 1

can in principle be unambiguously queried using the following OCL expression
to retrieve all students over the age of 25.

Student.allInstances->select(p:Student|p.age > 25)

1 In this section, for simplicity, we use an artificial example to demonstrate the chal-
lenges and the proposed solutions for bridging the gap between spreadsheets and
OCL-based languages. In the evaluation section, we demonstrate using the proposed
approach with a requirements traceability spreadsheet.

38 M. Francis et al.

modules

MSD,HCI

F

MSD,RQE

E

 mt506
supervisor

 mt506
4

jd5023 SmithJane 22
jd501 232 ThompsonJoe

D
age

C
lastname

B
firstname

A
id1

Student Staff

E

dj5123 JacksonDaniel HCI
mt506 MSD,RQE2 ThomasMatthew

D
teaches

C
lastname

B
firstname

A
id1

Student Staff

Module

Module

Student Staff Module
Human Computer Interaction Spring4 HCI

D

RQE3 SpringRequirements Engineering
MSD2 AutumnModelling and System Design

C
term

B
title

A
id1

Mark

Mark

Mark

E

jd5023 74ICAR
jd5012 62TPOP

D C
mark

B
module

A
student1

Student Staff Module Mark

Fig. 1. Spreadsheet comprising 4 worksheets: Staff, Student, Module and Mark

While using the first cell of each column as its name is straightforward if the
engineer has control of the layout of the spreadsheet, it may not be an option
for existing spreadsheets with a fixed layout. In terms of support for datatypes,
most spreadsheet software support defining datatypes (formats) at the level of
individual cells. When capturing data organised in a manner similar to that of
Figure 1, it is useful to be able to specify the data types of entire columns (e.g.
values in column D of the Student worksheet should be integers).

To enable engineers to decorate spreadsheets with such complementary infor-
mation (column names, types etc.) that cannot be captured on the spreadsheet
itself, we propose using an optional configuration model which conforms to the
metamodel of Figure 2.

Spreadsheet configuration models can be constructed manually to complemen-
t/override the information (worksheet names, column names) already provided in
spreadsheets of interest, or to generate automatically from object-oriented spec-
ifications (e.g. UML class diagrams or Ecore metamodels) via model-to-model
transformation. The following paragraphs briefly discuss the roles, features and
relationships of the concepts that comprise the spreadsheet configuration meta-
model of Figure 2.

Worksheet. Each worksheet can have an optional name (if a name is not
provided, the name of the worksheet on the spreadsheet is used) and acts as a
container for Column elements.

Column. Each Column needs to specify its index in the context of the worksheet
it belongs to, and optionally, a name (if a name is not provided, the one specified
in its first cell is used as discussed above), an alias, a datatype, a cardinality, and

Adding Spreadsheets to the MDE Toolkit 39

Spreadsheet

Worksheet
name : String
alias : String

Column
index : Integer
name : String
alias : String
dataType : String
many : boolean
delimiter : String

Reference
name : String
many : boolean
cascadeUpdates : boolean

source
target

columns

worksheets

Fig. 2. Spreadsheet Configuration Metamodel

in case of columns with unbounded cardinality, the delimiter that should be
used to separate the values stored in a single cell (comma is used as the default
delimiter).

Reference. In a configuration model engineers can specify ID-based references
to capture relationships between columns belonging to potentially different work-
sheets. Each reference has a source and a target column, an optional name (if
a name is not specified, the name of the source column is used to navigate
the reference), a cardinality (many attribute), and specifies whether updates to
cells of the target column should be propagated automatically (cascadeUpdates
attribute) to the respective cells in the source column to preserve referential
integrity.

For the spreadsheet illustrated in Figure 1, a single-valued reference can be
defined between the contents of the supervisor column of worksheet Student and
the id column of worksheet Staff, and a multi-valued reference can be defined
between the modules column of the Student worksheet, and the id column of
the module worksheet. Navigating a single-valued reference should return a row
(or null), while navigating a multi-valued reference should return a non-unique
ordered collection of rows to facilitate concise navigation over the spreadsheet
data. Under these assumptions, to find all students whose supervisor name is
Thomas, the following OCL query can be used.

Student.allInstances->select
(s:Student|s.supervisor.firstname = "Thomas")

On a more complicated example, to find all modules taught by a member of
staff called Daniel, the following query can be used.

Module.allInstances->select(m:Module|
Staff.allInstances->exists(s:Staff|

s.firstname="Daniel" and s.teaches->includes(m)))

40 M. Francis et al.

3.2 Modifying Spreadsheets

While OCL itself is side-effect-free, many languages that build atop it – techni-
cally or conceptually – (such as QVTo, Kermeta, ATL and EOL) need to produce
side-effects to support tasks such as model transformation and refactoring. In
the context of supporting the requirements of such programs, three types of edit
operations are required: creating and deleting rows, and modifying the values of
individual cells. In this section we assume that languages capable of producing
side-effects provide an additional assignment operator (:=), support for defining
typed variables (e.g. through a var keyword), support for instantiating meta-
types (e.g. through a new keyword) and deleting model elements (e.g. through a
delete keyword), and built-in operations for modifying the contents of collections
(e.g. add(), remove()).

Creating Rows. As discussed above, in the proposed approach worksheets are
treated as meta-classes and rows as their instances. As such, to create a new row
in the Student worksheet, the meta-class instantiation capabilities of the action
language can be used as follows. Creating a new row should not have any other
side-effects on the spreadsheet.

var student : new Student;

Deleting Rows. To delete a row from a worksheet, the respective syntax for
deleting model elements in the action language can be used. When a row is
deleted, all the rows that contain cells referring to it through cascade-update
references also need to be recursively deleted.

var student = Student.allInstances->select(s:Student|s.id = "
js502")->first();

delete student;
// deletes row 2 of the Student worksheet
// also deletes row 3 of the Mark worksheet

Modifying Cell Values. If a cell is single-valued, a type-conforming assign-
ment can be used to edit its value. For example, the following listing demon-
strates modifying the age and the supervisor of a particular student.

var student : Student = ...;
var supervisor : Staff = ...;
student.age := 24;
student.supervisor := supervisor;

If on the other hand the cell is multi-valued, then its values should be handled
as a collection. For example to move a module between two members of staff, the
module row would need to be retrieved first, so that it can be removed/added
from/to the teaches collections of the appropriate members of staff.

Adding Spreadsheets to the MDE Toolkit 41

// Moves a module between two members of staff
var from : Staff := ...;
var to : Staff := ...;
var module : Module := ...;
from.teaches->remove(module);
to.teaches->add(module);

Updating the value of a cell can have side effects to other cells that are linked
to it through cascade-update references to preserve referential integrity. For ex-
ample, updating the value of cell A3 in the Module worksheet, should trigger
appropriate updates in cells D2 and F2 of the Staff and Student worksheets
respectively2.

3.3 Efficient Querying

Using what has been discussed so far, to find all adult students in our spread-
sheet, the following OCL query would need to be constructed and evaluated.

Student.allInstances->select(s:Student | s.age > 17);

Evaluating this query in a naive manner would involve iterating through all
the rows of the Student worksheet, retrieving the value of the third cell of each
row, casting it to an integer and comparing it against the predefined value.
For large spreadsheets, this would be sub-optimal, particularly given that most
spreadsheet management systems provide built-in search capabilities. For exam-
ple, the OCL query above can be expressed in the Google Spreadsheet query
language as follows:

https://spreadsheets.google.com/feeds/list/tb-
<student-worksheet-guid>/od6/private/full?sq=age>17

To support efficient execution of simple queries, we propose detecting opti-
misable patterns and rewriting them as native queries instead where possible
(one such pattern is displayed below). The potential for optimisation through
rewriting and the details of the rewriting process predominately depend on the
expressiveness and the operators supported by the native query language.

X.allInstances->select(x:X | x.p1 = y)

4 Prototype

To evaluate the feasibility and practicality of the proposed approach, we have im-
plemented a prototype that adds support for managing Google Spreadsheets to
the Epsilon platform of model management languages 3. Below, we briefly discuss
the relevant Epsilon infrastructure and then illustrate the Google Spreadsheets
extension.
2 We intentionally refrain from any further discussion on cascade-update algorithms
as this is a trivial and well-understood topic.

3 The prototype is available under
http://epsilon-emc-google-spreadsheet-driver.googlecode.com/

http://epsilon-emc-google-spreadsheet-driver.googlecode.com/

42 M. Francis et al.

4.1 Epsilon

Epsilon [7] is a mature family of interoperable languages for model management.
Languages in Epsilon can be used to manage models of diverse metamodels and
technologies (detailed below). The core of Epsilon is the Epsilon Object Lan-
guage (EOL) [6], an OCL-based imperative language that provides additional
features including model modification, multiple model access, conventional pro-
gramming constructs (variables, loops, branches etc.), user interaction, profiling,
and support for transactions. EOL can and has been used as a general-purpose
model management language (e.g. for operational model transformation). It is
primarily intended to be reused in task-specific model management languages. A
number of task-specific languages have been implemented atop EOL, including:
model transformation (ETL), model comparison (ECL), model merging (EML),
model validation (EVL), model refactoring (EWL) and model-to-text transfor-
mation (EGL). These languages reuse EOL in different ways, e.g. by acting as a
preprocessor, or by using EOL to define behaviour of rules.

Epsilon is designed to be technology agnostic - that is, the same Epsilon
program can be used to manage models from different technologies: the concepts
and tasks of model management are independent of how models are represented
and stored. To support this, Epsilon provides the Epsilon Model Connectivity
(EMC) layer4, which offers a uniform interface for interacting with models of
different modelling technologies. New technologies are supported by adding a
driver to EMC. Currently, EMC drivers have been implemented to support
EMF [2] (XMI 2.x), MDR [8] (XMI 1.x), pure XML, and Z [9] specifications
in LaTeX using CZT [10] Also, to enable users to compose complex workflows
that involve a number of individual model management tasks, Epsilon provides
ANT [11] tasks and an inter-task communication framework discussed in detail
in [12].

The technical architecture of Epsilon is illustrated in Figure 3.

Epsilon Model Connectivity (EMC)

Epsilon Object Language (EOL)

Validation
Language (EVL)

Transformation
Language (ETL)

Code Generation
Language (EGL)

EMF MDR

Model Migration
Language (Flock)

XML SpreadsheetsMetaEdit+ Z

Comparison
Language (ECL)

Merging
Language (EML)

Refactoring
Language (EWL)

Unit Testing
(EUnit)

Fig. 3. Overview of the architecture of Epsilon

4 http://www.eclipse.org/epsilon/doc/emc

http://www.eclipse.org/epsilon/doc/emc

Adding Spreadsheets to the MDE Toolkit 43

As mentioned earlier, EMC enables developers to implement drivers – es-
sentially classes that implement the IModel interface of Figure 4 – to support
diverse modelling technologies. The work in this section illustrates the design and
implementation of a new driver (in addition to the existing drivers for managing
EMF, MDR and Z, XML models) for interacting with Google Spreadsheets.

In addition to abstracting over the technical details of specific modelling
technologies, EMC facilitates the concurrent management of models expressed
with different technologies. For instance, Epsilon can be used to transform an
EMF-based model into an MDR-based model, to perform inter-model validation
between a Z model and an EMF model, or to develop a code generator that
consumes information from an EMF-based and a Google Spreadsheet model at
the same time.

load() : void
store() : void
allContents() : Collection<?>
getAllOfType(type:String) : Collection<?>
getAllOfKind(type:String) : Collection<?>
owns(Object o) : boolean
knowsAboutProperty(Object o, String property) : boolean
hasType(String type) : boolean
isInstantiable(String type) : boolean
createInstance(String type, Collection<?> parameters) : Object
...

IModel
name : String
aliases : List<String>

invoke(Object target) : void

IPropertySetter
ast : AST
context : IEolContext
value : Object
property : String

invoke(Object target, String property) : void
hasProperty(Object target, String property) : boolean

IPropertyGetter
ast : AST
context : IEolContext

propertySetter

propertyGetter

find(iterator : Variable, condition : AST, context : IEolContext) : Collection<?>
ISearchableModel

Fig. 4. Epsilon Model Connectivity (EMC) Layer Interfaces

4.2 The EMC Google Spreadsheet Driver

As illustrated in Figure 5, support for Google Spreadsheets has been imple-
mented as a driver conforming to the EMC interfaces. More specifically, the
GSModel class acts as a wrapper for Google Spreadsheets and implements meth-
ods such as getAllOfType(String type) which returns all the rows of a particu-
lar worksheet (type), and createInstance(String type)/deleteElement(Object ele-
ment) which can create and delete rows respectively. Classes GSPropertyGetter
and GSPropertySetter on the other hand are responsible for retrieving and set-
ting property values of rows.

As displayed in Figure 5, we have used an additional level of abstraction
between the EMC interfaces and their Google Spreadsheet implementations
which capture spreadsheet-specific but Google Spreadsheet-independent logic
and which can be reused to implement support for additional types of spread-
sheets (e.g. Microsoft Excel or Open Office spreadsheets).

The Google Spreadsheet driver adopts a lazy approach to retrieving data from
remote spreadsheets instead of attempting to construct an in-memory copy of
the entire contents of the spreadsheet upon initialisation. Also, all side-effects
produced on spreadsheets are propagated directly to the remote spreadsheet to
avoid the problem of working with stale data.

44 M. Francis et al.

IModel

IPropertySetter

IPropertyGetter

propertySetter

propertyGetter

ISearchableModel

SpreadsheetModel GSModel

SpreadsheetPropertyGetter

GSPropertyGetter

SpreadsheetPropertySetter

GSPropertySetter

ExcelModel

ExcelPropertyGetter

Fig. 5. Google Spreadsheet EMC Driver Design

With regard to spreadsheet configuration models, we have opted for an XML-
based concrete syntax in an effort to enable engineers to use this driver with
minimal effort (using EMF-based configuration models would be a technically
more sound approach but would require engineers to become familiar with EMF).
The supported datatypes in the spreadsheet configuration models are: integer,
boolean, String(default), real and double. Using this XML-based format, the
configuration model for the spreadsheet of Figure 1 is illustrated below.

<spreadsheet>
<worksheet name="Student">
<column name="age" datatype="integer"/>

</worksheet>
<worksheet name="Mark">
<column name="mark" datatype="integer"/>

</worksheet>
<worksheet name="Staff">
<column name="teaches" many="true" delimiter=","/>

</worksheet>
<reference source="Student->supervisor"

target="Staff->id"/>
<reference source="Staff->teaches"

target="Module->id" many="true"/>
...

</spreadsheet>

With regard to performing efficient queries on spreadsheets, GSModel im-
plements the ISearchableModel interface provided by EMC, and implements
its find(Variable iterator, AST condition) method in which it rewrites optimis-
able conditions as native Google Spreadsheet queries at runtime as discussed in

Adding Spreadsheets to the MDE Toolkit 45

Section 3. The rewriter employs a recursive descent algorithm, and fully exploits
the capabilities of the Google Spreadsheet query language (numeric and string
comparisons as well as composite queries consisting of more than one and/or
clauses). Non-optimisable conditions in find cause the driver to fail gracefully.
The following listing demonstrates using the find operation to perform queries
on the spreadsheet of Figure 1.

// Collects all the first names
// of students with marks < 50
M->find(m:Mark | m.mark < 50)->
collect(m:Mark | m.student.firstname);

// Fails gracefully as the condition involves
// a two-level property navigation and cannot be
// rewritten as a native query
M->find(s:Student |
s.supervisor.firstname = "Daniel");

By providing a Google Spreadsheet driver for EMC, all languages that build
atop EOL can now interact with such spreadsheets. For example, the EVL con-
straint below checks that no member of staff teaches more than 4 modules. This
is illustrated further in the case study that follows.

context Staff {
constraint NotOverloaded {

check: self.teaches->size() <= 4
message: "Member of staff" + self.firstname +
" " + self.lastname + " is overloaded"

}
}

5 Case Study

In this section we demonstrate the proposed approach by applying it to repre-
sentative case study. This case study is provided in the official SysML documen-
tation [13], and is based on a specification published by the National Highway
Traffic Safety Administration (NHTSA).

5.1 Hybrid SUV Example

The case study illustrates the application of the proposed approach for the de-
velopment of a Hybrid gas/electric powered Sport Utility Vehicle (SUV). It is
interesting in that it consists of a complex requirements hierarchy which can
be captured efficiently using spreadsheets. The example focuses mainly on the
requirements engineering phase of the development process and how this can
benefit from treating spreadsheets as models. A significant benefit comes from
the seamless integration of spreadsheets with downstream MDE tasks.

46 M. Francis et al.

In this case study, the various system requirements are captured in a spread-
sheet comprising four worksheets. These requirements concern the operation and
performance of the vehicle. Figure 6 illustrates an excerpt of the requirements
spreadsheet of the Hybrid SUV. In the first worksheet the system requirements
are captured. The first column captures the unique requirement identifiers. These
identifiers have a fixed format and they conform to the dot notation. The sub-
sequent columns capture the name of a requirement, whether a requirement is
derived from another requirement and finally the requirement’s text.

10 ... �......
REQ-0.1.3,REQ-0.1.49 Power The power of the engine...REQ-0.4

Regenerative Breaking9 Regenerative braking should
not adversely impact...REQ-0.1.1,REQ-0.1.2REQ-0.3

The HSUV shall have the
offroad capability...OffRoad CapabilityREQ-0.1.48

 The vehicle should have a
0-30 mph...REQ-0.1.3 Acceleration7

REQ-0.1.2 Fuel Economy The HSUV shall have fuel
economy...6

Braking5 REQ-0.1.1 The HSUV shall have the
braking...

The HSUV shall have...

1
2

C

REQ-0.2

name
D

id

3

A

PerformanceREQ-0.1
REQ-0

B

4 Capacity

derived text
HSUV Specification

The HSUV shall have the
capacity...

Requirement Problems Rationale TestCase

Fig. 6. Hybrid SUV requirements spreadsheet

5.2 Managing Requirements Spreadsheets with Epsilon

In this section, we illustrate how the proposed approach can be used in the context
of the Hybrid SUV case study. More specifically, we show three scenarios: how we
can query the spreadsheet, how we can validate the correctness of the information
captured in the spreadsheet and, finally, howwe can generate textual artefacts from
it. The spreadsheet configuration model for this spreadsheet follows.

<spreadsheet>
<reference source="Requirement->derived"

target="Requirement->id"/>
<worksheet title="Requirement">
<column title="derived" many="true" delimiter=","/>

</worksheet>
</spreadsheet>

Querying Requirements Spreadsheets. In the first usage scenario, the en-
gineer wishes to retrieve all the children in the requirement hierarchy for a given
requirement. By doing this, the engineer wishes to understand the rationale
behind a given composite requirement and how this composite requirement is
decomposed. In the proposed approach, to do this the engineer has to define an
EOL operation, which returns a collection with all the children elements of the
hierarchy for a given requirement. This operation is illustrated in Listing 1.1.

Adding Spreadsheets to the MDE Toolkit 47

operation Requirement getChildren() : Sequence {
var children : new Sequence;
//iterates all requirements, and checks if their id
//starts with the id of the parent
for(r in Requirement.all) {

if((r.id+'.').startsWith(self.id+'.')){
children.add(r);

}
}
//returns a set with all the requirements
//in the hierarchy
return children;

}

Listing 1.1. getChildren() EOL operation

To identify the child requirements, the operation relies on the requirement
ids and the convention that all the requirement identifiers have to conform to
the dot notation. Therefore, this operation assumes that all the requirements in
the spreadsheet have a valid id. In the following we will demonstrate how an
engineer could check if these assumptions hold.

Validating Requirements Spreadsheets. To validate the contents of the re-
quirements spreadsheet the engineer can specify a set of EVL constraints. These
constraints are illustrated in Listing 1.2; if the constraints hold, all the require-
ments have an id and they all have a valid format. To simplify the expression of
these constraints, we also write an EOL operation (Listing 1.3), which encapsu-
lates the functionality that checks the correctness (using a regular expression)
of an id’s format.

// For all requirements
context Requirement {
//Checks whether the requirement has an id
constraint HasId {

check: self.id.isDefined()
message: 'Requirement ' + self.name + 'does not have an id.'

}
//Checks whether the requirement has a a valid id
constraint HasValidId {

check: self.hasValidId()
message: 'Requirement ' + self.name + 'does not have a

valid id.'
}

}

Listing 1.2. EVL constraints for requirements spreadsheets

48 M. Francis et al.

// This operation uses a regular expression to
// test whether the requirement id has a valid format
operation Requirement hasValidId() : Boolean {
return self.id.matches("REQ-[0-9]+(\\.([0-9]+))*"));

}

Listing 1.3. Requirement ID validation operation

Generating Textual Artefacts. Once the requirements are well understood
and well-formatted they can be used as first-class citizens in the MDE devel-
opment process. For instance, a requirements derivation graph such as the one
displayed in Figure 7 can be generated automatically using GraphViz [14] and
the EGL model-to-text transformation below.

digraph G {
[%for (r in Requirement.all) { %]
[%for (derived in r.derived) { %]
"[%=r.id%]" -> "[%=derived.id%]";
[%}%]
[%}%]

}

REQ-0.10

REQ-0.1.1.1

REQ-0.11

REQ-0.4.1

REQ-0.6

REQ-0.1.1

REQ-0.7

REQ-0.1.2

REQ-0.8

REQ-0.1.3

REQ-0.9

Fig. 7. Hybrid SUV requirements derivation graph

Additional MDE tasks and operations can now easily be carried out, e.g.
model-to-model transformations to more structured formats (such as EMF mod-
els), or update-in-place transformations to correct any ‘bad smells’ [15] that can
be identified.

6 Related Work

Although spreadsheets are widely used in software engineering for supporting
numerous development activities (such as collecting system requirements, mon-
itoring project process and capturing traceability information) there is little
research on using them formally in a software engineering lifecycle. The major-
ity of the literature focuses mainly on how to use software engineering principles
to support the development of high quality spreadsheets. There are two main
approaches to spreadsheet engineering - constructive and analytical [17]. The
purpose of the former is to ensure that spreadsheets are correct by construction,
while the latter aims to detect errors after a spreadsheet has been created.

Adding Spreadsheets to the MDE Toolkit 49

Two representative examples of an analytical approach are [18] and [19]. The
former uses data flow adequacy criteria and coverage monitoring to test spread-
sheets, while the latter is an extension which employs fault localisation tech-
niques to isolate spreadsheet errors. In [20] user-provided assertions about cell
ranges are used to identify errors in formulas. The FFR (formulae, formats, re-
lations) model [21] abstracts the structure and fundamental features of spread-
sheets without paying attention to the detailed semantics of operations and
functions. Anomalies in the structure of the model (for example breaking ar-
eas) highlight possible errors. In [15], analogies to code ‘smells’ are specified and
analysed against spreadsheets and worksheets to identify flaws and design errors;
their experiments show that numerous errors can be automatically identified.

ClassSheet [17] is the most popular constructive approach. This approach in-
troduces a formal higher-level object-oriented model which can be used to auto-
matically generate spreadsheets. Given the formal nature of this model a number
of typical errors associated with spreadsheets can be prevented, as the spread-
sheets will be correct by construction. A more recent constructive approach to
spreadsheet engineering is MDSheet [22]. This is a model-driven approach and it
is based on ClassSheet. MDSheet relies on a bi-directional transformation frame-
work [23] in order to maintain spreadsheet models (i.e. ClassSheet models) and
their instances synchronized.

The focus of the aforementioned research work is quite different from the focus
of the proposed approach. As mentioned previously, past research focuses on how
to ensure the correctness of spreadsheets. On the other hand, this paper proposes
an approach whose focus is on the seamless integration of spreadsheets in the
MDE development process, as well as their elevation to first-class models. In our
approach spreadsheets are considered just another type of model in an MDE
process. As such, spreadsheets can be queried, validated or even transformed to
other artefacts using MDE techniques and concepts.

7 Conclusions and Further Work

In this paper, we have argued for the importance of adding support for spread-
sheets to the MDE toolkit and in particular to enable their support in OCL-based
model management languages. We have presented an approach that bridges
the conceptual gap between the tabular nature of spreadsheets and the object-
oriented nature of contemporary modelling technologies and model management
languages, which also addresses the problem of efficiently querying spreadsheets
from within such languages. We have evaluated this approach by constructing
a prototype Google Spreadsheet driver on top of the model connectivity frame-
work of Epsilon. We have also presented a case study that demonstrates the
practicality and usefulness of managing spreadsheets with model management
languages.

In future iterations of this work, we plan to extend the spreadsheet driver to
target additional types of spreadsheets, and construct transformations that can
generate spreadsheet configuration models from object-oriented specifications

50 M. Francis et al.

such as UML class models and Ecore metamodels. We also intend to use model
refactoring languages and tools (particularly EWL) to support spreadsheet and
worksheet refactoring to automatically eliminate so-called ‘bad smells’ [15,24].

References

1. Firesmith, D.: Common requirements problems, their negative consequences, and
industry best practices to help solve them. Journal of Object Technology 6, 17–33
(2007)

2. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modelling
Framework, 2nd edn. Eclipse Series. Addison-Wesley Professional (December 2008)

3. Kolovos, D.S., Rose, L.M., Williams, J., Matragkas, N., Paige, R.F.: A lightweight
approach for managing xml documents with mde languages. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 118–132. Springer, Heidelberg (2012)

4. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

5. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

6. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL).
In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

7. Eclipse Foundation. Epsilon Modeling GMT component,
http://www.eclipse.org/gmt/epsilon

8. Sun Microsystems. Meta Data Repository, http://mdr.netbeans.org
9. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice

Hall (March 1996)

10. Community Z Tools, http://czt.sourceforge.net
11. The Apache Ant Project, http://ant.apache.org
12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: A Framework for Composing Modular

and Interoperable Model Management Tasks. In: Proc. Workshop on Model Driven
Tool and Process Integration (MDTPI), ECMDA, Berlin, Germany (June 2008)

13. OMG, Systems Modeling Language, SysML (2012),
http://www.omg.org/spec/SysML/1.3/PDF/

14. Graphviz - Graph Visualization Software, Official Web-Site,
http://www.graphviz.org

15. Hermans, F., Pinzger, M., van Deursen, A.: Detecting and visualizing inter-
worksheet smells in spreadsheets. In: ICSE, pp. 441–451. IEEE (2012)

16. Raymond, R.: Panko. Spreadsheet Errors: What We Know. What We Think We
Can Do. In: Proceedings of the Spreadsheet Risk Symposium, European Spread-
sheet Risks Interest Group (EuSpRIG) (July 2000)

17. Engels, G., Erwig, M.: Classsheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2005,
pp. 124–133. ACM, New York (2005)

18. Rothermel, G., Burnett, M., Li, L., Dupuis, C., Sheretov, A.: A methodology for
testing spreadsheets. ACM Trans. Softw. Eng. Methodol. 10(1), 110–147 (2001)

http://www.eclipse.org/gmt/epsilon
http://mdr.netbeans.org
http://czt.sourceforge.net
http://ant.apache.org
http://www.omg.org/spec/SysML/1.3/PDF/
http://www.graphviz.org

Adding Spreadsheets to the MDE Toolkit 51

19. Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M.,
Burnett, M.: Strategies and behaviors of end-user programmers with interactive
fault localization. In: Proceedings of the 2003 IEEE Symposium on Human Centric
Computing Languages and Environments, HCC 2003, pp. 15–22. IEEE Computer
Society, Washington, DC (2003)

20. Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., Wallace, C.: End-
user software engineering with assertions in the spreadsheet paradigm. In: Pro-
ceedings of the 25th International Conference on Software Engineering, ICSE 2003,
pp. 93–103. IEEE Computer Society, Washington, DC (2003)

21. Sajaniemi, J.: Modeling spreadsheet audit: A rigorous approach to automatic vi-
sualization. Journal of Visual Languages & Computing 11(1), 49–82 (2000)

22. Cunha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J.: Mdsheet: A framework for
model-driven spreadsheet engineering. In: 34th International Conference on Soft-
ware Engineering (ICSE), pp. 1395–1398 (June 2012)

23. Cunha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J.: A bidirectional model-driven
spreadsheet environment. In: 2012 34th International Conference on Software En-
gineering (ICSE), pp. 1443–1444 (June 2012)

24. Cunha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J.: Towards a catalog of spread-
sheet smells. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C.,
Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336,
pp. 202–216. Springer, Heidelberg (2012)

Model-Driven Extraction

and Analysis of Network Security Policies

Salvador Mart́ınez1, Joaquin Garcia-Alfaro3, Frédéric Cuppens2,
Nora Cuppens-Boulahia2, and Jordi Cabot1

1 AtlanMod, École des Mines de Nantes - INRIA, LINA, Nantes, France
{salvador.martinez perez,jordi.cabot}@inria.fr

2 Télécom Bretagne, LUSSI Department Université Européenne de Bretagne, France
forename.surname@telecom-bretagne.eu

3 Télécom SudParis, RST Department CNRS Samovar UMR 5157, Evry, France
joaquin.garcia alfaro@telecom-sudparis.eu

Abstract. Firewalls are a key element in network security. They are
in charge of filtering the traffic of the network in compliance with a
number of access-control rules that enforce a given security policy. In
an always-evolving context, where security policies must often be up-
dated to respond to new security requirements, knowing with precision
the policy being enforced by a network system is a critical information.
Otherwise, we risk to hamper the proper evolution of the system and
compromise its security. Unfortunately, discovering such enforced policy
is an error-prone and time consuming task that requires low-level and,
often, vendor-specific expertise since firewalls may be configured using
different languages and conform to a complex network topology. To tackle
this problem, we propose a model-driven reverse engineering approach
able to extract the security policy implemented by a set of firewalls in
a working network, easing the understanding, analysis and evolution of
network security policies.

1 Introduction

Firewalls, designed to filter the traffic of a network with respect to a given
number of access-control rules, are key elements in the enforcement of network
security policies.

Although there exist approaches to derive firewall configurations from high-
level network policy specifications[18,4], these configuration files are still mostly
manually written, using low-level and, often, vendor-specific rule filtering lan-
guages. Moreover, the network topology, that may include several firewalls
(potentially from different vendors), may impose the necessity of splitting the
enforcement of the global security policy among several elements. Due to the
complexity of the process, it is likely that we end up with differences between
the implemented policy and the desired one. Moreover, security policies must be
often updated to respond to new security requirements, which requires evolving
the access-control rules included in the firewall configuration files.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 52–68, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model-Driven Extraction and Analysis of Network Security Policies 53

Therefore, there is a clear need of an easyway to represent andunderstand the se-
curity policy actually enforced by a deployed network system. At the moment, this
still requires a manual approach that requires, again, low-level and vendor-specific
expertise. Given a network system consisting in several firewalls configured with
hundreds of rules, the feasibility of this manual approach could be seriously ques-
tioned. While the security research community has provided a plethora of works
dealingwith the reasoning on security policies, succeeding at providing a good anal-
ysis and verificationof the low-level firewall rules,we believe they fail at obtaining a
comprehensive solution as they do not provide a high-level, easy to understand and
manage representation nor take, generally, networks composed by several hetero-
geneous firewalls into account.Moreover, the extraction step is often neglected and
the solution presented over synthetic rules without providing the means to bridge
the gap between them and the real configurations.

In this sense, we believe that an integrated solution is missing. We believe
such a solution must have the following features. First, it has to provide inde-
pendence from the concrete underlying technology, so that the focus can be put
into the security problem and not in implementation mechanisms like chains,
routing tables, etc. Second, it has to provide a higher-level representation so
that the policy becomes easier to understand, analyse and manipulate. Third,
the solution, to be comprehensive, must take into account the contribution of
each policy enforcing element (firewall) to the global policy, as the partial picture
given by isolated firewalls does not provide enough information to understand
the network policy.

In this joint work between the modeling and the security communities, we
propose a model-driven approach aimed at covering this gap. Our approach,
first, extracts and abstracts the information of each firewall configuration file
to models conforming to a Platform-independent metamodel specially tailored
to represent network-access control information in an efficient and concise way.
Then, after performing structural verification of the information in the individ-
ual models, it combines these models to obtain a centralised view of the security
policy of the whole network. Finally, this global network access-control model
can be analysed and further processed to derive useful information. As en exam-
ple, we analyse the structure of its contents to derive the network topology the
firewalls operate on. Then, we provide a mapping to obtain a representation of
the policy in XACML, a standardised access-control model, enabling the (re)use
of the many tools developed to work with the standard.

We validate the feasibility of our approach by providing a prototype imple-
mentation working for firewalls using the netfilter iptables and Cisco PIX rule
filtering languages. Our prototype can be easily extended to work with any other
packet-filtering languages.

The rest of the paper is organized as follows. Section 2 presents a motivat-
ing and running example of a network. In Section 3 we present and detail our
approach whereas in Section 4 we present some application scenarios. In 5 we
discuss a prototype implementation. Section 6 discusses related work. The paper
finishes in Section 7 with some conclusions and future works.

54 S. Mart́ınez et al.

2 Motivation

In order to motivate our approach, we present here a network example that will
be used through the rest of the paper.

Let us consider we have a De-Militarized Zone (DMZ) network architecture
like the one depicted in Figure 1. This is a very common architecture used
to provide services both to a local network and to the public untrusted network
while preventing the local network to be attacked. It is composed by the following
elements:

– An intranet composed by a number of private hosts where one of the private
hosts acts as an administrator of certain services provided by the network
system.

– A DMZ that contains two servers. A DNS server and a multiserver providing
the following services: HTTP/HTTPS (web), FTP, SMTP (email) and SSH.

– Two firewalls controlling the traffic towards and from the DMZ. The first
firewall controls the traffic between the public hosts (the Internet) and the
services provided by the DMZ. The second firewall controls the traffic be-
tween the intranet and the DMZ.

The two firewalls in charge of enforcing the security policy of our example
network, could be of the same kind. However, following the defense in depth[1]
security strategy, it is highly recommended, to use two different firewalls so that
a possible vulnerability does not affect the whole network. In our example, the
firewall 1 is a linux iptables packet-filtering firewall whereas firewall 2 is a Cisco
firewall implementing Cisco PIX filtering.

Fig. 1. Network example

In Listing 1.1 we show an excerpt of the configuration file of firewall 1 wrt
the HTTP and SMTP services. It controls the traffic from the public hosts to
the services provided in the DMZ. This sample configuration uses the netfilter
iptables[19] rule language. Note that this configuration file is written using the
iptables custom chains feature, which allows the user to define exclusions to
rules without using drop or deny rules.

First, it states in the first three lines that the global policy for the firewall
is the rejection of any connection not explicitly allowed. Then, the first chain
controls the outcoming SMTP messages towards the public host. It allows them
for every hosts but for the host in the local network. The second chain controls

Model-Driven Extraction and Analysis of Network Security Policies 55

the incoming SMTP messages to the server. If the request is done through one
machine belonging to the local network, it is rejected while it is allowed for any
other machine. The third rule controls the HTTP requests from the public hosts.
Again, connections are allowed for any host but for the local ones.

Listing 1.1. Firewall 1 netfilter configuration

iptables −P INPUT DROP
iptables −P FORWARD DROP
iptables −P OUTPUT DROP

iptables −N Out_SMTP
iptables −A FORWARD −s 1 11 .2 22 .1 .17 −d 0 . 0 . 0 . 0 /0 −p tcp −−dport 25 −j Out_SMTP
iptables −A Out_SMTP −d 111 .222 . 0 . 0/16 −j RETURN
iptables −A Out_SMTP −j ACCEPT

iptables −N In_SMPT
iptables −A FORWARD −s 0 . 0 . 0 . 0 / 0 −d 111 .222 .1 . 17 −p tcp −−dport 25 −j In_SMTP
iptables −A In_SMTP −s 111 .222 . 0 .0/16 −j RETURN
iptables −A In_SMTP −j ACCEPT

iptables −N NetWeb_HTTP
iptables −A FORWARD −s 0 . 0 . 0 . 0 / 0 −d 111 .222 .1 . 17 −p tcp −−dport 80 −j NetWeb_HTTP
iptables −A NetWeb_HTTP −s 111 . 222 .0 .0/16 −j RETURN
iptables −A NetWeb_HTTP −j ACCEPT

Firewall number 2 controls the traffic from the private hosts to the services
provided in the DMZ. Listing 1.2 shows the rules that control the access to the
SMTP and HTTP services. It is written in the Cisco PIX language that does
not provide support to a feature like the iptables custom chains.

Rules one to six, control the SMTP requests to the server. They are all al-
lowed for the hosts in the private zone discarding only the administrator host,
identified by the IP address 111.222.2.54, and for a free-access host, identified
by IP address 111.222.2.53. Rules seven to twelve do the same for the HTTP
requests. Again, HTTP requests are allowed for all the hosts in the private zone
discarding only the administrator host and the free-access host.

Listing 1.2. Firewall 2 Cisco PIX configuration

access−list eth1_acl_in remark Fw2Policy 0 (global)
access−list eth1_acl_in deny tcp host 111 . 222 . 2 . 54 111 . 222 . 1 .1 7 eq 25

access−list eth1_acl_in remark Fw2Policy 1 (global)
access−list eth1_acl_in deny tcp host 111 . 222 . 2 . 53 111 . 222 . 1 .1 7 eq 25

access−list eth1_acl_in remark Fw2Policy 2 (global)
access−list eth1_acl_in permit tcp 1 11 . 2 22 . 2 . 0 255 .255 . 255 .0 111 . 222 . 1 .1 7 eq 25

access−list eth1_acl_in remark Fw2Policy 4 (global)
access−list eth1_acl_in deny tcp host 111 . 222 . 2 . 54 111 . 222 . 1 .1 7 eq 80

access−list eth1_acl_in remark Fw2Policy 5 (global)
access−list eth1_acl_in deny tcp host 111 . 222 . 2 . 53 111 . 222 . 1 .1 7 eq 80

access−list eth1_acl_in remark Fw2Policy 3 (global)
access−list eth1_acl_in permit tcp 1 11 . 2 22 . 2 . 0 255 .255 . 255 .0 111 . 222 . 1 .1 7 eq 80

access−group eth1_acl_in in interface eth1

2.1 Example Evaluation

Faced with this example, a security expert willing to understand the enforced
access control rules will have to directly review the configuration files of the fire-
walls in the system (disregarding the low-level and often incomplete management

56 S. Mart́ınez et al.

tools provided by the firewall vendors, obviously only valid for the firewalls of
that vendor), which in this case, involves two different rule languages. Not even
the topology picture of the network, provided here with the purpose of easing
the discussion, can be taken for granted but instead needs to be derived from
the configuration files themselves.

Therefore, we can see that the task of extracting the global access control
policy enforced by the set of rules in these two firewalls (that are just minimal
excerpts of what a full configuration policy would be) requires expert knowl-
edge about netfilter iptables and Cisco PIX. Its syntax along with its execution
semantics would have to be mastered to properly interpret the meaning of the
configuration files. Moreover, the information from the two configuration files
and the default policies would have to be combined as they collaborate to en-
force the global policy and can not be regarded in isolation.

In corporate networks potentially composed by up to a thousand firewalls,
composed by hundreds of rules and potentially from different vendors using
different configuration languages and execution semantics, the task of manually
extracting the enforced access control policy would become very complex and
expensive, seriously hampering the analysis and evolution tasks the dynamic
environment of corporations impose. This is the challenge our approach aims to
tackle as described in the next sections.

3 Approach

This section details our MDE approach to generate a high-level platform-
independent model providing a global view of all access-control rules in a set
of firewall configurations files.

Fig. 2. Extraction approach

Our model-driven reverse engineering approach, that extends the preliminary
one in [14], is summarized in Figure 2. It starts by injecting the information
contained in the firewall configuration files into platform-specific models (PSMs).
Afterwards, each PSM is translated into a different network access-control PIM
and an structural analysis to detect misconfigurations is performed. These PIMs
are then aggregated into a global model, representing the access-control policy
of the whole network. Operations are also performed over this global model to
classify the information in “locally” or globally relevant.

Model-Driven Extraction and Analysis of Network Security Policies 57

3.1 Injection

The first step of our approach constitutes a mere translation between technical
spaces where the textual information in the configuration files is expressed in
terms of models. A PSM and a parser recognizing the grammar of each con-
crete firewall rule-filtering language present in the network system is required.
In Listing 1.3 we excerpt a grammar for CISCO PIX whereas in Section 5, we
show how we use it to obtain the corresponding parser and PSM. Due to space
limitations, we do not show here the grammar for the linux Iptables filtering
language (it is available on the web of the project [2]). The integration of any
other language will follow the same strategy.

Listing 1.3. Cisco grammar excerpt

Model :
rules += Rule ∗ ;

Rule :
AccessGroup | AccessList ;

AccessGroup :
’access−group ’ id=ID ’in ’ ’interface ’ interface=Interface ;

Interface :
id=ID ;

AccessList :
(’ no ’) ? ’access−list ’ id=ID decision=(’deny ’ | ’permit ’) protocol=Protocol
protocolObjectGroup=ProtocolObjectGroup
serviceObjectGroup=ServiceObjectGroup
networkObjectGroup=NetworkObjectGroup ;

ProtocolObjectGroup :
(pogId=ID) ? sourceAddress=IPExpr sourceMask=MaskExpr ;

ServiceObjectGroup :
targetAddress=IPExpr targetMask=IPExpr ;

NetworkObjectGroup :
operator=Operator port=INT ;

Operator :
name=(’eq ’ | ’lt ’ | ’gt ’) ;

Protocol :
name= (’tcp ’ | ’udp ’ | ’ip ’) ;

IPExpr :
INT ’ . ’ INT ’ . ’ INT ’ . ’ INT ;

Note that this step is performed without losing any information and that the
obtained models remain at the same abstraction level as the configuration files.

3.2 Platform-Specific to Platform-Independent Model

The second step of our approach implies transforming the PSMs obtained in the
previous step to PIMs so that we get rid off the concrete details of the firewall
technology, language and even writing style. Central to this step is the defini-
tion of a Network access-control metamodel able to represent the information
contained in the PSMs. In the following we present and justify our proposal for
such a metamodel.

Generally, firewall access-control policies can be seen as a set of individual
security rules of type Ri : {conditions} → {decision}, where the subindex i
specifies the ordering of the rule within the configuration file, decision can be
accept or deny and conditions is a set of rule matching attributes like the source
and destination addresses, the used protocol and the source and destination port.

Such a policy representation presents several disadvantages. First of all, the
information is highly redundant and disperse, so that the details relevant to a
given host or zone may appear, unassociated, in different places of the configura-
tion file (potentially, containing up to several hundreds of rules). Metamodeling

58 S. Mart́ınez et al.

and model-driven technologies contain a big potential to reduce this issues, how-
ever, a proper representation must be chosen in order to maximize its benefits.

Second, this representation is not suited for representing the firewall policy in
a natural and efficient way. Although firewall policies could be written by only
using positive or negative logic (what leads however to over-complicated and
not natural rule sets, impacting legibility and maintainability) a firewall access-
control policy is better explained by expressing just rules in one sense (either
negative or positive) and then exceptions (see [10] for a detailed study of the use
of exceptions in access control policies) to the application of these rules. This
way, in a close policy environment (where everything not explicitly accepted is
forbidden) it is very common to define a security policy that accepts the traffic
from a given zone and then denies it only for some elements of the zone.

Native support for the representation of exceptions simplifies the representa-
tion and management of network policies while decreasing the risk of misconfig-
uration. The custom chains mechanism, recently provided by the linux iptables
filter language, evidences the need for such a native support.

3.2.1 Network Access-Control Metamodel
The platform independent network access-control metamodel we propose here
(see Figure 3) provides support for the representation of rules and exceptions.
Moreover, our reverse engineering approach is designed to recover an exception-
oriented representation of network security policies from configuration files dis-
regarding if they use a good representation of exceptions like in the iptables
example in Section 2, or not, like in the Cisco PIX example in the same section.

Fig. 3. Filter PIM excerpt

Our metamodel proposal contains the following elements (note that, for sim-
plicity, some attributes and references are not represented in the image):

– Network Element. Represents any subject (source of the access request) or
object (target of the access request) within a network system. It is charac-
terised by its ip address and its network mask.

– Zone, Host, Server and Firewall. Several different types of Network Element
may exist in a network environment. For the purpose of this paper, the rel-
evant ones are: Host, Zone which in turn, contains other Network Elements,

Model-Driven Extraction and Analysis of Network Security Policies 59

Server and Firewall. However, the list of elements can be extended to manage
different scenarios, like the presence of routers, intrusion detections systems
(IDSs), etc.

– Connection. Represents a connection between Network Elements. Apart from
its source and target Network Elements, it is characterized by the following
attributes: source and destination port, identifying the requested service; de-
cision, stating if the connections is accepted or denied (our metamodel can
represent open, close and mixed policies); order, reflecting the rule ordering
in the corresponding configuration file; firewall, that identifies the firewall
from where the connections were extracted; isLocal that tells is the connec-
tion is only locally relevant, isShadowed that identifies the connection as
not reachable and finally, isRedundant, stating that the connection can be
removed without affecting the policy.

– Exception. A connection may contain several exceptions to its application.
These exceptions are connections with opposite decisions matching a subset
of the elements matched by the containing connection.

3.2.2 PSM-to-PIM Transformation
Our PIM metamodel provides the means for representing network access-control
policies in a concise and organised way. However, a proper processing of the
information coming from the configuration files is required in order to fully
exploit its capacities (a policy could be represented by using only Connections
without using the Exception element). Therefore, the process of populating the
PIM model from a PSM model is composed by two sub-steps.

The first sub-step fills our PIM with the information as it is normally found
in configuration files, i.e., in the form of a set of rules representing exceptions
with mixed positive and negative logic. However, this representation can lead
to policy anomalies and ambiguities. Concretely, as defined in [8], a firewall rule
set may present the following anomalies:

Rule shadowing: a rule R is shadowed when it never applies because another
rule with higher priority matches all the packets it may match.

Rule redundancy: a rule R is redundant when it is not shadowed and removing
it from the rule set does not change the security policy.

Rule irrelevance: a rule R is irrelevant when it is meant to match packets that
does not pass by a given firewall.

Thus, the second sub-step, refines the initial PIM model and improve its in-
ternal organization to deal with the aforementioned problems. More specifically,
this step applies the following algorithm on the PIM model (we describe the
process for closed policies with exceptions, however, a version adapted to open
policies would be straightforward):

60 S. Mart́ınez et al.

1. Collect all the Connection elements C whose decision is Accept.
2. For each retrieved Connection Ci, get Connections Cj with the following

constraints:
(a) Cj decision is Deny
(b) Cj conditions match a subset of the set matched by the conditions of Ci.
(c) Cj ordering number is lower than the Ci ordering number (if not, mark

Cj as shadowed).
Then, for each retrieved Cj create an Exception element and aggregate it to
the Ci. Remove the Cj Connection.

3. For each remaining Connection element Cj whose decision is Deny and is-
Shadowed equals false:
– mark Cj as isRedundant

The algorithm we have presented is a modification of the one presented in [9],
e.g. to drop the requirement of using as input policy one free of shadowing and
redundancy. On the contrary, it is meant to work on real configurations and helps
to discover these anomalies: shadowed deny rules and redundant deny rules. The
security expert can retrieve them easily from the PIM as any left Connection in
the PIM with decision Deny is an anomaly and as such is marked as isShadowed
or as isRedundant.

This algorithm can be complemented by a direct application of additional
algorithms described in [8] to uncover other less important anomalies. Note that
the correction of these anomalies will often require the segmentation and rewrit-
ing of the rules, therefore we consider the correction as an optional step to be
manually triggered by the security expert after analysing the detected anomalies.

3.3 Aggregation of Individual PIMs

At the end of the previous step we get a set of PIM’s (one per firewall in the
network). Clearly, an individual firewall gives only a partial vision of the security
policy enforced in the whole network. In our example, analyzing one firewall will
yield that the public host can access the SMTP server, however, this server can
be also accessed by the private network with some exceptions. Thus, in order
to obtain a complete representation of the network policy the individual PIM
models have to be combined into one global network access-control model. Note
that as we keep information regarding which firewall contains a given Connection
element and the ordering with respect to the original configuration file, this step
would be reversible, so that the individual policies may be reproduced from the
global model.

We obtain the global model by performing a model union operation between
the individual models, so that no Network Element or Connection is duplicated.
Then, as an extra step, a refining transformation is performed to assign the
proper type to the Network Elements. This step is performed by analysing the
ip addresses and the incoming and outgoing connections. This way, we are able to
establish if a network element is a zone or being an individual network element
behaves as a host or a server (a unique firewall element is created upon the

Model-Driven Extraction and Analysis of Network Security Policies 61

initialization of each PIM model in order to represent the firewall the rules
come from). Once we have obtained the global model, some operations become
available.

First of all, local Exceptions and Connections, i.e., Exceptions and Connec-
tions that only make sense in the context of a concrete firewall, can be iden-
tified (so that they can be filtered out when representing the global policy.).
Local exceptions are usually added due to the mechanisms used to enforce the
global policy. As en example, in the Listing 1.1 the elements in the network zone
222.111.0.0 are not allowed to send or receive smtp messages. However, elements
in 222.111.2.0 are allowed to send them regarding the configuration Listing 1.2.
This contradiction is due to the enforcing architecture that imposes the traffic
to pass through a certain firewall (in this case, hosts in the local network are
meant to access the DMZ through the second firewall). The algorithm to detect
local Exceptions and Connections works as follows:

1. Collect all the Exceptions E in the aggregated model.
2. For each Exception Ei, L is a set of Connections C with the following

constraints:

(a) Ci is retrieved from a firewall different that the one containing Ei

(b) Ci conditions , are subset (or equal) of Ei conditions.

If the obtained set of Connections L is not empty:

– Mark Ei as local.
– For each Ci in L, mark Ci as local if it has not been already marked.

This will be also useful when extracting a representation of the network topology
covered by the firewalls (see next section).

4 Application Scenarios

Once all the access-control information is aggregated in our final PIM, we are
able to use the model in several interesting security application scenarios.

Metrics and Advanced Queries. First of all, having the access-control in-
formation of a network represented as a model, enables the reutilization of a
plethora of well-known, off-the-shelf MDE tools. Editor generators, model trans-
formation engines, etc. become automatically available. An immediate appli-
cation would be the use of the well-known OCL query language to calculate
interesting metrics on the model and perform some advanced queries on the
rules represented in it. In the following example, we query our model (in the
example, the context of self is the root of our PIM) for the existence of any con-
nection allowing the administrator host (111.222.2.54) to connect to the server
(111.222.1.17):

Evaluating :
self . connections−>exists(e | e . source . ipAddr= ’111 .222 .2 .54 ’ and e . target . ipAddr

= ’111 .222 .1 .17 ’)
Results :
false

62 S. Mart́ınez et al.

Forward Engineering. Our PIM model extracts and abstracts information
from working networks. Nevertheless, the PIM is still rich enough to be able
to be used as starting point for the regeneration of the configuration files if
necessary (e.g. after modifications on the PIM to update the security policy of
the network according to the new requirements). In that sense, some existing
forward engineering efforts[18,4] that produce firewall configurations from high
level representations can be reused.

Visualization of the Topology. Our PIM can also be used to derive the
topology of the network, i.e., the arrangement of components and how the in-
formation flow through them. For this purpose, a model-driven visualization
tool like Portolan1 can be used. A transformation from our aggregated PIM to-
wards the Portolan Cartography model (Portolan is able to graphically represent
any model corresponding to its Cartography metamodel) has been written. This
transformation analyzes the global PIM to first, extract the Firewall elements
and represent them as nodes. Then, represent the other Network Elements also
as nodes and the local containment of Zones. Finally, it extracts the Connec-
tions and build the links between each Connection source Network Element to
the corresponding Firewall element and from the Firewall element to the target
Network Element.

In Figure 4 we show the visualization the tool provided. In the figure, servers
(element 111.222.1.17), firewalls, zones and contained elements are easily iden-
tifiably as well as the enabled connections between them. If we compare this
figure with the figure 1 presented in section 2, we can see that the topology is
accurately represented.

Fig. 4. Extracted network topology

Network PIM to XACML. Our proposed network access-control PIM is a
specific representation specially tailored to the network domain. We consider that
a translation from our PIM towards a more generic access-control representation
will complement our approach by enabling reusing tools and results that work
on the general access-control model have produced.

XACML [13] is an OASIS standard for the specification of access-control
policies in XML and is ABAC[23] and RBAC[20] (two of the most successful
access-control models) capable. Its flexibility to represent multiple policies for

1 http://code.google.com/a/eclipselabs.org/p/portolan/

http://code.google.com/a/eclipselabs.org/p/portolan/

Model-Driven Extraction and Analysis of Network Security Policies 63

the same system and the fact of counting with a reference implementation, along
with the increasing adoption by industry and academy, makes XACML a good
choice for a generic access-control representation. Indeed, some works in the
model-driven community already chose XACML as a target language as in [3]
and [16].

In the following, we briefly introduce the XACML policy language and the
mapping from our PIM.

XACML policies are composed by three main elements PolicySet, Policy and
Rule. A PolicySet can contain other PolicySets or a single Policy that is a con-
tainer of Rules (Policy and PolicySet also specify a rule-combining algorithm, in
order to solve conflicts between their contained elements). These three elements
can specify a Target that establishes its applicability, i.e., to which combination
of Subject, Resource and Action the PolicySet, Policy and Rule applies. Subject,
Resource and Action identifies subjects accessing given resources to perform
actions. These elements can hold Attribute elements, that represent additional
characteristics (e.g., the role of the subject). Optionally, a Rule element can
hold a Condition that represents a boolean condition over a subject resource or
action. Upon an access request, these elements are used to get an answer of the
type: permit, deny or not applicable.

The translation from our network access-control metamodel to XACML fol-
lows the mapping summarized in Table 1. In Listing 1.4 we excerpt the XACML
representation of a PIM Connection.

Table 1. PIM to XACML Mappings

XACML PIM Metamodel

PolicySet A PolicySet containing a Policy is created for each firewall in the PIM

Policy All the Connections and Exceptions belonging to a given firewall

Rule A single connection or Exception

Subject Source NetworkElement address and source port of a given Connection
or Exception

Resource Target NetworkElement address and target port a given Connection or
Exception

Action Not mapped. The action is always the ability of sending a message.

Condition Protocol field

With this translation, the utilisation of a wide range of tools and research
results based in the standard become enabled. Between the more interesting ones,
we can reuse the several formalizations of the language as provided by [7,11].
Reusing these formal approaches, operations like automatic policy comparison
and change impact analysis can be performed.

64 S. Mart́ınez et al.

Fig. 5. Extraction approach implementation

Listing 1.4. Firewall rule in XACML

<Rule Effect=”Deny” RuleId=”1”>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId=”. . . function : ipAddress−regexp−match”>
<AttributeValue
DataType=”. . . XMLSchema#string”>(111) \ . (222) \ . (2) \ . ([0 −9] [0 −9]? [0 −9]?)

</AttributeValue>
<SubjectAttributeDesignator
SubjectCategory=”. . . subject−category : access−subject”
AttributeId=” . . . : subject : subject−id”
DataType=” data−type : ipAddress”/>

. . .
<Resources>

<Resource>
<ResourceMatch MatchId=”. . . function : ipAddress−regexp−match”>

<AttributeValue
DataType=”. . . XMLSchema#string”>(111) \ . (222) \ . (1) \ . (17)</AttributeValue>

<ResourceAttributeDesignator AttributeId=”. . . resource : resource−id”>
DataType=”. . . data−type : ipAddress”/>

. . .
</Target>
<Condition>

<SubjectAttributeDesignator AttributeId=”protocol”
DataType=” . . . XMLSchema#string” />

. . .
</Rule>

5 Implementation

In order to validate the feasibility of our approach, a prototype tool[2], able to
work with two popular firewall filtering languages Linux Iptables and Cisco PIX,
has been developed under the Eclipse2 environment. Figure 5 summarizes the
steps and technological choices we made for the prototype development.

The tool implements the first step of our approach (the injection process) with
Xtext 3, an Eclipse plugin for building domain specific languages. As an input
to this tool we have written simple yet usable grammars for the two languages
supported by our tool. By providing these two grammars the Xtext tool creates
for us the corresponding metamodels depicted in Figures 6 and 7 along with the
parser and the injector needed to get models out of the configurations files.

The transformations from the PSMs to the PIM along with the detection of
anomalies have been written using the model transformation language ATL[12],

2 http://www.eclipse.org/
3 http://www.eclipse.org/Xtext/

http://www.eclipse.org/
http://www.eclipse.org/Xtext/

Model-Driven Extraction and Analysis of Network Security Policies 65

Fig. 6. Cisco Metamodel excerpt

Fig. 7. Iptables Metamodel excerpt

both in its normal and in-place (for model refining[21]) modes. Same for the
PIM’s aggregation process. The visualization of the topology relies on Portolan
and the translation from our PIM to XACML policies has been developed using
Xpand4, a model-to-text tool.

6 Related Work

Several other works tackle the problem of extracting access control policies from
network configurations but they either are limited to analyzing one single firewall
component or focus on a specific analysis task and thus they do not generate
a usable representation of the firewall/s under analysis. Moreover, these latter
works require as an additional input the network topology, instead we are able
to calculate it as part of the process.

More specifically, [22] proposes a technique that aims to infer the higher-level
security policy rules from the rules on firewalls by extracting classes (types) of

4 http://wiki.eclipse.org/Xpand

http://wiki.eclipse.org/Xpand

66 S. Mart́ınez et al.

services, hosts and protocols. However, it takes only one firewall into account for
the process. In [15] and [17] a method and tool to discover and test a network
security policy is proposed. The configuration files along with the description of
the network topology are used to build an internal representation of the policy
that can be verified by the user through queries in ad-hoc languages. Unfortu-
nately, no explicit model of the recovered security policy is provided and thus, the
extracted policy can not be globally inspected without learning complex query
languages. [5] proposes a bi-directional method to enforce and reverse engineer
firewall configurations. It promotes the use of an intermediate policy representa-
tion but does not provide a model for such representation nor specific processes
to perform the enforcement and the discovery tasks.

Some other works provide a metamodel for representing firewall configurations
like [18], [24] and [6]. Nevertheless, a reverse engineering process to populate
those models from existing configuration files is not provided, and in our opinion,
the abstraction of the models level is still too close to the implementation details,
therefore limiting their usability.

7 Conclusions and Future Work

We have presented a model-driven reverse engineering approach to extract
network access-control policies from the network information included in the
network’s firewall configuration files. As a result of the process, a platform-
independent access control model is created. Apart from facilitating the com-
prehension and analysis of the network policies to security experts, this model
can also be the basis for further applications like the visualization of the (im-
plicit) network topology or the generation of an equivalent XACML-like model
ready to be processed by specialized security reasoning tools.

As a future work we plan to extend our approach to take into account other
network elements that may take part in the enforcement of a security policy
like routers, VPN tunnels and intrusion detection systems. We consider also
that giving precise semantics to the proposed metamodel concepts constitutes a
necessary next step. Moreover, given that the own XACML defines extensibility
mechanisms for this standard, we believe it would be useful to work on a network-
specific extension that facilitates the representation and analysis of this kind of
firewall access-control policies. Finally, we plan to apply our approach on real
network configurations to test the scalability of the approach.

References

1. Building secure software: how to avoid security problems the right way. Addison-
Wesley Longman Publishing Co., Inc., Boston (2002)

2. Firewall Reverse Engineering project web site (2013), http://www.emn.fr/z-info/
atlanmod/index.php/Firewall Reverse Engineering

3. Alam, M., Hafner, M., Breu, R.: Constraint based role based access control in
the sectet-framework: A model-driven approach. J. Comput. Secur. 16(2), 223–260
(2008)

http://www.emn.fr/z-info/atlanmod/index.php/Firewall_Reverse_Engineering
http://www.emn.fr/z-info/atlanmod/index.php/Firewall_Reverse_Engineering

Model-Driven Extraction and Analysis of Network Security Policies 67

4. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A novel firewall management
toolkit. ACM Trans. Comput. Syst. 22(4), 381–420 (2004)

5. Bishop, M., Peisert, S.: Your security policy is what?? Technical report (2006)
6. Brucker, A.D., Brügger, L., Kearney, P., Wolff, B.: Verified firewall policy transfor-

mations for test-case generation. In: Third International Conference on Software
Testing, Verification, and Validation (ICST), pp. 345–354. IEEE Computer Society,
Los Alamitos (2010)

7. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th In-
ternational Conference on Software Engineering, ICSE 2005, pp. 196–205. ACM,
New York (2005)

8. Garcia-Alfaro, J., Boulahia-Cuppens, N., Cuppens, F.: Complete analysis of config-
uration rules to guarantee reliable network security policies. Int. J. Inf. Secur. 7(2),
103–122 (2008)

9. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N.: Aggregating and deploying
network access control policies, pp. 532–542. IEEE Computer Society, Los Alamitos
(2007)

10. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N.: Management of exceptions
on access control policies. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von
Solms, R. (eds.) SEC. IFIP, vol. 232, pp. 97–108. Springer, Boston (2007)

11. Hughes, G., Bultan, T.: Automated verification of access control policies using a
sat solver. Int. J. Softw. Tools Technol. Transf. 10(6), 503–520 (2008)

12. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

13. Lockhart, H., Parducci, B., Anderson, A.: OASIS XACML TC (2013)
14. Mart́ınez, S., Cabot, J., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N.: A

model-driven approach for the extraction of network access-control policies. In:
Proceedings of the Workshop on Model-Driven Security, MDsec 2012, pp. 5:1–5:6.
ACM (2012)

15. Mayer, A., Wool, A., Ziskind, E.: Fang: A firewall analysis engine. In: Proceedings
of the 2000 IEEE Symposium on Security and Privacy, SP 2000, pp. 177–187. IEEE
Computer Society, Washington, DC (2000)

16. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 537–552. Springer, Heidelberg (2008)

17. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The mar-
grave tool for firewall analysis. In: Proceedings of the 24th International Conference
on Large Installation System Administration, LISA 2010, pp. 1–8. USENIX Asso-
ciation, Berkeley (2010)

18. Pozo, S., Gasca, R.M., Reina-Quintero, A.M., Varela-Vaca, A.J.: Confiddent: A
model-driven consistent and non-redundant layer-3 firewall acl design, develop-
ment and maintenance framework. Journal of Systems and Software 85(2), 425–457
(2012)

19. Russell, R.: Linux 2.4 packet filtering howto (2002), http://www.netfilter.org/
documentation/HOWTO/packet-filtering-HOWTO.html

20. Sandhu, R., Ferraiolo, D., Kuhn, R.: The nist model for role-based access control:
towards a unified standard. In: Proceedings of the Fifth ACM Workshop on Role-
based Access Control, RBAC 2000, pp. 47–63. ACM, New York (2000)

http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

68 S. Mart́ınez et al.

21. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Refining Models with Rule-based
Model Transformations. Rapport de recherche RR-7582, INRIA (2011)

22. Tongaonkar, A., Inamdar, N., Sekar, R.: Inferring higher level policies from firewall
rules. In: Proceedings of the 21st Conference on Large Installation System Admin-
istration Conference, LISA 2007. LISA 2007, pp. 2:1–2:10. USENIX Association,
Berkeley (2007)

23. Yuan, E., Tong, J.: Attributed based access control (abac) for web services. In:
Proceedings of the IEEE International Conference on Web Services, ICWS 2005,
pp. 561–569. IEEE Computer Society, Washington, DC (2005)

24. Zaliva, V.: Platform-independent firewall policy representation. CoRR,
abs/0805.1886 (2008)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 69–86, 2013.
© Springer-Verlag Berlin Heidelberg 2013

SafetyMet: A Metamodel for Safety Standards

Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege

Certus Centre for Software V&V, Simula Research Laboratory
P.O. Box 134, 1325 Lysaker, Norway

{jdelavara,rpanesar}@simula.no

Abstract. In domains such as automotive, avionics, and railway, critical
systems must comply with safety standards to allow their operation in a given
context. Safety compliance can be an extremely demanding activity as
practitioners have to show fulfilment of the safety criteria specified in the
standards and thus that a system can be deemed safe. This is usually both costly
and time consuming, and becomes even more challenging when, for instance, a
system changes or aims to be reused in another project or domain. This paper
presents SafetyMet, a metamodel for safety standards targeted at facilitating
safety compliance. The metamodel consists of entities and relationships that
abstract concepts common to different safety standards from different domains.
Its use can help practitioners to show how they have followed the
recommendations of a standard, and particularly in evolutionary or cross-
domain scenarios. We discuss the benefits of the use of the metamodel, its
limitations, and open issues in order to clearly present the aspects of safety
compliance that are facilitated and those that are not addressed.

Keywords: safety standard, metamodel, safety compliance, safety assurance,
safety certification, SafetyMet, OPENCOSS.

1 Introduction

Safety-critical systems are those whose failure can cause injury or death to people or
harm to the environment in which they operate. These systems are subject to rigorous
safety assurance and assessment processes, which are usually based on some safety
standards upon which the system is to be certified [34]. System suppliers have to
show that a system (and/or its lifecycle) has fulfilled the requirements of the safety
standard so that the system can be deemed safe for operation in a given context.

Examples of safety standards include IEC61508 [24] for systems that combine
electrical, electronic, and programmable electronic systems, DO-178C [45] for the
avionics domain, the CENELEC standards (e.g., EN50128 [8]) for the railway
domain, and ISO26262 [26] for the automotive industry. Companies can also adopt
recommended practices (e.g., [14]) or defined company-specific practices as a part of
their own, internal safety procedures.

Demonstration of safety compliance is usually costly and time-consuming [16],
and can be very challenging [33, 34]. Firstly, system suppliers have to collect
evidence of compliance such as hazard specifications, test results, and activity
records. This can be hindered because of difficulties in understanding safety

70 J.L. de la Vara and R.K. Panesar-Walawege

standards, in determining the evidence, or in gaining confidence in evidence
adequacy. Secondly, practitioners usually have to manage large quantities of evidence
and structure it to show how a system complies with a standard. If the evidence is not
structured properly, its sheer volume and complexity can jeopardize safety
certification.

Demonstration of compliance with safety standards becomes even more difficult
when a system evolves [13]. For example, recertification of a system requires a
completely new set of evidence since changes to the system will have invalidated
previously existing evidence. There can be re-use of evidence only if it is possible to
accurately assess how the changes have impacted the existing evidence.
Consequently, industry needs approaches that enable evidence reuse and support
evidence change impact analysis.

If aiming to reuse an already-compliant system in another domain, practitioners
have to demonstrate compliance with other standards. This is currently an important
concern in industry [4]. Although correspondence between regulations has been
addressed in other fields (e.g., [19]), the situation in safety compliance is more
complex. No perfect match usually exists between safety standards, and system
suppliers usually have their own interpretations and thus usage of a standard. As a
result, compliance with a new standard is never straightforward, and means to
facilitate this activity are necessary.

All the challenges above can lead to certification risks [3]. In other words, a system
supplier might not be able to develop a safe system, show system safety, or make a
third party gain confidence in system safety.

To tackle these issues we propose the use of model-based technologies. Several
proponents of these technologies have argued their suitability for mitigating the
complexity of and thus facilitating safety compliance (e.g., [41]). However, the current
model-based approaches for safety compliance have been targeted at specific standards
or domains, thus they do not provide generic solutions that can be applied in contexts of
cross-domain use or where multiple standards are required in the same domain.

This paper aims to fill this gap by presenting SafetyMet, a metamodel for safety
standards. This metamodel aims to support practitioners when having to deal with
safety compliance, especially in situations in which a system evolves or must comply
with several standards. The metamodel is part of our contribution to OPENCOSS
(http://www.opencoss-project.eu/), a European research project whose
goal is to devise a common certification framework for the automotive, avionics, and
railway domains. The metamodel has been developed in close collaboration with
industry.

SafetyMet is a generic metamodel that includes concepts and relationships
common to different safety standards and to different domains. It addresses safety
compliance from several perspectives, explicitly dealing with information related to
the process, data, and objectives that are necessary to demonstrate compliance. The
metamodel is a part of an overall approach for model-based safety compliance that
encompasses both standard-specific and project-specific aspects.

Apart from supporting demonstration of safety compliance in general, use of the
metamodel can help practitioners to structure and reuse evidence, assess its adequacy,
and deal with evidence traceability and change. Nevertheless, some compliance needs
such as human aspects are out of the scope of SafetyMet and its application.

 SafetyMet: A Metamodel for Safety Standards 71

The rest of the paper is organised as follows. Section 2 introduces the background
of the paper. Section 3 presents SafetyMet, whereas Section 4 discusses its benefits
and limitations. Finally, Section 5 summarises our conclusions and future work.

2 Background

This section introduces the OPENCOSS project and reviews related work.

2.1 OPENCOSS

OPENCOSS is a large-scale FP7 European project that aims to (1) devise a common
certification framework that spans different vertical markets for railway, avionics, and
automotive industries, and (2) establish an open-source safety certification
infrastructure. The ultimate goal of the project is to bring about substantial reductions
in recurring safety certification costs and at the same time reduce certification risks
through the introduction of more systematic safety assurance practices. The project
deals with: (1) creation of a common certification conceptual framework; (2)
compositional certification; (3) evolutionary chain of evidence; (4) transparent
certification process, and; (5) compliance-aware development process.

SafetyMet can be regarded as a part of the common certification framework. More
details about the framework and the role and usage of SafetyMet are presented below.
It must also be mentioned that this paper presents our current vision of the framework,
thus it might not reflect the final vision of the entire OPENCOSS consortium.

2.2 Related Work

Related work can be divided into three main streams: models for compliance or
assurance in general, models for safety assurance, and models for safety compliance.
When mentioning models in this section, we refer to both models and metamodels,
understood as sets of concepts and the relationships between them, independently of
the graphical or textual languages used for their representation.

Models for compliance or assurance in general have been proposed in order to
facilitate demonstration of fulfilment or alignment with different requirements or
criteria. This topic has received great attention in the requirements engineering and
business process management communities. Systematic reviews on compliance from
a requirements engineering and business process perspective can be found in [17, 48].

The requirements engineering community has provided insights into issues such as
regulatory compliance in practice [36], correspondence between regulations [19],
regulation formalization [47], argumentation [25], and component selection [35].
Examples of aspects related to business process compliance that have been addressed
are compliance patterns [43], compliance management [1], and compliance with
reference models [28], context [12], contracts [20], and control objectives [46].

Most of the models proposed (e.g., [15, 18]) are generic. An especially relevant
example is the just published first version of SACM (Structure Assurance Case

72 J.L. de la Vara and R.K. Panesar-Walawege

Metamodel; [39]). It is an OMG specification and includes an argumentation and an
evidence metamodel. Other models have been developed for compliance with non-
safety-specific standards (e.g., CMMI [32]).

Apart from not targeting system evolution, the main weaknesses of these models is
that they do not support safety standards-specific needs such as having to show
alignment with the many varied criteria of the standards (activities, artefacts,
techniques, requirements, criticality levels, etc.).

Models for safety assurance can be regarded as a refinement of the models
presented above. They aim at supporting analysis of safety-related system aspects
such as traceability between requirements and design [37], process assurance [23], or
dependability [5]. Broader traceability models for safety-critical systems can also be
found in the literature (e.g., [9, 27, 52]). In the context of graphical modelling of
safety argumentation, metamodels for GSN (Goal Structuring Notation) (e.g., [11])
and a model of evidence for safety cases [51] have been proposed.

In general, these models can be regarded as closer to the domain of project-specific
aspects than to the domain of safety standards. For example, they do not include
means to explicitly model and analyse the requirements of a safety standard and thus
to show how they have been fulfilled by means of the execution of some activity or
the creation of some artefact.

During the past few years, several models for safety compliance have been
presented in order to support demonstration of fulfilment of the criteria of a safety
standard. This has been usually presented in the scope of some specific standard.
Examples of safety standards for which models have been proposed include
ISO26262 [29], IEC61508 [30, 42], and DO-178B [54]. A model that combines
ISO26262 and SPICE can be found in [2]. In some cases, these models have focused
in specific parts of the standards such as quality-related aspects [31], faults [49], and
testing [50]. These models are not generic but standard-specific, thus they cannot be
directly applied when, for instance, aiming at demonstrating compliance with another
standard. These models can be regarded as SafetyMet instances.

Other related works are those that have proposed models for impact analysis (e.g.,
[7]) or for system evolution (e.g., [53]). However, they have not explicitly addressed
how these aspects are related to safety compliance.

In summary, since the models reviewed have purposes different to SafetyMet, they
do not fit its needs. In this sense, SafetyMet aims to extend the state art by providing a
metamodel that (1) supports safety compliance in a generic way that can be adapted to
different regulatory contexts, and (2) facilitates evidence change management and
cross-standard/domain compliance. Consequently, the metamodel aims to generalize
and widen the scope of past proposals (e.g., [42]).

3 Metamodel for Safety Standards

This section introduces SafetyMet, the metamodel that we propose for safety
compliance. The metamodel includes a number of key relationships that exist between
the different pieces of information that are managed for safety compliance. Showing
these relationships is a prerequisite to demonstrating compliance [40].

 SafetyMet: A Metamodel for Safety Standards 73

For the purpose of compliance, there are two main sources of information: the
standard to be complied with and the product for which compliance is sought. Related
to the product we have information regarding the process used in its construction, the
evidence that contributes to gaining confidence in system safety, and the
argumentation to justify system safety. Argumentation can be presented implicitly
(e.g., [42]) or explicitly (e.g., [21]). These three aspects must match the process, data,
and objectives prescribed by the safety standard. In addition, it is necessary to
understand the vocabulary (i.e., terms) used in the standard and usually map it to the
vocabulary that exists in the domain in which the product is being developed.

Based on these relationships and the need to abstract the relevant information from
the vast amount of data that is created during system lifecycle, we advocate for the
creation of models that represent both the compliance and product-specific
information. The models must also be structured in a specific manner in order to
perform useful analyses with them. To this end, we propose the use of metamodels to
which all the models must conform [6].

The following subsections present more details about the context and purpose of
SafetyMet, its concepts and relationships, and how it has been validated.

3.1 Scope and Purpose

In general, safety compliance is not based on just one standard. Minimally there are at
least the safety standard mandated by a particular industry and then the internal
working procedures of the specific system supplier. These procedures are a mix of
internal best practices and geared towards aiding compliance to the applicable safety
standard. In other cases a system is to be certified to multiple standards used in
different parts of the world, and finally there may be the case of using components (or
systems) that have been certified in one domain in another. Hence a component
certified to one standard may have to be re-certified to another. There exist also other
specific needs when a system evolves [13], such as managing evidence change
impact. We propose SafetyMet in order to aid compliance in these various scenarios.

The metamodel captures the abstract notions that can be used to describe the
information that needs to be collected to show compliance to safety standards and
manage system change. Specifically, SafetyMet corresponds to a unified metamodel
that will aid in the creation of models for compliance.

SafetyMet is an element of a set of metamodels and corresponds to a metamodel
for safety standards (Fig. 1). The models resulting from these metamodels will
capture the information necessary for showing compliance in specific projects (safety
compliance models). The rationale for developing such models is to create a
consistent interpretation of the standard being used and link this to the product being
certified. The need for a consistent interpretation stems from the fact that safety
standards are textual documents amenable to subjective interpretation. By creating a
model we do not avoid subjectivity but aid in a shared, consistent interpretation.

Regarding the actual product being certified, the metamodels will also include the
concepts and relationships necessary for modelling and managing project-specific
information. This information needs to be recorded regardless of the safety standards
being followed (e.g., confidence in evidence). There are metamodels for modelling:

74 J.L. de la Vara and R.K. Panesar-Walawege

Fig. 1. Overall approach for safety compliance

• The actual process used to create a product, which is important as assurance
artefacts are produced as a result of process activities and it must be shown that
the activities materialise the process mandated by safety standards;

• The argumentation that will be used to justify key safety-related decisions taken
during the project and must be in line with the objectives of safety standards, and;

• The specific information that needs to be kept about the concrete artefacts that will
be used as evidence of compliance and that thus must materialise those types of
artefacts prescribed by safety standards.

Two other metamodels are proposed, which may be considered the ‘glue’ that
connects the others. The vocabulary metamodel is a means to define and record the terms
and concepts used to characterize reusable assets such as evidence, argumentation, and

 SafetyMet: A Metamodel for Safety Standards 75

process assets. When multiple standards are used for compliance purposes (e.g.,
certification of a system for another domain), mappings will be created between the
vocabulary terms of one standard and those of another. The mappings will then allow
engineers to use this information in order to make informed decisions about the
appropriateness and implications of reusing a given asset that was created for compliance
to a particular safety standard in the context of another standard.

Finally, there is a metamodel for mappings. We have already mentioned mappings
in the context of the vocabulary used in one standard to the vocabulary used in
another standard. Another use of mappings will be for associating the assurance
information gathered during a project to the safety criteria of a standard. This is a
means of showing compliance to the standard. We discuss the mappings further when
describing the actual models created using the metamodels proposed. Mappings
between models of safety standards can also exist.

It must be noted that although we refer to them as a set of metamodels, a single
metamodel aimed at supporting several aspects of safety compliance will be created.
Relationships will exist between the concepts of the metamodels, such as the evidence
(evidence metamodel) used for argumentation (argumentation metamodel) or the
mapping (mappings metamodels) of project artefacts (evidence metamodel) to the
types of artefacts of some safety standards (metamodel for safety standards).

The metamodels will be used to create the actual models that will be used for
showing compliance. This is depicted in the bottom part of Fig. 1. The metamodel for
safety standards is used to create the models of the relevant safety standards and the
project-specific models are created using the process, argumentation, and evidence
metamodels. As these models are being created, the vocabulary metamodel is used to
capture the relevant vocabulary terms, such as the vocabulary used in the standards as
well as that used in the project.

Mappings from the project assets to the assets mandated by the standard need to be
created in order to demonstrate compliance. Doing so, we can show clearly how a
particular asset created during a project complies with a particular standard. When a
project needs to comply with multiple standards, then the vocabulary can aid in
mapping the assurance assets created in the project for compliance with one standard
to those required by another standard. In this case not all assets may be reusable, some
new assets may need to be created, and some assets might have to be modified [13].

This overall approach for safety compliance aims to enable reuse of certification
assets. As further discussed below, the models of safety standards and the vocabulary
will be used from one project to another and will be valuable assurance assets in a
company. The use of mapping provides a clear traceable link between the assets of a
project and the standard to be complied with. This is a link very difficult to show and
maintain using textual documents but can be more easily managed using models.

3.2 SafetyMet

The metamodel is shown in Fig. 2 in the form of an Ecore diagram [22]. We have
modelled it this way in order to quickly generate model editors for validation
purposes. The metaclasses of which SafetyMet consists are defined as follows.

76 J.L. de la Vara and R.K. Panesar-Walawege

• Safety Standard is used to hold information about the safety regulation(s)
modelled.

• Criticality Level corresponds to the categories of criticality that a safety standard
defines and that indicate the relative level of risk reduction being provided (e.g.,
SIL 1, 2, 3, and 4 in IEC61508).

• Applicability Level represents the categories of applicability that a safety standard
defines (e.g., a given technique is mandated in EN50128).

• Activity Type is targeted at modelling the activities (i.e., the units of behaviour
[42]) that a safety standard defines for system lifecycle and must be executed to
demonstrate compliance. An activity type can be decomposed in others.

• Role represents the types of agents [42] that execute activity types, either
explicitly defined in a safety standard or required to be defined by the supplier.

• Artefact Type represents types of units of data that a safety standard prescribes to
be created and maintained during system lifecycle. Artefact types are materialised
in projects by means of concrete artefacts [38]. This means that these artefacts
have the same or a similar structure (syntax) and/or purpose (semantics) [9].
Artefact types can be required or produced by activity types, and some can
determine the criticality level in a project (e.g., risks [14]).

• Artefact Type Property is used to model the characteristics [38] of an artefact type.
• Artefact Relationship Type aims to model the existence of a relationship between

two artefact types (source and target of the artefact type relationship) [38, 44]. An
artefact relationship type is materialised by relating two artefacts of a project, and
characterizes those artefact relationships that have the same or similar structure
(syntax) and/or purpose (semantics) [9]. Such a relationship can be recorded in an
artefact if the relationship itself is used as evidence (e.g., DO-178C explicitly
requests the provision of traceability information). An artefact type relationship
can be created as a result of executing some activity type.

• Technique corresponds to specific ways to create an artefact type and that can be
utilised in some activity type. Specific techniques are defined in many standards.

• Requirement represents the criteria (e.g., objectives) that a safety standard defines
(or prescribes) to comply with it. Requirements are fulfilled by executing activity
types, and are the aim of artefact types (i.e., the reason why they are necessary).

• Requirement Decomposition corresponds to the contribution of several
requirements to the fulfilment of another requirement.

• Criticality Applicability represents the assignation, in a safety standard, of an
applicability level for a given criticality level to its requirements or techniques.

Two enumerations have also been included, one for specifying how a requirement
can be decomposed (Decomposition Type) and another for specifying the Change
Effect of the target of an artefact type relationship on the source.

Although at first sight some relationships might seem redundant (e.g., Activity Type
utilizes Technique and Artefact Type results from Technique), they all are necessary in
order to allow different and alternative ways to model a safety standard. For example,
an activity type might produce several artefact types, and several activity types might
produce an artefact type. Therefore, it might be necessary to link Technique with both
Activity Type and Artefact Type in order to be able to determine what technique is
used in a specific activity type to produce a given artefact type.

 SafetyMet: A Metamodel for Safety Standards 77

F
ig

. 2
. M

et
am

od
el

 f
or

 s
af

et
y

st
an

da
rd

s

78 J.L. de la Vara and R.K. Panesar-Walawege

Further details about the classes, their attributes, their relationships, and their
constraints are not provided due to page limitations.

As can be noted, SafetyMet includes concepts related to process (e.g., Activity
Type), data (e.g., Artefact Type), and objectives (e.g., Requirement) for safety
compliance. In essence, the metamodel is targeted at modelling those elements of a
safety standard with which correspondence must be shown in a project in order to
demonstrate safety compliance. These elements are also necessary to compare and
map safety standards. In this sense, it is very important to know the objectives of
activity and artefact types when comparing standards.

SafetyMet also aims to be generic and flexible, in order to allow different ways to
model a standard. For example, the metamodel does not assume the existence of a
given number of levels (i.e., decompositions) of requirements and activities types, and
provides modellers with freedom to determine the granularity of artefact types.
Nonetheless, and especially for the latter aspect, we plan to provide guidelines.

Some aspects of SafetyMet to be further studied and developed in the future are:

• Specification of more attributes for the classes
• Further support for change impact analysis by specifying more change effects
• Provision of a set relationships between types of artefacts (i.e., inclusion of classes

that specialise ArtefactTypeRelationship, as proposed in works such as [44])
• Inclusion of more links between requirements and between activity types

Decisions upon these aspects will be made once the metamodel is further validated.

3.3 Preliminary Validation

We have initially validated SafetyMet by analysing its support for the necessary
compliance information of several specific software safety standards and thus by
modelling them. More concretely, we have validated SafetyMet with: DO-178C [45]
(although not specifically and explicitly targeted at safety, it is used for this purpose
[33]); EN50128 [8]; ISO26262 [26] (Part 6), and; IEC61508 [24] (Part 3). This set of
standards corresponds to both objective-based and process-based safety standards.

In Table 1 we show examples of how SafetyMet classes correspond to specific
information from the standards. More details and examples are not shown due to page
limitations. Although all the standards do not include explicit information about some
elements (e.g., Role), this information is usually required. For other concepts, the
standards might not explicitly include such pieces of information, but it can be
specified as a result of their interpretation. For example, DO-178C objectives
correspond to Requirement in SafetyMet, and their analysis can lead to the
specification of other requirements that decompose the objectives. We have not
included this information in Table 1 to keep it as small as possible.

We have also validated SafetyMet by analysing if it could be used to create the
models for safety compliance reviewed in Section 2.2. We have determined that it is
possible, despite the fact that no model includes all the information that can be
specified with SafetyMet. SafetyMet can be regarded as a metamodel for all these
models, addressing modelling of process, data, and objectives for safety compliance.

 SafetyMet: A Metamodel for Safety Standards 79

Sa

fe
ty

 S
ta

nd
ar

d
Sa

fe
ty

M
et

 E
le

m
en

t
D

O
-1

78
C

E

N
50

12
8

IS
O

26
26

2
IE

C
61

50
8

C
ri

ti
ca

lit
y

L
ev

el

S
of

tw
ar

e
L

ev
el

 A
, B

, C
, D

, E

S
IL

 0
,1

, 2
, 3

, 4

A
S

IL
 A

, B
, C

, D

S
IL

 1
, 2

, 3
, 4

A
pp

lic
ab

ili
ty

 L
ev

el

S
at

is
fi

ed
, S

at
is

fi
ed

 W
it

h
in

de
pe

nd
en

ce

M
, H

R
, R

, N
R

, -

+
, +

+
, o

R

, H
R

, N
R

, -

A
ct

iv
it

y
T

yp
e

S
of

tw
ar

e
D

ev
el

op
m

en
t

P
ro

ce
ss

es

C
om

po
ne

nt
 D

es
ig

n
S

of
tw

ar
e

U
ni

t D
es

ig
n

an
d

Im
pl

em
en

ta
ti

on

S
of

tw
ar

e
D

es
ig

n
an

d
D

ev
el

op
m

en
t

R
ol

e
(S

pe
ci

fi
ed

 b
y

th
e

su
pp

li
er

)
D

es
ig

ne
r

D
es

ig
ne

r
(S

pe
ci

fi
ed

 b
y

th
e

su
pp

li
er

)

A
rt

ef
ac

t
T

yp
e

In
pu

t:
 S

of
tw

ar
e

R
eq

ui
re

m
en

ts

D
at

a;
 O

ut
pu

t:
 D

es
ig

n
D

es
cr

ip
ti

on

In
pu

t:
 S

of
tw

ar
e

D
es

ig
n

S
pe

ci
fi

ca
ti

on
; O

ut
pu

t:

S
of

tw
ar

e
C

om
po

ne
nt

 D
es

ig
n

S
pe

ci
fi

ca
ti

on

In
pu

t:
 S

of
tw

. A
rc

hi
te

ct
ur

al

D
es

ig
n

S
pe

ci
fi

ca
ti

on
;

O
ut

pu
t:

 S
of

tw
ar

e
U

ni
t

D
es

ig
n

S
pe

ci
fi

ca
ti

on

In
pu

t:
 S

of
tw

. A
rc

hi
te

ct
ur

e
D

es
ig

n
D

es
cr

ip
ti

on
; O

ut
pu

t:

S
of

tw
ar

e
S

ys
te

m

D
es

ig
n

S
pe

ci
fi

ca
ti

on

A
rt

ef
ac

t
T

yp
e

P
ro

pe
rt

y
A

pp
ro

va
l S

ta
tu

s
A

ut
ho

r
V

er
si

on

D
at

e
of

 R
ev

is
io

n

A
rt

ef
ac

t
T

yp
e

R
el

at
io

ns
hi

p
D

es
ig

n
D

es
cr

ip
ti

on
 s

at
is

fi
es

S

of
tw

ar
e

R
eq

ui
re

m
en

ts
 D

at
a

S
of

tw
ar

e
C

om
po

ne
nt

 D
es

ig
n

S
pe

ci
fi

ca
ti

on
 li

nk
s

to

S
of

tw
ar

e
C

om
po

ne
nt

 T
es

t
S

pe
ci

fi
ca

ti
on

S
of

tw
ar

e
U

ni
t D

es
ig

n
S

pe
ci

fi
ca

ti
on

 li
nk

s
to

S

of
tw

ar
e

R
eq

ui
re

m
en

ts
 a

nd

sp
ec

if
ie

s
S

of
tw

ar
e

U
ni

t
Im

pl
em

en
ta

ti
on

S
of

tw
ar

e
S

ys
te

m
 D

es
ig

n
S

pe
ci

fi
ca

ti
on

 d
er

iv
ed

 fr
om

S

of
tw

. A
rc

hi
te

ct
ur

e
D

es
ig

n
an

d
H

ar
dw

ar
e

A
rc

hi
te

ct
ur

e
D

es
ig

n
D

es
cr

ip
ti

on
s

T
ec

hn
iq

ue

(S
pe

ci
fi

ed
 b

y
th

e
su

pp
li

er
)

M
od

el
li

ng

S
em

i-
fo

rm
al

 n
ot

at
io

ns

S
em

i-
fo

rm
al

 m
et

ho
ds

R
eq

ui
re

m
en

t

(A
-4

.8
)

S
of

tw
ar

e
ar

ch
it

ec
tu

re

is
 c

om
pa

ti
bl

e
w

it
h

hi
gh

-l
ev

el

re
qu

ir
em

en
ts

.

(7
.4

.4
.1

)
F

or
 e

ac
h

co
m

po
ne

nt
,

a
S

of
tw

ar
e

C
om

po
ne

nt

D
es

ig
n

S
pe

ci
fi

ca
ti

on
 s

ha
ll

 b
e

w
ri

tt
en

, u
nd

er
 th

e
re

sp
on

si
bi

li
ty

 o
f

th
e

D
es

ig
ne

r,

on
 th

e
ba

si
s

of
 th

e
S

of
tw

ar
e

D
es

ig
n

S
pe

ci
fi

ca
ti

on
.

(8
.4

.3
)

T
he

 s
pe

ci
fi

ca
ti

on
 o

f
th

e
so

ft
w

ar
e

un
it

s
sh

al
l

de
sc

ri
be

 th
e

fu
nc

ti
on

al

be
ha

vi
ou

r
an

d
th

e
in

te
rn

al

de
si

gn
 to

 th
e

le
ve

l o
f

de
ta

il

ne
ce

ss
ar

y
fo

r
th

ei
r

im
pl

em
en

ta
ti

on
.

(7
.4

.5
.3

)
T

he
 s

of
tw

ar
e

sh
ou

ld
 b

e
pr

od
uc

ed
 to

ac

hi
ev

e
m

od
ul

ar
it

y,

te
st

ab
il

it
y,

 a
nd

 th
e

ca
pa

ci
ty

fo

r
sa

fe
 m

od
if

ic
at

io
n.

C
ri

ti
ca

lit
y

A
pp

lic
ab

ili
ty

S

of
tw

ar
e

L
ev

el
 A

, S
at

is
fi

ed

w
it

h
In

de
pe

nd
en

ce

S
IL

 2
, H

R

A
S

IL
 D

, +
+

S

IL
2,

 H
R

T
ab

le
 1

. E
xa

m
pl

es
 o

f
S

af
et

yM
et

 e
le

m
en

ts
 f

ro
m

 s
ev

er
al

 s
af

et
y

st
an

da
rd

s

80 J.L. de la Vara and R

An instance of SafetyM
can comply with a safety s
be managed. For the latter
Type Relationship has attrib

4 Discussion

In this section we discuss t
of SafetyMet.

4.1 Application and Be

Several benefits of SafetyM
such as the creation of a
standards. We now present
which come from three usa
and of SafetyMet in parti
project information, the reu
the vocabulary. Other ben
compliance such as the
provisions of support for
compliance with several sta
each standard can be create

4.1.1 Mapping between S
Fig. 3 shows how SafetyM
elements of project-specific
mapped to Artefact.

Fig.

R.K. Panesar-Walawege

Met must be regarded as an interpretation of how a proj
standard and of how evidence traceability and change w
two aspects, this is the reason why, for instance, Artef

butes related to multiplicity and change effect.

the benefits, limitations, and open issues of the applicat

enefits of SafetyMet

Met have been outlined throughout the previous sectio
shared, common, and consistent interpretation of saf

t further details about the most novel and salient benef
age aspects of the safety compliance metamodels in gene
cular: the mapping between safety standard models
use of safety standards models, and the relationship w
nefits of applying model-driven engineering for saf
generation of electronic evidence repositories or
compliance planning have been discussed in [41].

andards, one model for all the standards or one model
d, and thus associated to a project.

Safety Standard Models and Project Information
Met elements (bottom part of the figure) can be mapped

c metamodels (top part). In this example, ArtefactType

3. Example of mapping with SafetyMet

oject
will
fact

tion

ons,
fety
fits,
eral
and

with
fety
the
For
for

d to
e is

 SafetyMet: A Metamodel for Safety Standards 81

The possibility of establishing this mapping between these two elements provides a
specific way of structuring the artefacts of a project according to how a safety
standard requires them. At the same time, this allows identification of missing
artefacts or artefact relationships. For example, if two artefact types are related in a
safety standard model and it is specified that the artefact type relationship must exist
for one of the artefacts types, it may be possible to detect that some artefact
relationship is missing in a project.

In summary, a safety standard model provides what is usually referred to in the
literature as conceptual schema [38] or traceability information model [10]. This can
help practitioners to know if, for instance and in relation to the artefacts of a project,
the set of artefacts is complete and consistent, thus allowing safety compliance
according to a given safety standard model.

Another benefit from this usage is evidence reuse between projects. Once an
artefact has been mapped to an artefact type, such a mapping and thus the use of the
artefact as evidence of compliance with the corresponding safety standard can be
reused. Finally, evidence change impact analysis can also be facilitated. By specifying
change-related information in artefact type relationships, such information can be
used to analyse change impact in the related artefacts (i.e., evidence).

4.1.2 Reuse of Safety Standards Models
Although project-specific information usually varies among projects, safety standard
models can be reused in several projects. Therefore, all the benefits indicated in the
previous section can apply to any project targeted at compliance with a given safety
standard (i.e., its model). An existing safety standard model could also be used as the
source for creating another model, thus reducing the effort for this task.

Furthermore, if mappings are specified between safety standards and thus between
their models, it can be possible to determine how project assets mapped to a given
safety standard model correspond to the elements of another safety standard model.

4.1.3 Relationship with the Vocabulary
In relation to the vocabulary, it is possible to both store information (i.e., terms) from
a safety standard model in the vocabulary and also name the elements of a safety
standard model according to the information stored in the vocabulary. Consequently,
SafetyMet, in conjunction with the vocabulary, allows term reuse.

Another advantage of this reuse is related to terminology alignment. Once the
terms of a safety standard have been stored in the vocabulary, they can be reused.
Therefore, it is possible to guarantee that the terminology used in another safety
standard model is aligned with that previously stored.

Finally, if mappings between the terminologies of different safety standard exist,
and in line with the discussion in the previous section, terminology and the related
compliance assets can be reused for compliance with several safety standards.

82 J.L. de la Vara and R.K. Panesar-Walawege

4.2 Limitations of SafetyMet and Its Application

Despite the argued benefits of SafetyMet, we also acknowledge that it has some
limitations. Compliance with safety standards is a very complex activity, thus a
metamodel alone cannot address all its needs and possible challenges. In this sense,
OPENCOSS aims to mitigate many challenges in safety compliance by proposing
new, systematic ways to address system assurance and certification. Nonetheless,
some aspects are out of the scope of the project (e.g., analysis of the correctness of a
fault tree), and some aspects cannot be fully addressed by means of new technology
because of their nature (e.g., aspects in which a human has to make some judgement).

Two main areas have been identified in relation to the limitations of SafetyMet:
certification risks and human aspects of safety compliance. Limitations arising from
the validation performed so far (e.g., model creation for a limited set of standards) are
not discussed but are regarded as aspects to be addressed in future work.

4.2.1 Certification Risks
Application of SafetyMet does not guarantee that certification risks will not arise in a
project. In essence, there is no way to completely avoid these risks by means of
model-based approaches, despite the fact that they can support and facilitate safety
assurance and certification.

Although a project conforms to a safety standard model it is still possible that:

• Someone does not develop a safe system (e.g., because a hazard was missed).
• System safety cannot be demonstrated (e.g., someone might present inconsistent

evidence, such test cases linked to requirements that the cases do not test).
• A third party does not agree upon the demonstration of safety compliance (e.g.,

there are aspects related to argumentation are out of the scope of SafetyMet).

4.2.2 Human Aspects of Safety Compliance
When dealing with safety compliance, many aspects cannot be fully supported by
models and tools, automated, or automatically verified. Humans play a major role in
safety compliance, and they will always be responsible for deciding upon safety.

Although this limitation cannot be avoided, we think that SafetyMet can help both
suppliers and assessors in making informed decisions about system safety. It can help
them to find the information that they need to gain confidence in system safety by
providing traceability between the criteria of a safety standard and the assets managed
in a project. SafetyMet can also support, for instance, verification of the existence of
traceability between requirements and test results.

4.3 Open Issues

Last but not least, we have identified the following open issues regarding SafetyMet.
What sort of tool support and user interaction should be created to facilitate

the use of SafetyMet? The practitioners who are expected to use SafetyMet (e.g.,
safety engineers and assurance managers) might not be familiar with the creation of

 SafetyMet: A Metamodel for Safety Standards 83

graphical models and hence alternative representations may need to be investigated.
Another aspect to study regarding tool support is how to present the large amount of
information necessary to model a safety standard.

To what extent can the generation of safety standard models be automated?
Given the size of safety standards, creation of the models can be very time-
consuming. Therefore, the advantages and suitability of automatically generating the
models from the textual standards could be studied.

Is there a correspondence between SafetyMet and the results of the OMG
Software Assurance Task Force? The OMG has been working on the development
of several specifications related to SafetyMet (e.g., SACM [39]). It is necessary to
analyse in depth how SafetyMet relates to them in order to allow their integration.

How can SafetyMet be promoted in industry? A challenge for SafetyMet (and
its tool support) is that it needs to be accepted by practitioners as a suitable way to
deal with safety compliance. Further validation with industry and probably
adjustments according to its needs will be necessary.

Which concepts should be in SafetyMet and which should be in the
vocabulary of the overall safety compliance approach? An aspect about which we
are not completely sure yet is the extent to which some safety standard-related
information should be considered in SafetyMet or regarded as elements of the
vocabulary. For example, some safety standards define enumerations for the values of
the attributes of its artefact types. This has to be discussed with practitioners.

5 Conclusion

This paper has presented SafetyMet, a metamodel for safety standards. SafetyMet is
part of an overall approach for safety compliance in evolutionary situations. The
approach distinguishes between safety compliance metamodels and safety compliance
models, as well as between safety standard-related information and project-specific
information. The correspondence between these two aspects is not always clear,
direct, or straightforward, and mappings must be defined.

SafetyMet includes the concepts necessary for enabling the demonstration of safety
compliance in general, and in scenarios in which a system evolves or must be certified
to different standards in particular. The metamodel aims to be generic and to allow
flexibility in its use. It allows modelling of information related to process, data, and
objectives for safety compliance. All these aspects can be necessary when having to
demonstrate compliance with safety standards, and omission of the information can
result in certification risks.

Industry can benefit from the application of SafetyMet by creating models of safety
standards, mapping these models to project-specific models, reusing safety standard
models, and relating the models and the vocabulary of the overall approach for safety
compliance. Nonetheless, practitioners must be aware of the limitations of applying
the metamodel. Certification risks cannot be completely avoided, and some decisions
on safety compliance have to be made by humans. In this sense, SafetyMet can
support and facilitate but not guarantee safety assurance and certification. In addition,
there exist several open issues regarding SafetyMet and its use that must be studied.

84 J.L. de la Vara and R.K. Panesar-Walawege

As future work, we plan to address the open issues discussed above and to continue
working on the specification and link of the rest of the safety compliance metamodels.
SafetyMet also needs to be further validated, especially beyond the text of safety
standards. Data from industrial projects will be used for this purpose.

Acknowledgments. The research leading to this paper has received funding from the
FP7 programme under the grant agreement n° 289011 (OPENCOSS) and from the
Research Council of Norway under the project Certus-SFI. We also thank the
OPENCOSS partners who have provided input and feedback on the metamodel,
especially Katrina Attwood, Philippa Conmy, Huascar Espinoza, Tim Kelly, Jerome
Lambourg, Sunil Nair, and Alejandra Ruiz.

References

1. Syed Abdullah, N., Sadiq, S., Indulska, M.: A Compliance Management Ontology:
Developing Shared Understanding through Models. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 429–444. Springer,
Heidelberg (2012)

2. Adedjouma, M.: Requirements engineering process according to automotive standards in a
model-driven framework. PhD thesis, University of Paris Sud XI (2012)

3. Alexander, R., Kelly, T., Gorry, B.: Safety Lifecycle Activities for Autonomous Systems
Development. In: 5th SEAS DTC Technical Conference (2010)

4. Baufreton, P., et al.: Multi-domain comparison of safety standards. In: ERTS 2010 (2010)
5. Bernardi, S., et al.: A dependability profile within MARTE. SoSyM 10(3), 313–336 (2011)
6. Bézivin, J.: On the unification power of models. SoSyM 4(2), 171–188 (2005)
7. Briand, L.C., et al.: Automated impact analysis of UML models. Journal of Systems and

Software 79(3), 339–352 (2006)
8. CENELEC: Railway applications - Communications, signalling and processing systems -

Software for railway control and protection systems - EN 50128 (2011)
9. Cleland-Huang, J., et al. (eds.): Software and Systems Traceability. Springer (2012)

10. Cleland-Huang, J., Heimdahl, M., Huffman Hayes, J., Lutz, R., Maeder, P.: Trace Queries
for Safety Requirements in High Assurance Systems. In: Regnell, B., Damian, D. (eds.)
REFSQ 2011. LNCS, vol. 7195, pp. 179–193. Springer, Heidelberg (2012)

11. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An assurance case automation toolset. In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613, pp. 8–21.
Springer, Heidelberg (2012)

12. de la Vara, J.L., Ali, R., Dalpiaz, F., Sánchez, J., Giorgini, P.: COMPRO: A
Methodological Approach for Business Process Contextualisation. In: Meersman, R.,
Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 132–149. Springer,
Heidelberg (2010)

13. de la Vara, J.L., Nair, S., Verhulst, E., Studzizba, J., Pepek, P., Lambourg, J., Sabetzadeh,
M.: Towards a Model-Based Evolutionary Chain of Evidence for Compliance with Safety
Standards. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS,
vol. 7613, pp. 64–78. Springer, Heidelberg (2012)

14. DNV: Qualification of New Technology - DNV-RP-A203 (2012)
15. Emmerich, W., et al.: Managing Standards Compliance. IEEE TSE 25(6), 826–851 (1999)

 SafetyMet: A Metamodel for Safety Standards 85

16. Falessi, D., et al.: Planning for safety evidence collection. IEEE Softw. 29(3), 64–70
(2012)

17. Ghanavati, S., Amyot, D., Peyton, L.: A systematic review of goal-oriented requirements
management frameworks for business process compliance. In: RELAW 2011 (2011)

18. Giblin, C., et al.: Regulations Expressed As Logical Models (REALM). In: JURIX 2005
(2005)

19. Gordon, D.G., Breaux, T.D.: Reconciling multi-jurisdictional requirements. In: RE 2012
(2012)

20. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between business
processes and business contracts. In: EDOC 2006 (2006)

21. Graydon, P.J., et al.: Arguing Conformance. IEEE Software 29(3), 50–57 (2012)
22. Gronback, R.C.: Eclipse Modeling Project. Addison-Wesley (2009)
23. Habli, I., Kelly, T.: A Model-Driven Approach to Assuring Process. In: ISSRE 2008

(2008)
24. IEC: Functional safety of electrical / electronic / programmable electronic safety-related

systems (IEC 61508) (2005)
25. Ingolfo, S., et al.: Arguing regulatory compliance of software requirements. Data &

Knowledge Engineering (accepted paper) (2012)
26. ISO: International Standard Road vehicles — Functional safety - ISO/DIS 26262 (2011)
27. Katta, V., Stålhane, T.: A Conceptual Model of Traceability for Safety Systems. In: CSDM

2011 (2011)
28. Koschmider, A., de la Vara, J.L., Sánchez, J.: Measuring the Progress of Reference Model-

Based Business Process Modeling. In: BPSC 2010 (2010)
29. Krammer, M., Armengaud, E., Bourroihh, Q.: Method Library Framework for Safety

Standard Compliant Process Tailoring. In: SEAA 2011 (2011)
30. Kuschnerus, D., et al.: A UML Profile for the Development of IEC 61508 Compliant

Embedded Software. In: ERTS 2012 (2012)
31. Mayr, A., Plösch, R., Saft, M.: Towards an Operational Safety Standard for Software:

Modelling IEC 61508 Part 3. In: ECBS 2011 (2011)
32. Musat, D., Castaño, V., Calvo-Manzano, J.A., Garbajosa, J.: MATURE: A Model Driven

bAsed Tool to Automatically Generate a langUage That suppoRts CMMI Process Areas
spEcification. In: Riel, A., O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI
2010. CCIS, vol. 99, pp. 48–59. Springer, Heidelberg (2010)

33. Nair, S., et al.: The State of the Practice on Evidence Management for Compliance with
Safety Standards. Simula Research Laboratory, Technical Report (2013)

34. Nair, S., et al.: Classification, Structuring, and Assessment of Evidence For Safety: A
Systematic Literature Review. In: ICST 2013 (2013)

35. Ncube, C., Maiden, N.A.M.: PORE: Procurement-Oriented Requirements Eng. Method for
the Component-Based Systems Engineering Development Paradigm. In: CBSE 1999
(1999)

36. Nekvi, M. R.I., Madhavji, N.H., Ferrari, R., Berenbach, B.: Impediments to Requirements-
Compliance. In: Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195,
pp. 30–36. Springer, Heidelberg (2012)

37. Nejati, S., et al.: A SysML-Based Approach to Traceability Management and Design
Slicing of Safety Certification. Information & Software Technology 54(6), 569–590
(2012)

38. Olivé, A.: Conceptual Modeling of Information Systems. Springer (2007)
39. OMG: Structured Assurance Case Metamodel (SACM) – Version 1.0 (2013),

http://www.omg.org/spec/SACM/ (accessed March 3, 2013)

86 J.L. de la Vara and R.K. Panesar-Walawege

40. Panesar-Walawege, R.K., et al.: Characterizing the Chain of Evidence for Software Safety
Cases: A Conceptual Model Based on the IEC 61508 Standard. In: ICST 2010 (2010)

41. Panesar-Walawege, R.K., et al.: Using Model-Driven Engineering for Managing Safety
Evidence: Challenges, Vision and Experience. In: WOSOCER 2011 (2011)

42. Panesar-Walawege, R.K., et al.: Supporting the verification of compliance to safety
standards via model-driven engineering. Info. Softw. Technol. (accepted paper, 2013)

43. Papazoglou, M.P.: Making Business Processes Compliant to Standards & Regulations. In:
EDOC 2011 (2011)

44. Pohl, K.: Requirements Engineering. Springer (2010)
45. RTCA: DO-178C - Software Considerations in Airborne Systems and Equipment (2012)
46. Sadiq, W., Governatori, G., Namiri, K.: Modeling Control Objectives for Business Process

Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

47. Sannier, N., Baudry, B.: Toward multilevel textual requirements traceability using model-
driven engineering and information retrieval. In: MoDRE 2012 (2012)

48. Shamsaei, A., Amyot, D., Pourshahid, A.: A Systematic Review of Compliance
Measurement Based on Goals and Indicators. In: Salinesi, C., Pastor, O. (eds.) CAiSE
Workshops 2011. LNBIP, vol. 83, pp. 228–237. Springer, Heidelberg (2011)

49. Sojer, D., Knoll, A., Buckl, C.: Synthesis of Diagnostic Techniques Based on an IEC
61508-aware Metamodel. In: SIES 2011 (2011)

50. Stallbaum, H., Rzepka, M.: Toward DO-178B-compliant Test Models. In: MoDeVVa
2010 (2010)

51. Sun, L., Kelly, T.: Elaborating the Concept of Evidence in Safety Cases. In: SSS 2013
(2013)

52. Taromirad, M., Paige, R.: Agile Requirements Traceability Using Domain-Specific
Modelling Languages. In: XM 2012 (2012)

53. Wenzel, S.: Unique identification of elements in evolving software models. SoSyM
(accepted paper) (2013)

54. Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness
(RTCA DO-178B) information. SoSyM 10(3), 337–367 (2011)

A Generic Fault Model for Quality Assurance

Alexander Pretschner1, Dominik Holling1,
Robert Eschbach2, and Matthias Gemmar2

1 Technische Universität München, Germany
{pretschn,holling}@in.tum.de

2 itk Engineering, Germany
{robert.eschbach,matthias.gemmar}@itk-engineering.de

Abstract. Because they are comparatively easy to implement, structural
coverage criteria are commonly used for test derivation inmodel- and code-
based testing. However, there is a lack of compelling evidence that they are
useful for finding faults, specifically so when compared to random testing.
This paper challenges the idea of using coverage criteria for test selection
and instead proposes an approach based on fault models. We define a gen-
eral fault model as a transformation from correct to incorrect programs
and/or a partition of the input data space. Thereby, we leverage the idea
of fault injection for test assessment to test derivation.

We instantiate the developed general fault model to describe existing
fault models. We also show by example how to derive test cases.

1 Introduction

Partition-based testing [23] relies on the idea of partitioning the input domain
of a program into blocks. For testing, a specified number of input values is
usually drawn randomly from each block. The number of tests per block can be
identical, or can vary according to a usage profile. Sometimes, the blocks of the
partition are considered to be “equivalence classes” in an intuitive sense, namely
in that they either execute the same functionality, or are likely to provoke related
failures. Code coverage criteria, including statement, branch and various forms of
condition coverage, naturally induce a partition of the input domain: in a control
flow graph, every path from the entry to the exit node (or back to the entry node)
of a program represents all those input data values that, when applied to the
program, lead to the respective path being executed. Since this same argument
also applies to different forms of condition coverage, coverage-based testing can
be seen as an instance of partition-based testing.

More than twenty years ago, Weyuker and Jeng have looked into the nature of
test selection based on input domain partitions [25]. They contrasted partition-
based testing to random testing; more specifically, to test selection that uniformly
samples input values from a program’s input domain. To keep the model simple,
their criterion to contrast these two forms of testing measures the probability of
detecting at least one failure.

They show that depending on how the failure-causing inputs are distributed
across the input domain, partition-based testing can be better, the same, or worse

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 87–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 A. Pretschner et al.

than random testing. By means of example, let us assume an input domain of
100 elements out of which 8 are failure causing. Let us assume a partition of two
blocks, and that we can execute two tests.

1. Assume the failure causing inputs are uniformly distributed across the input
domain. Assume two blocks of the partition of size 50, each of which contains
4 (uniformly distributed) failure-causing inputs. Drawing one test from each
block as opposed to sampling two tests from the entire domain yields the
same likelihood of catching at least one failure-causing input: partition-based
testing and random testing have the same effectiveness.

2. Assume one block of 8 elements, all of which are failure-causing. The proba-
bility of detecting at least one failure with partition-based testing then is 1,
certainly more effective than random testing.

3. Assume one block with just 1 element which is not failure-causing, and a
second block with 99 elements, out of which 8 are failure-causing. Intuitively,
we are wasting one test in the small block; partition-based testing is less
effective than random testing.

As we have seen, code coverage criteria induce a partition of the input space.
However, in general, we do not know which of the cases (1)-(3) this induced
partition corresponds to. In other words, in general, we simply do not know if
test selection based on coverage criteria defined over a program’s syntax will
outperform random sampling. Worse, it may even be less effective than random
testing! It is then questionable if this coverage-based approach to test selection
can be justified.

Note that limit testing—the idea of picking tests from the “boundaries” of
ordered data types—seems to contradict this reasoning. In fact, the contrary is
true: limit testing is based on empirical (or at least anecdotal) evidence that
things “do go wrong” more often at the ends of intervals than in other places.
Therefore, partition-based testing based on limit analysis precisely increases the
probability that a failure will be caused by an element of the limit blocks, which
puts this scenario, on average, in the context of scenario (2) described above.

Also note that we are careful to distinguish between different methodological
usages of coverage criteria. Zhu et al. speak of adequacy criteria that can be
used as selection, stopping, or test suite assessment criteria [26]. If tests are
derived using whatever magic selection criterion but assessed using coverage
criteria, then coverage criteria have empirically been shown to lead to better
quality: they point the tester to parts of the code that has not, or insufficiently,
been tested yet [20,17]. However, if an organization uses any kind of metric for
assessment, then there always is the risk that this metric is optimized. In other
words, it is possible that after some time, the magic selection criterion will be
substituted by the coverage criterion used for test assessment.

Goal. The above remark on limit testing motivates the research presented in this
paper. Limit testing relies on a fault model—an intuitive or empirically justified
idea that things “go wrong” at the limits of intervals. If partition-based selection
criteria are to be useful, then they must be likely to induce partitions with

A Generic Fault Model for Quality Assurance 89

blocks that have a high likelihood of revealing failures (or have a comparatively
high failure rate). Our goal is (1) to precisely capture a general notion of fault
models; (2) to show its applicability by instantiating the generic fault model to
fault models known from the literature; and (3) to use these instantiated fault
models for the derivation of tests that, by construction, have a high likelihood of
revealing potential faults—or at least a higher likelihood than random testing.

Contribution. Both in testing practice and in the academic literature, many
fault models have been presented. Yet, we are not aware of a unifying under-
standing of what a fault model, in general, is. This paper closes the gap. It
formally defines a general fault model and shows how various fault models from
the literature can be seen as instances of our generic fault model. We consider
our work to yield a different viewpoint on fault models, partition-based testing
and fault injection.

Structure. The structure of this paper is as follows: Section 2 puts our work in
context. In Section 3 we introduce our general fault model; Section 4 presents
fault models found in the literature and illustrates how they are instances of our
general fault model. Section 5 concludes.

2 Related Work

Fault Models. Fault models are a common concept in the field of software
and hardware testing. Many fault models have been described in the literature
(among others, those of Section 4). These fault models usually describe what
the fault is and how to test for it, or provide a method to define the input part
of the test cases. Although the descriptions exist, we are not aware of a compre-
hensive definition that encompasses all existing fault models, and enables their
unified instantiation. Martin and Xie state that a fault model is “an engineering
model of something that could go wrong in the construction or operation of a
piece of equipment, structure, or software [18].” Harris states that a fault model
associates a potential fault with an artifact [12]. Both definitions are rather
abstract and describe faults of any activity during the software engineering pro-
cess or even during deployment. However, the aforementioned descriptions are
too general to allow an operationalization of fault models in quality assurance.
In contrast, the definition by Bochmann et. al. [4] is related to testing. It says
that a fault model “describes a set of faults responsible for a failure possibly at a
higher level of abstraction and is the basis for mutation testing.” This definition
is similar to our definition of α in the general fault model (see Section 3).

Effectiveness of Partition-Based Testing. Gutjahr observed that the as-
sumption of fixed failure densities (number of failure causing inputs divided by
number of elements in the respective block) in Weyuker’s and Jeng’s model is
rather unrealistic [11]: It seems impossible to state for a given program and a
given partition what the failure rates of the single block are. He suggests to rather
model failure rates as random variables. To do so, he picks one fixed specification
and a corresponding input space partition, and considers a (hypothetical) class

90 A. Pretschner et al.

of programs written to that specification. On the grounds of knowledge w.r.t. de-
velopers, organizations, programming language, implemented functionality, etc.,
it appears then possible to state, for each block of the partition, what the distri-
bution of failure rates for the programs of the hypothetical class would be. This
then gives rise to expected failure rates for each block of the partition. Using
this construction, he can show that under specific assumptions, if the expected
failure rate for all blocks is the same, then partition-based testing is, in general,
better than or the same as random testing. While we consider the assumption
of equal expected failure rates to be inacceptably strong in practice, we will use
Gutjahr’s construction as a pillar for defining fault models.

In the same paper, Gutjahr also formulates shortcomings of the model of
Weyuker and Jeng. This includes “at least one detected failure” to be a ques-
tionable criterion for comparing testing strategies. He suggests alternatives that
relate to faults rather than failures and to their severity, and can show that his
results are not impacted by these modifications. For simplicity’s sake, we stick
to the model of Weyuker and Jeng here when assessing the effectiveness of fault
models, and leave the formally precise generalization to future work.

Random Testing. It is important not to misread the results of Weyuker and
Jeng to be advocating uniform random testing; for a recent discussion, see the
work of Arcuri et al. [2,1]. In addition, the quality of tests is not only determined
by their probability of detecting faults or failures, but also by their cost. This
cost includes many factors, one of which is the effort of determining the fault
that led to a failure. In our experience [24,8], failures provoked by random tests
are particularly hard to analyze because the way they execute a program does
not follow any “intuitive” logic.

Coverage Criteria. In spite of the above argument, one cannot overlook that
coverage criteria for test case selection are popular. We conjecture there are two
main related reasons. The first is that standards like DO-178B require coverage
(MC/DC coverage) for a specific class of software, even though there is little
evidence that MC/DC increases the quality of tests in terms of failure detection
[13,9]. Secondly, code (and model) coverage criteria naturally lend themselves
to the automated generation of test cases, which then appears a promising field
of research and development. We are also aware that coverage criteria provide
numbers which are, from a management perspective, always useful. We would
like to re-iterate that a-posteriori usages of coverage criteria have been shown to
be useful [20,17].

3 A Generic Fault Model

3.1 Preliminaries

Behavior Descriptions and Specifications: Programs, models, and architec-
tures all are behavior descriptions. We assume they are developed w.r.t. another
behavior description (BD), a so-called specification. Syntactic representations of
BDs form the set B; syntactic representations of specifications form the set S.

A Generic Fault Model for Quality Assurance 91

Of course, B and S are not necessarily disjoint. Given universal input and output
domains I and O, both BDs and specifications give rise to associated semantics
[[·]] : I → 2O.

Correctness of Behavior Descriptions: A BD b ∈ B is correct w.r.t. or
satisfies a specification s ∈ S iff dom([[b]]) ⊇ dom([[s]]) and ∀i ∈ dom([[s]]) :
[[b]](i) ⊆ [[s]](i). This is denoted as b |= s.

Faults and Failures: Faults are textual (or graphical) differences between an
incorrect and a correct BD. Faults may or may not lead to failures in the se-
mantics of BDs, which are observable differences between specified and actual
behaviors. We do not consider errors here, that is, incorrect states of a BD.

Faults as Textual Mutations; Fault Classes: Because faults are defined
as textual or graphical differences between incorrect and correct BDs, we may
assume that there is a textual or graphical transformation α : B → 2B that maps
a BD that is correct w.r.t. a specification s into the set of all BDs that are not
correct w.r.t. specification s. These latter incorrect BDs in the codomain of α
may contain one or multiple faults; these faults may or may not lead to failure;
and some of the faults in one BD may be of the same class (see below).

Furthermore, we assume for a subset of all BDs that parts of α can be char-
acterized w.r.t. a set of recurring problems. αK describes textual or graphical
transformations on B w.r.t. a fault class K. Examples for fault classes include
textual problems (“> where ≥ would have been correct”) and typical faults such
as problems at the boundaries of loops or ordered data types. Note that this def-
inition does not say how to define K or αK—it is possible (yet arguably not too
useful) to have K capture all possible faults.

Bs
K =

⋃
b∈{b′∈B:b′|=s}

αK(b)

is the set of all BDs, written to specification s, that contain instances of fault class
K. Note that Bs

K is of a hypothetical nature, similar to the construction used
by Gutjahr [11]. The elements in αK(b) may contain one or multiple instances
of fault class K.

Failure Domains and Induced Failure Domains: BDs have failure domains.
Let a BD b be written to a specification s. The failure domain of b, F b,s ⊆
dom([[s]]), consists of precisely those inputs that cause incorrect outputs, i ∈ F b,s

iff i ∈ dom([[s]]) ∧ [[b]](i)
⊆ [[s]](i).

ϕ(αK , s) =
⋃

b∈Bs
K

F b,s

then defines the failure domain induced by fault class K on specification s. Note
that the induced failure domain is independent of any specific BD but rather
defined by specification s and fault class K (or rather αK which is needed for
the computation of F b,s). ϕ(αK , s) is the set of all those inputs that potentially
provoke a failure related to a fault of class K for any BD written to s. The

92 A. Pretschner et al.

failure domain of every specific BD is a subset of this ϕ(αK , s), and this failure
domain may very well be empty or contain only very few elements of ϕ(αK , s).

3.2 Fault Models

Fault Models: Intuitively, a fault model is the understanding of “specific things
that can go wrong when writing a BD.” In a first approximation, we define
fault models to be descriptions of the differences with correct BDs that contain
instances of fault class K. More precisely, for a class of specifications S ⊆ S, we
define a fault model for class K to be descriptions of the computation of αK .
Sometimes, αK cannot be provided but the respective induced failure domain
can, using the definition of α̃K (see below). A fault model for class K therefore
is a description of the computation of αK or a direct description of the failure
domains induced by αK , ϕ(αK , s) for all s ∈ S.

Approximated Fault Models: In general, a precise and comprehensive defi-
nition of the transformations αK or the induced failure domains ϕ(αK , s) is not
possible and can only be approximated. For a given BD b and a specification
s, let α̃K describe an approximation of αK , and let ϕ̃ describe an approxima-
tion of the computation of failure domains. They are approximations in that
dom(αK)∩dom(α̃K)
= ∅ and ∃b ∈ B : αK(b)∩ α̃K (b)
= ∅. This formal definition
is rather weak. The intuition is that α̃K should be applicable to many elements
from dom(αK) and that, for a large class of BDs B′, the result of applying
α̃K to b′ ∈ B′ coincides largely with αK(b′). Similar to αK , α̃K gives rise to a
partition of the input domain of every BD w.r.t. fault class K. Because α̃K is
an approximation, these induced partitions may or may not be failure domains
w.r.t. the considered specification.

Example: Approximations α̃K can be over-approximations that may contain
mutants that do not necessarily contain faults or even are equivalent to the
orginal BD; under-approximations that yield fewer mutants due to the omis-
sion of some transformations; or a combination of both. As an example, con-
sider the class of off-by-one faults k, where a boundary condition is shifted by
one value due to a logical programming mistake. For off-by-one faults an ex-
emplary αk transforms a relational operator into a different one or transforms
the afterthought of a loop such that the loop is executed once too often. To
demonstrate over-approximation, α̃k transforms the BD b with the fragment
“if (x<=50) { if (x==50) {” into a set of BDs. This set includes the BD b′,
in which only the aforementioned fragment was transformed into “if (x<=50)

{ if (x>=50) {”. b′ is semantically equivalent to b and not faulty. Thus, the
set of BDs created by α̃k is larger than the set of BDs created by αk (which
by definition, contain faults of class k). To demonstrate under-approximation,
one possibility is to limit α̃k to consider only relational operators and not af-
terthoughts. Then, the set of BDs created by α̃k is smaller than the set of BDs
created by αk.

Approximated Induced Failure Domains and Test Selection Strategies:
The intuition behind the input space partitions induced by an approximated α̃K

A Generic Fault Model for Quality Assurance 93

is that it computes hypotheses about input blocks with associated failure rates
that, overall, lead to good test effectiveness (formally defined below). While ϕ
implicitly computes two blocks for every BD—one where every input is poten-
tially causing a failure related to class K, and another one where every input
certainly is not—the approximations of ϕ, called ϕ̃ in the sequel, may compute
multiple of these blocks. In order to capture relevant fault models from the lit-
erature, we augment the definition by stipulating that ϕ̃ computes a number
of tests to be drawn from each block (if this number is not known, a constant
number n of tests may be assumed for every block). ϕ̃ then is a test selection
strategy.

Formally, for the set J of index sets and appropriate J ∈ J , we require
ϕ̃K : B → (J → 2I × N) to define a partition of the input domain of a BD
together with the number of tests to be drawn from each block.

3.3 Effective Fault Models

Comparing Fault Models: So far, fault models describe anything that could
go wrong. They arguably are more useful if they capture problems that do go
wrong in practice. In order to define useful fault models, we will simplify matters:
We will compare testing strategies w.r.t. the likelihood of detecting at least one
failure. We can now use the model introduced by Weyuker and Jeng that we
described in Section 1. When randomly (uniformly) sampling n elements from
the input space of a BD b written to specification s, the probability of causing
at least one failure with n tests (with redrawal) is [25]

Prnd(b, s, n) = 1−
(
1− |F b,s |

|dom([[b]])|

)n

.

Let �1 () and �2 () denote the left and right projections on pairs. Again using
the model introduced in Section 1, in terms of partition-based testing, if possibly
different numbers of tests are drawn from each block defined by a given selection
strategy ϕ̃K(b) = π with π : J → 2I × N for some index set J ∈ J , then the
likelihood of detecting at least one failure is [25]

Pprt(b, s, π) = 1−
|dom(π)|∏

j=1

(
1− |F b,s∩ �1 (π(j))|

| �1 (π(j))|
)�2(π(j))

because |F b,s∩�1(π(j))|
|�1(π(j))| is the failure rate of the j-th block of the partition.

Effectiveness: Not every class of faults is relevant for every set of specifica-
tions. For instance, rounding issues are unlikely to occur in text processing con-
texts. We therefore characterize effective fault models for a domain-, company-
or technology-specific set of specifications S′ ⊆ S by using a (hypothetical) set
of BDs BS′ ⊆ B written to these specifications. We want to capture the fact that
a fault model – α̃K and the induced ϕ̃, or some provided ϕ̃ – is useful. We do this
by defining when a fault model is applicable in the sense that the respective fault

94 A. Pretschner et al.

class typically happens in practice. When comparing partition-based testing to
random testing, it is reasonable to overall use the same number of test cases,
i.e., n =

∑
j∈dom(π) �2 (π(j)).

nS′ =
∣∣∣{s ∈ S′ :

∣∣{b ∈ BS′ : Pprt (b, s, ϕ̃K(b))� Prnd (b, s, n)
}∣∣

�
∣∣{b ∈ BS′ : Pprt (b, s, ϕ̃K(b))
� Prnd (b, s, n)

}∣∣}∣∣∣
is the number n′

S of specifications from S′ for which the number of BDs that can
effectively be tested using partition-based testing via ϕ̃K is significantly higher
than the number of BDs for which random testing is performing equally well or
better. If ϕ̃K is defining a fault model or is induced by some αK , the respective
specifications are those to which the fault model is applicable. A fault model is
effective if this number is high.

In order to define an effective fault model, we say that nS′ must be far larger
than the number of specifications from S′ to which the fault model is not appli-
cable:

nS′ �
∣∣∣{s ∈ S′ :

∣∣{b ∈ BS′ : Pprt (b, s, ϕ̃K(b))� Prnd (b, s, n)
}∣∣

�
∣∣{b ∈ BS′ : Pprt (b, s, ϕ̃K(p))
� Prnd (b, s, n)

}∣∣}∣∣∣.
Remark I: This definition of fault models is based on the intuition that a fault
model is “better” if it is more generally applicable, that is, if many realistic BDs
potentially contain an instance of the respective fault class. If used retrospec-
tively, this notion is thus ideally based on empirical evidence that a specific fault
class is relevant in a specific setting. However, it is noteworthy that this idea of
a fault model can, without any modifications, also be used prospectively for one
BD and therefore without empirical evidence about many BDs : If it is decided
that an instance of a fault class may be present in a specific BD, then this fault
class can be tested for. The effectiveness of this model is then based on a notion
of likelihood that is not based on frequency in the past (“typical fault”) but
rather on the possibility that the fault may occur. This insight could have been
gained on the grounds of a hazard analysis, for instance.

Remark II: We could model failure rates as random variables, in the spirit
of Gutjahr’s work [11]. We could then compute their expectations, and also
the expectations of the probabilities. We do not do this here. Note, however,
for the characterization of the effectiveness of fault models, it does not really
matter which precise numbers we use—the point is rather about comparing the
cardinality of different sets of specifications and BDs.

4 Instantiation

To demonstrate the usefulness of our general fault model, we now show existing
fault models to be an instance of it. We performed a literature survey and con-
sidered existing fault models explicitly stated as such. This list is not intended
to be exhaustive but to demonstrate the instantiation process using examples.

A Generic Fault Model for Quality Assurance 95

The instantiationsare described using the respective α, ϕ, and their approxi-
mations. α̃ describes a fault as a (possibly higher order) mutant. ϕ̃ defines pos-
sible input space partitions induced by α̃. We assume that the BDs are correct
w.r.t. their specification before the transformation α̃ and incorrect afterwards.
Intuitively, this reflects a transformation of specifications rather than BDs and
can be seen as a transformation of the system model in a model-based engineer-
ing approach: test case derivation is then performed at the level of the models.
By using our definition of specification, both the correct and incorrect BD can
be derived.

Since the failure domain varies due to functions applied to the input before
the faulty part of the BD is executed, no general partition of the input space can
be given. However, a general schema to derive the partition can be given. The
generic definition of ϕ will partition the input space into one block of inputs for
which the output is different after the application of α, and one block for which
this is not the case. In practice, the applied functions may only be approximated
using the approximation ϕ̃.

α and α̃ are set-valued functions. Let α′ and α̃′ denote modifications of these
functions that pick one arbitrary element from the codomain of α and α̃, respec-
tively. If α′ or α̃′ occur more than once in one definition, then each instance is
supposed to pick the same element.

4.1 Stuck-At

The stuck-at fault model [19] is known for automated test pattern generation in
the hardware industry. It assumes that a manufacturing defect is present in one
or multiple logic gates or subcircuits such that regardless of their input, their
output is always the same. The transformation α for stuck-at is the transfor-
mation of one circuit into another circuit where one subcircuit is replaced by 1
or 0. For our purposes, this replacement can equivalently be performed at the
level of logical formulas f that represent equivalent circuits. For each applica-
tion of α, that is, each element that is picked by α′, ϕ then creates one block of
inputs {i : [[f]](i)
= [[α′(f)]](i)} and one block of inputs {i : [[f]](i) = [[α′(f)]](i)}
(and it does this for each element of the codomain of α that is picked by α′).
Consequently, ϕ̃(f) = {1 �→ ({i : [[α′(f) XOR f]](i) == 1}, n1), 2 �→ ({i :
[[α′(f) XOR f]](i) == 0}, n2)} where the overall number n of tests is assumed
to be fixed, n = n1 + n2 and n1 = n if n ≤ |{i : [[α′(f) XOR f]](i) == 1}| and
n1 = |{i : [[α′(f) XOR f]](i) == 1}| otherwise. Operationally, depending on the
formalism used, a SAT solver is adequate to compute ϕ̃ for a specific circuit.

As an example, assume a function (a circuit) f = (a ∧ b) ∨ (b ∧ c). As one
exemplary stuck-at-0 fault, α introduces a permanent output of 0 for the sub-
formula (the gate) b ∧ c, that is, α′(f) = (a ∧ b) ∨ 0. It is easy to verify that
the first block of the input partition is (a = 0, b = 1, c = 1) with one test to be
drawn, and the second block of all remaining valuations with n − 1 tests to be
drawn.

96 A. Pretschner et al.

4.2 Division by Zero

Division by zero is a classic fault in many BDs. It typically happens if developers
do not perform input sanitization (i.e. check for a value of 0 for the divisor) prior
to a division, or when the value 0 for the divisor was not assumed possible in
the BD’s context. Let us concentrate on the former case (and this in itself is
an example of how to under-approximate α by some α̃). The transformation α̃
removes the sanitization mechanisms from BD p and induces two blocks of inputs
for ϕ̃. The first block of inputs is {i : [[p]](i)
= [[α̃′(p)]](i)} and the second block is
{i : [[p]](i) = [[α̃′(p)]](i)}. Note that for the first block of inputs the divisor will be
0 at the point of the division, while for the second it will be different from 0. Thus,
ϕ̃(p) = {1 �→ ({i : [[p]](i)
= [[α̃′(p)]](i)}, n1), 2 �→ ({i : [[p]](i) = [[α̃′(p)]](i)}, n2)}
where the overall number n of tests is assumed to be fixed, n = n1 + n2 and
n1 = n if n ≤ |{i : [[p]](i)
= [[α̃′(p)]](i)}| and n1 = |{i : [[p]](i)
= [[α̃′(p)]](i)}|
otherwise.

For a BD pd with input parameter i and pd = fx(i)/fy(i) developed to di-
vide two integers, let α̃′(pd) = fx(i)/fz(i) be the replacement of the function
fy including some sanitization mechanism by an fz without sanitization. Then
ϕ̃(pd) = {1 �→ ({i : [[f−1

z]](i) == 0}, 1), 2 �→ ({i : [[f−1
z]](i)
= 0}, n−1)} where the

overall number n of tests is assumed to be determined. Operationally, depending
on the formalism used, a symbolic execution tool is an adequate tool to compute
some ϕ̃ for a specific BD and a specific set of mutation operators.

4.3 Mutation Testing

While mutation testing aims at assessing test suites and targets small syntac-
tic faults, mutation operators do describe fault models that we can use for our
purposes (for instance, Ma et al. provide several direct relationships between
some mutation operators and faults [16] where the coupling hypothesis appears
immediately justified). Mutation operators are intuitively captured by our trans-
formation α—in fact, we see α as a reasonable higher order mutation operator.
Since α is applied to a program, the general considerations of Section 4.2 with
the two blocks {i : [[p]](i)
= [[α′(p)]](i)} and {i : [[p]](i) = [[α′(p)]](i)} also apply
here. Consequently, symbolic execution tools are promising for computing ϕ.

As an example, take a program pm with input parameter x and pm = 1
if x < 10 and pm = 0 otherwise. Using a mutation that transforms < to ≤,
let α′(pm) = 1 if x ≤ 10 and α′(pm) = 0 otherwise. Then ϕ̃(pm) = {1 �→
({10}, 1), 2 �→ (I − {10}, n− 1)} for the input domain I.

4.4 Finite State Machine Testing

In finite state machine (FSM)-based testing, typical fault models are based on
output and transfer faults. As one typical example that easily generalizes, let
us consider BDs in the form of deterministic Mealy machines M such that each
M ∈ M is a sextuple (Σ,Γ, S, s0, δ, γ) where Σ and Γ are input and output

A Generic Fault Model for Quality Assurance 97

alphabets, S is the set of states, si ∈ S is an initial state, δ : S × Σ → S is the
transfer and γ : S ×Σ → Γ the output function.

Output faults occur when a transition yields a different output than specified
in the output function. This deviation is the result of the transformation αo :
(S × Σ → Γ) → 2S×Σ→Γ ′

which models faults in the same way as in the
stuck-at fault model (see Section 4.1: for a given transition, the correct output is
mapped to another, incorrect output from a set Γ ′ ⊇ Γ). Analogously, transfer
faults lead the FSM into a different state than specified in the transfer function,
αt : (S × Σ → S) → 2S×Σ→S′

with S′ ⊇ S since the destination state of a
transfer fault may be a new state not in the design of the original FSM [4]. In
the following, we assume that the definitions of αo and αt are lifted to entire
machines in the obvious way, that is, αo and αt are of type M → 2M. In the
remainder of this paragraph, α refers to both αo and αt.

Finite traces [[M]] ∈ Σ∗ → Γ ∗ for a M ∈ M are pairs of (input, output)
sequences that we assume to respect the transfer and output functions in an
intuitive way (that is, they induce state changes that are captured by δ, and
they model γ). ϕ then defines two blocks of input sequences. The first block,
{i ∈ Σ∗ : [[M]](i)
= [[α′(M)]](i)}, defines all those traces that are different in M
and α(M) – these are the traces that exhibit faults. The second block is the set of
traces for which no difference can be observed: {i ∈ Σ∗ : [[M]](i) = [[α′(M)]](i)}.

Generally speaking, model checkers and dedicated algorithms on graphs are
adequate tools for computing approximations ϕ̃.

Several related fault models have been described in the area of object-oriented
testing [3] that model objects as finite state machines. One of them is sneak path,
which describes that a message (i.e. a composite input) is accepted although it
should not be. In the notion of an FSM, a sneak path is a an additional transition
in the transfer function and can be modeled by αt : (S × Σ → S) → 2S×Σ→S′

as described above.
Similarly, a trap door is the acceptance of an undefined message (i.e. a new

letter in the alphabet), which causes the system to go to an arbitrary state.
Intuitively, αt : (S × Σ → S)→ 2S×Σ′→S′

reflects a trap door by introducing a
new character to the alphabet Σ′ ⊇ Σ and a new transition leading to a possibly
new state in S′ ⊇ S.

4.5 Object-Oriented Testing

In addition, there are fault models catering to subtyping and polymorphism [22]
in object-oriented programming. These are, for example, state definition anoma-
lies (pre or post conditions are possibly violated by subtypes) or anomalous
construction behaviors (i.e. the subtype shadows variables used by the construc-
tor of the supertype). The general considerations for both fault models can be
described by using transformations similar to α from Section 4.2, but at the level
of pre- and post conditions rather than at the level of code.

For a state definition anomaly, let a class C contain a method pC
sda (x) = f (x);

s := x{s
= NULL}; with post condition s
= NULL for some instance variable s,
and a method qCsda(x , z) = pC

sda (x); if z then {s
= NULL} g(s); where the

98 A. Pretschner et al.

precondition of function g is assumed to require the argument to be different
from NULL. Class C′ is a subclass of C where pC ′

sda (x) = pC
sda (x); h(x){true};

overrides method pCsda in C′. If the post condition of h in the definition of pC ′
sda (x)

does not imply s
= NULL, then the inherited qC
′

sda(x, z) = pC
′

sda(x); if z then {s
=
NULL} g(s); causes problems if the precondition of g is not met.

There are many different ways of violating pre or post conditions, and it
seems unlikely that these can be comprehensively captured by patterns of tex-
tual modifications of code. However, the modification of explicitly provided or
inferred pre- or postconditions can be specified using α, the domain of which is
inherited functions only; in our example, qC

′
sda(x) is the only one. One possibility

then is that α′(qC
′

sda(x)) computes to pCsda(x); if z then {s == NULL} g(s); by
modifying the precondition of function g. Intuitively, this models the possibil-
ity that an inherited function leads to a state where the specified precondition
of g cannot be satisfied. If they exist, test cases representing the second block
of ϕ̃ = {1 �→ ({(x �→ i, z �→ false) : i ∈ N}, n − 1), 2 �→ ({(x �→ i, z �→
true) : i ∈ N and s == NULL before g is executed from within qC

′
sda(x))}, 1)}

would then provoke a failure when applied to method pC
′

sda of an object of class
C′. Possible technology for computing ϕ̃ includes symbolic execution.

4.6 Aspect-Oriented Testing

The use of AOP has been shown to induce specific faults [6]. One such fault
model concerns the failure to establish expected post-conditions and preserve
state invariants. The post-conditions and state invariants introduced in the basic
functionality are contracts that should be preserved in the weaved code. This
fault is analogous to object-oriented testing where it can be caused by inheritance
(see Section 4.5).

A second fault model consists of incorrect changes in the exceptional con-
trol flow. Whenever features having their own exception handling are intro-
duced, an exception may trigger the execution of a different catch block than
the one intended by the basic functionality. For this fault model, let pa =
try{fx(x); } catch (Exception e){fe(e); } try{fy(x); } catch (Runtime−
Exception ex){fex(ex); } with input parameter x be a program with exception
handling fe for the original functionality fx and exception handling fex of an
introduced feature fy. Also let α̃′(pa) = {try{fx(x); fy(x); } catch
(RuntimeException ex{fex(ex); } catch (Exception e){fe(e); }} be the transfor-
mation of pa, which merges both try/catch blocks and extends the exception
handling. Then, the first block of ϕ̃ must contain inputs triggering a runtime
exception (or one of its subtypes) in fx to let fx use exception handling fex
instead of the intended fe. The second block contains all other inputs.

4.7 Performance Testing

One faultmodel—there aremultiple others—for performance testing [21] describes
one or multiple hardware component failures or malfunctions causing the BD to

A Generic Fault Model for Quality Assurance 99

have a degraded performance. Such failures or malfunctions could be related to
harddrive, networkormemoryproblems. If wemodel the hardware and software as
an FSM, then the transformationα can simulate a malfunction by removing states
and transitions to these states. Thus,αrequires the system to takemore transitions
thereby taking more steps for the same computation or blocks the system from
ever reaching its desired state causing a failure. Precisely this modification of the
transfer function is shown in the FSM fault model in Section 4.4.

4.8 Concurrency Testing

Fault models used in testing concurrent systems regard atomicity and order vi-
olations [15], in addition to deadlock and livelock problems. For an atomicity
violation the developer did not implement a monitor (or implemented it in the
wrong way). Let m be a monitor and patom = monitor lock(m); fx(x);
monitor unlock(m); ||monitor lock(m); fy(x);monitor unlock(m); with input pa-
rameter x be a program using this monitor and f ||g be defined as the execution
of f and g in parallel. Also let α′(patom) = fx(x); ||fy(x); be a transformation
of patom removing its usage of monitors. With the usage of concurrency, the
semantics of the program are also influenced by the schedule of execution. An
atomicity violation typically changes the output of the program when using dif-
ferent schedules while the input remains the same. Thus, the input space must
be extended by adding the schedule to the input vector. Then, the first block
of ϕ̃ contains those inputs for which the output is different when only using a
different schedule. The second block contains all other inputs.

For order violations the developer made a wrong assumption about the order
of execution of statements. No α is required as the developer assumed an execu-
tion order s0, but did not enforce it. Thus, the first block of ϕ aims to break the
assumption by executing all schedules different from s0 and checking whether
the semantics have changed. Thus, the first block of ϕ̃ contains all inputs for
which the output is different when only a different schedule is used. The second
block contains all other inputs.

4.9 Security Testing

In security testing, one approach to find faults w.r.t. given security properties
(e.g. confidentiality and integrity) using a formal system model is presented
by Büchler et al. [5]. The transformation α is reflected in semantic mutation
operators (see Section 4.3) for a model of the system. These operators modify
the model such that an assumed vulnerability in the respective implementation
is present. α is therefore described by these mutation operators. The idea to
induce the input space partition ϕ is to have a sequence of actions (i.e. a trace)
that violate the security property. Practically, this is performed by using a model
checker to find this trace τ and executing τ on the implementation of the system.
Since the model checker may not return all traces in useful time, ϕ must be
approximated by ϕ̃ and the first block of ϕ̃ also contains these unknown traces.
Thus, ϕ̃ can be constructed in the same way as in Section 4.4.

100 A. Pretschner et al.

4.10 Limit Testing

The well-known fault model of boundary value analysis (based on the category
partition method [23]) is underlying limit testing and, like the fault model of
Section 4.5, differs from the rest of the introduced fault models in that the
transformation α is unknown (or, analogously, models all those possibilities to
get a BD’s treatment of limit values wrong). It is, however, possible to create the
partition of the input space ϕ. This creation requires a partition γ, which can
use control flow or data flow-based criteria for example. ϕ then takes the blocks
of γ and splits them such that a new block is created for each block boundary
including its closest inputs.

An integer block containing the number 1 to 100 would, for example, be split
into 3 blocks. The first block contains 0 and 1, the second block contains the
number 2 to 98 and the third block contains 99 and 100. Note that, in some
cases -1 and 101 are included in the first and last block respectively. This fault
model is considered useful, as there is anecdotal evidence that the failure causing
inputs are more likely to be in the first and third blocks.

4.11 Combinatorial Testing

The fault model of combinatorial, or n-wise, testing [14] states that only a combi-
nation of 2, 3 or n parameters causes a failure, but not all possible combinations
of parameters. It thus provides a test selection criteria requiring fewer test cases
than exhaustive testing (i.e. all combinations). The transformation α is again
unknown, but the partition of the input space ϕ̃ (i.e. the partition of the 2-way,
3-way or n-way interactions) can be derived by adhering to the parameter com-
binations. ϕ̃ can be computed using known algorithms on the grounds of Latin
squares, for instance. One block of the partition will contain a minimal set of
test cases covering all 2-way, 3-way or n-way interactions and the other block
will cover all other possible interactions. Note that there are multiple possible
partitions and an arbitrary minimal partition can be selected (e.g. in the case of
3 parameters with 3 values and all 2-way interactions to be tested, there exist
12 possibilities to select the minimal number of test cases being 9).

As an example, reconsider function f from Section 4.1. One exemplary set of
inputs testing all pairwise combinations for f is (0,0,0), (0,1,1), (1,0,1), (1,0,0).
This set of inputs would find, but is not limited to, the faults described by the
stuck-at fault model.

5 Conclusion

The contribution of this paper is a general characterization of fault models that
encompasses fault models found in practice and the literature. The aim of using
fault models in testing is to derive good test cases. We consider a test case to
be good if it detects a potential, or likely, fault.1 Our fault models consist of

1 In fact, it should do so with good cost effectiveness, including debugging cost, but
this is not the subject of this paper.

A Generic Fault Model for Quality Assurance 101

syntactic transformations (higher-order, or semantic, mutants), and/or an input
space partition. Using several different technologies, this allows us to derive test
cases that address the potential faults. We have instantiated our generic fault
model to several fault models found in the literature. We do not claim that we
capture all fault models but consider our choice to be representative.

By defining fault models with a transformation that is essentially a cleverly
chosen higher order mutant, we connected the notion of using fault injection for
test case assessment to using mutants for test case derivation. In addition, we in-
troduced an experience model creating a relationship between classes of systems
and class of faults, which we consider helpful in creating adequate fault models,
improving risk assessment and test derivation for fault tolerance mechanisms.

Althoughwehave not evaluated the effectiveness of operationalized faultmodels
yet, we seemultiple advantageswith respect to risk assessment in testing. Coverage
criteria and random testing are unable to state whether the system still contains a
class of faults after testing. The use of fault models can increase the probability of
a particular targeted class of faults to not be present in the system after testing. In
addition, fault tolerance can be evaluated by using fault models that target faults
handled by the fault tolerance systems. It is also noteworthy that classes of faults in
faultmodels can be associatedwith the impairment of quality attributes in the sys-
tem. Thereby, testing using these fault models can reduce the risk of impairment in
the final product. Lastly, when using faultmodels with an inherent transformation,
the fault localization effort canbe estimated and reduced since the transformations
describe what to look for and where. The cost effectiveness of fault models cannot
be determined in general as it varies from instance to instance. The cost factors
involved, however, can be named and are the test level, class of systems (including
its context) and the likely class of faults.

We elaborated fault models in testing, but have not limited our general defi-
nition to it. Fault models may also be used in other quality assurance techniques
such as reviews or inspection performed on non-executable artifacts. Because
specifications are BDs themselves, it is straightforward to generalize the trans-
formation α to the level of specifications, thereby allowing it to transform re-
quirements, architecture and design artifacts among others.

We do not believe that the use of fault models is the silver bullet. By its
very definition, faults for which no model exists cannot be targeted with our
approach. However, for a class of recurring and typical faults in specific contexts,
we consider our work to be useful in practice.

Future Work. Our current research focuses on creating a prototype to (semi-)
automatically generate test cases using underlying fault models, using the dif-
ferent mentioned technologies. In the future we wish to complete this prototype
and to empirically evaluate our introduced fault models with it. In addition, we
are also exploring the sources of experience data for fault models. We see many
promising areas inside and outside software testing. A promising method to gain
knowledge common faults in software testing is orthogonal defect classification
[7]. Using this method faults can be classified according to criteria, which in turn
can be leveraged to select faults to test for. We also plan to investigate whether

102 A. Pretschner et al.

fault models can be created from faults found during reviews and inspections
[10]. This investigation will particularly focus on the comparison of effectiveness
of quality assurance techniques per created fault model.

References

1. Arcuri, A., Briand, L.: Formal analysis of the probability of interaction fault de-
tection using random testing. IEEE Transactions on Software Engineering 38(5),
1088–1099 (2012)

2. Arcuri, A., Iqbal, M.Z., Briand, L.: Random testing: Theoretical results and practi-
cal implications. IEEE Transactions on Software Engineering 38(2), 258–277 (2012)

3. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Ob-
ject Technology Series. Addison-Wesley (1999)

4. Bochmann, G.v., Das, A., Dssouli, R., Dubuc, M., Ghedamsi, A., Luo, G.: Fault
models in testing. In: Proceedings of the IFIP TC6/WG6.1 Fourth International
Workshop on Protocol Test Systems IV, pp. 17–30. North-Holland Publishing Co.,
Amsterdam (1992), http://dl.acm.org/citation.cfm?id=648126.747577

5. Büchler, M., Oudinet, J., Pretschner, A.: Semi-automatic security testing of web
applications from a secure model. In: 2012 IEEE Sixth International Conference
on Software Security and Reliability (SERE), pp. 253–262 (2012)

6. Ceccato, M., Tonella, P., Ricca, F.: Is aop code easier or harder to test than oop
code? In: On-line Proceedings of the First Workshop on Testing Aspect-Oriented
Programs (WTAOP 2005) (March 2005)

7. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.,
Wong, M.Y.: Orthogonal Defect Classification-A Concept for In-Process Measure-
ments. IEEE Trans. Softw. Eng. 18(11), 943–956 (1992),
http://dx.doi.org/10.1109/32.177364

8. Ciupa, I., Pretschner, A., Oriol, M., Leitner, A., Meyer, B.: On the number and
nature of faults found by random testing. Softw. Test. Verif. Reliab. 21(1), 3–28
(2011)

9. Dupuy, A., Leveson, N.: An empirical evaluation of the mc/dc coverage criterion on
the hete-2 satellite software. In: Proceedings of the 19th Digital Avionics Systems
Conference, DASC 2000, vol. 1, pp. 1B6/1–1B6/7 (2000)

10. Fagan, M.E.: Design and code inspections to reduce errors in program development.
IBM Syst. J. 15(3), 182–211 (1976), http://dx.doi.org/10.1147/sj.153.0182

11. Gutjahr, W.J.: Partition testing vs. random testing: The influence of uncertainty.
IEEE Trans. Softw. Eng. 25(5), 661–674 (1999),
http://dx.doi.org/10.1109/32.815325

12. Harris, I.G.: Fault models and test generation for hardware-software covalidation.
IEEE Des. Test 20(04), 40–47 (2003),
http://dx.doi.org/10.1109/MDT.2003.1214351, doi:10.1109/MDT.2003.1214351

13. Heimdahl, M., Whalen, M., Rajan, A., Staats, M.: On mc/dc and implementa-
tion structure: An empirical study. In: IEEE/AIAA 27th Digital Avionics Systems
Conference, DASC 2008, pp. 5.B.3–1–5.B.3–13 (2008)

14. Kuhn, D.R., Wallace, D.R., Gallo Jr., A.M.: Software fault interactions and impli-
cations for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

http://dl.acm.org/citation.cfm?id=648126.747577
http://dx.doi.org/10.1109/32.177364
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1109/32.815325
http://dx.doi.org/10.1109/MDT.2003.1214351

A Generic Fault Model for Quality Assurance 103

15. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. In: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XIII, pp. 329–339. ACM, New York (2008),
http://dx.doi.org/10.1145/1346281.1346323

16. Ma, Y.-S., Kwon, Y.-R., Offutt, J.: Inter-class mutation operators for java. In:
ISSRE, pp. 352–366 (2002)

17. Malaiya, Y., Li, M., Bieman, J., Karcich, R.: Software reliability growth with test
coverage. IEEE Transactions on Reliability 51(4), 420–426 (2002)

18. Martin, E., Xie, T.: A fault model and mutation testing of access control policies.
In: Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pp. 667–676. ACM, New York (2007),
http://dx.doi.org/10.1145/1242572.1242663

19. McCluskey, E., Clegg, F.W.: Fault equivalence in combinational logic networks.
IEEE Transactions on Computers C-20(11), 1286–1293 (1971)

20. Mockus, A., Nagappan, N., Dinh-Trong, T.T.: Test coverage and post-verification
defects: A multiple case study. In: Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2009,
pp. 291–301 (2009)

21. Nagaraja, K., Li, X., Bianchini, R., Martin, R.P., Nguyen, T.D.: Using fault in-
jection and modeling to evaluate the performability of cluster-based services. In:
Proceedings of the 4th Conference on USENIX Symposium on Internet Technolo-
gies and Systems, USITS 2003, vol. 4, p. 2. USENIX Association, Berkeley (2003),
http://dl.acm.org/citation.cfm?id=1251460.1251462

22. Offutt, J., Alexander, R., Wu, Y., Xiao, Q., Hutchinson, C.: A fault model for
subtype inheritance and polymorphism. In: Proceedings of the 12th International
Symposium on Software Reliability Engineering, ISSRE 2001, pp. 84–95. IEEE
Computer Society, Washington, DC (2001),
http://dl.acm.org/citation.cfm?id=851028.856258

23. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and gen-
erating fuctional tests. Commun. ACM 31(6), 676–686 (1988),
http://dx.doi.org/10.1145/62959.62964

24. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M.,
Sostawa, B., Zölch, R., Stauner, T.: One evaluation of model-based testing and
its automation. In: Proceedings of the 27th International Conference on Software
Engineering, pp. 392–401 (2005)

25. Weyuker, E., Jeng, B.: Analyzing partition testing strategies. IEEE Transaction
on Software Engineering 17(7), 703–711 (1991)

26. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366–427 (1997)

http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1145/1242572.1242663
http://dl.acm.org/citation.cfm?id=1251460.1251462
http://dl.acm.org/citation.cfm?id=851028.856258
http://dx.doi.org/10.1145/62959.62964

Towards an Operationalization of the “Physics of

Notations” for the Analysis of Visual Languages

Harald Störrle1 and Andrew Fish2,�

1 Dept. of Informatics and Applied Mathematics, Technical University of Denmark
hsto@dtu.dk

2 School of Computing, Engineering and Mathematics, University of Brighton, UK
Andrew.Fish@brighton.ac.uk

Abstract. We attempt to validate the conceptual framework “Physics
of Notation” (PoN) as a means for analysing visual languages by ap-
plying it to UML Use Case Diagrams. We discover that the PoN, in its
current form, is neither precise nor comprehensive enough to be applied
in an objective way to analyse practical visual software engineering no-
tations. We propose an operationalization of a part of the PoN, highlight
conceptual shortcomings of the PoN, and explore ways to address them.

1 Introduction

Motivation. The Software Engineering domain uses many visual notations like
the ones defined in the Unified Modeling Language (UML). Being visual is fre-
quently quoted as a major advantage of such notations, but previous research [6]
has indicated substantial problems with UML as a visual notation. The concrete
syntax of UML has received significantly less research attention than the abstract
syntax, semantics, and pragmatics of the UML.

Whilst diagrams, when used appropriately, can support human perceptual
and thought processes [15], and good layout of UML diagrams benefits model
understanding [22,23], there is currently no systematic way of assessing the per-
ceptual quality of a visual notation. Therefore, Moody’s recent proposal of the
“Physics of Notations” (PoN) [16] has been greeted with enthusiasm. In this
paper, we study the PoN with a view to turning it from a mere theory into a
practical tool that can be used to assess visual notations of practical relevance.

Approach. We pursue this project by applying PoN to UML Use Case Dia-
grams (UCDs). The decision for this particular case study is motivated by three
considerations. First, we observe that UCDs are the second most commonly used
of the UML notations, and the most highly used when clients are involved [5].
Thus UCDs can have high impact on a project, and hence require a high degree
of usability. Thus, analyzing (and possibly improving it) through the application
of the PoN is a goal of great practical merit.

� Thanks to UK EPSRC for support via grant EP/J010898/1.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 104–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards an Operationalization of the PoN 105

Second, UCDs are perceived to be one of the simpler notations among those
defined by UML. Using it should minimize the issues that arise from this partic-
ular notation rather than from the difficulty of operationalizing the PoN, which
is our primary objective.

Third, analyzing a language is supposedly one of the simpler tasks the PoN
claims to support (Moody characterizes it as a Gregor Type I-theory, see [12]).
The ‘higher’ purposes of this theory need to build upon this basic capability.
Since there have not yet been many attempts to use the PoN, we start at the
most basic purpose that the PoN claims to address.

Contributions. Prior to this research, we expected to find a degree of freedom
in exactly how to operationalise the PoN. However, during our analysis, we
were surprised by the number and the fundamental nature of the issues with
the PoN: (1) some of the principles are ambiguous and there is a large number
of alternative assumptions which influence the outcome considerably; (2) many
criteria are postulated without quantifying or relating them to each other, and
there is no existing empirical knowledge to fill this gap; (3) assumptions are
made and preconditions imposed which are unreasonable in that they cannot be
expected from practical notations. We surmise that the PoN in its current form
is not yet a tool that allows repeatable and falsifiable assessments of practical
visual notations.

The main contribution of this paper is to make progress in developing the
PoN into such a tool, facilitating its application in a repeatable and objective
manner. Of course, we will not be able to achieve complete objectivity, since the
application of a procedure such as the PoN by humans will always involve some
degree of judgment. However, we aim to reduce the number of choices as far as
possible, making the options and decisions clear and understandable. This will
help to leverage the usefulness of the PoN.

Related Work. In the 1980’s Green, Petre, and Blackwell [11,10,3] developed
the Cognitive Dimensions of Notations framework (CD). It has been widely used
for usability assessments and has proved to be a pragmatic and lightweight (or
‘broad-brush’) approach. However, CD was not originally designed to be for-
mal, and so allows different interpretations. CD has been applied to an early
version of UML in [14], but this analysis compares only simple sequence and
communication diagrams, disregards secondary notation (e.g., layout), and is
mainly concerned with calibrating CD against empirical results on diagram un-
derstanding. New avenues for CD research have recently been considered [9], and
there are some empirical validations of the benefit of developing formal defini-
tions of a usability framework based on CD [19]. In [16], Moody classifies CD
as unfalsifiable, and thus pre-scientific, identifying it as a Gregor Type I-theory
(see [12]).

Possibly the earliest systematic approach to studying the concrete syntax of
UML is found in [6] where the authors transfer notions like “free ride” [20] or
“cheap ride” [13] from diagrammatic theory to the concrete case of UML. They

106 H. Störrle and A. Fish

also develop novel notions like “derived meaning” and “symbol overload” for the
analysis of the UML concrete syntax, deriving suggestions for improvement of
UML from a visual languages point of view.

A similar, though more structured approach, was presented under the name
“Physics of Notations” (PoN) in [16]. The PoN consider a wider scope of cog-
nitive aspects of visual notations which makes it applicable to a wider range of
notations. However, the UML examples contained in the PoN articles are not all
convincing (e.g., see [16, Fig. 13, Tab. 1]). The follow-up article [17] adds only
minor clarifications. Since the PoN is a recent achievement, there are not many
publications utilising it for the study of visual notations. One is [4], where some
criteria of the PoN that can be quantified easily are utilised in the assessment
of visual language for robots that the authors developed. Genon et al. have ap-
plied the PoN to Use Case Maps and BPMN (see [7,8]), but it is not clear how
they have computed the numeric values they provide for the various PoN criteria
(e.g., semiotic clarity).

2 UML Use Case Diagrams (UCDs)

A UCD is a diagram for specifying requirements of a system, with key concepts of
actors, use cases and subjects (see [18, p. 603]). See Fig. 1 for a sample UCD and
Fig. 2 for an overviewof the concepts represented in UCDs. The UML goes to great
lengths to define the abstract syntax (i.e., themodelling concepts) for its notations,
whilst the concrete syntax is much less diligently defined. We take the graphemes
of UCDs to be those shown in Fig. 2 that have no patterned background.

AD A sample UML Use Case Diagram

User

Withdraw Money

ATM

Eject Card

<<include>>

<<extend>>

Enter PIN
extension points
wrong number

an Actor

three UseCases

an ExtensionPoint

the subject is a role

of a Classifier

an Inclusion

an Extension

Fig. 1. A sample UML Use Case Diagram (UCD). The red ‘handwritten’ annotations
explain the UML concepts represented.

Precision. The description is informal, offering only prose and a few examples
to explain the syntax, usage, and constraints of UCDs. The UML also provides
a list of the graphemes (see [18, Fig. 16.1, pp. 617]), but that list is informal
and incomplete. We ignore the alternative notation of ExtensionPoint, since this

Towards an Operationalization of the PoN 107

Informal MeaningGrapheme
(”Symbol”)

<<extend>>

<<include>>

Meta Class
(”Concept”)

extension points
<ep name>

<Name>

<Name>

<Name>

role played by a user or any other

features

performed by a system

may be used to specify the model

describes tuples of references
to instances

behavior can be inserted into the
extended use case

describes tuples of references
to instances

<<actor>>Actor

UseCase

Comment

Include

Extend

ExtensionPoint

none

none

none

none

none

<Name>

<Name>

<Name>

<Name>
16.3.1

16.3.2 (7.3.8)

16.3.6

7.3.9

7.3.3

7.3.20

16.3.5

16.3.3

16.3.4

<Name>

<<extend>>

any
icon

<Name>
extension points

Fig. 2. The concepts and notations of UCD: the contents of columns 3 and 4 are taken
directly from the UML standard, the respective chapters are indicated in column 2.
The alternative notations with patterned background are not considered here.

is really not an alternative for ExtensionPoint, but a combination of the one
grapheme for extension point with the alternative notation of UseCase.

Focus. The description of the notation is split across several places in Chap-
ter 16, with some aspects and examples explained for individual concepts (e.g. the
last subsections in each of Sections 16.3.1–16.3.6), and some for diagram type (e.g.
Section 16.4), which gives rise to inconsistency and incompleteness in the descrip-
tions. Moreover, the description of the notational elements are scattered over the
whole UML standard: five out of ten concepts commonly used in UCDs are defined
in other chapters (e.g. Comments, Classifiers andAssociations). Since the relevant
standard document is 752 pages long, it is difficult to obtain a comprehensive view
of UCDs. Also, the standard does not define some graphemes at all, e.g., any icon
may be used to represent Actors; we exclude the notation “any icon”.

Comments. the PoN indicates that one should disregard secondary nota-
tion such as layout and naming conventions when analysing a visual notation.
In particular, it considers UML comments as secondary notation that “will
[erroneously] be interpreted as constructs” (cf. [16, p. 762]). However, within
the context of practical UML modelling, comments are not simply meta-level

108 H. Störrle and A. Fish

annotations, but they are frequently used as ad-hoc extensions to the modelling
notation adding significant detail such as OCL constraints or specifications of
extension points (see p. 617, [18]). Also, there is a meta class “Comment” in the
UML meta model, so comments are proper model elements in UML. Therefore,
we include comments as “first class modelling constructs” in the community of
model elements. We exclude the alternative notation in Fig. 2, because it is just
a combination of the graphemes for Extend and a Comment with a structured
text, and the PoN does not cover textual annotations of this kind.

Layout. The PoN offers no concept that allows us to differentiate between
different placements of inscriptions on graphemes, as used in the alternative
notation for UseCases in Fig. 2. Thus we exclude this grapheme in our
considerations.

In order to apply the PoN to UCDs, we have to make interpretations and
place restrictions on the UCD notation, which we will describe as we progress.
Similar restrictions will likely have to be applied for the analysis of other UML
notations, and, possibly, most other practically relevant notations. This means
the first step of applying the PoN in a realistic setting must be to ensure its
applicability, possibly documenting all restrictions and assumptions about the
notation to be analysed. In fact, we expect it to be necessary to first provide a
description of the notation in a standardized and precise way before the PoN
can be applied at all. Currently, this is not part of the PoN. One might argue
that this is a shortcoming of the languages in question, but if the PoN is to be
useful in a practical setting, it must itself be adapted to fit into such a setting.

3 Physics of Notations

The PoN attempts to lay a scientific foundation for analysing and constructing
visual notations in software engineering by drawing on existing knowledge from
Psychophysics, Cognitive Psychology, and Graphic Design. PoN postulates nine
principles that decompose into 25 criteria (see Fig. 3). Due to lack of space we
examine only the first two of the PoN principles (A and B) in this paper. Even
so, these account for almost two fifths of the PoN criteria.

We address these criteria individually, identifying any assumptions and choices
made in the process of operationalisation. Aiming for conceptual simplicity we
adopt ‘symmetric definitions’ for metrics wherever possible (e.g., duality within
concepts should lead to duality in metric definitions; see metrics SR and SO be-
low). We provide adjustable weights for metrics to accommodate future empirical
findings (e.g., the relative weight of visual variables). All metrics are normalised
to range from 0 to 1, and stable in the sense that small changes in a notation
will lead to relatively small changes in the assessment.

3.1 A: Semiotic Clarity

Semiotic clarity is the degree to which a notation achieves a one-to-one mapping
between its concepts and symbols. It is assessed through four criteria: symbol

Towards an Operationalization of the PoN 109

1-Visual Distance
2-Primacy of Shape
3-Redundant Coding
4-Perceptual Pop-Out

1-Symbol Redundancy
2-Symbol Overload
3-Symbol Excess

1-Perceptual Resemblance (Iconicity)

2-Hierarchy

1-Use of Color
2-Choice of Visual Variables
3-Textual vs. Graphical Encoding

2-Hybrid Symbols

3-Increase Visual Expressiveness

Fig. 3. The PoN principles and their criteria; this paper covers principles A and B

redundancy (multiple graphemes are used for one construct), symbol overload
(multiple constructs use the same grapheme), symbol excess (graphemes repre-
senting no constructs), and symbol deficit (constructs without representation).
We formalise these criteria.

A visual notation N is a triple 〈C,G, σ〉, where C and G are the sets of
concepts and graphemes used in N , respectively (with C∩G = ∅), and σ ⊆ C×G
is the relation associating concepts and graphemes. The PoN uses the name
“constructs” for concepts, but in the UML this corresponds to the meta-classes
whose instances may occur in a diagram of given type. We write CN to indicate
the concept C from a notation N , and we use GN and σN similarly, omitting N
if it is clear from the context. We write σ(c) to denote {g ∈ G | 〈c, g〉 ∈ σ}, the
image of c ∈ C under σ(c), and similarly σ−1(g) denotes {c ∈ C | 〈c, g〉 ∈ σ}. Let

visualized(C) := {c ∈ C |σ(c)
= ∅}
meaningful(G) := {g ∈ G |σ−1(g)
= ∅}

denote the sets of concepts with at least one associated grapheme, and the set of
graphemes with at least one associated concept, respectively. We frequently lift
functions from elements to sets of elements. The degree of symbol redundancy
of a notation N is

110 H. Störrle and A. Fish

SR(N) :=
1

|visualized(CN)|
∑
c∈CN

redundancy(c)

where

redundancy(c) :=

{
0 if σ(c) = ∅,
1− 1

|σ(c)| otherwise.

Analogously, the degree of symbol overload of N is

SO(N) :=
1

|meaningful(GN)|
∑

g∈GN

overload (g)

where

overload (g) :=

{
0 if σ−1(g) = ∅,
1− 1

|σ−1(g)| otherwise.

The degrees of symbol excess and symbol deficit of a notation N are defined in
parallel as

SE (N) := 1− |meaningful(GN)|
|GN |

, and SD(N) := 1− |visualized(CN)|
|CN |

.

The only data these metrics require as input are the sets of concepts and
graphemes and their relationships, as defined by the notation.

Shape

Size

Color

Brightness

Texture

Used in UML

Fig. 4. Bertin’s eight visual variables (position has two dimensions): only shape, tex-
ture, and brightness are used in UML

3.2 B: Perceptual Discriminability

The PoN defines the principle of perceptual discriminability of two graphemes as
“the ease and accuracy with which [they] can be differentiated from each other”.
Moody decomposes this principle into five criteria: visual distance, primacy of
shape, redundant coding, perceptual pop-out, and textual differentiation. Since
the PoN builds on Bertin’s notion of visual variables [2,1], shown in Fig. 4, one
can simply assign to each grapheme a tuple of the values according to these visual
variables. We call this tuple the visual vector of a grapheme. By convention, we
use the variables g and h for graphemes in a given visual notation, v(g) for the
visual vector of g, and vi(g) for the i-th component of the visual vector of g.

Towards an Operationalization of the PoN 111

Actor

as subject

Arrow1

Arrow2

Ellipse

-

-

-

-

-

Solid

-

-

Solid

Solid

Solid

-

Solid

Actor
Solid

Actor Grey1

-Solid

-

as subject -Solid

-

-

<ep name>

<<actor>>

(”Symbol”) (”Concept”)

Fig. 5. Assessment of Bertin’s 8 visual variables for the graphemes of UML UCDs

B.1: Visual Distance. We interpret visual vectors as points in 8-dimensional
space. Classic results from Psychophysics indicate the range of values we can
expect humans to easily discriminate (c.f. [2,21]). For instance, humans can
easily distinguish 6-7 different values for brightness (i.e. shades of grey), and 2-5
different textures, whilst the number of different shapes we can distinguish is
virtually unlimited. Brightness is on an ordinal scale (for simplicity, we assume
equidistance), whilst textures and shapes are on nominal scales. We compute
the values utilized within the semiotic clarity principle, comprising of the visual
variables (shape, texture,brighness), following Bertin, and the additional textual
discrimination (used in Fig. 5 below).

Shape provides the richest variations and the highest impact on visual dis-
criminability. Assuming shapes to be a homogeneous set would be the simplest
option, only observing shapes as either the same or different. However, a more

112 H. Störrle and A. Fish

refined measure would provide a notion of similarity of shape, indicating that a
rectangle is more closely related to an ellipse than a stick figure, for example.
For definiteness, we postulate three basic groups of shapes (lines, icons, and re-
gions), and we decompose regions into two types: simple (e.g., rectangles and
ellipses) and complex (e.g., a combination of two rectangles and an ellipse, as
in the alternative grapheme of UseCases). We assume that elements in different
groups are less similar than elements in the same group. Fig. 6 shows the basic
shapes in UCDs, and our proposed shape groupings.

One may postulate that there are gradations of similarities between circles,
ellipses, roundtangles (a rectangular shape with rounded corners), and rectangles
for instance (e.g. circles are closer to ellipses than to rectangles, and roundtangles
are as similar to rectangles as to ellipses). However, since such gradations are
relatively subtle in comparison with the fundamental differences between the
shape groups, we do not refine the shape groups further here. Empirical evidence
testing for similarity of shapes appears appropriate before further hypothesis
and subsequent examination to see if intra-group differences are significant. We
assume a visual shape distance (abbreviated to vsd) of 0.5 between elements
of the same basic group (line, icon, simple, complex), 1 between elements of
different main groups (line, icon, region), and 0.75 between different subgroups
(simple and complex regions).

Bertin seems to interpret texture mainly for areas (see [16, Fig. 7]), but the
PoN also applies it to lines (cf. “solid and dashed” [16, p. 769]). UCDs (and,
in fact, UML) only use solid fill for areas, and solid or dashed lines. Icons are
assigned a unique “pattern” value. For other notations, different textures may
have to be distinguished; the PoN proposes to use 2-5 different values.

Line Icon
ComplexSimple

Region

Fig. 6. Visual distance between any two shapes depends on their relative grouping

For our evaluation, we took the brightness of a grapheme to be the brightness
of the largest area contained in the grapheme (“undefined” if there is no such
area); the PoN proposes to use 6-7 different values of grey. Clearly, high visual
distance would contribute to high perceptual discriminability. However, for the
criteria of semiotic clarity, low values amount to high quality. In order to permit
a unified interpretation of the results, we invert the scale for visual distance so
that small values represent high quality. The same will be done below for the
criteria B.2 and B.4.

B.2: Primacy of Shape. The PoN emphasises that “shape should be the pri-
mary visual variable”; that is, the distance between two visual vectors is affected

Towards an Operationalization of the PoN 113

more strongly by shape differences than other visual variable changes. However,
the PoN does not quantify the impact of shape (or make any judgement on its
impact relative to variation in several other visual variables).

We implement the primacy of shape criterion by attaching a specific weight
to the visual vectors when determining their distance. This weight can easily
be adjusted when empirical results are obtained which provide evidence for the
perceptual distances involved. Since empirical results are not yet available, we
propose an initial model in which the weight for shape distance is as high as
all of the other weights combined (taking weight 1 for the seven other variables,
and weight 7 for shape). We define the visual variable difference function vvd ,
for visual variables a, b, as follows:

vvd(a, b) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a = b or both are undefined
|a−b|

c if a
= b on ordinal scale with capacity c

0.5 if a
= b are shapes in same basic group

0.75 if a, b are shapes in different subgroups

1 if a, b are shapes in different main groups

or a
= b on a nominal scale (except shape)

or exactly one of a or b is undefined

where the capacity is the maximal number of perceptual steps of a scale. The
visual distance between graphemes is:

vd(g, h) :=
1

||w||

d∑
i=1

wi · vvd(vi(g), vi(h))

where ||w|| =
∑d

i=1 wi, d is the number of visual dimensions (i.e. 8 according to
Bertin’s theory), and w = 〈w1, . . . , wd〉 is a weight vector used to calibrate the
measure. For a notation N , we obtain the following metric for its average visual
distance (including the primacy of shape):

VD(N) := 1− 1

|GN |2
∑

g,h∈GN

vd(g, h).

B.3: Redundant Coding. The PoN indicates that multiple variables should
be used to distinguish between any two graphemes in an attempt to reduce
perceptual errors through visual redundancy. We make use of the number of
visual variables in which two graphemes g and h from GN differ:

vr (g, h) :=
1

d

d∑
i=1

[vi(g)
= vi(h)]

where [φ] denotes 1 if the predicate φ is true, and 0 otherwise. Thus, the PoN
recommendation is that for the visual vectors of any two graphemes g, h in a

114 H. Störrle and A. Fish

visual notation, vr(g, h) ≥ 2/d should hold. For a notation N we obtain the
following measure for redundant coding:

RC (N) :=
1

|GN |2
∑

g,h∈GN

vr(g, h).

B.4: Perceptual Pop-out. The PoN recommends that each grapheme of a
visual notation has a unique value in one visual variable so that it may be
identified by that unique value as opposed to requiring a combinations of values
to discriminate. Thus, for any two graphemes g and h in a given visual notation,
there is an i with 0 < i ≤ d such that g
= h =⇒ vi(g)
= vi(h). For a grapheme
g, within a set of graphemes G, we define its perceptual pop-out as

ppo(G, g) :=

⎧⎪⎨
⎪⎩
1 if ∃0 < i ≤ d such that ∀h ∈ G

g
= h =⇒ vi(g)
= vi(h)

0 otherwise.

The perceptual pop-out of a set of graphemes GN is:

PPO(N) := 1− 1

|GN |
∑

g∈GN

ppo(GN , g).

B.5: Textual Differentiation. Notational elements can also be differentiated
by textual annotations: two different graphemes g and h, can have the same val-
ues on all visual variables, so that v(g) = v(h), but may have additional textual
annotation which enables discrimination. The PoN recommends not permitting
this option because it is a cognitively inefficient procedure (reducing the role of
perceptual processing). An example of textual differentiation are the includes-
and extends-relationships of UCDs, which are visually identical except for the
textual annotations “includes” and “extends”.

We define the degree of textual differentiation for the vocabulary G as the
proportion of graphemes whose appearance only differs by a textual annotation.

TD(N) :=
|{g ∈ GN | ∃g′ ∈ GN : g and g′ differ only by text}|

|GN |

4 Semiotic Clarity of UCDs

Based on the UCD, as defined in Fig. 2, the criteria contained in the PoN principle
of semiotic clarity can be computed objectively, yielding the values shown in Fig. 7
(top). Observe that the UML does mention the use of colour in diagrams as an
option to highlight individual model elements, but this is not a normative part of
the standard:UML explicitly abstains from semantic interpretation of colour, size,
position, and orientation. That is to say, any two graphemes defined by UML will
be indistinguishable with respect to these visual dimensions.

Towards an Operationalization of the PoN 115

1-Vis. Dist., 2-Prim. of Shape
3-Redundant Coding
4-Perceptual Pop-Out

Perceptual
Discriminability

Clarity

1-Symbol Redundancy
2-Symbol Overload
3-Symbol ExcessA

B
better0 1worse

Fig. 7. The assessment of the criteria of the first two PoN principles according to our
formalization and assumptions; scales for criteria B1through B4 have been reversed as
compared to the original definition in the PoN for increased clarity

We see that UCDs have neither symbol deficit, nor symbol overload. The
values for symbol excess and symbol redundancy appear to be small. However,
the PoN does not provide any indication of relative size or thresholds, and there
is no comparable data for other notations.

The impact of alternatives in our operationalisation provide more insight into
the PoN.We have argued that UCDs shall contain comments as a proper concept.
Dropping this assumption, i.e., removing both the concept and the associated
graphemes from the language definition, symbol excess drops from .071 to 0,
while symbol redundancy climbs from 0.185 to 0.208. Again, due to a lack of
comparable data, we cannot judge the magnitude of these differences.

Also, the measure of semiotic clarity very much depends on the definition of
the notation vocabulary; making different assumptions for UCDs influences the
outcome of the analysis. Consider for example the graphemes for Actor. If we
drop our assumption and accept that any “other icons [...] may also be used
[Actors]” as the UML standard declares [18, p. 606], we have |σ(Actor)| = ∞.
Then, symbol redundancy climbs to 1 (assuming 1/∞ = 0), while the other
metrics remain constant.

Finally, the PoN does not offer a concept of graphemes as compounds of other
graphemes, such as the first alternative notation of UseCase in Fig. 2. Here, a
compartmented box (which in turn could be considered as a combination of two
rectangles), is combined with a small ellipse. The result may again be combined
with the grapheme for ExtensionPoint, as shown in the parse tree in Fig. 8 (left).
However, there may be alternative grapheme compositions, as in Fig. 8 (right),
and so it is not clear what the base graphemes should be.

The PoN does not offer concepts which are useful for capturing syntactical
structures, except for compounds of a grapheme and a piece of text (“textual dif-
ferentiation”). The PoN does not appear to distinguish between constant pieces
of text (such as stereotypes) which carry semantic meaning on the type level,
and variable pieces of text (such as names) which only carry meaning at the
instance level. Likewise, the PoN does not differentiate between the content of a
piece of text and its formatting (e.g., bold, italics, underlining), see [16, p. 763].

116 H. Störrle and A. Fish

<Name>

extension points

<ep name>

<Name>

<Name>

<Name>

extension points
<ep name>

extension points

<ep name>

extension points
<ep name>

<Name>

<Name>

<Name>
extension points
<ep name>

Fig. 8. Graphemes can be understood as compounds

In this paper, we consider all graphemes as individuals rather than com-
pounds. It is clear, however, that this will lead to an explosion in the number of
graphemes if a language systematically uses compounds, as the UML does (see
[6]). Thus, the application of the PoN to larger parts of the UML will be very
difficult without a method for dealing with compound graphemes.

5 Perceptual Discriminability of UCDs

Computing perceptual discriminability of UCDs yields the values shown in Fig. 7
(bottom). We see that UCDs enjoy maximal perceptual pop-out, and close to
minimal redundant coding and visual distance, including primacy of shape.1

Again, we lack guidance from the PoN and previous work, so we have no means
of assessing the significance of the value of these metrics.

We have assumed a certain structure of the distances of shapes (see Fig. 6),
but do not yet have empirical evidence to support our assumption. If we vary our
assumption, however, the visual distance metric decreases from 0.222 (our orig-
inal assumption), to 0.221 (no difference between simple and complex shapes),
and 0.218 (equidistance between all shapes). Thus, the visual distance decreases
as we take fewer differences into account. Consider also the “any icon” alternative
notation for actors which we have excluded in Section 2. Observe that we could
not assess its perceptual discriminability here, simply because the grapheme is
undefined.

Almost all UCD graphemes have a unique value in one visual variable (shape),
thus affording perceptual pop-out. The exceptions to this rule are: (1) the includes-
and extends-relationshipswhichhave identical values in all of their visual variables,
and (2) the first alternative notation for Actor which is visually identical to Clas-
sifier (i.e. subject).

1 Recall that maximal corresponds to 0 here, and minimal to 1.

Towards an Operationalization of the PoN 117

6 Discussion

The PoN aspires to be a theory “to evaluate, compare, and improve existing
visual notations [for SE] as well as to construct new ones.” (cf. [16, p. 756]).
We apply it to UCDs, a relatively simple visual notation, so as to reduce issues
arising from the UCD notation rather than those arising from the PoN, whose
formalisation is our primary objective.

This case study resulted in an operationalization of the first part of the PoN
in a traceable and verifiable way. In this process, we exhibited shortcomings and
deficiencies in the PoN, also highlighting weaknesses in the description of the
concrete syntax of UML UCDs along the way. Most of all, however, it became
clear that it will take a major additional effort to achieve a complete opera-
tionalization of the PoN. We will now discuss the obstacles we have identified
for this effort.

Grapheme Structure. While the PoN seems to maintain that graphemes are
atomic and small in number, they are in fact structured and numerous, at least
for practical languages such as UML or BPMN. First, even the most basic graph-
emes may be built up from smaller, orthogonal graphical primitives, which gives
rise to alternative decompositions (see Fig. 8 for an example).

Second, UML and similar languages frequently utilise nesting of graphemes to
express semantic relationships, e.g., nesting a UseCase within a Classifier as in
Fig. 1. If we consider such a combination to constitute a new grapheme, visual
notations would generally have a very large number of graphemes, which makes
no sense. However, nesting a small ellipse in the top right corner of a rectangle
representing a UseCase does constitute a new grapheme (see the alternative
notation for UseCase in Fig. 2), although visually, there is only little difference
between them. In order to make a difference, we would have to consider internal
grapheme structure (i.e., compartments) as well as relative size and position.

Third, there are subtle interactions between the internal structure of
graphemes constituting a single concept, and the combination of graphemes that
each represent individual concepts, at least in UML.

Text and Diagram Structure. The PoN focuses almost exclusively on graph-
ical symbols, and summarizes all forms of text as “textual annotation”. However,
these annotations are rich in structure, too, at least in UML. For instance, the
text structure (e.g., presence of ’:’ or ’/’ in a name), and format (e.g., bold,
italic, underline) are meaningful, and there are constant and variable annota-
tions (e.g., stereotypes and names, respectively), that add information at the
levels of concept and instance, respectively.

Similarly, the PoN rejects the idea of considering diagram layout as a means
of communication, even though it is clear that the quality of the layout of a UML
diagram contributes quite significantly to the understanding of, and performance
with, a model (see [22]). The PoN also does not consider notions for relative size
and/or position of graphemes.

118 H. Störrle and A. Fish

Empirical Foundation. the PoN collects 25 criteria organised into nine princi-
ples, but does not clearly state their relative weight. For many of these criteria,
it is not clear how they should be evaluated and measured. For instance, in
Section 3.2 we discussed alternatives for the visual distances between shapes.
However, the PoN does not provide such information; empirical studies would
be needed to determine these factors. Furthermore, the PoN provides no guid-
ance as to what the results of any operationalization would mean, i.e., what
values should be considered good or bad.

7 Conclusion

The PoN compiles a great number of valuable insights from cognitive psychology
that might inform the analysis and design of visual notations, and have otherwise
been underestimated or downright ignored. However, even in its first two prin-
ciples, we miss precision and detailedness in the PoN that would be needed for
an unambiguous operationalization. In order to apply the PoN various choices
about the notation in question must be made: what are the base graphemes, how
are they combined into compounds, what weight shall be assigned to them and
so on. Subsequent to the production of metrics for the entire set of principles of
the PoN, we envisage the production of a standard form providing guidance on
exactly what choices need to be made before analysis, separating the generically
required choices from any required for the specific metrics developed.

In this paper, we have begun the process of systematically operationalising the
principles of the PoN. Space restrictions clearly prohibit the complete analysis, but
we observe that some of the other principles do not apply to the consideration of
a single notation, without dialects, and some require a basis in cognitive science
models. It makes sense to develop measures for single diagram types and then to
extend to consider multiple diagram types. For example, the cognitive integration
principle only applies in the context of multiple diagrams, so this is not relevant
to UCDs alone. Measures to reflect the intent will require some basis in cognitive
theories to try to capture notions of conceptual and perceptual integration and this
may be highly complex to define for arbitrary diagram types. Similarly, the princi-
ple of cognitive fitwill not apply toUCDs alone since it relates to the use of different
dialects for different tasks and problem solver skills; the operationalisation will re-
quire the development of metrics to distinguish dialects and differentiate between
features appropriate to distinctions between expert and novices,making use of cur-
rent cognitive theories of expert-novice differences, for example.

References

1. Bertin, J.: Graphics and Graphic Information- Processing. Verlag Walther de
Gruyter (1981)

2. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. Univ. Wisconsin
Press (1983)

Towards an Operationalization of the PoN 119

3. Blackwell, A., Green, T.R.G.: Notational systems–the cognitive dimensions of no-
tations framework. In: HCI Models, Theories and Frameworks: Toward a Multidis-
ciplinary Science, pp. 103–134 (2003)

4. Diprose, J.P., MacDonald, B.A., Hosking, J.G.: Ruru: A spatial and interactive
visual programming language for novice robot programming. In: Costagliola, G.,
et al. (eds.) Proc. IEEE Symp. Visual Languages and Human-Centric Computing
(VL/HCC 2011), pp. 25–32. IEEE Computer Society (2011)

5. Dobing, B., Parsons, J.: How UML is used. Com. ACM 49(5), 109–113 (2006)
6. Fish, A., Störrle, H.: Visual qualities of the UnifiedModeling Language: Deficiencies

and Improvements. In: Cox, P., Hosking, J. (eds.) Proc. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2007), pp. 41–49.
IEEE Computer Society (2007)

7. Genon, N., Amyot, D., Heymans, P.: Analysing the Cognitive Effectiveness of the
UCM Visual Notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS,
vol. 6598, pp. 221–240. Springer, Heidelberg (2011)

8. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness
of the BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., van den Brand, M.
(eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

9. Green, T.R.G., Blandford, A., Church, L., Roast, C., Clarke, S.: Cognitive Dimen-
sions: achievements, new directions, and open questions. J. Visual Languages and
Computing 17(4), 328–365 (2006)

10. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
A ‘cognitive dimensions’ framework. J. Visual Languages and Computing (7),
131–174 (1996)

11. Green, T.: Cognitive dimensions of notations, pp. 443–460. Cambridge University
Press (1989)

12. Gregor, S.: The Nature of Theory in Information Systems. MIS Quarterly 30(3),
611–642 (2006)

13. Gurr, C.: Effective Diagrammatic Communication: Syntactic, Semantic and Prag-
matic Issues. J. Visual Languages and Computing 10, 317–342 (1999)

14. Kutar, M., Britton, C., Barker, T.: A comparison of empirical study and cognitive
dimensions analysis in the evaluation of uml diagrams. In: Proc. 14th Psychology
of Programming Interest Group (2002)

15. Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science 11, 65–99 (1987)

16. Moody, D.L.: The Physics of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. IEEE Trans. Software Engineering 35(6),
756–779 (2009)

17. Moody, D., van Hillegersberg, J.: Evaluating the Visual Syntax of UML: An Analy-
sis of the Cognitive Effectiveness of the UML Family of Diagrams. In: Gašević, D.,
Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer,
Heidelberg (2009)

18. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, V2.4
(ptc/2010-11-14). Technical report, Object Management Group (January 2011)

19. Roast, C.R., Khazaei, B.: An Investigation into the Validation of Formalised Cog-
nitive Dimensions, pp. 109–122. Springer (2007)

20. Shimojima, A.: Inferential and Expressive Capacities of Graphical Representations:
Survey and Some Generalizations. In: Blackwell, A.F., Marriott, K., Shimojima,
A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 18–21. Springer, Heidelberg
(2004)

120 H. Störrle and A. Fish

21. Stevens, S.S.: Psychophysics. J. Wiley & Sons (1975)
22. Störrle, H.: On the Impact of Layout Quality to Unterstanding UML Diagrams.

In: Costagliola, G., et al. (eds.) Proc. IEEE Symp. Visual Languages and Human-
Centric Computing (VL/HCC 2011), pp. 135–142. IEEE Computer Society (2011)

23. Störrle, H.: On the Impact of Layout Quality to Unterstanding UML Diagrams:
Diagram Type and Expertise. In: Costagliola, G., Ko, A., Cypher, A., Nichols, J.,
Scaffidi, C., Kelleher, C., Myers, B. (eds.) Proc. IEEE Symp. Visual Languages
and Human-Centric Computing (VL/HCC 2012), pp. 195–202. IEEE Computer
Society (2012)

Teaching Model Driven Engineering
from a Relational Database Perspective

Don Batory1, Eric Latimer1, and Maider Azanza2

1 University of Texas at Austin, Austin, TX 78712 USA
batory@cs.utexas.edu, e@utexas.edu

2 University of the Basque Country (UPV/EHU), San Sebastian, Spain
maider.azanza@ehu.es

Abstract. We reinterpret MDE from the viewpoint of relational databases to
provide an alternative way to teach, understand, and demonstrate MDE using
concepts and technologies that should be familiar to undergraduates. We use (1)
relational databases to express models and metamodels, (2) Prolog to express con-
straints and M2M transformations, (3) Java tools to implement M2T and T2M
transformations, and (4) OO shell-scripting languages to compose MDE transfor-
mations. Case studies demonstrate the viability of our approach.

1 Introduction

Model Driven Engineering (MDE) is a standard technology for program specification
and construction. We believe it is essential to expose undergraduates to MDE concepts
(models, metamodels, M2M, M2T, T2M transformations, constraints, and bootstrap-
ping), so that they will have an appreciation for MDE when they encounter it in industry.
Our motivation was experience: unless students encounter an idea (however immature)
in school, they are less likely to embrace it in the future. Further, teaching MDE is in-
timately related, if not inseparable, to the tools and languages that make MDE ideas
concrete.

Our initial attempt to do this (Fall 2011) was a failure. We used the Eclipse Modeling
Tools1 and spent quite some time creating videos for students to watch, both for instal-
lation and for tool usage. For whatever reason, installation for students was a problem.
A version of Eclipse was eventually posted that had all the tools installed. The results
were no better when students used the tools. A simple assignment was given to draw
a metamodel for state diagrams (largely something presented in class) using Eclipse,
let Eclipse generate a tool for drawing state diagrams, and to use this generated tool to
draw particular state diagrams. This turned into a very frustrating experience for most
students. 25% of our upper-division undergraduate class got it right; 50% had mediocre
submissions, and the remaining just gave up. Another week was given (with tutorial
help) to allow 80% to “get it right”, but that still left too many behind. The whole ex-
perience left a bitter taste for us, and worse, our students. We do not know if this is a
typical situation or an aberration, but we will not try this again.

1 Specifically EMT, Graphical Modeling Tooling Framework Plug-in, OCL Tools Plug-in, and
Eugenia for Eclipse 3.6.2.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 121–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 D. Batory, E. Latimer, and M. Azanza

In retrospect we found many reasons, but basically Eclipse MDE tools are the prob-
lem. (1) The tools we used were unappealing—they were difficult to use even for trivial
applications. (2) The tools fostered a medieval mentality in students to use incantations
to solve problems. Point here, click that, something happens. From a student’s perspec-
tive, this is gibberish. Although we could tell them what was happening, this mode of
interaction leaves a vacuum where a deep understanding should reside. (3) With the
benefit of years of hindsight, we concluded that the entry cost of using, teaching, and
understanding these tools was too high for our comfort. (Whether students agree with
this or not is the subject of an empirical study targeted for this fall). We sought an alter-
native and light-weight way to understand and demonstrate MDE, leveraging tools and
concepts undergraduates should already know.

In this paper, we present an evolutionary rather than revolutionary approach to un-
derstand and teach core MDE concepts (models, metamodels, M2M, M2T, T2M trans-
formations, constraints, and bootstrapping). We tried this approach with a new class
of undergraduates in Fall 2012 with many fewer problems. (Again, we carefully avoid
words like “better” or “more successful” until the results of our empirical study are in;
the appropriate word to use is “interesting”). This paper concentrates on the technology
we used and the case studies in its evaluation). It is our hope that others in MDE may
benefit from the simplicity of our approach.

node# name type edge# startsAt endsAt
(b)

(a)

node# name type

nStart start start

nReady ready state

nDrink drink state

nEat eat state

nPig pig state

nStop stop stop

edge# StartsAt EndsAt

e1 nStart nReady

e2 nReady nDrink

e3 nReady nEat

e4 nDrink nDrink

e5 nEat nEat

e6 nDrink nEat

e7 nEat nDrink

e8 nDrink nPig

e9 nEat nPig

e10 nPig nStop

(c)

(d)

-name
-type

node edge

-startsAt

1

-startPoint *

-endsAt

1

-endingPoint *

ready

drink

eat

family yells "pig"

start stop

Fig. 1. A State Machine and its Tables

2 MDE Models and
MetaModels

MDE can be understood as an ap-
plication of relational databases.
Although MDE is usually pre-
sented in terms of graphs (as vi-
sual representations of models or
metamodels), all graphs have sim-
ple encodings as a set of normal-
ized tables.

Consider a metamodel for fi-
nite state machines (FSMs) in Fig-
ure 1a, consisting of nodes and
edges. The schemas of the under-
lying relational tables (using man-
ufactured identifiers, denoted by
node# and edge#) are shown in
Figure 1b.

An instance of a FSM popu-
lates these tables with tuples. The
FSM of the first author’s eating
habits and its tuples are given in
Figure 1c-d.

Teaching Model Driven Engineering from a Relational Database Perspective 123

Manufactured tuple identifiers eliminate virtually all of the complexities of relational
table design (c.f. [8,12]). There are only five simple rules to map metamodels to table
definitions and one rule for tuple instantiation:

1. Every metaclass maps to a distinct table. If a metaclass has k attributes, the table
will contain at least 1+ k columns: one for the identifier and one for each attribute.

2. n : m associations are valid in metamodels [17], but not in ours. Every association
must have an end with a 0..1 or 1 cardinality. Figure 2 shows how n : m associations
are transformed into a pair of 1 : n and 1 : m associations with an explicit association
class. The reason for this is the next rule.

1

n

1n

student activities

activityRecord

m

student activities

activityRecord

n nm
remove

n:m assocs

Fig. 2. Transformation That Removes n : m Associations

3. Each association is represented by a single attribute on the “0 : 1” or “1” side of
the association. Usually an association adds an attribute to both tables that it relates.
The “n” side would have a set-valued attribute which is disallowed in normalized
tables. The “1” side has a unary-valued attribute (a tuple identifier) which is per-
mitted. As both attributes encode exactly the same information, we simply drop the
set-valued attribute. Figure 3a illustrates the application of the last three rules: the
dept table has two columns (# and name) and the student table has three (#, utid,
and enrolledIn). Column enrolledIn, which contains a dept# value, represents the
student− dept association. The mapping of Figure 1a to 1b is another example.

student# utid enrolledIn dept# name

student table dept table

-utid : String

student

-name : String

dept -enrolledIn

1

-has

*

Fig. 3. Diagram-to-Table Mapping

4. For classes that are related by inheritance, all attributes of superclasses are propa-
gated into the class tables. The identifier of the root class is shared by all subclasses.
Tables need not be produced for abstract classes. See Figure 4.

5. Only objects of a class that are not instances of subclasses populate the tuples of a
table. This rule is is discussed in more detail in Section 4.

6. Tuple identifiers can manufactured (e.g. e1 and e3 in Figure 1d) or they can be
readable single-column keys (e.g. nReady and nDrink). Keys are preferred for hand-
written assignments; manufactured identifiers are preferred in tools.

Note that relational tables have always been able to encode data hierarchies. We see the
elegance of normalized or “flat” tables to be an important conceptual simplicity.

124 D. Batory, E. Latimer, and M. Azanza

member# fname lname

member# fname lname rank

member# fname lname position

faculty
table

staff
table

member
table -fname

-lname

member

-rank

faculty

-position

staff

Fig. 4. Inheritance Diagram-to-Table Mapping

3 Model Constraints

OCL is the standard language for expressing model constraints. Given the connection
to relational databases, we can do better. Prolog is a fundamental language in Computer
Science (CS) for writing declarative database constraints. It is Turing-complete and is
a language that all CS students should have exposure. Figure 5a shows how to express
tuples of a relational table as Prolog facts. The first fact in Figure 5a defines the schema
of the node table of Figure 1b: it has three columns {id, name, type}.

table(node,[id,name,type]).

node(nstart,'start',start).
node(nReady,'ready',state).
node(nDrink,'drink',state).
node(nEat,'eat',state).
node(nPig,'pig',state).
node(nstop,'stop',stop).

(a) (b)
-startsAt

1

-start *

-endsAt

1

-end *
state

-name

normalStatestart

transition

stop

Fig. 5. A Prolog Table and Target MetaModel

Here are three constraints to enforce on a FSM:

c1 All states have unique names,
c2 All transitions must start and end at a state, and
c3 There must be precisely one start state.

Their expression in SWI-Prolog [19] is given below; error(Msg) is a library call that
reports an error. allConstraints is true if there are no violations of each constraint.

c1 :- node(A,N,_),node(B,N,_),not(A=B),error(’non-unique names’).
c2 :- edge(_,S,E), (not(node(_,S,_)) ; not(node(_,E,_))), error(’bad edge’).
c3a :- not(node(_,_,start)), error(’no start state’).
c3b :- node(A,_,start),node(B,_,start),not(A=B),error(’multiple start states’).
allConstraints :- not(c1),not(c2),not(c3a),not(c3b).

4 Model-to-Model Transformations

Fundamental activities in MDE are model-to-model (M2M) transformations. Instead of
using languages that were specifically invented for MDE, Prolog can be used to write
database-to-database (or M2M) transformations declaratively.

Teaching Model Driven Engineering from a Relational Database Perspective 125

Suppose we want to translate the database of Figure 1d to a database that conforms
to the metamodel of Figure 5b. (We shade abstract classes to make them easier to rec-
ognize.) The Prolog rules to express this transformation are:

start(I,A) :- node(I,A,start).
stop(I,A) :- node(I,A,stop).
normalState(I,A) :- node(I,A,state).
transition(A,B,C) :- edge(A,B,C).

Another example: The tuples of the sta f f and f aculty tables of Figure 4 do not
appear in the member table. To propagate tuples from subclass tables into superclass
tables, the following transformations can be used:

newMember(I,F,L) :- member(I,F,L).
newMember(I,F,L) :- staff(I,F,L,_).
newMember(I,F,L) :- faculty(I,F,L,_).
newStaff(I,F,L,R) :- staff(I,F,L,R).
newFaculty(I,F,L,P) :- faculty(I,F,L,P).

As Prolog is Turing-complete, database transformations can be arbitrarily complex.

Observations. There is an intimate connection between database design and metamodel
design. Presenting MDE in the above manner reinforces this connection. Further, stu-
dents do not have to be familiar with databases to understand the above ideas. Normal-
ized tables are a fundamental and simple conceptual structure in CS. Undergraduates
may already have been exposed to Prolog in an introductory course on programming
languages. (When one deals with normalized tuples and almost no lists, Prolog is indeed
a simple language). We chose Prolog for its obvious database connection, but suspect
that Datalog, Haskell, Scala, or other functional languages might be just as effective.

5 Model-to-Text Transformations

A key strength of MDE is that it mechanizes the production of boiler-plate code. This is
accomplished by Model-to-Text (M2T) transformations. There are many text template
engines used in industry. Apache Velocity is a particularly easy-to-learn and powerful
example [4]. We made two small modifications to Velocity to cleanly integrate it with
Prolog databases. Our tool is called Velocity Model-2-Text (VM2T).

First, we defined Velocity variables for tables. If the name of a table is “table” then
the table variable is “tableS” (appending an “S” to “table”). This enables a Velocity
f oreach statement to iterate over all tuples of a table:

#foreach($tuple in $tableS)
...

#end

Second, a Velocity template directs its output to standard out. We introduced mark-
ers to redirect output to different files during template execution. The value of the
MARKER variable defines the name of the file to which output is directed; reassigning
its value redirects output to another file. An example of MARKER is presented shortly.

126 D. Batory, E. Latimer, and M. Azanza

Figure 6a shows a metamodel for classes. Two instances of this metamodel, city and
account, are shown in Figure 6b. The database containing both instances is Figure 6c.

Figure 7a is a VM2T template. When the non-MARKER statements are executed,
Figure 7b is the output. Perferably, the definition of each class should be in its own file.
When all statements are executed, the desired two files are produced (Figure 7c).

Given VM2T, it is an interesting and straightforward assignment to translate the FSM
database of Figure 1d to the code represented by the class diagram of Figure 8.

-name

class
-name
-type

attribute-ofClass

1 *
(a)

-name : String
-state : String

city
-number : Integer
-balance : Double

account

(b)

table(class,[cid,name]).
class(c1,city).
class(c2,account).

table(attribute,[aid,name,type,ofclass]).
attribute(a1,name,string,c1).
attribute(a2,state,string,c1).
attribute(a3,number,integer,c2).
attribute(a4,balance,double,c2).

data.pl (c)

Fig. 6. A Class Metamodel, a Model, and its Prolog Database

#set($MARKER="//--")
#foreach($c in $classS)
${MARKER}src/${c.name}.java
class ${c.name} {
#foreach($a in $attributeS)
#if ($c.cid==$a.ofclass)

${a.type} ${a.name};
#end
#end
}

#end gen.vm

(a) class city {
string name;
string state;

}

class account {
integer number;
double balance;

}

stdout

(b) class city {
string name;
string state;

}

src/city.java
class account {

integer number;
double balance;

}

src/account.java

(c)

Fig. 7. A VM2T Template and Two Outputs

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FSM

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

«interface»
state

FSM() {
state = new Start();

}
gotostart()
{ state = state.gotostart(); }

gotoready()
{ state = state.gotoready(); }

...

-state

1*

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

start

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

ready

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

eat

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

drink

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

pig

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

stopState gotostart()
{ return this; /* ignore */ }

State gotoready()
{ return new Ready(); }
...

String getName()
{ return "start"; }

Fig. 8. Class Diagram of FSM Code Output

Observations. The benefits of Velocity seem clear: students use an industrial tool that
is not-MDE or Eclipse-specific; it is stable, reasonably bug-free, and has decent docu-
mentation. In our opinion, it is easy to learn and relatively painless to use.

Teaching Model Driven Engineering from a Relational Database Perspective 127

6 Text-to-Model Transformations

Given the above, it is not difficult for students to understand Figure 9: an application
engineer specifies a FSM using a graphical tool, the tool produces a set of tables, the
tables are transformed, and VM2T produces the source code for the FSM.

draws
FSM
using Application

Engineer
FSM tool

stores
FSM

graph in
initial

relational
tables

vm2t script
translates

to code application source code

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FMS

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

«interface»
State

FSM() {
 state = new Start();
}
gotostart()
{ state = state.gotostart(); }

gotoready()
{ state = state.gotoready(); }

...

-state

1*

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Start

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Ready

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Eat

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Drink

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Fam

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

StopState gotostart()
{ return this; /* ignore */ }

State gotoready()
{ return new Ready(); }
...

String getName()
{ return "start"; }final

relational
tables

database
to

database
mappings

Fig. 9. FSM Application Engineering in MDE

What is missing is a Text-to-Model (T2M) transformation (the dashed arrow in Fig-
ure 9) that converts grossly-verbose XML output of a graphics tool into a clean set
of Prolog tables. It is easy to write a simple Java program that reads XML, parses it,
and outputs a single text file containing a Prolog database. Using a more general tool
that parses XML into Prolog may be preferable, but loses the advantage a hands-on
understanding of the inner workings of T2M transformations.

Finding suitable graphical editor GE is a three-fold challenge:

(a) its XML must simple to understand,
(b) its XML is stable, meaning its XML format is unlikely to change anytime soon, and
(c) its palette2 is customizable.

MS Visio is easy to use and its palette is easily customizable, but its XML files are
incomprehensible and MS periodically modifies the format of these files. Simpler GEs,
such as Violet [21], yUML [22], UMLFactory [20], satisfy (a) and (b); it is not difficult
to write T2M tools for them.

We have yet to find a GE that satisfies all three constraints. Violet is typical: all
palettes are hardwired—there is one per UML diagram. One cannot define a set of
icons (with graphic properties) to draw customized graphs. All one can do is to translate
XML documents that were specifically designed for a given UML diagram to Prolog
tables. This isn’t bad; it just isn’t ideal. Until a flexible GE is found, bootstrapping
MDELite (to build customized GEs for target domains, a key idea in MDE) is difficult
to demonstrate. More on this in Section 9.

Observations. MDE tools (such as the FSM tool) could be structure editors. That is,
a tool should immediately label incorrect drawings or prevent users from creating in-
correct drawings. GEs can be stupid—they let you draw anything (such as edges that
connect no nodes). To provide immediate feedback would require saving a design to
an XML document, translating the document into Prolog tables, evaluating Prolog con-
straints, and displaying the errors encountered. Modifying existing tools to present this
feedback could be done, but this is not high-priority.

2 The icons/classes that one can drag and drop onto a canvas to create instances.

128 D. Batory, E. Latimer, and M. Azanza

7 MDELite and Its Applications

MDELite is a small set of tools (SWI Prolog, VM2T) that are loosely connected by a
tiny Java framework that implements the ideas of the prior section. An MDELite appli-
cation uses this framework and is expressed as a category [5,16]. A category is simply
a directed multigraph; nodes are domains and arrows are functions (transformations)
drawn from the function’s domain to its codomain. Many of the interesting ideas about
categories, like functors and natural transformations, are absent in the MDE applica-
tions of this paper, so there is nothing to frighten students. Nonetheless, it is useful to
remind students that categories are a fundamental structure of mathematics, they are
a core part of MDE formalisms (e.g., [9]), and they define the structure of an MDE
application.3

As an example of an MDELite application, consider the tool chain that allows users
to draw FSMs and generate their corresponding Java source (Figure 9). This tool chain
is a category with four domains (Figure 10): the domain of XML documents that are
output by the FSM tool, a domain of database instances that a T2M tool creates, an-
other domain of database instances that results from a restructuring of T2M-produced
databases, and a domain of Java Source Code whose elements are FSM programs.

FSM
XML

Init
Prolog
Tables

Java
Source
Code

T2M M2T
Final

Prolog
Tables

M2M

Fig. 10. Category of a FSM Tool

When this category is written in Java, each domain is a class and each arrow is a method
(see Figure 11a). Unlike most UML class diagrams, MDELite designs typically have
no associations, but can have inheritance relationships.

To perform an action of the FSM tool (i.e. a method in Figure 11a), one writes a
straight-line script to invoke the appropriate transformations and checks. Figure 11b
shows the sequence of method calls in an MDELite program to translate an FSMXML
file—an XML file produced by the FSM drawing tool—into a Java program. Any error
encountered during translation or conformance test simply halts the MDELite applica-
tion with an explanative message.

+T2M() : InitPrologTables
-xmlFile

FSMXML

+M2M() : FinalPrologTables
+conform() : Boolean

-prologFile
InitPrologTables

+M2T() : JavaSourceCode
+conform() : Boolean

-prologFile
FinalPrologTables

-javaDirectory
JavaSourceCode

JavaSourceCode tool(FSMXML x)
throws RunTimeException {
ipt = x.T2M();
ipt.conform();
fpt = itp.M2M();
fpt.conform();
jsc = ftp.M2T();
return jsc;

}

(a) (b)

Fig. 11. MDELite Encoding of the Category of Figure 10

3 Also known as megamodels [7] and tool chain diagrams [15].

Teaching Model Driven Engineering from a Relational Database Perspective 129

Observations. MDE lifts metamodel design to the level of metaprogramming—
programs that build other programs. The objects of MDE are programs (models) and
the methods of MDE are transformations that yield or manipulate other programs (mod-
els). The elements of each domain are file system entities—an XML file, a Prolog file
that encodes a database, or a directory of Java files—not typical programming language
objects [6]. Each MDELite method is literally a distinct executable: a T2M or M2T
arrow is a Java program and an M2M arrow (and conformance test) is a Prolog pro-
gram. Perhaps MDELite needs to be written in an OO shell scripting language, such
as Python. We used Java to implement the MDELite framework (and may reconsider
this decision—we figured Prolog is enough for undergraduates to absorb). MDELite is
clearly a multi-lingual application.

8 Evaluation: A Case Study of MDELite

Our first application of MDELite was quite instructive. We found several free UML
tools that we wanted to (i) draw UML class diagrams, (ii) apply the ideas of the previous
sections, and (iii) integrate.

The integration of the Violet, UMLFactory, and yUML tools (as they existed in June
2012) is expressed by the category of Figure 12a.4 We could draw UML class diagrams
in each of these tools and have them displayed in any other tool. So a script that trans-
lated a Violet class diagram into a yUML class diagram is Figure 12b and vice versa is
Figure 12c. Figure 13 shows the translation of a specific Violet class diagram (an XML
file) into an SDBPL database and then into a yUML class diagram (a yUML file).

(a)

yUML Violet2yUML(VioletXML v){
vpl = v.toPL();
vpl.conform();
sdb = vpl.toSDB();
sdb.conform();
ypl = sdb.toYUML();
ypl.conform();
return ypl.toYUML();

}

VioletXML yUML2Violet(yUML y){
ypl = y.toPL();
ypl.conform();
sdb = ypl.toSDB();
sdb.conform();
d = sdb.toDOT();
dk = d.kieler();
sdb1 = dk.toSDB();
sdb2 = sdb.projectXY();
sdb3 = sdb2.merge(sdb1);
upl = sdb3.toUMLF();
upl.conform();
return upl.toXML();

}

(b)

(c)

Fig. 12. A Category for an MDELite Application

The category of Figure 12a is produced by a process that is similar to global schema
design in databases that integrates database schemas of different tools [10]. Each tool

4 The only oddity of Figure 12a is the domain SDBPL×SDBPL, which is the cross-product of
the SDBPL domain with itself. The merge arrow composes two SDBPL databases into a single
SPBPL database (i.e. merge : SDBPL×SDBPL→ SDBPL).

130 D. Batory, E. Latimer, and M. Azanza

table(class,[id,"name","fields","methods",superid]).
class('classnode0','Library','name','getName()',null).
class('classnode1','Book','title','getTitle()',null).

table(association,[cid1,"role1",arrow1,
 cid2,"role2",arrow2]).
association('classnode1','*','agg',
 'classnode0','1','').

table(interface,[id,"name","methods"]).
:- dynamic interface/3.

table(classImplements,[cid,iid]).
:- dynamic classImplements/2.

table(interfaceExtends,[id,idx]).
:- dynamic interfaceExtends/2.

table(position,[id,x,y]).
position('classnode0',333,259).
position('classnode1',599,264).

(a) Violet Class Diagram

(c) Corresponding yUML Class Diagram (b) SDBPL database

Fig. 13. A Violet Diagram mapped to an SDBPL database mapped to a yUML Diagram

exports and imports a distinct data format (read: database). A global schema (a Prolog
database, SDBPL, to which all tool-specific databases are translated) stores data that is
shared by all tools. The hard part is manufacturing data that is not in the global database
that is needed for tool-specific displays. An example is given shortly.

This application required all kinds of T2M, M2T, and M2M transformations. Fig-
ure 14 shows the size of MDELite framework and this application in lines of Prolog,
Velocity, and Java code. As the tables indicate, the framework is tiny; the application
numbers indicate the volume of “code” that was needed to write this application.

LOC LOC LOC Java
Concern Prolog Velocity Java

MDELite Framework 84 0 581
MDELite Application 506 654 2532

Total 590 654 3093

Fig. 14. Size of MDELite Framework and Application: Lines of Prolog, Velocity, and Java Code

Observations. You can try this for any set of tools that satisfies constraints (a) and (b) of
Section 6. Doing so, you will likely discover that your set of selected tools were never
designed for interoperability. Ideally, interoperability should be transparent to users.
Unfortunately, this is not always achievable. We found UMLFactory to be flakey; most
tools had cases that we simply couldn’t tell if they worked correctly. Hidden dependen-
cies lurked in XML documents about the order in which elements could appear and
divining these dependencies to produce decent displays was unpleasant (as there was
no documentation). But it is a great lesson about the challenges of tool interoperability,
albeit on a small-scale.

Interesting technical problems also arise. A yUML spec for Figure 13c is:

[Library|name|getName()]
[Book|title|getTitle()]
[Book]<>*-1[Library]

Translating a yUML spec to the XML document of another tool requires graphical (x,y)
positioning information about each class (i.e. where each class is to appear on a canvas).

Teaching Model Driven Engineering from a Relational Database Perspective 131

yUML computes this information, but never returns it. Lacking positioning information,
Violet simply draws all the classes on top of each other, yielding an unreadable mess.
We looked for tools to compute node positioning information for a graph and found the
Kieler Web Service [13]. We translated an SDBPL database into a DOT graph, trans-
mited the DOT file to the Kieler server, and it returned a new DOT graph with the
required positioning information. A simple T2M tool mapped the positioning informa-
tion to a Prolog table, and this table was merged with a SDBPL database that lacked
positioning information (as indicated in the Figure 12c script). Only then was a usable
Violet file produced. Figure 15a shows the generated DOT file, Figure 15b the DOT file
returned by the Kieler server, and Figure 15c the T2M extracted position table.

digraph {
// classes
c1;
c0;

// interfaces

// class Implements

// interface Extends

// class Extends

// associations
c1->c0;

}

(a) Generated DOT file

digraph {

// classes

c1 [pos="50.0,20.0", width="0.14", height="0.14"];
c0 [pos="20.0,20.0", width="0.14", height="0.14"];
c1->c0 [pos="45.0,20.0 25.0,20.0"];
bb="0,0,70.0,40.0";

}

(b) Kieler-Returned DOT file

table(position,[id,x,y]).
position(c1,50,20).
position(c0,20,20).

(c) Extracted Position Table

Fig. 15. DOT File Transformations

9 Towards Bootstrapping

Although we have not fully bootstrapped MDELite for reasons discussed earlier, there
are two basic steps to produce the FSM tool or any other domain-specific MDE tool.

-name : String
«oval»State «Arrow»

Transition

-startsAt 1 -start*

-endsAt1
-end *

«DoubleCircle»
Stop

«SolidCircle»
Start

Fig. 16. FSM Metamodel with Graphical Stereo-
types

First, we need to specify how meta-
class instances are to be drawn by the
GE . The simplest way is to allow the
GE to set properties of each metaclass
to provide the necessary information.
For example, Figure 16 uses stereotypes
to declare that a State is to be drawn as
an oval, except a Start state is a solid-
circle and a Stop state is a double-circle
(c.f. Figure 1). Other ways to encode
this information are also possible.

Second, look at Figure 17. A FSM
domain architect would (1) draw the
FSM metamodel using a Metamodel
Drawing Tool (MDT), which mecha-
nizes the rules of Section 2 to produce Prolog table definitions for the input metamodel
and a palette of icon-metaclass pairings to customize the GE , (2) write the Prolog meta-
model constraints, the Prolog M2M transformations, and a Velocity M2T file, and (3)

132 D. Batory, E. Latimer, and M. Azanza

run a build script that integrates these inputs with a MDE Tool Shell to generate the
FSM tool.

FSM
Domain

Architect

MetaModel
Drawing Tool

(MDT)

prolog MM
constraints

(2) writes

VM2T file

supplies parts
as parameters

to

MDE Tool Shell
(which includes

the graphical
editor)

(1) draws FSM
metamodel

class diagram

=
FSM Tool

(3) runs
script

ToolBuild.xml

prolog table
schemas +
palette file

M2M
rules

Fig. 17. Generating a MDE FSM Tool

To bootstrap MDELite requires an MDEGod to build the two tools (MDT and
MDE Tool Shell) and script (ToolBuild.xml) that a Domain Architect (Einstein) in-
vokes (see Figure 17). Specifically, MDEGod writes the ToolBuild.xml script and
purchases or outsources the writing of the MDE Tool|Shell (which includes the GE).
Initially the MDEGod hacks a MetaModel Drawing Tool (MDT). MDEGod then relies
on a fundamental MDE constraint that the MDELite meta-meta-model must be an in-
stance of itself. So, the MDEGod plays the role of a MetaModel Domain Architect,
replacing Einstein in Figure 17 with him/herself. MDEGod (1) draws the metamodel
of all class diagrams, (2) writes its Prolog metamodel constraints, Prolog M2M trans-
formations, and a VM2T file (which produces Prolog table schemas and a palette for
drawing class diagrams from the Prolog database), (3) runs the build script to produce
the MDT to complete the bootstrap, thereby building an MDT to replace the hacked
MDT . Again, all of this hinges on finding a palette-customizable GE .

10 Personal Experiences, Insights, and a Small Second Case Study

We created MDELite as an alternative to Eclipse MDE tools to understand and teach
MDE concepts. Our work begs for an empirical study to evaluate the benefits of teach-
ing MDELite; we intend to conduct such a study later this year. MDELite is an inter-
esting technical contribution in its own regards, and that is what we focus on in this
paper.

We used MDELite in a Fall 2012 undergraduate course on “Introduction to Software
Design”, giving an assignment more ambitious than what we tried in Fall 2011. Specif-
ically, we asked students to:

1. Given a simple metamodel of class diagrams, manually produce the schemas of the
metamodel’s underlying Prolog tables;

Teaching Model Driven Engineering from a Relational Database Perspective 133

2. Write a T2M transformation in Java using Java reflection to extract information
about classes, methods, and fields from .class files and present this information
as tuples in their tables;

3. Write Prolog constraints to evaluate the correctness of the tables they produced;
4. Write a Velocity M2T transformation that maps their tables into stubbed Java source;
5. Write another T2M transformation that converts Java reflection information to pro-

duce a yUML specification, which is then translated into a Violet diagram by
MDELite; and

6. Extend the MDELite category (Figure 12) with the domains and arrows of Figure 18
by implementing the required classes and methods to script their transformations.

We can report many fewer difficulties with this assignment than the simpler assignment
of the previous year that used Eclipse MDE tools. Still, there are some practical diffi-
culties that we are obliged to alert readers.

CLASS
FILES

CLASS
PL

JAVA
SOURCE

T2M M2TYUML T2M

Fig. 18. Additional Domains and Arrows to Figure 12

Multi-Paradigm Programming. We are Java programmers and novices to Prolog. Pro-
log and Java have two very different mind-sets, and flipping between paradigms can be
confusing. Trivial things like Prolog rules ending in (Java) semicolons instead of (Pro-
log) periods was a mistake we constantly made. Prolog inequalities (=<) are syntacti-
cally reversed in Java (<=). In SWI-Prolog, when something is mistyped, a question-
mark prompt (?) is produced and the usual Windows/Linux character escapes to reset
to the command prompt simply do not work. Problems like these disappear once famil-
iarity with Prolog sets in—they clearly are not fundamental, but are jolting to students
in a first, quick immersion into Prolog. For this reason, recommend that MDELite be
a pair-programming project: one person concentrating on Prolog, the other on Java, to
minimize cross-world confusion.

Many-Columned Tables. When there are many columns, it can be daunting in Pro-
log to correctly reference a table and account for each of its columns in a predi-
cate. In such cases, one can M2M transform such tables into RDF 3-tuple format
of (tupleid, columnName, value) or a 4-tuple format (tableName, tupleid, column-
Name, value) for easy attribute referencing.

VioletPL SDBPL YUMLPL YUML

M2M M2M M2T

Fig. 19. Debugging Transformation Scripts

Transformation Debugging. MDELite
provides a microcosm of the chal-
lenges of debugging transformations.
Even though a transformation takes an
object (a model) as input and produces
an object (a model) as output, objects
are Prolog databases that are not simple

134 D. Batory, E. Latimer, and M. Azanza

values and can have complex structures. Writing transformations in any language is
not simple—it is easy to forget a case or miss-write a translation. Our hunch is that the
simpler a transformation’s specification, the easier it will be to track down errors. This
remains, however, a conjecture.

A technique that we found useful—perhaps motivated by the “shape” of the category
of Figure 12a—was to define a transformation τ and then its inverse τ−1, so that we
could test whether τ ·τ−1 was an identity or an equivalence.5 This helped, but obviously
did not eliminate all bugs.

Nonetheless, the fundamental challenge in debugging transformations becomes
clearly evident: an error is detected in a database (far right of Figure 19). Upon exami-
nation, we discovered that the transformation that produced it was correct, but its input
database was incorrect. This unwinds backwards until we discover a correct database
that was input to a transformation that produced an incorrect database. Surely results on
debugging Prolog programs and debugging database transactions—studied long ago—
might be useful to MDELite. This too remains a conjecture.

Preparatory M2M Transformations. When Velocity templates have many loops and
i f statements, it is easy to lose track of loop and if-then-else boundaries, thereby cre-
ating incorrect templates. One reason why loops and if-statements are used is to join
tables. For example, consider the following Class table rows, where class Customer is
connected to class Address via a ∗ →1 association:

class(c1,’Customer’,’’,’’,’’).
class(c2,’Address’,’’,’’,’’).
association(c1,’*’,none,c2,’1’,arrow).

In a M2T transformation, the class table must be joined (twice) with the association
table to convert class identifiers (c1 and c2) into class names (Customer and Address).
Similarly, other computations can arise to convert atoms (like ‘arrow’ above) into ren-
dering text (in this case, the character ‘>’ to denote an arrow). Such translations sig-
nificantly complicate Velocity templates—it would not be so bad if one could indent
Velocity statements to pair up the start and end of loops and if-statements:

#forall($a in $associationS)
#forall($c in $classS)

#if ($a.id = $c.id)
#set($classname=$c.name)

#end
#end

#end

Indenting, however, generates extra spaces, which is not always desirable. The alterna-
tive is to produce a table of association declarations that render Velocity printing trivial:

yumlAssociation(’Customer’,’*’,’’,’Billing Address’,’1’,’>’).

5 Two documents d1 and d2 can differ in whitespace, ordering of declarations, etc. and still
represent equivalent class diagrams.

Teaching Model Driven Engineering from a Relational Database Perspective 135

Using M2M transformations can reduce the size (read: complexity) of Velocity files
substantially. Although this is not a hard-and-fast heuristic, our experience is that keep-
ing Velocity templates as simple as possible is worth the extra stage in Prolog
translation.

11 Related Work

A paper by Favre inspired our work [11]. He warned against adding complex technolo-
gies on top of already complex technologies, and advocated a back-to-basics approach,
specifically suggesting that MDE be identified with set theory and the use of Prolog to
express MDE relationships among models and their meta-model counterparts.

In searching the literature, we found many papers advocating Prolog-database inter-
pretations of MDE. For lack of space, we concentrate on the most significant, although
we feel none are quite as compact or as clean as MDELite. Almendros-Jiménez and Irib-
arne advocated Prolog to write model transformations and model constraints [2,3]. The
difference between our work and theirs is orientation: our goal is to find a simple way to
demonstrate and teach MDE to undergraduates. Their goal is to explore the use of logic
programming languages in MDE applications. For example, PTL is a hybrid of the Atlas
Transformation Language and Prolog for writing model transformations [1]. In another
paper, OWL files encode MDE databases and OWL RL specifies constraints in terms
of Description Logics. For teaching undergraduates, the use of OWL and Description
Logic is overkill and obscures the simplicity of MDELite. How M2T transformations
are handled and MDE applications (categories) are encoded are not discussed.

Störrle’s Model Manipulation Toolkit uses unnormalized (set-valued) relational ta-
bles as the basic Prolog data representation and uses Prolog to query these tables [18].
Although M2M transformations seem not to be discussed, the obvious implication is
present. MDELite goes beyond this work also integrating M2T and T2M transforma-
tions, as well as exposing the bigger picture of MDE applications as categories.

Oetsch et. al. advocate Answer-Set Programming (ASP) to express a limited form of
MDE [14]. Entity-Relationship models represent meta-models (drawn using Eclipse
MDE tools); and their tool allows one to enter ASP facts (similar to Prolog facts)
manually that conform to the input meta-models; ASP queries are used to validate
meta-model constraints expressed in the ER model.6 MDELite is more general than
this: M2M, M2T, and T2M mappings need to be defined in addition to model con-
straints. Further, how MDE applications are defined (as in MDELite categories) is not
considered.

12 Conclusions

MDELite reinterprets MDE from the viewpoint of relational databases. A model is a
database of tables; (meta-)model constraints and M2M transformations are expressed
by Prolog. M2T and T2M transformations rely on simple Java programs. Categories, a

6 The Eclipse OCL tool plugin is similar in that one has to manually enter tuples beforehand
before OCL queries can be executed. This is impractical, even for classroom settings.

136 D. Batory, E. Latimer, and M. Azanza

fundamental structure in mathematics, integrates these concepts to define MDE applica-
tions. MDELite leverages (and maybe introduces or refreshes) core undergraduate CS
knowledge to explain, illustrate, and build MDE applications without the overhead and
complexity of Eclipse MDE tools. Our case studies indicate MDELite is feasible; a user
study to evaluate the benefits of MDELite in teaching is a next step in our work.

We believe MDELite is a clarion way to explain MDE to undergraduate students. It is
our hope that others may benefit, and indeed improve, our ideas. MDELite is available
at http://www.cs.utexas.edu/schwartz/MDELite.html

Acknowledgements. We am indebted to Salva Trujillo (Ikerlan), Oscar Diaz (San Se-
bastian), and Perdita Stevens (Edinburgh) for their insightful comments on earlier drafts
of this paper. We also thank Robert Berg, Eric Huneke, Amin Shali, and Joyce Ho for
VM2T. We also appreciate the help given to me by Miro Spönemann on the Kieler
graph layout tools and Ralf Lämmel his invaluable help answering questions about Pro-
log. We gratefully acknowledge support for this work by NSF grants CCF 0724979 and
OCI-1148125.

References

1. Almendros-Jiménez, J.M., Iribarne, L.: A model transformation language based on logic
programming. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H.
(eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 382–394. Springer, Heidelberg (2013)

2. Almendros-Jimenez, J., Iribarne, L.: A framework for model transformation in logic pro-
gramming (2008)

3. Almendros-Jimenez, J., Iribarne, L.: Odm-based uml model transformations using prolog
(2011)

4. Apache Velocity Project, http://velocity.apache.org/
5. Batory, D., Azanza, M., Saraiva, J.: The Objects and Arrows of Computational Design. In:

Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 1–20. Springer, Heidelberg (2008)

6. Batory, D.: Multilevel models in model-driven engineering, product lines, and metaprogram-
ming. IBM Syst. J. (July 2006)

7. Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proc. of the OOP-
SLA/GPCE Workshop on Best Practices for Model-Driven Software Development (2004)

8. Dehayni, M., Féraud, L.: An approach of model transformation based on attribute grammars.
In: Masood, A., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817, pp.
412–423. Springer, Heidelberg (2003)

9. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Czarnecki, K.,
Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 21–36.
Springer, Heidelberg (2008)

10. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison-Wesley (2010)
11. Favre, J.M.: Towards a basic theory to model model driven engineering. In: Workshop on

Software Model Engineering, WISME 2004 (2004)
12. Hainaut, J.-L.: The transformational approach to database engineering. In: Lämmel, R.,

Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143. Springer, Heidelberg
(2006)

13. Kieler Web Service Tool,
http://trac.rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Releases/Tools

http://www.cs.utexas.edu/schwartz/MDELite.html
http://velocity.apache.org/
http://trac.rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Releases/Tools

Teaching Model Driven Engineering from a Relational Database Perspective 137

14. Oetsch, J., Pührer, J., Seidl, M., Tompits, H., Zwickl, P.: VIDEAS: A development tool for
answer-set programs based on model-driven engineering technology. In: Delgrande, J.P.,
Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 382–387. Springer, Heidelberg (2011)

15. Oldevik, J.: Umt: Uml model transformation tool overview and user guide documentation
(2004), http://umt-qvt.sourceforge.net/docs/

16. Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press (1991)
17. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling: state of the art and

research challenges. In: Proc. of the 2007 Dagstuhl Conference on Model-Based Engineering
of Embedded Real-time Systems (2010)

18. Störrle, H.: A prolog-based approach to representing and querying software engineering
models

19. SWI-Prolog, http://www.swi-prolog.org/
20. UML Factory, http://www.umlfactory.com/
21. Violet UML Editor, http://alexdp.free.fr/violetumleditor/page.php
22. yUML Beta, http://yuml.me/

http://umt-qvt.sourceforge.net/docs/
http://www.swi-prolog.org/
http://www.umlfactory.com/
http://alexdp.free.fr/violetumleditor/page.php
http://yuml.me/

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 138–153, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Big Metamodels Are Evil

Package Unmerge –– A Technique for Downsizing Metamodels

Frédéric Fondement, Pierre-Alain Muller,
Laurent Thiry, Brice Wittmann, and Germain Forestier

MIPS, Université de Haute Alsace,
12, rue des frères Lumière, 68093 Mulhouse cedex, France
{frederic.fondement,pierre-alain.muller,

laurent.thiry,brice.wittmann,germain.forestier}@uha.fr

Abstract. While reuse is typically considered a good practice, it may also lead to
keeping irrelevant concerns in derived elements. For instance, new metamodels
are usually built upon existing metamodels using additive techniques such as
profiling and package merge. With such additive techniques, new metamodels
tend to become bigger and bigger, which leads to harmful overheads of com-
plexity for both tool builders and users. In this paper, we introduce «package
unmerge» - a proposal for a subtractive relation between packages - which
complements existing metamodel-extension techniques.

1 Introduction and Motivation

In the domain of software engineering, reuse is typically achieved by sharing reusable
software parts in so-called libraries. From reusable procedures or structures, those parts
evolved into fully fledged components [1]. Components are pieces of software that can
be combined together to build up new software systems. Research related to this topic
showed that it is of paramount importance to define precisely contracts for components,
upon which both component makers and component users can rely [2]. Interface spe-
cification, which indicates what messages can be treated or sent by a component, is
only the very first step towards the definition of a contract [3]. Of course, any com-
ponent claiming to implement a contract must fulfill it completely.

Programming languages are another mean for helping software reuse. Indeed, lan-
guages abstract away details of platforms while still making it possible to describe
expected behavior of a software system. Examples of platforms’ details abstracted by
many languages are the instruction set of a processor, and available interruptions of an
operating system. A compiler can automatically infer details abstracted away from
code so that an executable program can be delivered, as long as the code conforms to
the expected programming language. This way, the same source code could be used by
different compilers made for the same programming language, but targeting different
platforms, e.g. different processors or operating systems. Model driven engineering
(MDE) pushes the same idea a step further: abstracting away details of platforms while
offering simple constructs in a modeling language, with compilers being replaced by

 Big Metamodels Are Evil 139

model transformations. In addition to model transformations, a given model can be
manipulated by a constellation of tools, thus following a data-centric architectural style.

Examples of such tools for modeling are textual or graphical model editors, model
verifiers, model checkers, model serializers, model interpreters, and model transfor-
mation engines. All of them need to be able to manipulate one (or more) model(s).
Following the example of compilers handling programs written in a well-defined
language, tools for modeling handle models with a well defined structure. The model
structure is most of the time specified by a metamodel. In this realm, metamodels are to
modeling tools, what contracts were to components.

One typical problem with this data-centric architectural style, is that tools might not
all have the same capabilities. If some tools may handle all of the possible modeling
constructs of a language (as defined in a metamodel), some other tools may only work
on a given subset of those constructs [4]. An example is UML code generators, which
are usually able to generate code for class diagrams, or state chart diagrams, yet dis-
carding any information provided by use case diagrams or timing diagrams. It does not
necessarily mean that such tools, which cover only part of a modeling language, should
be blamed: usually, discarded information is just useless within the perspective of the
intent of the tools [5]. However, it might make tools’ users feel that the contract of the
tool is not fulfilled as parts of the metamodel are ignored.

A similar situation happens when it comes to defining a new language by reusing an
existing metamodel. To reuse an existing metamodel, one usually extends it by defining
additional concepts and relations. To extend a metamodel, one possible solution is to
use an annotation mechanism such as profiles [6 - section 18]. However, this approach
is an additive-only technique, making the resulting metamodel bigger than the extended
metamodel. Thanks to (or because of) this additive nature, tools for the extended lan-
guage can still work on models of the new language, yet ignoring all information that
could be included in the model thanks to the extension. As an example, if someone
extends UML with a profile, UML code generators will be still able to generate code for
profiled UML models, but information carried by the profile application will be merely
ignored, usually without even a warning.

From the modeling tools’ users point of view, the only way to know whether an
element of a model will be ignored or not is to read documentation written in natural
language, or to try and see either nothing happening, or an error message raised while
invoking the tools. This situation can be compared to a compiler not considering the
complete program code without clearly stating which part of the code is considered. By
indicating formally the subset of the metamodel that is actually covered, a tool could be
made more precise regarding handled models, i.e. regarding its contract. One could
thus check his/her models in order to know exactly what information is to be ignored by
a given tool. Moreover, by supplying a real and clear interface (i.e. metamodel) of
handled elements, modeling tools could be more easily selected, verified, or assembled,
following the advanced practices of the software component community.

While metamodel extension has deserved significant interest, reduction has not yet
gained the same exposure. As a consequence, the more a metamodel is built by reusing
other metamodels, the more it is likely to contain irrelevant constructs from the pers-
pective of a given tool. In other words, metamodels contain too many features, one

140 F. Fondement et al.

reason for that being that it is currently impracticable to identify and remove unneeded
parts.

In this paper, we examine how reduction of metamodels could be expressed in an
explicit way, basically by describing package unmerge mechanism, built as a coun-
terpart of the existing package merge metamodel additive extension mechanism as
defined in [7 - section 11.9.3].

The paper is organized as follows: after this introduction, section 2 presents three
dominant techniques for metamodel extension, section 3 presents our proposal
for reduction (which we call package unmerge relation), section 4 describes the
package unmerge algorithm, section 5 provides more in depth examples, section 6
gives a short overview of the tool support we propose for package merge and unmerge,
section 7 compares our approach to others, and section 8 concludes and presents future
directions.

2 Extending Metamodels

Typical mechanisms for controlling metamodel extension include UML profiles,
package merge relations, and aspect weaving.

Profiles [6 - section 18] became popular as UML promoted them as a lightweight
approach for language extension. Profiles define extension points (called stereotypes)
for the metaclasses of a (MOF [8]) metamodel. Stereotypes can insert additional
properties or constraints to the metaclass they extend. Stereotypes work as decorations,
do not modify the decorated metamodels, and can be removed or swapped at any
moment in the lifecycle of a model. Therefore, models remain conform to their original
metamodels (regardless of profiles).

Package merge relations [7 - section 11.9.3], as opposed to profiles, are considered
an heavyweight extension mechanism, since they impact directly the metamodel ele-
ments. Package merge relations are available both in the UML standard and in the MOF
metalanguage. Package merge relations combine the contents of two packages into a
single one, following a recursive union-like copy approach. In case of name conflicts,
conflicting elements are merged together into the same element in the resulting pack-
age. Package merge relations make the core of the modularization technique of the
UML metamodel. An illustrating example is the definition of UML compliance levels.
Compliance levels define the modeling concepts that must be supported by tools. A tool
with compliance level L1 must support class diagrams and use case diagrams, while L2
compliance level also requires to support profiles. Since UML modeling elements are
distributed across a set of packages in the UML metamodel, the L1 compliance level is
formalized by a package that is merely built by merging those packages that define the
necessary concepts for class and use case diagrams. Similarly, L2 compliance level is
also defined by a package that merges L1 package and the package that formalizes the
profile concepts (among others).

Aspect weaving was originally proposed in the context of programming [9]. Gen-
erally speaking, aspects define extension points (often called join points) where ele-
ments (often called advices) may be injected (woven in aspect-oriented terminology).

 Big Metamodels Are Evil 141

Join points are conveniently specified by pointcuts, which can target different join
points using a single pattern. More recently, aspect weaving has been used to alter
models, and by extension metamodels [10]. Many different formalisms have been
studied so far, including UML class diagrams [11]. As MOF is also based on class
diagrams, MOF metamodels may also be woven with aspect models in order to be
extended.

To summarize, profiles provide a lightweight approach, that makes some meta-
modeling capabilities available at modeling time. Package merge relations focus on
meta-modeling time. Aspect weaving, is used at modeling time, but can be used at
meta-modeling time as well, since any metamodel is also a model.

3 Unmerging Metamodels

A metamodel may be seen as a hierarchical set of information about the structure of
conforming models. For metalanguages such as MOF and Ecore, such structure is
defined using a set of meta-classes and relations between meta-classes; a model can
thus be seen as a set of related instances. By altering those meta-classes and relations, it
is possible to restrict the range of conforming models. Typical modifications include
removing class properties and strengthening constraints such as multiplicities.

To identify those specific removal points, i.e. elements that should be dropped from
a to-be-reduced metamodel, we found convenient to use the same metalanguage in
which the to-be-reduced metamodel is expressed. Meta-elements to be pruned in a
to-be-reduced metamodel are identified in a reduction metamodel: the elements to be
cut are duplicated in the unmerge metamodel using the same name and included in a
matching hierarchy. Thus, prune points are identified as leaves of the reduction me-
tamodel. Corresponding elements in the to-be-reduced metamodel can thus be identi-
fied as to be removed. In addition, all elements part of the hierarchy of removed
element should also be removed, even if not explicitly designated by the reduction
metamodel. Since the pruning points are matched with elements of the to-be-reduced
metamodel according to their name, and since the metamodeling language is directly
used to define a change in a metamodel, the mechanism looks like package merge. As
we aim at reducing a metamodel rather than extending it, we decided to name this
approach «package unmerge».

In order to unmerge metamodels in a deterministic way, we had to define a compo-
sition hierarchy of concepts and matching rules. Hierarchy and matching rules depend
on the metalanguage used to define metamodels. This hierarchy is defined as follows:

• the root is a package,

• a package may contain other packages and classes,

• a class may contain properties and invariant constraints,

• properties and invariant constraints do not contain other elements.

An element in the reduced metamodel will match an element in the unmerge meta-
model if they both have:

• the same name,

142 F. Fondement et al.

• the same metaclass (i.e. packages can only match packages, classes can match
only classes, etc.),

• matching owners.

Constraints can be either strengthened or relaxed. If a leaf element has a stronger
constraint, then the matching element appears in the final metamodel (i.e. is not re-
moved) but updated with this stronger constraint. Elements that hold constraints are the
following:

• classes, that can be either concrete or abstract; an abstract class being more con-
strained than a concrete class,

• properties, that may define multiplicities; a property with a smaller multiplicity
range is considered more constrained than a property with a larger multiplicity
range.

Invariant constraints also have to be updated according to pruning action performed
on the metamodel-to-be-reduced. In the case of package unmerge, any invariant con-
straint depending on a pruned element (e.g. a metaclass or a property) should also be
marked to be unmerged, otherwise the package unmerge definition would be illegal. In
this, we follow our guideline to define package merge as the pure counterpart of
package unmerge that can add new invariant constraints (but not relax existing ones).

Finally, the name of the metamodel resulting from the unmerge transformation is the
name of the unmerge metamodel.

Package unmerge proceeds the following way. All the elements of the to-be-reduced
metamodel that match leaf elements of the package unmerge metamodel are recursively
removed from the original metamodel. Removing a class C also removes properties
whose type is C (see UC3 in Table 1 below). Moreover, if a C class inherits from a B
class to be removed, and if B inherits from classes A1 and A2 to be kept, then C class in
the reduced metamodel will inherit from classes A1 and A2 directly (see UC7 in
Table 1 below). Leaf elements from the unmerge metamodel that do not match any
element in the metamodel to be unmerged are ignored.

Table 1 shows a set of simple example use cases which illustrate the main aspects of
package unmerge. First column shows the to-be-reduced metamodel together with an
unmerge metamodel, and second column shows the reduced metamodel obtained after
unmerging, together with the merge metamodel necessary to get the original to-be-reduced
metamodel back. This latter part is more extensively explained in the next section.

4 Unmerge Algorithm

As shown in Figure 1, the outcome of an unmerge is the reduced version of the original
metamodel (L--). While the unmerging transformation removes some elements from a
metamodel, the dual package merge transformation adds elements to a metamodel.
Interestingly, package merge and unmerge transformations can also generate the
counterparts which may be used later to undo the effect of either merge or unmerge.
Hence, in addition to the resulting metamodel, the transformation may reference all
those concepts that were removed from the metamodel to be unmerged (L) in an ex-
tension taking the shape of a package merge (M).

 Big Metamodels Are Evil 143

Table 1. Unmerge use cases

Unmerge use cases Results and merge counterparts

UC1 - Unmerging package P

UC2 - Removing package P

UC3 - Removing class C

UC4 - Removing class P::C

UC5 - Removing attribute C.p1

UC6 - Removing reference C.d

UC7 - Removing class C in hierarchy

UC8 - Removing referenced class D

�

������	
���

� �

����	
���

�

�

�������	
����

�����	
����

������	
���

�������	��

�

����	
���

�������	��

�

�

�������	
���

� �����	
���

������	
���

�������	��

���������
�	

�������	��

����	
���

���������
�	

�������	��

������	
���

�

��� ���

����	
���

�

���

������	
���

�

�� �� ����	
���

�

��
��

�

������	
���

�

�

���

����	
���

�

���

144 F. Fondement et al.

Table 1. (Continued)

UC9 - Making C class abstract

UC10 - Removing constraint of C

UC11 - Strengthening C.d multiplicity

Unmerge use cases Results and merge counterparts

������	
���

������	�����

����	
���

������	�����

������	
���

�����!���	���"""

�����!���	������!���	���"""

����	
���

�����!���	���"""

�����!���	���"""

������	
���

�

��� ��#$""�%

����	
���

�

�����#$""�%

& &''

()

����*�
�
����	
�

������	
��� ����	
���

����*�
�
��	
� &

(

������	
���

Fig. 1. Reversibility of the package merge and package unmerge transformations

To go back to the unmerged metamodel (L), one just needs to perform a package
merge transformation on the unmerged version (L− −) driven by the previously gen-
erated merge (M). Thus, the generated merge (M) plays the role of the trace of the
unmerge transformation: it makes it possible to control what happened during the
unmerge, and to reverse the unmerge process. It also allows to reflect any eventual
change in L-- or M back to L or U. Symmetrically, the package merge transformation
can be extended to generate the unmerge counterpart, so that any addition to the merged
metamodel (L− −) is referenced in a generated unmerge counterpart (U). As such, the
package unmerge transformation is the inverse transformation of the package merge
transformation.

The algorithm for unmerging a metamodel is defined here with the same formalism
as in [4]. The algorithm relies on structure shown in Figure 2 for metamodels (MM,
MMu, MMt, and MMm), though it could be adapted to other class-oriented structures.

 Big Metamodels Are Evil 145

elements is an operation returning recursively all composed elements from
Package, and removeElement an operation that removes an element from a
package wherever it occurs in the hierarchy of the package. For sake of space and
readability, opposite properties and re-affectation of properties type is not discussed in
this paper.

Package

elements() : Set(Element)
removeElement(Element)

Type

isAbstract : Boolean

Property

lower : Integer
upper : Integer*

1

Element

name : String

subPackages *

1

structuralFeatures

1

Constraint

constraints1 *

*

*

superClasses

subClasses

owner

types

*

Fig. 2. Expectations on an unmerged metamodel

Algorithm to find a matching element
match(MM, e): elt
 elt ← ∅
 MM.elements().each{ ue |
 e.name = ue.name
 && e.metaType = ue.metaType
 && match(MM, e.owner) = ue.owner
 ⇒ elt ← ue}

Algorithm to unmerge a metamodel MM with an unmerge metamodel MM

u

packageUnmerge(MM,MMu) : MMt,MMm

 1. Copies source meta-model MM into target metamodel MM
t
 and its merge MM

m

 MMt ← MM, MMm ← MM, Ereq ← {}, Emerge ← {}
 2. Checking types
 MMt.types.each{ t |
 2.1 Types are kept in MM

m
 and removed from MM

t
 (as C in UC3), except if...

 match(MMu, t) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm, t)}
 2.1.a it is abstract in MM

u
 while not in MM (as C in UC9)

 if !t.isAbstract && match(MMu,t).isAbstract then
 Ereq ← Ereq ∪ {t}, t.abstract = true
 2.1.b it does not remove all properties/constraints (as C in UC5/UC10)
 elsif match(MMu,t).structuralFeatures ≠ ∅
 || match(MMu,t).constraints ≠ ∅ then
 Ereq ← Ereq ∪ {t}
 2.1.c If a class is removed (as C in UC7), its sub-classes (as D in UC7)
 else
 - are kept in merge (as D in MM

m
 in UC7)

 Emerge ← Emerge ∪ t.subClasses.each{ mme |
 match(MMm,mme)}

146 F. Fondement et al.

 - inherit from its super-class (D inherits A1 and A2 in UC7 MM
t
)

 t.subClasses.each{ s | s.superClasses ←
 (s.superClasses / {t}) ∪ t.superClasses}
 end if
 2.2 Types not in unmerge are kept only in target meta-model (as D in UC3)
 match(MMu, t) = ∅ ⇒ Ereq ← Ereq ∪ {t} }

 3. Checking properties and constraints
 MMt.types.structuralFeatures ∪ MMt.types.constraints).each{ p |
 3.1 Properties and constraints from MM

u
 are kept in MM

m

 and removed from MM
t
 (as C.p1 in UC5), except if...

 match(MMu, p) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm,p), match(MMm, p.owner)}
 3.1.a the element is a property with a different multiplicity (as C.d in UC11)
 p ∈ p.owner.structuralFeatures
 && (p.lower ≠ match(MMu, p).lower
 || p.upper ≠ match(MMu, p).upper))
 ⇒ (Ereq ← Ereq ∪ {p}, Ereq ← Ereq ∪ {p.owner},
 p.lower ← max(p.lower, match(MMu, p).lower),
 p.upper ← min(p.upper, match(MMu, p).upper))
 3.2 Elements that are not in unmerge are kept only in target meta-model
 match(MMu, p)= ∅ ⇒ Ereq ← Ereq ∪ {p} }

 4. sub-packages
 MMt.subPackages.each{ sp |
 4.1 Packages in unmerge are kept in merge
 and removed from target metamodel (as P in UC2), except if...
 match(MMu, sp) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm, sp)}
 4.1.a it removes not all contents (as P in UC4)
 match(MMu, sp).types ≠ ∅
 ⇒ ((spu, spm) ← packageUnmerge(sp, match(MMu, sp)),
 Ereq ← Ereq ∪ {spu}, Emerge ← Emerge ∪ {spm},
 MMt ← (MMt / {sp}) ∪ spu, MMm ← MMm ∪ {spm})
 4.2 Packages that are not in unmerge are kept only in target meta-model
 match(MMu, sp) = ∅ ⇒ Ereq ← Ereq ∪ {sp} }

 5.Remove non-required elements in target meta-model
 (elements include sub-packages, types, and constraints)
 MMt.elements().each{ e | e ∉ Ereq ⇒ MMt.removeElement(e)}

 6.Remove non-required elements in merge meta-model
 MMm.elements().each{ e | e ∉ Emerge ⇒ MMm.removeElement(e)}

5 Example

This section shows how the package merge and unmerge relations may be used to build
a metamodel by reusing other metamodels. The overall context is model-based testing
of SysML models, and the example is borrowed from the VETESS project [12]. The
goal is to generate a set of test cases from a behavioral model of the system under test.

The available tooling for test generation is based on a dialect of the UML language
(called UML4MBT, UML for Model Based Testing), and a model transformation may

 Big Metamodels Are Evil 147

be used to translate UML models to UML4MBT models (which is out of the scope of
this example).

The same scheme is implemented for SysML models. A dedicated SysML dialect
(called SysML4MBT, SysML for Model Based Testing) has been defined. A model
transformation has been written to translate SysML4MBT models to UML4MBT
models, thus allowing direct reuse of the tooling for test generation as explained in [13].
Figure 3 describes this transformation chain.

+����
����

/���	��!	
()&5)6+�7�)&5)6+ +���

����
�7�)&5)6+
�()&5)6+

89�����
��	���:!	����!�

Fig. 3. VETESS tool chain for SysML

SysML4MBT and UML4MBT are good examples of languages which are more or
less similar. They share a lot of commonalities, but diverge on some parts. To specify a
model transformation between SysML4MBT and UML4MBT, it is convenient to expli-
citly state how these two languages compare, and how they can be built from each other.

Figure 4 shows how SysML4MBT can be derived from UML4MBT. Constructions
to be removed are represented in the package unmerge metamodel while parts to be
added are specified in the package merge metamodel.

UML4MBT

SysML4MBT

Classes

SysML4MBT

Classes

ClassesStateCharts

Core

Project Suite

Model
*

1

Instances

ModelInstance

Instance Slot

1
*

*

State Transition

CompositeState

SimpleState Statechart

* *

2 {ordered}

1

Package

Class Attribute

1 1

*

0..1
**

Core

«abstract»
Class Suite

Instances

«unmerge»

Block

StateCharts

CompositeState

1..*

«merge»

Fig. 4. Deriving SysML4MBT from UML4MBT

148 F. Fondement et al.

The representation is interpreted as follows:

• The Instances package has to be removed, including all contained elements.

• The Core::Suite metaclass has to be removed. The containing Core pack-
age will not be removed, but references to Suite will be dropped (in our case
Core::Project.suite).

• Class is made abstract (by the unmerge) and Block is added as a concrete
subclass (by the merge). Notice here that merging could not be used to set Class
as abstract, because the merge semantics state that merging concrete with abstract
yields concrete.

• The multiplicity of the composition relation between CompositeState and
Statechart is set to 1..* (by the merge).

As explained earlier, package merge and package unmerge can be used either to
trace their effect each other, or to undo their effect. We will illustrate this last point in
the following lines. Figure 5 shows how to build UML4MBT from SysML4MBT, by
merging and unmerging the respective counterparts.

UML4MBT UML4MBT

SysML4MBT

Core
Classes

Classes

StateCharts

Core

Project

Suite

Model

*

1

Instances

ModelInstance

Instance Slot

1
*

*

State Transition

CompositeState

SimpleState Statechart

* *

2 {ordered}

1..*

Package

«abstract»
Class Attribute

1 1

*

0..1

*
*

Class

«unmerge»

Block

StateCharts

CompositeState

1

«merge»

Project

Classes

Block

1

Fig. 5. Deriving UML4MBT from SysML4MBT

Again, the representation is interpreted as follows:

• The unmerge part states that Classes::Block should be removed, and that
the StateCharts::CompositeState::StateChart multiplicity
should be strengthened to 1..1.

 Big Metamodels Are Evil 149

• The merge part redefines Instances and its components, which are equivalent
to those dropped from UML4MBT, re-introduces the Core::Suite construct
(including incoming and outgoing references), and makes the
Classes::Class metaclass concrete.

Package merge and package unmerge, along with the respective counterparts, can
be used to go back and forth from one metamodel to another. From this point, it
becomes possible to automate, at least partially, the translation from SysML4MBT to
UML4MBT (and conversely from UML4MBT to SysML4MBT). Indeed, because
of the way SysML4MBT is produced from UML4MBT, those two metamodels
expose many similarities. In the SysML4MBT to UML4MBT transformation, those
similarities take the shape of “copy” rules: SysML4MBT::Project elements
create UML4MBT::Project elements, SysML4MBT::Model create
UML4MBT::Model, etc. Finally, any information whose structure in SysML4MBT
was kept from UML4MBT is merely copied to the resulting UML4MBT model.

6 Implementation

An open-source prototype implementation for both package merge and package un-
merge as it is defined in this paper is available on the project website1. This imple-
mentation takes the shape of an Eclipse plug-in. A set of tutorials, corresponding to
Table 1., is also available from the VETESS website2.

The transformation can be invoked on an ecore file holding serialization for a
package unmerge metamodel. The metamodel to be unmerged is referenced in an
annotation of the package unmerge metamodel. Once invoked, the file name for seria-
lizing the unmerged metamodel is given and the transformation happens. The outcome
is another ecore file for the unmerged metamodel plus an additional ecore file
representing the merge counterpart. We developed a similar transformation for package
merge, which also produces the merged metamodel and the corresponding unmerge
counterpart.

While experimenting UML metamodel unmerge, we found it a very repetitive and
error-prone task to eliminate invariant constraints (i.e. UML well formedness rules)
that depend on an element that was pruned in the unmerged metamodel. That is why we
included in the prototype a drop mechanism that discards from the unmerged meta-
model any invariant constraint on which a type checking could not succeed.

In order to exchange models, we also developed automatic model transformation so
that a model conforming to an unmerged metamodel can be transformed into a model
conforming the metamodel that was unmerged. We also made the reverse transforma-
tion that removes information from a model of a metamodel that was unmerged so that
it becomes a model of the unmerged metamodel. These two transformation make it
possible to reuse existing models and interact with a tool defined for working on a
metamodel subset defined in terms of package merge.

1 https://sourcesup.cru.fr/projects/vetess/
2 http://bit.ly/litERM

150 F. Fondement et al.

7 Related Works

As mentioned in section 1, reducing metamodels was paid much less attention than
extending. However, one interesting proposal was made by Sen et al. [4]. They identify
four reasons to motivate the reduction of a metamodel and thus avoid
over-specification:

• clearly state what are the input/output domains of a model transformation,

• avoid chaining transformations with inconsistent input/output domains,

• avoid generating input data models with unused concepts when testing trans-
formations,

• avoid confusing a model designer.

They also propose an algorithm for reducing a metamodel. This algorithm requires the
set of all interesting elements in a metamodel; those elements are kept in the resulting
metamodel, including their dependencies in a transitive way. However, they do not
state how interesting constructs can be identified. Our approach rather identifies ele-
ments that must not appear in the reduced metamodel. Indeed, identifying all interest-
ing parts may require an effort as important as defining a metamodel from scratch.
Moreover, we state how those “uninteresting elements” can be identified using the
metalanguage in which the metamodel-to-be-reduced is defined. Finally, thanks to the
symmetry that exists between the merge and unmerge relations, we are able to create
the reverse definition to highlight what the reduction actually did. To sum up, our
approach fits better when a lot of top elements are to be removed, and when complex
operations are necessary (such as removing a class from an inheritance hierarchy, or
making a class abstract). Otherwise, approach of [4] fits better when only a few ele-
ments are to be kept in a metamodel, all of them being well identified.

Some few aspect-oriented modeling techniques, whose purpose is to weave changes
into a (meta)model, provide means for deleting modeling constructs as a “removal”
advice. One example is MATA [11] for class diagram-like models. A strength of these
techniques is that they can designate various elements in a metamodel using a single
rule. Such multiple designation rules could easily be integrated in package unmerge
(and package merge), e.g. by introducing more sophisticated pattern matching con-
structs. Compared to aspect-oriented modeling, package merge and unmerge clearly
separate the notions of adding information from removing information in two distinct
specifications. Another difference is that package unmerge is one simple additional
relationship construct to be added to metamodeling languages, unlike aspect-oriented
modeling which requires completely new languages, even if aspect languages are
defined as extensions to the languages to which aspects are to be applied. Such exten-
sions include additional concepts to the base language (like pointcuts, a set of desig-
nators, and different categories of advice). Those extensions could be described by
means of package merge and unmerge.

Metamodel matching and differencing [14] is another field related to our work.
Metamodel matching compares two given metamodels and outputs a mapping that can
be used to specify or generate a model alignment transformation [15]. Differences can

 Big Metamodels Are Evil 151

be shown in a difference model (such as an AMW model [16]) that would represent the
equivalent for our package unmerge model. First, package merge and unmerge could be
used as alternative models to represent this mapping while emphasizing commonalties
and differences. Second, the difference model usually references the compared (me-
ta)models. As such, it is not possible to compute one metamodel from the other as both
need to exist. However, instead of merely relying on a named elements hierarchy,
package merge and package unmerge could benefit from metamodel matching tech-
niques to match elements of the package (un)merge with elements of the pack-
age-to-be-(un)merged.

(Meta)model slicing [17] is a technique taking its roots in program slicing and graph
decomposition. It makes it possible to extract from a model (and thus a metamodel) a
sub-model containing elements depending on a set of elements of interest. The set
of elements to be kept is computed from transitive dependencies of the elements
of interest, and finally, only those elements that are not related to the elements of
interest are discarded. Package unmerge rather identifies elements to be removed, and
all contained elements are also removed, even if a dependency exists between an ele-
ment to be kept and an element to be removed. An example found in section 5 was the
Core::Suite that had to be dropped even though Core::Project had to be kept.
Purpose of model slicing is more about model understanding and impact analysis while
purpose of package unmerge is metamodel reuse.

Steel et al. [18] define rules for comparing two metamodels. This way model
transformations may declare their input and output domains, so as to check that a given
model can actually “enter” a transformation. As such, they check that a model which
conforms to a given metamodel also conforms to another metamodel. Unfortunately, a
model conforming to a reduced metamodel may not always conform to the metamo-
del-to-be reduced. This stems from the properties of the merge transformation. As
pointed out in [19], a model conforming to a metamodel-to-be-merged may not con-
form to the merged metamodel. As the counterpart of package merge, package unmerge
may thus not preserve model typing. A concluding remark is that extending the peri-
meter of a language is not the only possibility of package merge; symmetrically, re-
ducing the perimeter of a language may not be done only by package unmerge.

8 Conclusion

This work is a contribution to the field of metamodel reuse, in the context of language
engineering. We have presented here a new mechanism for controlling metamodel
reduction, based on the definition of counterparts to package merge relations, that we
call «package unmerge». Package merge and package unmerge can be considered a
dual approach to metamodel engineering, by which the effect of one can be traced and
reversed by the other. Used together, package merge and unmerge allow fine tuning of
metamodel reuse.

We have developed a tool which implements both package merge and unmerge, and
which provides assistance to determine the subset of a metamodel that a given tool
effectively implements. The tool also automates the generation of package counterparts

152 F. Fondement et al.

for package merge and unmerge. This tool is open-source, and can be downloaded from
http://sourcesup.cru.fr/projects/vetess/.

Package unmerge, due to its definition as the package merge counterpart, inherits its
strengths and drawbacks from package merge. It designates clearly what is to be re-
moved, which may be an advantage (no unexpected removal) or a drawback (different
pruning points all have to be designated). Moreover, as package merge is not the only
mechanism for composing metamodels, the package unmerge we propose here is not be
the only approach to metamodel pruning. For example, in [20], beside metamodel
merge (corresponding to the approach taken by package merge approach) are identified
metamodel interfacing, class refinement, and template instantiation. Counterparts for
some of these approaches might also be possible and deserve to be explored and
compared to, now package unmerge is proposed a definition.

We consider a metamodel too big when it is used by a tool that does not handle all
of the concepts it declares. Making clear what actual metamodel is used by modeling
tools would make tools’ behavior clearer, as metamodel of manipulated models is part
of tools’ contract. A problem with many tools is that they do not fulfill their contract,
because they declare a metamodel that is often too big, especially for metamodels
constructed by reuse. One solution for this problem is to be able to alter extended
metamodels using subtractive techniques as the one we propose in this paper. Thus, we
consider metamodel reduction as step towards what one could call «component-based
model engineering», where modeling tools could be selected, verified or assembled
according to their contract. Hopefully, shifting to component-based paradigm could
change the nature of MDE as components changed the nature of software [21].

References

1. Szyperski, C.A.: Component software - beyond object-oriented programming. Addison-
Wesley-Longman (1998)

2. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall (1988)
3. Beugnard, A., Jézéquel, J.-M., Plouzeau, N.: Making components contract aware. IEEE

Computer 32(7), 38–45 (1999)
4. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schürr, A., Selic, B.

(eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg (2009)
5. Muller, P.-A., Fondement, F., Baudry, B., Combemale, B.: Modeling modeling modeling.

Software and System Modeling 11(3), 347–359 (2012)
6. Object Management Group, Unified Modeling Language (UML), superstructure, version

2.4.1. OMG Document formal/2011-08-06 (August 2011)
7. Object Management Group, Unified Modeling Language (UML), infrastructure, version

2.4.1. OMG Document formal/2011-08-05 (August 2011)
8. Object Management Group, Meta-Object Facility (MOF) core, v2.4.1. OMG Document

formal/2011-08-07 (August 2011)
9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.:

Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

 Big Metamodels Are Evil 153

10. Schauerhuber, A., Schwinger, W., Retschitzegger, W., Wimmer, M., Kappel, G.: A survey
on aspect-oriented modeling approaches. tech. rep., Vienna University of Technology
(October 2007)

11. Whittle, J., Jayaraman, P.K., Elkhodary, A.M., Moreira, A., Araújo, J.: MATA: A unified
approach for composing UML aspect models based on graph transformation. T. Aspect-
Oriented Software Development VI 6, 191–237 (2009)

12. Lasalle, J., Peureux, F., Fondement, F.: Development of an automated MBT toolchain from
UML/SysML models. ISSE 7(4), 247–256 (2011)

13. Lasalle, J., Bouquet, F., Legeard, B., Peureux, F.: SysML to UML model transformation for
test generation purpose. In: UML&FM 2010, 3rd IEEE Int. Workshop on UML and Formal
Methods, Shanghai, China, pp. 1–8 (2011)

14. Lopes, D., Hammoudi, S., de Souza, J., Bontempo, A.: Metamodel matching: Experiments
and comparison. In: ICSEA, p. 2. IEEE Computer Society (2006)

15. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for automatic
model transformation generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)

16. Didonet, M., Fabro, D., Bézivin, J., Valduriez, P.: Weaving models with the Eclipse AMW
plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

17. Kagdi, H.H., Maletic, J.I., Sutton, A.: Context-free slicing of UML class models. In: ICSM,
pp. 635–638. IEEE Computer Society (2005)

18. Steel, J., Jézéquel, J.-M.: On Model Typing. Journal of Software and Systems Modeling
(SoSyM) 6, 401–414 (2007)

19. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML package merge. Journal
of Software and Systems Modeling (SoSyM) 7, 443–467 (2008)

20. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: The 6th
OOPSLA Workshop on Domain-Specific Modeling, OOPSLA 2006, pp. 123–139. ACM
Press (2006)

21. Herzum, P., Sims, O.: Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise. Wiley (1999)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 154–169, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Integrating Modeling Tools
in the Development Lifecycle with OSLC: A Case Study

Maged Elaasar and Adam Neal

IBM Canada Ltd., Rational Software, Ottawa Lab.
770 Palladium Dr., Kanata, ON. K2V 1C8, Canada
{melaasar,adam_neal}@ca.ibm.com

Abstract. Models play a central role in a model driven development process.
They realize requirements, specify system design, abstract source code, drive
test cases, etc. However, for a modeling tool to be most effective, it needs to
integrate its data and workflows with other tools in the development lifecycle.
This is often problematic as these tools are usually disparate. OSLC is an
emerging specification for integrating lifecycle tools using the principles of
linked data. In this paper, we describe how OSLC can be used to integrate
MOF-based modeling tools with other lifecycle tools. We demonstrate this in a
case study involving an EMF-based modeling tool. We show how we made the
tool conform to the OSLC specification and discuss how this enabled it to
integrate seamlessly with other lifecycle tools to support some key end-to-end
development lifecycle workflows.

Keywords: Model, Lifecycle, OSLC, Semantic Web, OWL, RDF, UML, MOF.

1 Introduction

Software development is an inherently complex endeavor. While there is no silver
bullet [1], the complexity can often be mitigated with a set of specialized tools. Such
tools support different activities in the software development lifecycle like specifying
requirements, creating models, developing source code, defining test cases, managing
builds, assigning work items, etc. However, in many cases, these tools are designed as
silos that have weak or no integration between each other, which hampers their
combined value.

One approach to integrate development tools is to design them on the same
platform creating an integrated development environment (IDE). For example, this is
the approach taken by the Eclipse IDE [2]. This approach helps integration because
tools follow the platform’s guidelines (on UI, process, extensibility, etc.) and use
common components. For example, the Eclipse Modeling Framework (EMF) [3]
allows a modeling tool and a requirements tool to define their structured data and
cross-reference each other’s artifacts using a common infrastructure.

However, this approach does not help integrate tools built on different platforms.
For example, it does not help integrate an Eclipse-based modeling tool with a web

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 155

based requirements tool. It also does not ensure that data and API used to integrate
tools are flexible enough to cope with tool evolution. For example, changing a
metamodel used by a modeling tool may break references to model elements made by
a requirements tool. Similarly, changing the API (e.g., by adding an extra parameter)
for displaying a modeling diagram could break a tool trying to display a linked
modeling diagram. Furthermore, as tools become more and more networked (cloud or
web based), integrating them using traditional platforms becomes harder and less
maintainable.

Recently, a set of specifications for integrating software development tools, called
the Open Services for Lifecycle Collaboration (OSLC) [4], has emerged. The
specifications allow conforming tools to integrate their data and workflows in support
of end-to-end lifecycle scenarios. OSLC does not standardize the behavior of any tool
or class of tools. Instead, it specifies a minimum amount of protocol to allow tools to
work together relatively seamlessly. OSLC also tries to accommodate a wide variety
of tool implementation technologies.

Furthermore, OSLC defines two primary techniques for integrating tools. The first
is linking data in a scalable platform-independent way using web technologies. This is
where OSLC uses the linked data method [5] to represent some information on tool
artifacts as RDF [6] resources identified by HTTP URIs. OSLC also provides a
common protocol for manipulating those resources in a RESTful [7] way using HTTP
CRUD (Create, Read, Update, Delete) operations [8]. Finally, artifact linking is
achieved by embedding the URI of one resource in the representation of another.

The second technique is linking data via a HTML user interface. This is where
OSLC specifies a protocol that allows a tool to invoke fragments of web-based user
interface (e.g., selection dialog) of another tool. This enables a tool to exploit the user
interface and business logic in other tools when integrating their data and processes.

In this paper, we focus on integrating MOF-based modeling tools with other
lifecycle tools using OSLC. MOF [9] is a standard by the Object Management Group
(OMG) for defining modeling languages like UML [10] and BPMN [11]. We present
an approach for allowing a MOF-based modeling tool to publish its models
generically according to the OSLC specification. We demonstrate our approach in a
case study involving a server extension of the EMF-based Rational Software
Architect (RSA) modeling tool called Design Manager (DM) [12]. RSA DM supports
a number of standard MOF-based modeling languages. We use examples from of the
UML class diagram whenever relevant. We also show how OSLC enables a modeling
tool, like RSA DM, to integrate its UI with other lifecycle tools, like those in the
Collaborative Lifecycle Management tool suite [13], to support some key
development workflows (e.g., traceability, impact analysis and link preview). We
conclude that OSLC is a light-weight and practical approach for integrating
independent lifecycle tools.

The remainder of the paper is organized as follows: Section 2 gives an overview of
the OSLC specification; a case study showing how OSLC can be implemented by a
MOF-based modeling tool, along with how this can help the tool integrate with other
lifecycle tools to support key development workflows is given in Section 3; Section 4
discusses the case study and highlights some remaining gaps; a review of related work
is provided in Section 5; Finally, Section 6 concludes and outlines future work .

156 M. Elaasar and A. Neal

2 Overview of Open Services for Lifecycle Collaboration

Open Services for Lifecycle Collaboration (OSLC) [4] is a set of specifications for
integrating development lifecycle tools. The specifications are organized as a Core
specification and a set of domain specifications (e.g., configuration management,
quality management, requirements management and architecture management) that
build on it. Core specifies the primary integration techniques for lifecycle tools. This
consists mostly of standard rules and patterns for using HTTP and RDF. The Core
specification is not meant to be used by itself, but rather in conjunction with one or
more of the domain specifications. Together, they describe the specification set
implemented by a domain tool. For example, a modeling tool would implement both
Core and Architecture Management (AM) specifications. In this section, we overview
some concepts from these specifications referred to by the case study in section 3.

2.1 Service Provider

The Core specification defines the concept of a Service Provider that enables provider
tools to expose resources and allows consumer tools to navigate to these resources
and create new ones. A service provider is itself defined as a RDF resource (Figure 1)
with a given URI (line 2). It associates itself with one of the OSLC domains (e.g., the
AM domain, line 5) and defines two properties: a creation URL (line 8) to do HTTP
POST on to create new resources, and a queryBase URL (line 11) to do HTTP Get on
to get a list of existing resources in the provider. That list is represented as an RDF
container resource with the existing resources as its members (Figure 2, lines 3-5).

01
02
03
04
05
06
07
08
09
10
11
12

@prefix oslc: <http://open-service.net/ns/core#>.
<http://abc.com/toolA> a oslc:ServiceProvider;
 oslc:service
 [a oslc:Service;
 oslc:domain <http://open-services.net/ns/am#>;
 oslc:creationFactory
 [a oslc:CreationFactory;
 oslc:creation <http://abc.com/toolA/contents>];
 oslc:queryCapability
 [a oslc:QueryCapability;
 oslc:queryBase <http://abc.com/toolA/contents>]
].

Fig. 1. Sample service provider resource

01
02
03
04
05

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
<http://abc.com/toolA/contents>
 <rdfs:member> <http://abc.com/toolA/resource/000>;
 # … 998 more triples here …
 <rdfs:member> <http://abc.com/toolB/resource/999>.

Fig. 2. Sample query base resource

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 157

2.2 Resource

An OSLC resource is contained by an OSLC service provider and has a URI and a
type (e.g., oslc_am:Resource) that is defined by an OSLC domain specification. This
makes an OSLC resource type an RDF class. A resource must also have its state
represented in RDF/XML (beside other possible representations) and defined by a set
of common RDF properties to support OSLC integration between tools. These
common properties (such as label, description, creator, last-modification-time and
priority) have common names defined by standards like RDFS [6] (e.g., rdfs:type)
and Dublin Core [14] (e.g., dcterms:title), although some are defined by OSLC
itself (e.g., oslc:usage). These properties may also have alias names (coming from
the providing tool) in the same resource (e.g., uml:NamedElement_name is used as an
alias to dcterms:title when the resource is a UML named element).

Furthermore, OSLC adopts an open world assumption about a resource state.
Although it defines some standard types and properties for integration, it also assumes
that any given resource may have many more types and properties than are defined in
the specification. Properties in an OSLC resource maybe have values that are either
literals typed by one of the standard RDF data types (e.g., Boolean and Integer) or
references to some resources. OSLC generally avoids constraining the range of a
reference property to be a type from another specification. This allows OSLC to
evolve independently of other specifications and also allows tools that have slightly
evolved to smoothly interoperate with each other.

2.3 Resource Shape

OSLC generally adopts the open world assumption that implies that there is no single
authority on the validity of a given resource. However, OSLC also recognizes that
there is a category of tools that still operates with a closed world assumption. This is
why OSLC allows the definition of a Resource Shape, for a given resource type, with
a list of properties having allowed types and values. In other words, a resource shape
specifies the constraints that a resource must satisfy. To help illustrate how a resource
shape is defined, consider the example resource shape in Figure 3. It partially
describes a UML Class resource (line 8) by defining three of its properties. The first is
a standard Dublin Core dcterms:title property, which represents optional strings
(lines 9-15). The second is a property called uml:NamedElement_visibility, which
applies to a UML class (according to the UML metamodel) and can have one of four
allowed values (lines 16-26). The third is uml:Class_superClass property, which
also applies to a UML class and represents optional references to its super classes
(lines 27-34). Such a resource shape can be retrieved from a modeling tool that is an
OSLC service provider to help construct, update, interpret or validate linked UML
class resources.

158 M. Elaasar and A. Neal

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

@prefix oslc: <http://open-service.net/ns/core#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix uml: <http://www.omg.org/spec/UML/2011070#>.
<http://acme.com/toolA/UMLClassShape>
 a oslc:ResourceShape;
 dcterms:title "Shape of resources of type UML Class";
 oslc:describes: uml:Class;
 oslc:property [
 a oslc:Property;
 dcterms:title "details for dcterms:title property";
 oslc:propertyDefinition dcterms:title;
 oslc:name "title";
 oslc:occurs oslc:Zero-or-many;
 oslc:valueType xsd:String];
 oslc:property [
 a oslc:Property;
 dcterms:title "details for visibility property";
 oslc:propertyDefinition uml:NamedElement_visibility;
 oslc:name "visibility";
 oslc:occurs oslc:Zero-or-one;
 oslc:valueType oslc:Resource;
 oslc:allowedValue uml:VisibilityKind::public;
 oslc:allowedValue uml:VisibilityKind::private;
 oslc:allowedValue uml:VisibilityKind::protected;
 oslc:allowedValue uml:VisibilityKind::package];
 oslc:property [
 a oslc:Property;
 dcterms:title "details for superClass property";
 oslc:propertyDefinition uml:Class_superClass;
 oslc:name "superClass";
 oslc:occurs oslc:Zero-or-many;
 oslc:valueType oslc:Resource;
 oslc:range uml:Class].

Fig. 3. Sample resource shape

2.4 Data Integration Protocols

So far we have seen how a service provider tool provides URLs that can be used by a
consumer tool to perform resource creation (HTTP POST) and retrieval (HTTP GET).
Similarly, update (HTTP PUT) and delete (HTTP DELETE) operations can be
performed on resources directly using their URLs. In addition, OSLC allows two
query mechanisms to find specific information in resources. The first mechanism
allows adding a list of properties as a parameter to a resource URI to only get triples
using those properties from a resource. For example, performing a HTTP GET on the
URL http://abc.com/toolA/resource/001?oslc.properties=dcterms:title,

uml:NamedElement_visibility of a UML class resource gets the triples that use the
title and visibility properties only. The other mechanism allows an OSLC query to be
added as a parameter to a service provider’s queryBase URI to filter the list of
member resources to get. For example, performing a HTTP GET on the URL

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 159

http://abc.com/toolA?oslc.where=dcterm:title=”Class1” gets all resources
whose title is Class1 in a modeling tool A.

2.5 User Interface Integration Protocols

While the data integration protocols of OSLC are useful, using them might not be
sufficient in all cases. For example, when a user of a UML modeling tool wants to
create or select defects, in a defect tracking tool, and link them to UML resources, it
would be much better tool integration to delegate to the defect tracking tool’s own
(web based) creation/selection dialogs rather than redefining them in the modeling
tool. OSLC provides a protocol that allows a UI provider tool (the defect tracking tool
in this case) to define these dialogs and declare them in its service provider resource,
such that a consumer tool (the modeling tool in this case) can embed them, using
HTML and Javascript, in its web or rich client UI. The consumer tool would invoke
and initialize these dialogs then get notified by the consumer tool of the resource
URLs created or selected. More details can be found in the OSLC specification [4].

Another UI integration protocol by OSLC allows preview of linked resources. The
protocol is often invoked when a user hovers over a link to another resource in the UI
and a popup box appears showing the preview of the resource. This protocol allows a
consumer tool to perform a HTTP GET on a resource with a special media type. The
provider tool would then return a small amount of information about the resource
(e.g., title, icon, description and URL) for the purpose showing the preview. More
information on UI integration protocols can be found in the OSLC specification.

3 Case Study: Publishing MOF-Based Models as OSLC
Resources

In section 2, we provide an overview of the concepts of resource linking in OSLC. In
this section, we show in a case study how a MOF-based modeling tool can use those
concepts to publish its models in a way that allows linking with other development
lifecycle artifacts. We use the OSLC support in RSA DM tool as a running example
to demonstrate those ideas. We then follow by describing some key workflows for
using this integration in the development lifecycle.

3.1 Running Example

Rational Software Architect (RSA) is a MOF-based modeling tool developed on the
Eclipse platform. RSA uses the Eclipse Modeling Framework (EMF) [3] as its MOF
infrastructure. Since XMI [15] is the native interchange format supported by
MOF/EMF, RSA models are natively stored as XMI files, as shown in Figure 4.

Furthermore, RSA provides no linking capabilities between its models and other
lifecycle artifacts. In order to bridge this gap, a Design Management (DM) extension
was added to RSA resulting in the RSA DM tool. The extension allows RSA to
provide a collaborative approach to modeling (out of scope for this paper) [16] and to
link its models with artifacts of other lifecycle tools, using OSLC, thereby facilitating

160 M. Elaasar and A. Neal

new features such as cross-lifecycle traceability, impact analysis, and link preview
(these features are discussed in Section 4).

The DM (OSLC AM) extension consists of four components, as shown by the
black boxes in Figure 4. The first component is a DM server, which is responsible for:
a) converting the XMI-based models into RDF resources, b) providing the RDF
resources as OSLC resources such that other OSLC enabled tools are able to link to
them, and c) providing other expected OSLC resources and services. We focus on
these capabilities in the following sub-sections. The second component is an import
engine that allows periodic publishing of RSA model files to the server. The third
component is a rich client, which is an extension to RSA that allows it to load file-
based models to the server and manipulate server-based models consistently with the
file-based ones. The fourth component is a web client that allows some manipulation
(e.g., editing of properties) of server-based models from a web browser, in addition to
resource linking and collaborative features (e.g., markup, comment and review).

Fig. 4. Architecture of RSA DM

3.2 Converting XMI Models to RDF Resources

Recall from Section 2 that one of the basic principles of OSLC is to represent data as
RDF resources with HTTP URIs. Therefore, when converting MOF-based models to
OSLC resources, several operations have to take place: a) mapping the XMI data to
RDF triples, b) grouping the RDF triples into RDF graphs, and c) assigning unique
HTTP URIs to the RDF resources.

3.2.1 Mapping XMI Data to RDF Triples
One approach to convert the XMI data to RDF triples is to use some mapping
between their schemas. While XMI data is defined using a MOF metamodel, RDF
triples are defined using a RDFS/OWL [17] ontology. RSA DM provides a mapping
between MOF to OWL. For example, every MOF Package is mapped to an OWL
Ontology. Every Class, Datatype and Property in a package is mapped to
corresponding rdfs:Class, rdfs:Datatype and rdfs:Property in an ontology. UML
profiles are also mapped to ontologies and their stereotypes to classes. Furthermore,
instance model mapping is based on metamodel mapping. Every model element maps
to an RDF individual typed by classes that correspond to the element’s type (and any
applied stereotypes) in the model. This is possible since RDF supports multi-
classification. Every property value (including on stereotype applications) maps to a
triple that uses the property as a predicate.

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 161

3.2.2 Grouping the RDF Triples into RDF Graphs
The second operation is to group the resulting RDF triples into RDF graphs. A graph
is a set of triples with a unique namespace (URL). One simple way to accomplish that
is to group triples based on models they map from. However, while a model might be
fragmented into multiple files (RSA supports this feature), it is very common for a
model to be monolithic (i.e., all the contents are stored in a single model). Mapping
such model to a monolithic graph has major consequences (edit locks and complex
merge sessions) in a team environment where multiple users collaborate on the model.

One way around that problem is to specify an automatic fragmentation strategy for
RDF graphs (sets of triples). In other words, define the granularity of grouping triples
into graphs. The way to accomplish that is by annotating some classes in the ontology
as “graph type”, i.e., a type whose resources (model elements) have their own graphs
that contains their triples and those of their contained resources. For example, RSA
DM specifies the graph granularity of the UML metamodel by annotating the
Package, Classifier, Attribute and Operation classes as graph types. This
selection was based on feedback from users on the most suitable unit of fragmentation
(hence collaboration). This makes model elements typed by those classes map to their
own RDF graphs automatically upon conversion, and regardless of the actual model
fragmentation before the conversion. Note that annotating every class in the
metamodel as a graph type may result in too many created graphs, which would
benefit collaboration but may adversely affect performance. The balance in practice
depends on the domain author’s preference and the physical limits of the tool.

3.2.3 Assigning Unique HTTP URIs to RDF Resources
OSLC requires that every OSLC resource is identified by a unique HTTP URI. When
mapping model elements to RDF resources, unique URIs have to be produced and
assigned to each element. An HTTP URI is typically made of three parts: base, id and
optional fragment (base/id<#fragment>). The base in this case is typically the URL
of the server that the OSLC resources are published to (e.g., http://www.abc.com/).
The id in this case is that of an RDF graph. Recall that upon conversion from XMI to
RDF, some model elements (those that are instances of graph types) are mapped to
their own RDF graphs, while others are mapped to resources nested within their
ancestors’ graphs. There are alternative approaches for producing a unique id for an
RDF graph. One approach is to derive the id from the model element. This could
either be the XMI id or the fully qualified name of the element (e.g.,
http://www.abc.com/P1_C2_op3). Another approach is to assign a unique resource
number on the server (e.g., http://www.abc.com/resources/123). RSA DM uses
qualified names when mapping metamodels to OWL ontologies since those names
tend to be more stable as changing them have dire consequences on instance models.
On the other hand, RSA DM uses resource numbers when mapping instance models
to RDF since element names tend to frequently change. The XMI id is not used in
both cases since in RSA DM’s case it is typically a non-user friendly GUID.

Furthermore, the fragment of the URI is only required for those RDF resources that
map from non-graph model elements, i.e., those that are nested within other graphs.
The fragment is typically derived in this case from the model element, either its XMI
id or its qualified name up to the ancestor corresponding to the graph (e.g.,
http://www.abc.com/P1_C2_op3#param4). RSA DM uses the qualified names in this

162 M. Elaasar and A. Neal

case. It is important to notice that elements with fragments in their URIs cannot be
recognized as separate OSLC resources since such URIs are not distinguishable from
their graph URIs when CRUD operations are performed using HTTP.

3.3 Providing the RDF Resources as OSLC Resources

Once RDF resources are produced from XMI data via mapping, they can be provided
as OSLC resources. The process involves adding the expected OSLC types and
attributes to the resources. Specifically, an OSLC type (e.g., oslc_am:Resource for
the AM domain) is added as another type for an RDF resource. This is possible due to
RDF’s support of multi-classification. Then, values for all relevant OSLC properties
for the type (e.g., dcterms:title and dcterms:creator) are added to the resource.
These values are either derived from the resource when properties have aliases in the
domain (e.g., uml:NamedElement_name is an alias property for dcterms:title in
UML) or based on the info persisted in the RDF repository (e.g., the resource creator).

Another step in the process involves filtering all RDF types and properties that are
not intended to be exposed to OSLC consumers. These types and properties can be
annotated in their ontologies as OSLC private. Filtering a type leads to ignoring all
triples involving instances of that type when publishing resources. If a type was a
graph type then all graphs corresponding to resources of that class (which may
include nested resources) are also ignored.

Furthermore, OSLC resources may have links to other OSLC resources. An OSLC
link is a triple that relates two OSLC resources, a source and a target, with a known
predicate thus providing traceability between them. An OSLC link triple may be
contained in the graph of one of the linked resources or in a totally separate graph.
The OSLC specification does not predefine link predicates; rather it is up to the
OSLC service provider to define them. An example of a predicate that is supported by
RSA DM is <http://jazz.net/ns/dm/linktypes#derives> that is often used to link
a model element to a requirement defined in a requirement management tool.

3.4 Providing Other OSLC Resources and Services

In order to facilitate collaboration with other OSLC-enabled tools, a modeling tool
provides a Service Provider resource (Section 2.1). That resource contains a URL of a
queryBase HTTP service that provides RDF resources in the format defined by the
OSLC specification. It also contains a URL of a creationFactory HTTP service that
provides CRUD operations for OSLC resources.

In addition, a modeling tool may publish OSLC resource shapes (RSA DM does
not support them in v4.01), which are type definitions for OSLC resources. Recall
(from Section 2.3) that a resource shape describes a set of properties that may exist
for a given type of OSLC resource. This set can be derived from OWL ontologies
defining that type (which in turn were generated from MOF metamodel). Specifically,
OWL ontologies are queried for all OWL properties that have as a domain a class that
is either the same or a super class of the shape’s described type. For each one of those
properties, all information needed to construct a property definition in a resource
shape can be derived. For example, the oslc:name value is derived from the

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 163

property’s rdfs:label triple, the oslc:occurs value is derived from
owl:minCardinality and owl:maxCardinality restrictions on the property, the
oslc:valueType/oslc:range value is derived from the property’s rdfs:range, and
the oslc:allowedValue values are derived for an enumeration from its owl:oneOf list
members. We do not describe the full details of the derivation here for brevity.

Finally, an OSLC-enabled modeling tool may provide a service that provides web
UI to link to OSLC modeling resources. This service allows users of other OSLC
consumer tools to open a dialog (Figure 5 right) and pick a resource in order to add a
link between the two artifacts and thus provide some traceability between them. A
modeling tool can also provide a service that returns compact information about a
given OSLC resource to help construct a preview window (Figure 5 left) for the
resource in another lifecycle tool.

Fig. 5. An OSLC add link dialog (left) and an OSLC preview window (right)

3.5 Enabling Key Development Workflows with OSLC

So far, we described how modeling tools can conform to the OSLC specifications, by
implementing the required services and exposing their models in an OSLC compliant
way, in order to integrate with other lifecycle tools. The benefits of this integration
can be seen in enabling several key development workflows between related tools in
the lifecycle. For example, when a design needs to change, it would not be wise to
change it without analyzing the impact of such change on derived source code. Also,
when one is trying to understand a design, it would help to check the requirement
satisfied by the design. Moreover, it would be easier to understand a design if its
linked artifacts can be previewed without actually navigating to their defining tool,
since trying to use another tool’s UI might be hard.

In this section, we describe at a high level of abstraction key lifecycle development
workflows, such as traceability, impact analysis and link preview, that have actually
been implemented in RSA DM as an OSLC AM tool. The workflows demonstrate
integration with other OSLC tools for change management (CM), requirement
management (RM) and quality management (QM), which are all part of the
Collaboration Lifecycle Management (CLM) tool suite [13].

3.5.1 Traceability
Traceability refers to the ability to link artifacts in one tool to another. The type of
link (i.e., the predicate used in the link triple) allows a user to understand the meaning

164 M. Elaasar and A. Neal

of the link. For example, RSA DM provides a set of out of the box link types
(‘Elaborates’, ‘Derives From’, etc) that facilitate linking artifacts from multiple OSLC
compliant tools (Figure 6). Typically, specific link types are used on specific
artifacts, although the tool does not enforce any rule. To give an example of how
modeling tool traceability fits into a lifecycle workflow, consider this scenario:

A developer, Bob, has a change request, defined in a CM tool, which identifies a
problem with some behavior of the code. The code has been generated from a
specific UML state chart diagram in an AM tool. Bob opens the change request and
chooses to create a new OSLC link to the specific state chart diagram, which models
this behavior. Bob creates an ‘Elaborated by’ link in the CM tool and is immediately
prompted to find and select the state chart diagram of interest, using a selection dialog
provided by the AM tool. Bob assigns the change request to Al, an architect, and
leaves a comment, in the CM change request, asking him to remodel the behavior
based on the change request.

Al opens the change request, and clicks on the ‘Elaborated By’ link, which
immediately opens up the state chart in question. Al inspects the state chart diagram
and finds a ‘Derives From’ link that points to a requirement, defined in an RM tool.
Al clicks this link and is immediately taken to the requirement. After reviewing the
requirement’s description, Al jumps back to the state chart, in the AM tool, by
following a back link in the RM tool, so that he can update the behavior accordingly.
Once updated, Al navigates a link, in the AM tool, from the state chart to the change
request and assigns it back to Bob who regenerates the code and closes the request.

Fig. 6. Possible OSLC links between RSA DM and other CLM tools

3.5.2 Impact Analysis
Impact Analysis is method of traversing incoming and outgoing links to a particular
resource. As such, it can aid an architect in identifying the impact of a change to a
given resource. The theory and behavior of impact analysis is not something new,
and in the modeling world it is commonly used during refactoring actions in order to
identify all the resources which are required to change. However, once we include

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 165

OSLC into the equation, and consider the traceability information, we find that impact
analysis gets even more powerful. Consider the following scenario:

Al, the architect, wants to change the signature of operation sendMessage(buffer)
in a UML model and needs to determine the impact of this change. Al runs a multi-
level (i.e., involving multiple link levels) impact analysis on the operation to find
outgoing and incoming links to/from the operation (Figure 7). He sees an outgoing
link (Operation::ownedParameter) to the operation’s input parameter buffer, which
in turn has an “Elaborates” link to a change request (need return buffer). He
understands that he has to inspect the change request, in the CM tool, to verify that he
does not invalidate it with the proposed change. He also sees an incoming link
(Class::ownedOperation) to the operation’s class MessageProtocol, which in turn
has a ‘Derives From’ link to a requirement (Define Message Protocol). He checks the
requirement and realizes that he will need to update it in the RM tool. Finally, he sees
an outgoing link (Operation::method) to an interaction Notify User, which in turn
has a ‘Validated By’ link to a test case (Verify User notification). He reads the test
case, in the QM tool, and discovers that he will also need to rerun the test to validate
the interaction after the change. As we can see, the traceability links can now play a
vital role in impact analysis as well, since the impact is now stretching past the model
boundaries and into the realm of other lifecycle artifacts.

Fig. 7. Impact analysis diagram of SendMessage operation

3.5.3 Link Preview
The rich hover feature plays a complimentary role to traceability and impact analysis.
Rich hover allows a user to inspect the contents of the linked resource in a convenient
way without having to fully navigate a link. Consider the impact analysis case again:

When Al views the impact analysis results with the multitude of links, he is able to
simply hover over the links of interest and get presented with a convenient, compact
rendering (i.e., preview) of the target resource of the link. For example, hovering over
the interaction shows a sequence diagram so Al can quickly understand the meaning
of that interaction without having to leave the results of the impact analysis.
Similarly, hovering over the related requirement provides Al with a quick view of the
requirement text, as well as showing some additional outgoing links to other design
artifacts. He now knows that updating this requirement will potentially affect other

166 M. Elaasar and A. Neal

linked design resources, and now he needs to focus on those resources to ensure that
any changes made in the requirement are carried out through out the design model.

4 Discussion

Based on our experience using OSLC, presented in this paper as a case study, we
would like to discuss a few points. The first point is the use of resource shapes for
resource validation, which allows collaborating tools to check each other’s
expectations on resources. Recall from Section 2.3 that a resource shape provides a
description of OSLC resources of a given type, in terms of possible properties used on
these resources, their types, multiplicities and allowed values. It could be argued that
an OWL ontology can also provide this information and hence a new concept, like a
resource shape, is not needed. However, on a closer look, the open world assumption
(what is not known to be false is true) made by OWL works against it being used for
validation (the purpose of type definitions). For example, when you have a property
isMarriedTo defined in an OWL ontology with its domain and range being class
Person, and when you have two resources, Joe of type Person and ET of type Robot,
then a triple stating that ET isMarriedTo Joe would not be invalid according to the
ontology. This is because an OWL reasoner performing consistency check (the closest
operation to validation) would simply infer that ET is also of type Person, instead of
complain that class Robot does not have property isMarriedTo. This ability to infer
new truth goes against validation, which makes a closed world assumption. Therefore,
we see that resource shapes are indeed a needed feature of OSLC. Other related
discussion on this topic can be found in [18].

The second point concerns where an OSLC link between resources managed by
different tools should be owned. Two approaches exist, which have been
implemented in the context of RSA DM. The first approach is to make the tool
owning the source resource be the owner regardless of which tool creates the link. For
example, a ‘Derives From” link between a model element (in RSA DM) and a
requirement (in the RM tool of CLM) is always owned at the RSA DM side
regardless of which tool created it because a RSA DM resource is always the source
of such link. The target tool may still find out about the link by sending an OSLC
query to the source tool. A second approach is to store bi-directional links, i.e., add a
back link in the target tool as well. For example, when creating an ‘Elaborates’ link
from a model element (in RSA DM) to a work item (in the CM tool of CLM), a back
link ‘Elaboated By’ is also created and owned by the CM tool. However, this
approach complicates the synchronization of both links. A third possible approach
(not implemented yet in RSA DM) is to let the tool that defines the link, which could
be a third tool, own it. However, in the case of a third tool, the source and target tools
would not know about the link.

The third point concerns the behavior of OSLC linking when the integrated tools
use different configurations of the same resources. For example, RSA DM supports
the ability to define multiple n-dimensional configurations for resources (e.g., for a
UML design model of cars, the dimensions could be the make, model and year).

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 167

A resource in this case may still have the same URI. The question becomes which
configuration of the resource is actually linked when an OSLC link involves such a
resource? One approach to answer this question is to include a configuration id to the
linked resource URI through an HTTP context parameter. For example, when
configuration1 of a model element is linked, then the URI of the corresponding
OSLC resource becomes <baseURI>?context=configuration1. The support of
configurations is on the list of future work for upcoming reversions of OSLC.

5 Related Works

Application Lifecycle Management (ALM) [19] is a continuous process of managing
the life of an application through governance, development and maintenance. Such
process is being realized by RSA DM’s integration with the various tools in the CLM
suite. OSLC plays a central role in this integration by enabling linking across the
development artifacts and integration of UI (via delegated dialogs and link preview).

Furthermore, some platforms provide tools that are horizontally integrated, i.e.,
tools that work together on one of the three aspects of ALM. For example, the Eclipse
platform [2] and the Microsoft Visual Studio [20] platform provide tools that integrate
together by following the platforms’ guidelines and sharing common components. Yet
tools should be integrated not just horizontally but also vertically, helping
organizations make connections across the three ALM aspects. For instance, RSA
DM and CLM allow a configuration and change management tool (the governance
aspect) to be integrated with requirement, development and architecture management
tools (the development aspect), which are also connected to a quality management
tool (the maintenance aspect).

Another solution that supports ALM is Microsoft Visual Studio coupled with Team
Foundation Server [21]. The solution supports linking between lifecycle artifacts for
the purpose of traceability [22]. It also supports UI integration (through selection and
creation dialogs) of the various lifecycle tools. However, it is not clear to what extent
these features are possible due to the development of these tools on the same
platform, as opposed to due to standard tool integration protocols like those offered
by OSLC. While it is true that RSA DM and CLM are built on the same platform, i.e.,
Jazz [23], the integration approach relies more heavily on OSLC as explained in this
paper. In fact, there exist examples of tool integration through OSLC where the tool is
not Jazz-based (e.g., the DOORS requirements tool [24]).

6 Conclusion and Future Work

Integrating a modeling tool with other lifecycle tools gives a synergetic boost to the
development process that cannot be underestimated. Tool integration has historically
been poor or non-existent due to various technologies used to develop these tools and
the high cost of producing point to point integrations. OSLC is an emerging
specification for integrating development lifecycle tools. It standardizes a set of data
expectations and protocols that can be implemented by compliant tools to ease their

168 M. Elaasar and A. Neal

integration. In this paper, we overviewed OSLC, highlighting its main concepts and
protocols, and presented a case study for using it to integrate MOF-based modeling
tools with other lifecycle tools. We showed how such integration can be generalized
for any MOF domain but used examples from the UML domain to demonstrate it. We
also used our RSA DM tool, which conforms to the OSLC AM specification, as an
example modeling tool. Moreover, we showed the value proposition of such approach
by highlighting key development lifecycle scenarios that would be enabled thanks to
OSLC integration of a modeling tool into the lifecycle. Finally, we discussed three
points: a) the need for OSLC shapes, b) the owner of OSLC links and c) the handling
of multiple resource configurations, which arose in the case study.

Going forward, we plan to continue to leverage OSLC to tightly integrate RSA DM
with other lifecycle tools including those in the CLM suite. A new revision of OSLC
(reversion 3) is currently being developed and promises to address other integration
issues including incremental (partial) updating of OSLC resources, discovery of
OSLC services of a given tool, and coordinated reporting on OSLC linking errors. We
plan to report on implementing these features in the future. Furthermore, we plan to
report on industrial case studies of using RSA DM, along with CLM, to define an
integrated development process.

References

1. Brooks, F.: No Silver Bullet; Essence and Accidents of Software Engineering. Computer
Journal 20(4), 10–19 (1987)

2. Eclipse platform, http://www.eclipse.org
3. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework, 2nd edn (2009)
4. Open Services for Lifecycle Collaboration (OSLC), http://open-services.net/
5. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space, 1st edn.

Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1(1), pp. 1–136.
Morgan & Claypool

6. RDF Primer, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
7. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (2007)
8. Martin, J.: Managing the Data-base Environment, p. 381. Prentice-Hall (1983)
9. Meta Object Facility (MOF) v2.0, http://www.omg.org/spec/MOF/2.0/

10. Unified Modeling Language (UML) v2.2, http://www.omg.org/spec/UML/2.2/
11. Business Process Model and Notation (BPMN) v2.0,

http://www.omg.org/spec/BPMN/2.0/
12. Rational Software Architect Design Manager,

https://jazz.net/products/design-management/
13. Collaborative Lifecycle Management (CLM), https://jazz.net/products/clm/
14. Dublin Core Metadata Initiave, http://dublincore.org/
15. MOF 2.0 / XMI Mapping v2.1.1, http://www.omg.org/spec/XMI/2.1.1/
16. Elaasar, M., Conallen, J.: Design Management: a Collaborative Design Solution. In: Van

Gorp, P., Ritter, T., Rose, L.M. (eds.) ECMFA 2013. LNCS, vol. 7949, pp. 165–178.
Springer, Heidelberg (2013)

17. Web Ontology Language (OWL), http://www.w3.org/TR/owl-features/

 Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study 169

18. Ryman, A.: Linked Data, RDF, and OSLC Resource Shapes: Define REST API Contracts
for RDF Resource Representations (to appear soon in Developer Works)

19. Chappell, D.: What is Application Lifecycle Management?,
http://www.davidchappell.com/WhatIsALM–Chappell.pdf

20. Microsoft Visual Studio, http://www.microsoft.com/visualstudio/
21. Microsoft Team Foundation Server, http://tfs.visualstudio.com/
22. Microsoft Visual Studio. Link Work Items and Objects to Support Traceability. MSDN,

http://msdn.microsoft.com/en-ca/library/vstudio/
dd293534.aspx

23. The Jazz Platform, https://jazz.net/
24. Rational DOORS, http://pic.dhe.ibm.com/infocenter/doorshlp/v9/

topic/com.ibm.doors.install.doc/topics/r_oslc_services.html

Recommending Auto-completions

for Software Modeling Activities

Tobias Kuschke, Patrick Mäder, and Patrick Rempel

Department of Software Systems, Ilmenau Technical University
{tobias.kuschke,patrick.maeder,patrick.rempel}@tu-ilmenau.de

Abstract. Auto-completion of textual inputs benefits software develop-
ers using IDEs. However, graphical modeling tools used to design software
do not provide this functionality. The challenges of recommending auto-
completions for graphical modeling activities are largely unexplored. Rec-
ommending such auto-completions requires detecting meaningful partly
completed activities, tolerating variance in user actions, and determining
most relevant activities that a user wants to perform. This paper proposes
an approach that works in the background while a developer is creating or
evolving models and handles all these challenges. Editing operations are
analyzed and matched to a predefined but extensible catalog of common
modeling activities for structural UML models. In this paper we solely
focus on determining recommendations rather than automatically com-
pleting activities. We demonstrated the quality of recommendations
generated by our approach in a controlled experiment with 16 students
evolvingmodels.We recommended 88% of a user’s activities within a short
list of ten recommendations.

1 Introduction

Automating tasks of a software engineering process is a state-of-the-art way to
increase the quality of a software product and the efficiency of its development.
Auto-completion of textual inputs, as it exists in source code editors of modern
integrated development environments, supports developer’s work without the
need to interrupt code writing and triggering menu functions, making its usage
very efficient.

However, when designing a system in a graphical modeling environment no
such support is currently available. The challenges that arise when recommend-
ing auto-completions for such modeling activities are largely unexplored. Though,
there are plenty of opportunities for supporting recurring activities during model-
driven architecture and design. For example, Arlow and Neustadt [1] describe
typical activities that have to be carried out when refining an initial UML anal-
ysis model into a design model for a system. Furthermore, many of Fowler’s [2,3]
well-known source code refactorings impact the structure of a system and can
as well be executed on a class model perspective of a system.

Recommending relevant auto-completions during graphical modeling requires
handling challenging aspects accompanied with the problem such as:

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 170–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Recommending Auto-completions for Software Modeling Activities 171

C1 Detect Partly Performed Activities. Complex modeling activities are de-
scribed by a set of editing operations with mutual dependencies. Detecting
partly performed activities requires to match arbitrary incomplete subsets of
editing operations while tolerating dependencies to unavailable information.

C2 Tolerate Modeling Variances. Modeling activities need to be detected in a
variety of combinations of editing operations establishing the same activity.
Not only can different orders of the same operations establish an equal activ-
ity, but different types and counts of operations can also establish the same
activity.

C3 Be Unintrusive.A successful approach requires processing without noticeable
system response delays.

C4 Recommend Valid and Relevant Activity Completions. Detected partial ac-
tivities are not necessarily completable, i.e., not all are valid as recommen-
dations. Furthermore, high numbers of valid recommendations have to be
reduced to a limited set of most relevant completions for being useful.

C5 Be Extensible for New Activities and Platforms. A successful approach needs
to be extensible to new activities and adaptable to other development tools.

We present an approach that handles these five challenges. The focus of this
paper is determining and ranking relevant recommendations. In a follow-up pub-
lication we will focus on the auto-completion of a recommendation accepted by a
user. Our paper is organized as follows. Section 2 reviews relevant related work
on recognizing modeling activities, recommending modeling activities, and on
auto-completion of modeling activities. In Section 3 we introduce our catalog
of common modeling activities for structural UML models. Our approach for
computing relevant recommendations of activity completions is introduced and
discussed in Section 4. In Section 5 we evaluate the approach and assess its ca-
pabilities, followed by Section 6 where we discuss the results. Finally, Section 7
concludes our work and outlines future research.

2 Related Work

Our approach consists of three main stages: i) recognizing partial modeling ac-
tivities, ii) recommending modeling activities, and iii) auto-completing modeling
activities. In the following, we discuss previous research in these three areas.

Recognizing Modeling Activities. Sun et al. [4,5] suggest model transformations
based on pattern matching. A repository holds model transformation patterns,
which can be extended through live-demonstrations of the user. Developers can
select these patterns when modeling. The system then calculates and presents
all automatically executable transformations where pattern preconditions match
the current state of model objects. This approach provides a simple and com-
fortable way to define transformation patterns and to share them with others.
However, detecting partly executed transformations for automatic completion is
not supported. Furthermore, the performance and usability of the approach is
limited due to very high numbers of occurring transformation pattern matches.

172 T. Kuschke, P. Mäder, and P. Rempel

Filtering and ranking matched transformations is not considered. The Eclipse
framework VIATRA2 by Rath et al. [6] presents another approach for live model
transformation. VIATRA2 can incrementally synchronize a target model to edit-
ing operations carried out on a source model. The authors employ an efficient
RETE-based pattern matching technique [7]. Their transformation language sup-
ports incremental transformation rules as well as complex graph transformations.
While this language could be used to express modeling activities, VIATRA2 is
not designed to detect partly performed states of activities. However, our ap-
proach uses similar concepts for the recognition of partly performed activities.

Recommending Modeling Activities. Several authors developed approaches to
assist users of development tools with recommendations. Murphy-Hill et al. [8]
recommend Eclipse commands. The applied data mining algorithms are effi-
cient for recommending single commands, but are unsuitable for recognizing
multi-step modeling activities. Recommendation ranking is based on user his-
tory, which could also be beneficial for modeling activities once long-term context
information is available. Strathcona by Holmes et al. [9] recommends source code
examples for using APIs. The user selects a source code fragment within Eclipse
and starts the tool. Structural and context facts are extracted from the code
and sent to a server. Based on four predefined heuristics the server matches
the queried fact set to the stored examples trying to find structurally similar
source code. The 10 most relevant examples are returned and presented. Other
recommender approaches focus on business process modeling [10],[11].

Auto-completion of Modeling Activities. Forster et al. [12] proposedWitchDoctor
for detecting and completing source code refactorings while observing develop-
ers writing source code. Their approach matches editing operations of the code
to a list of refactorings with every keystroke of a developer. Upon a match, the
complete refactoring is being calculated and displayed as gray-colored suggestion
within the editor. Similar to our approach, the authors capture atomic editing
operations and match them against predefined patterns of operation sequences.
However, the authors do not discuss how to extract valid and relevant recom-
mendations within a set of detected activities. This becomes crucial when recom-
mending a number of different modeling activities consisting of similar editing
operations. Mazanaek et al. [13,14] studied auto-completions for model and dia-
gram editors in general. Based on graph grammars, their approach calculates all
possible completions for incomplete model graphs. Although, the approach rec-
ommends correct structural completions for the current graph state, it does not
support the completion of complex modeling activities within structural UML
models. As such activities contain specific conditions regarding structural aspects
and object property values it would be a difficult task to express them by a gen-
eral graph grammar. Furthermore, it is impracticable to calculate and present
all completions for a complex structural UML model. Sen et al. [15] propose a
similar approach. A domain-specific modeling language and a partial instance of
an appropriate model are transferred into an Alloy constraint model. This Al-
loy model is taken as input for a SAT solver that generates possible completed

Recommending Auto-completions for Software Modeling Activities 173

models. The system is triggered by the user and presents recommendations in
graphical form. It is mainly designed to support small modeling languages and
computes its results within seconds up to minutes. The approach shows simi-
lar limitations as the previous. Furthermore, there are approaches [16,17] that
deal with user assistance in keeping models consistent and well-formed. Simi-
larly, these approaches also calculate editing operations that are presented to
the user. In contrast to our work, the focus of those works is changing a model
in a minimal way in order to fix local inconsistencies rather than predicting a
user’s intent in performing complex modeling activities.

Summarizing, prior approaches that focused on recommending or on auto-
completing activities within textual or graphical development environments all
show limitations concerning the challenges identified in Section 1. In this paper,
we present a novel approach for recommending valid and relevant completions
of structural UML modeling activities while they are performed by a developer.
Our contributions comprise the following aspects: 1) detecting partly performed
complex modeling activities while observing developers editing a model, 2) toler-
ating variable editing operation combinations that establish the same activity, 3)
recommending relevant modeling activity completions with every model editing
operation that is carried out by a developer, 4) filtering and ranking the most
relevant activity completions from a large number of possible recommendations,
5) processing without noticeable system response delays, 6) being extensible for
defining new complex activities, and 7) being platform-independent to support
different editors especially industrial modeling tools like Sparx Enterprise Ar-
chitect [18] and IBM Rational Software Architect [19].

3 Modeling Activities and Illustrating Example

The basis for our approach is a catalog of predefined modeling activities for struc-
tural UML models that we created for our traceMaintainer approach [20,21].
traceMaintainer recognizes meaningful modeling activities within incremental
editing operations to traced UML models and semi-automatically updates im-
pacted traceability relations. The activity catalog has been used and improved
during several studies and experiments. Activities in the catalog are declared as
patterns AP = (ap1, . . . , apn) that describe a set of expected editing operations
EO = (eo1, .., eoi) each. The catalog comprises a set of 19 activity patterns with
67 alternative editing operation sequences to carry them out. These patterns
cover 38 modeling activities. Examples of defined activity patterns are:

– Replacing an association between two classes by an interface realization (ap6)
– Extracting an attribute into an associated class (ap13)
– Specializing an element inheriting to an sub element (ap17)

We introduce a simple modeling example and use it throughout the paper.
A developer wants to enhance a small embedded system containing a Control
Unit and a Communication Adapter for sending and receiving messages (see

174 T. Kuschke, P. Mäder, and P. Rempel

Figure 1, left). As part of the enhancement, two types of communication proto-
cols shall be supported by the Communication Adapter : universal asynchronous
receiver/transmitter (UART) and serial peripheral interface (SPI). Furthermore,
an exchanged message shall identify its sender and receiver allowing adding ad-
ditional communicating units. A possible realization is shown in Figure 1 (right).

Controller

Communication

«use»

«interface»
ICommunication

+ SendMessage()
+ ReceiveMessage()

*

Message

- SenderID
- ReceiverID
- TimeStamp
- MessageType
- PayLoad

UART SPI

Control UnitControl Unit

- message

1

1

Communication Adapter

+ SendMessage()
+ ReceiveMessage()

+ SendMessage()
+ ReceiveMessage()

Communication
Adapter

eo1

eo2

eo3

eo4 + eo5

eo6

eo7

Fig. 1. Model of the illustrating example. On the left hand side the initial model state
is show, while the right hand side depicts a possible enhancement.

As first step, the developer converts the association between Communication
Adapter and Control Unit into an interface. Figure 2 shows from left to right
the temporal progress of performed editing operations to implement the desired
interface. First, she adds a new interface ICommunication (eo1). One minute
later, she adds a realization-dependency between Communication Adapter and
the new interface ICommunication (eo2). Another minute later, she adds a use-
dependency between Control Unit and the new interface ICommunication (eo3).

t0 –
10 min

time [min]t0 – 2 min t0t0 –
16 min

t0 – 18 mint0 – 20 min
...
7 – ap6

8 – ap3

9 – ap4
...
11 – ap13

12 – ap5
...
20 – ap17
...

 (eo1) Add
Interface

t0 – 1 min

(eo2) Add
Realization

(eo3) Add
Use Dependency

(eo4) Add
Class

(eo5) Modify
Class

(eo6) Add
Association

(eo7) Add
Class

Fig. 2. Visualization of incoming events for the editing operations of the illustrating
example, there temporal order, and a subset of matched activity patterns

After a five minute break for planing the next step, the developer decides
to extract the attribute message from the Control Unit into a separate class in

Recommending Auto-completions for Software Modeling Activities 175

order to extend it with additional properties. She starts this activity by adding
a new class to the model (eo4). At this time she gets interrupted by a phone
call that takes 15 minutes. She continues by modifying the new class (eo5) and
by associating it to the Control Unit class (eo6). Eventually, she creates a new
class UART (eo7). Our example stops at this point, which we will refer to as t0
in the remaining text.

4 Approach

In this paper, we propose an approach for recommending valid and relevant
completions of modeling activities for structural UML models while a developer
is editing a model. In order to address the challenges identified in Section 1, we
propose the following four step process. Each step is discussed in detail in the
following four subsections.

Step 1: Recognizing partly performed modeling activities. While a developer is
modeling within a tool, each editing operation is triggering an event con-
taining detailed information of the change. Incoming events are matched
against predefined activity patterns AP in order to detect partly per-
formed modeling activities. The resulting set of activity candidatesAC =
(ac1, . . . , acn) serves as input to the following process step.

Step 2: Filtering invalid activity candidates. All activity candidates that cannot
be completed within the user’s model are treated as invalid and filtered
from the set AC.

Step 3: Ranking activity candidates by relevance. The filtered set AC is then
ranked in relation to the relevance of each candidate for the user. Rele-
vant are activities that the user wants to perform. Three ranking criteria
are used to estimate relevance.

Step 4: Presenting recommendations. Finally, the filtered and ranked activity
candidates in AC are reduced to a comprehensible number of recom-
mendations and presented within the modeling environment.

4.1 Step 1: Recognizing Partly Performed Modeling Activities

We previously developed a traceability maintenance approach called traceMain-
tainer [21]. By recognizing modeling activities within incremental editing op-
erations to traced UML models, traceMaintainer performs required updates to
impacted traceability relations semi-automatically. While the goal of recogniz-
ing activities is similar to the approach presented here, there are fundamental
differences in terms of required event processing. The need for matching partly
performed activities required us to adopt a more advanced event processing.
While our previous activity patterns contained designated trigger operations
that had to occur in order to start the matching process, we required for this
approach a mechanism that could match activity patterns starting from the first
incoming event that contributed to them. Within the following paragraphs we
introduce the redesigned recognition process.

176 T. Kuschke, P. Mäder, and P. Rempel

First, each editing operation triggers an event of type add, delete, or modifiy,
which carries the properties of the edited model element (see Figure 3, left).
Second, events are matched against a set of predefined activity patterns AP .
Each activity pattern apx defines a set of expected editing operations EO =
(eo1, .., eoi) that have to be performed in order to complete a modeling activity.
The definition of an expected editing operation comprises conditions that have
to be fulfilled by an incoming event to be matched. For example, the event for
editing operation eo5 in Figure 3 (left) would be matched by the definition E3 in
the activity pattern (right), if all conditions can be evaluated to true. Thus, the
completion of an activity would be recognized if a sequence of incoming events
matches all editing operations EO of an activity pattern.

We decided to implement our matching process on a RETE-based rule engine
[7]. This is a well-known technique for the kind of problem we had to solve.
RETE translates and merges all complex pattern descriptions into a network
of condition checking nodes. The technique reaches high execution performance
for large numbers of received events, because checking results are temporarily
cached in the network. Paschke et al. [22] published a survey on rule-based
event processing systems and identified the freely available RETE-based Drools
platform [23] as being very efficient for complex event processing (CEP). Drools’s
implementation is mature and the rule declaration language is highly expressive.
Furthermore, the platform allows to retract inserted events and to output all
matched subsets of events.

rule "ap13"
when
$E1: Event(Type == "del", Element == $AT)
$AT: Element(Type == "attribute")
$PA: Element(ID == $AT.Parent)

$E2: Event(Type == "add", Element == $CLA)
$CLA: Element(Type == "class", Parent == $PA.Parent)

$E3: Event(Type == "modify", Element == $CLB)
$CLB: Element(Type == "class", ID == $CLA.ID, Name == $AT.Name)

$E4: Event(Type == "add", Element == $AS)
$AS Element(Type == "association",

(End1 == $PA.ID && End2 == $CLA.ID) || (End2 == $PA.ID && End1 == $CLA.ID))

expected editing
operations

activity pattern: “extracting an attribute into an associated class“

is matched by

issued event for editing
operation eo5

end
insertLogical(new ActivityCandidate());

then

modify(
Type = “class“,
Name = “Message“,
ID = [...],
Stereotyp = “-“,
Parent = [...],

…)

Fig. 3. Event for the editing operation eo5 of the illustrating example (left) and the
Drools rule declaration for activity pattern ap13 (right)

To integrate Drools in our solution, the activity patterns of AP with all their
possible alternatives had to be declared using Drools’s rule language. Figure 3
(right) shows a simplified Drools rule matching the ap13 activity pattern. The
definition of an expected editing operation eox is separated into conditions for
a matching event and for the edited model element. Cross-references between
element properties are highlighted in bold. In order to recognize partly performed
activities, all possible permutations of the expected editing operations in EO
are declared within separate rules. Each fully matched Drools rule generates an
activity candidate acx in AC, which defines the remaining editing operations for

Recommending Auto-completions for Software Modeling Activities 177

completing the modeling activity. As different modeling activities can contain
similar definitions of editing operations it is not possible to declare these activity
patterns without partly overlapping each other, i.e., incoming events can be
matched to multiple patterns in AP . Furthermore, an activity pattern can be
recognized multiple times, because the RETE algorithm matches all possible
event combinations that fulfill the pattern’s conditions. Accordingly, the raw
output AC of the activity recognition step requires post-processing steps to
generate relevant recommendations for a user. In the second column of Table
1 we show the raw output AC produced for our illustrating example. A total
number of 21 activity candidates has been matched based on the last triggered
event at t0 and all previously incoming events.

4.2 Step 2: Filtering Invalid Activity Candidates

Recommended activity candidates need to be completable. We call a candidate
that fulfills this condition “valid”. To explain what a valid activity candidate is,
we take a closer look at the recognized activity pattern candidate for ap5 in our
example (see Figure 2). The ap5 activity pattern describes the transformation
of an association with association class into a model structure consisting of a
class and two associations. The transformation can be realized by adding a new
class, by transferring all properties of the association class into the new class,
by associating the class to both ends (classes) of the original association, and
finally by deleting the original association including the connected association
class. Figure 2 shows that the activity candidate for ap5 has got two allocated
events Add Class and Add Association. Two more editing operations would be
required to complete the activity, the deletion of the original association with
association class and the creation of another association. Figure 1 shows the final
state of our model and it is visible that no association with association class is
contained. That means that the activity candidate for ap5 cannot be completed,
it is invalid and will be filtered.

To realize the filtering we derive model queries from activity candidates that
are applied to the repository of the modeling environment. These queries verify
the existence of model elements required to complete a partly matched activity.
Queries are executed for all activity candidates after each incoming event on
the current state of the model. The concrete content of a query depends on the
completeness of an activity candidate as each event allocation may add new
conditions related to the required model state. Similarly, each editing operation
may validate or invalidate existing activity candidates. Accordingly, queries for
all activity candidates are derived and executed upon each incoming event.

4.3 Step 3: Ranking Activity Candidates by Relevance

The previous filtering step results in a set of valid activity candidates. In order
to present useful recommendations, activity candidates need to be ranked ac-
cording their relevance for a developer. This ranking requires criteria that are

178 T. Kuschke, P. Mäder, and P. Rempel

able to characterize the relevance of an activity candidate. Based on available in-
formation about activity candidates, on related work and on our own industrial
modeling experiences, we identified three ranking criteria.

αac – Average age of allocated events of an activity candidate
βac – Average period between allocated events of an activity candidate
γac – Completeness of an activity candidate

We do not claim that these three criteria are the only possible, but we will
demonstrate their effectiveness within the evaluation section. It will be a future
exercise to further explore the area for other criteria. The following paragraphs
describe each criterion in detail and demonstrate their influence on the ranking
of activity candidates. Table 1 shows the ranking results after performing edit
operation eo1 – eo7 in the prototype. For our example we know the three carried
out modeling activities and highlighted them within the columns.

Table 1. Visualization of the influence of the identified ranking criteria on the set
of activity candidates AC(t0) after executing editing operation eo1 to eo7 (see Figure
1) in the prototype. The second column shows the order of activity candidates as
delivered by the rule engine. The third to fifth column rank these candidates based on
a single ranking criterion each. Finally, column six shows the resulting list ranked by
combining all three criteria. Cells within the table reflect the activity pattern type ap
of a recognized candidate ac and the value calculated for the criterion.

Ranked based on

Rank Non-ranked αac βac γac
αac+βac+γac

3

1 ap3 ap3 (1.00) ap5 (1.00) ap6 (0.75) ap5 (0.87)

2 ap4 ap4 (1.00) ap6 (0.99) ap13 (0.75) ap13 (0.70)

3 ap10 ap10 (1.00) ap13 (0.34) ap10 (0.50) ap6 (0.69)

4 ap13 ap13 (1.00) ap3 (0.00) ap17 (0.50) ap5 (0.52)

5 ap17 ap17 (1.00) ap4 (0.00) ap10 (0.50) ap10 (0.38)

6 ap5 ap5 (1.00) ap10 (0.00) ap17 (0.50) ap17 (0.38)

7 ap6 ap7 (0.98) ap13 (0.00) ap5 (0.50) ap7 (0.37)

8 ap3 ap5 (0.96) ap17 (0.00) ap5 (0.50) ap3 (0.31)

9 ap4 ap13 (0.71) ap5 (0.00) ap7 (0.50) ap4 (0.31)

.

11 ap13 ap3 (0.20) ap4 (0.00) ap17 (0.50) ap5 (0.31)

.

15 ap7 ap6 (0.03) ap7 (0.00) ap5 (0.25) ap17 (0.13)

.

20 ap17 ap17 (0.00) ap17 (0.00) ap13 (0.25) ap13 (0.06)

21 ap5 ap5 (0.00) ap5 (0.00) ap5 (0.25) ap5 (0.06)

Average age of allocated events. Based on our experience, we assume that a
human developer can only work on a limited number of tasks in parallel. Thus,
modeling is rather continuous and started modeling activities will be completed
within a restricted period of time. Accordingly, it is more likely that a developer
is actually working on a younger activity candidate than one that has been
recognized a longer time ago. To address this fact, we define the current age of

Recommending Auto-completions for Software Modeling Activities 179

an event ey as the time span between the occurrence of the last triggered event
t0 and its own occurrence tey :

aey (t0) = t0 − tey . (1)

The average age of all n allocated events of an activity candidate acx is deter-
mined as:

āacx(t0) =

∑
(ae1 , . . . , aen)

n
. (2)

Let A = (āac1 , . . . , āacm) be the set of average ages for all m activity candidates
at t0. The ranking criterion αac of an activity candidate acx is defined as:

αacx(t0) = 1− āacx −min(A)

|max(A)−min(A)| . (3)

The formula means that an increasing average age of an activity candidate de-
creases its likeliness of being relevant. Values of αac are normalized on a scale
between zero and one. The candidate with the smallest average age receives a
value of 1.0, while the one with the largest average age receives a value of 0. This
is done to assess proportions between activity candidates rather than absolute
values to ensure comparability over time. The influence of αac on the ranking
for the our example is illustrated in Table 1.

Average period between allocated events. Not only the average age but also the
period between the allocated events influences the relevance of an activity candi-
date. We assume that events establishing the same modeling activity more likely
occur within a limited period of time. Even if the completion is interrupted, see
the phone call in our running example (Section 3), most editing operations are
carried out as a contiguous sequence. Thus, an activity candidate is more likely
to be irrelevant if its allocated events occurred with long periods in between.
To assess a candidate acx for this criterion, we calculate the average period be-
tween its allocated events as the time span from the first (tfirst) to the last
(tlast) allocated event divided by the total number of allocations n minus one:

p̄acx =
tfirstx − tlastx

n− 1
(4)

Let P = (p̄ac1 , . . . , p̄acm) be the set of average periods for all m activity can-
didates. The ranking criterion βac of an activity candidate acx is defined as:

βacx = 1− p̄acx −min(P)

|max(P)−min(P)| (5)

An increasing average period for an activity candidate decreases its likeliness
of being relevant. Values of βac are normalized on a scale between zero and one.
The candidate with the smallest average period in the set of current activity
candidates receives the value 1.0, while the one with the largest average period
receives the value 0. The influence of βac on the ranking for the example is
illustrated in Table 1.

180 T. Kuschke, P. Mäder, and P. Rempel

Completeness. Activity candidates are detected by comparing events against
specified activity patterns. We assume that the relevance of detected activity
candidates increases with each additional allocated event, i.e., with its complete-
ness. The completeness of an activity candidate acx is assessed by calculating
the ratio of its currently allocated events (nalloc) to the total number of expected
editing operations (ntotal) establishing the corresponding activity:

γacx =
nallocx

ntotalx

(6)

The influence of γac on the ranking for the example is illustrated in Table 1.
Figure 2 shows the completeness of recognized activities and that the activity
candidates ap6 and ap13 should be ranked to the top of the list regarding that
criterion.

Combining ranking criteria. Finally, the described ranking criteria need to be
combined into an overall probability value for each activity candidate. Without
history data about the interplay of the identified ranking criteria, a possible
way for combining single criteria is to average them, treating each criterion
as equally important. The last column of Table 1 shows this probability for our
example. However, in order to maximize the quality of recommendations, history
data should be used to compute an optimized statistical model that treats the
influence of the ranking criteria individually. This approach has been used for
the computation of our experimental results in Section 5.

4.4 Step 4: Presenting Recommendations

By filtering (Step 2) and ranking (Step 3), an ordered list of relevant activity
candidates has been created. Although, candidates representing relevant activ-
ities are ranked topmost, the set likely contains many additional valid but less
relevant entries. Reed’s [24] experiments with humans memorizing list entries
suggest a relation between the number of entries and a subject’s comprehension.
Hence, we hypothesize that it is necessary to limit presented recommendations
to a useful number. Holmes et al. [9] also identified that need and refer to a
list of ten entries as useful. For the computation of our experimental results
(see Section 5), we follow that suggestion, but also explore a more sophisticated
method that takes into account the overall probability of recommendations.

5 Evaluation

We evaluated our approach according to the challenges C1 to C4 described in
Section 1. Challenges C1 and C2 require the ability to recognize partly performed
activities, which forms the basis of our approach. Thereby, the system has to
handle user variability such as different orders of editing operations to perform
the same modeling activity. We evaluated the tolerance of modeling variations
of our approach within Experiment 1. A crucial aspect of user acceptance for

Recommending Auto-completions for Software Modeling Activities 181

a recommendation approach is its performance. We evaluated the performance
of our approach with Experiment 2, which refers to challenge C3. Challenge C4
addresses the quality of generated recommendations. We evaluated this aspect
within the extensive Experiment 3. The extensibility of our approach (Challenge
C5) was not evaluated for this paper. We are enhancing the recommender system
with auto-completion functionality within the ongoing research work and we will
demonstrate its usage on different platforms and with an extended catalog of
activity patterns as future work.

5.1 Experimental Setup

We implemented our recommender system as plug-in for the commercial mod-
eling environment Sparx Enterprise Architect [18]. The prototype embeds the
Drools 5.5 rule engine. All experiments were performed on a system with an
Intel i7 2.7GHz processor, 4GB RAM, and a 64-bit Windows Microsoft 7 OS.

Our experiment is using recorded data sets of an experiment with 16 subjects
that performed modeling tasks over a period of approximately two hours each.
The experiment was originally conducted to evaluate our traceMaintainer ap-
proach [21]. In the original experiment we were purely interested in the quality
and efficiency of traceability maintenance possible for the modeling tasks per-
formed by a subject . However, we also logged all editing operations performed
by the subjects and use that data to evaluate our recommendation approach.

A medium size model-based development project of a mail-order system was
used. This project comprised various UML diagrams on three levels of abstrac-
tion: requirements, design, and implementation. Subjects had to perform three
maintenance tasks on the mail-order system. First, the system’s functionality
had to be enhanced to distinguish private and business customers and to handle
foreign suppliers. Second, the system layers view and data had to be extracted
into separate components. And third, the system’s functionality had to be en-
hanced to handle additional product groups and to categorize products according
to content categories. Tasks were described in general terms in order to acquire a
wide spread of different solutions. The experiment was performed by 16 computer
science students that were either in the fourth or fifth year of their university
studies. All students were taking a course on software quality and had advanced
experience in model-based software engineering and UML. The 16 acquired data
sets contained recorded events describing each performed editing operation. As
we kept the event notation consistent with our previous approach, data could
directly be used for our evaluation. All experimental material is available in [20].

5.2 Experiment 1: Modeling Variance Toleration

Experiment 1 was conducted to evaluate the toleration by the recognition part
of our approach for modeling variances in performing the same activity pattern.
The approach must recognize the same activity patterns within different per-
mutations of the same event sequences. Therefore, we replayed 100 randomly
generated permutations of the recorded events and compared the computed

182 T. Kuschke, P. Mäder, and P. Rempel

recognition result with the original recognitions. To validate alternative ways
for executing activities, the experiment was conducted for all 16 different sub-
jects. All generated experiment results contained exactly the same set of activity
recognitions as their corresponding original, but in different orders according to
the permutation of events.

5.3 Experiment 2: Performance

We measured the execution time across all processing steps, i.e., from the oc-
currence of an event triggered by an editing operation to the fully presented
recommendation set within Sparx Enterprise Architect. This time is indepen-
dent of the model size but depends on the number of processed events and the
number of activity patterns defined in the catalog. We computed the average
execution time t̄Px and the maximum execution time t̂Px across all performed
editing operations of the 16 subjects for a number of 5, 10 and 19 defined activity
patterns in the catalog. Results are discussed in Section 6:

t̄Px =
t̄S1Px + . . .+ t̄S16Px

16
t̄P5,P10,P19 = {104ms, 131ms, 186ms} (7)

t̂P19 = max(t̂S1P19 , . . . , t̂S16P19) t̂P19 = 257ms (8)

5.4 Experiment 3: Quality of Recommendations

In this experiment we evaluated the quality of generated recommendations for
the user. First, we determined for each editing operation that a subject had per-
formed all activity candidates that she/he started at this point and that she/he
completed during the remaining modeling session. These identified activity can-
didates comprised a golden master of relevant activities per editing operation of
a subject. We compared this golden master with the actual recommendations
of our approach and evaluated the relevance of recommendations with the aver-
aged common metrics recall, precision, and average precision. Mean recall (MR)
measures shown relevant recommendations in relation to all relevant recommen-
dations across all editing operations made by a subject. Mean precision (MP)
measures the amount of relevant recommendations in relation to all shown rec-
ommendations across all editing operations made by a subject. Finally, mean
average precision (MAP) measures the precision of recommendations at every
position in the ranked sequence of recommendations across all editing operations
of a subject. This metric evaluates the ranking performance of our approach.

We determined an optimized weighting function for the three ranking crite-
ria by performing a binominal regression based on our evaluation data (see Sec-
tion 4.3). Due to the limited amount of subjects performing the experiment, we
applied a leave-one-out cross-validation strategy [25] across the acquired 16 data
sets. We fitted 16 generalized linear models, every time using 15 out of 16 data
sets. These models were then used to rank the recommendations of the 16th data
set. Results are shown in Table 2. We applied three threshold strategies to cut the
list of available recommendations to a comprehensible number (see Section 4.4).

Recommending Auto-completions for Software Modeling Activities 183

Table 2. Quality of computed recommendations measured as mean recall (MR), mean
precision (MP), and mean average precision (MAP) at three different thresholds (th)

thmax = 10, thprob = / thmax = /, thprob = 0.02 thmax = 10, thprob = 0.02

Subject MAP MR MP MAP MR MP MAP MR MP

1 100.00% 100.00% 13.40% 100.00% 100.00% 37.08% 100.00% 100.00% 37.08%

2 71.61% 98.82% 34.92% 71.84% 100.00% 33.51% 71.61% 98.82% 37.11%

3 65.55% 100.00% 48.06% 67.88% 89.56% 48.40% 67.88% 89.56% 48.40%

4 56.47% 62.02% 15.74% 45.55% 80.05% 16.42% 56.47% 62.02% 18.42%

5 55.59% 76.69% 11.83% 50.13% 86.72% 10.20% 55.59% 76.69% 12.19%

6 60.72% 99.34% 21.46% 65.33% 83.11% 15.19% 65.33% 83.11% 19.92%

7 82.15% 92.58% 12.83% 79.32% 93.75% 11.94% 82.12% 90.23% 14.30%

8 71.94% 100.00% 10.00% 71.94% 100.00% 10.10% 71.94% 100.00% 12.87%

9 60.45% 64.89% 17.31% 59.00% 77.43% 24.75% 66.45% 54.50% 22.88%

10 77.26% 100.00% 15.11% 77.26% 100.00% 17.74% 77.26% 100.00% 18.38%

11 77.40% 100.00% 12.14% 77.70% 98.60% 10.98% 77.70% 98.60% 14.78%

12 57.32% 52.87% 17.46% 49.24% 59.62% 25.15% 76.96% 31.20% 23.83%

13 89.84% 100.00% 17.81% 89.52% 96.88% 21.37% 89.52% 96.88% 25.91%

14 48.12% 61.22% 16.67% 41.20% 83.84% 14.04% 48.12% 61.22% 17.17%

15 97.74% 100.00% 16.76% 97.74% 100.00% 15.42% 97.74% 100.00% 18.78%

16 82.93% 100.00% 17.03% 82.93% 100.00% 24.41% 82.93% 100.00% 25.54%

Average 72.19% 88.03% 18.66% 70.41% 90.60% 21.04% 74.23% 83.93% 22.97%

Columns 2–4 show the three metrics for a fixed cutoff of 10 recommendations.
Columns 5–7 show the metrics for a dynamic cutoff at probability 0.02. Finally,
columns 8–10 show the metrics for a cutoff at probability 0.02 or at 10 recommen-
dations, whatever occurs earlier.

6 Discussion

In Experiment 1, we evaluated the tolerance of the approach for possible vari-
ations in a developer’s flow of editing operations. We found that we recognized
the same set of modeling activities across 100 permutations of the editing opera-
tions performed by each subject. This result shows that our event processing and
activity pattern matching implementation is independent of the order of events
and tolerates variances in the way a developer performs a modeling activity.

In Experiment 2, we studied the performance of the approach and found
that the generation of recommendations after an editing operation consumed on
average 186ms with a maximum of 257ms for a set of 19 activity patterns. We
consider these values as unintrusive for a user. However, computation time of
the activity pattern matching depends on the number of patterns defined in the
catalog and on the number of events kept in the matching process. The results
show that computation time rises linearly with the number of defined patterns.
Our subjects performed on average 219 editing operations during the experiment.
Drool’s implementation is known as very efficient and the algorithm itself as the
state of the art for complex event processing. However, it might be necessary
to limit the event history for models with many editing operations in order
to guarantee a certain computation time. We are planning a more substantial
performance evaluation regarding those facts as part of a future industrial study.

184 T. Kuschke, P. Mäder, and P. Rempel

In Experiment 3, we studied the quality of recommendations generated by our
approach (see Table 2). Focusing on the first threshold strategy, which always
presents the ten most relevant recommendations to the user, we recommended
across all 16 subjects 88% (MR) of the activities that a user was actually working
on. These relevant recommendations comprised 19% (MP) of all recommenda-
tions. The value of 72% for the MAP metric shows that we rank relevant rec-
ommendations close to the top of the list. All three values are very promising
and show that we were able to recommend the majority of activities performed
by the user in a list of ten elements. The other two thresholding strategies show
similar promising results. Whether these results are good enough to get accep-
tance is a research question for ongoing work, which will be evaluated once the
whole auto-completion approach is available.

Concluding, the results of our evaluation show that the proposed approach
meets the challenges C1–C4 discussed in Section 1. However, our evaluation is
limited in several regards. The studied modeling activities were carried out over a
relatively short period of two hours and all subjects were solving the same tasks.
However, this experiment ensured that we captured manifold editing operation
sequences with similar goal and evaluated the tolerance for developer variances.
The computed regression models that combined individual ranking criteria are
based on the data of other subjects performing the the same modeling tasks,
this approach might have biased our results positively. We clearly identify the
need for more empirical and industrial evaluation to draw general conclusions
about the applicability of our approach.

7 Conclusions and Future Work

We presented an approach for recommending auto-completions of modeling ac-
tivities performed on structural UML-models. We identified five challenges that
had to be handled for making a recommendation approach useful to a user. The
developed approach addresses these challenges. It works in the background while
a developer is creating or evolving a model. Editing operations are analyzed and
matched to a predefined but extensible catalog of common modeling activities
for structural UML models. We evaluated our approach in a controlled experi-
ment with 16 students evolving models. We recommended 88% of the activities
that the subjects wanted to perform within a short list of ten recommendations.

We are currently working on an auto-completion mechanism for selected rec-
ommendations to complement our approach. Once both approaches are available,
we are planning an industrial study to gain more empirical data on performed
modeling activities, user preferences, and the discussed ranking criteria.

Acknowledgment. We are supported by the German Research Foundation
(DFG): Ph49/8-1 and the German Ministry of Education and Research (BMBF):
Grant No. 16V0116.

Recommending Auto-completions for Software Modeling Activities 185

References

1. Arlow, J., Neustadt, I.: UML and the unified process: practical object-oriented
analysis and design, 2nd edn. Addison-Wesley (2006) ISBN 0-321-32127-8

2. Fowler, M.: Refactoring: improving the design of existing code, 19th edn. Addison-
Wesley (2006) ISBN 0-201-48567-2

3. University of Illinois at Chicago: Optimizing the object design model: Course notes
for object-oriented software engineering, http://www.cs.uic.edu/∼jbell/

CourseNotes/OO SoftwareEngineering/MappingModels.html (accessed March 15,
2013)

4. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Hei-
delberg (2009)

5. Sun, Y., Gray, J., Wienands, C., Golm, M., White, J.: A demonstration-based
approach to support live transformations in a model editor. In: Cabot, J., Visser,
E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 213–227. Springer, Heidelberg (2011)

6. Ráth, I., Bergmann, G., Ökrös, A., Varró, D.: Live model transformations driven
by incremental pattern matching. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.)
ICMT 2008. LNCS, vol. 5063, pp. 107–121. Springer, Heidelberg (2008)

7. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

8. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency
by recommending development environment commands. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE 2012, pp. 42:1–42:11. ACM, New York (2012)

9. Holmes, R., Walker, R., Murphy, G.: Approximate structural context matching:
An approach to recommend relevant examples. IEEE Transactions on Software
Engineering 32(12), 952–970 (2006)

10. Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for
business process modeling. Data & Knowledge Engineering 70(6), 483–503 (2011)

11. Hornung, T., Koschmider, A., Oberweis, A.: Rule-based autocompletion of business
process models. In: CAiSE Forum, vol. 247 (2007)

12. Foster, S.R., Griswold, W.G., Lerner, S.: Witchdoctor: Ide support for real-time
auto-completion of refactorings. In: 2012 34th International Conference on Software
Engineering, ICSE 2012, pp. 222–232. IEEE Press, Piscataway (2012)

13. Mazanek, S., Maier, S., Minas, M.: Auto-completion for diagram editors based on
graph grammars. In: IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2008, pp. 242–245 (2008)

14. Mazanek, S., Minas, M.: Business process models as a showcase for syntax-based
assistance in diagram editors. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 322–336. Springer, Heidelberg (2009)

15. Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with
automatic model completion. Simulation 86(2), 109–126 (2010)

16. Reder, A., Egyed, A.: Computing repair trees for resolving inconsistencies in de-
sign models. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pp. 220–229. ACM, New York (2012)

17. Steimann, F., Ulke, B.: Generic model assist. In: Moreira, A., Schätz, B., Gray,
J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 18–34.
Springer, Heidelberg (2013)

http://www.cs.uic.edu/~jbell/CourseNotes/OO_SoftwareEngineering/MappingModels.html
http://www.cs.uic.edu/~jbell/CourseNotes/OO_SoftwareEngineering/MappingModels.html

186 T. Kuschke, P. Mäder, and P. Rempel

18. Sparx Systems: Enterprise architect: A model driven uml tool suite,
http://www.sparxsystems.com (accessed March 15, 2013)

19. IBM: Rational software architect: Colaborative systems and software de-
sign, http://www-01.ibm.com/software/rational/products/swarchitect (ac-
cessed March 15, 2013)

20. Mäder, P.: Rule-based maintenance of post-requirements traceability. MV Verlag
(2010)

21. Mäder, P., Gotel, O.: Towards automated traceability maintenance. Journal of
Systems and Software 85(10), 2205–2227 (2012)

22. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

23. Red Hat: Drools 5: An integrated platform for rules, workflows and event process-
ing, http://www.jboss.org/drools (accessed March 15, 2013)

24. Reed, A.V.: List length and the time course of recognition in immediate memory.
Memory & Cognition 4(1), 16–30 (1976)

25. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection.
Statistics Surveys 4, 40–79 (2010)

http://www.sparxsystems.com
http://www-01.ibm.com/software/rational/products/swarchitect
http://www.jboss.org/drools

Automatically Searching

for Metamodel Well-Formedness Rules
in Examples and Counter-Examples

Martin Faunes1, Juan Cadavid2, Benoit Baudry2,
Houari Sahraoui1, and Benoit Combemale2

1 Université de Montréal, Montreal, Canada
{faunescm,sahraouh}@iro.umontreal.ca

http://geodes.iro.umontreal.ca
2 IRISA/INRIA, Rennes, France

{benoit.baudry,benoit.combemale}@irisa.fr
http://www.irisa.fr/triskell

Abstract. Current metamodeling formalisms support the definition of
a metamodel with two views: classes and relations, that form the core
of the metamodel, and well-formedness rules, that constraints the set of
valid models. While a safe application of automatic operations on mod-
els requires a precise definition of the domain using the two views, most
metamodels currently present in repositories have only the first one part.
In this paper, we propose to start from valid and invalid model examples
in order to automatically retrieve well-formedness rules in OCL using Ge-
netic Programming. The approach is evaluated on metamodels for state
machines and features diagrams. The experiments aim at demonstrating
the feasibility of the approach and at illustrating some important design
decisions that must be considered when using this technique.

1 Introduction

Metamodeling is a key activity for capitalizing domain knowledge. A metamodel
formally defines the essential concepts of an engineering domain, providing the
basis for the automation of many operations on models in this domain (e.g.,
analysis, simulation, refactoring, transformation, visualization). However, do-
main engineers can benefit from the full power of automatic model operations
only if the metamodel is precise enough to effectively specify and implement
these operations, as well as to ensure a safe application. Current metamodel-
ing techniques, such as EMF1, GME [13] or MetaEdit+2, impose to define a
metamodel as two parts: a domain structure, which captures the concepts and
relationships that can be used to build models in a specific domain, and well-
formedness rules, that impose further constraints that must be satisfied by all

1 Eclipse Modeling Framework, cf. http://www.eclipse.org/modeling/emf/
2 cf. http://www.metacase.com

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 187–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://geodes.iro.umontreal.ca
http://www.irisa.fr/triskell
http://www.eclipse.org/modeling/emf/
http://www.metacase.com

188 M. Faunes et al.

models in the domain. The domain structure is usually modeled as a class dia-
gram, while well-formedness rules are expressed as logical formula.

When looking at the most popular metamodel repositories (e.g. [1], we find
hundreds of metamodels which include only the domain structure, with no well-
formedness rules. The major issue with this is that it is possible to build models
that conform to the metamodel (i.e., satisfy the structural constraints imposed
by concepts and relationships of the domain structure), but are invalid with
respect to the domain. For example, considering the class diagram metamodel
without well-formedness rules, it is possible to build a class diagram in which
there is a cyclic dependency in the inheritance tree (this model would be valid
with respect to the domain structure but invalid with respect to the domain
of object-oriented classes). From an engineering and metamodel exploitation
perspective, the absence of well-formedness rules is a problem because it can
introduce errors in operations that are defined on the basis of the domain struc-
ture. For example, operations that rely on automatic model generation might
generate wrong models or compatibility analysis (e.g. to build model transfor-
mation chains) can be wrong if the input model is considered as conforming to
the domain structure while it does not fully conform to the domain.

The intuition of this work is that domain experts know the well-formedness
rules, but do not explicitly model them and some operations may consider them
as assumptions (i.e., hidden contract). We believe that experts know them in the
sense that, if we show them a set of models that conform to the domain structure,
they are able to discriminate between those that are valid with respect to the
domain and those that are not. However, we can only speculate about why they
do not formalize them. Given the importance of well-formedness rules, we would
like to have an explicit model of these rules to get a metamodel as precise as
possible and get the greatest value out of automatic operations on models.

In this work, we leverage domain expertise to automatically generate well-
formedness rules in the form of OCL (Object Constraint Language) invariants
over a domain structure modeled as a class diagram with MOF. We gather
domain expertise in the initial domain structure and a set of models that conform
to the domain structure, in which some models are valid with respect to the
domain and some models are invalid. Starting from this input, our technique
relies on Genetic Programming [12] to automatically generate well-formedness
rules that are able to discriminate between the valid and invalid models.

We validate our approach on two metamodels: a state machine metamodel and
a feature diagrams metamodel. For the first metamodel our approach finds 10
out of 12 well-formedness rules, with precision = recall = 0.83. For the second
metamodel we retrieve seven out of 11 well-formedness rules with a precision =
0.78 and recall = 0.64.

The contributions of this paper are the following:

– formalizing the synthesis of well-formedness rules as a search problem;

– a set of operators to automatically synthesize and mutate OCL expressions;

– a series of experiments that demonstrate the effectiveness of the approach
and provide a set of lessons learned for automatic model search and mutation.

Automatically Searching for Metamodel Well-Formedness Rules 189

The paper is organized as follows. Section 2 provides the background and,
defines and illustrates the problem addressed. Section 3 details the proposed ap-
proach using Genetic Programming to derive well-formedness rules, and Section
4 reports our experiments to evaluate the approach. Section 5 surveys related
work. Finally, we conclude and outline our perspectives in Section 6.

2 Problem Definition

This section precisely defines what we mean by metamodeling and illustrates how
both the domain structure and well-formedness rules are necessary to completely
specify a metamodel. Then we illustrate how the absence of well-formedness rules
can lead to situations where models conform to the domain structure but are
invalid with respect to the domain.

2.1 Definitions

Definition 1. Metamodel. A metamodel is defined as the composition of:

– Domain structure. This part of the metamodel specifies the core concepts
and attributes that define the domain, as well as the relationships that specify
how the concepts can be bound together in a model.

– Well-formedness rules. Additional properties that restrict the way con-
cepts can be assembled to form a valid model.

The method we introduce in this work can be applied to any metamodel that is
specified according to this definition. Nevertheless, for this work we had to choose
concrete formalisms to implement both parts. Thus, here, we experiment with
domain structures formalized with MOF and well-formedness rules formalized
with the Object Constraint Language (OCL).

2.2 Illustration of Precise Metamodeling

Here we illustrate why both parts of a metamodel are necessary to have a speci-
fication as precise as possible and avoid models that conform to the metamodel
but are invalid with respect to the domain. The model in Fig. 1 specifies a sim-
plified domain structure for state machines. A StateMachine is composed of
several Vertexs and several Transitions. Transitions have a source and a tar-
get Vertex, while Vertexs can have several incoming and outgoing Transitions.
The model distinguishes between several different types of Vertexs.

The domain structure in Fig. 1 accurately captures all the concepts that are
necessary to build state machines, as well as all the valid relationships that
can exist between these concepts. However, valid models can also exist, of this
structure, that are not valid state machines. For example, the metamodel does
not prevent the construction of a state machine in which a join pseudostate
has only one incoming transition (when it should have at least 2). Thus, the sole

190 M. Faunes et al.

Fig. 1. State machine metamodel

domain structure of Fig. 1 is not sufficient to precisely model the specific domain
of state machines.

The domain structure needs to be enhanced with additional properties to cap-
ture the domain more precisely. The following well-formedness rules, expressed
in OCL, show some mandatory properties.

1. WFR1: Join pseudostates have one outgoing transition

(context Join inv : s e l f . outgoing−>s i z e () = 1))

2. WFR2: Fork pseudostates have at least two outgoing transitions

(context Fork inv : s e l f . outgoing−>s i z e () > 1)

2.3 Problem Definition

The initial observation of this work is that most metamodelers build the domain
structure, but do not specify the well-formedness rules. The absence of these
rules allows the creation of models that conform to the metamodel (only domain
structure) but are not valid with respect to the domain. For example, if we ignore
the well-formedness rules illustrated previously, it is possible to build the two
models of Fig. 2a and Fig. 2b. Both models conform to the structure of Fig. 1,
but the model of Fig. 2b is an invalid state machine.

(a) Valid (b) Invalid

Fig. 2. Example of state machines

The intuition of this work is that, given a domain structure without well-
formedness rules, it is possible (i) to generate models (e.g., using test model
generation techniques [2]) and (ii) to ask domain experts to sort these models
between valid and invalid. Then, our objective is to automatically retrieve a set

Automatically Searching for Metamodel Well-Formedness Rules 191

of well-formedness rules. The retrieved well-formedness rules are not meant to
be exactly those sought (that are unknown), but shall be a good approximation.
In particular, they should be able to properly discriminate models beyond those
provided in the learning process, i.e., they should generalize the examples.

3 Approach Description

3.1 Approach Overview

The problem, as described in Section 2, is complex to solve. The only inputs
to our derivation mechanism are the sets of examples of valid (positive) and
invalid (negative) models. Hence, our goal is to retrieve the minimal set of well-
formedness rules that better discriminate between the two sets of models.

From a certain perspective, well-formedness rule sets could be viewed as
declarative programs that take as input a model and produce as output a decision
about the validity of this model with respect to the domain. This observation
motivates the use Genetic Programming (GP) as a technique to derive such rule
sets. Indeed, GP is a popular evolutionary algorithm which aims at automati-
cally deriving a program that approximates a behaviour from examples of inputs
and outputs. It is used in a scenario where manually writing the program is
difficult. In our work, the examples of inputs are the models and the outputs
are their validity. As we will show later in this section, to guide the derivation
process, well-formedness rules should be evaluated on the example models. To
this end, the rules to search for are implemented as OCL invariants3,4.

The boundaries of our derivation process are summarized in Fig. 3. In addition
to example models, the derivation process takes as input a metamodel for which
the invariants are sought. It produces as output fully operational OCL invariants
that represent an approximation to the sought invariants.

Fig. 3. Approach overview

In the next two sub-sections, first, a brief introduction to the GP technique is
given and then its use to solve specifically the problem of well-formedness rule
derivation is described.

3 http://projects.eclipse.org/projects/modeling.mdt.ocl
4 In the remainder of this section, we use the term “invariant” (resp. “invariant set”)
to designate a well-formedness rule (resp. rule set).

http://projects.eclipse.org/projects/modeling.mdt.ocl

192 M. Faunes et al.

3.2 Genetic Programming

The most effective way to understand GP is to look to the typical GP process
(cycle), sketched in Fig. 4. Step 1 of a GP cycle consists of creating an initial
population of randomly-created programs. Then, in step 2, the fitness of each
program in the current population is calculated. This is typically done by execut-
ing the programs over the example inputs and comparing the execution results
with the expected outputs (those given as example). If the current population
satisfies termination criteria in step 3, e.g., a predefined number of iterations or
a target fitness value, the fittest program met during the evolution is returned
(step 7); otherwise, in step 4, a new population is created (it is also called evolv-
ing the current population). This is done by selecting the fittest programs of
the current population and reproducing them. Although, the selection process
favors the programs with the highest fitness values, it still gives a chance to any
program to avoid local optima. Reproduction involves three families of genetic
operations: (i) elitism to directly add top-ranked programs to the new popula-
tion, (ii) crossover to create new programs by combining genetic material of the
old ones, and (iii) mutation to alter an existing program by randomly adding
new genetic material. Once a new population is created, it replaces the current
one (step 5) and the next iteration of the GP cycle takes place, i.e., steps 2 to
5. Thus, programs progressively change to better approximate the behaviour as
specified by the inputs/outputs.

Fig. 4. A typical GP cycle

3.3 Using GP to Derive Well-Formedness Rules

To adapt GP to our problem, we have to produce a set of positive and negative
models (base of examples). Then, we need to define a way to encode a set of
invariants and to create the initial population of them. Another action consists
in selecting a mechanism to execute sets of invariant on the provided models
to calculate their fitness. Finally, proper genetic operators should be defined
to evolve the population of candidate sets. In the rest of this section, these
adaptations are described in details.

Automatically Searching for Metamodel Well-Formedness Rules 193

Input/output encoding: The base of examples E is a set of pairs e = (m, v) where
m is a model (conforming to the considered metamodel M) and v, a boolean,
is the model validity stating if m satisfies the invariants or not. We refer to the
example model as em and to the example model validity as ev. Each model m
conforms to the ECORE [16] metamodel M .

Invariant set encoding: In GP, a population of programs is initially created and
evolved to search for the one which better approximates the behavior specified
by the examples of inputs and outputs. In our adaptation, a program is a set
p that contains OCL invariants ij, p = {i1, i2, ..., in}. A model m, to be valid
given an invariant set p, has to satisfy each invariant ij ∈ p. To encode an OCL
invariant ij , we use the format provided by the Eclipse OCL framework. An OCL
invariant is seen as a tuple (c, t) where c is the context, i.e., a main metamodel
class, and t is a tree that combines logical operators, comparison operators, func-
tions, metamodel elements, and constants according to OCL syntax. Metamodel
elements can be class attributes or class relationships (called references). In such
a tree, the leave nodes are metamodel elements and constants, and the leave-
node parents are comparison operators and functions. Any node on top of these
two levels is a logical operator. In our implementation, we use the logical opera-
tors {and, or, not, implies}, comparison operators {>,<,=,≥,≤,
=}, and other
operations like {isKindOf, forAll, includesAll, size, allInstances, etc.}. These
operations are generally enough to encode a wide range of OCL invariants.

Random invariant set creation: The first phase of the well-formedness rule
derivation process is the random generation of the initial population, consist-
ing of n invariant sets. In theory, there is an infinity of possible invariants that
can be generated for a given metamodel. However, Cadavid et al. [3] showed em-
pirically, i.e., by analyzing dozens of metamodels from the standard community,
academia, and industry, that there is a limited number of recurrent invariant
patterns (20), whose instances are used individually or combined to create com-
plex invariants. A pattern example is CollectionSizeEqualsOne, which states that
the size of a collection col, contained in a class A, should be equal to 1:

context A inv : co l−>s i z e () = 1

Such a pattern could be instantiated for any collection that can be found in a
class, regardless of its type. Two possible instantiations for the state-machine
metamodel in Fig. 1, could be the following:

context Fork inv : s e l f . incoming−> s i z e () = 1
context Fork inv : s e l f . outgoing−> s i z e () = 1

In our random generation process, we first automatically produce all the pos-
sible instances of the above-mentioned 20 basic patterns for the considered meta-
model. This results in a large number of rules, lots of them are wrong, some of
them are too simple or with wrong parameter values and thus it is still necessary
to explore, combine and mutate this initial space of rules in order to produce the
right set. To this end, for each invariant set to create, we randomly pick some
of of the generated instances to produce simple invariants or complex ones by

194 M. Faunes et al.

Fig. 5. An example of a randomly-created invariant set

combining the chosen instances with logical operators. Simple invariants can be
combined if they share the same context. Fig. 5 shows an example of a set with
three invariants. The two first invariants are simple and contain respectively an
instance of the pattern CollectionSizeEqualsOne and an instance of the pattern
CollectionIsSubset, i.e., a collection that shoud be included in another one. The
third invariant is the conjuction of an instance of CollectionSizeEqualsOne with
an instance of CollectionIncludesSelf, i.e., if a class contains a collection typed
with itself, an instance of this class also makes part of this contained collection.

The number of instances to select as well as the number of combinations
to perform to produce complex invariants (tree depths) are decided randomly
during the creation of each set. The pattern instances are syntactically (w.r.t
the OCL syntax) and semantically (w.r.t the metamodel structure) correct as
they are their combinations. However, this does not mean that they are good
invariants. This is decided by the fitness function.

Fitness calculation: In our implementation, OCL invariants are evaluated on the
example models using the Eclipse OCL engine. The fitness function f assesses
how well an invariant set p discriminates the models contained in the base of ex-
amples E with respect to the expert-based classification. f is a weighed function
of two sub-functions f1 and f2. The first component, f1, measures the rate of
example models in E that are well classified by p. A model em is well classified
if v (em, p), the evaluation of p on em, is equal to ev. f1 is defined as:

f1 (p,E) =

∑
e∈E I (v (em, p) = ev)

|E| → [0, 1] (1)

Function I(a) returns 1 if a = true and 0 otherwise. The evaluation of a set
of invariants p on a model m , v(m, p), is defined formally as:

v (m, p) = u (m, i1) ∧ u (m, i2) ∧ ... ∧ u (m, iz)→ Boolean; ∀ik ∈ p (2)

Here, u(m, i) is a boolean function that returns true ifm satisfies the invariant
i and false otherwise.

Component f1 allows to evaluate the set of invariants as a whole. However,
it could penalize candidate sets that include good invariants but a few ones.

Automatically Searching for Metamodel Well-Formedness Rules 195

To reward good invariants individually, we defined a second component, f2, of
the fitness function. f2 is calculated by counting the invariants i ∈ p that are
able to find at least α true positives Tp and at least β true negatives Tp. We then
divide by the number of invariants |p| to normalize the result between 0 and 1:

f2 (p,E) =

∑
e∈E I (Tp(i, E) ≥ α ∧ Tn(i, E) ≥ β)

|p| → [0, 1] (3)

Here, a true positive (resp. negative) is a model e ∈ E classified as valid (resp.
invalid) and that satisfies (resp. not satisfies) the invariant i ∈ p:

Tp (p,E) =
∑

e∈E;e.v

I (u (e, i));Tn (p,E) =
∑

e∈E;¬e.v

I (¬u (e, i)) (4)

Now that we can generate an initial population and evaluate each of the
invariant sets, the next step consists in selecting invariant sets to use them to
produce a new population by applying crossover and mutation operators.

Selection method: To determine which sets of invariants will be reproduced to
create the new population, the Roulette-wheel selection method is used in this
work. This technique assigns to each invariant set in the current population a
probability of being selected for reproduction that is proportional to its fitness.
This selection strategy favours the fittest invariant sets while still giving a chance
to the others.

Genetic Operators : The crossover operator consists of producing new invariant
sets by combining the existing genetic material. After selecting two parent sets
for reproduction, two new invariant sets are created by exchanging invariants of
the parents. For instance, consider the two invariant sets p1 = {i11, i12, i13, i14}
having four invariants and p2 = {i21, i22, i23, i24, i25} with five invariants. If a
cut-point is randomly set to 2 for p1 and another to 3 for p2, the offspring
obtained are invariant sets o1 = {i11, i12, i24, i25} and io2 = {i21, i22, i23, i13, i14}.
Because each parent invariant is syntactically and semantically correct before the
crossover, this correctness is not altered for the offspring. Crossover is applied
with high probability.

Mutation allows to randomly inject new genetic materiel in the population. It
is applied with a low priority to offsprings after a crossover or to the selected par-
ents when the crossover is not applied. In our adaptation of GP, we implemented
10 mutation operators that modify an invariant set at many levels. Every oper-
ator preserves the sibling correctness, syntactically and semantically. The first
three operators are defined at the set level. One allows to add a new invariant,
produced randomly according to the procedure used in the initial population
generation. The second operator simply picks one of the existing invariants in
the set and removes it. If we consider the set of Fig. 5 , we could have, for in-
stance, the following mutations, corresponding respectively to the two operators:

Add : context Orthogonal inv : s e l f . outgoing−>i n c l ud e sA l l (s e l f . incoming)
Remove : context Fork inv : s e l f . incoming−> s i z e () = 1

196 M. Faunes et al.

The third operator at the set level selects two invariants, simple or complex,
having the same context, and combines them using the “implies” operator. The
remaining operators are defined at the invariant level. For one invariant of the
considered set, some mutations consist in replacing respectively a comparison
or a logical operator by a new one. For example, “=” in “Inv 0” of Fig. 5
could be replaced by “>”. Similarly, “and” in “Inv 2” could become “implies”.
Incrementing/decrementing a numerical constant and replacing an attribute or
a reference by a new one that is of the same type and that belongs to the same
context, also are possible mutations, e.g., replacing 1 by 0 or “incoming” by
“outgoing” in “Inv 0”. Another used mutation is the replacement of an operand
(sub-tree) of a logical operator or a comparator by a randomly generated one.
For example, the operand “self.contents->includes(self)” in “Inv 2” could be
replaced by “self.outgoing->size() = 0”. The final mutation is the negation of a
node that returns a boolean value (a logical operator, a comparison operator or a
boolean function). For instance, “Inv 1” could be mutated to “not self.incoming
->includesAll(self.outgoing)”.

All the decisions made during the mutation, including the selection of the
mutation operator, the invariant to change, and the replacement elements, are
determined randomly.

4 Evaluation

4.1 Research Questions

The evaluation of our approach addresses the two following research questions:

1. To which extent our approach is able to derive well-formedness rules that
properly discriminate between valid and invalid models?

2. Are the produced well-formedness rules those that are expected?

The first questions aims at assessing the validity of the approach from the quan-
titative perspective while the second considers the qualitative perspective.

4.2 Experimental Setting

Method. To answer both research questions, we conduct an experiment in which
we evaluate our approach over two different metamodels. The evaluation is per-
formed in a semi-real environment in which we know a priori the well-formedness
rules sought (OCL invariants provided with the metamodels). The example mod-
els are randomly created using Alloy [9]. The creation with Alloy takes into
account the known invariants. The number of positive models that are created
(those that satisfy all the invariants) is equal to five times the number of known
invariants. An identical number of negative models is also created. To create
negative models, we randomly negate one or more invariants to force Alloy to
violate them. The positive and negative model examples are then given as input
to the derivation process, but not the known invariants.

Automatically Searching for Metamodel Well-Formedness Rules 197

To answer the first question, we first calculate the classification correctness
of the best found invariant set, i.e., proportion of models in the example base
that are correctly classified (f1 in the fitness function). Then, considering the
stochastic nature of our approach, i.e., different executions may lead to different
results, we take a sample of executions and compare it with another sample
obtained by a random technique. To have a fair comparison, we defined the
random technique as the selection of the best from n ×m randomly–generated
sets, where n and m are respectively the size of a population and the number of
iterations in our approach. In other words, both our approach and the random
technique explore the same number of invariant sets. The comparison of the two
samples is done using an independent-sample t-test (or Mann-Whitney test if f1
values are not normally distributed in the two execution samples). The tests are
performed with a significance at the level of α = 0.05, i.e., a probability of less
than 5% that the difference between the two samples is obtained by chance.

To answer the second research question, we analyzed the invariants of the best
derived solution and compare them with the known invariants. The comparison
produces four sets: invariants found that match the expected ones (FOU), in-
variant found that are subsumed (less general) by the expected ones (SUB),
invariants that are not expected (INC), and expected invariants not found ex-
cluding the subsumptions (MIS). Ideally, all the found invariants should be in
FOU and MIS should be empty. Solutions with all the invariants in FOU but a
few in SUB are also acceptable. We defined two versions of precision and recall
depending on the acceptance of subsumed invariants (relaxed) or not (strict), as
follows:

precisionstrict =
|FOU|

|FOU|+|SUB|+|INC| and recallstrict =
|FOU|

|FOU|+|SUB|+|MIS|
precisionrel =

|FOU|+|SUB|
|FOU|+|SUB|+|INC| and recallrel =

|FOU|+|SUB|
|FOU|+|SUB|+|MIS|

Data.The first metamodel used is the one of state machines (see Fig. 1). We
selected 12 OCL invariants related to the incoming and outgoing transitions
depending on the state types. As mentioned earlier we created 60 positive and
60 negative models (5× 12 for each set).

The second metamodel that we consider represents the feature diagrams [11]
(see Fig. 6). For this metamodel, we selected 11 OCL invariants covering the
interdependencies between the feature types and the relation types. We created
accordingly 55 positive and 55 negative example models.

Fig. 6. Feature diagram metamodel

198 M. Faunes et al.

Algorithmic Parameters. GP, being a meta-heuristic algorithm, it depends
on many parameters. The population size was fixed to 100 invariant sets and the
evolution was performed with a maximum of 1000 iterations. To ensure that the
best invariant sets will be kept during the evolution, we used an elitism strategy
that consists in automatically adding the 10 fittest sets of each generation to the
next one. For the evolution operator, the crossover probability was set to 0.9.
We used the same probability for mutation. Unlike classical genetic algorithms,
having a high mutation probability is not unusual for GP algorithms (see, for
instance, [14]). For the fitness function we give equal weights to f1 and f2 (0.5),
and the parameter α of f2 was set to 1. Finally, the probability of creating
complex invariants vs. simple ones during the random creation is set to 0.1, i.e.,
each time an invariant has to be generated, it has nine chances to be simple and
one to be complex. This probability is recursively applied to the operands of the
logical operators when a complex invariant is created.

4.3 Results

Question 1. Given the stochastic nature of the GP, we performed a sample of
executions and took the best found set. For the state machine metamodel the
optimal best set was found before reaching the maximum number of iterations
(after 537 iterations). This set perfectly discrimnates the positive models from
the negative ones (f1 = 1). For the feature digram metamodel, the best set
missclassified 10 from the 110 models (f1 = 0.91). The second step was to assess if
the GP-based derivation performs better, in terms of discrimination power, than
random generation. We performed a Kolmogoriv-Smirnov test that revealed that
the f1 values are normally distributed in both GP-based and random execution
samples. This allows us to perform an independent-samples t-test with the null
hypothesis that there is no difference in f1 between the two derivation techniques.
As illustrated in Table 1, the GP-based derivation performs clearly better than
the random technique (∼ 0.9 compared to ∼ 0.25) and this difference in f1 is
statistically significant with p < 0.001 for both metamodels.

Table 1. Comparison with random generation (Question 1)

Metamodel Average f1 for GP Average f1 for Random Sig.

State machines 0.96 0.22 < 0.001
Feature diagrams 0.88 0.25 < 0.001

Question 2. We manually analyzed the obtained invariants for each metamodel
and compared them to the expected ones5. Table 2 summarizes the analysis
results. For state machines, 12 invariants were found. 10 of them exactly matches

5 Full results at http://geodes.iro.umontreal.ca/en/projects/MOTOE/MODELS13

http://geodes.iro.umontreal.ca/en/projects/MOTOE/MODELS13

Automatically Searching for Metamodel Well-Formedness Rules 199

Table 2. Precision and recall for invariant determination (Question 2)

Metamodel precisionstrict recallstrict precisionrel recallrel
State machines 0.83 0.83 0.83 0.83
Feature diagrams 0.78 0.64 0.89 0.73

expected invariants, 2 are incorrect and 2 are missing. This led to a precision
and a recall (strict an relaxed) of 0.83. The missing and incorrect invariants are:

Missing i nv a r i a n t s
context I n i t i a l inv : s e l f . incoming−>s i z e () = 0
context Fina l inv : s e l f . outgoing−>s i z e () = 0

In co r r e c t i n va r i a n t s
context I n i t i a l inv : s e l f . outgoing−>i n c l u de sA l l (s e l f . incoming))
context Fina l inv : s e l f . incoming−>i n c l ud e sA l l (s e l f . outgoing))

We expected invariants enforcing that the set of incoming (respectively out-
going) transitions is empty for initial (respectively final) states. Our algorithm,
based on the examples, finds invariants that evaluate to true, as empty sets are
always included in other sets, but do not represent the correct semantic.

For the feature diagrams, the results were slightly worse. Indeed, 9 invariants
were derived. 7 of them are good invariants whereas one is subsumed and one
is incorrect. 3 expected invariants were not recovered. Consequently, the strict
precision is 0.78 and the strict recall 0.64, whereas, the relaxed ones are increased
respectively to 0.89 and 0.73. The concerned invariants are:

Miss ing i nva r i an t s
context Or inv : contents−>f o rA l l (v : Vertex | v . oc l I sKindOf (Feature))
context Optional inv : contents−>f o rA l l (v : Vertex | v . oc l I sKindOf (Feature))
context Pr imit iveFeature inv : s e l f . contents−>s i z e () = 0

In c o r r e c t i nva r i an t
context Pr imit iveFeature inv : s e l f . conta iner−>i n c l ud e sA l l (s e l f . contents))

Subsumed inva r i an t
Expected : context DecomposableFeature inv : s e l f . contents−>s i z e () > 1
Found : context DecomposableFeature inv : s e l f . contents−>s i z e () > 0

The incorrect invariant correspond to the same case discussed for the state ma-
chines, i.e., inclusion of an empty set. The subsumed invariant is explained by
the fact that in all the positive models, the contents of a DecomposableFeature
includes more than one element with lead to the condition “> 1” instead of the
expected “> 0”. Finally, two invariants with the iterator forAll were not found.

4.4 Threats to Validity and Performence Issues

As for any experimental evaluation, some threats could affect the validity of our
findings. Conclusion validity could be affected by the stochastic nature of our
approach. To address this threat, we conducted statistical tests on a sample of
executions to show that the difference in correctness between our approach and
random generation is large and statistically significant. Another related threat
concerns the influence of the algorithmic parameters on the obtained results.
We set some of the parameters to standard or consensual values (crossover prob-
ability, population size, and number of iterations). For the others, we tested

200 M. Faunes et al.

different combinations (fitness function weights and mutation probability). Mu-
tation probability, in particular, is certainly the parameter that has the most
influence on the results. Indeed, when the initial population does not contain
invariants that are close the ones sought, many mutations are necessary to con-
verge towards the optimal invariant set (see for example, [14,7]).

We identified two potential threats to the external validity. First, the models
used as examples were automatically generated taking into account the sought
invariants rather than collected and classified by experts as valid/invalid. To
ensure that the produced models cover well the modeling space, we forced Alloy
to perform the generation with different parameter values such the number of
class instances in each model. In the future, we plan to conduct new experiments
with more real settings to circumvent this threat. The second threat concerns
the used metamodels. Although these metamodels describe different domains,
the investigation of more metamodels is necessary to draw better conclusions.
The manual comparison made by the authors to answer Question2 could repre-
sent a threat to the internal validity. Deciding for the exact invariant matches
and subsumptions could be error-prone and affected by the experimenter ex-
pectancies. To prevent this threat, we conducted this comparison rigorously and
diligently. We expect to use independent subjects to write/classify the models
and evaluate the invariants in our future experiments.

Several implementation iterations were necessary to obtain an efficient version
of our algorithm. We reused many elements that affect the performance of our
algorithm, Eclipse OCL engine, Alloy model generator, and Alloy to ECORE
transformer. These elements are used for each invariant set in the population
and repeated trough the different evolution iterations. To obtain an acceptable
performance, we first parallelized the GP process to calculate the fitness function
of each invariant set in a population in separated threads. After, many trials,
we created one thread per invariant set when evaluating a population. A second
change, which improved considerably the performance, is the pre-calculation of
the component u (e, i) that is used in f1 and f2, i.e., we pre-calculate the validity
of each example model for each invariant present in the population. As many
invariants are shared by many sets, and their validity is used in f1 and f2, the
improvement was considerable. The two optimizations allowed us to run the
algorithm over a input size 20 time bigger.

5 RelatedWork

In this section we analyze the related works to our approach from two different
perspectives. The first one is the derivation of invariants, as rules learned from
an underlying artifact, either models or programs. In the second perspective,
we cite other works using learning techniques to derive useful information for
MDE stakeholders. For the first perspective, the main referent in the deriva-
tion of invariants in software engineering is Daikon [6]. Taking a program as
input, it analyzes the computed values and detects likely invariants that can be
used for program understanding and documentation and verification of formal

Automatically Searching for Metamodel Well-Formedness Rules 201

specifications among other tasks. The machine learning technique used is an in-
ference engine based on a generate-and-check algorithm. This approach was later
notoriously complemented with Sam Ratcliff’s work [14]. Demonstrating that
evolutionary search can consider a very wide amount of program invariants, the
need for a filtering mechanism was imposed. The given solution was the use of
mutation testing, enabling thus the approach to sort out invariants that are not
interesting for the user. Zeller investigates the idea of specification mining[17],
where he intends to leverage on repositories of software specifications, in order
to reuse this knowledge into actionable recommendations for today’s developers
of formal specifications. The main technique for achieving specification mining is
the generation of test cases covering a wide range of possible program executions
- the “execution space”. Test cases which lead to undesired program executions,
or so-called illegal states, are used to enrich specifications [4].

For the second perspective, in the field of Model-Driven Engineering, machine
learning techniques have been used successfully. [5] uses formal concept analysis
to learn patterns of model transformation rules from a set of examples. Another
application is the reverse engineering of metamodels, also known as metamodel
recovery. In [10] the authors propose a mechanism to learn a metamodel from a
set of models, by using techniques inspired by grammar inference. In the same
fashion, [8] proposes a process for pattern extraction from deployable artifacts
in order to recover architecture models. Learning of metamodels has also been
presented as bottom-up metamodeling. In [15], authors present an approach to
build metamodels from partial object models, annotated with information to
build abstractions. These abstractions are refined iteratively, in order to obtain
an implementation metamodel ready to use for MDE activities. Although this
approach does not actually use search-based techniques, it does highlight the
importance of guiding domain experts in the difficult task of metamodeling.

6 Conclusions

In this paper, we propose an approach to automatically derive well-formedness
rules for metamodels. Our approach uses positive and negative example models
as input and it is based on a Genetic Programming that evolves a population
of random created rules, guided by a fitness function that measures how well
the rules discriminate the models used as example. Once finished, the process
returns the best set of well-formedness rules ever created during the process.
We validate the approach over two different metamodels coming from different
domains: a state machines, and feature diagrams. As a result, our approach auto-
matically derives most of the expected well-formedness rules. This results shows
the feasibility of our approach and defines a starting point for our future works.
Future work includes investigating the support of more complex invariants, and
alternatives in the way to obtains model examples. We are also extending our
experiments to address the threats to validity mentioned in this paper. In par-
ticular, we explore the application of the approach on other various metamodels,
including ones coming from industry.

202 M. Faunes et al.

References

1. Metamodel zoos, http://www.emn.fr/z-info/atlanmod/index.php/Zoos
2. Cadavid, J., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling space

to test metamodels. In: Proceedings of the International Conference on Software
Testing, verification and validation (ICST) (April 2012)

3. Cadavid, J., Combemale, B., Baudry, B.: Ten years of Meta-Object Facility: an
Analysis of Metamodeling Practices. Tech. report RR-7882, INRIA (2012)

4. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis, pp. 85–96. ACM (2010)

5. Dolques, X., Huchard, M., Nebut, C., Saada, H., et al.: Formal and relational con-
cept analysis approaches in software engineering: an overview and an application
to learn model transformation patterns in examples (2011)

6. Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C., Tschantz, M., Xiao, C.:
The daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69(1-3), 35–45 (2007)

7. Faunes, M., Sahraoui, H., Boukadoum, M.: Generating model transformation
rules from examples using an evolutionary algorithm. In: Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering,
pp. 250–253. ACM (2012)

8. Favre, J.: Cacophony: Metamodel-driven software architecture reconstruction. In:
Proceedings of the 11th Working Conference on Reverse Engineering, pp. 204–213.
IEEE (2004)

9. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11(2), 256–290 (2002)

10. Javed, F., Mernik, M., Gray, J., Bryant, B.: MARS: A metamodel recovery system
using grammar inference. Information and Software Technology 50(9-10), 948–968
(2008)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Technical report, DTIC Document (1990)

12. Koza, J., Poli, R.: Genetic programming. In: Search Methodologies (2005)
13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nord-

strom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Work-
shop on Intelligent Signal Processing, Budapest, Hungary, vol. 17 (2001)

14. Ratcliff, S., White, D., Clark, J.A.: Searching for invariants using genetic program-
ming and mutation testing (2011)

15. Sánchez-Cuadrado, J., de Lara, J., Guerra, E.: Bottom-up meta-modelling: An
interactive approach. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 3–19. Springer, Heidelberg (2012)

16. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2008)

17. Zeller, A.: Specifications for free. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 2–12. Springer, Heidelberg (2011)

http://www.emn.fr/z-info/atlanmod/index.php/Zoos

Testing M2T/T2M Transformations

Manuel Wimmer1 and Loli Burgueño2

1 Business Informatics Group, Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

2 GISUM/Atenea Research Group, Universidad de Málaga, Spain
loli@lcc.uma.es

Abstract. Testing model-to-model (M2M) transformations is becoming a promi-
nent topic in the current Model-driven Engineering landscape. Current approaches
for transformation testing, however, assume having explicit model representa-
tions for the input domain and for the output domain of the transformation. This
excludes other important transformation kinds, such as model-to-text (M2T) and
text-to-model (T2M) transformations, from being properly tested since adequate
model representations are missing either for the input domain or for the output
domain. The contribution of this paper to overcome this gap is extending Tracts,
a M2M transformation testing approach, for M2T/T2M transformation testing.
The main mechanism we employ for reusing Tracts is to represent text within
a generic metamodel. By this, we transform the M2T/T2M transformation spec-
ification problems into equivalent M2M transformation specification problems.
We demonstrate the applicability of the approach by two examples and present
how the approach is implemented for the Eclipse Modeling Framework (EMF).
Finally, we apply the approach to evaluate code generation capabilities of several
existing UML tools.

1 Introduction

Much effort has been put into the establishment of model-to-model (M2M) transfor-
mation testing techniques in the past years [1,28]. Several approaches have been de-
veloped for defining contracts for M2M transformations that act as specifications for
model transformation implementations [6,13], as oracle functions to validate the output
of transformations [13,15], and as drivers for generating test cases [14]. In particular,
constraints for input models, output models and for the relationship between both may
be specified.

Besides M2M transformations, model-to-text (M2T) and text-to-model (T2M)
transformations are of major importance in Model-driven Engineering [4,8]. M2T trans-
formations are typically used to bridge the gap between modeling languages and pro-
gramming languages by defining code generations but may be employed in a generic
manner to produce text from models such as documentation or textual representations
of a model’s content. T2M transformations are typically used for reverse engineering
[5], e.g., transforming legacy applications to models in the case of model-driven soft-
ware modernization. However, these kinds of transformations have not gained much
attention when it comes to testing.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 203–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 M. Wimmer and L. Burgueño

In this paper we adopt current techniques for testing M2M transformations to the
problem of testing T2M and M2T transformations. The prerequisite of using existing
M2M transformation techniques is to have metamodels for the input and output of the
transformations. However, for the side that is dealing with “just” text, no metamodels
are usually available. Even more problematic, when considering T2M and M2T trans-
formations, a set of metamodels and T2M parsers may be required as a prerequisite. For
instance, consider Web applications where in addition to a general purpose program-
ming language several other languages may be employed where some of the languages
are even embeddable in other languages. Thus, developing metamodels and T2M parser
support for such complex settings may introduce a huge overhead.

To alleviate the burden from T2M and M2T transformation developers, we intro-
duce a generic approach that may be used for any transformation task where text is
involved as input or output of the transformations. The main mechanism we employ
is to represent text within a generic metamodel in order to transform M2T and T2M
transformation specification problems into equivalent M2M transformation specifica-
tion problems. The proposal is combinable with any contract-based M2M transforma-
tion approach, but in this paper we demonstrate its application with Tracts [13].

The structure of the paper is as follows. The next section introduces Tracts, a M2M
transformation testing approach, by example. Section 3 shows how to represent text-
based artifacts as models to allow for reusing the M2M transformation testing ap-
proaches. Section 4 demonstrates how Tracts are defined for M2T and T2M transforma-
tions and gives details about the implementation of the approach. Section 5 presents an
evaluation of the approach, in particular to explore its capabilities to find shortcomings
in code generations delivered by current UML tools. In Section 6 we present related
work, and in Section 7, we conclude the paper with an outlook on future work.

2 Tracts for Testing Model-to-Model Transformations

Let us shortly introduce the formalism used in this paper, namely Tracts, for specify-
ing M2M transformation contracts. As we shall see, this formalism assumes to have
metamodels for the input and for the output of the transformation as all other existing
contract specification approaches do.

Tracts were introduced in [13] as a specification and black-box testing mechanism
for model transformations. They provide modular pieces of specification, each one fo-
cusing on a particular transformation scenario. Thus every model transformation can be
specified by means of a set of tracts, each one covering a particular use case—which is
defined in terms of particular input and output models and how they should be related
by the transformation. In this way, tracts allow partitioning the full input space of the
transformation into smaller, more focused behavioural units, and to define specific tests
for them. Basically, what we do with the tracts is to identify the scenarios of interest
to the user of the transformation (each one defined by a tract) and check whether the
transformation behaves as expected in these scenarios. Another characteristic of Tracts
is that we do not require complete proofs, just to check that the transformation works
for the tract test suites, hence providing a light-weight form of verification.

In a nutshell, a tract defines a set of constraints on the source and target metamod-
els, a set of source-target constraints, and a tract test suite, i.e., a collection of source

Testing M2T/T2M Transformations 205

Fig. 1. Building blocks of a tract

models satisfying the source constraints. The constraints serve as “contracts” (in the
sense of contract-based design [21]) for the transformation in some particular scenar-
ios, and are expressed by means of OCL invariants. They provide the specification of
the transformation.

In Figure 1 more details about the tracts approach are presented. The necessary com-
ponents the approach rely on are the source and target metamodels, the transformation
T under test and the transformation contract, which consists of a tract test suite and a
set of tract constraints. In total, five different kinds of constraints are present: the source
and target metamodels are restricted by general constraints added to the language defi-
nition, and the tract imposes additional source, target, and source-target tract constraints
for a given transformation.

If we assume a source model M being an element of the test suite and satisfying the
source metamodel and the source tract constraints given, the tract essentially requires that
the result T(M) of applying transformation T satisfies the target metamodel and the target
tract constraints and the tuple <M, T(M)> satisfies the source-target tract constraints.

For demonstrating how to use Tracts, we introduce the simple transformation ex-
ample Families2Persons.1 The source and target metamodels of this transformation are
shown in Figure 2. For this example, a set of tracts is developed to consider only those
families with exactly four members (mother, father, daughter, son):

-- C1: SRC_oneDaughterOneSon
Family . allInstances−>forAll (f |f . daughters−>size=1 and f . sons−>size=1)

-- C2: SRC_TRG_Mother2Female
Family . allInstances−>forAll (fam |Female . allInstances−>exists (f |

fam .mother .firstName . concat (’ ’) .concat (fam . lastName) =f .fullName))
-- C3: SRC_TRG_Daughter2Female
Family . allInstances−>forAll (fam |Female . allInstances−>exists (f |

fam .daughters−>exists (d |d .firstName . concat (’ ’) . concat (fam . lastName)
=f . fullName)))

-- C4: SRC_TRG_MemberSize_EQ_PersonSize
Member . allInstances−>size=Person . allInstances−>size

-- C5: TRG_PersonHasName
Person . allInstances−>forAll (p |p . fullName<>’’ and

not p . fullName . oclIsUndefined ())

1 The complete example is available at our project website
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

206 M. Wimmer and L. Burgueño

Fig. 2. The Family and Person metamodels

Concerning the kinds of the shown Tracts, C1 represents a pre-condition for the
transformation, C2–C4 define constraints on the relationships between the source and
target models, i.e., constraints that should be ensured by the transformation, and fi-
nally, C5 represents a post-condition for the transformation. Note that this approach
is independent from the model transformation language and platform finally used to
implement and execute the transformation.

3 A Generic Metamodel for Text

In order to reuse M2M transformation specification and testing approaches, we have to
transform the M2T or T2M transformation specification problem into a M2M transfor-
mation specification problem. For this, the text artifacts residing in the input or output
domain of the transformations under study have to be injected to the model engineering
technical space [18].

For realizing this goal, there are several options. We may either decide to go for a
specific format conforming to a specific grammar or to use a generic format that is able
to represent any text-based artifact. In case there is already a metamodel available for
the specific grammar, then this metamodel may be a good choice anyway. However,
for most transformation scenarios involving text at one side there are no metamod-
els available, because metamodels are often not required at all. Just consider the case
of generating documentation from models. Although there is no generalized and fixed
structure, it may be necessary to check certain requirements of the transformation. This
is why we have decided to use the second option, which allows us to save upfront the
effort required when developing M2T or T2M transformations in general. Furthermore,
using a generic metamodel to represent the text artifacts also reflects best practices in
the development of M2T transformations, where no metamodel is used for the text arti-
facts. For example, consider template-based M2T transformation languages2. Usually,
template-based approaches are used to generate that text. Finally, even if there is a T2M
parser, this is again a transformation that may have to be specified and tested. Thus, our
generic approach may be used to test the specific approach.

2 http://www.omg.org/spec/MOFM2T/

http://www.omg.org/spec/MOFM2T/

Testing M2T/T2M Transformations 207

Fig. 3. Metamodel for representing text artifacts and repositories

Fig. 4. Exemplary folder structure and corresponding text model

Apart from this, there is a second aspect that needs to be considered when dealing
with text-based artifacts. The artifacts are normally organized in a hierarchical folder
structure, which should be taken into account. For instance, the output of a M2T trans-
formation may not be just a single file but several, which should be also arranged in
a certain folder structure. Thus, our approach has to cover concepts for describing the
structure of a repository that contains the input or output artifacts of a transformation.

Figure 3 shows the metamodel for representing text artifacts stored in repositories
using certain folder structures. Meta-class Repository represents the entry point to the
root folder containing folders and files or to a file if only one single artifact is used.
While folders just contain a name, files have in addition an extension as well as a con-
tent. The content of files is represented by lines that are sequentially ordered. A derived
attribute content is used to allow easy access to the complete content of a file.

Figures 4 and 5 present an instance of the text metamodel coming from a Java code
repository. On the left hand side of the figures, the repository’s folder structure as well
as the content of a Java file are shown, while on the right hand side an excerpt of the
corresponding text model (shown in the EMF tree browser) is illustrated.

208 M. Wimmer and L. Burgueño

Fig. 5. Exemplary file content and corresponding text model

4 M2T/T2M Transformation Testing By-Example

This section shows how the metamodel for describing text artifacts can be used in con-
junction with tracts for M2T and T2M transformation testing.

4.1 M2T Example: UML to Java

For illustration purposes, let us apply our approach to a given case: the transformation
that converts UML class models into the corresponding Java classes—which are text
files that should be stored in folders inside a code repository. Figure 6 shows the subset
of the UML metamodel that we will consider in this scenario. It is assumed that all
meta-classes directly or indirectly inherit from NamedElement. The target metamodel
is the one that we described above for speficying text artifacts, and that was shown in
Figure 3.

The specification of such a transformation is composed of a set of tracts, each one
focusing on a particular property that we want to ensure. As illustrative examples we
have chosen 10 tracts, which are described below. Notice that in some of them we have
used auxiliary operations such as toFirstUpper and toString to clarify the code. We have
also introduced the operation matchesRE to deal with regular expressions in OCL. How
these auxiliary operations are defined as an user-defined library in OCL is explained in
Subsection 4.3.

The first tract states that nested UML packages should be transformed into nested
folders. This is specified by the following constraint:

-- C1: Nested packages are transformed into nested folders
Package . allInstances () −> forAll (p | Folder .allInstances ()−>

exists (f | f .name = p . name and p . subPackages−>
forAll (subp | f .folders ()−>exists (subf | subf .name = subp . name))))

The second tract states that Java packages should be imported when associations
occur between elements contained in different UML packages.

-- C2: Import of packages when associations are crossing package borders
Association .allInstances −> select (a |

Testing M2T/T2M Transformations 209

Fig. 6. A simplified metamodel for UML class diagrams

a .roles−>at (1) . target . package <> a . roles−>at (2) .target .package)
−> forAll (a | File .allInstances−>exists (f |

f . name = a . roles−>at (1) . target . name and f . extension = ’java’ and
f . content () . matchesRE (’import.*’+ a .roles−>at (2) . target . name))))

We should also ask for a precondition in order not to allow that any class inherits
from a leaf class.

-- C3: No leaf class as superclass
Class .allInstances () −> forAll (c | c .isLeaf i m p l i e s c .subClasses−>isEmpty ())

Another precondition should check that there is no multiple inheritance in use in the
UML model (multiple inheritance is not allowed in Java).

-- C4: Only one superclass allowed in Java
Class . allInstances ()−>forAll (c | c .superClasses−>size () <=1)

We also include here some tracts to specify how particular elements in the UML
model should be transformed. For example, derived attributes can not be modified in
Java, and therefore only getter methods are generated for them.

-- C5: Derived attributes only have a getter method
Class .allInstances−>forAll (c | File . allInstances
−>exists (f | f . name = c . name and f .extension = ’java’ and

c .attributes−>select (a | a . isDerived)−>forAll (a |
not f . content () . matchesRE (a . type+’.*?’+a .name+’.*?;’) and
f .content () . matchesRE (a . type+’\\s+get’+ toFirstUpper (a .name)))))

Similarly to the tract above, the following tract specifies how the visibility of at-
tributes should be handled by the transformation.

-- C6: Visibility of attributes is considered
Package . allInstances−>forAll (p |

p . classes−>forAll (c | File .allInstances−>exists (f |
f .name = c .name and f . extension = ’java’ and
f .container . name = p . name and
c .attributes−>select (a | not a . isDerived)−>forAll (a |

f . content () . matchesRE (toString (a . visibility)
+’.*?’+a .type+’.*?’+a . name+’.*?;’)))))

210 M. Wimmer and L. Burgueño

And the same for association ends:
-- C7: Visibility of roles is considered
Association .allInstances−>forAll (a | File . allInstances−>exists (f |
f . name = a . roles−>at (1) . target . name and f . extension = ’java’ and
f . content () .matchesRE (toString (a . roles−>at (2) . visibility) +

’.*?’+a . roles−>at (2) . target . name+’.*?’+a .roles−>at (2) . name+’.*?’))))

Finally, three further constraints specify that there are no Java keywords in the UML
models, that the names of the elements and folders are well formed (e.g., no control
characters) and that generic UML classes are supported.

-- C8: No keywords as name in UML model
NamedElement .allInstances ()−>forAll (ne | not Se t{’abstract’ ,

’extends’ ,’implements’ ,’class’ ,’public’ ,’private’ ,’protected’ , . . . }
. includes (ne .name))

-- C9: Well-formed names
NamedElement .allInstances ()−>forAll (ne |

ne .name . matchesRE (’[a-zA-Z_][a-zA-Z0-9_]*’))
-- C10: Generic classes are supported
TemplateClass .allInstances−>forAll (c | File .allInstances−>exists (f |

f .name=c .name and f . extension=’java’ and
f .content () . matchesRE (’class\\s+’+c . name+’\\s+<.*?>.*?{’))))

Of course, further constraints can be defined to deal with other requirements on the
transformation. We have included here the tracts above in order to show examples of
the expressiveness of our approach in the case of an M2T transformation. We do not try
to claim completeness of full coverage of our specifications for the UML to Java case.

4.2 T2M Example: USE to UML

To illustrate the applicability and usage of our proposal in the case of T2M transforma-
tions, we have focused on a transformation between textual USE [12] specifications of
structural models, and its corresponding UML specifications. USE features for repre-
senting models are similar to the ones defined in UML: classes, attributes, associations
and operations. For example, the following USE code corresponds to a simple model of
persons owning cars.

class Person
attributes

name : S t r i n g
birthDate : I n t e g e r

operations
age () : I n t e g e r

end
abstract class Vehicle

attributes
brand : S t r i n g

end
class Car < Vehicle

attributes
licenceNumber : S t r i n g

end
association Person_Car between

Person [0 . . 1] role owns
Car [∗] role owner

end

The following set of constraints are examples to show how different requirements on
the transformation from USE to UML can be stated.

The first constraint specifies that the USE model should reside in only one file.

Testing M2T/T2M Transformations 211

-- D1: Only one file per transformation run allowed
File .allInstances ()−>size () = 1

The second constraint states that every USE class will correspond to one UML class
with the same name.

-- D2: Every USE class should result in UML class
Line .allInstances ()−>select (l | l .text . matchesRE (’ˆ\\s*class’))−>

forAll (l |Class . allInstances−>exists (c |l .text . matchesRE (c .name)))

The third one specifies how USE inheritance relationships (cf. ’<’ symbol in the
USE example) are transformed into UML inheritance relationships.

-- D3: less-than sign has to open an inheritance relationship
Line . allInstances ()−>select (l | l . text . matchesRE (’\\s*class.*<’))−>
forAll (l |Class . allInstances−>exists (c | l . text . matchesRE (c .name) and
c . superClasses−>exists (superClass |l .text . matchesRE (superClass . name))))

Similarly, the last three constraints allow to specify that USE abstract classes are
transformed into UML abstract classes, USE attributes into UML attributes, and USE
associations into UML associations.

-- D4: USE abstract classes to UML abstract classes
Line . allInstances ()−>select (l |l . text .matchesRE (’abstract\\s+class’))−>

forAll (l |Class . allInstances−>
exists (c |l .text . matchesRE (c .name) and c . isAbstract))

-- D5: USE attributes to UML attributes
Class .allInstances ()−>forAll (c |c . attributes−>

forAll (a |File . allInstances−>any (f | f . content () .
matchesRE (’class\\s*’+c . name+’\\s*(<\\s*[A-Za-z0-9]+)?\\s*attributes.*?’
+a . name+’\\s*:\\s*’+a . type+’.*?(end|operations)’))))

-- D6: USE associations to UML associations
Association . allInstances−>forAll (a |
File . allInstances−>any (f | f .content () . matchesRE (

a .roles−>iterate (r ; s : S t r i n g =
’(association|composition)\\s+[A-Za-z0-9_]+\\s+between.*?’ |
s . concat (r . target . name+’.*?role ’+r .name+’.*?’)))))

4.3 Tool Support

In order to provide tool support for our proposal, we have developed a injector (parser)
that converts the content of a repository, i.e., files, folders, and their structure, into a
model that conforms the Text metamodel shown in Figure 3, and an extractor that takes
models conforming to the Text metamodel and produces text organized in folders.

In order to check that a given M2T transformation fulfils a set of constraints (such as
the ones shown in Section 4.1), we run the transformation with the set of models defined
by the tract test suite (these input models have not been shown before for the sake of
simplicity) and then use the injector with the output text (organized in folders) resulting
from the transformation to generate the corresponding output models conforming to
the Text metamodel. Then we are in a position to check the validity of the constraints
as in the case of tracts defined for M2M transformations with our TractsTool [28].
The TractsTool evaluates the defined constraints on the source and target models by a
transparent translation to the USE tool [12].

The case of testing T2M transformations is similar. Here the test suite is defined
by the tract as a set of repositories, which need to be transformed first into a model-
based representation by our injector component to check the source constraints. When

212 M. Wimmer and L. Burgueño

the source constraints are fulfilled, the content of the repository is transformed by the
T2M transformation under test to produce the output models. The models produced
from the repository and their corresponding output models can then be validated by the
TractsTool against the tracts.

For easing the formulation of the OCL constraints, we have also enriched USE with
a set of libraries and operations to deal with Strings. For instance, to deal with regular
expressions in OCL we have introduced the matchesRE operation shown above that
checks whether a given sequence matches a regular expression or not. Furthermore, we
have also introduced some auxiliary functions that are currently provided by M2T trans-
formation languages such as toFirstUpper to end up with more concise OCL constraints
than just using the standard OCL String operation library.

The TractsTool for testing M2T/T2M transformations is available at our project web-
site3 with several examples.

5 Evaluation

Most UML tools provide code generation facilities to produce source code from UML
models. In order to evaluate the usefulness of using contract-based specifications for
code generators, we tested a selected set of currently available UML tools by checking
a set of tracts.

5.1 Selected Tracts and Test Models

For the evaluation, we used the constraints defined by the tracts presented in Section 4.1,
which represent some of the most essential requirements that any UML to Java code
generator has to fulfil. These constraints are described below, together with their type
(‘Scr’ for source constaints and ‘ScrTrg’ for source-target constaints), as well as one
example of the test suite models that was used to check the tracts.

C1 SrcTrg: Nested packages are transformed into nested folders. Minimal test model:
two nested packages in a UML model.

C2 SrcTrg: Import of packages supported. Minimal test model: two packages, each one
having one class and both connected by an association.

C3 Src: Inheritance of a leaf class is not allowed. Minimal test model: a class inheriting
from a leaf class.

C4 Src: Only single inheritance is used in UML. Minimal test model: one class having
two superclasses.

C5 SrcTrg: Derived attributes only result in getter method. Minimal test model: one
class having one derived attribute.

C6 SrcTrg: Visibility of attributes mapped to Java. Minimal test model: one class hav-
ing one public, one private, one package, and one protected attribute.

C7 SrcTrg: Visibility of roles mapped to Java. Minimal test model: two classes related
by three associations, whose association ends have different visibilities (public,
private, package, and protected).

3 http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Tracts

Testing M2T/T2M Transformations 213

C8 Src: No Java keywords are allowed as names in UML models. Minimal test model:
one class with name “class”, one attribute with name “public”, and one operation
with name “implements”.

C9 Src: Names in UML model have to be valid Java identifiers. Minimal test model:
one class with name “-”, attribute with name “+”, and operation with name “?”.

C10 SrcTrg: Generic classes mapped to Java. Minimal test model: one generic class with
two parameters.

5.2 Selected Tools

We selected six UML tools from industry that claimed to support code generation from
UML class diagrams into Java code. The selected sample covers both commercial tools
and open-source projects.

– Altova UModel (http://www.altova.com/umodel.html) is a UML 2.0
tool for software modeling. We evaluated Altova UModel Enterprise Edition 2013.

– ArgoUML (http://argouml.tigris.org) is a modeling tool supporting
UML 1.4 diagrams. It is an open source project and distributed under the Eclipse
Public License (EPL). Currently there is only one edition of ArgoUML available.
We evaluated version 0.34.

– BOUML (http://www.bouml.fr) is a UML 2.0 diagram designer which also
allows for code generation. We evaluated version 4.22.2.

– EnterpriseArchitect (http://www.sparxsystems.com) is a commercial
modeling tool supporting UML 2.4.1 and is distributed by SparxSystems. We eval-
uated the professional edition, version 10.

– MagicDraw (http://www.nomagic.com) is a commercial modeling tool
supporting UML 2.0 and is distributed by NoMagic. We evaluated the enterprise
edition, version 16.8.

– Poseidon for UML (http://www.gentleware.com) is a modeling tool sup-
porting UML 2.0, distributed by Gentleware. We evaluated the community edition
of Poseidon for UML, version 6.0.2.

5.3 Evaluation Procedure

We defined reference test models based on the UML metamodel shown in Figure 6.
Subsequently, we re-modelled the reference test models in all of the selected tools.
Having the models within the specific tools allowed us to run the validation support and
code generators of the specific tools. The validation support is related to the evaluation
of support for the Src constraints that should act as filter for the code generator, i.e., only
valid models should be transformed to code. Thus, we validated all test models in case
validation support is available in a specific tool and checked if validation errors or at
least warnings are reported for the negative test models associated to the Src constraints.
For checking the SrcTrg constraints, we translated the output of the code generators to
Text models and evaluated the resulting output in combination with the input models,
i.e., the reference models, using the testing approach described in this paper. The ref-
erence models as well as examples of generated Java code and its corresponding text
models are available at our project website.

http://www.altova.com/umodel.html
http://argouml.tigris.org
http://www.bouml.fr
http://www.sparxsystems.com
http://www.nomagic.com
http://www.gentleware.com

214 M. Wimmer and L. Burgueño

Table 1. Evaluation results

Tool
Constraint

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Altova UModel × � � � × � � � � �
ArgoUML � � × × - � � × × �

BOUML × � - � × � � × � �
EnterpriseArchitect � � � × × � � × × �

MagicDraw � � � � × � � × � �
Poseidon � × × � × � � × � -

It has to be mentioned that the UML tools are delivered with standard configurations
for the code generators. Some tools also allow to tweak the code generation capabilities
by configuring certain options using specific wizards before running the code genera-
tion. Others also allow to edit the code generation scripts, enabling further possibilities
to customize the code generation facilities beyond the possibilities offered by the wiz-
ards. In this sense, we evaluated first the standard code generation features the tools
offer, and after that we tried to tweak the tools by using the wizards to fulfill additional
constraints that were not fulfilled in the standard configuration. However, the customiza-
tion possibilities based on the wizards could not enhance further the evaluation results
for the given constraints.

5.4 Results

Table 1 shows the results of the evaluation. In the table, a tick symbol (�) means that
the test passed for that tract and a cross symbol (×) means that the tract test failed.
Some of the tests were not available for a given tool, e.g., a particular modeling feature
is missing, and were not performed. This is indicated by a dash (-).

In the first place, constraint C1 did not hold for some tools. In the case of BOUML
and Altova UModel, the code generation requires that UML elements are manually
associated to certain artifacts for which a path must be specified. Thus, the user has to
specify the folders and Java files that should be generated. All other tools work well
with packages in an automated way.

Concerning associations that cross package borders (C2), Poseidon is the only tool
that does not take this feature into account in the code generation process.

Precondition C3 checks that no class inherits by another class marked as leaf.
BOUML does not include the option to set a class as leaf. Poseidon fails because it
allows that a class inherits from a leaf class. ArgoUML passes the test and gives a
warning during the model validation only when the superclass is marked as leaf before
the creation of the generalization relationship.

C4 checks that the UML model does not use multiple inheritance, because it can-
not be used in Java. ArgoUML and MagicDraw fail because they do not check this
constraint, and they both create a Java class which does not even compile.

Testing M2T/T2M Transformations 215

Concerning C5, ArgoUML does not allow to define derived features. The rest of the
tools do, but derived features are ignored in the code generation process. An expected
solution would create derived attributes into their corresponding getter methods.

All tools work well with the transformation of the visibility of attributes and roles
(constraints C6 and C7).

Most tools fail with constraints C8 and C9 (use of Java keywords and invalid names
in Java). Tools do not seem to conduct any validation check before the code genera-
tion starts. Although many tools allow several kinds of validation checks on the UML
models, most of these tests only deal with UML constraints. A few tools also allow
the development of user-defined validation checks, but they do not seem to have been
defined for the code generation facilities they support. The best results in this respect
are achieved by Altova UModel, which raises a warning if non-valid Java identifiers or
Java keywords are used as names for UML elements.

Finally, generic classes are supported and correct Java code is generated by all UML
tools (constraint C10) except Poseidon, which does not allow to define generic classes.

In summary, the results show that code generators have to fulfill several properties
that should be specified at a higher level for allowing their validation. In particular, we
found that no tool performs well even with respect to the basic UML to Java code gen-
eration requirements. Furthermore, we discovered that several tools produced incorrect
Java code, even not compilable in some situations. In this sense, the tracts represent-
ing the basic requirements could be used as the initial components of a benchmark for
future improvements and developments of UML-to-Java code generators.

6 Related Work

The need for systematic verification of model transformations has been documented by
the research community by several publications outlining the challenges to be
tackled [2,3,9,25]. As a response, a plethora of approaches ranging from lightweight
certification to full verification have been proposed to reason about different kinds of
properties of M2M transformations [1,28]. However, as mentioned before, transforma-
tions involving text on one side have not been extensively studied.

Several kinds of works apply contracts for M2M transformation testing using dif-
ferent notations for defining the contracts. In the following, we divide them into two
main categories. First, contracts may be defined on the model level by either giving
(i) complete examples of source and target model pairs, or (ii) giving only model frag-
ments which should be included in the produced target models for given source models.
Second, contracts may be defined on the metamodel level either by using (iii) graph
constraint languages or (iv) textual constraint languages such as OCL.

A straight-forward approach is to define the expected target model for a given source
model which acts as a reference model for analyzing the actual produced target model
of a transformation as proposed in [10,17,19,20]. Model comparison frameworks are
employed for computing a difference model between the expected and the actual target
models. If there are differences then it is assumed that there exists an error either in the
transformation or in the source/target model pair. Analogously, one could employ text
comparison frameworks to reason about an expected text artefact and an computed text

216 M. Wimmer and L. Burgueño

artefact. However, reasoning about the cause for the mismatch between the expected and
actual text artefact solely based on the difference model is challenging. Several elements
in the difference model may be effected by the same error, however, the transformation
engineer has the burden to cluster the differences by herself.

A special form of verification by contract was presented in [22]. The authors propose
to use model fragments (introduced in [24]) which are expected to be included in a target
model which is produced from a specific source model. Using fragments as contracts
is different from using examples as contracts. Examples require an equivalence rela-
tionship between the expected model and actual target model, while fragments require
an inclusion relationship between the expected fragments and the actual target model.
Using our text metamodel, one is able to define such fragments even for M2T/T2M
transformations, but they still only define the oracle for one particular input model.

In previous work [15] we proposed a declarative language for the specification of vi-
sual contracts for defining pre- and post-conditions as well as invariants for model trans-
formations. For evaluating the contracts on test models, the specifications are translated
to QVT Relations which are executed in check-only mode. In particular, QVT Relations
are executed before the transformation under test is executed to check the preconditions
on the source models and afterwards to check relationships between the source and
target models as well as postconditions on the target models. This approach may be
used as an alternative syntax for our presented approach. Further alternative text-based
approaches for defining oracles are presented in [6,7,10,11,16], however, they do not
discuss how to apply their approaches for text artefacts.

The most closely related work is presented in Tiso et al. [27] where the problem of
testing model-to-code transformations is explicitly mentioned. The authors enumerate
two possibilities for such tests. First, they briefly mention a static approach which eval-
uates if certain properties are fulfilled by the transformation target code. However, they
do not describe the details of this possibility. Second, they discuss a dynamic approach
based on checking the execution of the transformation target, which is subsequently
elaborated in their paper. In particular, they model, in addition to the domain classes,
test classes that execute certain operations and check for given post-conditions after
the operations have been executed. While we propose a generic and static approach to
test M2T/T2M transformations in general, Tiso et al. propose an approach for testing
a specific model-to-code transformation, namely from UML class diagrams to specific
Java code and using JUnit tests that are also derived from a model representation. Fur-
thermore, in our approach we have the possibility to directly test M2T/T2M transfor-
mations. However, in Tiso et al. [27] the execution output of the generated application
has to be analyzed to trace eventual errors back to the M2T transformation.

Finally, an approach for testing code generators for executable languages is pre-
sented in [26]. The authors present a two-folded approach. On the one hand, first-order
test cases that represents the models which are transformed into code are distinguished.
On the other hand, second-order test cases are introduced representing tests that are
executed on models as well as on the derived implementation, i.e., on the generated
code. The output of the code execution is compared with the output of the model exe-
cution. If these outputs are equivalent, it is assumed that the code generators works as
expected. Compared our proposal, we provide an orthogonal approach for testing the

Testing M2T/T2M Transformations 217

syntactic equivalence by checking certain constraints, i.e., how to define oracles for the
first-order test cases. Combining a syntactical with a semantical approach seems to be
an interesting subject for future work.

7 Conclusions and Future Work

This paper presented a language-agnostic approach for testing M2T/T2M transforma-
tions. Agnostic means independent from the languages used for the source and target
artifacts of the transformations, as well as to the transformation language used for im-
plementing the transformations. By extending OCL with additional String operations, we
have been able to specify contracts for practical examples and evaluated the correctness
of current UML-to-Java code generators offered by well-known UML tools. This evalu-
ation showed a great potential for further improving code generators and documents the
real need for an engineering discipline to develop M2T/T2M transformations.

There are several lines of work that we would like to explore next. In the first place,
we plan to investigate how current Architecture Driven Modernization (ADM)4 mod-
eling standard such as Knowledge Discovery Metamodel (KDM) [23] may be used
for defining contracts that are programming language independent and reusable for a
family of code generators. For example, the presented contracts may be platform inde-
pendently expressed and reused for testing UML-to-C# code generators. Secondly, the
TractsTool we have used is a prototype whose limits need to be explored and improved.
The models defined in the Tracts’ test suites are normally of reasonable size (less than
one or two thousand elements) because this is usually enough for checking the Tract
constraints. However, we have discovered that large models (with several thousands of
model elements) are hard to manage with the tools that we currently use. In this sense,
looking for internal optimizations of the tool is something we also plan to explore next.
Finally, we are working on the development of a benchmark for UML-to-Java code
generators that could be useful to the community, based on a modular approach such as
Tracts and on the proposal presented in this paper.

Acknowledgements. This work is partially funded by Research Project TIN2011-
23795. We would like to sincerely thank the Bremen Database Systems Group led by
Prof. Martin Gogolla, in particular to Lars Hamann, for their excellent support and help
with their tool USE.

References

1. Amrani, M., Lúcio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe, H., Traon, Y.L.,
Cordy, J.R.: A Tridimensional Approach for Studying the Formal Verification of Model
Transformations. In: Proceedings of the 1st International Workshop on Verification and Val-
idation of Model Transformations (VOLT 2012) @ ICST, pp. 921–928. IEEE (2012)

4 http://adm.omg.org

http://adm.omg.org

218 M. Wimmer and L. Burgueño

2. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S., Fleurey,
F., Traon, Y.L.: Model transformation testing challenges. In: Proceedings of International
Workshop on Integration of Model Driven Development and Model Driven Testing (IMDD-
MDT 2006) @ ECMDA (2006)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y.L., Mottu, J.M.: Barriers to System-
atic Model Transformation Testing. Commun. ACM 53(6), 139–143 (2010)

4. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
Morgan & Claypool Publishers (2012)

5. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and extensible frame-
work for model driven reverse engineering. In: Proceedings of the 25th International Confer-
ence on Automated Software Engineering (ASE 2010), pp. 173–174. ACM (2010)

6. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of model
transformations. ECEASST 24 (2009)

7. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of model trans-
formation contracts. In: Proceedings of the International Workshop on OCL and Model
Driven Engineering @ MODELS (2004)

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–646 (2006)

9. France, R.B., Rumpe, B.: Model-driven Development of Complex Software: A Research
Roadmap. In: Proceedings of the 29th International Conference on Software Engineering
(ISCE 2007) - Future of Software Engineering Track, pp. 37–54. IEEE Computer Society
(2007)

10. Garcı́a-Domı́nguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F., Medina-Bulo, I.: EUnit: A
Unit Testing Framework for Model Management Tasks. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 395–409. Springer, Heidelberg (2011)

11. Giner, P., Pelechano, V.: Test-Driven Development of Model Transformations. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 748–752. Springer, Heidelberg (2009)

12. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environment for
validating UML and OCL. Science of Computer Programming 69, 27–34 (2007)

13. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: France, R.B.,
Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 221–235.
Springer, Heidelberg (2011)

14. Guerra, E.: Specification-driven test generation for model transformations. In: Hu, Z., de
Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 40–55. Springer, Heidelberg (2012)

15. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck,
J., Schwinger, W.: Automated verification of model transformations based on visual con-
tracts. Autom. Softw. Eng. 20(1), 5–46 (2013)

16. Kolovos, D., Paige, R., Rose, L., Polack, F.: Unit testing model management operations. In:
Workshop Proceedings of the IEEE International Conference on Software Testing Verifica-
tion and Validation (ICSTW 2008), pp. 97–104. IEEE Computer Society (2008)

17. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a foundation for model com-
position and model transformation testing. In: Proceedings of the International Workshop on
Global Integrated Model Management (GaMMa 2006) @ ICSE, pp. 13–20. ACM (2006)

18. Kurtev, I., Bézivin, J., Akşit, M.: Technological spaces: An initial appraisal. In: Proceedings
of the Confederated International Conferences (CoopIS, DOA, and ODBASE), Industrial
track (2002)

19. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation testing
and version control in model driven software development. In: Proceedings of the Workshop
on Best Practices for Model-Driven Software Development @ OOPSLA, pp. 219–236 (2004)

Testing M2T/T2M Transformations 219

20. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. In: Beydeda, S.,
Book, M., Gruhn, V. (eds.) Model-Driven Software Development – Research and Practice in
Software Engineering, pp. 219–236. Springer (2005)

21. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
22. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: oracle issue. In: Work-

shop Proceedings of the IEEE International Conference on Software Testing Verification and
Validation (ICSTW 2008), pp. 105–112. IEEE Computer Society (2008)

23. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery Metamodel-
ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards & Inter-
faces 33(6), 519–532 (2011)

24. Ramos, R., Barais, O., Jézéquel, J.M.: Matching Model-Snippets. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 121–135. Springer,
Heidelberg (2007)

25. Van Der Straeten, R., Mens, T., Van Baelen, S.: Challenges in Model-Driven Software Engi-
neering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 35–47. Springer,
Heidelberg (2009)

26. Stürmer, I., Conrad, M., Dörr, H., Pepper, P.: Systematic testing of model-based code gener-
ators. IEEE Trans. Software Eng. 33(9), 622–634 (2007)

27. Tiso, A., Reggio, G., Leotta, M.: Early Experiences on Model Transformation Testing. In:
Proceedings of the 1st Workshop on the Analysis of Model Transformations (AMT 2012) @
MODELS, pp. 15–20. ACM (2012)

28. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal Specification
and Testing of Model Transformations. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer, Heidelberg (2012)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 220–236, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Approach to Testing Java Implementation
against Its UML Class Model

Hector M. Chavez1, Wuwei Shen1, Robert B. France2, and Benjamin A. Mechling1

1
Department of Computer Science, Western Michigan University, USA
2 Department of Computer Science, Colorado State University, USA
{wuwei.shen,h6chavezchav,b5mechling}@wmich.edu,

france@cs.colostate.edu

Abstract. Model Driven Engineering (MDE) aims to expedite the software de-
velopment process by providing support for transforming models to running
systems. Many modeling tools provide forward engineering features that auto-
matically translate a model into a skeletal program that developers must com-
plete. Inconsistencies between a design model and its implementation can result
as a consequence of manually-added code. Manually checking that an imple-
mentation conforms to the model is a daunting task. Thus, there is a need for
MDE tools that developers can use to check whether an implementation con-
forms to a model, especially when generated code is manually modified. This
paper presents an approach for testing that an implementation satisfies the con-
straints specified in its design model. We also describe a prototypical tool that
supports the approach, and we describe how its application to two Eclipse
UML2 projects uncovered errors.

Keywords: UML, Class diagram, Java, Model checking.

1 Introduction

Software design models are abstract forms of a solution that can be used to analyze
design choices and to partially generate implementations. In many cases, inconsisten-
cies arise between a design model and its implementation when implementations
evolve independently of the model from which it was generated. Checking confor-
mance between a design model and its implementation is extremely important if the
models are to continue to serve as contracts and blueprints for the implementation as
it evolves. Conformance checking can assist in the understanding of a program im-
plementation, strengthen the communication between designers and programmers,
and extend the utility of models beyond initial generation of programs. In some do-
mains, such as embedded software systems, mature conformance checking technolo-
gies exist because of the close relationship between a modeling language and an im-
plementation language. For example, Reactis can automatically check whether a C
program conforms to a Simulink model [1].

Object-oriented software development has become a dominant methodology in
software development. The Unified Modeling Language (UML) [2], as a standard

 An Approach to Testing Java Implementation against Its UML Class Model 221

modeling language, is a popular language for expressing design models. In particular,
UML class diagrams are widely used to describe software designs. On the program-
ming side, Java has been extensively used as an object-oriented implementation lan-
guage. Many MDE tools can automatically generate Java skeletal programs from
class diagrams to expedite the software development process. Developers often need
to manually add method implementations to generated skeletal programs. Unfortu-
nately, the completed implementation may not be consistent with the original class
diagram. In addition to simple programmer errors, programmer misunderstanding of
the generated structure in a skeletal program can lead to inconsistencies; the pro-
grammer would be implementing a software system based on a faulty interpretation of
the generated code. Consequently, conformance checking that determines whether
properties and constraints specified in a design model hold in the final implementa-
tion is needed.

The inclusion of constraints in a design model has become an indispensable step
toward building a high quality software system. Although class diagrams are well
designed to describe the structural relationships between objects, they are limited in
describing logical relationships that must be maintained and many constraints cannot
be diagrammatically expressed in class diagrams. For example, consider the relation-
ship between the classes, Association and Property, in the UML metamodel [2] p.32.
The diagram itself cannot show that “the number of memberEnds must be exactly 2 if
the aggregation kind is different than none”. As a result, the UML metamodel con-
tains numerous constraints, or well-formedness rules, expressed in another language,
the Object Constraint Language (OCL) [3].

In this paper, we focus on conformance checking that determines whether OCL
constraints are violated in a Java implementation. To this end, we first define a trans-
lation schema that assumes (1) a UML class diagram with some OCL constraints is
given, and (2) a Java skeletal program generated from the class diagram using a for-
ward engineering tool is available. The translation schema Φ consists of two parts.
The first part is concerned with the generation of Java skeletal code from a model.
This part uses the Rational Software Architect (RSA) [4] translation schema, which is
based on the following rules: (1) Each UML Class is mapped to a Java class with the
same name, (2) each property is mapped to a class field with setter and getter me-
thods, where both property and class field have the same name while their setter and
getter methods names are prefixed with set and get respectively, and (3) each UML
operation1 is mapped to a Java method with the same name. The second part of the
translation schema Φ is concerned with the generation of a Java Boolean method,
from an OCL constraint. This method is referred to as a post-method. This part is
based on the generation approach described in the OCL book by Warmer and Kleppe
(Chapter 4) [5].

A Java method satisfies its corresponding UML method in terms of Φ if the fol-
lowing is true: For every pre-state (the heap configuration) corresponding to a valid
object diagram of the class diagram via the translation schema Φ, if the method is

1 We will refer to UML operations as methods throughout the rest of the paper.

222 H.M. Chavez et al.

called on the pre-state and a post-state is generated, then the post-method derived
from OCL method specification associated with the UML method returns true when
invoked on the post-state. Otherwise, the method in the Java class does not satisfy its
UML counterpart with respect to Φ. Consequently, the Java class does not conform to
its UML class with respect to Φ. Likewise, if a Java class does not conform to its
UML class with respect to Φ, then the Java implementation does not conform to its
UML class diagram with respect to Φ. For brevity, we skip “with respect to Φ”
throughout the paper.

Based on the above, the testing problem addressed by the approach described in
this paper can be stated as follows: Given a design model consisting of a class dia-
gram with OCL constraints, and a Java implementation, automatically generate a set
of high-quality test cases to explore execution paths of the implementation to reveal
behavior that is not consistent with the behavior specified in the design model.

In this paper we propose a novel automated test-based approach, called the CCUJ
approach, which supports conformance checking between a UML design and a Java
implementation. The approach checks whether a Java implementation is consistent
with the OCL specifications associated with the design class diagram. CCUJ uses
branch-coverage criteria and efficiently prunes the test input space by means of Uni-
versal Symbolic Execution [6]

The rest of the paper is organized as follows. Section 2 presents relevant back-
ground on software testing. Section 3 illustrates our approach using a simple example.
Section 4 discusses the implementation of CCUJ approach. Section 5 presents empiri-
cal results. Section 6 discusses related work and draws a conclusion.

2 Background

Conformance checking between a UML class diagram and its Java implementation
can be done either with formal verification or testing-based validation techniques.
While formal verification has made some progress in past decades, they often do not
scale effectively to real-world applications due to the complexity that arises with the
increasing size of software. Thus, we adopt testing-based validation to support con-
formance checking. Specifically, we use a model-based testing approach, which cha-
racterizes by leveraging a program’s model information for the generation of test
cases. In general, a static defect in the software is called a software fault [7]. The
software whose implementation needs to be tested is called the software under test.
The input values/pre-state necessary to complete some execution of the software un-
der test are called test case values. A test oracle specifies the expected results/post-
state for a complete execution and evaluation of the software under test. A test case
consists of test case values and test oracles for the software under test.

In the case of conformance checking between a UML class diagram and its Java
implementation, the software under test is the method that we want to test so the me-
thod is called the method under test. A post-condition of a method in a class diagram
is converted to a Java method, called a post-method, which serves as a test oracle for
the corresponding Java implementation. The pre-conditions of a method in a class

 An Approach to Testing Java Implementation against Its UML Class Model 223

diagram are used to eliminate invalid test case values. In addition to satisfying pre-
conditions, a test case value must also be a valid object diagram, i.e. it must satisfy all
constraints given in the class diagram such as navigability and multiplicities. The goal
of conformance checking is to find a fault in a method such that the post-condition is
violated, i.e. returns false, after the method under test is called on a valid test case
value. Every method specification (pre- and post-conditions) in a class includes all
class invariants specified in a class diagram, that is, every class invariant in a class
can be used as a pre- and post-condition for a method.

Program testing has been widely studied in the past decades and advances have
been made recently. However, traditional program testing suffers two major obstacles
with respect to conformance checking. First, most testing techniques, including sym-
bolic execution techniques, do not consider pre- and post-conditions of a program
under test, and they assume that the execution of a faulty statement can expose a
software fault. Thus, most testing techniques adopt different coverage criteria to cover
all statements including the faulty statements. Unfortunately, many errors in a pro-
gram cannot be revealed based on this assumption. If a program does not have an
asserting statement, then it is possible not to reveal an error even when a faulty state-
ment is reached. Consider the example introduced by Ammann et al. [7] p.12 in which
a method numZero(int[] x) calculates the number of zeros in array x. In its imple-
mentation, a programmer forgot to check the first element of the array in the for loop
(instead of for(int i=0;…), the program has for(int i=1;..)). When numZero() is in-
voked with test case [2,7,0], no error is revealed when the faulty statement (i=1) is
executed.

Second, most testing techniques flip the condition branches during the execution
in order to reach different statements. However, in MDE, some advanced forward
engineering tools translate a class diagram to a program that has auxiliary informa-
tion. For instance, on the Eclipse Modeling Framework (EMF) [8], the attribute eCon-
tainerFeatureID is an integer used to identify a container and specify whether it is a
navigable feature or not by assigning a positive (navigable) or negative value. If the
value of eContainerFeatureID is altered to cover a different execution path, as done
by most testing techniques, a false positive that is not a real error can be reported. To
avoid this issue, CCUJ only tracks fields that are directly derived from the program’s
class diagram.

3 An Illustrative Example

Consider the simple class diagram in Fig. 1 (a) which is excerpted from the Royal and
Loyal system example [5] An OCL constraint is attached as a post-condition to me-
thod earn(). The code generated by Rational Software Architect (RSA) [4] is partially
shown in Fig. 1 (b), where each property is mapped to private class fields with the
setter and getter methods. We show how CCUJ can be used to check whether the
implementation of earn() shown in Fig. 2 (a) conforms to the class diagram shown in
Fig. 1 (a). Specifically, we check if the implementation satisfies the only OCL con-
straint in the class diagram. In short, CCUJ takes as input a class diagram that

224 H.M. Chavez et al.

includes method earn() and its OCL post-condition, shown in Fig. 1 (a), and its im-
plementation, as shown in Fig. 2 (a).

As a first step, CCUJ parses the class diagram to extract the corresponding OCL
post-condition for the method under test, and it automatically generates the Boolean
Java post-method post_earn() shown in Fig. 2 (b). Next, CCUJ uses the class diagram
and the translation schema Φ, to match elements between the diagram and implemen-
tation, to produce a test case value for method earn(i:Integer). Recall from Section 2
that every test case value should correspond to an object diagram. The correspon-
dence relation between a pre-state and an object diagram is given by a heap configu-
ration. Note that in the Java runtime environment, every created object is allocated a
space in the heap area. Here, the equivalence between a test case value and an object
diagram means that every object in the diagram has a space starting with address s_o,
allocated in the heap area; and each value for an attribute of an object should be as-
signed the corresponding value via Φ in the corresponding heap location of the space
allocated for an object’s attribute.

Fig. 1. Forward engineering feature supported by RSA

To generate an object diagram of Fig. 3 (a), CCUJ uses Φ to produce the program
shown in Fig. 3 (b). The execution of the program produces the first test case val-
ue/pre-state. Next, CCUJ calls method earn() on the test case value and employs
symbolic execution to guide the generation of further test case values. To tailor sym-
bolic execution for the conformance checking, CCUJ tracks all object references,
class fields, and method parameters derived from a class diagram.

(a) A UML Class Diagram

(b) A program generated by RSA for CD in (a)

 An Approach to Testing Java Implementation against Its UML Class Model 225

During symbolic execution, each statement updates the symbolic memory or the
path condition based on previous symbolic values in the symbolic memory. The initial
symbolic memory of earn() is obtained by executing the program in Fig. 3 (b) and the
path condition is initialized to true. Next, we show how CCUJ can reveal an error in
method earn():

• Trace I (Fig. 4):
─ The first execution based on the test case value, shown in Fig. 3 (b), starts with

the execution of statement 2 at earn (Fig. 2 (a)).
─ As a result, CCUJ updates the symbolic memory by creating symbolic variable

$3 for parameter i and updating $0.points to $0.points + $3 where $0 denotes
the object of LoyaltyAccount (row 1 in Table 1).

─ Next, the execution takes the else branch of the first if statement (line 3 of
earn()) and the then branch of the second if statement (line 6 of earn()). Thus,
the path conditions for earn(), denoted by pcearn(), is ¬($0.points + $3 > 100) ∧
$0.points + $3 >= 0.

─ Next, CCUJ continues to call the post-method post_earn() and the then branch
of the first if statement (line 4 of post_earn()) is taken. Thus, the path condition
of post_earn(), denoted by pcpost_earn(), is $0.points + $3 <= 200 ∧ $0.points +$3
<= 100 ∧ $0.points + $3 >=0 ∧ $2.name = “Silver”.

Fig. 2. An implementation of the earn method and post-condition

Fig. 3. Test case values generation

If method post_earn() returns false, then CCUJ reports that a software fault is
found. Otherwise, CCUJ calls the SAT solver to find whether pcearn() → pcpost_earn() is a
tautology. If the implication relationship is a tautology, then all test case values satis-
fying pcearn() do satisfy pcpost_earn() and take the same path in earn() and post_earn().

226 H.M. Chavez et al.

Thus, CCUJ looks for another test case value, i.e. another valid object diagram, by
calling the SAT solver. In Trace I post_earn() returns true and pcearn() → pcpost_earn() is
a tautology so CCUJ searches for another test case value as follows:

• Trace II (Fig. 4):
─ CCUJ calls the SAT solver to find a new test case value satisfying ¬($0.points

+ $3 > 100) ∧ ¬($0.points + $3 >= 0), to enforce a different execution path.
Here CCUJ uses a last-input-first-output stack to store the path conditions col-
lected during execution following a back-tracking approach. Thus, $0.points +
$3 >= 0 is popped and flipped. In this case, the SAT solver returns an assign-
ment that is used to generate the test value $0.points = 0 and, $3 = -1.

─ Next, CCUJ generates another simple object diagram with $0.points = 0 and $3
= -1, and uses Φ to produce a new test case.

During this execution, CCUJ collects the two path conditions from the execution of
earn() and post_earn(), i.e. ¬($0.points + $3 > 100) ∧ $0.points + $3 < 0, denoted by
pcearn(), and $0.points + $3 <= 200 ∧ $0.points + $3 <= 100 ∧ $0.points + $3 < 0 ∧
$2.name = “Inactive”, denoted by pcpost_earn() respectively.

Fig. 4. Different execution paths explored by CCUJ

Again post_earn() returns true and pcearn() → pcpost_earn() is found to be a tautology by
the SAT solver. CCUJ tries to find another test case value to alter the execution path
of earn() as follows:

• Trace III (Fig. 4):
─ CCUJ next flips the first sub-path condition to $0.points + $3 > 100 and sends it

to the solver. The solver returns ($0.points = 0, $3 = 150), and CCUJ generates
another set of test values, and calls method earn() again.

─ The two path conditions collected by CCUJ for earn() and post_earn() are
$0.points + $3 > 100, denoted by pcearn(), and $0.points + $3 <= 200 ∧
$0.points + $3 > 100 ∧ $0.points + $3 >= 0 ∧ $2.name = “Gold”, denoted by
pcpost_earn().

3 @ earn()N

7 @ earn()

6 @ earn()
Y

2 @ earn()

4 @ earn()

4 @ post_earn()

Y
TRUE

2,3 @ post_earn()

Error Found
& Stop !!!

Trace I Trace II Trace III

Execution of earn()
Path condition denoted
By pcearn()

Execution of post_earn()
Path condition denoted
By pcpost_earn()

Y

4 @ post_earn()
Y

TRUE

N

FALSE

9 @ earn()

N

Trace IV

2,3 @ post_earn()

 An Approach to Testing Java Implementation against Its UML Class Model 227

While post_earn() returns true, the SAT solver finds that pcearn() → pcpost_earn() is not a
tautology for Trace III. Therefore some test values that satisfy pcearn(), following the
same execution path of earn() in Trace III, do not follow the same execution path of
post_earn() in Trace III. So, a different execution path of post_earn() should be ex-
plored to check whether false can be possibly returned. Thus, CCUJ attempts to find a
test case value which alters the execution path of post_earn() as follows:

• Trace IV (Fig. 4):
─ CCUJ sends pcearn() ∧ ¬pcpost_earn() to the SAT solver which returns ($0.points =

0, $3 = 220) and a new test case value is found and generated by CCUJ.
─ Finally, method post_earn() returns false on this test case, which means method

earn() does not satisfy the post-condition defined in the class diagram. So a fault
is found.

Table 1. Symbolic memory and path condition after first execution

4 CCUJ Algorithm

Conformance checking in CCUJ requires a UML class diagram containing OCL con-
straints and a Java implementation of the diagram. The OCL constraints are extracted
from the model and translated into a Java post-method. The program including both
the methods under test and their post-methods is instrumented for symbolic execution.
Each method under test is tested separately, but with the same procedure. For the first
execution, only a minimal necessary set of objects is created. The method under test is
executed concretely with concurrent symbolic execution from which a symbolic path
condition is collected. The method’s post-method is executed in the same manner to
collect a post-method’s return value and symbolic path condition. If an error is not
found, new test case values are generated to exercise a different path condition than

Line No Stmt Symbolic Memory Path Condition

2@earn() points+=i lc->$0; ms->$1;sc->$2;$0.membership-
>$1;$1.loyaltyAccount->$0;$1.serviceLevel-
>$2;$2.membership->$1;
this->$0;i-> $3; $0.points->$0.points+$3

True

3@earn() If(points>100) Same as the above !($0.points +$3 > 100)

6@earn() if (points >= 0) Same as the above !($0.points +$3 > 100) and $0.points
+$3 > =0

7@earn() membership.getCurrentLevel().
setName("Silver");

lc->$0; ms->$1;sc->$2;$0.membership-
>$1;$1.loyaltyAccount->$0;$1.serviceLevel-
>$2;$2.membership->$1;
this-> $0; i-> $3; $0.points->$0.points+$3;
$2.name->”Silver”

Same as the above

2,2@post_earn() String level =
this.getMembership().getCurre
ntLevel().getName();
r0=false

lc->$0; ms->$1;sc->$2;$0.membership-
>$1;$1.loyaltyAccount->$0;$1.serviceLevel-
>$2;$2.membership->$1;
this-> $0; $0.points->$0.points+$3;
$2.name->”Silver”;
level-> $4; r0->$5;$5->false

True

4-7@post_earn() If(!(this.getPoints()>200||…) Same as the above ($0.points +$3) <=200 and ($0.points
+$3) <=100 and ($0.points +$3) >=0
and $2.name=“Silver”

8@post_earn() return r0; Same as the above Same as the above

228 H.M. Chavez et al.

the previously collected. The testing process is repeated with the new calculated test
case values until all reachable branches have been covered or an error is found. This
testing process is described in the pseudocode below and explained in more detail in
the following sections.

Fig. 5. CCUJ algorithm

4.1 Initialization of CCUJ

To translate OCL expressions to Java code we adopt the OMG OCL 2.3.1 specifica-
tion [3] and use the translation schema introduced by Warmer et al. [5]. To perform
the translation, CCUJ takes as input a class diagram and the method under test with its
corresponding OCL post-condition expression. Using the Eclipse Model Development
Tools OCL project (MDT OCL) [9], the OCL expression is parsed and returned as an
abstract syntax tree. CCUJ traverses the tree to form an equivalent Boolean Java me-
thod and adds it to the class where the method under test resides (Fig. 5, line 3-4).

To allow for concurrent concrete and symbolic program execution the Java pro-
gram is compiled and the resulting class files are instrumented using the ASM Java
bytecode manipulation and analysis framework [10] Instrumentation at the bytecode
level allows for fine-grained replication of the concrete memory in symbolic memory.
(Fig. 5, line 5)

Initially, CCUJ attempts to generate the simplest valid test case values. Null is
used for all reference type method parameters, and primitives are given default val-
ues. The current implementation does not consider floating point numbers due to limi-
tations of SAT solvers. The UML diagram is parsed to determine what minimal set of
object relationships are required. Recall a test case value denotes a heap configuration

 An Approach to Testing Java Implementation against Its UML Class Model 229

equivalent to a valid object diagram. If the method under test is an instance method
then an object of the class is instantiated and all its related associations are evaluated.
Associations that require one or more instances of another class must also be instan-
tiated and their respective associations must be evaluated recursively. As with the
input parameters, non-required references are set to null and primitive fields are as-
signed default values. Upon completion of the process, a simplest test case value cor-
responding to a minimal heap configuration that conforms to the UML class model
should be produced.

4.2 Execution of Methods

Once a test case value has been created with the input parameters set, the method
under test is called. First, the method under test is called with an empty symbolic
object heap (Fig. 5, line 11). The symbolic execution of a method identifies all dis-
covered values as inputs and builds its memory representations from these values and
the program constants. During execution, the path conditions evaluated on branches
are collected and added to the symbolic path condition. More explanation of the sym-
bolic execution process is provided below.

The execution of the post-method is slightly different in that it is given the sym-
bolic memory constructed during the test method execution. Using this common
memory allows the path conditions collected by the post-method to be expressed in
terms of the same inputs (Fig. 5, line 12). During the execution of both methods pro-
gram constants and discovered inputs are tracked. New values derived from them are
tracked as expressions over these inputs. Like the method under test, the post-method
collects a symbolic path condition.

The symbolic execution approach shown in Table 1 is based heavily on the idea of
Universal Symbolic Execution [6]. For each concrete value found during the execu-
tion of the method under test, a symbolic value is assigned. The execute_symbolic
method’s parameter params shown in Fig. 6 is a list of known symbolic values for the
method’s parameters. The heap parameter is a mapping of known objects and object
fields to symbolic values. The pc variable is a list of path condition expressions to
which this method will add. The pc is expected to be empty when the method under
test is started. (Line numbers in the remainder of section 4.2 refer to Fig. 6.)

For each monitored method in the call stack, a list of symbolic values is associated
with the local variables (line 1). An expression stack (line 1) is used to evaluate run-
time expressions. If no symbolic values are known for the input parameters (line 2),
then new symbolic values are created (line 4) and added to the heap if not recognized
(lines 5-6). Otherwise, the supplied values are associated with the corresponding local
variables (lines 7-9).

Each instruction in the method under test, and possibly its subroutines, is mi-
micked in symbolic memory. Each time a local variable or object field is read (lines
11, 13) its symbolic value is pushed onto the expression stack (lines 12, 14). Con-
versely, when a value is assigned to local variable or object field (lines 15, 17), the
value is popped off the stack and stored in the appropriate data structure (lines 16,
20). If an object value is not recognized, it is added to the heap (lines 18-19).

230 H.M. Chavez et al.

Fig. 6. Symbolic execution pseudocode

Stack operations, branches, and method calls, can have multiple operands. These
operands are popped off of the stack (lines 24-26). For stack operations and branches,
they are used to build a symbolic expression (lines 28-29, 34-35). Method calls are
evaluated recursively (lines 31-32). If the called method is instrumented, it will be
transparent to the process since its operations will be evaluated using given symbolic
inputs and shared heap memory. The results of stack operations and method calls are
pushed onto the stack (lines 28-29, 31-32). Branching expressions are added to the
path condition (lines 34-35). Finally, at the end of the method (line 21) the remaining
value on the expression stack is popped off and returned to the caller (line 22).

4.3 Evaluation of Results and Input Generation

As a result of executing the method under test and the post-method, a symbolic path
condition (pc), post-method Boolean return value (is_valid), and post-method path
condition (pc_post) have been collected. From these three values CCUJ can determine
the next course of action.

In the simplest case, is_valid is false (Fig. 5, line 13) indicating that the model's
OCL constraint on the method under test has been violated by the test case value. If
this occurs then the error is reported and the process terminates.

If the post-method returns true, then the test case value does not violate the con-
straint, but that does not mean that another input on the same path could not cause a
violation. To test for this possibility CCUJ tests the path conditions collected with a
SAT solver, called Sat4j [11], a Boolean satisfaction and optimization library in Java
(Fig. 5, line 16). If the SAT solver finds that pc → pc_post is a tautology, that is
¬(¬ pc ∨ pc_post) is not satisfiable, then all test case values satisfying the same path
condition will satisfy the post-path condition as well and, thus, will satisfy the mod-
el’s constraint. If this is the case, then CCUJ attempts to find a different test case val-
ue that would execute a different execution path in the method under test. To do so,

 An Approach to Testing Java Implementation against Its UML Class Model 231

CCUJ uses back-tracking technique to negate one sub-condition of pc and sends the
new formula to Sat4j. The returned assignments by Sat4J are stored in init_values.
(Fig. 5, line 18-22)

If pc → pc_post is not a tautology, that is ¬(¬ pc ∨ pc_post) is satisfiable, then
there exists a test case value that follows the same path in the method under test, but
not in the post-method. Therefore, CCUJ tries to generate such a set of test values by
solving the formula pc ∧ ¬ pc_post via the back-tracking technique with Sat4j (Fig. 5,
line 24-28). If a solution is found, CCUJ uses it to generate new possible test case
values and repeats the testing process until no further test case values can be found.

5 Experiments

In order to validate the CCUJ approach, we conducted two kinds of experiments. First
is the effectiveness experiment. Effectiveness can be observed by the ability of CCUJ
to find real faults confirmed by developers in some industrial-strength software sys-
tems. The other type of experiment is concerned with evaluating the efficiency of
CCUJ by comparison with some more established approaches.

Fig. 7. Class diagram fragment of the UML specification

5.1 Effectiveness

When we studied the UML specification [2], we found that many existing approaches
that claimed to recover UML composition by reverse engineering from a Java pro-
gram do not strictly follow the semantics of UML composition [2,13,14]. The UML
specification requires that “… If a composite is deleted, all of its parts are normally
deleted with it. Note that a part can (where allowed) be removed from a composite
before the composite is deleted, and thus not be deleted as part of the composite…” p.
41 [2]. However, many existing approaches require that all part objects cannot be
accessed by any object except for its owner object. In fact, this is not the case. For
instance, the class diagram excerpted from the UML specification in Fig. 7 shows that
an object of class Property, which is owned by an object of class Class, can be ac-
cessed by an object of class Association. Therefore, when an owner object does not
exist, all of its owned objects should not exist. Namely, all the links to the owned
objects from other live objects should be removed. Assume method destroy() intends
to implement the deletion of an owner object, Fig. 8 (a) shows the property as a post-
condition after method destroy() is called on an owner object.

232 H.M. Chavez et al.

Fig. 8. UML meta-model OCL post-conditions

After the above observation, we tried CCUJ on one of the UML2 projects, i.e. the
UML2 v1.1.1 implementation. CCUJ did detect the implementation error of all fields
derived from UML composition and was confirmed with one of UML2 project mem-
bers. The root cause of the implementation error is that the destroy() method iterative-
ly checks each object contained in the resource, which is supposed to contain all the
instantiated objects, and remove their links to the owned objects being destroyed. But
the resource object, as part of EMF metamodel, did not automatically store all instan-
tiated owned objects in the resource object appropriately.

Table 2. The comparison based on the Royal and Loyal and Binary Tree examples

We also applied CCUJ to the UML2 project v4.0.2 checking some OCL constraints
in the UML specification [2]. CCUJ detected an error on the implementation of the
method isAttribute() in class Property. The OCL post condition (p. 125[2][2]) for the
method is shown in Fig. 8 (b). The problem was caused by the implementation only
checking non-navigable inverse references to property p, this is, references in which
an object (obj1) can access p, but p cannot directly access the object obj1. Since the
reference attribute in class Classifier is a navigable inverse reference, it was ignored,
and the method failed to return true when c.attribute->includes(p) is true. The prob-
lem was confirmed and fixed2 by the developers.

2 https://bugs.eclipse.org/bugs/show_bug.cgi?id=407028 [accessed 7-

June-2013].

Number of Test Cases

Test No. Classes CCUJ Finitazation Glass Box Black Box

BinaryTree::orderChildren() 2 4 3 27 19683

4 4 64 262144
4 5 125 1953125

LoyaltyAccount::earn(i: Integer) 9 4 3, 2 * 54 39366
4 4, 2 * 128 524288

4 5, 2 * 250 3906250
* Object and integer finitization

 An Approach to Testing Java Implementation against Its UML Class Model 233

Table 3. UML specification test case generation comparison

5.2 Efficiency

To determine the efficiency, we compare CCUJ with a glass box testing approach
[15] and Korat [16], which are two prominent approaches, in terms of the number of
generated test cases. One reason for this selection is that these two approaches con-
sider different methods to generate test case values. The number of test cases deter-
mines the number of times that the method under test must be executed. Since CCUJ
achieves branch coverage, the smaller the number of necessary test cases, the greater
the efficiency. Our approach achieves a good efficiency without sacrificing coverage
criteria. The glass box approach, similar to CCUJ, considers the generation of test
case values based on the execution of the method under test. In the case of Korat, only
an invariant method, repOk(), is considered in the generation of test case values. Both
of Korat and the glass box testing approach use finitization to limit the number of
values that can be assigned to a field. Thus, the number of possible test case values
can be reduced. Furthermore, both Korat and the glass box prunes the fields not
touched during the execution so the test case values can be further reduced. In order
to run Korat, we converted the multiplicity and navigability constraints into the inva-
riant method repOk() in each class. Table 2 shows the results of the three approaches
in terms of the number of test case values being generated for the Royal and Loyal
example and Binary tree example.

Likewise, we compared the three approaches based on the UML specification. We
studied the partial metamodel, given in Fig. 15.2 and 7.9, in the UML2 Specification
[2], and considered the methods maySpecializeType(), ancestor(), isTemplate(), and
destroy(), on pages 54, 565 [2]. Because both Korat and the glass box approaches
generate a large number of test case values quickly, we only considered a small num-
ber of classes related to these four methods. Table 3 shows a comparison result of
these approaches in the UML specification.

Number of Test Cases

Test No. Classes CCUJ Finitazation Glass Box Black Box
Classifier::maySpecializeType() 4 3 3 3 6561

4 3 4 4 65536
4 3 5 5 390625

StateMachine::ancestor() 8 10 3 27 6561
8 10 4 64 65536
8 10 5 125 390625

Classifier::isTemplate() 4 6 3 108 2916
4 6 4 256 16384
4 6 5 500 62500

Element::destroy() 3 3 3 27 531441
3 3 4 64 16777216
3 3 5 125 244140625

234 H.M. Chavez et al.

6 Related Work and Conclusions

Various techniques have been proposed to support model-based testing. Most ap-
proaches consider the generation of test cases from a behavioral model of a system.
These approaches can be further classified into two categories. In state-based ap-
proaches the system behavior is described by state machines. Abdurazik et al. pro-
posed an approach to generate test cases based on UML state machines [17]. The
other category uses scenario-based descriptions of interactions between different sys-
tem entities. Roychoudhury et al. proposed a new notation, called symbolic message
sequence charts, that generates test cases for process classes [18]. However, as far as
we know, no prior work has been proposed to support conformance based testing of
programs against UML class diagrams.

 Testing UML associations, which is considered in our experiments, in a Java pro-
gram has aroused some interest due to MDE. Akehurst et al. [19] discussed a variety
of concepts related to associations such as subset in Java5 in detail. As for composi-
tion, the authors proposed to apply weak Java references to ensure all links to a part
object have been removed but the authors failed to give the specific code to achieve
this requirement. Other work by Gueheneuc et al. [14] and Milanova et al. [20] recov-
ers UML composition from a program based on the non-accessibility property. How-
ever, this property is not required by the UML specification. So, their approach would
fail to detect the errors found in UML v1.1.1 where a part object is leaked to a third-
party object.

 The KeY system [21] is a verification tool for Java employing a novel theorem
prover for the first-order Dynamic Logic for Java with a user-friendly graphical inter-
face. The KeY system considers OCL and JML as an assertion language to specify the
pre- and post-conditions of a Java program under test. However, traditional program
verification is often intractable for large software systems and that is why software
testing techniques remain the most widely used method for software reliability.

While CCUJ considers Java as an implementation language, some other object-
oriented programming languages such as C# can also use the CCUJ approach. In this
case, CCUJ should be adjusted to accommodate the changes in a new programming
language that is different from Java, such as, the generation of the post-method in a
different target language, and the use of a different instrumentation API and symbolic
execution tool. The most important contribution of CCUJ is still its approach for effi-
ciently checking the conformance between a UML class diagram and implementation
in an object-oriented language.

In conclusion, CCUJ was able to effectively and efficiently perform conformance
checking between UML and Java. As future work we plan to extend our approach to
consider floating point number during the test case generation by simulating the con-
tinuous values with the use of step functions.

Acknowledgments. We thank the MODELS anonymous reviewers for their construc-
tive and detailed comments, as well as our colleagues Tao Xie and Zijiang Yang for
their support and discussion during the early stages of the project.

 An Approach to Testing Java Implementation against Its UML Class Model 235

References

1. Systems, R.: Software Testing and Validation with Reactis (2013),
http://www.reactive-systems.com/ (accessed June 7, 2013)

2. Omg: OMG Unified Modeling Language (OMG UML), Superstructure Specification
(Version 2.4.1). Tech. rep., Object Management Group (2011),
http://www.omg.org/spec/UML/2.4.1/ (accessed June 7, 2013)

3. Omg: OMG Object Constraint Language (OCL) Version 2.3.1. Tech. rep (2012),
http://www.omg.org/spec/OCL/2.3.1/ (accessed June 7, 2013)

4. IBM: IBM Rational Software and Systems Delivery (2013),
http://www-01.ibm.com/software/rational/ (accessed June 7, 2013)

5. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

6. Kannan, Y., Sen, K.: Universal Symbolic Execution and its Application to Likely Data
Structure Invariant Generation. In: Proceedings of the 2008 International Symposium on
Software Testing and Analysis, New York, NY, USA, pp. 283–294 (2008)

7. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge University
Press, New York (2008)

8. Foundation, T.: Eclipse Modeling - MDT - Home (2013),
http://www.eclipse.org/modeling/mdt/ (accessed June 7, 2013)

9. Foundation, T.: Eclipse Modeling - MDT - OCL (2013),
http://www.eclipse.org/modeling/mdt/downloads/?project=ocl
(accessed June 7, 2013)

10. Consortium, O.: ASM Home Page (2013), http://asm.ow2.org/ (accessed June 7,
2013)

11. Le Berre, D., Parrain, A.: The Sat4j Library, Release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation 7, 59–64 (2010)

12. Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A., Bruel, J.-M.: Formalization of
the Whole-Part Relationship in the Unified Modeling Language. IEEE Trans. Softw.
Eng. 29(5), 459–470 (2003)

13. Boyapati, C., Liskov, B., Shrira, L.: Ownership Types for Object Encapsulation. In: Pro-
ceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, New York, NY, USA, pp. 213–223 (2003)

14. Guhneuc, Y.-G., Albin-Amiot, H.: Recovering Binary Class Relationships: Putting Icing
on the UML Cake. In: Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, New York, NY,
USA, pp. 301–314 (2004)

15. Darga, P., Boyapati, C.: Efficient Software Model Checking of Data Structure Properties.
In: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languages, and Applications, New York, NY, USA, pp. 363–382
(2006)

16. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated Testing Based on Java Predi-
cates. In: Proceedings of the 2002 ACM SIGSOFT International Symposium on Software
Testing and Analysis, New York, NY, USA, pp. 123–133 (2002)

17. Abdurazik, A., Offutt, J.: Using UML Collaboration Diagrams for Static Checking and
Test Generation. In: Proceedings of the 3rd International Conference on The Unified Mod-
eling Language: Advancing the Standard, Berlin, Heidelberg, pp. 383–395 (2000)

236 H.M. Chavez et al.

18. Roychoudhury, A., Goel, A., Sengupta, B.: Symbolic Message Sequence Charts. ACM
Trans. Softw. Eng. Methodol. 12, 12:1–12:44 (2012)

19. Akehurst, D., Howells, G., McDonald-Maier, K.: Implementing associations: UML 2.0 to
Java 5. 0 to Java 5. Software & Systems Modeling 6(1), 3–35 (2007)

20. Milanova, A.: Precise Identification of Composition Relationships for UML Class Dia-
grams. In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, New York, NY, USA, pp. 76–85 (2005)

21. KeY Project: Integrated Deductive Software Design (2013), http://www.key-
project.org/ (accessed June 7, 2013)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 237–253, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automated Test Case Selection Using Feature Model:
An Industrial Case Study

Shuai Wang1,2, Arnaud Gotlieb1, Shaukat Ali1, and Marius Liaaen3

1 Certus Software V&V Center, Simula Research Laboratory, Norway
2 Department of Informatics, University of Oslo, Norway

3 Cisco Systems Inc., Norway
{shuai,arnaud,shaukat}@simula.no,

marliaae@cisco.com

Abstract. Automated test case selection for a new product in a product line is
challenging due to several reasons. First, the variability within the product line
needs to be captured in a systematic way; second, the reusable test cases from
the repository are required to be identified for testing a new product. The objec-
tive of such automated process is to reduce the overall effort for selection (e.g.,
selection time), while achieving an acceptable level of the coverage of testing
functionalities. In this paper, we propose a systematic and automated methodol-
ogy using a Feature Model for Testing (FM_T) to capture commonalities and
variabilities of a product line and a Component Family Model for Testing
(CFM_T) to capture the overall structure of test cases in the repository. With
our methodology, a test engineer does not need to manually go through the re-
pository to select a relevant set of test cases for a new product. Instead, a test
engineer only needs to select a set of relevant features using FM_T at a higher
level of abstraction for a product and a set of relevant test cases will be selected
automatically. We applied our methodology to a product line of video confe-
rencing systems called Saturn developed by Cisco and the results show that our
methodology can reduce the selection effort significantly. Moreover, we con-
ducted a questionnaire-based study to solicit the views of test engineers who
were involved in developing FM_T and CFM_T. The results show that test en-
gineers are positive about adapting our methodology and models (FM_T and
CFM_T) in their current practice.

Keywords: Test Case Selection, Product Line, Feature Model, Component
Family Model.

1 Introduction

Product line engineering (PLE) is a systematic process to capture commonalities and
variability across a set of products belonging to a product line [1, 2]. PLE has demon-
strated several benefits in both academia and industry including: reducing development
time and cost, speeding up product time-to-market and reducing required modeling
effort for Model-based Testing (MBT) through the mechanism of reuse [3, 4].

Test case selection is important for product line testing since the number of all
possible products derived from the product line is very huge and it is difficult to

238 S. Wang et al.

obtain a set of relevant tes
strategies can reduce the ef
coverage for required testi
researchers have spent sign
selection, which have prove

Our industrial partner in
[9], which develops high qu
[10]. The current test case
from a repository of test ca
creasing complexity of fun
tion poses several challeng
time, which reduces the eff
mainly driven by the exper
repeatable process (i.e., dif
for the same product). Third
low coverage for testing fu
not be covered by the sele
testing of specific functiona
train recently hired enginee
test selection largely depen
when more VCSs are devel

Fig. 1. A

To cope with the above-
methodology to support au
Fig. 1, we developed a Fea
and variabilities of a pro
(CFM_T) to capture the ove
neers are only required to p
FM_T and the related test c
between FM_T and CFM_
Repository. To compare wi
is systematic and significan
a test engineer doesn’t nee
thereby reducing the require

The rest of the paper is
Feature Model and Compon
ple used to exemplify our
FM_T and CFM_T. Section
Section 7 discusses the rela

st cases for a specific product [5]. Efficient test select
ffort (i.e., selection time) and at the same time improve
ng functionalities [6, 7]. In recent years, more and m
nificant effort on fully automated strategies for test c
en to be efficient as compared to manual strategies [8].
n the context of this work is Cisco Systems, Inc, Norw
uality product lines of Videoconferencing Systems (VC
selection practice at Cisco is to select test cases manua
ases, whenever a new VCS is to be tested. Due to the

nctionalities and diversity of VCS products, manual sel
ges [11]. First, manual test case selection requires a lo
ficiency of testing; Second, the manual selection proces
rtise of test engineers and hence it is not an objective
fferent test engineers may select different sets of test ca
d, manual selection may result in a set of test cases that
unctionalities (i.e., all required testing functionalities m
ected test cases), because a focus has been placed on
alities. Finally, no guideline or methodology is provided
ers to select test cases. This means the current practice
nds on the expertise of test engineers and is not scala
oped and are to be tested.

An overview of the proposed methodology

mentioned challenges, we propose a product line model
utomated test case selection systematically. As shown
ature Model for Testing (FM_T) to capture commonali

oduct line and a Component Family Model for Test
erall test structure of test cases in the repository. Test en
perform selection through the Test Selection Front-end
cases will be chosen automatically, based on the links b
_T, and between CFM_T and the Product Line Test C
ith the current manual practice at Cisco, our methodolo
ntly reduces the complexity of selection for test cases si
ed to know the implementation level details of a test ca
ed selection effort (e.g., selection time).
organized as follows: Section 2 provides a background
nent Family Model. Section 3 describes the running exa
methodology. Section 4 proposes our methodology us

n 5 discuss the tool support. Section 6 presents evaluatio
ted work and Section 8 concludes the paper.

tion
the

more
case

way
CSs)
ally
 in-
lec-
t of

ss is
and
ases
has

may
the

d to
e of
able

ling
n in
ities
ting
ngi-

d for
built
Case

ogy
ince
ase,

d to
am-
sing
ons.

 Automated Test Case Selection Using Feature Model: An Industrial Case Study 239

2 Background

In this section, we briefly introduce feature model (Section 2.1), followed by related
background of component family model (Section 2.2).

2.1 Feature Model (FM)

Feature modeling is a hierarchical modeling approach for capturing commonalities
and variabilities in product line [1, 12]. FM can be represented as a 2-tuple (features,
constraints) with four types of features, namely mandatory, optional, alternative and
or. A mandatory feature means it must be included if its father feature is included in
the current selection. The selection of an optional feature is optional even if its father
feature is included. A father feature with a set of alternative features describes that
only one of the alternative features can be included if their father feature is included.
A father feature with a set of or features means at least one of the or features is in-
cluded if their father feature is included. In addition, FM contains cross-tree con-
straints which are supplementary relations among unrelated features. There are two
kinds of such constraints, namely require and mutually exclusive constraints. A re-
quire relation among two features (a source and a target) means if the source feature
is included into the current selection, the targeted feature must also be included. A
mutually exclusive relation has the opposite meaning, saying that if the source feature
is included then the target feature cannot be included into the current selection [11].

2.2 Component Family Model (CFM)

A CFM is used to represent how products are assembled and generated in a product
line by modeling relations among software architectural elements [13]. CFM can be
represented as a 4-tuple (components, parts, source elements, restrictions). Compo-
nents are named entities organized into a tree-like structure that can be of any depth.
Each component represents one or more functional elements of the products in product
line (e.g. C functions, Java classes). Parts are named and typed entities. Each part
belongs to a component and contains one or more source elements. A part can be asso-
ciated with given programming language features, classes or objects, but it can also be
associated with other key elements. A source element is an unnamed but typed entity.
Source elements are usually used to determine how the source code for the specified
element is generated. Restrictions specify conditions under which a component, part or
source element may be excluded from a final selection [13, 14].

3 Running Example

In this section, we present a running example that will be used to exemplify our me-
thodology (Section 4). The running example is a simplified version of the Saturn
product line of Cisco with a set of products (e.g., C20, C40, C60, and C90).

The core functionality of a VCS is to establish a videoconference and the Saturn
supports the following two types of videoconferences: Multi-way and Multi-site.

240 S. Wang et al.

A Multi-way call in VCS products means one VCS can dial at most to only one End-
point (EP1) and put the current call on hold to dial to another Endpoint (EP2). The
VCS can then switch between EP1 and EP2, but can have only one active call at a
time. Compared with a Multi-way call, a Multi-site call allows users to make calls to
more than one Endpoint simultaneously. In the current VCSs, some of them, e.g., C20
only supports Multi-way calls and others, e.g., C60 and C90 support Multi-site calls.
Among products supporting Multi-site call, there is also a possibility of transmitting
presentations in parallel to a videoconference using VCS products. Presentations can
be sent only by one conference participant at a time and all others receive it. The Sa-
turn supports two protocols for videoconference: H323 and SIP.

To test Saturn, a testing repository including more than 2000 test cases is devel-
oped for various functionalities. For instance, the test case “Multi-way call test—max
bandwidth” is designed and implemented to test the bandwidth of Multi-way call.
Notice that each product is associated with a subset of test cases from the repository
since it may not consist of all functionalities. Moreover, whenever a new functionality
is introduced in the product line, new test cases are added into the repository.

4 Methodology

In this section, we present our methodology that is based on Feature Model (FM) and
Component Family Model (CFM) for automated test case selection. Since our context
is related with product line testing, we will call our FM as FM for Testing—FM_T
and CFM as CFM for Testing—CFM_T. More specifically, FM_T is first presented
to capture the commonalities and variabilities of a product line (Section 4.1) followed
by CFM_T to capture the overall test structure of test cases (Section 4.2). Afterwards,
we present how we perform test case selection for a product (Section 4.3).

4.1 Feature Model for Testing (FM_T)

In this section, we first present how to model testing functionalities of a product line
using FM_T followed by how to model relations among testing functionalities using
FM_T. Finally, we provide the statistics of the current FM_T for Saturn.

Modeling Testing Functionalities Using FM_T. Testing functionalities of a product
line P can be represented as _ , , , … , , where is the total num-
ber of features for P. As shown in Fig. 2, each testing functionality is associated with
a feature in FM_T. For instance, the feature Multi-way is used to test the Multi-
way call during conference meetings, and the Multi-site used to test the Multi-site
call. Notice that the types of features in FM_T can be mandatory, optional, alterna-
tive and or as discussed in Section 2.1. For instance, as shown in Fig. 2 (Exclamation
marks represent mandatory features, question marks represent optional features,
double-arrow marks represent alternative features and cross-line marks represent or
features), the feature Call is mandatory feature since each product must support call
functionality and the feature Presentation is optional because not all products support

 Automated Test Case S

the presentation functionali
Multi-way and Multi-site ar
support either Multi-way ca
because one product can su
based on the expertise, testi

• Testing states such
system is ready to
some conditions or

• Testing functionalit
• Testing parameters

In order to meet the VC
ing functionalities, and test
describe testing states of V
meters needed to be config
features, namely, Testing S
(), respectively, i.e.,
Each part consists of a list o
the features Ready and Sta
Video Call and Presentatio
Protocol (Fig. 2), where

 and , respectively,
identified and created togeth
and system information.

Modeling Relations Using
since testing functionalities
represented as
number of constraints. Eac

 can be repre , , where
2.1). For instance, the Pre
product cannot support the
call, then the constraint

election Using Feature Model: An Industrial Case Study

ity (e.g., C90 supports while C20 does not). The featu
re alternative features since one product can only choose
all or Multi-site call. SIP and H323 features are or featu
upport at least one protocol for videoconference. Moreov
ing of a VCS product requires the following information

as “Ready” and “Standby”. The “Ready” state tells th
be tested and “Standby” describes that the system ne
operations to wake up and transit into the “Ready” state

ties such as “Multi-way” and “Multi-site”;
such as “SIP”, “H323”.

S testing domain, our FM_T represents testing states, t
ting parameters as different dimensions of features, wh

VCS products, functionalities needed to be tested and pa
gured. Hence, FM_T in our context consists of three par
ates (), Testing Features () and Testing Paramet

 can be divided into three parts , ,
of relevant features: , , , … , such
andby, , , , … , such as the featu
on and , , , … , such as the feat

, , are the numbers of features belonging to
, and . Notice all the features
her with the test engineers based on the domain knowle

Fig. 2. An excerpt of FM_T

FM_T. A set of cross-tree constraints is added to the FM
s may be related to each other. All the constraints can, , , … , , where is
ch can be either require or mutually exclusive,
esented as , or

 is the source feature and is the target feature (Sect
sentation feature requires the Multi-site feature since
presentation functionality unless it supports the Multi- , is assig

241

ures
e to
ures
ver,
n:

at a
eeds
e;

test-
hich
ara-
rent
ters

.
h as
ures
ture

,
are

edge

M_T
n be

the
i.e.,

tion
one

-site
gned

242 S. Wang et al.

from the source feature Pres
these cross-tree relations are
Cisco.

Summary for FM_T. The
ent selections of the feature
subset of features. Together
Saturn, which contains 134
or) and 35 require constrai
engineers, we need to ment
functionalities of Saturn do

4.2 Component Family

In this section, we first pres
sitory using CFM_T follow
Finally, we provide the stati

Modeling Test Structure
test cases and test engineer
within these plans. In orde
obtain relevant test cases fo
structure of test cases in the

First of all, we investiga
domain knowledge, we fou
test tasks and test cases. A t
resource requirement such
test case is a test script wit
ware/hardware resources, w

Our CFM_T is represen
components, where n is the
task and can be hierarchica

sentation to the target feature Multi-site (Fig. 2). Notice
e also identified and built together with the test engineer

e various products can be configured by performing dif
es in FM_T, i.e., a specific product can be represented a
r with test engineers of Cisco, we developed the FM_T
features (44 mandatory, 38 optional, 25 alternative and

ints in total. Besides, according to our discussion with
tion that building FM_T is one-time manual effort since
esn’t change significantly.

y Model for Testing (CFM_T)

sent how to model the structure of all test cases in the re
wed by how to link FM_T and CFM_T using restrictio
istics about CFM_T developed for Saturn.

Using CFM_T. Test plans are usually composed of m
rs spend significant amount of time organizing test ca
er to model the structure of test cases and automatica
or test plans, we proposed a CFM_T to capture the ove
e repository.
ted the test structure in the context of Saturn. Based on
und that the test structure in VCS testing is composed
test task is a collection of test cases that has a common
as “Multi-way call” task and “Multi-site call” task. E

th a set of parameters for execution such as required s
which can be run on different products.

Fig. 3. An excerpt of CFM_T

nted as _ , , , … , comprising of a set
e number of components. Each component represents a
ally decomposed into parts representing various test ca

that
rs in

ffer-
as a

T for
d 27
test
the

epo-
ons.

many
ases
ally

erall

the
d by
test

Each
oft-

t of
test

ases

 Automated Test Case Selection Using Feature Model: An Industrial Case Study 243

, , , … , , where is the number of parts belonging to . Fig.
3 shows two components Multi-way call and Multi-site call in the CFM_T
representing two test tasks “Muti-way call” and “Multi-site call”. Each component
includes a set of parts, which represent relevant test cases. Fig. 3 also shows two parts
Multi-way call test—max bandwidth and Multi-site call test—max bandwidth belong-
ing to the two components, which represent two test cases “Multi-way call test—max
bandwidth” and “Multi-site call test—max bandwidth” belonging to the two test tasks
(the names of two parts in CFM_T are not completely shown in Fig. 3 due to space).

Meanwhile, each part consists of a set of attributes representing different informa-
tion for testing: _ , , , … , , where is the number of
attributes belonging to . In particular, each part in our current CFM_T con-
sists of four attributes (Fig. 3), which can be categorized as two groups: 1) Attributes
for tracing, more specifically, testID is used to identify and trace test cases between
CFM_T and the repository; and 2) Attributes for test minimization, i.e., fault detec-
tion capability (FDC), average execution time (AET) which is recorded by seconds
and execution frequency (EF) which is recorded per week. For instance, AET and EF
for the test case “Multi-way call test—max bandwidth” is 53 and 37, respectively,
showing the average execution time of the test case is 53 seconds and the test case is
executed 37 times per week on average. Moreover, FDC is defined as the success rate
of a test case in a week. For instance, the FDC of the part Multi-way call test—max
bandwidth is 0.63 (Fig. 3), which means the test case “Multi-way call test—max
bandwidth” executes successfully by 63% in a week. Using FDC, the number of se-
lected test cases for testing a product obtained by our methodology can be further
minimized based on their fault detection capability using different mechanisms such
as genetic algorithms [15]. All the information for attributes is available (they can be
generated from the test database in Cisco automatically) and can be used for different
purposes. Notice that we only focus on the test case selection using CFM_T in this
paper but our CFM_T can be adapted for more testing purposes via assigned
attributes, e.g., minimizing the number of test cases for testing a product [15].

Linking FM_T and CFM_T Using Restrictions. Afterwards, restrictions are as-
signed to components or parts, which constrain relations between components or parts
in CFM_T and features in FM_T. Notice that each component or part can be
linked with one or more features in FM_T via restrictions (i.e., Each component or
part can have any number of restrictions). A component or part cannot be included
into the final selection for a product unless its restrictions evaluate to true. For in-
stance, we assigned a restriction to the part Multi-way call test—max bandwidth to
link this part with the feature Multi-way in the FM_T since the test case “Multi-way
call test—max bandwidth” is developed to test the bandwidth of Multi-way call, i.e.,
during test case selection, the test case cannot be included into the final selection un-
less the feature Multi-way is in the selection set of features.

Summary for CFM_T. An initial version of CFM_T was built together with test
engineers at Cisco so that test engineers can get familiarized with the notations of
CFM_T. Later on, we developed a tool called Import Plugin and Transformation

244 S. Wang et al.

(IPT) that can build CFM_T automatically (Section 5) in the context of Cisco. Fol-
lowing the test structure of Saturn, a CFM_T was built automatically using the tool
IPT. In general, 143 test tasks with 2374 test cases in the repository are modeled as
143 components including 2374 parts with 9496 attributes (test ID, FDC, AEC and
EF) in the CFM_T. Meanwhile, 7386 restrictions are assigned to relevant components
or parts in the CFM_T, which are used to link with related features in the FM_T.

4.3 Process to Select Test Cases for a Product

Test case selection for a product has the following two steps: 1) Based on the exper-
tise knowledge and system information, test engineers analyze the test requirements
for the product; 2) According to the analyzed requirements, test engineers select a set
of relevant features in FM_T. Afterwards, related components and parts in CFM_T
will be selected automatically, i.e., a set of relevant test cases in the repository will be
chosen automatically.

Fig. 4. An example of test case selection process for a product

Fig. 4 shows an example of test case selection process for a product and it has the
following three main parts: 1) An excerpt of FM_T; 2) An excerpt of CFM_T and 3)
Two associated test tasks including a set of test cases respectively. For FM_T, there
are alternative two features, namely Multi-way and Multi-site. Each product can only
support either Multi-way call or Multi-site call. In CFM_T, the component Multi-way
call and Multi-site call are linked with the feature Multi-way and Multi-site in FM_T
via restrictions at the same time the corresponding test tasks are associated with the
related components in CFM_T. For instance, since C90 supports the Multi-site call,
test engineers need to select the Multi-site feature in FM_T and then the component
Multi-site call will be selected automatically via restrictions defined in CFM_T.
Meanwhile, the test task “Multi-site call” will be chosen automatically from the repo-
sitory for testing the functionality Multi-site call.

 Automated Test Case S

5 Automation

In this section, we present t
implemented as Eclipse plu

In our methodology, a C
repository of test cases and
tomated or manually. In ou
updates very frequently (e.g
modified) thereby it is not p
CFM_T with a large numbe

Fig. 5. Tool su

To address such problem
matically builds a CFM_T
the repository. The input of
capability, average executio
cases. Such information can
tory in Cisco. The Test Sele
selection of features as disc
testing functionalities of te
max bandwidth” with test i
Multi-way call so that one
identify that the Multi-way
tion can be built to link the
the feature Multi-way in FM
tool can build all relevant re

6 Evaluation

In this section, we evaluate
to demonstrate the benefits
2) reporting results of a q
investigating the adoption o

6.1 Industrial Case Stu

Our case study is the Satur
consists of various hardwar

election Using Feature Model: An Industrial Case Study

the tool support for our proposed methodology. Our too
ugin in Java.
CFM_T is required to be built to maintain all the links to
d to a FM_T. The process of building a CFM_T can be
ur current industrial application (i.e., Cisco), the reposit
g., new test cases are developed and existing test cases
practical to build a CFM_T manually. Meanwhile, build
er of restrictions requires too much effort (Section 4.2).

upport architecture for the proposed methodology

m, the tool IPT is developed shown as Fig. 5, which au
to capture the structure of a large number of test case

f IPT is test case information such as test ID, fault detect
on time, execution frequency and tags associated with
n be automatically obtained as an xml file from the repo
ection Front-end interface allows a test engineer to perfo
cussed in Section 4.1. Notice that tags are used to iden
st cases. For instance, the test case “Multi-way call tes
id 1268 (Fig. 3) is developed for testing the bandwidth
tag named “Multi-way” is integrated into the test case
call is tested by such test case. Based on the tag, a rest

e part Multi-way call test—max bandwidth in CFM_T w
M_T. Using tags information associated with test cases,
estrictions from CFM_T to FM_T automatically.

 our methodology via: 1) reporting an industrial case stu
 of applying our methodology in an industrial setting;

questionnaire-based survey in Cisco with the objective
of FM_T and CFM_T.

udy

rn product line developed in Cisco [9]. The Saturn fam
re codecs ranging from C20 to C90. C20 is the lowest

245

ol is

 the
au-

tory
are

ding

uto-
s in
tion
test
osi-
orm

ntify
st—
h of
e to
tric-
with
our

udy
and
e of

mily
end

246 S. Wang et al.

product with minimum hardware and has lowest performance while C90 is the highest
end product with advanced hardware and highest performance.

Saturn family consists of 20 subsystems such as audio and video subsystems. Each
subsystem can run in parallel to the subsystem implementing the core functionality
that deals with establishing videoconferences. To test such product line family, a large
number of test cases (more than 2000) have been developed for various products.
Each test case can be scheduled and executed on different platforms. All these test
cases are stored in the Saturn repository for test cases. When a specific product comes
into play, it is required to choose a subset of relevant test cases from the repository
and put them into execution after scheduling.

Table 1. Summarized results of test case selection for various products

Table 1 summarizes the results of test case selection for various products in Saturn

using our proposed methodology. The Selected Features column indicates the number
of selected features in FM_T for each product. The Selected Test Cases column shows
the number of selected test cases by our proposed methodology. The Percentage of
Selected column describes the percentage of selected test cases for a product among
all the test cases in the repository. The Selection Time and Percentage of Reduced
Time columns show the required time for selection and the percentage of reduced time
by our proposed methodology as compared with the current manual process.

Abstraction and Automation. FM_T captures various testing functionalities within
the product line in a systematic way, whereas CFM_T provides an additional layer of
abstraction on top of the low level details of the test cases in the repository. This addi-
tional layer of abstraction hides implementation of test scripts, test settings for execu-
tion (test setting files), and test files capturing required software/hardware resources
from test engineers (test resource files). In the current practice, test engineers are re-
quired to go through all the test scripts, test setting files, and test resource files, to
select a set of relevant test cases for a product. Using our methodology, a test engineer
only selects a set of relevant features in FM_T for a product and corresponding test
cases will be obtained from the repository automatically, which greatly reduces the
complexity of the whole test case selection process in product lines. Notice CFM_T
with restrictions is hidden from test engineers and built automatically by the IPT tool.

Reduced Selection Effort and Test Coverage. Through discussions with test engi-
neers in Cisco, we have learnt that: 1) The current practice of manual test selection
takes at minimum of two days; 2) Typically, two test engineers are involved in test
selection; and 3) There is no systematic way to determine how many of testing func-
tionalities are covered by the selected test cases.

Product Selected
Features

Selected
Test Cases

Percentage
of Selected

Selection Time Percentage of
Reduced Time

C20 17 238 10.0 2.5 hours 92
C40 25 367 15.5 3 hours 91
C60 32 592 24.9 4.5 hours 86
C90 43 739 31.1 6 hours 81

 Automated Test Case Selection Using Feature Model: An Industrial Case Study 247

From the Percentage of Selected column in Table 1, we can see that the percentage
of relevant test cases for each product is low, e.g., 10% for C20. This means that sig-
nificant effort is reduced since test engineers do not need to go through 90% of the
test cases. Even for C90 that is the most advanced VCS in the Saturn, the percentage
of relevant test cases is around 31%. Meanwhile, from the Percentage of Reduced
Time column (the percentage of reduced time is calculated as: 1 100% where 2 working days * 2persons =

2 * 8 *2 = 32 hours (assuming minimum time required for test case selection using
the current practice), we can see that the time required for test case selection using our
methodology is reduced significantly, e.g., 92% time for selection is reduced for C20
((1- 2.5/32) * 100* = 92%). In total, 87.5% time for selection is reduced as compared
to the current manual process ((1 - 4 hours on average/32) * 100% =87.5%). Notice
that effort and time saved is at the expense of creating FM_T and CFM_T, but as we
discussed in Section 4.1, developing FM_T is one time effort and CFM_T is built
automatically in our context.

With our methodology, selecting a set of relevant features in FM_T for a product
ensures that all required testing functionalities are covered at least once with the se-
lected corresponding test cases. However, in the current practice, there isn’t any way
to ensure such coverage for testing functionalities.

Less Reliance on Domain Expertise. The current test select practice largely depends
on domain expertise of test engineers. This means that different groups of test engi-
neers may obtain different sets of test cases based on their understanding for the same
product. Moreover, most of test engineers in Cisco have been working for years in the
testing group and thus understanding of testing functionalities and test cases in the
repository is inside minds of several test engineers. Therefore, the current process
lacks a unified understanding of testing functionalities and test cases in the repository.
Because of this, when old test engineers leave, domain expertise of test selection is
lost and training new test engineers require significant amount of effort. In contrast,
using our methodology, FM_T captures all domain expertise for testing (testing func-
tionalities) in a systematic way since it is built together with all the test engineers.
Even training new test engineers is just limited to train them FM_T notations and the
test engineers do not need to understand CFM_T.

Reduced Maintenance Effort. In the current practice, there is no systematic way to
maintain the functionalities and test cases for the product line. Whenever a new func-
tionality is introduced to the product line, the corresponding test cases are developed
and added into the repository and when a testing functionality is removed, the corres-
ponding test cases are not deleted from the repository. When a functionality is mod-
ified, the affected test cases are not deleted rather new test cases in the repository are
added. Using FM_T and CFM_T, we provide a systematic way to maintain testing
functionalities and test cases and maintaining them is straight forward. For FM_T, a
new feature is added into the FM_T when a new functionality is introduced to the
product line, an old feature is removed from the FM_T when a testing functionality is

248 S. Wang et al.

removed and the related feature is refined in case the current functionality is mod-
ified. For CFM_T, in case of any addition, deletion, or modification of test cases, the
CFM_T can be rebuilt using IPT automatically. In summary, if existing products
evolve, only the affected parts in the FM_T need to be updated and CFM_T is up-
dated automatically with our IPT tool. Notice that the links from test cases to our
CFM_T is also automatically done by our IPT tool (Section 5).

Adaption in Other Contexts. To adapt our methodology in other contexts, FM_T
and CFM_T are required to be built. FM_T can be built based on the domain exper-
tise and system information for other product lines. Notice that building FM_T is one
time effort and once it is build, it doesn’t require significant changes once new fea-
tures are introduced in a product line. Similarly, CFM_T can be built manually or
automatically. For example, in our industrial application, the tool IPT is developed to
build CFM_T with restrictions automatically. In other contexts, it may not be feasible
to build CFM_T with restrictions automatically. Therefore, a CFM_T with restrictions
may have to be built manually, which is also one-time effort for a product line.

Limitations of the Methodology. Our methodology at its current stage has several
limitations. Some of these are: 1) the current FM_T may not be complete since more
detailed information for a product line is required to be added as features or cross-
constraints into FM_T. However, notice that FM_T is for a product line and it will
keep on evolving as more products are introduced into the product line; 2) in our cur-
rent case, the restrictions between FM_T and CFM_T are determined by the inte-
grated tags in the test cases. So the quality of test case selection largely depends on
how well test engineers add relevant tags into the corresponding test cases; and 3) our
methodology cannot deal with test case selection when test cases are bound to re-
quirements and/or components at early stage (e.g., design and development), which
requires further investigation for our proposed methodology.

6.2 Questionnaire-Based Study

We conducted a questionnaire-based study to solicit the views of the test engineers
who were directly involved in the development of FM_T and CFM_T based. The
questionnaire was conducted based on the reporting template defined by Wohlin [16].

Planning and Design. The FM_T and CFM_T have been designed together with the
test engineers, and CFM_T can be built automatically using the IPT tool (CFM_T
may be built manually in other contexts). So it is essential to solicit opinions from the
industrial people about their experience for the FM_T and CFM_T, which is the main
objective of this questionnaire. This questionnaire consists of two parts (i.e., FM_T
and CFM_T) and the questions here were either multiple choices or required res-
ponses on a five-point Likert Scale. Notice that all relevant four people from the cur-
rent testing team working with us have participated and filled out the questionnaire.
Among the four participants, two of them are test managers and the other two are test

 Automated Test Case Selection Using Feature Model: An Industrial Case Study 249

engineers. Moreover, three of them have been working on Saturn for more than 5
years (the other one has been working for 2 years) and all of them have been involved
into the discussion of our proposed methodology for at least five meetings.

Results and Analysis for FM_T. The objective of this section is to solicit the views
of the participants on FM_T based on questions QA1-QA5 (Table 2).

Table 2. Responses to the questions related with FM_T*

*QA1: It is easy to understand the notations of FM_T. QA2: FM_T is sufficient to represent all functionali-
ties of a VCS product line. QA3: It is easy to understand and use the provided tool for building FM_T.
QA4: It is easy to build and revise a FM_T for a VCS product line. QA5: The functionalities of a VCS
product line do not change significantly.

The objective of QA1 was to assess the difficulty of understanding the notations of
FM_T since industrial people are not usually familiar with modeling notations. For
QA1, all four participants agreed. QA2 was asked to determine the sufficiency of
FM_T notations for capturing the variabilities for Saturn. For QA2, 1 participant
strongly agreed and 3 participants agreed. QA3 and QA4 were designed to solicit the
opinions of participants in terms of required effort for building and maintaining the
FM_T using a provided commercial tool called Pure::Variants (P::V). For QA3 and
QA4, 2 participants strongly agreed and 2 participants agreed. The objective of QA5
was to confirm whether the frequency of changes in functionalities of the Saturn since
the FM_T is built manually and frequent and significant changes in functionalities do
not warrant the use of FM_T. For QA5, 2 participants strongly agreed, 1 participant
agreed and 1 participant had no opinion.

Based on the above results, we conclude that the test engineers have already good
understanding of FM_T notations and it is agreed the notations are sufficient to model
testing functionalities of Saturn. Moreover, the FM_T is easy to build and maintain.
Notice that a version of FM_T has already been used by the test engineers in Cisco.

Results and Analysis for CFM_T. This section consisted of four questions QB1-
QB4 (Table 3), which were designed to solicit the participants’ views about CFM_T.

QB1 and QB2 were asked to determine if notations of CFM_T is easy to under-
stand and if the notations are sufficient to represent test case structure of the reposito-
ry. For QB1 and QB2, 1 participant strongly agreed and 3 participants agreed. QB3
and QB4 were asked to assess the easiness of obtaining the input (Section 5) for the
IPT tool to build CFM_T with restrictions automatically. For QB3 and QB4, two
participants strongly agreed, 1 participant agreed and 1 participant had no opinion.

Question Strongly
agree

Agree No
opinion

Disagree Strongly
disagree

QA1 0 4 0 0 0
QA2 1 3 0 0 0
QA3 2 2 0 0 0
QA4 2 2 0 0 0
QA5 2 1 1 0 0

250 S. Wang et al.

Based on the above results, we can conclude that test engineers find the notations
of CFM_T sufficient to represent test case structure of the repository. Notice that in
our current context, it may not be important for test engineers to know the notations
of CFM_T since it is built automatically. However, in other contexts, a CFM_T may
not be built automatically and then it would be important to know the opinions of test
engineers about the notations of CFM_T. The results also show that the CFM_T can
be built easily using the tool IPT and the test engineers are positive about adopting
CFM_T in their current practice for test case selection.

Table 3. Responses to the questions related with CFM_T*

*QB1: It is easy to understand the notations of CFM_T for VCSs. QB2: A CFM_T is sufficient to represent
test case structure. QB3: It is easy to obtain the XML file from test database for representing the overall test
case structure. QB4: It is easy to obtain and add tags information into the XML file representing the overall
test case structure.

Threats to Validity. One of the main external threats to validity of our questionnaire-
based survey is that there were only four participants and thus the results cannot be
generalized. However, it is important to mention that the testing group we are work-
ing comprises of four people and all of them answered the questionnaire. Of course,
to generalize our results and methodology, we need to adopt our methodology to other
testing groups in Cisco. Notice that our FM_T and the tool IPT are already being used
by the current testing group working with us in Cisco.

7 Related Work

Software product line testing is a relatively new, but intense field of research since
product line engineering has shown significant benefits [5, 17-19]. McGregor [5]
presented a set of activities, which can be used to address testing individual assets and
testing artifacts. Muccini [17] proposed associating regression testing with product
line by comparing code execution with the architectural design. However, these works
only provide guidelines and suggestions and do not provide any systematic and auto-
mated test case selection process.

Comparing our work with regression testing, regression test selection aims at iden-
tifying a set of relevant test cases when changes are made to existing software [8].
Various types of such techniques are proposed in the literature, but mostly around the
following two aspects: selection based on code changes [20-22] and selection based
on specification changes [23, 24]. In addition, several thorough survey papers
have been published in the literature [7, 8]. Although techniques for regression test
selection have been evaluated in many previous works [25-27], there is no enough
evidence to prove that these techniques still work well if being adapted in the context

Question Strongly
agree Agree No

opinion Disagree Strongly
disagree

QB1 1 3 0 0 0
QB2 1 3 0 0 0
QB3 2 1 1 0 0
QB4 2 1 1 0 0

 Automated Test Case Selection Using Feature Model: An Industrial Case Study 251

of product line. In our process, effort is spent on building reasonable models for prod-
uct line and the structure of test cases, and making links between them. In contrast to
regression testing, where focus is on testing changed functionality of an existing soft-
ware system, our work is applicable when a new product is to be tested.

Our main objective is to perform test case selection automatically thereby reducing
the selecting effort using FM and CFM in the context of product line. To the best of
our knowledge, existing works have not covered such an objective: applying FM and
CFM in product line for supporting automated selection of test cases in practice.

8 Conclusion and Future Work

In this paper, we proposed a product line modeling methodology for automated test
case selection with the aims of reducing selection effort at the same time covering all
required test functionalities. The methodology consists of the following main parts: 1)
defining a Feature Model for Testing (FM_T) to model a product line for testing; 2)
defining a Component Family Model for Testing (CFM_T) to model the test structure
of test cases in the repository; and 3) linking CFM_T and FM_T via restrictions. With
our methodology, test engineers only need to perform selection of features in FM_T
and the related test cases can be chosen automatically from the repository.

We evaluated our methodology with two means. First, we applied our methodolo-
gy to the Saturn product line of Videoconferencing Systems developed by Cisco
Systems, Inc, Norway and performed test case selection for its four products. The
results showed that the effort such as selection time can be reduced significantly at the
same time all required testing functionalities can be covered for testing a product as
compared with the current manual process at Cisco. Second, we conducted a ques-
tionnaire-based study to solicit the views of our proposed methodology from test
engineers at Cisco. The results showed that the test engineers are very positive about
adapting our methodology in their current practice.

In the future, we plan to evaluate our methodology in other product lines. We also
want to conduct a thorough effectiveness analysis for test case selection between our
methodology and current manual process. Moreover, we plan to link FM_T with be-
havior models (e.g., UML state machines) to generate new test cases that have high
fault detection.

Acknowledgements. The work reported in this paper is funded by the Norwegian
Research Council under the research-based innovation scheme (SFI) in the Certus
Center hosted by Simula Research Laboratory. We would like to thank Marius Chris-
tian Liaaen and his group (Cisco Systems, Inc. Norway) for providing us the detailed
case study and thorough discussions.

252 S. Wang et al.

References

1. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years
later. A literature review. Information Systems (35), 615–636 (2010)

2. Czarnecki, K., Kim, C., Kalleberg, K.: Feature models are views on ontologies. In: Pro-
ceedings of the International Software Product Line Conference, pp. 41–51 (2006)

3. Ali, S., Yue, T., Briand, L.C., Walawege, S.: A product line modeling and configuration
methodology to support model-based testing: an industrial case study. In: Proceedings of
the ACM International Conference on Model Driven Engineering Languages and Systems
(MODELS), pp. 726–742 (2012)

4. Wang, S., Ali, S., Tao, Y.: Product Line Modeling and Configuration Methodology using
Feature Model for Supporting Model-Based Testing. Simula Research Laboratory. Tech-
nical Report 2012-24 (2013)

5. McGregor, J.: Testing a Software Product Line. Technical Report. CMU/SEI-2001-TR-
022. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
(2001)

6. Engström, E.: Regression Test Selection and Product Line System Testing. In: Proceedings
of Third International Conference on Software Testing, Verification and Validation
(ICST), pp. 512–515 (2010)

7. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test selection
techniques. Information and Software Technology (IST) 52(1), 14–30 (2010)

8. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a sur-
vey. Software: Testing, Verification and Reliability 22(2), 67–120 (2012)

9. http://www.cisco.com
10. Cisco Systems: Cisco telepresence codec c90, Data sheet (2010),

http://www.cisco.com
11. Wang, S., Gotlieb, A., Liaaen, M., Briand, L.C.: Automatic selection of test execution

plans from a Video Conference System Product Line. In: Proceedings of the ACM
MODELS Workshop VARiability for You (VARY 2012), pp. 32–37 (2012)

12. Beuche, D., Papajewski, H., Schröder-Preikschat, W.: Variability management with fea-
ture models. Science of Computer Programming 53(3), 333–352 (2004)

13. Pure systems GmbH: Variant management with pure:variants. Technical white paper
(2006), http://web.pure-systems.com

14. Pure systems GmbH: Pure:Variants User’s Guide (2011), http://web.pure-
systems.com

15. Wang, S., Ali, S., Gotlieb, A.: Minimizing Test Suites in Software Product Lines Using
Weighted-based Genetic Algorithms. Simula Research Laboratory. Technical Report
2012-25 (2013)

16. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering. Springer (2012)

17. Muccini, H., Van Der Hoek, A.: Towards Testing Product Line Architectures. Electronic
Notes in Theoretical Computer Science 82(6), 99–109 (2003)

18. Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: Testing software product lines using
incremental test generations. In: Proceedings of the IEEE International Symposium on
Software Reliability Engineering (ISSRE), pp. 249–258 (2008)

19. Nebut, C., Le Traon, Y., Jézéquel, J.M.: System Testing of Product Lines: From Require-
ments to Test Cases. Software Product Lines. In: Research Issues in Engineering and Man-
agement, pp. 447–477. Springer (2006)

 Automated Test Case Selection Using Feature Model: An Industrial Case Study 253

20. Chen, Y.F., Rosenblum, D.S., Vo, K.P.: Test tube: a system for selective regression test-
ing. In: Proceedings of IEEE International Conference on Software Engineering (ICSE),
Los Alamitos, CA, USA, pp. 211–220 (1994)

21. Hartmann, J., Robson, D.J.: Techniques for selective revalidation. IEEE Software 7(1),
31–36 (1990)

22. Harrold, M.J., Souffa, M.L.: An incremental approach to unit testing during maintenance.
In: Proceedings of IEEE International Conference on Software Maintenance (ICSM), pp.
362–367 (1988)

23. Orso, A., Harrold, M.J., Rosenblum, D., Rothermel, G., Soffa, M.L., Do, H.: Using com-
ponent metacontent to support the regression testing of component-based software. In:
Proceedings of IEEE International Conference on Software Maintenance (ICSM), pp. 716–
725 (2001)

24. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection with risk
analysis. In: Proceedings of Conference of the Centre for Advanced Studies on Collabora-
tive Research. IBM Press (2002)

25. Bible, J., Rothermel, G., Rosenblum, D.S.: A comparative study of coarse- and fine-
grained safe regression test-selection techniques. ACM Transactions on Software Engi-
neering and Methodology 10(2), 149–183 (2001)

26. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empirical study of
regression test selection techniques. ACM Transactions on Software Engineering and Me-
thodology 10(2), 184–208 (2001)

27. Mansour, N., Bahsoon, R., Baradhi, G.: Empirical comparison of regression test selection
algorithms. The Journal of Systems and Software 57(1), 79–90 (2001)

Customizable Model Migration Schemes

for Meta-model Evolutions
with Multiplicity Changes�

Gabriele Taentzer2,1, Florian Mantz1, Thorsten Arendt2, and Yngve Lamo1

1 Høgskolen i Bergen, Norway
{fma,yla}@hib.no

2 Philipps-Universität Marburg, Germany
{arendt,taentzer}@informatik.uni-marburg.de

Abstract. Modeling languages tailored to specific application domains
promise to increase the productivity and quality of model-driven soft-
ware development. Nevertheless due to, for example, evolving require-
ments, modeling languages, and their meta-models evolve which means
that existing models have to be migrated accordingly. In our approach,
such co-evolutions are specified as related graph transformations ensur-
ing well-typed model migration results. Model migrations are specified
by transformation rules that can be automatically deduced from given
meta-model evolution rules and further customized to special needs. Up
to now, meta-model constraints have not been taken into account. In
this paper, we extend our approach to handle multiplicity constraints
and illustrate this extension using several examples.

Keywords: meta-model evolution, model migration, graph transforma-
tion.

1 Introduction

Model-driven engineering [10] (MDE) is a software engineering discipline which
raises the level of abstraction by using models as primary artifacts. In particular,
domain-specific modeling languages (DSMLs) promise to increase productivity
and quality of software development. Developers can focus on their essential
tasks while repetitive and technology-dependent artifacts are automatically gen-
erated by transformations specified by experts in these areas. To keep this high
level of abstraction, modeling languages have to evolve together with the evolv-
ing practice and understanding of target domains. However, this often causes
problems since existing models and further language-dependent documents need
to co-evolve with their languages (see. Fig. 1).

This migration challenge has been studied in different approaches to (par-
tially) automate the tedious and error-prone process of model co-evolution, that

� This work was partially funded by NFR project 194521 (FORMGRID).

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 254–270, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Customizable Model Migration Schemes 255

�

�

�

�
Modeling Language

evolution �� �

�

�

�
Modeling Language′

�

�

�

	
Model

conforms to

��

migration �������������� ������������
�

�

�

	
Model′

conforms to

��

��

Fig. 1. Model co-evolution: Modeling language evolution and model migration

is, meta-model evolution together with the migration of all their instance mod-
els, see for example [7,12,22], and [26]. However, constraints have been mostly
neglected.

In this paper, we present an approach to model co-evolution that can deal
with multiplicity changes and with the insertion of obligatory classes and associ-
ations. We show how rule-based model migration specifications can be deduced
from meta-model evolutions such that multiplicity constraints are not violated.
While the deduction of rule-based migration specifications with respect to struc-
tural meta-model evolutions has been considered in our earlier works [26,19,18],
we focus on multiplicity changes here. However, a complete model migration
specification may cover structure and type migrations followed by specification
parts that solve multiplicity constraint violations. All specification parts are
rule-based: While structure and type migrations of models are performed first,
multiplicity constraint violations are solved thereafter step-by-step. Model mi-
grations with respect to multiplicity changes do not have to be developed manu-
ally in general, but can be generated. However, we will illustrate by an example
that generated migration rules are not always optimal and may be subject to
customization.

Allowing arbitrary multiplicity changes, it can happen that the multiplici-
ties of an evolved meta-model are not finitely satisfiable, i.e. that there is no
finite instance model satisfying all multiplicity constraints of its meta-model.
To check finite satisfiability of meta-models, we can automatically generate a
system of inequalities from all the given multiplicity constraints and can check if
it is solvable. Each inequality assertion formulates the possible range of objects
allowed in a given role. If an system of inequalities is not finitely satisfiable after
a meta-model evolution, a subsequent model migration does not make sense,
hence the developer should change corresponding meta-model evolution steps
such that finite satisfiability can be preserved. It has been shown in [25] that
each finite instance model of a given meta-model can be generated in finitely
many transformation steps if the meta-model is finitely satisfiable. We use this
fundamental result to argue that model migrations are also possible in finitely
many steps resulting in models without multiplicity violations. Furthermore, we
show how such consistency-preserving migration specifications can be automat-
ically deduced from meta-model evolutions.

Throughout a meta-model evolution, it can happen that associations are re-
fined by associations having subclasses as types of their ends. MOF [20] offers
the feature “subsets” for this purpose. Dealing mainly with multiplicity changes

256 G. Taentzer et al.

here, we have to clarify how multiplicity constraints at “super” associations may
be refined to constraints at “sub” associations. The deduction of model migration
specifications has to be adapted to handle such association inheritance since this
feature will require a new kind of multiplicity constraints. If association inheri-
tance is not expressible in a chosen meta-model approach such as EMOF (used
by the Eclipse Modeling Framework [8]), such constraints have to be specified
in a different way, e.g. by OCL [21].

The rest of this paper is structured as follows: The next section introduces a
small example evolution scenario based on activity models. Section 3 explains
our approach to co-evolution handling multiplicity changes. We conclude with a
consideration of related work and final remarks.

2 An Example Evolution Scenario

In the following, a concrete evolution scenario that focuses on multiplicity changes
is given: We start with a simple activity meta-model (see Figure 2) where the only
constraint is that each transition has one source and one target activity. Then we
refine this meta-model to produce a meta-model that ensures well-structured ac-
tivity models. However, models conforming to the resulting meta-model can still
be ill-structured with respect to additional constraints.

Fig. 2. A meta-model for simple activity models

In Figure 3, the following evolution steps have been performed: The enu-
meration AKind (activity kind) has been replaced by 5 subclasses of Activity.
Associations between Activity and Transition are refined for all introduced sub-
classes of activity using association inheritance (indicated by subsets of roles).
New associations start and end have been introduced to make Start and End
activities explicitly navigable from the ActivityModel.

Due to space limitations, we do not go into details with respect to these
evolution changes but refer to meta-model evolution rules and model migrations
changes presented in our earlier work [26,19,18]. Furthermore, the following mul-
tiplicity changes on associations have been performed:

1. The minimal ActivityModel consists of a Start and an End activity with a
Transition in between. Therefore the lower bound of the role has is changed
to 3 model elements.

Customizable Model Migration Schemes 257

Activity Transition

Action

Decision

Merge

out

0..*
in

0..*
src
1
trg
1

1 11 221srcA

trgA
srcD

trgD

srcM

trgM

0..1

0..1
0..1

0..1

0..1

0..1

outA inA outD inD outM inM
{subsets src}

{subsets src}

{subsets src}

{subsets trg}

{subsets trg}

{subsets trg}
{subsets out} {subsets

out}
{subsets

out}
{subsets

in}
{subsets

in}
{subsets

in}

Start

End

0

0..1

0

0..1

trgS

srcS

trgE

srcE

{subsets trg}

{subsets src}

{subsets trg}

{subsets src}

1
inE

{subsets
in}

0
inS

{subsets
in}

1
outS

{subsets
out}

0
outE

{subsets
out}

ActivityModel
has
3..*1

1 1

start
1

end
1..*

ModelElement
name : EString

Fig. 3. Evolved meta-model for activity models

2. Association end start gets multiplicity [1..1] so that each ActivityModel re-
quires exactly one Start activity. Association end end gets multiplicity [1..*]
so that each ActivityModel has at least one end activity.

3. Class Activity becomes abstract.
4. All multiplicities ending at Transition or a subclass of Activity are refined.

Due to multiplicity changes, Start activities are not allowed to have incoming
transitions, and respectively, End activities are not allowed to have outgoing
transitions anymore. Incoming and outgoing transitions of Action, Decision,
and Merge activities are required to be exactly one or two. Multiplicities of
refined src and trg roles are generalized to [0..1] to allow transitions to still
be binary.

Fig. 4. An example activity model before (left), model after the first (center), and after
the second migration (right)

Model migration is performed by the stepwise application of migration rules.
Figure 4 shows two migration steps of a simple example activity model. The left

258 G. Taentzer et al.

model conforms to the meta-model in Figure 2. This model describes how orders
are placed in a restaurant. A waiter typically asks waiting customers what they
like to drink. After he has served the drinks, customers typically order food.
However, sometimes the waiter arrives at a table and the customers have not
decided or do not want to order anything more. After the meta-model evolution,
activity models need to have a Start activity since a new association with role
“start” has been introduced with multiplicity [1..1]. For this reason, the missing
Start activity is added to the restaurant activity model in the middle of Figure 4.
Furthermore, associations between Activity and Transition are refined and the
multiplicity of outS’ is set to [1..1]. Hence, the newly introduced Start activity
needs to have an outgoing transition. We choose “Order” to be the target of
this new transition since it is the only activity that does not have any incoming
transition yet.

Fig. 5. An example activity model after the fourth migration (two snapshots)

Furthermore, all activity kinds are replaced by subclasses and models are re-
typed accordingly. (Since all migrations are shown at the concrete syntax only,
these changes relating the abstract syntax only, are not shown.) Finally, all asso-
ciations running between these new subclasses and class Transition are refined. In
particular, Decision activities are allowed to have two outgoing transitions only.
If a new Decision node is introduced, several transitions can be redirected (see
Figure 5). Since outgoing transitions become obligatory for Action activities in
addition, it is required that actions “Serve Drinks” and “Serve Food” need to be
extended by outgoing transitions. As targets for these transitions, we introduce
new End activities since they suit best.

In the following, we present a selection of migration rules needed to perform
the example migrations just discussed. Most of them can be automatically gen-
erated from the meta-model (see Figure 6). They may be customized to special
needs. Migration rules may be equipped with priorities to perform a simple con-
trol flow on rule applications. Usually, customized rules get a higher priority
than directly deduced ones. Note that all these migration rules are denoted in
concrete syntax where bold parts indicate newly created elements. Two kinds
of application conditions are used: The non-existence of patterns is denoted by

Customizable Model Migration Schemes 259

the pattern preceded by ”NOT” while all-quantified formulas are introduced by
”FORALL”. Each all-quantified formula has a premise and a conclusion intro-
duced by ”EXISTS”.

Rule “Increase lower bound has” is a deduced migration rule to handle a lower
bound violation. Throughout the evolution, the lower bound of association end
has has been increased to 3. The rule creates a new Start activity if there are not
already three model elements in the model. Similar rules are needed to create
other kinds of activities. On the right of Figure 6, rule “Increase lower bound
outD” adds one outgoing transition (without activity) if its Decision node does
not have two outgoing transitions already. Rule “Decrease upper bound outD”
handles the upper bound violation. Decision nodes are restricted to exactly two
outgoing transitions. If a Decision node has three outgoing transitions, one is
detached. On the left of Figure 6, the rule “Decrease upper bound outD 2”
is shown being customized and added by the migration designer. It specifies a
Decision node being added so that an equivalent structure of Decision nodes is
produced. Therefore, two transitions are moved to a newly connected Decision
node. Such migration rules that introduce equivalent structures, cannot be de-
duced automatically but have to be added manually to the derived rule set.
Manually added rules are assigned a higher priority since they should be pre-
ferred over automatically deduced ones. In the bottom of Figure 6, two further
migration rules that ensure lower bounds are shown. The left one adds an out-
going transition to each Action activity not having one. The right rule adds an
End activity such that a transition gets a target. Their application conditions
check that new elements are added only if there are no other “free” transitions
or End activities available.

Increase lower bound outD (deduced)

D D

Decrease upper bound outD (deduced)

Activity

AND FORALL

D D

D

Decrease upper bound outD 2 (customized)

EXISTS

NOT D

D D

AND FORALL EXISTS

Increase lower bound trgE (deduced)

NOTActivity

AND FORALL

Increase lower bound outA (deduced)

NOT

Increase lower bound has (deduced)

NOT Model-
Element

EXISTS

Activity

Model-
Element

Model-
Element

Fig. 6. Example migration rules

260 G. Taentzer et al.

3 Co-evolutions with Multiplicity Changes

In the following, we present an approach to meta-model evolution that can
deal with type structure evolutions as well as with multiplicity-related changes.
We consider multiplicity-related meta-model evolutions, their deduced migra-
tion specifications as well as potential customizations in detail. If the evolved
meta-model is finitely satisfiable, the deduced model migration specifications
can migrate models in finitely many steps resulting in correctly typed models
satisfying all multiplicity constraints.

3.1 Finitely Satisfiable Meta-model with Multiplicities

Allowing meta-models with arbitrary multiplicities, it may happen that mul-
tiplicities are chosen such that no finite model can fulfill them. In the litera-
ture [6,4], it is shown that this kind of finite satisfiability of meta-models can
be checked by solving a system of in-equalities. After a meta-model evolution
that may include multiplicity changes, we first have to check that the resulting
meta-model is still finitely satisfiable. For the resulting meta-model, we deduce
corresponding model migration schemes. To check if a meta-model has finite
models, we use a reasoning technique for UML class diagrams [6,4]. This tech-
nique deduces a linear system of inequalities from all multiplicities. (We restrict
attention to binary associations here.) A meta-model MM with multiplicities is
called finitely satisfiable if the following condition is satisfied:

Given a meta-model MM , an system of inequalities is built over C, A, and R
being variable sets for all classes, associations, and roles in MM correspondingly
named. For all association variables a in A with role variables r1, r2 ∈ R, function
rtype : R → C yields the class variable of each role variable and mult : R →
(N×N∪{∗} is defined by mult(r1) = [k, l], and mult(r2) = [m,n] with k,m ∈ N,
l, n ∈ N ∪ {∗}, k < l, and m < n according to MM . Then, we get the following
equations in I

i× rtype(r) ≤ assoc

assoc ≤ j × rtype(r) if j
= ∗

∀(i, j, r, assoc) ∈ {(k, l, r1, a), (m,n, r2, a), (k, l, r1,
∑

as∈As
), (m,n, r2,

∑
as∈As

)}
with AS being the variable set of association a and all associations subsetting
it. I has to be solvable such that all variables in C ∪ A are positive.

Example 1. We now show the system of inequalities for the final meta-model in
our evolution scenario given in Figure 3. Since associations are not named explic-
itly, their names are assembled by concatenating explicitly given role names. For
example, the multiplicities of has require that an activity model must have at
least 3 model elements. It is translated to inequality assertion has ≥ 3ActModel.
Note that the last two equations below are included due to association inheri-
tance.

Customizable Model Migration Schemes 261

ModelElem = has ≥ 3ActModel
Start = start = ActModel
End = end
Start = srcSoutS ≤ Transition
End = trgEinE ≤ Transition

Action = srcAoutA ≤ Transition
Action = trgAinA ≤ Transition
2Decision = srcDoutD ≤ Transition
Decision = trgDinD ≤ Transition
Merge = srcMoutM ≤ Transition
2Merge = trgMinM ≤ Transition

T ransition = srcout+ srcSoutS + srcAoutA + srcDoutD + srcMoutM
Transition = trgin+ trgEinE + trgAinA+ trgDinD + trgMinM

The complexity to solve such a system of inequalities is EXPTIME-complete
in general. However, the exponentiality depends on the maximum number of
classes involved in the same generalization hierarchy which is typically not very
large (see also [6]).

3.2 Model Migration Process

Our approach comprises the deduction of rule-based model migration specifi-
cations from meta-model evolution rules applied to given meta-models. Meta-
model evolution rules may contain changes of the type structure as well as mul-
tiplicity changes. Correspondingly, a model migration specification may cover
type adaptations followed by specification parts that solve multiplicity constraint
violations. In [27,18] a variety of evolution rules are presented being concerned
with type adaptations e.g. inserting new classes, moving properties, and merging
of classes. First, such type adaptations are performed in parallel on all occur-
rences in a given model yielding a model that conforms to the new meta-model
(wrt. typing and structure). Thereafter, all multiplicity constraints of the evolved
meta-model are checked and violations are solved by applying model transfor-
mations step-by-step. (See Figure 7 for an overview.)

Fig. 7. Three phase approach to model migration

Model migration respecting multiplicity changes can be performed by the
following process:

1. Type and structure migrations are performed without considering multiplic-
ity constraints. In [26,18], we formalize meta-model and model co-evolutions

262 G. Taentzer et al.

by co-transformations based on algebraic graph transformation [9] and show
that migrated models are always well-typed over the evolved meta-model
(not taking any multiplicity constraint into account).

2. Model migration with respect to multiplicity changes are performed. In the
following, we will show for each migration rule that resulting models fulfill
upper bounds but not necessarily lower bounds. If custom migration rules are
added, they have to satisfy well-formed properties to ensure that the whole
rule system terminates and leads to models fulfilling upper bounds. These
well-formedness properties comprise the following: Given a custom rule, its
right-hand side fulfills all upper bounds and does not introduce a new match
of a migration rule applied in this phase. Custom rules are prioritized with
respect to deduced migration rules. It can be shown that the application of
the whole rule set terminates and solves all upper bound violations.

3. Post-processing with respect to all lower bounds of the given meta-model
shall yield migrated models that fulfill all bounds. Given a model that fulfills
all upper bounds, post-processing rules are applied as long as possible. We
will argue that post-processing terminates and resulting models satisfy all
lower bounds. In [25], an instance-generation algorithm is presented that
takes a meta-model with arbitrary multiplicities (but without association
inheritance) and generates instance models that conform to this meta-model.
The generation process is performed by three layers: (1) creation of objects,
(2) creation of links such that lower bounds are fulfilled, and (3) generation of
further links such that upper bounds are still fulfilled. In this post-processing
phase, we apply the rules of layer (2) as long as possible to produce models
fulfilling all lower bounds. To argue that resulting models fulfill all lower
bounds we first have to show that models before post-processing can be
created by rules of layers (1) and (2). In layer (1), all objects of such a
model are created. Since all upper bounds are satisfied in models before
post-processing, rules of layer (2) are enough to create the necessary links.
If rules of layer (2) are still applicable, not all lower bounds are fulfilled.
In Theorem 1 in [25], it is shown that after having finished layer (2), all
multiplicity constraints are fulfilled.

3.3 Increase Lower Bound of Multiplicity

Having decided to increase the lower bound of a multiplicity, dependent models
have to be checked again and potentially extended. In Figure 8, a corresponding
meta-model evolution rule is depicted in concrete syntax. All characters can be
considered as parameters to be instantiated by concrete names and values. The
meta-model evolution rule increases lower bound k to k + x.

Default model migration rules are shown in Figure 9. They are presented at
the abstract syntax level where again all characters have to be considered as
parameters to be set. Migrations can go in different directions: The conservative
solution looks for a B-object that does not yet have more than n links going to
A-objects. In that case, this object can be used as a target for a missing link. The
corresponding migration rule can be found on the left of Figure 9. Alternatively,

Customizable Model Migration Schemes 263

a new B-object is created and linked, as shown on the right of Figure 9. Both
rules (and further ones later on) are presented in a visual syntax being similar
to the visual syntax of Henshin [3], a model transformation language for EMF
models. The left and right-hand sides of a rule are integrated in one graph
where the left-hand side consists of all preserved and deleted objects and links
while the right-hand side contains all preserved and newly created items. Two
kinds of application conditions are shown: In the left rule, it is forbidden that
n A-objects are already linked to a considered B-object. In the right rule, we
check if all B-objects are already linked to n A-objects. (Note that containment
links are not created for new objects, since they do not directly belong to the
migration. Instead, they are created by post-processing rules that take care of
lower bounds.)

These migration rules are designed such that upper bounds are not violated.
Moreover, the application of these rules terminates when enough new links from
A-objects to new or existing B-objects have been created, i.e. all A-objects are
connected to at least k + x B-objects. Since one more of such links is available
after each rule application and since the number of A-objects in a given model is
finite and not increased by these rules, the rule application terminates. (However,
the lower bounds with respect to B-objects might not be always fulfilled. Such
violations are solved in the post-processing phase.) If custom migration rules
shall be used, well-formedness properties have to be shown also for them (see
above).

Fig. 8. Meta-model evolution rule “Increase lower bound”

Fig. 9. Default model migration rules “Increase lower bound”

After having applied all migration rules as long as possible, lower bounds of
further links may be violated. Hence, similar rules have to be applied to cover
also those cases. The only difference is that lower bounds of other roles have
not changed, hence we have x = 0 in those cases. These rules are called post-
processing rules, since they do not perform the proper migration but complete
it such that all multiplicity constraints are fulfilled after migration. (For further
information on post-processing rules see Section 3.7.)

264 G. Taentzer et al.

Example 2. In our example scenario (see Section 2), the lower bound of the
multiplicity of role has is increased to 3 meaning that an activity model has to
have at least three model elements, namely a Start and an End activity as well as
a Transition in between. Generated migration rules create new model elements
and add them to a given activity model if it has less than 3 elements. The rule
selection is non-deterministic in general meaning that model elements of any
kinds may be created. See e.g. the migration rule in Figure 10 where a new Start
activity is added to an activity model if it does not already have three activities.
Note that this migration rule is an instantiation of the right rule in Figure 9
where “A” corresponds to ActivityModel, “B” corresponds to ModelElement, “B’
” corresponds to Start, k = 0, and k + x = 3. (It is not exactly the abstract
syntax rule of the one in the upper left corner of Figure 6 since the second
pre-condition shown in Fig. 10 is missing there. However, since Start activities
without container are not allowed from the very beginning, the second condition
is not important and is left out in the concrete version). Two similar rules are
deduced for “B’ ” equal to Transition and End. We may want to define priorities
for rule applications: E.g. a Start activity shall be created and added if the
activity model does not already have one. Moreover, lower bound constraints
for outgoing transitions may be preferably solved by End activities since no new
constraint violations are inserted. Since any sequence of rule applications does
terminate and fulfill upper bounds, as argued above, such a priority does not
change this result.

«forbid»«forbid 3» «create»«create»«preserve»
:ActivityModel

Rule Increase lower bound has (deduced)

:ActivityModel
«exists»

:ModelElement :Start
hashas

has
«forall»

:ModelElement

Fig. 10. Rule “Increase lower bound has” in abstract syntax (corresponding rule in
concrete syntax in Figure 6)

Another example migration rule increasing a lower bound is shown in upper
right corner of Figure 6, called “Increase lower bound outD”. It is also an in-
stantiation of the right-hand side rule in Figure 9 for k = 0 and k + x = 2.
Two further examples for migration rules that increase lower bounds, are the
two deduced migration rules in the bottom of Figure 6. In the left rule, Actions
without outgoing transition are completed by a transition and in the right rule,
a Transition without target is completed by an End activity. These two deduced
migration rules increase the lower bounds of outA and of trgE.

3.4 Decrease upper Bound of Multiplicity

“Decrease upper bound” is another meta-model evolution that changes multi-
plicities and requires model migration. Figure 11 shows the corresponding meta-
model evolution rule in concrete syntax. Again, characters have to be considered

Customizable Model Migration Schemes 265

as parameters to be set. A special case is when the original multiplicity is [i..∗],
i.e. does not specify an upper bound. Then, the evolution rule introduces a new
upper bound constraint.

The default model migration is specified by the model migration rule in Fig-
ure 12. This rule is presented in abstract syntax where again all characters are
meant to be parameters. This migration rule preserves l links and just deletes a
link if there are more than l links. If the deduced rule does not suit well, there is
the opportunity to specify custom migration rules with higher priority. All these
migration rules are supposed to be applied as long as possible to finally fulfill the
upper bound constraint. The application of the deducedmigration rule terminates
since it deletes links fromA-objects as long as there are too many and does not cre-
ate new ones to existingA-objects. Hence, the newupper bound of l is reached after
finitely many steps. A custom rule fulfills the well-formedness properties, if it con-
tains an upper bound violation on the left-hand side being solved on the right-hand
side. As with deduced rules, we have to check that custom rules do not introduce
new matches of themselves and of deduced migration rules. Then, the customized
migration process would also terminate and would solve the corresponding upper
bound violations. Thereafter, post-processing rules may be applied as long as pos-
sible to fulfill all lower bounds.

Fig. 11. Meta-model evolution rule “Decrease upper bound”

�

��������	�
�������	�����

�� ���
���	
	��	� ���	
	��	��

���	
	��	� �
��

���	
	��	�
��	�	�	��

Fig. 12. Default model migration rule “Decrease upper bound”

Example 3. Figure 13 shows an instantiation of the deduced migration rule “De-
crease upper bound” applied to role outD (that can be found in the meta-model
shown in Figure 3). In this case, class “A” is bound to Decision, class “B” is bound
toTransition, “b” is bound to outD, and l = 2.However, this solution is not optimal
for our example meta-model since information would be lost. Automatically de-
ducedmigration rulesmay not show the desired result since the generator considers
meta-model changes only. Therefore, a custom migration rule is needed here. The
optimal one is shown in Figure 14. It divides a decision with three outgoing tran-
sitions into a cascade of two binary decisions. This rule fulfills the well-formedness
properties since it showsan upper bound violation on the left and a solved situation
on the right. Moreover, new matches of this rule and the deduced ones are not in-
troduced. Similar rules can be deduced and customized for upper bound violations
with respect to inD, outM, inM, outA, and inA.

266 G. Taentzer et al.

Rule Decrease upper bound outD (deduced)

«preserve»
:Decision

«preserve»
:Transition

«preserve»
:Transition

«preserve»
:Transition

«preserve»

«preserve» «delete»

outD

srcD

outD

srcD

outD

srcD

Fig. 13. Generated migration rule for decreasing the upper bound of outD (correspond-
ing rule in concrete syntax in Figure 6)

«preserve»
:Decision

«preserve»
:Transition

«preserve»
:Transition

«preserve»
:Transition

«create»
:Decision

«create»
:Transition

srcD

«create»

srcD

srcD
srcD

«delete»

outD

outD

«preserve»

«create»

outDsrcD

srcD

trgD outD

«delete»srcD

outD srcD«create»

«create»

outD

inD

Rule Decrease upper bound outD (customized)

Fig. 14. Custom migration rule for decreasing the upper bound of outD (corresponding
rule in concrete syntax in Figure 6)

3.5 Add Obligatory Association

Figure 15 shows a meta-model evolution rule that adds a new association between
two existing classes. If its multiplicities have lower bounds larger than 0, this
meta-model change causes model migrations. The deduced migration rule in
Figure 16 creates a new link between an A-object and an object of type B if the
A-object is not already linked to k B-objects and if the B-object is not already
linked to n A-objects in corresponding roles. A second migration rule is needed
which is analogous, replacing k by l and n by m (not shown). Moreover, it can
happen that no more B-objects are allowed to be linked to an existing A-object,
and vice versa. In these cases, two more migration rules are needed where one
looks very similar to the right one in Figure 9 replacing k + x by k.

Fig. 15. Meta-model evolution rule “Add obligatory association”

Customizable Model Migration Schemes 267

�������� ���������	�
��
� ��
�
��
�

���������������	�
���������	���

��
�
��
�
�� �� ��

����������
��

���������� �
� � �� �

��������� �

Fig. 16. Migration rule “Add obligatory association”

The other one handles the analogous case that no more A-objects may be
linked to an existing B-object (not shown). These four rules are applied as long
as possible. Since each of them creates a link, the number of links between A and
B-objects increases until all A- and B-objects have enough links. Hence, there is
only a finite number of applications possible. It has been shown in [25] that lower
bounds can always be reached if the meta-model is finitely satisfiable. (Note that
new A- and B-objects created during this migration phase might not have enough
links to other objects. They have to be created in the post-processing phase.)

Example 4. In Figure 17, the migration rule in Fig. 16 is instantiated to activity
models by setting “A” equal to ActivityModel, “B” to Start, “b” equal to start,
and k = n = 1. Setting l = m = 1 would lead to the same instantiation.

������������
�����

����� �����

��	�
�� ��	�
�� ��	�
�� ��	�
��
����������	���

���������������� ���������
����������	���

���������������	�
���������	�����	�
	����������

�����
��	�
��

Fig. 17. Rule “Add obligatory association start” in abstract syntax

3.6 Further Multiplicity-Related Meta-model Evolutions

If lower and upper bounds of multiplicities are weakened, models are still well-
formed and do not have to be migrated. This applies to the operations “Decrease
lower bound” and “Increase upper bound”. Furthermore, the operation “Add
obligatory class” introduces a new multiplicity constraint, this operation is very
similar to the operation “Add obligatory association”. We do not go into details
of these kinds of multiplicity-related co-evolutions. Furthermore, multiplicity
changes at association loops are not considered explicitly in this paper.

3.7 Post-processing

After handling all upper bound violations, post-processing rules are applied to
solve all remaining lower bound violations. Post-processing rules are very similar
to the migration rules for “Add obligatory association”’, i.e. four post-processing
rules are deduced for each bound that differs from 0 and *. Since post-processing
rules do not introduce any new upper bound conflict and the meta-model is

268 G. Taentzer et al.

finitely satisfiable, the post-processing phase always terminates and all lower
bounds are fulfilled. If a super-association has more restricting multiplicity con-
straints than its sub-associations, additional pre-conditions have to be added to
the post-processing rules. For example, a rule that creates a new trg-link be-
tween an existing Transition and an existing Action activity needs a negative
application condition that forbids a trg-link from this transition to any activity,
due to the [1..1]-multiplicity of role trg.

4 Related Work

The problem of co-evolving models and meta-models has been studied by several
authors [24,12,7,22,26,19,16], surprisingly none of these works considers multi-
plicity constraints, except as pre-conditions that are checked before applying
model transformation rules [17,12]. In [16], König et.al. use multiplicity con-
straints to decide which model elements shall be merged during model migra-
tion. In Flock [22], upper bound violations may be automatically handled by
forgetting such links. Lower bound violations must be handled manually. In
COPE [12], multiplicity constraints are used to e.g. check if an attribute can be
moved along a reference. There is no further special support for model migrations
in the context of multiplicity constraints.

Some work has been done on model transformations that respect constraints
[23,17,5]. However, none of these approaches considers how to co-evolve models
and meta-models.

Instance generation for meta-models has been considered using a variety of ap-
proaches, namely different kinds of grammars [1,13,14,25] or SAT/SMT solvers
e.g., [11,15,2]. However, they have not been applied to model and meta-model
co-evolution meaning that instance models are not deduced from scratch but
have to be adapted to changed constraints. To migrate instances of the evolved
meta-model we adapt the algorithm for instance-generating graph grammars
that respects multiplicity constraints given in [25]. By our knowledge, this is the
first work that deduces migration specifications for multiplicity changes, argues
for their correctness in the sense of well-formed migration results, and allows
customizations that preserves the validity of models.

5 Conclusion and Further Work

In this paper, we present a rule-based approach to model and meta-model
co-evolution that respects multiplicity constraints. Several multiplicity-related
meta-model changes with corresponding model migrations are considered. We
show how migration rules can be automatically deduced from meta-model evo-
lution rules such that they do not create new upper bound violations. Moreover,
we argue that applying migration rules as long as possible leads to models satis-
fying all upper bounds. In a post-processing phase, further rules are applied to
obtain models that also satisfy all lower bounds. An important assumption for
this approach is the finite satisfiability of meta-models that ensures the existence

Customizable Model Migration Schemes 269

of well-formed instance models. To allow flexible customizations without loosing
the assurance that models are migrated to well-formed ones, we propose well-
formedness properties for the customizing migration rules. The customization
of migration rules is easier if they are presented on the abstract level. Since all
migration rules are deduced along a fixed strategy, however, we assume that our
approach can directly scale to larger models (which has to be evaluated in future
work).

Model migration is specified by transformation rules, the given rules can be
specified in the model transformation language Henshin [3]. In the future, a
generator for rule-based migration specifications shall be developed to conduct
larger case studies. Moreover, systematic case studies should be performed to
get a clearer understanding of the potentials and limitations of this approach.

References

1. Alanen, M., Porres, I.: A relation between context-free grammars and meta object
facility metamodels. Tech. Rep. 606, TUCS Turku Center for Computer Science
(March 2003)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: Uml2alloy: A challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Hen-
shin: Advanced Concepts and Tools for In-Place EMF Model Transfor-
mation. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS
2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010),
http://www.eclipse.org/modeling/emft/henshin

4. Berardi, D., Cali, A., Calvanese, D., Giacomo, G.D.: Reasoning on UML Class
Diagrams. Artifical Intelligence 168, 70–118 (2005)

5. Büttner, F., Bauerdick, H., Gogolla, M.: Towards Transformation of Integrity Con-
straints and Database States. In: DEXA 2005, pp. 823–828. IEEE (August 2005)

6. Cadoli, M., Calvanese, D., Mancini, T.: Finite satisfiability of UML class diagrams
by Constraint Programming. In: Proc. of the 2004 International Workshop on
Description Logics (DL 2004), vol. 104. CEUR-WS.org (2004)

7. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating Co-evolution
in Model-Driven Engineering. In: EDOC 2008, pp. 222–231. IEEE (2008)

8. Eclipse Modeling Framework: Project Web Site, http://www.eclipse.org/emf/
9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. Springer (2006)
10. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
11. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE

by Automatic Snapshot Generation. Software and Systems Modeling 4(4), 386–398
(2005)

12. Herrmannsdoerfer, M., Vermolen, S., Wachsmuth, G.: An Extensive Catalog of
Operators for the Coupled Evolution of Metamodels and Models. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182.
Springer, Heidelberg (2011)

13. Hoffmann, B., Minas, M.: Defining models - meta models versus graph grammars.
ECEASST 29 (2010)

http://www.eclipse.org/modeling/emft/henshin
http://www.eclipse.org/emf/

270 G. Taentzer et al.

14. Hoffmann, B., Minas, M.: Generating instance graphs from class diagrams with
adaptive star grammars. ECEASST 39 (2011)

15. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

16. König, H., Löwe, M., Schulz, C.: Model Transformation and Induced Instance Mi-
gration: A Universal Framework. In: Simao, A., Morgan, C. (eds.) SBMF 2011.
LNCS, vol. 7021, pp. 1–15. Springer, Heidelberg (2011)

17. Lengyel, L., Levendovszky, T., Charaf, H.: Constraint Validation Support in Visual
Model Transformation Systems. Acta Cybernetica 17(2), 339–357 (2005)

18. Mantz, F., Taentzer, G., Lamo, Y.: Well-formed Model Co-evolution with Cus-
tomizable Model Migration (to appear in ECEASST)

19. Mantz, F., Taentzer, G., Lamo, Y.: Co-Transformation of Type and Instance
Graphs Supporting Merging of Types with Retyping. In: GCM 2012, pp. 47–58
(September 2012), gcm2012.imag.fr/proceedingsGCM2012.pdf

20. Object Management Group: Meta-Object Facility Specification (January 2006),
http://www.omg.org/spec/MOF/2.0/

21. Object Management Group: Object Constraint Language Specification (May 2006),
http://www.omg.org/spec/OCL/2.0/

22. Rose, L., Kolovos, D., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon
Flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198.
Springer, Heidelberg (2010)

23. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification
and transformation of constraints in MDE. JLAP 81(4), 422–457 (2012)

24. Sprinkle, J., Karsai, G.: A Domain-Specific Visual Language for Domain Model
Evolution. Journal of Visual Languages and Computing 15(3-4), 291–307 (2004)

25. Taentzer, G.: Instance generation from type graphs with arbitrary multiplicities.
ECEASST 47 (2012)

26. Taentzer, G., Mantz, F., Lamo, Y.: Co-Transformation of Graphs and Type Graphs
With Application to Model Co-Evolution. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 326–340. Springer,
Heidelberg (2012)

27. Taentzer, G., Mantz, F., Lamo, Y.: Co-Transformation of Graphs and Type
Graphs with Application to Model Co-Evolution: Long Version. Tech. rep., Dep.
of Mathematics and Computer Science, University of Marburg, Germany (2012),
www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk

gcm2012.imag.fr/proceedingsGCM2012.pdf
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/OCL/2.0/
www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk

Fine-Grained Software Evolution
Using UML Activity and Class Models

Walter Cazzola1, Nicole Alicia Rossini1,
Mohammed Al-Refai2, and Robert B. France2

1 Computer Science Department, Università degli Studi di Milano, Italy
2 Computer Science Department, Colorado State University, USA

Abstract. Modern software systems that play critical roles in society’s
infrastructures are often required to change at runtime so that they can
continuously provide essential services in the dynamic environments they
operate in. Updating open, distributed software systems at runtime is
very challenging. Using runtime models as an interface for updating soft-
ware at runtime can help developers manage the complexity of updating
software while it is executing. In this work we describe an approach to
updating Java software at runtime through the use of runtime models
consisting of UML class and activity diagrams. Changes to models are
turned into changes on Java source code, which is then propagated to the
runtime system using the JavAdaptor technology. In particular, the pre-
sented approach permits in-the-small software changes, i.e., changes at
the code statement level, as opposed to in-the-large changes, i.e., changes
at the component level. We present a case study that demonstrates the
major aspects of the approach and its use.

1 Motivation

The ability to perform updates on running systems is becoming a requirement for
many software systems that play critical roles in society. Emerging cyberphysical
systems such as smart grids, next-generation air-traffic control systems, and
intelligent transportation systems must evolve after they are deployed if they
are to continue to perform effectively in dynamically changing environments.
Shutting down these systems to make a change is often not an option because loss
or interruption of provided services could have a detrimental effect on the parts
of society that rely on the services. Updating software at runtime is challenging
and models that provide effective abstractions of runtime phenomenon can be
used to manage the complexity [2].

Research on Models@RunTime (M@RT) is concerned with how abstractions
of software implementations can be used at runtime to manage the complexity of
making changes to software at runtime [2]. Current M@RT work tends to focus on
how models can be used to support runtime adaptation in autonomous systems
(i.e., in self-* systems) [19,12]. While M@RT research is dominated by work in
the self-adaptation area, runtime models can be used to support other forms of
runtime system evolution. In particular, runtime models can be interfaces for

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 271–286, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

272 W. Cazzola et al.

effecting changes on a software system while it is executing [8]. For example, a
developer can modify a runtime model consisting of a class diagram to make
changes in object attributes and references.

Runtime models can potentially be used to present the aspects of a run-
ning system that can be changed using abstractions that are understandable
by a developer or that are more easily processed by a software change mecha-
nism [8]. In many model-based self-adaptation approaches (e.g., see [1,6,9]) the
models present the running system as a configuration of runtime components,
and adaptation is often restricted to changes that can be effected by recon-
figuring the component structure. We consider these approaches to be course-
grained because changes are restricted to adding and removing components and
links between components. More fine-grained adaptation of a running system is
limited by a lack of support in mainstream program development technologies
(e.g., C/C++, C#, Java technologies) for dynamic update actions that involve
dynamic object schema changes and substitution of an object of a class by a
corresponding object of the modified class during execution (such substitution
is typically treated as type mismatch and thus is not allowed in mainstream
technologies).

In this contribution we describe a M@RT approach that supports runtime
updates of Java programs by developers. In the approach, runtime models con-
sisting of class and activity diagrams describe the aspects of the runtime struc-
ture and behavior that can be modified by a developer at runtime. Changes
in the runtime models are formally related to changes in the running system,
and thus changes to the models can be propagated to changes in the running
system. This use of runtime models requires more fine-grained descriptions of
changes than those typically used to support self-reconfiguration of running sys-
tems. In the proposed approach, JavAdaptor [18], a tool that provides support
for performing dynamic update of Java programs at runtime, and that over-
comes the limitations of the Java platform in this respect, provides the required
fine-grained code changing facilities. Changes to the models are transformed to
changes in the Java source code which are then effected on the running system
using JavAdaptor.

In Sect. 2 we give an overview of how runtime updates are performed using
the approach. A more detailed account of the model change operators and their
mappings to code level change operators is given in Sect. 3 and 4 respectively.
A demonstration case study is provided in Sect. 5, and results from an initial
evaluation of the approach are described in Section 6. Related work is presented
in Section 7, and we conclude with a discussion on further work in Section 8.

2 Architecture and Overview

Imagine we have a program running on a standard JVM and we need to update
it without stopping it. The Fine-Grained Adaptation (FiGA) framework allows a
developer to adapt his application by modifying UML diagrams and propagating
the model changes to the source code. The change process is kept separate from

Fine-Grained Software Evolution Using UML Activity and Class Models 273

CD
ADADADAD

M0

M1
0 M2

0
Mn

0 CD’
AD’AD’AD’AD’

M1
γ1 γ2 γ3

· · ·
γn−1 γn

S0

S1
0 S2

0
Sn
0

S1

δ1 δ2 δ3

· · ·
δn−1 δn

Source
Code

Modified
Source Code

σ(γ1) σ(γ2) σ(γ3) σ(γn−1) σ(γn)Reverse R � σ(Γ)

Γ�

Δ�

after the dynamic update (via JavAdaptor), reiterating the whole process with the modified sources �

Fig. 1. Overview of the FiGA Approach

the running instance until the changes are ready to be compiled and loaded into
the Java virtual machine, so as not to compromise the application service.

The FiGA approach is based on the JavAdaptor [18] tool, which can update
a Java program during its execution without stopping it. JavAdaptor works at a
low level, requiring a compiled version of the class to update as an input and a
connection to the Java virtual machine in which the program is executing. There-
fore, changes to the Java source code drive the application update. FiGA extends
the JavAdaptor approach by replacing the source code with UML diagrams to
drive the updating process. The process —depicted in Fig. 1— consists of five
steps which can be repeated whenever the application needs to be updated.

Step 1: Model Generation. At the right abstraction level, models can be used
to present aspects of a software program that can be changed in a manner that
shields a developer from extraneous details in the source code, and thus helping
them to better focus their development effort. The models, to drive the code
modification, need to be as faithful as possible to the code and evolve with the
code [3]. Reverse R[3] is used to generate —via reverse engineering driven by code
annotations— the UML diagrams from the baseline source code. This ensures
that the model used to make changes is a faithful representation of the running
program at any time. Models are also generated the first time a change is made
to the running system to avoid the well-known abstraction gap between design
models and code [15] whose presence would jeopardize the feasibility of the whole
approach. As a side effect, the use of Reverse Rmakes the FiGA approach usable
when design models are not available.

Step 2: Model Modification. Models provide a view on the application that
can be used to run the adaptation; a human operator will change the model to
trigger the evolution process. Changes are expressed as a sequence of elementary
operations —where the elementary term refers to the extent each change has
on the model. Examples of elementary operations are an operation for remov-
ing a field in a class diagram and an operation for adding an action node in
an activity diagram. More complex changes are yielded by applying several ele-
mentary operations. An elementary change does not necessarily leave the system
in a consistent state. Checking consistency of the system is left to the human

274 W. Cazzola et al.

σ(Γ) apply compile select propagate

source code

Δ

modified source code compiled classes changed classes

javac JavAdaptor

�

Fig. 2. How the Adaptation Takes Place in FiGA

operator exactly as it is left to the developer when writing code. These operators
just describe the semantics of the change and are used to univocally map the
model changes to code changes; all the model changes are performed via the
preferred modeling tool1 and mapped onto the change operators via modeling
differencing [23,13].

Step 3: Adaptation Process. Let S0 represent source code for a running
Java program and M0 its UML model. Let M1 represent the model you get
after adapting M0 and S1 represent the application source code we get after
propagating model changes to S0.

Let be � the change sequencing operator : M1 = M0 � Γ ,. where Γ is a
composition of change operations expressed with model operators γi, each rep-
resenting an elementary change such that Γ = γ1 � γ2 � · · · � γi � · · · � γn. A
detailed definition of the γi operators is given in Sect. 3.

Similarly, we define Δ as those changes necessary to adapt the source code
to the system modeled by M1 such that S1 = S0 � Δ where Δ is obtained by
composing the single changes (δi) on the code: Δ = δ1 � δ2 � · · ·� δi � · · ·� δn.

So Γ and Δ represent the same set of changes but expressed on two different
layers of abstraction: the former on the model, the latter on the source code. The
σ function maps the changes on the model to the corresponding changes on the
code, such that Δ = σ(Γ), that is, it contains δi = σ(γi) ∀i ∈ [1, n]. Therefore,
we have S1 = S0 � σ(Γ).

Figure 1 shows the described architecture. S0 is the source code of the running
application and M0 is the model for S0 extracted with Reverse R(Step 1). In Step
2, each γi is applied to the model M i−1

0 and turned into M i
0 (M i

0 = M i−1
0 � γi),

where M0 is considered as M0
0 . Similarly, each change on the model must be

applied to the source code as well: Si
0 = Si−1

0 � δi where the code changes are
derived from model changes thanks to the σ mapping as seen before.

The last model M0 obtained by applying the last change γn models a new
(and consistent) version of the application and is denoted by M1. Likewise, after
applying the last change δn we obtain the new sources S1.

Step 4: Propagating Changes to the Application. Changes in the model
are not immediately applied to the source code and thus they are not immediately

1 Currently we support the IBM Rational Software Architecture (RSA) but the ap-
proach is general enough to be ported to any other modeling tool.

Fine-Grained Software Evolution Using UML Activity and Class Models 275

propagated to the running application. The translation process is triggered by
the developer after the last change in a sequence of model changes is performed,
i.e., when M0 is turned intoM1. The sequence of model changes is determined
by model differencing [23,13] between M0 and M1 and mapped into calls to
the change operators (γi) with the proper parameters necessary to call them
(Γ); such a sequence of change operators is turned into code changes via the σ
mapping to form a script (Δ) used to update the source code (S0). The modified
source code is then compiled, and the modified classes are selected as input
for the JavAdaptor tool, which is triggered in the last step. Finally, the new
source code is passed to Reverse Rto produce a new set of models that will be
used in the next adaptation cycle. Figure 2 shows this workflow. This approach
avoids the application of useless do/undo change patterns possible when the
model is updated, and does not allow the running application to move into an
inconsistent state, provided the developer triggers the update process only when
all the diagrams have been updated and checked for consistency.

Step 5: Updating the Running Application. This steps is completely del-
egated to the JavAdaptor tool that not only take care of deploying the changes
to the running applicaiton without stopping it, but also for preserving its state.
Details on how the JavAdaptor tool works can be found in [18].

3 Operators for Model Adaptation

The operators represent elementary changes on the models. Since we are inter-
ested in the mapping between model and code changes the change operators are
defined only for those model changes that affect the code as well. In the rest of
the section, we will show the model changing operators and their syntax for class
and activity models. Other types of models will be included in future work.

3.1 Class Model Operators

Class models describe the static structure of the running application. All struc-
tural changes are performed on the class model in FiGA. Operators for class
models capture changes to various elements, including classes, interfaces, fields,
constructors and methods. Two kinds of operations are defined: the insertion
operations (⊕CD) and the removal operations (�CD). Given the differences among
the class model elements, these operators are specialized to classes (⊕class and
�class), interfaces (⊕interface and �interface), fields (⊕field and �field), construc-
tors (⊕constructor and �constructor) and methods (⊕method and �method). Moreover the
operators � and � represent a change in the class hierarchy. Each specialization
is associated with element-specific parameters.

3.2 Activity Model Operators

Activity models describe the behavior of methods. They provide an uncluttered
but detailed description of method bodies, which makes them suitable for fine-

276 W. Cazzola et al.

grained adaptations of behavior. Change operators on activity models need to
be as fine grained as possible to guarantee such a control level.

The activity model elements considered in FiGA are: action nodes, decision
nodes, initial and final nodes, and input and output pins. Transition elements
cannot be considered in isolation because they are tightly coupled with the
elements they connect and therefore they do not have any associated change
operator; their modification is captured by the change to the coupled element.
In FiGA each activity model describes a single method where: i) each model has
a single initial node and a single final node; ii) there is no other flow termination
but the final node; and iii) the flow is continuous, it starts from the initial node
and terminates in the final node.

As with class models, there are insertion (⊕AD) and removal (�AD) opera-
tors associated to the various activity diagram elements. The ⊕AD and the �AD

operators are specialized as follows:

�action(block label) ⊕action(method, label, flow, after)
�test(block label) ⊕test(method, flow, after, type, branches no, condition)
�loop(block label) ⊕loop(method, flow, after, type, condition)
�statement(block label, line no) ⊕statement(block label, line no, text)

⊕action captures the creation of an empty action node in the activity diagram;
in particular the flow parameter captures where in the flow (mainly, in which
branch or in the main flow —identified by 1) it occurs. The ⊕statement operator
captures the change to the statements the action describes. The ⊕test and ⊕loop

operators capture changes to a decision node but their transitions are modeled
according to the desired control structure. Obviously, their dual operators cap-
ture the removal of the corresponding structures.

To conclude the overview on the supported models, sequence diagrams are
supported as well in FiGA [4] but since the code adaptations they permit largely
overlaps with those supported via changes on the activity diagrams we do not
present them in this work for lack of space.

4 From Model to Code Changes

To complete the description of how the FiGA approach works, we describe how
model changes captured by model change operators (γi)2 are mapped to source
code changes (δi), that is, we define the σ function.

Mappings for Class Model Operators. A class model change represents a
structural change that is directly reflected in the source code and thus they are
easily (and without ambiguity) mappable on source code changes.

The ⊕CD family of operators adds the given element into classes or interfaces.
How it affects the code is quite straightforward and can be easily explained

2 For a more flowing style, in this section, we merge the change to the model with the
operator capturing it without losing clarity, e.g., we say «the ⊕class operator adds a
new class» instead of «the ⊕class operator captures the introduction of a new class».

Fine-Grained Software Evolution Using UML Activity and Class Models 277

(a) operator ⊕Class (b) operator ⊕Field (c) operator ⊕Method (d) operator �

class NewClassB {

}

(e) created NewClassB

class NewClassB {

private Object field1;

}

(f) added field

class NewClassB {

private Object field1;

public void method1(){}

}

(g) added method

class NewClassB extends ClassA{

private Object field1;

public void method1(){}

}

(h) added inheritance

Fig. 3. Change to the class diagram and its impact on the code

through an example. Figure 3 (in the top) shows the elementary changes nec-
essary to add a new class (NewClassB) with a method and a field that extends
an existing class; Fig. 3 (in the bottom) shows how the changes affect the code.
In Fig. 3(a), the ⊕class is used to add a NewClassB to the system. The operation
⊕class(NewClassB, public) corresponds to change shown in Fig. 3(e). Similarly,
The ⊕interface operator adds an interface to the application code. In Fig. 3(b)
a field (field1) is added to the model and its effect on the code (σ(⊕field)) is
shown in Fig. 3(f); we chose to maintain the unwritten convention that all fields
are added at the beginning of the class declaration so the new field is added
as the first statement. The ⊕method (Fig. 3(g)) behaves similarly; it introduces a
method declaration in the class (Fig. 3(c)). New methods are added at the end of
the class declaration. The same operator can be used to add method prototypes
into interfaces. Note that the method body is added through changes to the
corresponding activity diagram. Finally, the � operator creates a generalization
or implementation relationship between a new classifier (class or interface) and
an existing classifier (Fig. 3(d)). At the code level this could be mapped to the
extends or the implements keyword depending on the kind of hierarchy relation-
ship. In our case we have an inheritance relationship since both containers are
classes (Fig. 3(h)). Similar mappings are defined for the removal �CD family of
operators. The removal operators are defined to be minimalistic and thus are not
cascading, that is, they do not remove contained elements. Since a more detailed
explanation of the mapping for these operators would not add to the discussion
we will not discuss them further.

Mappings for Activity Diagram Operators. The FiGA framework —via
Reverse R(see Sect. 2)— generates a detailed activity model for each method in
the application. Given that, a new behavior or a behavior adaptation is described
via progressive changes to an existing activity diagram. When a ⊕method operator
adds a method to a class FiGA also produces an empty activity diagram, that is,
a diagram composed only of the initial and final node connected by a transition.
The work of Reverse R[3] is driven by @Java [5] annotations decorating the
code and each operator acting on the activity diagram affects the code and the
annotations as well.

We now describe how the changes represented by activity model change op-
erators are mapped to code changes, and how the code consistency is preserved

278 W. Cazzola et al.

Make backup

String filepath=path+File.separator;
filepath += filename+"."+ext;
File newFile = new File(filepath);

Move file

file renameTo(newFile);

(a) ⊕action(moveUpInFolder(File),Make backup,1,Build path)

Make backup

Backup.saveCopy(file);

String filepath=path+File.separator;
filepath += filename+"."+ext;
File newFile = new File(filepath);

Move file

file renameTo(newFile);

(b) ⊕statement(Make backup,1,"Backup.saveCopy(file);")

@CallAction(id=2, name="Build path") {

String filepath = path + File.separator;

filepath + = filename + "." + ext;

File newFile = new File(filepath);

}

@CallAction(id=4, name= "Make backup") {

}

@CallAction(id=3, name="Move file") {

file.renameTo(newFile);

}

(c) Effect of ⊕action (σ).

@CallAction(id=2, name="Build path") {

String filepath = path + File.separator;

filepath + = filename + "." + ext;

File newFile = new File(filepath);

}

@CallAction(id=4, name= "Make backup") {

Backup.saveCopy(file);

}

@CallAction(id=3, name="Move file") {

file.renameTo(newFile);

}

(d) Effect of ⊕statement (σ).

Fig. 4. Activity diagram changes and the corresponding code changes

to support the model changes. A new action node is added by the ⊕action opera-
tor. Action nodes provide an abstraction on the code —they are used to group a
portion of code representing a semantic concept— so they do not have a direct
representation unit in the code but such information must be available to rebuild
the activity diagram. To this regard σ(⊕action) will add the proper @CallAction

annotations in the specified transaction line after the specified node; Fig. 4(c)
shows the effect in the code of adding a new empty action, the red one, in the
activity diagram (Fig. 4(a)). When a model is still empty, the node is added as
the first block while the value of the after parameter —that denotes the action
after which node should be inserted— is 0 (look at Sect. 3.2 for the details).
The action label is passed to the @CallAction annotation as a parameter. The
⊕statement adds a statement to an action, its mapping σ(⊕statement) is straightfor-
ward and simply introduce the given statement in the code block corresponding
to the action (see Fig. 4(d)). Lines are numbered locally to the action and their
offset refers to the first line of the block they are inserted into. This will help
to deal with movements of code blocks, i.e. action nodes, when these advanced
features (copy and paste of nodes) are added to FiGA.

The mapping for conditionals and loops is more complicated because they
can be mapped to several different statements and it is necessary to cope with
such a variety. ⊕test adds a decision node and a number of branches according
to the type of decision that is added. This operator can be mapped into two
types of conditional structures: if-then-else —where the condition evaluates
on boolean values— or switch statements —where the condition evaluates to
many values. In the former case σ(⊕test) adds a whole statement as in Fig. 5
and insert the hooks for the transactions (the branches of the if statement) this
block has created. The mapping always inserts a full if structure with both the

Fine-Grained Software Evolution Using UML Activity and Class Models 279

file.isDirectory()

Get Parent’s Path

String p=file.getParent();
int i=p.lastIndexOf(File.separator);
p=p.substring(0,i);

transaction 1

transaction 1

false

transaction 3

true

transaction 2

(a) Model change (in red)

public void moveUpInFolder(File file) {

@Transaction(id=1) {}

if (file.isDirectory()) {

@Transaction(id=2, type="boolCondition", boolValue=true) {}

else

@Transaction(id=3, type="boolCondition", boolValue=false) {}

}

@CallAction(id=5, name="Get Parent’s Path") {

String p=file.getParent();

int i=p.lastIndexOf(File.separator);

p=p.substring(0,i);

}

}

(b) Effect of ⊕test(moveUpInFolder(File), 1, 0, boolean, 2, file.isDirectory())

Fig. 5. Effect of conditional introduction in model and code

then and the else block, also when only one of the two blocks is used, in order
to let the change agent to add blocks in both branches. The operator creates
only the structure, it does not insert any code into the if branches because such
code is part of an action node that should be added via an application of the
⊕action operator. In the latter case, the introduced conditional must specify the
variable used in the test and each transitiont must be labeled with the value such
a variable must assume in order to select the corresponding transition. Such a
model change will be mapped into a switch statement with so many cases as
transitions and the value of the cases value are after the label of the transitions.
In both cases, the condition is supplied with the operator: a string representing
a boolean test or an expression valuating on a primitive type respectively.

The ⊕loop model change can map into two kinds of loops: a while or a
do-while structure. Such model changes are directly mapped into the corre-
sponding control structures. In both cases the transaction labels determine the
annotations to add in the code for the body and the position of the transaction
labeled with true permit to distinguish the two cases. From the point of view
of the model the for loop looks as the while loop but this is not true for the
code and we need to distinguish them at model level as well to have a unique
mapping. To do that we use UML stereotypes to mark the loop elements; the
stereotypes to use are:

– on an action node «for:dclr» will represent the variable declaration (ini-
tialization) used in a for loop (usually int i=0);

– on a decision node «for:stmnt» will represent the for loop condition; and
– on an action node «for:incr» will specify the kind of increment we want to

operate onto the variable (usually i++).

The declaration node must be placed exactly before the decision node, and the
increment node will be the last action node of the loop. Stereotypes allow us
to define nodes with special meaning. Marking the three nodes guarantees that
these are exactly the variable declaration (or initialization) and increment that
we need to build the for statement, as other increments might appear inside the
loop and then we cannot define a mapping.

280 W. Cazzola et al.

5 Demonstration Case Study

The case study considers a train management system (TMS) where the TMS
is an example of a non-stop system which could benefit from runtime adapta-
tion. The TMS is responsible for trains tracking and for coordinating the train
transit: it handles the policy of every traffic light of the railway system. Due
to the non-stopping and high risk nature of the TMS, it is highly desired that
any adaptation be done on the running system without any perceived service
delay. Given a running TMS, the considered adaptation consists of adding sup-
port for railroad segments that include intersections with roads. In the changed
model, a segment is associated with zero or one road intersection. The extension
is supported by introducing a new class IntersectionSegment representing a seg-
ment that intersects a road; it will be a subclass of the existing Segment class.
An IntersectionSegment has an intersection traffic light to coordinate (1) the
transit of cars through the intersection, and (2) the opening/closing of the inter-
section barriers at the intersection. The IntersectionSegment class has two main
methods: closeIntersection() turns red the intersection traffic light and then
closes the intersection barriers, and openIntersection() opens the intersection
barriers and then turns green its traffic light.

From the point of view of the FiGA framework, the insertion of the new
IntersectionSegment class is straightforward (see in Sect. 4) and thus we do
not describe it any further. We instead focus on the changes to the behavior of
the system. Due to space limitations, we describe only one adaptation of the
updateTrainPosition() method of the class TMSSystem. Such a method already
exists in the original source code prior but it needs to cope with the new concept
of intersections. In particular it has to:

– permit the road traffic through the intersection (i.e., the traffic light is turned
green and the barriers are opened) once the train leaves the segment, and

– forbid the road traffic through the intersection (i.e., the traffic light is turned
red and the barriers are closed) when a train is approaching, i.e., the train
is in the next segment.

In the adapted system, the segment state is changed to JustLeftSegment when a
train leaves it, i.e., the track segment is empty and its intersection with a road
(if any) can be safely opened.

Supporting the Segment Opening. Figures 6(a) and 6(c) show, respctively,
the portion of the activity diagram for the updateTrainPosition() method and
the corresponding Java code that will be affected to support the opening of an
intersection segment.

In this work, each activity diagram corresponds to a specific method of a
specific class in the source code. The binding between them are preseverved by
a set of @CallAction code annotations where each @CallAction groups a block
of statements and represents an action node in the diagram. A @CallAction

annotation is identified by a unique tag name within the scope of its method
and this tag name labels also the corresponding action node. In other words,

Fine-Grained Software Evolution Using UML Activity and Class Models 281

JustLeftSegment

Find Next Segment

train.getJourney()

.isEnded()

false

true

(a) View on updateTrainPosition() AD.

JustLeftSegment

sensorSegment
instanceof

IntersectionSegment
d1

Open Intersection

sensorSegment.openIntersection();

d1

Find Next Segment

false

true

(b) Supporting the barrier opening.

@CallAction(id=7,name="Set JustLeftSegment") {

train.setJustLeftPosition(sensorSegment, time);

}

@CallAction(id=9, name="Find Next Segment") {

Segment nextInJourney = train.getNextPositionInJourney();

}

(c) corresponding source code.

@CallAction(id=7,name="Set JustLeftSegment") {

train.setJustLeftPosition(sensorSegment, time);

}

if (sensorSegment instanceof IntersectionSegment) {

@Transaction(id=6){}

@CallAction(id=8, name="Open Intersection") {

sensorSegment.openIntersection();

}

}

@CallAction(id=9, name="Find Next Segment") {

Segment nextInJourney = train.getNextPositionInJourney();

}

(d) effect of the change on the code.

Fig. 6. Model and code changes to support the opening of the intersection

Changes related to Activity2<Activity>::TMSSystem.updateTrainPosition()<Activity Diagram>

Diff1. Add d1: sensorSegment instanceof IntersectionSegment<Decision Node> to Activity2<Activity>.children : Node

Diff2. Add Open Intersection<Opaque Action> to Activity2<Activity>.children : Node

Diff3. Add d1_end<Merge Node> to Activity2<Activity>.children : Node

Diff4. Add (Set JustLeftSegment<Opaque Action>) (d1: sensorSegment instanceof IntersectionSegment<Decision Node>)

<Control Flow> to TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff5. Add (d1: sensorSegment instanceof IntersectionSegment<Decision Node>)

(Open Intersection<Opaque Action>)True<Control Flow> to

TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff6. Add (d1: sensorSegment instanceof IntersectionSegment<Decision Node>)

(d1<Merge Node>)False<Control Flow> to TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff7. Add (Open Intersection<Opaque Action>)(d1_end<Merge Node>)<Control Flow> to

TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff8. Add (d1_end<Merge Node>)(Find Next Segment<Opaque Action>)<Control Flow> to updateTrainPosition()<Diagram>.edges: Edge

Diff9. Delete (Set JustLeftSegment<Opaque Action>)(Find Next Segment<Opaque Action>)<Control Flow> from

TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Fig. 7. Differences between Fig. 6(a) and Fig. 6(b)

each action node and its corresponding @CallAction annotation share the same
tag name. If you look at Fig. 6(a) and Fig 6(c) this association should be evident,
e.g., the node labeled by «Find Next Segment» finds a correspondence in the code
annotation named in the same way. Figures 6(b) and 6(d) show, respectively, the
changes (in red) to the activity diagram and to the code in order to support the
opening of the barriers at the intersections.

The model updating is manually done through the Rational Software Archi-
tect (RSA). After the updating, the next step is to determine the differences
between the two versions of the model in order to exploit the presented mapping
(σ) to update the source code. RSA can automatically generate the differences
as a set of additions and removals that permit to turn the old model into the new

282 W. Cazzola et al.

one when applied. Figure 7 shows the differences between the activity diagrams
in Fig. 6(a) and Fig. 6(b) as generated by RSA. Such differences are used to
determine which model change operators (γs) capture the changes in order to
automatically adapt the code according to the model changes. The operations
generated by RSA are quite similar to those considered in the FiGA architecture
and the abstraction gap is overcome thanks to the described annotation mecha-
nism used by Reverse Rand by some label conventions, therefore, the translation
is quite straightforward once the resulting file is correctly interpreted. To give
the correct interpretative key we describe a couple of entries in Fig. 7 and their
interpretation as γ operators. Diff13 states that a new decision node labeled
«d1» and whose condition is «sensorSegment instanceof IntersectionSegment»
is added to the activity diagram; this maps onto the ⊕test operator. Diff2 states
that a new action node with tag name «Open Intersection» is added to the
diagram and it is mapped to the ⊕action operator. Diff4 to Diff8 provides the
information about where in the diagram these changes have been done and how
the new elements interact with those already in the diagram; all these diffs do
not have a direct mapping on model change operator but provide necessary data
to istantiate them. Follows the detailed operators instatiation from Fig. 7.
– ⊕test(TMSSystem.updateTrainPosition(), 1, Set JustLeftSegment, bool, 2,

sensorSegment instanceof IntersectionSegment)
– ⊕action(TMSSystem.updateTrainPosition(), Open Intersection, true,

sensorSegment instanceof IntersectionSegment)
– ⊕statement(Open Intersection, 1, "sensorSegment.openIntersection();")

As explained in Sect. 4, from these γs operators and the σ mapping the FiGA
framework can adapt the running source code to achieve the version in Fig. 6(d)
and then apply the change to the running application via JavAdaptor.

Supporting the Segment Closing. As to support the barriers opening at
the intersection, we need to do similar changes to close them when the train is
approaching. Figure 8(a) shows a different portion of the updateTrainPosition()

activity diagram that will be affected by the changes as depicted in Fig. 8(b).
Figures 8(c) and 8(d) show the corresponding portion of code before and after
the adaptation respectively whereas Fig. 9 shows the differences between the
activity diagram in Fig. 8(a) and the one in Fig. 8(b) and since their discussion
will not add any detail we just report their mapping on the change operators:
– ⊕test(TMSSystem.updateTrainPosition(), false, train.getJourney().isEnded(), bool,

2, nextInJourneySeg instanceof IntersectionSegment)
– ⊕action(TMSSystem.updateTrainPosition (), Close Intersection, true,

nextInJourneySeg instanceof IntersectionSegment)
– ⊕statement(Close Intersection, 1, "nextInJourney.closeIntersection();").

6 Discussion

In the proposed approach, developers use graphical UML models, rather than
the source code to make changes to running software. The models can be used
3 Please note that the labels Diff have been manually added to ease their description.

Fine-Grained Software Evolution Using UML Activity and Class Models 283

Find Next Segment

train.getJourney()

.isEnded()

Update Train
Current Position

Print «Journey
End» Message

Update Segment

false

true

(a) View on updateTrainPosition().

train.getJourney()

.isEnded()

nextInJourney
instanceof

IntersectionSegment
d2

Close Intersection

nextInJourney.closeIntersection();

d2

Update Train
Current Position

Print «Journe
End» Message

false

false

true

true

(b) Supporting the barrier closing.

if train.getJourney().isEnded() {

@Transaction(id=7){}

@CallAction(id=10, name="Print «Journey End» Message") {

Out.println(train.getId()+"reached the end of its journey");

}

} else {

@Transaction(id=8){}

@CallAction(id=12, name="Update Train Current Position") {

train.setCurrentPosition(nextInJourney);

}

}

(c) corresponding source code.

if train.getJourney().isEnded() {

@Transaction(id=7){}

@CallAction(id=10, name="Print «Journey End» Message") {

Out.println(train.getId()+"reached the end of its journey");

}

} else {

@Transaction(id=8){}

if (nextInJourney instanceof IntersectionSegment) {

@Transaction(id=9){}

@CallAction(id=11, name="Close Intersection") {

nextInJourney.closeIntersection();

}

}

@CallAction(id=12, name="Update Train Current Position") {

train.setCurrentPosition(nextInJourney);

}

}

(d) effect of the change on the code.

Fig. 8. Model and code changes to support the closing of the intersection

to present a running system in terms of UML constructs that present essential
aspects of the coded structure and behavior, while shielding the developer from
source code and process-level details. Making changes on the models in many
cases can involve fewer steps than making corresponding changes on the source
code. For example, if a developer wants to remove a bi-directional association
between two classes in source code, she would have to remove the references in
the related classes and the get and set methods associated with the references.
The same change at the design class model level simply involves removing the
association between the classes; removal of the association at the model level
infers removal of corresponding get and set methods at the source code level.
The change operators we provide represent the smallest units of change that a
user can make using the FiGA approach. We do not claim the set to be com-
plete with respect to all possible changes that a developer may need to make,
but right now we have not yet identified any design level changes that cannot
be expressed in terms of the units of changes we currently support. The auto-
matic propagation of model changes to runtime changes is a key feature of the
FiGA approach. A user can make changes at the model-level and be assured that
changes on the source-code level and on the running system will be faithfully per-
formed. In addition, the use of the reverse engineering mechanism to generate the

284 W. Cazzola et al.

Changes related to Activity2<Activity>::TMSSystem.updateTrainPosition()<Diagram>

Diff1. Add d2: nextInJourney instanceof IntersectionSegment<Decision Node> to [View] Activity2<Activity>.children : Node

Diff2. Add Close Intersection<Opaque Action> to [View] Activity2<Activity>.children : Node

Diff3. Add d2_end<Merge Node> to [View] Activity2<Activity>.children : Node

Diff4. Add (train.getJourney().isEnded()<Decision Node>)(d2: nextInJourney instanceof

IntersectionSegment<Decision Node>)<Control Flow> to TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff5. Add (d2: nextInJourney instanceof IntersectionSegment<Decision Node>)(Close Intersection<Opaque Action>)

True<Control Flow> to TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff6. Add (d2: nextInJourney instanceof IntersectionSegment<Decision Node>)(d2_end<Merge Node>)

False<Control Flow> to TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff7. Add (Close Intersection<Opaque Action>)(d2_end<Merge Node>)<Control Flow> to

TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Diff8. Add (d2<Merge Node>)(Update Train Current Position<Opaque Action>)<Control Flow> to

TMSSystem.updateTrainPosition()<Diagram>.edges : Edge

Fig. 9. Differences between Fig. 8(a) and Fig. 8(b)

models ensures that the models accurately describe the running system. To sup-
port automatic propagation of model changes to the source code we have to
bridge the abstraction gap between the models and the source code [15,3,21].
This is a necessary pre-requisite for reliable propagation of changes across the
abstraction gap. This challenge is handled in the FiGA approach through a
well-defined mapping between model and source code elements embodied in the
elementary model change operators we define, and in the reverse engineering
mechanism we use to produce the models from the source code and associated
meta-data in the source code (described as Java annotations). This tight con-
nection between the models and the source code enables co-evolution of these
artifacts. To make the approach more easy to use the model change operator
are automatically derived from the changes the user perform on the diagrams
by using model differencing [23,13]. JavAdaptor [18] is used to automatically
propagate the changes to the runtime system. Many dynamic software updating
approaches (e.g., see [24]) focus on the definition of states where the application
can safely migrate from its original form to its evolved one. This is not our con-
cern because we rely on JavAdaptor to replace each class while keeping its state
intact: no data is lost and each object in the new version immediately starts
running with its old state. JavAdaptor also determines when to freeze the class
for the reloading operation also in a multi-threaded environment.

7 Related Work

Architecture-based software adaptation approaches focus on supporting
automated coarse-grained reconfiguration of software structure at runtime (for ex-
ample, see [7,9,10,14,16,22]). In these approaches, the running system is structured
to facilitate the use of component-based runtime models that are causally con-
nected to the running system. Each component is a coarse-grainedabstraction that
represents a logically encapsulated part of the running system. Runtime modifica-
tions are restricted to adding and removing components and links between com-
ponents. The approach described in this paper provides support for finer-grained
modifications at the Java program class level. Unlike the architecture-based ap-
proaches, our fine-grained approach does not constrain the structure of Java pro-
grams that can undergo runtime modifications. On the other hand, our approach

Fine-Grained Software Evolution Using UML Activity and Class Models 285

currently supports manual changes, that is, humans manually modify the runtime
models rather than the system itself. We will investigate how the approach can be
extended to support self-adaptation.

Research on dynamic software updates (DSU) [11,17,20] aims to produce
mechanisms that allow developers to change a running system without stopping
and restarting the running system. Code level changes are submitted to these
mechanisms, which are then effected on running systems. JavAdaptor [18] is one
such mechanisms but with support for performing a finer granularity of changes.
Unlike other work on dynamic software updates, FiGA, which is built on top of
JavAdaptor, focuses on using models to raise the level of abstraction at which
changes are presented to the running system. We are not aware of any DSU that
uses models as an interface for making changes to a running system.

8 Conclusion

We presented the FiGA framwork, a model based approach to software evolu-
tion that supports expressing and propagating fine-grained changes to a running
application without the need to stop the system. The UML models used in the
approach can be viewed as model@runtime that are the means of expressing and
then propagating changes to the running system. Developers change the models
and these changes are automatically mapped to model change operators whose
effect on code is known; the application of these operators, therefore, propagates
the changes to the source code. In this way is possible to co-evolve the model
and the source code; finally the planned evolution is effectively applied to the
running application through the JavAdaptor framework [18] without stopping
the application. The FiGA framework does not make any assumptions about the
kind of changes that might occur and about which parts of the running applica-
tion will be affected by the change. The current set of supported models allows
us to express all the changes we anticipate. In this current version of the work
we aim to demonstrate the feasibility of the approach and provide a solid base
upon which we can build a more extended evolutionary engine. In the future we
plan to support the full range of UML diagrams at various levels of abstraction.

References

1. Barais, O., Cariou, E., Duchien, L., Pessemier, N., Seinturier, L.: TranSAT: A
Framework for the specification of Software Architecture Evolution. In: Proc. of
WCAT 2004, Oslo, Norway, pp. 31–38 (June 2004)

2. Blair, G., Bencomo, N., France, R.: Models@run. time. IEEE Computer 42(10),
22–27 (2009)

3. Cazzola, W., Pini, S., Ghoneim, A., Saake, G.: Co-Evolving Application Code and
Design Models by Exploiting Meta-Data. In: Proc. of SAC 2007, South Korea
(2007)

4. Cazzola, W., Rossini, N.A., Bennett, P., Pradeep Mandalaparty, S., France,
R.B.: Fine-Grained Semi-Automated Runtime Evolution. In: MoDELS@Run-
Time. LNCS. Springer, Heidelberg (2013)

286 W. Cazzola et al.

5. Cazzola, W., Vacchi, E.: @Java: Annotations in Freedom. In: Proc. of SAC 2013,
Coimbra, Portugal, pp. 1691–1696. ACM Press (March 2013)

6. Costa-Soria, C., Hervás-Muñoz, D., Pérez Benedí, J., Carsí Cubel, J.: A Reflective
Approach for Supporting the Dynamic Evolution of Component Types. In: Proc.
of ICECCS 2009, Potsdam, Germany, pp. 301–310 (June 2009)

7. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Beyond
Design Time: Using Architecture Models for Runtime Adaptability. IEEE Soft-
ware 23(2), 62–70 (2006)

8. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Re-
search Roadmap. In: Proc. of FoSE 2007, pp. 37–54. IEEE, Minneapolis (2007)

9. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-Based Self Adaptation with Reusable Infrastructure. IEEE Com-
puter 37(10), 46–54 (2004)

10. Georgas, J., van der Hoek, A., Taylor, R.: Using Architectural Models to Manage
and Visualize Runtime Adaptation. IEEE Computer 42(10), 52–60 (2009)

11. Hicks, M., Nettles, S.: Dynamic Software Updating. ACM Trans. on Progr. Lan-
guages and Systems 27(6), 1049–1096 (2005)

12. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: Proc.
of FoSE 2007, pp. 259–268. IEEE, Minneapolis (2007)

13. Maoz, S., Ringert, J., Rumpe, B.: ADDiff: Semantic Differencing for Activity Di-
agrams. In: Proc. of ESEC/FSE 2011, Szeged, Hungary, pp. 179–189 (September
2011)

14. Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models@ Run.time
to Support Dynamic Adaptation. IEEE Computer 42(10), 44–51 (2009)

15. Murphy, G., Notkin, D., Sullivan, K.: Software Reflexion Models: Bridging the Gap
between Design and Implementation. Trans. Softw. Eng. 27(4), 364–380 (2001)

16. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-Based Runtime Software Evo-
lution. In: Proc. of ICSE 1998, pp. 177–186. IEEE, Kyoto (1998)

17. Orso, A., Rao, A., Harrold, M.: A Technique for Dynamic Updating of Java Soft-
ware. In: Proc. of ICSM 2002, pp. 649–658. IEEE, Montréal (2002)

18. Pukall, M., Kästner, C., Cazzola, W., Götz, S., Grebhahn, A., Schöter, R.,
Saake, G.: JavAdaptor - Flexible Runtime Updates of Java Applications. Software-
Practice and Experience 43(2), 153–185 (2013)

19. Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research Chal-
lenges. Trans. on Autonomous and Adaptive Systems 4(2), 14:1–14:42 (2009)

20. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis Mutandis.
ACM Trans. on Progr. Languages and Systems 29(4) (August 2007)

21. Ubayashi, N., Akatoki, H., Nomura, J.: Pointcut-based Architectural Interface for
Bridging a Gap between Design and Implementation. In: RAM-SE 2009, Italy
(2009)

22. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proc. of
SEAMS 2010, pp. 39–48. ACM, Cape Town (2010)

23. Xing, Z., Stroulia, E.: Differencing Logical UML Models. Automated Software En-
gineering 14(2), 215–259 (2007)

24. Zhang, J., Cheng, B.: Model-Based Development of Dynamically Adaptive Soft-
ware. In: Proc. of ICSE 2006, pp. 371–380. ACM, Shanghai (2006)

Supporting the Co-evolution of Metamodels

and Constraints through Incremental Constraint
Management

Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed

Institute for Systems Engineering and Automation
Johannes Kepler University (JKU)

Linz, Austria
{andreas.demuth,roberto.lopez,alexander.egyed}@jku.at

Abstract. Design models must abide by constraints that can come from
diverse sources, like metamodels, requirements, or the problem domain.
Modelers intent to live by these constraints and thus desire automated
mechanism that provide instant feedback on constraint violations. How-
ever, typical approaches assume that constraints do not evolve over time,
which, unfortunately, is becoming increasingly unrealistic. For example,
the co-evolution of metamodels and models requires corresponding con-
straints to be co-evolved continuously. This demands efficient constraint
adaptation mechanisms to ensure that validated constraints are up-to-
date. This paper presents an approach based on constraint templates that
tackles this evolution scenario by automatically updating constraints. We
developed the Cross-Layer Modeler (XLM) approach which relies on in-
cremental consistency-checking. As a case study, we performed evolutions
of the UML-metamodel and 21 design models. Our approach is sound
and the empirical evaluation shows that it is near instant and scales with
increasing model sizes.

Keywords: Co-evolution, metamodeling, consistency-checking.

1 Introduction

In Model-Driven Development (MDD) [1], metamodels play a key role as they
reflect real-world domains and define the language of models as well as the
constraints these models must satisfy. Over the past years, a trend has emerged
that calls for design tools with adaptable metamodels – to customize the tool to
a particular discipline, domain, or even application under development. Indeed,
those metamodels must evolve continuously; for example, to reflect changes of a
domain or to meet new business needs. Refactorings that improve a metamodel’s
structure and usability are also common. Nowadays, a range of “flexible” design
tools with adaptable metamodels are available to support such scenarios (e.g.,
[2, 3]).

Co-evolution of models denotes the process of concurrently evolving meta-
models and their models – a process that is non trivial since inconsistent

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 287–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

288 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

co-evolution may cause models and metamodels to drift apart. Several incre-
mental approaches have been proposed to support this process (e.g., [4]).

However, metamodels also impose constraints onto models. When the meta-
models evolve, so must the constraints – a scenario that has been largely over-
looked so far. For example, the Unified Modeling Language (UML) [5] is
supported by hundreds of well-formedness rules and the community augmented
these with even more consistency rules. Moreover, UML Profiles, which may also
include consistency rules, are commonly used to extend the UML and adapt
it to specific domains [6]. Modifying the UML metamodel thus impacts these
constraints. Previously semantically and syntactically correct constraints may
become incorrect after structural or semantic metamodel changes; or new con-
straints may appear. It is crucial to extend the notion of co-evolution to include
the continuous maintenance of constraints such that only correct constraints are
enforced on design models. Of course, it is also crucial to have available a consis-
tency checker that is not only able to react to design model changes but also to
metamodel/constraint changes. Generating and adapting constraints incremen-
tally as well as checking them incrementally are thus pre-requisites to ensure
that designers are always given instant and reliable feedback on the validity of
their modeling work.

State-of-the-art consistency checkers are commonly employed to validate
constraints and determine whether a model is consistent with respect to its
metamodel. Most consistency checkers rely on an existing set of constraints for
performing the validation [7, 8]. It is common to write these constraints man-
ually, typically in a standardized language such as the Object Constraint Lan-
guage (OCL) [9]. Often, constraints are also “hard-coded” into modeling tools.
Although the automatic co-evolution of metamodels and models has become an
active field of research, the issue of co-evolving constraints is not well addressed.
Incremental consistency checkers typically do not support the live updating of
constraints and little support for updating outdated constraints is available.

This paper describes an approach for the co-evolution of metamodels and
their constraints that uses constraint templates and a template engine to au-
tomatically and incrementally manage constraints – it is an extension of a
previously published idea-paper [10]. New contributions include the in-depth
illustration and discussion of the approach and a prototype implementation (the
Cross-Layer Modeler (XLM) [11]) that leverages from our previous work on the
Model/Analyzer [8], an efficient incremental consistency checker. Moreover, we
evaluated our approach by using the XLM for automating the generation of con-
straints that ensure the structural integrity of UML models and by performing
sample evolutions of the UML metamodel. Tests were performed on 21 large
industrial UML models of up to 36,205 model elements. While the UML is not
the primary motivation for our approach (it changes occasionally only), it is like
any modeling language in that it must adhere to a metamodel and imposes con-
straints. UML metamodel changes thus impose the same kind of challenges. The
fact that the UML language is far from trivial and we have available large-scale,
industrial models thus make it a very suitable environment to test the scalabil-

Supporting the Co-evolution of Metamodels and Constraints 289

(a) Metamodel (b) Model

Fig. 1. Metamodel and model of component-based system with constraints

ity of our approach and the XLM tool. The results show that our approach is
correct and works efficiently even as model sizes increase.

2 Example and Motivation

We use an excerpt of a simple metamodel, shown in Fig. 1a, to illustrate our work.
The metamodel consists of two elements: Component and Communication. Every
Component can include an arbitrary number of sub-components and can directly
use an undefined number of other components. A Communication expresses a
data exchange from a source to at most one target component. Components
can have an arbitrary number of open communications (com).

For building this metamodel, we used a simple metametamodel consisting of
the elements: Class, Reference, DerivedReference. References between classes
are drawn as arrows with an assigned name and a defined cardinality. Multiple
references can be combined to a single derived reference which we draw without
cardinality values and with dashed arrows to the references from which it is
composed. For example, a derived reference is used to retrieve the components
that are involved in a communication (inv).

For MDD to be effective, it is crucial to work with valid models that conform
to their metamodels. That is, that such models adhere to the constraints specified
in the following sources:

I: Metamodel Directly. First, we use intuitive constraints that check the car-
dinality of references. For each reference, we create a constraint (e.g., R1 or
R2 in Fig. 1a) that ensures that every instance of the owning element is con-
nected to the specified number of elements in a model (e.g., every instance of
Communication must be connected to exactly one Component instance through
a connection named source). We use the term connected in models to avoid am-
biguity with references in the metamodel. Connections are depicted as named

290 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

arrows in model diagrams. Constraints for references with unrestricted cardi-
nalities (e.g., com) are not shown in Fig. 1a for readability reasons. Note that
common modeling tools that use the Eclipse Modeling Framework (EMF) [12]
for example either do not derive such constraints or have them “hard-coded”,
meaning that changes cannot lead to constraint updates which effectively dis-
ables automated co-evolution.

II: Metamodel Semantics. Next, we create a constraint for the derived ref-
erence (e.g., DR1 in Fig. 1a) to ensure that instances of the owning element are
connected to all the elements that are reached through the aggregated references
(e.g., for every instance of Communication, all elements that are connected to
it via source and target must also be connected via inv). Note that our con-
straints make use of OCL collection iterations even though they are invoked on
single objects. The issues arising because of the distinction between single and
multi-object values in OCL have been discussed and identified in literature as a
problem especially during evolution [13]. For the sake of generality, we use a con-
sistency checker with an OCL interpreter that allows collection operations being
used with single objects by performing the necessary conversions automatically.

III: Domain Knowledge. While the first two kinds of constraints could be
generated automatically, constraints of the third type cannot be derived from
the metamodel automatically with traditional approaches. An example would
be a constraint that restricts direct usage of components based on component
hierarchies. We omit a detailed description of such a constraint because of space
restrictions.

As depicted in Fig. 1b, the metamodel from Fig. 1a is used to create a
small model of a calculator system. The Calculator component has two sub-
components that are used directly: Memory and Numeric. The Numeric compo-
nent also uses the component Memory. A Printer has three sub-components:
Formatter, Queue, and Controller. It uses the Queue to store print jobs and
informs the Controller, which retrieves data from the Queue and runs the
Formatter before printing. Finally, there is an Output component to display
information to the user. The Calculator uses a Communication element called
ResultComm to send its results to the Printer and the Output components.

As indicated by the encircled area in Fig. 1b, the two target connections of
ResultComm are causing an inconsistency because only one target is allowed
according to the metamodel. Note that any consistency checking approach could
detect inconsistencies in the model according to the constraints we defined above.

2.1 Incremental Consistency Checking

As the model size increases, so does the effort to check its consistency. Checking
consistency in an entire model can easily become a time consuming task. Incre-
mental consistency checking addresses this limitation by looking only at a subset
of an entire model, namely the elements that change as a model evolves [14].
This set of elements can be either directly observed or calculated from differ-
ences between model versions [8,15]. The existing approach automatically defines

Supporting the Co-evolution of Metamodels and Constraints 291

Fig. 2. The evolved metamodel

constraint instances that validate whether specific model elements violate a given
constraint [14]. The change impact scope of a constraint instance is the set of
model elements that are used for calculating the constraint instance’s valida-
tion result which are also computed automatically. For example, Fig. 1b shows
a constraint instance of the Communication metaclass constraint R1 that re-
quires communications to have exactly one target. The scope of this constraint
instance consists of the two elements that are reached through the target ref-
erence to Printer and Output. Changes falling within scope of a constraint
instance, like removing a target, would lead to a re-validation of the constraint
instance. The Model/Analyzer automatically creates, re-evaluates, and destroys
constraint instances according to changes in the model in Fig. 1b. However, if
the metamodel were to change, consistency checkers would continue to validate
the now-potentially-outdated design rules.

2.2 Co-evolution Examples

Let us consider what happens when a metamodel changes. For instance, if the
number of maximum targets of a Communication rises from 1 to 100 because new
technologies allow multicasting of messages between components. Additionally,
a new derived reference all is introduced to combine the sub and use references
of a Component. These two changes are encircled with dashed lines in Fig. 2.
These changes have the following consequences:

– Constraint R1 becomes incorrect. The upper bound checked by R1 (1), is
no longer equal to the actual upper bound value of the reference (100).

– An additional constraint is needed for the new derived reference all.

In the first case, R1 must be adapted by replacing the upper limit value 1

with literal 100. Without this adaptation, the corresponding constraint instance,
circled in Fig. 1b, would still incorrectly try to enforce an upper bound of 1. In
the second case, the inconsistency that neither Calculator nor Printer have

292 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

Fig. 3. Example of steps performed during template definition, instantiation, and
change management

the required connection all in our model is missed. To address this problem, a
constraint that checks the derived reference all needs to be added.

A common way of dealing with co-evolution is to manually re-write the con-
straints after performing a metamodel modification. Although this approach can
work in our example because of its small size and simple constraints, manually
identifying and adapting affected constraints in more complex models is both
time consuming and error-prone.

3 Constraint Templates and Template Engine

We propose the use of constraint templates to automate the co-evolution of
models and their constraints. These templates are based on the metamodel and
constraints we want to evaluate. Basically, templates contain the static aspects
that constraints have in common (e.g., fragments of an OCL constraint string)
and define the points of variability. As models evolve, the templates are filled with
specific data – to reflect the model evolution – and instantiated to automatically
generate or update the constraints.

Next, we illustrate how constraint templates can be derived and how they are
managed by a template engine to automate constraint generation and updating.

3.1 Template Definition

Templates are written manually by metamodel authors who are also in charge of
maintaining and evolving metamodels. Before discussing the authoring process
in detail, we discuss the structure of a template, as shown in Table 1, and the in-
formation it requires. The instantiation context (IC) defines for which elements,
or combinations thereof, a template should be instantiated. The abstract con-
straint expression (ACE) is used to define the family of constraints generated
from the template. A constraint family consists of constraints that share some

Supporting the Co-evolution of Metamodels and Constraints 293

Table 1. Template structure

Instantiation context (IC)

Abstract constraint expression (ACE)

Variable definition (VD)

Instantiation information (II)

Data extraction expressions (DEE)

static aspects (e.g., the structure) and have some variable parts that differ for
each constraint. Thus, the ACE captures the static parts of the constraint family
and also identifies the locations of variability which are also defined explicitly
in the variable definition (VD). The VD declares which parts of the ACE are
interpreted as variables. To bind specific values to these variables, data has to
be read from specific elements that are available when the template is instan-
tiated. These elements are specified in the instantiation information (II). How
the values for the variables are extracted from the elements is declared in data
extraction expressions (DEE). Let us now show how we can write a template T 1
for the constraint family of R1 and R2.

Template for Cardinalities. The top-right section “Template definition” in
Fig. 3 illustrates the steps we perform next. The remainder of the figure depicts
template instantiation and change management processes we discuss later. Tem-
plate T 1, shown in Table 2, creates a constraint for every instance of Reference,
for example when the reference target is added to the class Communication

during the initial modeling of our sample metamodel. Therefore, we define the
IC of our template to be <Reference>. This means that we provide an in-
stance of Reference to the template in order to create a new constraint. Note
that templates are reusable for other metamodels that conform to the same
metametamodel. We define the ACE by using the desired expression of one
sample constraint of the constraint family (e.g., an OCL statement) and replac-
ing all concrete values that are specific for a single instance with variables. In
our example, we take the expression from the constraint R1 for the reference
Communication.target in Fig. 1a:

Table 2. Definition of template T1

IC: <Reference>

ACE: context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

VD: <C, R, MIN, MAX>

II: <Reference r>

DEE: <C:r.owner.name, R:r.name,

MIN:r.min, MAX:r.max>

Table 3. Definition of template T2

IC: <DerivedReference>

ACE: context C inv:

self.DR-> includesAll(

REFS->collect(x|self.{x}))
VD: <C, DR, REFS>

II: <DerivedReference dr>

DEE: <C:dr.owner.name, DR:dr.name,

REFS:dr.refs->collect(name)>

294 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

context Communication inv:

self.target->size()>=0 and

self.target->size()<=1

And replace the two values 0 and 1 with MIN and MAX for the minimum and
maximum number of connected elements, the context Communication with C

for the checked class, and the two occurrences of target with R for the used
reference. The result is the abstract constraint expression:

context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

as defined in Table 2 with the variable parts (VD) being <C, R, MIN, MAX>. As
shown in Fig. 3, the instantiation information of T 1 is <Reference r>.

Desired constraints are built by reading the min, max, and name values of
the passed reference r as well as the name of the class that owns the reference
owner.name. The data extraction expressions can then be written as r.min,
r.max, r.name and r.owner.name. In the DEEs, the variable to which the read
data should be assigned is written before each DEE followed by a colon. Note
that because of the single element instantiation context (i.e., we instantiate the
template for every instance of that type), only one element is available as instan-
tiation information, making both the II itself and the use of a prefix (i.e., “r”)
for the DEEs redundant. However, if more complex patterns were used in the
IC, the II would contain more than one element from which DEEs read data. For
example, we could have used the pattern <Class,Reference> as IC for T 1 to
generate a constraint for each reference that is actually added to a class. Then,
distinguishing the class and the reference in the II and using prefixes in DEEs
becomes necessary. We have now completed the template definition for T 1.

Template for Derived References. We use the same process to write tem-
plate T 2, as shown in Table 3, based on the constraint DR1 as an example for
the constraint family that checks derived references.

As a simplification, we replaced the set of references (Set{self.source,
self.target}->flatten()) from DR1 in Fig. 1a with a construct
(collect(x|self.{x})) that allows us to aggregate the results of different ref-
erences – based on a set of reference names – dynamically. When the template
is instantiated for the derived reference Communication.inv, the resulting con-
straint is:

context Communication inv:

self.inv->includesAll(

Set{‘‘target’’, ‘‘source’’}->collect(x|self.{x}))
The expression Set{‘‘target’’, ‘‘source’’}->collect(x| self.{x}) then
collects all the elements returned by the expressions self.target and
self.source.

Now that the templates T 1 and T 2 are written, let us discuss how templates
are instantiated automatically to generate constraints.

Supporting the Co-evolution of Metamodels and Constraints 295

3.2 Template Instantiation

To enable a template, it is passed to the template engine that observes a specific
model and handles template instantiation and updating. We will now discuss
how the template T 1 for checking reference cardinalities is instantiated when it
is applied to the metamodel in Fig. 1a.

For each occurence of the IC <Reference>, the template is instantiated once.
In Fig. 1a there are five references and thus T 1 is instantiated five times. How-
ever, we focus on a detailed discussion of the instantiation process for the ref-
erence Communication.target, as illustrated in the bottom box “Template in-
stantiation” in Fig. 3. The process starts with the instantiation information
(1). In this case, it containts the reference target. The data extraction ex-
pressions are applied to the element to retrieve the names (i.e., Communication
and target) and the cardinality values (i.e., 0 and 1). This is shown in Fig.
3(2). In order to allow later updates of the generated constraints, the constraint
scope is built automatically during the execution of the DEEs in step (2). This
scope constains all elements that are accessed by the DEEs. The scope for the
constraint R1 is therefore <target.owner.name, target.name, target.min,

target.max>. The variables in the ACE are then replaced with these values to
generate the constraint (3).

After applying our templates T 1 and T 2 to the initial version of our example
metamodel from Fig. 1a, template T 1 was instantiated once for every reference
(i.e., five times in total), template T 2 was instantiated once to generate the
constraint for the only derived reference inv in the metamodel.

At this point we have shown how templates are written and how they are
instantiated. We have seen that a template captures the static and the variable
parts of a family of constraints. Typically, a single constraint template is written
for every constraint family in the system. Combining templates is only necessary
in the rare cases where different constraint families should be merged into one. If
such a merge is required, template authors can build the corresponding template
by writing a template for the merged constraint families. Next, we will illustrate
how automatic constraint updates are performed.

3.3 Change Management

In Section 2 we discussed the effects of two metamodel evolutions on the cor-
rectness of constraints. We will now present how such metamodel evolutions are
handled automatically by the template engine.

Metamodel Evolution. After every modification of the metamodel, the tem-
plate engine is notified, as shown in the top-left box “Change management” in
Fig. 3. The change notification includes information about the changed meta-
model elements which the engine uses to determine the actions that are required
to adapt the set of current constraints to the new version of the metamodel.

After the addition of metamodel elements, the engine looks for templates
that can be instantiated (i.e., the types of the added model elements match the

296 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

instantiation context). When metamodel elements are deleted, constraints that
are based on these elements (i.e., their scope contains a removed element) are
also removed. A metamodel element modification triggers the update process
and the template engine uses the modified model element and the constraint
scopes to calculate the set of affected constraints that need updating.

As an example, consider the metamodel version shown in Fig. 2. We first re-
placed the upper bound value 1 of the constraint R1 with the value 100. The
change notification that is passed to the engine indicates that the metamodel
element target.max was modified. Since the scope of the constraint R1 contains
the modified element, as discussed above, the engine detects that this constraint
is affected by the modification. Because there are no other constraints that in-
clude the modified model element in their scope, R1 is identified as the only
constraint that needs to be updated.

The update is performed by executing the data extraction expressions that
added the modified metamodel element to the constraint’s scope, as depicted by
step (*) in Fig. 3, and replacing the outdated values in the constraint expression
with the newly retrieved ones. In our example, target.max now returns the
value 100. Replacing the old value results in the new constraint expression

context Communication inv:

self.target->size()>=0 and

self.target->size()<=100

And the constraint co-evolution was successfully completed. Note that currently
we delete the existing constraint and re-instantiate the template to generate
an updated constraint. The update of single values or logical fragments in the
existing constraints will be addressed in future work.

The second metamodel modification we have to consider is the addition of the
new derived reference all to Component. When the template engine is informed
that a derived reference has been added, it automatically discovers that this
element matches the instantiation context of template T 2. Therefore, template
instantiation is triggered and the instantiation information <all> is used by the
data retrieval expressions to retrieve the values that are then used to replace the
variables in T 2 in order to produce the required constraint.

Finally, let us consider what would happen if we remove the derived reference
Communication.inv in another evolution step. In that case, the template engine
would identify DR1 as the only constraint that includes the removed element in
its scope. Therefore, it would remove the no longer needed constraint DR1 from
the metamodel automatically.

Model Evolution. As we have discussed in Section 2.1, changes of a model typ-
ically lead to a re-validation of affected constraint instances. With our approach,
such changes can affect the scopes of generated constraint instances. For exam-
ple, imagine the addition of a new component as a target of ResultComm in Fig.
1b. Indeed, this may affect the consistency status of a constraint instance of R1.
However, since such changes are handled entirely by the employed consistency
checker, we omit a detailed discussion here and refer to [8].

Supporting the Co-evolution of Metamodels and Constraints 297

4 Evaluation and Analysis

We evaluated the applicability and the performance of our approach with a case
study that was done using a prototype implementation.

4.1 Prototype Implementation

For the evaluation, we developed the Cross-Layer Modeler (XLM) [11]. This tool
allows working with models and their metamodels at the same time, which means
that manipulations of the metamodel have immediate effects on the conformance
of the model. The XLM leveraged from our previous work on the Model/Analyzer
[8, 14] which supports efficient and scalable incremental consistency checking of
arbitrary design constraints.

We extended the Model/Analyzer by adding an incremental template engine
and the corresponding infrastructure to support the incremental creation, dele-
tion and modification of constraints (based on meta model changes) which the
Model/Analyzer then incrementally validates against model changes. Ten sample
templates from different domains are available at the tool website [11].

4.2 Case Study: UML

As our case study, we used templates and the Cross-Layer Modeler tool to au-
tomate constraint generation and updates for the UML. We chose UML as the
subject because it is a well known and commonly used language for modeling
software systems. We argue that its size and high level of complexity make it ideal
for our purposes because the sample evolutions we performed simulate typical
evolutions of metamodels in general. Additionally, numerous industrial software
models are available [16]. We ran tests with 21 models with sizes from 3,077 to
36,205 model elements (i.e., instances of UML elements) and with different char-
acteristics for our experiments. Every test was performed 100 times on an Intel
Core i5-650 machine with 8GB of memory running Windows 7 Professional. The
median and average values were used for analysis.

We used templates to automatically create constraints that check the struc-
tural integrity of UML model elements (e.g., modeled classes). Structural in-
tegrity is given if a model element provides the structural features as defined in
the UML metamodel. Our constraints are based on the ECore metamodel and
check the number of assigned elements as well as the assigned elements’ types for
every reference and attribute in the UML (e.g., every instance of NamedElement
must have exactly one String object assigned as its name). We classify the
changes in our study in three categories.

Category I. Metamodel Evolution. Different metamodel modifications and
common refactorings have been discussed in literature [4, 17–21]. During most
common metamodel evolutions, references or attributes are added, removed, or
are modified (e.g., the cardinality of an attribute is changed or an attribute
is moved to another class). Therefore, we performed these kinds of evolutions

298 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

(a) Metamodel evolutions. (b) Template addition/removal.

Fig. 4. Evaluation results

with the UML metamodel. From this point on we will use the term property for
references and attributes alike.

Scenario 1. Add new property. In the first scenario, a new property was added
to every single element of the UML metamodel, which required the generation of
a new constraint (as we discussed in Section 2.2 where we added a new derived
reference to our sample metamodel). We investigated the total time required for
performing the metamodel change, the required co-evolutions and the valida-
tion of the model with the new constraint. Note that for our statistics we only
considered those changes that created constraints that could actually be vali-
dated with at least one model element (e.g., we ignored the addition of a new
reference to UseCase if the model did not include any use cases). Fig. 4a shows
the required processing times for changes that affected different numbers of con-
straint instances. 99% of all modifications took less than 166ms to finish and only
0.15% of all performed changes took more than 500ms. On average, changes took
12.5ms and the generated constraint was validated with 201 constraint instances
in the model. For the addition of elements in this test we observed a Pearson
correlation coefficient of 0.845 between the required time and the number of
required validations. The correlation between T and the model size S, P (T, S)
was 0.099, which indicates that the processing time strongly depends on the
validation effort needed for the new constraint and that it is independent from
the model size.

Scenario 2. Remove existing property. In the second scenario, each test run
started with the unmodified UML metamodel and exactly one property was
removed, meaning that exactly one constraint became obsolete and was removed
from the consistency checker. Again, only changes of metamodel elements that
were actually used in the model were captured. 99% of all modification took
less than 38.5ms. Only 0.1% of the modifications took longer than 250ms. On
average, element removal took 4.5ms and 202 constraint instances were removed
with the obsolete constraint. Fig. 4a shows that property removal is always faster
than addition because there is no need for validating any constraint instances.

Scenario 3. Modify existing property. For these tests, the cardinality as well
as the name of every existing property in the UML were changed. 99% of
the modification that caused an update of actually validated constraints were

Supporting the Co-evolution of Metamodels and Constraints 299

processed in less than 180ms and 0.1% took more than 1,000ms. For the mod-
ification of elements we observed a correlation coefficient of 0.734 between the
required processing time and the number of validations.

Category II. Model Evolution. The incremental consistency checker that is
used by the Cross-Layer Modeler, the Model/Analyzer, is highly scalable [16].
We previously evaluated the approach on 34 models with model sizes of up to
162,237 model elements and 24 types of consistency rules (constraints). Empir-
ical evaluation showed that the consistency checking part requires only 1.4ms
to re-evaluate the consistency of the model after a change for typical UML
consistency and well-formedness constraints [22]. The data indicates that the
additional change processing infrastructure does not impose a significant perfor-
mance penalty.

Category III. Template Addition and Removal. Even though adding, re-
moving, or changing a template is a task performed less often than metamodel
evolutions, we still investigated this aspect. Since the addition of a new tem-
plate requires a full scan of the metamodel to create all possible constraints and
a complete initial validation of the model we expected this task to be more time
consuming than processing changes incrementally. The processing times for the
addition and removal of the templates we used in Category I to the UML meta-
model that caused the generation or removal of different numbers of constraint
instances are shown in Fig. 4b. Adding a template took less than 5,700ms in
90% of our tests, in only 8% of the tests it took more than 10s. On average, the
addition of a template took 2,818ms and created constraints that were validated
31,936 times. Removing a template does not require validations of constraints,
thus this task is performed in less than 1,600ms in 90% of our tests. Only 5% of
template removals take more than 3s.

Summary. The results of the representative metamodel evolutions clearly in-
dicate that our approach is applicable to large and complex metamodels and
that it is fast enough to deliver instant feedback about model consistency after
metamodel changes. Processing changes that occur frequently during early de-
velopment phases takes only milliseconds with our approach in most cases and
even the worst case values are acceptable considering the fact that they were still
below 16s and were reached in less than 1% of all changes. Although changing
templates is slightly more expensive because of the inevitable processing of the
entire model, the values are still acceptable for a rarely performed task.

4.3 Applicability

In the presented examples, we have illustrated how our approach performs co-
evolution of model constraints when metamodel changes occur. However, our
approach is not limited to metamodels as the source of constraints. Quite the
contrary, any model can be used to trigger template instantiation and the gener-
ated constraints may restrict any kind of model – even metamodels [23]. To date,
various sample templates for different metamodels and models are available [11],
thus we are confident that the approach is generally applicable.

300 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

Note that evolving constraints also enables repair technologies that fix de-
tected inconsistencies (e.g., [24–26]). Therefore, our approach provides a foun-
dation for providing guided or even automatic co-evolution of metamodels and
models based on evolved constraints.

5 Related Work

There has been an extensive research activity in models and their evolution.
Here we focused on those closest to our work and grouped them in three themes.

Metamodel and Model (Co-)evolution. The efficient, and ideally auto-
mated, (tool-)support for metamodel evolution and the corresponding co-evolution
of conforming models was identified by Mens et al. in 2005 as one of the ma-
jor challenges in software evolution [27]. Since then, various approaches have
been proposed to deal with this challenge. Wachsmuth addresses the issue of
metamodel changes by describing them as transformational adaptations that
are performed stepwise instead of big, manually performed ad hoc changes [21].
Changes to the metamodel become traceable and can be qualified according to
semantics- or instance-preservation. He further proposes the use of transforma-
tion patterns that are instantiated with metamodel transformations to create co-
transformations for models. Cicchetti et al. classify possible metamodel changes
and decompose differences between model versions into sets of changes of the
same modification-class [28]. They identify possible dependencies that can occur
between different kinds of modifications and provide an approach to handle these
dependencies and to automate model co-evolution.

Herrmannsdoerfer et al. also classified coupled metamodel changes and inves-
tigated how far different adaptations are automatable [29]. One aspect that these
approaches have in common is that they are based on decomposing evolution
steps into atomic modification for deriving co-adaptations. Our approach is also
based on atomic modifications that are handled individually to perform neces-
sary adaptations incrementally. However, we do not try to automate co-evolution
of metamodels and models in the first place. Instead, the co-evolution of meta-
models and constraints enables tool users to perform adaptations of a model
with guidance based on specific constraints and their own domain knowledge.

Wimmer et al. follow a different approach by merging two versions of a meta-
model to a unified metamodel and then applying co-evolution rules to the mod-
els [30]. They instantiate new metaclasses and remove existing elements that are
no longer needed. At first, they encountered problems regarding typecasts and
instantiation so they had to change some co-evolution rules. XLM can handle the
instantiation of created metaclasses as well as arbitrary typecasts of instances.

In terms of constraint co-evolution, Büttner et al. discuss various metamodel
modifications and how they affected constraints [13]. They describe how OCL
expressions can be transformed to reflect metamodel evolution. We encountered
some of the issues they identified during the evolution of our running example,

Supporting the Co-evolution of Metamodels and Constraints 301

for example the transition from single-object to collection values and vice versa
because of multiplicity changes which is handled automatically in XLM.

Flexible and Multilevel Modeling. Atkinson and Kühne identified several
issues in the field of multilevel (meta-)modeling, namely the so-called shallow
instantiation of the UML [31] that forced us to use a graph-oriented model
in XLM. They discussed different approaches to overcome these issues like the
concept of deep instantiation where instances can be types at the same time; an
approach we used in our tool’s graph model. Ossher et al. lately presented the
BITKit tool [3] that allows domain-agnostic modeling and on-the-fly assignment
of visual notations to dynamically defined domain types. This approach is also
implemented in our tool where the type of a model element can be changed at
any time.

6 Conclusions and Future Work

This paper presented an approach that uses constraint templates and an auto-
mated template engine to address the issue of co-evolving metamodels and con-
straints. We illustrated how constraint templates can be written and constraints
are generated from them. Moreover, we discussed how automatic co-evolution
of constraints is achieved and developed a prototype implementation. We per-
formed a case study with UML as an example of a sophisticated metamodel
and 21 industrial UML models that clearly showed that our approach is applica-
ble for complex metamodels. The approach is scalable and processing times for
co-evolution are primarily affected by the number of required validations after
constraint generation or update.

For future work, we plan to investigate the possible benefits of using the
approach not only for metamodel-dependent constraints but also for constraints
that primarily rely on domain-knowledge. Moreover, we want to expand the
approach so that not only constraints but also new templates can be generated
through template instantiation.

Acknowledgments. The research was funded by the Austrian Science Fund
(FWF): P21321-N15, the EU Marie Curie Actions – Intra European Fellow-
ship (IEF) through project number 254965, and FWF Lise-Meitner Fellowship
M1421-N15.

References

1. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

2. Manders, E.-J., Biswas, G., Mahadevan, N., Karsai, G.: Component-oriented mod-
eling of hybrid dynamic systems using the generic modeling environment. In:
MOMPES 2012, pp. 159–168 (2006)

302 A. Demuth, R.E. Lopez-Herrejon, and A. Egyed

3. Ossher, H., Bellamy, R.K.E., Simmonds, I., Amid, D., Anaby-Tavor, A., Callery,
M., Desmond, M., de Vries, J., Fisher, A., Krasikov, S.: Flexible modeling tools
for pre-requirements analysis: conceptual architecture and research challenges. In:
OOPSLA, pp. 848–864 (2010)

4. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009)

5. Object Management Group. Unified Modeling Language (UML),
http://www.uml.org/

6. Pardillo, J.: A systematic review on the definition of UML profiles. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 407–422. Springer, Heidelberg (2010)

7. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and
scalable consistency checking on product line variability models. In: ASE, pp. 63–72
(2010)

8. Reder, A., Egyed, A.: Model/analyzer: a tool for detecting, visualizing and fixing
design errors in UML. In: ASE, pp. 347–348 (2010)

9. Object Management Group. Object Constraint Language (OCL),
http://www.omg.org/spec/OCL/

10. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Automatically generating and
adapting model constraints to support co-evolution of design models. In: ASE,
pp. 302–305 (2012)

11. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Cross-layer modeler: A tool for
flexible multilevel modeling with consistency checking. In: ESEC/SIGSOFT FSE,
pp. 452–455 (2011), http://www.sea.jku.at/tools/xlm

12. Eclipse Foundation. Eclipse Modeling Framework (EMF),
http://eclipse.org/modeling/emf/

13. Büttner, F., Bauerdick, H., Gogolla, M.: Towards transformation of integrity con-
straints and database states. In: DEXA Workshops, pp. 823–828 (2005)

14. Egyed, A.: Instant consistency checking for the UML. In: ICSE, pp. 381–390 (2006)
15. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Incremental detection of model

inconsistencies based on model operations. In: van Eck, P., Gordijn, J., Wieringa,
R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 32–46. Springer, Heidelberg (2009)

16. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. IEEE Trans. Software Eng. 37(2), 188–204 (2011)

17. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: EDOC, pp. 222–231 (2008)

18. Hassam, K., Sadou, S., Gloahec, V.L., Fleurquin, R.: Assistance system for OCL
constraints adaptation during metamodel evolution. In: CSMR, pp. 151–160 (2011)

19. Marković, S., Baar, T.: Refactoring OCL annotated UML class diagrams. In:
Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 280–294.
Springer, Heidelberg (2005)

20. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML models. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148. Springer,
Heidelberg (2001)

21. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

22. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic
constraints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 203–217. Springer, Heidelberg (2010)

http://www.uml.org/
http://www.omg.org/spec/OCL/
http://www.sea.jku.at/tools/xlm
http://eclipse.org/modeling/emf/

Supporting the Co-evolution of Metamodels and Constraints 303

23. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Constraint-driven modeling through
transformation. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 248–263. Springer, Heidelberg (2012)

24. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: ASE, pp. 99–108 (2008)

25. Reder, A., Egyed, A.: Computing repair trees for resolving inconsistencies in design
models. In: ASE, pp. 220–229 (2012)

26. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: ICSE, pp. 455–464 (2003)

27. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: IWPSE, pp. 13–22 (2005)

28. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing dependent changes in cou-
pled evolution. In: ICMT, pp. 35–51 (2009)

29. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 645–659. Springer,
Heidelberg (2008)

30. Wimmer, M., Kusel, A., Schönböck, J., Retschitzegger, W., Schwinger, W., Kappel,
G.: On using inplace transformations for model co-evolution. In: MtATL. INRIA
& Ecole des Mines de Nantes (2010)

31. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: UML 2001,
pp. 19–33 (2001)

Model Checking of UML-RT Models

Using Lazy Composition

Karolina Zurowska and Juergen Dingel

Queen’s University
School of Computing
Kingston, ON, Canada

{zurowska,dingel}@cs.queensu.ca

Abstract. Formal analysis of models is an important aspect of the
Model Driven Development (MDD) paradigm. In this paper we intro-
duce a technique to analyze models with hierarchically organized and
asynchronously communicating components as found in, e.g., UML-RT.
Typically, the more components are composed during analysis, the less
scalable it becomes. In our technique we reduce composition by lever-
aging the communication topology and the property to be checked. To
this end we introduce an extension of Computation Tree Logic (CTL)
to express properties of models and we show an algorithm to check such
properties. In the algorithm, components are represented by their sym-
bolic execution trees and their composition is lazy, i.e., only performed
when necessary. To demonstrate some of the benefits of the technique,
its implementation for UML-RT models and case studies are discussed.

1 Introduction

One of the promises of MDD is the opportunity to verify models early on in
the development process. This paper presents a technique that takes a step
towards fulfilling this promise in the context of UML-RT. UML-RT originated
from ROOM [21] and now is a proper profile of UML 2 [6]. It is supported by, e.g.,
IBM Rational Software Architect Real Time Edition (IBM RSA RTE)1 [3] and,
with some minor differences, in eTrice [1]. As opposed to several approaches
to verify statecharts including, e.g., [19,15], our technique avoids translation
of models into the input language of an existing model checker, which often
introduces additional complexity to the analysis and the interpretation of the
results. Instead, UML-RT models are analyzed with the help of a formal language
designed to capture the core features of UML-RT, such as modularity, hierarchies
and communication.

Many of the state-based MDD modeling languages based on UML 2 [6] sup-
port modularity, that is, models are built from components (called, e.g., subsys-
tems, modules or capsules [3,2]). In this work, we present an approach to model
checking these models that uses this structure to speed up the analysis.

1 IBM and Rational are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 304–319, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model Checking of UML-RT Models Using Lazy Composition 305

Just as in other state-based modeling notations, UML-RT allows the defini-
tion of model structure using containment and connectors: containment shows
which capsule contains other capsules and connectors show the communication
topology, i.e., which capsule can communicate with which other capsules. Our
analysis leverages this information together with the structure of the formula to
be checked to improve performance by incorporating components into the search
only to the extent that they can influence the satisfaction of the formula. More
precisely, only components which can impact the validity of the formula are fully
explored; other components are explored only to the extent that they can in-
fluence the behavior of these formula-relevant components through connectors.
The net result of these optimizations is that in the best case, model structure
and formula allow even large models to be checked efficiently. In the worst case
(e.g. if all components are mentioned in a formula), though, a full exploration is
necessary and our technique brings no savings.

The analysis is based on an on-the-fly symbolic execution of the model with
lazy composition as described above. The execution yields a symbolic represen-
tation of the state space in the form of a symbolic execution tree (SET) which
can be substantially more concise than a concrete one (e.g., an infinite concrete
state space may be representable with a finite SET). The execution operates
on a formal internal representation of the model, called Functional Finite State
Machines (FFSMs), which has been designed to capture key features of state-
based modeling languages such as UML-RT including nesting of components,
state machines with actions code, and asynchronous communication between
components.

The analysis builds on our previous work on the symbolic execution of UML-
RTmodels [26,27]. We note that neither the present, nor our previous work [26,27]
is limited to UML-RT, but can be applied to all models that can be represented
with FFSMs.

Section 2 briefly discusses UML-RT. Section 3 presents a logic (an extension
of Computation Tree Logic [10]) to query symbolic execution trees for UML-RT
models. An algorithm to check formulas in this logic and a prototype together
with some case studies are described in Sections 4 and 5, respectively. Related
work is surveyed in Section 6.

2 UML-RT Models and Their Symbolic Execution

2.1 Overview of the UML-RT Language

The structure of UML-RT models is described in terms of components called
capsules, which are highly encapsulated active classes. They may be hierarchical
(nested), because a capsule may contain instances of other capsules called parts.
The communication between capsules is signal-driven and uses ports. A port has
a type that is a protocol, which gathers signals sent or received by a capsule
through this port.

Example 1. Figure 1(a) presents the structure of a capsule Controller. The cap-
sule has 2 parts carLightsFirst and carLightsSecond, both instances of the

306 K. Zurowska and J. Dingel

(a) Structure (b) State Machine

Fig. 1. A structure and behavior of capsule Controller. Labels of transitions are of
the forms: port.signal or port.signal/action code.

CarLights capsule. The CarLights capsule (structure is omitted here) contains
a timer (lightsTimer) and two external ports (manager and setting). The parts
communicate with Controller through ports managerFirst, managerSecond and
settingsFirst, settingsSecond, respectively.

The behavior of each capsule is specified with a UML-RT State Machine, which
is a variant of UML 2 State Machines [6]. A UML-RT State Machine has states
and transitions which can be guarded and which can contain actions. Transitions
are triggered by signals received through ports of a capsule. The actions in UML-
RT are expressed with the help of action language. This language can be C++,
Java or UAL (implementation of ALF [7]).

Example 2. Figures 1(b) and 2 show the UML-RT State Machines. The state
machine for Controller initializes two instances of CarLights and then con-
tinuously switches between red and green lights without any synchronization,
because the lights are supposed to be independent. Several transitions have ac-
tions that send signals (action code: port.signal().send()). For instance, in
the transition triggered by signal ready() received on port managerFirst, the
action is managerFirst.toGreen().send(), which sends signal toGreen to part
carLightsFirst, because this part is connected to the port managerFirst. The
UML-RT State Machine for CarLights shown in Figure 2 waits for signal start
and then cycles through the colours of lights. The cycle is managed with signals
toGreen and toRed received on port manager. This capsule uses timers, which are
set in action code using the method informIn(delay), where delay is the number
of seconds after which the timer times out and generates timeout signal.

Model Checking of UML-RT Models Using Lazy Composition 307

Fig. 2. UML-RT State Machine of CarLights

Formal Representation with Functional Finite State Machines. A Func-
tional Finite State Machine (FFSM) [26,27] represents a UML-RT State Machine
with functions used to summarize action code on transition and in states. These
functions are obtained through the symbolic execution of the action code. FFSMs
describe behaviour of a module (capsule) and its parts. The input/output signals
are connected directly with parts (ports are omitted). The work presented in this
paper has been defined for FFSMs, so any modeling language that translates to
the communicating FFSMs can benefit from the proposed technique.

2.2 Symbolic Execution of UML-RT Models

The technique proposed in [26,27] starts with the symbolic execution of non-
composite capsules, realized through the symbolic execution of their UML-RT
State Machines [26]. The result is a symbolic execution tree SET , in which states
have the structure as in Definition 1.

Definition 1. A symbolic state is a tuple s = (l, v, pc), where l is a location (in
a UML-RT State Machine), v is a valuation of attributes (variables of a given
capsule, which may be accessed at any point of execution) and pc is a set of path
constraints, that is, constraints on received inputs, which must be satisfied to
reach this state.

Transitions between symbolic states are labeled with input and output actions,
which may contain variables. Variables associated with input actions get a sym-
bolic value, which is used later whenever necessary. During symbolic execution
similar states which have the same location, the same valuation of variables and
the same or stronger constraints, are discovered with the help of a subsumption
relation, which makes the tree finite.

Non-trivial UML-RT models contain parts, each of which has a behavior given
as a UML-RT State Machine. In [27] we showed a technique to compose symbolic

308 K. Zurowska and J. Dingel

execution trees, so that we can symbolically execute composite UML-RT models.
The proposed composition is based on asynchronous communication between
parts and follows the hierarchical structure of a model, starting at the leaves
of the hierarchy (i.e., non-composite capsules). The result of composition is a
composite symbolic execution tree with states defined as follows.

Definition 2. Let C be a set of all capsules in a model. Let C ∈ C be a capsule,
whose behavior is described by state machine SM ; let SET be the symbolic
execution tree of SM and let P be the set of parts in C. A composite symbolic
state is a tuple css = (s, q, p), where:

- s is a symbolic state in SET or a state that resulted from a substitution of
some of the variables in C. This substitution models the binding of variables
to input variables,

- q is a queue of input signals along with the values of their input variables
received by this capsule. The received values may be used later on when
creating a new symbolic state for the capsule,

- p is a function p : P → S, where S is a set of all composite symbolic execution
states for C. The function p maps parts P to their composite symbolic states
(in case of non-composite capsules this function is empty).

3 Logic to Query UML-RT Models

In order to define a language that can express properties of executions of FFSMs
we will use an extension of Computation Tree Logic (CTL) [10]. This extension
starts with Definition 3 of atomic propositions in the logic.

Definition 3. Let C be a capsule with a state machine SM and css = (s, q, p)
be a composite symbolic state for C (as in Definition 2). An atomic proposition
ap ∈ AP is:

- l: a location of SM , which is satisfied if s contains that location,
- (cst): a constraint over attributes of SM , which is satisfied if the path con-
straints in s imply cst,

- <in1(val1),in2(val2),...> : where in1,in2,... are input signals and val1,

val2,... are mappings of received input variables to their values. Each input
signal (or a value) can be substituted with any, which represents any signal
(any value). This proposition is satisfied if the contents of the queue q is as
specified,

- in(val i)[out1(val o1),...]: where in is an input signal and val i is a map-
ping of its variables to their values, out1, out2,... are output signals and
val o1, val o2, ... are mappings of output variables to expressions that
describe their values. As in the previous proposition, signals or mappings
can be substituted with any. This proposition is satisfied if there exists an
output transition from css with input signal in(val i) and the sequence of
output signals out1(val o1),...,

Model Checking of UML-RT Models Using Lazy Composition 309

Algorithm 1. An outline of an algorithm check(f, C).
Require: formula f , a capsule C
Ensure: true if f is satisfied in C and false otherwise

init parts ← init parts(f,C)
(to explore, rcset) ← init exploration(init parts)

3: (atomic prop, formulas) ← translate and divide formula(f)
while to explore is not empty do

css ← remove an element from to explore
6: new to explore ← explore(top, css, init parts, init parts, rcset)

add new to explore to to explore
result ←label(f, atomic prop, formulas, label, rcset,new to explore)

9: if result
= null then
return result

- ap @ part: where ap is an atomic proposition and part is a part in C. This
proposition is satisfied if ap is satisfied in state p(part), or

- NOT ap, ap1 AND ap2, ap1 OR ap2, ap1 IMPLY ap2: are the usual logical con-
nectives and ap1,ap2,ap are atomic propositions.

In order to relate states and atomic propositions temporally we will use the
standard CTL connectives: EF, EG, EU and AF, AG, AU and their compositions with
logical connectives. These will constitute a set of formulas F with the standard
semantics [10] adapted for symbolic execution trees.

Example 3. The following formulas describe some of the properties of the model
introduced in Figure 2 and 1:

- AF(Green @ carLightsFirst): checks whether the first car lights always even-
tually reaches a state with green lights (is proven true in our tool),

- AF(any(any)[manager.ready()] @ carLightsFirst): checks whether the first
car lights always eventually sends the signal ready to the manager (is proven
true in our tool).

4 Algorithm to Check Formulas

In this section we will describe an algorithm to check the satisfaction of formulas
F expressed in the logic from Section 3. An outline of the algorithm is shown
in Algorithm 1.It starts with the initialization (lines 1-3), followed by the explo-
ration loop (line 4). In the loop, a state to be explored is removed from the list
to explore. The exploration of this state in line 6 results in a set of new states
new to explore. These states are used during the labeling in line 8. After the
labeling step, if formula f can be proved or disproved, the result is returned.

Initialization in Algorithm 1 is performed in three main stages:

1. Collect initial parts (line 1). Gathering initial parts in init parts is achieved
by traversing the input formula f until atomic propositions are reached.
Parts mentioned in conjunction with @ are included in init parts, as well as
parts that, according to the communication topology, generate input actions
mentioned in propositions describing queues and input/output.

310 K. Zurowska and J. Dingel

Algorithm 2. An outline of explore(top , css , init parts , expl parts , rcset).

Require: the top top level part of a composite symbolic state css = (s, q, p), a current reduced
composite symbolic tree rcset

Require: a set of initial parts init parts and a set of currently explored parts expl parts
Ensure: new to explore is a set of newly generated states and rcset is a tree updated after explo-

ration
new to explore ← ∅
if top ∈ expl parts then

3: for all transition in outgoing transitions from s do
trigger ← get trigger of transition
if trigger is external then

6: new state ← external(transition, css, rcset)
trigger part ← get part generating trigger
if trigger part ∈ (init parts ∪ expl parts) then

9: new state ← synch(trigger part, transition , css)
else

new states ← pull(trigger part, top, trigger , css, init parts, expl parts)
12: new to explore ← new to explore ∪ new states

new to explore′ ← drop signal(css)
new to explore ← new to explore ∪ new to explore′

15: for all part ∈ domain of p do
new to explore′′ ← explore(part, p(part), init parts, expl parts, rcset)
new to explore ← new to explore ∪ new to explore′′

18: return new to explore

2. Initialization of a reduced composite symbolic execution tree rcset (line 2).
The root of this tree (which is added to the set to explore also returned
from this procedure) is recursively constructed by taking the root states of
all symbolic execution trees generated for parts in the initial set. If a part is
not in the initial set the dummy state null is used.

3. Translation of the formula and collection of atomic propositions (line 3).
The translation is performed so that a formula includes only AF, EU and EX

temporal connectives, since they are sufficient to represent all other temporal
formulas [10]. Division of a translated formula into its subformulas is done in
the standard way as described in [10] until atomic propositions are reached.

Example 4. Consider the formula AF(Green @ carLightsFirst) (from Example 3).
The traversal of this formula returns init parts = {carLightsFirst}. The initial
state of the reduced composite symbolic tree rcset for the formula and the capsule
Controller is given in Figure 3 as the first state. The first two lines in the state
describe the top level capsule Controller: the null state (since this part is not in
the init parts) and the contents of thequeue, respectively. In thenext lines theparts
included in Controller are represented in the similar fashion. For the capsule and
for the formula, only the part carLightsFirst is initialized, which is represented
by a location initial (the initial pseudostate in Figure 2), some initial variable
bindings and an empty set of path constraints.

4.1 Exploration Step

Algorithm 2 outlines the main steps of the exploration (in line 6 in Algorithm 1)
of a given composite symbolic state css = (s, q, p). First, the exploration is
performed for a top level part of css (lines 2 - 14) and then subsequently for the

Model Checking of UML-RT Models Using Lazy Composition 311

Algorithm 3. pull(trigger part , receive part , trigger , css , init parts , expl parts , rcset).
Require: trigger generated by trigger part and received by receive part
Require: a composite symbolic state css and sets init parts and expl parts
Ensure: explored is a set that, if possible, contains states with generated trigger in a queue.

initial css ← get current symbolic execution state for trigger part in css
if initial css = null then

3: initial css ← initialize part trigger part in css
to explore pull ← {initial css}
explored ← ∅

6: while (to explore pull
= ∅) do
current css ← remove an element from to explore pull
new to explore ← explore(top, current css, init parts, {trigger part}, rcset)

9: for all s ∈ new to explore do
q ← queue for receive part in s
if trigger not in q then

12: to explore pull ← to explore pull ∪ {s}
explored ← current css

return explored ∩ { leaves of rcset}

parts in the domain of its p function (the recursive call in line 16). If the top
level part top is in the initial parts, the full exploration follows.

The full exploration has two phases. In the first phase (lines 4–12) each out-
going transition from a current symbolic state s is considered. If a triggering
signal trigger for this transition is external (i.e., it connects the top level capsule
to its environment), the external procedure is executed. In this procedure a new
composite symbolic execution state new state is generated, in which s is changed
to the target state of the transition. Since the triggering signal is external, its
presence in the queue is not required. Intuitively, the environment is simply as-
sumed to be capable of generating this signal. If trigger is not an external signal
and the part that can generate it (trigger part) is in the initial set of parts, then
the procedure synch is performed (line 9). In this procedure the current queue q
is checked for the signal trigger , and if the signal is there, a new composite sym-
bolic execution state new state with an updated queue and state is generated.
However, if the triggering part is not in init parts , then trigger must be pulled
from this triggering part, as explained below. In the second phase of the full
exploration, the procedure drop signal is performed. Dropping the input signal
happens, if the head of the queue has not been matched with any of the triggers
of all outgoing transitions. The details of synch, external and drop signal realize
the composition of symbolic execution trees and are omitted here – they can be
found in [27].

The most distinguishing feature of the exploration is the pull operation. This
operation, outlined in Algorithm 3, is required if a part needs an input signal
from another part that is outside the initial set. First, trigger part is initialized
if this is the first time the part is pulled (lines 2–3). Then the exploration of
trigger part in lines 6–13 follows. The exploration uses a set to explore pull and
iterates through the composite symbolic execution states in it. Each such state
is explored in line 8, which is limited only to the part that is currently pulled,
because only trigger part is the parameter to the explore in line 8. Note that this
call to explore procedure takes care of possible chain of events, by the recursive
calls to pull. Queues in newly generated composite states are checked whether

312 K. Zurowska and J. Dingel

they contain the requested trigger , and, if they don’t, the composite states are
further explored. If there are no more states to explore, the result of the pull, that
is, the set of newly explored leaves of the rcset , is returned. By returning only
leaves of this partial exploration tree, the intermediate states generated when
checking for trigger are not fully explored later, since they represent interactions
of parts that cannot influence the satisfaction of the formula.

Example 5. In Figure 3 the states after an exploration step are shown. The
default() transition initializes the part carLightsFirst to its first location Blink,
the other parts remain keep the null state. The second transition is labeled with
PULL and this represents the situation in which Controller must be checked for
the input managerFirst.start(). Because this is the first time this part is pulled,
it is initialized and the default transition is taken. The code associated with
this transition (see entry actions of Figure 1(a)) outputs the required signal
managerFirst.start(). Because in the next state the signal is in the queue of the
carLightsFirst, the pull operation is finished.

Fig. 3. Exploration step for Controller and AF(Green @ carLightsFirst)

4.2 Labeling Step

In order to check the satisfiability of formulas introduced in Section 3, we ex-
tended the original CTL model checking algorithm [10]. The main goal of this
extension is to take advantage of the step-by-step exploration and to check for
satisfaction after each step. As in the original algorithm we use the labeling
function label : S → P(F ∪ AP), which maps each state in a tree to a set of
formulas and atomic propositions satisfied in this state.

Model Checking of UML-RT Models Using Lazy Composition 313

Algorithm 4. label(f, atomic prop, subformulas , label , rcset , discovered).
Require: a set of atomic propositions atomic prop and formulas formulas with a function label
Require: a current reduced composite symbolic tree rcset and a set of newly discovered states

discovered,
Ensure: returns true or false – the satisfaction of a formula f or null

changed ← discovered
for all state ∈ changed do

3: for all p ∈ atomic prop do
check atomic(st, p, label)

while changed
= ∅ do
6: for all st ∈ changed do

for all f ∈ subformulas do
remove st from changed

9: changed state ← check formula (f, st , label)
changed ← changed ∪ {changed state}

if f ∈ label(root of rcset) or (¬f) ∈ label(root of rcset) then
12: return true(or false)

else
return null

The outline of a labeling algorithm, as used in line 8 of Algorithm 1, is shown
in Algorithm 4. The algorithm is divided into two main parts. In the first part
(lines 2 –4) the satisfaction of atomic propositions only in newly discovered
states is checked, because it can be determined right after a composite state
is generated. The states with a changed labeling function are gathered in set
changed . These states are used in the second part of the algorithm to check the
satisfaction of formulas (lines 5–10). This check continues until there are no more
changes in the labeling functions. After labeling, the labels of the root of the tree
are inspected to check whether they contain the main formula or its negation,
which determines the satisfaction or dissatisfaction of the whole formula.

Checking the satisfaction of atomic propositions (line 4 in Algorithm 4) is
performed for each proposition and for each newly discovered state. If the checked
proposition holds, then label is updated with this proposition, if not, with its
negation. Labeling states with formulas (line 9 in Algorithm 4) is performed for
each changed state and is based on the shape of the formula.

Example 6. In case of the reduced composite tree in Figure 3, the truth of AF

(Green @ carLightsFirst) for the capsule Controller cannot be determined, be-
cause the atomic proposition Green @ carLightsFirst does not hold in any of
the shown states and the last state has not been explored yet. However, the
satisfaction is proved as soon as state Green is reached in part carLightsFirst

along all paths.

4.3 Correctness of the Algorithm

A composite symbolic execution tree of a capsule C, denoted with CSET (C), is
a tree that represents the full composition of C and contains all its execution
paths and symbolic execution states. The procedure in Algorithm 1 generates a
reduced composite symbolic execution tree RCSET (C, f) required to check the
satisfaction of f in C. This reduced tree may exclude some execution states of C.
In order to show the correctness of Algorithm 1 we need to prove the following:

314 K. Zurowska and J. Dingel

Theorem 1. Let C be a capsule that has a composite symbolic execution tree
CSET (C) and let f be a formula. Also, let RCSET (C, f) be the reduced compos-
ite symbolic execution tree for C and f as generated by Algorithm 1. We have
that f is satisfied in CSET (C) iff f is satisfied in RCSET (C, f).

In the proof of Theorem 1 we must show that states which are not included in
RCSET (C, f) cannot change the satisfaction of f . First, note that the parts of
the model mentioned directly or indirectly (as generators of input signals) in the
formula f (called initial parts) are included in the construction of RCSET (C, f).
Then, note that the pull operation adds all paths in RCSET (M, f), which in-
volve communication with non-initial parts as necessary during the execution.
In turn, all changes in the satisfaction of atomic propositions in f are included in
RCSET (C, f). This means that if an atomic proposition starts to hold or stops
holding along a path in CSET (C), these changes are reflected in RCSET (C, f).
Moreover, the order of these changes cannot be altered in RCSET (C, f) and
is the same as in CSET (C). Consequently, omitted states can only duplicate
the already existing information about the satisfaction of atomic propositions
in f . Removing such states cannot affect the temporal properties of the entire
system. For instance, if, while checking AF p in some state s, some states “be-
tween” s and the first state satisfying p are removed, AF p will still be found
to be satisfied in s. This means that the reduced composite symbolic execution
tree RCSET (C, f) is sufficient to prove or disprove the temporal formulas in
the presented logic. Theorem 1 can be formally proven by the induction on the
structure of the formula f and is omitted here due to space limitations.

5 Implementation and Illustration

The prototype checker (SAUML 22) has been implemented in IBM RSA RTE as
an extension of our previous tool. SAUML 2 consists of a translator of UML-RT
models to FFSMs, a symbolic execution engine for non-composite capsules and
an implementation of the algorithm from Section 4. We used SAUML 2 on a
variety of models with promising results. The results presented in this section
were selected to demonstrate, firstly, whether the checker can be used in the
context of large UML-RT models and, secondly, how it deals with models of
increasing complexity.

5.1 PBX Model Case Study

In order to demonstrate the usability of our method to analyze large models,
we used a UML-RT model obtained from our industrial partner. The model is a
PBX (private branch exchange) system, that is, a telephone system based on ex-
tensions [5]. The model includes several layers, e.g., configuration and telephony
components and some more low-level details such as data types and sockets.

2 The tool can be downloaded from http://research.cs.queensu.ca/

~mase/sauml2.html

http://research.cs.queensu.ca/~mase/sauml2.html
http://research.cs.queensu.ca/~mase/sauml2.html

Model Checking of UML-RT Models Using Lazy Composition 315

The layers contain several subsystems. We experimented with three of them:
DeviceManager, CallControl, OAMSubsystem. Each of these subsystems contains
up to 6 capsules with state machines with up to 10 states at 3 levels of nesting.
After code generation, the subsystems are between 3000 and 6500 lines of code in
C++ (which does not include the code for the UML-RT framework). The model
uses some advanced UML-RT features that SAUML 2 does not yet support such
as the dynamic creation/destruction and binding/unbinding of sub-capsules via
optional and plugin roles, multiplicities on ports, and the deferral (and recall)
of signals; moreover, our symbolic execution engine currently cannot handle ad-
vanced C++ features such as pointers. Some of these features can be replaced
by more primitive ones, while leaving the functionality of the model intact. For
instance, a port (or part) with multiplicity can be replaced by as many appro-
priately connected copies of the port (or part) as the multiplicity requires and
optional capsules can be replaced by fixed ones.

We used our tool to analyze the subsystems with respect to a number of
different properties including:

- DeviceManager: Property 1 (safety property): there is no path leading to a
state in which there is an active session for a phone without any extensions
(an attribute numExtensions), as expressed in a formula:
AG (NOT (numExtensions == 0 @ phone1 AND SessionActive @ phone1))

- OAMSubsystem: Property 2 (consuming an input): the assignment of an ex-
tension to a device channel (an input signal addSucceeded) is possible : EF
(configureDevice.addSucceeded(any)[any] @ gMSC)

- CallControl: Property 3 (sessions can be connected): after ringing (in state
Ringing) an originating and terminating sessions (parts sessionOrig and
sessionTerm, respectively) will be connected (in state Connected) :
EF (E [Ringing@call1.sessionTerm U

(Connected@call1.sessionTerm AND Connected@call1.sessionOrig)])

Table 1 shows the results. Column “Full CSET” contains the results of a full
symbolic exploration of subsystems without the use of any property, until the
machine resources (standard PC with 4GB of RAM and Intel Core i7 CPU at
2.93 GHz) were exhausted; shown are the number of symbolic states and explo-
ration time. As presented in the “Example property” column, using a property
substantially reduces the explored state space in terms of number of states and
time. This is due to the lazy composition and, to the lesser extent, due to the on-
the-fly labeling. This more substantial effect of the lazy composition is present
in all checked properties, because they refer only to a few parts in the model.
Although properties 2 and 3 require that a specific state be found, this state has
been selected so that it occurs late in the behaviour of the subsystems. In turn
the state space explored up to that specific state includes a large part of the en-
tire state space in this reduced, property-driven exploration (meaning that this
state will probably not be discovered during the full search without a property
for the part of the state space we were able to explore in our experiments). This
reduction from the full CSET to the property-driven state space, which is due to
the lazy composition, is the most apparent in case of Property 1, which requires

316 K. Zurowska and J. Dingel

Table 1. Experiments with the subsystems of the PBX model and checking of formulas

Subsystem
Full CSET

(without property)
Example property

Size Time Size Time
DeviceManager >24000 >4h 2809 3s

OAMSubsystem >32000 >4h 1813 260s

CallControl >48000 >5h 28014 37s

Table 2. Experiments with a UML-RT model (see Section 2) and checking of formulas
(size is number of states, time in seconds)

UML-
RT

model

CSET Formula 1 Formula 2
One All One All

Size Time Size Time Size Time Size Time Size Time

2 parts 109 1.9 9 <1 97 <1 4 <1 50 <1

3 parts 1202 2.3 13 <1 681 <1 4 <1 72 < 1

4 parts 13085 39 9 <1 5093 8 4 <1 139 2

5 parts 147820 1799 9 < 1 41447 288 4 <1 238 2

checking all states along all paths, that is, exploring the entire state space. But,
since the property mentions only some parts of the model, the lazy composition
helps to reduce the searched space. This in turn makes the checking faster, as
demonstrated for all the above cases.

5.2 Scalability

In order to check the scalability of the method, we used the examples based on
the original traffic lights model introduced in Section 2 with additional traffic
lights parts. As shown in Table 2, four UML-RT models are used with 2, 3, 4
and 5 carLights parts. In the table, column ‘CSET’ shows the size of the full
composite tree along with the time required to generate it. The results, that is,
the sizes of the reduced composite trees and the time required by the analysis are
shown in the columns ‘Formula 1’ and ‘Formula 2’ using the following formulas:

- Formula 1 is EF (Green @ carLightsFirst AND Green @ carLightsSecond AND

...) and it checks whether it is possible to reach a state in which all men-
tioned parts are in the Green state. The formula is checked in 2 versions: when
only one part is mentioned (so there is no AND clause) and when all parts
are mentioned. These formulas are satisfied (due to the lack of dependencies
between CarLights parts).

- Formula 2 is AF(Red @ carLightsFirst AND Red @ carLightsSecond AND ...) and it
checks whether for all executions the mentioned parts will be in state Red. This
formula is also checked in two versions. In casewhen only one part is mentioned
it is satisfied, and if all parts are mentioned it is not satisfied.

We note that for formulas that mention only one part, there is no change in
the size of the checked state space and time required by the analysis. On the

Model Checking of UML-RT Models Using Lazy Composition 317

other hand, formulas referring to many parts, the increasing size of the model
affects the complexity of the analysis. However, the increase is not proportional.
In case of the first formula, the state that satisfies its atomic proposition is
discovered late and the reduced trees are still very large — they grow almost
as fast as the whole composite trees. In case of the second formula the state
space also increases, but is still substantially smaller than the full composition,
because the dissatisfaction is discovered before the state space is fully explored.

The above results show that the proposed checking technique is beneficial
for properties that involve a limited number of parts. For properties that re-
quire all parts there would likely be no performance improvement. Additionally,
the efficiency of the method depends also on the communication-related depen-
dencies between components. Obviously, less communication require fewer pull
operations and that makes the tree necessary to check the formula remain small.

6 Related Work

The vast majority of tools for the verification of state-based models translate
models to the input language of an existing model checker. For instance, UML
State Machines can be analyzed using Spin [20] or Java Pathfinder [17,8], and
Stateflow models can be verified using NuSMV and SAL [18]. UML-RT has been
translated to Promela [19] and to AsmL used in SpecExlorer [15]. More recently,
symbolic execution for UML State Machines has been implemented using Sym-
bolic PathFinder (SPF) [8]. These translational approaches leverage existing
analysis tools at the expense of having to capture the semantics of the models
in the input languages expected by these tools. However, modern state machine
notations as supported by current MDE tools are so sophisticated that the use
of Promela or NuSMV seems appropriate only for a small class of models (e.g.,
those with only boolean and enumeration types [18]). Translation to a high-
level language such as Java appears more appropriate, but even then accidental
complexity is easily introduced [9]. In contrast, our approach attempts to bring
domain-specific model checking to UML-RT and similar languages by using a
custom-made intermediate representation (FFSMs) and algorithms which short-
ens the “semantic gap” and facilitates the exploitation of the model semantics
to speed up analysis [24].

Lots of other related work exists in the field of compositional reasoning. The
work by Lind-Nielsen et al. [16], e.g., also proposes a “lazy” kind of composition
technique that incorporates state machines into the analysis only as needed using
a dependency analysis. However, it is formulated in terms of state/event systems
which do not appear to support action code of the kind considered here; more-
over, our approach not only leverages the communication topology but also the
formula being checked. Giese et al. [11] explore compositional reasoning for UML
State Machines with parallel composition and synchronous communication and
assume-guarantee-style interface constraints expressed in OCL. Our approach
does not require the specification of assumptions and analysis is fully automatic.
Moreover, the modeling language used in [11] is quite different than UML-RT, fo-
cusing on real time aspects of models. Other work [13,25,22,14] has explored the

318 K. Zurowska and J. Dingel

simplification (abstraction) of components during composition while preserving
properties of the overall system. In our work, components are also abstracted
(using symbolic execution); however, we also employ lazy composition.

Symbolic execution for State Machines has been discussed in [8] and our own
work [26,27]. The approach in [8] represents state machines in Java and uses
SPF for an analysis that supports different state machine semantics; while our
analysis could be adapted to support different state machine dialects, leveraging
the semantics of UML-RT for analysis is currently a more important concern.
The work in [26,27] presents the symbolic execution routines used in this paper,
but does not consider model checking and compositional analysis.

On-the-flymodel checking of CTL formulas has been presented previously (e.g.,
[23]). Our contribution here is that the analysis is implemented for UML-RT with
optimizations that take the formula and the structure of the model into account.

Finally, to the best of our knowledge, no tool that analyzes UML-RT models
to a comparable extent is currently available.

7 Conclusions

We have presented algorithms and a tool for checking CTL formulas on UML-
RT models. The approach is based on previously developed symbolic execution
routines [26,27] which can facilitate the analysis of very large state spaces. The
checker is domain-specific in that the analysis is performed on a representation
of the UML-RT model specifically designed to shorten the semantic gap and
leverage the model semantics to speed up the analysis. Speedup is achieved by
excluding those components from the analysis that are known to not impact the
validity of the checked formula. Performance on our case studies is promising, de-
spite our relatively straight-forward implementation that currently forgoes many
optimization opportunities (e.g., using a state-of-the-art symbolic execution en-
gine for action code such as KLEE [4]).

We agree with [24] that the success of model checking in a domain depends on
suitable, efficiently analyzable representations for internal models that remain
“hidden” from the user. More experimentation and refinement of our prototype
on industrial models is necessary before our approach can be judged more defi-
nitely in this respect. However, based on the results described in the paper, we
consider it a promising step towards the domain-specific verification of industrial
UML-RT models that is worth pursuing further.

Apart from refining the prototype, future work will also investigate the use of
dynamic symbolic execution [12].

Acknowledgments. This work was partially funded by NSERC, as part of
the NECSIS Automotive Partnership with General Motors, IBM Canada and
Malina Software Corp.

References

1. eTrice: Real-Time Modeling Tools, http://www.eclipse.org/etrice/
2. IBM Rational Rhapsody,

http://www.ibm.com/developerworks/rational/products/rhapsody/

http://www.eclipse.org/etrice/
http://www.ibm.com/developerworks/rational/products/rhapsody/

Model Checking of UML-RT Models Using Lazy Composition 319

3. IBM Rational Software Architect, RealTime Edition, Version 8.0.3,
http://publib.boulder.ibm.com/infocenter/rsarthlp/v8/index.jsp

4. The KLEE Symbolic Virtual Machine, http://klee.llvm.org
5. Private branch exchange (PBX),

http://en.wikipedia.org/wiki/Private_branch_exchange
6. Unified Modeling Language (UML 2.0) Superstructure, http://www.uml.org/
7. Action Language for Foundational UML (ALF) (2010)
8. Balasubramanian, D., Pasareanu, C., Whalen, M., Karsai, G., Lowry, M.: Polyglot:

Modeling and analysis for multiple statechart formalisms. In: ISSTA 2011 (2011)
9. Balasubramanian, D., Pasareanu, C., Whalen, M., Karsai, G., Lowry, M.: Improv-

ing symbolic execution for statechart formalisms. In: MoDeVVa 2012 (2012)
10. Clarke, E.M., Grumberg, O.J., Peled, D.A.: Model checking. MIT Press, Cambridge

(1999)
11. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the composi-

tional verification of real-time UML designs. In: ESEC/FSE 2003, pp. 38–47 (2003)
12. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.

SIGPLAN Not. 40(6), 213–223 (2005)
13. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Larsen,

K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, Springer, Heidelberg (1992)
14. Jensen, H., Larsen, G., Skou, A.: Scaling up Uppaal. In: Formal Techniques in

Real-Time and Fault-Tolerant Systems, pp. 641–678 (2000)
15. Leue, S., Stefanescu, A., Wei, W.: An AsmL Semantics for Dynamic Structures and

Run Time Schedulability in UML-RT. Tech. rep., University of Konstanz (2008)
16. Lind-Nielsen, J., Andersen, H.R., Behrmann, G., Hulgaard, H., Kristoffersen, K.,

Larsen, K.G.: Verification of large state/event systems using compositionality and
dependency analysis. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 201.
Springer, Heidelberg (1998)

17. Mehlitz, P.: Trust your model — verifying aerospace system models with Java
JavaPathFinder. In: IEEE Aerospace Conference (2008)

18. Miller, S., Whalen, M., Cofer, D.: Software model checking takes off. CACM 53(2),
58–64 (2010)

19. Saaltink, M., Meisels, I.: Using SPIN to sanalyse RoseRT models. Tech. rep., ORA
Canada (1999)

20. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and collab-
orations. Electronic Notes in Theoret. Comp. Science 55(3), 1–13 (2001)

21. Selic, B., Gullekson, G., Ward, P.T.: Real-time Object Oriented Modeling and
Design. Wiley (1994)

22. Valmari, A.: Compositional state space generation. In: Rozenberg, G. (ed.) APN
1993. LNCS, vol. 674, pp. 427–457. Springer, Heidelberg (1993)

23. Vergauwen, B., Lewi, J.: A linear local model checking algorithm for CTL. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, Springer, Heidelberg (1993)

24. Visser, W., Dwyer, M., Whalen, M.: The hidden models of model checking. Software
and Systems Modeling 11(4), 541–555 (2012)

25. Zheng, H.: Compositional reachability analysis for efficient modular verification of
asynchronous designs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 29(3), 329–340 (2010)

26. Zurowska, K., Dingel, J.: Symbolic execution of UML-RT state machines. In: SAC-
SVT (2012)

27. Zurowska, K., Dingel, J.: Modular Symbolic Execution of Communicating and
Hierarchically Composed UML-RT State Machines. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 39–53. Springer, Heidelberg (2012)

http://publib.boulder.ibm.com/infocenter/rsarthlp/v8/index.jsp
http://klee.llvm.org
http://en.wikipedia.org/wiki/Private_branch_exchange
http://www.uml.org/

Behavioural Verification in Embedded Software,

from Model to Source Code

Anthony Fernandes Pires1,2, Thomas Polacsek1, Virginie Wiels1,
and Stéphane Duprat2

1 ONERA, 2 avenue Edouard Belin,
31055 Toulouse, France

2 Atos Intégration SAS, 6 impasse Alice Guy, B.P. 43045,
31024 Toulouse cedex 03, France

{anthony.fernandespires,stephane.duprat}@atos.net,
{thomas.polacsek,virginie.wiels,anthony.fernandes_pires}@onera.fr

Abstract. To reduce the verification costs and to be more confident
on software, static program analysis offers ways to prove properties on
source code. Unfortunately, these techniques are difficult to apprehend
and to use for non-specialists. Modelling allows users to specify some
aspects of software in an easy way. More precisely, in embedded soft-
ware, state machine models are frequently used for behavioural design.
The aim of this paper is to bridge the gap between model and code by
offering automatic generation of annotations from model to source code.
These annotations are then verified by static analysis in order to ensure
that the code behaviour conforms to the model-based design. The mod-
els we consider are UML state machines with a formal non-ambiguous
semantics, the annotation generation and verification is implemented in
a tool and applied to a case study.

Keywords: Verification, UML, Formal Methods, Model Driven Engi-
neering.

1 Introduction

Aeronautical software development, and more specifically software for safety
critical applications, is submitted to stringent constraints. DO-178C1 (certifica-
tion standard for aeronautical software) specifies development and verification
objectives. Identified verification means are reviews, analyses and test. One of
its supplements, DO-3332, is dedicated to the use of formal methods. Formal
methods are mathematical techniques which allow performing rigorous verifica-
tion tasks during software development. Formal methods are already applied in
industry [1].

In an industrial context, at Atos, we notice that the cost of verification activi-
ties for embedded software development can sometimes reach 60% of the project

1 DO-178C Software considerations in airborne systems and equipment certification.
2 DO-333 Formal Methods Supplement to DO-178C and DO-278A.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 320–335, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Behavioural Verification in Embedded Software, from Model to Source Code 321

workload. This is not a new problem, Hoare [2] was already reporting that over
half of software development time was dedicated to program testing.

Furthermore, in addition to the increasing complexity of embedded systems,
today software is not developed by a single company but by a set of stakeholders.
These stakeholders have a common purpose and share some resources and knowl-
edge. In this context, it can be difficult to communicate between all the different
stakeholders. It is essential to offer a way for muti-cultural teams to share, to
discuss and to work with an unambigous formalism. Model Driven Engineering
(MDE) allows us to deal with these difficulties while ensuring the expected level
of quality. It suggests using models all along the development lifecycle; models
can be used, for instance, for documentation generation, design specification,
simulation or code generation.

In this paper, we present an MDE approach to combine the advantages of
model-based design and the efficiency of formal methods dedicated to code veri-
fication. More specifically, we give a process to support the design, development
and verification of the implementation of software for the management of avionic
components.

Many modelling languages have been defined through past decades. The
UML3 standard is one of them. UML is widespread and it is currently used
in software development teams. The current UML semantics is semi-formal as
it is partially expressed in natural language. However, the UML standard has
known a significant evolution in its description since version 1.x. The Precise
UML group 4 contributed to this evolution. It aimed at investigating a precise
semantics for UML. In [3], authors explain that the lack of precise semantics
results in, among other, difficulties to rigorously establish the consistency of a
model and its implementation.

In our approach, we propose to exploit the UML standard to model the design
of embedded software. The design represents all the information needed to di-
rectly implement the sofware. The implementation could be done by automatic
generation from models or by humans. Both solutions fit and, in this paper,
we simply define an implementation pattern for our UML model. We need this
pattern to manage an automatic verification task.

The main contribution of this paper is automatic verification of a C code
stemming from an UML state machine. We want to prove that a source code
implements and only implements its model based design. This verification is
done using static analysis. Static analysis allows the detection of bugs and the
verification of properties on a program without executing it. It enables effec-
tive identification of software defects and allows reducing verification costs. We
propose to automatically generate annotations from the model into the code
implementation. These annotations represent the behavioural properties of the
model. They will be automatically verified by a static analysis tool.

The paper is structured as follows. Section 2 gives the definition of our lan-
guage, subset of UML state machines, and its formal semantics. Section 3

3 Unified Modeling Language www.uml.org
4 www.cs.york.ac.uk/puml/

www.uml.org
www.cs.york.ac.uk/puml/

322 A. Fernandes Pires et al.

describes our process, gives an implementation pattern for our state machines
and explains the annotations generation. Section 4 presents a prototype that
implements our method. Section 5 reviews existing related work. Lastly, Section
6 concludes the paper and outlines perspectives to this work.

2 State Machine Modelling in Embedded Software
Context

2.1 Modelling Language

In [4] we define a UML subset dedicated to embedded software specification and
already used for industrial purpose. In this subset, we use UML state machines
to represent the behavioural specification of software components. We limit the
scope of elements and we define patterns for specific use, without adding new
concepts. These state machines are meant to be driven by a clock and to do a
certain number of actions at each clock tick .

Here, we use a limited subset of this language. Our state machines are com-
posed of simple states, which can contain actions defined in their entry behaviour.
In UML, an action defined in the entry behaviour is executed to completion at
the entry into the state. For the moment, we do not consider hierarchical states
and parallelism behaviour in our language. We have transitions between states.
A transition is composed of a trigger, to manage events received by the state
machine, and a guard, representing the condition to fire the transition. The trig-
ger can be defined by only two events: the tick event and the completion event.
The tick represents our clock tick and the beginning of a new cycle. The com-
pletion event is a special event defined in UML, it represents the default event
of the triggers which is automatically generated at the end of all the actions of a
state or at the entry of a state if no action is defined. The guard is represented
by a boolean expression expressed in the OCL standard language5. We do not
allow the definition of actions on the transitions, i.e. effects of the transitions.
We authorise a unique pseudostate by state machine: the initial state. These are
the only UML elements used to model our cyclic state machine.

We add two constraints to these state machines. In the first constraint, we
consider that all the actions executed in one cycle end before the end of the cycle.
As we are not interested in time properties, we accept the synchrony hypothesis
defined in [5]. It considers that every reaction of the system is instantaneous. In
the second constraint, we consider that the state machine must be deterministic.
We do not authorise conflicting transitions.

Consider the example of Figure 1. It is based on the example described in [6]
and it illustrates the behaviour of the software controling the landing gear of an
UAV (Unmanned Aerial Vehicle). The landing gear is composed of three gears: a
nose gear, a left gear and a right gear. Each of these gears has an up switch and
a down switch, namely up switches or down switches in our example. Each
switch is closed when the gear is respectively up or down. An additional switch

5 http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/

Behavioural Verification in Embedded Software, from Model to Source Code 323

Fig. 1. LandingGear state machine

on the aircraft, named the squat switch, indicates if the weight of the plane is on
the nose or not. If the weight is on the nose, corresponding to squat switch=GRD

in Figure 1, it means that the plane is still on ground; if not, squat switch=AIR,
it means that the plane is in the air. The raising or lowering of the landing
gear is managed by an electrically driven hydraulic pump. This pump supplies
pressure to the gear actuators. The pressure increases or decreases depending
on a computer-driven valve. When the pilot wants to raise the gears, he raises
a lever. When the lever is up, pilot lever=UP, the pump is activated and the
pressure level is set, corresponding respectively to the actions Activity pump on

and Activity dir up. When the pilot wants to lower the gears, he lowers a
lever, pilot lever=DOWN the pump is also activated, Activity pump on, and
the pressure level is set, Activity dir down.

Starting in the default position, if we look for instance at the takeoff phase,
the pilot raises the lever and the aircraft needs to be airborne for two seconds
(timer>2 and squat switch=AIR) before starting raising gears. This allows en-
suring the aircraft does not touch the ground during takeoff. After two seconds,
the pump is activated and gears are raised. When gears are closed, the pump is
deactivated and the gears are in the up position.

2.2 Semantics

We propose to formalise the semantics of our subset, in compliance with the
UML semantic basis. To understand it, the reader needs to be familiar with
some UML specific concepts.

In UML, state machines behaviour is managed by event processing. Each
state machine has an event pool to store events, its politic of dequeuing must be

324 A. Fernandes Pires et al.

defined by the user. The concept of event processing is called Run-to-Completion
which limits the processing of events to one at a time. When an event is taken
from the pool, if it enables a transition i.e. it fires a transition according to the
correctness of its guard, it is consumed. If not, the event is simply discarded.
The processing of a single event is called a Run-to-completion step. It represents
the passage between two stable state configurations of a state machine. A state
machine is in a stable state configuration when it is in a state where all the
state actions have been completed: if a transition is fired at the beginning of the
run-to-completion step, this step ends when all the actions of the targeted state
are completed.

In our state machine, there are only two types of events, the tick event which
is an external event periodically given by the environment and the completion
event. The completion event is a very particular event defined in UML. It is
automatically generated at the end of all the actions of a state and it has priority
over all events existing in the event pool. To formally describe our semantics in
a very simple way, we decide to make an abstraction of the concept of event and
only use the concept of run-to-completion step.

We define S the set of all states of the state machine, VAR the set of variables
accessible by the state machine. s0 ∈ S is the initial state of the state machine.

We define v as the variable assignment that associates an element of the
domain of discourse with each variable of VAR. We define v0 the variable as-
signment for s0 and V the set of all variable assignments.

We define T : S × V → S ∪ {∅}, the transition function. For each state, T re-
turns a new state according to the transition guards. A guard condition is simply
a first order logic formula, with only constants and free variables and without
quantifiers. The only predicate symbols we use are the arithmetic comparison
operators: <,>,≤,≥,=,
=. In our case, we define two transition functions : Tc

which is the transition function for transitions fired by completion event and
Ttick which is the transition function for transitions fired by tick event.

Because we do not have the disjunction of the guards of all outgoing transitions
of a state, Tc and Ttick could possibly return ∅ if no guard condition matches.
Note that return ∅ or return the same state as the state passed as a parameter
are not the same. Return ∅ means no transition was taken, return the same state
means a reflexive transition was taken. In addition, because a state could have
an entry action, to take a reflexive transition causes the execution of the entry
action.

We also define A : S×V → V , the action function. A represents the execution
of actions defined in entry behaviour. In fact, for each variable assignment and
a state, A returns a new variable assignment.

With the definition of the two previous functions, modelling the run-to-
completion step (RTC) in our cyclic state machine is quite easy. As we have
two kinds of transition functions, we have two kinds of run-to-completion. We
define rtcc : S × V → S × V the run-to-completion step for completion event
and rtctick : S × V → S × V the run-to-completion step for tick event. Each of
them consists of: first apply T to the current state; second if T returns ∅ stay in

Behavioural Verification in Embedded Software, from Model to Source Code 325

the same state do nothing and return ∅, else apply A and return the new state
and the new variable assignment.

The way to call these two kinds of run-to-completion is specific to the cyclic
behaviour of our state machine. We define Cycle : S × V → S × V the function
which represents the behaviour of a state machine in one cycle. At the beginning
of Cycle, the state machine is in a stable state configuration. Cycle first calls
rtctick to deal with the tick event. If rtctick returns ∅, it means that no transition
has been fired, so Cycle returns Id, the identity. If it does not return ∅, it calls
rtcc until there is no more transition with a completion event trigger to fire, i.e.
rtcc return ∅. In a more formalised way, we have :

Cycle =

{
rtctick ◦ rtcnc with n ∈ N and rtcn+1

c returns ∅
Id if rtctick returns ∅

When a cycle begins, the event pool is empty before one unique tick event
occurs. If this tick event fired a transition, the tick event is consumed and the
run-to-completion step will fill the event pool with one completion event. This
completion event is processed by a new run-to-completion step. If this process-
ing leads to the firing of a transition, the event is consumed and the run-to-
completion step will fill the event pool with a new completion event. The state
machine will repeat the same mecanism until no completion event is present in
the pool (it corresponds to the iterative call of the RTCc function in our seman-
tics). Indeed, if no transition is fired, the completion event is discarded and the
pool is left empty until the next cycle. Thanks to the synchrony hypothesis de-
scribed in the previous section, we are sure that this chain of run-to-completion
steps will end before the next cycle i.e. before a new tick event occurs. Conse-
quently, at the beginning of a cycle, the event pool is always empty before the
tick event occurs and the completion event will only occur after the processing
of this tick event. For example, Figure 2 describes two consecutive cycles in a
state machine. Note that it is a particular case, since there is at least one rtcc
for each cycle.

The initial state s0 is a particular state in UML. It is a pseudostate. As
defined in the UML semantics, this state has no trigger and guard defined
on its unique outgoing transition. As it is particular in UML, its processing
will be defined separetely of the other states in our semantics. We define a
function Cycle0 : {s0} × {v0} → S × V . We have Cycle0 = rtcnc with n ∈
N∗ where rtcn+1

c returns ∅. This function is only called once at the very begin-
ning of the execution of the state machine.

A cyclic state machine is defined by a 6−tuple 〈s0, v0,Cycle0 , S, V,Cycle〉.

3 Formal Verification from Model to Code

3.1 Our Method

In MDE, models are used all along the development chain and allow users to
generate the source code implementation. Although a part of our work takes

326 A. Fernandes Pires et al.

����� ��� � �� ��� ����� ��� � �� ���

��	���� ��	�
� ��	�
� ��	�
��� ��	���� ��	�
� ��	�
� ��	�
���

	���
� 	���
���

����
� ����
���
�

Fig. 2. Example of two consecutive cycles within a state machine

place at the code level, our contribution does not deal with code generation. We
want to verify the behaviour of a C program, written by humans or machines, ac-
cording to its model based design. We will only give the implementation pattern
of a state machine, since information is needed on the code structure to manage
our verification. Our method focuses on the use of the semantics of UML state
machines to derive annotations to verify the code using static analysis.

Regarding the whole process in which we propose our verification method,
we can compare our method with a code generation method. At a technical
level, automation of properties generation for verification purpose is similar to
automation of code generation. But, placed in a certification context like DO-
178C for the aeronautical domain, the qualification constraints of a verification
tool are much lighter than those of a code generator tool. If the verification tool
fails, it does not introduce errors in the target software while a code generator
might. A code generator must be qualified at least at the same level of criticality
than the target software; it is not the case for a verification tool.

To conduct static analysis we use the Frama-C6 framework. It is an open-
source and modular environment which groups many different techniques and
tools to conduct such analysis on C code. It is based on the ACSL language [7]
(ANSI/ISO C Specification Language). ACSL is a specification language to ex-
press behavioural properties on C code. It is based on first order logic and allows
to specify function contracts, invariants, variants, loop specifications, logic spec-
ifications and ghost codes. ACSL annotations are represented as comments in
C code, using specific tags to be recognised by Frama-C. These annotations are
without side effect on the program.

We use our cyclic UML state machine model to generate the corresponding
ACSL function contracts to verify the code behaviour. An overview of our process
is given Figure 3.

A function contract is composed of preconditions and postconditions. The
function contract is: if the preconditions are true when the function is called then
the postconditions must be true after the function execution. We use a Frama-C
plugin named WP7 to verify function contracts. WP is based on the Weakest

6 http://frama-c.com/
7 http://frama-c.com/wp.html

http://frama-c.com/
http://frama-c.com/wp.html

Behavioural Verification in Embedded Software, from Model to Source Code 327

���������	�
��

�����	���
������

��	�
������
	�	���
�

��	�	�������	����	�
������
��	����	��
��

���
!�

Fig. 3. Our process: verification from model to source code

Precondition calculus introduced in [8]. The Weakest Precondition calculus con-
sists in computing the weakest precondition ensuring the postconditions. WP
computes the weakest precondition of the function contracts and generates proof
obligations for the verification of the implication of the weakest precondition by
the initial preconditions. These proof obligations are discharged by solvers avail-
able through Frama-C.

In this work, we only focus on the verification of the transition functions
implementation. They represent the core of a state machine behaviour.

3.2 State Machine Implementation Pattern

To generate function contracts on the source code, we need to know: the pro-
totype of functions; the name and the type of the variables of the program. In
addition, function contracts are also linked to the structure of the implementa-
tion. Therefore, we propose a code design pattern for the implementation of our
state machines.

Although we only focus on the transition functions, we give a global code
design pattern in order to give an overview of the implementation. This imple-
mentation pattern is based on a representation of the states as an enumeration
type named State. The enumeration possible values of State are all the possible
states of the state machine and one value named Null. This value will represent
the ∅ used in our semantics. In addition, all the variables used in the model
retain their names in the implementation.

The other parts of the implementation pattern of our state machine is com-
posed of the following functions.

– Two transition functions, one for the tick event, namely T tick, and one for
the completion event, namely T c. They represent the choice of the tran-
sition that will be fired according to the transition guards. It returns the
targeted state if a transition has been fired, the Null value if not. Transition
functions are, at top level, a switch/case structure to match with the cur-
rent state. For each case, a conditional structure if/else is implemented for
each outgoing transition of the state triggered by the corresponding event.
It represents the guard of the outgoing transition. The code design pattern
for the T tick is given in listing 1.1 (T c is based on the same pattern).

328 A. Fernandes Pires et al.

State T_tick (State current_state) {
State output_state=Null;
switch(current_state) {

case state1 :
if (condition_transition1) output_state=targeted_state;
else if (condition_transition2) output_state=other_targeted_state;

break;
}
return output_state;

}

Listing 1.1. T tick function pattern

– An action function, namely A, which, for each state, executes the entry ac-
tions of the state. Note that, according to the semantics, A will only be
executed if a transition has been fired (we do not give the code pattern of
A).

– Two run-to-completion functions, namely RTC tick and RTC c, one for each
possible event. Each one calls its corresponding transition function. The
code pattern of RTC tick is given in listing 1.2 (RTC c is based on the same
pattern).

State RTC_tick (State current_state) {
State compute_state=T_tick(current_state);
if (compute_state!=Null) {

A(compute_state);
return compute_state;

} else return Null;
}

Listing 1.2. RTC tick function pattern

– A function Cycle which implements the running of a state machine during
one cycle. It first calls the run-to-completion function for the tick event. If
the return is not the Null value: first it calls the run-to-completion function
for the completion event until the return of Null and then it returns the
new state computed. Note that, the termination of the function must be
ensured at the model level, not here at the code level, i.e. the model based
design must guarantee that there exists a point where no further completion
transition can be fired during the cycle. The code pattern of Cycle is given
in listing 1.3. According to the semantics, we define, on the same pattern, a
function Cycle 0 which only calls the RTC c function.

State Cycle (State current_state) {
State compute_state=RTC_tick (current_state);
if (compute_state!=Null) {

State last_state;
while(compute_state!=Null){

last_state=compute_state;
compute_state=RTC_c(last_state);

}
return last_state;

} else return current_state;
}

Listing 1.3. Cycle function pattern

Behavioural Verification in Embedded Software, from Model to Source Code 329

The running of the state machine is represented by a while loop. In each
loop, the program waits until the next cycle and calls the cycle function (the
code pattern is given in Listing 1.4).

current_state=Cycle_0 (starting_state);
while (1) {

wait_tick();
current_state=Cycle(current_state);

}

Listing 1.4. while loop pattern

The application of the implementation pattern on the T tick transition func-
tion of the example in Figure 1 is given in Listing 1.5.

State T_tick(State current_state){
State output_state=Null;
switch (current_state) {

case DefaultPosition:
if (pilot_lever==UP && squat_switch==AIR)

output_state=WaitingForTakeoff;
break;
case WaitingForTakeoff:

if (timer >=2 && squat_switch==AIR)
output_state=StartRaisingGear;

else if ((pilot_lever==DOWN && timer <2)|| squat_switch==GND)
output_state=DefaultPosition;

break;
case RaisingGear:

if (pilot_lever==DOWN) output_state=LoweringGear;
else if (pilot_lever==UP && up_switches==OK)

output_state=GearUp;
break;
case GearUp:

if (pilot_lever==DOWN) output_state=StartLoweringGear;
break;
case LoweringGear:

if (pilot_lever==UP) output_state=RaisingGear;
else if (pilot_lever==DOWN && down_switches==OK)

output_state=GearDown ;
break;

}
return output_state;

}

Listing 1.5. T tick implementation for the LandingGear example

3.3 Behavioural Properties as Function Contract

The source code behavioural verification aims at proving properties stemming
from the UML state machine specification. For that, we generate ACSL function
contracts on the implementation.

The behavioural properties are divided in two categories: first, the specifica-
tion completeness, “the specification is fully implemented”; second the specifi-
cation soundness, “only the specification is implemented”.

To ensure the specification completeness at the transition functions level, the
implementation must ensure the following properties:

(a) for the current state of the state machine, if the transition guard is true, the
transition function returns the specified targeted state;

330 A. Fernandes Pires et al.

(b) the transition function is without effect on state machine variables.

Property (a) is represented as one ACSL ensures clause for each possible out-
going transition of the current state. An ensures clause represents a property
that must be true after the program execution. It corresponds to a postcondition.
In fact, we generate a set of ensures clauses for each state, on each transition
function (T tick and T c) depending on whether the state is handled by the
transition function or not. Following the transition function prototype, the pat-
tern for this property for a state is given in Listing 1.6. Note that the return of
a function is defined by the keyword \result in ACSL.

ensures <guard of outgoing transition 1>
==> \result == <target state of outgoing transition 1>;.

.

.
ensures <guard of outgoing transition N>

==> \result == <target state of outgoing transition N>;

Listing 1.6. Property (a) pattern

Property (b) is represented by an ACSL assigns clause. The assigns clause is
used to specify exhaustively the memory allocations possibly modified by the C
program. So if it is specified with the keyword \nothing, the clause guarantees
that no memory allocation has been modified. Following the transition function
prototype, the pattern for this property is given in Listing 1.7.

assigns \nothing ;

Listing 1.7. Property (b) pattern

Specification soundness means that nothing else except the specified transi-
tions is implemented in the program. To ensure soundness, the implementation
must verify the following properties:

(c) for the target state resulting of the firing of a transition and its specified
source state, the guard of the corresponding transition must be true;

(d) if no guard of the outgoing transitions of the current state is true, no tran-
sition is fired i.e. the transition function returns ∅.

Property (c) allows to verify that no unspecified transition exists between two
states linked by a specified transition. As for property (a), it corresponds to one
ensures clause for each possible outgoing transition of each state, according to
the event handled by the transition function. The pattern for this property is
given in Listing 1.8.

ensures \result == <target state of outgoing transition 1>
==> <guard of outgoing transition 1>;.

.

.
ensures \result == <target state of outgoing transition N>

==> <guard of outgoing transition N>;

Listing 1.8. Property (c) pattern

Property (d) allows to verify that for a given state, there is no other possible
target state than the specified ones. It is also represented as an ensures clause.
The pattern for this property is given in Listing 1.9. The negation is expressed
as the “!” symbol in ACSL.

Behavioural Verification in Embedded Software, from Model to Source Code 331

ensures (!<guard of outgoing transition 1>
&& . . .
&& !<guard of outgoing transition N>)

==> \result == Null;

Listing 1.9. Property (d) pattern

All postconditions presented must be defined for each possible state. ACSL
gives the possibility to define multiple named function contracts, called behavior ,
for a function. Therefore, we define, for the global function contract of each tran-
sition function, as many behavior as there are states with outgoing transitions
triggered by the event handled by the transition function. In these behavior , the
precondition deals with the current state. It is expressed as an assumes clause
in ACSL. An assumes clause represents the property that must be true for ap-
plying the behavior . For instance, Listing 1.10 gives the ACSL behavior for the
state RaisingGear of the T tick function.

behavior RaisingGear:
assumes current_state== RaisingGear;
assigns \nothing ;
ensures (pilot_lever==DOWN) <==> \result == LoweringGear;
ensures (pilot_lever==UP && up_switches==OK) <==> \result ==GearUp ;
ensures (!(pilot_lever==DOWN) && !(pilot_lever==UP && up_switches==OK))

==> \result ==Null;

Listing 1.10. The behavior for the state RaisingGear in the T tick function

In addition, we need to add a property in the soundness category:

(e) if a state is not handled by the verified transition function (i.e. this state
has no outgoing transition triggered by the event handled by the transition
function), the transition function does not fire any transition.

Property (e) means that the return value of the transition function must be ∅
for all unhandled states. In ACSL, it is represented by a behavior composed
of an assumes clause representing all the states not handled by the transition
function and an ensures clause representing the Null value returned by the
function. The example for the T tick function of the example in Figure 1 is
given in Listing 1.11.

behavior OtherStates:
assumes current_state!= LoweringGear

&& current_state!= DefaultPosition
&& current_state!= WaitingForTakeoff
&& current_state!= RaisingGear
&& current_state!= GearUp;

assigns \nothing ;
ensures \result ==Null;

Listing 1.11. property (e) for the T tick function

All the behavior described below represent the global function contract of a
transition function. Each global function contract allows to check the conformity
of each transition function with the behaviour expressed in the state machine.
But, although we are able to detect unspecified transitions, we cannot detect
dead code i.e. transitions that never happen at execution or states never reached.

332 A. Fernandes Pires et al.

4 Our Tool

We have implemented our approach in a prototype in Java. It comes as an
Eclipse8 plugin depending on the Topcased9 framework. It allows, from the
model explorer of a Papyrus10 UML model, to choose a state machine and to
generate ACSL contracts from it. Users only have to give the path to the C file
they want to annotate in order to generate the annotated file. We implement
for each ACSL clause and ACSL structure we use, a corresponding object for
which we implement its string representation. For instance, in our case an ACSL
behavior is composed of an object AssumesClause, an object AssignsClause and
a collection of objects EnsuresClause.

The generation is done in 4 steps. First, we check that the selected state
machine is well formed according to our model rules. Indeed, the Topcased Pa-
pyrus editor allows the creation of UML models based on the whole standard,
but our language is only a subset. Secondly, we check that the C file contains
the transition functions. We use the Eclipse CDT API11 to parse the C file and
to retrieve the corresponding function to annotate. Thirdly, we parse the state
machine and we create all the behaviours for each state. Finally we generate a
C file, corresponding to the C code and the annotations generated at the right
places in the code.

For the example described in Figure 1, we are able to generate 55 lines of
function contracts for more than 40 lines of C code for the two transition func-
tions. All the function contracts have been verified in a few seconds thanks to
Frama-C and its plugin WP.

5 Related Work

Some work exists on the verification of source code using annotations generated
from a model specification.

[9] proposes a way to automatically annotate C code according to a specifica-
tion composed of SAM (Structured Automata Model) automata. SAM is a do-
main specific language for the behavioural representation of avionic components.
The authors present an algorithm to generate annotations from SAM automata
to verify the code behaviour. The approach is similar to our own since it con-
sists in generating function contracts on the transition function implementing
the SAM automaton and they also present an industrial experimentation with
promising results. By contrast, the SAM automaton and generated function con-
tracts are less complex than our UML state machine and our annotations.

8 www.eclipse.org
9 Toolkit in OPen-source for Critical Application and SystEms Development. It offers
Model Driven Engineering activities and it is based on the Eclipse environment.
www.topcased.org

10 It is tool for modelling in UML. The current Topcased model editor are based on
Papyrus version 0.8. www.papyrusuml.org

11 C/C++ Development Tooling. www.eclipse.org/cdt/

www.eclipse.org
www.topcased.org
www.papyrusuml.org
www.eclipse.org/cdt/

Behavioural Verification in Embedded Software, from Model to Source Code 333

The Aorai plugin of Frama-C [10] allows to generate ACSL annotations from
an automaton specification expressed in LTL (Linear Temporal Logic). Aorai au-
tomatically annotates the targeted source code and the verification is performed
using the solvers available from Frama-C. Actually, the automaton specification
represents a chain of function calls and function returns. Each of them can be
associated to properties on the program variables. At the end, if the annotations
are verified, then the source code conforms to the specification. Aorai focuses
on function calls at global program level while our method focuses on function
behaviour. Moreover, the specification in LTL is more complex and less intuitive
than a specification modelled with state machine diagrams for users non-familiar
with temporal logic.

In [11], authors propose the theoretical foundations of a toolset to generate
annotations on the software implementation from control theory properties and
proof expressed in a control systems design. The goal is to obtain an autocoder
with proofs. The source language is an open-source alternative of Matlab12,
Scilab13 and the target code is implemented in C language. The properties an-
notated in the design are translated in ACSL annotations in the code. The ACSL
annotations are then verified using Frama-C. The authors present two methods.
One is a direct mapping of the annotations on the design and the semantics of
Scilab operators to annotations on the code. The other uses a gateway language,
Lustre [12] in order to take into account different front end languages for the de-
sign. The spirit of the approach is close to ours. It differs by the type of systems
to verify, the design language and the properties to verify.

In our approach,we use a part of the UML languageversion 2.4.1 limited to state
machine modelling as source for the design. As the currentUML semantics is semi-
formal, we needed to formalise its semantics in order to avoid any ambiguities and
to use formal methods in a rigorous way. In the particular case of UML state ma-
chines, there is a lot ofwork on the formalisationof their semantics. [13] aims at giv-
ing an overview of the state of the art. It lists 26 semantic approaches structured in
three categories. First, it lists work which is based on standard mathematical con-
cepts and notations. For instance, [14] uses Labelled Transition Systems (LTS) ex-
pressed in an algebraic specification language for the representation of the seman-
tics and [15] usesAbstract StateMachines (ASM). Secondly, it lists the approaches
expressing the semantics as a set of rewriting rules. For example, [16] and [17] use
graph transformations and [18] defines translation rules to map an UML specifica-
tion to high-level Petri nets. Finally, it groups approaches based on the translation
of UML state machines into other formal languages. For instance, [19] defines the
semantics in PVS (Prototype Verification System) and [20] presents a global se-
manticswhich is implemented inPROMELAformodel checking.Note that none of
the approaches supports all the UML state machines concepts. Our work is clearly
in the first category. We define a very simple mathematical semantics dedicated
to the needed concepts. Our semantics uses new concepts (like cycle, transition

12 www.mathworks.fr/products/matlab/
13 www.scilab.org

www.mathworks.fr/products/matlab/
www.scilab.org

334 A. Fernandes Pires et al.

functions, etc.), but it is fully compliant with the semantics described in the UML
standard.

6 Conclusion

We presented a method to automatically verify the behaviour of a C source
code with respect to its UML design model. The main advantage is to have a
full MDE process which gives access to formal methods and associated tools
for non-expert users. The main drawback of the approach we presented is that
the implementation is very close to the semantics of our state machines. This
work was motivated by multiple reasons. It allows users to be more confident
about their implementation in a simpler way: as the annotations are automati-
cally generated from the model and automatically verified, users do not need to
change their technical know-how. Furthermore, although MDE already permits
to generate tests on the code, static analysis is more exhaustive than software
testing. Indeed, static analysis does not just test the code, it proves it i.e the
results of the verification are valid for all possible executions.

The results of our method are promising but it needs to be improved and ex-
perimented on more complex models. For the moment, we only tested it on small
examples. Moreover, we are thinking about applying it on other implementation
patterns. In further work, the feedback of the verification must be adapted to
help the user correct the implementation errors. Currently, the user relies on the
verification results of each annotation to determine where the problem is on the
code. We could express this feedback in a more detailed and user-friendly way
or present it at model level. Furthermore, we plan to extend the UML subset
we used. Our state machines are limited to simple states. We would like to take
into account hierarchical states such as composite states or submachine states,
as defined in the UML standard. We also need to define the formal semantics
of the subset in a more complete way since we only presented here the key con-
cepts useful for our method. Therefore, we limited our contribution for this paper
to the behavioural verification of transition functions. In future work, we will
verify the other functions defined in our semantics, as this point is mandatory
to obtain a complete proof of the compliance of the implementation with the
state machine behaviour. Finally, we plan to make the annotation generator we
presented available online to get the feedback of the community.

References

1. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics
software products. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850,
pp. 532–546. Springer, Heidelberg (2009)

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

3. France, R., Evans, A., Lano, K., Rumpe, B.: The uml as a formal modeling nota-
tion. Comput. Stand. Interfaces 19(7), 325–334 (1998)

Behavioural Verification in Embedded Software, from Model to Source Code 335

4. Fernandes Pires, A., Duprat, S., Faure, T., Besseyre, C., Beringuier, J., Rolland,
J.F.: Use of modelling methods and tools in an industrial embedded system project:
works and feedback. In: ERTS, France (2012)

5. Berry, G., Gonthier, G.: The esterel synchronous programming language: design, se-
mantics, implementation. Science of Computer Programming 19(2), 87–152 (1992)

6. Gomez, M.: Embedded state machine implementation. Embedded Systems Pro-
gramming 41 (2000)

7. Baudin, P., Cuoq, P., Filliâtre, J., Marché, C., Monate, B., Moy, Y., Prevosto, V.:
ACSL Version 1.6. (2012)

8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

9. Duprat, S., Gaufillet, P., Moya Lamiel, V., Passarello, F.: Formal verification of
sam state machine implementation. In: ERTS, France (2010)

10. Stouls, N., Prevosto, V.: Aoräı Plug-in Tutorial
11. Jobredeaux, R., Wang, T., Feron, E.: Autocoding control software with proofs

i: Annotation translation. In: 2011 IEEE/AIAA 30th Digital Avionics Systems
Conference (DASC), pp. 7C1-1–7C1-13 (October 2011)

12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow pro-
gramming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

13. Crane, M.L., Dingel, J.: On the semantics of uml state machines: Categorization
and comparison. In: Technical Report 2005-501, School of Computing, Queen’s
University (2005)

14. Reggio, G., Astesiano, E., Choppy, C., Hussmann, H.: Analysing uml active classes
and associated state machines - a lightweight formal approach. In: Maibaum, T.
(ed.) FASE 2000. LNCS, vol. 1783, pp. 127–146. Springer, Heidelberg (2000)

15. Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of uml state ma-
chines. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 223–241. Springer, Heidelberg (2000)

16. Varró, D.: A formal semantics of uml statecharts by model transition systems. In:
Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds.) ICGT 2002. LNCS,
vol. 2505, pp. 378–392. Springer, Heidelberg (2002)

17. Gogolla, M., Presicce, F.P.: State diagrams in uml: A formal semantics using graph
transformations - or diagrams are nice, but graphs are worth their price. In: Uni-
versity of Munich, pp. 55–72 (1998)

18. Baresi, L., Pezzè, M.: On formalizing uml with high-level petri nets. In: Agha, G.,
De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 276–304.
Springer, Heidelberg (2001)

19. Aredo, D.B.: Semantics of uml statecharts in pvs. In: Proc. of the 12th Nordic
Workshop on Programming Theory (NWPT 2000) (2001)

20. Lilius, J., Paltor, I.P.: Formalising uml state machines for model checking. In:
France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer, Heidelberg
(1999)

Formal Verification Integration Approach

for DSML�

Faiez Zalila, Xavier Crégut, and Marc Pantel

Université de Toulouse, IRIT, France
firstname.lastname@enseeiht.fr

Abstract. The application of formal methods (especially, model check-
ing and static analysis techniques) for the verification of safety critical
embedded systems has produced very good results and raised the inter-
est of system designers up to the application of these technologies in real
size projects. However, these methods usually rely on specific verifica-
tion oriented formal languages that most designers do not master. It is
thus mandatory to embed the associated tools in automated verification
toolchains that allow designers to rely on their usual domain-specific
modeling languages (DSMLs) while enjoying the benefits of these power-
ful methods. More precisely, we propose a language to formally express
system requirements and interpret verification results so that system
designers (DSML end-users) avoid the burden of learning some formal
verification technologies. Formal verification is achieved through trans-
lational semantics. This work is based on a metamodeling pattern for
executable DSML that favors the definition of generative tools and thus
eases the integration of tools for new DSMLs.

Keywords: Domain specific modeling language, Formal verification,
Model checking, Translational semantics, Traceability, Verification
feedback.

1 Introduction

Domain-Specific Modeling Languages (DSMLs) are a major asset in the develop-
ment of complex systems. In particular, they are widely used in the early phases
of the development of safety critical systems. In this context, model validation
and verification (V&V) activities are key features to assess the conformance of
the future system to its safety and liveness requirements. They require the in-
troduction of an execution semantics for the DSMLs. It is usually provided as
a mapping from the abstract syntax (metamodel) of the DSML to an existing
semantic domain, generally a formal language, in order to reuse powerful tools
(simulator or model-checker) available for this domain [1,2].

One key issue is that system designers (DSML end-users) should not be
required to have a solid knowledge on formal languages and associated tools.

� This works was funded by the french Ministry of Industry through the ITEA2 project
OPEES and the french ANR project GEMOC.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 336–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Formal Verification Integration Approach for DSML 337

The challenge is thus to leverage formal tools so that the system designer has
not to burden with formal aspects and to integrate them in traditional CASE
tools, like the Eclipse platform. Model Driven Engineering (MDE) already pro-
vides means to define metamodels, static properties, textual and graphical syn-
taxes. What should be addressed is thus 1) providing the system designer with
a user-friendly language to formalize system requirements, 2) defining a trans-
lational semantics from the DSML to a formal language, 3) translating formal
requirements into formal language logic formulae according to the translational
semantics, and eventually, 4) bringing back formal verification results back at
the DSML level so that they are understandable by the system designer.

Our contribution is on the tooling and methodological side as we propose an
approach to integrate formal verification through model-checking for a DSML.
We rely on the Executable DSML pattern [3] to define all concerns involved
in the definition of DSML semantics. We have fully tooled the Temporal OCL
(TOCL) language proposed by Gogolla et al. [4], including the expression of
formal properties on a specific model and their translation to the logic formulae
of the target language (Linear Temporal Logic (LTL) formulae at the moment).
We define guidelines to validate the translational semantics to the formal domain.
Finally, the feedback is largely automated thanks to mappings identified while
defining the translation semantics.

To illustrate this paper, we consider as a running example the xSPEM exe-
cutable extension of the SPEM process modeling language [5]. It was designed
in order to experiment V&V in the TopCased toolkit using an MDE approach.

The paper is organized as follows. Section 2 presents different manipulated
elements by the system designer (models to be verified, verification requests and
expected verification results). Section 3 presents the work to be done at DSML
level on the running use-case. Section 4 introduces the proposed verification
methodology with a translational semantics of xSPEM into the Fiacre formal
language [6]. Section 5 explains various steps in order to provide verification
results from formal tools to the xSPEM level through Fiacre. Section 6 gives
some related work in the domain of user level verification results. Finally, we
conclude and presents future work in Section 7.

2 DSML End-User Requirements

This section presents the domain – process modeling – considered in the case
study and the requirements of system designers, the DSML end-users. We first
present the kind of process models the DSML end-users want to build and the
properties they want to check on their models. Finally, we describe the feedbacks
expected from verification tools in order to get insights on the errors the models
may contain.

2.1 DSML End-User Models

Fig. 1 shows an example of a process model. It corresponds to a simplified devel-
opment process composed of three activities, each represented in an ellipse: wd1,

338 F. Zalila, X. Crégut, and M. Pantel

startToFinish

startToStart

startToStart

wd1 wd2

wd3

Fig. 1. a xSPEM model

Start wd2
Start wd1
Finish wd2
Start wd3
Finish wd1
Finish wd3

Listing 1.1. A terminating scenario

wd2 and wd3. Arrows between activities indicate dependencies: the target activ-
ity depends on the source activity. The label specifies the kind of dependency.
The word before the “To” indicates the state that must have been reached by
the source activity in order to perform on the target activity the action, which
appears after the “To”. For example, the ”startToFinish” dependency between
wd3 and wd1 means that wd1 can only be finished when wd3 has been started.
To keep this example simple, we have not represented the resources that are
required to perform an activity.

2.2 DSML End-User Verifications

To validate or to verify a model, the DSML end-user generally checks that
properties derived from the system requirements hold on that model. We focus
on behavioral properties, that is properties that concern the evolution of the
model over time.

The DSML end-user may be interested in general properties not specific to a
given process model. For example, he may want to check whether a process model
may finish (we call it P1 requirement). A process finishes if all its activities finish
while respecting constraints imposed by dependencies and resource allocation. If
this property holds, the DSML end-users may want to get a terminating scenario
and use it to pilot the process execution. Listing 1.1 is an example of terminating
scenario for the model of Fig. 1.

Another kind of properties can be targeted which is specific properties. The
DSML end-user may also want to verify properties that are specific to a particu-
lar process model. As an example, he might want to check whether it is required
that wd1 is finished before wd2 is finished (we call it P2 requirement).

2.3 Verification Feedback

Once system designers have defined their models and formalized their require-
ments through properties, they want to have feedbacks on the assessment of
those properties. Obviously, these feedbacks (named also counter-example or
scenario) should be expressed at the domain-specific level.

Formal Verification Integration Approach for DSML 339

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 resource 0..* resources

Fig. 2. An extract of the xSPEM Metamodel

For instance, using the example shown in Fig. 1, property P1 holds and the pro-
cessmayfinish.TheDSML end-user canbe providedwith a scenario that describes
a possible execution which leads to a finished process. Listing 1.1 is an example of
such a terminating scenario. It lists actions (start or finish) applied on activities.

The DSML end-user will be able to play those scenarios using a model ani-
mator like the one developed in the TopCased project [7].

3 MDE for V&V CASE Tools

MDE provides powerful techniques and tools to define a metamodel for the con-
sidered domain (using Ecore for example), completed with static properties (e.g.
OCL) and to generate either textual syntactic editors (e.g. Xtext) or graphical
editors (e.g. GMF). The metamodel of xSPEM is shown in Fig. 2. It defines
the concepts of Process composed of (1) WorkDefinitions that model the ac-
tivities performed during the process, (2) WorkSequences that define temporal
dependency relations (causality constraints) between activities and (3) Resources
allocated to activities (Parameter).

The DSML end-user is thus able to design models and check whether static
properties hold or not. Nevertheless, expressing properties which deal with the
evolution of the model over time is not that easy because the metamodel does
not usually provide all the required information. For instance, the xSPEM end-
user wants to check whether workdefinitions may finish or not but the concept
of “finished workdefinition” is not part of the xSPEM metamodel.

3.1 The Executable DSML pattern

As part of the TopCased [8] project, Combemale et al. have defined a metamod-
eling pattern called the Executable DSML pattern [3] that describes a way to de-
fine and structure the concerns required tomake aDSML executable. The original
metamodel, called theDDMM (Domain Definition MetaModel) is extended with
three other metamodels (Fig. 3). The first metamodel describes stimuli that make
the model evolve. They are modeled as events. Start a WorkDefinition or Finish
a WorkDefinition are examples of xSPEM events. These events are modeled in
theEDMM (EventDefinitionMetaModel), top left of Fig. 3. A secondmetamodel

340 F. Zalila, X. Crégut, and M. Pantel

<
<

im
po

rt
>

>
<<merge>>

DDMM

QDMM

isStarted()
isFinished()

WorkDefinition

EDMM

Event

WorkDefinitionEvent

StartWD FinishWD

TM3

Scenario Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 ressource 0..* ressources

0 .. * traces

0..* runtimeEvents

1 workDefinition

isFinished()

Process

<<merge>>

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

0..* dynamic_wds

<<merge>>

<<merge>>

<<implement>>

Fig. 3. xSPEM Metamodel

defines elements to model a scenario (either an input scenario or the trace of a par-
ticular execution) as a sequence of event occurrences. It is calledTM3 (TraceMan-
agement MetaModel), top middle of Fig. 3. TM3 is not specific to one particular
DSML as it only relies on the abstractEvent concept. These two extensions allow
to generate the scenario, which is a succession of events, that we want to feedback.
The third metamodel defines the runtime information, that is data that model the
state of themodel at runtime and that arenot part of theDDMM. Thismetamodel
is called SDMM (State Definition MetaModel), middle of Fig. 3. On the xSPEM
example, the SDMM includes the achievement state of a workdefinition which is
either not started, running or finished.

Fig 3 shows a fourth metamodel aside the three metamodels obtained by
applying the Executable DSML pattern to xSPEM. This additional metamodel
is called QDMM (Query Definition Metamodel), top right of Fig. 3. It is a kind
of an abstract view of the SDMM: it defines queries that may be asked on the
model. SDMM may be seen as a way to implement the QDMM by choosing
a set of attributes (like a Java class implements a Java inteface). For example,
on Fig. 3, the SDMM of WorkDefinition defines an attribute state that can be
used to implement the queries isStarted and isFinished from QDMM. Obviously,
several SDMM are possible for one QDMM.

3.2 Formalizing Behavioral Properties

The properties of interest for the xSPEM end-user are behavioral properties
relying on temporal operators. We have chosen to reuse the TOCL language [4].
TOCL is an extension of OCL that introduces usual future-oriented temporal

Formal Verification Integration Approach for DSML 341

operators such as always, sometimes, next, existsNext as well as their past-
oriented duals.

One first step to formalize the properties of interest to the DSML end-user
is to analyze the properties in order to identify the queries of interest. The
QDMM can then be defined. Considering the properties the DSML end-user
wants to assess on xSPEM models, we have identified three queries isStarted
and isFinished on WorkDefinition and isFinished on Process. The queries on
WorkDefinition are primitive (as we are not able to evaluate them at the mo-
ment) whereas isFinished on Process may be defined from the other ones. Here
is its TOCL definition.

context Process
def : isFinished () : Boolean =
self .workDefinitions

−>forAll(a:WorkDefinition| a.isFinished())
The following property states that a process can never finish (it is the negation

of the P1 property):

context Process −− negation of P1 requirement
inv isNeverFinished:

always (not self . isFinished ())

If this condition is not satisfied, it means the process can finish and theDSML
end-user expects that a model checker would exhibit a counter example that
corresponds to a scenario that finishes the process and thus all its activities.
This scenario would be obtained on the formal language used by the model
checker and would have to be leveraged to the DSML end-user’s domain.

We have built a TOCL syntactical editor integrated to the Eclipse platform.
It has been defined using the Xtext tool1.

4 Verification Methodology

One common way to verify a DSML consists in mapping its abstract syntax,
defined by a metamodel, to a semantic domain [2]. It is called a translational
semantics. The main advantage is to reuse tools available on this semantic do-
main like simulators or model-checkers. One common drawback is the semantic
gap that may exists between the DSML and the semantics domain. To fill this
gap, we target the Fiacre formal language [6] because of its high level concepts.
Fiacre is a front end language to several verification toolboxes (Tina [9] and
Cadp [10] currently). This work focuses on the Tina toolbox.

Fig. 4 depicts the main steps and resources implied in the formal V&V of a
DSML’s model. The yellow part (top of the figure) shows resources manipulated
by the DSML end-user: the model conforming to the DSML (Process.xspem),
the behavioral requirements formalized using the TOCL editor (Property.tocl)
as well as the scenario obtained when one property is not satisfied (Pro-
cess.xspemscn).

1 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

342 F. Zalila, X. Crégut, and M. Pantel

Process.fiacre

Process.xspem

Process
.xspem2fiacre

Fiacre2fcr.acceleo

Process.fcr

FRAC
Compiler

TINA
SELT

Process
.tpnscn

tpnscn2fcrscn.atl

Process.fcrscn

fcrscn2xspemscn.atl

Process.xspemscn Property.tocl

TOCL2FiacrePattern

End-user modeling level

Intermediate
modeling level

Formal
verification

level

Feedback
verification

results

Translational semanticsTraceability models

Process.tts

xSPEM2Fiacre.atl

Verification
methodology

extends

Fig. 4. General approach of DSML V&V

The blue part depicts the DSML designer task. It consists of implement-
ing a translational semantics from the DSML to the Fiacre formal language
and, based on this semantics, a backward transformation in order to feedback
verification results.

4.1 Fiacre Formal Language

Fiacre [6] is a french acronym for an Intermediate Format for Embedded Dis-
tributed Components Architectures. It was designed as the target language for
model transformations from different DSMLs such as AADL [11] or PLC [12].

Fiacre is a formal language to represent both the behavioral and timing
aspects of systems, in particular embedded and distributed systems, for formal
verification and simulation purposes. Fiacre is built around two notions:

– Processes describe the behavioral of sequential components. A process is
defined by a set of control states, each associated with a piece of program
built from deterministic constructs available in classical programming lan-
guages (assignments, if-then-else conditionals, while loops, and sequential
compositions), non deterministic constructs (non deterministic choice and
non deterministic assignments), communication events on ports, and jumps
to next state.

– Components describe the composition of processes, possibly in a hierarchi-
cal manner. A component is defined as a parallel composition of instantiated
components and/or processes communicating through ports and shared vari-
ables. The notion of component also allows to restrict the access mode and
visibility of shared variables and ports, to associate timing constraints with
communications, and to define priority between communication events.

Formal Verification Integration Approach for DSML 343

4.2 Translational Semantics xSPEM2Fiacre

Translational semantics consists in defining the mapping from the DSML to the
formal language.

For xSPEM, the translational semantics consists in transforming a xSPEM
model into a Fiacre specification. It is performed with a model to model (M2M)
transformation expressed in ATL [13] (xSPEM2FIACRE.atl at center of Fig. 4)
and then an Acceleo [14] module generates the Fiacre textual syntax (named
Fiacre2fcr . acceleo).

Here are some rationale behind this translational semantics. We illustrate
it with some elements in the Fiacre program corresponding to the xSPEM
example of Fig. 3.

Based on the QDMM, a Fiacre type called WDQueries was defined to repre-
sent the two queries on WorkDefinition of interest for the xSPEM end-user and
also for causality constraints. It is a record type composed of the two boolean
fields isStarted and isFinished.

type WDQueries is record // from QDMM
isStarted : bool,
isFinished : bool

end

WDsQueries defines an array of WDQueries storing the state of all workdefi-
nitions of an xSPEM process. It is an argument for every workdefinition process.

type WDsQueries is array 3 of WDQueries end

Named constants are defined to ease the reading of the Fiacre program by
avoiding the use of meaningless integers to identify a workdefinition.

const wd1Id: int is 0
const wd2Id: int is 1
const wd3Id: int is 2

Each workdefinition is translated into one Fiacre process with the same
name. Such a process is composed of three states (notStarted, running and fin-
ished) and two transitions (from notStarted to running and then from running
to finished). It is parametrized by two ports (Start and Finish). They are mainly
used to synchronize with resources used by the workdefinition (not presented in
this paper) but also ease the identification of xSPEM events for the feedback.

Each transition includes an assignment to update variables which store the
state of the activities. They were necessary to implement dependencies because
a Fiacre process cannot inspect the current state of other processes.

xSPEM causality constraints are thus mapped into a Fiacre conditional
statement that checks whether the Fiacre processes corresponding to the pre-
vious activities have reached the expected state. For example, because of the
start2Start constraint between wd2 and wd1, conditional statement checks
whether activity wd2 is started. If true the current state becomes running and it
is recorded that this activity has been updated (was updated). Otherwise, noth-
ing happens (loop statement). The following process shows the wd1 workdefini-
tion translated into Fiacre specification.

344 F. Zalila, X. Crégut, and M. Pantel

process wd1 [Start:sync, Finish:sync] (& wds: WDsQueries) is
states notStarted, Running, finished
from notStarted
if (wds[$(wd2Id)].isStarted) then

Start ;
wds[$(wd1Id)].isStarted := true;
to Running

else loop
end if
from Running
if (wds[$(wd3Id)].isStarted) then

Finish;
wds[$(wd1Id)].isFinished := true;
to finished

else loop
end if

The Fiacre component Process consists in instantiating the three processes
wd1, wd2 and wd3 with the actual ports and the array that stores activities’
states (initially all activities are not started and not finished):

component Process is
var

wds: WDsQueries :=
[{isStarted=false , isFinished=false},
{isStarted=false , isFinished=false},
{isStarted=false , isFinished=false}]

port
wd1Start, wd1Finish: sync,
wd2Start, wd2Finish: sync,
wd3Start, wd3Finish: sync,

par ∗ in
wd1[wd1Start, wd1Finish](&wds)
|| wd2[wd2Start, wd2Finish](&wds)
|| wd3[wd3Start, wd3Finish](&wds)

end

4.3 Translating TOCL Properties

The key point is then to translate the properties as formulae on the formal
model. Obviously, this translation is done at the metamodel level and thus has
only to be written once for every DSML. As our purpose is to facilitate the
development of CASE tools for new DSML, we focus on generic and generative
approaches advocated by MDE.

We have written a generic tool to translate a TOCL property expressed on
the xDSML (using QDMM queries) to a LTL formulae on the formal language.
Technically, TOCL operators, including OCL ones, are translated in a first
transformation that generates a second transformation which handles queries
fromQDMM. These transformations have been written using the ATL transfor-
mation language. The second transformation only depends on the way primitive
queries from QDMM are evaluated on the formal language. An ATL module
must be provided to describe the LTL fragments that corresponds to the prim-
itive queries of QDMM. According to the formal language, it may correspond

Formal Verification Integration Approach for DSML 345

to a process’ state in a Fiacre model. Each query appears in that module as a
helper method that returns the corresponding LTL fragment as a string. Imple-
menting all these queries is a kind of checklist that ensures that all aspects of
interest for the DSML end-user are indeed modeled on the formal side.

Here is the helper that corresponds to the primitive query isFinished identified
on WorkDefinition in the context of xSPEM to Fiacre transformation.

context WorkDefinition
def isFinished (): String =

self .getFiacreId() +
”/value wds[(” + self .name + ”id)].isFinished”

The property body is built according to Fiacre properties [15]. A Fiacre
property is composed of two elements2: a path and an observable. A path de-
fines the context of applying the observable. For example, the ”Process/2/1”
path identifies the first instance in the second composition in the main com-
ponent named Process. Observables play the role of atomic proposition in the
properties. It can be an instance state change, a communication through a port,
a communication through shared variables or the execution of a transition.

The operation getFiacreId() is a helper method which consists of identifying
the Fiacre instance – generated by the transformation – corresponding to the
current workdefinition (self).

The second part in this query corresponds to the predicate to be verified, that
is the observable. In the isFinished() definition, we check the shared variable wds
that stores the state of each WorkDefinition instance.

Based on the translational semantics defined in section 4.2, the property P1

applied on the the the xSPEM model of Fig. 1 generates the following Fiacre
property.

property isNeverFinished is ltl
([] (not (Process/1/value wds[$(wd1Id)].isFinished

and Process/2/value wds[$(wd2Id)].isFinished
and Process/3/value wds[$(wd3Id)].isFinished)))

4.4 Guidelines for Validating the Translation Semantics

Defining a translational semantics is a highly creative activity which requires
high skills both in the formal language and in the DSML to find an efficient
mapping between both languages as well as in transformation techniques. We
thus only provide guidelines to favor the definition of a correct transformation.

The first guideline is the obligation to define for each QDMM primitive query
the corresponding LTL fragment. QDMM queries are thus a kind of checklist
that ensures that all aspects of interest for the DSML end-user have indeed been
modeled on the formal side.

A second way to validate the translational semantics consists in formalizing
invariants on the DSML using TOCL and then automatically translating them

2 http://projects.laas.fr/fiacre/properties.html

http://projects.laas.fr/fiacre/properties.html

346 F. Zalila, X. Crégut, and M. Pantel

on the formal side. If they fail, an error is detected (either in the translation,
the invariants or the queries implementations).

4.5 Formal Verification

An Acceleo3 module generator (named Fiacre2fcr . acceleo) produces the
Fiacre specification enriched with generated Fiacre properties.

The complete Fiacre specification (Process.fcr in the Fig. 4) containing both
the Fiacre model specification and the properties to check represents the veri-
fication entry point shown in the Formal verification level part of Fig. 4. It
is translated by the Frac compiler4 (the Fiacre compiler for the Tina tool-
box) into a Timed Transition Systems (tts) specification, the accepted input by
Tina toolbox (Process.tts in Fig. 4).

This tts specification is verified using Selt5, the Tina model-checker for a
State-Event version of LTL. When the property fails, Selt generates a counter-
example as a succession of Petri net transitions. The generated counter-example
— also named scenario and verifications results — is not easy to understand for
the DSML end-user. So, we have to feedback it at the Fiacre level so that the
DSML designer can use them to generate DSML verification results.

5 Feedback Verification Results

Verification results are obtained at the formal level and must be leveraged at
the DSML level. This feedback is made easier thanks to the Executable DSML
pattern [3] applied not only at theDSML level but also at the formal one. Results
at the Fiacre level are obtained by analysing textual outputs of the Tina
toolbox [16]. Xtext is used to parse textual outputs and model transformations
generate the corresponding Fiacre events and scenarios.

Fiacre EDMM contains specific events [17]: an instance of a process entering
or leaving a state, a variable changing value, a communication through a port.

In a previous work [18], we relied on the naming convention used when trans-
forming the domain model to the formal one to translate verification results
up to the DSML level. String analysis and parsing were used. However this
method is tricky and cannot be applied on more complex DSMLs and cannot
be generalized.

A more general solution consists in relying on a traceability metamodel which
connects both metamodels (the DSML and the formal level). It corresponds to
the traceability approach defined in [19]: trace information is considered as an
additional model generated when the translational semantics is run.

3 http://www.acceleo.org/pages/home/en
4 http://projects.laas.fr/fiacre/manuals/frac.html
5 http://projects.laas.fr/tina/manuals/selt.html

http://www.acceleo.org/pages/home/en
http://projects.laas.fr/fiacre/manuals/frac.html
http://projects.laas.fr/tina/manuals/selt.html

Formal Verification Integration Approach for DSML 347

5.1 DSML-Fiacre Traceability Links

Based on the Executable DSML pattern applied on each DSML and on Fiacre
metamodel, the DSML designer is invited to define the traceability metamodel
with the appropriate information in order to capture information required to
feedback verification results.

The traceability metamodel depends on the defined translational semantics
and what kind of information would be traced back into the DSML level.
Typically, this information consists of triggering DSML events into the formal
language.

For the xSPEM example, two kinds of events are included Start a WorkDef-
inition and Finish a WorkDefinition. As shown in the previous section, the
DSML designer has mapped a workdefinition into a Fiacre instance. Events
are triggered using port signals (Start port and Finish port).

Fig. 5 shows the traceability metamodel, xSPEM2FIACRE, inspired from the
translational semantics which links xSPEM metamodel (bottom) and Fiacre
one (top).

The xSPEM2Fiacre model (shown in Fig. 4 as Process.xspem2fiacre) is
conforms to this metamodel. To find back xSPEM events from Fiacre ones,
we have defined two metaclasses WDStart2Fiacre and WDFinish2Fiacre that
correspond to the two xSPEM events (start a workdefinition and finish a
workdefinition). They are respectively linked to the Start and Finish port signal
statements.

Signal

Instance

xSPEM2Fiacre

WD2Fiacre

WDStart2Fiacre

WDFinish2Fiacre

WorkDefinition

FIACRE
DDMM
(subset)

xSPEM
DDMM
(subset)

traceabilityElements
1 .. * xSPEM

2FIACRE

1
workdefinition

signal instance

Statement

Process1..*
statements type

SynchronisationEvent

Event

instancesignal

Event

WorkDefinitionEvent

StartWD

FinishWD

FIACRE
EDMM

(subset)

xSPEM
EDMM

1 workdefinition

Fig. 5. Defining a traceability meta model

348 F. Zalila, X. Crégut, and M. Pantel

5.2 Feedback Verification Results at DSML Level

The generated Fiacre scenario, Process. fcrscn in Fig. 4, (that only contains
Fiacre events) has to be leveraged at the DSML level, xSPEM in our case.
An xSPEM scenario only contains events which are instances of the xSPEM’s
EDMM. Obtaining xSPEM events is done from Fiacre events thanks to the
traceability links generated while the translational semantics runs.

Fig. 5 shows the relations between the EDMMs of Fiacre and xSPEM on
the one hand (left) and their DDMMs on the other hand (right) through the
traceability metamodel (middle). Only the SynchronisationEvent is represented
because other events are not used for xSPEM. According to the signal and the
instance of this event, the corresponding element can be found in the traceability
model, and then the workdefinition identified as well as the kind of xSPEM
event — either start or finish that workdefinition. Applying our approach on
xSPEMmodel shown in Fig. 1 and TOCL property, negation of P1 requirement,
constructs the scenario presented in the Listing 1.1.

6 Related Work

The problem of integrating formal verification into the design of DSMLs has
been widely addressed by the MDE community. In order to tackle property-
based verification problem, authors of [20] present the Metropolis design frame-
work for embedded systems.

Their verification approach is based on formal properties specified in Lin-
ear Temporal Logic (LTL) and Logic of Constraints (LOC). They have different
domains of expressiveness and indeed complement each other quite well. The for-
mal verification methodology of Metropolis consists in translating the Metropolis
specification into Promela description, and the LTL properties are checked us-
ing the model checker Spin. Translating verification results is done in ad hoc
manner.

On the contrary, in our approach, we introduce for the DSML designer a
user-friendly tool, TOCL, used to ease the writing of behavioral properties and
which is also close to OCL. OCL is widely accepted as the appropriate language
to verify structural properties on models.

In [21], authors define an approach named Arcade that uses SPIN model
checker for evaluating safety and liveness properties of a Domain Reference
Architecture that is translated to Promela language. Arcade interprets SPIN
counter-example and generates an Architecture Trace Diagram (ATD).

Nevertheless, the ATD is a graphical representation of the spin counter-
example. They do not define a high-level abstraction between model level and
formal level. In our work, we separate the two domains (DSML and formal ones)
and we hide all formal aspects by translating formal results to domain-specific
results.

Hegedüs et al. [22] propose a method to verify BPEL models. It relies on a re-
lation between elements of the source (BPEL) and the target (Petri nets) meta-
models, implemented by means of annotations in the transformation’s source

Formal Verification Integration Approach for DSML 349

code. The authors propose a technique for the back-annotation of simulation
traces from traces generated by the model checker to the specific animator named
BPEL Animation Controller. This approach is based on change-driven model
transformations. This choice can be a restriction for DSML designers which are
not familiarized with this specific model transformations technique.

In [23], authors introduce an algorithm requiring the DSML’s semantics to
be defined formally, and a relation R to be defined between states of the DSML
and states of the target language. The DSML designer must provide as input
a natural-number bound n, which estimates a difference of granularity between
the semantics of the DSML and the semantics of the target language.

However, we don’t think that DSML designer, for who it it difficult to use for-
mal methods and verification, can define this important information to feedback
verification results.

The most important difference between our approach and all the previously
quoted approaches is on the fact that we are defining a structured model-based
approach allowing to model different steps: defining the model using DDMM,
introducing behavioral properties using a TOCL editor and a QDMM extension
and capturing runtime information using TM3, EDMM and SDMM extensions.

7 Conclusion

We have presented an approach to integrate verification tools on a DSML in or-
der to assist system designer into the verification of safety and liveness properties
on executable models.

It has been illustrated on xSPEM as DSML and Fiacre as the formal lan-
guage. We introduce a user-friendly language, TOCL, to system designer which
allows to specify behavioral properties because it is close to OCL. However, the
use of OCL and TOCL have shown that it is still not well suited to many system
designers. Therefore, we might need to investigate a more suited user-oriented
language for expressing behavioral constraints. So, TOCL can be considered as
an intermediate language between LTL and the high-level property language.

To ease feedback verification results, relying on the executable DSML pattern
and traceability models, we assist DSML designer to define a traceability meta-
model used after to define the backward transformation to feedback verification
results at the DSML level.

This approach has been designed for domain specific languages. It is currently
being experimented for several significantly different DSMLs. But, it is still to
be shown if it can scale up to more complex languages or to languages combining
different models of computation.

As future works, we propose to further facilitate the DSML designer task by
providing automatically the backward transformation which feedbacks verifica-
tion results into the DSML level. It can be inspired from the previously defined
translational semantics.

350 F. Zalila, X. Crégut, and M. Pantel

References

1. Merilinna, J., Pärssinen, J.: Verification and validation in the context of
domain-specific modelling. In: Proceedings of the 10th Workshop on Domain-
Specific Modeling, ser. DSM 2010, pp. 9:1–9:6. ACM, New York (2010),
http://doi.acm.org/10.1145/2060329.2060351

2. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”?
Computer 37(10), 64–72 (2004)

3. Combemale, B., Crégut, X., Pantel, M.: A Design Pattern to Build Executable
DSMLs and associated V&V tools (short paper). In: Asia-Pacific Software
Engineering Conference (APSEC), Hong Kong, China (2012)

4. Ziemann, P., Gogolla, M.: An Extension of OCL with Temporal Logic. In: Criti-
cal Systems Development with UML – Proceedings of the UML 2002 Workshop,
vol. TUM-I0208, pp. 53–62 (September 2002)

5. Software & Systems Process Engineering Metamodel (SPEM) 2.0. Object Manage-
ment Group, Inc. (October 2007)

6. Berthomieu, B., Bodeveix, J.-P., Filali, M., Farail, P., Gaufillet, P., Garavel,
H., Lang, F.: Fiacre: an Intermediate Language for Model Verification in the
TopCased Environment. In: ERTS 2008 (January 2008)

7. Combemale, B., Crégut, X., Giacometti, J.-P., Michel, P., Pantel, M.: Introducing
Simulation and Model Animation in the MDE TopCased Toolkit. In: Proceedings
of the 4th European Congress Embedded Real Time Software (ERTS), Toulouse,
France (January 2008)

8. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Crégut,
X., Pantel, M.: The TopCased project: a toolkit in open source for critical aeronau-
tic systems design. In: Embedded Real Time Software (ERTS), Toulouse, France
(January 2006)

9. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – construction of ab-
stract state spaces for Petri nets and time Petri nets. Int. Journal of Production
Research 42(14), 2741–2756 (2004)

10. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: Cadp 2010: A toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

11. Correa, T., Becker, L., Farines, J.-M., Bodeveix, J.-P., Filali, M., Vernadat, F.:
Supporting the Design of Safety Critical Systems Using AADL. In: 2010 15th
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS), pp. 331–336 (March 2010)

12. Farines, J.-M., De Queiroz, M.H., De Rocha, V., Carpes, A.M., Vernadat, F.,
Crégut, X.: A model-driven engineering approach to formal verification of PLC
programs (regular paper). In: Emerging Technologies and Factory Automation
(ETFA), Toulouse, France, pp. 1–8. IEEE (2011)

13. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

14. Eclipse, Acceleo (2012), http://www.eclipse.org/acceleo/
15. Abid, N., Dal-Zilio, S., Botlan, D.L.: A verified approach for checking real-time

specification patterns. CoRR, vol. abs/1301.7531 (2013)

http://doi.acm.org/10.1145/2060329.2060351
http://www.eclipse.org/acceleo/

Formal Verification Integration Approach for DSML 351

16. Zalila, F., Crégut, X., Pantel, M.: Verification results feedback for Fiacre in-
termediate language. In: Confrence en Ingnierie du Logiciel, CIEL (June 2012),
http://gpl2012.irisa.fr/?q=node/31

17. Abid, N., Dal Zilio, S.: Real-time Extensions for the Fiacre modeling language
(2010), http://automata.rwth--aachen.de/movep2010/index.php?page=about,
http://hal.archives-ouvertes.fr/hal-00593958

18. Zalila, F., Crégut, X., Pantel, M.: Leveraging formal verification tools for DSML
users: a process modeling case study. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, vol. 7610, pp. 329–343. Springer, Heidelberg (2012),
http://hal.archives-ouvertes.fr/hal-00720917

19. Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European
Conference on Model Driven Architecture (ECMDA) Workshop on Traceability
(2005)

20. Chen, X., Hsieh, H., Balarin, F.: Verification approach of metropolis design frame-
work for embedded systems. International Journal of Parallel Programming 34(1),
3–27 (2006)

21. Barber, K.S., Graser, T., Holt, J.: Providing early feedback in the development
cycle through automated application of model checking to software architec-
tures. In: Proceedings of the 16th IEEE international conference on ASE 2001,
Washington, DC, USA (2001)

22. Hegedüs, Á., Bergmann, G., Ráth, I., Varró, D.: Back-annotation of simulation
traces with change-driven model transformations. In: SEFM 2010, pp. 145–155
(2010)

23. Combemale, B., Gonnord, L., Rusu, V.: A generic tool for tracing executions back
to a dSML’s operational semantics. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 35–51. Springer, Heidelberg
(2011)

http://gpl2012.irisa.fr/?q=node/31
http://automata.rwth--aachen.de/movep2010/index.php?page=about
http://hal.archives-ouvertes.fr/hal-00593958
http://hal.archives-ouvertes.fr/hal-00720917

Composing Your Compositions
of Variability Models

Mathieu Acher1, Benoit Combemale1, Philippe Collet2, Olivier Barais1,
Philippe Lahire2, and Robert B. France3

1 University of Rennes 1, Inria/Irisa, France
firstname.lastname@irisa.fr

2 I3S Laboratory CNRS, University of Nice Sophia Antipolis, France
firstname.lastname@i3s.unice.fr
3 Colorado State University, USA

france@cs.colostate.edu

Abstract. Modeling and managing variability is a key activity in a
growing number of software engineering contexts. Support for composing
variability models is arising in many engineering scenarios, for instance,
when several subsystems or modeling artifacts, each coming with their
own variability and possibly developed by different stakeholders, should
be combined together. In this paper, we consider the problem of com-
posing feature models (FMs), a widely used formalism for representing
and reasoning about a set of variability choices. We show that several
composition operators can actually be defined, depending on both match-
ing/merging strategies and semantic properties expected in the composed
FM. We present four alternative forms and their implementations. We
discuss their relative trade-offs w.r.t. reasoning, customizability, trace-
ability, composability and quality of the resulting feature diagram. We
summarize these findings in a reading grid which is validated by revisiting
some relevant existing works. Our contribution should assist developers
in choosing and implementing the right composition operators.

1 Introduction

Designing, developing and maintaining software systems for one customer, one
hardware device, one operating system, one user interface or one execution con-
text is no longer an option. Numerous organizations rather need to efficiently
produce a large variety of similar software products, for satisfying the require-
ments of a particular domain. Variability, defined as "the ability of a software
system or artifact to be efficiently extended, changed, customized or configured
for use in a particular context" [1], is pervasive in a growing number of systems,
from software product lines (SPLs) [2] to dynamic adaptive systems [3]. When
properly managed, variability can lead to order-of-magnitude improvements in
cost, time-to-market, and productivity of products.

Models are traditionally employed to formally identify, organize and config-
ure features of a system, automate the generation of products as well as their

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 352–369, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Composing Your Compositions of Variability Models 353

verification. A variety of models may be used for different development activities
and artifacts – ranging from requirements, source codes, certifications and tests
to user interfaces. In an increasing number of scenarios, support for composing
models and their variability is becoming more and more crucial [4–16].

Multiple systems. When a multitude of subsystems (modular systems such as
software components or services) or artifacts must be combined, several vari-
ability descriptions are to be related, organized and finally composed to form a
consistent result. This context of use is broad, with first needs on organizing sev-
eral software product lines with shared variabilities [5], evolving to compositional
software product lines [4], in which a complex domain is captured and organized
[14] into multiple product lines [8,11] with relations between input product lines’
variability models. Handling these relations really lead to both reasoning on the
represented configuration sets and maintaining a understandable organization
(i.e. a feature hierarchy) for the organizations. The same situation arises when
extracting FMs from different software artifacts [12,17–19]. However these vari-
ous usages necessitate different interpretations of the FM composition operation
to reflect the captured variable assets.

Multiple stakeholders. Together with multiple product lines comes the need to
handle different stakeholders on one or several SPLs. Researchers developed tech-
niques for FMs that reflect organisational structures and tasks. For example,
Reiser et al. [6] address the problem of representing and managing FMs in SPLs
that are developed by several companies in the automotive domain. Several FMs
are used and structured hierarchically, so that they can be managed separately by
suppliers. The FM composition is then concerned with the propagation of local
changes through the hierarchy. In a similar situation, Hartmann et al. [7] used an
FM in the context of a multiple SPL supporting several dimensions. It requires
the definition of a merging process of FMs during their pre-configurations.

Multiple perspectives. The need for reasoning on FM compositions while manipu-
lating a consistent FM hierarchy is also emphasized by the separation of concerns
on variability models. With their increasing complexities and usages, practition-
ers may define different viewpoints according to different criteria or concerns.
The most used viewpoints are the ones defining the user-oriented view (exter-
nal variability) from the technical features (internal one) [2]. These views have
many usages [10,20,21], i.e. defining abstraction layers, reflecting organizational
structure with specific stakeholders [22], supporting collaborative design [23] or
multi-level staged configurations [24]. Separation of these views also means that
some relations and compositions must be done at some point to reason over the
whole SPL, with references, constraints [25], a reduced form of composite model,
and even in a semi-automatic way to synthesize an integrated model [11, 15].

As a result, several modeling artifacts, each coming with their own variability
and possibly developed by different stakeholders, should be combined together.
In this paper, we first consider the problem of composing feature models (FMs),

354 M. Acher et al.

a widely used formalism (see Section 2) for representing and reasoning about a
set of variability choices (a.k.a. features). We show that several salient variants
of composition operators can actually be defined, depending on the semantic
properties expected in the composed FM (Section 3). We present four vari-
ants with their respective implementations using the FAMILIAR language [15]
(Section 4). We also study the different realized trade-offs w.r.t. reasoning, cus-
tomizability, traceability and composability capacities, as well as quality of the
resulting feature diagram (Section 5). We show that existing works [6,8,26] and
our past attempts [15, 25] can benefit from the new proposed techniques when
reasoning, synthesizing feature diagrams, aligning FMs or simply devising new
composition-based operators. As a result, the contributions of this paper are:

– the identification of composition mechanisms and semantic properties for
building more complex composition-based operators on FMs.

– the survey of four possible variant implementations of such composition-
based operators including two new realizations in comparison with previous
work [15, 25].

– a reading framework to help on selecting the right composition according to
their respective qualities.

– its validation by instantiating some representative existing works.

Our contribution should both assist developers in i) choosing or devising
composition-based operators for FMs and ii) choosing the most adequate tool-
supported technique to realize these operators.

2 Background

Feature Models (FMs) are a widely used formalism for modeling and reasoning
about commonality and variability of a system [27]. A recent survey of variability
modeling showed that FMs are by far the most frequently reported notation in
industry [28].

An FM is a hierarchical organization of features that aims to represent the con-
straints under which features occur together in products configurations. When
decomposing a feature into subfeatures, the subfeatures may be optional or
mandatory or may form Xor- or Or-groups (see Fig. 1a for a visual representa-
tion of an FM). Not all combinations of features (configurations) are authorized
by an FM. Importantly, the hierarchy imposes some constraints: the presence
of a child feature in a configuration logically implies the presence of its parent
(e.g., the selection of F5 implies the selection of F2). The hierarchy also helps to
conceptually organize the features into different levels of increasing detail, thus
defining an ontological semantics.

A valid (or legal) configuration is obtained by selecting features in a manner
that respects the hierarchy and the following rules: i) If a parent is selected, the
following features must also be selected - all the mandatory subfeatures, exactly
one subfeature in each of its Xor-groups, and at least one of its subfeatures in
each of its Or-groups; ii) propositional constraints must hold. An FM defines a

Composing Your Compositions of Variability Models 355

F6

F2

S

F4F1

F5

fm1

(a) fm1

�fm1� = {{S, F2, F6},
{S, F2, F5, F1},
{S, F2, F5, F4},
{S, F2, F5, F1, F4},
{S, F2, F6, F1},
{S, F2, F6, F4}}
(b) Configurations

φfm1 = S // root
∧ F2 ⇔ S // mandatory
∧ F1 ⇒ S // optional
∧ F4 ⇒ S // optional
// Xor-group
∧ F5 ⇒ F2 ∧ F6 ⇒ F2

∧ F2 ⇒ F5 ∨ F6

∧ ¬F5 ∨ ¬F6

(c) Boolean formula

Fig. 1. FM, set of configurations and Boolean logic encoding

set of valid feature configurations (see Definition 1). Fig. 1b displays the set of
valid configurations characterized by the FM of Fig. 1a.

Definition 1 (Configuration Semantics). A configuration of an FM fm1 is
defined as a set of selected features. �fm1� denotes the set of valid configurations
of fm1 and is a set of sets of features.

An FM is usually encoded as a propositional formula, denoted φ, and defined over
a set of Boolean variables, where each variable corresponds to a feature [29] (see
Fig. 1c for the propositional formula corresponding to the FM of Fig. 1a). The
terms FM and feature diagram are employed in the literature, usually to denote
the same concept. In this paper, we make a distinction. We consider that a feature
diagram (see Definition 2) includes a feature hierarchy (tree), a set of feature
groups, as well as human readable constraints (implies, excludes). The syntactical
constructs offered by such feature diagrams are not expressively complete w.r.t
propositional logics. Similar to [17], we thus consider that an FM is composed
of a feature diagram plus a propositional formula ψ (see Definition 3).

Definition 2 (Feature Diagram). A feature diagram FD =
〈G,EMAND, GXOR, GOR, I, EX〉 is defined as follows: G = (F , E, r) is a
rooted, labeled tree where F is a finite set of features, E ⊆ F × F is a finite
set of edges and r ∈ F is the root feature ; EMAND ⊆ E is a set of edges
that define mandatory features with their parents ; GXOR ⊆ P(F) × F and
GOR ⊆ P(F) × F define feature groups and are sets of pairs of child features
together with their common parent feature ; I a set of implies constraints whose
form is A ⇒ B, EX is a set of excludes constraints whose form is A ⇒ ¬B
(A ∈ F and B ∈ F).

Definition 3 (Feature Model). An FM is a tuple 〈FD,ψ〉 where FD is a
feature diagram and ψ is a propositional formula over the set of features F .

3 Meanings of Composition-Based Operators

In an increasing number of contexts, a multiplicity of FMs have somehow to be
combined, merged or confronted (i.e., composed), for instance, to synthesize an
integrated view or reason globally about a system.

356 M. Acher et al.

F6

F2

S

F3F1

F5

(a) fm2

F6

F2

S

F4F1

F5<<implies>>

(b) fm3

F6

F2

S

F3F1

F5

F4
F3 <<excludes>> F4
F3 <<implies>> F1

Ѱ = (F1 v F3 v ~F4 v ~F5 v ~F6)
^ (F1 v F3 v F4 v ~F5 v ~F6)

(c) fmmunion

Fig. 2. A possible composition (fmmunion) of fm1, fm2, and fm3

A First Illustrative Example. Let us consider the composition of fm1, fm2

and fm3 (see Fig. 1a, Fig. 2a and Fig. 2b). We denote by ◦ a composition
operator over FM that computes a new FM. In our specific example, we consider
that the composed FM, denoted fmmunion , should represent the union of input
sets of configurations of fm1, fm2 and fm3, that is: �fmmunion� = �fm1� ∪
�fm2�∪�fm3�. Such a composition is typically used to build a new SPL offering
all the possible configurations supported in at least one of the products or SPLs
of an organization or a supplier. Two possible resulting FMs are depicted in
Fig. 2c and Fig. 3. Intuitively, when features are selected in the composed FM,
it means that the selection of corresponding features (i.e., with the same names)
are also valid and both supported in either fm1 or fm2 or fm3. For instance, a
partial configuration involving the selections of features F1, F2, and F3 is valid in
fmmunion since the combination of features F1, F2, and F3 is also valid in fm2.
However it is not possible to both select features F3 and F4 in fmmunion since
no valid configurations of fm1, fm2 and fm3 are supporting this combination.

Meanings. Obviously, the semantics of the previous composition can be in con-
tradiction with the intentions, requirements or simply modeling objectives of a
practitioner. First there are different ways of interpreting the way features match
and are related to each other (e.g., the mapping is not necessarily one-to-one).
Second the configuration semantics expressed in the composed FM may differ
(stakeholders may want to compute the intersection, the reduced product, the
difference, etc. of configuration sets instead of the union). Finally the conceptual
organization of the features in the resulting FM is another variation. Due to the
variety of compositional scenarios exposed in the introduction, there is no one-
size-fits-all interpretation when FM have to be composed. In order to address
the variations’ meanings, we identify common mechanisms and present a generic
framework to devise (new) composition-based operators.

3.1 Different Strategies for Matching and Merging

The composition process exposed in the previous example is in line with many
works on model composition that consists in two main phases [30, 31]: i) the
matching phase identifies model elements that describe the same concepts in the
input models to be composed; ii) the merging phase where matched elements
are grouped together (i.e., merged) to create new elements in the resulting model.

Composing Your Compositions of Variability Models 357

F6

F2

S

F4F1

F5 F6

F2

S

F3F1

F5 F6

F2

S

F4F1

F5<<implies>>

F6

F2

S

F3F1

F5

F4

R

InputFMs

fm1

F6

F2

S

F4F1

F5 F6

F2

S

F3F1

F5 F6

F2

S

F4F1

F5<<implies>>

F6

F2

S

F3F1

F5

F4

R

InputFMs

fm1

FMr union

fm2 fm3

(F1 � (fm1.F1 v fm2.F1 v fm3.F1)) ^
atmost1 (fm1.F1, fm2.F1, fm3.F1) ^
(F6 � (fm1.F6 v fm2.F6 v fm3.F6)) ^
atmost1(fm1.F6, fm2.F6, fm3.F6) ^
(F4 � (fm1.F4 v fm3.F4)) ^
atmost1(fm1.F4, fm3.F4) ^
(S � (fm1.S v fm2.S v fm3.S)) ^
atmost1(fm1.S, fm2.S, fm3.S) ^
(F2 � (fm1.F2 v fm2.F2 v fm3.F2)) ^
atmost1(fm1.F2, fm2.F2, fm3.F2) ^
(F5 � (fm1.F5 v fm2.F5 v fm3.F5)) ^
atmost1(fm1.F5, fm2.F5, fm3.F5) ^ (F3 � fm2.F3)

Ѱr union =

Fig. 3. Composition of fm1, fm2, and fm3, somehow equivalent to fmmunion . The
term atmost1 (F1, . . . , Fn) is equivalent to ∧i<j(¬Fi ∨ ¬Fj)

The previous strategy for matching/merging FMs is rather basic and straight-
forward: features match if they have the same names while the merging consists
in simply creating new features with the same names S, F1, . . . , F6. How-
ever more sophisticated matching and merging mechanisms are needed especially
when input FMs are coming from different sources (e.g., suppliers) or when the
composed FM should reflect a view of the system that does not necessarily in-
clude all the original details or feature names.

We give an example in Fig. 4 (ψrother
will be explained in detail in the next

section). Firstly, F56 is mapped to features F5 and F6 of input FMs. The intuition
is that either selecting F5 or F6 is sufficient to realize the feature F56. In a
sense, F56 abstracts features F5 and F6 since no distinction is made between F5
and F6 at the level of abstraction of the view (coloured features). Secondly, F1
is no longer present in the composed view. It is another form of abstraction:
unnecessary details are removed. Thirdly another feature, named F8, is present
in the view and aims to better structure the FM, considering that features F3
and F4 are ontologically closed.

S

F4

F8

S

F56

F3

R

InputFMs

fm1
S

F4

F8

S

F56

F3

R

InputFMs

fm1

FMr other

fm2 fm3

F8 � (fm2.F3 v fm1.F4 v fm3.F4) ^
F3 � (fm1.F3) ^
F4 � (fm1.F4 v fm3.F4) ^
F56 � (fm1.F5 v fm2.F5 v fm3.F5 v
fm1.F6 v fm2.F6 v fm3.F6)

S S

Ѱr other =

Fig. 4. Another composition of fm1, fm2, and fm3 with different matching/merging
strategies and semantic properties

358 M. Acher et al.

3.2 Different Semantic Properties

The matching and merging mechanisms are the basics for devising a composition
operator. However they do not state what are the properties of the composed FM
in terms of configuration semantics and ontological semantics. Let us consider
once again the composition of fm1, fm2, fm3 and assume that features F3
match in the three FMs and are merged as a new feature F3 in the composed
FMs. There is still need to establish the meaning of the new feature F3 in terms
of configuration, i.e., what is the impact of a selection and deselection of F3 in
the composed FM?

Configuration Semantics. A first interpretation is that the selection of F3 in
the composed FM involves the selection of F3 in one and only one input FM. (It
corresponds to the union of configuration sets as considered in the first illustra-
tive example.) The direct impact of this specific semantics is that the selection
of F3 induces in turn the selection of F1 (see Fig. 2c and Fig. 3), since there
is no SPL that supports F3 without F1. Another more restrictive interpretation
is that the selection of F3 in the composed FM forces the selection of all fea-
tures named F3 in input FMs. If this interpretation is applied on all features,
the composition intuitively corresponds to the intersection of configuration sets.
Yet another (less restrictive) interpretation is that the selection of F3 in the
composed FM forces the selection of at least one features named F3 in input
FMs, etc.

Ontological Semantics. Another important aspect of FMs is the way features
are conceptually organized in the tree-based hierarchy. Given a set of configura-
tions, there still exists different candidate FMs yet with different hierarchies [17].
Therefore what the most appropriate feature hierarchy is should be part of the
composition. For instance, a practitioner may consider that the feature F3 is
more appropriately located below the feature F1 than below the root S in Fig. 3.

4 Variations in the Compositions of Feature Models

A composition operator ◦ takes as input a set of FMs and can be customized for
supporting different matching/merging strategies and semantic properties (being
related to configuration or ontological aspects) in the resulting FM. The following
section addresses another important and related problem: How to implement
these compositions? Different variants are indeed worth to consider, each having
strengths and weaknesses.

4.1 Denotational-Based Composition (Logic-Based)

The logic-based implementation consists in i) encoding the expected configura-
tion set of the composed FM as a Boolean formula φc ii) synthesizing the feature

Composing Your Compositions of Variability Models 359

diagram from φc. Fig. 5a summarizes the process. The first step is to compute
φc. All input FMs (resp. fm1 and fm2) are encoded as Boolean formula (resp.
φ1 and φ2). Then the composition operator is denoted (or translated) in the
Boolean logic. If we consider the case of union (see the first illustrative example),
the denotational operator roughly corresponds to a disjunction of formulae (de-
tails have been given in [25]). Similar denotations can be applied for computing
the intersection, diff, reduced product, etc. of configurations sets. The second
step determines an appropriate hierarchy and synthesizes variability informa-
tion. First we compute the binary implication graph of φc. It is a directed graph
BIGc = (V,E), V being the set of nodes corresponding to variables of the for-
mula, while the set of edges is formally defined as E = {(fi, fj) | φ ∧ fi ⇒ fj}.
BIGc is a representation of all logical implications between two variables in φc

and corresponds intuitively to all possible hierarchies of fmc. Second we com-
pute a directed minimum spanning tree (MST) of BIGc that maximises the
parent-child relationships of input FM hierarchies. Finally, other components of
the feature diagrams can be synthesized [19, 32]. In Fig. 2c, the resulting syn-
thesized FM corresponds to the first illustrative composition of fm1, fm2 and
fm3 (union mode, name-based matching strategy).

4.2 Operational-Based Composition (Reference-Based)

Another radically different implementation is to reference input FMs. The key
idea is to build a separated FM (i.e., a view) that typically contains features with
the same names of the input FMs. The features of the view are then related to
input features through a set of logical constraints. The result is an FM that
both aggregates the input FMs, the view, and the constraints. Fig. 3 depicts the
resulting FM on the same kind of composition (union) than previously consid-
ered. Other kinds of configuration semantics (e.g., intersection) can be realized
by defining another view and logical mapping.

The main difference is that features of input FMs are still present (i.e, the
merging strategy differs compared to the denotation-based implementation). Yet
it is worth to observe that the configuration semantics expressed in fmrunion

(see Fig. 3) is equivalent to fmmunion (see Fig. 2c). The equivalence is defined
as follows:

�fmmunion� = �fmrunion� |Frview

where Frview is the set of features in the view (coloured features in Fig. 3)
and A |B denotes the projection of for two given sets A and B such that: A |B

=

{a′ | a ∈ A∧a′ = a∩B} = {a∩B| a ∈ A}. Intuitively it means that the exact same
combinations of S, F1, . . . , F6 are authorized in fmrunion and fmmunion . This is
due to ψrunion that constraints the way features S, F1, . . . , F6 of fmrunion can be
combined. For instance, ψrunion states that the selection of F2 should correspond
to at least and at most one of the following features: fm1.F2, fm2.F2, or fm3.F2.
Therefore F2 is actually mandatory in ψrunion (as in ψmunion).

360 M. Acher et al.

fm1 fm2

φ1 φ2 φc

fmco

o' =

=

(a) Logic-based

fm1 fm2o =

fmr

fmc

(b) Reference-based
fm1 fm2

φref

o =

fmr

fmc

(c) With local synthesis

fm1 fm2

φref

o =

fmr

fmc

φc'

(d) With slicing

Fig. 5. Variants of composition-based operator implementation

4.3 Hybrid

The semantic equivalence of the denotational and operational-based implementa-
tions and the last remarks give the idea of going further by correcting the view of
the reference-based FM. Two equivalent solutions are considered. In both cases,
the principle is to i) denote the reference-based FM as a formula φref and then
ii) synthesize a new feature diagram and FM (see Fig. 5c and Fig. 5d).

Reference-Based and Local Synthesis. Our goal is to synthesize a new
FM that only contains features of Frview . However φref contains many Boolean
variables that may disturb the algorithm. In particular the computation of the
implication graph is likely to contain nodes and edges that are not relevant.
Furthermore considering all variables of φref will dramatically increase the com-
putation time. We thus adapt the synthesis procedure so that reasoning oper-
ations are only applied over relevant variables. For instance, the computation
of the implication graph can be realized by checking possible implications only
between features of interest. The synthesis of the variability information leads
to the same exact feature diagram depicted in Fig. 2c on the previous example.

Reference-Based and Slicing. Another variant is to eliminate disturbing
variables in φref and obtain a new formula φc′ . Intuitively, non relevant variables
are removed by existential quantification in φref .

Definition 4 (Existential Quantification). Let v be a Boolean variable oc-
curring in φ. φ|v (resp. φ|v̄) is φ where variable v is assigned the value True
(resp. False). Existential quantification is then defined as ∃v φ =def φ|v ∨ φ|v̄ .

In case of union, intersection, etc., φc′ is equal to φc (the formula obtained with
a denotational-based approach), i.e., the formula logically represents the exact
same valid configurations and the set of variables is exactly the same. Therefore
φc′ can be used afterwards to synthesize an FM: the feature diagram obtained
is the same as Fig. 2c.

Composing Your Compositions of Variability Models 361

4.4 Tooling Support

We rely on FAMILIAR (for FeAture Model scrIpt Language for manIpulation
and Automatic Reasoning) [15]. The language already includes facilities for im-
porting/exporting, editing, reasoning about FMs and their configurations. Two
reasoning back-ends (SAT solvers using SAT4J and BDDs using JavaBDD) are
internally used and perform over propositional formulae. Compared to our pre-
vious effort [15,19], we extend the language and integrate the new compositional
techniques developed in the paper through the form of operations over FMs
(aggregateMerge, ksynthesis "over" , etc.). We adapt the Tarjan’s algorithm
based on corrections reported in [33] to compute the directed MST of binary
implication graphs. The code snippet below illustrates how to use the four im-
plementation variants on the illustrative example of the paper. The reference [34]
provides a comprehensive tutorial and numerous examples.

fm1 = FM (S : ..) fm2 = FM (S : ..) fm3 = FM (S : ..) // input feature models

fmMUnion = merge union { fm1 fm2 fm3 } // logic-based
fmRUnion = aggregateMerge union { fm1 fm2 fm3 } // reference-based

fm6 = extract fmRUnion.S // basic extraction (features are all optionals)
fm7 = slice fmRUnion including fmRUnion.S* // slicing (same FD + formula than fmMUnion)
fm8 = ksynthesis fmRUnion over fm5.S* // local synthesis (same FD but formula differs)

5 A Framework for Composing your Compositions

Users of composition operators for FMs have to define a specific semantics (or
reuse an existing one, see left part of Fig. 6) and then select an appropriate im-
plementation (see right part of Fig. 6). In this section, we provide a reading grid
and practical illustrations in order to assist users in customizing a composition
adapted to their requirements.

5.1 Comparison Framework and Reading Grid

We first discuss and compare the pros and cons of each implementation variant.

 Composition of Feature Models

Predefined

unionintersection
reduced
product diff

Other

Implementation
- accuracy
- reasoning
- customizability
- composability

Denotational Operational

extract slicing local synthesis

Semantics

Boolean Logics

(Section 3) (Section 4 and 5)

Hybrid

1..4

Fig. 6. Composing your Compositions

362 M. Acher et al.

A

B

C

A

C

B

A

B

C

A

C

B

fm4 fm5 fm6

(A � (fm4.A v fm5.A v fm6.A)) ^
atmost1 (fm4.A v fm5.A v fm6.A) ^
(F6 � (fm1.F6 v fm2.F6 v fm3.F6)) ^
(B � (fm4.B v fm5.B v fm6.B)) ^
atmost1 (fm4.B v fm5.B v fm6.B) ^
(C � (fm4.C v fm5.C v fm6.C)) ^
atmost1 (fm4.C v fm5.C v fm6.C) ^

InputFMs
R

A

CB

Fig. 7. Composition of fm4, fm5, and fm6 (union): in left-part, the hierarchy leads
to an incomplete FM ; in the right-part, a complete and sound FM.

Quality of the Feature Diagram. The feature diagram (see Definition 2)
can be seen as a syntactical view of the configuration set that practitioners or
automated tools usually exploit in a forward engineering phase. Given a set
of configurations (say s), there may not exist a feature diagram FD such that
�FD� = s. In both cases, as much information as possible should be represented
in the resulting feature diagram to approximate or fully represent s. It is known
as the property of maximality [29]. A violation of maximality can have severe
consequences, since in this case the syntactical information may contradict the
actual meaning of the FM. For instance, the operational-based composition has
the worst maximality since the resulting feature diagram is a super-set of all
combinations of features and is a very rough over-approximation of s. In par-
ticular, the feature F2 is optional in the feature diagram whereas it is always
included in every configuration. The other variants have the best possible max-
imality since they all rely on the logical synthesis technique that is known to
produce a maximal feature diagram [32].

Another expected quality of a feature diagram is its soundness and com-
pleteness. In the reference-based FM, the feature hierarchy of the view is chosen
without a priori considering the configuration set. Therefore it may happen that
the retained hierarchy is not a spanning tree of the implication graph, with the
consequence of either precluding some valid configurations (incomplete) or all
possible configuration (unsound). We give an example in Fig. 7 (the FM is in-
complete). Hybrid techniques (i.e., local synthesis and slicing), that rely on the
reference-based FM, could be adapted to fix the problem. The idea is to first set
a basic and very flattened hierarchy (i.e., all features are child features of the
root) that could not violate any configurations. Then a safe hierarchy could be
determined from the implication graph and replaced afterwards.

Reasoning. A composition-based operator computes a FM that can be exploited
afterwards for reasoning, for example, when performing assisted configurations
(decision verification and propagation, auto-completion, scheduling of configu-
ration tasks, etc.), when automating analysis over the FMs (e.g., debugging of
FMs, comparison of two FMs) [35, 36]. The question we address here is: how to
reason about the configurations once the resulting FM has been synthesized?
The drawback of a reference-based approach is that the reasoning should be
performed over (a large amount of) features that are sometimes not relevant.
For instance, if we want to perform a configuration over the features F1, F2, . . . ,
F6, it necessarily involves considering the referenced features fm1.F1, fm1.F2,

Composing Your Compositions of Variability Models 363

. . . , fm3.F6. As a result, the relevant view (coloured features of Fig. 3) of the
composition is not independent of the other FMs. Furthermore, reasoning oper-
ations, usually implemented with SAT solvers or BDD, are not directly usable as
such and rather have to be adapted to deal with unnecessary Boolean variables.
On the contrary, the denotational-based technique or the use of slicing overcome
such limitations since the computed formula only contains relevant Boolean vari-
ables and can be exploited independently. The local synthesis is not adequate
for simplifying the formula since it calculates a feature diagram that is likely
to express an over-approximation of the actual formula. For example, the local
synthesis will generate the same feature diagram of Fig. 2c but not ψmunion , thus
precluding its use for a correct reasoning.

Traceability. Features are usually mapped to development artefacts, such as
components, models and user documentation . The preservation of the trace-
ability between the FM and the artefacts is essential for automatic deriva-
tion of products from the configuration of the composed FM. In the case of
a denotational-based technique, the mapping between the input FMs is not kept
intact because they are replaced by a merged FM. As a result, the selections
of features in the composed model may correspond to as many corresponding
features in the input FMs. In the case of reference-based FM, the traceability is
kept intact so that it is straightforward and immediate to determine the impact
of a selection or a deselection on inputs.

Customizability. In the previous section, we have shown that there are different
mechanisms that can be customized to specify the meaning of a composition.
The denotational-based strategy is the most rigid since the matching strategy is
assumed to be one-to-one and based on feature names while the merging process
creates a new feature with the same name. It can be argued that some pre-
processing steps and post-processing steps (renaming, removal of unnecessary
features, etc.) can be applied to implicitly implement a matching and merging
strategy. However the user effort can be very arduous and error-prone. The task
is even more complex when the configuration semantics should be defined. The
reference-based techniques are more general since any kinds of logical mappings
between i) the features planned to be present in the composed FM and ii) the
features in the input FMs can be defined. A last aspect is the customization of
the ontological semantics. Denotational or hybrid techniques provide to users
the means to select a sound feature hierarchy through the implication graph.
The operational-based approach does not permit such scenarios and therefore
the specification of the hierarchy is more error-prone.

Composability. Let us consider the composition in union mode and a matching
strategy based on feature names (as the example explained in Section 3). The
reference-based technique is neither associative nor commutative, e.g., ◦(◦(fm1,
fm2), fm3)
= ◦(◦(fm1, fm3), fm2)
= ◦(fm1, fm2, fm3). Though the configu-
ration set represented is the same, the feature diagrams are different. On the
contrary the denotational-based and hybrid techniques are associative and com-
mutative (in the case of union) since the Boolean formulas obtained are the

364 M. Acher et al.

same as previously and the logical operations do have the properties. Finally, it
should be noted that a reference-based composition is hardly composable with a
denotational-based composition since they are not operating over the same set
of features, leading to counter intuitive results. In this case it is needed to slice
the reference-based FM in order to align their domains.

Denotational Operational Local Synthesis Slicing

Diagram quality A C A A

Reasoning A C C A

Customizability C B A A

Traceability C A A A

Composability A C B A

Fig. 8. Comparison of approaches (A: best ; C: worst)

Table 8 summarizes the
discussions and results by
classifying the best and the
worst solution in a given di-
mension. Some implementa-
tion variants are equivalent
for some criteria (e.g., de-
notational and hybrid tech-
niques compute the same

feature diagram). The slicing-based technique fulfils all the criterion and, as
such, can be considered as the most suited in the general case. Yet, its perfor-
mance has to be confronted to other composition variants in practical settings
(with different kinds of input FMs, matching and semantic properties, etc.). We
leave it as future work since it is a knowledge compilation problem [37] that
deserves a focused and careful attention.

5.2 Instantiating the Framework

We revisit some existing works that target different variability modeling scenar-
ios. The goal is to illustrate the tradeoffs and validate the reading grid.

Devising Web Configurators from Product Descriptions. In [12], we
extract FMs from product descriptions with the ultimate goal of devising prod-
uct configurators. In this scenario the requirements are as follows. First, the
reasoning facilities are crucial to assist end-users in configuring the products.
Second, there are no alignment issues since the product descriptions are semi-
structured in a tabular data that defines the vocabulary. Third, the FM has
to be transformed (e.g., into widgets such as check boxes, lists, images, etc.).
The transformation strategy is both automatic (mandatory features are hidden
while Xor-groups are transformed as lists of configuration options) and man-
ual (an expert overrides or defines some specific strategies to transform features
into widgets). Given all these requirements, the best solution is to rely on a
denotational-based implementation that has good reasoning capabilities, com-
putes a high-quality feature diagram, while other criteria (e.g., composability)
are not as important.

Modular Model Checking. In order to implement parallel composition of
feature transition systems, Classen et al. proposed to compute the intersection
of two FMs [38]. The composition consists in computing a FM characterizing
the intersection of the two configuration sets. (The matching strategy is based
on feature names while the merging strategy is to create a new feature with a
same name.) The denotational-based strategy is again the best solution since

Composing Your Compositions of Variability Models 365

reasoning is crucial – model checking techniques based on the formula of the
composed FM are applied afterwards – the matching strategy is basic while the
semantic properties (intersection) can be easily denoted in Boolean logic.

Managing Variability of Independent Suppliers. More and more organiza-
tions are developing software based on commercially available components from
the marketplace and implemented by external suppliers. In such supply chains,
variability coming from different sources has to be integrated (see, e.g., [8, 24]).
Specifically, Hartman et al. [8] presented the problem in the domain of wireless
solutions. They introduced the Supplier Independent FM (SIFM) in order to
select products among the set of products described by several Supplier Specific
FMs (SSFM). The key benefits, already given [8], are as follows i) the traceabil-
ity with suppliers is kept intact ; ii) the mappings with suppliers’ features can
be easily customized. This corresponds exactly to the use of a reference-based
FM that exhibits such property.

Moreover our tool-supported proposal can raise two limitations. First, the
choice of the feature hierarchy in the SIFM is ad-hoc with the risk of being
unsafe (precluding some valid configurations). Second, all features in the SIFM
are optionals. In both cases, the hybrid techniques can be used to synthesize a
better feature diagram (maximal and sound by construction).

Variability Modeling in Large-Scale Organizations. Reiser and Weber
presented an approach to cope with large diagrams and large-scale organizations
in the car industry [6]. The hierarchical organization of product sublines leads
naturally to have an integrated view of the system referring to other features.
The traceability with the different departments of the organization is crucial.
The mappings can be arbitrarily complex since some features of input FMs
are either not referenced by the view features (abstraction) or related through
complex logical relationships. A denotational-based approach is therefore too
rigid. The reference-based approach is the most appropriate solution while the
local synthesis or the slicing techniques can be used for correcting the view.

Impact of FM Composition on Modeling Assets. An FM is usually asso-
ciated to an asset (e.g., models) [2,38]. Based on a selection of desired features,
a customized model product can be automatically obtained through transfor-
mations. Composing such model-based SPLs is naturally emerging (e.g., [4,38]).
Given FMs (e.g., fm1 and fm2), their respective (sets of) assets (resp. A1 and
A2), and their bindings (materialized as arrows in Fig. 9), the challenge is to
compute a new model-based SPL (fmc, Ac, and a new binding). The major
difficulty is that that the resulting composed triplet should be consistent with
�fmc�. Mirroring the semantics of the composition-based operators on the triplet
raises two main challenges (see Fig. 9): i) the composition (Ob) of the bindings
(see [39] for the underlying challenges) ; ii) the composition (Oa) of the assets.

The semantics and implementation is obvious if the rules of the binding are
simple (e.g., one-to-one mapping), and the composition operator used to assem-
ble the assets is the law of a mathematical group composed of the assets (closure,
associativity, identity and invertibility). Unfortunately, this is in practice seldom

366 M. Acher et al.

fm1

fm2

Ofm

fmc

A1

A2

Oa

Ac

Ob

fm2 A2

fmc Ac

fm1 A1

Omspl

Fig. 9. Composing model-based SPL (left-part) is mirroring the semantics of the
composition-based operators on the bindings and the assets (right-part)

the case, e.g., the Common Variability Language provides a powerful action lan-
guage to express the binding [40], and can be arbitrarily complex. Moreover,
most of the composition operators used to derive concrete products by assem-
bling assets do not ensure the properties of the law of a group (e.g., invertibility).
Though numerous approaches to model composition have been proposed [30,31],
the problem of composing model-based SPLs has not yet deserved enough atten-
tion. The trade-offs discussed in the paper are a first step towards automatically
mirroring the semantics of compositions operators for model-based SPLs.

6 Conclusion and Perspectives

Composing different variability descriptions from different sources is now a strong
need in many engineering contexts. In this paper we have studied the different
forms of feature model (FM) compositions, establishing the differences in feature
matching and relations, as well as in the expressed configuration and ontological
semantics. We have also detailed four different implementations of the compo-
sition operation, being based either on the underlying logic or some references
between composed FMs. Two implementations are revisited versions from [25]
while the two others are new and use forms of slicing and local synthesis over
the FMs. We discussed the benefits and drawbacks of each variant using differ-
ent criteria: the quality of the resulting FM, its customizability, as well as the
provided capability of reasoning over the FM and of composing different im-
plementations together. Different practical scenarios of use [6, 8, 12, 24, 38] were
presented and a reading grid synthesizes these findings, in the aim of assisting
developers choosing and implementing the right compositions.

Our immediate concern is to address one of the challenges opened by our
contribution: the impact of the FM composition over the related modeling as-
sets. The tradeoffs made explicit in the proposed reading grid should be reused
to identify how to automate a mirroring of the FM composition semantics for
model-based product lines.

Acknowledgements. This work was developed in the VaryMDE project
(a bilateral collaboration between the Triskell team at INRIA and the Thales
Research & Technology) and the CNRS PICS project MBSAR.

Composing Your Compositions of Variability Models 367

References

1. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-
niques: Research articles. Softw. Pract. Exper. 35(8), 705–754 (2005)

2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer (2005)

3. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming dynamically adaptive
systems using models and aspects. In: ICSE 2009, pp. 122–132. IEEE (2009)

4. Bosch, J.: Toward compositional software product lines. IEEE Software 27, 29–34
(2010)

5. Buhne, S., Lauenroth, K., Pohl, K.: Modelling requirements variability across prod-
uct lines. In: RE 2005: Proceedings of the 13th International Conference on Re-
quirements Engineering, pp. 41–52. IEEE (2005)

6. Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to man-
aging highly complex product families. Requir. Eng. 12(2), 57–75 (2007)

7. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model
multiple product lines for software supply chains. In: SPLC 2008, pp. 12–21. IEEE
(2008)

8. Hartmann, H., Trew, T., Matsinger, A.: Supplier independent feature modelling.
In: SPLC 2009, pp. 191–200. IEEE (2009)

9. Bošković, M., Mussbacher, G., Bagheri, E., Amyot, D., Gašević, D., Hatala, M.:
Aspect-oriented feature models. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 110–124. Springer, Heidelberg (2011)

10. Hubaux, A., Heymans, P., Schobbens, P.Y., Deridder, D., Abbasi, E.K.: Support-
ing multiple perspectives in feature-based configuration. In: Software and Systems
Modeling, pp. 1–23 (2011)

11. Rosenmüller, M., Siegmund, N., Thüm, T., Saake, G.: Multi-dimensional variability
modeling. In: VaMoS 2011, pp. 11–20. ACM (2011)

12. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire,
P.: On extracting feature models from product descriptions. In: VaMoS 2012, pp.
45–54. ACM (2012)

13. Clarke, D., Proença, J.: Towards a Theory of Views for Feature Models. In: Pro-
ceedings of the First Intl. Workshop on Formal Methods in Software Product Line
Engineering (FMSPLE 2010), pp. 91–100 (2010)

14. Holl, G., Grünbacher, P., Rabiser, R.: A systematic review and an expert survey
on capabilities supporting multi product lines. Information and Software Technol-
ogy 54(8), 828–852 (2012)

15. Acher, M., Collet, P., Lahire, P., France, R.: Familiar: A domain-specific language
for large scale management of feature models. Science of Computer Programming
(SCP) Special Issue on Programming Languages 78(6), 657–681 (2013)

16. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of
feature diagrams. Comput. Netw. 51(2), 456–479 (2007)

17. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE 2011, pp. 461–470. ACM (2011)

18. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On extracting feature models
from sets of valid feature combinations. In: Cortellessa, V., Varró, D. (eds.) FASE
2013 (ETAPS 2013). LNCS, vol. 7793, pp. 53–67. Springer, Heidelberg (2013)

368 M. Acher et al.

19. Acher, M., Heymans, P., Cleve, A., Hainaut, J.L., Baudry, B.: Support for reverse
engineering and maintaining feature models. In: VaMoS 2013. ACM (2013)

20. Hubaux, A., Acher, M., Tun, T.T., Heymans, P., Collet, P., Lahire, P.: Separating
Concerns in Feature Models: Retrospective and Multi-View Support. In: Domain
Engineering: Product Lines, Conceptual Models, and Languages. Springer (2013)

21. Schroeter, J., Lochau, M., Winkelmann, T.: Multi-perspectives on feature models.
In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 252–268. Springer, Heidelberg (2012)

22. Mannion, M., Savolainen, J., Asikainen, T.: Viewpoint-oriented variability
modeling. In: Proceedings of the 33rd International Computer Software and
Applications Conference (COMPSAC 2009), pp. 67–72. IEEE (2009)

23. Mendonca, M., Cowan, D.: Decision-making coordination and efficient
reasoning techniques for feature-based configuration. Science of Computer Pro-
gramming 75(5), 311–332 (2010)

24. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through
specialization and multilevel configuration of feature models. Software Process:
Improvement and Practice 10(2), 143–169 (2005)

25. Acher, M., Collet, P., Lahire, P., France, R.: Comparing approaches to implement
feature model composition. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F.
(eds.) ECMFA 2010. LNCS, vol. 6138, pp. 3–19. Springer, Heidelberg (2010)

26. Abo Zaid, L., Kleinermann, F., De Troyer, O.: Feature assembly: A new feature
modeling technique. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.)
ER 2010. LNCS, vol. 6412, pp. 233–246. Springer, Heidelberg (2010)

27. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wąsowski, A.: Cool
features and tough decisions: a comparison of variability modeling approaches.
In: Proceedings of VaMoS 2012, pp. 173–182. ACM (2012)

28. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K.,
Wąsowski, A.: A survey of variability modeling in industrial practice. In:
Proceedings of VaMoS 2013. ACM (2013)

29. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: SPLC 2007, pp. 23–34. IEEE (2007)

30. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W.,
Kapsammer, E.: A survey on uml-based aspect-oriented design modeling. ACM
Comput. Surv. 43(4), 28:1–28:33 (2011)

31. Jeanneret, C., France, R., Baudry, B.: A reference process for model composi-
tion. In: AOM 2008: Proceedings of the 2008 AOSD Workshop on Aspect-Oriented
Modeling, pp. 1–6. ACM, New York (2008)

32. Andersen, N., Czarnecki, K., She, S., Wasowski, A.: Efficient synthesis of feature
models. In: Proceedings of SPLC 2012, pp. 97–106. ACM Press (2012)

33. Camerini, P.M., Fratta, L., Maffioli, F.: A note on finding optimum branchings.
Networks 9(4), 309–312 (1979)

34. Companion web page, https://github.com/FAMILIAR-project/
familiar-documentation/blob/master/manual/composition.md

35. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated analysis of feature models
20 years later: a literature review. Information Systems 35(6) (2010)

https://github.com/FAMILIAR-project/familiar-documentation/blob/master/manual/composition.md
https://github.com/FAMILIAR-project/familiar-documentation/blob/master/manual/composition.md

Composing Your Compositions of Variability Models 369

36. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In:
ICSE 2009, pp. 254–264. ACM (2009)

37. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res
(JAIR) 17, 229–264 (2002)

38. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: Foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Software Eng, TSE
(2012)

39. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cat-
egories. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 163–177. Springer, Heidelberg (2012)

40. Filho, J.B.F., Barais, O., Acher, M., Le Noir, J., Baudry, B.: Generating coun-
terexamples of model-based software product lines: An exploratory study. In: 17th
International Conference on Software Product Lines (SPLC 2013) (2013)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 370–387, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Constraints: The Core of Supporting Automated Product
Configuration of Cyber-Physical Systems*

Kunming Nie1, Tao Yue2, Shaukat Ali2, Li Zhang1, and Zhiqiang Fan1

1 Software Engineering Institute, Beihang University, Beijing, China
{niekunming,lily,fanzhiqiang}@cse.buaa.edu.cn

2 Certus Software V&V Center, Simula Research Laboratory, Oslo Norway
{tao,shaukat}@simula.no

Abstract. In the context of product line engineering of cyber-physical systems,
there exists a large number of constraints to support, for example, consistency
checking of design decisions made in hardware and software components during
configuration. Manual configuration is not feasible in this context considering that
managing and manipulating all these constraints in a real industrial context is very
complicated and thus warrants an automated solution. Typical automation activities
in this context include automated configuration value inference, optimizing
configuration steps and consistency checking. However, to this end, relevant
constraints have to be well-specified and characterized in the way such that
automated configuration can be enabled. In this paper, we classify and characterize
constraints that are required to be specified to support most of the key
functionalities of any automated product configuration solution, based on our
experience of studying three industrial product lines.

Keywords: Product Line Engineering, Configuration, Constraints,
Classification, Industrial Case Studies, Cyber-Physical Systems.

1 Introduction

Product Line Engineering (PLE) has gained significant attention in the recent years in
both academia and industry because of its capability to deal with the ever increasing
complexity and variation in software product lines [1]. Using PLE has shown to be
effective for enhancing quality and productivity in product development, and
speeding up time-to-market in many organizations such as Boeing, Lucent, and Nokia
[2]. Modern society is increasingly dependent on Cyber-Physical Systems (CPSs),
which rely on software to control many individual systems and complicated
coordination of those systems [3]. Such systems include communications and control
systems, interacting medical devices, and oil and gas production platforms, with the
common characteristics such as large-scale, complex, inter-dependency and
collaborative. Therefore, many CPS producers adopted PLE to enhance the
reusability, thereby improving the overall quality and productivity of the development
process of their products.

* We thank the Research Council of Norway under the Certus SFI project, the Ministry of

Industry and Trade of Norway, and the National Natural Science Foundation of China (No.
61170087) for funding the research.

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 371

Effectiveness of a PLE approach for CPS is characterized by its support for
abstraction and automation. Abstraction plays a central role in software and system
reuse, which is required to capture all relevant information (e.g., commonalities and
variabilities) in a concise and expressive manner to support automated configuration.
Automation, on the other hand, is required for effective selection and customization
of reusable components. Due to the inherent complexity of CPS, a large number of
reusable components (e.g., electronic, software or network component) are typically
configured by stakeholders working at different organizations or different
departments of the same organization. A particular configuration process composed of
a set of configuration tasks performed sequentially or concurrently by the
stakeholders should be followed to configure a large-scale CPS. Consistency checking
among all artifacts, particularly configuration files of different components
configured by different stakeholders should be performed. Therefore automated
support based on concise abstraction of reusable artifacts becomes crucial to
configuring CPSs. Moreover, the characteristics of CPSs [4], including strong energy
restrictions, being distributed, heterogeneity and software adaptability, bring new
challenges for adopting PLE in CPSs. Among them, Dynamic Configuration (also
called Runtime Configuration) [4], Temporal Variability [5], Feature Interaction
and Subsystem/Component Interaction [6] are four important characteristics of PLE
of CPSs.

Such an automated configuration solution heavily relies on a large number of
constraints that should be formally specified using e.g., the Object Constraint
Language (OCL) [7] to facilitate e.g., automated decision inference based on
dependencies of variation points, the optimization of configuration orders based on
user-defined constraints according to their preferences, or consistency checking
among configuration files of the same or different products. Therefore a classification
of such constraints according to how they are specified, manipulated and enforced,
and relate them in a systematic manner to the functionalities (e.g., decision ordering)
of such an automated solution is required. Constraints management has been one of
the most challenging and complex problems that practitioners are facing with
variability modeling as suggested by Creff et al. [8]: precisely specifying constraints
among modeling artifacts and clarifying their use in PLE is very necessary.
Classifications of feature dependencies were also proposed in [9-11]. However, these
works do not particularly put their focus on PLE of CPSs and the current literature
and practice still lack a reasonably complete classification to support main
functionalities of an automated configuration solution in CPSs: inferring decisions,
consistency checking, decision ordering, collaborative configuration and reverting
decision.

Based on our experience of working on three commercial CPS product lines (i.e.,
Subsea Production Systems (SPSs), Video Conferencing Systems (VCSs) and Vessel
Prognostics and Health Management Systems (VPHMS)), in this paper, we propose a
classification of constraints required to support the five main functionalities we
mentioned above. We use a conceptual model to structure and specify all the
classification categories, each of which is explained with examples. We also report
our experiences of classifying constraints using our classification with three industrial

372 K. Nie et al.

case studies. Note that, in this paper, we only aim to provide such a classification, but
not focusing on how to specify them and how to manipulate them to realize the
functionalities. In other words, we are not trying to provide a solution. Instead, our
objective is to clarify the problems upfront such that researchers and practitioners
facing similar kinds of problems can benefit from the classification we propose in this
paper. The classification will also be used to guide us in the future to devise an
automated configuration solution for CPSs.

The rest of paper is organized as follows. Section 2 provides the background.
Section 3 discusses the constraints classification. In Section 4, we present the results
of applying our classification to classify constraints of our case studies. Section 5
discusses the related work and we conclude the paper in Section 6.

2 Background

2.1 Key PLE Terminologies

We use a small conceptual model as shown in Fig. 1 to clarify several key PLE
concepts and their relationships. SystemSpecification is a general concept representing
a description of a system at a high level of abstraction. A ProductLineSpecification
captures all the commonalities and variabilities of a product line family. Examples of
ProductLineSpecification includes, e.g., feature model [12] and decision model [13].
A ProductSpecification, on the other hand, captures the specification of a specific
product of the product line family. VariationPoint (VP) is a configurable element of
ProductLineSpecification. It defines the place of the specification that specific
customization to be applied to during product configuration. A variant (VA) is one of
the possible choices or values to be bound for a variation point. Variation points can
be specified in different ways, including value range, constraints, or enumeration
literals, depending on applications. When resolving a variation point, a variant is
bound to the respective variation point (configurable element). A Constraint, in our
context, is an element of SystemSpecification, constraining one or more other
elements to support automated product configuration.

Fig. 1. Conceptual Model

2.2 Industrial Applications

CPSs are documented with characteristics of heterogeneity, being distributed, tight
environmental coupling, and strong energy restrictions [4, 14]. CPS product lines
commonly have hundreds and thousands of variation points and constraints. In
CPS product lines, there exist many different hardware and software components

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 373

containing variation points at different levels of abstraction. These variation points are
typically resolved, as part of the configuration process, by different specialists at
different phases of the product development lifecycle to support various activities
such as testing and operation. In the rest of the section, we discuss the three CPS
product lines used as our industrial case studies.

The first case study is Subsea Production Systems (SPSs) that are large-scale
systems-of-systems, in which software controls and monitors the operation of
electrical and mechanical instruments. A SPS has up to hundreds of control modules
and thousands of instruments. In a family of SPSs, the hardware topology can vary
from one product to another, with each topology being a specific configuration of the
generic family design. Hardware is configured based on customer requirements,
environmental conditions, and different regulations and standards. Members of a
family of SPSs share the same software code base configured differently for each
product, mainly based on the hardware topology. For example, the number of
electrical and mechanical instruments, as well as their properties (e.g., resolution of a
sensor) affects the number and values of run-time objects in the software configured
for a specific product instance. Constraints between the hardware and software should
be captured and accounted for during the configuration process.

Software and hardware variation points occur at different levels of detail and are
typically resolved by different specialists in different phases of the product
development lifecycle. For example, high-level hardware decisions (e.g., number of
wells) are made by domain experts after tendering and front-end engineering design
phases. Low-level variation points (e.g., the operating range of a device) are typically
configured by configuration engineers or software engineers during the configuration,
testing, or operation phases.

The second case study is a commercial Video Conferencing Systems (VCSs)
product line family called Saturn Product Line. The core functionality of Saturn
manages establishing and disconnecting video conferences. In total, Saturn consists of
20 subsystems such as audio and video subsystems. Each subsystem can run in
parallel to the subsystem implementing the core functionality dealing with
establishing videoconferences. Saturn’s implementation consists of more than three
million lines of C code. The Saturn family consists of various hardware codecs
ranging from C20 to C90. C20 is the lowest end product with minimum hardware and
has lowest performance in the family.

The third case study is a family of Vessel Prognostics and Health Management
Systems (VPHMSs), which concern fault diagnosis and health evaluation of important
ship equipment. A VPHMS contains more than dozens of hardware and software
subsystems with regular work processes. Different sensors are installed on the
monitored equipment to collect data for parameters of fault prognostics and health
evaluation algorithms, which calculate the overall health condition of the equipment.
Different equipment requires different sensors, algorithmic models and information
display in user interfaces. Taking Fault Diagnostic as an example, to diagnose faults
of different equipment (e.g., diesel engines), different fault diagnosis algorithms
should be selected. Another important characteristic of VPHMS is that hardware
components to be monitored and required sensors for monitoring the selected

374 K. Nie et al.

hardware components should be configured. Then the software system should be
configured according to the corresponding hardware configuration. This system
adopts PLE because the system functionality is relatively stable and the workflow of
the system rarely changes. Each product of the product line family is configured,
mainly based on the characteristics of monitored equipment—different monitored
equipment implies the selection and deployment of different monitoring devices and
the selection and configuration of different monitoring algorithms.

3 Constraints Classification Framework

In this section, we discuss the main contribution of the paper, the classification of
constraints for supporting automated product configuration in the context of
system/software PLE. We use a conceptual model, as shown in Fig. 2, to structure and
specify all the classification categories, which were derived, based on our experience
of working with three product lines (Section 2.2). We first in Section 3.1 provide the
definition of the five functionalities of automated configuration solutions, and
then present the constraint classification in Section 3.2.

3.1 Main Functionalities of Automated Configuration Solutions

For an automated product configuration solution, it mainly contains five functionalities:
InferringDecison, ConsistencyChecking, DecisionOrdering, CollaborativeConfiguration
and RevertingDecision, among which InferringDecision and ConsistencyChecking are
mostly implemented functionalities in existing configuration tools such as Dopler [13]
and Pure::Variants [15].

InferringDecision. Some configuration decisions can be automatically inferred based
on existing configuration-relevant information such as constraints (dependencies as
part of them) among variation points and variants, and previously made decisions
during the configuration process. Such constraints enable the automated configuration
of some decisions by evaluating and solving them. Benefits of this functionality is
that it reduces the manual configuration effort and improves the quality of
configuration by reducing inconsistencies among configuration data (e.g., decisions)
[16]. All the product configuration tools we are aware of support the inferring
decision functionality, indicating that it is one of the most important functionalities of
an automated configuration solution.

ConsistencyChecking. In a general context, consistency checking verifies that certain
conditions or properties hold in a group of software artifacts . In the context of CPS
PLE, consistency checking is very important and difficult as there are more types of
artifacts than a general context. For example, consistency between models belonging
to different views (e.g., hardware and software views) of product line architecture
models of CPS and consistency between decisions (or configuration data) made
within the scope of a product or across products of the same product line. To enable
the automated consistency checking, consistency checking rules should be specified

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 375

as the first class artifacts of an automated configuration tool. These consistency
checking rules can be generalized as constraints in our context. This functionality is
available in all the configuration tools we have investigated: Pure::Variants [15],
Dopler [13], Covamof [18], SPLOT [19], FMP [12] and Questionnaire [20].

DecisionOrdering. For a configuration tool, decision ordering is the functionality
that provides users guidance on in which sequence a set of decisions (or configuration
parameters) should be configured, by taking into account constraints coming from
different sources such as user defined configuration priorities, dependencies between
variation points and constraints on a particular product development process of an
organization. Guiding users throughout the product configuration process by directing
the order of resolving variation points offers benefits such as reducing configuration
effort by finding an order which is optimal in the sense that the total number of
manual configuration steps is minimized [21]. Existing tools such as Dopler [13],
Covamof [18], SPLOT [19], FMP [12] and Questionnaire [20] support this
functionality.

CollaborativeConfiguration. This functionality is required as CPS systems are
usually composed of subsystems and configuring one subsystem might depend on the
configuration of other sub-systems. In addition, typically these subsystems are
developed and configured by different organizations, groups, or individuals.
Coordinating the configuration process of such a system is not trivial and constraints
among required configuration tasks performed by different stakeholders in a valid
sequence should be clearly specified to realize this functionality. Some configuration
tools (e.g., Pure::Variants [15], Dopler [13], SPLOT [19] and FMP [12]) support the
collaborative configuration to various extents.

RevertingDecision: In practice, it is very common that a user goes back to modify
configurations she/he made previously. Therefore a configuration tool needs to
provide a functionality allowing a user to make changes on any part of the history.
This is not trivial considering that some of decisions or configurations are
automatically inferred based on constraints (as we discussed in InferringDecision).
Reverting a decision implies a re-evaluation and re-solving some of these constraints
and maintaining the consistency of decisions based on consistency checking rules.
Configuration tools Dopler [13] and SPLOT [19] support “undo” and “redo” the most
recent configuration a user made. Questionnaire [20] supports rollback to the state
when some of previous decisions were not made.

3.2 Classification of Constraints

As discussed previously, all the five functionalities of an automated configuration
solution depend on constraints. These constraints are specified for different
functionalities, at different PLE (Domain and Application) phases, coming from
different sources. Therefore, it is very crucial to classify them in a way that
implementing these functionalities can then be facilitated. In this section, we present
such a classification of constraints, which was derived based on our direct hand-on

376 K. Nie et al.

experience of studying thre
We use a UML class diagr
relationships with the five f

Constraint. As shown in F
ConstrainingScope, Syste
(isDerived) from other a
connected via network. S
software components. Ther
design. A constraint can be
constraint in this way provi
a view are only used to chec
for consistency checking am
structural specification of
variants specified as part of
cases that constraints are sp
the state invariant of a stat
configured for a product. F
2.2), hardware configuratio
machines related to establis
the remote participant throu

Some constraints can b
class Constraint). For exa
resolution of another va
configuration of variation p
dependencies by saying tha

Fig. 2. Constraints clas

ee product lines from three different domains (Section 2
am (Fig. 2) to graphically present the classification and
functionalities.

Fig. 2, Constraint, as a general concept, is characterized
emSpecificationType and whether or not it is deri
artifacts. CPSs are distributed systems with subsyste
Such subsystems are often composed of hardware
refore, the architecture of such systems is often view-ba
e specified as WithinView or CrossView. To characteriz
ides support on consistency checking as constraints wit
ck consistency of a view while constraints across views
mong views. In most cases, constraints are enforced on
a system, e.g., dependencies among variation points
f UML class diagrams or feature models. There are cert
pecified on the behavioral specification of the system (e
te in a UML state machine) and these constraints must
or example, in the context of Saturn Product Line (Sect
on (e.g., video port) is used to configure functional s
shing a videoconference and sending video from camer
ugh the configured video port.
be derived from existing artifacts (attribute isDerived
ample, the resolution of a variation point A depends on
ariation point B, which provides restrictions on
point C. Therefore, a constraint can be derived from th
at B should be configured before A and C.

ssification and its relationships with the five functionalities

2.2).
d its

d by
ived
ems
and

ased
ze a
thin
 are
the
and
tain
e.g.,
t be
tion
tate
a to

d of
the
the

hese

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 377

We classify constraints into four categories (highlighted as classes with the gray
background in Fig. 2): ConfigurationConstraint, OrderingConstraint,
ConsistencyRule and VaraibilityDependency. Below, we discuss them one by one.

ConfigurationConstraint. This type of constraints is required by functionalities
InferringDecision, RevertingDecision and CollaborativeConfiguration, and
includes all the constraints that are required to completely configure a product except
dependencies among variation points and variants (VariabilityDependency). Such a
constraint might belong to different development phases (DevelopmentPhase). For
example, in the context of SPS, configuring a product starts when specifying product
requirements, during which high-level decisions (e.g., how many subsea control
modules to deploy according to the number of wells to exploit) are often made. In the
architecture and design level, configurable parameters such as ranges of temperature
sensors should be specified.

We also characterize ConfiguratonConstraint according to where they belong
(PLEScope): either PLE domain engineering or application engineering. Domain
constraints are the ones that are specified at the product line level and enforced to
resolve variation points. Such a constraint can be applied when configuring each
product of the product line family or a subset of it (ScopeType). Application
constraints, on the other hand, are the constraints that are applied after all the
variation points of a product are resolved and when they are operational. For example,
after a SPS is deployed offshore, an operator needs to perform some “runtime”
configuration on the configurable parameters (e.g., engineering unit of a valve) of the
control software deployed to the system. The runtime changes of the values of the
configuration parameters typically have crosscutting effects on the base behavior of
the systems. Another example is in the context of the Saturn product line, where when
a VCS product (e.g., C20) is configured with the support of the H323
videoconference protocol, we further need to configure settings for the H323 protocol
(e.g., the H323 gateway) at the product level to enable model-based testing. During
these “post” configuration activities, some constraints should be specified to enable
the three functionalities associated with class ConfigurationContraint. As for
domain constraints, application constraints also have enforcement scopes: all
configured products or a subset.

OrderingConstraint. It is a particular category of constraints for facilitating the
DecisionOrdering functionality. There are mainly two types of sources to obtain this
type of constraints: UserDefined and DerivedFromSystemSpecification. A user can
define their priorities of configuring a subsystem, a component or even a configurable
parameter, based on her/his preference or business requirements. Such user-defined
constraints should not violate constraints that have to be satisfied to configure a
correct product. Ordering constraints can also be derived from the system
specification. For example, an implied order of configuring two variation points can
be derived from existing dependencies of them.

ConsistencyRule. It is a very important and complex in the context of PLE, as we
discussed in Section 3.1. Typically, to enable this functionality, a set of

378 K. Nie et al.

ConsistencyRules have to be specified for constraining different Artifacts (derived
during different phases of the product line and product development lifecycles) and
their relationships. We classify consistency checking in the context of PLE into
various types, as shown in enumeration ConsistencyCheckingType. For example,
consistency checking can be performed to check the consistency of configuration files
developed during different product development phases (e.g., testing, deployment and
operation) of a product, or the consistency of the topology configuration of a
hardware component and a configuration of a configurable software component
deployed to the hardware component. Note that ConsistencyRule is a subclass of
Constraint; therefore consistency checking rules are can be classified according to
ConstrainingScope and SystemSpecificationType. Therefore, consistency
checking within and cross views and specification types can be enabled.

Note that this functionality might need to be invoked by other functionalities, e.g.,
RevertingDecision, InferringDecision and CollaborativeConfiguration as
instant verification of configuration decisions might be needed to ensure the
correctness and consistency of configuration decisions with respect to
interdependencies of configurable parameters and other consistency rules governing
the product line family.

VariabilityDependency. This is the mostly used type of constraints, as it is required
by all the five functionalities as shown in Fig. 2. We classify variability dependencies
into three types: VP-VP, VP-VA and VA-VA. Dependency VP-VP means that to resolve a
variation point (vp1) another variation point (vp2) should be configured first. For
example, as we discussed in Section 2.2, SPSs are highly-hierarchical, implying that
e.g., making a decision on which type of hardware components (e.g., XmasTree1of a
SPS) to select typically leads to configuring a set of variation points corresponding to
the devices (e.g., valve, pressure sensor) owned by a component with this type.
Another example is that resolving a hardware variation point (e.g., selecting a specify
type of pressure sensors) need the correspond resolving of a software variation point
(e.g., the range in the physical unit of a pressure sensor with the selected specific
type). Dependency VP-VA means that if one variation point is resolved, then another
variation point should be resolved by binding one of its variants. Dependency VA-VA
means that if one variation point is resolved by binding one of its variants, then
another variation point should be resolved by binding one of its variants.

As we discussed in Section 3.1, configuring a CPS starts from making high-level
decisions (e.g., the number of subsea oil and gas wells to exploit for a SPS product) at
the requirements engineering phase, then proceeds to the architecture and design of
the system by selecting and assigning values of configurable parameters (e.g.,
engineering unit of a sensor), and all the way through implementation. Variation
points exist in all these development phases and therefore dependencies among them
should be clearly captured such that the functionalities of an automated configuration
solution can be enabled.

1 XmasTree in the context of SPSs is a mechanical component that physically contains a set of

instruments such as values, chokes and pressure and temperature sensors.

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 379

Relationships among Configuration Functionalities and Constraints. All the five
functionalities need to query and evaluate constraints. DecisionOrdering and
InferringDecision need to solve constraints. DecisionOrdering and
RevertingDecision are all related to InferringDecision. InferringDecision can
be used to obtain the importance degree of a decision, which indicates the impact of
configuring one decision on the automated resolution of other decisions based on
ConfigurationConstraints and decision propagation. Thus, DecisionOrdering is
related to InferringDecision because the most constraining decision(s) can be
calculated by comparing the importance degree of decisions, which therefore helps to
determine an optimal ordering of making decisions. RevertingDecision is related to
InferringDecision because when reverting a decision, its subsequent decision(s)
automatically inferred may need to be also rolled back. This possibly leads to invalid
or obsolete configuration and users should be informed of changes and issues raised.
To do so, constraints that were used for inferring the decision may need to be
reevaluated. When inferring a decision, the consistency with all the decisions already
made should be kept, which implies that consistency checking is required to ensure
this. Therefore, InferringDecision depends on ConsistencyChecking

functionality.

4 Industrial Case Studies

In this section, we report three industrial case studies based on which we derived our
classification. The objective of this section is to show how many instances of
constraints were identified for each case study and in which categories of our
classification they fall into. At the end of the section, we summarize our observations.

4.1 Subsea Production System (SPS)

The current practice of the organization involves a series of refinements of their
products to adapt them to the specific needs of a particular customer. The adaption
process is actually a product configuration process, which includes: 1) configuring the
hardware topology (e.g., making decisions such as how many wells to construct and
how they are connected), and 2) configuring the software that is deployed on the
hardware computing resources. The software controls and monitors the oil and gas
production process, given a specific set of values for the configurable parameters of
the software. These values are different from product to product and are jointly
referred to as configuration data. The configurable parameters have to be properly
configured before the software is loaded and executed to operate hardware devices.

In the current practice of the organization, their product development process has a
set of distinguishable phases (e.g., tender, design, operation) and involves different
stakeholders (e.g., customers, hardware engineers, software engineers, test engineers
and off shore operators). Different stakeholders might have different configuration
rights. By configuration rights, we mean that not everyone has the knowledge
required for all configurations and, therefore, we need to restrict certain configuration

380 K. Nie et al.

decisions to stakeholders who have the appropriate expertise. For example, hardware
engineers might not have configuration rights to configure the software. The
configuration process is integrated with the product development process. The
configuration process has multiple configuration phases corresponding to different
configuration purposes such as testing and operation.

4.2 Video Conferencing System (VCS)

Our aim in this project was to devise an adequate product line modeling and
configuration methodology to support systematic testing and more specifically model-
based testing (MBT) of VCS product lines. MBT has shown to be cost-effective in
many industry sectors but at the expense of building models of the system under test
(SUT). However, the modeling effort to support MBT can significantly be reduced if
an adequate product line modeling and configuration methodology is followed. Our
case study in this project is Saturn product line. Saturn has 20 subsystems and each
subsystem has at least one configurable state machine specifying its functionality and
on average such state machine has five states and 11 transitions. The biggest
subsystem state machine has nine hierarchical state machines with 22 states and 63
transitions. Saturn product family models for non-functional behaviors consist of five
aspect class diagrams and five configurable aspect state machines modeling various
robustness behaviors. The largest aspect state machine specifying robustness behavior
has three states and ten transitions, which would translate into 1604 transitions in
standard UML state machines [22]. Saturn product line family models also consist of
124 hardware configuration parameters and 99 software configuration parameters.

4.3 Vessel Prognostics and Health Management System (VPHMS)

Our industry partner is facing the following challenges: 1) handling different types of
variation points (e.g., selection, value, cardinality), thereby introducing different types
of variability dependencies, 2) integrating (through configuration) software
components of different versions, developed with different programming languages
by different organizations, 3) maintaining the consistency of hardware and software
component configurations, and 4) coordinating the collaborative configuration
process during which a large number of engineers involved.

A VPHMS needs to monitor up to tens of hardware components and different
hardware components require various types of sensors installed. Taking an
electromechanical subsystem for example, it monitors 30 equipment with 160
diagnosis algorithms. These algorithms, grouped as the algorithm component,
contain hundreds of configurable parameters. Feature model is used to capture the
variation points of the product line for the purpose of supporting configuration at
the requirements level. At the architecture and design level, UML class,
component and deployment diagrams were developed to specify the system
architecture and design, on top of which variabilities were specified using
stereotypes.

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 381

4.4 Summary of Constraint Instances Collected

We summarize the number of instances of applicable constraint categories of each
case study in Table 1. It is important to notice that some of the data were directly
obtained by counting the number of constraints specified using OCL as part of the
architecture and design models we developed before. Some of them were derived
based on domain knowledge that was gained via reading documents, studying their
current configuration practice, meeting and brainstorming with domain experts of the
organizations. These constraints, distinguished from the OCL constraints using italics,
were collected as English sentences and were not formally specified using any
particular constraint specification language.

From Table 1, one can observe that for SPS, all the five functionalities are
important to the organization. Therefore, almost each category of constraints obtained
one or more instances. For different categories, various numbers of constraints were
either specified in OCL in our previous work [16] or identified based on our domain
knowledge for different categories and captured in English. All the constraints were
specified on the structural specification of the system and were all directly captured.
Consistency checking among configuration files is a very important feature for the
organization as we mentioned in Section 2.2, configuration files are generated by
configuration engineers for different purposes such as testing and operation, which is
not the case for the VCS case study.

Table 1. Classification Coverage by Case Studies

 Categories SPS VCS VPHMS

Configuration
Constraint

Domain-All 15 24 22
Domain-Subset 5 9 5
Application-All 8 0 28

Application-Subset 4
266 (C90), 185 (C40 and

C60), and 172 (C20)
500

Requirements 5 0 13
Architecture&Design 27 0 20
Implementation 0 33 22
EnforcedByDevelopmentProcess 6 N/A 10

Ordering
Constraint

UserDefined 8
N/A

10
DerivedFromSystemSpecifications 10 36

Consistency
Rule

CrossConfigurationFiles 25

N/A

0
CrossPLEScope 3 15
WithinConfigurationFile 69 14
WithinDomain 16 58
WithinApplication 0 0

Variability
Dependency

Requirements 8 N/A 6
Architecture&Design 28 N/A 20
Implementation 0 N/A 22
VP-VP/ VP-VA/ VA-VA 26 0 48

Basic
Property

Structural 241 33 49
Behavioral 0 33 5
isDerived 0 0 20
CrossView 26 0 20
WithinView 46 33 36

382 K. Nie et al.

For VCS, we have 24 configurable OCL constraints (13 for functional state
machine configuration and 11 for aspect state machine (ASM) configuration) for
Domain-All. To configure a product (e.g., C20), each of these constraints need to be
configured and as a result the corresponding state machines are configured, which in
turn are used for MBT. For VCS, we have further nine (bold value in Table 1) ASMs
in Domain-Subset. One ASM configures an OCL constraint (constraining hardware
and software configuration parameters) and the configured constraints configure a
subset of state machines. In Application-Subset, we show the number of configurable
parameters for each VCS product. For example, C90 has 266 configurable parameters
that need to be configured at the product level once C90 has been configured. All of
our OCL constraints 33 (24 from Domain-All plus nine constraints in nine ASMs) are
at the Implementation level since all the variables constrained using OCL corresponds
to VCS’s implementation. All of our 33 constraints fall into both Structural and
Behavioral categories as we used UML class diagrams, state machines, and aspect
state machines. All of our 33 constraints are in Within View and we have four distinct
views in VCS: Functional, Non-Functional, Software, and Hardware.

For VPHMS, all the five functionalities are expected to be implemented for
automated configuration. There are 22 constraints in Domain-All category and five
Domain-Subset constraints. In the Application-Subset category, a subset of products
has more than 500 configurable parameters, which are used to set valid ranges for
equipment status checking and fault diagnosis. We had 10 constraints defined by
users and 36 constraints derived from the architecture model, which are all related to
ordering decisions. As for consistency rules, 58 rules were defined to check the
consistency of the variability model and 14 rules were defined to keep the consistency
of the configuration files. Besides, 15 rules were defined at the CrossPLEScope
category to keep the consistency of the product line model and product model. We
have 48 dependencies among VP and VA. Structural constraints are defined on
product line model (e.g., class, component and deployment diagrams) based on UML
extension. Five constraints are defined on sequence diagrams that model the
variability of workflows of the system. There are 36 constraints following into the
WithView category while 20 were classified as CrossView constraints. Notice that for
this case study, so far we are just able to identify all the constraints and captured them
in sentences.

The difference of the specified constraints between VCS and the others is that VCS
is mainly used for testing, while SPS and VPHMS are used for configuring products.
SPS and VPHMS both support the five functionalities and configuration at the
requirements and architecture levels. Thus, the constraint categories covered by
these two systems have similarities. However, due to the domain difference, there
are still some constraints categories different. For example, there are some
CrossConfigurationFiles constraints in SPS, while behavior constraints exist in
VPHMS.

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 383

5 Related Work

Since our motivation is to classify constraints for the purpose of supporting automated
configuration for CPSs, we reviewed seven mostly-reported configuration tools:
Pure::Variants [15], Dopler [13], Covamof [18], SPLOT [19], Kumbang [23], FMP
[12] and Questionnaire [20]. Apart from FMP and Questionnaire, the other five tools
are used in the context of PLE of CPSs such as communication systems, intelligent
traffic systems, industrial automation systems, aerospace industry, and distributed
weather station network respectively. We mapped their current implementation of
constraints-relevant functionalities to our classification. Results are presented in Table
2. In addition, we also include research papers [8, 10, 11, 24-35] reporting constraints
classifications in the PLE context but not related to tools or at least not mentioned
explicitly in the papers.

In Table 2, the rows are the constraint categories and the columns are the
functionalities. The blocks in gray are constraint categories specified for each
functionality. References in italic are research papers and the rest are configuration
tools. One can easily notice that one or more categories of each functionality are not

Table 2. Classification Coverage by Related Work

 Categories
Inferring
Decision

Consistency
Checking

Decision
Ordering

Collaborative
Configuration

Reverting
Decision

C
C

Domain-All [18, 19] [20]

Domain-Subset

Application-All

Application-Subset

Requirements [12, 15, 18, 19] [13] [19] [19]

Architecture Design [15, 18, 20, 23] [13]

Implementation [13, 18] [24] [13] [13]

EnforcedBy
DevelopmentProcess

 [12]

O
C

UserDefined [12, 18]
DerivedFrom
SystemSpecifications

[12, 13, 15]

C
K

CrossConfigurationFiles

CrossPLEScope
[8, 10, 25-27, 35]

[12,13,15,18-20,23]

WithinConfigurationFile [15]

WithinDomain [13, 19, 20]

WithinApplication

V

D

Requirements [28, 29] [12, 18, 19] [25, 30] [12] [31,32] [12,13,18] [13] [19]

Architecture&Design [15, 18, 20, 23] [15, 18, 20, 23] [33] [13, 18, 20] [13]

Implementation [13, 18] [13, 18] [24] [13]

VP-VP/VP-VA/VA-VA [25,27-29] [13,18-20] [11] [12, 13, 18-20] [32] [18-20] [34]

B
P

Structural [26]

Behavioral [20] [20] [20] [20]

isDerived [18-20]

CrossView [25] [13] [24] [12, 13, 19]

WithinView [13] [13] [13, 19]

BP: Basic Property; VD: Variability Dependency; CK: Consistency Rule; OC: Ordering Constraint; CC: Configuration Constraint.

384 K. Nie et al.

covered by the related work. On the other hand, most of the categories are covered by
one or more related work, implying that our classification derived based on our
experience of working with three product lines, is quite consistent with what have
been reported in the literature and what have been implemented in the tools.

InferringDecision. As shown in the column “InferringDecision” of Table 2, all the
tools implement this functionality. Approaches reported in [25, 27-29] define the
dependency between VP and VA, including require, exclude, impact, and discourages.
However, these methods mostly focus on the requirements level. Rule engine was
used in Dopler tool to execute the IF-THEN rules, while the other tools user
constraint solvers (i.e., SAT Solver, BDD Solver and Prolog Solver) to infer decision.

ConsistencyChecking. As shown in the fourth column of Table 2, all the categories
we specified are covered by the related work except CrossConfigurationFiles,
WithinApplication and isDerived. All tools provide CrossPLEScope

consistency checking between the product line and product specifications,
either during the configuration process or after. In addition, three tools focus
on the inconsistencies detection of variability models (WithinDomain) while
only one tools focus on the consistency checking of product specifications
(WithinConfigurationFile, WithinApplication).

DecisionOrdering. As shown in the fifth column of Table 2, three research papers
[31-33] discuss constraints related to decision ordering, Nohrer et al. [32] discusses
VP-VP and VA-VA variability dependency. Covamof [18] and FMP [12] rely on user
defined configuration priorities, while the others derive configuration priorities from
system specifications. Questionnaire [20] introduces order dependency to enforce
a partial ordering between VP and VP. There is no related work that discusses ordering
constraints based on CrossView constraints, although CPSs usually have many this
kind of constraints due to their heterogeneous characteristic (Section 3.2). Dopler [13]
implemented DecisionOrdering relying on WithinView constraints. Covamof is
used for configuring intelligent traffic systems, which are typical CPSs, and it has
implemented the decision ordering functionality.

CollaborativeConfiguration. As shown in the sixth column of Table 2, only one
research paper and three tools discuss this functionality. Dhungana et al. [24] uses
inter-model dependencies to define the relationship between variability models and
other models. As for the tools, SPLOT [19] provides multi-view feature model
collaborative configuration, FMP [12] supports stage configuration, while Dopler [13]
supports role based collaborative configuration. Note that CPSs are often
heterogeneous systems and collaborative configuration is very necessary.

RevertingDecision. From Table 2, we can see that only few related work
implemented this functionality. Nohrer et al. [34] supports selective “undo” to cancel
specific decision made before. Dopler [13] and SPLOT [19] supports “undo” and
“redo” (simplest reverting decision method) while Questionnaire [20] supports
rollback to the state when some of previous decisions were not made. Although this
functionality is very important for any practical application of an automated
configuration solution, it has not received enough attention.

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 385

6 Conclusion

In large scale Cyber-Physical Systems (CPSs) product lines, due to the existence of
numerous variation points and constraints, product configuration is a challenging task
and thus automation is required. Constraints play an important role in such automated
configuration. However, to support automation, a precise classification of constraints
is required. With this aim in mind, we present a comprehensive classification of
constraints required for supporting automated configuration of large scale CPSs. We
identified five main functionalities of automated configuration solution and associate
various types of constraints to each of the functionalities based on studying three
industrial systems belonging to the CPS domain. We provided results from the three
industrial case studies capturing all types of constraints related to automatic
configuration. Moreover, we classified existing work using our classification with the
aim to provide insights to researchers and practitioners from our experience that can
help them to systematically devise their own automated configuration solution.

References

1. Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE Transactions on
Software Engineering 31, 529–536 (2005)

2. Ali, S., Yue, T., Briand, L., Walawege, S.: A Product Line Modeling and Configuration
Methodology to Support Model-Based Testing: An Industrial Case Study. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 726–742. Springer, Heidelberg (2012)

3. Cyber-Physical Systems, http://cyberphysicalsystems.org/
4. Ortiz, Ó., García, A.B., Capilla, R., Bosch, J., Hinchey, M.: Runtime variability for

dynamic reconfiguration in wireless sensor network product lines. In: Proceedings of the
16th International Software Product Line Conference, vol. 2, pp. 143–150. ACM,
New York (2012)

5. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Evolving delta-oriented software product
line architectures. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS,
vol. 7539, pp. 183–208. Springer, Heidelberg (2012)

6. Juarez-Dominguez, A.L., Day, N.A., Joyce, J.J.: Modelling feature interactions in the
automotive domain. In: Proceedings of the 2008 International Workshop on Models in
Software Engineering, pp. 45–50. ACM, New York (2008)

7. Object Constraint Language (OCL), http://www.omg.org/spec/OCL/2.2/
8. Creff, S., Champeau, J., Monégier, A., Jézéquel, J.-M.: Relationships Formalization for

Model-Based Product Lines. In: Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference, vol. 1, pp. 158–163. IEEE Press, Washington, DC (2012)

9. Ferber, S., Haag, J., Savolainen, J.: Feature interaction and dependencies: Modeling
features for reengineering a legacy product line. In: Chastek, G.J. (ed.) SPLC 2002.
LNCS, vol. 2379, pp. 235–256. Springer, Heidelberg (2002)

10. Mei, H., Zhang, W., Zhao, H.: A metamodel for modeling system features and their
refinement, constraint and interaction relationships. Software and Systems Modeling 5,
172–186 (2006)

386 K. Nie et al.

11. Jaring, M., Bosch, J.: A taxonomy and hierarchy of variability dependencies in software
product family engineering. In: Proceedings of the 28th Annual International Computer
Software and Applications Conference, vol. 1, pp. 356–361. IEEE, Washington, DC
(2004)

12. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., Pietroszek, K.: fmp and fmp2rsm:
eclipse plug-ins for modeling features using model templates. In: OOPSLA 2005
Companion, pp. 200–201. ACM, New York (2005)

13. DOPLER, Decision Oriented Product Line Engineering for effective Reuse,
http://ase.jku.at/dopler/

14. Wan, K., Man, K., Hughes, D.: Specification, analyzing challenges and approaches for
cyber-physical systems (CPS). Engineering Letters 18, 308 (2010)

15. Pure Systems website, http://www.pure-systems.com
16. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: A Product-Line Modeling Methodology

for Families of Integrated Control Systems. Information and Software Technology 55,
607–629 (2013)

17. Visualizing Consistency Checking in Software Product Lines,
http://www.jku.at/sea/content/e104861/e170007/e177920/

18. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A framework for modeling
variability in software product families. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp. 197–213. Springer, Heidelberg (2004)

19. Mendonca, M., Branco, M., Cowan, D.: SPLOT: software product lines online tools. In:
Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications, pp. 761–762. ACM, New York
(2009)

20. La Rosa, M., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H.: Questionnaire-based
variability modeling for system configuration. Software & Systems Modeling 8, 251–274
(2009)

21. El-Sharkawy, S., Schmid, K.: Supporting the effective configuration of software product
lines. In: Proceedings of the 16th International Software Product Line Conference,
pp. 119–126. ACM, New York (2012)

22. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior using aspect-oriented
modeling to support robustness testing of industrial systems. Software & Systems
Modeling 11, 633–670 (2012)

23. Myllärniemi, V., Asikainen, T., Männistö, T., Soininen, T.: Kumbang configurator–a
configuration tool for software product families. In: 19th International Joint Conference on
Artificial Intelligence, pp. 51–57. Citeseer, Edinburgh-Scotland (2005)

24. Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grunbacher, P., Benavides, D.,
Galindo, J.A.: Configuration of multi product lines by bridging heterogeneous
variability modeling approaches. In: 15th International Software Product Line Conference,
pp. 120–129. IEEE, New York (2011)

25. Silva Filho, R.S., Redmiles, D.F.: Managing Feature Interaction by Documenting and
Enforcing Dependencies in Software Product Lines. Feature Interactions in Software and
Communication Systems IX 33 (2008)

26. Ziadi, T., Hëlouët, L., Jézéquel, J.-M.: Towards a UML profile for software product lines.
In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139. Springer,
Heidelberg (2004)

27. Silva Filho, R.S., Redmiles, D.F.: Towards the Use of Dependencies to Manage Variability
in Software Product Lines. Variability Management–Working with Variability
Mechanisms 4 (2006)

 Constraints: The Core of Supporting Automated Product Configuration of CPSs 387

28. Ye, H., Liu, H.: Approach to modelling feature variability and dependencies in software
product lines. In: IEE Software Proceedings, vol. 152, pp. 101–109. IET, UK (2005)

29. Streitferdt, D., Riebisch, M., Philippow, K.: Details of formalized relations in feature
models using OCL. In: 10th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, pp. 297–304. IEEE, New York (2003)

30. Oster, S.: Feature Model-based Software Product Line Testing. PH.D Thesis. University of
Namur, Belgium (2012)

31. Lee, Y., Yang, C., Zhu, C., Zhao, W.: An approach to managing feature dependencies for
product releasing in software product lines. Reuse of Off-the-Shelf Components, 127-141
(2006)

32. Nohrer, A., Egyed, A.: Optimizing user guidance during decision-making. In: 15th
International Software Product Line Conference, pp. 25–34. IEEE, Washington, DC
(2011)

33. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82, 1249–1267 (2009)

34. Nöhrer, A., Egyed, A.: Conflict resolution strategies during product configuration.
In: International Workshop on Variability Modelling of Software-intensive Systems,
vol. 37, pp. 107–114 (2010)

35. Rosenmüller, M., Siegmund, N., Kästner, C., Ur Rahman, S.S.: Modeling dependent
software product lines. In: GPCE Workshop on Modularization, Composition and
Generative Techniques for Product Line Engineering (McGPLE), pp. 13–18 (2008)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 388–404, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Defining and Validating a Multimodel Approach
for Product Architecture Derivation and Improvement

Javier González-Huerta, Emilio Insfrán, and Silvia Abrahão

ISSI Research Group, Universitat Politècnica de València
Camino de Vera, s/n, 46022, Valencia, Spain

{jagonzalez,einsfran,sabrahao}@dsic.upv.es

Abstract. Software architectures are the key to achieving the non-functional
requirements (NFRs) in any software project. In software product line (SPL)
development, it is crucial to identify whether the NFRs for a specific product
can be attained with the built-in architectural variation mechanisms of the
product line architecture, or whether additional architectural transformations are
required. This paper presents a multimodel approach for quality-driven product
architecture derivation and improvement (QuaDAI). A controlled experiment is
also presented with the objective of comparing the effectiveness, efficiency,
perceived ease of use, intention to use and perceived usefulness with regard to
participants using QuaDAI as opposed to the Architecture Tradeoff Analysis
Method (ATAM). The results show that QuaDAI is more efficient and
perceived as easier to use than ATAM, from the perspective of novice software
architecture evaluators. However, the other variables were not found to be
statistically significant. Further replications are needed to obtain more
conclusive results.

Keywords: Software Product Lines, Architectural Patterns, Quality Attributes,
Model Transformations, Controlled Experiment.

1 Introduction

The quality attributes of a software system (e.g., performance, modifiability, and
availability) are, to a great extent, permitted or precluded by its architecture [9]. In the
case of Software Product Line (SPL) development, in which a set of software-
intensive systems sharing a common set of features are developed by taking
advantage of the massive reuse of software assets, the product line architecture should
have variation mechanisms that help to achieve a set of explicitly allowed variations
[9]. These variations may include structural, behavioral and of course quality
concerns. The product line architecture should therefore be designed to cover the
whole set of variations within the product line. The product architecture can thus be
derived from the product line architecture by exercising its built-in architectural
variation mechanisms, which support both the functional and non-functional
requirements1 (NFRs) for a specific product.

1 Non-Functional Requirements can be defined as the qualities that a product must have, such

as an appearance, or a property of speed or accuracy [30].

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 389

Once it has been derived, the product architecture should be evaluated in order to
guarantee that it meets the specific requirements of the product under development
[9]. However, in those cases in which levels of quality attributes that fall outside the
original specification of the product line are needed (and cannot be attained by using
product line variation mechanisms), certain architectural transformations may be
applied to the product architecture to ensure that these NFRs are met [5].

Although several methods for architecture derivation and improvement in SPL
development have been proposed over the last few years (e.g., [23], [28], [19], [31],
[6], [8], [29]), there is still a need for approaches that model the impact between
architectural design decisions and quality attributes and use this information to
enhance the quality attribute levels of product architectures. We have addressed this
problem, in previous works [17] [18] [20], by proposing an approach with which to
ensure the desired quality attribute levels for a product by applying architectural
transformations to a product architecture derived from a product line architecture
using a multimodel. This multimodel represents a set of interrelated viewpoints of the
product line and the semantic relationships among elements in each viewpoint. It also
allows the product line architecture, the metrics for its evaluation and the relationships
among architectural transformations and NFRs to be represented.

In this paper, we present the quality-driven product architecture derivation and
improvement (QuaDAI) method, which uses the multimodel to guide the software
architect in the derivation, evaluation and improvement of product architectures in a
model-driven software product line development process. Since in the software
architecture field there is a lack of empirical evidences that support the claimed
benefits and capabilities of methods, techniques and tools [1], we also present the
results of its empirical validation through a controlled experiment. The objective of
this paper is the following: i) to present a method, consisting of a set of activities
carried out by model transformation processes, thus allowing us to derive product
architectures from the product line architecture, to evaluate the product architecture
obtained and, when required, to improve the architectures’ quality attribute levels by
applying pattern-based architectural transformations; and ii) to evaluate the
effectiveness, efficiency, perceived ease of use, usefulness and intention to use of the
method in comparison with the Architecture Trade-Off Analysis Method (ATAM)
[22]. This evaluation was done by conducting a controlled experiment with fifth year
Computer Science students.

The remainder of the paper is structured as follows. Section 2 discusses existing
approaches that deal with the derivation, evaluation and improvement of software
architectures when following a product line approach. Section 3 presents our
multimodel approach for the derivation, evaluation and improvement of product
architectures with the desired quality attributes. Section 4 presents the preliminary
results of the validation of the approach through a controlled experiment. Finally, the
conclusions and future work are presented in Section 5.

390 J. González-Huerta, E. Insfrán, and S. Abrahão

2 Related Work

Several approaches for the quality evaluation and analysis of SPL architectures have
been proposed over the last few years (e.g., [23], [28], [19], [31]). Among them, Kim
et al. [23] and Olumofin and Misic [28] propose two extensions of ATAM (i.e.,
EATAM [23] and HoPLAA [28]) with which to assess the quality of both product
line and product architectures. Both methods extend ATAM with the qualitative
analytical treatment of variation points.. Although HoPLAA and EATAM consider
the architectural variation points during the architecture design, they lack a systematic
mechanism that can be used to deal with those cases in which the NFRs of the product
under development are not within the range of values permitted by the architectural
variability. In addition, they do not explicitly represent the relationships between the
architectural improvements and the quality attributes. These relationships could be
reused during the application engineering stage each time a new product architecture
needs to be improved, thus facilitating the evaluator task. Neither EATAM nor
HoPLAA have been empirically validated. HoPLAA had been compared with ATAM
in a running example and the validation of EATAM has not yet taken place.

Guana and Correal [19] proposed an approach that generates an evaluation report
with the possible architectural configuration that meets the required quality attributes
of the product under development. They defined relationships between a variability
feature tree and the functional components, and associated these relationships with a
quality scenario, which is analyzed at evaluation time. Roos-Frantz et al. [31] present
an approach that automates the quality analysis of SPLs. This automation is
performed by associating quality information with the variability view (expressed by
means of orthogonal variability models), and by using constraint programming to
perform the analysis tasks. The problem is partially addressed by the approaches
presented in both [31] and [19]. They explicitly define the relationships amongst
system views and use the information to predict the quality attribute levels of the
product under development. However, they do not provide mechanisms to measure
whether these quality attribute levels are present in the software artifacts. These
approaches can also predict the quality attributes of a configuration, but they cannot
deal with products with quality attribute levels that are not allowed by the product
architecture variation mechanisms. With regard to validation, the approach in [31] has
been theoretically but not empirically validated.

Several other approaches deal with the automatic derivation of product
architectures in SPL development (e.g., [6], [8], [29]). In the approach by Botterweck
et al. [6], the product architectures are produced by means of an ATL model
transformation process, which takes as input a domain architecture model and an
application feature model and generates an application architecture model, by simply
copying the software components. Similarly, Cabello et al. [8] produce application
architectural models by means of a QVT transformation. The transformation takes as
input the variability view expressed in a feature model and the modular view of the
architecture, and generates the PRISMA component and connector architectural view.
Finally, Perovich et al. [29], automate the derivation of product architectures by
taking as input a feature configuration model. The transformation encapsulates the

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 391

knowledge of how to build the product architecture when the corresponding feature is
present in the feature configuration model. However, when deriving the product
architecture these approaches do not take into account quality attribute requirements
and they do not consider the application of patterns or architectural transformations to
improve the product architectures obtained. None of the aforementioned approaches
has been empirically validated.

In summary, there is a need for empirically validated approaches that model the
impact between architectural design decisions and quality attributes and use this
information to derive the product architectures and to evaluate and enhance their
quality attribute levels. The use of the multimodel in these tasks allows the knowledge
to be reused in order to facilitate the evaluation tasks, providing mechanisms that
automate the selection of the architectural transformations that best fit the NFRs.

3 QuaDAI: Architecture Derivation and Improvement

QuaDAI is a method for the derivation, evaluation and improvement of product
architecture that defines an artifact (the multimodel) and a process consisting of a set
of activities conducted by model transformations. QuaDAI relies on a multimodel
[17] that allows the explicit representation of different viewpoints of a software
product line and the relationships among them.

3.1 A Multimodel for Specifying SPLs

A multimodel is a set of interrelated models that represents the different viewpoints of
a particular system. A viewpoint is an abstraction that yields the specification of the
whole system restricted to a particular set of concerns and it is created with a specific
purpose in mind. In any given viewpoint it is possible to make a model of the system
that contains only the objects that are visible from that viewpoint [4]. Such a model is
known as a viewpoint model, or a view of the system from that viewpoint. The
multimodel also allows the definition of relationships among model elements in those
viewpoints, which captures the missing information that the separation of concerns
could lead to. The multimodel can be used for the specification of single systems,
families of systems and in this work is used for the representation of an SPL. The
multimodel plays two different roles in SPL development: i) in the domain
engineering phase, in which the core asset base is created, the multimodel explicitly
represents the different viewpoints of the SPL and the relationships among these
views; ii) in the application engineering phase, in which the final product is derived,
the relationships drive the different model transformation processes that constitute the
production plan used to produce the final product. The concepts introduced in this
section are illustrated through the use of a running example: a software product line

from the automotive domain which comprises the safety-critical embedded software
systems responsible for controlling a car.

The multimodel used to specify SPLs is composed of (at least) four interrelated
viewpoints: functional, variability, quality, and transformation:

392 J. González-Huerta, E. Insfrán, and S. Abrahão

• The variability viewpoint expresses the commonalities and variability within the
product line. Its main element is the feature, which is a user-visible aspect or
characteristic of a system [9]. The variability view of the multimodel has been
defined using a variant [11] of the cardinality-based feature model [16], defined
specifically for application in a model-driven product line development context
(see Fig. 1 top left).

• The functional viewpoint expresses the structure of a family of systems
represented by the SPL architecture and the core assets (e.g., software components)
that satisfy the requirements of the different features (see Fig. 1 top right). The
functional view has been defined using the Architectural Analysis and Design
Language (AADL) [15]. AADL defines a textual and graphical representation of
the runtime architecture of software systems as a component-based model in terms
of tasks, their interactions and the hardware platform on which the systems are
executed.

• The quality viewpoint expresses the decomposition of quality characteristics for
SPL into sub-characteristics, quality attributes, and metrics as well as the impacts
and constraints among quality attributes. It is represented by a quality model for
software product lines [18]. This model extends the ISO/IEC 25010 (SQuaRE)
standard [21], thus providing the quality assurance and evaluation activities in SPL
development (see Fig. 1 bottom left). The multimodel also allows the specification
of product line NFRs as constraints defined over the quality model, affecting
characteristics, sub-characteristics and quality attributes [17]. The definition of
NFRs as constraints in the quality model provides a mechanism for the automatic
validation of their fulfillment once the software artifacts have been obtained.

• The transformation viewpoint contains the explicit representation of the design
decisions realized by the different model transformation processes that integrate the
production plan for a model-driven SPL (see Fig. 1 bottom right). Alternatives appear
in a model transformation process when a set of constructs in the source model admits
different representations in the target model. The application of each alternative
transformation could generate alternative target models that may have the same
functionality but might differ in their quality attributes. In this work, we focus on
architectural patterns [14], [25]. Architectural patterns specify solutions to recurrent
problems that occur in specific contexts [7]. They also specify how the system will
deal with one aspect of its functionality, impacting directly on the product quality
attributes. Architectural patterns can be represented as architectural transformations, as
a means to ensure the quality attributes attained by the product architectures.

In addition to the viewpoints, the multimodel also allows the definition of
relationships among elements on each viewpoint with different semantics such as
composition, impact or constraint relationships [17]. The composition relationship
allows a model element A in a viewpoint to be decomposed into elements B, C… in
other viewpoints. The impact relationship allows a model element A in a viewpoint
impact on an element B in other viewpoint (e.g., an entity in a viewpoint impacts
positively or negatively on a quality attribute from the quality viewpoint). These
impact relationships may require additional attributes in which to store their
quantification. Finally, constraint relationships allow more complex relationships at
multimodel level to be expressed using an OCL-like syntax.

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 393

Fig. 1. SPL multimodel overview

In particular, the following types of relationships among elements in the different
viewpoints can be defined in the multimodel:

• Composition relationship: A composition relationship can be defined between
elements in the functional and variability viewpoints. A set of elements in the
functional viewpoint can be combined in order to fulfill the requirements of one or
more features (in Fig. 1 the ABS feature in a car is fulfilled by the
antilock_braking_system component).

• Impact relationship: A composition relationship can be defined between elements
in the transformation and quality viewpoints. The selection of a particular
transformation in the transformation viewpoint may affect one or more NFRs
defined over the quality model (in Fig. 1 the application of the Homogenous
Redundancy pattern impacts positively on the product fault tolerance). A domain
expert therefore establishes the relationship among alternative transformation and
quality attributes by determining how a given transformation supports a given
quality attribute, based on empirical evidence or on his/her experience. This
tradeoff analysis is performed by applying the Analytic Hierarchy Process (AHP)
[32]. AHP is a decision-making technique used to resolve conflicts in which it is
necessary to address multi-criteria comparisons. The result of the AHP is a weight
that shows the relative support of an alternative with regard to a given quality
attribute, and it is stored in the quantification attributes of the impact relationship
(e.g., in Fig. 1, the triple modular redundancy pattern supports latency time with a
relative weight of 0.20).

On the one hand, the relationships among the functional, variability, and quality
viewpoints can be used to drive the product configuration, the core asset selection and
the product architecture derivation processes. On the other hand, the relationships
defined between the transformation and quality viewpoints allow the use of the
quality attributes as a decision factor when choosing from alternative pattern-based
architectural transformations.

394 J. González-Huerta, E. Insfrán, and S. Abrahão

3.2 QuaDAI Process

The QuaDAI process includes different activities in which the multimodel is used to
drive the model transformation processes for the derivation, evaluation and
improvement of product architectures in SPL development. The activity diagram of
the process supporting the approach is shown in Fig. 2 (a). It consists of the product
architecture derivation from the product line architecture in the Product Architecture
Derivation activity, its evaluation using the Product Architecture Evaluation activity
and, in those cases in which the NFRs cannot be attained, its transformation through
the application of pattern-based architectural transformations in the Product
Architecture Transformation activity. Once this latter activity has been carried out,
the resulting architecture must be evaluated again using the Product Architecture
Evaluation Activity.

Fig. 2. Overview of the QuaDAI process

Product Architecture Derivation. The product architecture is derived from the
product line architecture in the Product Architecture Derivation activity, taking as
input the product line architecture, the variability and functional viewpoints of the
multimodel, and the product configuration, containing both the product specific
features and the product-specific NFRs selected by the application engineer (see Fig.
2(b)). In this activity, the decision as to which functional components should be
deployed in the product architecture is made by considering the following: i) the
composition relationships between features and functional components; ii) the impact
relationships between functional components and NFRs; and iii) the impact
relationships between features and NFRs. The output of this activity is a first version
of the product architecture which must be evaluated in order to analyze the attainment
of non-functional requirements.

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 395

tc_display_input_signals
cc_display_input_signals

display
abs_display_input_signals

throttle_actuator

tc_throttle_signals
cc_throttle_signals

brake_pedal

brake_signals

engine

engine_signals

user_console

user_console_outputs
cruise_control_system

cc_user_input

cc_wheel_speed

cc_engine_input
cc_brake_status cc_throttle_out

cc_display_out

traction_control_system

tcs_wheel_input
tcs_engine_input
tcs_user_input

tcs_throttle_out
tcs_display_out

tcs_brake_out

antilock_brake_system

abs_user_input

abs_wheel_speed
abs_brake_input abs_brake_out

abs_display_out

brake_actuators

tc_brake_actuator_signals
abs_brake_actuator_signals

wheel_signal

wheel_rotation_sensor

Fig. 3. Excerpt of the Product Line Architecture

Fig. 4 shows the product architecture generated by the product architecture derived
from the product line architecture (shown in Fig. 3) for the automotive example when
the application engineer selects only the ABS feature and introduces the product
specific NFRs, which come from the system’s requirements, demanding a fault
tolerance of the ABS greater than 99.5% and restricting the ABS latency time to 5ms.

Fig. 4. Portion of the Product Architecture showing the ABS system

Product Architecture Evaluation. In the second model transformation process, the
Product Architecture Evaluation applies the software measures contained in the
quality viewpoint of the multimodel to a product architecture in order to evaluate
whether or not it satisfies the desired NFRs. This transformation takes as input the
product architecture derived, the product specific NFRs and the quality viewpoint of
the multimodel (quality model) containing the metrics to be applied in order to
measure the NFRs, generating as output an evaluation report (see Fig. 2(b)). The
evaluation for the example architecture shown in Fig. 4 may conclude that the
architecture meets the latency NFR but that the fault tolerance NFR is not achieved,
and architectural transformations may thus be required.

Product Architecture Transformation. Finally, in those cases in which the non-
functional requirements cannot be achieved by exercising the architectural variability
mechanisms, in the third activity, the Product Architecture Transformation applies
pattern-based architectural transformations to the product architecture. The inputs for
this activity are the product architecture, the relative importance of the different NFRs
and the transformation viewpoint of the multimodel, containing the representation of
the transformations to be applied. It generates a product architecture as output in an

396 J. González-Huerta, E. Insfrán, and S. Abrahão

attempt to cover the NFRs prioritized by the architect (see Fig. 2(b)). The architect
introduces the relative importance of each NFR that the product must fulfill as
normalized weights ranging from 0 to 1 as external parameters when executing the
transformation. The transformation process uses the relative importance of each NFR
and the impact relationships among transformations and quality attributes to select the
architectural transformation to be applied. In the automotive example, if the architect
selects both the latency and the fault tolerance as being of equal importance (i.e., with
a weight of 0.5 for each one) the transformation process will select the Homogenous
Redundancy Pattern (HR). The architecture resulting from the application of the HR
pattern is shown in Fig. 5. This activity can be performed until all the desired quality
attributes for the product are fulfilled.

Fig. 5. Product architecture after applying the HR pattern

4 Validation

A controlled experiment was conducted to empirically validate QuaDAI comparing
the efficiency, effectiveness and perceived satisfaction of participants using this
method against ATAM, a well-known and widely-used software architecture
evaluation method [26]. We focus on two activities from the QuaDAI process that
occur after deriving the product architecture: Product Architecture Evaluation and
Product Transformation. These activities deal with the evaluation and improvement
of product architectures, which are aligned with the main purpose of ATAM.

4.1 Experiment Planning

The controlled experiment was designed by considering the guidelines proposed by
Wohlin et al. [34]. According to the Goal-Question Metric (GQM) paradigm [3], the
goal of the experiment is to analyze the Quality-Driven Architectural Improvement

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 397

method (QuaDAI) and ATAM for the purpose of comparing them with respect to
their effectiveness, efficiency, ease of use, usefulness and intention of use in order to
obtain software architectures that meet a given set of quality requirements from the
viewpoint of novice software architecture evaluators.

The context of the experiment is the quality evaluation of two software
architectures carried out by novice evaluators. This context is determined by the
software architectures to be evaluated, the architecture evaluation methods to be
applied and the subject selection.

The software architectures to be evaluated are the software architecture of an
Antilock Braking System (ABS System) from an automotive control system and the
software architecture of the Savi application (http://goo.gl/1Q49O), a mobile
application for emergency notifications. The architecture of the ABS System,
represented through its component and connector view, was selected as experimental
object O1, and the Savi architecture, represented through the deployment view, was
selected as experimental object O2. We also selected a set of four architectural
patterns that can be applied to improve the quality attribute levels of interest in each
of the product architectures. The experimental tasks include the evaluation of these
quality attributes by means of two software metrics in each experimental object
before and after applying the architecture evaluation methods. Thirty-one subjects
were selected from a group of fifth-year Computer Science students at the Universitat
Politècnica de València who were enrolled on an Advanced Software Engineering
course from September 2012 to January 2013, where they acquire knowledge and
skills on software architecture evaluation. In particular, they received a training of
eight hours on this topic before the experiment took place. The evaluation methods
being compared are, on the one hand our proposal described in Section 3 (QuADAI)
and on the other, the Architecture Trade-Off Analysis Method (ATAM). ATAM is
used to assess the consequences of architectural design decisions in the light of
quality attributes [22]. The main goals of ATAM are to elicit and refine the
architecture’s quality goals; to elicit and refine the architectural design decisions and
to evaluate the architectural design decisions in order to determine whether they
address the quality attribute requirements satisfactorily. ATAM has been selected for
comparison with QuaDAI since i) it is a widely used software architecture evaluation
method ii) it is able to deal with multi-attribute analysis [1] and iii) it can be used to
evaluate both product line and product architectures at various stages of SPL
development (conceptual, before code, during development, or after deployment) [9].

The independent variable of interest in the study is the use of each method
(ATAM or QuaDAI). There are two objective dependent variables: effectiveness of
the method, which is calculated as a function of the Euclidean Distances between the
NFR values attained by the architecture being evaluated by the subject and the
optimal NFR values that can be attained; and efficiency, which is calculated as the
ratio between the effectiveness and the total time spent on applying the evaluation
method. There are also three subjective dependent variables: perceived ease of use,
which refers to the degree to which evaluators believe that learning and using a
particular method will be effort-free, perceived usefulness, which refers to the degree
to which evaluators believe that using a specific method will increase their job
performance within an organizational context and intention to use, the extent to which

398 J. González-Huerta, E. Insfrán, and S. Abrahão

a evaluator intends to use a particular method. This last variable represents a
perceptual judgment of the method’s efficacy – that is, whether it is cost-effective and
is commonly used to predict the likelihood of acceptance of a method in practice.
These three subjective variables were measured by using a Likert scale questionnaire
with a set of specific closed questions related to each variable. The aggregated value
of each subjective variable was calculated as the mean of the answers to the variable-
related questions.

Effectiveness is calculated by applying the formula (1) to normalized euclidean
distances. The normalization is calculated by applying the formula (2) to the
euclidean distances calculated by applying the formula (3) and returns a value
ranging from 0 to 1. The normalization is required for avoiding the effects of the
scales of the metrics that measure each NFR. The optimal function in formulas (1)
and (2) returns the optimal values of the NFRs that can be achieved for a given
experimental object. The Max function returns the maximal distance D observed for a
given experimental object. 1 , (1)

, ,
 (2)

, (3)

The hypotheses of this experiment are:

─ H10: There is no significant difference between the effectiveness of QuaDAI
and ATAM / H1a: QuaDAI is significantly more effective than ATAM.

─ H20: There is no significant difference between the efficiency of QuaDAI and
ATAM / H2a: QuaDAI is significantly more efficient than ATAM.

─ H30: There is no significant difference between the perceived ease of use of
evaluators applying QuaDAI and ATAM / H3a: QuaDAI is perceived as easier
to use than ATAM.

─ H40: There is no significant difference between the perceived usefulness of
QuaDAI and ATAM / H4a: QuaDAI is perceived as more useful than ATAM.

─ H50: There is no significant difference between the intention to use of QuaDAI
and ATAM / H5a: QuaDAI is perceived as more likely to be used than ATAM.

4.2 Experiment Operation and Execution

The experiment was planned as a balanced within-subject design with a confounding
effect, signifying that the same subjects executed both methods with both
experimental objects in different order. We established four groups (each group
applying one method with one object) and the subjects were randomly assigned to
each group. Table 1 shows the schedule of the experiment in more detail.

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 399

Several documents were designed as instrumentation for the experiment: slides for
training session, an explanation of the methods, forms for gathering data, the patterns
description, the metrics documentation, and two questionnaires. Excel spread sheets
were also designed in order to automate the metrics calculation and the QuaDAI’s
trade-off among architectural transformations. The instrumentation of this experiment
is available at http://www.dsic.upv.es/~jagonzalez/MODELS2013/instrumentation.

A pilot experiment was conducted beforehand to assess the experimental material
and to estimate the time required to accomplish the tasks. This took place with four
Computer Science PhD students from the Universitat Politecnica de Valencia. The
students completed the experimental tasks in less than an hour. This pilot experiment
also allowed us to collect information on how to improve the instrumentation.

The experiment was planned to be conducted in three sessions, Table 1 shows the
details for each day. On the first day, the subjects were given the complete training on
the methods to be applied and also on the tasks to be performed in the execution of
the experiment. On the second and third days the subjects were given an overview of
the complete training before applying one evaluation method on an experimental
object (O1 or O2). We established a slot of 60 minutes without a time limit for each
of the methods to be applied.

The experiment took place in a single room, and no interaction between subjects
was allowed. The questions that arose during the session were clarified by the same
conductors during the experiment.

With regard to the data validation, we verified that one of the subjects had not
completed the 2nd session and that it was therefore necessary to eliminate his first
exercise. Since we had 30 subjects distributed in four groups, it was necessary to
discard two subjects (which were selected randomly) in order to maintain the
balanced design, consisting of a total of 28 subjects, seven in each group.

Table 1. Schedule of the controlled experiment

1st session (120 min) Training on Software Architecture Evaluation using ATAM and QuaDAI
2nd session

(60 + 60 minutes)
Software Architecture Evaluation using ATAM and QuaDAI (short training)

QuaDAI in O1 QuaDAI in O2 ATAM in O1 ATAM in O2
QuaDAI Questionnaire ATAM Questionnaire

2nd session
(60 + 60 minutes)

Software Architecture Evaluation using ATAM and QuaDAI (short training)

ATAM in O2 ATAM in O1 QuaDAI in O2 QuaDAI in O1
ATAM Questionnaire QuaDAI Questionnaire

4.3 Data Analysis

The quantitative analysis was performed by using the SPSS v16 statistical tool using
an α=0.05. A summary of the results of the evaluation is shown in Table 2. Mean and
standard deviations have also been used as descriptive statistics for the qualitative
subjective variables Perceived Ease of Use (PEOU), Perceived Usefulness (PU) and
Intention to Use (ITU). The five-point Likert scale ranging from 1 to 5 adopted for the
measurement of the subjective variables has also been considered as an interval scale
[9]. The cells highlighted in bold type in Table 2 show the best values for each of the

400 J. González-Huerta,

statistics. These results can
was with QuaDAI in almos

Effectiveness
Mean Std. D

QuaDAI 0.68 0.3
ATAM 0.63 0.3

Perceived Ease of

(PEOU)
 Mean Std. D
QuaDAI 3.98 0.8
ATAM 3.50 0.8

The sample size (<50) i
test to check whether the
were needed to test the fiv
test. The variables that are
method are shown in bold t

Tabl

 Effec
QuaDAI 0.000
ATAM 0.000

The boxplots in Fig. 6 c
subject per method show th
it was perceived as being e
subjects than ATAM.

Fig. 6. B

In order to check the sta
Withney non-parametric te
distributed, and H5 and the
Mann-Whitney test results
PU and 0.767 for ITU. The

E. Insfrán, and S. Abrahão

n be used to interpret that the subjects’ best performa
t all the variables.

Table 2. Descriptive results

Efficiency Duration (min)
Dev. Mean Std. Dev. Mean Std. Dev.
39 0.029 0.018 25.36 7.26
36 0.020 0.013 31.11 9.15

f Use Perceived
Usefulness (PU) Intention to Use (ITU)

Dev. Mean Std. Dev. Mean Std. Dev.
88 3.80 0.83 3.65 0.84
82 3.72 0.73 3.55 0.70

indicated that it was necessary to apply the Shapiro-W
data was normally distributed so as to select which te

ve hypotheses. Table 3 shows the results of the norma
e normally distributed for a given architecture evaluat
ype.

le 3. Shapiro-Wilk normality test results

ct. Effic. PEOU PU ITU
0 0.362 0.014 0.027 0.024
0 0.379 0.027 0.04 0.894

containing the distribution of each dependent variable
hat QuaDAI was more effective and efficient, and also t
asier to use, more useful and more likely to be used by

Boxplots for the various dependent variables

tistical significance of these tests we performed the Ma
st so as to verify H1, H3, H4, since they are not norma
e 1-tailed t-test for independent samples to verify H2.T
were 0.906 for Effectiveness, 0.030 for PEOU, 0.941
p-value obtained from the 1-tailed t-test for Efficiency w

ance

Wilk
ests

ality
tion

per
that
the

ann-
ally
The
for

was

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 401

0.015. These results led us to conclude that the difference in terms of Efficiency and
PEOU is statistically significant, thus allowing us to reject the null hypotheses H10
and H30 and accept their respective alternative hypotheses. However, with regard to
the Effectiveness, PU and ITU, although the subjects achieved their best results with
QuaDAI, we found that the differences were not statistically significant (> 0.05).

4.4 Threats to the Validity

The main threats to the internal validity are: learning effect, subjects’ experience,
information exchange among participants, author’s bias, author influence, the order of
methods in the training and understandability of the documents. Two experimental
objects were used to deal with the learning effect, such as ensuring that each subject
applied each method in a different system and considering all the possible
combinations of both the method order and the experimental objects. There were no
differences on the subjects’ experience since none of them had experience in
architecture evaluations. The subjects were introduced to the tasks and the problems
they would have to solve via their participation in training sessions on both methods.
Information exchange was alleviated by using different experimental objects at the
same time, and monitoring the subjects while they performed the tasks. Since the
experiment was designed to take place in two sessions, the subjects might have been
able to exchange information during the time between the sessions, but this was
alleviated by asking the participants to return the material at the end of each session.
The author’s bias in this experiment may have influenced the results since the training
sessions were conducted by an author of the method. The author influence was
alleviated by not disclosing to the subjects the authorship of the QuaDAI method. The
order of methods during the training and experimental sessions could have also
influenced the results since it was the same in each session. This issue will be
investigated in future replications of this experiment. The understandability of the
material was alleviated by clearing up all the misunderstandings that appeared in the
pilot experiment and experimental sessions.

The main threat to external validity is the representativeness of the results. The
representativeness of the results might be affected by the evaluation design and the
participant context selected. The evaluation design might have had an impact on the
results owing to the kind of architectural models and quality attributes to be
evaluated. We selected two different architectures, from two different domains, two
different NFRs and four different patterns for each experimental object. The
experiment was conducted with students with no experience in architectural
evaluations, and who received only limited training on the evaluation methods.
However, since they were final year students they can be considered as novice users
of architectural evaluation methods, and the next generation of practitioners [24]. The
results could thus be considered as representative of novice evaluators.

The main threats to the construct validity are the measures used to quantify the
dependent variables. Effectiveness was measured using the Euclidean distance which
has commonly been used to measure the goodness of a solution with regard to a set of
opposed NFRs with different purposes [12] [33]. The subjective variables are based
on the Technology Acceptance Method (TAM) [13], a well-known and empirically
validated model for the evaluation of information technologies. The reliability of the

402 J. González-Huerta, E. Insfrán, and S. Abrahão

questionnaire was tested by applying the Cronbach test. Questions related to PEOU,
PU and ITU obtained a Cronbach’s alpha of 0.824, 0.870 and 0.831, which is higher
than the acceptable minimum (0.70) [27]. The main threat to the conclusion validity
is the validity of the statistical tests applied. This threat was alleviated by applying a
set of commonly accepted tests employed in the empirical SE community [27].
However, more replications are needed in order to confirm these results.

5 Conclusions and Future Work

In this paper, we have presented QuaDAI, a method for the derivation, evaluation and
improvement of product architectures. This method relies on a multimodel that
represents the different viewpoints of the SPL (functional, quality, variability, and
transformation), allowing the representation of the product line architecture, the
metrics for its evaluation, and the relationships among architectural transformations
and NFRs. The approach has three major benefits: i) it is aimed to automate the
derivation and improvement of product architectures; ii) it provides a systematic
mechanism for dealing with the cases in which the NFRs of the product under
development are not within the range of values permitted by the architectural
variability; iii) and finally, it takes advantage of the reuse of the architectural
knowledge stored in the multimodel for helping designers to decide which
architectural patterns should be applied each time a product architecture needs to be
improved. We believe that QuaDAI is useful to guide novice architects in performing
evaluations as the multimodel explicitly represents the domain expert's knowledge.

We have also validated our method by means of a controlled experiment in which
QuaDAI were compared with a widely-used architecture evaluation method (ATAM).
The results show that QuaDAI is more efficient and is perceived to be easier to use
than ATAM. However, with regard to the effectiveness, PU and ITU, although
QuaDAI achieved better results, we found that the differences were not statistically
significant. This may be because the lack of experience of the subjects in architecture
evaluation. This issue will be examined in future replications of this study.

As future work, we plan to characterize those cases in which the variability
mechanisms are not sufficient to achieve the NFRs for a given product. We also plan
to study other mechanisms for introducing the relative importance (weights) for the
NFRs. Currently, we are using only numbers but we are aware that they may not
capture the full range of real-world impact relationships. We will explore the
definition of functions that could express conditions on such numbers. In addition, we
are aware that not only architectural patterns can be applied to improve a quality
attribute. Our approach may also allow managing other complementary architectural
transformations that may be needed.

We also plan to conduct replications of this experiment by considering a larger
number of subjects with different subject profiles (e.g., practitioners or students with a
higher level of knowledge and skills on architecture evaluation) and different
experimental objects in order to improve the representativeness of our results.

Acknowledgements. This research is supported by the MULTIPLE project (MICINN
TIN2009-13838) and the ValI+D fellowship program (ACIF/2011/235).

 Defining and Validating a Multimodel Approach for Product Architecture Derivation 403

References

1. Ali-Babar, M., Lago, P., Van Deursen, A.: Empirical research in software architecture:
opportunities, challenges, and approaches. Empirical Software Engineering 16(5),
539–543 (2011)

2. Ali-Babar, M., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software
Architecture Evaluation Methods. In: 15th Australian Software Engineering Conference,
Melbourne, Australia, pp. 309–318 (2004)

3. Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)

4. Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P.,
Wallace, E.K.: Concepts for Automating Systems Integration NISTIR 6928. National
Institute of Standards and Technology, U.S. Dept. of Commerce (2003)

5. Bosch, J.: Design and Use of Software Architectures. Adopting and Evolving Product-Line
Approach. Addison-Wesley, Harlow (2000)

6. Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures. In:
22th Int. Conf. on Automated Software Engineering, New York, USA, pp. 469–472 (2007)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
software architecture, vol. 1: A System of Patterns. Wiley (1996)

8. Cabello, M.E., Ramos, I., Gómez, A., Limón, R.: Baseline-Oriented Modeling: An MDA
Approach Based on Software Product Lines for the Expert Systems Development.
In: 1st Asia Conference on Intelligent Information and Database Systems, Vietnam (2009)

9. Carifio, J., Perla, R.J.: Ten Common Misunderstandings, Misconceptions, Persistent Myths
and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes.
Journal of Social Sciences 3(3), 106–116 (2007)

10. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2007)

11. Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A progress
report. In: Int. Workshop on Software Factories, San Diego-CA (2005)

12. Datorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing
(2005)

13. Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of
information technology. MIS Quarterly 13(3), 319–340 (1989)

14. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley, Boston (2002)

15. Feiler, P.H., Gluch, D.P., Hudak, J.: The Architecture Analysis & Design Language
(AADL): An Introduction. Tech. Report CMU/SEI-2006-TN-011. SEI, Carnegie Mellon
University (2006)

16. Gómez, A., Ramos, I.: Cardinality-based feature modeling and model-driven engineering:
Fitting them together. In: 4th Int. Workshop on Variability Modeling of Software Intensive
Systems, Linz, Austria (2010)

17. Gonzalez-Huerta, J., Insfran, E., Abrahao, S.: A Multimodel for Integrating Quality
Assessment in Model-Driven Engineering. In: 8th International Conference on the Quality
of Information and Communications Technology (QUATIC 2012), Lisbon, Portugal,
September 3-6 (2012)

18. Gonzalez-Huerta, J., Insfran, E., Abrahao, S., McGregor, J.D.: Non-functional
Requirements in Model-Driven Software Product Line Engineering. In: 4th Int. Workshop
on Non-functional System Properties in Domain Specific Modeling Languages, Insbruck,
Austria (2012)

404 J. González-Huerta, E. Insfrán, and S. Abrahão

19. Guana, V., Correal, V.: Variability quality evaluation on component-based software
product lines. In: 15th Int. Software Product Line Conference, Munich, Germany, vol. 2,
pp. 19.1–19.8 (2011)

20. Insfrán, E., Abrahão, S., González-Huerta, J., McGregor, J.D., Ramos, I.:
A Multimodeling Approach for Quality-Driven Architecture Derivation. In: 21st Int. Conf.
on Information Systems Development (ISD 2012), Prato, Italy (2012)

21. ISO/IEC 25000:2005, Software Engineering. Software product Quality Requirements and
Evaluation SQuaRE (2005)

22. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation
(CMU/SEI-2000-TR-004, ADA382629). Software Engineering Institute, Carnegie Mellon
University, Pittsburgh (2000), http://www.sei.cmu.edu/publications/
documents/00.reports/00tr004.html

23. Kim, T., Ko, I., Kang, S., Lee, D.: Extending ATAM to assess product line architecture.
In: 8th IEEE Int. Conference on Computer and Information Technology, Sydney,
Australia, pp. 790–797 (2008)

24. Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenber, J.: Preliminary Guidelines for
Empirical Research in Software Engineering. IEEE Transactions on Software
Engineering 28(8) (2002)

25. Kruchten, P.B.: The Rational Unified Process: An Introduction. Addison-Wesley (1999)
26. Martensson, F.: Software Architecture Quality Evaluation. Approaches in an Industrial

Context. Ph. D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden (2006)
27. Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series.

Prentice-Hall (2002)
28. Olumofin, F.G., Mišic, V.B.: A holistic architecture assessment method for software

product lines. Information and Software Technology 49, 309–323 (2007)
29. Perovich, D., Rossel, P.O., Bastarrica, M.C.: Feature model to product architectures:

Applying MDE to Software Product Lines. In: IEEE/IFIP & European Conference on
Software Architecture, Helsinki, Findland, pp. 201–210 (2009)

30. Robertson, S., Robertson, J.: Mastering the requirements process. ACM Press, New York
(1999)

31. Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware
analysis in product line engineering with the orthogonal variability model. Software
Quality Journal (2011), doi:10.1007/s11219-011-9156-5

32. Saaty, T.L.: The Analytical Hierarchical Process. McGraw- Hill, New York (1990)
33. Taher, L., Khatib, H.E., Basha, R.: A framework and QoS matchmaking algorithm for

dynamic web services selection. In: 2nd Int. Conference on Innovations in Information
Technology, Dubai, UAE (2005)

34. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.:
Experimentation in Software Engineering - An Introduction. Kluwer (2000)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 405–421, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evolution of the UML Interactions Metamodel

Marc-Florian Wendland1, Martin Schneider1, and Øystein Haugen2

1 Fraunhofer Institut FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

2 SINTEF, Norway
{marc-florian.wendland,martin.schneider}@fokus.fraunhofer.de,

Oystein.haugen@sintef.no

Abstract. UML Interactions represent one of the three different behavior kinds
of the UML. In general, they specify the exchange of messages among parts of
a system. Although UML Interactions can reside on different level of
abstractions, they seem to be sufficiently elaborated for a higher-level of
abstraction where they are used for sketching the communication among parts.
Its metamodel reveals some fuzziness and imprecision where definitions should
be accurate and concise, though.

In this paper, we propose improvements to the UML Interactions’
metamodel for Message arguments and Loop CombinedFragments that make
them more versatile. We will justify the needs for the improvements by
precisely showing the shortcomings of the related parts of the metamodel. We
demonstrate the expressiveness of the improvements by applying them to
examples that current Interactions definition handles awkwardly.

Keywords: UML, Interactions, Sequence Diagram, Messages,
CombinedFragments.

1 Introduction

UML Interactions are one of the three behavior kinds of UML 2 [1] and describe
information exchange among parts of a system via messages. Graphically, UML
Interactions are most commonly depicted as sequence diagrams.

UML 1 Interactions originated from a proprietary dialect of sequence charts which
came from Siemens. When UML 2 was initiated in 1999 some of the driving forces
from the telecom industry had already applied sequence diagrams for many years and
were well acquainted with Message Sequence Charts (MSC) [2]. Ericsson, Motorola
and Alcatel, supplemented also by tool vendor Telelogic, collaborated to formalize
UML in the direction of MSC and SDL (Specification and Description Language,
recommended in Z.100 by ITU). This resulted in trying to harmonize the MSC-2000
with UML 2 and still keep most of what had been in UML 1 sequence diagrams as
well. While MSC was defined as a stand-alone language, Interactions of UML 2
should be well harmonized and integrated with the rest of UML. However, the
telecom companies were not satisfied with informal relations between elements, but

406 M.-F. Wendland, M. Schneider, and Ø. Haugen

wanted a UML language that was as precise as what they were used to from SDL and
MSC. Other stakeholders of UML were not convinced that UML should be that
precise. A lot of compromises were made, though. The concept of semantic variation
points was introduced and still remains central to the definition of UML. The overall
metamodel, however, was supposed to tie the different parts of UML together and in
some respects it did that, but in other respects the unification of different concepts
was not done with rigor and the language became unnecessary complicated.

Since their advent sequence diagrams were used a lot, however, their use was
mostly of descriptive nature. The communication between system parts was sketched
rather than precisely defined. When the UML Testing Profile (UTP) ([3] and [4])
appeared, there was emphasis on being able to use sequence diagrams for defining
test specifications. Even the data of the messages had to be defined more accurately.
In Interactions, exchange of data is expressed as arguments of a message related to a
certain element of the message’s signature. Due to the compromises made in UML,
several issues appear when message arguments need to be precisely specified.

This paper summarizes the most relevant issues for message arguments, explains
how they manifest in the metamodel and suggests improvements to the relevant parts
of the metamodel to overcome those issues. This paper does not question the general
architecture of UML or the rigor of the integration of its parts (such as Activities and
Interactions), but rather treat Interactions as a self-sufficient concept space with
respect to its features for describing precise message exchange. The motivation for
this work stems from the development of an UTP-based tool for model-based testing,
called Fokus!MBT [20], and from the application of Interactions for test case
specification in industrial and research projects. Thus, the presented work is not a
mere theoretical consideration, but has been used for and proven its applicability to
real use cases.

As typographical convention, all metaclasses of the UML metamodel are written in
camel-case and start with a capital letter. Association ends and properties of
metaclasses are written in camel-case, start with a lower case letter and are set to
italic. For the sake of comprehensibility, the presented figures do not mention every
aspect of the UML abstract syntax (e.g., names of non-navigable association ends are
omitted). Introduced concepts are set italic the first time they are mentioned. In case
the index of an ordered association ends is relevant for understanding, it is surrounded
by square brackets (e.g., [1] indicating the first object). This notation is not
standardized for UML object diagrams.

The remainder of this paper is structured as follows: Section 2 summarizes
previous work in the area of Interactions. Section 3 presents the relevant parts of the
metamodel regarding abstract syntax and semantics. Section 4 represents the main
part of our contribution and describes metamodel improvement suggestions for
Messages and CombinedFragments. Section 5 proposes two recommendations for the
development of metamodels derived from the improvement suggestions presented in
section 4. Finally, section 6 summarizes our work and provides an outlook on future
considerations of the Interactions metamodel.

 Evolution of the UML Interactions Metamodel 407

2 Related Work

Haugen compares UML Interactions and Message Sequence Charts [5] showing that
Interactions and MSCs are similar down to small details.

Haugen, Stolen, Husa, and Runde have written a series of paper on the
compositional development of UML Interactions supporting the specification of
mandatory and potential behavior, called STAIRS approach ([6], [7], [8], and [9]).
Although the compositional idea is reflected throughout the series, a special interest is
dedicated to a fine-grained differentiation of event reception, consumption and timing
[7] and the refinement of Interactions with regard to underspecification and
nondeterminism [9]. Lund and Stolen have presented an operational semantics for
UML sequence diagrams in the context of STAIRS [10].

Formal semantics of UML Interactions and sequence diagrams were several times
discussed. Störrle presented a formal specification of UML Interactions and a
comparison of UML 2.0 and UML 1.4 Interactions [11] and [12]). A similar work was
done by Knapp and Cengarle ([13] and [14]), Li and Ruan [15] and Shen et al. [16].
Special attention was set to the semantics of assert and negative CombinedFragments
([17] and [18]), though.

An approach to model checking based upon a formal trace semantics of
Interactions was described by Knapp and Wuttke [19].

Our paper is different from the work described above. These publications were
mostly dedicated to the trace semantics of Message reception and consumption within
UML Interactions, but they did not focus on precisely specifying data transmitted by
Messages. Furthermore, the complete metamodel of UML Interactions has not been
considered and improved. Our work addresses the precise specification of Message
arguments as well as revised parts of the UML Interactions metamodel to make them
more robust and manageable by subsequent tooling.

3 Relevant Parts of the UML Interactions Metamodel

This chapter briefly summarizes those parts of the UML Interactions metamodel that
are relevant for understanding the focal point of this paper. A full description of the
semantics can be found in the current UML specification [1] our work is based on.
For the sake of comprehensibility, the necessary parts of the metamodel are shown in
Fig. 1. nevertheless. The left-hand side shows the relevant parts of Messages, the right
hand side those of CombinedFragments.

Interactions describe the communication between (potentially loosely coupled)
parts of a system. The most important building blocks of Interactions are Messages
that constitute information exchange between different parts, and Lifelines that
represent those communicating parts.

A Message represents either the invocation of an Operation or the sending and
reception of a Signal. The first kind represents either an asynchronous or synchronous
call, or a reply in case of a preceding synchronous call. The second kind (i.e.,
the sending of a Signal) is by definition always asynchronous. Messages commonly

408 M.-F. Wendland, M. Schneider, and Ø. Haugen

convey data in terms of its actual arguments to the receiver. The actual arguments of
Message have to correspond to the elements determined by its signature. These
signature elements can manifest as Parameters, in case of an Operation signature, or
Properties, in case of a Signal signature. Consistency between actual argument and
signature element requires that the actual argument (identified by its index in
Message.argument) is type compliant with the corresponding signature element
(identified by the very same index as the actual arguments, either in
Operation.ownedParameter or Signal.ownedAttribute). The consistency definition
implies that both lists must be of equal size.

Fig. 1. Relevant parts of the UML Interactions metamodel regarding Messages (left) and
CombinedFragments (right)

CombinedFragments were introduced in UML 2 to enable more expressive
Interactions. The semantics of a CombinedFragment is determined by its
InteractionOperatorKind that also implies the number of InteractionOperands a
CombinedFragment may possess. Each InteractionOperand may be guarded by an
InteractionConstraint that defines what that must hold to activate the
InteractionOperand. Some kinds of CombinedFragments are supplemented with
additional information required in their semantic context. These are Loop-kind
CombinedFragments (henceforth called Loops) and ConsiderIgnoreFragments. Loops
represent repetitions of the events enclosed in its InteractionOperand. The number of
repetitions can be omitted (any number of repetitions is valid), restricted to a single
number of repetitions or specified as an interval for a minimally and maximally
intended repetition.

4 Improving Messages and CombinedFragments

The following sections represent the main contribution of our work, i.e., improvement
suggestions for the UML Interactions metamodel regarding a precise specification of
Message arguments and CombinedFragments. UML is a language of compromises so
there are most likely several opinions why the issues1, being described subsequently,

1 The issues we will discuss and mitigate are already filed in the OMG issue database

(see http://www.omg.org/issues/uml2-rtf.open.html): #8786, #8899,
#16569 and #16571.

 Evolution of the UML Interactions Metamodel 409

actually appear and how they ought to be resolved in the first place. Our
improvements are strictly defined from an Interactions point of view. All suggested
modifications are local to the Interactions metamodel to make them more robust and
as expressive regarding the specification of arguments as Activities, for example.
Resolving more fundamental and maybe philosophic or politic issues in the essence of
UML is out of scope of this paper, though.

4.1 Precise and Robust Specification of Message Arguments

A Message’s actual arguments and the signature elements they need to correspond to
are implicitly related via their indices in two distinct lists. This is not problematic as
long as the signature elements have just a single, non-optional multiplicity (i.e., lower
and upper bounds equals 1) or only the last signature element is optional. In any other
case, specifying actual arguments may lead to ambiguities due to UML’s inability to
model standalone collections of ValueSpecifications and the implicit relation of
members of two independent lists based on the respective indices. A discussion
whether ValueSpecification collections should be made available in UML is not in the
scope of this paper.

For better illustration, we consider an Operation with a single Integer collection
Parameter of an unbound size. Fig. 2 illustrates the corresponding object model for a
scenario where a user specifies an actual argument list with the values (1, 2, 3).

Fig. 2. Object model of ill-formed Message

The Message op1 contains three actual arguments what would imply that its
signature offers three signature elements as well. In fact, it just offers one (see
Parameter p1), so referring to UML [1] the model presented above is invalid by
definition. Activities, for example, can handle collections of actual arguments for a
single signature element with the Pin metaclass and we believe Interactions should also
provide a native concept to be able to handle actual arguments for collections. We
emphasize the term native, because there are some metamodeling workarounds that
misuse metaclasses to ensure syntactical correctness. The issue depicted in Fig. 2 might
be solved by misusing the metaclass Expression as pseudo-collection of
ValueSpecifications. As long as the metamodel of UML will not be enhanced with
dedicated concepts for ValueSpecification collections, Expressions are actually the most

410 M.-F. Wendland, M. Schneider, and Ø. Haugen

elegant (but semantically disputable) way to specify them. Nevertheless, this is kind of a
metamodeling trick, since Expressions are intended to specify expression trees in a
sense of an Abstract Syntax Tree (AST). As an improvement, we suggest introducing a
dedicated concept with clear semantics and syntax for the purpose of precise
specification of a Message’s actual arguments, called MessageArgumentSpecification
(see Fig. 3).

Fig. 3. Explicit relation between a Message’s signature element and actual arguments

A MessageArgumentSpecification makes the correspondence of a set of actual
arguments to its respective signature element explicit through the association end
argumentFor that points to the related signature element (ConnectableElement
represents the closest common metaclass of both possible signature elements
Parameter and Property). The corresponding constraint expressed with the Object
Constraint Language (OCL) for restricting what ConnectableElements can be
addressed as signature element, is:

context MessageArgumentSpecification
inv: not self.message.oclIsUndefined() implies
if self.message.signature.oclIsTypeOf(Operation) then
self.message.signature.oclAsType(Operation).ownedParamete
r->exists(self.argumentFor)
else if self.message.signature.oclIsTypeOf(Signal) then
self.message.signature.oclAsType(Signal).attributes-
>exists(self.argumentFor)
else
false
end if
end if

Literally, the ConnectableElement referenced by MessageArgumentSpecification
must either be a Parameter of an Operation or a Property owned by Signal. Both
Operation and Signal are to be associated with the MessageArgumentSpecification’s
owning Message (association end message) through the association end signature.
The explicit relation argumentFor between an actual argument and signature element
eliminates the need for matching by indices of independent lists. Thus, there is no
longer the need for collection ValueSpecifications, since the actual arguments for a

 Evolution of the UML Interactions Metamodel 411

certain signature element can be easily retrieved by gathering all
MessageArgumentSpecifications that point to that signature element via argumentFor
association end. This does not only simplify the processing of Messages, but also
gives rise for more robust models in case of changes to the order of signature
elements. As an example, we consider an Operation with two Parameters whose
Types are non-compatible. If the user decides to alter the order of the Operation’s
Parameters, all Messages would have to reflect that change to not become invalid. If
there is a large number of Messages that have set the Operation as their signature, and
that already have correctly specified actual arguments, reflecting the changes might
be a tedious task for the user. With the solution presented above, changing the order
did not affect the validity of the Message at all due to the explicit coupling via
argumentFor. Fig. 4 shows the relevant parts of the improved object model of Fig. 2.

Fig. 4. Object model of well-formed model through improvements

4.2 Using References as Message Arguments

The sole use of ValueSpecifications as actual arguments is sufficient for expressing
literal arguments or references to InstanceSpecifications. ValueSpecifications are,
however, not capable to reference ConnectableElements (as superclass of Parameter
and Property) directly. As a downside, it is not possible to reference values contained
in data sources such as formal Parameters of the Interaction (or the corresponding
BehavioralFeature the Interactions represents an implementation of) or Properties
accessible to the sending Lifeline (such as local attributes of the Type the Lifeline
represents, global attributes of the Classifier the Interaction is embedded in or local
attributes of the Interaction itself). For the remainder of this paper, we call these
values reference arguments. To motivate the improvement to the metamodel, the
following Java code snippet shows a fundamental concept of using formal parameters
of a surrounding Operation as actual parameter for a subsequent procedure call.

public class S { //context classifier of Interaction
 private C c; //offers op3(int i, String s)
 public void op2(int p1){
 c.op3(p1, “That works”); //realized as Interaction
 }
}

412 M.-F. Wendland, M. Schneider, and Ø. Haugen

A realization of this snippet with the concepts offered by Interactions is only
possible by either using an OCL navigation expression or again misusing other
metaclasses like, e.g., OpaqueExpression (a subclass of ValueSpecification) as
reference argument. Even though these workarounds would do the job, they are not
satisfying because they impose additional parsing and execution facilities (e.g., in
terms of OCL engine or any proprietary engine that evaluates the provided reference
argument) being available. In Activities, there is a dedicated means to express data
flow among actions (i.e., ObjectFlow and ObjectNode), for example. A native
concept of Interactions is lacking, though. In preparation for this paper, we also
checked the tools Rational Software Architect (RSA), MagicDraw and Enterprise
Architect (EA). Except for the OCL variant, there is no mechanism offered to
conveniently allow the user to specify reference arguments. OCL, however, is another
language that needs to be learned by a user. Although OCL is highly recommend in
the context of UML, for such fundamental concepts like referencing values in an
accessible data source, we believe no additional language should be needed.

Unfortunately, the solution we presented in Fig. 3 suffers from the same deficiency
as the current metamodel. A MessageArgumentSpecification still refers to
ValueSpecifications solely, so consequently, we have to further elaborate our
improvement to cope with the needs described above. Fig. 5 depicts our suggestion
for such an improvement.

Fig. 5. Extended metamodel to cope with referenced arguments

The improved abstract syntax shown above introduces three new metaclasses.
The abstract metaclass ValueSpecificationDescriptor replaces ValueSpecification
as direct actual argument of a Message. ValueSpecificationDescriptor acts as a
placeholder for the actual arguments, and knows two concrete subclasses
ValueArgumentSpecification and ReferenceArgumentSpecification. The first one
keeps the ability to use ValueSpecifications as actual arguments. The second one
introduces the required facility to access reference arguments.

The extended metamodel now provides the required concepts to select reference
arguments accessible from the sending Lifeline as actual arguments. The rules of what
is actually accessible by a sending Lifeline are already defined in the current UML
specification (see clause 5 of subsection Constraint of section 14.3.18) [1].
Furthermore, both ValueSpecificationDescriptor subclasses can be mixed with each
other in a MessageArgumentSpecification. The Java snippet mentioned above
stressed the need for mixing value and reference arguments.

 Evolution of the UML Interactions Metamodel 413

A reference argument (MessageArgument.valueDescriptor.refValue) and its
corresponding signature element (MessageArgumentSpecification.argumentFor) are
interrelated by the fact that the reference argument needs to be type-compliant with
and a subset of the multiplicity of the signature element. A multiplicity subset is
defined as follows: Let be the set of all MessageArgumentSpecifications in an
Interaction. Furthermore, let be a signature element, its lower bound and
its upper bound. Let be the reference argument corresponding to the signature
element , the lower bound and the upper bound of the reference argument,
and , the relation of a concrete reference argument and signature element in
the context of (i.e., the concrete arguments are identified by the navigation
expressions m.valueDescriptor.refValue and m.argumentFor). Then the following
must hold during runtime:

 ∀ ∈ , (1)

In Fig. 6, the object model according to the Java code snippet is shown. The grey-
shaded objects represent the parts of the specification of the Interaction. The bold-
faced object is related to the reference argument concept. The association between
MessageArgumentSpecification ma1 and Parameter i as well as the association
between ReferenceArgumentSpecification vd1 and Parameter p1 (marked by thick
arrows) visualize how signature elements and reference elements belong together.

Fig. 6. Corresponding object model of improved Interactions metamodel

Still a problem appears in the solution, if the reference argument is a collection and
has wider bounds than the corresponding signature element. There is currently no
concept for extracting a subset of values from a reference argument collection. What
is required is a facility for specifying such a subset of values that can be used by a

414 M.-F. Wendland, M. Schneider, and Ø. Haugen

reference argument. Therefore, the solution needs to be enhanced with a new
metaclass ReferenceValueSelector. A ReferenceValueSelector is in charge of
specifying that subset, if needed (see Fig. 7).

The subset of values for an actual argument is determined by one or more indices
(expressed as Intervals) of the collection identified by ReferenceArgumentSpecification.
An Interval allows specifying a minimal and maximal value. Since the association end
index is unbound, it is possible to specify any number of subsets of elements, identified
by their respective indices that shall be extracted from the reference argument
collection. The flag isIndexSetComplement is a convenient way to specify what indices
must not be taken over into the actual argument subset, whereas all indices which are
not specified shall be actually considered. Runtime compliance of the index descriptions
used in a ReferenceValueSelector cannot be ensured, of course.

Fig. 7. Metamodel extended with ReferenceValueSelector metaclass

4.3 Assigning Values of a Message to Assignment Targets

Storing return values or parameters of a method call in appropriate assignment targets
is rather natural in programming languages. A more complex (probably not
meaningful) Java code snippet is presented below. The snippet is solely used for
demonstration purposes of the ArgumentAssignmentSpecification metaclass we will
introduce in this section. The code is supposed to represent parts of an operation body
of the class S, which was already introduced in Section 4.2. S owns two Integer-typed
lists (i.e., piList1 and piList2) which are initialized. The actual content of the lists are
not relevant for the example. The code simply selects a subset of a list retrieved by
calling of c2’s operation op4 and adds this subset to piList1 and piList2 of
instance s of class S. In this section, we discuss the actual shortcomings of the current
UML specification for such constructs and propose a solution.

List<Integer> list = c2.op4(); //actual size of list:999
List<Integer> tempList = new
List<Integer>(list.sublist(3,14)); //tempList size: 12
tempList.add(list.get(15)); //tempList size: 13
tempList.add(list.sublist(92,654)); //tempList size: 576
s.piList1.clear():
s.piList1.addAll(tempList);
s.piList2.addAll(tempList);

 Evolution of the UML Interactions Metamodel 415

In a model, actual arguments of a Message shall be stored in assignment targets,
which manifest in Properties or out-kind Parameters (i.e., Parameter with a
ParameterDirectionKind out, inout or reply) of the surrounding Interaction accessible
by the receiving Lifeline. Henceforth, we refer to an assignment target as data sink.

Even though argument assignment is reflected in the textual syntax of Messages in
the current UML specification [1], there is no indication how this should be done with
respect to the metamodel. The only statement in the notation subsection of Messages
(see section 14.3.18) about assignment is that Actions are foreseen to describe the
assignment. No further explanations or object model examples are given for
clarification of how the connection between such an Action and an actual argument
shall be established, nor what concrete Action to ultimately use. Furthermore, an
Action needs to be integrated via an ActionExecutionSpecification covering the
receiving Lifeline, but it is neither clear from the metamodel nor clarified in the
textual specification how Message receptions and a set of conceptually related
ActionExecutionSpecifications are linked with each other. In preparation for this
paper, we investigated EA, RSA and MagicDraw. None of these most popular tools
offered functionality for target assignment, though. Only the EA does have at least a
notion for marking arguments for assignment, from the study of the resulting XMI,
however, it was not clear to the authors how the assignment specification actually
manifests.

Another rather conceptual shortcoming is that argument assignment is limited to
the return Parameter of a Message solely, so that in-kind signature elements (i.e.,
either a Parameter with ParameterDirectionKind in, inout, or an attribute of a Signal)
cannot be stored by a receiving Lifeline in a data sink. This ought to be possible, since
in-kind signature elements represent information determined by the sending Lifeline
and accessible by a receiving Lifeline. Therefore, actual arguments for in-kind
signature elements should be further usable throughout the execution of the receiving
Lifeline’s behavior. This holds also true for out-kind signature elements of reply
Messages, consequently, for sending Lifelines.

To cope with the needs for assigning actual arguments to data sinks accessible by
Lifelines, we suggest introducing a similar concept as WriteStructuralFeatureAction
from Activities (see clause 11.3.55 of UML [1]) for Interactions, called
ArgumentAssignmentSpecification (see Fig. 8).

Fig. 8. Adding target assignment facilities to the metamodel

416 M.-F. Wendland, M. Schneider, and Ø. Haugen

A MessageArgumentSpecification may contain a number of ArgumentAssig-
nmentSpecifications, which, in turn, may specify a number of assignment targets. An
assignment target represents a data sink that is intended to incorporate the actual
arguments. In case the same actual arguments shall be assigned to several data sinks at
the same time, the association end assignmentTarget is specified to be unbounded.
Similar to ReferenceValueSelector, a number of Intervals can be used to specify what
actual values at runtime shall be assigned to the assignment targets with respect to their
indices, if the corresponding signature element represents a collection. However, the
semantics in ArgumentAssignmentSpecification is converse, since it specifies what
actual arguments shall be assigned to a data sink, in contrast to what reference arguments
shall be taken from a data source as actual argument. However, as with
ReferenceValueSelector, runtime compliance cannot be ensured at that point in time.

A ValueAssignmentKind specifies the treatment of already existing data in the
assignment target in case the data sink represents a collection. Values of the actual
argument at runtime will be either

- Added to existing contents of the data sink (append),
- Inserted at index 0 of data sink (insertAtBegin), or
- Replace all existing contents in the data sink (replaceAll).

Fig. 9 shows object model of the improved Interactions metamodel corresponding
to the code snippet at the beginning of this section.

Fig. 9. Complex target assignment statements using collection indices

4.4 Improving Loop CombinedFragments

The semantics for CombinedFragments determined by their respective InteractionO-
peratorKind, but there are only two actual metaclasses for CombinedFragments in the
Interaction’s metamodel: CombinedFragment and ConsiderIgnoreFragment, a
specialization of CombinedFragment. The reason for a specialization of
CombinedFragment by ConsiderIgnoreFragment is the additional information necessary

 Evolution of the UML Interactions Metamodel 417

to specify the messages to be considered or ignored. Additional information is also
required for Loops to define the number of repetitions of the loop, however, in contrast
to ConsiderIgnoreFragment, the repetition bounds have simply been added to the
general CombinedFragment via the InteractionConstraint metaclass. It has two
associations for specifying the bounds of a loop (minint and maxint). Anyway, it would
be possible to specify meaningless combinations of CombinedFragments and repetition
bounds, like Alternative CombinedFragment with explicit repetition bounds. To avoid
these meaningless constructs, informal constraints were defined that disallow specifying
repetition bounds in a different context than Loops. In the case of
ConsiderIgnoreFragment the additional information is actually located in the metaclass
that requires the information (i.e., ConsiderIgnoreFragment), for Loops, the information
is located in the InteractionConstraint instead. This seems to be inconsistent when
comparing Loop and ConsiderIgnoreFragment.

Our proposal treats Loops similar to ConsiderIgnoreFragment by introducing a
new subclass of CombinedFragment called LoopFragment (see Fig. 10). This allows
supplementing LoopFragment with the information required to specify the repetition
bounds of the loop. Furthermore, the metaclass InteractionConstraint becomes
obsolete, since the LoopFragment itself is now in charge of specifying the repetition
bounds. By doing so, the only need for InteractionConstraint has vanished.

Fig. 10. Improved metamodel for loop Combined Fragments

Further considerations regarding CombinedFragments led to the conviction that the
different kind of CombinedFragments, determined by the InteractionOperatorKind,
should be resolved into concrete subclasses consequently. The reason for this lies
in the too strong syntactical influence the InteractionOperatorKind impose on the
structure of CombinedFragments. Applying a different InteractionOperatorKind
to a CombinedFragment may enforce the removal of all but one InteractionOp-
erand. For example, a CombinedFragment with two InteractionOperands and
InteractionOperatorKind alt was defined and has been subsequently altered to opt, one of
the InteractionOperands would have to be removed from the CombinedFragment.
Therefore, we further refine the CombinedFragments metamodel in Fig. 11. Due to
page limitations the figure does not show all specialized CombinedFragments that would
ultimately result. The …Fragment metaclasses are placeholder for all remaining
CombinedFragments with one or multiple InteractionOperands.

418 M.-F. Wendland, M. Schneider, and Ø. Haugen

Fig. 11. Further refined CombinedFragment metamodel

5 Lessons Learned

The work presented led to two guidelines infor metamodel development activities.
The first one refers to avoiding implicitly related elements; the second one provides
an indicator when to use enumerations and when to use multiple metaclasses instead.

5.1 Avoid Implicitly Related Elements

This recommendation is accompanied by Einstein’s famous simplicity principle:
“Everything should be made as simple as possible, but not simpler.” The UML
Interactions metamodel counteracted this principle by simply reusing
ValueSpecifications for a Message’s arguments, instead of introducing a new
metaclass that should have actually established a unidirectional link to the signature
element. This gave rise to a situation where the list members of two semantically
related lists were just implicitly related with each other via their respective indices. A
new metaclass MessageArgumentSpecification, as we have suggested it, would have
made the relation explicit and, the metamodel itself more robust regarding changes
done by the user. The problem of implicitly related elements holds also true for other
parts of the UML metamodel, though. InvocationAction, for example, exhibits the
same issue as Messages in the relation of actual arguments and signature elements.

Our guideline for the creation of more robust metamodels is: Avoid implicitly
related elements. The assumed benefits of saving the metaclass that formalizes the
relation are paid off by increased efforts for future maintenance, comprehension and
metamodel processing.

5.2 Enumeration vs. Metaclass

A question that is still not sufficiently answered, at least to the knowledge of the
authors, is when to use enumerations and when to use several specialized metaclasses?
Doubtlessly, the underlying semantics will not be influenced either way. Enumerations
allow reducing the actual number of metaclasses in a metamodel. For example, every
NamedElement defines a visibility within the Namespace it is contained in. The
possible visibilities a NamedElement can declare are defined in the enumeration

 Evolution of the UML Interactions Metamodel 419

VisibilityKind as public, private, protected and package. Each subclass of
NamedElement inherits the visibility feature and its semantics, thus, the design of
visibility throughout the entire inheritance hierarchy of NamedElement was well
chosen. Specialized metaclasses instead (e.g., NamedElementPublic,
NamedElementPrivate etc.) would have resulted in an unnecessarily complex
metamodel.

So, using enumerations seems to be adequate and accurate if the EnumerationLiterals
merely affect the semantics of the metaclass they are referenced from. Furthermore,
enumerations can keep the inheritance hierarchy of the metaclass concise.

With respect to the CombinedFragment’s interactionOperator (and in few other
metaclasses in UML such as Pseudostate), the situation is different. The various
literals of InteractionOperatorKind do affect not only the semantics, but the
syntactical structure of CombinedFragments as well. In this case, changing the
enumeration may require changing the instance of the metaclass as well. The problem
of varying syntax due to enumerations is that the understanding of the metamodel
becomes unnecessarily complicated and its maintenance prone to errors. Even though
the solution we presented in Fig. 11 results in a larger number of similar metaclasses,
the metamodel becomes more comprehensible and the actual syntactical differences
of the specialized metaclasses become obvious.

Our guideline for metamodels regarding enumerations or specialized subclasses is:
If different literals of an Enumeration may turn the model into a syntactically ill-
formed model, one should use specialized metaclasses instead.

6 Conclusion and Outlook

In this paper, we have presented improvement suggestions for parts of the UML
Interactions metamodel regarding Message arguments and CombinedFragments. We
stressed that the current metamodel of Message arguments reveals some issues of
precise specification of actual arguments, usage of reference arguments as actual
arguments and assignment of actual arguments to data sinks accessible by the
receiving Lifeline. Whether these issues originate from the UML Interactions
metamodel or ought to be solved by general concepts of the UML metamodel is not in
scope of this paper. We assumed the view of a user of UML who is wondering that
actual argument handling is possible in UML Activities, but only inconveniently (if
ever) supported by Interactions. From that perspective, we suggested improvements
limited to the Interactions’ Message metamodel to overcome these issues. The
improved metamodel was the result of the development of a tool for test modeling,
called Fokus!MBT that relies on the UML Testing Profile and leverages UML
Interactions as test case behavior [20]. In the scope of Fokus!MBT, a minimalistic
profile was created that realizes the metamodel improvements we described with
stereotypes. So, the metamodel improvements have been applied to real situations and
are not just theoretical considerations.

Finally, we extracted two guidelines to metamodeling for more robust metamodels.

420 M.-F. Wendland, M. Schneider, and Ø. Haugen

The fact that UML Activities and Interactions do provide different approaches for
the very same logical concept gives rise to the considerations that these behavior
kinds should be more tightly integrated with each other in future. There is actually an
issue submitted for this2 need. We support that need, which would result in a more
concise and comprehensible metamodel for UML. As a result, it might turn out that
the issues discussed in the paper rather belong to the fundamental parts of the UML
metamodel. However, as long as Activities and Interactions are treated as separate
parts, the improvements we presented are most minimalistic, since they do not affect
any other part of the UML metamodel. An integration of both behavior kinds is not a
trivial task, though, and not in scope of this paper.

Acknowledgements. This work was partially funded by the EU FP 7 projects
REMICS (no. 257793) and MIDAS (no. 318786) and ARTEMIS project VARIES.

References

1. OMG UML: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, #formal/2011-08-06 (2011), http://www.omg.org/spec/UML/2.4.1/

2. Grabowski, J., Rudolph, E.: Message Sequence Chart (MSC) - A Survey of the new
CCITT Language for the Description of Traces within Communication Systems. CCITT
SDL Newsletter (16), 30–48 (1993)

3. OMG UTP: OMG UML Testing Profile (UTP), Version 1.2, #ptc/2012-09-13 (2012),
http://www.omg.org/spec/UTP

4. Baker, P., Dai, Z.R., Grabowski, J., Haugen, Ø., Schieferdecker, I., Williams, C.:
Model-driven testing – using the UML testing profile. Springer (2007)

5. Haugen, Ø.: Comparing UML 2.0 interactions and MSC-2000. In: Amyot, D., Williams,
A.W. (eds.) SAM 2004. LNCS, vol. 3319, pp. 65–79. Springer, Heidelberg (2005)

6. Haugen, Ø., Stølen, K.: STAIRS – steps to analyze interactions with refinement semantics.
In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 388–402.
Springer, Heidelberg (2003)

7. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why timed sequence diagrams require
three-event semantics. In: Leue, S., Systä, T.J. (eds.) Scenarios. LNCS, vol. 3466,
pp. 1–25. Springer, Heidelberg (2005)

8. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design with
sequence diagrams. Journal of Software and Systems Modeling, 349–458 (2005)

9. Runde, R.K., Haugen, Ø., Stølen, K.: Refining UML interactions with underspecification
and nondeterminism. Nordic Journal of Computing 12(2), 157–188 (2005)

10. Lund, M.S., Stølen, K.: A fully general operational semantics for UML 2.0 sequence
diagrams with potential and mandatory choice. In: Misra, J., Nipkow, T., Sekerinski, E.
(eds.) FM 2006. LNCS, vol. 4085, pp. 380–395. Springer, Heidelberg (2006)

11. Störrle, H.: Semantics of interactions in UML 2.0. In: Proceedings of IEEE Symposium on
Human Centric Computing Languages and Environments (2003)

12. Störrle, H.: Trace Semantics of UML 2.0 Interactions. Technical report, University of
Munich (2004)

2 http://www.omg.org/issues/uml2-rtf.open.html#Issue6441

 Evolution of the UML Interactions Metamodel 421

13. Knapp, A.: A Formal Semantics for UML Interactions. In: France, R.B. (ed.) UML 1999.
LNCS, vol. 1723, pp. 116–130. Springer, Heidelberg (1999)

14. Cengarle, M., Knapp, A.: UML 2.0 Interactions: Semantics and Refinement. In: Jürjens, J.,
Fernàndez, E.B., France, R., Rumpe, B. (eds.) 3rd Int. Workshop on Critical Systems
Development with UML (CSDUML 2004), pp. 85–99 (2004)

15. Li, M., Ruan, Y.: Approach to Formalizing UML Sequence Diagrams. In: Proc. 3rd
International Workshop on Intelligent Systems and Applications (ISA), pp. 28–29 (2011)

16. Shen, H., Virani, A., Niu, J.: Formalize UML 2 Sequence Diagrams. In: Proc. 11th IEEE
High Assurance Systems Engineering Symposium (HASE), pp. 437–440 (2008)

17. Störrle, H.: Assert, Negate and Refinement in UML-22 Interactions. In: Jürjens, J., Rumpe,
B., France, R., Fernandez, E.B. (eds.) Proc. Wsh. Critical Systems Development with
UML (CSDUML 2003), San Francisco (2003)

18. Harel, D., Maoz, S.: Assert and negate revisited: modal semantics for UML sequence
diagrams. In: Proc. International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (SCESM 2006) (2006)

19. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T. (ed.)
MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

20. Wendland, M.-F., Hoffmann, A., Schieferdecker, I.: Fokus!MBT – A Multi-Paradigmatic
Test Modeling Environment. To appear in Proceedings of: Academics Tooling with
Eclipse Workshop (ACME), In Conjunction with the Joint Conferences
ECMFA/ECSA/ECOOP, Montpellier, France (2013) ISBN 978-1-4503-2036-8

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 422–435, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Graph-Pattern Based Approach for Meta-Model
Specific Conflict Detection in a General-Purpose Model

Versioning System

Asha Rajbhoj and Sreedhar Reddy

Tata Consultancy Services
54B, Industrial Estate, Hadapsar

Pune, 411013 India
{asha.rajbhoj,sreedhar.reddy}@tcs.com

Abstract. Model driven engineering is the key paradigm in many large system
development efforts today. A good versioning system for models is essential for
change management and coordinated development of these systems. Support
for conflict detection and reconciliation is one of the key functionalities of a
versioning system. A large system uses a large number of different kinds of
models, each specifying a different aspect of the system. The notion of conflict
is relative to the semantics of a meta-model. Hence conflicts should be detected
and reported in a meta-model specific way. In this paper we discuss a general
purpose model versioning system that can work with models of any
meta-model, and a graph-pattern based approach for specifying conflicts in a
meta-model specific way. We also present an efficient algorithm that uses these
graph-patterns to detect conflicts at the right level of abstraction.

Keywords: Model driven engineering, Model versioning, Meta-model.

1 Introduction

Model driven engineering plays a central role in many large system development
efforts today. In these systems, models are used for specifying and controlling all the
aspects of a development life-cycle. In our own organization, over the past 17 years,
we have extensively used MDE to develop several large business critical applications
[1, 2]. We use a large number of different kinds of models, viz., UML, ER, BPMN,
GUI models, batch processing models, product-line models and so on. These
modeling requirements evolved over a period of time to keep pace with changing
business and technology needs. Our experience shows that this evolutionary trend is
likely to continue into the future as well. Therefore we provide a general purpose
modeling framework where meta-models are first class artifacts. We can define new
meta-models, extend exiting meta-models and integrate them as required. For
instance, each of the above mentioned models has its own meta-model. We integrate
these meta-models into one unified meta-model. The meta-models and their model
instances are stored in a model repository. The repository is designed for efficient
life-cycle management of large models by a large team of users. A repository with
hundreds of components and thousands of classes, supporting a team of 100+

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 423

members is a common scenario. One of our larger projects had a repository of around
a million objects, 22 million properties and around a million links.

Given the size and variety of models, and given the dynamics of a large team
where changes keep happening continuously, a robust model versioning system is an
absolute must for orderly change management. Conflict detection and reconciliation
(or diff and merge) is one of the key functions of change management. The notion of
conflict is relative to the semantics of a meta-model and depends on the usage
context. For instance, suppose we change the type of a parameter of an operation in a
class model. This has to be presented as a conflict in the right context – conflict in the
class definition at the outer level, conflict in the operation definition at the next level,
and then the specific change in parameter type. Just reporting the change in parameter
type does not provide the right context. Conflicts have to be detected and reported in a
manner that is intuitive to the modeler so as to reduce the chances of reconciliation
errors. Different users may be interested in different modeling contexts. For instance,
a data modeler may only be interested in conflicts that occur in the data models, and
not, say conflicts that occur in the screen definitions of a GUI model. Hence it should
be possible to specify multiple, stakeholder specific, conflict contexts or views on the
underlying model. We provide meta-model graph patterns as a means to specify such
conflict contexts. A graph pattern specifies a hierarchically structured view on a
subset of the meta-model that is relevant to a given context.

Scale-up is another important concern in a repository that supports large models. In
order to scale up, the time it takes to perform various life-cycle operations such as
export, check-in, check-out, diff, merge, etc must be proportional to the size of the
change between successive operations and not vary much with the absolute size of the
model. Similarly the time for conflict detection must also be proportional to the size
of the change. This is trivial when conflicts are to be detected and reported at the level
of atomic operations; we only have to process the contents of change logs. However,
to construct context specific conflict reports we have to go beyond the change logs;
we have to consult the base model as well. We present an algorithm that computes
context specific conflict reports efficiently, starting from primitive operations
recorded in the change log.

The rest of the paper is organized as follows. Section 2 gives an overview of our
modeling framework. Section 3 presents our versioning model. Section 4 presents our
delta model, the model we use for recording changes. Section 5 presents our diff and
merge approach, the graph pattern model for specifying conflict contexts and the diff
algorithm to detect conflicts using these graph patterns. Section 6 discusses related
work. Section 7 concludes with discussion and results.

2 Modeling Framework

An information system can be seen as a collection of parts and their relationships.
A model of an information system is a description of these parts and relationships in
a language such as UML. The modeling language itself can be described as a model
in another language. The latter language is the meta-model for the former as shown
in Fig 1.

424 A. Rajbhoj and S. Reddy

Fig. 1. Modeling layers

We use a reflexive modeling language [2] that is compatible with OMG MOF [8] to
define models at all levels. A model at each level is an instance of the model at the
previous level. The model at level 1, the meta meta-model, is an instance of itself. The
meta meta-model shown in Fig. 2 is the base model. It is the schema for describing meta-
models. The meta meta-model is capable of describing itself, i.e., it can model itself.

Fig. 2. Reflexive Meta Meta-model

Everything in a model is an object. An object is described by its class. A class is
specified in terms of a set of attributes and associations. An object is an instance of a
class that has attribute values and links to other objects as specified by its class. Since
everything is an object, a class is also an object that is specified by another class
called metaclass. In Fig. 2, the class class is a metaclass which is an instance of itself.
A meta model specification consists of: a model schema which is an instance of the
meta meta-model, a diagramming notation to edit its instance models, and a set of
constraints and rules to specify consistency and completeness checks on its instance
models. We provide a reflexive modeling language aware generic model editor for
creating models as well as their meta-models. We use OCL [16] to specify well-
formed-ness constraints over models. Cardinality and optionality constraints are
supported by the reflexive model itself. We provide a diagram definition workbench
to define visual notations and map them onto meta-model elements. Having a

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 425

meta-modeling framework enabled us to extend modeling languages as per need. We
use an industrial-strength relational database as a storage mechanism for managing
large scale models. Storage schema reflects the structure of models.

3 Versioning Model

Fig. 3 presents our versioning model. The model repository contains a set of
configuration items. A configuration item has a number of configuration item
versions. A configuration item version is the container of model objects. A
configuration item version can have one or more versions derived from it (as
indicated by the next association), and a configuration item version may be derived
from one or more previous versions. A configuration item version may be composed
of other configuration item versions. A configuration item version may have dangling
links, i.e. association links with one end missing. The dangling ends are automatically
bound to the missing objects (based on object IDs) when two configuration item
versions that contain the required objects are placed together in a container
configuration item version. A configuration is a special configuration item whose
versions must always be complete, i.e. they should not have any dangling links
pointing to objects outside their boundaries. Configurations are used for modeling
deliverables that must be complete in all respects.

Fig. 3. Meta-model of Versioning

4 Delta Model

A model version may exist in one of two states: materialized state or delta state. A
materialized version stores a fully materialized model, whereas a delta version only
records changes with respect to its parent version. We use the model shown in Fig. 4
for recording changes. Please note that even a materialized version has an associated
delta model, which serves as a record of all the changes in that version with respect to
its parent. The change logs can be exploited to implement life-cycle operations such
as model export, code generation, etc, more efficiently.

426 A. Rajbhoj and S. Reddy

Fig. 4. Delta Model

Referring to the model in Fig. 4, a Delta is a record of a single change in the
model. It has a timestamp property that records the time of the change and an opCode
property that records the operation causing the change, which is one of
ADD/MODIFY/DELETE. ObjectDelta records changes to objects; PropDelta records
changes to properties; and AssocDelta records changes to associations. ObjectDelta
has an association to Object to identify the object that has changed; it also stores the
ID (UUID) of the object. PropDelta has an association to Property to identify the
property that has changed, and records two values – new and old (if any).
AssociationDelta identifies the association that has changed, and has two links to
ObjectDelta to identify the two end objects. An AssociationDelta is owned by the
owner (navigable) end of the Association. When a property or an association changes,
its owner object is also recorded as modified. The associations between ObjectDelta,
PropDelta and AssocDelta mirror the associations between Class, Property and
Association in the meta meta-model, and thus record the same structure. From the
delta model one can retrieve all the changes that have occurred. Delta model is used
for various purposes like tracking changes, optimizing storage for model versioning,
model comparison, model validation, model based code generation, etc.

4.1 Delta Optimizations

Objects, property values and association links can undergo changes multiple times. As
a result there could be multiple deltas recorded for the same object. For example
within a single version the value of a property may be modified multiple times or an
object may be created and then deleted. A delta compaction operation removes such
redundant operations. Table 1 gives the compaction rules which are self-explanatory.

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 427

Table 1. Compaction rules

5 Diff-Merge

In a large team, development is usually carried out concurrently by different sub
teams. For example, a development team needs to work on a new release while
continuing to fix bugs in an older released version. This necessitates branch version
creation and reconcilation on a frequent basis. A large system uses a large number of
different kinds of models, each specifying a different aspect of the system. The notion
of conflict is relative to the semantics of a meta-model. Hence conflicts need to be
detected and reported in a meta-model specific way. Typically such reconcilation
needs to be carried out in a step by step manner by different groups that are
responsible for different aspects, e.g. database group doing data model reconciliation,
GUI team doing GUI model reconciliation and so on. Thus the process of conflict
detection and reconciliation is not only meta-model specific but also usage context
specific. For example when one compares class models of two UML models, one
wants to see the conflicts in a structured manner. One wants to know which classes
are in conflict, and within each of those classes which attributes are in conflict, which
operations are in conflict and so on. This is the structure in which one wants to view
the conflict even when the change is only minor, say type change in a parameter of an
operation in a class. Same observation holds for other aspects of the system as well
such as screens in a GUI model, tables in a database model, and so on. Experience
shows that if the change is not presented as a conflict at the right level, in the right
context, the scope for making mistakes in reconciliation increases significantly,
especially in a large team comprising of heterogeneous groups working on different
aspects. To address this need we use meta-model graph patterns to specify contexts of
interest. These patterns can then guide how conflicts should be detected and presented
in a structured manner.

5.1 Pattern Model

We define a model pattern as a graph of object nodes, their properties and
associations. Pattern provides a means to specify conflict contexts. It is specified in
terms of a meta-model, as shown in Fig. 5. A pattern node maps to a meta-model

428 A. Rajbhoj and S. Reddy

class; properties of interest are specified by a set of property items (PProp in the
figure) that map to the corresponding meta-model properties; a pattern edge maps to a
meta-model association. A pattern has a root node (i.e., number of ‘in’ edges = 0).
A pattern is essentially a connected, directed acyclic sub graph of a meta-model
graph. Given a model that conforms to the meta-model, a pattern selects a set of
matching sub graphs of the model. Thus a pattern can also be seen as specifying a
view over the model.

Fig. 5. Pattern Model

Let’s take UML model as an example. Suppose in a specific context we are only
interested in classes and their operations. A pattern such as the one shown in Fig. 6
can be specified.

Fig. 6. Class Pattern

Similarly we can use patterns to specify other contexts that are of interest to
different stakeholders.

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 429

5.2 Diff Algorithm

There are stages in the life cycle of a project such as during testing and bug fixing
where many small changes are made by different teams and these have to be
reconciled quickly. At the same time, conflicts should be presented in a structured
context, as we discussed earlier, to minimize the reconciliation errors. The following
are therefore the issues the diff algorithm needs to address:

• Diff performance should be proportional to the size of the delta model and not
be affected by the size of the base model. Base models can be quite large.
Delta models in comparison are quite small.

• Diff should be constructed as per the context specified by the pattern graph.
This means only those changes recorded in the delta models are relevant that
match the types specified in the pattern graph. Also, of these matching changes
only those changes are relevant that can form valid paths from the root of the
pattern graph. For example, with respect to the pattern given in Fig 6, suppose
the name of a Type object changes. This change is only relevant to the pattern
if it happens to be the type of an attribute or operation parameter of some class
in the model.

The algorithm uses the following strategies to address these issues:

• Delta-driven, bottom-up computation: The algorithm uses post-order traversal
on the pattern graph to compute differences bottom-up, starting from changes
recorded in the delta model. At each node, it computes all the differences
corresponding to that node as recorded in the source and target delta models.
Difference computations of objects that do not have the specified association
path to an object of a parent node are dropped. Existence of parent object and
the corresponding association are first checked in the delta model and then in
the base model. This ensures two things: 1) only those parts of the base model
are accessed that have paths from changes recorded in the delta model, and 2)
changes not relevant to the context are excluded from the computation.

• Symmetric, two-way diff: In bottom-up diff, we complete all diffs at a node
before moving to the next node up in the hierarchy. As we do this, we need to
drop objects that have no path to the parent node in the graph. But this should
be done only when an object has no path in both source and target delta
models. To ensure this, at each node, we compute diff by scanning both source
and target delta models. Objects on the two sides are correlated by UUIDs
stored in object deltas. The output of the algorithm is a diff model as shown in
Fig. 7. Diff model is essentially a pair of correlated hierarchical structures. For
every DiffObject node in the source hierarchy there is a corresponding
DiffObject node in the target hierarchy and vice versa. Similarly for every
edge in the source hierarchy there is a corresponding edge in the target
hierarchy and vice versa. The diff model is built up bottom-up as we traverse
the pattern graph bottom-up. For the pattern shown in Fig. 6, diff is computed
for Type, Property, Parameter, Operation and Class in that order. As shown in
Fig. 8, change in type name from BankUser to Bank_User is propagated to
parameter p_user then to the operation getAccount and finally to the root class
Account.

430 A. Rajbhoj and S. Reddy

Fig. 7. Diff Model

The algorithm is presented in more detail below. The algorithm assumes the diff is
being computed between two branch versions whose parent version is available in a
materialized form (called base model in the algorithm). It can be easily extended to
the case where the parent model also exists only in the delta form.

Algorithm ComputeDiff
Input: Model baseModel, Pattern P, DeltaModel deltaSrc, DeltaModel deltaTgt

Output: DiffModel diffSrc, DiffModel diffTgt

Begin

Initialise diffSrc, diffTgt //These store computed diff tree.

 PNode rNode = root of pattern P;

 DoDiff(rNode, baseModel, deltaSrc, deltaTgt, diffSrc, diffTgt)

 Display diffSrc, diffTgt

End

Algorithm DoDiff
Input: PNode rNode, Model baseModel, DeltaModel deltaSrc, DeltaModel deltaTgt,

 DiffModel diffSrc, DiffModel diffTgt

Begin

 // Step 1: Recursively invoke DoDiff to compute differences bottom up, in a post-order traversal.

 For each cNode ∈ rNode.child

 Do

 DoDiff(cNode, baseModel, deltaSrc, deltaTgt, diffSrc, diffTgt)

 Done

 // Step 2: Find all differences at this level, i.e. at the level of rNode in the pattern graph. This

 // involves finding differences w.r.t. ADD/DELETE of objects of the given type as well as their

 // property value differences. These need to be computed from source as well as target deltas. Note

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 431

 // that differences with respect to associated child node hierarchies would already have been

 // completed by the time we reach here.

 For each deltaObject in source delta whose type matches the type of rNode

 Do
a) Get the corresponding delta object, if any, from the target delta model using matching

object ID.
b) If both delta objects record DELETE operations, continue with the next object.
c) Otherwise create corresponding DiffObject nodes in source and target diff models and

link them up.
d) If source delta records an ADD operation, then mark the corresponding target diff

model object DUMMY.
e) Do property value diff on the corresponding objects in source and target w.r.t base

model object (if any) and record these differences in DiffSlot elements in the diff
models. Properties of type blob are treated as different if their binaries are different.

 Done

 For each deltaObject in target delta whose type matches the type of rNode

 Do

 // Do steps (a) to (e) above, but with respect to the target delta

 Done

 // Step 3: Filter out all those diff tree nodes at this level that do not have a path to the parent node in

 // the pattern graph. Such nodes do not belong to the context under consideration. For those nodes

 // that do have a path to the parent, record the corresponding association path in the diff model via

 // DiffLink elements.

 If (rNode is the root, i.e. does not have a parent in the pattern graph) then return;

 For each diffObject that belongs to the source diff model whose type matches the type of rNode

 Do
a) Check if the corresponding model object has an associated parent object as specified by

the edge to the parent node in the pattern graph. Parent object and association may
exist fully in the delta model, partly in the delta model (association in delta, object in
base) or fully in the base model. If they do not exist in the source delta model, check if
they exist in the target delta model. It is sufficient that they exist at least in one of
the models; they need not exist in both.

b) If there is no path to the parent, then purge the diff tree rooted at the diffObject. Purge
also the diff tree rooted at the corresponding linked diffObject in the target diff model.

c) Else, create requisite parent diffObject, DiffLink elements and link them to the child
diffObject. Do this in both source and target diff models and create corresponding links.

 Done

End

Fig. 8 shows a graphical rendering of a sample diff model computed by the
algorithm. Left hand side shows the source hierarchy and the right hand side shows
the corresponding target hierarchy. Name change is directly shown in display,

432 A. Rajbhoj and S. Reddy

whereas other property changes are indicated by a property change icon placed before
the object. On selection of the object, property differences are shown in the properties
pane at the bottom. Blob properties differences can be seen by using appropriate
editor. Association order change is indicated by a suitable icon, on selection of which
the source and target object order lists are shown in the bottom pane. Dummy nodes
are inserted where appropriate to make up for missing nodes. For example, when a
new object is created in the source version but not in the target, the algorithm inserts a
dummy node at the corresponding place in the target hierarchy. The diff display only
shows changed parts in this hierarchical context. The structure can be folded or
unfolded as required, and merge can be performed at an appropriate level.

Fig. 8. Diff display

5.3 Merge Operation

Merge operation is guided by the diff model. It involves selecting diff nodes from the
source or target hierarchy and performing operations such as ‘copy’ or ‘delete’ on
those nodes until the diff model becomes completely empty. A copy operation is
performed when we want to overwrite the contents of one side by the contents of the
other. The operation copies properties and associations from one workspace to the
other. When the copy is performed at an aggregate node, the operation is performed
recursively down the sub tree in a bottom-up manner. A ‘delete’ operation is allowed
on a node only when the corresponding node on the other side is a dummy. As the
merge operation proceeds and the nodes are reconciled, the diff model is
automatically kept consistent by propagating the reconciliation information to other
dependent parts of the diff model, without having to re-compute the diff.

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 433

6 Related Work

Modeling tools such as Enterprise Architect [15], Rational Software Architect [3] and
so on relied traditionally on file-based version control systems to provide model
versioning. While file based version control systems are mature, their notion of
change is limited to text lines. A text line does not always map to a meaningful
modeling unit, at the right level of abstraction. To compute context specific conflicts
of the kind we are discussing, these files have to be first loaded into modeling
workspaces and the models completely reconstructed. This obviously does not scale
well for large sized models.

More recently, several new approaches have been reported that support versioning
directly in the model repository. Many of these are meant for specific meta-models
such as UML. For example Odyssey-VCS [5] support versioning of UML models.
Some of them are more generic. They can support versioning on models of any meta-
model. For example EMFStore [6] can support versioning on any EMF based model.
However none of these approaches, to the best of our knowledge, supports the notion
of conflict contexts as first class artifacts in the versioning system. Also in our tests
we discovered that EMFStore does not scale well for large models -- the size of the
model it can support seems to be limited by the amount of memory available.
EMFCompare [14] can display comparison results in a meta-model specific way, as
per the composition hierarchy specified in the meta-model. But this only provides one
static view on the conflicts. There is no support for multiple context specific views.
For example when an operation signature changes, the change is relevant not only in
the context of a class, but also in the context of a screen definition (in the GUI model)
that maps its fields to the operation parameters. Also in our tests we discovered that
the diff performance of EMFCompare deteriorates with the model size – it seems to
depend on the base model size rather than the delta size.

7 Discussion and Results

The proposed model versioning approach and the diff and merge algorithm have been
extensively used within our organization over 5 years in several large projects. The
approach has significantly reduced the cycle times for change management, especially
during time-critical life-cycle stages such as acceptance testing. The pattern-based,
context sensitive diff and merge approach has significantly reduced change
reconciliation errors compared with our earlier context-agnostic diff and merge
approach. The new delta driven diff and merge algorithm has also contributed
significantly to the reduction in turn-around times.

We share some results collected from one of our larger repositories with a model
size of around 1 million objects, 22 million slots and 1 million links. Table 2 shows
performance results for components of various sizes but with a fixed delta size. It can
be seen that the performance of check-out and diff operations hardly varies with the
base model size. Check-in operation time slightly increases with increase in base
model size. This is due to additional model validations carried out on the model
before checking in.

434 A. Rajbhoj and S. Reddy

Table 2. Performance results

Table 3 show the results for different sizes of delta, keeping the base model size
constant for one of the largest components in this repository having 23395 objects,
370233 slots and 176426 links. It is observed that check-in, check-out and diff times
grow linearly with delta size. Combining the results from tables 2 and 3, we can see
that the time taken for these operations depends only the delta size and remains
largely independent of the base model size.

Table 3. Performance results with delta sizes

For the sake of comparison we tried creating models of similar size using EMF and
version them using EMFStore [6]. However we could not proceed beyond a model
file size of about 13 MB having around 0.4 millon objects. Hence we could not
compare results with similar model sizes with EMFStore. AMOR has shared results in
[12]. Its is clear from the results that its execution time grows significantly with
increasing model size.

References

1. Kulkarni, V., Venkatesh, R., Reddy, S.: Generating Enterprise Applications from Models.
In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 270–279.
Springer, Heidelberg (2002)

 A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection 435

2. Kulkarni, V., Reddy, S., Rajbhoj, A.: Scaling Up Model Driven Engineering – Experience
and Lessons Learnt. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part II. LNCS, vol. 6395, pp. 331–345. Springer, Heidelberg (2010)

3. Letkeman, K.: Comparing and merging UML models in IBM Rational Software Architect:
Part 3—a deeper understanding of model merging. Technical report, IBM Rational (2005)

4. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. Int.
J.Web Inf. Syst. 5(3), 271–304 (2009)

5. Murta, L., Corrêa, C., Prudêncio, J.G., Werner, C.: Towards Odyssey-VCS 2:
improvements over a UML-based version control system. In: Proceedings of the 2nd
International Workshop on Comparison and Versioning of Software Models at ICSE 2008,
pp. 25–30. ACM, New York (2008)

6. Kögel, M., Helming, J.: EMFStore: a model repository for EMF models. In: Proceedings
of the 32nd International Conference on Software Engineering (ICSE 2010), vol. 2,
pp. 307–308. ACM, New York (2010)

7. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., Seidl, M.,
Wimmer, M.: AMOR– towards adaptable model versioning. In: 1st International
Workshop on Model Co-Evolution and Consistency Management, In Conjunction with
MODELS 2008 (2008)

8. Model Object Facility, http://www.omg.org/spec/MOF/2.0
9. Unified Modeling Language, http://www.omg.org/spec/UML/2.2/

10. Eclipse. Eclipse Modeling Framework, http://www.eclipse.org/emf
11. Helming, J., Koegel, M.: UNICASE, http://unicase.org
12. http://code.google.com/a/eclipselabs.org/p/

model-versioning-benchmarks/wiki/PerformanceResultsofAMOR
13. OMG (2010): BPMN 2.0, OMG document - dtc/10-06-04., http://www.bpmn.org
14. EMF Compare, http://www.eclipse.org/emf/compare/
15. Enterprise Architect from sparx systems, http://www.sparxsystems.com/
16. Object Constraint Language, http://www.omg.org/spec/OCL/2.2

On the Complex Nature of MDE Evolution

Regina Hebig1, Holger Giese1, Florian Stallmann2, and Andreas Seibel1

1 Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany

{forename.surname}@hpi.uni-potsdam.de
2 SAP AG, Hasso-Plattner-Ring 7, D-69190 Walldorf, Germany

florian.stallmann@sap.com

Abstract. In Model-Driven Engineering (MDE) the employed setting of
languages as well as automated and manual activities has major impact
on productivity. Furthermore, such settings for MDE evolve over time.
However, currently only the evolution of (modeling) languages, tools, and
transformations is studied in research. It is not clear whether these are
the only relevant changes that characterize MDE evolution in practice.
In this paper we address this lack of knowledge. We first discuss possible
changes and then report on a first study that demonstrates that these
forms of evolution can be commonly observed in practice. To investigate
the complex nature of MDE evolution in more depth, we captured the
evolution of three MDE settings from practice and derive eight observa-
tions concerning reasons for MDE evolution. Based on the observations
we then identify open research challenge concerning MDE evolution.

1 Introduction

Model-driven engineering (MDE) is used in many domains for software develop-
ment today to improve productivity, quality, and time-to-market by using (mod-
eling) languages and automated development activities, such as code generation
or model transformations. Besides these automated activities also manual activ-
ities play a major role. This is captured by the notion of an MDE setting that
refers to the manual and automated activities that are employed during devel-
opment, the set of artifacts that are consumed or produced by these activities,
the set of languages used to describe the artifacts, as well as the set of tools that
allow editing used languages or implement automated activities. The artifacts
that are consumed and produced lead to implicit constraints on the order of the
different activities. In Model-Driven Engineering (MDE) the employed setting
has major impact on productivity (e.g., on changeability [13]).

Similarly to software, MDE settings evolve over time as well. Currently only
the evolution of (modeling) languages, tools, and transformations is studied in
research (e.g., [12,28,2,36,15,22], or [34]). However, it is not clear whether these
are the only relevant changes that characterize MDE evolution in practice. There
is also no detailed knowledge about motivations for MDE evolution in practice.

In this paper we address this lack of knowledge. We first discuss the possi-
ble changes that can occur in MDE settings. Then, we report on a first study

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 436–453, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Complex Nature of MDE Evolution 437

that demonstrates that not only forms discussed in literature but all discussed
forms can be commonly observed in practice. To investigate the complex nature
of MDE evolution in more depth, we captured the evolution of additional three
MDE settings from practice over a longer period of time and derive eight obser-
vations concerning the reasons for MDE evolution. For example, whole sequences
of changes are driven by trade-offs between issues such as productivity, cost of
ownership, and complexity. Based on a review of the state-of-the-art and the
observations we identify open research challenge concerning MDE evolution.

The paper is organized as follows: We first discuss change types that may occur
in an evolution step (Section 2). Then, we use two independent data sources
(a number of industrial case studies and reports from literature) in Section 3
to reveal that all theoretically possible change types can be observed rather
commonly. In Section 4, we report on three more detailed case studies addressing
the evolution over a longer period and the resulting observations on the nature
of MDE evolution. Finally, we provide an overview on what change types are
supported by approaches in the literature (Section 5) and discuss the implications
of our findings for research and practice.

2 Possible Change Types

Following we identify possible types of changes for MDE settings and discuss
impacts that can be caused by these change types.

Change Types. When considering possible change types, all aspects of an
MDE setting need to be taken into account. The involved technical assets are
implementations of automated activities and the used (modeling) languages (in-
cluding supporting tools). Both can be exchanged without affecting the order
of activities or the number of elements. Therefore, we call these changes non-
structural. We refer to exchange or evolution of an automated activity (e.g., any
model operation or code generation) as change type C1 and to exchange or evo-
lution of a used language as change type C2 . Further, changes can affect the
number of elements in an MDE setting. Possible changes concern the number of
artifacts (referred to as C3), the number of languages (referred to as C4), the
number of manual activities (referred to as C5), the number of automated activ-
ities (referred to as C7), as well as the number of tools (referred to as C6). The
latter two changes might occur independently, since tools can support multiple
automated or manual activities. Each change in the number of automated (C7)
or manual activities (C5) leads to a change in the order of activities. Thereby,
we call the relative positioning of automated activities within (and behind) the
manual activities order of manual and automated activities. Only some changes
in the number of manual or automated activities also change this order of manual
and automated activities (e.g., an automated activity might be introduced be-
tween two manual activities). Therefore, we refer to this special case as change
type C8 . We call changes that affect the order of activities or the number of
elements in an MDE setting (C3 -C8) structural changes.

438 R. Hebig et al.

Discussion of Impact. Changing an MDE setting leads to changes for devel-
opers and a company. This can affect the degree of automation of development,
the complexity of work, and the changeability and maintainability of the soft-
ware under construction (i.e., the software that is built with an MDE setting).
Further, the effort for integration and maintenance of consistency when working
with different tools is affected. Finally, tools and automated activities that are
used need to be maintained and, therefore, affect the cost of ownership for a com-
pany. Since these aspects imply potentials and risks for the productivity, we call
them productivity dimensions in the following. Changes in an automated activ-
ity (C1) and changes in the number of automated activities (C7) can affect the
degree of automation. Changing a used (modeling) language (C2) or the number
of used languages (C4) can have benefits concerning the degree of abstraction,
but yields the risk that the developers lack the know how to use that language
(affecting the complexity of the MDE setting) [3]. Similarly, a growing number
of models (C3), necessary manual activities (C5), or tools (C6) increases com-
plexity for developers. In addition, a change in the number of models affects the
need to maintain the consistency of different models [17]. Further, new tools can
lead to additional activities to move artifacts between them (increasing the in-
tegration effort). As tools and implementations of automated activities have to
be maintained, changes in either number of tools C6 or automated activities C7
can affect the cost of ownership. Finally, a main risk results from the addition of
automated or manual activities if this leads to a change of the order of manual
and automated activities (C5 , C7 , and C8). This can introduce constellations
where automatically created artifacts are touched manually (which imply risks
for changeability and maintainability).

To summarize, the main risks and potentials for non-structural changes con-
cern the degree of automation and the complexity of the MDE settings. In con-
trast, structural changes imply some important additional risk and potentials,
such as changes in the effort required to maintain consistency of all required
artifacts or changes in the cost of ownership. Further, structural changes can
have stronger effects on the different domains of productivity than non-structural
changes. For example, increasing the number of used languages (C4) has a worse
impact on the required know how than just applying changes to a used language
(C2) in most cases. Finally, there is a group of structural changes (C5 , C7 , and
C8) that can affect the changeability and maintainability of the software under
construction. This group of changes has the potential to introduce or elimi-
nate risky constellations from MDE settings. Therefore, we call these structural
changes substantial structural changes in the following.

Structural Evolution. We distinguish between the terms change, evolution
step, and evolution. A change is a local modification of a MDE setting, an evo-
lution step combines all changes leading from an MDE setting to a next one,
and evolution describes how an MDE setting evolves over time due to evolu-
tion steps. We call an evolution step a structural evolution step, if the set of
changes contains at least one structural change. Similarly, we call an evolution
step substantial structural evolution step if the set of changes contains at least

On the Complex Nature of MDE Evolution 439

one substantial structural change. We call an evolution that contains a least one
(substantial) structural evolution step (substantial) structural evolution.

3 Existence and Relevance of Structural Evolution

We have discussed and categorized the possible changes to MDE settings above.
However, there is currently little knowledge whether the structural changes
actually occur in practice. We formulate the following hypotheses:

Hexistence: Structural and substantial structural evolution occurs in practice.
Hcommon: Structural and substantial structural evolution is common in practice.

3.1 Data Collection and Analysis

To evaluate the hypotheses, data about evolution in practice is required. How-
ever, such data is rare. For making justifiable and generalizable statements we
use the concept of triangulation (as described in [32]) and combine the data from
two independent sources, each with its own advantages and disadvantages. As
the first data source, we use data records from an exploratory and descriptive
field study that we performed with the focus on capturing the structure of MDE
settings in practice. The observed cases were not chosen with the topic of evolu-
tion in mind, which reduces the selection bias. However, the disadvantage of this
first data set is that all case studies stem from a single company and that all
data was collected by our team only. As the second data source, we use reports
about MDE in practice that can be found in literature. Although a selection
bias cannot be excluded for literature studies, the advantage of this data source
is that it provides us with a broader spectrum of companies and domains and
that the reports are captured by different research teams. Thus, the second data
source does not suffer from the problems of the first data source and vice versa.

SAP Case Studies. We performed an exploratory and descriptive field study
([4]) in cooperation with SAP AG. The focus of the study was to learn about the
characteristics of MDE in practice. The choice of the six captured case studies
was made by our contact persons within the company. We used semi-structured
interviews. In contrast to questionnaires, interviews have the advantage that
misunderstandings can be better identified and compensated ([30]). This allowed
us to combine the collection of complex MDE settings with more open questions
about the motivations and reasons for the use of MDE techniques.

For each case study, we performed two telephone interviews, which lasted
between 30 and 60 minutes each. The interviewees were developers that partici-
pated in the creation of tools for the MDE setting or used it. Between the initial
and the final interview, we performed several rounds of feedback to ensure cor-
rectness of the captured data. More details about this field study can be found
in [14]. As result we gained a descriptive model of each MDE setting as well as
records from the more exploratory parts of the interviews.

440 R. Hebig et al.

We systematically went through these records, searching for hints or more
concrete information on evolution. Where possible, we assigned concrete change
types to these hints or rated them as structural or non-structural.

Literature Reports. As a second data source we performed a small meta
study. We systematically searched through the proceedings of the MODELS
conference from 2007 to 2011 and ECMFA, respectively ECMDA-FA conferences
from 2007 to 2012, the proceedings of the Workshop on Models and Evolution
ME, as well as its predecessors MCCM (Workshop on Model Co-Evolution and
Consistency Management) and MoDSE (Workshop on Model-Driven Software
Evolution) from 2007 to 2011, the proceedings of the OOPSLA Workshops on
Domain-Specific Modeling from 2007 to 2011, as well as the Software and Sys-
tems Modeling journal (SoSyM) from 2007 to 2012, including papers published
online first until end of July 2012. In addition, we performed online key word
search and followed references in reviewed papers. In particular we used the ACM
digital library for keyword search in the proceedings of the ICSE conference.

We searched for reports on the application of model-driven techniques or
domain-specific modeling languages in practice. Note that we focused on no-
purchase tool chains. We identified thirteen reports that describe MDE intro-
duction or usage ([27,10,35,23,8,31,1,33,19,3] and three case studies in [16]). We
filtered the reports to ensure that the captured period of time that is long enough
to be able to observe evolution. Thus, reports that focus only on the initial in-
troduction of MDE or on settings that were used for a single project only, were
not suitable. Therefore, we excluded five reports ([35,23,8,31,1] as well as the
telecom case study in [16], where the described example was only used during
one project). Finally, we chose seven reports ([27,10,33,19,3], as well as the case
studies of the printer company (CsP) and the car company (CsC) [16]), which
stem from different domains, such as the telecommunication industry, financial
organizations, and development of control systems.

Again, we systematically went through the reports and annotated hints or
concrete information about evolution with change types where possible.

3.2 Threats to Validity

The two data sources provide us with information about only 13 MDE settings.
Of course a bigger number of cases would allow making more accurate state-
ments how often structural changes occur in practice. However, the fact that we
use data from two different data source helps to minimize selection bias as well
as biases due to corporate culture. Thus, although larger scaled empirical stud-
ies may help obtain more accurate information in future, the data is sufficient
to answer the question whether structural changes are sufficiently common in
practice to be a relevant object for further research.

Due to the character of the data sources, the information about change types
that occurred is not necessarily complete. It is thus likely that we even underes-
timate the number of occurrences of structural evolution in practice.

On the Complex Nature of MDE Evolution 441

Finally, it is questionable whether the results can be generalized for all do-
mains of software engineering. Without having data about multiple MDE set-
tings for each domain, it is not possible to say whether differences are specific
to the setting or to the whole domain. However, due to the data from litera-
ture reports, which stem from different domains, it is possible to conclude that
structural evolution is not a phenomenon that is specific to a single domain.

3.3 Data

Following, an overview about the changes identified for MDE settings from the
SAP case studies and the literature reports is given (summarized in Table 1).

SAP Case Studies. For the case study Cs6, we found no hints about evolution
in the records. For the case studies Cs1, Cs2, and Cs5, we found hints on evolu-
tion in the records. Such hints are often short descriptions of the improvements
reached by the introduction of the current setting. For example, we recorded
the statement that the development functionality now provided by one tool was
split between several tools before in case study Cs2. We can thus conclude that
the number of tools changed (C6).

For the case studies Cs3 and Cs4, we have more precise information. On the
one hand, we further investigated the evolution history of the case study Cs3
later on. It is included in detail in this paper (see Section 4.4). On the other
hand, our records for case study Cs4 included a more detailed description of

Table 1. Identified change types (◦ = hints on changes; • = documented changes)

SAP Case Studies Meta-Study
Cs1 Cs2 Cs3 Cs4 Cs5 Cs6 [33] [19] [10] [27] [3] CsP

[16]
CsC
[16]

Changes in general ◦ ◦ • • ◦ ◦ • • • • ◦ •
Non-Structural Changes • • • • • •
[C1]exchange automated

activity
• • • • •

[C2]exchange language • • • • •
Structural Changes ◦ ◦ • • ◦ ◦ • • • •
[C3]change number of arti-

facts
• ◦ • • •

[C4]change number of lan-
guages

• ◦ • • •

[C5]change number of man-
ual activities

• • ◦ • •

[C6]change number of tools ◦ ◦ • ◦ ◦ • • •
[C7]change number of auto-

mated activities
◦ ◦ • • ◦ ◦ • • • •

[C8]change order of manual
/ automated activities

◦ • • • •

442 R. Hebig et al.

a former version of this MDE setting. Therefore, we can use the difference to
this former version to derive information about the evolution that happened. In
these two cases, we also have information about non-structural evolution.

Literature Reports. In [33], the adoption of MDE in a financial organization
is reported. The report ends with a note that better integration of different tools
(C6) and more automation of the construction phase (C7) are planned in future.

In [19], a tool vendor reports how the language FBL together with its en-
gineering environment changed. Starting with an editor and a code generator,
they later introduced the tool function test to enable developers to debug FBL
(C6). Thereby, the introduction of automated verification or debugging opera-
tions changes the order of manual and automated tasks. As result manual pro-
gramming is followed by automated debugging and further manual correction
before the automated generation is applied (C7 ,C8). Further they report on,
the introduction of templates to allow programming on a higher level of abstrac-
tion. Thus, language (templates instead of FBL) and generation implementation
(transformation plus generation) changed (C1 ,C2).

Fleurey et al. present a process for the migration of systems to new platforms
in [10]. To apply the process it is proposed to substitute the used transformations
to fit the current use case. In addition, they describe how they actually did adapt
the process to apply it for the migration of a banking application. Interestingly,
the changes actually applied differ strongly from the proposed changes. In this
special case, it was necessary that the resulting system conforms to the develop-
ment standards of the customer. Thus, it was not sufficient to produce code, but
to provide corresponding models that were synchronized with the code, such that
round-trip engineering on the migrated system was possible. Therefore, they re-
placed the code generation with an automated UML extraction. They integrated
the Rational Rose code generator used by the customer to generate code skele-
tons out of the models (C6). Further, they added a generation to migrate the
remaining code from the platform-independent model (extracted from the orig-
inal code) into the code skeletons (C1 , C2 , C3 ,C4). Conforming to the round
trip engineering, some manual migration tasks have to be applied to the mod-
els (C5). The corresponding reapplication of the Rational Rose code generation
adds an additional automated step to the MDE settings (C7). Thus, instead of
being only followed by manual migration, the automated migration is followed
by manual migration activities on the Rational Rose model, a generation of code
and further manual migration activities on the code (C8).

For the Telefónica case study in [27] it is reported that the developed DSML for
the generation of configuration files was changed later on. Thereby, the verifica-
tion language EVL to incrementally check the correctness of the models during
development was integrated. This intermixes manual modeling activities with
an automated analysis for correctness (C7 ,C8). Further, the generation of the
configuration files was exchanged: the number of input models and languages
changed from one to a flexible number (C3 ,C4). Also the number of manual
activities changes for the developer, who creates the different DSL models (C5).

On the Complex Nature of MDE Evolution 443

In [3], Baker et al. report about changing tools (C6) and a changing number of
languages and used models (C3 ,C4) with the introduction of Message Sequence
Charts (MSC) and SDL. Further, they report about changes in MSC (C2) that
enabled automated generation of test cases (C7).

Although the report about the printer company (CsP) in [16] includes hints
that the studied MDE setting changed, the information is not sufficient to make
assumption about actual types of change. Similarly, the report about the car
company (CsC) in [16] includes no detailed information about the actual change.
However, this report informs us about a change of the used modeling language.

3.4 Summary on Hypotheses

As summarized in Table 1, all types of structural evolution and non-structural
evolution that we identified in Section 2 actually occur in practice. This validates
our first hypothesis Hexistence. Furthermore, per data source, we found hints on
structural changes for more than 70% of the MDE settings, respectively. All
in all, this concerns more than three-quarter of the considered case studies.
In all cases where structural changes could be identified, substantial structural
changes (C5 , C7 , or C8) occurred as well. A change of the order of manual and
automated activities (C8) occurred in 5 of 13 MDE settings (at least one third
in each data source). Although a higher number than 13 case studies would allow
more reliable statements about the actual relevance of structural changes, the
data from both data sources supports the hypothesis that structural evolution
is common (Hcommon).

4 Case Studies on Structural Evolution Steps

So far we have shown that structural changes and substantial structural changes
occur commonly in practice. However, there is still a lack of knowledge about
structural evolution and motivations that drive structural evolution. To address
these issues, we extended our descriptive and exploratory field study to also
capture information about the evolution history of MDE settings.

4.1 Data Collection and Analysis

We extended our field study from Section 3.1, such that also historical structural
evolution steps where in focus1. Thereby, we took a conscious decision to go on
with research that bases on a few detailed case studies. This form of research has
some important advantages when it comes to understanding complex phenomena
and their drivers. To address the new issues we changed the method of eliciting
the case studies, by substituting the rounds of feedback that where performed
per email with a third interview. In addition, we included questions on how the

1 Project’s home pages: http://www.hpi.uni-potsdam.de/giese/
projects/mde in practice.html?L=1

http://www.hpi.uni-potsdam.de/giese/projects/mde_in_practice.html?L=1
http://www.hpi.uni-potsdam.de/giese/projects/mde_in_practice.html?L=1

444 R. Hebig et al.

MDE settings evolved over time and asked for motivations and responsibilities for
the captured changes. All captured evolution step were initiated and performed
before we captured them. As result we gain models from different historical
versions of the MDE settings together with records from the interviews.

We systematically went through the records and coded them following the
constant comparison method described in [32]. Therefore, we started with a set
of preformed codes. These codes referred to the motivation for an evolution
step, the institution or role that triggered the evolution step, and the institution
or role that implemented the evolution step. As we went through the records
we added codes when necessary (e.g., for external influences on the evolution).
Based on these codes we derived several observations.

4.2 Threats to Validity

It is always difficult to draw general conclusions from a few case studies. Thus,
a broader set of data that captures more domains of software engineering and
different companies would be helpful to further substantiate the outcomes of
this study. Despite the small number of case studies, we are lucky that indeed
different companies are under study. All observations presented here are based
on at least two of the case studies, which is adequate for this initial stage of
research on structural evolution in practice. The data was not only captured to
study evolution but also other aspects of MDE settings in practice. It cannot be
excluded that this leads to a selection bias. However, all parts of the study were
observational. Therefore, we do not expect that capturing the MDE settings as
explicit models influences our results on the captured evolution histories.

4.3 Case Studies

In cooperation with SAP AG, Ableton AG, and Capgemini, we captured three
case studies for MDE settings that are subject to structural evolution. The SAP
case study Cs3 was already chosen and captured in the initial stage of this field
study. However, after extending the focus, we further investigated this case study
to also capture the evolution in detail. All in all, the three case studies span 15
evolution steps. The observed structural changes are summarized in Table 2.
The SAP case study was already subject to seven structural evolution steps in
a period of around 6 years. The Capgemini case study was subject to seven
structural evolution steps in a period of around 4 years. For the Ableton case
study, we captured one structural evolution step. Due to space reasons, we only
provide details for the SAP case study.

4.4 Business Object Modeling in SAP Business ByDesign

SAP Business ByDesign2 is a hosted ERP solution for small and medium en-
terprises. It was built on top of a newly designed platform that has introduced

2 SAP Business ByDesign http://www.sap.com/solutions/technology/cloud/

business-by-design/highlights/index.epx

http://www.sap.com/solutions/technology/cloud/business-by-design/highlights/index.epx
http://www.sap.com/solutions/technology/cloud/business-by-design/highlights/index.epx

On the Complex Nature of MDE Evolution 445

Table 2. Structural evolution steps in the case studies (• = documented change)

SAP (Cs3) Ableton Capgemini
S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

Structural Changes

[C3]change number of
artifacts

• • • • • • • • • •

[C4]change number of
languages

• • • • • • • • • •

[C5]change number of
manual activities

• • • • • • • • •

[C6]change number of
tools

• • • • • • • • • • • • •

[C7]change number
of automated
activities

• • • • • • • • • • • • • •

[C8]change order of
manual / auto-
mated activities

• • • • • • • • • • • •

numerous new architecture and modeling concepts into the development pro-
cess. We focus on a very specific aspect, namely the design and implementation
of business objects, the main building blocks of the system. Business ByDesign is
primarily built using a proprietary programming language and runtime (ABAP),
with a tool chain that is necessarily also largely proprietary. The ABAP infras-
tructure has been a major success factor for SAP, as it enables customers to
modify and extend SAP’s software. The origin of object modeling at SAP lies
in the Data Modeler, a graphical design tool for creating entity-relationship di-
agrams using the SAP SERM notation. It has no generation capabilities, but
as it is part of the ABAP infrastructure, it is possible to navigate directly from
an entity or relationship to the implementing table (provided that the link has
been manually maintained in the model).

A New Architecture. Business ByDesign is based on a modular service-
oriented architecture (SOA). In this context, the Data Modeler was used as a
conceptual modeling tool for designing the structural aspects of business objects.
An important design goal was to provide a set of consistently designed services
with harmonized signatures. The chosen solution was to make the object models
available in a service repository, which was done by manually reentering them
in a different tool. From there, skeletons for the business objects were generated
and subsequently fleshed out manually.

S1: Code Generation (C3 – C8). To improve development efficiency, archi-
tects in different teams began to develop frameworks that automated and stan-
dardized the generic parts of the object implementation. This typically covered
the generation of elementary services and table structures during development,
but also extended to runtime libraries. The generation process used the generated
skeletons as input, but required specification of additional model parameters.

446 R. Hebig et al.

To increase homogeneity in the platform, one of the frameworks was ultimately
selected over the others as the mandated standard (C4 , C6).

S2: Behavioral Modeling (C3 – C7). Business ByDesign introduced a con-
cept called Status and Action Management (SAM) for constraining when and
in which sequence basic services can be invoked on an object. The constraints
were evaluated at runtime by a dedicated engine and models were created in
Maestro, a proprietary, standalone (non-ABAP) tool providing a graphical ed-
itor with simulation capabilities. The goal was to make object behavior more
transparent and to ensure correctness of the implementation by eliminating the
need to manually write checks for preconditions.

S3: Model Integration (C2 , C4 – C8). Conceptual SOA modeling was done in
ARIS, a commercial business modeling tool, using a custom visual DSL. As many
of these models contained references to business objects, it seemed advantageous
to consolidate the conceptual models and move the detailed design of object
structure and data types into ARIS, eliminating the potential for inconsistencies.
While this move further severed the link between model and implementation, it
enabled additional validation activities in ARIS.

S4: Model Quality (C5 , C6 , C7). To meet external quality standards, it be-
came necessary to demonstrably prove that models in ARIS and the service
repository were consistent. Therefore, an infrastructure for replicating models
from ARIS into the system hosting the service repository was created. This
allowed cross-checking manually created content against the replicated concep-
tual models. The introduction of the checks revealed how strongly conceptual
modeling and implementation frameworks had evolved in different directions.

S5: A New Infrastructure (C3 – C8). Several releases later, development ef-
ficiency and total cost of ownership became a major focus while the importance
of conceptual modeling declined. In a bold move, ARIS, Maestro, and the service
repository were eliminated and replaced by a new metadata repository that was
built using the business object runtime infrastructure itself. The new repository
was closer to the implementation and provided a single source of truth by con-
solidating multiple tools and databases. However, this also came at a cost. There
initially were no graphical modeling capabilities, the ability to simulate status
models was lost, and the modeling of design alternatives or future evolutions of
existing objects was not supported.

S6: A Simpler Alternative (C1 – C8). In parallel with the new repository,
a new Visual Studio-based tool targeting third-party developers was developed,
allowing them to define and program business objects using a script language.
As its focus was simplicity, the supported feature set was reduced. In return, the
editor acts as a facade that completely hides the underlying tools from the user,
thus allowing for very efficient development – within the set limits.

S7: Optimization (C3 – C7). Finally, the latest release has brought a redesign
of the underlying frameworks. The motivation for this was primarily runtime
efficiency, as the existing set of independently developed frameworks proved to

On the Complex Nature of MDE Evolution 447

generate a significant overhead in their interactions. It was therefore decided to
merge features such as Status and Action Management directly into the business
object runtime, which was in turn made an integral part of the basic service
infrastructure. For the first time, all modeling activities for business objects
were gathered in a single tool.

The history of business object development provides multiple examples for
structural changes to the development process. The case study illustrates how
the weight given to different productivity dimension changes. While initially
automation was the key driver of the change (S1), the reduction of cost of own-
ership became more important later on (S5). Finally, this case study shows that
a sequence of structural evolution steps with changing priorities can transform
even a code-centric development approach into a complex MDE setting.

4.5 Observations

The case studies provide us with some observations on the occurrence and combi-
nation of evolution steps based on the documented data (O1 - O3). In addition,
we derived observations on motivations and drivers for structural evolution from
the coded records of the interviews (O4 - O8).

O1: Structural evolution steps are not necessarily exceptions, but can occur
in sequence several times (e.g., SAP and Capgemini case studies).

O2: Structural evolution steps are most often combinations of multiple dif-
ferent structural changes (see Table 2).

O3: Substantial structural changes occur in a major part of observed struc-
tural evolution steps. We observed change type C8 in 10 of the 15 evolution
steps of our case studies. A minor observation in that context is that just one of
the occurrences of C8 was caused by improving an existing automated activity
such that a manual activity was no longer necessary (C5). In most cases C8 was
caused by the introduction of additional automated activities (C7).

O4: Structural changes are often trade-offs, e.g. w.r.t costs and manageability.
For example, implementing a smaller new generation step is easier to manage
than applying a change to an existing automated activity. A further factor in such
a trade-off is the weight that is given to the different productivity dimensions. In
many of the observed cases it was decided to increase the degree of automation
or tool support by adding new automated activities instead of adapting existing
automated activities like transformation steps. Thus, a substantial structural
change that might lead to drawbacks for the changeability is accepted in favor
of costs and manageability of the structural evolution step.

O5: The factors involved in such trade-offs change over time. For example,
costs that can be invested in a change can differ strongly. We even captured cases
where developers implemented evolution steps in their leisure time. The weight
that is given to different productivity dimensions can also change. For example,
while evolution step S1 in the SAP case study was mainly driven by the desire
to increase the degree of automation, a priority that led to evolution step S5
was the desire to decrease cost of ownership and complexity by decreasing the
number of involved tools (see Section 4.4).

448 R. Hebig et al.

O6: Changes in an MDE setting can be driven by the need to take other MDE
settings into account (e.g., the evolution in [10] or evolution steps S3 and S5 in
the Capgemini case study). This can happen, when models or other artifacts in
software development are supplied by one company and used the other. Then
changes in the MDE setting of one company can lead to new opportunities for
integration of both settings.

O7: Some evolution steps are motivated by preceding evolution steps. They
reduce the complexity of MDE settings, which can be considered as ‘refactoring’,
after several preceding evolution steps were applied. An example of this is the
introduction of the new repository in business object development (evolution
step S5 in the SAP case study).

O8: Some evolution steps are not planned centrally, but are caused by devel-
opers who add automation steps to ease their daily work. Examples are evolution
steps S4 and S6 in the Capgemini case study as well as the solutions added for
code generation in evolution step S1 in the SAP case study (see Section 4.4).

5 Literature on Support for Evolution

Below, an overview is given how evolution of languages, tools, or transformations
is addressed in literature (summarized in Table 3). First there are approaches
that support specific changes of model operations (C1), e.g., MDPE workbench
([11,27]) capsules the application of an extensible set of performance analysis
techniques on models. Another example for a specific supported change is the
MasterCraft code generator presented in [20]. The generator is built such that
it can easily be configured to implement architectural decisions taken within a
project. Other approaches address the change of automated activities in a more
general form. For example, in [21], a method for incremental development of a
transformation chain is discussed and Yie et al. [36] approach the adaption of
a fully automated transformation chain. Both approaches work for automated
activities that are implemented in form of a transformation chain.

Some approaches deal with language evolution and migration of models, such
that they become valid for a new version of the language (C2). For example, in
[12] the differences between two metamodels are used to generate a transforma-
tion that migrates the corresponding models. Further examples are the Modif
metamodel [2], Model Change Language (MCL) [28], or the usage of higher-
order model transformations for metamode model co-evolution ([6,26,5]). All
these approaches only address the evolution of modeling languages.

Some MDE approaches expect specific simultaneous changes of used languages
and transformations. For example, the OMG’s MDA [29] and the migration
process presented in [10] expect exchange of languages and transformations to
address a new target platform for a software system.

Other approaches deal with systematically adapting transformations accord-
ing to language evolution (C1 and C2). For example, in [15] a systematic strategy
and in [22] semi-automated support for the adaption of the model transforma-
tion according to changes in a metamodel are proposed. Vermolen et al. lift the

On the Complex Nature of MDE Evolution 449

semi-automated adaption of transformations to modeling languages on a more
technology-independent layer by allowing also migrations of programming lan-
guages or data structures [34]. Meyers et al. subdivide metamodel- and model
evolution into four primitive scenarios, describing how evolution of models, meta-
models, or transformations enforces co-evolution among each other [25,24]. The
resulting scenarios are combinations of the change types C1 and C2 .

Finally, there are approaches that lead to an addition of input models to an
automated activity, which is exchanged or evolved. Specific side effects are an
increasing number of models (C3) and potentially modeling languages (C4).
Further, in most cases the introduction of a new input model leads to an addi-
tional manual modeling activity for creating this new model (C5). An example
is presented in [18], where a system of DSLs that are used in combination can
be extended due to the hierarchical structure of the DSLs. Similarly, in [9] a
modifiable interpreter is presented. Here a composition model is used to define
how different domain-specific models are related.

To summarize, none of the approaches provides support for substantial struc-
tural evolution and support for structural evolution that is not substantial is
provided by two approaches for specific changes only. This is also reflected by
the focus of change classifications in literature about MDE. For example in [7],
change types C1 and C2 are categorized more in detail.

Table 3. Supported and used change types in literature (� = specific changes covered;
◦ = approach provides solution with assumptions on the language or implementation
to be changed; • = approach with a general coverage of the change type)

Kind of Changes\Approaches [27]
[20]

[21]
[36]

[12] [28]
[2] [6]
[26] [5]

[29]
[10]

[15]
[22]

[34] [25]
[24]

[18] [9]

Non-Structural Changes

[C1]exchange automated activity � ◦ � � � ◦ ◦ ◦
[C2]exchange language ◦ � ◦ • ◦ ◦
Structural Changes

[C3]change number of artifacts � �
[C4]change number of languages � �
[C5]change number of manual activities � �
[C6]change number of tools

[C7]change number of automated activities

[C8]change order of manual / automated
activities

6 Conclusion and Implications

In this paper we report on two studies that we performed on the occurrence
of structural evolution of MDE settings. The results revealed that all identified
types of structural evolution actually commonly occur in practice. Further, we
made a set of interesting observations about the way structural changes are

450 R. Hebig et al.

combined in the same or subsequent evolution steps and on the trade-offs behind
and motivations for structural evolution. An overview of literature surprisingly
showed that only rare special cases of structural evolution are so far addressed by
researchers. This indicates that there is still a lack of knowledge and support for
evolution of MDE settings in practice. To conclude, we discuss what implications
for research and practice arise from our results.

Implications for Research: The observations O1, O2, and O3 indicate that
properties of an MDE setting, like its support for changeability, might be changed
in complex ways multiple times. Consequently, methods and techniques to ac-
tively plan steer evolution into the right direction are necessary.

This situation is reinforced by the fact that evolution seems to be poorly
predictable. As observations O4 and O5 indicate, the needs on an MDE setting
change over time due to organizational factors. Further, external changes, e.g.,
in other MDE settings, might lead to new unexpected opportunities or forces
(O6). Consequently, it is also almost impossible to predict a set of possible
versions of the MDE setting which might be used for an upfront evaluation.
Therefore, research needs to provide a better understanding how MDE settings
influence productivity factors like the degree of automation, costs of ownership,
changeability, and maintainability. Techniques are required that allow analyzing
these influences. Such techniques can then be used by practitioners to predict
risks when balancing trade-offs to plan the next evolution step.

Observation O7 indicates that there is a need for manageability, which indi-
cates that research needs to support the identification of potentials for refactoring
MDE settings. Further, we need to collect best practices for implementing new
requirements on MDE settings, such that for example the extent of structural
changes can be reduced. E.g., frameworks for combining and extending DSLs,
like the one presented in [18], might be a first step in this direction.

Implications for Practice: Observation O8 indicates that sometimes devel-
opers trigger and implement evolution steps on their own initiative. Considering
the risks and potential that are associated with substantial structural changes,
methods and techniques are required that permit to identify the cause of cur-
rently observed problems and estimate the impact of planned changes. Also a
proper management of the change requests has to be established such that de-
velopers can contribute to improve MDE settings with their know-how without
the risk of uncoordinated and inefficient evolution.

Acknowledgments. We are grateful to the participants of our studies with
SAP, Ableton, and Capgemini. Especially we want to thank Axel Uhl, Cafer
Tosun, Gregor Engels, and Marion Kremer for their support in choosing the
case studies and for making this research possible. Further we thank the HPI
Research School on Service-Oriented Systems Engineering for funding parts of
this research.

On the Complex Nature of MDE Evolution 451

References

1. Aschauer, T., Dauenhauer, G., Pree, W.: A modeling language’s evolution driven
by tight interaction between academia and industry. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE 2010, vol. 2,
pp. 49–58. ACM, New York (2010)

2. Babau, J.-P., Kerboeuf, M.: Domain Specific Language Modeling Facilities.
In: Proceedings of the 5th MoDELS Workshop on Models and Evolution, Welling-
ton, Nouvelle-Zélande, pp. 1–6 (October 2011)

3. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-
text — Motorola Case Study. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 476–491. Springer, Heidelberg (2005)

4. Basili, V.R.: The role of experimentation in software engineering: past, current,
and future. In: Proceedings of the 18th International Conference on Software En-
gineering, ICSE 1996. IEEE Computer Society, Washington, DC (1996)

5. van den Brand, M., Protić, Z., Verhoeff, T.: A Generic Solution for Syntax-Driven
Model Co-evolution. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 36–51. Springer, Heidelberg (2011)

6. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating Co-evolution
in Model-Driven Engineering. In: Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, pp. 222–231. IEEE Com-
puter Society, Washington, DC (2008)

7. Corrêa, C.K.F., Oliveira, T.C., Werner, C.M.L.: An analysis of change operations
to achieve consistency in model-driven software product lines. In: Proceedings
of the 15th International Software Product Line Conference, SPLC 2011, vol. 2,
pp. 24:1–24:4. ACM, New York (2011)

8. Deng, G., Lu, T., Turkay, E., Gokhale, A., Schmidt, D.C., Nechypurenko, A.: Model
Driven Development of Inventory Tracking System (2003)

9. Estublier, J., Vega, G., Ionita, A.D.: Composing Domain-Specific Languages for
Wide-Scope Software Engineering Applications. In: Briand, L.C., Williams, C.
(eds.) MoDELS 2005. LNCS, vol. 3713, pp. 69–83. Springer, Heidelberg (2005)

10. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel, J.-M.: Model-Driven
Engineering for Software Migration in a Large Industrial Context. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
482–497. Springer, Heidelberg (2007)

11. Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-Driven
Engineering: Model-Driven Performance Engineering. In: Giese, H. (ed.) MODELS
2008. LNCS, vol. 5002, pp. 164–175. Springer, Heidelberg (2008)

12. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing Model Adaptation by
Precise Detection of Metamodel Changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

13. Hebig, R., Gabrysiak, G., Giese, H.: Towards Patterns for MDE-Related Processes
to Detect and Handle Changeability Risks. In: Proceedings of the 2012 Interna-
tional Conference on on Software and Systems Process (2012)

14. Hebig, R., Giese, H.: MDE Settings in SAP. A Descriptive Field Study. Tech.
Rep. 58, Hasso-Plattner Institut at the University of Potsdam (2012)

452 R. Hebig et al.

15. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language Evolution in Practice:
The History of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009.
LNCS, vol. 5969, pp. 3–22. Springer, Heidelberg (2010)

16. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices
in industry. In: Proceeding of the 33rd International Conference on Software En-
gineering, ICSE 2011, pp. 633–642. ACM, Waikiki (2011)

17. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Proceeding of the 33rd International Conference on
Software Engineering, ICSE 2011, pp. 471–480. ACM, New York (2011)

18. Johannes, J., Fernández, M.A.: Adding Abstraction and Reuse to a Network Mod-
elling Tool Using the Reuseware Composition Framework. In: Kühne, T., Selic,
B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 132–143.
Springer, Heidelberg (2010)

19. Karaila, M.: Evolution of a Domain Specific Language and its engineering environ-
ment – Lehman’s laws revisited. In: Proceedings of the 9th OOPSLA Workshop
on Domain-Specific Modeling (2009)

20. Kulkarni, V., Barat, S., Ramteerthkar, U.: Early Experience with Agile Method-
ology in a Model-Driven Approach. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 578–590. Springer, Heidelberg (2011)

21. Küster, J.M., Gschwind, T., Zimmermann, O.: Incremental Development of Model
Transformation Chains Using Automated Testing. In: Schürr, A., Selic, B. (eds.)
MODELS 2009. LNCS, vol. 5795, pp. 733–747. Springer, Heidelberg (2009)

22. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A Novel Ap-
proach to Semi-automated Evolution of DSML Model Transformation. In: van den
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41.
Springer, Heidelberg (2010)

23. Mansurov, N., Campara, D.: Managed Architecture of Existing Code as a Prac-
tical Transition Towards MDA. In: Jardim Nunes, N., Selic, B., Rodrigues da
Silva, A., Toval Alvarez, A. (eds.) UML 2004 Satellite Activities. LNCS, vol. 3297,
pp. 219–233. Springer, Heidelberg (2005)

24. Meyers, B., Mannadiar, R., Vangheluwe, H.: Evolution of Modelling Languages.
In: 8th BElgian-NEtherlands Software eVOLution Seminar, BENEVOL (2009)

25. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages. Sci-
ence of Computer Programming, Special Issue on Software Evolution, Adaptability
and Variability 76(12), 1223–1246 (2011)

26. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place
transformation-based approach to structured model co-evolution. In: Proceedings
of the 4th International Workshop on Multi-Paradigm Modeling (MPM 2010) @
MoDELS 2010. Electronic Communications of the EASST (2010)

27. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M., Nordmoen, B.,
Fritzsche, M.: Where does model-driven engineering help? Experiences from three
industrial cases. Software and Systems Modeling

28. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
Domain Model Migration to Manage Metamodel Evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

29. Object Management Group: MDA Guide Version 1.0.1 (June 2003)

On the Complex Nature of MDE Evolution 453

30. Runeson, P., Host, M., Ohlsson, M.C.: Experimentation in Software Engineering :
An Introduction. Kluwer Academic Publishers (November 1999)

31. Sadovykh, A., Vigier, L., Gomez, E., Hoffmann, A., Grossmann, J., Estekhin, O.:
On Study Results: Round Trip Engineering of Space Systems. In: Paige, R.F.,
Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 265–276.
Springer, Heidelberg (2009)

32. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

33. Shirtz, D., Kazakov, M., Shaham-Gafni, Y.: Adopting model driven development
in a large financial organization. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA. LNCS, vol. 4530, pp. 172–183. Springer, Heidelberg (2007)

34. Vermolen, S., Visser, E.: Heterogeneous Coupled Evolution of Software Languages.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 630–644. Springer, Heidelberg (2008)

35. Vogel, R.: Practical case study of MDD infusion in a SME: Final Results.
In: Tamzalit, D., Deridder, D., Schätz, B. (eds.) Models and Evolution Joint MOD-
ELS 2009 Workshop on Model-Driven Software Evolution (MoDSE) and Model
Co-Evolution and Consistency Management (MCCM), pp. 68–78 (2009)

36. Yie, A., Casallas, R., Wagelaar, D., Deridder, D.: An Approach for Evolving Trans-
formation Chains. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 551–555. Springer, Heidelberg (2009)

Simplification and Correctness of UML Class

Diagrams – Focusing on Multiplicity
and Aggregation/Composition Constraints

Mira Balaban1,� and Azzam Maraee1,2,��

1 Computer Science Department, Ben-Gurion University of the Negev, Israel
2 Deutsche Telekom Laboratories, Ben-Gurion University of the Negev, Israel

{mari,mira}@cs.bgu.ac.il

Abstract. Model-driven Engineering requires efficient powerful methods
for verifying model correctness and quality. Class Diagram is the central
language within UML. Its main problems involve correctness problems,
which include the consistency and the finite satisfiability problems, and
quality problems, which include the redundancy and incomplete design
problems. Two central constraints in class diagrams are the multiplicity
and the aggregation/composition constraints. They are essential in mod-
eling configuration management, features, biology, computer-aided design
and database systems.

The contribution of this paper involves efficient algorithms for
tightening multiplicity constraints that cannot be realized, and for iden-
tification of correctness problems that are caused by aggregation/compo-
sition constraints. The algorithms are analyzed, and their soundness and
completeness properties are proved. We show that these constraints are
inter-related, and that the combination of these algorithms strengthens
their results.

1 Introduction

The central role of models in the emerging Model-driven Engineering approach
calls for deep formal study of models, so that tools can provide an inclusive
support to users. It is essential to have precise, consistent and correct models.
Models should provide reliable support for the designed systems, and be subject
to stringent quality verification and control criteria.

Class Diagrams are probably the most important and best understood model
among all UML models. The Class Diagrams language allows complex con-
straints on its components. But the interaction among these constraints can
create correctness and quality problems that users cannot observe without some
assistance. For example, the class diagram in Figure 1 includes (redundant)
multiplicity constraints that cannot be realized, i.e., are not used in any legal

� Supported in part by the Paul Ivanir Center for Robotics and Production Manage-
ment at Ben- Gurion University of the Negev.

�� Supported by the Lynn and William Frankel Center for Computer Sciences.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 454–470, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Simplification and Correctness of UML Class Diagrams 455

instance. The interaction of the multiplicity constraints on the association cy-
cle r1, r2, r3 entails that the minimum multiplicity constraints on the properties
(association ends) p1, p3, p6 and the maximum multiplicity constraints on the
properties p2, p4, p5 are not exploited in any legal instance, and therefore are
redundant. Figure 1b presents an equivalent class diagram without redundancy
of multiplicity constraints: All multiplicity constraints are either raised to meet
the corresponding maximum, or decreased to meet the corresponding minimum.
In order to develop tool support for class diagrams there is a need for a formal
detailed study of the constraints and their interactions.

(a) A class diagram with redundant multi-
plicity constraints

(b) A tight class diagram

Fig. 1. Class diagram with redundant multiplicity constraint and its tightened equiv-
alent version

This paper focuses on two central constraints that are imposed on properties in
class diagrams: Multiplicity and aggregation/composition constraints. They are
heavily used in modeling configuration management, features, biology, computer-
aided design and database systems. Multiplicity constraints restrict the number
of objects of one class that can be associated with an object from another class.
Aggregation/composition constraints specify whole-part relationships between
an object (the assembly) to its parts (the components).

Correctness of class diagrams has been studied in quite a few works, but
there is very little research on class-diagram constraints [1–5]. This paper con-
tinues our previous work [4, 6, 7, 3], and presents efficient algorithms for (1)
tightening multiplicity constraints that cannot be realized; (2) identification of
correctness problems that are caused by aggregation/composition constraints.
The algorithms are analyzed, and their soundness and completeness properties
are proved. We show that these constraints are inter-related, and that the com-
bination of these algorithms strengthens their results.

Section 2 formally defines the UML class diagram model. Section 3 presents
a method for tightening multiplicity constraints. Section 4 presents methods
for identification incorrectness caused by aggregation/composition constraints.
Section 5 shortly surveys related work and Section 6 concludes the paper.

456 M. Balaban and A. Maraee

2 Background

2.1 Abstract Syntax and Semantics of Class Diagrams

The subset of UML2.0 class diagrams considered in this paper includes classes
(without attributes), properties (association-ends), binary associations, and the
constraintsmultiplicity, aggregation, composition, class hierarchy, generalization
set (GS) and subsetting. The formulation is based on the meta-model notion of
Property [8, 9]. The semantics is set-theoretic.

AbstractSyntax: Aclass diagram is a tuple 〈C,P ,A,M,Mappings,Relations〉,
where C is a set of class symbols, P is a set of property (association end) symbols,
A is a set of association symbols, andM is a set of multiplicity symbols.

The Mappings Are:

– Property mappings:

1. inverse : P → P is a bijective mapping, that assigns to every property
p its unique inverse, denoted p−1. It satisfies: invers = invers−1 and for
every property p, inverse(p)
= p.

2. source : P → C and target : P → C are injections of properties to classes
such that for a property p ∈ P , target(p) = source(p−1). In Figure 1a, p1
is p−1

2 , target(p2) = source(p1) = B, and source(p2) = target(p1) = A.

– Association mapping: props : A → P × P is an injection that satisfies
props(a) = 〈p, p−1〉 (arbitrary ordering). Notation: assoc(p1) or assoc(p1, p2)
(where p2 = p−1

1) denote the association of p1 or of 〈p1, p2〉, and props1(a),
props2(a) (arbitrary ordering) denote the two properties of a. Note that
for a property p, assoc(p) is unique. In Figure 1a, props(r1) = 〈p1, p2〉 and
assoc(p1) = assoc(p2) = assoc(p1, p2) = r1.

– Multiplicity mappingss:

1. mul : P →M×M is an assignment of two multiplicities to every prop-
erty symbol, where the first denotes the minimum multiplicity, and the
second denotes the maximum multiplicity.

2. val : M → N ∪ {0} ∪ {∗} is an assignment of values to multiplicities.
A compact notation for the values of the multiplicities of a property:
minMul(p) = val(mul(p)1), maxMul(p) = val(mul(p)2).

For simplicity we use a compact symbolic notation that captures all symbols
related to an association. For example, the association r1 in figure 1a is
denoted r1(p1 : A[2..6], p2 : B[4..8]).

The Relations Are:

– Aggregation and Composition: Predicates onP , such that composition is
a refinement of aggregation, i.e., for p ∈ P , composition(p)⇒ aggregation(p).
Aggregate/composite properties are denoted pa and pc respectively. Visually,
aggregate/compositionproperties are marked by diamonds, with an empty di-
amond for aggregation and a solid diamond for composition.

Simplification and Correctness of UML Class Diagrams 457

– Class-hierarchy: A non-circular binary relationship ≺ on the set of class
symbols: ≺ ⊆ C × C. Henceforth C2 ≺ C1, stands for C2 is a subclass of
C1. ≺∗ is the transitive closure of ≺, and C2 �∗ C1 stands for C2 = C1 or
C2 ≺∗ C1.

– Generalization-set: An (n + 1)-ary n ≥ 2 relationship on C. Its ele-
ments 〈C,C1, . . . , Cn〉, called GS constraints, must satisfy: For i, j = 1..n
(1) C
= Ci; (2) Ci
= Cj ; (3) Ci ≺ C. C is called the superclass and the
Ci-s are called the subclasses. GS constraints may be associated with dis-
joint/overlapping and complete/incomplete constraints. A GS constraint is
denoted GS(C,C1, . . . , Cn;Const).

– Subsetting:A binary relation≺ 1 on the set of property symbols:≺ ⊆ P×
P . p1 ≺ p2, stands for “p1 subsets p2”, where p1 is the subsetting prop-
erty, and p2 is the subsetted property. The UML specification requires that
source(p1) ≺∗ source(p2), target(p1) ≺∗ target(p2) and maxMul(p1) ≤
maxMul(p2). As for class hierarchies, ≺∗ is the transitive closure of ≺, and
p1 �∗ p2 stands for p1 = p2 or p1 ≺∗ p2.

Semantics: The standard set theoretic semantics of class diagrams associates
a class diagram with instances I, that have a semantic domain and an exten-
sion mapping, that associates syntactic symbols with elements over the semantic
domain. Classes are mapped to sets of objects in the domain, and associations
are mapped to relationships between these sets. The denotation of classes and
associations are called extensions. For a symbol x, xI is its denotation in I.

Symbol Denotation

1. Classes: For C ∈ C, CI , the extension of C in I, is a set of elements in the
semantic domain. The elements of class extensions are called objects.

2. Properties: For p ∈ P , pI is a multi-valued function from its source class
to its target class: pI : source(p)

I → target(p)
I
.

3. Associations: For a ∈ A, aI is a binary relationship on the extensions of the
classes of a. If props(a) = 〈p1, p2〉, then pI1 and pI2 are restricted to be inverse
functions of each other: pI1 = (pI2)

−1. The association denotes all object

pairs that are related by its properties: aI = {(e, e′) | e ∈ target(p1)
I , e′ ∈

target(p2)
I
, pI2(e) = e′}. Elements of association extensions are links.

Constraints

1. Multiplicity Constraints: For every e ∈ source(p)I , minMul(p) ≤
|pI(e)| ≤ maxMul(p). The upper bound is ignored if maxMul(p) = ∗.

2. Aggregation Constraints: Aggregation denotes part-whole relationships.
Therefore, cycles of aggregated objects are not allowed: For aggregation

properties pa1 , . . . , p
a
n, such that target(pai) = source(pai+1), i = 1, n − 1, if

e ∈source(pa1)I , then e /∈ pan
I(pn−1

aI(. . . (pa1
I(e)))).

1 We use the same symbol as for class hierarchy. Distinction is made by context.

458 M. Balaban and A. Maraee

3. Composition Constraints: A composition is an aggregation which is not
multi-valued, and satisfies the Multi-composition constraint:
For composite properties pc, qc such that source(pc) = source(qc), e ∈
source(pc)I implies that either pc(e) = qc(e) or there are properties p =
pc1, . . . , p

c
n, such that target(pci) = source(pci+1), i = 1, n− 1, and

pcn
I(pn−1

cI(. . . (pc1
I(e)))) = qc(e).

4. Class-hierarchy Constraints: A constraint C1 ≺ C2 denotes a subset
relations between the class extension: C1

I ⊆ C2
I .

5. GS Constraints have the following meaning: disjoint: CI
i ∩ CI

j = ∅, ∀i, j;

overlapping: For some i, j, it might be CI
i ∩CI

j
= ∅; complete: CI =
n⋃

i=1

CI
i ;

incomplete:
n⋃

i=1

CI
i ⊆ CI .

6. Subsetting Constraint: For p1, p2 ∈ P , p1 ≺ p2 states that p1 is a sub-
mapping of p2, i.e., for e ∈ source(p1)

I , p1
I(e) ⊆ p2

I(e).

A legal instance of a class diagram is an instance that satisfies all constraints;
it is empty if all class extensions are empty, and is infinite if some class extension
is not finite. Class diagrams CD, CD′ are equivalent, denoted CD ≡ CD′, if
they have the same legal instances.

2.2 Semantic Problems in Class Diagrams

This paper focuses on the problem of multiplicity constraint redundancy as
shown in Figure 1a, and on two correctness problems: consistency [10] and finite
satisfiability [3].

Consistency deals with necessarily empty classes, and finite satisfiability deals
with necessarily empty or infinite classes. Figure 2a presents a consistency prob-
lem due to the interaction between the subsetting constraint on property p1,
and the two composition constraints. The multiplicity and the subsetting con-
straints on p1 imply that in a legal instance I every object of DI is a component
of two different objects (of BI and CI), in violation to the multi-composition
constraint. Therefore the class diagram is inconsistent.

Figure 2b shows a finite satisfiability problem due to the interaction between
its multiplicity and composition constraints. The multiplicity constraints on
p1, q2 imply that in every legal instance I, either CI

1 , C
I
2 are infinite or they

include a cycle of linked objects. But since p1, q2 are composition properties the
no aggregation/composition object cycle constraint is violated. Therefore, a legal
instance must be empty or infinite.

3 Identification of Redundancy Problems Caused by Non
Tight Multiplicity Constraints

This section presents a method for tightening multiplicity constraints so that
they specify only realizable multiplicity values. Following [11, 3, 7], the method
is based on construction of a directed graph with labeled edges, whose nodes

Simplification and Correctness of UML Class Diagrams 459

(a) A class diagram with a consis-
tency problem

(b) A class diagram with a finite
satisfiability problem

Fig. 2. Class diagrams with finite satisfiability and consistency problems

represent classes, and edges represent multiplicity constraints between them.
The method identifies cycles in the graph, whose edges correspond to redundant
multiplicity constraints, and suggests how to tighten these constraints.

Definition 1 (Tight Property and Tight Class Diagram)

1. A property p is tight if for m being one of its multiplicity constraints, i.e.,
minMul(p) or maxMul(p), there exists an instance I and an object e ∈
source(p)I , such that |pI(e)| = m.

2. A class diagram is tight if all of its properties are tight.

Algorithm 1. Identification Graph Construction

Input: A class diagram CD
Output: A directed graph, graph(CD), with labeled edges.
begin

1. Initialize graph(CD) by a node n(C) for every class C.
2. For every association a(p1 : C1[min1,max1], p2 : C2[min2,max2])

connect nodes n(C1), n(C2) by an edge labeled 〈p1, p2〉 directed from
n(C1) to n(C2), and a dual edge labeled 〈p2, p1〉 directed from n(C2) to
n(C1). For a label 〈p, q〉, if maxMul(q) = ∗ or minMul(p) = 0, drop
the edge.

3. For every class hierarchy constraint C1 ≺ C2, connect nodes n(C1), n(C2)
by an edge labeled 1 from n(C1) to n(C2).

4. For every GS constraint G = GS(C, C1, . . . , Cn; const), create edges
for the n class hierarchy constraints Ci ≺ C, for i = 1..n.

end

For an edge e and path π in graph(CD), their source and target nodes are
denoted source(e), target(e), source(π) and target(π), respectively.

Definition 2 (Edge and Path Weights)

1. The weight of an edge e in graph(CD), with label 〈p, q〉, is denoted weight(e)

and defined as weight(e) = maxMul(q)
minMul(p) . For an edge e with label 1 (derived

from an hierarchy constraints), weight(e) = label(e) = 1.

460 M. Balaban and A. Maraee

2. The weight of a path π = e1, . . . , en in graph(CD) is denoted weight(π) and

defined as weight(π) =
n∏

i=1

weight(ei).

In [11, 3, 7] it is shown:

Proposition 1. For every non-empty finite legal instance I of CD: For every

path π in graph(CD), |target(π)I |
|source(π)I | ≤ weight(π).

In particular, the claim applies to edges in the graph. For a cycle with weight 1,
the inequality is strengthened into an equality:

Proposition 2. If γ is a cycle with weight 1 in graph(CD), then for every non-

empty finite legal instance I, every edge e in γ satisfies |target(e)I |
|source(e)I | = weight(e).

The following claim shows that a cycle with weight 1 in graph(CD) determines
the actual number of links between objects of classes in the cycle. The tightening
of multiplicity constraints follows from this result.

Claim 1. If γ is a cycle in graph(CD) such that weight(γ) = 1, then for every
edge e in γ, with label(e) = 〈p1, p2〉, and for every finite legal instance I of CD:

1. For every object e ∈ CI
1 , |pI2(e)| = maxMul(p2).

2. For every object e ∈ CI
2 , |pI1(e)| = minMul(p1).

Proof. (sketched) Based on Proposition 2, we get that for assoc(p1, p2) =
a(p1 : C1[min1,max1], p2 : C2[min2,max2]) , |aI | = max2 · |CI

1 |. But |aI | =∑
ei∈CI

1

|pI2(ei)|, while |pI2(ei)| ≤ max2. Similarly for the other equality. �

This claim has the following conclusion:
For an edge labeled 〈p1, p2〉 in graph(CD) , if a weight 1 cycle goes through the
edge, then minMul(p2)
= maxMul(p2) implies that p1 is not tight. Moreover,
p2 can be tightened by setting minMul(p2) to be maxMul(p2) and p1 can be
tightened by setting maxMul(p1) to be minMul(p1). Algorithm 2 is based on
these results:

Algorithm 2. Multiplicity Tightening

Input: A class diagram CD
Output: A modified class diagram
for each edge e ∈ graph(CD). with label(e) = 〈p1, p2〉 do

If there is a cycle γ through e, with weight(γ) = 1,
set: minMul(p2) := maxMul(p2) and maxMul(p1) := minMul(p1)

end

Example 1. Consider the class diagram in Figure 1a. Its identification graph
in Figure 3 includes the cycle shown in bold, from A to C to B and to A with
weight 1. Figure 1b presents the tightened class diagram, obtained as follows:

Simplification and Correctness of UML Class Diagrams 461

A B

C

〈p2, p1〉

〈p1, p2〉

〈p4, p3〉

〈p3, p4〉
〈p5, p6〉

Fig. 3. The identification graph of the class diagram in Figure 1a

1. The edge from A to C: This edge is labeled 〈p5, p6〉. The tightening:
maxMul(p5) = 9, minMul(p6) = 4.

2. The edge from C to B: This edge is labeled 〈p4, p3〉. The tightening:
maxMul(p4) = 2, minMul(p3) = 3.

3. The edge from B to A: This edge is labeled 〈p2, p1〉. The tightening:
maxMul(p2) = 4, minMul(p1) = 6.

Properties and Correctness of Algorithm 2
Based on Claim 1, if algorithm 2 modifies a class diagram CD, then its output
is a class diagram that is equivalent to CD but more tight. We show that for
class diagrams that include only multiplicity, and hierarchy constraints (denoted
CDmul,≺), the algorithm yields a tight class diagram, i.e., all properties in the
output class diagram are tight. This result is based on Proposition 3, below.

Proposition 3. In a finitely satisfiable class diagram CD ∈ CDmul,≺, a prop-
erty p with minMul(p)
= maxMul(p) is tight if and only if all cycles in
graph(CD) through an edge labeled 〈p, 〉 or 〈 , p〉 (being a wild card) have
weight greater than 1.

Proof. (sketched) The harder if direction is proved by constructing instances
that realize the multiplicities minMul(p) andmaxMul(p) of p. The construction
follows similar constructions in [11, 3]. The correctness of the construction relies
on showing that there exist finite legal instances I, J that satisfy the stronger
forms of the multiplicity constraints. �

This proposition implies the following completeness result for Algorithm 2:

Theorem 1. For a class diagram in CDmul,≺, Algorithm 2 computes an equiv-
alent, tight class diagram.

The Multiplicity Tightening algorithm is not complete for class diagrams
with additional constraints. Figure 4 presents class diagrams that the algo-
rithm cannot fully tighten. In Figure 4a, property p should be tightened into
maxMul(p) = 1, due to the interaction between the subsetting, multiplicity
and GS constraints. But the non-tight status is not reflected in the cycles of the
identification graph. Similarly, in Figure 4b, property p2 should be tightened into

462 M. Balaban and A. Maraee

maxMul(p) = 2, due to the interaction between the multiplicity and the GS
constraints. The catalog in [6, 12] present simplification patterns for constraint
interactions of this kind.

Fig. 4. Non tight class diagrams due to interaction of multiplicity, subsetting and GS
constraint

3.1 Heuristics for the Multiplicity Tightening Algorithm

Finding multiple cycles in a graph is a hard problem. Breaking the graph into
smaller not connected sub-graphs, or reducing its size can greatly improve the
operation. We present heuristics and guidelines for achieving these goals.

Achieving Smaller Not Connected Sub-graphs: Class diagrams are natu-
rally structured by package hierarchy, aiming at small class diagrams for pack-
ages. Since the Multiplicity Tightening algorithm ignores trivial multiplicity
constraints (o for minimum and ∗ for maximum), it is recommended to have only
trivial multiplicity constraints between classes in different packages. This way
identification graphs will have the sizes of the inside packages class diagrams,
which is ideally small.

Reducing the Size of the Graph: Reducing a class diagram by composing
adjacent associations yields a smaller identification graph. The idea is to compose
associations that have a common end class, tighten the resulting smaller class
diagram, and restore a full size class diagram that is equivalent but possibly
tighter than the input diagram.

The composition of properties is an operation that composes proper-
ties into a single property. For properties p1, . . . , pn, n > 1, such that
target(pi) = source(pi+1), i = 1, n − 1, their composition is a property
p1 ◦ p2 . . . ◦ pn whose source is source(p1), target is target(pn), minMul is
n∏

i=1

minMul(pi) and maxMul is
n∏

i=1

maxMul(pi). The composition of associ-

ations aassoc(p1), . . . , assoc(pn) where target(pi) = source(pi+1), i = 1, n− 1,
is a new association assoc(p−1

1 ◦ . . . pn−1, p1 ◦ . . . pn). Note that property and as-
sociation composition preserve the weights in cycles of the identification graph2.

2 But the composition does not preserve equivalence. In [2] an equivalence preserving
composition is used.

Simplification and Correctness of UML Class Diagrams 463

The heuristics for class diagram reduction suggests finding classes that par-
ticipate in multiple non-trivial multiplicity constraints3, compose associations
between these classes, tighten the reduced class diagram, and restore the full size
class diagram. For example, consider the class diagram in Figure 5a. Assume that
the selected classes are the ones marked in gray. Composition of the associations
between these classes, i.e., assoc(p5, p6), assoc(p7, p8), assoc(p9, p10), implies re-
moving classes D,E. The reduced class diagram is the one given in Figure 1a,
whose tightened diagram appears in Figure 1b. In the restored class diagram
(Figure 5b), the associations that have not been composed are tightened. The
composed associations are not tightened, but their multiplicity products are con-
strained as follows: minMul(p9) · minMul(p7) · minMul(p5) = maxMul(p9) ·
maxMul(p7) · maxMul(p5) = 4, minMul(p10) · minMul(p8) · minMul(p6) =
maxMul(p10) ·maxMul(p8) ·maxnMul(p6) = 9. Following Proposition 3, the
fully tightened class diagram is given in Figure 5c.

(a) (b)

(c)

Fig. 5. A class diagram before abstraction

4 Correctness of Aggregation/Composition Constraints

Aggregation/composition constraints impose complex restrictions on object in-
teraction. The combination with multiplicity constraints, and especially with the
inter-association subsetting constraint might cause correctness problems that are
hard to detect and identify. We describe first possible correctness problems, fol-
lowed by identification methods.

Finite-Satisfiability Problems due to Aggregation/Composition Cycles
Figure 6a presents a finite satisfiability problem: The multiplicity constraints on
r1, r2 dictate that in every non-empty legal instance, if classes A,B are finite,
then they include a cycle of linked objects. The {subsets q}, {subsets p} con-
straints entail an illegal r, r2 composition object cycle (see Figure 6b). Therefore,
this class diagram has only empty or infinite legal instances.

3 This abstraction heuristics reminds the abstraction rules of [13, 14], although these
works have different goals.

464 M. Balaban and A. Maraee

(a)

a:A b1:B1,B
p2q2

:r2

:r1q1 p1
q p

:r

(b)

Fig. 6. Indirect composition cycles

A sequence of associations assoc(p1), assoc(p2), . . . , assoc(pn) forms (1) an
association cycle if target(pi) = source(pi+1) for i = 1, n− 1, and target(pn) =
source(p1); (2) an association-hierarchy cycle if target(pi) � source(pi+1) for
i = 1, n−1, and target(pn) � source(p1) (recall that C1 � C2 means that either
C1 = C2 or C1 ≺ C2). An association cycle is a special case of an association-
hierarchy cycle. Below we always refer to the latter, unless we mean only an as-
sociation cycle. For example, in Figure 6a, the associations assoc(p1), assoc(p2),
assoc(q1) form an association-hierarchy cycle.

The following Lemma characterizes association-hierarchy cycles that impose
object cycles on their finite legal instances. Claim 2 then characterizes combi-
nations with aggregation/composition constraints as in Figure 6a, that enforce
illegal aggregation/composition object cycles.

Lemma 1. Let CD be an association-hierarchy cycle assoc(p1), assoc(p2), . . . ,
assoc(pn). Then if for i = 1, n, minMul(pi) > 0, then every non-empty legal
instance of CD is either infinite, or includes a cycle of linked entities. That
is, for a non-empty legal instance I, either it is infinite, or there exists e ∈
source(pi)

I , i = 1, n such that e ∈ (pIi−1 ◦ . . . pI1 ◦ pIn · · · ◦ pIi)k(e), k ≥ 1, where
(p ◦ q)k denotes k applications of the composition of p and q.

Proof. (sketched) If I is a non-empty finite legal instance, then since its classes
are finite and all multiplicity constraints require at least one link, then cyclic
repeated applications of the properties must reach repeated objects. �

Note that the Lemma does not require that the involved classes are disjoint.
Therefore, the cycle of linked objects can include an object several times.

Claim 2. Let assoc(p1), assoc(p2), . . . , assoc(pn) be an association-hierarchy
cycle, minMul(pi) > 0, for i = 1, n, and one of the following conditions holds.

1. for each i, there exists an aggregation/composition property qi such that
pi �∗ qi (i.e., either pi is an aggregation/composition property or it subsets
such a property);

2. for each i, there exists an aggregation/composition property qi such that
p−1
i �∗ qi;

Then every finite instance of the association cycle, includes a cycle of objects
that are related by aggregation/composition properties.

Simplification and Correctness of UML Class Diagrams 465

Proof. (Sketched) In both cases, by Lemma 1, every finite instance I has a cycle
of objects e1, . . . , en, . . . , e1, ei ∈ source(pi)

I , that are related by these proper-
ties. If the properties satisfy the first condition, then every ei is a qi aggrega-
tion/composition component of ei+1 (for i = n replace i + 1 by 1). Therefore,
e1, . . . , en, . . . , e1 is an aggregation/composition cycle. A similar argument holds
for the second condition, but in the opposite direction. �

Correctness Problems due to the Multi Composition Constraint
Figures 7a and 7b present a class A that plays the component role in two different
composition constraints with classes B and C. In Figure 7a, class B, being a
subclass of class D, is also a component of C. The multi-composition constraint
requires that an object is not a physical part of two different objects that are not
related by composition (the transitivity of composition implies that every part
is transitively a component of all of its composition ancestors). Therefore, in
Figure 7a the multi-composition between classes A,B,C is “benign”, and there
might be a legal finite instance in which class A is not empty.

Figure 7b presents a different case, where an object of class A that is linked via
properties q′1, q

′
2 to objects of the disjoint classes C and B, respectively, violates

the multi-composition constraint. Yet, properties p1, p2, p3 form an association-
hierarchy cycle and by Lemma 1, every finite instance of this class diagram has
a cycle of related objects from classes A,B,C. The subsetting constraints imply
violation of the multi-composition constraint. Therefore, this class diagram does
not have a finite non-empty instance.

(a) Transitive multi-
composition

(b) Multi-composition that causes a fi-
nite satisfiability problem

Fig. 7. Class diagrams with multi-composition

Claim 3 generalizes this observation. It characterizes a situation where an
object in a mandatory object cycle must be a component of two other objects
that are not composition related. The claim relies on two relations between
classes: The syntactic Composition-related relation, and the semantic necessarily-
disjoint relation. Classes A and B are composition-related if they are connected
by a sequence of composition properties. Classes A and B are necessarily-disjoint
if in every legal instance of the class diagram they denote disjoint sets of objects.
Explicit disjoint GS constraints point on a necessarily-disjoint relation, but there
can be more involved indirect cases as well.4

4 An incomplete algorithm for deciding this relation appears in [3].

466 M. Balaban and A. Maraee

Claim 3. Let assoc(p1), assoc(p2), . . . , assoc(pn) be an association-hierarchy
cycle, minMul(pi) > 0, for i = 1, n, and for some pi, i = 1..n, such that
target(p−1

i), target(pi+1) are not composition related and are necessarily dis-
joint, p−1

i �∗ qc and pi+1 �∗ rc for composition properties qc, rc. Then every
finite instance of the association cycle violates the multi-composition constraint.

Proof. (Sketched) By Lemma 1, every finite instance I has a cycle of n objects re-
lated by these properties. Since p−1

i and pi+1 �∗ composition properties, the ob-
ject e ∈ source(pi+1)

I in this cycle, is a component of an object in target(p−1
i)I

and an object in target(pi+1)
I , and these objects are not composition related

and are different since the classes are necessarily disjoint. �

Claim 4 characterizes a situation where due to subsetting of composition prop-
erties, an object is a component of two different objects, as in Figure 2a:

Claim 4. Let p1, p2 be properties with a common source, minMul(pi) > 0, for
i = 1, 2, and where target(qc), target(rc) are not composition related and are
necessarily disjoint. Then if p1 �∗ qc and p2 �∗ rc for composition properties qc

and rc, then the class diagram violates the multi-composition constraint.

4.1 Identification Methods

We present identification methods that are based on construction of directed
graphs that capture relevant multiplicity, subsetting, aggregation/composition
and class-hierarchy constraints in a class diagram.

Identification of Aggregation/Composition Cycles
Algorithm 3 constructs a directed graph denoted graphagg/comp(CD). Claim 5
shows that cycles in this graph point to finite satisfiability problems.

Algorithm 3. Aggregation/composition-graph-construction

Input: A class diagram CD
Output: A directed graph graphagg/comp(CD), with + or − labeled edges

begin
1. Initialize graphagg/comp(CD) by a node n(C) for every class/association-class C

2. For each property p: If p �∗ q for an aggregation/composition property q, add
edges as follows:
(a) If minMul(p) > 0 , then create an edge labeled 〈+, p, q〉 from n(source(p))

to n(target(p))
(b) If minMul(p−1) > 0 , create an edge labeled 〈−, p, q〉 from n(target(p)) to

n(source(p))
3. For each class hierarchy B ≺ A, create an edge from n(B) to n(A)

end

Claim 5. A cycle of either all + labeled edges or all − labeled edges in
graphagg/comp(CD) identifies a finite satisfiability problem caused by the involved
properties.

Simplification and Correctness of UML Class Diagrams 467

Proof. (sketched) Graph edges correspond to �∗ constraints with aggregation/-
composition properties that satisfy the conditions of Claim 2. �

Example 2. Figure 8 presents the aggregation/composition graph of the class
diagram in Figure 6a. The cycle identifies the association-hierarchy cycle r1, r2
through properties p1, q2, with the subsetting constraints p1 �∗ pc, and qc2 �∗

qc2. The cycle has + labeled edges since both properties have non-zero minimum
multiplicities. By Claim 2 the cycle identifies a finite satisfiability problem.

A B

B1

〈+, q2, q2〉

〈−, q1, q〉

〈+, p1, p〉

Fig. 8. Aggregation/composition graph of Figure 6a

Identification of multi-composition problems
Claim 3 describes finite satisfiability problems caused by violation of the multi-
composition constraint. Such problems are characterized by two composition
properties that have a common source class, and necessarily-disjoint classes that
are not composition-related, as their targets. Algorithm 4 constructs a directed
graph denoted graphmulti−comp(CD). Claim 6 characterize cases where finite
satisfiability problems are caused by cycles in this graph, following Claim 3.

Algorithm 4. Multi-composition-graph-construction

Input: A class diagram CD
Output: A directed labeled graph graphmulti−comp(CD)

begin
1. Initialize graphmulti−comp(CD) by a node n(C) for every class/

association-class C
2. For each property p with minMul(p) > 0 add an edge labeled p from

source(p) to target(p).
3. For each class hierarchy constraint C1 ≺ C2 add an edge labeled ≺ from

C1 to C2.

end

Claim 6. If a cycle in graphmulti−comp(CD) includes edges e1, e2, labeled p1, p2,

respectively, such that (1) p−1
1 �∗ qc and p2 �∗ rc for composition properties

qc, rc; (2) target(p1) � source(p2) (there is a � labeled path in the graph); (3)
classes target(p−1

1), target(p2) are not composition related and are necessarily
disjoint, then the cycle identifies a finite satisfiability problem caused by the
involved properties and their constraints.

468 M. Balaban and A. Maraee

Combining simplification with incorrectness identification
Multiplicity constraints affect all other constraints in class diagrams. Figure 9
shows a class diagram (9a) that is not finitely satisfiable, but the problem can-
not be identified by Algorithm 3, since graphagg/comp(CD) (9b) does not in-
clude cycles. However, applying Algorithm 2 to this class diagram yields an
equivalent tight class diagram (9c), on which Algorithm 3 succeeds, since its
graphagg/comp(CD) (Figure 9d) includes a composition cycle.

(a) A non-tight class diagram

A B

C

〈−, p2, p2〉

〈+, p4, p4〉〈+, p5, p5〉

(b) graphagg/comp(Figure 9a)

(c) A tight class diagram, equivalent to
Figure 9a

A B

C

〈−, p2, p2〉

〈+, p2, p2〉

〈+, p4, p4〉〈+, p5, p5〉

(d) graphagg/comp(Figure 9c)

Fig. 9.

5 Related Work

Most works on class diagram correctness focus on consistency [10, 15, 16] and
finite satisfiability problems [11, 17–21, 7, 3, 5]. There is a limited amount of
works investigating class-diagram constraints, including their impact on correct-
ness and quality [1, 22, 2–5]. But the impact of aggregation/composition con-
straints on the finite satisfiability problem have not been investigated yet. In our
previous work [4], we investigate semantic implications of the inter-association
constraints, their interaction with other constraints, and implied correctness and
quality problems. The catalog in [6, 12] presents simplification patterns for con-
straint interactions of this kind.

Hartmann [23] presents a graph-based method for tightening multiplicity
constraints with gaps (e.g. {1, 4, 5}) in Entity-Relationship Diagrams (ERDs)
with functional dependencies and without hierarchy constraints. Similarly to our

Simplification and Correctness of UML Class Diagrams 469

method, his method is also based on finding cycles in a directed graph. Feinerer
et al. [2] investigate multiplicity constraint redundancies in class diagrams with
multiplicity, uniqueness and equation constraints. The latter are imposed on as-
sociation cycles (like OCL constraints). They present tightening rules that are
based on equivalence preserving association composition. Their method has been
implemented in their CLEWS prototype.

6 Conclusion and Future Work

The paper continues our previous work on correctness and quality problems that
result from interaction of a variety of constraints of the class diagram language.
The identification algorithms are implemented in the FiniteSatUSE tool [24],
as part of our ongoing effort for constructing a model level integrated devel-
opment environment. We intend to extend the simplification and correctness
methods to additional constraints, and strengthen completeness result.

References

1. Costal, D., Gómez, C.: On the use of Association Redefinition in UML Class Di-
agrams. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215,
pp. 513–527. Springer, Heidelberg (2006)

2. Feinerer, I., Salzer, G., Sisel, T.: Reducing Multiplicities in Class Diagrams.
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981,
pp. 379–393. Springer, Heidelberg (2011)

3. Balaban, M., Maraee, A.: Finite Satisfiability of UML Class Diagrams with Con-
strained Class Hierarchy. ACM Transactions on Software Engineering and Method-
ology, SEM (to appear)

4. Maraee, A., Balaban, M.: Inter-association Constraints in UML2: Comparative
Analysis, Usage Recommendations, and Modeling Guidelines. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590,
pp. 302–318. Springer, Heidelberg (2012)

5. Feinerer, I., Salzer, G.: Numeric Semantics of Class Diagrams with Multiplicity
and Uniqueness Constraints. Software and Systems Modeling, SoSyM (2013)

6. Balaban, M., Jelnov, P., Maraee, A., Sturm, A.: A Pattern-Based Approach for
Improving Model Design Quality (submitted)

7. Maraee, A.: UML Class Diagrams–Semantics, Correctness and Quality. PhD thesis,
Ben Gurion University of the Negev (2012)

8. OMG: UML 2.4 Superstructure Specification. Specification Version 2.4.1. Object
Management Group (2011)

9. Kleppe, A., Rensink, A.: On a Graph-Based Semantics for UML Class and Object
Diagrams. In: Ermel, C., Lara, J.D., Heckel, R. (eds.) Graph Transformation and
Visual Modelling Techniques. Electronic Communications of the EASST, vol. 10.
EASST (2008)

10. Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on UML Class Diagrams.
Artificial Intelligence 168, 70–118 (2005)

470 M. Balaban and A. Maraee

11. Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. Information Systems 15, 453–461 (1990)

12. BGU Modeling Group: UML Class Diagram Anti-Patterns (2010),
http://www.cs.bgu.ac.il/~cd-patterns/

13. Alexander, E.: Automated Abstraction of Class Diagrams. ACM Transactions on
Software Engineering and Methodology, TOSEM 11, 449–491 (2002)

14. Shoval, P., Danoch, R., Balaban, M.: Hierarchical ER diagrams (HERD)–the
Method and Experimental Evaluation. Advanced Conceptual Modeling Tech-
niques, 264–274 (2003)

15. Queralt, A., Teniente, E.: Verification and Validation of UML Conceptual Schemas
with OCL Constraints. ACM Transactions on Software Engineering and Method-
ology T 21, 13:1–13:41 (2012)

16. Kaneiwa, K., Satoh, K.: On the Complexities of Consistency Checking for
Restricted UML Class Diagrams. Theor. Comput. Sci. 411, 301–323 (2010)

17. Thalheim, B.: Entity Relationship Modeling, Foundation of Database Technology.
Springer (2000)

18. Calvanese, D., Lenzerini, M.: On the Interaction between ISA and Cardinality
Constraints. In: The 10th IEEE Int. Conf. on Data Engineering (1994)

19. Hartmann, S.: Coping with Inconsistent Constraint Specifications. In: Kunii, H.S.,
Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, p. 241. Springer,
Heidelberg (2001)

20. Boufares, F., Bennaceur, H.: Consistency Problems in ER-schemas for Database
Systems. Information Sciences, 263–274 (2004)

21. Shaikh, A., Clarisó, R., Wiil, U., Memon, N.: Verification-driven Slicing of UM-
L/OCL Models. In: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, pp. 185–194. ACM (2010)

22. Alanen, M., Porres, I.: A Metamodeling Language Supporting Subset and Union
Properties. Software and Systems Modeling 7, 103–124 (2008)

23. Hartmann, S.: On the Implication Problem for Cardinality Constraints and Func-
tional Dependencies. Annals of Mathematics and Artificial Intelligence 33, 253–307
(2001)

24. BGU Modeling Group: FiniteSatUSE – A Class Diagram Correctness Tool (2011),
http://sourceforge.net/projects/usefsverif/

http://www.cs.bgu.ac.il/~cd-patterns/
http://sourceforge.net/projects/usefsverif/

Specification of Cyber-Physical Components

with Formal Semantics –
Integration and Composition

Gabor Simko, David Lindecker, Tihamer Levendovszky, Sandeep Neema,
and Janos Sztipanovits

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN

Abstract. Model-Based Engineering of Cyber-Physical Systems (CPS)
needs correct-by-construction design methodologies, hence CPS model-
ing languages require mathematically rigorous, unambiguous, and sound
specifications of their semantics. The main challenge is the formaliza-
tion of the heterogeneous composition and interactions of CPS systems.
Creating modeling languages that support both the acausal and causal
modeling approaches, and which has well-defined and sound behavior
across the heterogeneous time domains is a challenging task. In this pa-
per, we discuss the difficulties and as an example develop the formal
semantics of a CPS-specific modeling language called CyPhyML. We
formalize the structural semantics of CyPhyML by means of constraint
rules and its behavioral semantics by defining a semantic mapping to a
language for differential algebraic equations. The specification language
is based on an executable subset of first-order logic, which facilitates
model conformance checking, model checking and model synthesis.

Keywords: Cyber-Physical Systems, formalization, formal specification,
Model-Based Engineering, heterogeneous composition.

1 Introduction

Model-Based Engineering of Cyber-Physical Systems (CPS) needs correct-by-
construction design methodologies, hence CPS modeling languages require math-
ematically rigorous, unambiguous, and sound specifications of their semantics.
Cyber-physical systems are software-integrated physical systems often used in
safety-critical and mission critical applications, for example in automotive, avion-
ics, chemical plants, or medical applications. In these applications sound, unam-
biguous, and formally specified modeling languages can help developing reliable
and correct solutions.

Traditional systems engineering is based on causal modeling (e.g., Simulink),
in which components are functional and a well-defined causal dependency ex-
ists between the inputs and outputs. It is known that such a causal modeling

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 471–487, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

472 G. Simko et al.

paradigm is imperfect for physical systems and CPS modeling [31] since physical
laws are inherently acausal.

Recently, acausal modeling has gained traction and several languages have
been introduced for acausal modeling (e.g., Modelica, bond graphs). Every time
a new language is introduced, there is a natural demand to extend it to support
as many features as possible. Unfortunately, this often leads to enormously large
and generic languages, which have many interpretations and variants without a
clear, unambiguous semantics. Because of the size of these languages, there is
not much hope for complete formalization of their semantics.

A fundamental problem is that generic languages provides support for way
more features than a specific problem needs, still they often lack support for
some essential functions that would be otherwise needed. Thus, in most cases
it is more feasible to use Domain Specific Modeling Languages (DSML), which
are designed to support exactly the necessary functions. Additionally, because
DSMLs are usually significantly smaller than generic languages, their formal
specification is feasible.

In this paper, we focus on the semantic specifications of heterogeneous CPS
languages using our CyPhyML DSML as an illustrative example. Our main con-
tribution is an executable specification for CPS languages with a logic-based
language for both the structural and behavioral (operational and denotational)
semantic specifications, which lends itself to model conformance checking, model
finding and Linear Temporal Logic (LTL) model checking. Using the same lan-
guage for both structural and behavioral semantic specifications is an important
step towards better understanding CPS DSMLs and their composition. In previ-
ous practices, structure and behavior were formalized in different languages (e.g.,
OCL and Abstract State Machines) and they were completely separated. Since
in our formalism they are represented using the same logic-based formalism, un-
derstanding their relations becomes a matter of deductive reasoning. While in
this paper we discuss the key concepts for developing the specifications, leverag-
ing these specifications to reason about the connections between structure and
behavior remains a matter of future work.

Our working example will be our Cyber-Physical Modeling Language (Cy-
PhyML), an integration language for composing heterogeneous CPS DSMLs. In
DARPA’s AVM (Adaptive Vehicle Make) program, we required a CPS modeling
language that supports the integration of acausal physical modeling, data-flow
modeling, CAD models, bidirectional parameter propagation and Design Space
Exploration (DSE). While there are several DSMLs that can tackle these prob-
lems individually, we needed an integration language to compose them. There-
fore, we defined the component-based language CyPhyML, which is capable of
representing the integration of heterogeneous components defined in third-party
DSMLs. This allows us to compose heterogeneous physical, data-flow and other
models designed in external languages and tools such as Modelica, our bond
graph language variant or the Embedded Systems Modeling Language (ESMoL).

The organization of the paper is the following: Section 2 describes related
work, while Section 3 provides an overview of the background for CPS design,

Specification of Cyber-Physical Components with Formal Semantics 473

semantics and the formal language that we use. In Section 4 we discuss the
meta-model for the compositional sub-language of CyPhyML. Section 5 describes
the structural and behavioral semantics of this sub-language and Section 6 dis-
cusses the formalization of the integration of third-party DSMLs. Section 7 is
devoted to the evaluation and validation of our approach, and Section 8 draws our
conclusion.

2 Related Work

The logic-based language FORMULA was first proposed by Jackson [13] as a
formal language for specifying the structural semantics of DSMLs and later for
specifying their operational semantics [14]. Our research can be considered the
continuation of these initiatives. In [29, 30], we used FORMULA for specifying
the structural and denotational semantics of a physical modeling language and
in [21], we specified the operational semantics of a state-chart language variant.
FORMULA provides tools for executing these specifications, in particular they
can be used for automated model finding, model conformance checking and LTL
model checking.

A different line of research discussed by Rivera [24, 26] uses Maude, an equa-
tional logic and term rewriting-based language to specify the operational be-
havioral and structural semantics of DSMLs. Using Maude’s rewriting engine,
this representation can be used for LTL model checking, and by leveraging the
Real-Time Maude framework it can be used for real-time simulations and anal-
ysis [25]. Furthermore, research by Romero [27], Egea [8], and Rusu [28] uses
Maude-based formalizations for arguing about model sub-typing, type inference,
model conformance and operational semantics of model transformations.

In [6], we introduce a translational approach using the Abstract State Ma-
chines (ASM) and a semantic anchoring framework, and in [7], we show how such
a semantic anchoring framework can be used for compositional behavioral spec-
ifications. Gargantini [10] also introduces an ASM-based semantic framework
that includes translational approaches, semantic mapping, semantic hooking and
semantic meta-hooking, and a weaving approach for semantic specifications.

Esfahasin [9] uses the Z notation to formally specify the behavioral seman-
tics of an activity-oriented DSML modeled in GME. While Z is not executable,
the formal specification provides an unambiguous guideline for automated code
generation for their models.

There are several languages for integrating heterogeneous languages, with
major emphasis on the composition of heterogeneous computational languages.
For example, Ptolemy [11] [12] provides a framework for composing heteroge-
neous actors described by a variety of Models of Computation (MoC), e.g. finite-
state machines, synchronous and dynamic data flows, process networks, discrete
events, continuous-time and synchronous-reactive systems. While Ptolemy does
support continuous-time dynamics, it lacks support for acausal physical systems
modeling.

474 G. Simko et al.

BIP (Behavior, Interaction and Priority) [2] is a framework that supports the
composition of heterogeneous computational systems. The key idea is the sepa-
ration of component behaviors from component interactions. Such a separation
of concerns facilitates the correct composition of components. In [4], the algebra
of BIP is formulated, and in [5], the SOS style formalization of glue operators is
described.

In this paper, we address the formal semantics of CPS composition languages,
which brings additional challenges because of the integration of acausal physical
models and causal computational models.

3 Background

3.1 Cyber-Physical Systems

There are significant differences between physical and computational systems.
Computational systems are traditionally modeled with the causal modeling
approach: components, blocks, software are functional entities, which produce
outputs given some inputs. In contrast, physical systems are acausal and the
appropriate approach to model them is the acausal modeling approach [31]: in-
teractions are non-directional and there are no input and output ports. Instead,
interactions establish simultaneous constraints on the behavior of the connected
components by means of variable sharing.

For instance, a resistor can be modeled as a two port element, where each port
represents a voltage and a current, and the behavior of the resistor is defined by
the equations U1−U2 = R ·I1 and I1 = I2. Here, it is unreasonable to talk about
the directions of the ports because such a direction is not part of the model: a
resistor can be equally driven by a source of current or a source of voltage.

A different problem of CPS modeling is the semantics of time. Physical system
models are based on continuous-time (real time), while computational systems
are inherently discrete-time (e.g., discrete event, periodic discrete time, etc.). The
merge of heterogeneous time domains is non-trivial and raises several questions.

If the system uses the notion of events, at any real time instant several
events may happen simultaneously. To track the causality of these events, we
must expand the time domain: super-dense time and non-standard real time [3]
have been proposed as expansions of the real time for this purpose. Often, such
causally related simultaneous events are the results of the synchronous approach
(i.e., the abstraction that computation and communication take zero time).

Another problem is that algebraic loops (loops without delays or integrators)
in synchronous systems may have ambiguous semantics: there might be no solu-
tions or several solutions for the system equations. There are several approaches
to tackle the problem of algebraic loops: (i) avoid algebraic loops by structural
constraints (e.g., Lustre), (ii) do not consider algebraic loops at the design phase,
detect problems during simulation (does not support correct-by-construction),
(iii) define the least fix-point semantics (Scott semantics) [22].

Specification of Cyber-Physical Components with Formal Semantics 475

3.2 Structural and Behavioral Semantics

In general, models represent a structure and associated behaviors. Accordingly,
specification of modeling languages requires support for specifying both struc-
tural and behavioral semantics [14].

Structural semantics (also known as static semantics) describes the meaning
of model instances in terms of their structure [6]. Structural semantics is de-
scribed by a mapping from model instances into a two-valued domain, which
distinguishes well-formed models from ill-formed models.

Behavioral semantics is represented as a mapping of the model into a math-
ematical domain that is sufficiently rich for capturing essential aspects of the
behavior [7]. In other words, the explicit representation of behavioral semantics
of a DSML requires two distinct components: (i) a mathematical domain and
a formal language for specifying behaviors and (ii) a formal language for speci-
fying transformation between domains. Different types of behavioral semantics
can be distinguished based on the formalism of the description, for instance,
denotational semantics or operational semantics.

Denotational semantics describes the semantics of the language by mapping
its syntactic elements to some well-defined (mathematical) semantic domain.
The key advantage of denotational semantics is its composability.

Operational semantics describes the step-wise execution of models of the lan-
guage by an abstract machine. The operational semantics can be formalized as
a transformation that specifies how the system evolves through its states.

3.3 FORMULA Notation

FORMULA is a constraint logic programming tool developed at Microsoft Re-
search [1] based on first-order logic and fixed-point semantics [15, 16]. It has
found many application in Model-Based Engineering such as reasoning about
meta-modeling [17] or finding specification errors by constraints [18]. Further-
more, it has been proposed as a formal language for specifying the structural
and behavioral semantics of DSMLs as discussed in the related work.

Although we use the newer syntax of FORMULA 2.0, the general principles
of the language are unchanged and described in more detail in [15, 16].

The domain keyword specifies a domain (analogous to a meta-model) which
is composed of type definitions, data constructors and rules. A model of the
domain consists of a set of facts (also called initial knowledge) that are de-
fined using the data constructors of the domain, and the well-formed models
of the domain are distinguished from the ill-formed models by the conformance
rules.

FORMULA has a complex type system based on built-in types (e.g., Natural,
Integer, Real, String, Bool), enumerations, data constructors and union types.
Enumerations are sets of constants defined by enumerating all their elements,
for example, bool ::= {true,false} denotes the usual 2-valued Boolean type.

476 G. Simko et al.

Data constructors can be used for constructing algebraic data types. Such
terms can represent sets, relations, partial and total functions, injections, sur-
jections and bijections. Consider the following type definitions:

A ::= new (x:Integer, y:String).

B ::= fun (x:Integer -> y:String).

C ::= fun (x:A => y:String).

D ::= inj (x:Integer -> y:String).

E ::= bij (x:A => y:B).

F ::= (x:Integer, y:String).

Data constructor A is used for defining A-terms by pairing Integers and Strings,
where the optional x and y are the accessors for the respective values (for ex-
ample, A(5,"f") is an A-term). Data constructor B is used for defining a partial
function (functional relation) from the domain of Integers to the codomain of
Strings. Similarly, C is used to define a total function from A-terms to Strings,
D is used to define a partial injective function, and E is used to define a bijective
function between A-terms and B-terms.

While the previous data constructors are used for defining initial facts in
models, derived data constructors are used for representing facts derived from
the initial knowledge by means of rules. For example, derived data constructor
F defines a term over pairs of Integers and Strings.

Union types are unions of types in the set-theoretical sense, i.e., the elements
of a union type are defined by the union of the elements of the constituent types.
FORMULA uses the notation of T ::= A + B to define type T as the union of
type A and type B.

FORMULA supports the notation of set comprehension in the form of
{head|body}, which denotes the set of elements formed by head that satisfies
body. Set comprehension is most useful when using built-in operators such as
count or max. For instance, given a relation Pair ::= new (State,State), the ex-
pression State(X), n = count({Y|Pair(X,Y)}) counts the number of states paired
with state X.

Rules allow information to be deduced. They have the form:

A0(X) :- A1(X), · · ·, An(X), no B1(X), · · ·, no Bm(X).

Whenever these is a substitution for X where all A1, · · ·, An are derivable and
all B1, · · ·, Bm are not derivable, then A0(X) becomes derivable. The use of
negation (no) is stratified, which implies that rules generate a unique minimal
set of derivations, i.e., a least-fix point.

To help writing multiple rules with the same left-hand side term, the semi-
colon operator is used, whose meaning is logical disjunction. For instance, in
A(X) :- S(X); T(X). any substitution for X, such that S(X) or T(X) is derivable,
makes A(X) derivable.

Type constraint x:A is true if and only if variable x is of type A, while x is A is
satisfied for all derivations of type A. The special symbol _ denotes an anonymous
variable, which cannot be referred to elsewhere.

Specification of Cyber-Physical Components with Formal Semantics 477

The well-formed models of a domain conforms to the domain specifications.
Each FORMULA domain contains a special conforms rule, which determines its
well-formed models.

Domain composition is supported through the keywords extends and includes.
Both denote the inheritance of all types, data constructors and rules, but while
domain A extends B ensures that all the well-formed models of A are well-formed
models of B, definition domain A includes B might contain well-formed models
in A which are ill-formed models of B.

Finally, FORMULA transformations define rules for creating output models
from input models and parameters. Transformations are specified as sets of rules,
where the left-hand side terms are the data constructors of the output domain,
whereas the right-hand side of the rules can contain a mixture of the terms
from the input and output domains, and the transformation parameters. The
semantics of these transformation rules is simple: if a data constructor term of
the output domain is deducible using the transformation rules, it will be a fact
in the output domain.

4 A Cyber-Physical Modeling Language

A CPS modeling language should, at least, contain structures for defining compo-
nents with physical and computational behaviors, support both acausal and causal
modeling and facilitate hierarchical composition. The Cyber-Physical Modeling
Language (CyPhyML) we introduce in this section is a minimal language with
support for these functions, therefore it serves as a case study for building such
languages. The GME meta-model [20] of CyPhyML is shown in Fig. 1.

Fig. 1. GME meta-model for the composition sub-language of CyPhyML

Components are the main building blocks of CyPhyML. A CPS component
represents a physical or computational element with a number of exposed ports.
Hierarchical composition is provided by means of component assemblies, which
also facilitate component encapsulation and port hiding. There are two types of

478 G. Simko et al.

ports: acausal power ports, denoting the interaction points through which phys-
ical energy flows and signal ports, through which causal information flows. Cy-
PhyML is interpreted in continuous (physical) time, thus signals are continuous-
time functions. CyPhyML distinguishes several types of power ports, such as
electrical power ports, mechanical power ports, hydraulic power ports and ther-
mal power ports.

We can formalize CyPhyML the following way. A CyPhyML model M is a
tuple M = 〈C,A, P, parent, portOf, EP , ES〉 with the following interpretation:

– C is a set of components,

– A is a set of component assemblies,

– (D = C ∪ A is the set of design elements),

– P is the union of the following sets of ports: ProtMech is a set of rotational
mechanical power ports, PtransMech is a set of translational mechanical power
ports, Pmultibody is a set of multi-body power ports, Phydraulic is a set of
hydraulic power ports, Pthermal is a set of thermal power ports, Pelectrical is
a set of electrical power ports, Pin is a set of continuous time input signal
ports, Pout is a set of continuous time output signal ports. Furthermore, PP

is the union of all the power ports and PS is the union of all the signal ports,

– parent : D → A∗ is a containment function, whose range is A∗ = A∪ {root},
the set of design elements extended with a special root element root,

– portOf : P → D is a port containment function, which uniquely determines
the container of any port,

– EP ⊆ PP × PP is the set of power flow connections between power ports,

– ES ⊆ PS × PS is the set of information flow connections between signal
ports.

We can model these concepts with FORMULA using data constructors and
union data types. Thus, the abstract syntax for CyPhyML in FORMULA is the
following:

C ::= new (id:UID).

A ::= new (id:UID).

D ::= C + A.

P_rotMech ::= new (id:UID).

P_transMech ::= new (id:UID).

...

P_mechanical ::= P_rotMech + P_transMech.

P_power ::= P_mechanical + P_electrical + P_thermal + P_hydraulic.

P_signal ::= P_in + P_out.

P ::= P_power + P_signal.

parent ::= fun (D => A + {root}).

portOf ::= fun (P => D).

Ep ::= new (P_power,P_power).

Es ::= new (P_signal,P_signal).

Note that UID stands for a unique identifier, which is needed for distinguishing
individual members of the sets.

Specification of Cyber-Physical Components with Formal Semantics 479

5 Formalization of Semantics

5.1 Structural Semantics

The structural semantics of a language describes the well-formedness rules for its
models. We can define the structural semantics of a language using logic rules:
the two-valued semantic domain that distinguishes well-formed and ill-formed
models is then equivalent to the deducibility of a special conforms constant.
To develop the structural semantics of CyPhyML, we define some helper data
constructors: Dangling ports are not connected to any other ports:

dangling(X) :- X is P_power, no Ep(X,_), no Ep(_,X).

dangling(X) :- X is P_signal, no Es(X,_), no Es(_,X).

A distant connection connects two ports belonging to different components, such
that the components have different parents, and neither component is parent of
the other one:

distant(E) :- E is Es(X,Y), portOf(X,PX), portOf(Y,PY), PX != PY,

Parent(PX,PPX), Parent(PY,PPY), PPX != PPY, PPX != PY, PX != PPY.

distant(E) :- E is Ep(X,Y), portOf(X,PX), portOf(Y,PY), PX != PY,

Parent(PX,PPX), Parent(PY,PPY), PPX != PPY, PPX != PY, PX != PPY.

A power port connection is valid if it connects power ports of same types:

validEp(E) :- E is Ep(X,Y), X:P_rotMech, Y:P_rotMech.

...

invalidEp :- E is Ep, no validEp(E).

A signal port connection is invalid if a signal port receives signals from multiple
sources, or an input port is the source of an output port:

invalidEs :- E is Es(X,Y), Es(Z,Y), X!=Z.

invalidEs :- E is Es(X,Y), X:P_in, Y:P_out.

Note that output ports can be connected to output ports.
Finally, we can express the well-formedness of a CyPhyML model: a model is

structurally valid if and only if it does not contain any dangling ports, distant
connections and invalid port connections, hence it conforms to the domain:

conforms :- no dangling(_), no distant(_), no invalidEp, no invalidEs.

5.2 Denotational Semantics

The denotational semantics of a language is described by a semantic domain and
a mapping that maps the syntactic elements of the language to this semantic
domain. In this section, we define a semantic domain for CPS, and specify the
semantic mapping from CyPhyML to this domain.

Semantic Domain. Continuing our example, the denotational semantics of
CyPhyML is described by a semantic mapping from the domain of CyPhyML
models to a well-defined mathematical domain, the domain of differential alge-
braic equations (DAE) extended with periodic discrete-time variables.

480 G. Simko et al.

Such a semantic domain is reusable: for any CPS language that combines
continuous-time physical systems with periodic discrete-time controllers, it can
be used as a semantic domain. Furthermore, it facilitates the composition of
such languages by establishing a common semantic domain.

We represent the domain of (semi-explicit) differential algebraic equations
using the following signature:

domain DAEs

{

term ::= cvar + Real + op.

op ::= neg + inv + mul + sum.

equation ::= eq + diffEq.

cvar ::= new (UID).

neg ::= new (term).

inv ::= new (term).

mul ::= new (term, term).

// sum and its addends
sum ::= new (UID).

addend ::= new (sum, term).

// predicates
eq ::= new (term, term).

diffEq ::= new (cvar, term).

}

A term is a (continuous time) variable, a real number, or the application of
an operator on a term. We define two unary operators: negation and inversion; a
binary operator, multiplication; and an n-ary operator, summation. The addends of
sums are represented as relations between sums and terms. An equation is either
a predicate eq that denotes the equality of the left-hand side and the right-
hand side, or a predicate diffEq that denotes the differential equation where the
derivative of the left-hand side variable equals the right-hand side term.

We extend the DAE domain by adding periodic discrete-time variables, and
sample and zero-order hold operators:

domain Hybrid extends DAEs

{

dvar ::= new (UID,Real,Real).

sample ::= new (dvar,cvar).

hold ::= new (cvar,dvar).

}

A hybrid equation extends the differential algebraic equations by periodic
discrete-time variables D ∈ UID×R×R. A discrete-time variable has a unique
identifier, a sampling period p and an initial phase p0. The discrete-time variable
has a well-defined value at real times {p0 + n · p | n ∈ N}, everywhere else it is
absent.

A model of the hybrid domain is a set of equations E, which represents a
set of trajectories over the variables: a trajectory is a function ν that assigns
a value to each variable in the system such that ν |= E, i.e., ν simultaneously
satisfies all the equations of E. In particular, trajectory ν assigns a real number

Specification of Cyber-Physical Components with Formal Semantics 481

ν(t, x) ∈ R to each continuous variable x and continuous time t, and ν assigns a
value ν(t, x) ∈ R ∪ ⊥ to each discrete variable x, such that ν(t, x) = ⊥ when x
is absent.

We can extend the valuation function ν to terms: ν(t, neg(u))
def
=

−ν(t, u) and ν(t, inv(u))
def
= 1/ν(t, u) and ν(t, mul(u,v))

def
= ν(t, u) · ν(t, u)

and ν(t, sum(i))
def
=

∑
ν(t, x), where the sum is over each x for which

addend(sum(i),x) is a fact.
Finally, the interpretation for the predicates are the following:

ν |= eq(u,v) if ν(t, u) = ν(t, v) for all t
ν |= diffEq(u,v) if d

dt (ν(t, u)) = ν(t, v) for all t

ν |= sample(u,v) if

{
ν(t, u) = ν(t, v) if t = p+ n · p0 for some n ∈ N

ν(t, u) = ⊥ otherwise

ν |= hold(u,v) if ν(t, u) = ν(t0, v)

where p, p0 are the period and initial phase of the discrete variable and t0 is the
greatest upper bound such that t0 ≤ t and t0 = p+ n · p0 for some n ∈ N.

Semantic Mapping. Acausal CPS modeling languages distinguish acausal
power ports and causal signal ports. In CyPhyML, each power port contributes
two variables to the equations, and the denotational semantics of CyPhyML
is defined as equations over these variables. Signal ports transmit signals with
strict causality. Consequently, if we associate a signal variable with each signal
port, the variable of a destination port is enforced to denote the same value as
the variable of the corresponding source port. This relationship is one-way: the
value of the variable at the destination port cannot affect the source variable
along the connection in question.

Next, we create helper functions to generate unique identifiers for variables
and summations in the DAE domain:

pV(P,cvar(ID("e",P.id)),cvar(ID("f",P.id))) :- P is P_power.

sV(P,cvar(ID("s",P.id))) :- P is P_signal.

sumName(P,sum(ID("sum",P.id))) :- P is P_power.

Relation pV maps each power port to a pair of continuous-time variables, sV

maps signal ports to continuous-time variables and sumName assigns a summation
operator to each power port. Note the usage of ID that is a data constructor for
UIDs; its first argument is a string and its second argument is another UID.

Denotational Semantics of Power Port Connections. The semantics of
power port connections is defined through their transitive closure. Using fixed-
point logic, we can easily express the transitive closure of connections as the
least fixed point solution for Ept:

EpT(X,Y) :- Ep(X,Y); Ep(Y,X).

EpT(X,Y) :- EpT(X,Z), Ep(Z,Y), X!=Y;

EpT(X,Z), Ep(Y,Z), X!=Y.

Using Ept, we can express the denotational semantics of power ports: power port
connections make the effort variables equal and make the flow variables to sum

482 G. Simko et al.

up to zero across the transitively connected power ports (but only those power
ports which are contained within a component).

eq(S,0), addend(S,F1), addend(S,F2),

eq(E1,E2) :- EpT(P1,P2),

portOf(P1,C1), C1:Component,

portOf(P2,C2), C2:Component,

pV(P1,E1,F1), pV(P2,E2,F2), sumName(P1,S).

The explanation, why such a pair of power variables (effort and flow) is used
for describing physical connections, is out of scope in this paper, but the inter-
ested reader can find a great introduction to the topic in [31].

Denotational Semantics of Signal Port Connections. A signal connection
path (EsT) is a directed path along signal connections. We can use fixed-point
logic to find the transitive closure by solving for the least fixed point of EsT:

EsT(X,Y) :- Es(X,Y).

EsT(X,Y) :- EsT(X,Z), Es(Z,Y).

A signal path (SP) is a signal connection path EsT such that its end-points
are signal ports of components (therefore leaving out any signal ports that are
ports of component assemblies).

SP(X,Y) :- EsT(X,Y), portOf(X,CX), portOf(Y,CY), CX:C, CY:C.

The semantics of signal connection is simply the equality of signal variables:

eq(S1,S2) :- EsT(P1,P2), sV(P1,S1), sV(P2,S2).

6 Formalization of Language Integration

In the previous section, we have formally defined the semantics of CyPhyML
composition, but we have not specified, how components are integrated into Cy-
PhyML. In this section, we develop the semantics for the integration of external
languages: a bond graph language and the SignalFlow (ESMoL) language. Note
that in the future we can easily augment the list by additional languages (for ex-
ample, we have developed the integration of a subset of the Modelica language).

Bond Graphs are multi-domain graphical representations for physical sys-
tems describing the structure of power flows [19]. Regardless of the domain –
electrical, mechanical, thermal, magnetic or hydraulic – the same graphical rep-
resentation is used to describe the flows. A bond graph contains nodes and
bonds (links) between the nodes, where bonds represent the flow of energy be-
tween components. This energy flow is represented by power variables: the effort
and the flow variables, which are bijectively associated with bonds. Note that
these effort and flow variables are different from the effort and flow variables of
CyPhyML: they denote different entities in different domains.

Previously, we have introduced a bond graph language along with its for-
mal semantics [30]. In this work, we consider a bond graph language that defines

Specification of Cyber-Physical Components with Formal Semantics 483

power ports in addition: these are ports through which a bond graph component
interacts with its environment. Each power port is connected through exactly
one bond, therefore a power port represents a pair of power variables: the power
variables of its bond. Our bond graph language also contains output signal ports
for measuring effort and flows at bond graph junctions, and modulated bond
graph elements that are controlled by input signals through input signal ports.

SignalFlow (ESMoL [23]) is a language and tool-suite for designing and
implementing computational and communication models. SignalFlow is based on
a periodic time-triggered execution, and its components expose periodic discrete-
time signal ports on their interface.

Structural Integration
The role of CyPhyML in the integration process is to establish semantic matching
between the languages. Component integration is an error-prone task because of
the slight differences between different languages. During the formalization we
found the following issues: (i) power ports have different meaning in different
modeling languages, (ii) even if the semantics is the same, there are differences
in the naming conventions, (iii) the discrete-time signals of SignalFlow must be
aligned with the continuous-time CyPhyML signals.

To formalize the integration of external languages, we have to extend Cy-
PhyML with the semantic interfaces of these languages. Hence, we need lan-
guage elements for representing the external models and their containment in
CyPhyML, the ports of these external models, and the port mapping between
the ports and the CyPhyML ports. The models and their containment are rep-
resented by the following data constructors:

BondGraphModel ::= new (id:UID).

SignalFlowModel ::= new (id:UID, rate:Real).

Model ::= BondGraphModel + SignalFlowModel.

ModelContainer ::= fun (Model => Component).

Note the second argument of SignalFlowModel: since SignalFlow models are pe-
riodic, they have a real value describing their period. The interface ports and
port mappings are the following:

BG_mechanicalRPort ::= new (id:UID).

...

Model_power ::= BG_powerPort.

Model_signal ::= BG_signalPort + SF_signalPort.

ModelPortOf ::= fun (Model_power+Model_signal => Model).

ModelPortMap ::= fun (Model_power+Model_signal, String ->

P_power+P_signal).

Here, the second argument of ModelPortMap is the role of the port mapping. It is
used for denoting special port mappings, such as the positive and negative pins
of an electrical connector.

484 G. Simko et al.

Finally, the following elements are added to the well-formedness rules of Cy-
PhyML:

// tm(M) denotes that port mapping M is valid (port types are matched)
tm(M) :- M is ModelPortMap(X,_,Y), X:BG_mechanicalRPort, Y:P_rotMech.

...

// invalid, if port mappings are not within same CyPhyMl component:
inv :- ModelPortMap(X,_,Y), ModelPortOf(X,Z), PortOf(Y,W),

no ModelContainer(Z,W).

// or invalid type matching for any port mapping
inv :- M is ModelPortMap, no tm(M).

// conforms, if both CyPhyML conforms AND port mappings are not ill−formed
conforms :- CyPhyML.conforms, no inv.

We also need to extend the definition of our helper functions with the following
rules:

pV(P,cvar(ID("e",P.id)),cvar(ID("f",P.id))) :- P is Model_power.

sV(P,cvar(ID("s",P.id))) :- P is BG_signalPort.

sV(P,dvar(ID("s",P.id),M.rate,0)) :- P is SF_signalPort,

ModelPortOf(P,M).

Note that the SignalFlow ports are converted to discrete-time variables, where
the sampling rate is determined by the containing model, and the initial phase
defaults to zero.

Bond Graph Integration
For hydraulic and thermal power ports the effort and flow variables of bond
graphs and CyPhyML denote the same quantities:

eq(E1,E2), eq(F1,F2) :- ModelPortMap(X,_,Y), X:BG_hydraulicThermal,

pV(X,E1,F1), pV(Y,E2,F2).

In mechanical domains, bond graph efforts denote force and torque and bond
graph flows denote velocity and angular velocity. In the CyPhyML language, ef-
forts are position and angular position, flows are force and torque. Therefore, for
mechanical power ports, the role of effort and flow is swapped and the derivative
of the CyPhyML effort variable is the flow variable of the bond graph:

eq(E1,F2), diffEq(E2,F1) :- ModelPortMap(X,_,Y), X:BG_mechanicalPort,

pV(X,E1,F1), pV(Y,E2,F2).

For the electrical domain, bond graph electrical power ports denote a pair of
physical terminals (electrical pins). They are connected to pairs of CyPhyML
ports, one to the negative, and the other to the positive pin, which are repre-
sented with a plus and minus sign in ModelPortMap.

eq(F1,F2), eq(F1,F3),

eq(add(E1,E2),E3) :- ModelPortMap(X,"-",Y), ModelPortMap(X,"+",Z),

X:BG_electricalPort, pV(X,E1,F1), pV(Y,E2,F2), pV(Z,E3,F3).

Finally, bond graph and CyPhyML signal ports are semantically matching:

eq(U,V) :- ModelPortMap(X,_,Y), sV(X,U), sV(Y,V).

Specification of Cyber-Physical Components with Formal Semantics 485

SignalFlow Integration
The discrete signals of SignalFlow output ports are converted to continuous-time
signals in CyPhyML by means of hold:

hold(V,U) :- ModelPortMap(X,_,Y), X:SF_outSignal, sV(X,U), sV(Y,V).

Continuous-time signals of CyPhyML input ports are sampled, when mapped to
SignalFlow input ports:

sample(U,V) :- ModelPortMap(X,_,Y), X:SF_inSignal, sV(X,U), sV(Y,V).

7 Semantic Backplane

The presented approach was used for developing the formal specifications for
a suite of languages in DARPA’s AVM program. These specifications are col-
lectively called the semantic backplane. In this section, we provide some details
about the size of the languages and the specifications.

The evaluation and validation of the languages are performed through
DARPA’s on-going FANG challenge (http://vehicleforge.org), during which
more than 1000 systems engineers and 200 design teams are using our tools for
building vehicle designs. It is interesting to see the complexity of this semantic
backplane in terms of its size: CyPhyML, the integration language contains 4121
model elements, which gets compiled into a FORMULA domain with 1635 lines
of code (63 enumerated types, 437 union types, 670 primitive data constructors
with 2768 attributes). We have developed a code generator that performs this
step automatically. The structural and behavioral specifications of the language
consists of 1113 lines of code. Furthermore, the complete infrastructure specifi-
cation adds an additional 2499 lines of code. Altogether, the specifications for
the complete system consist of 21 domains, 6 transformations, 647 rules, 262 de-
rived data constructors and 3612 lines of manually written code. On one hand,
these numbers indicate the non-trivial size of the project, and on the other hand,
it shows that the approach still results in a reasonably compact specification,
which – we believe – is comprehensible and relatively easily maintainable.

8 Conclusion

Safety-critical CPS applications call for sound modeling languages, hence we
need mathematically rigorous and unambiguous formal specifications for the
structural and behavioral semantics of CPS DSMLs. In this paper, we discussed
how a logic-based language can be used for specifying both the structural and
the denotational behavioral semantics of a CPS language. Our approach has
two advantages: (i) we used an executable formal specification language, which
lends itself to model conformance checking, model checking and model synthesis;
(ii) both the structural and behavioral specifications are written using the same
logic-based language, therefore both can be used for deductive reasoning: in
particular, structure-based proofs about behaviors become feasible.

http://vehicleforge.org

486 G. Simko et al.

So far, we have formally specified the structural and behavioral semantics for
CyPhyML, Hybrid Bond Graphs and ESMoL. However, it remains a matter of
future work to use these formalizations for model checking, deductive reasoning
and correctness proofs.

Acknowledgement. We are grateful for the comments and suggestions re-
ceived from three anonymous referees, which proved to be very useful. This
work was supported by the National Science Foundation under grant number
CNS-1035655.

References

1. FORMULA, http://research.microsoft.com/en-us/projects/formula
2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in

BIP. In: SEFM, pp. 3–12 (September 2006)
3. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard semantics of

hybrid systems modelers. Journal of Computer and System Sciences 78(3), 877–910
(2012)

4. Bliudze, S., Sifakis, J.: The algebra of connectors – structuring interaction in BIP.
IEEE Transactions on Computers 57(10), 1315–1330 (2008)

5. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for Component-Based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508–522. Springer, Heidelberg (2008)

6. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

7. Chen, K., Sztipanovits, J., Neema, S.: Compositional specification of behavioral
semantics. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2007, San Jose, CA, USA, pp. 906–911. EDA Consortium (2007)

8. Egea, M., Rusu, V.: Formal executable semantics for conformance in the MDE
framework. Innovations in Systems and Software Engineering 6(1-2), 73–81 (2010)

9. Esfahani, N., Malek, S., Sousa, J.P., Gomaa, H., Menascé, D.A.: A modeling lan-
guage for activity-oriented composition of service-oriented software systems. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 591–605. Springer,
Heidelberg (2009)

10. Gargantini, A., Riccobene, E., Scandurra, P.: A semantic framework for
metamodel-based languages. Automated Software Engineering 16(3-4), 415–454
(2009)

11. Goderis, A., Brooks, C., Altintas, I., Lee, E.A., Goble, C.: Composing differ-
ent models of computation in kepler and ptolemy II. In: Shi, Y., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part III. LNCS, vol. 4489,
pp. 182–190. Springer, Heidelberg (2007)

12. Goderis, A., Brooks, C., Altintas, I., Lee, E., Goble, C.: Heterogeneous composition
of models of computation. Future Generation Computer Systems 25(5), 552–560
(2009)

13. Jackson, E., Sztipanovits, J.: Formalizing the structural semantics of domain-
specific modeling languages. Software and Systems Modeling 8(4), 451–478 (2009)

http://research.microsoft.com/en-us/projects/formula

Specification of Cyber-Physical Components with Formal Semantics 487

14. Jackson, E., Thibodeaux, R., Porter, J., Sztipanovits, J.: Semantics of domain-
specific modeling languages. Model-Based Design for Embedded Systems 1, 437
(2009)

15. Jackson, E.K., Bjørner, N., Schulte, W.: Canonical regular types. ICLP (Technical
Communications), 73–83 (2011)

16. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, plat-
forms and possibilities: towards generic automation for MDA. In: Proceedings of
the Tenth ACM International Conference on Embedded Software, EMSOFT 2010,
pp. 39–48. ACM, New York (2010)

17. Jackson, E.K., Levendovszky, T., Balasubramanian, D.: Reasoning about meta-
modeling with formal specifications and automatic proofs. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer,
Heidelberg (2011)

18. Jackson, E.K., Schulte, W., Bjørner, N.: Detecting specification errors in declara-
tive languages with constraints. In: France, R.B., Kazmeier, J., Breu, R., Atkin-
son, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 399–414. Springer, Heidelberg
(2012)

19. Karnopp, D., Margolis, D.L., Rosenberg, R.C.: System dynamics modeling, simu-
lation, and control of mechatronic systems. John Wiley & Sons, Hoboken (2012)

20. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In:
Workshop on Intelligent Signal Processing, Budapest, Hungary, vol. 17 (2001)

21. Lindecker, D., Simko, G., Madari, I., Levendovszky, T., Sztipanovits, J.: Multi-way
semantic specification of domain-specific modeling languages. In: ECBS (2013)

22. Liu, X., Lee, E.A.: CPO semantics of timed interactive actor networks. Theoretical
Computer Science 409(1), 110–125 (2008)

23. Porter, J., Hemingway, G., Nine, H., van Buskirk, C., Kottenstette, N., Karsai, G.,
Sztipanovits, J.: The ESMoL language and tools for high-confidence distributed
control systems design. part 1: Design language, modeling framework, and analysis.
Tech. Report ISIS-10-109, ISIS, Vanderbilt Univ., Nashville, TN (2010)

24. Rivera, J.E., Duran, F., Vallecillo, A.: Formal specification and analysis of domain
specific models using maude. Simulation 85(11-12), 778–792 (2009)

25. Rivera, J.E., Durán, F., Vallecillo, A.: On the behavioral semantics of real-time
domain specific visual languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS,
vol. 6381, pp. 174–190. Springer, Heidelberg (2010)

26. Rivera, J.E., Vallecillo, A.: Adding behavior to models. In: EDOC, p. 169. IEEE
(October 2007)

27. Romero, J.R., Rivera, J.E., Duran, F., Vallecillo, A.: Formal and tool support for
model driven engineering with maude. Journal of Object Technology 6(9), 187–207
(2007)

28. Rusu, V.: Embedding domain-specific modelling languages in maude specifications.
ACM SIGSOFT Software Engineering Notes 36(1), 1–8 (2011)

29. Simko, G., Levendovszky, T., Neema, S., Jackson, E., Bapty, T., Porter, J., Szti-
panovits, J.: Foundation for model integration: Semantic backplane. In: IDETC/-
CIE (2012)

30. Simko, G., Lindecker, D., Levendovszky, T., Jackson, E., Neema, S., Sztipanovits,
J.: A framework for unambiguous and extensible specification of DSMLs for cyber-
physical systems. In: ECBS (2013)

31. Willems, J.: The behavioral approach to open and interconnected systems. IEEE
Control Systems 27(6), 46–99 (2007)

Endogenous Metamodeling Semantics

for Structural UML 2 Concepts

Lars Hamann and Martin Gogolla

University of Bremen, Computer Science Department
Database Systems Group, D-28334 Bremen, Germany

{lhamann,gogolla}@informatik.uni-bremen.de
http://www.db.informatik.uni-bremen.de

Abstract. A lot of work has been done in order to put the Unified Mod-
eling Language (UML) on a formal basis by translating concepts into var-
ious formal languages, e.g., set theory or graph transformation. While the
abstract UML syntax is defined by using an endogenous approach, i. e.,
UML describes its abstract syntax using UML, this approach is rarely
used for its semantics. This paper shows how to apply an endogenous
approach called metamodeling semantics for central parts of the UML
standard. To this end, we enrich existing UML language elements with
constraints specified in the Object Constraint Language (OCL) in order
to describe a semantic domain model. The UML specification explicitly
states that complete runtime semantics is not included in the standard
because it would be a major amount of work. However, we believe that
certain central concepts, like the ones used in the UML standard and in
particular property features as subsets, union and derived, need to be
explicitly modeled to enforce a common understanding. Using such an
endogenous approach enables the validation and verification of the UML
standard by using off-the-shelf UML and OCL tools.

Keywords: Metamodeling, Semantics, Validation, UML, OCL.

1 Introduction

In order to describe the abstract syntax of modeling languages, well-known con-
cepts like classes, associations, and inheritance are used to express the structure
of a language. These elements are commonly used in combination with a textual
language to express further well-formedness rules which cannot be expressed
using a graphical syntax. To improve the expressiveness of graphical modeling
languages, especially when using complex inheritance relations, additional an-
notations have been developed to express more detailed information about the
relation between model elements. Examples of these annotations are the subsets
relations between properties and tagging a property as a derived union. The ab-
stract syntax definition of the UML [23,26] uses these newer modeling elements

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 488–504, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.db.informatik.uni-bremen.de

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 489

since UML 2. Such a distinguished usage calls for the need of a precise definition
at the syntax level (design time) and also on the semantic level (runtime)1.

In this paper, we present an endogenous approach to specify the syntax and
the semantics of central concepts of modeling languages. To this end, we use
the same formalism, i. e., class diagrams enriched with constraints expressed in
the Object Constraint Language (OCL) [24,32], as used currently for the syn-
tax description of modeling languages. To demonstrate our approach we choose
particular UML language features (subsets, union and derived), but the same
method may be applied to all UML language elements. The language features
we choose are also important on their own, because they are used in MOF (i. e.
as a description language for UML) without having a proper formal semantics
currently. Our work is different to other approaches, like for example [1,19], that
define a formal semantics for the modeling elements mentioned above, in the
sense, that we use the same languages to describe the syntax and the semantics
instead of translating syntactical elements into a different formalism.

The rest of this work is structured as follows: In the next section we describe
the concept of metamodeling semantics. In Sect. 3 we explain our approach for
metamodeling the runtime semantics of modeling elements by using well-known
examples. Section 4 identifies benefits arising when using tool-based validation
of modeling concepts. Before the paper ends with a conclusion and future work,
we discuss related approaches in Sect. 5.

2 Metamodeling Semantics

The notion Metamodeling Semantics can be explained well by quoting a state-
ment from [16]:

Metamodeling semantics is a way to describe semantics that is similar
to the way in which popular languages like UML are defined. In meta-
modeling semantics, not only the abstract syntax of the language, but
also the semantic domain, is specified using a model.

Metamodeling a language by defining the abstract syntax using a graphical
modeling language combined with a formal textual language to express well-
formedness rules is a well-known technique. The UML specification for example
uses UML (or MOF which itself uses UML) in combination with the Object
Constraint Language (OCL) to define its abstract syntax. In [16] this is called
the Abstract Syntax Model (ASM), which defines the valid structures in a model.
The same technique is rarely used to define the semantics of a language, i. e., to
specify a Semantic Domain Model (SDM) of a modeling language. A semantic
domain defines the meaning of a particular language feature, whereas a seman-
tic domain model describes this meaning by modeling the runtime behavior of
a (syntactically) valid model using its runtime values and applying meaning to

1 In this work, we distinguish between design time and runtime by using classes and
objects. Note, that this distinction is not always appropriate.

490 L. Hamann and M. Gogolla

them. For example, later we will see that in the UML there is the class Class
in the abstract syntax part, and there is the class InstancesSpecification in
the semantic domain part which together can describe (through an appropriate
association) that a class (introduced at design time) is interpreted (at runtime)
by a set of objects, formally captured as instance specifications. Another pub-
licly available example for metamodeling semantics can be found in Section 10
of the OCL specification [24]. It defines constraints on values, i. e., runtime in-
stances, which are part of the SDM. For example, the runtime value of a set is
constrained as follows:

context SetTypeValue inv: self.element->isUnique(e : Element | e.value)

The central idea behind the approach in [24] is to describe the runtime be-
havior of OCL using OCL, which is similar to the UML metamodel described by
UML models. While this is done in the UML to constrain the metamodel level
M1, i. e., the valid structure of models, very little formal information is given for
the level M0. Nearly only, the structure for the runtime snapshots is specified,
but little use is made of defining runtime constraints in a formal language like
OCL. An excerpt of the UML metamodel which shows important elements for
our work is shown in Fig. 1. The diagram combines elements from roughly six
syntax diagrams of the UML metamodel. On the left side, the ASM (syntax)
of the UML is shown. On the right, the SDM (semantics) elements are given as
they are present in the current specification. In the next section we define run-
time constraints on the semantic domain model for several modeling constructs
which are frequently used in the definition of the UML metamodel, but are only
defined in an informal way with verbal descriptions in the current UML.

3 OCL-Based Instance and Value Semantics

In this section we describe our approach of metamodeling semantics for different
language features. We start with commonly used constraints on properties and
how they can be described without leaving the technology space. Next we explain
the semantics for evaluating derived properties.

3.1 Subsetting and Derived Unions

We explain our proposal by starting with a basic class diagram, which uses
subsetting and union constraints on attributes of classes. Later on, we extend
this diagram by using subsetting and union on associations. Subsetting and
union constraints on properties (a property can be an attribute or an association
end) define a relation between these two properties. The values of a subsetting
property must be a subset of the values for the subsetted property. Union can
be used on a single property. Its usage defines that the values of a property are
the union of all its subsetting properties.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 491

E
le

m
e
n
t

o
w

n
e
d
E

le
m

e
n
t
{u

n
io

n
}

o
w

n
e
r

{u
n
io

n
}

F
ig
.
1
.
C
o
m
b
in
ed

v
ie
w

o
f
U
M
L
m
et
a
m
o
d
el

el
em

en
ts

im
p
o
rt
a
n
t
fo
r
o
u
r
w
o
rk

492 L. Hamann and M. Gogolla

Figure 2 shows a simple model of vehicles (c. f. [4]). A vehicle consists of vehicle
parts. For a car, information about the front and back wheels is added to the class
Car. Because these wheels are part of the overall vehicle, the properties front
and back are marked as subsets of the general property part. The property
part itself is marked as a derived union of all of its subsets. Furthermore, the
subsetting properties restrict the lower and upper bounds of the wheels to the
common number of wheels for a car (2 is equivalent to 2..2). A valid object

�������

�	
�����������	
����������������

�	

�
�������������������������	
��

�	������������������������	
��

�����

��������	
�

Fig. 2. Class diagram using subsets and union on attributes

diagramw. r. t. the given class diagram is shown in Fig 3. For this simple diagram,
one can see directly that the intended constraints are fulfilled. However, for more
complicated models, an automatic validation is required. If the used modeling
language would not provide subsets and union constraints, a modeler could
still specify constraints on the classes Vehicle and Car:

context Vehicle inv partIsUnion: let selfCar = self.oclAsType(Car) in

selfCar <> null implies self.part = selfCar.front->union(selfCar.back)

context Car inv frontIsSubset: self.part->includesAll(self.front)

context Car inv backIsSubset: self.part->includesAll(self.back)

However, these constraints would strongly couple the abstract class Vehicle
and its subclass Car, because Vehicle needs information about its subclasses
to validate the union constraint. This breaks well-known design guidelines. The
above constraints are similar to the generated constraints from [20]. Using such
an automatic approach would reduce the coupling.

wheel3:Wheel

wheel2:Wheel
aCar:Car

part=Set{@wheel1,@wheel2,@wheel3,@wheel4}
front=Set{@wheel1,@wheel2}
back=Set{@wheel3,@wheel4}

wheel1:Wheel

wheel4:Wheel

Fig. 3. A valid object diagram of the class diagram shown in Fig. 2

To allow a generic usage of these constraints the UML provides the ability
to specify subset relations between properties using a reflexive association on

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 493

Property (which represents class attributes and association ends) and to mark
a property as a derived union (see Fig. 1). Further, several well-formedness OCL
rules are given, to ensure the syntactical correctness of the usage. For example,
the type of the subsetting property must conform to the type of the subsetted
end [23, p. 126]. However, information about the semantics of the UML language
element subsets is only provided textually, not in a formal way. We propose
to add (what we call) runtime semantics by means of OCL constraints to the
already present elements describing runtime elements. For the above example,
a constraint describing the runtime semantics of subsets can be specified on the
UML metaclass Slot (a slot allows, for example, to assign an attribute value to
an attribute):

context Slot inv subsettingIsValid:

let prop = self.definingFeature.oclAsType(Property) in

(prop <> null and prop.owner.oclIsKindOf(Class)) implies

prop.subsettedProperty->forAll(subsettedProp |

let subsettedValues = self.owningInstance.slot->

any(definingFeature=subsettedProp).value.getValue()->asSet() in

let currentValues = self.value.getValue()->asSet() in

subsettedValues->includesAll(currentValues))

This constraint checks for each slot that defines a value or values for an
attribute of a class, if it is a subset of the values defined by the slots of the
subsetted properties. Because this constraint only considers attributes of classes,
the navigation to the slots of the owning instance of the context slot is enough.
For associations, and especially for associations with more than two ends, the
calculation of the values to be considered is more complicated.

A class diagram which makes use of subsets and union on association ends is
given in Fig. 4. The previously specified attributes part and front are changed
to association ends, while the attribute back is left out in order to keep the
following examples at a moderate size.

Class diagram

WheelCar

Vehicle VehiclePart
part {union}

1..*inVehicle {union}
1

front {subsets part}

2inCarAsFront {subsets inVehicle}
1

Fig. 4. Class diagram using subsets and union on association ends

Figure 5 shows an example instantiation of the class diagram. The links shown
as a solid line are inserted by the user, while the dashed links are automatically
calculated by our tool, because they are part of a derived union. In our tool, all

494 L. Hamann and M. Gogolla

Object diagram

wheel2:Wheel

wheel1:Wheel

aCar:Car

part {union}

front {subsets part}
front {subsets part}

part {union}

Fig. 5. A valid object diagram of the class diagram shown in Fig. 4

derived links (either established through a derived union or through an explicit
derived association end) are shown as dashed links.

The object diagram in Fig. 6 shows an instantiation of the UML metamodel
representing the class diagram of Fig. 4 at the top and the object diagram
shown in Fig. 5 at the bottom. This figure intentionally includes so many dashed
lines and compositions, in order to show the inherent complexity of the UML
metamodel. This complexity can automatically be revealed by using our tool.
In Sect. 4 we are going to explain these so-called virtual links in more detail.
On the other side, these virtual links allow us to suppress certain elements in
the object diagram to make it easier to be read. For example, the generalization
relationships are only shown as derived links between the classes leaving out the
generalization instance. To be more concrete, in the left upper part of Fig. 6 the
dashed link between Class3 (Vehicle) and Class4 (Car) corresponds to the left
generalization arrow in Fig. 4. We use this diagram in the following to explain
an extended runtime semantics which also covers associations.

A runtime semantics for subsetting that covers attributes and association ends
must consider all tuples of instances which are linked to a subsetted property
and the set of instances linked to this tuple at the subsetting end. For the
previously shown example on attributes, this tuple contains only one element,
namely the defining instance, whereas for association ends of an association
with n ends, this tuple contains n− 1 elements. We accomplish this by using a
query operation called getConnectedObjects()which is similar to the operation
Extent::linkedObjects(...) defined in the MOF specification[22], but covers
n-ary associations, properties, and derived unions. We do not show the operation
in detail, because it is rather lengthy2. The query operation uses the metaclasses
of the semantic domain model to obtain all connections specified for a property.
For this, it navigates to all instance specifications to consider and their owned
slots. If a property is defined as a derived union, this operation is recursively
invoked on all properties subsetting the derived union property and collects all
connected values in a single set, i. e., it builds the union of the values. To give a
more detailed view of the usage of this central operation, Fig. 7 shows the result
of invoking it on the property part using the state shown in Fig. 6.

2 Interested readers are referred to the USE distribution which contains a well-defined
subset of the UML metamodel including this operation.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 495

O
b
je

c
t
d
ia

g
ra

m

IS
5
:I
n
s
ta

n
c
e
S

p
e
c
if
ic

a
ti
o
n

n
a
m

e
=

'w
h
e
e
l2

'

S
lo

t9
:S

lo
t

IS
1
:I
n
s
ta

n
c
e
S

p
e
c
if
ic

a
ti
o
n

n
a
m

e
=

'a
C

a
r'

IS
7
:I
n
s
ta

n
c
e
S

p
e
c
if
ic

a
ti
o
n

n
a
m

e
=

U
n
d
e
fi
n
e
d

C
la

s
s
4
:C

la
s
s

n
a
m

e
=

'C
a
r'

is
A

b
s
tr

a
c
t=

fa
ls

e

P
ro

p
e
rt

y
4
:P

ro
p
e
rt

y

n
a
m

e
=

'f
ro

n
t'

is
O

rd
e
re

d
=

fa
ls

e

is
U

n
iq

u
e
=

tr
u
e

/
lo

w
e
r=

2

/
u
p
p
e
r=

2

is
R

e
a
d
O

n
ly

=
fa

ls
e

is
D

e
ri
v
e
d
=

fa
ls

e

is
D

e
ri
v
e
d
U

n
io

n
=

fa
ls

e

S
lo

t1
0
:S

lo
t

S
lo

t3
:S

lo
t

IS
3
:I
n
s
ta

n
c
e
S

p
e
c
if
ic

a
ti
o
n

n
a
m

e
=

U
n
d
e
fi
n
e
d

C
la

s
s
1
:C

la
s
s

n
a
m

e
=

'V
e
h
ic

le
P

a
rt

'

is
A

b
s
tr

a
c
t=

tr
u
e

P
ro

p
e
rt

y
3
:P

ro
p
e
rt

y

n
a
m

e
=

'in
V

e
h
ic

le
'

is
O

rd
e
re

d
=

fa
ls

e

is
U

n
iq

u
e
=

tr
u
e

/
lo

w
e
r=

1

/
u
p
p
e
r=

1

is
R

e
a
d
O

n
ly

=
tr

u
e

is
D

e
ri
v
e
d
=

tr
u
e

is
D

e
ri
v
e
d
U

n
io

n
=

tr
u
e

P
ro

p
e
rt

y
2
:P

ro
p
e
rt

y

n
a
m

e
=

'p
a
rt

'

is
O

rd
e
re

d
=

fa
ls

e

is
U

n
iq

u
e
=

tr
u
e

/
lo

w
e
r=

1

/
u
p
p
e
r=

*

is
R

e
a
d
O

n
ly

=
tr

u
e

is
D

e
ri
v
e
d
=

tr
u
e

is
D

e
ri
v
e
d
U

n
io

n
=

tr
u
e

IV
8
:I
n
s
ta

n
c
e
V

a
lu

e

n
a
m

e
=

U
n
d
e
fi
n
e
d

A
s
s
o
c
ia

ti
o
n
1
:A

s
s
o
c
ia

ti
o
n

n
a
m

e
=

'C
_
In

V
e
h
ic

le
_
P

a
rt

'

is
A

b
s
tr

a
c
t=

fa
ls

e

is
D

e
ri
v
e
d
=

U
n
d
e
fi
n
e
d

C
la

s
s
3
:C

la
s
s

n
a
m

e
=

'V
e
h
ic

le
'

is
A

b
s
tr

a
c
t=

tr
u
e

IV
7
:I
n
s
ta

n
c
e
V

a
lu

e

n
a
m

e
=

U
n
d
e
fi
n
e
d

S
lo

t4
:S

lo
t

A
s
s
o
c
ia

ti
o
n
2
:A

s
s
o
c
ia

ti
o
n

n
a
m

e
=

'C
_
In

C
a
rA

s
F

ro
n
t_

W
h
e
e
l'

is
A

b
s
tr

a
c
t=

fa
ls

e

is
D

e
ri
v
e
d
=

U
n
d
e
fi
n
e
d

P
ro

p
e
rt

y
5
:P

ro
p
e
rt

y

n
a
m

e
=

'in
C

a
rA

s
F

ro
n
t'

is
O

rd
e
re

d
=

fa
ls

e

is
U

n
iq

u
e
=

tr
u
e

/
lo

w
e
r=

1

/
u
p
p
e
r=

1

is
R

e
a
d
O

n
ly

=
fa

ls
e

is
D

e
ri
v
e
d
=

fa
ls

e

is
D

e
ri
v
e
d
U

n
io

n
=

fa
ls

e

IV
2
:I
n
s
ta

n
c
e
V

a
lu

e

n
a
m

e
=

U
n
d
e
fi
n
e
d

IS
2
:I
n
s
ta

n
c
e
S

p
e
c
if
ic

a
ti
o
n

n
a
m

e
=

'w
h
e
e
l1

'

C
la

s
s
5
:C

la
s
s

n
a
m

e
=

'W
h
e
e
l'

is
A

b
s
tr

a
c
t=

fa
ls

e

IV
1
:I
n
s
ta

n
c
e
V

a
lu

e

n
a
m

e
=

U
n
d
e
fi
n
e
d

/g
e
n
e
ra

l

in
s
ta

n
c
ety
p
e

o
w

n
in

g
In

s
ta

n
c
e
 {

s
u
b
s
e
ts

 o
w

n
e
r}

d
e
fi
n
in

g
F

e
a
tu

re

fe
a
tu

re
 {

u
n
io

n
}

s
u
b
s
e
tt
e
d
P

ro
p
e
rt

y

ty
p
e

c
la

s
s
if
ie

r

/e
n
d
T

y
p
e
 {

o
rd

e
re

d
,
s
u
b
s
e
ts

 r
e
la

te
d
E

le
m

e
n
t}

v
a
lu

e
 {

o
rd

e
re

d
,
s
u
b
s
e
ts

 o
w

n
e
d
E

le
m

e
n
t}

d
e
fi
n
in

g
F

e
a
tu

re

in
s
ta

n
c
e

c
la

s
s
if
ie

r

/g
e
n
e
ra

l in
s
ta

n
c
e

/e
n
d
T

y
p
e
 {

o
rd

e
re

d
,
s
u
b
s
e
ts

 r
e
la

te
d
E

le
m

e
n
t}

s
u
b
s
e
tt
e
d
P

ro
p
e
rt

y

c
la

s
s
if
ie

r

fe
a
tu

re
 {

u
n
io

n
}

F
ig
.
6
.
T
h
e
d
ia
g
ra
m
s
sh
ow

n
in

F
ig
.
4
a
n
d
5
a
s
a
n
in
st
a
n
ti
a
ti
o
n
o
f
th
e
U
M
L
m
et
a
m
o
d
el

496 L. Hamann and M. Gogolla

Fig. 7. Querying runtime values by using the operation getConnectedObjects()

The result is a set of tuples with two parts:

1. source: The sequence of source objects in the same order as the association
ends, if the property is owned by an association.

2. conn: The objects connected to the source objects at the property.

The result of the evaluation is the calculated union of the property values for
all possible source objects. Because only one vehicle (named aCar), is present in
the given state, the set contains a single tuple. This tuple consists of the sequence
containing the instance specification representing the object aCar and a set of
values which are linked to this instance via subsetting properties of part.

Given the previously described operation getConnectedObjects(), we can
define a constraint which ensures the subsetting semantics:

1 context Property inv subsettingIsValid:

2 let subsetLinks = self.getConnectedObjects() in

3 self.subsettedProperty->forAll(supersetProperty |

4 let supersetLinks = supersetProperty.getConnectedObjects() in

5 subsetLinks->forAll(t1 |

6 supersetLinks->one(t2 | t1.source=t2.source and

7 t2.conn.getValue()->asSet()->includesAll(

8 t1.conn.getValue()->asSet()))))

The central part of the given invariant can be seen on line 7 where the oper-
ation includesAll is used, which is the OCL way to validate, if a collection is
a superset of another one. Some things need to be explained in a more detail.
First, the usage of the operation getValue():OclAny, which is an extension
to the UML metaclass ValueSpecification, is required to be able to get the
concrete value of a value specification. The UML metamodel defines several op-
erations on this class for retrieving basic types like stringValue():String but
excludes a generic definition. Second, the collected values need to be converted
to a set using ->asSet() (see lines 7 and 8) because values can map to the same
specifications. It should be mentioned, that if evaluated at runtime, the invari-
ant only validates the union calculation if subsets is used in the context of a
derived union. If subsets is used on a property which is not a derived union, the

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 497

constraint validates the user defined structure. Including the described invariant
and similar invariants for other runtime elements, adds a precise definition of its
semantics to the modeling language.

3.2 Derived Properties

Derived properties are widely used during the specification of models and meta-
models, because they allow to shorten certain expressions and to assign asso-
ciated elements an exact meaning by naming them. If a formal expression is
given which describes how to calculate the values of the derived properties, the
definition of the metamodel is even stronger. If the derived property is marked
as read only, a query language can be used to evaluate these derive expressions.
Writable derived properties are allowed for example in the UML, but we exclude
this type of properties, because the computational overhead of computing the
inverse values would be too high. Furthermore, only bijective derive expressions
can be used. For example, an attribute weight for the class Car used in the
example could be derived as follows:

context Car::weight:Integer derive: self.part.weight->sum()

Assigning a value to the attribute weight of a car cannot lead to a single
result in the weights of the parts. A common way to overcome this issue is to
use a declarative approach like it is done in the UML specification by using
invariants for a derive expression [23, p. 128]. This transfers the responsibility
to set the correct derived values or the inverse direction to an implementation.
Therefore, the UML metamodel excludes the ability to add a derive expression
to a property like it is done with default values. Whereas, the OCL specification
links to the UML metamodel for the placement of derive expressions [24, p. 182].
We propose to add such a possibility, to allow the specification of the runtime
semantics of derived read only properties. For this, we extend the metamodel by
defining an additional association between Property and ValueSpecification.
To ensure, that a derived expression is only used on read only properties, the
following well-formedness rule needs to be added:

context Property inv: self.derivedValue <> null implies self.readOnly

The context of such a derive expression used during evaluation is related to
the previously explained semantics of subsets and union. To recapitulate the
essentials, for a generic solution it is necessary to consider the combinations
of source objects and their connected objects. Only this allows to use derived
association ends on associations with more than two association ends and further
allows the evaluation of backward navigations, i. e., from a derived end to an
opposite end. The major difference to the validation of subsetting is, that only
if a derived association end of a binary association or an attribute are the target
of a navigation, the source objects are known. If a navigation uses instead the
derived end as the source, for all possible combinations of the connected end
types the expression needs to be evaluated and checked if the source object of

498 L. Hamann and M. Gogolla

the navigation is in the result. As an example consider the derived association
end /general of the reflexive association defined on the class Classifier shown
in Fig. 1. The UML specification defines the derived end using a constraint on
classifier as follows [23, p. 52]3:

general = self.generalization.general->asSet()

Used as a derive expression, the result for a navigation from a classifier in-
stance to the association end general can be calculated using the source instance
as the context object self. For the opposite direction of the navigation, i. e., nav-
igating from a classifier instance to its subclasses, the derive expression needs to
be evaluated for all instances of Classifier:

superclass = Classifier.allInstances()->select(general->includes(self))

For n-ary associations navigating to the derived association end, the derive
expression needs to be evaluated with each combination of the source object and
all possible instances at the other ends (excluding the derived end). The resulting
set is the union of all evaluation results. If a navigation starts at the derived
end of an n-ary association, the calculation is similar to the case of navigating
backward in a binary association. Except, that the evaluation is performed for
the cross product of all instances which can participate in the association. This
means all instances of the end types except the derived end.

4 Tool Based Validation

Because of the endogenous nature of the semantics described in the previous
chapter, they were developed in parallel to extensions to a modeling tool. To
validate the structural constraints used inside the UML metamodel, these were
added to the tool, which allowed us to represent greater parts of the metamodel.
Using a tool based validation approach and extending it in a step-wise manner
added a reverse link to the specification of the runtime semantics. Without a
validation tool, it is rather hopeless to bring a metamodel including well-defined
semantics for a modeling language to a consistent state. Using a modeling tool
to validate its modeling language, like the bootstrapping approach used for com-
pilers, allows to discover issues beyond syntactical errors in an early state. For
example, only after using derived unions in combination with derived association
ends we discovered an infinite recursive definitions at the metamodel level in the
current UML standard. In this particular case, a derived association end was
used inside a union and the derive expression used this union. In the following
parts of this section, we explain some beneficial features supporting the defini-
tion of (meta-)models which are integrated in our modeling tool USE [11,30].
Additional supporting features are beyond the scope of this paper, but can be

3 The constraint has slightly been modified to be more expressive. In detail, the body
of the operation Classifier::parent() was embedded into the constraint. Further,
asSet() was added to establish type soundness.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 499

found in several publications of our group, e. g., [13,14,12]. Such a left out feature
is the possibility to evaluate the specified constraints on a model instance, which
was used to validate the invariants presented in this paper.

During the development of a metamodel, already on the syntactical level the
usage of automatically generated dynamic views can support the user. While the
size of a model increases, the usage of the modeling elements discussed in this
paper (subsets, union and derived properties) can get unmanageable without
adequate support by a tool. USE provides a comprehensive view which provides
information about these elements defined for an association. An example of this
view is presented in Fig. 8. It shows the derived union association specified
between the metaclasses Classifier and Feature in the UML metamodel. A
user can directly see which associations are related to the selected one and what
kind of relations are defined. Implicit information, like for example a missing
subsets on the opposite end is highlighted.

Fig. 8. Information about association relations available in USE

Another valuable functionality, which was touched slightly while explaining
Fig. 5 and 6 is the automatic calculation and presentation of virtual links (pre-
sented as dashed lines) which result from associations that include a derived
expression or derived unions. In Fig. 9 an in-depth view on the defined and de-
rived links between the instances representing the composition C InCarAsFront

and its owned end front is shown. While the three lower links are specified by
the user, the upper four links are automatically presented to the user because
they are part of a derived union. Another usage of virtual links is to compress
diagrams as it was done in Fig. 6 by excluding the generalization instances,
but still showing the generalization link between classes using the derived end
/general.

Furthermore, using derived associations allows a user to model information in
a different way which may be more suitable to express her intention. The USE
session presented in Fig. 10 shows an example, which uses a derived ternary
association to show the direct relation of associated objects. The example defines
a small library model composed of classes for users, copies and books. The fact
that a user can borrow copies of books is modeled by two binary associations
which together link all three classes. A third association is defined, that is derived

500 L. Hamann and M. Gogolla

Association2:Association

name='C_InCarAsFront_Wheel'
isAbstract=false
isDerived=Undefined

Property4:Property

name='front'
isOrdered=false
isUnique=true
/ lower=2
/ upper=2
isReadOnly=false
isDerived=false
isDerivedUnion=falseassociation {subsets notNavigableMember} memberEnd {ordered, subsets member}

member {union}

ownedElement {union}owner {union}

 ownedEnd {ordered,
 subsets feature,
subsets ownedMember,
 subsets memberEnd}

owningAssociation
{subsets featuringClassifier,
 subsets namespace,
 subsets association}

feature {union}featuringClassifier {union}

navigableOwnedEnd {subsets ownedEnd}

 ownedMember {union,
subsets ownedElement, subsets member}namespace {union, subsets owner}

Fig. 9. A detailed view on virtual links present in the UML metamodel instance (Fig. 6)

and combines the aforementioned associations into a single ternary one. The
definition of the derived association in the concrete syntax of USE is as follows:

association BorrowsCombined between

User[*] role dUser

Copy[0..1] role dCopy derived(aUser:User,aBook:Book) =

aUser.copy->select(c | c.book=aBook)

Book[*] role dBook

end

The shown textual language is an excerpt of the language used to define
UML models in USE. It is comparable to HUTN (UML Human-Usable Textual
Notation) of the OMG [21]. To be able to show derived links, our language
defines the keyword derive to mark an an association end as derived. The derive
keyword requires an OCL expression which defines the derived links. For n-ary
associations, also the naming of the parts of a combination is required to be able
to evaluate an arbitrary OCL expression. In contrast to this, a derived expression
on a binary association can use a single context variable self, because there is
no combination of instances at association ends.

For example, to calculate the links for the association BorrowsCombined the
derive expression at the association end dCopy is evaluated for all pairs of User
and Book objects (these pairs are expressed by the signature (aUser:User,

aBook:Book) of the derive definition shown above. The derive expression returns
all copies associated with a given pair of a user and a book. For each Copy

object in the result set a link connected to the input pair and the copy object is
shown in the object diagram. In addition, the example shows how one can use a
multiplicity constraint on derived associations. In this example, the multiplicity
constraint 0..1 in the association end dCopy excludes double borrowings (a user
borrows more than one copy of the same book). The multiplicity violation of the
example state is reported to the user, as can be seen at the bottom of Fig. 10.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 501

Fig. 10. Screenshot of USE while validating a snapshot with derived ternary association

5 Related Work

Metamodeling semantics has been used in areas not focused in this paper. In [8]
it is applied to define the semantics of multiple inheritance using a set-theoretic
based metamodel. [16] shows its application to specify the semantics of OCL,
whereas [9,15] cover a detailed view on the overall topic of metamodeling seman-
tics. A combined view of different metamodeling levels is used in [10] to specify
the semantics of entity relationship diagrams and their transformation into the
domain of relational schemata.

As examples for the ongoing discussion about the need of a formal semantics
for UML and to what extend it should be defined, we refer to [27] and [5]. The
authors of [5] discuss the benefits and drawbacks of a precise UML specification
including runtime semantics from several points of view. Furthermore, the prob-
lems arising by trying to be a general purpose language for different domains
implying semantic variation points is explained. We believe, that both points of
view are valid, but the viewpoints change during the development process. At
an early stage of design, the used modeling language could allow to violate the
precise semantics. While the process continues, these violations should be more
and more forbidden until a state is reached where no violation is allowed.

Beside the vast amount of publications defining the semantics of UML, e. g.
[18,31,28], work covering the UML language elements presented in this paper has
been done. [4] gives a descriptive insight of using union and subsets and shows
its relation to composite structures.

502 L. Hamann and M. Gogolla

Exogenous definitions of the semantics for subset and union properties have,
for example, been provided in [1] using a set-theoretic formalization, [3,2] using
graph transformations, and [19] using a so-called property oriented abstract syn-
tax to define the semantics of what the authors call inter-association constraints
(these include subsets and union). These examples of exogenous definitions of
semantics all require to have expertise in the respective external semantic tech-
nology space. [20] introduces a UML profile covering redefinition and other ele-
ments. While the work is similar to ours in the sense that it stays in the same
technological space, the runtime semantics is enforced generating model specific
OCL constraints, like the ones shown at the beginning of Sect. 3. A semantics
for subsetting using the same transformation approach is given in [7]. Another
transformation approach to describe the runtime semantics of UML constraints
using OCL is shown in [6]. Here, the runtime semantics implied by UML com-
positions are translated to OCL constrains, i. e. the semantics must be defined
by a transformation into a specific application model. Whereas our semantics
works in a universal way, where constraints are formulated on the metamodel
level without the need for transformation.

In this paper we presented a way to validate (meta-)model instances by cre-
ating snapshots, i. e., instantiations, of these models and by examining their
behavior, for example, by checking the multiplicity constraints on an instance
or by examining the current states of the defined invariants. Other approaches
use automatic techniques to reason about models specified in UML/OCL. An
approach like [17] could, for example, be used to find valid configurations of
writable derived properties as discussed earlier in this paper. In addition, it can
be used like the ones in [29] and [25] to answer questions about the satisfiability
and other properties of a model.

6 Conclusion and Future Work

We presented a proposal to specify the runtime semantics of a modeling language
using a metamodel describing syntax and semantics in the same language. Us-
ing the same technology space reduces the overall complexity of the language
description, because knowledge of other languages is not required. Furthermore,
the process of specifying the language is improved, if this self describing tech-
nique is used in combination with tool-supported validation. As we have shown
in Sect. 4, bringing models into being by creating snapshots can give insights
into the model which are rather vague if only the static specification is used.

As future work, the application of our approach to other areas of modeling
languages, for example property redefinition and association generalization, seem
to be promising directions to extend our work. The covered elements of the UML
metamodel for validation and the options on the user interface in our tool USE
can be strengthened as well. Larger case studies with other modeling language,
for example domain-specific languages, will give further feedback on the usability
of the approach.

Endogenous Metamodeling Semantics for Structural UML 2 Concepts 503

References

1. Alanen, M., Porres, I.: A metamodeling language supporting subset and union
properties. Software and Systems Modeling 7(1), 103–124 (2008)

2. Amelunxen, C.: Metamodel-based Design Rule Checking and Enforcement. Ph.D.
thesis, Technische Universität Darmstadt (2009), dissertation

3. Amelunxen, C., Schürr, A.: Formalizing Model Transformation Rules for
UML/MOF 2. IET Software Journal 2(3), 204–222 (2008); Special Issue: Language
Engineering

4. Bock, C.: UML 2 Composition Model. Journal of Object Technology 3(10), 47–73
(2004), http://www.jot.fm/issues/issue_2004_11/column5

5. Broy, M., Cengarle, M.V.: UML formal semantics: lessons learned. Software and
System Modeling 10(4), 441–446 (2011)

6. Chavez, H.M., Shen, W.: Formalization of UML Composition in OCL. In: Miao,
H., Lee, R.Y., Zeng, H., Baik, J. (eds.) ACIS-ICIS, pp. 675–680. IEEE (2012)

7. Costal, D., Gómez, C., Guizzardi, G.: Formal Semantics and Ontological Analy-
sis for Understanding Subsetting, Specialization and Redefinition of Associations
in UML. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS,
vol. 6998, pp. 189–203. Springer, Heidelberg (2011)

8. Ducournau, R., Privat, J.: Metamodeling semantics of multiple inheritance. Science
of Computer Programming 76(7), 555–586 (2011)

9. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in
UML. In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939,
pp. 323–337. Springer, Heidelberg (2000)

10. Gogolla, M.: Exploring ER and RE Syntax and Semantics with Metamodel Object
Diagrams. In: Nürnberg, P.J. (ed.) Proc. Metainformatics Symposium (MIS 2005).
ACM Int. Conf. Proceeding Series, vol. 214, 12 pages. ACM Press, New York (2005)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

12. Gogolla, M., Hamann, L., Xu, J., Zhang, J.: Exploring (Meta-)Model Snap-
shots by Combining Visual and Textual Techniques. In: Gadducci, F., Mar-
iani, L. (eds.) Proc. Workshop Graph Transformation and Visual Modeling
Techniques (GTVMT 2011). ECEASST, Electronic Communications (2011),
journal.ub.tu-berlin.de/eceasst/issue/view/53

13. Hamann, L., Hofrichter, O., Gogolla, M.: OCL-Based Runtime Monitoring of Ap-
plications with Protocol State Machines. In: Vallecillo, A., Tolvanen, J.-P., Kindler,
E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 384–399.
Springer, Heidelberg (2012)

14. Hamann, L., Hofrichter, O., Gogolla, M.: On Integrating Structure and Behavior
Modeling with OCL. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MoDELS 2012. LNCS, vol. 7590, pp. 235–251. Springer, Heidelberg (2012)

15. Hausmann, J.H.: Dynamic META modeling: a semantics description technique for
visual modeling languages. Ph.D. thesis, University of Paderborn (2005)

16. Kleppe, A.: Object constraint language: Metamodeling semantics. In: Lano, K.
(ed.) UML 2 Semantics and Applications, pp. 163–178. John Wiley & Sons, Inc.
(2009)

http://www.jot.fm/issues/issue_2004_11/column5
journal.ub.tu-berlin.de/eceasst/issue/view/53

504 L. Hamann and M. Gogolla

17. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

18. Lano, K.: UML 2 Semantics and Applications. John Wiley & Sons, Inc. (2009)
19. Maraee, A., Balaban, M.: Inter-association Constraints in UML2: Comparative

Analysis, Usage Recommendations, and Modeling Guidelines. In: France, R.B.,
Kazmeier, J., Breu, R., Atkinson, C. (eds.) MoDELS 2012. LNCS, vol. 7590,
pp. 302–318. Springer, Heidelberg (2012)

20. Nieto, P., Costal, D., Gómez, C.: Enhancing the semantics of UML association
redefinition. Data Knowl. Eng. 70(2), 182–207 (2011)

21. OMG (ed.): UML Human-Usable Textual Notation (HUTN). Object Management
Group (OMG) (August 2004), http://www.omg.org/spec/HUTN/

22. OMG (ed.): Meta Object Facility (MOF) Core Specification 2.4.1. Object Man-
agement Group (OMG) (August 2011), http://www.omg.org/spec/MOF/2.4.1

23. OMG (ed.): UML Superstructure 2.4.1. Object Management Group (OMG)
(August 2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

24. OMG (ed.): Object Constraint Language 2.3.1. Object Management Group (OMG)
(January 2012), http://www.omg.org/spec/OCL/2.3.1/

25. Queralt, A., Teniente, E.: Verification and Validation of UML Conceptual Schemas
with OCL Constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)

26. Rumbaugh, J., Jacobson, I., Booch, G.: The UnifiedModeling Language - Reference
Manual, 2nd edn. Addison-Wesley (2004)

27. Rumpe, B., France, R.B.: Variability in UML language and semantics. Software
and System Modeling 10(4), 439–440 (2011)

28. Shan, L., Zhu, H.: Unifying the Semantics of Models and Meta-Models in the Multi-
Layered UML Meta-Modelling Hierarchy. Int. J. Software and Informatics 6(2),
163–200 (2012)

29. Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP 2011.
LNCS, vol. 6706, pp. 152–170. Springer, Heidelberg (2011)

30. A UML-based Specification Environment. Internet,
http://sourceforge.net/projects/useocl/

31. Varró, D., Pataricza, A.: Metamodeling Mathematics: A Precise and Visual
Framework for Describing Semantics Domains of UML Models. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 18–33. Springer,
Heidelberg (2002)

32. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series. Addison-Wesley, Reading (2003)

http://www.omg.org/spec/HUTN/
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/
http://sourceforge.net/projects/useocl/

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 505–521, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Computer Assisted Integration of Domain-Specific
Modeling Languages Using Text Analysis Techniques

Florian Noyrit, Sébastien Gérard, and François Terrier

CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
Point Courrier 174, Gif-sur-Yvette, 91191, France

{florian.noyrit,sebastien.gerard,francois.terrier}@cea.fr

Abstract. Following the principle of separation of concerns, the Model-driven
Engineering field has developed Domain-Specific Modeling Languages
(DSML) to address the increasing complexity of the systems design. In this
context of heterogeneous modeling languages, engineers and language design-
ers are facing the critical problem of language integration. To address this
problem, instead of doing a syntactic analysis based on the domain models or
metamodels as it is common practice today, we propose to adopt natural lan-
guage processing techniques to do a semantic analysis of the language specifi-
cations. We evaluate empirically our approach on seven real test cases and
compare our results with five state of the art tools. Results show that the seman-
tic analysis of textual descriptions that accompany DSMLs can efficiently assist
engineers to make well-informed integration choices.

1 Introduction

The principle of separating concerns is widely used in engineering to address com-
plexity. In the field of Model-Driven Engineering (MDE), this principle notably led to
the development of Domain-Specific Modeling Languages (DSML). Those languages
provide constructs that are directly aligned with the concepts of the domain in ques-
tion. A specific domain, in the broad sense, can be an application domain (e.g. auto-
motive) or a specific concern (e.g. requirement modeling).

Even though the principle of separation of concerns has demonstrated its practical ef-
fectiveness, it also implies heterogeneity issues within the development process. Indeed,
once the problems of the various concerns have been solved separately, one must reinte-
grate them to build the global system. The integration must be done by taking into con-
sideration the semantic relationships that may exist between the various DSML. This
problem is recognized as the problem of finding correspondences [1] to define an archi-
tectural framework. Identifying correspondences between DSMLs is required to define a
sound integration and to maintain the consistency of the architecture.

Also, when designing a DSML, it is good practice to first capture the conceptuali-
zation of the desired DSML with a domain model [2]. This domain model may be
concretized with a metamodel and thereby define a pure-DSL. Alternatively, it may
be used to design a UML profile: an extension of UML. In this case, the domain

506 F. Noyrit, S. Gérard, and F. Terrier

model must be integrated with UML by projecting it on the UML metamodel. To
design a UML profile, the language designers must look for the appropriate UML
concept to extend: the base metaclass. An appropriate base metaclass is one that can
host, on a semantic basis, the stereotype that will extend UML for a specific concern
or domain.

Those two integration problems are usual for languages designers, methodologists
and integrators in MDE. In both cases, the heart of the integration process is to ana-
lyze the semantic similarities that may exist between the concepts of different lan-
guages descriptions (DSML/DSML in the first integration problem, UML/DSML in
the second integration problem). Unfortunately, the analysis of those semantic rela-
tionships is mostly a manual activity intensively relying on the knowledge of engi-
neers who are experts in the languages to integrate, i.e., in the related domains and
concerns. Consequently, it is not only a time consuming task but also an error-prone
process. The purpose of this paper is to propose solutions to assist engineers in find-
ing semantic similarities between DSMLs.

To achieve this purpose, we propose to use Natural Language Processing (NLP)
and more precisely text analysis techniques to find the semantic similarities between
language descriptions. The purpose of this paper is to define how to apply advanced
results coming from the text analysis domain in the context of MDE. The main con-
tribution is that we have adapted text analysis techniques for our application domain
and added heuristics to improve their practical results in our specific context.

After detailing the problem of integrating DSMLs in section 2, we introduce the re-
lated work in section 3. Then, in section 4, we present the SemAnalysis approach we
developed. In section 5, we introduce the test set used to evaluate our approach and
we compare our results with five state of the art tools. In the meantime, we also ana-
lyze briefly two key success factors in our approach. Finally, we discuss future work
and we give a summary of the paper in section 6.

2 Challenges to Integrate DSML

Before presenting our approach, we first detail the complexity of the integration prob-
lems we want to address. Then, we show shortcomings of using only domain models
or metamodels to find an appropriate integration. Finally, we discuss the complexity
of the integration of domain models with UML to define UML profiles.

2.1 Complexity of the Integration Cases: There Are Many Pairs to Evaluate

The complexity of finding semantic relationships between DSMLs procedure implies
a algorithmic complexity if we consider only 1-1 correspondences (and 2
if we consider n-m correspondences). We will consider only 1-1 correspondences
because it is sufficient for our test set. The language designer must evaluate the se-
mantic similarity of all possible mappings. For instance, finding correspondences
between SysML [3] (a DSML dedicated to the design and development of complex
heterogeneous systems or systems of systems) and MARTE [4] (which is dedicated to
model-driven development of real-time and embedded systems) requires going
through 9000 pairs.

 Computer Assisted Integration of Domain-Specific Modeling Languages 507

As mentioned, the main difficulty in designing a UML profile is to find the best
UML base metaclasses that can host the specific domain concepts. The outline of the
usual procedure to find the most appropriate base metaclasses can be formulated as
following: for each, concept in the domain model and for each UML metaclass, com-
pare the semantics of the metaclass with the semantics of the domain concept. If there
is a metaclass that envelops completely the domain concept then do nothing. If there
are one or many metaclasses that can be the bases for the domain concept, then
create a stereotype that extends those metaclasses. If there is no metaclass that can be
the base for the domain concept, then either redefine the semantics of the domain
concept or give up on doing a UML profile. Analyzing this procedure led us to con-
sider that the problem essentially relies on finding semantic similarities too. Even
though this approach is a little bit naïve, it gives a sense of the complexity of the task.
This procedure implies a algorithmic complexity. Knowing that UML is about
250 metaclasses, for MARTE there are 75000 pairs to evaluate. Once again, if we
consider n-m correspondences, complexity will be greater.

Thanks to their knowledge on the UML metamodel or specific domains, experts
would most probably be able to focus on good candidates instead of going through all
pairs, reducing this way the complexity of the task. However, this is too dependent on
the knowledge the experts have in the different domains. This can lead to missing or
inadequate integration and hard review and verification tasks. To reduce the efforts, a
technique that provides automatically an ordered list of candidates would be of great
help for engineers and would assist them in their decision making.

2.2 Domain Models Don’t Contain Much Information

The definition of a DSML, be it implemented as a UML profile or a pure-DSL, con-
sists of: (1) its abstract syntax which defines the rules for constructing well-formed
language statements. It is usually defined using a metamodel, (2) one or several con-
crete syntaxes which is/are the physical rendering of symbols, (3) the semantics that
assign meanings to symbols and statements. The semantics can be defined formally
but they are most of the time informally given using a textual description in some
natural language.

Thus, domain models (defined with a metamodel) only define the abstract syntax
and the domain terminology. However the terminology only gives some clues on the
actual semantics of a concept: domain models as such don’t provide enough informa-
tion to make appropriate integration decision. Consider, for instance, the FlowPort
concept we represented in Fig. 1, which appears in both SysML and MARTE:

Fig. 1. The FlowPort definition in SysML and MARTE

At first glance, both concepts seem to be identical. However, if we look at their
semantics, we can observe important differences between them. Namely, the seman-

508 F. Noyrit, S. Gérard, and F. Terrier

tics of SysML state that a “FlowPort is an interaction point through which input
and/or output of items such as data, material, or energy may flow”. In MARTE,
“FlowPorts have been introduced to enable dataflow-oriented communications be-
tween components, where messages that flow across ports represent data items”.
MARTE’s FlowPort is actually a specialization of SysML’s FlowPort. On the con-
trary, concepts which seem to be different may be equivalent. For example, we can
mention the “StructuredComponent” concept introduced in MARTE and the “Block”
concept defined in SysML. Even though their syntactic definitions are rather different,
those two concepts are almost equivalent semantically.

In [5], Kappel G. et al. evaluated the possibility to integrate metamodels using state
of the art techniques from the ontology alignment community and reached a similar
conclusion: domain models/metamodels are probably not enough. We need to look at
another source of information. Domain models usually don’t come alone. The seman-
tics of the specific language is usually attached to the domain model: the specifica-
tions. As mentioned, the semantics are most often defined informally using a textual
description in some natural language. Thus, in practice, the semantics of every con-
cept is defined with a textual description. The key intuition is that semantic similari-
ties can be more accurately found using this untapped source of information. After all,
language designers that manually integrate DSMLs or design UML profiles actually
read the specifications to make appropriate integration choices.

2.3 UML Particularities

UML is a relatively complex language that contains several subtleties. As a conse-
quence, when projecting domain model on UML, language designers who have UML
expertise choose base metaclasses that may seem counter intuitive to non-experts. For
instance, we can mention the Assign stereotype in MARTE. Assign is used to allocate
application elements to execution platform elements. Choosing the Dependency as
base metaclass can appear as natural choice. However dependencies appear in the
client (source of the dependency). This contradicts the platform independence re-
quired in MARTE. As a consequence, the semantically neutral metaclass Comment
has been chosen.

There are several UML profiles readily available [6]. Some are even widely spread
standards (MARTE and SysML are good examples but we could also mention CCM
[7], EAST-ADL [8], or UTP [9] etc.). These UML profiles are frequently revised and
improved. They are a very interesting source of expertise because the language de-
signers of these UML profiles have already made appropriate choices for the base
metaclass for their specific domain. The intuition is that this source of expertise is a
kind of good Practice and common sense that should be used to find base metaclasses.

3 Related Work

The field of Schema/Ontology Alignment developed several matching techniques [10]
to find correspondences between concepts. These techniques are those usually applied

 Computer Assisted Integration of Domain-Specific Modeling Languages 509

to our problems. We will especially consider the Alignment API [11], FOAM [12],
CROSI [13] and Lily [14] tools. They are mainly based on finding terminological or
structural similarities (e.g. Levenshtein distance and similarity flooding [15]). A few
try to go beyond by trying to find semantic similarities, e.g., S-match [16]. In addi-
tion, while some techniques only use the input ontologies, some rely on external
source of information such as lexical databases (most notably WordNet [17]) or upper
ontologies. Some tools use the formal semantics of OWL [18] ontologies to infer
similarities on a logical basis, e.g., LogMap [19]. In the MDE field, AMW [20] is a
framework that can be used to implement heuristics mostly base on the syntax to gen-
erate weaving models using metamodels as inputs. The results from our first experi-
ments with these approaches were aligned with those reported in [5]: if the terminolo-
gies are too far apart, results on finding similarities are very low. Still, on average,
Alignment API offers the best results on our test sets.

To address the problem of mapping a domain model on UML, Giachetti [21] pro-
poses an approach where language designers must name domain concepts with the
name of the corresponding UML metaclasses so that the UML profile can be generat-
ed automatically. This assumption is not reasonable because it assumes that the lan-
guage designer already knows how the domain is projected on UML.

4 The SemAnalysis Approach

Compared to the aforementioned techniques, SemAnalysis proposes to exploit seman-
tic information available in the form of short texts in a natural language. Instead of
analyzing the domain model itself, we analyze the specifications in natural language
that accompany the domain model. To do that, we use NLP techniques that will quan-
tify the semantic similarity between textual descriptions of concepts. The key ratio-
nale is that specifications that “talk” about the same things are somehow related.

The point of our research is to study the applicability of NLP techniques to find
semantic similarity that are not identified by techniques that only use domain models
as input. We adapted the Explicit Semantic Analysis [22] technique for our use cases
because it demonstrates good practical results [23]. We adapted this technique to our
specific context.

4.1 From Domain Model to UML

The objective is to find the semantic similarities that may exist between the domain
concepts and the UML metaclasses in order to design a UML profile. The inputs for
this integration case are:

─ The domain model we want to project on UML where each specific concept is
commented by its textual description extracted from the specification.

─ The UML metamodel with a comment per metaclass that contains the description
extracted from the specification.

510 F. Noyrit, S. Gérard, and F. Terrier

─ A set of well-known and widely adopted UML profiles that will constitute the
training set. Each stereotype is commented by the textual description extracted
from the specification.

Fig. 2 depicts the algorithm of the approach we propose to address this problem:

Fig. 2. Outline of the algorithm to find UML base metaclasses

Standard UML profiles contain expertise that is interesting to use to build a train-
ing set (step 1). This is done by concatenating the stereotypes’ description with the
description of the extended metaclasses (step 1.a). This step outputs a UML metamo-
del with metaclasses commented with the UML specifications supplemented with the
specifications of the UML profiles. The rationale is that a stereotype is somehow a
refinement of the base metaclasses with domain-specific semantics.

This artifact is then preprocessed to remove stop words and to stem [24] the useful
words. Then, each word is weighted using TF-IDF [25] measure (step 1.b, detailed in
step 2). This measure weights more words that appear frequently in a text while not
appearing frequently in other texts. The domain model’s textual descriptions are
processed similarly (step 2): stop words are removed and remaining words are
stemmed and weighted using TF-IDF.

The semantic interpreter is prepared on the basis of Wikipedia (step 3). However,
we don’t use the entire Wikipedia database (which contains more than 4.1 million

 Computer Assisted Integration of Domain-Specific Modeling Languages 511

articles on March 12, 2013). For each UML metaclass and domain concept, we gather
only 10 Wikipedia articles using the 10 most significant words computed in previous
steps (step 3.a.). Those 10 Wikipedia articles are the 10 first results returned by the
search engine of Wikipedia. Therefore for each concept, we gather at most 100 Wiki-
pedia articles. It is usually less because some words are significant for multiple con-
cepts (in this case, Wikipedia search is done only once) and because Wikipedia search
can give less than 10 results. This is a practical choice that helps to speed up the
whole process yet maintaining a representative shortened Wikipedia database. The
gathered Wikipedia articles are processed similarly to the inputs: stop words are re-
moved and remaining words are stemmed and weighted using TF-IDF (step 3.b.).

The interpretation is done by computing the Explicit Semantics of every textual de-
scription (step 4). The Explicit Semantics is the weighted vector of Wikipedia articles
ordered by their relevance to the textual description. This vector is the interpretation
vector. For each Wikipedia article the weight is computed as follows: ∑ ∈ where is the vector of weighted words from the
textual descriptions (of either the training set or the domain model) and the
weighted words from the Wikipedia articles. For more details the reader can refer to
[22]. Intuitively the more a word is significant to both the textual description of a
domain concept and the Wikipedia article, the more the Wikipedia article is relevant
to this textual description and therefore must be more weighted.

Now that domain concepts and UML metaclasses have an interpretation vector to
represent them, similarities can be computed. Every possible pair , is evaluated by computing the cosine simi-
larity (step 5). This similarity measure ranges from -1 to 1 where −1 means that the
domain concept and the metaclass are exactly opposites, 1 means that they are exactly
the same and 0 means they are independent. The cosine similarity measure is used to
order the UML metaclasses: the similarity vector. The closer the value is to 1, the
more likely the metaclass is a good candidate for the extension. In practice, domain
concepts that are sub-concepts of another rarely extend a base metaclass directly. This
heuristic helps to identify the domain concepts that will probably extend a base me-
taclass. Concretely, for each domain concept that may extend a base metaclass (i.e. no
super-concept), if denotes the similarity vector then, the similarity ⁄ .

We mentioned in the related work that existing techniques provide good results
when terminologies are close. Thus, if terminologies are close, instead of using our
results directly, the language designer can decide, a priori, to combine our semantic
analysis with the terminological/syntactical similarities provided by other alignment
tools (step 6).

4.2 Find Semantic Similarities between DSMLs

The inputs for this problem are the two domain models where concepts are com-
mented by the corresponding textual description extracted from the specifications.
Fig. 3 depicts the algorithm.

512 F. Noyrit, S. Gérard, and F. Terrier

Fig. 3. Outline of the algorithm to find semantic similarities between DSMLs

The two domain models are preprocessed to remove stop words and stem remaining
words from textual descriptions. Then, each word is weighted using TF-IDF (step 1).

As in the previous algorithm, the semantic interpreter is prepared (step 2) by
gathering Wikipedia articles on the basis of the most significant words. Wikipedia
articles are processed similarly to the domain models: stop words are removed and
remaining words are stemmed and weighted using TF-IDF. The semantic interpreta-
tion is done by computing the Explicit Semantics of each textual description: a
weighted vector of Wikipedia articles ordered by their relevance to the concept (step
3). Every possible pair 1, 2 is evaluated
by computing the cosine similarity (step 4).

As in the previous problem, if terminologies are close the language designer can
combine our semantic analysis with the terminological/syntactical similarities pro-
vided by other alignment tools (step 5).

5 Evaluation

In this section, we evaluate our approach. First, we introduce the test set used for the
evaluation. Then we present the empirical results. The language specifications of all
the cases we use in our test set are publically available.

5.1 Test Set

Concerning the problem of finding the base metaclasses, we applied our approach on
EAST-ADL [8], MARTE [4], SysML [3], UTP [9] and SoaML [26] domain-specific
languages. The four latter are standard UML profiles recommended by the Object
Management Group.

 Computer Assisted Integration of Domain-Specific Modeling Languages 513

─ EAST-ADL is dedicated to the development of automotive electronic systems.
EAST-ADL provides both a UML profile and a metamodel. The latter can be con-
sidered as domain model. It defines about 100 concepts.

─ MARTE provides both a domain model and a UML profile.
─ SysML doesn’t provide a domain model. Still it defines a subset of UML (known as

UML4SysML). This subset supplemented with the stereotypes can be considered
as a domain model.

─ The UML Testing Profile (UTP) provides concepts for the design, visualization,
specification, analysis, and documentation of the artifacts involved in testing. It de-
fines a little bit less than 30 concepts. Unfortunately doesn’t provide with the do-
main model. We created one on the basis of the profile. Even though it is not ideal
domain model, it is still representative.

─ The Service oriented architecture Modeling Language (SoaML) is dedicated to
modeling and design of services within a Service-Oriented Architecture. It pro-
vides both a domain model and a UML profile. It defines a little bit less than 30
concepts.

For each test case, the training set consists of all those languages but the one we try to
integrate. For all these test cases, we haven’t combined our semantic analysis with
syntactic analysis.

Concerning the problem of finding semantic similarities between DSMLs, we
tested the approach on the two following cases:

─ MARTE/SysML. These two DSMLs have significant overlaps and their combina-
tion is highly likely in the design of complex technical systems [27]. The main
overlaps are: components modeling, allocation definition and quantitative analysis.
For the rest, these languages are either independent or complementary. For con-
cepts that match, the terminologies are really close.

─ MOF (EMOF) [28]/EMF Ecore [29]. They serve the same purpose: both are dedi-
cated to the specification of metamodels. EMF Ecore is a variant of EMOF devel-
oped as part of the Eclipse Modeling Framework. They are mostly aligned and the
terminologies are very similar.

For all these test cases, we have combined our semantic analysis with syntactic analy-
sis.

Even though computation in our approach is polynomial in time, it should be noted
that in practice this will not raise scalability issues because DSMLs have a limited
number of concepts and therefore the computation time is satisfactory. To the best of
our knowledge, DSMLs with more than 300 concepts like MARTE are exceptional.
On our test cases, computation time was under 1 minute.

5.2 Evaluation Procedure

In addition to SemAnalysis, the test set has been used with the Alignment API,
FOAM, CROSI, LogMap and Lily tools. Those tools use OWL as input format.
Therefore domain models have been translated to OWL ontologies by applying the

514 F. Noyrit, S. Gérard, and F. Terrier

transformations recommended in ODM [30]. All the tools we used in the evaluation
(including ours) give, for each pair, the confidence that the pair matches. The value
ranges from 0 (low confidence) to 1 (high confidence). Some tools focus only on
equivalence and some also consider the subsumption relationship. Whatever the kind
of relationship, we consider that the elements are semantically related. We didn’t use
results from S-Match and AMW because these tools output results without confidence
values. Thus, it would have been hard to fairly compare them with the others.

The evaluation is done by comparing the alignment proposed by the tools with a
reference alignment. For the problem of finding the UML base metaclasses when
designing a UML profile, the reference is given by the mapping that exists between
the domain model and the actual UML profile. This mapping was already defined in
the standard for MARTE. For East-ADL, SoaML, SysML and UTP the mapping is
trivial. For the problem of finding semantic similarities between DSMLs, we manual-
ly defined the references. For MOF/EMF ECore, the mapping is trivial. For
MARTE/SysML, we defined a reference that follows the alignment guidelines pro-
posed in [27].

We use the precision, recall and F-Measure to assess the quality of the alignments.
The complete results for the different test cases are given at the end of this paper in
Table 4-Table 10. They present the precision (Pre.), recall (Rec.) and F-Measure (F)
measures.

Otherwise, we evaluated the terminology similarity of our test cases. To do so, we
compute the Levenshtein distance of each pair that appears in the reference alignment.
We compare the average Levenshtein distance (ALD) with the average length of
names (ALN) of concepts that appear in the reference alignment. We consider that
terminologies are similar when / 0.5. Table 1 reports the terminology
similarity of our test cases. It confirms that tests cases for the problem of finding
semantic similarity between DSMLs have very similar terminologies.

Table 1. Terminology similarity analysis

 Average length of names (ALN) Average Levenshtein distance (ALD) ALD/ALN
East-ADL 11.72 12.81 1.09
MARTE 13.90 11.31 0.81
SysML 10.49 9.31 0.89
UTP 13.28 11.10 0.84
SoaML 9.67 8.04 0.83
SysML/MARTE 11.20 3.60 0.32
MOF/Ecore 9.46 3.69 0.39

5.3 Analysis and Interpretation of the Results

Table 2 gives the synthesis of F-measures with a threshold to 0.9 for the different test
cases and the different tools. SemAnalysis provides clear progress to the problem of
finding the base metaclass and only slight improvements to the problem of finding
semantic similarities between DSMLs.

 Computer Assisted Integration of Domain-Specific Modeling Languages 515

Table 2. Synthesis of F-Measure with threshold to 0.9

SemAnalysis Crosi Align. API FOAM Lily LogMap
EAST-ADL 0.34 0.03 0.03 0.00 0.03 0.00
SysML 0.52 0.00 0.00 0.00 0.00 0.00
MARTE 0.14 0.00 0.00 0.02 0.02 0.00
UTP 0.44 0.00 0.00 0.00 0.00 0.00
SoaML 0.48 0.30 0.30 0.30 0.30 0.00
SysML-MARTE 0.80 0.71 0.71 0.20 0.80 0.00
MOF-Ecore 0.76 0.00 0.76 0.54 0.76 0.00
Arithmetic mean 0.50 0.15 0.26 0.15 0.27 0.00

Alignment API and Lily provide results which are comparable to those from Se-
mAnalysis so that improvements from SemAnalysis are not obvious. To test the signi-
ficance of the improvement of our tool, a t-test can be used [31]. The null hypothesis
that we want to reject is that SemAnalysis provides, on average, an F-Measure that is
lower or equal to those provided by Alignment API or by Lily. To be significant, the
two-tailed p-value must be 0.05. The t-test can be used only on normal distribu-
tions. Shapiro-Wilk test confirms the normality (0.953 for SemAnalysis, 0.752
for Alignment API and 0.749 for Lily). The t-test gives a two-tailed p-value of
0.0113 for Alignment API and 0.0207 for Lily. We can therefore reject the null hypo-
thesis and conclude that improvements provided by SemAnalysis are significant. Note
that improvements from SemAnalysis start to be insignificant with a threshold to 0.5
on confidence.

All those results confirm what we mentioned in the related work section and our
first intuition: if the terminology of matching concepts is similar, tools based only on
metamodels/domain models offer rather good integration results. If the terminologies
are far apart, the domain models don’t contain enough information. The results show

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

East

SysML

Marte

UTPSoaML

SysML-MARTE

MOF-Ecore

SemAnalysis
Crosi
Align. API
FOAM
Lily
LogMap

516 F. Noyrit, S. Gérard, and F. Terrier

that the syntactic similarity heuristic is not sufficient and that the semantic analysis
we propose can provide significant improvements. More important, results confirm
the hypothesis that specifications contain semantic information that is exploitable. Its
use can complete the analysis based on syntactic information.

To illustrate this, in the MOF-ECore test case, most of the concepts in Ecore cor-
respond to MOF ones prefixed with an ‘E’ (e.g. Class ≍ EClass, NamedElement ≍
ENamedElement, Operation ≍ EOperation). Interestingly, one match that is not trivial
in this test case is the Comment ≍ EAnnotation match. Alignment API, Lily, FOAM
and LogMap give a confidence of 0 and CROSI gives 0.19 while SemAnalysis gives
1. For the aforementioned match that exists between Block and StructuredComponent
in the SysML-MARTE test case, Alignment API, LogMap, Lily and FOAM give a
confidence of 0 and CROSI gives 0.11 while SemAnalysis gives 0.56. In other words,
results from other tools are very/too influenced by the similarity of the terminologies.

To test the intuition that existing UML profiles are a good source of expertise, we
studied the correlation between the number of profile in the training set and the evolu-
tion of the F-Measure. We found a high positive Spearman's rank correlation.
Although encouraging, this correlation measure must be considered very carefully
because the number of profiles we put in the training set is low and because we may
face overfitting issues on large scale.

If we consider only the matches with 1-0.9 confidence, i.e., the matching pairs we
are the most confident about, the F-Measures are rather good. The evaluation shows
that fully automated integration is out of reach. However, we can assist the language
designers during the integration by showing an ordered short list of candidates. To
evaluate to which extent the ordering is appropriate and therefore to which extent the
tool assists the engineers, we measured the average ranking of the appropriate candi-
date (i.e. the average number of candidates that must be reviewed manually before
reaching the appropriate candidate). Table 3 reports these values for each test case (-
means that the tool gave a confidence of 0 to all the candidates and therefore no or-
dering is provided).

Table 3. Arithmetic mean number of candidate to review manually (σ: standard derivation)

SemAnalysis Crosi Align. API FOAM Lily LogMap
 Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ
EAST-ADL 5 6.6 145 79.2 44 43.0 - - 49 42.9 51 43.5
SysML 3 2.4 102 88.9 86 80.8 - - 89 79.6 - -
MARTE 9 16.0 105 87.0 106 76.7 109 73.7 107 75.4 - -
UTP 3 4.0 110 65.9 92 79.5 - - 93 78.3 99 78.0
SoaML 4 6.6 101 91.4 44 47.4 47 47.5 43 47.5 56 58.1
SysML-MARTE 5 0.7 26 73.3 48 101.2 191 91.2 33 96.0 75 118.0
MOF-Ecore 3 0.6 2 2.8 5 6.7 7 7.4 3 5.1 - -

Those results confirm that our tool provides a very useful assistance. For example,
in the SysML test case, on average, the appropriate match is the third in the list (of
247 UML metaclasses) proposed by SemAnalysis while it is the 86th for Alignment
API. SemAnalysis provides very significant improvements in terms of assistance. By
“reading” the specifications like human agent would have done, SemAnalysis can
“understand” the domain concepts and therefore propose more appropriate correspon-
dences than tools that only consider the information encoded in the domain models.

 Computer Assisted Integration of Domain-Specific Modeling Languages 517

5.4 Analysis of Two Success Factors

As the textual description of each concept is at the heart of our approach, we must
analyze to which extent the length of textual descriptions is important in our ap-
proach. Therefore we decided to check if there was a correlation between the number
of words in the textual description of a concept and the F-Measure for this concept.
On our test set, on average, we find a low positive Pearson product-moment correla-
tion of 0.12 and a low positive Spearman's rank correlation of 0.13. We think these
results follow the well-known principle: it is not so much the length of a text as what
it actually says that makes it meaningful.

To speed up the process of preparing the semantic interpreter, we don’t process the
entire Wikipedia database and gather only a limited number of articles. We must ana-
lyze to which extent this practical choice impacts our results. We informally tested
this practice by increasing the number of gathered articles. On our test set, we haven’t
observed clear improvements on the results by gathering more articles. However we
have observed some improvements when we gathered manually the articles from
Wikipedia categories related to the domain of the DSML e.g. “Systems_engineering”,
“Automotive_industry” categories. We interpret this in a similar way than for the
length of the textual descriptions: it is not so much the number of articles as the ade-
quacy of the articles with the domain of the DSML to integrate that is important.

6 Summary and Future Work

We considered two usual DSML integration problems in MDE; namely the problem
of finding the integration between a domain model and UML and the problem of
finding semantic similarities between DSMLs. We showed that these problems are
inherently hard to address because domain models contain limited information and
because UML is complex. We followed the intuition that textual descriptions that
accompany the domain model and the existing UML profiles could be exploited to
find more accurately semantic similarities. We developed an approach based on text
analysis techniques that reads and interprets language specifications written in natural
language to assist the integration process. We evaluated this approach on seven real
test cases and compared our results with five state of the art tools. On our test set, our
approach provides significant improvements and really useful assistance. Our results
confirm the intuition: if the domain models don’t contain enough information (i.e.
when terminologies are too far apart), textual descriptions can be exploited to assist
the engineers to integrate DSMLs.

The results are very encouraging but our approach should be tested with a larger
test set. One of the main reasons for the limited size of our test set is that specifica-
tions are hard to process because they are only available in PDF or PS formats. To-
day, the preparation of specifications for automatic processing is very laborious. It
requires transforming plain text into structured data. We think there is a real need to
define or use standards to transform today’s specifications into actual models [32].
This would enable information retrieval and various kinds of computations on the
content of the specifications. In addition, it would help to improve the consistency and
the overall quality of specifications.

518 F. Noyrit, S. Gérard, and F. Terrier

The point of our research was to assess the applicability of NLP techniques to ad-
dress usual integration problems in MDE. We chose one technique that demonstrates
good practical results. Now that we have shown how NLP techniques can be used in
our context and how useful they can be, we shall try other techniques (e.g. Latent
Semantic Analysis [33], Corpus-based and Knowledge-based [34], Kullback–Leibler
divergence for text categorization [35]).

Table 4. Measures for the EAST-ADL test case

1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 0.31 0.40 0.34 0.30 0.40 0.34 0.25 0.50 0.34 0.24 0.59 0.34 0.20 0.67 0.31
Crosi 0.40 0.02 0.03 0.40 0.02 0.03 0.40 0.02 0.03 0.33 0.02 0.03 0.35 0.05 0.08
Align-API 0.40 0.02 0.03 0.38 0.02 0.04 0.50 0.08 0.13 0.40 0.11 0.17 0.33 0.12 0.17
FOAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lily 0.29 0.02 0.03 0.30 0.02 0.04 0.27 0.03 0.06 0.20 0.03 0.05 0.20 0.04 0.06
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.02 0.03 0.29 0.02 0.03

Table 5. Measures for the SysML test case

 1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 0.43 0.67 0.52 0.43 0.69 0.53 0.35 0.72 0.47 0.27 0.78 0.40 0.23 0.86 0.37
Crosi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.11 0.18
Align-API 0.00 0.00 0.00 1.00 0.08 0.15 0.50 0.11 0.18 0.45 0.14 0.21 0.35 0.19 0.25
FOAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lily 0.00 0.00 0.00 1.00 0.03 0.05 0.43 0.08 0.14 0.36 0.11 0.17 0.29 0.11 0.16
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6. Measures for the MARTE test case

1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 0.10 0.27 0.14 0.09 0.29 0.13 0.07 0.37 0.12 0.06 0.41 0.10 0.04 0.43 0.08
Crosi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.04
Align-API 0.00 0.00 0.00 0.06 0.06 0.06 0.04 0.06 0.05 0.03 0.08 0.04 0.02 0.08 0.04
FOAM 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Lily 0.03 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.03
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7. Measures for the UTP test case

1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 0.39 0.52 0.44 0.39 0.52 0.44 0.35 0.61 0.45 0.26 0.68 0.38 0.23 0.74 0.35
Crosi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Align-API 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.06 0.09 0.10 0.06 0.08
FOAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lily 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.03 0.06 0.17 0.03 0.05 0.08 0.03 0.05
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Computer Assisted Integration of Domain-Specific Modeling Languages 519

Table 8. Measures for the SoaML test case

1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 0.40 0.61 0.48 0.39 0.61 0.47 0.28 0.65 0.39 0.22 0.78 0.35 0.17 0.87 0.29
Crosi 1.00 0.17 0.30 1.00 0.17 0.30 1.00 0.17 0.30 1.00 0.17 0.30 0.80 0.17 0.29
Align-API 1.00 0.17 0.30 1.00 0.17 0.30 0.83 0.22 0.34 0.71 0.22 0.33 0.63 0.22 0.32
FOAM 1.00 0.17 0.30 1.00 0.17 0.30 1.00 0.17 0.30 1.00 0.17 0.30 1.00 0.17 0.30
Lily 1.00 0.17 0.30 1.00 0.17 0.30 0.83 0.22 0.34 0.83 0.22 0.34 0.83 0.22 0.34
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.13 0.23 1.00 0.13 0.23

Table 9. Measures for the SysML/MARTE test case

1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 1.00 0.67 0.80 1.00 0.67 0.80 0.88 0.78 0.82 0.89 0.89 0.89 0.57 0.89 0.70
Crosi 1.00 0.56 0.71 1.00 0.56 0.71 0.83 0.56 0.67 0.63 0.56 0.59 0.50 0.78 0.61
Align-API 1.00 0.56 0.71 0.75 0.67 0.71 0.64 0.78 0.70 0.50 0.78 0.61 0.29 0.78 0.42
FOAM 1.00 0.11 0.20 0.50 0.11 0.18 0.50 0.11 0.18 0.50 0.11 0.18 0.50 0.11 0.18
Lily 1.00 0.67 0.80 1.00 0.67 0.80 0.88 0.78 0.82 0.67 0.89 0.76 0.57 0.89 0.70
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.67 0.80 1.00 0.67 0.80

Table 10. Measures for the MOF/Ecore test case

1-0.9 1-0.8 1-0.7 1-0.6 1-0.5
Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F Pre. Rec. F

SemAnalysis 1.00 0.62 0.76 1.00 0.62 0.76 1.00 0.62 0.76 1.00 0.62 0.76 1.00 0.62 0.76
Crosi 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.08 0.14 1.00 0.38 0.56 0.89 0.62 0.73
Align-API 1.00 0.62 0.76 1.00 0.62 0.76 0.89 0.62 0.73 0.73 0.62 0.67 0.67 0.62 0.64
FOAM 0.70 0.44 0.54 0.58 0.44 0.50 0.58 0.44 0.50 0.58 0.44 0.50 0.58 0.44 0.50
Lily 1.00 0.62 0.76 1.00 0.62 0.76 1.00 0.62 0.76 1.00 0.62 0.76 0.89 0.62 0.73
LogMap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

References

1. ISO/IEC/IEEE: ISO/IEC/IEEE 42010 - Systems and software engineering - Architecture
description (2011)

2. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In:
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (2007)

3. Object Management Group: Systems Modeling Language (SysML) - Version 1.2 - for-
mal/2010-06-01 (2010), http://www.omg.org/spec/SysML/1.2/

4. Object Management Group: UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems - Version 1.1 - formal/2011-06-02 (2011),
http://www.omg.org/spec/MARTE/1.1/

5. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M., Wimmer,
M.: Matching Metamodels with Semantic Systems - An Experience Report. In: BTW 2007
Workshop Model Management und Metadaten-Verwaltung, Aachen (2007)

6. Pardillo, J.: A Systematic Review on the Definition of UML Profiles. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 407–422.
Springer, Heidelberg (2010)

520 F. Noyrit, S. Gérard, and F. Terrier

7. Object Management Group: CORBA Component Model (CCM) - Version 4.0 - formal/06-
04-01 (2006), http://www.omg.org/spec/CCM/4.0/

8. ATESST: EAST-ADL 2.1 RC3 Specification (2010), http://www.atesst.org/
9. Object Management Group: UML Testing Profile (UTP) - Version 1.0 - formal/2005-07-

07 (2005), http://www.omg.org/spec/UTP/1.0/
10. Ontology Matching, http://www.ontologymatching.org/
11. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The Alignment API 4.0. Se-

mantic Web Journal 2, 3–10 (2011)
12. Ehrig, M., Sure, Y.: FOAM–Framework for Ontology Alignment and Mapping Results of

the Ontology Alignment Evaluation Initiative. In: Integrating Ontologies Workshop Pro-
ceedings (2005)

13. Kalfoglou, Y., Hu, B.: CROSI Mapping System (CMS), results of the 2005 ontology
alignment contest. In: Integrating Ontologies Workshop Proceedings (2005)

14. Wang, P., Xu, B.: Lily: Ontology alignment results for oaei 2008. In: Proceedings of the
Third International Workshop on Ontology Matching, pp. 167–175 (2008)

15. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In: International Conference on Data
Engineering (2002)

16. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an implementa-
tion of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS
2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)

17. Miller, G.A.: WordNet: a lexical database for English. Communications of the ACM 38
(1995)

18. W3C: OWL2 Web Ontology Language, http://www.w3.org/TR/2009/REC-
owl2-overview-20091027/

19. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology match-
ing. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidel-
berg (2011)

20. Atlas Model Weaver (AMW), http://www.eclipse.org/gmt/amw/
21. Giachetti, G., Marín, B., Pastor, O.: Using UML as a Domain-Specific Modeling Lan-

guage: A Proposal for Automatic Generation of UML Profiles. Advanced Information Sys-
tems Engineering (2009)

22. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based
Explicit Semantic Analysis. In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence (2007)

23. Gottron, T., Anderka, M., Stein, B.: Insights into explicit semantic analysis. In: Proceed-
ings of the 20th ACM International Conference on Information and Knowledge Manage-
ment, pp. 1961–1964 (2011)

24. Porter Stemming Algorithm,
http://tartarus.org/~martin/PorterStemmer/

25. McGill, M.J., Salton, G.: Introduction to Modern Information Retrieval. McGraw-Hill
(1983)

26. Object Management Group: Service oriented architecture Modeling Language (SoaML) -
Version 1.0 - formal/2012-03-01 (2012),
http://www.omg.org/spec/SoaML/1.0/

27. Espinoza, H., Cancila, D., Selic, B., Gérard, S.: Challenges in combining sysML and
MARTE for model-based design of embedded systems. In: Paige, R.F., Hartman, A., Ren-
sink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 98–113. Springer, Heidelberg
(2009)

 Computer Assisted Integration of Domain-Specific Modeling Languages 521

28. Object Management Group: Meta Object Facility (MOF) - Version 2.4.1 - formal/2011-08-
07 (2011), http://www.omg.org/spec/MOF/2.4.1/

29. Eclipse Modeling Framework (EMF),
http://www.eclipse.org/modeling/emf/

30. Object Management Group: Ontology Definition Metamodel (ODM) - Version 1.0 - for-
mal/2009-05-01 (2009), http://www.omg.org/spec/ODM/1.0/

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimenta-
tion in Software Engineering: an Introduction. Kluwer Academic Publishers (2000)

32. Skene, J., Emmerich, W.: Specifications, not meta-models. In: Proceedings of the 2006 In-
ternational Workshop on Global Integrated Model Management, pp. 47–54. ACM, New
York (2006)

33. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
Latent Semantic Analysis. Journal of the American Society for Information Science (1990)

34. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and Knowledge-based Measures
of Text Semantic Similarity. In: Proceedings of the National Conference on Artificial In-
telligence (2006)

35. Bigi, B.: Using Kullback-Leibler Distance for Text Categorization. Advances in Informa-
tion Retrieval (2003)

Towards the Notation-Driven

Development of DSMLs

Laurent Wouters

Université Pierre et Marie Curie, France
Laboratoire d’Informatique de Paris 6 (LIP6)
Commissariat à l’Énergie Atomique, France

laurent.wouters@cea.fr

Abstract. Domain-Specific Modeling Languages (DSML) enable
domain experts to leverage Model-Driven Engineering methods and tools
through concepts and notations from their own domain. The notation of
a DSML is critical because it is the sole interface domain experts will have
with their tool. Unfortunately, the current process for the development
of DSMLs strongly emphasizes the abstract syntaxes and often treats
the notations (concrete syntaxes) as byproducts. Focusing on the case of
visual DSMLs, this paper proposes to automatically generate a DSML’s
abstract syntax from the specification of its concrete syntax. This shift
towards the notation-driven development of DSMLs is expected to en-
able the production of DSMLs closer to domain experts’ expectations.
This approach is validated by its implementation in a prototype, its ap-
plication on an industrial case and the results of an empirical study.

Keywords: Domain-Specific Modeling, Visual Languages.

1 Introduction

Domain-Specific Modeling Languages (DSMLs) enable domain experts to model
and design products by only manipulating concepts from their own domain. For
example, a DSML for Electrical Engineering enables the engineers to design elec-
trical circuits using concepts such as Capacitor, Resistor, Diode, etc. Unfortu-
nately, DSMLs are still difficult to produce and software engineers are contracted
for this purpose. They usually have to interact with the domain experts in order
to elicit a part of their knowledge so that they can produce a DSML that fit the
experts’ expectations.

The acceptance of a DSML can be compared to the acceptance of any new
technology by a class of users, a field that has been heavily studied [4,8,22]. Mod-
els of the user acceptance have been proposed in [9]. Two of the most prominent
factors for acceptance are the perceived ease of use and the perceived usefulness
of the new technology [8]. The notation (concrete syntax) is the first contact of
domain experts with their DSML and thus plays a crucial role in its acceptance.
This raises the issue of the definition of notations answering well domain ex-
perts’ expectations. The notations are parts of the DSMLs that are built through

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 522–537, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards the Notation-Driven Development of DSMLs 523

specific development processes. These processes must ensure the quality of the
DSMLs produced with them and in particular their notations.

Because the domain experts’ expectations naturally tend to focus on the nota-
tion, software engineers tasked to produce a DSML may want to emphasize this
aspect. However, the current approaches and tools for the design and implemen-
tation of DSMLs strongly emphasize the abstract syntaxes. For example, using
the Eclipse EMF and GMF platform, a software engineer must first define its
abstract syntax using ECORE and then assign visual symbols to the elements of
this metamodel. In this way, the development of a DSML is driven by its meta-
model. This approach has several issues, most notably its rigidity as identified
in [1, 12, 16], which hinders the optimal development of the DSMLs’ concrete
syntaxes.

To alleviate this issue, we propose to shift the focus of the software engineers
onto the concrete syntaxes, thus phasing in a notation-driven approach to the
development of DSMLs. In this new approach, a software engineer would first
build and validate the concrete syntax of a DSML with the domain experts
in order to maximize their acceptance, and then take care of the underlying
concepts, i.e. the abstract syntax. To make possible this approach we rely on
existing approaches for the specification of DSMLs’ concrete syntaxes in the
form of visual grammars, focusing solely on DSMLs with visual concrete syntaxes.
This paper then proposes a way to automatically generate the DSMLs’ abstract
syntaxes from the visual grammars.

To give a better understanding of this approach, this paper summarizes the
relevant state of the art in Section 2, including existing approaches for the spec-
ification of DSMLs’ concrete syntaxes. Section 3 then presents how a DSML’s
abstract syntax can be derived from the specification of its concrete syntax. This
approach is validated in Section 4 by its application on a use case coming from
the aeronautic industry, as well as an empirical study. The results are discussed
in Section 5. We finally conclude in Section 6.

2 State of the Art

In order to focus the attention of the software developers onto the DSMLs’ con-
crete syntaxes, the notation-driven development of DSMLs needs an approach
for the direct specification of the concrete syntaxes detached from any abstract
syntax. Interestingly, visual DSMLs’ concrete syntaxes are in fact visual lan-
guages that can be specified in varied ways. As defined in [6], a visual notation
is a visual language noted L formed over an alphabet of visual symbols noted
S. A diagram expressed in this language is then a visual sentence, a set of re-
lated visual symbols from S. An example of visual language is shown in Figure 1
where the rounded rectangles and the arrows constitute visual symbols. The
visual symbols are characterized by attributes categorised as follow:

– Graphical attributes are related to the visual appearance of a symbol, e.g.
the size, shape and color of the rounded rectangles in Figure 1.

524 L. Wouters

– Syntactic attributes define the relations of a visual symbol with other sym-
bols in order to determine the correctness of a visual sentence. For example,
arrows in Figure 1 are only permited to have the rounded rectangles as origin
and target.

– Semantic attributes are related to how the visual symbols are to be inter-
preted. In the context of this work, semantic attributes are how the visual
symbols are mapped to the abstract syntax of a modeling language. For
example, Figure 1 is to be interpreted as a state-machine with rounded rect-
angles representing the states and the arrows the transitions. State-machine,
states and transitions are all terms of the abstract syntax.

Guarded
Inactive

Unguarded
Inactive

Guarded
Active

Unguarded
Active

ed

I
LIFT PROTECTION

LIFT PROTECTION

LOWER PROTECTION

LOWER PROTECTION

PUSH PUSH

Fig. 1. Example of visual language

Hereafter are summarized some of the existing approaches for the specification
of visual languages.

2.1 Grammar-Based Approaches

Grammar-based approaches to the specification of visual languages are close
to the specification approaches for string grammars. String grammars can be
formally specified through well-known approaches such as BNF (Backus-Naur
Form) and EBNF (Extended Backus-Naur Form), to the point where the EBNF
notation is an ISO standard [14]. Grammar-based specifications of visual lan-
guages, also called visual grammars, follow the same philosophy in that they
enable the specification of visual languages through grammar rules defining the
valid visual sentences. Furthermore, these approaches usually come with dedi-
cated parsing approaches and algorithms sometimes derived from string-based
parsing algorithms. For example, the Extended Positional Grammars [5] ap-
proach presented below includes the XpLR parsing technique derived from the
LR (Left to right Rightmost derivation) family of parsing methods [15].

A first category of approaches are based on graph grammars. A graph gram-
mar is composed of rules that have a left-hand side and a right-hand side. For
context-free graph grammars, the left-hand side consists in a single node and the
right-hand side is an arbitrary graph. The meaning of the rules is that the left-
hand side node can be replaced by the right-hand side graph. It is possible to use
graph grammars for the specification of valid graphs, as well as the specification
of graph transformations [10].

Towards the Notation-Driven Development of DSMLs 525

For example, the small visual language for state-machines in Figure 1 can be
defined with the grammar shown in Figure 2. In this grammar, R1 is the axiom
(the top-level rule) and specifies how to add a single rectangle. The rule R2
can then be used to add a new rectangle connected by an arrow to an existing
rectangle. Finally, the rule R3 is used to connect by a new arrow two existing
rectangles.

Rectangle text t
contains

λ

Rectangle Rectangle Rectangle text t
contains

Arrow e R
from to

Rectangle1 Rectangle2 Arrow 1 R
from to

Rectangle1

Rectangle2

::=

::=

::=

R1

R2

R3

Fig. 2. Graph Grammar for the visual language in Fig. 1

Notable approaches based on graph-grammars include:

– Layered Graph Grammars introduced in [19] splits the definition of a vi-
sual language into the “physical layout” for the visual symbols’ graphical
attributes, and the “spatial relation graph” for their syntactic attributes, i.e.
their relative positionning.

– Reserved Graph Grammars introduced in [23] improve over Layered Graph
Grammars by simplifying the writing of rules and removing ambiguities.

– Contextual Layered Graph Grammars introduced in [3] improve Layered
Graph Grammars by allowing the expression of positive and negative condi-
tions for the application of the rules.

– Positional Grammars introduced in [7].
– Extended Positional Grammars introduced in [5].

Conversely, Picture Layout Grammars introduced in [13] are not based on
graph-grammars. Their terminal symbols are attributed drawing elements such
as the rectangles, ellipses, texts, etc. The non-terminal symbols are defined by
the grammar rules organizing the spatial relationships between the constitutive
terminals and non-terminals. The small visual language for state-machines in
Figure 1 can be specified with the following grammar given in [13]:

Listing 1.1. Picture Layout Grammar for State Machines

1 FSDiagram −> S ta t eL i s t
2 S ta t eL i s t −> State
3 S ta t eL i s t −> (State , S ta t eL i s t)
4 State −> c on ta in s (r e c t ang l e , t e x t)
5 State −> l e ave s (State , Tran s i t i on)
6 Tran s i t i on −> l a b e l s (arrow , t e x t)

526 L. Wouters

In this grammar, the first rule is the top-level one and correspond to the entire
picture of Fig. 1. Each rounded rectangle in Fig. 1 corresponds to a State, as
defined in rule 4. It defines the State symbol as a rectangle containing a text ele-
ment. The arrows in Fig. 1 are defined as the Transitions symbols in rule 6. Their
relation to the States is defined in rule 5. With rich composition rules and sup-
port for connectors, Picture Layout Grammars can be used for the specification
of complex visual languages well beyond simple nodes and connectors.

2.2 Metamodel-Based Approaches

The abstract syntax annotation approach described in [21] consists in introducing
elements of a language’s concrete syntax within its abstract syntax. More pre-
cisely, a visual language’s symbols are directly mapped to the DSML’s abstract
syntax by annotating its concepts. It is a metamodel-based approach because a
language’s abstract syntax is directly mapped to its concrete syntax. It serves
as the definition of the visual notation. This approach is prominently used by
the tools based on Eclipse GMF (Graphical Modeling Framework), such as Eu-
GENia [20]; however it is not suited for our purpose where a specification of the
concrete syntax independent from the abstract syntax is desired.

In order to enable the exchange of UML diagrams between tools, a core meta-
model for diagrams has been proposed in [2]. It is a precursor to the Diagram Def-
inition [17] and Diagram Interchange metamodel, now an OMG standard. This
metamodel contains concepts such as Node and Edge, but also other elements. It
is general enough by enabling the use of any SVG (Scalable Vector Graphic) shape,
for example rectangles and ellipses. Visual symbols can be composed and their re-
lations are specified using absolute positioning. Using this metamodel, a software
engineer is able to describe any diagram, corresponding to a connection-based or
geometric-based visual language. However, this is a metamodel for diagrams and
as such cannot be used for the expression of visual languages themselves.

Fig. 3. Metamodel of Visual Languages by [11]

Towards the Notation-Driven Development of DSMLs 527

The metamodel for concrete syntaxes proposed in [18] contains simple con-
cepts such as NodeFigure and EdgeFigure. These can be nested within each
other. This approach leverages the metamodel representation of the visual no-
tation in the definition of mappings between the abstract and concrete syntax
elements. However, the authors do not specify how the graphical and syntac-
tic attributes of the visual symbols will be defined. The drawbacks are that
this approach does not specify how the elements in the concrete syntax are to
be visualized. It is missing the definition of graphical and syntactic attributes.
It also focuses on connection-based visual languages. Looking at the concrete
syntax’s metamodel, geometric-based visual languages are not supported. The
metamodel for concrete syntaxes proposed in [11] is much more complete than
the one proposed in [18]. In fact, it explicitly targets the representation of visual
languages in the form of a model. It contains concepts such as VLSpec (Visual
Language Specification), Alphabet and SymbolType, in addition to those shown
in Figure 3.

2.3 Conclusion

As shown in this section, it is possible to specify the concrete syntax of a DSML,
in the form of a visual language, independently from its abstract syntax. The
specification of a visual language can be achieved in multiple ways with different
strengths and weaknesses. However, the forced proximity of the specification
of a visual language with the underlying abstract syntax in metamodel-based
approaches is symptomatic. On the other end of the spectrum, some grammar-
based approaches such as the Picture Layout Grammars are completely detached
in addition to their offering of great visual expressiveness.

Because we precisely aim at focusing the attention of the software engineers
onto the concrete syntaxes and thus produce visual languages very close to the
experts’ expectations, it is logical to lean toward some of the grammar-based
approaches. In this way, the software engineers would not be tempted to spend
time on the abstract syntax. For these reasons, we chose to base our work on
Picture Layout Grammars [13]. As will be discussed in Section 5, this does not
mean that the following would not be applicable to other approaches for the
specification of visual languages.

3 Generating Abstract Syntaxes from Visual Languages

Based on the Picture Layout Grammars approach for the specification of visual
languages, this section presents how abstract syntaxes can be derived from them.
For this purpose, we first introduce a refinement of the Picture Layout Grammars
that allows the expression of a great deal of details about visual symbols.

3.1 Concrete Visual Syntax Specification Language

This refinement will be hereon referred to as the Concrete Visual Syntax Speci-
fication Language (CVSSL). A complete specification with the CVSSL contains
two parts:

528 L. Wouters

– The specification of the visual symbols using grammar rules similar to Pic-
ture Layout Grammar rules.

– The specification of the toolboxes that will be available to the domain ex-
perts. This part lists the visual symbols that the domain experts will be
manipulating. It is necessary because a visual symbol may be too complex
to be expressed with only one grammar rule, as will be demonstrated in the
following sub-section.

As introduced above, the core of a CVSSL specification is specified using gram-
mar rules that have a visual interpretation. These rules are similar to grammar
rules for string-based languages expressed in the BNF or EBNF notations. A
rule is composed of a head and a body. The semantic is that the rule’s head (a
symbol) can be replaced by the rule’s body. The visual interpretation is that the
rule’s head is a visual symbol defined by the rule’s body, i.e. the visual elements
in it. In this context, a rule’s head is called a variable and is referred to by its
name. A rule’s body can be composed of multiple elements, called terminals. Sup-
ported terminals include shapes (rectangles, ellipses, etc.), images, labels (text),
and placeholders for inputs and pieces of data. For example, a white rectangle
with black borders is noted:

Listing 1.2. White rectangle with a black border of size 3

1 [[] 150∗50 | white | b lack : 3]

They are called terminals because they are not defined by other grammar rules.
Terminals can be aggregated with operators in a rule’s body. Supported operators
are the concatenation, the union, the repetition and the special graph operator.

As an example, using the CVSSL, the visual symbol for the “Air Traffic Con-
troller” element in Figure 4 can be specified as follow:

Listing 1.3. Grammar rules for the “Air Traffic Controller” element

1 Operator −> {OperatorInner [[] 200∗90 | white | b lack : 1] } : s tack ;
2 OperatorInner −> {OperatorName Ope ra to rSk i l l s OperatorState s } :

v e r t i c a l ;
3 OperatorName −> {<s ”Name” 198∗20> [[] 200∗22 | white | b lack : 1] } : s tack ;
4 Ope ra to rSk i l l s −> { S k i l l ∗ : v e r t i c a l [[] 2 00∗22]} : s tack ;
5 OperatorState s −> {{StateWorkload S t a t e S t r e s s } : v e r t i c a l [[] 200∗50 |

white | b lack : 1] } : s tack ;

3.2 Abstract Syntax Generation

When a DSML’s concrete syntax is specified using the CVSSL, it is possible
to generate a default abstract syntax corresponding to it. The main reasoning
for this purpose is that the visual symbols described in the concrete syntax will
become concepts within the abstract syntax in the form of classes and relations.
As a help to the reader, the following vocabulary will be used:

– The “application” of the rule “R → s” is the replacement of the variable R
by the visual sentence s.

Towards the Notation-Driven Development of DSMLs 529

IFF Database

Ground IFF
System

F

Ground Operator

Ground
Radar

System Electromagnetic
signature

Electromag.
Database

G

Database

Friend or Foe

Aircraft
position

Groun

Friend or Fend or F

nd Ope

Air Traffic Controller

workload heavy

stress medium

ATC experienced

Fig. 4. Example of visual sentence

– A variable R “produces” a visual sentence w when the recursive application
of the grammar’s rules allows the variableR to be replaced by w. For example,
with the rules “A → aBc” and “B → b”, then A produces the “abc” visual
sentence by the replacement of the variable B by its definition.

– The “minimal production” of a variable R is the smallest visual sentence that
can be produced by R. It is obtained by the application of empty rules when-
ever possible, i.e. whenever an optional operator or a zero-or-more operator
is used.

Primary Classes. If the variable R is used in the notation specification as a
toolbox element, it means that the domain experts will be able to manipulate
visual symbols defined by R. Then, a class named R is created in the default
abstract syntax. For example, considering the Listing 1.3 above, as well as the
Listing 1.4, the “Operator” variable is defined as a toolbox element, then a class
named “Operator” will be created. Conversely, the variables “OperatorName”,
and “OperatorSkills” from the same listing are not toolbox elements and no class
corresponding to them will be created.

Listing 1.4. Toolboxes for the example

1 too lbox ”Elements” {
2 e lement Data ”Data”
3 e lement System ”System”
4 element Operator ”Operator ”
5 e lement Database ”Database”
6 e lement S k i l l ”Operator S k i l l ”
7 }

Primitive Attributes. In the CVSSL it is possible to denote an area where
an expert will be able to input some data. These areas, called data placeholders,
have special notations, an example of which is given on line 3 of the Listing 1.3.

530 L. Wouters

The rationale is to generate class attributes for the data placeholders. If the
variable R corresponds to a class and its minimal production contains a data
placeholder with the description p and the type t, then:

– An attribute name n is constructed as the concatenation of the words found
in p, preceded by “has”.

– A class attribute named n of type t is created for the class corresponding to
R.

– If a class attribute with that name already exists, then a unique name is
created based on n (usually by appending an incremented integer).

– The cardinality of the attribute is always 0..1.

Still considering the Listing 1.3, the data placeholder on line 3 is part of the
minimal production of the “Operator” symbol, which corresponds to a class in
the abstract syntax being built. Hence, an attribute named “hasName” of type
“String” and cardinality 0..1 is added to the class named “Operator”.

Relations from Grammar Operators. If the variable R can produce a visual
sentence that contains the variable C and both are toolbox elements, then:

– If the variable C can only occur at most one time at the targeted location,
then the cardinality is functional (0..1), otherwise it is unbounded (0..*).

– A name n is constructed as the concatenation of the string “has” and the
name of C. If the cardinality is unbounded, the name n is turned into its
plural form by appending “s” to it or turning the final “y” into “ies”.

– If no relation named n starting from R exists in the abstract syntax it is
created with the identified cardinality. The range of the relation is the class
corresponding to C.

– If a relation or attribute with the same name n already exists for R, then a
unique one is created.

For example in the Listing 1.3, the “Operator” symbol can produce zero or more
“Skill” symbols (on line 4). Because the symbol “Skill” is also a toolbox element,
a relation between the two classes will be created. It will be named “hasSkills”
and have an unbounded cardinality.

Relations from Graph Connectors. In a visual notation, the special “graph”
construct can be used to express graph-based sub visual languages containing
nodes and connectors that may bear some legend. In principle, nodes are visual
symbols defined by grammar rules that must also be toolbox elements to specify
the fact that domain experts can interact with them and are thus compiled into
classes in the default abstract syntax. The rationale is that the connectors may
represent relations between these nodes. Hence, when a transition does not bear
any legend, it is compiled into a relation in the default abstract syntax. This
relation always has an unbounded cardinality on both sides and its name is the
concatenation of “link” with the name of the connector. It can start from each

Towards the Notation-Driven Development of DSMLs 531

class corresponding to the nodes from which the connector can originate. Con-
versely, it can end on each class corresponding to nodes to which the connector
can go. For example, considering the following excerpt also corresponding to the
visual language for Figure 4

Listing 1.5. Example of visual graph in CVSSL

1 CommandPost −> graph {
2 nodes Data , System , Operator , Database
3 <DataExport #0000FF:1 {Operator , System simple} {Data arrow}>
4 <DataImport #FF0000 : 1 {Data s imple} {Operator , System arrow}>
5 <Connection {System simple} {Database arrow}>
6 } ;

Here the connector “DataExport” will be used to create a relation from the
classes “Operator” and “System” to the class “Data”, as each of them are iden-
tified as toolbox elements in Listing 1.4. The same process is applied for the
connectors “DataImport” and “Connection”.

Association Classes from Graph Connectors. In the case where a legend
is attached to the connector, an association class is needed in the default ab-
stract syntax in order to attach the abstract syntax elements corresponding to
the legend directly to it. Consider the following example corresponding to the
visual language shown in Figure 1 where the connector “Transition” has a leg-
end defined by the “Legend” variable. This variable is defined by a rule that
can produce the “Interaction” variable, which is here assumed to be a toolbox
element.

Listing 1.6. Grammar for state machines

1 StateMachine −> graph {
2 node State
3 <Tran s i t i on b lack : 1 ˆLegend { State s imple} { State arrow}>
4 } ;
5 Legend −> I n t e r a c t i o n ? ;

The produced default abstract syntax for this sample then contains an associa-
tion class named “Transition”. The symbol “Transition” is also a toolbox element
and treated as such, it will have attributes and/or relations corresponding to its
legend.

3.3 Limitations

Using the CVSSL to express a concrete syntax, the rules presented above can
be used to produce a complete abstract syntax corresponding to a default in-
terpretation as concepts of the visual symbols specified in it. However several
limitations have been identified.

First and foremost, the rules are not able to derive the classes’ hierarchy, i.e.
their subclassing relations. This is because the information is not present in the
visual languages. However, one could define a set of rules for the automatic infer-
ence of the subclassing relations, based on the existence of common attributes for

532 L. Wouters

example. One remaining difficulty would still be the naming of the super-classes.
Building the corresponding rules constitutes future works.

A second limitation is the difficulty to identify the true nature of the relations
between the classes in the abstract syntaxes. Could a specific relation be a com-
position or an aggregation? It is hard to derive this information from the visual
language.

A third limitation is the identification of the navigability of the relations. The
visual language does not hold any information that could be leveraged in this
regard.

3.4 Conclusion

This section presented rules for the automatic derivation of an abstract syntax
in the form of a metamodel from the specification of a visual language. Some
limitations have been identified that will require software engineers to adapt the
produced metamodels after the generation process. However, this methodology is
expected to effectively shift their focus onto the concrete syntaxes of the DSMLs
they are tasked to produce for the domain experts. In this way, DSMLs’ concrete
syntaxes closer to the expert’s expectations could be produced, thus maximizing
their acceptance.

4 Validation

The validation of the approach proposed here is three-fold. First, the derivation
rules presented in the previous section have been implemented into a compiler
available under the LGPL licence at http://xowl.org. Second, it has been ap-
plied on a use case coming from the aeronautic industry. Third, an empirical
study has been conducted in order to assess whether the concrete syntaxes pro-
duced in this way are indeed closer to the experts’ expectations.

4.1 Industrial Use Case

In the context of the building of a military command post, experts in human-
machine interactions are tasked to verify the procedures that operators will have
to execute. For example, a given procedure must still be achievable for operators
under stressful conditions. The representation of the information flow would
enable the experts to better analyze the interactions between the operators and
potentially to propose new procedures. The experts are facing an issue with the
increasing number of procedures that must be analyzed; they cannot manually
analyze them all and need to automate this task. To achieve this, the experts
require a DSML for them to represent the information flows in the form of
models, so that they can be automatically analyzed. Fortunately, the experts
are able to provide some examples of the drawings they produce using informal
tools such as Microsoft Visio, Powerpoint, or even simple pen and paper. The
Figure 4 is one example.

http://xowl.org

Towards the Notation-Driven Development of DSMLs 533

Using our approach, we built using the CVSSL the complete visual language
for this domain. The visual language cannot be fully shown here but is available
at http://xowl.org. Then, a default abstract syntax has been derived using
the rules described in Section 3. The resulting metamodel is shown in Figure 5.

Fig. 5. Metamodel derived from the concrete syntax

This application case demonstrates that we are indeed able to derive a com-
plete abstract syntax from the specification of a visual language (expressed in
the CVSSL). As noted in Section 3, the derivation process has some limitations
that are illustrated here. It is not able to infer some sub-classing relationships.
A software engineer would probably have created an abstract class “Agent” and
made the “Operator” and “System” classes inherit from it. In addition, he/she
would arguably have turned the relation “hasSkills” into a composition. Some
naviguability and cardinality issues could also be addressed; but overall, the
Figure 5 shows a good starting point.

4.2 Empirical Study

In order to assess whether the concrete syntaxes produced are indeed closer to the
experts’ expectations, we realized an empirical study. Its definition is summarized
as follow: The goal of the empirical study is to analyze the building of a DSML
for the purpose of evaluating the used approach with respect to the proximity
of the concrete syntax with the domain experts’ expectations in the context of
novice software engineers. The subjects are master students in their last year
majoring in Computer Science. For the purpose of this experiment, the previous
application case is reused. We measure the proximity of the notations produced
by subjects with respect to the provided pre-existing domain schemas on a 0 to
100 scale. For this purpose, we defined in advance a set of 61 objective criteria
that have to be met by the notations produced by the subjects. The criteria
themselves are designed so that the perfect score can be achieved regardless of
the used approach. A few examples are given hereafter:

http://xowl.org

534 L. Wouters

– Systems are rectangles
– Systems are colored in grey
– Databases are cylinders

A set of criteria are defined for each of the notational element. They include
the shape, color and outline of the elements, as well as how they are composed.
For example the rectangles representing systems have the systems’ name within
them. We attributed weights to criteria in order to represent the fact that the
shape of a notational symbol is more important than the color of its outline. In
addition, these criteria are not necessarily pass or fail. It is possible for subjects
to get half the points of a criteria for example. It is also important to note
that these criteria really measure the proximity of the subjects’ implementation
with the expected result and not the quality of the result. Subjects that deviate
from the expected notation but nevertheless produced a coherent notation with
unambiguous and visually distinctive elements will be penalized. The point of
this metric is really to favor results closest to the expectations.

In this experiment the variable A representing the approach for building the
DSML is defined with one dependent variable: Q for the concrete syntax’s prox-
imity. There are then two treatments of this study, one for the Metamodel-Driven
approach (Am) and one for the Notation-Driven approach (An). During the im-
plementation of this study, the experimenters play the role of the domain ex-
perts. Experimenters will have the perspective of domain experts in regard to
their evaluation of the subjects’ notations.

A population of 55 subjects plays the role of software engineers hired to im-
plement a DSML. Each subject individually performs the whole task. In order
for the population to be representative and unbiased, the subjects are all master
students in their last year majoring in Computer Science. In this way, all sub-
jects have roughly the same level of experience and expertise. Implementing a
DSML is a task they can be expected to perform in a professional environment
right after their graduation.

In this study, the following null hypothesis evaluating the produced concrete
syntaxes’ proximity is defined. It specifies that the use of a Notation-Driven ap-
proach for building a DSML does not improve the concrete syntax’ proximity
with the domain experts’ expectations. If the hypothesis is rejected, it means
the use of a Notation-Driven approach has an impact on the corresponding prox-
imity. The impact can be positive or negative and is obtained by comparing the
distribution of the results in each group. Then, H0 is defined as: “The proximity
of the concrete syntax using the Metamodel-Driven approach is equal to the
proximity using the Notation-Driven approach.”

The results are aggregated by quartile and group in Figure 6. The statistics
by group are summarized in Table 1. We then used the ANOVA statistical test
to determine whether the H0 hypothesis should be rejected. The value of F is
23.01 whereas the value of Fcrit is 3.89. With these results (F ≥ Fcrit), we reject
H0. This means that the Notation-Driven approach has an impact on the prox-
imity of the produced concrete syntaxes with the domain experts’ expectations.

Towards the Notation-Driven Development of DSMLs 535

0

20

40

60

80

100

120

Metamodel-Driven Notation-Driven

M
ar

ks
 fo

r t
he

 c
on

cr
et

e
sy

nt
ax

Fig. 6. Marks by group

Table 1. Statistics by group for the concrete syntaxes

Metamodel-Driven Notation-Driven
MIN 0.00 22.00
MEDIAN 47.36 60.24
MAX 95.00 96.00
MEAN 47.32 59.31
STANDARD DEVIATION 19.54 15.60

Looking at Figure 6, we can see that the concrete syntaxes produced using the
Notation-Driven approach are indeed closer to the domain experts’ expectations.

5 Discussion

Regarding the validation of our approach by the presented empirical study, some
possible threats to its validity have been identified: The experiment’s subjects
are master students and not (yet) professional software engineers. This potential
bias is mitigated by the fact that all subjects were close to graduation at the
time of the study and could be expected to perform the work described in this
experiment in their immediate line of work. Also, the experimenters took part
in the evaluation process of the subjects’ submissions. This potential bias is
mitigated by the fact that objective criteria were used for this purpose.

The approach described in this paper relies on Picture Layout Grammars for
the specification of visual languages. A legitimate question is then, how is it
still applicable with other specification methods, in particular metamodel-based
ones. In this regard, it has to be noted that the derivation rules described in
Section 3 are general enough so that they can be transposed and/or adapted to
other methods. For example, it should be possible to implement them as model
transformation rules that can be applied to models representing visual notations
in a metamodel-based specification approach. The only provision is that it must
be possible to identify the visual symbols that correspond to interaction points
for the domain experts, i.e. elements they can manipulate.

536 L. Wouters

Furthermore, this paper focused solely on the case of visual DSMLs. Another
legitimate question is how is it applicable to DSMLs with a textual DSMLs.
An element of answer lies in the fact that the Picture Layout Grammars are
very similar to the context-free grammars used for the specification of textual
languages, in particular the EBNF notation. Provided that the same extensions
are defined in order to identify the interaction points for the domain experts,
the same set of derivation rules could be used. An interesting point is that the
XText 1 Eclipse plugin also goes into this direction with an approach for the
mixed specification of the abstract and concrete syntaxes of DSMLs at the same
time.

6 Conclusion

The paper presented an approach for the automatic derivation of an abstract
syntax from the specification of a DSML’s concrete syntax. It has been validated
by its implementation, its application to an industrial use case and its evaluation
in an empirical study. The conclusion is that it is indeed possible to automatically
derive a DSML’s abstract syntax from the specification of its concrete syntax,
provided some extension to the visual language’s specification approach. This
approach still has some limitations (e.g. class hierarchies) that can be seen as
possible future works. Future works also include the replication of the approach
for textual DSMLs.

Leveraging this approach, software engineers are able to work efficiently with
domain experts in order to build a domain’s visual language without caring about
the underlying concepts. This notation-driven approach focusing the efforts of
the software engineers onto what the domain experts are actually caring about
is expected to improve the acceptability of the produced DSMLs. The empirical
study presented in Section 4 certainly points toward that direction.

References

1. Amyot, D., Farah, H., Roy, J.-F.: Evaluation of development tools for domain-
specific modeling languages. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS,
vol. 4320, pp. 183–197. Springer, Heidelberg (2006)

2. Boger, M., Jeckle, M., Müller, S., Fransson, J.: Diagram interchange for UML. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp.
398–411. Springer, Heidelberg (2002)

3. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages based
on critical pair analysis and contextual layered graph transformation. In: Visual
Languages (2000)

4. Brown, S.A., Massey, A.P., Montoya-Weiss, M.M., Burman, J.R.: Do i really have
to? user acceptance of mandated technology. European Journal of Information
Systems 11, 283–295 (2002)

1 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

Towards the Notation-Driven Development of DSMLs 537

5. Costagliola, G., Deufemia, V., Polese, G.: A framework for modeling and imple-
menting visual notations with applications to software engineering. ACM Transa-
tions on Software Engineering Methodologies 13, 431–487 (2004)

6. Costagliola, G., Lucia, A.D., Orefice, S., Polese, G.: A classification framework to
support the design of visual languages. Journal of Visual Languages Computing 13,
573–600 (2002)

7. Costagliola, G., Lucia, A.D., Orefice, S., Tortora, G.: A parsing methodology for the
implementation of visual systems. IEEE Transactions on Software Engineering 23,
777–799 (1997)

8. Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of
information technology. MIS Quaterly 13, 319–340 (1989)

9. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technol-
ogy: A comparison of two theoretical models. Management Science 35, 982–1003
(1989)

10. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars
for multi-paradigm modelling in atom 3. Software and Systems Modeling 3, 194–209
(2004)

11. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object oriented and rule-based de-
sign of visual languages using tiger. European Association of Software Science and
Technology Journal 1 (2006)

12. Evans, A., Fernández, M.A., Mohagheghi, P.: Experiences of developing a network
modeling tool using the eclipse environment. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 301–312. Springer, Heidelberg
(2009)

13. Golin, A.J.: Parsing visual languages with picture layout grammars. Journal of
Visual Languages Computing 2, 371–393 (1991)

14. ISO/IEC. Syntactic metalanguage - extended bnf (1996)
15. Knuth, D.E.: On the translation of languages from left to right. Information and

Control 8, 607–639 (1965)
16. Kolovos, D.S., Rose, L.M., Paige, R.F., Polak, F.A.C.: Raising the level of abstraction

in the development of gmf-based graphical model editors. In: Proceedings of the 2009
ICSEWorkshop on Modeling in Software Engineering, MISE 2009, pp. 13–19. IEEE
Computer Society (2009)

17. OMG. Diagram Definition (2012)
18. Ráth, A., Ökrös, A., Varró, D.: Synchronization of abstract and concrete syntax

in domain-specific modeling languages. Software and Systems Modeling 9, 453–471
(2010)

19. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages Computing 8 (1997)

20. E. Team. Eclipse eugenia (October 2012)
21. Temate, S., Broto, L., Tchana, A., Hagimont, D.: A high level approach for gen-

erating model’s graphical editors. In: Information Technology: New Generations
(2011)

22. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of infor-
mation technology: Toward a unified view. MIS Quaterly 27, 425–478 (2003)

23. Zhang, D.-Q., Zhang, K., Cao, J.: A context-sensitive graph grammar formalism
for the specification of visual languages. Computer Journal 44, 186–200 (2001)

Validation of Derived Features
and Well-Formedness Constraints in DSLs�

By Mapping Graph Queries to an SMT-Solver

Oszkár Semeráth, Ákos Horváth, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2.
so765@hszk.bme.hu, {ahorvath,varro}@mit.bme.hu

Abstract. Despite the wide range of existing generative tool support,
constructing a design environment for a complex domain-specific lan-
guage (DSL) is still a tedious task as the large number of derived features
and well-formedness constraints complementing the domain metamodel
necessitate special handling. Incremental model queries as provided by
the EMF-IncQuery framework can (i) uniformly specify derived features
and well-formedness constraints and (ii) automatically refresh their re-
sult set upon model changes. However, for complex domains, derived
features and constraints can be formalized incorrectly resulting in in-
complete, ambiguous or inconsistent DSL specifications. To detect such
issues, we propose an automated mapping of EMF metamodels enriched
with derived features and well-formedness constraints captured as graph
queries in EMF-IncQuery into an effectively propositional fragment of
first-order logic which can be efficiently analyzed by the Z3 SMT-solver.
Moreover, overapproximations are proposed for complex query features
(like transitive closure and recursive calls). Our approach will be illus-
trated on analyzing a DSL being developed for the avionics domain.

Keywords: model validation, model queries, SMT-solvers.

1 Introduction

The design of integrated development environments (IDEs) for complex domain-
specific languages (DSL) is still a challenging task nowadays. Generative environ-
ments like the Eclipse Modeling Framework (EMF) [1], Xtext or the Graphical
Modeling Framework (GMF) significantly improve productivity by automating
the production of rich editor features (e.g. syntax highlighting, auto-completion,
etc.) to enhance modeling for domain experts. Furthermore, there is efficient tool
support for validating well-formedness constraints and design rules over large
� This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-0003),

the TÁMOP (4.2.2.C-11/1/KONV-2012-0001) projects, a collaborative project with
Embraer and the János Bolyai Scholarship.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 538–554, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Validation of Derived Features and Well-Formedness Constraints in DSLs 539

model instances of the DSL using tools like Eclipse OCL [2] or EMF-IncQuery
[3]. As a result, Eclipse-based IDEs are widely used in the industry in various
domains including business modeling, avionics or automotive.

However, in case of complex, standardized industrial domains (like ARINC
653 [4] for avionics or AUTOSAR [5] in automotive), the sheer complexity of the
DSL is a major challenge itself. (1) First, there are hundreds of well-formedness
constraints and design rules defined by those standards, and due to the lack of
validation, there is no guarantee for their consistency or unambiguity. (2) More-
over, domain metamodels are frequently extended by derived features, which
serve as automatically calculated shortcuts for accessing or navigating models
in a more straightforward way. In many practical cases, these features are not
defined by the underlying standards but introduced during the construction of
the DSL environment for efficiency reasons. Anyhow, the specification of derived
features can also be inconsistent, ambiguous or incomplete.

As model-driven tools are frequently used in critical systems design to detect
conceptual flaws of the system model early in the development process to de-
crease verification and validation (V&V) costs, those tools should be validated
with the same level of scrutiny as the underlying system tools as part of a soft-
ware tool qualification process issues in order to provide trust in their output.
Therefore software tool qualification raises several challenges for building trusted
DSL tools in a specific domain.

In the current paper, we aim to validate DSL tools by proposing an automated
mapping from their high-level specification to the state-of-the-art Z3 SMT-solver
[6]. We assume that DSL tools are specified by their respective EMF metamodels
extended with derived features and well-formedness constraints captured (and
implemented) by graph queries within the EMF-IncQuery framework [7,8].
We define a validation process, which gradually investigates derived features and
well-formedness constraints to pinpoint inconsistency, ambiguity or incomplete-
ness issues. We identify constraints and derived features which can be mapped to
effectively propositional logic formula [9], which are a decidable fragment of first
order logic with effective reasoning support. Moreover, we provide several ap-
proximations for constraints which lie outside of this fragment to enable formal
analysis of a practically relevant set of constraints.

The main innovation of our approach is to provide a combined validation
of metamodels, derived features and well-formedness constraints defined by an
advanced graph query language (instead of OCL) using approximations to cover
complex query features. Our approach is illustrated on validating several DSL
tool features taken from an ongoing industrial project in the avionics domain.

The rest of the paper is structured as follows. Sec. 2 provides an overview of
EMF metamodels enriched with derived features and well-formedness constraints
captured by graph queries of the EMF-IncQuery language in the scope of a
DSL from the avionics domain. Sec. 3 describes a high-level overview of mapping
DSLs to logic formula and validation scenarios from a domain expert’s viewpoint.
Details of the mapping are elaborated in Sec. 4, while Sec. 5 includes an initial

540 O. Semeráth, Á. Horváth, and D. Varró

Function
type : FunctionType
minimumFrequency : EFloat

FunctionalElement

InformationLink

FunctionalArchitectureModel FAMTerminator

FunctionalInterface

FunctionalInput FunctionalOutput

FunctionalData

<<enumeration>>
FunctionType
Root
Leaf
Intermediate

subElements0..*

from 0..1to 0..1

rootElements
0..*

parent0..1

incomingLinks
0..*

outgoingLinks

0..*

model 1 data
0..*

interface
0..1

element
0..1

interface
0..1

terminator
0..1

data
0..1

Fig. 1. Metamodel of the Functional Architecture

evaluation of expressiveness and preliminary execution results. Related work is
assessed in Sec. 6 while finally, Sec. 7 concludes our paper.

2 Preliminaries: Domain Modeling

To illustrate the proposed V&V technique, this paper elaborates a case study
from DSL tool development for avionics systems. To create an advanced model-
ing environment, we augment the metamodel with query-based derived features
and well-formedness validation rules. Both of these advanced features are de-
fined using model queries. Within the paper, we use the language of the EMF-
IncQuery [10] framework to define these queries over EMF metamodels.

2.1 Metamodel of the Case Study

In model-driven development of avionics systems, the functional architecture
and the platform description of the system are often developed separately to
increase reusability. The former defines the services performed by the system
and links between functions to indicate dependencies and communication, while
the latter describes platform-specific hardware and software components and
their interactions. The functional architecture is usually partially imported from
industry accepted tools and languages like AADL [11] or Matlab Simulink [12].

A simplified metamodel for functional architecture is shown in Fig. 1. The
FunctionalArchitectureModel element represents the root of a model, which con-
tains each Function (subtype of the FunctionalElement). Functions have a min-
imumFrequency, a type attribute and multiple FunctionalInterfaces, where each
functional data is either an FunctionalOutput (for invoking other functions) or
an FunctionalInput (for accepting invocations). An output can be connected to an
input through an InformationLink. Finally, if an input or output is not connected
to an other Function then they must be terminated in a FAMTerminator.

Validation of Derived Features and Well-Formedness Constraints in DSLs 541

This:Function

type(This,Target)

_F: FuncArchModel

:rootElements This:Function

_Par: Function

:parent

_Chl:Function

:parent

Target == ‘Root’

This:Function

_F: FuncArchModel

:rootElements

_Chl: FuncElement

NEG:parent

Target ==

‘Intermediate’

NEG

Target == ‘Leaf’
oror

pattern type(This : Function, Target) = {
FunctionalArchitectureModel.rootElements(_F, This);
FunctionType::Root == Target;

} or {
neg find {FunctionalElement.parent (_Chl, This)};
neg find {FunctionalArchitectureModel.rootElements (_F, This)};
FunctionType::Leaf == Target;

} or {
FunctionalElement.parent(This, _Par);
FunctionalElement.parent(_Chl, This);
FunctionType::Intermediate == Target;}

1

2

_FD:FunctionalInput

terminatorandInformationLink(Ter,InfLnk)

Ter: FAMTerminator

: data

or
InfLink:InformationLink

: incomingLinks

_FD:FunctionalOutput

Ter: FAMTerminator

: data

InfLink:InformationLink

:outgoingLinks

pattern terminatorAndInformation(Ter : FAMTerminator,
InfLink : InformationLink) = {
FAMTerminator.data.incomingLinks(Ter,InfLink);

} or {
FAMTerminator.data.outgoingLinks(Ter,InfLink);}

This:FuncElement

model(This,Target)

Target:

FuncArchModel

:rootElements

_Par:Function

Target: FuncArchModel

:rootElements

This: FuncElement

:parent

or

+

pattern model(This:FunctionalElement, Target:
FunctionalArchitectureModel) = {
FunctionalElement.parent+(This, _Par);
FunctionalArchitectureModel.rootElements(Target, _Par);

} or {
FunctionalArchitectureModel.rootElements(Target, This);}

Fig. 2. The model and type DF and the terminatorandInformationLink WF constraint

2.2 Derived Features

Derived features (DF) are often essential extensions of metamodels to improve
navigation, provide path compression or compute derived attributes. The value
of these features can be computed from other parts of the model by a model
query [7,13]. Such queries have two parameters, in case of (i) derived EReferences
one parameter represents the source and another the target EObjects of the
reference while in case of (ii) derived EAttributes one parameter represents the
container EObject while the other one the computed value of its attribute.

FunctionalElements are augmented with the model derived EReference (high-
lighted in blue in Fig. 1) that represents a reference to the container Function-
alArchitctureModel EObject from any FunctionalElement within the containment
hierarchy. Additionally, for the type EAttribute of the Function EObject a de-
rived attribute is defined, which takes a value from the enumeration literals:
Leaf, Root, Intermediate.

In Fig. 2 we use a custom graphical and the EMF-IncQuery textual no-
tation [3] to illustrate the queries defined for these derived features. On the
graphical notation each rectangle is a named variable with a declared type, e.g.
the variable _Par is a Function, while arrows represent references of the given
EReference between the variables, e.g. the function This has the _Par function
as its parent. A special reference between variables is the transitive closure de-
picted by an arrow with a + symbol, e.g., the parent reference between the This
and _Par variables in the model query. Finally, the OR pattern bodies represent
that the matches of the query is the union of the matches of its or bodies.

542 O. Semeráth, Á. Horváth, and D. Varró

For example, the type query (see in Fig. 2) has three OR pattern bodies each
defining the value for the corresponding enum literal of the type attribute: (i)
Leaf if the container EObject does not have a child function along the subFunc-
tions EReference and it is not under the FunctionalArchitectureModel along the
rootElements EReference, where both of these constraints are defined using neg-
ative application conditions (NEG), (ii) Root if container EObject is directly un-
der the FunctionalArchitectureModel connected by the rootElements EReference
or (iii) Intermediate if container EObject has both parent and child functions.
Validation challenges: We aim to validate the following properties for DFs:

– Consistency means that there is at least one valid instance model contain-
ing an object that has a target object or attribute value for the DF.

– Completeness means that in each valid instance model the derived feature
is evaluated with at least one result (target object or attribute value).

– Finally, unambiguity means that in each valid instance model, DF can only
be evaluated to a single result (target object or attribute value).

2.3 Well-Formedness Constraints

We also define some structural well-formedness (WF) constraints (usually de-
rived from design rules and guidelines) to be validated on functional architec-
ture models. In our current approach WF constraints define ill-formed model
structures and thus they cannot have a match in a valid model. In our running
example, a design rule captures that a FunctionalData EObject with a FAMter-
minator cannot also be connected to an InformationLink. It is specified by the
terminatorandInformationLink query (see in Fig. 2) that has two OR pattern bod-
ies, one for the FunctionalInputs and one for the FunctionalOutputs with their
corresponding incomingLinks and outgoingLinks, respectively.

The aim of our case study is to demonstrate that its derived features and well-
formedness constraints can be effectively validated using our mapping method
(see in Sec. 4) to the Z3 SMT solver.
Validation challenges:

– Consistency of WFs can only be interpreted over the complete DSL spec-
ification, which in our understanding means that there is at least one valid
instance model that satisfies all constraints.

– The subsumption property of a DSL is defined over its set of well-formedness
constraints. If a WF constraint is subsumed by the set, then such a WF con-
straint does not express any additional restriction over the DSL. Therefore, it
can be removed without changing the set of the valid instance models.

3 Overview of the Approach

Our approach (illustrated in Fig. 3) aims at validating complex DSL languages
by automatically mapping from their high-level specification to the Z3 [6] SMT-
solver. These complex DSLs are assumed to be defined by (i) a metamodel

Validation of Derived Features and Well-Formedness Constraints in DSLs 543

Fig. 3. Overview of DSL validation: Inputs and outputs

specified in EMF and augmented with both (ii) derived features and (iii) well-
formedness (WF) constraints captured by model queries within the
EMF-IncQuery framework. These three artifacts form the input for our gen-
erator to provide the logical formulas that is fed into the Z3 solver. The output
of the solver is either a proof of inconsistency or a valid model that satisfies all
given constraints generated from the input artifacts.

Additionally, search parameters can be defined to impose additional restrictions
or specific overapproximations to reduce the complexity of the formula to be
proved. Moreover, as an optional input for the generator the user can define
– based on the counter examples and proves provided by the solver – specific
instance level constraints in the form of a partial snapshot [14,15] (also called
input model) to restrict the domain of possible instance model and thus prune
trivial valid models (e.g., empty model) provided by the Z3 solver.

End User Validation Workflow. Our iterative validation workflow for complex
DSLs (see Fig. 4) assumes the existence of the metamodel (captured in EMF),
its derived features and well-formedness constraints (captured as graph queries).

First, each DF is investigated by adding them to the formal DSL specification
(extending it with one new DF at a time in a predefined order), and then by
validating this specification in Z3. Then, WF constraints are validated similarly,
by incrementally adding a single WF constraint at each validation step.

The validation fails, if the compiled set of formulas are inconsistent (formally,
no models can be constructed within a given search limit). In such a case, the
designer needs to either (i) fine-tune the search parameters, (ii) provide a new
partial snapshot or (iii) modify the DSL specification itself based on the proof
outcome. If the formal DSL specification with all DF and WF constraints is val-
idated, then it is valid under the assumptions imposed by the search parameters
and the partial snapshot.

The separation to start the iterative validation process with the derived fea-
tures and then continue with the WF constraints is based on the observation that
each derived feature eliminates a large set of trivial, non-conforming instance
models (which are not valid instances of the DSL). Adding a single constraint at
a time to the validation problem helps identify the location of errors the solver
provides only very restricted traceability information.

Example DSL Validation Scenario. To illustrate the execution of our validation
workflow Fig. 5 shows a possible scenario for our running example. As the input

544 O. Semeráth, Á. Horváth, and D. Varró

Fig. 4. End user workflow of validation of DSLs

for the validation scenario we use the metamodel, DFs and WF constraints as
defined in Sec. 2 with three modifications (to inject hypothetical conceptual flaws
into the queries):

1. the second pattern body (marked as 1 in Fig. 2) is missing from the DF
query type, which defines Function elements of Intermediate type,

2. the third body of query type specifying the Leaf type is also changed: it for-
gets to define a NAC condition over the rootElements EReference (bomb2).

3. one WF constraint is added to the DSL specification expressed by the IL2T
query, which prohibits that a InformationLink is connected to a FAMTerminator.
This constraint only differs from the first body of the original WF constraint
that it uses the inverse edges and thus it is a redundant.

Sec. 3 describes how the DFs and WF constraints are added one by one during
the validation process (assuming that the metamodel is already validated). Some
instance models are depicted on the right side, which illustrate counter examples
retrieved by the solver (CE_i) and a partial snapshot (PS) used for initializing
a solver run. Each row in Fig. 5 describes the validation step in the current
iteration, its outcome and the action taken by the user to continue validation.

First (Step 1) we add the type DF to the formal specification and validate its
consistency by setting the default overapproximation for the transitive acyclic-
ity constraint (see in Section 4.1) to a maximum of 2 levels. Then (Step 2), the
completeness of the type DF is checked resulting in a failure illustrated by the
counter example CE1 showing a function without an Intermediate type. This is
fixed by adding the second pattern body with the Intermediate definition to the
type pattern. By correcting it, the validation is successfully executed. After this
the ambiguity of the attribute is tested (Step 3), which fails again (with a func-
tion node that is both a Leaf and a Root as a counter example). This is fixed by
adding the missing NAC condition on the rootElements to the third pattern body
of type. Step 4 adds the model DF and is followed in Step 5 with its complete-
ness validation, which fails as pointed out in CE3 since it does not have a model
EReference. A partial snapshot is defined with a FunctionalArchitecutreModel
object to prune the search space and avoid such counter examples, however, its

Validation of Derived Features and Well-Formedness Constraints in DSLs 545

Validation step Outcome Action

1. Add DF type Consistent Set acyclicity approximation to 2

2. Completeness: type Fail CE1
Add missing body to type
query

3. Unambiguity: type Fail CE2
Add missing constraint to type

query

4. Add DF model Consistent

5. Completeness: model Fail CE3 Set partial snapshot to PS1

6. Completeness: model Timeout Checked in boundend size

7. Unambiguity: model Ok

8. Add WF: T&IL Consistent

9. Add WF: IL2T Subsumed Remove WF: IL2T

:FAM

:F

X:F
type = ?:F

CE1

:FAM

CE2 X:F
type =

Root Leaf

CE3

:FAM

PS1
model? root

FunctionalInput

IL2T(Ter,InfLnk)

:FAMTerminator

: terminator

:InformationLink

:to

X:F

Fig. 5. Example DSL validation scenario

revalidation (Step 6) ends in a Timeout (more than 2 minutes) and thus this
feature can only be validated on a concrete bounded domain of a maximum
of 5 model objects. In Step 7, the unambiguity of the model DF is validated
without a problem. Followed by the consistency validation of the WF constraint
terminatorandInformationLink (Step 8). Finally, WF constraint IL2T is checked
for subsumption (Step 9) and found positive; thus it is already expressed by the
DSL specification and thus it can be deleted from the set of WF constraints.

4 Mapping DSLs to FOL Formulae

In this section, we demonstrate how Ecore metamodels augmented with derived
features and well-formedness constraints captured as model queries (namely,
EMF-IncQuery graph patterns) are mapped to first order logical (FOL) for-
mulae. Our idea is to map all DSL concepts to the effectively propositional
fragment (EPR) [9] of FOL to guarantee decidability and efficient automated
validation using the Z3 [6] solver. EPR formulae are written in prenex normal
form, and contain only constants, universal quantifiers, and functions that return
boolean values (aka predicates). If the mapping of a language features leads out
of EPR formulae, then the specification is handled as a general FOL problem or
it is approximated by EPR statements (as in case of transitive closure, which is
inexpressible in FOL).

Mapping Structure for DSL. In order to represent a DSL specification in
FOL we use the following structure: DSL = META∧DFs ∧WFs , where META
represents the set of FOL statements defined by the metamodel (e.g., type hier-
archy), DFs symbolizes the statement set specified by the derived features and
finally, WFs represents the set of statements for the well-formedness constraints.

546 O. Semeráth, Á. Horváth, and D. Varró

A FOL statement can be handled using under- or overapproximations, where
statements CU or CO under- or overapproximate statement C if they satisfy
that CU ⇒ C or C ⇒ CO, respectively. As a trivial example, the true constant
overapproximates all statements and can substitute any DSL constraint.

This definition can be extended to statement sets, where a statement set CS is
over- or underapproximated by a statement set CSO (or CSU), if each statement
C ∈ CS is over- or underapproximated by a corresponding statement CO ∈
CSO (or CU ∈ CSU). This allows to validate properties of the DSL by proving
the same properties on its under- or overapproximations. The construction of
META, DFs and WFs and their corresponding approximations are defined and
illustrated in the following sections.

4.1 Mapping of the Ecore Model

The different features of the target DSL captured as an Ecore metamodel are
mapped to FOL formulae in the following way. Each generated statement is
added to the META set.

Type Hierarchy. The elements of the output instance model are uniformly
mapped to a Z3 type object declared by the compiler. Type indicator predicates
are used to describe that an object is an instance of an EClassifier. Addition-
ally, to interpret supertype relations, a disjunction d of conjunctions ci of type
predicates are constructed, formally d = c1 ∨ c2 ∨ . . .∨ cn. For each non-abstract
type in the metamodel one ci = type1 ∧ type2 ∧ . . .∧ typem is constructed where
exactly those type predicates typei appear as positive literals that are direct or
indirect types of ci. This way only one ci can be true in d for any objects that
conforms to the metamodel.

For example, the Function class in Table 1 is mapped to a formula where only
the Function(f) and the FunctionalElement(f) predicates are positive literals.

References and Attributes. An EReference between two EObjects is a di-
rected relation represented as binary reference predicates (boolean functions) and
its target type is explicitly asserted to restrict their range to the specific EOb-
ject types. E.g. the FOL formula generated for parent EReference in Table 1
ensures that the source object e is a FunctionalElement while the target end f is
a Function.

An inverse reference in Ecore is mapped to two separate predicates defined in
the opposite direction and an additional equivalence operation is defined between
them to assert their inverse nature. For instance, parent(e,f) is defined as an
inverse of subElements(f,e) in Table 1.

The objects of an EMF model are arranged into a directed tree hierarchy
along the containment EReferences, which is mapped into two constraints: (i)
The acyclicity constraint is defined as a transitive closure stating that any object
is unreachable from itself (see the example in Section 4.2) and (ii) the singular

Validation of Derived Features and Well-Formedness Constraints in DSLs 547

Table 1. Examples of mapping the features of an Ecore metamodel

EObject �→ Object

f : Function

Function FunctionalElement �→
Type: Function(f)
cfunction: Function(f) ∧ FunctionalElement(f)
∧¬FAMTerminator (f) ∧ ¬InformationLink(f)
∧ . . . ∧ ¬FunctionalInterface(f)

e.getParent == f

Function FunctionalElement
subElements0..*parent0..1 �→

Reference predicate Parent(e, f)
End types: ∀e, f : Parent(e, f) ⇒
(FunctionalElement(e) ∧ Function(f))
Inverse edges: ∀e, f :
Parent(e, f) ⇔ subElements(f , e)
At most one multiplicity: ∀e, f1, fextra :
Parent(e, f1) ∧ Parent(e, fextra) ⇒ f1 = fextra

f.type : FunctionalType

Function
type : FunctionType

<<enumeration>>
FunctionType
Root
Leaf
Intermediate

�→
Attribute type:
Type = {Root , Intermediate, Leaf }
Attribute value:
type(f ,Leaf)

root constraint expresses that there is exactly one object in the model without
a parent.

Our approach currently supports EAttributes with enumeration types only,
where the enum literals are mapped to constants and the EAttribute is repre-
sented as a predicate with the source as the container object and the target as
the value of corresponding constant. For example, the type(f,Leaf) defines that
the value of the type EAttribute is a Leaf in Table 1. We plan to investigate [16]
to extend to other types.

By default, predicates derived Ecore links assume the most general 0..* mul-
tiplicity. An upper bound can be mapped to an EPR by assuring there that
the number of different target objects are less than it defines, however, a lower
bound cannot be expressed without existential quantifiers and thus leads out of
EPR. Without going into details, an example mapping of cardinality constraints
is demonstrated in Row 2 of Table 1.

4.2 Mapping of the Graph Queries

In the current section we highlight how different features of the EMF-IncQuery
graph query language are mapped to FOL formulae.

Structure of a Query. On the top level, a graph query consists of: (i) a
parameter list, which is a fixed size vector of variables over the objects of the in-
stance model and (ii) one or more disjunctive (OR) pattern bodies, which define
constraints over its parameters and additional existentially quantified internal
variables. A query in our mapping is defined as a disjunction of its bodies, where
the bodies are the conjunction of its constraints.

548 O. Semeráth, Á. Horváth, and D. Varró

In Table 2, the mapping of the query of the type DF is exemplified, where
the first row defines how its pattern bodies are mapped to three separate body_i
predicates. The second row demonstrates how the second body of the query
is mapped to a FOL formula, where the _Par and _Chl are its inner variables.
Simple constraints in a pattern body are handled as follows:

– Attribute check conditions are mapped to their corresponding equivalent in
FOL as only the equivalence and non-equivalence relations are defined over
enum literals. For instance, in Table 2 the third row defines an equivalence
relation between the Target variable and the Intermediate constant.

– An EClassifier constraint defines the type of the object that is bound to a
variable, which is simply mapped to its corresponding type predicate. E.g,
in the fourth row in Table 2, the This variable can only be of type Function.

– EReference constraints are compiled into their corresponding reference pred-
icates, for example, in Table 2 the parent EReference is mapped to the its
corresponding parent(_Chl,This) reference predicate.

– Finally, a negative application condition is mapped to (i) a subpattern def-
inition for the negative pattern identically to how a pattern body is con-
structed and a (ii) pattern call constraint. If the formula of the subpattern
is satisfied, the latter invalidates the caller pattern along the given param-
eter substitution. For instance, in Table 2 the nacSubPattern(Child,Parent)
is constructed and it is called using the ¬nacSubPattern(_Chl,This) formula
with the _Chl and This variables as defined by in the third pattern body of
the type query.

Constraint Approximation. The EMF-IncQuery graph query language is
more expressive than the EPR fragment of FOL thus some constraints (like
recursively called patterns, transitive closures) cannot be expressed within its
boundaries. Our approach derives over- and underapproximations to handle such
problematic language features. Below, we sketch the overapproximation of the
transitive closure feature of the query language, while more technical details are
available in [17].

We use an overapproximation on the maximum iteration of the traversal on
the transitive reference. The idea is to define unique transitive predicates for
each iteration that defines how many more references it can traverse along the
transitive reference, where finally the last predicate is substituted with the true
predicate (overapproximation). Additionally, to force acyclic traversal, the pred-
icates also specify uniqueness constraints over the visited objects.

For example, predicate parentMatch(This , P) ⇒ parent2Match(This , P) de-
fines an overapproximation of length 2 for the transitive closure of the parent
EReference in the second pattern body of the model query, in the following way:

2: parent2Match(This , P) ⇒ parent(This ,P)∨ ∃m1 : parent(This ,m1) ∧
parent1Match(m1 , P,This)

1: parent1Match(This , P, d1) ⇒ parent(This ,P)∨ ∃m2 (m2
= d1) :
parent(This ,m2) ∧ parent0Match(m2 , P, d1 ,This)

0: parent0Match(This , P, d1 , d2) ⇒ parent(This ,P)∨ ∃m3 (m3
= d1 ,m3
=
d2) : parent(This ,m3) ∧ true

Validation of Derived Features and Well-Formedness Constraints in DSLs 549

Table 2. Mapping of graph query features

type(This,Target)

b2b1 b3
�→

DF predicate: typeDF (This,Target)
Or queries: ∀Type,Target : typeDF (This,Target) ⇔
body1(This,Target) ∨ body2(This,Target)
∨body3(This,Target)

_P:F T:F:par

_C:F
:par �→

Pattern body: body(This,Target) = ∃_Par ,_Chl :
Function(_Par) ∧ Function(_Chl) ∧ Function(This)
∧parent(_Chl ,This) ∧ parent(This,_Par)

Target==‘Intermediate’ �→ Attribute Condition: Target = Intermediate

This:Function �→ EClassifier constraint: Function(This)

_Chl:Function

This: Function

: parent �→ EReference constraint: parent(_CHL,This)

This:Function

_Chl: FuncElement

NEG: parent �→

Negative Application Condition:
Subpattern: nacSubpattern (Chlid ,Parent) ⇔
parent(Chlid ,Parent)
Pattern call constraint:
¬nacSubPattern(_Chl ,This)

Note that a similar idea is used in case of recursive pattern calls, where (1)
the call hierarchy is flattened first, and then (2) only recursive calls are needed
to be overapproximated based on the maximum number of allowed calls.

Patterns as DF and WF. When constructing the set of axioms for a DSL from
graph patterns, derived features and well-formedness constraints need to be han-
dled differently. In case of DFs, we need to guarantee that the evaluation of the
predicate of the derived feature and its graph query definition is equivalent. For
example, in case of type of a Function where type is the attribute predicate and
typeDF is a pattern it looks like this: ∀src, trg : type(src, trg)⇔ typeDF (src, trg).
This statement is added to the statement set DFs to be validated next.

In most cases, a pattern captures a WF constraint to highlight problematic
locations, thus it is essentially an ill-formedness constraint which is not allowed
to have any match in a valid model. Therefore, the axiom needs to be quantified
accordingly. For instance, for patternterminatorandInformationLink we add to the
WF set: ∀Ter , InfLink : ¬terminatorandInformationLink (Ter , InfLink).

550 O. Semeráth, Á. Horváth, and D. Varró

4.3 Search Parameters

The validation run can be parameterized by different (optional) search parame-
ters:

– Target partition: In order to reduce the state space during validation, the
metamodel can be pruned to contain only the relevant parts for a specific
validation run.

– Partial snapshot: The verification may fail on trivial counterexamples that
are theoretically correct but do not corresponds to the real structures. The
range of the checked models can be limited to the extension of an initial
instance model, which constitutes the constants of the input and the as-
sumptions partially define the truth-value of the predicates.

– Maximum size of instance models: Following the small scope hypoth-
esis [18], the maximum size of the instance models to be checked during
validation can be optionally defined. This allows to solve the validation as a
SAT problem or provide a minimal counter example.

– Approximation level: Whenever an over- and underapproximation is used
to describe a certain metamodel, DF or WF feature it is required to explicitly
define the boundaries (or level) of the approximation.

5 Evaluation

The aim of our evaluation is to illustrate that our mapping approach is capable
of expressing and validating complex metamodel and query features either by
directly mapping them to EPR (denoted as +), solve them as a general FOL
proving problem (–) or approximate the general problem by relaxing it to an
ERP (e.g. overapproximate the containment hierarchy by neglecting it). The
Table 3 summarizes all relevant features of both the Ecore metamodels and the
EMF-IncQuery model query languages that can (+) or cannot (–) be mapped
directly to EPR, needs approximation (A) to define it in FOL or is inexpressible
(X) in FOL. As the DF and WF constraints in overall are validated using different
polarity the quantifications of their variables will differ and thus they cannot be
mapped the same way (e.g., the same query may not be validated as DF or
WF over the same properties). Detailed discussion about the mapping of these
features is available in [17].

The runtime performance1 of our approach is negligible in cases when the
mapping can be kept in EPR and then is usually under 1 sec for example, in
our running example it was less than 100 ms for all feature validation except for
the completeness validation of the model DF (timeout). However, whenever the
mapped features are outside of EPR the outcome of the validation relies on the
underlying automated theorem prover, which may be able to validate the feature
but there are no guarantees that it will ever produce a proof or refutation due
to undecidability of FOL in general.
1 Average PC with 4 Gb RAM, running Win 7.

Validation of Derived Features and Well-Formedness Constraints in DSLs 551

Table 3. Expressing Ecore and EMF-IncQuery language features in Z3

Features of the metamodel
EClasses E +

Class hierarchy E +
EEnums E +

EReferences E +
EAttributes E +

Multiplicity upper bound E +
Multiplicity lower bound E –

Inverse edges E +
Containment hierarchy A –

Partial snapshot E +

DF Features of model query WF
E + Classifier constraint E +
E – EReference constraint E +
E – Acyclic pattern call E +
E – Negative pattern call E –
A – Transitive closure A +
A – (Positive) pattern call recursion A +
A – Arbitrary call graph A –
X Aggregate (eg. Count, Sum) X
X Check expressions X

E: Expressible A: Approximable X: Inexpressible +: in EPR –: not in EPR

6 Related Work

There are several approaches and tools aiming to validate UML models en-
riched with OCL constraints [19] relying upon different logic formalisms such
as constraint logic programming [20,21,16], SAT-based model finders (like Al-
loy) [22,23,24,25], first-order logic [26,27], constructive query containment [28],
higher-order logic [29,30], or rewriting logics [31]. Some of these approaches (like
e.g. [21,23,24]) offer bounded validation (where the user needs to explicitly re-
strict the search space), others (like [27,29,26]) allows unbounded verification
(which normally results in increased level of user interaction and decidability
issues).

SMT-solvers have also been used to verify declarative ATL transformations
[32] allowing the use of an efficiently analyzable fragment of OCL [27]. The
FORMULA tool also uses the Z3 SMT-solver as underlying engine, e.g. to rea-
son about metamodeling frameworks [15] where proof goals are encoded as CLP
satisfiability problem. The main advantage of using SMT solvers is that it is refu-
tationally complete for quantified formulas of uninterpreted and almost uninter-
preted functions and efficiently solvable for a rich subset of logic. Our approach
uses SMT-solvers both in a constructive way to find counter examples (model
finding) as well as for proving theorems. In case of using approximations for rich
query features, our approach converges to bounded verification techniques.

Graph constraints are used in [33] as means to formalize a restricted class
of OCL constraints in order to find valid model instances by graph grammars.
An inverse approach is taken in [34] to formalize graph transformation rules
by OCL constraints as an intermediate language and carry out verification of
transformations in UML-to-CSP tool. These approaches mainly focus on map-
ping core graph transformation semantics, but does not cover many rich query
features of the EMF-IncQuery language (such as transitive closure and recursive
pattern calls). Many ideas are shared with approaches aiming to verify model
transformations [34,35,32], as they built upon the semantics of source and target
languages to prove or refute properties of the model transformation.

552 O. Semeráth, Á. Horváth, and D. Varró

The idea of using partial models, which are extended to valid models during
verification also appears in [14,15,36]. These initial hints are provided manually
to the verification process, while in our approach, these models are assembled
from a previous (failed) verification run in an iterative way (and not fully man-
ually). Approximations are used in [37] to propose a type system and type in-
ference algorithm for assigning semantic types to constraint variables to detect
specification errors in declarative languages with constraints.

Our approach is different from existing approaches as it uses a graph based query
language instead of OCL for capturing derived features and well-formedness con-
straints. Up to our best knowledge, this is the first approach aiming to validate
queries captured within the EMF-IncQuery framework, and the handling of de-
rived features is rarely considered. Furthermore, we sketch an iterative validation
process how DSL specifications can be carried out. Finally, we also cover the val-
idation of rich language features (such as recursive patterns or transitive closure)
which is not covered by existing (OCL-based) approaches.

7 Conclusion

In the paper, we addressed the validation of DSL tools specified by a combination
of EMF metamodels and graph queries (of EMF-IncQuery) capturing derived
features and well-formedness rules. For that purpose, we defined an iterative
(and semi-automated) validation workflow and a mapping of metamodels and
queries to the effectively propositional (EPR) fragment of first-order logic, which
can be efficiently analyzed by the Z3 SMT solver. In order to cover rich language
features (such as transitive closure and recursion), we proposed constraint ap-
proximations to yield formulae that fall into EPR. Moreover, validation can be
guided by the designer in the form of initial (partial) model snapshots, which
need to be included in valid instance models. We illustrated our approach on
a running example extracted from an ongoing research project in the avionics
domain.

Our future work is intended to be directed to improve the level of query
feature coverage and raise the level of automation of our system. For instance,
our current approach is restricted to handle attributes of enumeration values
only, while real metamodels contain attributes of integers, strings, etc. For this
purpose, we may build upon [16] where reasoning is provided for string attributes
in OCL constraints or other decision procedures for numeric domains.

In our current framework, automation is restricted to forward mappings, while
refinements are carried out manually by the domain engineer. It would be ad-
vantageous to shift our framework towards a black-box solution as much as pos-
sible, which immediately raises several challenges. On the tooling level, counter-
examples derived by Z3 should be back-annotated to the DSL tooling (as model
instances). On the validation level, an interesting direction is to develop coun-
terexample guided refinement of approximations where false positive counterex-
amples obtained as a result of approximations can be filtered by instance-level
validation techniques.

Validation of Derived Features and Well-Formedness Constraints in DSLs 553

References

1. The Eclipse Project: Eclipse Modeling Framework, http://www.eclipse.org/emf
2. Willink, E.D.: An extensible OCL virtual machine and code generator. In: Proc.

of the 12th Workshop on OCL and Textual Modelling, pp. 13–18. ACM (2012)
3. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,

A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010)

4. ARINC - Aeronautical Radio, Incorporated: A653 - Avionics Application Software
Standard Interface

5. AUTOSAR Consortium: The AUTOSAR Standard, http://www.autosar.org/
6. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Ráth, I., Hegedüs, Á., Varró, D.: Derived features for EMF by integrating advanced
model queries. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos,
D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 102–117. Springer, Heidelberg (2012)

8. Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: Query-driven soft interconnection
of EMF models. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 134–150. Springer, Heidelberg (2012)

9. Piskac, R., de Moura, L., Bjorner, N.: Deciding effectively propositional logic with
equality, Microsoft Research, MSR-TR-2008-181 Technical Report (2008)

10. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for emf
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011)

11. SAE - Radio Technical Commission for Aeronautic: Architecture Analysis & Design
Language (AADL) v2, AS-5506A, SAE International (2009)

12. Mathworks: Matlab Simulink - Simulation and Model-Based Design,
http://www.mathworks.com/products/simulink/

13. The Object Management Group: Object Constraint Language, v2.0 (May 2006),
http://www.omg.org/spec/OCL/2.0/

14. Sen, S., Mottu, J.M., Tisi, M., Cabot, J.: Using models of partial knowledge to test
model transformations. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307,
pp. 24–39. Springer, Heidelberg (2012)

15. Jackson, E.K., Tiham, Balasubramanian, D.: Reasoning about metamodeling with
formal specifications and automatic proofs. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 653–667. Springer, Heidelberg (2011)

16. Büttner, F., Cabot, J.: Lightweight string reasoning for OCL. In: Vallecillo, A.,
Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS,
vol. 7349, pp. 244–258. Springer, Heidelberg (2012)

17. Semeráth, O.: Validation of Domain Specific Languages, Technical Report (2013),
https://incquery.net/publications/dslvalid

18. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

19. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. Softw. Syst. Model. 4(4), 386–398 (2005)

20. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verifica-
tion of UML/OCL models using constraint programming. In: Proc. of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2007), pp. 547–548. ACM, New York (2007)

http://www.eclipse.org/emf
http://www.autosar.org/
http://www.mathworks.com/products/simulink/
http://www.omg.org/spec/OCL/2.0/
https://incquery.net/publications/dslvalid

554 O. Semeráth, Á. Horváth, and D. Varró

21. Cabot, J., Clarisó, R., Riera, D.: First international conference on software testing
verification and validation. In: Verification of UML/OCL Class Diagrams using
Constraint Programming, pp. 73–80. IEEE (2008)

22. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

23. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012)

24. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

25. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using boolean satisfiability. In: Design, Automation and Test
in Europe (DATE 2010), pp. 1341–1344. IEEE (2010)

26. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Language
into first-order predicate logic. In: Proc of the VERIFY, Workshop at Federated
Logic Conferences (FLoC), Copenhagen, Denmark (2002)

27. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. ECEASST 24 (2009)

28. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

29. Brucker, A.D., Wolff, B.: The HOL-OCL tool (2007), http://www.brucker.ch/
30. Grönniger, H., Ringert, J.O., Rumpe, B.: System model-based definition of mod-

eling language semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 152–166. Springer, Heidelberg (2009)

31. Clavel, M., Egea, M.: The ITP/OCL tool (2008),
http://maude.sip.ucm.es/itp/ocl/

32. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

33. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted
OCL constraints into graph constraints for generating meta model instances by
graph grammars. ENTCS 211, 159–170 (2008), Proc. of the 5th Int. Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT 2006) (2006)

34. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: A UML/OCL framework for the
analysis of graph transformation rules. Softw. Syst. Model. 9(3), 335–357 (2010)

35. Lúcio, L., Barroca, B., Amaral, V.: A technique for automatic validation of model
transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 136–150. Springer, Heidelberg (2010)

36. Kuhlmann, M., Gogolla, M.: Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In: Vallecillo, A., Tolvanen, J.-P.,
Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp.
32–48. Springer, Heidelberg (2012)

37. Jackson, E.K., Schulte, W., Bjørner, N.: Detecting specification errors in declarative
languages with constraints. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 399–414. Springer, Heidelberg (2012)

http://www.brucker.ch/
http://maude.sip.ucm.es/itp/ocl/

Self-adaptation with End-User Preferences:

Using Run-Time Models and Constraint Solving�

Hui Song1, Stephen Barrett1, Aidan Clarke2, and Siobhán Clarke1

1 Lero: The Irish Software Engineering Research Centre
SCSS, Trinity College Dublin, College Green, Dublin 2, Ireland

2 Software Group, IBM Ireland, Dublin 15, Ireland
firstname.lastname@scss.tcd.ie, aidan clarke@ie.ibm.com

Abstract. This paper presents an approach to developing self-adaptive
systems that takes the end users’ preferences into account for adaptation
planning, while tolerating incomplete and conflicting adaptation goals.
The approach transforms adaptation goals, together with the run-time
model that describes current system contexts and configurations, into a
constraint satisfaction problem. From that, it diagnoses the conflicting
adaptation goals to ignore, and determines the required re-configuration
that satisfies all remaining goals. If users do not agree with the solution,
they can revise some configuration values. The approach records their
preferences embedded in the revisions by tuning the weights of existing
goals, so that subsequent adaptation results will be closer to the users’
preferences. The experiments on a medium-sized simulated smart home
system show that the approach is effective and scalable.

1 Introduction

Self-adaptability is an important feature of modern software-based systems. In
adaptive systems, an adaptation agent monitors changes on a system or its
environment, plans an appropriate configuration, and reconfigures the system
accordingly [1–3]. Adaptation planning is guided by a set of policies, which
specifies the desired system configuration under different contexts [4].

Adaptation policies are likely to be incomplete and conflicting: Under some
particular context, either there may be multiple configurations that fit the goals,
or no configuration can satisfy all the goals simultaneously. Such imperfect poli-
cies are practically unavoidable. Firstly, it is difficult for developers to eliminate
all incompleteness and conflicts by enumerating every possible composition of
the contexts to add extra policies. Secondly, the system may be constructed from
existing components, each of which carries separately developed, and thus poten-
tially conflicting, policies. At runtime, imperfect policies will result in multiple
possible adaptation solutions. An adaptation agent has to choose one solution
from them, but which one is the best may depend on who is using the system.

� This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre (www.lero.ie)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 555–571, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.lero.ie)

556 H. Song et al.

A promising improvement on self-adaptation is to tolerate imperfect policies,
and do adaptation planning while considering end user preferences [1, 5, 6].
This paper takes such an approach, building the method over approaches based
on models at runtime. [2, 7, 8]. By wrapping heterogeneous target systems as
standard run-time models, we implement adaptations on top of model reading
and writing, guided by model constraints in the form of OCL invariants. The
challenges of this approach are threefold: 1) How could adaptation on run-time
models and declarative model constraints be solved automatically; 2) How should
user preferences be coded and utilized in adaptation planning; 3) What is an
appropriate interface for end users to express their preferences?

The contributions of this paper can be summarized as follows.

– We design a partial evaluation semantics on OCL to automatically transform
a run-time model into a constraint satisfaction problem (CSP) [9]. The vari-
ables of CSP are the context and configuration attributes, and constraints
are from the current values of these attributes and the OCL invariants.

– We provide a novel approach to planning adaptations on CSP. We use con-
straint diagnosing to determine the optimal set of constraints to ignore, and
then use constraint solving to assign new configuration values that satisfy
the remaining constraints. User preference is reified as different weights of
the constraints, and a constraint with higher weight will more probably be
satisfied.

– We provide a straightforward way for end users to express their preference:
After each round of adaptation, we allow users to directly redress the adapta-
tion result, and in the background, we tune the weights of existing constraints
according to the user’s revision.

We evaluated the approach on a simulated smart home system. The adapta-
tion significantly reduced the number of violated goals, and after a few rounds of
preference tuning, the adaptation results became much closer to the simulated
user preferences. The approach scales to medium-sized systems: An adaptation
with 2000 constraints took 2 seconds on average. All implementation code and
experiment results are available on-line [10].

The rest of the paper is structured as follows. Section 2 gives an overview
of the approach, with a simplified running example. Sections 3 to 5 present
the three technical contributions. Section 6 shows the experiments and results.
Section 7 introduces related approaches, and Section 8 concludes the paper.

2 Approach Overview

2.1 Background and Terminology

A run-time model is a model that presents a view of some aspect of an execut-
ing system [11]. In this paper we focus on structural run-time models [7] that
present the structural composition of a system, and the attribute values of dif-
ferent compositional elements. Some of these attributes describe an observation

Self-adaptation with End-User Preferences 557

of a system, such as room temperature, while some others describe ways to ma-
nipulate a system, such as the state of an electronically controllable switch. We
name these contexts and configurations, respectively. A run-time model is dy-
namically synchronized with the executing system, which means that the model
state s ∈ S (the elements and all their attribute values), at any time point, is
the snapshot of the system at this time point, and transferring the state to s′

(by giving new values to some configuration attributes) will cause the system
to change accordingly. The set of all the possible model states S is defined by a
meta-model. System adaptation based on a run-time model is a process to read
the model state s, and then plan a new state s′.

We use model constraints on run-time models as the adaptation policies to
guide the adaptation planning [1]. A model constraint is a function cons : S → B.
For a model state s ∈ S, if cons(s) = # (we use # for true and ⊥ for false) we
say s satisfies cons. The objective of an adaptation is to make the model satisfy
as many constraints as possible. From this perspective, the role played by model
constraints in our approach conforms to the definition of goal policies, as they
“directly specify desired system states” rather than “define how to achieve them”
[1, 5]. In the rest of this paper, we call these model constraints adaptation goals
in order to avoid ambiguity with the concept of constraints in CSP, as follows.

A constraint satisfaction problem (CSP) [9], or in particular a satisfiability
modulo theory (SMT), is composed of a set of variables V and a set of first order
logic constraints C over these variables. A constraint solver checks if there exists
a labelling function f : V → D that assigns a value to each variable and these
values satisfy all the constraints. If so, we say the CSP (V,C) is satisfiable, and
the solver returns such an f . Some solvers divide constraints into hard and weak
ones, i.e., C = Ch∪Cw, and weak constraints can be ignored when necessary. For
an unsatisfiable problem, the solver returns a sample of conflicting constraints
from Cw. From the samples, we can construct a diagnosis Cd ⊆ Cw, such that
(V,C − Cd) is satisfiable. This process is called constraint diagnosing [12].

2.2 Motivating Example

We use a simple smart home system as a running example throughout this paper.
Cheap but powerful sensors are now available, which collect a diversity of data
from our living environment, and devices are frequently employed to make many
household items electronically controllable. This enables and requires dynamic
adaptation of an entire home when the environment changes, in order to improve
living qualities and to save resources. At the same time, such a smart home is
a highly personalized system. For the same context, different users may expect
different adaptation effects.

Figure 1 describes a simplified domain model of smart home. The left part is a
meta-model defining the types of system elements, the context information such
as electricity price, time, room temperature, and the configuration points such
as turning on or off the water heater. The heating system can work on different
settings: 0 for off, 5 for fairly hot and 10 for very hot, etc. The right part of
Figure 1 lists five adaptation goals, i.e., “when it is cold, the heatings should

558 H. Song et al.

name:String (id)
eprice:Real (context)
time: Real (context)

House

name:String (id)
temp:Real (context)
air:Int (context)

Room

room*

on:Bool (config)
WaterHeater

wh

opened:Bool (config)
Window name:String(id)

setting:Int (config) [0..10]

Heating
heating*

window*

context Room
 inv: temp < 10 implies heating.setting->sum() >
 4 * heating->size();
 inv: window->forAll(e | e.opened = false) or
 heating->forAll(e | e.level = 0);
 inv: air > 5 implies window->exists(e | e.opened)
context WaterHeater:
 inv: house.time<2 or house.time>8 or on
context House
 inv: price >15 implies (not wh.on or room.heating
 ->flatten()->forAll(e:Heating | e.setting < 4)

house

Fig. 1. Sample smart home meta-model and adaptation goals

be at sufficient settings for comfort”, “do not open window when the heating is
on”, “do open window when air quality is bad”, “keep water heater on in the
early morning”, and “when the electricity is expensive do not use water heater
and strong heating together”. The five sample goals are both incomplete and
conflicting: The first does not point out a specific value for the heating settings.
Alternatively, when it is cold and the air is bad, we can never satisfy the first
three goals simultaneously.

Guided by such goals, there may not be a single perfect adaptation decision,
and our solution is to take user preferences into account. For example, if we know
the user prefers “heating 1 to work in setting 10”, then we can choose setting
10 for this heating whenever it is one of the choices. For another example, if the
user regards the third goal has a lower priority than others (he is more tolerable
of smelly air), then when this goal conflicts with others, we sacrifice it first.

Since the smart home system targets end users who are probably without a
computer science background, it is a burden for them to add new goals or tune
the goal weights manually. Therefore, we provide a simplified interface: after each
time of adaptation, the users can further revise the configuration by changing
some of the attributes with the values they prefer. According to the revision, the
approach generates goals or tunes the weights in the background.

2.3 The Adaptation Approach with User Preference

This paper presents a dynamic adaptation approach guided by the domain model
and user preferences. Figure 2 shows the approach architecture, where solid
arrows indicate the main adaptation loop at runtime, and dashed arrows are the
post-adaptation reference recording. The trident lines are the user intervention.

The system context and configuration are captured by a run-time model [7],
such as the one shown in the left part of Figure 3. The construction and mainte-
nance of run-time models are out of the scope of this paper, and some techniques
can be found elsewhere [8, 13, 14]. Adaptation planning and preference tuning
based on runtime models have the following three activities.

The approach first transforms the current run-time model into a CSP, such
as the one shown on the right of Figure 3. It transforms each context or config-

Self-adaptation with End-User Preferences 559

adaptaion
 revision

domain
modeling

new
config

meta
model
(MOF)

adaptation
goals
(OCL)

runtime
model

system

CSP
generation

CSP
constraint

solving
user

preference

new
config

runtime
model' preference

recording

domain experts end user

design time
input
temporal artifact
at runtime

persistent
artifact

activity

adaptation
data flow

pref tuning
data flow
human
intervention

Fig. 2. Approach overview

eprice = 20.0
time = 2

house:House

on = true
:WaterHeater

temp = 9
air = 6

liv:Room

opened=false
:Window

setting=3
h1:Heating

setting=0
h2:Heating

room

wh

window

heating heating

var: ep, time, air, temp, h1set, h2set, whon, winop
hard con: 0 ≤ h1set ≤ 10, 0 ≤ h2set ≤ 10
ep = 20.0, time = 2, air = 6, temp = 9
weak con: 1whon = T , 2h1set = 3, 3h2set = 0

4winop = F , 5temp < 10 → h1set+ h2set > 8

6winop ∨ (h1set = 0 ∧ h2set = 0)

7air > 5 → winop, 8time < 2 ∨ time > 8 ∨ whon

9ep > 15 → (¬whon ∨ (h1set < 4 ∧ h2set < 4))
weight(1-4)=4, weight(5)=20, weight(6-9)=10

Fig. 3. Sample smart home runtime model and the generated CSP

uration attribute from each model element into a variable. The hard constraints
are generated from configuration domains and current context values, as they
cannot be violated after adaptation. The weak constraints are generated from
configuration values and adaptation goals. The key technical idea here is a par-
tial evaluation of the OCL language to identify the mapping from the attributes
mentioned in OCL rules to the variables, which we will explain in Section 3.

Based on the generated CSP, the adaptation planning is to change the values
of some of the configuration variables, so that the new configuration values,
together with the current context, satisfy as many goals as possible. The planning
begins by deciding which configuration variables to change, and which goals to
ignore. This step boils down to finding an optimal diagnosis of the CSP. For
example, from the CSP in Figure 3, we can find a diagnosis (2,7,9), such that if
we change the value of h1set, we can find a solution(h1set = 9) to satisfy all
the goals except 7 and 9. Since different diagnoses lead to different adaptation
solutions, to help grade diagnoses (and the adaptation results), we assign each
weak constraint a weight, and a constraint with bigger weight is more likely to be
satisfied. The adaptation result is the one corresponding to the diagnosis with
the minimal total weight. Under the weights shown in the bottom of Figure
3, diagnosis (2,7,9) has the minimal total weight 24. Section 4 presents our
constraint diagnosing and solving approaches.

560 H. Song et al.

After each automated adaptation, if users change some of the configuration
attributes, we record their preferences by tuning the weights of existing goals
or generating new ones. Following our running example, if the user revises the
adaptation result by increasing h1set to 10, we will generate a new constraint
h1set = 10. Now if in any case the adaptation engine needs to choose a value
for h1set, it will first consider the value 10. As another example, if the user also
opens the window, we will decrease the weights of 4 and 6, and increase the weight
of 7 (as will be shown in Section 5). Next time under the same circumstance,
we would find a different optimal diagnosis (2,4,6,9), and the window would be
automatically opened.

3 Transforming a Run-Time Model to CSP

This section presents how we transform the run-time model and the OCL adap-
tation goals into a CSP. The inputs of the transformation are MOF meta-model
and OCL invariants (Figure 1), and the current run-time model (Figure 3). The
output CSP is in the form of variables and first order logic (FOL) constraints
on them. The right part of Figure 3 illustrates the abstract and mathematical
form of the CSP (the concrete form is in Z3Py [15]).

We generate a variable from each context or config attribute of each model
element, i.e., genvar : M ×Elem×Attr ⇀ V . For an element e from the current
run-time model m, and an attribute a ∈ e.Class.AllAttributes that is annotated
as context or config, we get a variable v = genvar(m, e, a). From the model
instance as shown in Figure 3, we generate 8 variables listed on the right. The
constraints are generated from the domains of configuration attributes, the cur-
rent context and configuration values, and the adaptation goals. Except for goals,
the generation is straightforward, with self-explainable samples in Figure 3.

To transform the goals into FOL constraints, we replace the context and
config attributes in the OCL invariants by the corresponding variables, resolve
the static values in the run-time model, and maintain the operations between
them. The challenge is that the OCL invariants are defined in the meta-model
level, without concretely mentioning any model instances, whereas the FOL con-
straints are based on the variables that are generated from a particular model
instance. We implement the transformation by defining a new partial evaluation
[16] semantics on the OCL expressions, i.e., [[expr]]env : M → C. The seman-
tics on each expression expr is a function from a run-time model m ∈ M to a
constraint c ∈ C. Here env is an environment recording the mapping from OCL
variables to values or model elements. As a simple example, if m is the model
instance in Figure 3, then [[self.temp < 10]]{self�→liv1}(m) = t < 10, where
t = genvar(m, liv1, temp).

Figure 4 lists an excerpt of the partial evaluation semantics on some typical
forms of OCL expressions. For a data value in type of boolean, integer or real,
we directly generate the value literal (1). For an OCL variable, we find its value
from the environment and continue to evaluate this value (2). If the expression
does not mention any context or configuration properties, we execute the OCL

Self-adaptation with End-User Preferences 561

1. [[val]]c(m) = literal(val); 2. [[var]]c(m) = [[c(var)]]c(m);
3. [[expr]]c(m) = [[ocleval(m, expr, c)]]c(m)
if expr does not mention any context/config attributes
4. [[expr.attr]]c(m) = genvar(m, ocleval(expr, c), attr); if attr is context/config
5. [[expr1 + expr2]]c(m) = [[expr1]]c(m) + [[expr2]]c(m);
6. [[expr1 and expr2]]c(m) = And([[expr1]]c(m), [[expr2]]c(m));
7. [[expr->sum]](m) = [[v1]]c(m) + ...+ [[vn]]c(m), v1...vi ∈ ocleval(m, expr, c);
8. [[expr1->forAll(e|expr2)]]c(m) =
And([[expr2]]c∪{e�→vi}(m),...), vi ∈ ocleval(m, expr1, c);
9. [[let e = expr1in expr2]]c(m) = [[expr2]]c∪{e �→ocleval(expr1,c)}(m);

Fig. 4. The partial evaluation semantics on OCL to generate constraints

query to get its result (normally a value), and then evaluate the result (3). If the
expression is to access a context or configuration property, we obtain the host
model element and use its accessed attribute to locate the variable in CSP (4).
For the mathematical and logical OCL operations, we generate the corresponding
FOL operation (5 and 6), following the Z3Py format (e.g., it uses And(a,b) for
conjunction). For an operation on collection, we obtain the host collection first,
and then combine the partial evaluation of each collection item (7, 8). For let
or iteration expressions where new variables are introduced (8, 9), we resolve
the variable value first and put it to the environment before evaluating the sub
expressions. Using this semantics, we transform the OCL invariants by traversing
all the model elements in the current run-time model.

4 Adaptation Planning Based on CSP

This section presents the adaptation planning based on a generated CSP (V,Ch∪
Cw). If the CSP is satisfiable we do not need to do anything for adaptation. Oth-
erwise, we plan the adaptation by constraint diagnosing and constraint solving.

In order to grade the diagnoses, we attach each weak constraint a weight,
weight : Cw → N, and the target of adaptation planning is to find the diagno-
sis with the minimal total weight. From Cd, we perform constraint solving on
(V,Ch ∪ Cw − Cd), and obtain a new configuration f which is a mapping from
each config variable to a value, where f $ (Ch ∪ Cw − Cd).

Our algorithm to search for the optimal diagnosis is inspired by the work of
Reiter [17] and Greiner et al. [12] on non-weighted CSPs, which is essentially
a breadth-first searching for minimal hitting sets, each of which covers all the
sample conflicting sets returned by the solvers. With the help of the constraint
weights, we leverage a dynamic programming approach similar to the Dijkstra
shortest path algorithm.

We illustrate the basic idea of our algorithm using the sample CSP in Figure 3,
and its execution process is shown in Figure 5. We first ask the solver for an
arbitrary sample set of conflicting constraints, and it returns {4,7}, meaning

562 H. Song et al.

0:() =>
{4,7}

4:(4) =>
{2,7,6}

10:(7) =>
{1,2,9,5}

4 7

8:(4,2) =>
{1,5,6,7,9}

2

14:(2,7) =>
{1,9,5}

2

14:(1,6) =>
{2,3,5}

1

18:(1,2,7) =>
{3,9,5,8}

1

24:(2,7,9) =>
√

9

18:(1,2,7) =>
x

2

12:(4,1,2) =>
{3,5,6,7}

28:(4,2,5) =>

1 5

7 6
...

14:(4,7) =>
x

9 5
... ...

3
...
...

5

1

2

3

4

5

6 7

8 910

some steps are
ignored due to
space limitation

Fig. 5. Sample diagnosing process

that the closed window conflicts with the “should open window” goal. To make
the CSP satisfiable, we must open the window or ignore the goal, and thus we
make (4) and (7) as two candidate diagnoses, and pick the one with the lowest
total weight to check (i.e., (4) weights 4). Here checking a candidate means that
we remove the constraints in this candidate from the original CSP, and ask the
solver for a new sample conflict set. By checking (4), we get a sample set {2,7,6},
that means if we remove 4, there is still a conflict between 2, 7 and 6 (“bad air,
open window” conflicts with “heating on, close window”). So we extend the
candidate by each of the conflicting constraints, and get three new candidates.
Now we have four unchecked candidates, i.e., (4,2), (4,7), (4,6), and (7). We also
pick the one with the lowest total weight (i.e., (4,2)) to check and expand. After
no candidates weighted 10 left unchecked, we check (7) and get {1,2,9,5}, which
leads to four new candidates. After having all the candidates under 24 checked,
we check (2,7,9), and the solver returns “satisfiable”. Its intuitive meaning is to
change the first heating, ignore the bad air and high electricity price.

Algorithm 1 lists the steps of the diagnosing algorithm. We maintain a set
cands of all the unchecked candidates, and put an empty set as the initial di-
agnosis (Line 1). The main part of the algorithm is a loop (Lines 3-17). Each
time, we take out the candidate diagnosis curr which has the minimal total
weight (Line 4). Then we check whether removing curr will make the CSP sat-
isfiable (Line 10, we skip Lines 5-10 first as they are related to optimization).
If the check succeeds, we return curr as the final diagnosis, and terminate the
algorithm (line 10), otherwise, we ask the solver to provide a new sample(Line
12). If the solver cannot find any (this only happens when the hard constraints
are conflicting), we terminate the algorithm without a solution (Line 13). After
having the new sample newsamp, we take each constraint c from it (Line 15),
expand the current candidate by adding c into it and push it into the pool (16).

We employ the following optimization. Firstly, since the diagnosis should have
an intersection with every conflicting sample [17], we cache all the samples re-
turned by the solver (Line 14). When dealing with any candidate, we first check
if it covers all the cached samples (Line 9), and if not, we use one uncovered sam-
ple from the cache to extend the candidate instead of bothering the solvers to

Self-adaptation with End-User Preferences 563

Algorithm 1. Weight-based constraint diagnosing

In: Variables V , hard constraints Ch, weak constraints Cw, and weight
Out: A diagnosis Cd ⊆ Cw, with the lowest total cost

1 cands←{φ} ;
2 cache←{}, visited←{}, lastweight←− 1 ;
3 while cands is not empty do
4 curr ← pop (cands) where currweight←

∑
c∈curr weight(c) is minimal ;

5 if lastweight = currweight then
6 if curr ∈ visited then continue;
7 else visited←visited ∪ {curr}
8 else lastweight←currweight, visited←{} ;

9 if ∃(s ∈ cache)[s ∩ curr = φ] then newsamp←s ;
10 else if satis(V,Ch, Cw − curr) = T then return curr as Cd;
11 else
12 newsamp ← sample(V,Ch, Cw − curr) ;
13 if newsamp = φ then throw ’conflicts in hard constraints’ ;
14 else cache←cache ∪ {newsamp} ;

15 foreach c ∈ newsamp do
16 newcand←curr ∪ {c}; push(cands, NewCand) ;

produce one. The second goal is to accelerate the set operations. We implement
cands as a heap queue, so that we can push an item or pop the smallest one in
O(log n). Since it is hard to filter identical items in a heap queue, we maintain
a list of recently visited candidates with the same particular total weight, and
use it to check if the current candidate has been visited (Lines 5-7).

5 End User Preference Recording

If users revise an adaptation result, we reify their preferences by tuning the
weights of existing constraints or generating new ones, so that the subsequent
adaptation results will be closer to the one that users preferred.

In order to tune the CSP, the first task is to identify the user’s preferred diag-
nosis corresponding to the revised configuration they provide. Formally speak-
ing, for a revised configuration f ′, the preferred diagnosis C′

d ⊆ Cw holds that
f ′ $ (Ch∪Cw−C′

d). From the configuration f ′, it is straightforward to reversely
derive the diagnosis C′

d: Just find all the original weak constraints that cannot
be satisfied by the current configuration f ′, i.e., C′

d = {c ∈ Cw|¬(f ′ $ c)}.
We handle the weight tuning separately for the two different containment

relationships between Cd and C′
d, as shown in Figure 6.

Firstly, if ¬(Cd ⊆ C′
d), as shown in Figure 6(a), we have three subsets namely

I: Cd − C′
d, II: C

′
d − Cd and III: Cd ∩ C′

d. III can be empty, but I and II can

564 H. Song et al.

 I II III

(a) (b)

IV

Fig. 6. Two different conditions for constraint weight tuning

not1. We increase the weight of each constraint in I, and decrease II. In partic-
ular, weight′(c ∈ I) = weight(c)× (

∑
i∈II weight(i)/

∑
j∈I weight(j)), weight

′(c ∈
II) = weight(c) × (

∑
i∈I weight(i)/

∑
j∈II weight(j)). In this way, we change all

the weights in proportion, and switch the total weight of Cd and C′
d. The intuitive

meaning of this tuning can be illustrated by the following example. The adapta-
tion result in the last section h1set = 9 corresponds to Cd = {2, 7, 9}. Suppose
the user further modify the configuration by opening the window (winop = T),
and this new f ′ corresponds to C′

d = {2, 4, 6, 9}. Now we have I= {7} and
II= {4, 6}. We get weight′(7) = 10 ∗ (4 + 10)/10 = 14, which means that the
user is reluctant to break constraint 7 (bad air -> open window), and we get
weight′(4) = 2 and weight′(6) = 6, indicating he does not care about 4 (keep the
window’s status) and 6 (do not open window when heating).

Secondly, if Cd ⊆ C′
d, as shown in Figure 6(b). We also decrease the weights in

IV=C′
d−Cd. However, since the weight is not negative, we cannot make the total

weight of C′
d less than that of Cd. Therefore, we introduce a set of new constraints

Cp: for each variable v ∈ V , if user modified it with a new value d, then v = d
is a constraint in Cp. Now under the new CSP (V,Cd, Cw ∪ Cp), the original
configuration f corresponds to diagnosis Cd ∪ Cp, whereas the user’s preferred
configuration f ′ still corresponds to C′

d. We make weight′(c ∈ IV) = weight(c)/2,
and weight′(c ∈ Cp) = max(

∑
i∈IV weight(i)/|Cp|, default). For example, from

the same f and Cd = {2, 7, 9}, if the users modify the result by further set
h2set = 5, then this new f ′ corresponds to C′

d = {2, 3, 7, 9}. So we have IV={3},
Cp = {10 : h2set = 5}. The intuitive meaning is that the user would like to
turn h2 to setting 5 when possible. This condition also covers Cd = C′

d, where
we only generate new constraints, without tuning any weights.

6 Evaluation

The implementation of the whole approach has two parts. We implement the
CSP generation engine by Xtend [18], reusing the Eclipse OCL library for the
parsing of OCL texts. We choose Microsoft Z3 [15] as the constraint solver, and
implement the adaptation planning and preference tuning in Python.

We use a simulated smart home system to evaluate the effect and perfor-
mance of the approach. The target system simulates a typical home similar to
the example described in Section 2, but much more complex. The setting of

1 C′
d ⊆ Cd never happens, otherwise Cd cannot be a minimal diagnosis.

Self-adaptation with End-User Preferences 565

experi1

meta
model

adaptat
ion

goals runtime
model

context and config
change simulater

CSP
generation

constraint
solving

runtime
model'

preference
recording

user
preference
simulater

runtime
model''

experi2 control
expr2

class 26
context 60
config 41
inv 58

domain model

element 86
property 487

runtime model

var 165
--context 56
--config 109
constraint 433
--weak 268
----goal 159
--hard 165

CSP

Fig. 7. Experiment setting

this simulated system is based on existing smart home projects, especially the
“Adaptive House” from University of Colorado [19], and the household level
smart grid research from our own group [20]. The table in Figure 7 summarizes
the sample system. The main run-time model corresponds to a fictitious 10-room
house with full equipments. From this run-time model, we generate a CSP that
contains 165 variables and 433 constraints.

All the implementation source code, the experiment artefacts, and the results
mentioned in this section can be found in our GitHub repository [10].

6.1 Effectiveness

On this target system, we perform two experiments to answer the following two
questions: 1) Does the adaptation make the system more consistent with adapta-
tion goals? 2) Will the adaptation results more closely match users’ preferences,
after users revise the adaptation outcome over a few iterations.

The first experiment follows the small central circle in Figure 7. We implement
“change simulator” to randomly modify the attributes in the run-time model to
simulate the system evolution. We perform adaptation planning on model with
state s, and get a new model state s′ as the adaptation result. After that, s′ is
fed to the simulator, which randomly modifies the attributes again and starts
the next round of adaptation. For each round of adaptation, we care about how
s′ is improved compared to s, in terms of what proportion of the goals violated
by s are satisfied by s′.

Figure 8(a) shows the results. We run the adaptation 100 times, each of which
is represented by a vertical arrow. The start and end points of an arrow corre-
sponds to the numbers of violated goals before and after an adaptation, respec-
tively. The x axis describes how many configuration variables are changed by
the adaptation (The adaptations with 0 changes are not displayed). We can see
that in most cases, the adaptation has a significant improvement, reducing the
number of violated goals from 10-20 to 1-4, and these improvements are mostly
achieved by modifying 6-12 configuration values.

The second experiment evaluates the effect of preference tuning. We imple-
ment another simulator to act as an imitated user, and embedded 11 preference

566 H. Song et al.

0

4

8

12

16

20

24 5 6 7 8 9 10 11 12 13 14 1516
Configuration changes

V
io
la
te
d
go

al
s (a)

0 20 40 60 80 100
0

1

.1

.2

.3

Rounds of adaptations after deployment

N
ee
d
s
to

re
vi
se
?

with preference tuning
without preference tuning

(b)

Fig. 8. Effects of adaptation and user preference tuning

rules in the simulator, in the form of condition->config=value (“under a spe-
cial condition, I prefer the value of a config variable to be equal to the a
specific value”). Such a rule is either a refinement to an adaptation goal (e.g.,
“if a heating setting is greater than 0, then it should be 10”), or an insistence to
a particular goal (e.g., “whenever the air condition is bad, the window should be
opened”). As shown by the bigger circle in Figure 7, after each adaptation, the
user simulator evaluates the results. If any preference rule is violated, it picks
one and only one from them, changes the configuration value according to the
config=value part, yielding a new model s′′. After that, the system simulator
will randomly change context and configuration on s′′, and start the next round
of adaptation. Ideally, after more revisions, the automated adaptation result s′

will be less probable to violate any preference.
Figure 8(b) illustrates the results. We run the experiment 1000 times, each

time with 100 rounds of the adaptation/tuning loop as shown in Figure 7. The
solid line illustrates that for the x th round of adaptation after initialization, the
adaptation output has y possibility to violate one or more preference rules (i.e.,
1000*y times of violation is observed in the 1000 times of experiments). We can
see that the possibility of preference violation goes down very quickly. After only
10 rounds (each round with at most one refinement on one configuration!), there
is only 30% possibility to violate any preference, and after about 60 rounds, it
is less than 10%. As a comparison, we run another 1000 times of experiments
bypassing the preference tuning, and the possibility of preference violation is
shown by the dashed line. The experiment shows that the preference tuning
has a good effect even on such an exaggerated situation (almost every time the
adaptation will violate a preference rule).

Self-adaptation with End-User Preferences 567

0 200 400 600 800 1000
0

0.5

1

1.5

2 (s)

|Cd| = 10

|Cw|
0 5 10 15 20 25 30

0

3

6

9 (s)

|Cw| = 457

|Cd|

Fig. 9. Experiment results on performance

6.2 Scalability

The scalability of the whole approach mainly depends on the execution time of
the adaptation planning step, because the other two only have a linear time com-
plexity with the scale of run-time models. There are two main factors influencing
the performance of this step, i.e., the size of the weak constraints |Cw|, and the
size of the resulting diagnosis |Cd|. We show the influence of these factors respec-
tively. The experiment processes are the same as the experi1 in Figure 7. All the
experiments are performed on a MacBook Pro laptop with Intel i5 2.0GHz CPU
and 4GB memory. The software environment includes MacOS X 10.5, Microsoft
Z3, and Python 2.7.3. The weights of constraints from current configurations are
randomly chosen between 200 to 300, and for goals, the range is 2000 to 3000.

To evaluate the influence of |Cw|, we keep adding elements to the runtime
model, and this leads |Cw | growing from 30 to 957. For each run-time model,
we run the experiment for 100 times, and select the adaptation whose diagnosis
size equals to 10. The left part of Figure 9 shows the average time on each
run-time model. According to the approximate fitting curve, the time still grows
exponentially with the size of constraints, but in a quite flat way.

To evaluate the influence of |Cd|, we choose one run-time model with |Cw| =
457, and control |Cd| by making the simulator change more context and con-
figurations variables, sometimes with extreme values. We run 1000 rounds of
adaptations, and record the size of diagnosis and the execution time of each
round in the right part of Figure 9: The execution time ascends quite fast with
the increase of |Cd|, reaching a maximal 9 seconds when |Cd| = 29, though 96%
of the adaptations finished within 2 seconds.

6.3 Threats and Discussion

All the experiments are performed on the same domain model, and similar run-
time models with different sizes. Therefore the effectiveness and performance can
be affected by some specific features of this experiment system. To alleviate this
threat, we defined the run-time model and the goals independently before the

568 H. Song et al.

experiments. The effectiveness of preference tuning strongly depends on the type
of preferences. A “refinement preference” rule can be only violated once on the
same element, whereas an “insistence to a goal” rule may be violated multiple
times. We designed the imitated preference rules with a balance of both types.
Note that if the preference rules themselves have conflicts, the preference tuning
is not convergent. We avoid such conflicts, imitating a “firm-minded” user who
does not change his mind on preference. The size of diagnosis currently has a
ceiling of 30. A well designed domain model with fewer conflicting goals will
significantly reduce the diagnosis size, and therefore increase the adaptation
performance.

7 Related Work

Models at runtime are widely used to support dynamic system adaptation. Gar-
lan et al. [2] and Sicard et al. [14] execute action policies on run-time architec-
ture models to achieve self-optimization and self-repair, respectively. Morin et
al. support dynamic adaptation by executing the “aspect-oriented rules” defined
on run-time models [8, 21]. We follow the same idea, executing adaptation poli-
cies on a basic type of run-time models that present only the structural system
aspects [7]. Our innovation is to tolerate conflicting policies, with the consider-
ation of end user preference. This paper is also an attempt of a novel way to
leverage models at runtime for adaptation: Based on the fact that run-time mod-
els are formal descriptions of run-time system states, we utilize a mathematical
tool, constraint solving, to achieve automated adaptation planning guided by
declarative OCL constraints defined on the models.

Salehie and Tahvildari [1] regard the consideration of user preference as an
essential aspect of self-adaptive software, but also note that the research in
this direction is still in an early stage. Maximilien et al. [6] utilize a set of user
preference policies in addition to the business policies, to improve the automated
service selection. Kephart [5] proposes to support user preference by a flexible
interpretation of adaptation policies. Our approach follows this direction by using
tunable weighted goal policies. We support a straightforward interface for end
users, conforming to Russell et al.’s principle on user experience of autonomic
computing, i.e., only showing users the understandable actions [22].

This approach has a similar motivation with goal-based adaptation approaches
[23–25], i.e., to increase the abstraction level of adaptation, but the two branches
of work address different concerns. Those approaches focus on the modelling of
adaptive systems, from a requirement perspective, and achieve this by adopting
and extending a requirement modelling concept, the goals. To implement the
adaptive systems, they link goals to lower-level modelling elements, such as tasks
[25] or operations [23], or statically calculate the potential target systems for
different contexts [24, 26]. Our approach is focused on how to plan the adaptation
at runtime from a declarative specification about the desired system. As a first
attempt, we choose model constraints as such a specification. We also name
them goals for short as they conform to the definition of “goal policy” from

Self-adaptation with End-User Preferences 569

adaptive system literature, but they do not have as strong expression power as
requirement goals, such as the goal decomposition hierarchy. From this point of
view, the two branches are complementary: We will investigate how to utilize
requirement goal-based models as an input to our approach, and by doing this,
we can provide a possible way to execute the requirement goal models at runtime
without mapping them to imperative specifications.

Adaptation planning on a run-time model is similar to inconsistency fixing on
a static model under editing. Recent approaches seek the automated inference of
fixing updates by designing extra fixing semantics on the constraint languages
[27], or analysing the relation between previous editing and fixing actions with
the constraint rules [28]. Xiong et al. use constraint solving to construct the
recommended fix ranges for configuration models at runtime [29]. Instead of a
range, adaptation requires a specific value for each configuration item, and we
choose such a value with the help of user preferences.

Constraint solving has been used by others for self-adaptation. Sun et al. use
constraint solving to verify the role based access control policies [30]. White et al.
use constraint solving to guide the system configuration on feature models [31].
Sawyer et al. [26] do constraint solving on the requirement-level goals to solve
out proper configurations for all the possible contexts, and use the result to guide
run-time adaptation. Instead of analysis in advance, we use constraint solvers
at runtime, while the target model is still changing. Neema et al. [32] present
a similar constraint guided adaptation framework but our work is focused more
on the technical solution about how to solve constraints. This work is related
to the generation of CSP from class diagrams [33, 34] or OCL constraints [35].
However, we do not perform verification merely on meta-models, but also use a
model instance as a seed, based on a new partial evaluation mechanism.

8 Conclusion and Future Work

This paper reports our initial attempt towards automated system adaptation
with the consideration of end user preferences. We transform run-time models
into a CSP, and perform constraint diagnosing and solving to plan the new
system configuration. If users revise the automated calculated configurations,
we record their preferences by tuning the constraint weights, and subsequent
adaptations will then yield results closer to the users preferences.

Our future plan is to apply the approach to different domains, and evaluate the
experience from real users. Instead of supporting only the adaptation of attribute
values, we will investigate how to transform the more complicated model changes
into CSP, such as changing references between elements. In order to improve
the scalability, we are now investigating the usage of AI search techniques on
constraint diagnosis. Another important direction is to enhance the interface of
this work to both developers and end users: For developers, we will investigate
how to derive model constraints from higher-level models, such as requirement
goals; For end users, we will provide a more interactive graphical user interface
for them to revise the adaptation results.

570 H. Song et al.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2),
14 (2009)

2. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

3. de Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., Weyns, D., Baresi, L., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G.,
Geihs, K., Göschka, K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer,
J., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R., Mylopoulos,
J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer, W., Schlichting, R., Smith,
D.B., Sousa, J.P., Tahvildari, L., Wong, K., Wuttke, J.: Software engineering for
self-adaptive systems: A second research roadmap. In: de Lemos, R., Giese, H.,
Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)

4. Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic comput-
ing policies. In: IEEE International Workshop on Policies for Distributed Systems
and Networks, pp. 3–12. IEEE (2004)

5. Kephart, J.: Research challenges of autonomic computing. In: ICSE, pp. 15–22.
IEEE (2005)

6. Maximilien, E., Singh, M.: Toward autonomic web services trust and selection. In:
Proceedings of the 2nd international conference on Service Oriented Computing,
pp. 212–221. ACM (2004)

7. Blair, G., Bencomo, N., France, R.: Models@ run. time. Computer 42(10), 22–27
(2009)

8. Morin, B., Barais, O., Nain, G., Jezequel, J.: Taming dynamically adaptive systems
using models and aspects. In: ICSE, pp. 122–132. IEEE Computer Society (2009)

9. Kumar, V.: Algorithms for constraint-satisfaction problems: A survey. AI Maga-
zine 13(1), 32 (1992)

10. Song, H.: All the source code, experiment resource, and results mentioned in this
paper, hosted by github, https://github.com/songhui/cspadapt

11. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer
Society (2007)

12. Greiner, R., Smith, B., Wilkerson, R.: A correction to the algorithm in reiter’s
theory of diagnosis. Artificial Intelligence 41(1), 79–88 (1989)

13. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating synchro-
nization engines between running systems and their model-based views. In: Ghosh,
S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 140–154. Springer, Heidelberg (2010)

14. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based man-
agement: the self-repair case. In: ICSE, pp. 101–110. ACM (2008)

15. Microsoft Research: Z3: a high-performance theorem prover,
http://z3.codeplex.com

16. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice-Hall, New York (1993)

17. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

https://github.com/songhui/cspadapt
http://z3.codeplex.com

Self-adaptation with End-User Preferences 571

18. Xtend: a statically-typed programming language which compiles to comprehensible
java source code, http://www.eclipse.org/xtend/

19. Mozer, M.: The adaptive house, http://www.cs.colorado.edu/~mozer/nnh/
20. Galvan, E., Harris, C., Dusparic, I., Clarke, S., Cahill, V.: Reducing electricity

costs in a dynamic pricing environment. In: IEEE SmartGridComm, pp. 169–174.
IEEE

21. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.: Security-
driven model-based dynamic adaptation. In: ASE, pp. 205–214. ACM (2010)

22. Russell, D., Maglio, P., Dordick, R., Neti, C.: Dealing with ghosts: Managing the
user experience of autonomic computing. IBM Systems Journal 42(1), 177–188
(2003)

23. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adapta-
tion. In: RE, pp. 125–134. IEEE (2010)

24. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling ap-
proach to develop requirements of an adaptive system with environmental uncer-
tainty. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483.
Springer, Heidelberg (2009)

25. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An architecture for requirements-driven
self-reconfiguration. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 246–260. Springer, Heidelberg (2009)

26. Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., Hughes, D.: Using constraint program-
ming to manage configurations in self-adaptive systems. Computer 45(10), 56–63
(2012)

27. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: ICSE, pp. 455–464. IEEE (2003)

28. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in uml design models. In: ASE, pp. 99–108. IEEE (2008)

29. Xiong, Y., Hubaux, A., She, S., Czarnecki, K.: Generating range fixes for software
configuration. In: ICSE, pp. 58–68. IEEE (2012)

30. Sun, W., France, R., Ray, I.: Rigorous analysis of uml access control policy models.
In: 2011 IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY), pp. 9–16. IEEE (2011)

31. White, J., Dougherty, B., Schmidt, D., Benavides, D.: Automated reasoning for
multi-step feature model configuration problems. In: Proceedings of the 13th Inter-
national Software Product Line Conference, pp. 11–20. Carnegie Mellon University
(2009)

32. Neema, S., Ledeczi, A.: Constraint-guided self-adaptation. Self-Adaptive Software:
Applications, 325–327 (2003)

33. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using al-
loy revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS,
vol. 6981, pp. 592–607. Springer, Heidelberg (2011)

34. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Software Testing Verification and Validation Work-
shop, pp. 73–80. IEEE (2008)

35. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
uml/ocl models using constraint programming. In: ASE, pp. 547–548. ACM (2007)

http://www.eclipse.org/xtend/
http://www.cs.colorado.edu/~mozer/nnh/

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 572–588, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Runtime Model Based Management
of Diverse Cloud Resources

Xiaodong Zhang1,2, Xing Chen1,2,4, Ying Zhang1,2, Yihan Wu1,2, Wei Yao3,
Gang Huang1,2,*, and Qiang Lin5

1 Key Laboratory of High Confidence Software Technologies (Ministry of Education)
2 School of Electronics Engineering and Computer Science, Peking University, Beijing, China

3 Bona Information Technology Co., Ltd, Guangzhou, China
4 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

5 Information Center of Guangdong Power Grid Corporation, China
{zhangxd10,chenxing08,zhangying06,wuyh10}@sei.pku.edu.cn,
wei.yao@bonait.com, hg@pku.edu.cn, linqiang@gdxx.csg.cn

Abstract. Due to the diversity of resources and different management require-
ments, Cloud management is faced with great challenges in complexity and dif-
ficulty. For constructing a management system to satisfy a specific management
requirement, a redevelopment solution based on existing system is usually more
practicable than developing the system from scratch. However, the difficulty
and workload of redevelopment are very high. In this paper, we present a run-
time model based approach to managing diverse Cloud resources. First, we con-
struct the runtime model of each kind of Cloud resources. Second, we construct
the composite runtime model of all managed resources through model merge.
Third, we make Cloud management meet personalized requirements through
model transformation from the composite model to the customized models. Fi-
nally, all the management tasks can be carried out through executing operating
programs on the customized model. The feasibility and efficiency of the ap-
proach are validated through a real case study.

Keywords: runtime model, Cloud management, diverse Cloud resources.

1 Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources that can be rapidly provi-
sioned and released with minimal management effort or service provider interaction
[1]. With the rapid development of Cloud computing, it brings unprecedented chal-
lenges to management of diverse Cloud resources, which mainly comes from the fol-
lowing two aspects:

First, there are many different kinds of hardware and software resources in Cloud,
which include CPU, memory, storage, network, virtual machines and various software

* Corresponding author.

 Runtime Model Based Management of Diverse Cloud Resources 573

such as web servers, application servers, and Database servers. All these resources
have to be managed well, which brings a huge challenge to Cloud management.

Second, there are different management requirements consisting of specific man-
agement scenarios and appropriate management styles. In some scenarios, administra-
tors need to manage specific kind of resource; while in other scenarios, administrators
have to manage different kinds of resources together.

In fact, from the view of system implementation, Cloud management is the execu-
tion of a group of management tasks. A management task is a group of management
operations on one or more kinds of Cloud resources. A management operation is an
invocation of a management interface provided by Cloud resources themselves or a
third-party management service. Due to the specificity and large scale of Cloud, the
management tasks of different Clouds are not the same. (For instance, Amazon EC2
[2] mainly manages infrastructure level Cloud resources such as virtual machines,
while Google App Engine [3] manages platform level Cloud resources in addition to
infrastructure, which includes operating systems, programming language execution
environment and web servers.) To satisfy the personalized management requirements,
Cloud administrators usually conduct redevelopment based on the existing manage-
ment systems. However, due to the diversity of Cloud resources and personality of
Cloud management requirements, the difficulty and workload of redevelopment are
very high, which have to understand the existing systems first and have to invoke and
organize many kinds of heterogeneous management interfaces of Cloud resources and
third-party management services to satisfy a given management requirement.

Addressing the issues above, we try to leverage runtime model for the management
of diverse Cloud resources. A runtime model is a causally connected self-
representation of the associated system that emphasizes the structure, behavior, or
goals of the system from a problem space perspective [4]. It has been broadly adopted
in the runtime management of software systems [5][6][7][8]. With the help of runtime
models, administrators can obtain a better understanding of their systems and write
model-level programs for management. We have developed a model-based runtime
management tool called SM@RT (Supporting Model AT Run Time [9][10][11]),
which provides the synchronization engine between a runtime model and its corres-
ponding running system. SM@RT makes any state of the running system reflected to
the runtime model, as well as any change to the runtime model applied to the running
system in an on-the-fly fashion.

In this paper, we present a runtime model based approach to managing diverse
Cloud resources. First, we construct the runtime model of each kind of Cloud resource
(Cloud resource runtime model) automatically based on its architecture meta-model
and management interfaces. Second, According to the Cloud management require-
ments, we construct the composite runtime model spreading all of the corresponding
Cloud resources and their management interfaces through model merge. Third, ac-
cording to personalized management requirements, we customize different parts of
the composite model to get different kinds of customized models through model
transformation. Thus, Cloud management tasks can be carried out through executing
operating programs on the customized model, which benefits from many model-
centric analyzing or planning methods and mechanisms such as model checkers.

574 X. Zhang et al.

The whole approach only needs to define a group of meta-models, mapping rules
and model-level operating programs, thus greatly reduces the hand coding workload.
Particularly, the Cloud resource runtime models are able to shield the heterogeneity of
the management interfaces of homogeneous resource instances, and the composite
runtime model shields the distribution of Cloud resources. The model operating pro-
grams not only simplify the implementation of Cloud management system, but also
improve the correctness, effectiveness and automaticity of Cloud management by
introducing model analysis, model checking, model simulation, and model reasoning.

The contributions of this paper can be summarized as follows. Firstly, we present a
runtime model based approach to managing diverse Cloud resources, which can meet
the personalized management requirements while avoiding the difficulty and heavy
workload of redevelopment. Secondly, we apply the runtime model to a real Cloud
system, which to our knowledge, is a first practical evaluation on runtime model
based management of diverse Cloud resources. The results are promising.

The rest of this paper is organized as follows: Section 2 gives an overview of the
runtime model based approach to managing diverse Cloud resources. Section 3
presents the construction of Cloud resource runtime models. Section 4 introduces the
construction of the Composite runtime model. Section 5 describes model transforma-
tion from the composite model to the customized model. Section 6 illustrates a real
case study and reports the evaluation. Section 7 discusses the related work. Section 8
concludes this paper and indicates our future work.

2 A Brief Overview of the Approach

Fig. 1. Overview of the runtime model based approach to managing diverse Cloud resources

Fig. 1 is an overview of the runtime model based approach to managing diverse Cloud
resources.

First, we present an approach to constructing the runtime models of Cloud re-
sources. There are many different kinds of resources in Cloud. For example, there are
virtual machine platforms such as Xen, VMware and KVM, operating systems such
as Windows and Linux, application servers such as JOnAS, JBoss, Websphere and
WebLogic, web servers such as Apache, IIS and Nginx, database servers such as
MySQL, SQL server and Oracle. The Cloud resource runtime model in our approach

 Runtime Model Based Management of Diverse Cloud Resources 575

is abstracted from the architecture of this kind of resources in a semi-automatic way
with the help of SM@RT.

Second, we propose a model merge mechanism which aims to build the composite
runtime model of diverse Cloud resources. Management of the Cloud actually is man-
agement of the Cloud resources. Our approach allows the Cloud administrators to
customize any group of resources to construct the composite runtime model through
merging the runtime models of each kind of resources.

Third, we present a model transformation mechanism which transforms the com-
posite models to customized models. Cloud administrators just need to write some
mapping rules according to the personalized management requirements, and the mod-
el transformation will be automatically completed.

After the three steps above are done, Cloud management tasks can be carried out
through executing different kinds of model operating programs, while without consi-
dering the management interfaces of underlying Cloud resources. Further, we can
improve the correctness, effectiveness and automaticity of Cloud management
through introducing model analysis, model checking, model simulation, and model
reasoning.

3 The Construction of Cloud Resource Runtime Models

Fig. 2. Synchronization between the runtime model and the running system

As we introduced in section 2, the construction of Cloud resource runtime models can
be easily done with the help of SM@RT, which is proposed in our previous work
[9][10][11]. SM@RT consists of a domain-specific modeling language (called
SM@RT language) and a code generator (called SM@RT generator) to support mod-
el-based runtime system management. The SM@RT language allows developers to
specify: (1) the structure of the running system by a UML-compliant meta-model; (2)
how to manipulate the system’s elements by an access model. With these two models,
the SM@RT generator can automatically generate the synchronization engine to re-
flect the running system to the runtime model. The synchronization engine not only
enables any states of the system to be monitored by the runtime model, but also any
changes to the runtime model to be applied on the running system. For instance, in
Fig. 2, the synchronization engine builds a model element in the runtime model for
the JOnAS platform. When the model element of JOnAS is deleted, the synchroniza-
tion engine is able to detect this change, identify which platform this removed ele-
ment stands for, and finally invoke the script to shut down the JOnAS platform.

576 X. Zhang et al.

With the help of SM@RT, developers or administrators are able to leverage the exist-
ing model-based tools (Like OCL, ATL, GMF etc.) to manage running systems. Due
to page limitation, more details of the runtime model construction with SM@RT can
be found in [9][10][11].

4 The Construction of the Composite Runtime Model

In a Cloud environment, diverse resources usually need to run collaboratively to sup-
port the Cloud applications. So the unified management of these resources is neces-
sary to guarantee the applications working correctly. Particularly, different Cloud
administrators may focus on different kinds of resources. For instance, some focus on
the management of the infrastructure, while others focus on the management of soft-
ware in Cloud. Therefore, we propose a model merge mechanism. According to the
specific management requirements, Cloud administrators can choose and integrate
managed elements and management methods of different kinds of resources in the
form of the composite runtime model. Thus administrators can manage diverse Cloud
resources through operations on the composite model.

After getting the composite runtime model, we have to guarantee the data synchro-
nization between the composite runtime model and the Cloud resource runtime mod-
els. On the one hand, when Cloud administrators operate on the composite runtime
model, the model operations are transferred to the corresponding Cloud resource run-
time models. On the other hand, changes of the Cloud resource runtime models are
automatically discovered through periodic comparisons with their previous copies.
And then the changes are transformed to model operations, which will be executed on
the composite runtime model.

Particularly, only the “Set”, “Add” and “Remove” operations can lead to changes
of the runtime models. Table 1 shows three different kinds of model operations and a
specific example is shown in the section of case study.

Table 1. Three kinds of model operations.

Name Description Post Condition

Add

<action node=“ToAddNode” type=“add”>
 <query node=“FatherNode” condition=“Constraint” />
 <set key=“attr1” value=“val1” />
 <set key=“attr2” value=“val2” />
</action>

∃ 1,∃ ℎ 2, 1 is child
node of 2
∧ 2 ℎ
∧ ⊆ 1.

Set
<action key=“attr” value=“val” type=“set”>
 <query node=TargetNode” condition=“Constraint” />
</action>

∃ ,
 ℎ ∧

∈ .

Remove
<action node=“TargetNode” condition=“Constraint”
type=“remove” />

∀ ,
 ℎ

Fig. 3 shows an example of runtime model merge. There are two kinds of resources
in the example: Application Servers and Virtual Machines. We now want to manage
the two kinds of resources in a unified way. We have constructed the runtime models
of both virtual machines and application servers, which can manage the two kinds of

 Runtime Model Based Management of Diverse Cloud Resources 577

resources separately. We just need to construct the composite model through merging
the two resource runtime models. And Cloud administrators can manage both kinds of
resources through operating on the composite model.

Fig. 3. An example of runtime model merge

5 Model Transformation from the Composite Model to the
Customized Model

In Cloud environment, there are different management requirements consisting of
specific management scenarios and appropriate management styles. To better meet
the personalized management requirements of Cloud, we define the customized mod-
els. The composite model is an aggregation of the runtime models of diverse Cloud
resources and the customized model is constructed through model transformation
from the composite model according to the personalized management requirements.
The transformation is based on a set of mapping rules between the two models. The
mapping rules describe the mapping relationship between the elements of two models.
Every attribute of the element in the customized model is related with one of the ele-
ment in the composite model. All changes on the customized model will be trans-
formed to operations on the composite model, vice versa. We define the description
methods of mapping rules and some keywords are shown in Table 2. We implement a
model transformation approach based on SM@RT, which can generate transformation
codes (written in QVT [12]) automatically based on the mapping rules. Table 3
presents three types of basic mapping relationships between model elements. A more
detailed example of model transformation is shown in the case study section.

578 X. Zhang et al.

Table 2. Keywords of the description of mapping rules

Keywords Descriptions Keywords Descriptions

helper Mapping Rules type Types of Mapping Rules

mapper
There is a mapping relationship
between the attributes of the objec-
tive element and the source element.

query

There is a mapping relationship
between the attributes of the objec-
tive element and the element that is
related to the source element.

key
Elements or Attributes of Source
Models value

Elements or Attributes of Objective
Models

condition Preconditions node Types of Objective Elements

Table 3. Three types of basic mapping rules between model elements

One-to-One Mapping

Relationship
Many-to-One Mapping Relationship

One-to-Many Mapping
Relationship

Classes in
Source
Model

-kind

-id

-creationTimestamp

-name

-description

-guestCpus

-memoryMb

-imageSpaceGb

MachineType

-kind

-id

-creationTimestamp

-name

-description

-sourceType

-preferredKernel

Image

-kind

-id

-creationTimestamp

-name

-description

Kernel
-id

-tenantId

-name

-flavorId

-imageId

-ip

-status

VM

Classes in
Objective

Model

-id

-name

-ram

-disk

-vcpus

Flavor

-id

-name

-status

-progress

-minDisk

-minRam

-rawDiskSource

-kernelDescription

Image
-id

-applianceId

-name

-ip

Apache

-id

-applianceId

-name

-ip

JOnAS

-id

-applianceId

-name

-ip

MySQL

Examples
of Trans-
formation

Code

vcpus:=self.guestCpus

kernelDescription :=
gccloud.objectsOfType(Kernel)
->select(id=self.preferredKernel)
->selectOne(true).description

if(self.imageId=“MYS
QLTYPE”){
return object MySQL}

One-to-One Mapping Relationship: One element in the customized model is related
to a certain element in the composite model. Particularly, the attributes of the ele-
ments in the customized model are also corresponding to the ones of related elements
in the composite model. For instance, in Table 3, the MachineType element in the
composite model and the Flavor element in the customized model both reflect the
configurations of virtual machines. And the attributes of “id”, “name”, “ram”, “disk”
and “vcpus” of the MachineType element in the composite model are corresponding
to the attributes of “id”, “name”, “memoryMb”, “imageSpaceGb” and “guestCpus” of
the Flavor element in the customized model. It is one-to-one mapping relationship
between the MachineType and Flavor elements.

 Runtime Model Based Management of Diverse Cloud Resources 579

Many-to-One Mapping Relationship: One type of elements in the customized mod-
el is related to two or more types of elements in the composite model. Particularly, the
attributes of a certain type of the element in the customized model are corresponding
to the attributes of different types of elements in the composite model. For instance,
the Image element in the composite model and the Image element in the customized
model both reflect the types of virtual machines. But there is no attribute of the Image
element in the composite model which is corresponding to the “kernelDescription”
attribute of the Image element in the customized model. And the related one is in the
Kernel element in the composite model, whose “id” attribute is equal to the “prefer-
redKernel” attribute of the Image element in the composite model.

One-to-Many Mapping Relationship: One type of elements in the composite model
is related to two or more types of elements in the customized model. For instance, the
VM elements in the composite model represent virtual machines, and the elements of
Apache, JOnAS and MySQL represent virtual machines with specific software. During
model transformation, any VM element will be mapped to one of the elements of
Apache, JOnAS and MySQL.

Table 3 also shows some sample transformation codes of the three basic mapping
relationships. In one-to-one mapping relationship, mapping is fulfilled with an as-
signment. In many-to-one mapping relationship, the related elements in the source
model need to be selected and integrated. In one-to-many mapping relationship, the
type of the objective element needs to be determined. Any mapping relationship be-
tween the customized model and the composite model can be demonstrated as the
combination of the three relationships above.

By using our approach, Cloud management can be carried out through executing
different types of model operating programs. The programs can be written based on
technologies like model query, model view and model transformation, while without
considering the management interfaces of underlying Cloud resources. For example,
monitoring is very important in Cloud management. Through model query, we can
easily get and modify the running states and attributes of all resource units in Cloud.

Further, based on the runtime model, we can improve the correctness, effectiveness
and automaticity of Cloud management through introducing model analysis, model
checking, model simulation and model reasoning. For example, we can use SBRA-
based [13] algorithm to evaluate the reliability of each resource units and find out the
key units which have crucial influence on the Cloud. We can also use Capacity Plan-
ning [14] technology to improve the elasticity of the Cloud.

6 Case Study

Most of current Cloud management systems provide solutions to managing specific
sets of resources. For instance, OpenStack [15] is an open source product which is
aimed to manage Cloud infrastructure. Hyperic [16] is another product which manag-
es different kinds of software including web servers, application servers, database
servers, and so on. However, to the best of our knowledge, there is currently no prod-

580 X. Zhang et al.

uct which can manage both of the infrastructure and software resources in a unified
manner. In our cooperation program with China Southern Power Grid Corporation
[17] on Cloud management, we found that the industry has a strong demand for the
unified management of both kinds of resources.

In order to validate the feasibility and efficiency of our approach, we present a case
study on a real Cloud system, which satisfies the above management requirement
through runtime model construction, model merge and model transformation. We
now present the evaluations from three aspects.

6.1 Runtime Model Construction of Cloud Resources

As described in Section 3, we only need to define the architecture-based meta-model
and the access model of one kind of Cloud resource, then the Cloud resource runtime
model can be constructed automatically with the help of SM@RT. Due to the page
limitation, we don’t introduce more on the working principle of SM@RT, which has
been presented clearly in our previous work [9][10][11].

Cloud

-projectList

Project

-tenantId

Flavors

-tenantId

Flavor

-id

-name

-ram

-disk

-vcpus

1* 11 1 *

Cloud

-projectList

Project

-tenantId

VM

-id

-tenantId

-name

-flavorId

-imageId

-ip

-status

VMs

-tenantId

1* 11 1*

Cloud

-projectList

Project

-tenantId

Images

-tenantId

Image

-id

-name

-status

-progress

-minDisk

-minRam

-rawDiskSource

-kernelDescription

1* 11 1 *

Cloud

-softwareAgentList

SoftwareAgent

-ip

-availability

-freeMemory

-loadAverage

Apache

-version

-status

-availability

-requestsPerSecond

-requestsPerMinute

-bytesPerMinute

1 * 1 *

Cloud

-softwareAgentList

SoftwareAgent

-ip

-availability

-freeMemory

-loadAverage

JOnAS

-version

-status

-availability

-usedMemory

-totalMemory

1 * 1 *

Cloud

-softwareAgentList

SoftwareAgent

-ip

-availability

-freeMemory

-loadAverage

MySQL

-version

-status

-availability

-processMemorySize

-cpuUsage

-tablesPerMinute

-filesPerMinute

-queriesPerMinute

1 * 1 *

Resource 1: Flavors

Resource 2: VMs

Resource 3: Images

Resource 4: Apache

Resource 5: JOnAS

Resource 6: MySQL

Fig. 4. Architecture-based meta-models of Cloud resources

Fig. 4 shows the architecture-based meta-models of each kind of resources in the
Cloud we used in this case study. In the Cloud, virtual machines are the smallest units
of resource allocation, each of which is included in a project. The resources of Cloud
infrastructure are divided into several projects and each project belongs to a tenant.
The configuration of the virtual machine contains the image and the flavor. The image
describes the system type and pre-install software (for instance, “Ubuntu 12.04
MySQL” image and “Windows Server 2008 Apache” image). The flavor describes
the hardware resource configuration (for instance, small-flavor: CPU 2 x 2.4G Hz,
memory 1024MB, disk 10GB; large-flavor: CPU 8 x 2.4G Hz, memory 16384MB,
disk 100GB) of the virtual machine. (Please note, we borrow the terms like project,
tenant, image and flavor from OpenStack). The Cloud vendor provides many different
kinds of software products such as Apache, JOnAS and MySQL for Cloud users to

 Runtime Model Based Management of Diverse Cloud Resources 581

deploy on the virtual machines. For managing the software products, a software agent
runs on each VM to monitor and control the software product.

Although there are hundreds of management APIs of different kinds of resources in
the Cloud, we can model them into the access model through specifying how to in-
voke the APIs to manipulate each type of elements. Table 4 summarizes all types of
manipulations of the Cloud resources and the management interfaces of the resources
can be mapped to the manipulations on their runtime models. For instance, the crea-
tion and deletion of the VM are mapped to “Add” and “Remove” manipulations of the
element of the VM class; the starting up and shutting down of Apache are mapped to
“Set” manipulation of the “status” attribute in the element of the Apache class.

Table 4. Summary of the manipulations of the Cloud resources

Name Meta Element Parameter Description
Get Property(1) - Get the value of the property
Set Property(2) newValue Set the property to newValue
List Property(*) - Get a list of values of this property
Add Property(*) toAdd Add toAdd into the value list of this property

Remove Property(*) toRemove Remove toRemove from the list of this property
Query Class Condition Find an element according to Condition

Identify Class Other Check if this element equals to Other
Auxiliary Package - User-defined auxiliary operations

6.2 The Composite Runtime Model of Diverse Cloud Resources

Cloud

-projectList

Project

-tenantId:f9764071

Images

-tenantId:f9764071

Image

-id:6ebf952c

-name:JOnAS4.7

Flavors

-tenantId:f9764071

Flavor

-id:2

-name:small

Project

-tenantId:e8954352

VM

-id:3c8e1cc2

-tenantId:e8954352

-ip:192.168.1.140

-availability:1

-....

Apache

-version:2.2.1

-status:running

-....

Flavors

-tenantId:e8954352

Flavor

-id:2

-name:small

Images

-tenantId:e8954352

Image

-id:3cdb817e

-name:Apache2.2

Fig. 5. The composite runtime model of diverse Cloud resources

After the Cloud resource runtime models are constructed, we construct different com-
posite models through merging different ones of them according to different require-
ments. If the Cloud administrator focuses on the management of virtual machines, he

582 X. Zhang et al.

or she can merge the runtime models of flavors, images and VMs to manage these
resources in a unified manner. If the administrator pays attention to the management
of software, he or she can merge the runtime models of Apache, JOnAS and MySQL
to manage them in a unified manner. Sometimes, the Cloud administrators want to
manage both the hardware and software resources, and then all the resource runtime
models can be merged to generate a composite model spreading all these resources.

Fig. 5 shows the composite runtime model which is merged of six kinds of re-
sources. There are two projects in the runtime model, one of which contains one VM
and the other contains none.

After the composite model is constructed, we must guarantee the data synchroniza-
tion between the composite model and distributed resource models. Fig. 6 shows how
the action of creating a virtual machine is transferred from the composite model to the
runtime model of VMs and executed on the runtime model. The file transferred to the
runtime model details the action to be executed:

1. Query: Find the parent element - a project whose “tenantId” is “f9764071”.
2. Add: Create an element, whose type is VM.
3. Set: Carry out the configuration of the new VM element.

Fig. 6. The operation of VM creation is transferred to the runtime model of VMs

6.3 Transformation from the Composite Model to the Customized Model

In a Cloud environment, the hardware and software resources of virtual machines
need to be managed together in order to optimize the allocation of resources. The
virtual machine and the software deployed can be regarded as an appliance [18],
which is the basic managed unit. Several appliances compose a project. The resources
of the infrastructure are divided into many projects. According to this management
requirement, we construct the customized model. Fig. 7 shows the main elements in
the customized model. The root element is the Cloud element, which contains a list of
projects. The Project element contains an Appliances element, which is regarded as a

 Runtime Model Based Management of Diverse Cloud Resources 583

list of appliances. The Appliances element contains a list of Apache systems, a list of
JOnAS systems and a list of MySQL systems, which are all regarded as appliances.
The elements of each appliance contain configurations of the hardware and software
resources. For instance, the Apache element contains an ApacheSwConfig element
and a HwConfig element. So management actions can be described by the operations
on the customized model.

In order to construct the customized model through transformation from the com-
posite model, we define the mapping rules between the two models. The key chal-
lenge is the mapping from the VM elements and one of Apache, JOnAS and MySQL
elements in the composite model to one of Apache, JOnAS and MySQL elements in
the customized model. There are two difficult points in this process.

1. The VM element is mapped to the element of Apache, JOnAS or MySQL,
which is determined by the attribute of “imageId” of the VM element. This is the one-
to-many mapping relationship.

2. It also needs to find the element of Apache, JOnAS or MySQL and achieve
the configurations of software resources in the composite model. The related element
of Apache, JOnAS or MySQL is determined by the attribute of “ip” of the VM ele-
ment. Then the hardware and software information from the VM element and element
of Apache, JOnAS or MySQL are transformed to the attributes of the element of each
appliance. This is the many-to-one mapping relationship.

Fig. 7. The main elements of the customized model, mapping description and code snippets

Fig. 7 shows the description and the code snippets of the mapping relationship from
the VM and JOnAS elements in the composite model to the JOnAS elements in the
customized model.

584 X. Zhang et al.

6.4 Evaluation

We evaluate our approach from three aspects.

A. Construction and merge of Cloud resource runtime models.
For constructing the runtime models of Cloud resources, we just need define the ar-
chitecture-based meta-model and the manipulations of the resources on the Eclipse
Modeling Framework (EMF) [19]. The runtime model will be generated automatical-
ly by our SM@RT tool. So the construction of Cloud resource runtime models is one-
off work, which is acceptable for Cloud administrators.

The existing form of runtime models is a document in XML format. The process of
model merge is the merging of several documents in XML format based on some
rules. The time cost of such a process is in seconds. What’s more, for the management
of a set of Cloud resources, model merge only needs to be conducted once. So the
time cost of model merge can almost be ignored in the runtime model based approach.

B. Comparison of the programming difficulty of using management interfaces with
using runtime models.

According to our previous work [20], for the same management tasks, the programs
using runtime models like QVT [12] programs are simpler to write compared with
programs using management interfaces like Java programs. With the help of the archi-
tecture-based model, Cloud administrators can focus on the logics of management
tasks without handling the different types of low-level management interfaces. In
addition, the modeling language provides operations such as “select”, “sum” and so
on in the model level, which makes it simpler to do programming.

C. Comparison of execution time of using management interfaces with using runtime
model for the same management tasks.

We manage a Cloud infrastructure, which consists of 11 physical servers and supports
about 150 appliances, through our runtime model based approach. To evaluate its
performance, we develop Java programs by using management interfaces and QVT
programs by using runtime models to execute five groups of management tasks re-
spectively. The five groups of management tasks include: creating appliances, delet-
ing appliances, getting the “usedMemory” attribute of appliances, setting the “name”
attribute of appliances and restarting Apache. The execution results are shown in Ta-
ble 5. The execution time means the average time cost of each group of management
tasks, and the data delay is the average delayed time to obtain the data. For instance, if
the data delay is 30 seconds, the time delay between the returned result and the actual
values is 30 seconds on average.

For the “create new appliances”, “delete appliances”, “set ‘name’ attribute” and
“restart Apache” management tasks, the execution time of Java programs is less than
the QVT ones. The main reason is that the two sets of programs are based on the same
management APIs and there are some extra operations in runtime model based ap-
proach, which ensure the synchronization between the runtime model and real system.
However, the difference is small and completely acceptable for Cloud management.

 Runtime Model Based Management of Diverse Cloud Resources 585

For the “get ‘used-memory’ attribute” management tasks, the execution time of Ja-
va programs is longer than the QVT ones, but the data delay of QVT programs is
longer than the Java ones. The reasons include two folds. On the one hand, the Java
programs query the attributes of appliances through directly invoking the manage-
ment interfaces, so the execution time increases linearly with the number of the ap-
pliances and the data delay is very little. On the other hand, the runtime model is
equivalent to the snapshot of system metrics and getting the attributes of appliances
just needs a reading operation, so the execution time of the QVT programs is shorter.
The runtime model is synchronized with the running system with traversing all the
metrics of the running system, so the data delay increases linearly with the size of the
model. In this test, the data delay of the “get” operation is 30 seconds, which is ac-
ceptable for system monitoring. It is important to note that we can control the data
delay within the accepted limits through splitting the runtime model into small mod-
els, which will be implemented in our future work.

Table 5. The performance test result of the unified managment

Management
Tasks

Number of
Appliances

Using Management Interfaces Using Runtime Model
Execution

Time
(second)

Data
Delay

(second)

Execution
Time

(second)

Data
Delay

(second)

Create new
appliances

1 22.9 - 24.1 -
5 43.4 - 45.5 -

10 58.7 - 62.1 -

Delete
appliances

1 11.2 - 13.8 -
5 29.7 - 30.1 -

10 41.4 - 45.6 -
Get

“usedMemory”
attribute

5 1.2 0.6 0.6 30
20 4.2 2.2 0.8 30

100 18.6 11.4 1.6 30
Set

“name”
attribute

5 2.1 - 4.1 -
20 8.3 - 11.7 -

100 39.7 - 44.2 -

Restart Apache
5 9.1 - 12.3 -

20 37.6 - 41.2 -
100 192.4 - 207.3 -

7 Related Work

Due to the diversity of Cloud resources and specific management requirements, there
are many management systems which are aimed to manage different types of re-
sources and provide different kinds of services. For instance, Eucalyptus [21], OpenS-
tack [15], Tivoli [22] and Hyperic [16] are aimed to provide the solution to shield the
heterogeneity and distribution of Cloud resources. The systems above help Cloud
administrators manage specific resources in a unified manner. However, they cannot
customize, integrate and extend existing management systems of resources efficiently
and flexibly to satisfy different management requirements and the difficulty and
workload of redevelopment is high.

586 X. Zhang et al.

There are some research work which try to integrate management systems based on
service-oriented architecture. Heiko Ludwig et al. [23] propose a solution to the sys-
tem management in a distributed environment, which encapsulates management func-
tions into RESTful services [24] and makes them subscribed by administrators. In our
previous work [25], we propose the solution of “Management as a Service (MaaS)”
from the reuse point of view. We encapsulate functions, processes, rules and experi-
ments in IT management into web services and regard them as reusable assets, which
are to be presented, used and collaborate in a service-oriented style. In general, it is
feasible to integrate management function based on service-oriented architecture.
However, management services are not as good as system parameters for reflecting
the states of running systems, and service subscription and composition are also more
complicated, which may lead to extra difficulties in system management.

 Runtime models have been widely used on different systems to support self-repair
[26], dynamic adaption [27], data manipulation [28], etc. We also have made lots of
research in the area of runtime model based system management. In our previous
work [9][10][11], SM@RT (Supporting Models AT Runtime) is proposed. Given the
meta-model specifying the structure of the running system and an access model speci-
fying how to manipulate the system’s elements, the SM@RT tool can automatically
generate the synchronization engine to reflect the running system to the runtime mod-
el. The experimentation on application servers such as JOnAS has shown good run-
time performance. Our another work [8] applies the runtime model to system fault
tolerance and presents a runtime model based configuration of fault tolerance solution
for component-based system. However, to the best of our knowledge, there is no ex-
isting work which applies the runtime model to managing a real Cloud system.

8 Conclusion and Future Work

In this paper, we proposed a runtime model based approach to managing diverse
Cloud resources. Through runtime model construction of different kinds of Cloud
resources, model merge of the runtime models of customized resources and model
transformation from composite model to customized model, personalized Cloud man-
agement requirements can be satisfied with executing a set of model operating pro-
grams. We firstly applied the runtime model to a real Cloud system and the evaluation
shows promising results.

For future work, firstly, we plan to apply the approach in production environment.
Secondly, we will add some more advanced management functions with the help of
model analysis and reasoning techniques to ease the tasks of Cloud management.
Thirdly, we will do more work on the specification of the domain model.

Acknowledgment. This work is supported by the National Basic Research Program
of China (973) under Grant No. 2009CB320703; the National Natural Science Foun-
dation of China under Grant No. 61222203, 61361120097, 60933003; the Postdoctor-
al Funding No. 2013M530011, and the NCET.

 Runtime Model Based Management of Diverse Cloud Resources 587

References

1. Mell, P., Grance, T.: NIST definition of cloud computing. National Institute of Standards
and Technology (October 7, 2009)

2. Amazon EC2, http://aws.amazon.com/ec2/
3. Google App Engine, https://appengine.google.com/
4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27 (2009)
5. Huang, G., Mei, H., Yang, F.Q.: Runtime recovery and manipulation of software architec-

ture of component-based systems. Auto. Soft. Eng. 13(2), 257–281 (2006)
6. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research

Roadmap. In: Future of Software Engineering, FOSE 2007 (2007)
7. Occello, A., Dery-Pinna, A., Riveill, M.: A Runtime Model for Monitoring Software

Adaptation Safety and its Concretisation as a Service. Models@ runtime (2008)
8. Wu, Y., Huang, G., Song, H., Zhang, Y.: Model driven configuration of fault tolerance so-

lutions for component-based software system. In: France, R.B., Kazmeier, J., Breu, R.,
Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 514–530. Springer, Heidelberg
(2012)

9. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating synchronization
engines between running systems and their model-based views. In: Ghosh, S. (ed.)
MODELS 2009. LNCS, vol. 6002, pp. 140–154. Springer, Heidelberg (2010)

10. Song, H., Huang, G., Xiong, Y., Chauvel, F., Sun, Y., Mei, H.: Inferring Meta-models for
Runtime System Data from the Clients of Management APIs. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 168–182. Springer,
Heidelberg (2010)

11. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., Mei, H.: Instant and In-
cremental QVT Transformation for Runtime Models. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 273–288. Springer, Heidelberg (2011)

12. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT) (retrieved May 9, 2011)

13. Sherif, Y., Bojan, C., Hany, H.: A Scenario-Based Reliability Analysis Approach for
Component-Based Software. IEEE Transactions on Reliability 53 (2004)

14. Gunther, N.J.: Guerrilla Capacity Planning. Springer (2007) ISBN 3-540-26138-9
15. OpenStack, http://www.openstack.org/
16. Hyperic, http://www.hyperic.com/
17. China Southern Power Grid Corporation, http://eng.csg.cn/
18. Sapuntzakis, C.P., Brumley, D., Chandra, R., Zeldovich, N., Chow, J., Lam, M.S., Rosen-

blum, M.: Virtual Appliances for Deploying and Maintaining Software. In: LISA, vol. 3,
pp. 181–194 (2003)

19. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
20. Huang, G., Chen, X., Zhang, Y., Zhang, X.: Towards architecture-based management of

platforms in the cloud. Frontiers of Computer Science 6(4), 388–397 (2012)
21. Eucalyptus, http://www.eucalyptus.com/
22. IBM Tivoli Software, http://www-01.ibm.com/software/tivoli/
23. Ludwig, H., Laredo, J., Bhattacharya, K.: Rest-based management of loosely coupled ser-

vices. In: Proc. of the 18th International Conference on World Wide Web, pp. 931–940.
ACM Press, New York (2009)

24. Restful Web Services, http://en.wikipedia.org/wiki/
Representational_state_transfer

588 X. Zhang et al.

25. Chen, X., Liu, X., Fang, F., Zhang, X., Huang, G.: Management as a Service: An Empiri-
cal Case Study in the Internetware Cloud. In: Proc. of the 7th IEEE International Confe-
rence on E-Business Engineering, pp. 470–473 (2010)

26. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based manage-
ment: the self-repair case. In: ICSE, pp. 101–110 (2008)

27. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming dynamically adaptive systems us-
ing models and aspects. In: ICSE, pp. 122–132 (2009)

28. MoDisco Project, http://www.eclipse.org/gmt/modisco/

The Semantic Web as a Software Modeling Tool:

An Application to Citizen Relationship
Management

Borislav Iordanov, Assia Alexandrova, Syed Abbas,
Thomas Hilpold, and Phani Upadrasta

Miami-Dade County, Community Information and Outreach
Department, Florida, USA

{boris,assia,sabbas,hilpold,phani}@miamidade.gov

http://www.sharegov.org

Abstract. The choice of a modeling language in software engineering
is traditionally restricted to the tools and meta-models invented specif-
ically for that purpose. On the other hand, semantic web standards are
intended mainly for modeling data, to be consumed or produced by soft-
ware. However, both spaces share enough commonality to warrant an
attempt at a unified solution. In this paper, we describe our experience
using Web Ontology Language (OWL) as the language for Model-Driven
Development (MDD). We argue that there are benefits of using OWL to
formally describe both data and software within an integrated modeling
approach by showcasing an e-Government platform that we have built
for citizen relationship management. We describe the platform architec-
ture, development process and model enactment. In addition, we explain
some of the limitations of OWL as an MDD formalism as well as the
shortcomings of current tools and suggest practical ways to overcome
them.

Keywords: semantic web, owl, model-driven development, e-government,
live system, executable models.

1 Introduction

1.1 Motivation

The promise of model-driven development (MDD) is justifiably attractive for any
organization supporting its constantly evolving business processes with software
that must adapt as quickly and in a cost effective way. We use the term MDD in
the general sense of a software development process where the primary artifact
is the model. We are not referring to any particular specification, technology
stack or categorization of the artifacts produced. In adopting an MDD approach
one would expect business changes to be absorbed more easily, with much fewer
code changes. E-Government aims at replacing a heavy bureaucracy and manual
paperwork with lean software for improved efficiency of service, accountability

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 589–603, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.sharegov.org

590 B. Iordanov et al.

and transparency. There is a modern trend towards government openness and
open data ([6], [7]) which relies heavily on semantic web (SW) technologies such
as RDF ([11]) and OWL ([12]). Based on e-government application development
experience at our local government organization, we have come to the realization
that there is a fundamental similarity between MDD technologies on one side and
SW standards and tools on the other. In both cases, a high-level language is used
to create domain models. The difference is in how those models are being put to
use in software and it comes mainly from the intended applications of MDD, and
respectively the SW. The languages and tools used for MDD are predominantly
software-centric as evidenced by the historical development of the OMG stack
([1]). The domain models are used in various model transformations in order to
automatically generate artifacts pertaining to the software development process
otherwise obtained through manual labor, such as code, documentation and
tests. By contrast, in the SW the domain models are used to describe structured
data in a formal machine processable way and are usually interpreted as visual
presentations for human consumption, data analysis, or mapping to other data
formats, but are not constitutive of the software end-product per se.

1.2 The OWL MDD Landscape

The idea of marrying MDD with OWL has been around for a while ([3], [18],
[19]). However, such marriages always aim at bridging a conventional MDA tech-
nology stack with OWL by expressing UML models in OWL or vice-versa, so
that tools from both can be leveraged simultaneously. We are not aware of actual
practical production uses of such approaches, but we believe that mixing several
meta-models would significantly contribute to the complexity of the develop-
ment process and should be done only when a clear benefit is demonstrated.
Therefore, we have opted to drop the conventional MDD technology stack and
build exclusively with OWL (more on why OWL vs. UML in section 4.1). Fur-
thermore, since we are not aware of other attempts to use only OWL for MDD,
we have had to establish one ab initio.

1.3 Structure of the Paper

First, we describe our problem domain, Citizen Relationship Management and
the overall requirements for the project. Then we outline the platform architec-
ture and main technological choices. Next, we describe our modeling approach:
what is being modeled, how models are interpreted. Finally, we discuss some
implementation details.

2 The Problem

The business user of the software described herein is a municipal call center
which has been using a legacy case management system for over 10 years. Due

The Semantic Web as a Software Modeling Tool 591

to technical constraints, and limitations with configuration of workflows, permis-
sions and business rules, the call center specialists and the fieldworkers using the
system (e.g. Animal Services officers, Public Works field personnel) have had to
establish numerous workarounds in their work process, and essentially adjust the
way they do business based on the configuration options available in the legacy
software. As the call center operation grew, however, the system could not match
the emerging business requirements without extensive customization. Changes
to workflows, notifications, and data fields required an extended amount of time
to complete. Additionally, the user interface did not have the necessary flexibility
to accommodate emerging business rules, and call center staff required extensive
training on the multiple steps needed to complete essential tasks.

The underlying case management model of the system did not match the more
dynamic business model of the call center. It was necessary to develop a citizen
relationship management system with an architecture that more dynamically
reflects changes to the business model, and helps the call center operate more
efficiently when providing information and services to constituents.

2.1 Domain

Citizen Relationship Management (CiRM) is based on the CRM (Customer Rela-
tionship Management) concept, except that there are no profit-oriented activities
([9]). A CiRM system is built to support services to citizens in a wide variety of
areas, from requesting basic information, to paying bills, to picking up garbage,
to the filling of potholes. A key aspect is reporting non-emergency problems,
such as abandoned vehicles or stray animals on the street. These types of non-
emergency issues are increasingly handled by city or county-wide call centers
in the US, accessed through the 311 phone number. A CiRM is therefore more
case-centric, with emphasis places on incidents, problem situations and discrete
services rather than customer-centric, where the focus is on customers, their ac-
counts and their preferences. In CiRM, the focal point of a business process is
always a service case which once completed, is archived and accessed only for
audit or reporting purposes.

2.2 General Requirements

A key requirement we have had to fullfill is the porting of current case models
from the legacy vendor system to our new CiRM system. Another requirement is
the integration with applications by other agencies. Frequently there is overlap
in functionality with such departmental systems, where both serve similar case
management purposes. Enterprise requirements, however, dictate that the sys-
tems must be synchronized, and that data and transaction mapping needs to be
performed between the two. Yet another critical requirement, particularly impor-
tant for e-government is traceability/accountability. It is necessary to maintain
detailed case histories both to satisfy public records laws, but also to improve
customer service and conduct service trends analysis. An additional requirement
was the ability to adjust case models at runtime-this is one of the crucial reasons
for an MDD approach was adopted.

592 B. Iordanov et al.

3 Platform Architecture

3.1 Overview

Due to lack of semantic web-based MDD tools, in the course of the system’s
development effort we created a generic platform where most of the important
back-end components are not related to the CiRM domain per se. This project’s
motivation in adopting MDD is to a large degree for the software to be model-
driven at runtime, in addition to the usual advantages of having an explicit
model and writing less code. Consequently, we write software that interpets our
OWL models rather generating code from them. This makes live modifications
possible which has tremendous benefits. The architecture outlined here pertains
to the platform with application-specific artifacts being plugged into the various
architectural components. A detailed architecture was developed following the
TOGAF process ([13]) with all relevant documents produced over a period of
several months. A basic outline is depicted in Figure 1.

Fig. 1. Architecture Outline

According to the architecture, the divide between data and metadata leads to
two sets of services: operational services, handling operations data (e.g. actual
service cases) and meta services that handle purely metadata related functions
such streaming models, generating blueprints, generating UI components. The
meta services are the core the of architecture as this is were all models, including
application domain models and software component models, reside. Models (i.e.
ontologies) are persisted in a data store referred to as the Metadata Repository
or metabase for short. The operations services on the other hand manage data
in an Oracle RDBMS and handle integration with external/legacy systems. The
end-user application is based on the latest web technologies - HTML5, JavaScript
and related standards.

The Semantic Web as a Software Modeling Tool 593

3.2 Meta Services

Instead of static code generation, we have opted to build the software around the
idea of executable models. Both the problem domain and the solution domain
are expressed in a formal model that is accessible and modifiable at runtime. The
model is then interpreted at runtime by an execution engine comprised of several
collaborating components. It is an OWL graph database with full versioning
support at the axiom level1. Versioning at the axiom level means that change
sets are defined in terms of additions and removals of logical OWL statements,
which is the natural granularity for managing changes in OWL. There is one
and only one metadata repository available for querying. Both server-side and
client-side components consume metadata to perform their functions.

The meta services employ OWL description logic reasoning to answer queries
using the convenient Manchester DL syntax. Any metadata is returned in JSON
format. We employ an ad hoc JSON representation of OWL (there is no stan-
dard JSON serialization) that we have defined in due course. Our representation
doesn’t follow the axiomatic view of OWL. Rather it is more object centric
(rather than “fact centric”) - we serialize an individual and then all of its prop-
erties recursively.

The responsibility of the meta services is to manage all aspects of the model.
Many administrative tasks amount to changing certain configurations or tuning
a business process or case model, or to adjusting access authorization rules. All
those activities are entirely within the realm of metadata management. Thus
many modifications that traditionally would require restart of servers or even
recompilation and redeployment are entirely handled at runtime. This is where
we have found the true benefit of the MDD approach.

3.3 Operation Services

The operation services implement the management of business data and the
enactment of business process workflows. Just like the meta services, some of
the operation services are purely platform-oriented (i.e. domain-independent)
while others are really specific to the application. What defines a service as
being operations vs. meta oriented is the fact that it is manipulating concrete
business data. The volume of data is much higher, and the data itself is repetitive
following structural patterns (i.e. records) in the case of operations services.
Alternatively, entities that configure application behavior in some way are not
operational data. This, combined with our organization’s investment in RDBMs
and RDBMs-based reporting technology, led us to chose an Oracle cluster as the
backing store. We note, however, that conceptually the line between operational
data and metadata becomes fuzzy. In fact, the relational database holds OWL
data just like the metabase - some of it in the form of triples, other under a
classical relational schema via an ORM-like mapping between OWL and SQL. As
with the meta services, historical information is preserved - every time an entity

1 To be described in a future publication, available at http://sharegov.gov

http://sharegov.gov

594 B. Iordanov et al.

is modified, its current version is time stamped and archived. The services are
implemented in Java as a REST API with the application-specific ones isolated
under a separate relative path. The API endpoints are referred as action points
or workflow steps within the model which is how the model embeds business
process behaviors.

3.4 Client-Side Components

Much of the application hand-coding was done using browser-based technologies
- JavaScript, HTML/CSS. Because all server-side APIs are stateless and given
the capabilities of modern browsers, the bulk of the logic of the application is
implemented in JavaScript. We consider JavaScript to be a highly expressive,
dynamic language that complements well our late bound use of the models. In
fact, JavaScript code can be easily re-generated from a model at runtime, as an
administrative task, without the need for compilation or re-deployment. Granted,
we lose the benefits of statics checks. However, our development and deployment
processes incorporate tests and the ability to rollback any deployment in case
of discovered errors, until they are fixed. Serializing OWL ontologies, or a part
thereof, in JSON already provides the structural portion of a JavaScript dynamic
object, which is then complemented with additional functions.

Besides regular business logic, client-side components naturally implement
UI interaction. Synthesis of UI interfaces is based on an association between
UI components and certain high-level abstractions in the domain model. For
instance items that are a list, are displayed with a table viewer. Things that are
a string are edited with an input box. The model execution engine is capable of
doing something sensible in terms of UI, given a business object. It will display
a form to edit the object or show a list of its properties to view it, but the layout
may not be appealing. To accomodate specifics, HTML templates are used. Such
templates are stored in the model together with other software artifacts. Editing
a UI template then becomes an administrative task rather than a development
task and business users can be empowered to perform it.

4 Modeling with OWL

The flagship modeling language in the MDD world is arguably UML. However
several factors, the least of which was a taste for adventure, tilted our decision
towards OWL. In deciding on the OWL variant to use, we were not presented
with much of a dilemma since the variant promoted and exlcusively supported
by the most popular tool (Protege, [15]) is OWL 2.0, formerly known as OWL
DL (Description Logic). The standard API for working with OWL in Java is the
OWLAPI ([16]) which is also exclusively based on OWL 2.0.

4.1 Why OWL?

Admittedly, the choice of OWL as a modeling language for software development
may seem unconventional. While there has been previous work in that direction,

The Semantic Web as a Software Modeling Tool 595

such work still ultimately targets the OMG MDA ecosystem and mindset. By
contrast, our entire architecture is built around OWL, so let us summarize the
key driving forces behind this decision, in increasing order of importance:

1. Open Linked Data - By using a SW standard for all our data and metadata,
we are positioned to expose it in the context of the whole Semantic Web
following the example of an increasing number of government agencies. There
is no need for a contrived translation into logical form of a data structure
shifting to meet frequent requirements changes.

2. Simplicity - Conceptually, the core of OWL is rather simple. It looks like
a small subset of an object-oriented language. While Description Logic in
its full power can be difficult to master, working with a handful of concepts
like individuals, classes and properties is something well within the grasp of
business analysts, especially if provided a foundation and some examples to
imitate.

3. Inference - Unlike the core of UML, OWL is not an object-oriented modeling
tool. It is in fact a logical language with logical semantics and reasoning
capabilities not available in mainstream software modeling tools. As a result,
OWL comes with inference capabilities and it supports Horn-style if-then
rules, making it possible to express non-trivial business logic directly within
the model itself. As an example, in UML one has to explicitly declare that
a class is a subclass of another. In OWL this can be done as well, of course,
but in addition one can ask the system to try and prove it as a consequence
of other logical axioms.

4. Knowledge Engineering vs. Software Development - We have adopted an
expert system philosophy of sorts where the application behavior is driven
by a rich domain description rather than by a detailed software-only model.
Our goal was to separate facts about the problem domain (world ontology)
from facts about the solution domain (software platform ontology) from facts
about the application itself (application ontology). As OWL is much less
about data structures and much more about factual information, it was the
better choice for this frame of mind. Moreover, OWL and its ecosystem are
developed with the expectation that ontologies will be manipulated by end-
user software in a pervavise way, unlike UML which is mainly for engineering
tools that produce software artifacts.

Note that, in the last point above, the stated conceptual division of the onto-
logical space does not align naturally with the different types of models in the
standard MDA world, namely the CIM (computation independent model), PIM
(platform independent model), PSM (platform specific model), see [2]. The CIM,
PIM and PSM models correspond to the usual waterfall development steps of
analysis, design and coding. All three revolve around the software artifact being
produced. Even the most abstract and the most business-centric of the three,
the CIM, is still about the target application. By contrast, our world ontology is
both application and platform-agnostic. Our software platform ontology is also
application-agnostic - it covers both concepts that come as part of UML, such

596 B. Iordanov et al.

as activities, state etc. and platform-specific concepts such as RDBMs notions,
UI components and the like. Finally, only our application ontology, building on
the previous two, is about the application and the model is expressed directly
in terms of platform-specific entities.

The world ontology serves the dual purpose of formalizing knowledge about
the organization, its function, the environment etc. on one hand, and as the
basis for software on the other. Also, as noted above, OWL is used for both
data and metadata which yields a very smooth transition from one to the other
and makes it easier to create a more dynamic, live system. Business rules can
be expressed in SWRL where rules that are exclusive to the model are left to
an OWL reasoner to interpret while rules that apply to business objects are run
through our own ad hoc inferencing. There are several aspects/dimensions to
the model and for development purposes we employ different namespaces and
different ontologies (i.e. modules), but the end result at runtime is a single big
ontology with all the knowledge the application requires.

One key feature missing from OWL 2.0 are meta classes - it is impossible
to describe (“talk about”) a class. That is, one cannot assign a property to a
class like one would to an instance (or an individual in OWL lingo). Also, it is
possible to constrain the domain and range of a property, but one cannot make
a property be a member of a class. For example, to specify that a property is
required, one can use a logical statement saying that class C is a subclass of the
class of individuals that all have that property.

Lack of meta classes poses difficulties in particular when modeling the solu-
tion domain since the software is described in terms of component types, how
they relate to each other, what can be done with them etc. In other words, when
modeling the solution domain we frequently have to create descriptions at the
meta level as well. In OWL this limitation is overcome by relying on the fact
that classes and individuals are disjoint logically, and therefore one is allowed
to use the same name for both a class and an individual. So to talk about a
class X, we simply declare an individual with the same name X. The reasoner
knows nothing about the connection between the class X and the instance X, but
this is not an issue as the platform execution engine does recognize that con-
nection. This technique is called punning ([5]). It makes the creation of models
more verbose due to such duplicate declarations. UML’s meta-level is defined
analogously to punning, however in OWL the important consequence is the in-
decidability of reasoning with meta-models and the need to tweak the semantics
to make inference work ([8]) .

Finally, we note that UML is not actually directly comparable to OWL. More
likely, it is comparable to OWL together with a software-centric upper ontology
as evidenced by core concepts such as activities, sequences, state etc.

4.2 Upper Ontologies

A common practice in the semantic web world when modeling a concrete domain
is to find (or define) some very general conceptualization-an upper ontology and
use it as a starting point. Such conceptualizations have been published and

The Semantic Web as a Software Modeling Tool 597

Fig. 2. Ontology Snapshot

standardized ([10]), but every organization is free to do its own metaphysics.
Because at our organization we already had developed such an upper ontology
for another project (a semantic search application, where OWL was used for
knowledge representation), that ontology was adopted. The top level classes are
shown in Figure 2 (a).

There are few, if any, concrete software implications of this upper categoriza-
tion of the world. It mainly serves as an abstraction aid to a modeler/developer.
It also facilitates understanding, documentation, providing opportunities for in-
tegration with other in-house software that shares the same upper ontology. For
example, now we are in a better position to integrate our online knowledge re-
sources (semantic search) with the government services (CiRM) modeled in their
full detail. And this is yet another aspect that sets our approach appart from
conventional MDD. Only the relevant abstractions layers can be used as needed,
without complete code generation from the whole model.

4.3 Domain Model

The domain (or world) model is an ontology that describes the problem domain
in a software implementation neutral way. Among the aspects of the problem
domain is the complete structure of the government organization, with useful
information about each department such as phone numbers, office hours of vari-
ous service points, the list of services it provides. Note that this information is a
generally useful and searchable semantic knowledge base, ready to be published
online. It is also part of our CiRM domain model used as runtime metadata.

However, the predominant type of business entity in the CiRM world is the
service case. A service case is created based on a problem reported by a citizen.
Different types of problems require the collection of different information, the
engagement of different types of actors and a unique workflow. A given type of

598 B. Iordanov et al.

problem thus has its own case model. Much of the domain modeling revolves
around creating and maintaing models of the various types of cases.

Each type of case is an OWL class, but also a (punned) OWL individual
so that metadata about that class can be stated. The case type individual has
properties describing (among others):

1. Questions that need to be answered to assess the situation (e.g. “approxi-
mately how far is the pothole from the sidewalk?”)

2. The location of the case (e.g. street address or GIS xy coordinates)
3. The workflow for handling such a case until it is marked as closed

All case models also share a common set of attributes such as the location
of the case, the date/time when it was opened, who opened it and current sta-
tus. However because there’s no notion of inheritence or subsumption between
OWL individuals, and because case type metadata is associated with a punned
individual, this commonality has to be handled in a special way by the execu-
tion engine. On the other hand, since data in the CiRM platform is represented
as OWL ontologies too, the connection between the case model and the case
occurrences is immediate and natural. There is no need to translate from one
meta model to another (e.g. UML to Java), hence no mismatch is possible, no
unnatural representations in the target language warranted.

4.4 Software Model

Software artifacts are modeled in OWL by treating the application software as a
domain to be described like any other domain. Model elements range from top-
level entities like Software Application to simple name-value ConfigParam

entities. Since the runtime representation of the domain model remains in OWL
(no separate Java object model needed), and since we do not do code generation
for back-end components, only those that must be dynamically found in some
way are modeled, like SOAP and REST services or Java implementation classes
that must be linked depending on the context. Nevertheless, some parts of our
system are driven in an entirely generic way by the model. Figure 2 (b) depicts
a sample from the software model portion of the ontology.

We mentioned above the synthesis of user interfaces. To achieve this, we have
created a set of UI components as a client-side JavaScript library and we have
described them in our ontology. Just like case models lead to JavaScript business
objects, descriptions of the UI components are first JSON-serialized and then
augmented behaviorally as browser-based UI components. A UI component can
be as simple as an HTML template rendered contextually from some data, e.g.
top-level UI components like a whole page. Or, it can be something with much
richer functionality. For instance, a familiar type of component is the data table
component for interacting with data in tabular format, with the ability to sort by
column or filter out certain rows. We can create an OWL individual description
of a data table with a particular configuration, associate it with an operational
data query and plug it in, say, an HTML template. In other words, the software

The Semantic Web as a Software Modeling Tool 599

model contains concrete instantiations of software components, bound to the
domain model and ready to be assembled for end use in addition to abstract
descriptions of components types. This is possible because of our universal usage
of OWL.

Another illustrative example of the benefits of the integration of domain and
solution models within a single ontology repository is access control: notions such
as business actions and access policies are part of the solution domain (as they
pertain to application behavior) while a case type is part of the problem domain.
But we can directly associate a case type with a set of access policies for the
various actions available without ever leaving the world of our OWL repository.
We can use Description Logic queries to find out what the access policies are.
Furthermore, we can use SWRL if-then rules to automatically create access
policies based on some properties of the resource being protected.

In general, the inferencing capabilities of OWL have proven to be a very
powerful tool, but there are several practical limitations in addition to the lack
of meta-modeling that we have had to deal with.

4.5 Problems with OWL

While the experience of using OWL as an MDD foundation has been overwelcom-
ingly positive, it was not without roadblocks, mostly resulting from the relative
immaturity of SW technologies:

– The main obstacle is the lack of solid, high performance reasoner2 implemen-
tation. There is currently no reasoner that supports all possible inferences.

– Reasoners are not designed to work in a multi-threaded concurrent environ-
ment.

– No reasoner supports any sort of contextualized inferencing where a query
is performed within the context of a set of extra assumptions/axioms. This
would be valuable in reasoning with the operational data entities which,
compared to the large meta ontology, are just small sets of axioms that
could be assumed just for the context of a given reasoning task.

– Punning provides a workable solution for the lack of meta classes, but in
order to express inheritence and other meta properties we would have to
develop or adopt an ad hoc framework on top of OWL to recover the lost
expressiveness of OWL Full (which has meta classes).

– OWL lacks some basic data structures such as arrays and lists which are
difficult to express ([4]).

– Lack of MDD tooling means that some dependencies are harder to track.
When an ontology entity is referred directly in code, those references can
easily become invalid and undetected. Therefore, we have learned to keep
such cases to a minimum. We simply consider this as part of the general
drawback of dynamic languages vs. static compilation.

2 This is how OWL inference engines are called.

600 B. Iordanov et al.

– The fact the OWL is fist and foremost a mathematical logic language that
just shares some of the notions behind object-oriented programming (without
its constructs or semantics) has led occasionally to unexpected inference
results or to overly verbose models. In particular, consequences of the Open
World Assumption and Non-Unique Name Assumption ([17]) challenged the
team.

The list is not exhaustive, but it covers the most unexpected problems faced
in the course of the project. The technical issues related to reasoning over the
models were the biggest hurdle. They were avoided either through aggressive
caching or by hand-coding ad hoc inference procedures within the meta services.

5 Model Change Management and Operational Data –
Two Implementation Highlights

In this section we present a few details about the implementation and our de-
velopment process relevant to MDD.

5.1 Model Change Management

Following our guiding vision of a model-driven live system where the software is
modified at runtime, we needed a reliable change management process and tools.
Nearly all business aspects are represented in the model. There are virtually no
configuration files, except for a few bootstraping parameters like the location of
the metabase. Therefore, a lot of software changes amount to meta repository
updates and a crucial aspect of the architecture is the ability to manage those
updates just like source code updates within a version control system (VCS).
The lack of a native VCS is a frequent problem with modeling tools since file-
based versioning is too coarse grained and leads to merging problems due to
the usually non-deterministic model serialization. But versioning is crucial to
the agile development process we have put in place. Since models essentially
compress information, changes are potentially high impact, hence the importance
of the ability to go back in time .

As part of our platform development effort, we created a distributed versioning
system similar to GIT, but for OWL and that is at the level of the language itself,
rather then the textual representation. The units being tracked and versioned are
the logical axioms of OWL. The implementation relies on a hypergraph database
([14]) which acts both as the VCS and the meta repository. A software model
update is enacted as a push of an ontology changeset which triggers clearing of
caches and updates of other runtime structures within the meta services. Rolling
back an update triggers the exact same set of events to adjust the runtime state.

Model updates in this setup are akin to component deployments in a tra-
ditional architecture. We use Protege to work with the model via a plugin in-
tegrated to our infrastructure. The idealized model development process looks
very much like a standard programming process:

The Semantic Web as a Software Modeling Tool 601

1. Make model changes on local machine.
2. Push changeset to local development environment.
3. Test locally, then push same changes to test environment.
4. Potentially multiple team members push to test environment - changesets

get automatically merged.
5. Check OWL consistency with reasoner, run application-specific test suite in

the test environment.
6. Push from merged changeset from test to production.
7. Rollback last changeset from production in case of problems.

In cases where business users need to work with the model, but find it difficult
to learn Protege and OWL, a simplified web-based UI was developed. However,
model modifications through that UI go through the same change management
process via the same VCS. A similar process is put in place for the static web
resources. It would be easy to store those resources inside the model as well, but
we have not done so due to lack of tool support. Finally, note that only updates
to the Java-based core components, i.e. the server-side of the model execution
engine, force an interruption of service, but such updates are much rarer.

5.2 Operational Data as Ontologies

We refer to top level entities in our operational data as business objects. Those
are the enterprise entities that one finds in any enterprise framework and the
things that we persist in our relational database. Even though they are stored
in an RDBMs, our runtime system manipulates them as OWL ontologies. Each
business object is represented as a small ontology following a few naming conven-
tions enforced by the execution engine, such as its IRI3 format and the presence
of a top-level individual representing the entity. We refer to such ontologies as
business ontologies or BOs for short. The typical BO type is of course the Ser-
viceCase. Two notable aspects of our relational storage are: (1) the ability to
store BOs in a generic way as sets of axioms or store them in a more efficient
way by mapping a given BO type to an SQL table; and (2) the auto-versioning
of all BOs, using the customary valid from/valid to timestamp mechanism.
That is, a modification of a business entity creates a new version of that en-
tity instead of overwriting the existing data. Previous data can be retrieved for
auditing purposes.

As with metadata ontologies, BOs are manipulated mostly through their
JSON representation which is object-like and very natural to programmers. As
noted in section 3.4, JSON serialization is akin to code generation at runtime -
when functions are merged into the JSON representation, we have a complete
JavaScript object entity, dynamically synthesized from metadata and operational
data, in the true spirit of MDD. To create a brand new entity, we use metadata
information to construct a prototypical blueprint instead of existing operational
data. In particular, a case model is also used as a prototype to construct a new

3 International Resource Identifier.

602 B. Iordanov et al.

case. This is more in tune with the object-based nature of JavaScript, as opposed
to class-based nature of Java and other static languages traditionally the target
of MDD.

Finally, note that the perennial problem of model evolution that entails changes
to the structure of operational data is solved by matching versioned data with
the appropriate versioned metadata. For instance, when a property is added or
removed from a BO type, only newly created data will have the correct blueprint.
Because of the auditing requirement, updating all existing data is not an option,
regardless of whether it is feasible or not. So whenever the latest metadata is
incompatible with some older BO (e.g. after a property removal), the meta repos-
itory has to be queried for the corresponding older version of the BO type with
which to interpret the operational data. Only in case of updates of the BO is
any synchronization triggered, the user alerted in case of merge conflicts or other
inconsistencies and given the opportunity to manually correct them.

6 Conclusion

Some of the advantages of using OWL for MDD are the simplicity and univer-
sality of OWL. When metadata and data, domain and solution all share the
same underlying formalism, many design problems are minimized or eliminated.
When administrative tasks amount to adjustments of a live application model,
many development tasks are dispensed with. On the other hand, we have ex-
perienced difficulties with the level of maturity of SW supporting tools, given
the unorthodox use we made of them. We are hopeful that our practical experi-
ence has contributed to bridging the largely historical gap between the classical
AI techniques of knowledge representation and the modern sofware engineering
approach of model-driven development.

References

1. Watson, A.: A brief history of MDA. Upgrade, the European Journal for the In-
formatics Professional 9.2, 7–11 (2008)

2. Truyen, F.: The Fast Guide to Model Driven Architecture The Basics of Model
Driven Architecture (January 2006),
http://www.omg.org/mda/presentations.htm

3. Parreiras, F.S.: Semantic Web and Model-Driven Engineering, ISBN: 978-1-1180-
0417-3

4. Drummond, N., Rector, A.L., Stevens, R., Moulton, G., Horridge, M., Wang,
H., Seidenberg, J.: Putting OWL in Order: Patterns for Sequences in OWL. In:
OWLED (2006)

5. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: The Next Step for OWL (2008)

6. Bertot, J.C., Jaeger, P.T., Grimes, J.M.: Using ICTs to create a culture of trans-
parency: E-government and social media as openness and anticorruption tools for
societies. Government Information Quarterly 27(3), 264–271 (2010)

 http://www.omg.org/mda/presentations.htm

The Semantic Web as a Software Modeling Tool 603

7. Janssen, K.: The influence of the PSI directive on open government data: An
overview of recent developments. Government Information Quarterly 28(4), 446–
456 (2011)

8. Motik, B.: On the Properties of Metamodeling in OWL. Journal of Logic and
Computation 17(4), 617–637

9. Schellong, A.: Citizen Relationship Management. Peter Lang Publishing, Brussels
(2008)

10. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
International Conference on Formal Ontology in Information Systems (FOIS), 29
p. (2001)

11. Miller, E., Manola, F.: RDF Primer. W3C Recommendation (2004)
12. W3C OWLWorking Group. OWL 2Web Ontology Language Document Overview.

W3C (2009)
13. Josey, A., Harrison, R., Homan, P., Rouse, M., van Sante, T., Turner, M., van der

Merwe, P.: TOGAF Version 9.1 - A Pocket Guide, 1st edn. van Haren Publishing,
Amersfoort (2011)

14. Iordanov, B.: HyperGraphDB: A Generalized Graph Database. In: Proceedings of
the 2010 International Conference on Web-age Information Management (2010),
http://www.hypergraphdb.org/docs/hypergraphdb.pdf

15. http://protege.stanford.edu/

16. http://owlapi.sourceforge.net/

17. Baader, F. (ed.): The description logic handbook: theory, implementation, and
applications. Cambridge university press (2003)

18. Gaevi, D., Djuri, D., Devedi, V.: Model driven architecture and ontology develop-
ment. Springer (2006)

19. Staab, S., Walter, T., Gröner, G., Parreiras, F.S.: Model driven engineering with
ontology technologies. In: Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning
Web. LNCS, vol. 6325, pp. 62–98. Springer, Heidelberg (2010)

http://www.hypergraphdb.org/docs/hypergraphdb.pdf
http://protege.stanford.edu/
http://owlapi.sourceforge.net/

Concern-Oriented Software Design

Omar Alam1, Jörg Kienzle1, and Gunter Mussbacher2

1 School of Computer Science, McGill University, Montreal, Canada
Omar.Alam@mail.mcgill.ca, Joerg.Kienzle@mcgill.ca

2 University of Ottawa, Ottawa, Canada
gunterm@eecs.uottawa.ca

Abstract. There exist many solutions to solve a given design problem,
and it is difficult to capture the essence of a solution and make it reusable
for future designs. Furthermore, many variations of a given solution may
exist, and choosing the best alternative depends on application-specific
high-level goals and non-functional requirements. This paper proposes
Concern-Oriented Software Design, a modelling technique that focuses
on concerns as units of reuse. A concern groups related models serving
the same purpose, and provides three interfaces to facilitate reuse. The
variation interface presents the design alternatives and their impact on
non-functional requirements. The customization interface of the selected
alternative details how to adapt the generic solution to a specific con-
text. Finally, the usage interface specifies the provided behaviour. We
illustrate our approach by presenting the concern models of variations of
the Observer design pattern, which internally depends on the Association
concern to link observers and subjects.

1 Introduction

In the early phases of software development, the requirements of the software
to be built are elaborated. Typically, these requirements specify what function-
ality the application is supposed to provide, as well as the high-level goals the
different stakeholders have and the qualities, i.e., non-functional requirements,
they expect from the application. The software design phase then consists of
coming up with a good software design that provides the specified functionality
and satisfies the identified high-level goals.

What makes software design so difficult is that there are many ways to solve
a specific design problem, each solution having advantages and disadvantages.
The designer must carefully consider how each solution positively or negatively
affects the stakeholders high-level goals and the non-functional properties of the
application before making her choice. This typically requires a high level of ex-
pertise from the designer, as software design approaches currently provide only
little support for trade-off analysis. Whereas many approaches provide mecha-
nisms for reusing design (classes, components, patterns, frameworks), there are
to the best of our knowledge no current approaches that provide the designer
with insight on the commonalities and variations among different reusable design
solutions to a given problem, and how those solutions impact high-level goals.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 604–621, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Concern-Oriented Software Design 605

To overcome these limitations, this exploratory paper proposes concern-
oriented software design. Section 2 reviews some existing units of software design
reuse, and motivates the need for a broader unit that encompasses different de-
sign alternatives. Section 3 presents this unit – the concern – and it’s most
important interface – the variation interface, which describes the available de-
sign variations of the concern and their impact on high-level goals and qualities.
Section 3.2 shows how we extended the Reusable Aspect Models approach to
support concern-orientation, and 3.3 presents the example design concern Asso-
ciation. The concern reuse process with impact analysis of the chosen variants is
described in 3.4. Section 4 highlights the need to support concern dependencies,
section 5 briefly discusses related work and the last section concludes the paper.

2 Motivation

Software reuse is a powerful concept that originated in the sixties, and is defined
as the process of creating new software using existing software artifacts. To make
software reuse applicable, reusing an artifact should be easier than constructing it
from scratch. This entails that the reusable artifacts are easy to understand, find,
and apply [17]. There are characteristics of software artifacts that facilitate reuse,
e.g., grouping, encapsulation, information hiding, and well-defined interfaces.

2.1 Units of Reuse

This subsection reviews some of the most popular units of reuse for software
designs, and gives a very brief introduction to Reusable Aspect Models, the
modelling approach we are using to illustrate concern-oriented software design.

Classes: Classes are the most common unit of reuse in the object-oriented
world. They group related state and behaviour (attributes and operations), and
allow to reuse these properties in different contexts. Classes can nicely encap-
sulate a “local” design solution, where design state and behaviour fits into one
entity. They fail when the design behaviour crosscuts several application entities.

Components: Components are more coarse grained entities that package
related functionalities behind well-defined interfaces. They are very popular in
some application domains, e.g., web services, where dynamic configuration is
desired. Whereas components are designed for reuse, they fail just like classes to
encapsulate designs that crosscut the application architectural structure. Also,
most component-based approaches do not provide information about how a com-
ponent impacts non-functional application properties.

Design patterns: Design patterns [9] are abstract design descriptions of so-
lutions to recurring design problems. They capture interactions between classes,
and explain tradeoffs/impacts of the interaction pattern on high-level goals. How-
ever, design patterns are usually described informally in textual format or using
incomplete UML diagrams or code examples that cannot be reused as such in
an application design without substantial development effort.

Frameworks: Frameworks are software application platforms that are usually
big in size and offer many features. Due to their size, they are usually difficult to

606 O. Alam, J. Kienzle, and G. Mussbacher

Fig. 1. Observer RAM Model Interface (Customization and Usage)

configure/customize for a specific need. Frameworks often define a limited set of
extension points, and dictate the control flow of the application that uses them.
This makes it hard to reuse several frameworks in the same application.

Software Product Lines (SPLs): SPLs [23] specify the variabilities and
commonalities in a family of products and are an example of large-scale reuse.
The focus, however, is on products and not on describing a generic, possibly
crosscutting, concern which is applied to many products.

Reusable Aspect Models: Reusable Aspect Models (RAM) [16] is an aspect-
oriented multi-view modelling approach for software design modelling. A RAM
model consists of a UML package specifying the structure and the behaviour of
a software design using class, sequence, and state diagrams.

Reusability is a key element in RAM. Each model has a well-defined model
interface [2] (explained in more detail in the next subsection), which specifies
how the design can be (re)used within other models. Having an explicit model
interface makes it possible to apply proper information hiding principles [22]
by concealing internal design details from the rest of the application. Thanks
to aspect-oriented techniques, this is possible even if the encapsulated design
details crosscut the rest of the application design. RAM also offers the modeller
the possibility to create model hierarchies, which allows one RAM model to
reuse the structure and behaviour of another RAM model within its design.
Model composition techniques are used to flatten aspect hierarchies to create
the final software design model.

2.2 Interfaces

Units of reuse such as the ones listed above typically either explicitly or implicitly
define interfaces that detail how the unit is supposed to be reused. We classify
these interfaces here into two kinds: usage and customization interfaces.

Usage Interface: The usage interface for units that are used in software
design specifies the design structure and behaviour that the unit provides to the
rest of the application. In other words, the usage interface presents an abstraction
of the functionality encapsulated within the unit to the developer. It describes
how the application can trigger the functionality provided by the unit.

For instance, for classes the usage interface is the set of all public class prop-
erties, i.e., the attributes and the operations that are visible and accessible from
the outside. For components, the usage interface is the set of services that
the component provides (i.e., the provided interface). For frameworks, design

Concern-Oriented Software Design 607

patterns, and SPLs, the usage interface is comprised of the usage interfaces of
all the classes that the framework/pattern/SPL offers.

The usage interface of a RAM model is comprised of all the public model
elements, i.e., the structural and behavioural properties that the classes within
the design model expose to the outside. To illustrate this, the usage interface of
the RAM design of the Observer design pattern is shown in Fig. 1. The Observer
design pattern [9] is a software design pattern in which an object, called the sub-
ject, maintains a list of dependents, called observers. The functionality provided
by the pattern is to make sure that, whenever the subject’s state changes, all
observers are notified. The structural view of the Observer RAM model specifies
that there is a |Subject class that provides a public operation that modifies
its state (|modify) that can be called by the rest of the application. In addi-
tion, the |Observer class provides two operations, namely startObserving and
stopObserving, that allow the application to register/unregister an observer in-
stance with a subject instance.

Customization Interface: Typically, a unit of reuse has been purposely
created to be as general as possible so that it can be applied to many differ-
ent contexts. As a result it is often necessary to tailor the general design to a
specific application context. The customization interface of a reusable software
design unit specifies how to adapt the reusable unit to the specific needs of the
application under development.

For example, the customization interface of generic or template classes allows
a developer to customize the class by instantiating it with application-specific
types. For components, the customization interface is comprised of the set of
services that the component expects from the rest of the application to function
properly (i.e., the required interface). The developer can use this information at
configuration time to plug in the appropriate application-specific services. The
customization interface for frameworks and design patterns is often comprised
of interfaces/abstract classes that the developer has to implement/subclass to
adapt the framework to perform application-specific behaviour.

The customization interface of a RAM model specifies how a generic design
model needs to be adapted to be used within a specific application. To increase
reusability of models, a RAM modeller is encouraged to develop models that are
as general as possible. As a result, many classes and methods of a RAM model
are only partially defined. For classes, for example, it is possible to define them
without constructors and to only define attributes relevant to the current design
concern. Likewise, methods can be defined with empty or only partial behaviour
specifications. The idea of the customization interface is to clearly highlight
those model elements of the design that need to be completed/composed with
application-specific model elements before a generic design can be used for a
specific purpose. These model elements are called mandatory instantiation pa-
rameters, and are highlighted visually by prefixing the model element name with
a |, and by exposing all model elements at the top right of the RAM model sim-
ilar to UML template parameters. Fig. 1 shows that the customization interface
for the Observer model comprises the class |Subject with a |modify operation,
and the class |Observer class with an |update operation.

608 O. Alam, J. Kienzle, and G. Mussbacher

2.3 The Need for a Broader Unit of Reuse

Typically, there are many ways to solve a specific design problem, each solu-
tion having advantages and disadvantages. There are, for example, families of
algorithms for achieving similar behaviour that have varying run-time resource
requirements, and different ways of organizing information into data structures.
The choice of data structures and algorithms has an effect on application perfor-
mance and memory usage. The existence of a multitude of sorting algorithms,
for example, shows clearly that there is no one good way of sorting. A more
complex example is transactions [11], a design concept for fault tolerance that
emerged in the database community. A transaction groups together a set of oper-
ations on data objects, ensuring atomicity, consistency, isolation, and durability
of data updates. There are many ways of designing support for transactions,
including pessimistic/optimistic and strict/semantic-based concurrency control,
in-place/deferred update, and logical/physical and forward/backward recovery.
Again, each technique has advantages and disadvantages.

Because of the multitude of possible designs, before a developer can focus
on choosing a specific solution, she must carefully consider how each possible
solution positively or negatively affects the stakeholders high-level goals and the
non-functional properties of the application. This design decision is arguably the
most important activity of the design process, and has a crucial impact on the
quality of the entire application design. Ultimately it is the capability of choosing
the most appropriate design that distinguishes a good designer from a bad one.

Unfortunately, none of the units of reuse discussed above makes this important
design activity easy for the developer. Even if the unit is accompanied with doc-
umentation that describes the impact of the design solution, the documentation
usually does not mention other alternative design solutions.

For example, a class typically only provides one solution to a specific prob-
lem. At best, the class comes with documentation that describes the impact of
the encapsulated design. For example, the ArrayList class provided as part of
the Java standard class library [10] implements a queue, i.e., a data structure
that stores a sequence of elements and provides operations to insert and re-
move elements from the sequence, and iterate over the elements in the sequence.
However, there is no support in Java to capture the impact of a class on the
non-functional properties of an application that uses it. This is not a problem
for an experienced Java developer, since she has probably used the class before.
If not, other sources of information, i.e., the (textual) Java documentation or
Java developer websites, need to be consulted to discover the impact of the class
on non-functional application properties. Likewise, there are many ways to store
a sequence of elements in Java, i.e., using the CopyOnWriteArrayList class, the
Vector class, the LinkedList class, or simply a standard array. Each way has a
different impact on performance and memory requirements. Again, there is no
direct support in Java to capture this information. The only way to find this in-
formation is to assume that all classes that implement a sequence are located in
the same Java package (java.util for ArrayList), and that they all implement
the List<E> interface.

Concern-Oriented Software Design 609

Similar arguments can be made for other units of reuse, i.e., components. The
situation is different, however, for patterns, frameworks, and SPLs. A description
of a design pattern, for example, is required to contain a Consequences section
that contains a description of the results, side effects, and trade offs caused by
using the pattern. There is also a Related Patterns section, which mentions other
patterns that have some relationship with the pattern that is being described
and discusses the differences between this pattern and similar patterns. Unfor-
tunately, these textual descriptions are very informal.

Sophisticated frameworks are often designed in such a way that they provide
a variation of similar functionalities to the developer. Typically, the choices are
presented to the developer in form of class hierarchies from which the developer
can instantiate the class that fits her requirements best. Whereas the functional
impact of the different options is usually explained well, the impact on non-
functional application properties is rarely documented rigorously. As a result,
using a framework in the most appropriate way for a specific application still
requires considerable expertise.

SPLs inherently describe variations, and, consequently, SPL techniques are
certainly applicable to some aspects of concern-oriented software design. The
crucial difference is that SPLs are focused on producing a product instead of
specifying a possibly crosscutting concern. SPLs typically lack rigorous inter-
faces that have been designed to support composition of crosscutting concerns,
allowing many concerns to be combined for one product and a single concern to
be applied to many products.

Based on the arguments presented in this section we suggest that in order for
reuse to be maximally effective, a new, broader unit of reuse that encompasses
all design solutions targeted at solving a design problem is needed. We call this
new unit of reuse a concern. To make reuse simple and straightforward, a con-
cern must provide an interface that clearly describes the different variations of
the designs it encapsulates, as well as their impact on non-functional applica-
tion properties. The following section presents how we envision such a variation
interface to look like.

3 Reusable Software Design Concerns

In order to be able to show a concrete example of a variation interface, we
introduce here a simple, low-level design concern called Association.

It happens very frequently in object-oriented designs that an object of class
A needs to be associated with other objects of class B. This situation occurs so
commonly that object-oriented modelling languages such as UML [20] have a
graphical way of representing associations, namely with a line connecting class
A and class B. At both ends of the line, multiplicities can be shown that specify
for a given instance of A, how many instances of B can minimally and maximally
be associated with it. Optionally, an association end can also be annotated as
being {ordered}, or qualified using a key.

Implementing associations with multiplicity 0..1 or 1 is easy, since it simply
requires the class A to store a reference to an instance of class B. Implementing

610 O. Alam, J. Kienzle, and G. Mussbacher

�����������

	��
����
��
�
�����

�
�����

�������������

�

������

������� ������� �
����� �������������

�����������

�	�� �����

��
�������
�
��
��

�������
���
�

�����

�	�� � � �
!������ ����"

��
���
#
��
��� � � �

��
�������
$��
��
��

	��
����
������

��
�
�����

	��
����
����
����%��&�����
��
�
�����

������'�
����
� ��(�

����
��
�������

���� ��
�
� &� ��&�
���

)*+,*-./0

.1-2.+*3

3-4/+-254 6789:

./ 6;89:

Fig. 2. Association Variation Interface

an association where the upper bound of the multiplicity is greater than 1, e.g.,
0..*, can be done in many ways, and it is the job of a designer to determine the
most appropriate way. Typically, the design has to introduce an intermediate
collection data structure that stores the instances of B and refer to it from
within class A. Operations need to be provided that add and remove instances
of B from the collection contained in the object of class A.

What kind of collection to use depends on the functional requirements of the
association. For example, an {ordered} association has to be designed with a
collection that orders the elements it contains, e.g., a queue (FIFO), a stack
(LIFO), or a priority queue (sorted using some criteria). A qualified association
has to be designed with some sort of dictionary or map that allows to find
objects by means of a key. But even for a given abstract data structure there are
many different internal implementations possible. For example, a queue can be
structured internally as an array or a linked list, the choice of which affects the
algorithms for insertion, deletion, and iteration. This ultimately impacts the non-
functional properties of the application, e.g., memory usage and performance.

In this section we will show how we envision a variation interface for the
Association concern. We then present how we introduced concerns into RAM,
show some detailed designs of associations with RAM, and how a developer
can generate a model for a specific association design by selecting the desired
variation from the variation interface.

3.1 Specifying a Variation Interface

As argued previously, the variation interface needs to capture the variations
offered by a concern as well as the impact of a selection of variations on high-level
goals such as non-functional application properties. Variations are best expressed
at a high level of abstraction, where details of the variation can be ignored and
the focus can be on the relationships among offered variations. Feature modelling
and goal modelling have addressed these modelling requirements, and hence we
make use of feature and goal modelling techniques in the specification of the
variation interface. As an example, the variation interface for the Association
concern is shown in Fig. 2.

Concern-Oriented Software Design 611

Feature Models: Kang et al. [15] introduced feature models to capture the
problem space of a software product line (SPL) [23]. In our context, a concern
can be seen as a specific kind of SPL. A feature model captures the potential
features of members of an SPL in a tree structure, containing those features
that are common to all members and those that vary from one member to
the next. A particular member is defined by selecting the desired features from
the feature model, resulting in a feature model configuration [7]. A node in
a feature model represents a feature of the SPL (e.g., ZeroToManyOrdered in
Fig. 2). A set of inter-feature relationships allows to specify (i) mandatory and
optional parent-child feature relationships, (ii) alternative (XOR) feature groups
and (iii) or (IOR) feature groups (see legend in Fig. 2). A mandatory parent-child
relationship specifies that the child is included in a feature model configuration if
the parent is included. In an optional parent-child relationship, the child does not
have to be included if the parent is included. Exactly one feature must be selected
in an alternative (XOR) feature group if its parent feature is selected, while at
least one feature must be selected in an or (IOR) feature group if its parent
feature is selected. Often, includes and excludes integrity constraints are also
specified, which cannot be captured with the tree structure of the feature model
alone. An includes constraint ensures that one feature is included if another one
is. An excludes constraint, on the other hand, specifies that one feature must
not be selected if another one is. Note that integrity constraints are not required
to express the variation interface of the Association concern.

Goal Models: Goal modelling is typically applied in early requirements en-
gineering activities to capture stakeholder and business objectives, alternative
ways of satisfying these objectives and the positive/negative impacts of these
alternatives on various high-level goals and quality aspects. The analysis of goal
models guides the decision-making process, which seeks to find the best suited
alternative for a particular situation. These principles also apply in our context,
where an impact model is a type of goal model that describes the advantages
and disadvantages of features offered by a concern and gives an indication of
the impact of a selection of features on high-level goals that are important to
the user of the concern. Several different goal modelling techniques exist, e.g.,
i* [25], KAOS [8], GRL which is part of the User Requirements Notation (URN)
standard [13], and the NFR framework [6]. Common concepts among these tech-
niques are (i) stakeholders which are the holders of intentions, (ii) intentional
elements, i.e., goals which stakeholders want to achieve (e.g., Make more fault
tolerant in Fig. 2) and tasks which represent alternative ways of achieving the
goals (e.g., ZeroToManyOrdered in Fig. 2) and (iii) a set of links between in-
tentional elements including contributions (positive/negative impact of one in-
tentional element on another; see Fig. 3 for examples of positive contributions),
AND/OR/XOR decompositions and dependencies. In GRL goal modelling, the
concept of strategy refers to a selection of intentional elements (typically tasks)
with initial satisfaction values. When the goal model is evaluated, these initial
values are propagated in the goal model using the links and weights associated
with the links, leading to an assessment of the high-level goals in the goal model.

612 O. Alam, J. Kienzle, and G. Mussbacher

��������
���	
������

������

������������

���� ����

�
���������
�������

��������
������

���	
������

��������
�������
��������
�

���	
������

��������� ���� �����
������� ����

����
!��
���� �����

������

����"��

����"��

����������"��

#���$���

%&&

'(

)(

'(

(&

(& (& (& (&

(&

%

%&&

%&&

%&&

(&

Fig. 3. Impact Model for Performance for the Association Concern

Fig. 4. The Concern-Oriented RAM Metamodel

Various strategies may be compared with each other, enabling trade-off analysis
and the discovery of the best suited alternative.

AoURN/SPL [19] is an aspect-oriented extension of URN that integrates fea-
ture models and aspect-oriented goal models to enable combined reasoning about
feature configurations and impact on high-level goals. It is hence an ideal mod-
elling notation to express variation interfaces for design concerns.

The impact model in Fig. 3 shows how the different features of Association
impact performance. The impact model is an intrinsic part of the Association
concern. Those features contributing 100 (e.g., HashSet) to the main goal of
increasing performance are the best choice in terms of performance. All other
features are worse in terms of performance relative to the features contributing
100, e.g., TreeMap (contributes 75) is less desirable in terms of performance than
HashSet, but better than LinkedHashSet (contributes 50). Database is the worst
choice with a contribution of only 1.

Concern-Oriented Software Design 613

3.2 Integrating Concern-Oriented Reuse with RAM

This subsection describes how we integrated concerns and variation interfaces
with RAM. The detailed design of an individual feature can be described within a
RAM model. The variation interface for a concern is described using AoURN/SPL,
and it is therefore not necessary to add this capability to RAM itself. However,
the RAM models that specify the detailed design of each variation of a concern
must be packaged together with the variation interface, and a mapping between
RAM models and the concern features that they implement must be specified.

Fig. 4 shows the updated RAM metamodel supporting concern-oriented reuse.
The old metamodel entities are depicted in light grey, whereas the new entities
are shown in white. The old entities specify that an aspect is composed of a
structural view, message views, and state views. The mandatoryAspectParam-
eters designate all elements that are part of the customization interface of the
aspect, and the classifiers and operations contained in the structural view that
have public visibility constitute the aspect’s usage interface. The Concern is
added as a new root model element that groups together one or more aspects.
The concern exposes a VariationInterface, which defines a set of Features. Each
feature is associated with the RAM aspects that specify its design, if any.

The concrete syntax of RAM has been adapted as a consequence. An aspect
model must now specify the concern to which it belongs by declaring its name
in the aspect header: ConcernName.AspectName. The mapping between a RAM
model and the feature of the concern that it designs, if any, is specified in the
aspect header using the keyword realizes followed by the name of the feature.

3.3 RAM Design of the Association Concern

This subsection presents parts of the detailed design of the Association concern
using RAM, namely the RAM models CommonDesign, Ordered, and ArrayList.

CommonDesign: Fig. 5 shows the CommonDesign RAM aspect that en-
capsulates the structure and behaviour shared by all design variations of the
Association concern. It provides three partial classes: |Data, |Collection, and
|Associated. |Data is the class of the object that is to be associated with po-
tentially many instances of the class |Associated. |Collection is some kind
of collection that is contained within |Data that aggregates many |Associated
objects. The class |Data defines two public methods: |forwardingMethod and
getAssociated. As shown in the corresponding message view, |forwarding-
Method forwards any received calls to |targetMethod in |Collection. getAs-
sociated() provides access to the |Collection object contained in |Data. Fi-
nally, the initCollectionmessage view specifies that whenever a constructor of
|Data is invoked, a |Collection instance is also created and stored in the refer-
ence myCollection. The customization interface of Association exposes |Data,
|Collection, |Associated as well as |forwardingMethod and |targetMethod,
since these are the generic model elements that need to be made specific before
the aspect can be used.

614 O. Alam, J. Kienzle, and G. Mussbacher

structural view

1

myCollection 0..*+ * |forwardingMethod(..)
+ |Collection getAssociated()

|Data

aspect Association.CommonDesign realizes Association

|Associated

message view initCollection

caller: Caller

new:
|Data

new := create(..)

Pointcut Advicecaller:
Caller

new:
|Data

new := create(..)

myCollection:
|Collection

myCollection := create()* *

message view create affectedBy initCollection

message view |forwardingMethod
target: |Data

|forwardingMethod(..)

myCollection:
|Collection

|targetMethod(..)

~ * |targetMethod(..)

|Collection

|Data
|Collection
|Associated

|forwardingMethod
<|targetMethod>

message view getAssociated is Getter<myCollection>

Fig. 5. The CommonDesign RAM Model of the Association Concern

Ordered: Fig. 6 shows the RAM model for ordered associations. It extends
CommonDesign, and specifies that the |Collection is now a |Sequence. It com-
pletes the usage interface for |Data by adding all operations that are relevant
for ordered associations, e.g., adding/removing elements to/from a specific po-
sition. The behaviour of these operations is to forward the call to the contained
|Sequence class. This is achieved by instantiating the |forwardingMethod be-
haviour for each operation (see instantiation compartment).

Since Ordered has made the CommonDesign more concrete, the customiza-
tion interface has shrunk: only the |Data and |Associated classes, and the
implementation class |Sequence are still partial and need to be adapted further
before the aspect can be used in a concrete application.

ArrayList: ArrayList (also shown in Fig. 6) is a very small aspect that simply
specifies that the Java class ArrayList is supposed to be used as an implemen-
tation class for |Sequence. Now, only the |Data and |Associated classes are
left in the customization interface.

3.4 Concern Reuse Process

The process of reusing a design concern is straightforward:

1. Use the variation interface of the concern to select the most appropriate fea-
ture, i.e., the feature that provides the desired functionality and maximizes
positive impact on relevant non-functional application properties. This gen-
erates the detailed design for the selected feature of the concern.

2. Use the customization interface of the generated design to adapt the generic
design elements to the application-specific context. This generates the appli-
cation-specific usage interface for the selected feature of the concern.

3. Use the selected concern feature within the application design according to
the usage interface.

Concern-Oriented Software Design 615

structural view

aspect Association.Ordered extends CommonDesign realizes Ordered
|Data

|Associated
|Sequence

0..*

+ add(|Associated a)
+ add(int index, |Associated a)
+ remove(|Associated a)
+ remove(int index)
+ |Associated get(int index)
+ boolean contains(|Associated a)

|Data

|Associated

~ create()
~ add(|Associated a)
~ add(int i, |Associated a)
~ remove(|Associated a)
~ remove(int i)
~ |Associated get(int index)
~ boolean contains(|Associated)

|Sequence
|Associated

|Collection |Sequence; |forwardingMethod<|targetMethod> add(|Associated)
<add(|Associated)>, add(int, |Associated)<add(int, |Associated), remove(|Associated)
<remove(|Associated)>, remove(int)<remove(int)>, get<get>, contains<contains>

Instantiations:
CommonDesign:

|Sequence java.util.ArrayList
Implementation:
Ordered:

aspect Association.ArrayList extends Ordered realizes ArrayList
|Data

|Associated

Fig. 6. The Ordered and ArrayList RAM Model

For instance, when reusing the Association concern, the developer looks at the
available features (see Fig. 2) and determines functionality-wise that she needs an
ordered association. The variation interface tells her that there are many possible
design choices, ranging from LIFO Stack to Sorted Priority Queue. She then uses
the impact analysis tool to evaluate the impact of the different choices on non-
functional application properties. For example, Fig. 7 shows the impact of select-
ing the ArrayList feature. The initial satisfaction value for the selected feature is
set to the maximum of 100, the others are set to 0. The evaluation mechanism [3]
calculates satisfaction values for the high-level goals/non-functional application
properties for which impact models have been defined. Many different evaluation
mechanism exists [3] for goal models. They range from simple bottom-up evalu-
ations that propagate satisfaction values towards the root(s) of the goal model
to more sophisticated, constraint-based evaluation mechanisms that search the
goal model for a set of leaf elements that satisfies desired satisfaction value(s)
at the root(s) [18].

The evaluated feature and impact model in Fig. 7 shows that the configuration
is valid, since the selection of ArrayList resulted in the root of the feature model
to be positively evaluated with 100. An invalid feature configuration would re-
sult in the root feature to be evaluated with 0 [19]. In addition, the evaluation
mechanism shows the impact of the feature configuration on several high level
goals: access performance is maximized (100) and insertion/removal performance
is average (50), which overall results in good performance (75). Memory usage
is very good (80), but fault tolerance and persistence are minimal (1). A differ-
ent feature selection would result in a different impact assessment. If a feature
configuration is valid, then its assessment can be compared with those of other
valid feature configurations to decide on the most suitable feature selection.

Once the developer decides to go with a choice, the RAM weaver assembles all
RAM models that realize the selected features and combines them according to
the instantiation directives specified within the models. In the case of the feature
ArrayList, the RAM models ArrayList, Ordered, and CommonDesign are woven

616 O. Alam, J. Kienzle, and G. Mussbacher

�����������

	��
����
��
�
�����

�
�����

�������������

�

������

������� ������� �
����� �������������

�����������

�	�� �����

��
�������
�
��
��

�������
���
�

�����

�	�� � � �
!������ ����"

��
���
#
��
��� � � �

��
�������
$��
��
��

	��
����
������

��
�
�����

	��
����
����
����%��&�����
��
�
�����

������'�
����
� ��(�

����
��
�������

���� ��
�
� &� ��&�
���

)*+,*-./0

.1-2.+*3

3-4/+-254 6789:

./ 6;89:

<

<

<

<

<

<

=<<

<
<

<

<
<

<=<<

=<<

=<<

>?

?<

=

= @<

Fig. 7. Evaluation of the Feature Selection “ArrayList” for the Association Concern

together, thus generating a new RAM model that contains the detailed design
for the chosen feature. The customization interface and usage interface of the
resulting model are shown in Fig. 8.

The last thing that is left to do is to customize the generated design to the ap-
plication. For example, the instantiation directive |Data → User; |Associated
→ Account; add → addAccount would associate the User class with multi-
ple Account classes using an ArrayList, and allow the application to associate
Account objects with a User by calling addAccount on a User.

4 Concerns Dependencies

The Association concern is an example of a low-level design concern. A real-
world application typically contains many design concerns at different levels
of abstraction and of varying complexity. Whereas many high-level concerns
are application-specific, a great number are nevertheless of general nature, e.g.,
design concerns related to security (authentication, encryption, etc.), distribu-
tion (serialization, network communication, replication), graphical user inter-
faces (widgets, event handlers), etc. Internally, the designs of the features of such
higher-level concerns require design infrastructure that again can be very gen-
eral. For example, the observer design pattern introduced in section 2 is a general
design technique that allows objects to register with some interesting data object
and receive notifications whenever the state of the data object changes. Certain
variants of graphical user interface designs use the observer design pattern to
update graphical views whenever the visualized data changes. Likewise, certain
variants of designs for replication use the observer design pattern to ensure that
a state change executed on one replica is reflected on all other replicas.

Based on this observation we argue that in order for concern-oriented reuse
to be effective, concern dependencies need to be supported. In other words, the
realization of a feature of a concern can reuse other concerns within its design,
thus creating a concern hierarchy. To this end, the feature realization selects the
specific variant of the concern that is the most appropriate. If the most appro-
priate feature cannot be determined at the level of the current concern, then the

Concern-Oriented Software Design 617

structural view

aspect Association<ArrayList>
|Data

|Associated

1

myCollection 0..*+ add(|Associated a)
+ add(int index, |Associated a)
+ remove(|Associated a)
+ remove(int index)
+ |Associated get(int index)
+ boolean contains(|Associated a)
+ ArrayList<|Associated> getAssociated()

|Data

|Associated
<<implementation>>

ArrayList

ArrayList java.util.ArrayList<|Associated>
Implementation:
ArrayList:

Fig. 8. Generated Detailed Design for the Association<ArrayList> Selection

set of possible features is selected, and as a result re-exposed as subfeatures of
the feature of the current concern.

To support concern dependencies, we had to add another element to the RAM
metamodel (Fig. 4). In addition to aspect instantiations, every aspect model
now has a set of ConcernInstantiations (CI). A CI selects a set of features of an
external concern, and specifies mappings of the elements in the customization
interface of the generated design model to elements in the current model.

4.1 Observer Concern Design Using RAM

This subsection illustrates concern dependencies by means of the Observer con-
cern. There exist many different designs of the observer pattern in the literature.
For instance, the notification message sent to the observers when the state of
the subject changes can include the modified state (Push), or no data at all,
and hence it is the responsibility of the observer to query the subject to get the
changes (Pull). Push reduces the number of messages exchanged, whereas Pull
can reduce the amount of data that is transferred. Also, in a single threaded
design, in the case where there are a significant number of observers or when
update operations require lengthy computations, state updates on subjects are
slow. In that case, a multi-threaded implementation that executes notifications
concurrently is a good alternative design that increases the speed at which a
change is executed. Finally, there is an extended design of the observer pattern
called model-view-controller (MVC) that defines additional Controller objects
that react to events and then request state changes on the subject (here called
Model), which in turn notifies the observer of the change (here called View).
MVC has again two possible design strategies – Active and Passive – which dif-
fer in the way the control flow passes through the related controller, model, and
view objects. Fig. 9 shows the basic variation interface of the Observer concern.

Several of the RAM models that specify the detailed design of the features
of the Observer concern need to associate classes with each other. For ex-
ample, a subject is associated with observers, and views are associated with
controllers. If we assume here that the order in which the observers are noti-
fied matters, the RAM model would therefore instantiate the Association con-
cern as follows: Association<Ordered>: |Data → |Subject; |Associated →
|Observer; add → registerObserver; etc. Which specific ordered association
design from the seven available choices in Association is ultimately used is left

618 O. Alam, J. Kienzle, and G. Mussbacher

�������� ��	��
��
������
�	�

���� �	���� �
���������

�������������	
���
�����

��	������
���
��

��������
������
��
���	

��������
����� ��
��

 !"#!$%&'

%($)%"!*

!*$+&"!$),+ -./01

%& -2/01

Fig. 9. The Observer Concern Variation Interface

unspecified. As a result, the choices are transferred to the variation interface of
the Observer concern, so that the user of the Observer can choose the design that
fits his application requirements best. In other words, another mandatory sub-
feature of Observer called OrderedObservers is added to the variation interface
of Observer ; this new feature corresponds to the ZeroToManyOrdered feature of
the Association concern and hence also has the same seven subfeatures.

5 Relation to Related Research

Reuse is the main focus in the context of software product line (SPL) develop-
ment [24,5], and since software design concerns are very close to SPLs we intend
to incorporate best practices from this field. However, reuse within an SPL is of
limited scope, i.e., within the product line, and is not intended to cover generic
concerns that are applicable to many products. Concern-orientation is about
reuse in a broader sense, i.e., within contexts that are not envisioned when the
concern is created. Concern dependencies – which translates to inter SPL depen-
dencies – requires composition support for crosscutting concerns which has only
recently attracted attention in the SPL community [4]. We argue that generic
reuse of, e.g., Java libraries has a greater impact than product-specific reuse
with SPL. The vision of concern-oriented development is to provide generic but
coordinated reuse across all software development phases.

Because our RAM implementation of concern-oriented software design sup-
ports modularization of crosscutting design concerns, it has similarities with
ModelSoC [14], a MDE approach in which models of concerns are expressed
in orthogonal views, and composed based on Reuseware [12], a generic frame-
work to add modularization support to any modelling language. However, it is
an abstract framework, it does not define model/concern interfaces, nor does it
consider variability within a concern.

6 Conclusion and Outlook

This exploratory paper presents concerns, a new unit of reuse for software de-
signs. A concern provides three interfaces – variation, customization, and usage
interface – that describe a) the available design variations of the concern and

Concern-Oriented Software Design 619

the impact the different variants have on high-level goals, qualities, and non-
functional requirements, b) how a given variant can be adapted to the needs of a
specific application, and c) how the application can finally access the behaviour
provided by the concern. Consequently, to reuse a concern, the developer must
1) select the feature with the best impact on relevant non-functional properties
from the variation interface based on provided impact analysis, then 2) adapt
the generated detailed design model to the application context by mapping the
model elements from the customization interface to application-specific model
elements, to finally 3) use the behaviour provided by the selected concern fea-
tures through the usage interface. We outlined how concern dependencies enable
the reuse of low-level design concerns within high-level ones, and how unresolved
variations of the low-level concern are propagated into the variation interface of
the high-level one.

Technically, we showed how we extended our own Reusable Aspect Models
design modelling approach to support concern-oriented reuse, explained how the
variation interface for concerns was modelled and evaluated using AoURN/SPL,
and outlined how the RAM weaver generates the detailed design model based on
the selected features. We illustrated our approach with the Association concern,
and outlined how the Association concern is reused by the Observer concern.

In future work, we plan to more tightly couple the AoURN/SPL tool jUCM-
Nav [21] and the RAM tool TouchRAM [1], so that feature configurations se-
lected in jUCMNav are automatically communicated to the RAM weaver. Fur-
thermore, we are investigating how to automate the generation of the combined
variation interface of two concerns (e.g., when an aspect of one concern reuses
features of another concern). We are also working on larger case studies involving
transaction and security concerns, and plan to undertake controlled experiments
with designers regarding the usability and cost-effectiveness of concern-oriented
software design.

If adopted on a large scale, we believe that concern-orientation has the po-
tential to revolutionize software design reuse. It enables the creation of standard
design concern libraries. Vendors can sell design concerns that target specific do-
mains. Developers can become specialists responsible for the maintenance and
evolution of specific design concern libraries. Ultimately, libraries, reuse, and
specialization would provide a clear structure to software development, and as a
result align the practice of software engineering closer to what is done in other
engineering disciplines.

References

1. Al Abed, W., Bonnet, V., Schöttle, M., Yildirim, E., Alam, O., Kienzle, J.:
TouchRAM: A multitouch-enabled tool for aspect-oriented software design. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 275–285. Springer,
Heidelberg (2013)

2. Al Abed, W., Kienzle, J.: Information Hiding and Aspect-Oriented Modeling. In:
14th Aspect-Oriented Modeling Workshop, Denver, CO, USA, pp. 1–6 (October 4,
2009)

620 O. Alam, J. Kienzle, and G. Mussbacher

3. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.S.K.:
Evaluating goal models within the goal-oriented requirement language. Interna-
tional Journal of Intelligent Systems 25(8), 841–877 (2010)

4. Bošković, M., Mussbacher, G., Bagheri, E., Amyot, D., Gašević, D., Hatala, M.:
Aspect-oriented feature models. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 110–124. Springer, Heidelberg (2011)

5. Chen, L., Ali Babar, M.: A systematic review of evaluation of variability man-
agement approaches in software product lines. Information and Software Technol-
ogy 53(4), 344–362 (2011)

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Springer (2000)

7. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through special-
ization and multilevel configuration of feature models. Software Process: Improve-
ment and Practice 10(2), 143–169 (2005)

8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20, 3–50 (1993)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,
Reading (1995)

10. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. The Java Series. Addison-Wesley, Boston (2005)

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Mateo (1993)

12. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware - adding mod-
ularity to your language of choice. Journal of Object Technology 6(9), 127–146
(2007)

13. International Telecommunication Union (ITU-T): Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition (approved October
2012)

14. Johannes, J., Aßmann, U.: Concern-based (de)composition of model-driven soft-
ware development processes. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010, Part II. LNCS, vol. 6395, pp. 47–62. Springer, Heidelberg (2010)

15. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software En-
gineering Institute, Carnegie Mellon University (November 1990)

16. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD 2009, pp. 87–98. ACM Press (March 2009)

17. Krueger: Software reuse. CSURV: Computing Surveys 24 (1992)
18. Luo, H., Amyot, D.: Towards a declarative, constraint-oriented semantics with a

generic evaluation algorithm for GRL. In: de Castro, J.B., Franch, X., Mylopoulos,
J., Yu, E.S.K. (eds.) Proceedings of the 5th International i * Workshop 2011,
Trento, Italy, August 28-29. CEUR Workshop Proceedings, vol. 766, pp. 26–31.
CEUR-WS.org (2011)

19. Mussbacher, G., Araújo, J., Moreira, A., Amyot, D.: AoURN-based modeling and
analysis of software product lines. Software Quality Journal 20(3-4), 645–687 (2012)

20. Object Management Group: Unified Modeling Language: Superstructure (v 2.4.1)
21. University of Ottawa: jUCMNav website (2013),

http://softwareengineering.ca/jucmnav
22. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Communications of the Association of Computing Machinery 15(12), 1053–1058
(1972)

http://softwareengineering.ca/jucmnav

Concern-Oriented Software Design 621

23. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

24. Pohl, K., Metzger, A.: Variability management in software product line engineer-
ing. In: Proceedings of the 28th International Conference on Software Engineering
(ICSE 2006), pp. 1049–1050. ACM (2006)

25. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis,
Department of Computer Science, University of Toronto (1995)

Analyzing Enterprise Models
Using Enterprise Architecture-Based Ontology

Sagar Sunkle, Vinay Kulkarni, and Suman Roychoudhury

Tata Research Development and Design Center
Tata Consultancy Services

54B, Industrial Estate, Hadapsar
Pune, 411013 India

{sagar.sunkle,vinay.vkulkarni,suman.roychoudhury}@tcs.com

Abstract. Development and maintenance of enterprise systems is becoming
more difficult due to change drivers along multiple interconnected dimensions. It
is advisable to model the enterprise first and analyze it for potential concerns. For
modeling enterprises, ontologies have been considered apt and have been used
in the past for the same, but application of ontologies for EA analysis based on
concepts of enterprise and relations between them have been scarce. We present
our ongoing work on analyzing enterprise models using EA-based ontological
representation of enterprise. Our contributions are twofold: first, we show how an
existing EA modeling language can be leveraged to create EA ontology and sec-
ond, we show how two known EA analyses can be realized using this ontology.
Initial results suggest that ontology representation facilitates basic EA analysis
prototyping due to right mix of representation and inference functionalities and
is extensible for more involved EA analyses.

Keywords: Ontology, Enterprise Models, Analysis, Enterprise Architecture.

1 Introduction

From our past experience in delivering 70+ large business-critical enterprise applica-
tions with model-driven [1–3] and also product line approaches [4,5], we have observed
that enterprises are getting larger in size and becoming increasingly connected. They are
evolving into complex system-of-systems that are characterized by high dynamics and
glaring absence of a know-all oracle. The cost of incorrect decision in building these
systems is becoming prohibitively high in spite of cost benefits brought about by ab-
straction and automation in model-driven [6] and product line-based development [4].
It is deemed prudent therefore to put more emphasis on understanding the target orga-
nization environment or in other words, modeling the whole enterprise and using this
model to know more about the real enterprise [7, 8].

Apart from providing a coherent vision of the complex enterprise, it is possible to
use enterprise models to conduct analyses that reveal how an enterprise is structured
and how it behaves. For instance, change impact analysis [9] of EA deals with finding
out ripple effects of a change to a concept based on the kind of relations it has with
other concepts. Landscape mapping analysis [10] of EA deals with deriving relations

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 622–638, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 623

between unrelated concepts to get an estimate on mutual dependence of concepts. A
proper modeling mechanism is needed that provides both core representation abilities
to model an enterprise as well as reasoning abilities to conduct analyses on this model.

For this purpose, ontologies are considered as one of the most versatile mechanisms
available. Enterprise ontologies have been used to find answers to common sense ques-
tions using deductive capabilities [11], as a communication medium [12] and for task
management in enterprises [13]. Owing to the lesser maturity of ontology building and
reasoning tools at the time, enterprise ontologies were restricted in their use to non-
analysis purposes for models like shared representation of enterprise knowledge [14],
semantic gel for integrating disparate set of modeling techniques and tools [13], and
discovery of implicit facts in enterprise models [15] etc., with little or no focus on
analyzing these models. In this paper, we detail an attempt to show how this can be
achieved.

Our approach is to show that ontological representations can be leveraged effec-
tively for modeling and analyzing enterprises. For this we create an EA ontology that
is based on concepts and entities in ArchiMate [16] and model the well-known case
study of post-merger of three insurance companies [17]. Our specific contribution is
the demonstration of how the existing ontology tools can be used to perform EA analy-
ses, particularly change impact analysis [9] and landscape mapping analysis [10] of EA
with reference to concepts and relations in this case study using our EA ontology. The
main components in our implementation are inference rule execution and exploitation
of graph structure of ontology. Our initial implementation of these analyses suggests
that ontologies and ontology tools provide the right mix of representation and reasoning
abilities for modeling enterprises and quickly prototyping various interesting analyses.

The paper is structured as follows. Section 2 elaborates our motivation and outlines
our approach. Section 3 describes our EA ontology based on ArchiMate concepts and
relations and how we model the case study using this ontology. In Section 4, we de-
tail two EA analyses, namely change impact analysis and landscape mapping analysis
and present their implementation with ontology tools based on the model of the case
study described in Section 3. We then discuss some pertinent issues and related work in
Section 5 and Section 6 concludes the paper.

2 Motivation and Outline

While developing a number of enterprise applications in banking, insurance, and other
domains, we found that for long, the underlying assumption with enterprise systems has
been that requirements of IT systems are known a priori and they are unlikely to change
drastically in foreseeable near future. Under this hypothesis, it was possible to encode
knowledge about implementation of IT systems with models as high level specifica-
tions and generate platform-specific implementations. Yet recently we have observed
that multiple change drivers are active along the business dimension with dynamic sup-
ply chains, mergers and acquisitions, globalization and regulatory compliances, etc.;
along IT and infrastructure dimensions, we see changes brought about by cloud and
mobile technology. In the presence of these change drivers, it is becoming imperative
that business, IT, and infrastructure dimensions are treated holistically. Essentially, a

624 S. Sunkle, V. Kulkarni, and S. Roychoudhury

model of enterprise should be used to make sense of entities individually and from the
point of view of the entire enterprise [18].

Such a model of enterprise is generally created based on the principles of what is
known as enterprise architecture (EA). It is defined as the process of translating busi-
ness vision and strategy into effective enterprise change1; or the organizing logic for
business process and IT infrastructure that can be targeted at a company’s operating
model to address its standardization and integration requirements2. We wanted to create
model of enterprise as a computational representation of business, IT, and infrastructure
dimensions and capture structural and behavioral aspects across these dimensions. This
is illustrated on the left of Figure 1.

Business

IT

Infrastructure

St
ru

ct
ur

e

Be
ha

vi
or

In
fo

rm
at

io
n

O
th

er

Re
al

 E
nt

er
pr

is
e

EA-based
Enterprise M

odel
using O

ntology

Necessary and
Sufficient Details

Analysis Results

Concepts + Relations

Reasoning

Consistency
Checking

Concept
Satisfiability

Queries Rules

M
anipulable +
Analyzable

Fig. 1. Machine-processable and Analyzable Enterprise Models using Ontology [7]

As a first step in creating such an enterprise model we looked into EA frameworks
which assist in the process of creating, maintaining, and leveraging architecture of
an enterprise [19], for instance, Zachman Framework, the Open Group Architecture
Framework (TOGAF), Federal Architecture Framework (FEA), Gartner, and Archi-
Mate. Our initial reviews of these frameworks suggested that irrespective of the ar-
chitectural methodology used by these frameworks, architectural artifacts used in these
frameworks are documents used as reference material and are non-machine-processable
[8]. These frameworks lack self assessment mechanism, i.e., what is modeled cannot
be checked for consistency but is correct by definition making them blue-print frame-
works [20]. Experienced enterprise architects and other personnel are supposed to use
their judgment in this regard.

In contrast, representing enterprise models using ontology provides both machine-
processability and a number of reasoning services including consistency checking with
specialized reasoners [21]. It is possible therefore to make application of EA frame-
works and techniques more or less person-independent. These models could be used to
conduct various analyses of the real enterprise that they capture and translate the results
back to the real enterprise. This is shown on the right of Figure 1.

In the following section, we show how we use ArchiMate EA modeling language as
the basis of our EA ontology.

1 http://www.gartner.com/it-glossary/enterprise-architecture-ea/
Gartner IT Glossary.

2 http://cisr.mit.edu/research/research-overview/classic-topics/
enterprise-architecture/MIT Center for Information Systems Research.

http://www.gartner.com/it-glossary/enterprise-architecture-ea/
http://cisr.mit.edu/research/research-overview/classic-topics/enterprise-architecture/
http://cisr.mit.edu/research/research-overview/classic-topics/enterprise-architecture/

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 625

3 EA Ontology

In this section, we show how our EA ontology is constructed and how Archisurance
entities can be represented as individuals of this ontology.

3.1 Enterprise Metamodel

To create our enterprise ontology, we chose ArchiMate as the EA framework to refer
to because its set of core concepts and relations provide good starting points for all
that we intend to model in an enterprise. We mainly refer to the generic metamodel
of ArchiMate. This generic metamodel is inspired from the subject - verb - object na-
ture of natural language sentences [22]. Main concepts are active and passive structure
concepts and behavior concepts. Interface and Service are structural and behavioral
concepts respectively, but they are organized separately due to service-oriented roots of
ArchiMate [16]. Note that in ArchiMate parlance what we referred to as dimensions is
called layers and IT layer is referred to as Application layer. On the left of Figure 2, the
generic EA metamodel of ArchiMate is illustrated.

Service Behavior Concept

Interface Active Structure
Concept

Passive Structure
Concept

ac
ce

ss
es

ac
ce

ss
es

uses

realises

as
si

gn
ed

To

composedOf

us
es

uses

as
si
gn

ed
T
o

triggers/
flowsTo

BusinessProcess

BusinessRole

BusinessAgent

BusinessBehavior

BusinessCoreBehavior

assignedTo

ApplicationFunction

ApplicationDataObject

Class: BusinessRole

 SubClassOf:
 assignedTo some
 BusinessCoreBehavior,
 BusinessAgent

 DisjointWith:
 BusinessActor

Bu
si

ne
ss

 L
ay

er

ArchiMate Core Concepts

A
pp

lic
at

io
n

La
ye

r

Class: BusinessProcess

 SubClassOf:
 realises some BusinessService,
 BusinessCoreBehavior

Class: ApplicationFunction

 SubClassOf:
 triggers some ApplicationFunction,
 realises some ApplicationService,
 accesses some
 ApplicationDataObject,
 flowsTo some ApplicationFunction,
 ApplicationBehavior

Class: ApplicationDataObject

 SubClassOf:
 ApplicationPassiveStructure,
 realises some BusinessObject

EA Ontology

ac
ce

ss
es

Enterprise Architecture
Layer-specific Concepts

Fig. 2. Expressing Business and Application Layer Concepts in terms of ArchiMate Core Con-
cepts

The relations between generic concepts reflect in each of business, application, and
infrastructure layers. This is shown in the middle of Figure 2 with two example con-
cepts each in business and application layers. An active structure concept is assignedTo

626 S. Sunkle, V. Kulkarni, and S. Roychoudhury

a behavior concept. In the business layer, a BusinessRole is assignedTo a BusinessPro-
cess. A behavior concept accesses a passive structure concept. In the application layer,
an ApplicationFunction accesses an ApplicationDataObject.

A total of 9 structural relations including ones shown in the generic metamodel
and other structural object-oriented relations such as specialization, aggregation, a very
generic association relation, grouping relation for facilitating grouping of concepts are
possible. Similarly, 3 behavioral relations are available including ones shown in the
generic metamodel and junction relation used for modeling splits or joins of triggering
or flow relations.

The core concepts and relations in the generic EA metamodel form the top level
hierarchy in the EA ontology. Further distinction is made between business, applica-
tion, and infrastructure layers and structural and behavioral concepts3. Concepts in a
specific layer thus inherit from more generic concepts up the hierarchy. Thus an Ap-
plicationFunction is subclass of ApplicationBehavior which is defined as a class that
is equivalent to ApplicationLayer and Behavior. Other application layer concepts are
similarly defined and then relations between them are defined as shown on the right of
Figure 2. The some quantifier indicates one or more individuals. EA ontology concept
definition are shown here using Manchester Syntax4.

Class: ApplicationService

 EquivalentTo:
 ApplicationLayer
 and Service

 SubClassOf:
 accesses some ApplicationDataObject,
 usedBy some
 (ApplicationComponent
 or ApplicationFunction
 or BusinessCoreBehavior)

Class: InfraArtifact

 SubClassOf:
 realises some ApplicationDataObject,
 InfraPassiveStructure

Business-Application Alignment Application-Infrastructure Alignment

Fig. 3. Expressing Business-Application and Application-Infrastructure Alignment Concepts

A number of concepts are used to align business, application, and infrastructure
layers. For instance, ApplicationService is usedBy BusinessProcess, BusinessFunc-
tion, or BusinessInteraction. These inherit from BusinessCoreBehavior. In the EA
ontology, an ApplicationService is defined as shown on the left of Figure 3. Similarly,
between application and infrastructure layers, an InfraArtifact realises an Application-
DataObject. This is shown on the right of Figure 3.

3 This distinction is useful in one of the two analyses described later in Section 4.2. Unlike
distinctions in ArchiMate, other EA frameworks may represent a different notion of structure
and behavior [23].

4 http://www.w3.org/TR/owl2-manchester-syntax/ OWL 2 Web Ontology
Language Manchester Syntax.

http://www.w3.org/TR/owl2-manchester-syntax/

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 627

3.2 Case Study and Instantiated EA Ontology

Archisurance is an enterprise architecture and modeling case study referred to in [9,
16, 17, 24, 25]. It concerns a recent merger of three insurance companies dealing in
homeowners’ and travel insurance, auto insurance, and legal expense insurance formed
to take advantage of synergies between three organizations. The new company offers
all the insurance products of the previous companies and intends to adjust its offerings
in response to changing market conditions. Like its constituents, Archisurance sells
directly to customers via web, email, telephone, and postal mail channels.

Homeowner’s and
Travel Insurance

Auto Insurance Legal Expense
Insurance

Archisurance

Sh
ar

ed
 Fr

on
t

O
ff

ic
e

SSC for Back
O

ffices

Change Impact
Analysis

Landscape
Mapping

Individual: ClaimInformationService

 Types:
 owl:Thing,
 ApplicationService

 Facts:
 usedBy FormaliseRequest,
 usedBy FinancialApplication,
 ID "ClaimInformationService"^^xsd:string,
 Deleted false

Individual: FinancialApplication

 Types:
 owl:Thing,
 ApplicationComponent

 Facts:
 usedBy HomeNAwayPolicyAdministration,
 usedBy PremiumPaymentService,
 Deleted false,
 ID "FinancialApplication"^^xsd:string

Individual: PremiumPaymentService

 Types:
 owl:Thing,
 BusinessService

 Facts:
 usedBy Customer,
 usedBy Payment,
 Deleted false,
 ID "PremiumPaymentService"^^xsd:string

Individual: Customer

 Types:
 owl:Thing,
 BusinessRole

 Facts:
 flowsTo MaintainCustomerRelations,
 flowsTo Intermediary,
 assignedTo InsuranceRequest,
 Deleted false,
 ID "Customer"^^xsd:string

Fig. 4. Archisurance Case Study and Individuals Definitions using EA Ontology

After the merger, Archisurance has set up a shared front-office as a multi-channel
contact center. A shared service center has been established to handle document pro-
cessing at back-offices of the three previous companies. Key business functions of
Archisurance include customer relations, claims, finance, and document processing
among others. Main concerns in this merger are integration and alignment for the new
companies’ business processes and applications. Two EA analysis approaches could be
used to address these issues to some extent. For instance, change impact analysis [9]
can be conducted to find out how different entities in Archisurance affect each other
due to new integration efforts and landscape mapping [10] can be used to help business
and IT alignment efforts. This is illustrated on the left of Figure 4.

For these analyses, we created individuals representing Archisurance entities using
our EA ontology concepts and relations. On the right of Figure 4, two business layer
and application layer individuals capturing a small functionality of Archisurance are
shown. An ApplicationService ClaimInformationService is usedBy FinancialApplica-
tion which is an ApplicationComponent. It is in turn usedBy a BusinessService called
PremiumPaymentService which is usedBy a BusinessRole called Customer to obtain
information about some claim. A total of 109 individuals are defined similarly to cap-
ture most of Archisurance case study from several resources [9, 16, 17, 24, 25].

628 S. Sunkle, V. Kulkarni, and S. Roychoudhury

Ontology Tools. We used the open source ontology editor Protégé5 to build our EA
ontology and to instantiate Archisurance model. While Protégé makes ontology build-
ing quite easy, when requiring programmatic access to manipulate the model properties
or the ontology, it is better use an API. We use Apache Jena6 for this purpose which
is a semantic web application framework that provides an ontology API for handling
ontologies specified in the web ontology language (OWL).

To programmatically invoke reasoner services, we use Pellet7 API. Pellet is an OWL
2 reasoner that provides various reasoning services earlier shown in Figure 1.

For querying as well as executing rules over Archisurance model, we rely on
SPARQL8 which is a query language for resource description framework (RDF - Seri-
alization format for OWL ontologies).

We show in the following section, how these ontology APIs come together to create
EA analysis implementations.

4 Using Ontology for EA Analysis

In this section, we describe how the ontological representation of Archisurance detailed
so far can be used to specify and execute EA analyses. Our objective is to show how
two EA analyses, change impact analysis proposed in [9] and landscape map analysis
proposed in [10], can be prototyped quickly using ontological representation9.

In the following, we begin with the change impact analysis for EA.

4.1 Change Impact Analysis for EA

Change impact analysis for EA is concerned with computing the effects of change in
any part of an enterprise on the rest of the enterprise [9]. For instance, changes in an
enterprise’s strategy can have multiple significant consequences in all three layers of
an enterprise including business processes, organization structure, data management
and technical infrastructure. First change may trigger changes that further trigger more
changes creating a ripple effect in all of an enterprise. The basic use of change impact
analysis is to find out what would happen if a change occurs before it actually happens.
This is particularly relevant in the integration effort in Archisurance, as indicators of
what can be integrated and what needs to remain same as before [7, 9].

The basic idea of change impact analysis in EA is centered around a set of heuristic
rules based on the nature of relations that connect concepts. With regards to ArchiMate
relations shown earlier in Figure 2, a number of heuristic rules are defined in [9], which

5 http://protege.stanford.edu/ Protégé Ontology Editor.
6 http://jena.apache.org/Apache Jena.
7 http://clarkparsia.com/pellet/featuresPellet Reasoner.
8 http://www.w3.org/TR/rdf-sparql-query/SPARQL RDF Query Language.
9 Formalization of these analyses based on description logics is not the focus of this paper.

We rely on Pellet for soundness of inference rule execution [21] based on facts expressed
in EA ontology. Formalization of landscape map analysis is provided in [24]. Change impact
analysis in [9] is based on object-oriented change impact identification, formalization of which
is presented in [26].

http://protege.stanford.edu/
http://jena.apache.org/
http://clarkparsia.com/pellet/features
http://www.w3.org/TR/rdf-sparql-query/

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 629

take the form of ‘If there is a relation of kind X between concepts A and B, then when
A is deleted/modified B needs to be deleted/modified/is going to be dangled.’, where X
is an ArchiMate relation. Changes to A may lead to changes in B. These changes may
trigger further changes in concepts that B is related to and so on, creating a ripple effect.
Table 1 shows the heuristic rules for various ArchiMate relations.

Except for the rules for composedOf relation, rules for the rest of the relations are
specified as in [9]. We show in the next section how our ontological representation
makes it easy to examine the ripple effect.

Table 1. Heuristic Rules Capturing Change in EA [7]

>> - Implies, # - Don’t Care

Relation X When Concept A <X> Concept B Notes
accesses A.Deleted >> #

A.Modified >> B.Modified
B.Deleted >> A.Dangled

B.Modified >> A.Modified

Generally, A is a behavioral concept accessing data object B
To maintain integrity of model, B may need to be modified

Signal to enterprise architect to adjust model
The way A accesses B may need to be modified

assignedTo A.Deleted/Modified >> B.Dangled
B.Deleted >> #

B.Modified >> A.Modified

Deleting/modifying A may result in dangled B, for which enterprise
architect needs to be signaled

usedBy A.Deleted >> B.Dangled
A.Modified >> B.Modified

B.Deleted >> #
B.Modified >> A.Modified

B is generally declared to the environment. If A is deleted, B cannot use
it anymore; A should be replaced by something that will satisfy B’s

requirement

realises A.Deleted >> B.Deleted
A.Modified >> B.Modified

B.Deleted >> #
B.Modified >> A.Modified

B is generally a logical entity while a concrete entity A realizes it

triggers A.Modified/B.Modified >> #
A.Deleted >> B.Dangled

B.Deleted>> #

Since B starts after A, they are isolated and changes in either do not
affect the other

If after deleting A, there is no trigger left for B, enterprise architect
needs to be signaled

composedOf A.Deleted >> B.Deleted

A.Modified >> B.Modified
B.Deleted >> A.Modified

B.Modified >> A.Modified

B cannot exist without A
A’s modification may need modifying B; similarly change in B may

require change in A

EA Change Impact Analysis with Ontology. A rule can be specified in SPARQL
using the CONSTRUCT query form. CONSTRUCT generates new facts based on ex-
isting facts that match patterns specified in the WHERE clause. The facts generated by
CONSTRUCT are nevertheless not updated in the base ontology. For this we can use
the INSERT query form.

Listing 1.1. INSERTQuery Form for composedOf relation in SPARQL

1 INSERT
2 { ?b :Deleted true . } # Then b is deleted as well.
3 WHERE
4 {
5 # If a is composed of b
6 ?a :composedOf ?b .
7 # and a is deleted
8 ?a :Deleted true .
9 };

630 S. Sunkle, V. Kulkarni, and S. Roychoudhury

Listing 1.1 shows that when a is composed of b and a is deleted, then so should be b.
This SPARQL query is in Terp format which is a combination of Turtle and Manchester
syntax for RDF serialization10. The WHERE clause specifies if part and CONSTRUCT
clause specifies the then part of a rule. Unlike CONSTRUCT, INSERT actually updates
the boolean datatype property Deleted to true. Note that similar to INSERT there is a
query form called DELETE, but we do not want to delete anything from the underlying
ontology, only indicate using a boolean flag that a concept is deleted.

Executing such rules over an ontology is achieved by loading the ontology (.owl file
created, say in Protégé) as an Apache Jena ontology model via Pellet reasoner factory.
If any inconsistencies are present in the ontology being used, they are reported imme-
diately11. Then, a GraphStore is created with this model which acts as a container for
graphs of triples to be updated in the underlying ontology. The INSERT rule for in-
stance can then be executed over this ontology and the updated ontology is returned via
updated GraphStore. When talking about updating ontology, we are referring only to
individuals rather than classes. Only the model is updated, not the metamodel.

Implementation Results. To see the effect of executing such rules over the represen-
tation of entire enterprise, we refer the reader to Figure 5 which shows a snapshot
of Archisurance with concepts that are related to the ApplicationComponent Hom-
eNAwayPolicyAdministration. We wish to know what would happen if this concept
is deleted. As shown in Table 1, deleting concepts leads to deleting concepts they are
related to when relations are realises and composedOf . Deletion of a concept is treated
as a trigger for a change ripple.

Fig. 5. A Snapshot of Business and Application Layer Concepts in Archisurance

To actually affect change ripples, we have to execute INSERT for all relations as
enumerated in Table 1 in one iteration. The iterations continue, until no new nodes (con-
cepts) in the GraphStore have their Deleted property updated to true. This is shown in

10 www.w3.org/2007/02/turtle/primer/Turtle Syntax for SPARQL.
11 Note that versions of Protégé come equipped with various reasoners which can be used to

correct inconsistencies while building the ontology itself.

www.w3.org/2007/02/turtle/primer/

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 631

Listing 1.2. All the *Update strings are essentially INSERT queries similar to Listing
1.1. Once the iterations stop, we get all nodes (concepts) that are deleted (i.e., need
to be deleted) or have been dangled (i.e., are potentially dangling) due to deletion of
HomeNAwayPolicyAdministration.

Upon executing, we find that concepts that are deleted are {PolicyDataManage-
ment, CustomerDataAccess, RiskAssessment, ClaimInformationService, Pol-
icyCreationService}. Similarly concepts whose relations could now be potentially
dangling are {FinancialApplication, CheckAndSignContract, WebPortal, Call-
CenterApplication, FormaliseRequest, CustomerDataMutationService}. Note
that effects of this deletion reach from the application layer to the business layer due
to relations between affected concepts. Deletion of HomeNAwayPolicyAdministra-
tion results in making the relations of all business layer concepts shown in Figure 5 to
be potentially dangling. Only the accesses relations to concepts {CustomerFileData,
InsurancePolicyData} and usedBy relation to {PremiumPaymentService} remain
unaffected.

It is possible in this way to represent effects of any change specified in Table 1. Since
we do not actually delete a concept in the ontology, we do not have to order the updates.
For instance, RiskAssessment application component is both deleted (because Hom-
eNAwayPolicyAdministration is deleted) and dangled (because CustomerDataAc-
cess is usedBy RiskAssessment and CustomerDataAccess is deleted because
HomeNAwayPolicyAdministration is deleted). We simply indicate that both dele-
tion and dangling is possible for the concept RiskAssessment.

Listing 1.2. Ripple Effect Computation due to Deletion of a Concept

1 public void affectRipples(String startConcept) {
2 ...
3 while (rippleOut){
4 UpdateAction.parseExecute(prefix + accessUpdate , graphStore) ;
5 UpdateAction.parseExecute(prefix + assignedToUpdate , graphStore) ;
6 UpdateAction.parseExecute(prefix + usedByUpdate , graphStore) ;
7 // also execute usedBy, realises, triggers, & composedOf over graphStore
8 ...
9 resultsNumNodes = com.clarkparsia.pellet.sparqldl.jena.

SparqlDLExecutionFactory.
10 create(numNodesUpdated, model).execSelect();
11 while (resultsNumNodes.hasNext()) {
12 QuerySolution row= resultsNumNodes.next();
13 RDFNode concept= row.get("updatedConcepts");
14 ... // Collect concepts that changed
15 }
16 ... // Continue until no new concepts change
17 }
18 }

With this implementation infrastructure, it is easily possible to see which concepts
of a given kind in a given layer are most important and any change to these should be
treated with care. It is also possible to go from a coarser level of changes (i.e., deletion
or modification or concepts) to finer levels where value of a specific property changes
for a given concept leading to similar changes in properties of other concepts. The point
we want to stress is that with the ontological representation and rule execution, variants
of change can be easily conceptualized and tested for impact analysis of EA.

632 S. Sunkle, V. Kulkarni, and S. Roychoudhury

4.2 Landscape Mapping Analysis for EA

Landscape mapping analysis of EA is basically concerned with providing non-technical
stakeholders such as managers with a high level overview. Landscape maps can be used
both visually and non-visually. Their most general use is in finding mutual dependence
of three different kinds of entities in EA. For instance, to show which IT systems support
operations of a company, a three-dimensional map could be imagined which captures
the mutual dependence of business functions and business products of that company on
application components [10].

It might be the case that kinds of entities of which mutual dependence is to be
checked are not directly connected in the EA metamodel. For instance, while business
functions and business products are connected by assignedTo relation in the meta-
model, business products and application components are not directly related but there
could be indirect relations between them. For instance, a business product may aggre-
gate some business service which use application components (i.e., there is relation
usedBy between application components and business services). The most important
element of landscape map generation is therefore the derivation of indirect relationships
between concepts of different kinds.

Components of EA Landscape Mapping Analysis. A composition operator has
been defined in [24], that allows for composition of relations in any architecture de-
scription language. This operator is also applicable to EA description language such
as ArchiMate. The composition is essentially folding of intermediate relations between
two concepts of kinds which are not related in the metamodel. This is illustrated in
Figure 6.

DC

B

A

x

y
z

DC

B

A

x

y
z

x+y
DC

z

A

DC

A

z

x+y
DA

x+y+z

Fig. 6. Composition of Relations to Derive Indirect Relation between Concepts

Figure 6 shows that concepts A and D are related indirectly via concepts B and C. The
+ operator is the composition operator defined in [24] that specifies how two relations
such x and y are supposed to be composed. In each succession, a two-step relation is
derived such as x + y, until A and D are directly connected.

With regards to ArchiMate relations shown earlier in Figure 2, composition of each
pair of these relations has been computed in [24], resulting in weight assignment for
each of these relations as shown in Table 2. The composition is thus defined as the
relation with minimum of weights of two relations. For instance, between usedBy and

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 633

Table 2. Weight Assignment to Relations for Composition [24]

Relation Weight
associatedWith 1

accesses 2
usedBy 3
realises 4

assignedTo 5
aggregates 6

composedOf 7

realises, usedBy has lesser weight meaning that their composition leads to usedBy as
the composed relation.

A landscape map is a mutual dependence of two kinds of concepts with the third
kind of concept. When concepts of two different kinds are not directly related, com-
position operator can be used to derive a relationship. For instance, to find out mutual
dependence of business services and business processes on application components, a
landscape map could be defined as ‘Set of application components C, given business
processes P and business services S such that (1) C is usedBy P and (2) P realises
S’. In this case, while metamodel specifies realises relation between BusinessProcess
and BusinessService, to find out whether ApplicationComponent and BusinessPro-
cess are related by usedBy relation, we can use the composition operator.

EA Landscape Mapping Analysis with Ontology. There are two components to
creating a landscape map. One component is executing rules of a landscape map (such
as ‘If C is usedBy P, then-’, seen in the previous section) while the other component is
composing relations when concepts of two kinds are not directly related.

To compose relations between two concepts related indirectly, we need to find a path
of relations. For instance, with respect to Figure 6, this path between concepts A and
D is x - y - z, which we compose as pairs {x,y} and {{x,y},z}. In SPARQL parlance,
this is tantamount to replacing chain of relations of arbitrary length with single relation
for which it provides a mechanism called property paths12. An example of such a path
encoding the rule of composition for realises relation based on weights in Table 2 is
shown in Listing 1.3.

Listing 1.3. Property Path to Replace Chain Starting with realises Relation in SPARQL

1 INSERT
2 { ?a :realises ?d . } # Then replace the chain by realises relation
3 WHERE
4 {
5 # If between concept a and d, a chain starts with realises which is
6 # followed by one or more occurances of any of composedOf,
7 # aggregates, assignedT, or itself,
8 ?a :realises/(:composedOf|:aggregates|:assignedTo|:realises)+ ?d .
9 };

12 http://www.w3.org/TR/sparql11-property-paths/SPARQL Property Paths.

http://www.w3.org/TR/sparql11-property-paths/

634 S. Sunkle, V. Kulkarni, and S. Roychoudhury

It is possible thus to use SPARQL property path queries to compute and replace
paths of relations according to composition rules. Once a path is obtained, it can be
very easily composed with the help of weights shown in Table 2.

Another important consideration is of the fact that all relations considered in Table 2
are structural relations as shown in Figure 2 earlier. For behavioral relations triggers and
flowsTo, composition takes place in a different manner, rules for which are specified in
ArchiMate specification 7.513. For instance, if two concepts a and b are related to other
concepts x and y via structural relations p and q respectively and x and y are related
by a behavioral relation r, then a is related to b via r. The composition of chain of
structural relations and chain of behavioral relations need to be distinguished from each
other which becomes possible due to distinction made earlier between structural and
behavioral concepts and relations in Section 3.1.

Implementation Results. Once relations are derived between concept of kinds that
are unrelated to each other, rules of landscape maps can be executed similar to as shown
in Section 4.1.

With the mechanisms of rule execution and composition specified earlier and path
computation, we found the relation usedBy to be the most frequent derived relation
considering purely structural relations. It was found between concepts of a number of
pairs. Examples of these pairs include {ApplicationComponent, BusinessActivity},
{ApplicationService, BusinessService}, {ApplicationService, BusinessActiv-
ity}, {ApplicationService, BusinessRole}, {ApplicationComponent, Business-
Role}, and {InfraService, BusinessService} with the model we created as individ-
uals as described in Section 3.2. Note that these entities are not directly related in the
EA metamodel. Landscape maps generally require deriving relations between concepts
belonging to different layers that may be different from inter-layer relations specified in
the metamodel.

We also computed landscape maps similar to one described in Section 4.2, i.e., be-
tween application components, business functions, and business services. These are not
shown here for the want of space. Suffice it to say that with our infrastructure in place,
it was quite easy to select any three ontology classes and check for individuals that sat-
isfied the conditions of the landscape map. Also while checking three kinds of concepts
is prevalent, it is possible to obtain mutual dependence of any number of kinds of con-
cepts. Note that landscape maps are an ideal visualization mechanism for EA [10]. We
only cover their computation using ontology in this paper.

5 Discussion and Related Work

In this section, we provide a brief review of work in ontological representations of
enterprises while discussing some pertinent issues.

Further Change Impact Analysis in EA. Change impact analysis suggested in [9]
essentially reduces change impact computation to change propagation defined over
ArchiMate relations. There are two issues that need to be addressed. Firstly, apart

13 http://pubs.opengroup.org/architecture/archimate2-doc/chap07.
html Derived Dynamic Relationship in ArchiMate Specification- Section 7.5.

http://pubs.opengroup.org/architecture/archimate2-doc/chap07.html
http://pubs.opengroup.org/architecture/archimate2-doc/chap07.html

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 635

from key heuristics guiding change propagation, it is possible that some sort of de-
cision making is involved when affecting change one way or the other. In an ongoing
work [27,28], we take the stance that such decision making essentially captures whys of
enterprise [29]. This is to say that response to any change in enterprise may take place
in multiple alternative ways with explicit decisions as to which alternative is better from
what perspective. This approach of change impact computation based on intentions dif-
fers from exemplified change impact analysis which gives semantics to specific set of
relations. Change impact analysis with intentions is carried out with forward evalua-
tion [30], which is similar in nature to change propagation. We have extended our EA
ontology with intentional concepts and in the ongoing work; we are implementing for-
ward evaluation over this ontology with mechanisms of concept and relation definitions
and rule execution that we have demonstrated in this paper.

Secondly, giving semantics to specific relations (here to those in ArchiMate) means,
that this analysis approach is not immediately usable if enterprise model is created
using EA ontology that is based on some other EA framework or modeling language
other than ArchiMate. Again, due to very generic nature of relations in ArchiMate, it
might be possible to establish correspondence between kinds of relations in ArchiMate
and other EA frameworks, but this is out of the scope of this paper. First steps toward
this are suggested in [23].

Application to other EA Frameworks and Enterprise Models. Our message in
this paper is that ontological representation of enterprise models is suitable for quick
prototyping of EA-based analyses. We are actively applying the proposed EA ontology
to case studies in our organization. For organizations already using other EA frame-
works, it is possible to construct an ontology in a manner similar to one proposed
here by using concepts and relations of given EA framework or modeling language
and utilizing rich ecosystem of ontology tools. Enterprise models based on these EA
frameworks can then be created in terms of collection of individuals representing actual
enterprise entities and EA analyses can be executed over these.

Utility of Ontological Representation. Machine-processability comes naturally with
standardized ontology representation. We also found that classification, contradictory
fact checking, and concept satisfiability for inconsistency were quite helpful both when
constructing the EA ontology as well as modeling the case study, as reasoners for OWL-
DL, specifically Pellet support reasoning with individuals and user-defined datatypes
[21]. All contradictory changes to both metamodel and model were immediately brought
to notice which we corrected. This itself was considered as one of the most important
benefits of ontological representation in major works in enterprise ontology [11–13].

It is natural to think that purely graph like representation of enterprise model with
EA-based metamodel would suffice for EA analysis instead of using ontological rep-
resentation. As a matter of fact, GraphStore used in Section 4.1 earlier is essentially
a graph of triples that is updated with INSERT operation. The only shortcoming of
purely graph-like representation seems to be reasoning support for integrity constraints,
procedural rules, etc. [21]. Reasoning support for graph representation has been pro-
posed [31], but lack of tools like Pellet reasoner for OWL-DL ontologies is a concern
with purely graph representation of enterprise models. Further research for compar-

636 S. Sunkle, V. Kulkarni, and S. Roychoudhury

ing different kinds of knowledge representation techniques for creating and analyzing
enterprise models is needed.

Other Ontology Approaches for Enterprises. As seen previously, the focus in pre-
vious ontology approaches was not on EA analysis. These approaches targeted specific
aspects of enterprises rather than taking a holistic view of it, for instance activities
and resources [11, 14], tasks and workflows [13], organization [15], and strategy and
marketing [12] etc., with key stress on views of enterprise models which are essentially
stakeholder-specific projection of information. Our basic motivation for enterprise mod-
eling is that point views are insufficient to tackle rising complexities. This is where EA
frameworks come into play. While we based our ontology on EA framework and mod-
eling language ArchiMate, it is equally possible to do the same using other frameworks
as suggested earlier.

Applicability to other EA Analyses. A number of other analyses could be readily
prototyped with our EA ontology such as EA data accuracy analysis that uses an ab-
stract model of read/write relations between structural and behavioral concepts [32] and
quantitative analysis of EA that uses attributes of both concepts and relations for quan-
tification [33]. Analyses geared toward decision-making based on intentions mentioned
in this section [29] and based on quantitative measures for chosen quality attributes of
enterprise [34] use strategic dependency and rationale models and extended influence
diagram-based models respectively on the top of enterprise concepts and relations. Test-
ing applicability of our approach and extending it to take care of additional structures
such as these is part of our ongoing work.

6 Conclusion

Apart from automation, models could be used to capture reality and understand it by an-
alyzing these models. EA frameworks provide holistic treatment of enterprise systems
but lack machine-processability, modeling assessment, and analyzability. Ontologies
help in addressing these issues in general and we showed in this paper how current
ontology tools can be utilized in concert to create machine-processable and analyzable
enterprise models based on ArchiMate EA framework. We also showed that various ex-
isting EA analyses that are based on the nature of concepts and relations can be readily
prototyped with this infrastructure. The same advantages can be obtained if EA ontol-
ogy was based on any other EA framework. Our ultimate objective is to transfer the
result of EA analyses back to the actual enterprise. This would require considerable hu-
man intervention and automating this to the maximum extent possible constitutes part
of our ongoing work. Yet we believe that using ontologies to address these issues as
shown in this paper takes a small step in that direction.

References

1. Kulkarni, V., Venkatesh, R., Reddy, S.: Generating Enterprise Applications from Models.
In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 270–315. Springer,
Heidelberg (2002)

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology 637

2. Kulkarni, V., Reddy, S.: Introducing MDA in Large IT Consultancy Organization. In:
APSEC, pp. 419–426. IEEE Computer Society (2006)

3. Kulkarni, V., Reddy, S., Rajbhoj, A.: Scaling Up Model Driven Engineering – Experience
and Lessons Learnt. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part
II. LNCS, vol. 6395, pp. 331–345. Springer, Heidelberg (2010)

4. Kulkarni, V.: Raising Family is a Good Practice. In: Apel, S., Batory, D.S., Czarnecki, K.,
Heidenreich, F., Kästner, C., Nierstrasz, O. (eds.) FOSD, pp. 72–79. ACM (2010)

5. Kulkarni, V., Barat, S., Roychoudhury, S.: Towards Business Application Product Lines. In:
[35], pp. 285–301

6. Sunkle, S., Kulkarni, V.: Cost Estimation For Model-driven Engineering. In: [35], pp. 659–
675

7. Sunkle, S., Kulkarni, V., Roychoudhury, S.: Analyzable Enterprise Models Using Ontol-
ogy. In: Deneckère, R., Proper, H.A. (eds.) CAiSE Forum. CEUR Workshop Proceedings,
vol. 998, pp. 33–40. CEUR-WS.org (2013)

8. Kulkarni, V., Roychoudhury, S., Sunkle, S., Clark, T., Barn, B.: Modeling and Enterprises -
The Past, the Present, and the Future. In: MODELSWARD 2013 (accepted, 2013)

9. de Boer, F.S., Bonsangue, M.M., Groenewegen, L., Stam, A., Stevens, S., van der Torre,
L.W.N.: Change Impact Analysis Of Enterprise Architectures. In: Zhang, D., Khoshgoftaar,
T.M., Shyu, M.L. (eds.) IRI, pp. 177–181. IEEE Systems, Man, and Cybernetics Society
(2005)

10. van der Torre, L.W.N., Lankhorst, M.M., ter Doest, H., Campschroer, J.T.P., Arbab, F.: Land-
scape Maps for Enterprise Architectures. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 351–366. Springer, Heidelberg (2006)

11. Fox, M.S.: The TOVE Project Towards a Common-sense Model of the Enterprise. In: Belli,
F., Radermacher, F.J. (eds.) IEA/AIE 1992. LNCS, vol. 604, pp. 25–34. Springer, Heidelberg
(1992)

12. Uschold, M., King, M., House, R., Moralee, S., Zorgios, Y.: The Enterprise Ontology. The
Knowledge Engineering Review 13, 31–89 (1998)

13. Fraser, J., Tate, A., Bridge, S.: The Enterprise Tool Set - An Open Enterprise Architecture
(1995)

14. Gruninger, M., Fox, M.S.: An Activity Ontology for Enterprise Modelling (June 1994),
http://www.eil.utoronto.ca/tove/active/active.html

15. Fox, M.S., Barbuceanu, M., Gruninger, M.: An Organisation Ontology For Enterprise Mod-
elling: Preliminary Concepts For Linking Structure And Behaviour. In: Proceedings of the
4th Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE 1995), p. 71. IEEE Computer Society, Washington, DC (1995)

16. Lankhorst, M.: Enterprise Architecture at Work: Modelling. Communication and Analysis.
Springer (2005)

17. Jonkers, H., Lankhorst, M.M., van Buuren, R., Hoppenbrouwers, S., Bonsangue, M.M., van
der Torre, L.W.N.: Concepts For Modeling Enterprise Architectures. Int. J. Cooperative Inf.
Syst. 13(3), 257–287 (2004)

18. Kulkarni, V., Sunkle, S.: Next Wave of Servicing Enterprise IT Needs. In: IEEE Conference
on Business Informatics, CBI (accepted, 2013)

19. IEEE: Recommended Practice for Architectural Description of Software-Intensive Systems.
IEEE Std 1471-2000 (2000)

20. Wagter, R. (Erik) Proper, H.A., Witte, D.: A Practice-Based Framework for Enterprise Co-
herence. In: Proper, E., Gaaloul, K., Harmsen, F., Wrycza, S. (eds.) PRET 2012. LNBIP,
vol. 120, pp. 77–95. Springer, Heidelberg (2012)

21. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-DL Rea-
soner. Web Semant. 5(2), 51–53 (2007)

http://www.eil.utoronto.ca/tove/active/active.html

638 S. Sunkle, V. Kulkarni, and S. Roychoudhury

22. Haren, V., Publishing, V.H.: ArchiMate 2. 0 Specification. Van Haren Publishing Series.
Bernan Assoc. (2012)

23. Berrisford, G., Lankhorst, M.: Using ArchiMate with an Architecture Method. Via Nova
Architectura (June 2009)

24. van Buuren, R., Jonkers, H., Iacob, M.-E., Strating, P.: Composition of Relations in Enter-
prise Architecture Models. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 39–53. Springer, Heidelberg (2004)

25. Jonkers, H., Band, I., Quartel, D.: Archisurance Case Study. The Open Group Case Study
(Document Number Y121) (January 2012)

26. Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., Chen, C.: Change Impact Identification
in Object Oriented Software Maintenance. In: Proceedings of the International Conference
on Software Maintenance, pp. 202–211 (September 1994)

27. Sunkle, S., Kulkarni, V., Roychoudhury, S.: Intentional Modeling for Problem Solving in En-
terprise Architecture. In: Proceedings of International Conference on Enterprise Information
Systems, ICEIS (accepted, 2013)

28. Sunkle, S., Roychoudhury, S., Kulkarni, V.: Using Intentional and System Dynamics Model-
ing to Address WHYs in Enterprise Architecture. In: International Conference on Software
Engineering and Applications (ICSOFT-EA) (accepted, 2013)

29. Yu, E.S.K., Strohmaier, M., Deng, X.: Exploring Intentional Modeling and Analysis for En-
terprise Architecture. In: Tenth IEEE International Enterprise Distributed Object Computing
Conference (EDOC) Workshops, p. 32 (2006)

30. Horkoff, J., Yu, E.: Evaluating Goal Achievement in Enterprise Modeling – An Interactive
Procedure and Experiences. In: Persson, A., Stirna, J. (eds.) PoEM 2009. LNBIP, vol. 39, pp.
145–160. Springer, Heidelberg (2009)

31. de Freitas, R.P., Veloso, P.A.S., Veloso, S.R.M., Viana, P.: Reasoning with Graphs. Electron.
Notes Theor. Comput. Sci. 165, 201–212 (2006)

32. Närman, P., Johnson, P., Ekstedt, M., Chenine, M., König, J.: Enterprise Architecture Anal-
ysis for Data Accuracy Assessments. In: EDOC, pp. 24–33. IEEE Computer Society (2009)

33. Iacob, M., Jonkers, H.: Quantitative Analysis of Enterprise Architectures. In: Proceedings of
the First International Conference on Interoperability of Enterprise Software and Applica-
tions, INTEROP-ESA (February 2005)

34. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise Architecture Analysis
With Extended Influence Diagrams. Information Systems Frontiers 9(2-3), 163–180 (2007)

35. France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): MODELS 2012. LNCS, vol. 7590.
Springer, Heidelberg (2012)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 639–655, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Analyzing the Effort of Composing Design Models
of Large-Scale Software in Industrial Case Studies

Kleinner Farias1, Alessandro Garcia2, Jon Whittle3, and Carlos Lucena2

1 PIPCA, University of Vale do Rio dos Sinos (Unisinos), São Leopoldo, RS, Brazil
kleinnerfarias@unisinos.br

2 OPUS Research Group/LES, Informatics Department, PUC-Rio, RJ, Brazil
{afgarcia,lucena}@inf.puc-rio.br

3 School of Computing and Communications, Lancaster University, UK
whittle@comp.lancs.ac.uk

Abstract. The importance of model composition in model-centric software de-
velopment is well recognized by researchers and practitioners. However, little is
known about the critical factors influencing the effort that developers invest to
combine design models, detect and resolve inconsistencies in practice. This pa-
per, therefore, reports on five industrial case studies where the model composi-
tion was used to evolve and reconcile large-scale design models. These studies
aim at: (1) gathering empirical evidence about the extent of composition effort
when realizing different categories of changes, and (2) identifying and analyz-
ing their influential factors. A series of 297 evolution scenarios was performed
on the target systems, leading to more than 2 million compositions of model
elements. Our findings suggest that: the inconsistency resolution effort is much
higher than the upfront effort to apply the composition technique and detect in-
consistencies; the developer’s reputation significantly influences the resolution
of conflicting changes; and the evolutions dominated by additions required less
effort.

Keywords: Model composition effort, empirical studies, effort measurement.

1 Introduction

Model composition plays a central role in many software engineering activities, e.g.
reconciling models developed in parallel by different development teams
[11][18][33], and evolving models to add new features [14][15][32]. In collaborative
software development [30], for example, separate development teams may concur-
rently work on a partial model of an overall design model to allow them to concen-
trate more effectively on parts of the model relevant to them. However, at some point,
it is necessary to bring these models together to generate a “big picture” view of the
overall design model. So, there has been a significant body of research into defining
model composition techniques in the area of governance and management of enter-
prise design models [9], software configuration management [11], and the composi-
tion of software product lines [25][28].

640 K. Farias et al.

Consequently, both academia and industry are increasingly concerned in develop-
ing effective techniques for composing design models (e.g. [3-8][10-17]). Unfortu-
nately, both commercial and academic model composition techniques suffer from
composition conflict problems [10][11][12]. That is, models to-be composed conflict
with each other and developers are usually unable to deal with the conflicting
changes. Hence, these conflicts may be transformed into inconsistencies in the output
composed model [24][26].

The current composition techniques cannot automatically resolve these inconsis-
tencies [24][27][29]. The reason is that the inconsistency resolution relies on an un-
derstanding of what the models actually mean. This semantic information is typically
not included in any formal way in the design models. Consequently, developers must
invest some effort to manually detect and resolve these inconsistencies. The problem
is that high effort compromises the potential benefits of using model composition
techniques, such as gains in productivity. To date, however, nothing has been done to
quantify the composition effort and characterize the factors that can influence the
developers’ effort in practice. Hence, developers cannot adopt or assess model com-
position based on practical, evidence-based knowledge from experimental studies.

The goal of this paper, therefore, is to report on five industrial exploratory case
studies that aimed at (1) providing empirical evidence about model composition ef-
fort, and (2) describing the influential factors that affected the developers’ effort.
These studies were performed in the context of using model composition to evolve
design models of five large-scale software systems. During 56 weeks, 297 evolution
scenarios were performed, leading to 2.288.393 compositions between modules,
classes, interfaces, and their relationships. We draw the conclusions from quantitative
and qualitative investigations including the use of metrics, interviews, and observa-
tional studies. We investigate the composition phenomena in their context, stressing
the use of multiple sources of evidence, and making clear the boundary between the
identified phenomenon and its context.

The remainder of the paper is organized as follows. Section 2 introduces the main
concepts used throughout the paper. Section 3 presents the empirical methodology.
Section 4 discusses the study results. Section 5 contrasts our study with related work.
Finally, Section 6 presents some concluding remarks and future work.

2 Background

2.1 Model Composition Tasks and Effort

The term model composition refers to a set of activities that should be performed over
two (or more) input models, MA and MB, in order to produce an output intended mod-
el, MAB. MA is the base model while MB is the delta model that has the needed
changes to transform MA into MAB. Developers use composition algorithms to pro-
duce MAB. These algorithms are responsible for defining the model composition se-
mantics. In practice, these algorithms are unable to generate MAB in all cases due to
some influential factors (Section 4.2). Consequently, an output composed model,
MCM, is produced instead of MAB.

 Analyzing the Effort of Composing Design Models of Large-Scale Software 641

We use MCM and MAB to differentiate between the output composed model, which
has inconsistencies and the model desired by developers, respectively. In practice,
these models do not often match (MCM ≠ MAB) because the input models, MA and MB,
have some conflicting changes. However, usually it is not always possible to deal
with all conflicts properly given the problem at hand [12][32][33]. The problem is
that syntactic and semantic information should be considered, but they are rarely
represented in a formal way. Rather, they are represented in natural language. Conse-
quently, some conflicting changes are transformed into inconsistencies in MCM.

With this in mind, the model composition effort can be defined, as the effort re-
quired to produce MAB from MA and MB. Fig. 1 states the effort equation. The equa-
tion makes it explicit that the composition effort is based on the effort to perform
three key composition tasks such as: (i) f(MA,MB): the effort to apply a model compo-
sition technique; (ii) diff(MCM,MAB): the effort to detect inconsistencies in the
composed model; (iii) g(MCM): the effort to resolve inconsistencies i.e., the effort to
transform MCM into the intended model (MAB). Note that if MCM is equal to MAB, then
diff(MCM,MAB) = 0 and g(MCM) = 0. Otherwise, diff(MCM,MAB) > 0 and g(MCM) > 0.
These variables are counted in minutes in our study.

Fig. 1. Model composition effort: an equation

2.2 Composition Conflict and Inconsistency

Composition conflicts arise when contradicting values are assigned to model ele-
ment’s properties. Usually these contractions happen when teamwork members edit
such properties in parallel and they are not aware of the changes. Two types of prop-
erties can be affected: syntactic and semantic properties. While the syntactic proper-
ties are defined in the modeling language’s metamodel [36], the developers are ought
to specify the (static and behavioral) semantic properties. Developers should deter-
mine which contradicting values assigned to these properties will remain. For exam-
ple, a developer should define if a class A will be concrete (i.e. A.isAbstarct = false)
or abstract (i.e. A.isAbstarct = true). The output intended class A will be produced, if
and only if, this decision is done correctly; otherwise, the output composed class A
will be inconsistent. In practical terms, these inconsistencies are unexpected values
attributed to model element’s properties e.g., A.isAbstract = false instead of the ex-
pected value true. Two broad categories of inconsistencies are usually present in out-
put models of our study, namely syntactic and semantic inconsistencies.

642 K. Farias et al.

Syntactic inconsistencies emerged when any output composed model elements did
not conform to the rules defined in the modeling language’s metamodel. For example,
a package UML cannot have UML classes with the same name. Another example
would be all relationship should have the client and supplier defined. Semantic incon-
sistencies emerged when the meaning of the composed model elements does not
match with the meaning of the elements of the intended model. For instance, an in-
consistency occurs when functionalities found in MCM are not found in MAB, or when
model elements assume a meaning that is no longer expected or valid. The presence
of both types of inconsistencies affects the correctness of the composed model.

3 Study Methodology

3.1 Objective and Research Questions

This study aims at gathering knowledge about the values that the composition effort’s
variables (Fig. 1) can assume in real-world settings. As these variables may be af-
fected by some influential factors, this work also attempts to reveal and characterize
these factors. With these aims in mind, we formulate two research questions:

• RQ1: What is the effort to compose design models?
• RQ2: What are the factors that affect composition effort?

3.2 Context and Case Studies

As previously mentioned, during 56 weeks, 297 evolution scenarios were performed
leading to 2.288.393 compositions between modules, classes, interfaces, and relation-
ships. All five cases differ in terms of their size, number of participants, and applica-
tion domain. We present a brief description of the five systems used as follows:

1. System AL (SysAL): controls and manages the importation and exportation of
products.

2. System Band (SysBand): a logistics system that manages the flow of goods.
3. System GR (SysGR): supports weather forecast and controls environmental

catastrophes.
4. System Mar (SysMar): simulates the extraction of oil from deep ocean areas.
5. System PR (SysPR): a logistics system for refineries.

They were chosen based on some reasons presented in the following. First, they are
characterized as typical, revelatory [2], and encompassed UML class and sequence
diagrams, use case specifications, architectural diagrams, glossary of domain terms,
and business rules. Still, they are representative of complex software systems, which
were initially unknown by the developers. This characterizes a typical situation where
maintainers are not the initial developers of the system.

Second, the subjects used IBM Rational Software Architect (RSA) [16], a robust
modeling tool to create and compose design models. The IBM RSA was used due to:
(1) the implementation robustness of its composition algorithms; (2) the tight integra-
tion with the Eclipse IDE; and (3) the tool had been already adopted in previous suc-
cessful projects. Additionally, all cases used a bug tracking system, i.e., JIRA [37],

 Analyzing the Effort of Composing Design Models of Large-Scale Software 643

with which it was possible to coordinate the developers’ tasks, specifically during the
creation of the design models and review of the models.

Finally, industrial case studies avoid one of the main criticisms of case studies in
software engineering regarding the degree of realism of the studies. Thus, we believe
that the collected data are representative of developers with industrial skills.

3.3 Subjects

In total, 12 subjects were recruited based on convenience [2]. Table 1 describes the
subjects’ background. We analyzed the level of theoretical knowledge and practical
experience of these subjects. The subjects had, on average, 120 hours of courses (lec-
ture and laboratory) considering theoretical issues about software engineering, includ-
ing object-oriented programming, software architecture, and software modeling using
UML. This can be seen, in part, as an intensive UML-specific training. The subjects
also had a considerable practical experience, which was acquired from previous soft-
ware development projects. The data show that the subjects fulfil the requirements in
terms of age, education, and experience. The knowledge and experience sharing help
subjects solve the composition problems more properly. All subjects were familiar
with IBM RSA. Therefore, we are confident that the subjects had the required train-
ing, theoretical knowledge and practical experience about model composition to get
rid of any threat to the vitality of our findings.

Table 1. Descriptive statistics: subjects’ background

Variables Mean SD Min 25th Med 75th Max

Age 25.3 4.47 21 22 24.5 27 38

Degree 2.16 1.06 1 1 2 3 4

Graduation year 2006.4 4.8 1992 2005.25 2006.5 2010 2010

Years of study at university 5.75 2.8 3 3 5 7.5 12

YOEW UML 1 1.4 1 1.25 3 4.75 5

YOEW Java 4.5 1.84 2 2.5 4 6.75 7

Used IBM RSA (1 or 0) 1 1 1 1 1 1 1

YOEW software development 5 3.6 2 2.25 4.5 5.75 16

Hours of software modeling 98.33 40.38 60 60 90 120 180

Hours of OO programming 156.66 89 80 80 130 225 360

Hours of software design 130 53.85 80 80 120 190 220
 Degree: 1 = Student, 2 = Bachelors, 3 = Masters, 4 = PhD, YOEW = Years of experience with, Med: Median,
 SD = Standard Deviation, 25th = lower quartile, 75th = upper quartile

3.4 Study Design

The study design is characterized as a holistic case study [1][2], where contemporary
phenomena of model composition are studied as a whole in their real-life contexts.
Five industrial case studies were performed to investigate RQ1 and RQ2. The subjects
were randomly and equally distributed to the five studies, following a within-subjects
design [1]. The study had a set of activities that were organized in three phases. In
each study, the subjects used the IBM Rational Sofwtare Architect to create and com-
bine the design models. Fig. 2 shows through an experimental process how the three
phases were organized. The activities are further described as follows.

644 K. Farias et al.

Firstly, the issues are created and submitted to JIRA, an issue tracking system. Af-
ter opening an issue, the developers may perform three activities, including the crea-
tion of design models, detection and resolution of inconsistencies.

Training. All subjects received training to ensure they acquired the needed familiarity
with the model composition technique.

Apply Composition Technique. The models used in our study were UML class and
sequence diagrams. Table 2 shows some metrics about the models used. The sub-
jects create UML class and sequence diagrams using IBM RSA. Both diagrams were
elaborated regarding the specifications of use cases and following the best modeling
practices. Thus, the participants composed MA and MB taking into account the use
case specifications. Note that MB (delta model) represented the changes to be submit-
ted to the repository. The measure of application effort (time in minutes) was col-
lected during this activity. In addition, the composed model, video and audio records
represent the outputs of this activity. The video and audio records were later used
during the qualitative analyses (Section 4). It is important to point out that a partici-
pant (subject x) that produced an MCM was discouraged from detecting inconsistencies
in it to avoid bias; thus, another participant (subject n-x) was responsible for detecting
and resolving the inconsistencies in MCM in order to produce MAB.

Fig. 2. The experimental process

 Analyzing the Effort of Composing Design Models of Large-Scale Software 645

Detect Inconsistencies. Subjects reviewed MCM for detecting inconsistencies. To this
end, they checked if MCM had the changes described in the use case specification.
They used the IBM RSA’s model validation mechanism to identify syntactic inconsis-
tencies. As a result of this activity, we have the measure of detection effort (time in
minutes), and video and audio records.

Resolve Inconsistencies. The subjects resolved the inconsistencies localized in order
to produce MAB. In practical terms, they added, removed, or modified some existing
model elements to solve them. The resolution effort was also measured (time in mi-
nutes) and the video and audios were recorded. After addressing the model inconsis-
tencies, the developers submitted the intended model to the repository. Thus, the
compositions were executed in two moments: after the original creation of the models
and after resolving the inconsistencies. All model versions were registered using a
version control system, thereby allowing a systematic historical analysis of the com-
positions, MCM.

Make Interview and Answer Questionnaire. Some interviews were conducted with the
purpose of collecting qualitative data. The subjects also filled out a questionnaire.
These procedures allowed us to collect information about their background (i.e., their
academic background and work experience) and apply some inquisitive questions.

Table 2. The collected measures of the design models used

Metrics SysAL SysBand SysGR SysMar SysPR

#classes 316 892 1394 2828 1173

#attributes 1732 3349 8424 9689 3808

#operations 3479 7590 10608 23722 9111

#interfaces 18 83 143 223 93

#packages 34 166 175 345 187

#afferent coupling of the packages 278 1147 1632 4044 2329

#efferent coupling of the packages 235 996 1278 2723 1451

#abstractness of the packages. 9.58 50.45 36.9 66.5 51.9

#weeks 6 15 8 17 10

#developers 3 7 2 7 4

#evolutions scenarios 6 95 55 64 77

 #: the number of or degree of all, Sys: system

4 Study Results

This section presents the study results about the composition effort variables (RQ1) and
explains the factors that we found to influence the composition effort in our study (RQ2).

4.1 RQ1: Composition Effort Analysis

Application Effort. Table 3 shows a descriptive statistics about the application effort.
The results indicate that effort to compose models was, on average, 3.17 minutes and
4.43 minutes in SysBand and SysMar projects, respectively. Given the complexity and

646 K. Farias et al.

the size of the design models in question, these central tendency measures are in fact low
values. For example, a developer spent just around 4 minutes to submit the most complex
evolving changes to the repository in the SysMar project. In addition, the median meas-
ures follow these trends: 3 minutes and 3.12 minutes into the SysBand and Marlin
project, respectively. Thus, these measures imply that the required effort to apply the
semi-automated composition technique is low even for large-scale models. Consequently,
it is possible to advocate model composition as appropriate to support collaborative soft-
ware modeling in which resources and time are usually tight.

In general, we observed that there was no significant variation on developers’ applica-
tion effort. Developers’ effort tends to be similar rather than spreading out over a large
range of values. There were a few exceptions as we are going to discuss below. With
1.55 and 1.58 minutes, the standard deviation measures indicate that in the majority of
the model composition sessions the developers spent an effort near 3.17 minutes or 4.43
minutes. These results can help developers to better estimate the effort by establishing
thresholds, and check if the effort spent by developers is an expected value (or not).

Table 3. Descriptive statistics for application effort

Cases N Mean SD Min 25th Med 75th Max
SysMar 40 4.73 4.52 0.25 2 3.2 6.79 22

SysBand 69 3.29 1.93 0.83 2 3 4 14.2
N = number of compositions, SD = standard deviation, Min = minimum,

 25th = first quartile; Med = median, 75th: third quartile, Max: maximum.

Fig. 3 distributes the collected sample in six effort ranges. These ranges in the his-
togram systematically group the cases of application effort. The axis-y of the histo-
gram represents the number of compositions, while the axis-x captures the ranges of
effort. The main feature is that: the presence of a distribution pattern of the applica-
tion effort through the ranges of effort. The three low-effort categories (i.e., t < 2, 2 ≤
t < 4, and 4 ≤ t < 6) represent the most likely ranges of effort that developers invest to
compose the input models. The number of cases falling into these categories is equal
to 29 (in SysMar) and 64 (in SysBand), representing 72.5% and 92.75% of the com-
position cases, respectively.

Fig. 3. Histogram of the application effort measures

 Analyzing the Effort of Composing Design Models of Large-Scale Software 647

On the other hand, the number of cases in the high-effort categories (i.e., 6 ≤ t < 8,
8 ≤ t < 10 and 10 ≤ t) is equal to 12 (in Marlin) and 5 (in SysBand), comprising
17.39 % and 12.5% of the cases respectively. The number of composition cases in the
low-effort categories outnumbers the amount of cases in the high-effort categories,
comprising more than 70% and 90% of the cases in the SysMar and SysBand projects,
respectively. On the other hand, the number of cases in the high-effort categories was
by around 30% (in Marlin) and 7.25 % (in SysBand). In practice, these results mean
that developers spent less than 6 minutes in 85.32% of the full set of composition
cases, and only 14.68% of the cases required more than 6 minutes.

Detection Effort. Table 4 shows a descriptive statistics about the effort spent to detect
inconsistencies. A careful analysis indicated that some interesting features were ob-
served. First, the most experienced developers spent 23.2% less effort to detect incon-
sistencies than less experienced developers. This observation was derived from the
comparison of the medians in the SysMar and SysBand cases. This observation is also
confirmed by the means’ values. In this case, the most experienced developers in-
vested 38.57% less effort to detect inconsistencies than less experienced developers.

Second, we also found that the higher the number of teamwork members, the high-
er the effort to localize inconsistencies. Comparing the number of teamwork members
of the projects, we could observe that the developers of the SysMar and SysBand
projects, both with 7 developers, invested a higher amount of effort to detect inconsis-
tencies than the developers of the SysGR and SysPR systems (with 2 and 4 develop-
ers, respectively). For example, the developers spent 49.46% more effort (by about
3.45) to detect inconsistencies in the SysMar project than in SysGR project, by taking
the medians 6.55 and 3.31 into account. This observation was also reinforced when
we compare the SysMar and SysPR projects. That is, SysMar’s developers spent
64.27% more effort (by about 4.21) to localize the inconsistencies; this difference is
observed by comparing the medians 6.55 and 2.34, respectively. Therefore, the
projects with a higher number of developers had to invest the double of effort to local-
ize the inconsistencies.

Third, the higher the number of inconsistencies in behavioral models, the higher
the effort to detect inconsistencies. Even though certain projects (e.g., System A) had
a lower number of developers, a number of inconsistencies were concentrated on
behavioral models, i.e. sequence diagrams in our case. The key problem highlighted
by developers was that the behavioral models require an additional effort to go
through the execution flows. An association in a structural model (e.g., class diagram)
represents essentially one relationship between two classes. On the other hand, in a
sequence diagram, which represents the interaction between the instances of these
classes, the counterpart of the simple association is represented by n interactions (i.e.
several messages exchanged between the objects). The problem is that developers
must check each interaction.

Another finding is that the higher the distribution of inconsistencies in different
models, the higher the effort to identify them. In the case studies, the systems were
strongly decomposed in different concerns. These concerns were called “conceptual
areas” by the developers. This unit of modularization brings together application do-
main concerns in a same package. The biggest problem arises when the inconsisten-
cies in a conceptual area give rise to several inconsistencies, and hence affecting
many other model elements located in other conceptual areas, thereby leading to

648 K. Farias et al.

ripple effects. This propagation is inevitable as there are usually some relationships
between these units of modularization. Hence, developers often had to identify incon-
sistencies in the model elements of the conceptual areas they have from limited to
none knowledge. Note that during the case studies the developers created diagrams
related to a specific concern of the system (specified in use cases), and these diagrams
were grouped in a conceptual area (similar to a package). Thus, the lack of knowledge
about the model elements in the unknown conceptual area led developers to invest an
extra effort to detect and resolve the inconsistencies.

Table 4. Descriptive statistics for detection effort

Cases N Mean SD Min 25th Med 75th Max
SysMar 63 7.57 5.1 0.54 2.45 6.55 12.49 16.54
SysBand 86 4.65 2.39 0.36 2.37 5.03 6.38 9.21
SysGR 24 3.66 1.52 1.32 2.67 3.31 4.16 7.39
SysPR 44 2.91 1.75 1.04 1.39 2.34 4.12 7.15

System A 6 12.37 4.2 5.26 8.25 13.15 16.36 17.37
N = number of compositions, SD = standard deviation, Min = minimum,
25th = first quartile; Med = median, 75th: third quartile, Max: maximum.

Resolution Effort (g). Table 5 shows a descriptive statistics of the inconsistency
resolution effort. A key finding is that the developers invest more effort to resolve
inconsistencies than to both apply the model composition technique and detect the
inconsistencies. This can be explained based on several observations. First, in the
SysMar project, for example, the teamwork members spent 64.91% more effort
resolving inconsistencies than applying the model composition technique. This differ-
ence comprises the comparison between the medians 3.2 (application) and 9.12 (reso-
lution). This difference becomes more explicit when we consider the values of the
mean. This evidence is reinforced by the SysBand project. The resolution of inconsis-
tencies consumes almost three times more effort than the application of the composi-
tion technique, if we compare the medians 3.2 (application) and 9.12 (resolution). The
difference between the application and resolution effort becomes higher when we
consider the value of the mean, i.e. jumping significantly their values from 64.91% to
88.40% (in SysMar) and from 80.31% to 88.35% (in SysBand).

Second, in SysMar project, the inconsistency resolution consumed 28.17% more
effort than the inconsistency detection. This comprises the difference between the
medians 6.55 and 9.12. The results in the SysBand project followed the same trend.
Developers spent 66.99 percent more effort with inconsistency resolution than with
inconsistency detection, when compared with the medians 5.03 and 15.24. Consider-
ing the mean, this difference of effort becomes more evident, leaping abruptly from
28.17 percent to 81.44 percent (in SysMar) and from 66.99 percent to 83.42 percent
(in SysBand). Analyzing the collected data from the SysGR and SysAL projects, this
observation is also confirmed. For example, the resolution effort is 82.98 percent and
54.96 percent higher than the detection effort in SysGR and SysAL, respectively. On
the other hand, in SysAL project, the resolution and detection effort were practically
equal. Therefore, the collected data suggest that teamwork members tend to spend
more effort resolving inconsistency rather than applying the model composition tech-
nique and detecting inconsistencies.

 Analyzing the Effort of Composing Design Models of Large-Scale Software 649

Table 5. Descriptive statistics for resolution effort

Cases N Mean SD Min 25th Med 75th Max
SysMar 31 40.79 74.79 3.09 4.13 9.12 11.33 246.25
SysBand 8 28.06 28.04 5.55 8.17 15.24 41.44 95.44
SysGR 16 25.86 13.75 5.12 17.70 19.45 42.5 53.33
SysPR 44 2.86 1.92 1.2 2.03 2.33 2.52 10.41
SysAL 5 31.04 12.75 16.21 16.21 29.20 46.8 55.4

N = number of compositions, SD = standard deviation, Min = minimum,
25th = first quartile; Med = median, 75th: third quartile, Max: maximum.

Another finding is that the experience acquired by the developers did not help to
significantly reduce the inconsistency resolution effort. Although more experienced
developers have invested less effort to compose the input models and detect
inconsistencies, their additional experience did not help significantly to reduce the
inconsistency resolution effort. For example, in SysBand project, more experienced
developers spent 40.15 percent more effort to resolve inconsistency than less expe-
rienced developers from SysMar project, compared the medians 9.12 and 15.24. The
main reason is that most experienced developers tend to be more cautious than less
experienced ones, and hence they tend to invest more time analyzing the impact of the
resolution of each inconsistency.

4.2 RQ2: Influential Factors on Composition Effort

Some factors influence the effort of composing large-scale design models in real-
world settings. This section analyzes the side effects of these factors on the composi-
tion effort variables.

The Effects of Conflicting Changes. A careful analysis of the results has pointed out
that the production of the intended model is strictly affected by the presence of differ-
ent types of change categories in the delta model. These changes would be: addition,
model elements are inserted into base model; removal, a model element in the base
model is removed; modification, a model element has some properties modified; deri-
vation: model elements are refined for accommodating new changes and/or moved to
other ones, commonly seen as a 1:N modification. We have also observed that the
current composition algorithms are not able to effectively accommodate these
changes in the base model, in particular when they occur simultaneously.

Developers and researchers recognize that software should adhere to the Open-
Closed principle [31] as the evolutions become more straightforward. This principle
states “software should be open for extensions, but closed for modifications.” Howev-
er, this observation did not occur in all the cases as modifications and derivations of
model elements happened as well. In our study, the open-closed principle was more
closely adhered by the evolutions dominated by additions rather than any other one.
In this case, developers invested low effort compared to other cases. This suggests
that the closer to the Open-Closed principle the change, the lower the composition
effort.

On the other hand, evolution scenarios that do not follow the Open-Closed prin-
ciple required more effort to produce the intended model, MAB. This finding was iden-
tified when the change categories simultaneously occur in the delta model; hence,

650 K. Farias et al.

compromising the composition for some extent. This extra effort was due to the inca-
pability of the matching algorithm to identify the similarities between the input model
elements given the presence of widely scoped changes. In the SysMar project, for
example, the composition techniques were not able to execute the compositions by
about 17 percent (11/64) of the evolution scenarios. This required developers to
recreate the models manually. In the SysBand project, by about 10 percent (10/95) of
the composition cases did not produce an output model as well; or the composed
model produced had to be thrown away due to the high amount of inconsistencies.

In particular, we also observed that the refinement (1:N) of model elements in the
delta model caused more severe problems. This problematic scenario was noticed
during the refinement of some classes belonging to the MVC (Model-View-
Controller) architecture style into a set of more specialized ones. In both cases, the
name-based, structural model comparison was unable to recognize the 1:N composi-
tion relations between the input model elements. However, we have observed these
conflicts do not only happen when developers perform modifications, removals, or
refinements in parallel, but also when developers insert new model elements. This
finding was noted from the fact that although evolutions following the Open-Closed
principle had reduced the developers’ effort, they still caused too frequent undetected
inconsistencies.

Conflict Management. The detection of all possible semantic conflicts between two
versions of a model is an undecidable problem [10]; as many false positive conflicts
can appear. To alleviate this problem, some previous works recommend to reduce the
size of the delta model to minimize the number of conflicts [11]. However, this ap-
proach does not ameliorate in fact the complexity of the changes. The problem is not
the number of conflicts that the size of the delta can cause, but the complexity of the
conflicts. To alleviate the effort to tame the conflicts, we narrowed down the scope of
the conflicts. For this, the delta model now represented one or two functionalities of a
particular use case. Hence, the conflicts became more manageable and reasonable.
The compositions had a smaller scope.

On the other hand, sometimes the presence of more widely scope changes was in-
evitable in the delta model. This was, for example, the case when the models (e.g.,
class and sequence diagrams) were reviewed and meliorated for assuring quality is-
sues. Unfortunately, this led to decrease the precision of the compositions due to the
presence of non-trivial compositions. It is known that the domain independent com-
position algorithms cannot rely on the detailed semantics of the models being com-
posed or on the meaning of changes. Instead of being able to identify all possible
conflicts, the algorithms detect as many conflicts as possible, assuming an approx-
imate approach. Consequently, developers need to deal with many false positive con-
flicts.

In practice, we noted that if the composition generates many conflicts, developers
prefer throwing the models away (and investing more effort to recreate it after) to
resolving all conflicts. Although the composition algorithm detects the conflicting
changes created by developers in parallel, developers are unable to understand and
proactively resolve these conflicts generated from non-trivial compositions. This can
be explained by two reasons. First, the complexity of the conflicts affected the model
elements. Second, the difficulty of understanding the meaning of the changes per-
formed by other developers. More importantly, developers were unable to foresee the

 Analyzing the Effort of Composing Design Models of Large-Scale Software 651

ripple effects of their actions. This is linked to two very interesting findings. First,
developers have a tacit assumption that the models to-be-composed will not conflict
with each other, and a common expectation is that little effort must be spent to inte-
grate models. Hence, the developer tends to invest low effort to check whether the
composition produced inconsistencies or not. Therefore, we can conclude that the
need to throw the model away in order to recreate it after demonstrates the complexity
of the problem.

Conflict Resolution and Developer Reputation. We have observed that when two
changes in the input models (MA and MB) contradict each other, the one created by
the more experienced developer tends to remain in the output composed model. In
other words, the reputation of the developers influences the resolution of conflicting
changes. It is important to recall that a developer can accept and reject the conflicting
change of another developer. We observed this finding during the observational study,
interviews, and analyzing the change history in the repository. This was particularly
observed when novice developers reject the changes performed by them, and accept
the ones carried out by senior developers. That is, if a novice developer modifies a
design model, and this change conflicts with another one performed by a more expe-
rienced developer, the novice tends to consider the change carried out by the latter.

An additional interesting finding was that the effort of taming the conflicting
changes tended to be less when the reputations of the developers were particularly
opposite, one much high and another one too low. A careful analysis of the changes in
the model elements reveals some interesting insights. We have noted that the imple-
mentation of the new changes (via MA) by more experienced developers for encapsu-
lating new evolutions are more oblivious to the modifications being implemented in
the delta model. This observation holds for both structural and behavioral models i.e.,
class and sequence diagrams, respectively. As a consequence, the modifications rea-
lized by more experienced developers tended to help novice developers find an an-
swer for the conflicts more quickly, thereby reducing the composition effort. Still,
these modifications usually stay unchanged for a longer time, when compared with
those realized by novice developers.

Reputation can be seen as the opinion (or a social evaluation) of a member of the
development team toward other developer. We have identified two types of reputa-
tion: technical and social. The technical reputation refers to the level of knowledge
considering issues related to the technology and tools used in the company such as the
composition tool, IDEs, CASE tools, and version control systems. This type of repu-
tation is acquired mainly solving daily problems. On the other hand, the social reputa-
tion refers to the position assumed by a member of the development team e.g., senior
developer. After interviewing 8 developers, the data collected suggests that the tech-
nical reputation caused more influence for resolving conflicts than the social reputa-
tion. That is, 75 percent of the developers (6/8) reported that the technical reputation
has a higher influence than the social one. We have concluded that the developer rep-
utation indeed affects the way that conflicts are resolved. In particular, the changes
performed by the subjects with high reputation tend to remain in the output composed
model when ones conflict with other changes implemented by less experienced
developers.

652 K. Farias et al.

5 Related Work

Model composition is a very active research field in many research areas [34][35]
such as synthesis of state charts [13][18], weaving of aspect-oriented models
[19][20][21], governance and management of enterprise design models [9], software
configuration management [30], and composition of software product lines [25][28].
For this reason, several academic and industrial composition techniques have been
proposed such as MATA [19], Kompose [23], Epsilon [22], IBM RSA [16], and so
on. With this in mind, some observations can be done.

First, these initiatives focus only on proposing the techniques instead of also dem-
onstrate their effectiveness. Consequently, qualitative and quantitative indicators con-
sidering these techniques are still incipient. In addition, the situation is accentuated
considering effort indicators. This lack hinders mainly the understanding of their side
effects. Second, their chief motivation is to provide programming languages to ex-
press composition logic. Unfortunately, these approaches do not offer any insights or
empirical evidences whether developers might reach the potential benefits claimed by
using composition techniques in practice. Although some techniques are interesting
approaches, sometimes they are used in practice because of the large number of false
positives that they can produce in real-world settings. Nevertheless, the effort required
for the user to under-stand and correct composition inconsistencies will ultimately
prove to be too great. The current article takes a different approach. It aims to provide
a precise assessment of composition effort in real life context, quantifying effort and
identifying the influential effort.

Moreover, current works tend to investigate on the proactive detection and earlier
resolution of conflicts. Most recently, Brun et al. [33] proposes an approach, namely
Crystal, to help developers identify and resolve conflicts early. The key contributions
are that conflicts are very common than would be expected, appearing over-lapping
textual edits but also as subsequent build and test failures. In a similar way, Sarma et
al. [32] proposes a new approach, named Palantír, based on the precept of workspace
awareness, to detection and earlier resolution of a larger number of conflicts. Based
on two laboratory experiments, the authors confirmed that the use of the Palantír re-
duced of the number of unresolved conflicts. Although these two approaches are in-
teresting studies, the earlier detection does alleviate the problem of model composi-
tion. The problem is the same, but is only reported more quickly. In addition, they
appear to be overly restrictive to the code, not leading to broader generalizations at
the modeling level. Lastly, they neither make consideration about the effort to com-
pose of the artefacts used nor investigate the research questions in five case studies.

6 Concluding Remarks and Future Work

This paper represented the first in vivo exploratory study to evaluate the effort that
developers invest to compose design models (RQ1) and to analyze the factors that
affect developers’ effort (RQ2). In our study, a best-of-breed model composition
technique was applied to evolve industrial design models along 297 evolution scena-
rios. The works were conducted during 56 weeks producing more than 2 million of
compositions of model elements. We investigated the composition effort in this

 Analyzing the Effort of Composing Design Models of Large-Scale Software 653

sample, and analyzed the side effects of key factors that affected the effort of applying
the composition technique as well as detecting and resolving inconsistencies.

We summarize the findings related to RQ1 as follows: (1) the application effort
measures do not follow an ad hoc distribution and, rather, it assumed a distribution
pattern; (2) the application effort tends to reduce as developers become more familiar
with technical issues rather than application domain issues; (3) the more experienced
developers spend 23.2 percent less effort to detect inconsistencies than less expe-
rienced developers; and (4) the more the number of inconsistencies in behavioral
models, the higher the effort to detect inconsistencies. Additionally, we also present
four findings with respect to RQ2 as follows: (1) the production of the intended model
is strictly affected by the presence of different types of change categories in the delta
model; (2) the closer to the Open-Closed principle the change, the lower the composi-
tion effort. That is, evolutions dominated by additions reduce the composition effort.
On the other hand, the refinement (1:N) of model elements in the delta model caused
severe composition problems and hence increased the composition effort.

Although we gathered quantitative and qualitative evidence to supporting the
aforementioned findings, further empirical studies are still required to check whether
they are observed in other contexts and with different subjects. Future investigation
points would be to answer some questions such as: (1) Do developers invest much
more effort to compose behavioral models (e.g. sequence diagrams) than structural
models (e.g. component diagrams)? Are the influential factors in composition effort
similar in these two contexts? (2) How different are the findings similar or different
with respect to code merge (i.e. implementation-level composition)? (3) Do develop-
ers invest more effort to resolve semantic inconsistencies than syntactic ones? It is by
no means obvious that, for example, developers invest less effort to resolve inconsis-
tencies related to the well-formedness rules of the language metamodel than to re-
solve inconsistencies considering the meaning of the model elements. Finally, we
hope that the issues outlined throughout the paper encourage other researchers to
replicate our study in the future under different circumstances. Moreover, we also
hope that this work represents a first step in a more ambitious agenda on better sup-
porting model composition tasks.

References

1. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in
Software Engineering. Empirical Software Engineering 14, 131–164 (2009)

2. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimenta-
tion Software Engineering - An Introduction. Kluwer Academic Publishers (2000)

3. Kitchenham, B., Al-Khilidar, H., Babar, M., Berry, M., Cox, K., Keung, J., Kurniawati, F.,
Staples, M., Zhang, H., Zhu, L.: Evaluating Guidelines for Reporting Empirical Software
Engineering Studies. Empirical Software Engineering 13(1), 97–12 (2008)

4. Boisvert, R., Tang, P. (eds.): The Architecture of Scientific Software. Kluwer Academic
(2001)

5. Kelly, D.: A Study of Design Characteristics in Evolving Software Using Stability as a
Criterion. IEEE Transactions on Software Engineering 32(5), 315–329 (2006)

6. Camtasia Studio Pro. (2011), http://www.techsmith.com/camtasia/

654 K. Farias et al.

7. Farias, K.: Analyzing the Effort on Composing Design Models in Industrial Case Studies.
In: 10th International Conference on Aspect-Oriented Software Development Companion,
Porto de Galinhas, Brazil, pp. 79–80 (2011)

8. Farias, K., Garcia, A., Whittle, J.: Assessing the Impact of Aspects on Model Composition
Effort. In: 9th International Conference on Aspect-Oriented Software Development Com-
panion, Saint Malo, France, pp. 73–84 (2010)

9. Norris, N., Letkeman, K.: Governing and Managing Enterprise Models: Part 1. Introduc-
tion and Concepts. IBM Developer Works (2011), http://www.ibm.com/
developerworks/rational/library/09/0113_letkeman-norris

10. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering 28(5), 449–462 (2002)

11. Perry, D., Siy, H., Votta, L.: Parallel Changes in Large-Scale Software Development: an
Observational Case Study. Journal ACM Transactions on Software Engineering and Me-
thodology (TOSEM) 10(3), 308–337 (2001)

12. Keith, E.: Flexible Conflict Detection and Management in Collaborative Applications. In:
10th Annual ACM Symposium on User Interface Software and Technology, pp. 139–148
(1997)

13. Ellis, C., Gibbs, S.: Concurrency Control in Groupware Systems. ACM SIGMOD, 399–
407 (1989)

14. Berzins, V.: Software Merge: Semantics of Combining Changes to Programs. Journal
ACM Transactions on Programming Languages and Systems 16(6), 1875–1903 (1994)

15. Berzins, V., Dampier, D.: Software merge: Combining Changes to Decompositions. Jour-
nal of Systems Integration 6(1-2), 135–150 (1996)

16. IBM Rational Software Architecture (2011), http://www.ibm.com/
developerworks/rational/products/rsa/

17. Berzins, V.: On Merging Software Extensions. Acta Informatica 23, 607–619 (1986)
18. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Precise Detection of Conflicting Change

Operations Using Process Model Terms. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010, Part II. LNCS, vol. 6395, pp. 93–107. Springer, Heidelberg (2010)

19. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A unified ap-
proach for composing UML aspect models based on graph transformation. In: Katz, S.,
Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on AOSD VI. LNCS, vol. 5560,
pp. 191–237. Springer, Heidelberg (2009)

20. Whittle, J., Jayaraman, P.: Synthesizing Hierarchical State Machines from Expressive Sce-
nario Descriptions. ACM TOSEM 19(3) (January 2010)

21. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based Weaving of Scenarios. In: 5th AOSD
2006, Bonn, Germany (March 2006)

22. Epsilon Project (2011), http://www.eclipse.org/gmt/epsilon/
23. Kompose: A generic model composition tool (2011),

http://www.kermeta.org/kompose
24. Sabetzadeh, M., Nejati, S., Chechik, M., Easterbrook, S.: Reasoning about Consistency in

Model Merging. In: 3rd Workshop on Living With Inconsistency in Software Develop-
ment (September 2010)

25. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model Composition in Product
Lines and Feature Interaction Detection Using Critical Pair Analysis. In: Engels, G., Op-
dyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 151–165.
Springer, Heidelberg (2007)

 Analyzing the Effort of Composing Design Models of Large-Scale Software 655

26. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models for
Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS,
vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

27. Egyed, A.: Fixing Inconsistencies in UML Design Models. In: 29th International Confe-
rence on Software Engineering, pp. 292–301 (2007)

28. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. In: 6th
GPCE 2007, Salzburg, Austria, pp. 95–104 (2007)

29. Egyed, A.: Automatically Detecting and Tracking Inconsistencies in Software Design
Models. IEEE Transactions on Software Engineering 37(2), 188–204 (2010)

30. Whitehead, J.: Collaboration in Software Engineering: A Roadmap. In: Future of Software
Engineering at ICSE, pp. 214–225 (2007)

31. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Meyer, Hall, Engle-
wood Cliffs (1988)

32. Sarma, A., Redmiles, D., van Der Hoek, A.: Palantír: Early Detection of Development
Conflicts Arising from Parallel Code Changes. IEEE TSE 99(6) (2011)

33. Brun, Y., Holmes, R., Ernst, M., Notkin, D.: Proactive Detection of Collaboration Con-
flicts. In: 8th SIGSOFT ESEC/FSE, Szeged, Hungary, pp. 168–178 (2011)

34. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Research
Roadmap. In: FuSE at ICSE 2007, 37–54 (2007)

35. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.: Semistructured Merge: Rethink-
ing Merge in Revision Control Systems. In: 8th SIGSOFT ESEC/FSE, pp. 190–200 (2011)

36. OMG, Unified Modeling Language: Infrastructure, version 2.2, Object Management
Group (February 2011)

37. JIRA, http://www.atlassian.com/software/jira/overview

Parallel Execution of ATL Transformation Rules

Massimo Tisi, Salvador Mart́ınez, and Hassene Choura

AtlanMod, École des Mines de Nantes - INRIA, LINA, Nantes, France
firstname.lastname@inria.fr

Abstract. Industrial environments that make use of Model-Driven En-
gineering (MDE) are starting to see the appearance of very large models,
made by millions of elements. Such models are produced automatically
(e.g., by reverse engineering complex systems) or manually by a large
number of users (e.g., from social networks). The success of MDE in
these application scenarios strongly depends on the scalability of model
manipulation tools. While parallelization is one of the traditional ways of
making computation systems scalable, developing parallel model trans-
formations in a general-purpose language is a complex and error-prone
task. In this paper we show that rule-based languages like ATL have
strong parallelization properties. Transformations can be developed with-
out taking into account concurrency concerns, and a transformation
engine can automatically parallelize execution. We describe the imple-
mentation of a parallel transformation engine for the current version of
the ATL language and experimentally evaluate the consequent gain in
scalability.

1 Introduction

Part of the industrial landscape looks at tools based on Model-Driven Engineer-
ing (MDE) to handle in a uniform way a plethora of software engineering tasks
at development/maintenance time. Some examples are the development of criti-
cal systems [8], reverse engineering and modernization [20], artifact management
[5]. MDE tools are also used at runtime, in systems built around the manipula-
tion of model-based abstractions during system execution [6]. The most popular
MDE frameworks, like the Eclipse Modeling Framework (EMF), are inspired by
the OMG’s Meta-Object Facility (MOF), and provide facilities to define and ma-
nipulate metamodels and conforming models. Model manipulation operations on
these frameworks can be developed using APIs in general-purpose languages (the
most popular approach) or by specific model-transformation languages (MTLs)
originally designed to ease development, analysis and maintenance of the model-
manipulation code.

Some of the companies that embraced (or want to embrace) MDE need to
handle huge amounts of data. In MDE terms this reflects in the need to manipu-
late very large models (VLMs), e.g. models made by millions of model elements.
Examples of such models appear in a wide range of domains as shown in in-
dustrial cases provided by literature: in [4] the authors work over industrial

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 656–672, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallel Execution of ATL Transformation Rules 657

AUTOSAR[2] models with over 1 million model elements; [18] analyses civil-
engineering related models with more that 7 million computational objects; in
the area of model-driven software product lines, [17] handles product families
with up to 10 million model elements. Reverse engineering tasks may also pro-
duce large models as shown in [3], where our team obtains large models with up
to 5 million model elements from the Eclipse JDT sources.

Due to the physical constraints preventing frequency scaling in modern CPUs,
multi-core architectures are very popular today, making parallelism a cost-
effective solution to improve computation times for VLMs. However, using a
general-purpose language, parallel programs are more difficult to write with re-
spect to sequential programs [16], mainly because of: 1) new classes of potential
bugs introduced by concurrency (e.g., race conditions); 2) the difficulty in getting
good parallelization while handling communication and synchronization between
the different concurrent tasks; 3) increased difficulty in debugging the parallel
code. One of the well-known approaches to simplify parallel programming is re-
lying on implicitly parallel languages, and several such languages are available1.
Using implicit parallelism, the developer does not need to worry about dividing
the computation and handling communication and synchronization. The lan-
guage implementation takes care of these aspects and the development of parallel
programs is substantially simplified, which results in a significant productivity
gain.

In this paper we want to show that ATL (the AtlanMod Transformation
Language [14]), a rule-based model-transformation language designed with the
principle of rule independence can be overloaded with implicit parallelism. By
running on a parallelized engine, the execution time of ATL model transforma-
tions can scale well on the number of processors. While implicit parallelism had
a limited success in general-purpose languages, we argue that the specific task
of model transformation on VLMs may greatly benefit from it.

We provide the following contributions:

– We study the parallelization of the ATL language, separating it in two in-
dipendent problems of transformation language parallelization and query
language parallelization and we address the first analyzing decomposition
and synchronization aspects.

– We provide a multi-threaded implementation of the ATL engine by adapting
the standard engine. The resulting compiler and virtual machine are publicly
available2 and we plan to merge them in the next default version of ATL.

– We experimentally measure the improvement in scalability, by comparing
the execution times of the same transformation in three semantically equiv-
alent implementations: 1) a Java implementation, 2) an ATL implementation
running on the standard engine, 3) the same ATL implementation running
on the multi-threaded engine. Since no other change is performed to ATL,
this experimentation gives an idea of the net effect of the parallelization.

1 http://en.wikipedia.org/wiki/Implicit_parallelism
2 http://www.emn.fr/z-info/atlanmod/index.php/Parallel_ATL, EPL licence.

http://en.wikipedia.org/wiki/Implicit_parallelism
http://www.emn.fr/z-info/atlanmod/index.php/Parallel_ATL

658 M. Tisi, S. Mart́ınez, and H. Choura

In this paper we apply our approach to the development of a multi-threaded
version of ATL with the aim of improving scalability on multi-core and multi-
processor computers. However we plan in future work to adapt our automatic
parallelization approach and apply it to distributed environments, with the aim
to implement a distributed engine for ATL.

The paper is structured in the following way: Section 2 introduces the ATL
transformation language and the running case whereas Section 3 details the
parallelization problem and the proposed approach. Section 4 describes the im-
plementation of the parallel engine for ATL and Section 5 presents the results
of its performance evaluation. Section 6 discusses related work before the final
Section 7 that summarizes conclusions and future works.

2 The ATL Language

To briefly illustrate the ATL language we rely on a small example on which we
base also the experimentation section, i.e. the Class2Relational transformation3

that transforms class diagrams into relational models. In Listing 1.1 we show
an excerpt of this transformation (the full code can be found on the paper’s
website) and Fig. 1 illustrates its application to a very small model.

Listing 1.1. ATL Class2Relational transformation (excerpt)

1 rule Class2Table {
2 from

3 c : ClassDiagram ! Class
4 to

5 out : Relational ! Table (
6 name <− c . name ,

7 cols <− c . attr−>select(e | not e . multiValued) ,

8 key <− Set {key}
9) ,

10 key : Relational ! Column (
11 name <− ’ o b j e c t I d ’ ,

12 type <− thisModule . objectIdType()
13)
14 }
15

16 rule DataTypeAttribute2Column {
17 from

18 a : ClassDiagram ! Attribute (

19 a . type . oclIsKindOf(ClassDiagram ! DataType) and not a . multiValued
20)
21 to

22 out : Relational ! Column (
23 name <− a . name ,
24 type <− a . type
25)
26 }

The listing shows two rules, respectively responsible of transforming Classes
into Tables with their respective Key column (Class2Table) and single-valued
primitive-type Attributes into Columns (DataTypeAttribute2Column). Rules
transform occurrences of the input pattern (from) in occurrences of the output
pattern (to). Occurrences of the input pattern may be filtered by introducing a
guard, a boolean condition that source model elements must satisfy (e.g. line 19).
Elements of the output pattern can have their features initialized through the
use of bindings, expressions computing the values to assign to each feature (lines

3 http://www.eclipse.org/atl/atlTransformations/#Class2Relational

http://www.eclipse.org/atl/atlTransformations/#Class2Relational

Parallel Execution of ATL Transformation Rules 659

Fig. 1. Application of Class2Relational to a minimal model. For each rule application
a trace link is generated labeled with the name of the applied rule.

6-8, 11-12, 23-24). For expressing guards and bindings, ATL relies on a sepa-
rate query language, the OMG’s Object Constraint Language (OCL). To help
in factorizing OCL code ATL allows the definition of OCL functions, named
helpers. For instance the binding at line 16 calls the objectIdType() helper (not
included in the excerpt) that looks in the source model for a usable datatype
for identifiers. The two rules in the Listing 1.1 are examples of matched rules,
declarative rules that are spontaneously triggered when they match elements in
the source model. The language allows also the definition of lazy rules, that need
to be explicitly triggered by other rules.

Two features of the ATL language are not considered in the rest of the paper
and are left to future work: 1) ATL includes an imperative part that does not
increase the expressive power of the language, but is designed to simplify the
implementation in complex cases, that would be verbose to encode in declarative
rules; 2) ATL includes a separate execution mode called refining mode, in which
transformation rules are applied in-place for the refinement of the source model.
In the following we implicitly refer to the declarative part of ATL in standard
execution mode.

The standard execution mode of ATL imposes a few constraints that result
important for parallelization, since they strongly limit the possible dependencies
between rules:

– During the matching phase, output elements of transformation rules are
immediately instantiated and added to the target model, and are not subject
to following matches. This means that the output of a rule cannot be used
as intermediate data and cannot be transformed or deleted by another rule4.
This constraint is one of the main differences between ATL and typical MTLs
based on graph transformations.

– OCL expressions are never allowed to navigate the target model. The conse-
quence is that the OCL expression that calculates a binding cannot use the
output of another rule.

4 Lazy rules can be triggered recursively, but they always match over the source model
and not over the target elements previously generated.

660 M. Tisi, S. Mart́ınez, and H. Choura

– Single-valued properties in the target model are assigned once and are not
updated again during the transformation execution.

– Multi-valued properties in the target model can be updated multiple times,
but only for adding new values (this allows for incremental construction of
the property).

Because of these constraints matched rules depend on each other only in one
case, i.e. when they generate elements connected by a reference. In the example
the rule Class2Table generates a Table whose reference cols has to be connected
to some of the columns generated by the rule DataTypeAttribute2Column. The
connection (line 7) is made by calculating the set of Attributes in the source
model that correspond to the Columns to connect (in the example all the at-
tributes of the matched Class that are not multivalued). ATL will implicitely fill
the cols reference with all the Columns that are generated by any rule matching
the Attributes calculated at line 7. This mechanism is called implicit resolution
algorithm.

ATL transformations are compiled in a bytecode format called ASM, inter-
preted by the ASM virtual machine. The ATL architecture together with the
full execution algorithm for ATL transformations is described in [14].

3 ATL Parallelization

As several other transformation languages, the ATL language embeds a separate
query language that allows to define expressions over the models under trans-
formation. In the ATL case the query language is the functional language OCL,
and ATL restricts its use on computations over the source model. This constraint
makes the execution of ATL and OCL two independent phases: 1) ATL launches
the execution of OCL code from guards or bindings; 2) OCL calculates a result
in a side-effect free way, by navigating the source model and possibly calling
other OCL functions (helpers), and returns the result to ATL.

This separation makes the two problems of parallelizing ATL and OCL com-
pletely independent. The automatic parallelization of OCL code is a typical
problem of parallelization of a functional language, and it is already studied in
literature [21]. For this reason in the following we will deal only with the par-
allelization of the rule execution language. Our resulting engine will of course
support OCL expressions but they will be executed in the same task of the rule
application that launches them. A parallel engine for OCL may be integrated in
future, and it will not require changes to the parallelization mechanism discussed
in this paper.

In the next two sections we consider the parallelization of the transformation
execution language as a problem composed by two orthogonal subproblems.

1. Decomposition, i.e., how to decompose the transformation computation to
parallelize the calculation.

2. Synchronization, i.e., how to coordinate the dispatched tasks and manage
their inter-communication. As we are using shared memory structures, con-

Parallel Execution of ATL Transformation Rules 661

current access to these data structures has to be optimized to maximize
parallelism.

3.1 Decomposition

The computation of a model transformation is composed of 1) a set of expression
evaluation over source model elements (matchings), 2) a set of rule applications,
one for each match found in the first set. A significant part of the computation
of each rule application seems to be independent from other rule applications,
suggesting the possibility of executing each rule application and each match in a
different thread. While the approach would be probably suitable to small models,
VLMs would force the engine to instantiate millions of tasks per transformation.
Even with the support of an efficient job scheduler, responsible of assigning
the jobs to a limited fixed set of threads, the cost of instantiating, keeping in
memory and synchronizing between millions of jobs would overtake the benefits
of parallelism.

For this reason we look to a more coarse-grained decomposition for the trans-
formation computation. Traditional literature on parallelism distinguishes two
opposite approaches (and a set of intermediates between the two): task paral-
lelism and data parallelism.

Task Parallelism. In task parallelism, each task contains a different set of
operations, but works on the same data set. The approach is especially convenient
when the fact of working on the same data does not introduce dependencies
among the execution threads.

In our model transformation scenario, an example of task parallelism is group-
ing the computation by rule so that: 1) each task executes a different rule, in-
cluding the OCL expressions for guards and bindings; 2) each task works on the
full source and target models.

In this paper we will follow this approach, motivated by our main argument:
the ATL language structures the computation in rules, that the language con-
straints (see Section 2) make highly independent from each other. As we will see
in the next section, the manipulation of shared data will introduce synchroniza-
tion issues that we will need to address relying on the ATL specificities.

After dividing the computation by rule, we have the option to further decom-
pose the rule in two execution threads for the two well-defined phases of a rule
execution: matching and rule application. Since every rule application needs to
rely on the output of its matching phase, the strong dependency between the
two threads hampers a direct improvement in parallelization. However, as we
will see in the next section, dividing matching and rule application provides a
better flexibility that we can exploit for improving synchronization.

In summary we instantiate two jobs for rule. For instance, the execution of
the limited excerpt in Listing 1.1 results in four jobs:

– a match job for Class2Table looks for elements of type Class, and for each
one it instantiates a trace Link, together with an empty Table and an empty
Column as placeholders for the next job.

662 M. Tisi, S. Mart́ınez, and H. Choura

– an apply job for Class2Table computes and assigns the properties of the
Tables and the Columns created by the corresponing matcher.

– a match job for DataTypeAttribute2Column looks for elements of type At-
tribute that satisfy the condition at line 19, and for each one it instantiates
an empty Column.

– an apply job for DataTypeAttribute2Column computes and assigns the prop-
erties of the Columns created by the corresponding matcher.

Data Parallelism. In pure data-parallelism approaches, the input domain is
partitioned and each task executes the same operations on a different partition.
In model transformations terms, source and optionally target models are divided
in submodels and each transformation task is responsible for transforming its
assigned chunk. The approach in general reduces inter-thread communication,
by eliminating shared data, and by concentrating collaboration issues in a final
merging step of the generated partial results.

While we did not address this kind of parallelism in this paper we recognize
its importance, especially when moving to distributed environments, where com-
munication cost is higher. We plan in future work of studying this possibility
and the interaction with task parallelism in model transformations.

3.2 Task Synchronization

A decomposition of a model transformation in parallel tasks may in general
introduce synchronization issues for accessing shared data structures. Fig. 2 vi-
sualizing this problem by representing the Parallel Transformation, a read-only
source model, and a set of read-write data structures, that comprise the Tar-
get Model, a set of Trace Links to store information about rule executions, and
other generic runtime data structures used by the transformation code, or the
transformation execution algorithm.

Dashed ellipses in Fig. 2 represent possible synchronization issues:

– the source model is read-only, hence concurrent reads do not require a syn-
chronization mechanism;

– CRUD operations on the target model may require synchronization. This is
true for CRUDs on model elements, or on single properties (for the sake of
the discussion in Fig. 2 we distinguish operations on single-valued properties
from operations on multi-valued properties). Moreover operations on prop-
erties may need to be synchronized with operations on elements. E.g., one
thread may need to finish creating an element, before another thread tries
to set a contained property.

– CRUD operations on trace links may require synchronization. For instance
trace links may be stored in a collection that does not allow link creations
to interleave. Moreover CRUDs on trace links need to be synchronized with
CRUDs on model elements. E.g., a target element creation needs to be com-
plete before the corresponding trace link can be connected to the element.

– finally the engine may require synchronization on other runtime data, coming
from the transformation code or the internal engine implementation.

Parallel Execution of ATL Transformation Rules 663

Fig. 2. Synchronization for concurrent data access in parallel transformations

All these possible synchronization points make parallelization a difficult task
for model transformations in a general purpose language and risk to hamper the
actual gain in scalability. In the next section we will try to reduce the synchro-
nization points by exploiting the specific constraints of ATL.

One Task per ATL Rule. When the transformation is written in ATL and we
decide to assign a different task to each ATL rule, the number of operations that
may require synchronization results strongly reduced w.r.t. the general case, as
shown in Fig. 3:

– On the target model:
• After they are created, model elements are not further modified by the
ATL engine (but their properties are). However, element creations need
to be synchronized, since they operate on the collections used by the
EMF framework, that does not offer any support to concurrent access.

• Single-valued properties are only created and contextually associated to
a value. Since they are stored in EMF as Java references and they are
not subject to modifications, they do not need synchronization.

• Multi-valued properties are created and updated by adding elements
during the transformation. EMF stores multi-valued properties in Java
Lists that do not support concurrent update.

• No synchronization is needed between operations on properties and op-
erations on elements, since in ATL a property can be assigned only by
the rule that creates the element. Hence, element creation and property
assignment always happen in the same thread.

664 M. Tisi, S. Mart́ınez, and H. Choura

Fig. 3. Synchronization in parallel ATL transformations

– On trace links:

• Trace links can be created by some rule, and only read by other rules,
requiring a synchronization method. However no update or deletion is
allowed.

• No synchronization is needed between element creation and link creation,
since they always happen in the same rule/thread.

– On runtime data:
• ATL supports the definition of runtime data structures in the OCL part,
but being OCL side-effect free they do not require synchronization.

• The engine does not introduce internal data structures that need syn-
chronization.

While the synchronization in ATL results simplified w.r.t. Fig. 2, it still may
represent a significant overhead. Critical sections for each one of the operations
are short, since they consist in a single elementary operation on a collection, but
the number of passages by a critical section is proportional to model size.

In the next section we will try to optimize the synchronization of operations
over trace links. Instead, unfortunately, not much can be optimized about oper-
ations on the target model, since the creation of elements and properties cannot
be avoided and EMF takes charge of this creation by using standard collections.
An optimization in this sense should be done on the modeling framework side:
EMF may provide non-blocking operations for element and property creation.

One Task per Match/Apply. We can strongly reduce lock contention on
accessing trace links by dividing each rule in two separate threads, as explained
in Section 3.1, and organizing job dispatching in two phases (Fig. 4).

In a first matching phase all the matching jobs are executed. The jobs are re-
sponsible for creating elements and creating trace links and these two operations
still need synchronization, since they involve concurrent matchers modifying the
same collections.

A second apply phase is activated when all the matchers have completed ex-
ecution. The launch message in Fig. 4 represents a hard synchronization point,
and it negatively affects the total computation time especially when matchers
have very different execution time. In the worst case of one matcher much slower
than the others, the hard barrier prevents other threads to be launched and the

Parallel Execution of ATL Transformation Rules 665

Fig. 4. Synchronization in two-phases parallel ATL transformations

other cores stay idle. An analogous behavior happens at the end of the trans-
formation (but it is common to the previous approaches): the transformation
termination is determined by the end of the slowest parallel job.

The gain in this wait stands in the fact that the trace link list at this point
is read-only and no synchronization is needed during all the apply phase. To
have an idea of the impact of this change, we have to consider that an ATL
transformation executes a readLink operation each time it fills a reference in the
target element, if the reference involves more rules (the most common case). In
other words the number of readLink operations is of the same order of magnitude
of the number of references in the target model. In Section5 we will provide
experimental evidence of the resulting speed-up.

4 The Parallel ATL Engine

We have adapted the ATL compiler and virtual machine (VM) to implement
automatic parallelization. The new engine has full support for declarative ATL
and parallelizes computation based on matches rules, following the approach
described in the previous section.

One of the criteria for the engine adaptation is to maintain the separation
of concerns between compiler and VM: 1) the VM provides basic primitives to
enable parallelization and guarantees the absence of race conditions on concur-
rent access; 2) the compiler defines the parallel tasks by translating ATL rules
in low-level primitives.

In this model, decomposition (Section 3.1) is implemented in the compiler
together with the division in phases, and synchronization of concurrent access
(Section 3.2) is implemented in the virtual machine. A consequence is that other
transformation languages that can compile towards our virtual machine, can in
principle implement their own parallelization mechanism by using our primitives.

666 M. Tisi, S. Mart́ınez, and H. Choura

4.1 Virtual Machine

The main virtual machine primitive to launch a parallel task is a new opcode
in the ASM bytecode language: the opcode FORK spawns a new job containing
the operation passed as operand. The new primitive is analogous to the pre-
existing CALL that launches another operation in the same thread. The CALL
opcode takes an operation reference as operand and derives the program control
in order to execute the opcodes the operation contains. When the processing of
the opcodes terminates, control is returned to the caller operation that continues
its execution. Conversely, the implementation of the FORK opcode wraps the
operation referenced as its operand in a Java Runnable. Then, it calls a job
executor to add this Runnable to the list of tasks to be launched. After this,
the program control is immediately returned to the caller operation. A Java
ExecutorService allocates the transformation tasks to a fixed number of threads
passed as parameter at the transformation launch.

For thread coordination, the VM adds to the native library another data type,
the integer semaphore, mapped to a Java Semaphore. In this way the compiler
can instantiate semaphores and call primitives for initializing it, acquiring and
releasing tokens. Token acquisition blocks the caller until a token becomes avail-
able (i.e. the integer semaphore contains a value >= 0). Integer semaphores are
used by the compiler to synchronize threads at the end of each phase.

Finally, as discussed in Section 3.2 a set of operations on trace links and
target models need to be made thread safe. In the VM implementation, a syn-
chronized block is added to the VM operations for creating new model elements
and updating multivalued properties in the target model. The same approach is
followed for the operation in charge of adding new links to the hash registry of
transformation tracelinks.

4.2 Compiler

The default ATL compiler has been subject to the minimal modifications nec-
essary to implement our parallelization algorithm. With respect to the old one,
the new compiler:

– Adds to the beginning of the transformation the initialization of two integer
semaphores with a negative number of tokens, equal to the number of rules.

– Creates a match operation for each rule and calls them sequentially using
the FORK opcode.

– Creates a single applyPhase operation and calls it using a FORK.
– Adds as first instruction of the applyPhase operation a request for a token
from the first semaphore. The request is refused until enough tasks have
released a token on the semaphore.

– Adds as last instruction of each match operation a release instruction on the
first semaphore.

– Creates in the applyPhase operation, an apply operation for each rule and
calls them sequentially with FORK.

Parallel Execution of ATL Transformation Rules 667

– Adds as last instruction of the main task a request for a token on the second
semaphore.

– Adds as last instruction of each apply operation a release instruction on the
second semaphore.

5 Experimental Evaluation

In this section we assess the performance of the parallel ATL engine by running
two experimentations.

In the first experimentation we compare three equivalent implementations of
the simple Class2Relational transformation, part of which has been presented in
Listing 1.1: a Java implementation using the EMF Java API, an ATL implemen-
tation running on the standard ATL engine and the same ATL implementation
running on the parallel ATL engine. The purpose is comparing execution time of
parallel ATL over normal ATL and Java in a typical system. The ATL implemen-
tations have been developed by simplifying the Class2Relational transformation
from the ATL Transformation Zoo [1]. For developing the Java implementation
we provided an EMF expert with the specification of the ATL transformation.

We execute the three transformations feeding them with large class models
generated by a stochastic metamodel instantiator that we developed adapting
a publicly available tool from Obeo5. The tool allows us to define probability
distributions for all the element types and properties of the metamodel and use
them to drive instantiation. In our experimentation we define a single uniform
probability distribution, and we use it for the number of Packages to generate,
the number of Classes of each Package, the number of Attributes for each Class.

We use the instantiator to generate two sets of 10 models. For the first set the
distribution is designed to produce models with an average of 10,000 elements,
for the second the average is 1,000,000 elements. Given one of the two sets, and
one of the three implementations, we produce 100 observations by running 10
times the transformation of the 10 models in the set. We summarize the results
in Fig. 5 where each box represents 100 observations. The leftmost plot refers to
models of 10,000 elements, the rightmost to models of 1,000,000 elements.

The tests have been performed on an environment with the following char-
acteristics: 8-cores processor Intel Core i7-2760QM CPU @ 2.40GHz, with 8GB
of physical memory, and running Ubuntu Linux (64 bits) version 12.10 (quan-
tal) with Linux kernel 3.5.0-25-generic. As application environment, tests where
performed on the Eclipse Platform version 4.2.1 on top of the OpenJDK Java
Virtual Machine version 1.7.0 15. Note that the i7 CPU has only 4 physical
cores, while it presents 8 cores to the OS by using hyper-threading.

In measurement, model loading and model serialization times were not taken
into account. Loading and serialization are time-consuming tasks that also im-
pact scalability when working with very big models. However, dealing with such
problems lies out of the scope of the present work.

5 https://github.com/Obeo/emf.specimen

https://github.com/Obeo/emf.specimen

668 M. Tisi, S. Mart́ınez, and H. Choura

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ATL Java Parallel ATL

ms

0

20

40

60

80

100

120

140

160

180

200

ATL Java Parallel ATL

ms

Fig. 5. Box plots summarizing the execution times of the same transformation on 4
cores. The leftmost plot refers to models of 10,000 elements, the rightmost to models
of 1,000,000 elements.

From Fig. 5 we can observe that on the multi-core processor the ATL trans-
formation on the parallel engine performs significantly better then the Java and
standard ATL versions. The performance improvement is independent on the
size of the models, resulting in a speed-up respectively of 1.49 and 1.48 (w.r.t.
normal ATL) for the 10,000 and 1,000,000 elements model sets. We can see also
that values have a lower dispersion with the parallel approach, that appears more
robust (for 1,000,000 elements, the standard deviation is 1990ms for standard
ATL, 2053ms for Java, and 1319ms for parallel ATL). While in this experiment
we limited the processor to use always 4 cores, in the second experimentation
we intend to measure the speed-up of the approach w.r.t. the number of cores.

Fig. 6 presents for each number of cores the correspondent speed-up of the par-
allel ATL engine over the default one. Tests are run in the same configuration as
above but to stress the system and obtain more significant values we use a more
complete and computationally expensive version of the Class2Relational trans-
formation. While the original ATL implementation of Class2Relational counts
only 6 rules, in order to keep all 8 virtual cores occupied during the transfor-
mation computation we have developed a new version that includes rules to
translate super-classes, abstract classes and their attributes. The complete im-
plementation is available in the paper’s website.

To better evaluate the effect of model size on the speed-up, we run the test
over 4 model sets of 10 models each. Model sets are generated as above and their
respective average model size is 1000, 10000, 100000 and one million elements.
Table 1 shows the average execution times in the different configurations.

The test shows a higher speed-up w.r.t. the previous experimentation, proving
that the second version of Class2Relational is more parallelizable than the first.
The speed-up curve, apart from small fluctuations shows a constant increase
exhibiting good scalability on the number of cores. On the other side the graph
shows that the speed-up is negatively influenced by model size, at least for small
models. Parallelism on models of 1,000 elements perform significantly better than
on models of 10,000 elements. However from a certain size the speed-up stays
constant and does not deteriorate even for VLMs. The speed-up over VLMs

Parallel Execution of ATL Transformation Rules 669

�

���

�

���

�

���

�

���

�

� � � � 	
 �

�������

��	�

����
�����
������
�������

Fig. 6. Speed Up

is more than 2.5, from which we can derive that the transformation over the
parallel engine contains at least a 60% of parallelized code. The fact that only
the first 4 cores are physical explains the little gain in speedup obtained from 4
cores (2.2) to 8 cores (2.5).

6 Related Work

Automatic parallelization is an under-studied subject in model transformations,
and the parallelization properties of the most popular model transformation
languages (QVT, ATL, ETL, Kermeta, ...) are still unknown. Conversely par-
allelization is a deeply studied subject in the graph-transformation community.
A seminal work is [7], where the authors describe the concept of amalgamation
as a generalization of the theorem of parallel graph transformation. Basically
common parts of rule derivations are joined (amalgamated) in a single deriva-
tion. This allows to relax the requirement of parallel independence so that rules
do not need to be independent anymore as long as the common part is amal-
gamated and executed first. [12] studies parallel independence in hierarchical
graph transformations. The problem of parallelizing graph transformations is
however very different (and more difficult) than parallelizing model transfor-
mations, especially because of need to handle rule recursion and convergence.
Traditionally the attention of graph transformations is more directed on opti-
mizing the matching phase, that is an NP task and the typical bottleneck for
transformation performances.

Table 1. Average execution times (in milliseconds) and speed-up (between parenthesis)
per model size and number of cores

Elem.
Std. Parallel ATL
ATL 2 cores 3 cores 4 cores 5 cores 6 cores 7 cores 8 cores

1000 83.4 48.9(1.7) 31.7(2.6) 28.8 (2.8) 28.2(2.9) 26.1(3.1) 26.5(3.1) 24.9(3.3)
10000 1338.8 1013.4(1.3) 685(1.9) 592.8(2.2) 565(2.3) 556.2(2.4) 532(2.5) 505.3(2.5)
100000 34942 24137(1.4) 17849(1.9) 16312(2.1) 15742(2.2) 15367(2.2) 14483(2.4) 13732(2.5)
1000000 308290 211032(1.4) 162487(1.9) 142262(2.1) 131393(2.3) 117439(2.6) 123122(2.5) 121341(2.5)

670 M. Tisi, S. Mart́ınez, and H. Choura

In [13] the authors implement parallel graph transformations on multicore sys-
tem with the VMTS tool. Similarly to our approach, the authors divide execution
into two phases. The matching phase is parallelized but the apply phase is exe-
cuted sequentially. In [15] the same authors distinguisg between transformation-
level (i.e., paralellizing rules) and rule-level (i.e. parallelizing matching) par-
allelism and contribute an algorithm for the latter. but they do not provide
concrete estimations of performance gain and scalability. Our approach would
mostly be located at the transformation-level. Some authors apply parallel graph
transformation to manipulate EMF models. The authors in [11] study parallel
graph transformations on EMF based on the concept of amalgamated graph
transformations. Viatra 2 [22] can rewrite multiple matches of a rewriting rule
in parallel, but it does not support parallelization among different rules.

A related work on ATL is [9], where authors propose some early research ideas
about parallelizing and distributing the language. They propose a distributed
implementation based on MapReduce [10]. MapReduce is a programming model
for expressing distributed computations on massive amounts of data and an
execution framework for large-scale data processing on clusters of commodity
servers. Programs written in this functional style are automatically parallelized
and executed on a large cluster of commodity machines. Our work may help
in distributing ATL with the aim of making it a transformation language for
distributed computation.

The work in [19] for parallelizing the XSLT language has many analogies
to ours. The authors study the implicit parallelism of XSLT transformations,
with different execution models, task and data parallelism, and they provide an
engine implementation designed to work on multicore systems. They also show
in a performance evaluation the speedup and scalability gains.

7 Conclusions and Future Work

In this article we added an implicit parallelization mechanism to the ATL lan-
guage, and we studied how the structure of the language helps in overcoming
some typical synchronization problems of parallelization. We believe that auto-
matic parallelization may result beneficial to the general acceptance of MDE in
industries handling big data.

While in this work we focused on task parallelism, in future we plan to study
data parallelism for ATL and possible intermediate approaches. A study on static
analysis of rule dependencies may help in anticipating some rule applications,
without the need to re-introduce locks on data access. Finally implicit paral-
lelism has its own drawbacks (difficulties in debugging, reduced control by the
programmer over the parallel execution) that still need to be studied for ATL.

Parallel Execution of ATL Transformation Rules 671

References

1. ATL Transformation ZOO, http://www.eclipse.org/atl/atlTransformations/

2. AUTOSAR Consortium: The AUTOSAR Standard, http://www.autosar.org/

3. GraBaTs 2009 Case Study,
http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study.

4. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010)

5. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proceed-
ings of Workshop on Best Practices for Model-Driven Software Development at
the 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (October 2004)

6. Blair, G., Bencomo, N., France, R.B.: Models@ run. time. Computer 42(10), 22–27
(2009)

7. Boehm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. J. Comput. Syst. Sci. 34(2-3), 377–408 (1987)

8. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The fujaba real-
time tool suite: model-driven development of safety-critical, real-time systems. In:
Proceedings of the 27th International Conference on Software Engineering, pp.
670–671. ACM (2005)

9. Clasen, C., Del Fabro, M.D., Tisi, M., et al.: Transforming very large models in
the cloud: a research roadmap. In: First International Workshop on Model-Driven
Engineering on and for the Cloud (2012)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

11. Ehrig, H., Golas, U., Taentzer, G., Ermel, C., Biermann, E.: Parallel independence
of amalgamated graph transformations applied to model transformation. In: Graph
Transformations and Modeldriven Engineering, pp. 1–21 (2010)

12. Habel, A., Hoffmann, B.: Parallel independence in hierarchical graph transforma-
tion. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 178–193. Springer, Heidelberg (2004)

13. Imre, G., Mezei, G.: Parallel graph transformations on multicore systems. In:
Pankratius, V., Philippsen, M. (eds.) MSEPT 2012. LNCS, vol. 7303, pp. 86–89.
Springer, Heidelberg (2012)

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1), 31–39 (2008)

15. Mezei, G., Levendovszky, T., Mészáros, T., Madari, I.: Towards truly parallel model
transformations: A distributed pattern matching approach. In: IEEE EUROCON
2009, pp. 403–410. IEEE (2009)

16. Patterson, D.A., Hennessy, J.L.: Computer organization and design: the hardware/-
software interface. Morgan Kaufmann (2009)

17. Pohjonen, R., Tolvanen, J.-P., Consulting, M.: Automated production of family
members: Lessons learned. In: Proceedings of the Second International Workshop
on Product Line Engineering-The Early Steps: Planning, Modeling, and Managing
(PLEES 2002), pp. 49–57. Citeseer (2002)

18. Steel, J., Drogemuller, R., Toth, B.: Model interoperability in building information
modelling. Software & Systems Modeling 11(1), 99–109 (2012)

http://www.eclipse.org/atl/atlTransformations/
http://www.autosar.org/
http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study

672 M. Tisi, S. Mart́ınez, and H. Choura

19. Sun, Y., Li, T., Zhang, Q., Yang, J., Liao, S.-W.: Parallel xml transformations on
multi-core processors. In: IEEE International Conference on e-Business Engineer-
ing, ICEBE 2007, pp. 701–708. IEEE (2007)

20. Ulrich, W.M., Newcomb, P.: Information Systems Transformation: Architecture-
Driven Modernization Case Studies. Morgan Kaufmann (2010)

21. Vajk, T., Dávid, Z., Asztalos, M., Mezei, G., Levendovszky, T.: Runtime model
validation with parallel object constraint language. In: Proceedings of the 8th In-
ternational Workshop on Model-Driven Engineering, Verification and Validation.
ACM (2011)

22. Varró, D., Balogh, A.: The model transformation language of the viatra2 frame-
work. Science of Computer Programming 68(3), 214–234 (2007)

Transformation of Models Containing

Uncertainty

Michalis Famelis, Rick Salay, Alessio Di Sandro, and Marsha Chechik

University of Toronto
Toronto, Canada

{famelis,rsalay,adisandro,chechik}@cs.toronto.edu

Abstract. Model transformation techniques typically operate under the
assumption that models do not contain uncertainty. In the presence of
uncertainty, this forces modelers to either postpone working or to arti-
ficially remove it, with negative impacts on software cost and quality.
Instead, we propose a technique to adapt existing model transforma-
tions so that they can be applied to models even if they contain un-
certainty, thus enabling the use of transformations earlier. Building on
earlier work, we show how to adapt graph rewrite-based model transfor-
mations to correctly operate on May uncertainty, a technique that allows
explicit uncertainty to be expressed in any modeling language. We eval-
uate our approach on the classic Object-Relational Mapping use case,
experimenting with models of varying levels of uncertainty.

1 Introduction

Model Driven Engineering (MDE) promises to accelerate and improve the quality
of software development: software is described using high-level models which are
easy to reason with. These models are then transformed into lower-level designs
through a series of model transformations. Finally, low-level designs are used for
effective code generation.

One of the factors prevalent within software engineering is model uncertainty
which exists whenever a modeler is unsure about the information in the model.
Uncertainty stems from a variety of causes including stakeholder conflicts [16],
incomplete information [28], alternative design decisions [25], etc. Existing MDE
solutions do not handle models with uncertainty. So when uncertainty is unre-
solved, the modeler should either delay the application of transformations until
more information becomes available, or make premature resolutions in order to
apply transformations, thus creating a risk that these resolutions are incorrect.
In either case, uncertainty diminishes the benefits of MDE.

In this paper, we propose an approach that allows applying existing transfor-
mations to models containing uncertainty. The essence of the approach involves
automatically modifying – “lifting” – transformations so they operate on models
with uncertainty and correctly transform both the content of the model and the
uncertainty about it. As a result of our approach, transformations can be applied
early in the model development lifecycle, tolerating the uncertainty and allowing

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 673–689, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

674 M. Famelis et al.

Fig. 1. (a) May model M1, showing points of uncertainty. (b) M1 as a typed graph
(UML abstract syntax). (c-e) Concretizations m11,m12,m13 of M1.

modelers to defer its resolution until extra information is available. This elimi-
nates the need to delay transformation application and removes the pressure to
potentially compromise model quality by resolving the uncertainty prematurely.

Uncertainty has been studied in different contexts including requirements en-
gineering [6], adaptive systems [21] and software processes [13] but there has
been little work specifically on model uncertainty. To address this gap, we have
proposed a language-independent method of expressing uncertainty within mod-
els [10], through May models. May models allow a modeler to specify whether
an element should be present, or its presence is unknown. Optional May formu-
las specify constraints over presence/absense of elements, in order to disallow
infeasible or undesired uncertainty resolutions.

In this paper, we develop an approach for automatic “lifting” of transforma-
tions specified as graph rewrite rules so they apply to models containing May
uncertainty. Specifically, the paper makes the following contributions:

1. an approach for transforming models that contain uncertainty, centered
around the notion of lifting;

2. an automated method for creating lifted versions of existing transformation
rules, so that they apply to May models;

3. an application of the approach to the classic Object-Relational Mapping
(ORM) problem to assess its feasibility.

Relation to Previous Work. We first introduced the notion of lifting model
transformations in [11]. In that approach, lifting is accomplished purely in propo-
sitional logic, via the use of transfer predicates. Rules are first turned into “tem-
plate predicates” which, given a match in the input model, are instantiated with
the propositional variables of the input model. This approach has a number of
problems: (a) Transfer predicates need to be constructed ad-hoc, separately for
each rule. On the other hand, the lifting approach proposed in this paper can
be used for arbitrary rules. (b) Instantiation of the templates requires a-priori
knowledge of the vocabulary of the input model, making it awkward to handle
expanding/contracting vocabularies via additive/deleting rules. Instead, lifting

Transformation of Models Containing Uncertainty 675

is not dependent on the input model or the matching site. (c) The transfer
predicates approach cannot handle NACs. (d) The May models resulting from
applying the transfer predicates approach are expressed as propositional formu-
las over the set of both the input and the output model variables: in effect,
the new model was expressed as a delta from the old. Thus, obtaining the new
model required quantifying the old variables out – a computationally expensive
process. (e) The transfer predicate approach requires a separate testing step to
verify that the transformation was applied correctly. Moreover, testing entails
enumerating all concretizations! Instead, the lifting presented here is guaranteed
to be correct by construction.

In [10], we studied a different form of May model transformation: uncertainty-
reducing refinement. The goal of this transformation is to reduce the number of
possible concretizations of a given model with uncertainty, by specifying ad-
ditional information. Work in [19,18] expanded the scope of the problem to
additional uncertainty types, comprising the MAVO uncertainty framework de-
scribed in [20]. The objective of this work is different: lifted transformations do
not change the level of uncertainty by removing concretizations. Moreover, we
aim to adapt classical transformations to May models instead of developing and
checking transformations developed specifically for models with uncertainty.

The rest of this paper is organized as follows: We introduce a motivating
example in Sec. 2. In Sec. 3, we give the necessary background. We describe
the lifting process in Sec. 4 and evaluate it in Section 5. After comparing our
approach with related work in Sec. 6, we conclude in Sec. 7 with a summary and
a discussion of follow-on research.

2 Motivating Example

In this section, we introduce a running example to motivate and illustrate the
key points of our approach. Suppose a modeler is creating a UML class diagram
for an automated reasoning engine. The modeler has decided that there should
exist a class Solver which throws exceptions, objects of type SolverException,
whenever it reaches an error state. However, the modeler has yet to make the fol-
lowing design decisions: (a) whether SolverException should be an inner class
of Solver, and (b) whether SolverException should have a String attribute
called effect that would record an estimation of the effect of the exception on
the reasoning process. In addition, the modeler expects that at least one of these
features will be present in her model.

The resulting UML class diagram with uncertainty is encoded as a May model
M1 in Fig. 1(a). In this model, “⊕” is the UML symbol for a “nested class” and
used here to indicate that SolverException is an inner class of Solver. The
syntax for capturing uncertainty in M1 is described in [14]. This model has
two points of uncertainty – the relationship between the classes Solver and
SolverException (denoted by x) and the presence of the effect attribute in
class SolverException (denoted by y). Maybe elements that make up each point
of uncertainty are enclosed in dashed ellipses. To better illustrate the details of
each point of uncertainty, we showM1 as a type graph (a simplified version of the

676 M. Famelis et al.

Fig. 2. Transformation rule REV for doing the Encapsulate Variable refactoring

UML abstract syntax) in Fig. 1(b). The node e and the edges sn, eo, et, en, ept
are annotated with Maybe and thus indicated using dashed lines. An additional
May formula Φ1, also shown in Fig. 1(b), constrains the possible combinations of
Maybe elements, defining the possible ways in which uncertainty can be resolved.
Specifically, each Maybe element is represented by a propositional variable of the
same name in the May formula. Thus, allowable configurations of the May model
correspond to valuations of the variables that satisfy the May formula. In our
scenario, the modeler’s uncertainty can be resolved in one of three possible ways,
corresponding to the models m11,m12,m13 shown in Figs. 1(c-e), respectively.
These models are called concretizations of M1.

Assume that the modeler notices that her model has an anti-pattern, namely,
that the attribute effect is public. She decides that, unless SolverException
is an inner class, effect should be made private for security reasons, and be
accessed through a getter method. This can be accomplished by performing the
Encapsulate Variable refactoring [3]. A generic method for implementing this
refactoring using graph transformations was described by Mens et al. [15]. A
simplified version of this rule, called REV , is shown in Fig. 2. The left-hand side
(LHS) of the rule matches a node a (and its associated edges such as ao:owner)
that represents a public attribute . The right-hand side (RHS) makes it private
(by deleting the isPublic edge apt from a to True and adding a new isPublic

edge apf from a to False). It also creates a public getter operation ge and its
associated edges. In addition, the rule has two negative application conditions
(NACs), i.e., conditions under which the rule should not be applied. These are:
NAC1, specifying the case when the class containing the public attribute is an
inner class, and NAC2, specifying the case when the class already has a getter.

Rule REV cannot be directly applied to the May model M1 because it contains
uncertainty. Our goal is thus to create its “lifted” version, REV that can be
applied directly to M1. The intuition behind such a lifting is as follows [11]: take
the three concretizations, m11, m12, m13, of M1; apply REV to each of them,
resulting in models m21, 22, m23 in Fig. 3(a-c); represent the resulting models as
a May model M2 in Fig. 3(d). That is, applying the lifted rule to a May model
should be equivalent to a representation of the result of applying the original
rule to each of the concretizations of the May model. So, applying the lifted
version REV of REV to M1 should produce the May model M2 directly, without
having to produce and transform individual concretizations. In this paper, we

Transformation of Models Containing Uncertainty 677

Fig. 3. (a-c) Classical models resulting from applying REV to the classical models in
Fig. 1(c-e). (d) The result of applying the lifted version REV to M1 directly: the May
model M2.

use this example to describe our technique for lifting transformations expressed
as graph rewrite rules to correctly handle May models.

3 Background

In this section, we provide the background necessary for the rest of the paper
and fix the notation.

May Models. The formal definition and semantics of May models is given in
[12]. In this section, we give an informal definition and illustrate it using the
motivating example.

Definition 1 (May model). A May model M is a tuple 〈G, ann, ΦM 〉, where
G is a typed graph called a base graph, ann is a function that annotates a subset
SM of elements of G with Maybe, and ΦM is the May formula. The tuple 〈G, ann〉
representing the Maybe-annotated typed graph G is called the May graph. SM is
denotes the set of all Maybe elements of M .

The base graph is typed by a metamodel, represented by a type graph. A
simplified type graph for class diagrams is shown in Fig. 4. M1 is shown as
an instance of this type graph in Fig. 1(b) Annotating an element with Maybe
indicates the uncertainty of the modeler about whether that element should be
part of the model or not. In Fig. 1(b), Maybe-annotated elements such as the
attribute node e are shown with dashed lines.

EachMaybe element is represented by a propositional variable which expresses
the proposition “the element is part of the model”. The May formula is expressed
over this vocabulary of variables. Allowable configurations of Maybe elements are
thus specified by the satisfying assignments of the May formula.

Definition 2 (Concretization). A concretization of a May model 〈G, ann, ΦM 〉
is a classical model derived from M by assigning each propositional variable for

678 M. Famelis et al.

Fig. 4. Simple type graph for class diagrams

a Maybe element of M to either True or False, such that ΦM is satisfied. The
set of all concretizations of a May model M is denoted by [M].

Thus, a May formula ensures that the corresponding May model is an exact
representation of a set of classical models.

[M1] = {m11,m12,m13} where the classical models m11,m12,m13 are shown
in Fig. 1(c-e). Each of them represents a case where all uncertainty is resolved,
i.e., all variables corresponding to Maybe elements have been set to either True
or False. For example, model m13 in Fig. 1(e) can be obtained by satisfying the
last disjunctive clause of Φ1, i.e., by setting sn to False and e, eo, etc. to True.

For example, consider a May model M ′
1 in which the class Solver is also

annotated with Maybe, but whose May formula is changed so that each clause
contains the non-negated term Solver. Even though Solver is annotated with
Maybe in M ′

1, all concretizations of M
′
1 must contain it and thus [M1] = [M ′

1].
We call models that have the same set of concretizations equivalent. A May
model M is said to be in the graphical reduced form (GRF) iff an element is
annotated with Maybe in the May graph iff it is not common to all of M ’s
concretizations. In [12] we give an algorithm for transforming any May model to
a GRF equivalent model. M1 is given in GRF.

Model Transformations. We focus on graph transformations [9]. Such trans-
formations apply to models that do not contain uncertainty, e.g.,m11 in Fig. 1(c).
They are implemented by executing a set of graphical rules defined as follows:

Definition 3 (Transformation rule). A transformation rule R is a tuple R =
〈{NAC},LHS,RHS〉, where the typed graphs LHS and RHS are respectively called
the left-hand and the right-hand sides of the rule, and {NAC} represents a
(potentially empty) set of typed graphs, called negative application conditions.

We show the RHS and LHS of the rule REV in Fig. 2. In addition, REV contains
two NACs (NAC1 and NAC2), indicated by a dotted border.

The LHS, RHS and NACs of a rule consist of different parts, i.e., sets of model
elements which do not necessarily form proper graphs. These parts play different
roles during the rule application:

Cr: The set of model elements that are present both in the LHS and the RHS,
i.e., remain unaffected by the rule.

Dr: The set of elements in the LHS that are absent in the RHS, i.e., deleted by
the rule.

Ar: The set of elements present in the RHS but absent in the LHS, i.e., added
by the rule.

Nr: The set of elements present in any NAC, excluding those included in Cr.

Transformation of Models Containing Uncertainty 679

Fig. 5. Parts of the rule REV . Each rule part contains only those elements whose label
appears in bold serif font1

The parts of the example ruleREV from Fig. 2 are shown in Fig. 5. Specifically,
Cr is the set1 {a, ao, an, at, c1, ct}, Dr is the (unary) set {apt}, Ar is {g, go, gn,
gp, gt, apf}, and Nr is {g, gn, go, gt, c1n, c2}.

A rule R is applied to a model m by finding a matching site of its LHS in m:

Definition 4 (Matching site). A matching site of a transformation rule R in
a model m is a tuple K = 〈N,C,D〉, where C and D are matches of the parts
Cr and Dr of the LHS of R in m, and N is the set of all matches of NACs in
m that are anchored at the matches C and D.

For example, a matching site K1 for the rule REV in the model m11 in Fig. 1(c)
is 〈C1, N1, D1〉, where C1 = {e, eo, en, et, SolverException, String}, N1 =
{{Solver, sn}}, and D1 = {ept}.

In the above definition, N denotes the set of all matches within m of the
NACs of R. given the match of Cr and Dr. If the same NAC can match mul-
tiple ways, then all of them are included in N as separate matches. For ex-
ample, if the model in Fig. 1(c) had another class Solver2 that also nested
SolverException via an edge sn2, thenN would contain two matches for NAC1:
N= {{Solver,sn},{Solver2,sn2}}. The set of matching sites define the places
in the model m where the rule can potentially be applied.

Definition 5 (Applicability condition). Given a transformation rule R, a
model m, and matching site K = 〈N, C, D〉, the rule R is applicable at K iff
N is empty2.

The above definition ensures that the rule can only be applied at a given site if
no NAC matches. For REV , the matching site K1 in m11 does not satisfy the
applicability condition as N1
= ∅. On the other hand, the model m13 in Fig. 1(e)
contains a matching site K2 = 〈∅, C1, D1〉, which does satisfy this condition.
Then, the rule can be applied:

1 Nodes that represent values (e.g., boolean True, the string N, etc.) are also considered
to be part of Cr but are omitted here for brevity.

2 The theory of graph transformation requires some additional formal preconditions,
most notably the gluing condition [9]. These are not discussed here for brevity.

680 M. Famelis et al.

Definition 6 (Rule application). Given a transformation rule R, a model m,
and a matching site K in m for which the rule applicability condition is satisfied,
rule R is applied, producing a model m′, by removing D from m and adding A,
where A is a match of the part Ar of R in m. Rule application is denoted as

m
R
=⇒ m′.

Applying REV tom13 atK2 thus requires the deletion of the element ept because
it is contained in D, and the addition of new elements according to Ar. The
resulting model m23 is shown in Fig. 3(c), where A is the set {ge, go, gn, gp,
gt, epf}.

We refer to rules such as the ones described above as “classical” to differentiate
them from their “lifted” counterparts which can be applied to May models.

4 Lifting Transformations

In this section, we describe the process of lifting a transformation rule to apply
to May models. A classical rule R adapted to apply to May models is called
lifted and is denoted by R.

May models are intended to be exact representations of sets of models and
lifted transformations should preserve this. Therefore, applying a lifted transfor-
mation rule R to a May model Min should be equivalent to applying its classical
version R to each of the concretizations of Min and building a May model from
the result. We refer to this principle, defined in [11], as the Correctness Criterion
for lifting transformations and define it formally below.

Definition 7. Let a rule R, a May model Min with a set of concretizations

[Min] = {m1
in, . . . ,m

n
in}, and the set U = {mi

out | ∀mi
in ∈ [Min] ·mi

in
R
=⇒ mi

out}
be given. R is a correct lifting of R iff for any production Min

R
=⇒ Mout, the

set of concretizations of the resulting May model Mout satisfies the condition
[Mout] = U .

In the motivating example, we aim to compute a lifted version REV of REV s.t.

for the May models M1 and M2 in Figs. 1(a) and 3(a), M1
REV=⇒ M2.

In traditional rule application during graph transformation, it is sufficient to
find a graph match of the LHS of the rule and then check whether the NACs
are applicable. However, a May model also has a propositional component, the
May formula which constrains the possible combinations of Maybe elements.
Thus, doing the graphical match for the May graph is not sufficient to guarantee
correctness and needs to be augmented with manipulation of the May, to ensure
that the appropriate concretizations get transformed. We illustrate both parts
of the transformation on our running example in Sec. 4.1 and then generalize in
Sec. 4.2. In Sec. 4.3, we prove correctness of this approach.

Transformation of Models Containing Uncertainty 681

4.1 Lifting Example

We illustrate the transformation of the graph and the formula using our running
example where the rule REV in Fig. 2 is applied to the May model M1, shown in
Fig. 1(b), to produce M2 in Fig. 3(d). Fig. 6 summarizes the application of this
rule for the single existing matching site, showing the May graphs and the truth
tables of the May formulas Φ1 and Φ2 of M1 and M2, respectively. Each column
of the truth tables is a Maybe element. Each row corresponds to an allowable
configuration of Maybe elements, denoted by 1, and thus defines a concretization.
The truth tables also show which Maybe elements are matched by each of the
rule’s parts. For example, the edges eo and ept are both matched by the rule’s
LHS, where eo is found in the match C of the Cr part of the rule, and ept in
D match of Dr. Our objective is to construct the lifted transformation REV

that produces M2 when applied to M1. We begin by constructing the graphical
part of REV first, followed by the propositional part.

Graphical Part. Consider applying REV to M1 by directly applying it to Mb,
M1’s base graph. Clearly, this approach does not produce the correct outcome.
First, NAC1 matches in Mb and thus the rule does not apply at all! Yet, there
exists a concretization of M1, m13, for which neither of REV ’s NACs match and
thus REV should be applicable. We therefore expect it to be applicable to M1 as
well. Second, the RHS of the rule does not specify which elements in the output
model should become Maybe, whereas M2 clearly has them.

Thus, the classical strategy for rule application is not sufficient and needs
to be augmented by the uncertainty in the model, i.e., the Maybe annotations
of its elements. The presence of Maybe elements in the match of NAC1 and in
the match of the LHS of REV are both indications that REV applies to some
concretizations but not others. We thus need to change the May model M1 so
that it represents both those concretizations that are unchanged by REV and
those where the rule has been applied. Applying REV to a concretization of
M1 entails (1) deleting the edge ept, because it is included in the match D of
Dr, and (2) adding the elements of A: ge, gn, go, gt, gp, and epf. However,
we cannot altogether delete ept from M1 because it should still remain in the
unchanged concretization m11. Instead, we must keep it annotated with Maybe
to indicate that it is part of some concretizations but not others. Similarly, the
newly added elements should be annotated with Maybe to indicate that they are
added in m13 but not M11 or m12.

We summarize the application of the graphical part of REV to M1 as follows:
(a) Apply REV to the base graph Mb of M1 even though NAC1 matches because
the match contains aMaybe element. (b) Include bothD andA in the base graph
of M2 and annotate all of their elements with Maybe because the match of the
LHS in M1 contains a Maybe element.

Propositional Part. We now define the propositional part of REV that trans-
forms the May formula Φ1 of M1 into Φ2 of M2. We achieve this by defining an
operation on Φ1 that has the effect of transforming the truth table of Φ1 into the
truth table of Φ2. First note that the truth tables can be split into two parts:

682 M. Famelis et al.

Φ1:

N C D
sn e eo et en ept

Φnchg
m11 1 1 1 1 1 1
m12 1 0 0 0 0 0

Φchg m13 0 1 1 1 1 1

N= {NAC1}, LHS=C∪D

Φ2:

N C D A
sn e eo et en ept epf ge go gt gp gn

m21 1 1 1 1 1 1 0 0 0 0 0 0
m22 1 0 0 0 0 0 0 0 0 0 0 0

m23 0 1 1 1 1 0 1 1 1 1 1 1

legend: added unmodified modified

Fig. 6. Applying the lifted version of REV to the motivating example. Left: input
model M1, May graph and truth table of the May formula. Right: output model M2,
May graph and truth table of the May formula.

(a) The concretizations where REV does not apply (i.e., m11 and m12). The
corresponding rows m21 and m22 in Φ2 remain unchanged, and the variables
in A are set to False (denoted by 0) to indicate that Ar is not added. We
denote the formula representing the unchanged part by Φnchg.

(b) The concretizations where REV does apply (i.e., m13). The corresponding
row m23 has the variables of D set to 0 to indicate that Dr is deleted and the
variables of A set to 1 to indicate that Ar is added. We denote the formula
representing the changed part by Φchg.

Thus, Φ2 = Φnchg ∨ Φchg.
To obtain the unchanged part, we begin by specifying a condition, over el-

ements of M1, under which the rule REV applies, i.e., when its NAC Nr does
not match in Mb and both Cr and Dr do match: Φapply = ¬φand

N ∧ φand
C ∧ φand

D .
Let φand

X where X ∈ {N,C,D} denote the conjunction of all variables in X that
represent elements that are Maybe. Restricting Φ1 to those concretizations of M1

where REV does not apply (¬Φapply) and forcing the variables of A to become
False produces the unchanged part: Φnchg = (Φ1 ∧ ¬Φapply) ∧ ¬φor

A , where φor
A

indicates the disjunction of all variables in A that represent elements that are
Maybe.

For the changed part Φchg, we restrict Φ1 to those concretizations ofM1 where
REV does apply and force the variables of D to become False and those of A to
become True: Φchg = (Φ1 ∧ Φapply)|∃D ∧ ¬φor

D ∧ φand
A . Here, (Φ1 ∧ Φapply)|∃D

indicates existential quantification of all variables in D that occur in formula
Φ1∧Φapply . In our example, D = {ept}, so it becomes (Φ1∧Φapply)|ept=T ∨(Φ1∧
Φapply)|ept=F . That is, we eliminate each variable in D from Φ1∧Φapply by taking
the disjunction of the cases where it is set to False and to True. Quantifying out
variables in D is done before forcing them to become False (using ¬φor

D) because
we are changing the values of existing variables (the variables of D already

Transformation of Models Containing Uncertainty 683

occur in Φapply) and not just setting the value for new variables as we are for A.
Otherwise, we get an inconsistency because Φapply ⇒ φand

D by definition.
Substituting the variables from the example and simplifying gives:

Φnchg =(sn ∧ e ∧ eo ∧ et ∧ en ∧ ept ∧ ¬epf ∧ ¬ge ∧ ¬go ∧ ¬gt ∧ ¬gt ∧ ¬gp ∧ ¬gn)∨
(sn ∧ ¬e ∧ ¬eo ∧ ¬et ∧ ¬en ∧ ¬ept ∧ ¬epf ∧ ¬ge ∧ ¬go ∧ ¬gt ∧ ¬gt ∧ ¬gp ∧ ¬gn)

Φchg =(¬sn ∧ e ∧ eo ∧ et ∧ en ∧ ¬ept ∧ epf ∧ ge ∧ go ∧ gt ∧ gt ∧ gp ∧ gn)

The resulting formula Φ2 = Φnchg ∨ Φchg is the same as the May formula in
Fig. 3(d) and has the same truth table as the one shown in Fig. 6.

4.2 General Case

We can generalize the above process to an arbitrary rule R and define how the
graphical part of its lifted version R is applied to a May model M to produce a
May model M ′. As with the running example, we define this in terms of applying
R to the base graph ofM and then making modifications. Following Definition 4,
the matching site for R is a matching site for R in the base graph of M .

Definition 8 (Lifted rule applicability conditions). Given a May model M
with a May formula ΦM , a transformation rule R = 〈{NAC},LHS,RHS〉, and a
matching site K = 〈N,C,D〉, the lifted rule R is applicable at K iff the following
conditions hold:
1. For all N ∈ N, N contains a Maybe element
2. ΦM ∧ Φapply is satisfiable, where Φapply = ¬

∨
{φand

N |N ∈N} ∧ φand
C ∧ φand

D .

In this definition, Condition 1 ensures that there is no NAC match without
Maybe elements; otherwise the NAC match would necessarily occur in every
concretization and so R would not apply to any concretization of M . Condition
2 uses the constraints in the May formula to ensure that at this matching site,
the rule R matches in at least one concretization of M . Specifically, this checks
that there exists a concretization in which all f the Maybe elements of C and
D are True and not all of the Maybe elements in any NAC match are set to True.

We now give the general definition of a rule application for a lifted rule.

Definition 9 (Lifted rule application). Given a May model M with a May
formula ΦM , a transformation rule R = 〈{NAC},LHS,RHS〉 and matching site
K = 〈N, C, D〉 in M for which the rule applicability conditions are satisfied,
the lifted rule R is applied to produce a May model M ′ as follows:
1. if K contains no Maybe elements, apply R in the classical way to produce

the base graph of M ′ and set φM ′ = φM .
2. otherwise,

(a) set M ′ = M ;
(b) add the elements A of the Ar part of the RHS to M ′;
(c) annotate all elements of A and D with Maybe;
(d) set ΦM ′ = [(ΦM ∧ ¬Φapply) ∧ ¬φor

A] ∨ [(ΦM ∧ Φapply)|∃D ∧ ¬φor
D ∧ φand

A].

684 M. Famelis et al.

In this definition, Case 1 captures the situation when there are no Maybe ele-
ments at the matching site and so the rule can be applied in the classical way
and the May model is unaffected. Case 2 captures the situation when there are
Maybe elements in parts of the matching site so that R may apply in some
concretizations but not in others. This case mirrors the discussion of REV in
Section 4.1. In particular, in the graphical part, Dr is not deleted (step a) but
Ar is still added (step b) and all of the elements in A and D are set to Maybe
(step c). The propositional part (step d) is the same as for the REV example
except that Φnchg and Φchg are inlined and the more general case of N is used
in Φapply (from Definition 8) to account for multiple NAC matches that could
exist in the base graph of M .

As with a classical rule system, lifted rules continue to be applied until no rule
is applicable. Note that the resulting model M ′ may not necessarily be in GRF
after every rule application. That is, M ′ can contain redundant Maybe elements.
If M ′ is intended for human consumption (as opposed to automated reasoning)
then the additional step of putting it into GRF is advisable. However, this step
is optional since it does not affect the set of concretizations that the May model
represents.

4.3 Analysis

In this section, we discuss some key properties of lifted rules such as their cor-
rectness, termination and confluence. The resulting properties apply to arbitrary
transformations being lifted, whether they are injective, endogenous, exogenous
and so on.

Correctness.We now show that lifting described by Definitions 8 and 9 satisfies
the correctness condition in Definition 7. Specifically, we show that if a lifted
rule R is applied to a May model M to produce a May model M ′, then the
concretizations of M ′ must be exactly the set obtained by applying the classical
rule R to each concretization ofM . We focus our argument on a specific matching
site K = 〈N, C, D〉 since by transitivity, if the rule is correct when applied to
each site, then the application to any sequence of sites is also correct.

We begin with checking correctness of the applicability condition (Defini-
tion 8) of the lifted rule R: whenever R is applicable for some concretization of
M at K, then R is also applicable, i.e., R it does not miss any sites where a
concretization can be affected by R. By Condition 1 of Definition 8, if there is
a NAC in N that has no Maybe elements then R does not apply at K. But a
NAC without Maybe in the base graph of M means that this NAC appears in
every concretization of M and thus the classical rule R does not apply to any
concretization either and thus applying the lifted rule does not miss any classical
rule applications.

Condition 2 says that ΦM ∧ Φapply must be satisfiable for R to apply, which
happens iff there exists a concretization of M where Cr and Dr are present and
no NAC in N is present – exactly the classical applicability condition in Defini-
tion 5. If this condition does not hold, there are no classical rule applications in
any concretization, therefore the lifted rule applicability condition is correct.

Transformation of Models Containing Uncertainty 685

We now argue that the lifted rule application in Definition 9 is correct. To do
this, we show that ifR satisfies the applicability conditions, then applyingR at a
site K has the same effect as applying R at K in each concretization. Case 1 says
that when K contains no Maybe elements, we apply the rule classically to the
base graph of M . Without Maybe elements, K occurs in every concretization of
M and so the classical application of R in every concretization would be identical
to applying R.

Case 2 applies when K has some Maybe elements. In this case, the concretiza-
tions are split into those where R does not apply and those where it does. We
then aim to show that the steps (a-d) for constructing the graphical and propo-
sitional effect of applying R are “correct by construction”. We do not repeat this
argument, described in Sec. 4.1, here, for brevity. Thus, we conclude that the
lifted rule application is also correct. Since both the applicability condition and
the effect of application are correct, we conclude thatR satisfies the specification
of correct lifting in Definition 7.

Termination. To prove termination, we show that if an application of a set of
classical rules on an input model always terminates than so does the set of the
corresponding lifted rules. Without loss of generality, we restrict ourselves to a
rule set containing a single classical rule R which we assume is terminating. Since
R is correct according to Definition 7, repeatedly applying it to a May model M
has the same effect as repeatedly applying R to each concretization of M . Since
R is terminating, it eventually is no longer applicable to any concretization
of M . At this point, Φapply which encodes classical applicability is False and
thus ΦM ∧ Φapply is not satisfiable, and, by Condition 2 of Definition 8, R does
not apply. Thus, when the application of R terminates, the application of R
terminates as well. Therefore, if R is terminating, so is R.

Confluence. We argue that if a set of classical rules is confluent then the corre-
sponding set of lifted rules is also confluent “up to an equivalence”, that is, when
the process terminates, the resulting May model has the same set of concretiza-
tions, regardless of the order in which the rules have been applied. Repeatedly
applying lifted rules to a May model M has the same effect as repeatedly ap-
plying the corresponding classical rules to each concretization of M . Since the
classical rules are confluent and terminating, the process over lifted rules reaches
the same final set of concretizations. Thus, the lifted rule set is confluent “up to
an equivalence”.

5 Evaluation

We applied our lifting approach to the problem of mapping simple UML class dia-
grams to relational database schemas. This problem is called “Object-Relational
Mapping” (ORM) and is often used as a benchmark for model transforma-
tions [2]. Our aim was to gather evidence about how the lifting approach scales as
uncertainty increases. We thus measured the runtime of performing ORM with
lifted rules while increasing levels of uncertainty and compared it with the base-
line runtime of performing ORM for a classical model. The ORM transformation

686 M. Famelis et al.

Table 1. Results of applying the ORM rules to the Ecore metamodel

Number of concretizations: 1 24 48 108 144 192 256

Number of Maybe elements: 0 5 6 8 10 12 14

Time (sec): 32.6 32.8 32.7 32.9 32.6 33.0 48.4

Size of May formula (KiB): 0 27.9 14.0 1,080.9 1,153.4 19,361.9 320,570.7

rules we used came from [26] and consist of 5 layered transformation rules that,
given a class diagram, create a relational schema and traceability links.

We used the class diagram specification of the Ecore metamodel [24] as in-
put to the ORM rules. Serializing Ecore models in a database is an important
technical problem that has resulted in the establishment of two Eclipse projects,
CDO [7] and Teneo [8], both of which implement ORM for Ecore. We manu-
ally flattened the Ecore metamodel and adapted it to the type graph used by
the ORM rules in [26]. The resulting model consisted of 65 model elements: 17
classes, 17 associations, 6 generalization links and 25 attributes. Starting with a
May model with a single concretization (no uncertainty), we gradually increased
the degree of uncertainty by adding more concretizations, by a step of roughly
50, thus creating models with 1, 24, 48, 108, 144, 192, and 256 concretizations.
To accomplish that we incrementally injected points of uncertainty, annotating
elements with Maybe and creating the corresponding May formulas. The most
uncertain case (256 concretizations) contained 8 points of uncertainty, expressed
across a total of 14 Maybe elements.

We implemented the lifting of the ORM rules using Henshin [1]. For the
satisfiability check required in Definition 8, we used the Z3 SMT solver [5]. We
used the Model Management Tool Framework [17] as the integration platform.
We executed the case study on a computer with Intel Core i7-2600 3.40GHz×4
cores (8 logical) and 8GB RAM, running Ubuntu-64 12.10. We applied the set
of lifted rules to each input May model and recorded the total runtime and the
size of the resulting May formula. Our observations are shown in Table 1.

The results show that the total runtime remains almost constant at roughly
32.8 seconds, except for the largest category where it increases to 48.4 seconds.
On the other hand, we see a dramatic increase in the size of the May formula,
from 27.9 KiB for the smallest category, to approx. 320.6 MiB for the largest.
This exponential growth in size is reasonable, given (Definition 9). Overall, the
results suggest that lifting scales reasonably with respect to time, whereas the
increasing size of the May formula may be a problem. However, we note that
our implementation did not attempt to incorporate any formula simplification
heuristics, and therefore there is room for optimization.

6 Related Work

The notion of uncertainty addressed by May models captures the scenario of
having multiple possible alternative design solutions, with the modeler being
unsure about which one to pick. Discussion of work related to representing sets

Transformation of Models Containing Uncertainty 687

of models is out of scope of the current paper; a thorough comparison of May
models with related formalisms can be found in [12]. May models encode a set of
classical models, and lifted rules are rules that can transform entire sets of models
simultaneously. In the following, we discuss work related to transformations that
apply to modeling formalisms that represent sets of models.

Different variants of feature models have been proposed in the literature to
encode a set of possible configurations of a software product line [22]. Transfor-
mations of feature models, i.e., the creation of a feature model representing a
subset of the original, have been studied in [4] under the name of feature model
specialization. This process is described as a series of operations such as “fea-
ture cloning” and “reference unfolding” and resembles the uncertainty-reducing
transformation of [10]. Graph transformations have also been applied to feature
models, e.g., in [23], they are used to refactor product lines via feature model
merging. Transformations that apply to metamodel definitions also transform
sets of models, i.e., the set of possible instances of the metamodel. The Object-
to-Relational Mapping transformation [26] in Sec. 6 is one such example. Sim-
ilarly, special purpose transformation languages have been built to transform
ontologies, such as a rule based language based on xOWL [27].

The main difference between these transformations and the lifting approach
presented here is that they are tailored to specific tasks, whereas lifting applies to
arbitrary transformation rules. Moreover, these techniques only indirectly affect
the classical models (e.g., variants or instances) represented by the abstraction
formalism. On the other hand, lifted transformations match and transform the
alternatives directly, via the propositional part of the lifted rules.

7 Conclusion

In this paper, we have shown how to adapt existing model transformations to
May models, a formalism that allows uncertainty to be explicated in software
artifacts. To achieve this, we have introduced the process of lifting graph transfor-
mation rules and proved its correctness of application to May models. We have
implemented our approach and applied it to the Object-Relational Mapping
benchmark. Our experience showed that the overhead of applying lifted trans-
formations is reasonable, so we feel that the approach is feasible for transforming
realistic models with uncertainty. In the future, we are planning to implement
lifting as a higher-order transformation (HOT). We expect the approach to lift a
classical rule to a layered graph grammar of classical rules, allowing us to imple-
ment a dedicated tool by reusing existing graph grammar implementations such
as Henshin [1]. We also intend to evaluate our approach further and expand our
lifting technique to models containing other types of uncertainty [20].

688 M. Famelis et al.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010)

2. Bézivin, J., Schürr, A., Tratt, L.: Model Transformations in Practice Workshop.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer,
Heidelberg (2006)

3. Casais, E.: The Automatic Reorganization of Object Oriented Hierarchies – A Case
Study. Object Oriented Systems 1, 95–115 (1994)

4. Czarnecki, K., Helsen, S.: Staged Configuration Using Feature Models. In: Nord,
R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

5. De Moura, L., Bjørner, N.: Satisfiability Modulo Theories: Introduction and Ap-
plications. Commun. ACM 54(9), 69–77 (2011)

6. Ebert, C., De Man, J.: Requirements Uncertainty: Influencing Factors and Concrete
Improvements. In: Proc. of ICSE 2005, pp. 553–560 (2005)

7. Eclipse, CDO website: http://www.eclipse.org/cdo/ (accessed March 16, 2013)

8. Eclipse, Teneo website: http://wiki.eclipse.org/Teneo/ (accessed March 16,
2013)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation, 1st edn. Monographs in Theoretical Computer Science.
An EATCS Series. Springer (2006)

10. Famelis, M., Chechik, M., Salay, R.: Partial Models: Towards Modeling and Rea-
soning with Uncertainty. In: Proc. of ICSE 2012 (2012)

11. Famelis, M., Chechik, M., Salay, R.: The Semantics of Partial Model Transforma-
tions. In: Proc. of MiSE 2012 (2012)

12. Famelis, M., Chechik, M., Salay, R.: Towards Modeling and Reasoning with Un-
certainty (submitted, 2013)

13. Ibrahim, H., Far, B.H., Eberlein, A., Daradkeh, Y.: Uncertainty Management in
Software Engineering: Past, Present, and Future. In: Proc. of CCECE 2009, pp.
7–12 (2009)

14. Famelis, M., Santosa, S.: MAV-Vis: a Notation for Model Uncertainty. In: Proc. of
MiSE 2013 (2013)

15. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing Refactorings
with Graph Transformations. Journal of Software Maintenance and Evolution: Re-
search and Practice 17(4), 247–276 (2005)

16. Sabetzadeh, M., Nejati, S., Chechik, M., Easterbrook, S.: Reasoning about Con-
sistency in Model Merging. In: Proc. LWI 2010 (2010)

17. Salay, R., Chechik, M., Easterbrook, S., Diskin, Z., McCormick, P., Nejati, S., Sa-
betzadeh, M., Viriyakattiyaporn, P.: An Eclipse-Based Tool Framework for Soft-
ware Model Management. In: Proc. of Eclipse 2007, pp. 55–59 (2007)

18. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: Verification of Uncertainty Reduc-
ing Model Transformations (submitted, 2013)

19. Salay, R., Chechik, M., Gorzny, J.: Towards a Methodology for Verifying Partial
Model Refinements. In: Proc. of VOLT 2012 (2012)

20. Salay, R., Famelis, M., Chechik, M.: Language Independent Refinement using Par-
tial Modeling. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp.
224–239. Springer, Heidelberg (2012)

http://www.eclipse.org/cdo/
http://wiki.eclipse.org/Teneo/

Transformation of Models Containing Uncertainty 689

21. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems: A Research Agenda for RE for Self-adaptive Systems. In: Proc. of
RE 2010, pp. 95–103 (2010)

22. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a
formal semantics. In: Proc. of RE 2006, pp. 139–148 (2006)

23. Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated Merging of
Feature Models Using Graph Transformations. In: Lämmel, R., Visser, J., Saraiva,
J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 489–505. Springer, Heidelberg (2008)

24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley (2009)

25. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley (2009)

26. Varró, D., Varró–Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
Analysis of Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H.,
Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
260–274. Springer, Heidelberg (2006)

27. Wouters, L., Gervais, M.P.: Ontology Transformations. In: Proc of EDOC 2012,
pp. 71–80 (2012)

28. Ziv, H., Richardson, D.J., Klösch, R.: The Uncertainty Principle in Software En-
gineering (1996) (unpublished)

Automated Verification of Model

Transformations in the Automotive Industry�

Gehan M.K. Selim1, Fabian Büttner2, James R. Cordy1,
Juergen Dingel1, and Shige Wang3

1 School of Computing, Queen’s University, Kingston, Ontario, Canada
2 AtlanMod, École des Mines de Nantes - INRIA, LINA, Nantes, France

3 Electrical and Controls Integration Lab.,
General Motors Research and Development, Warren, Michigan, USA

Abstract. Many companies have adopted MDD for developing their
software systems. Several studies have reported on such industrial expe-
riences by discussing the effects of MDD and the issues that still need
to be addressed. However, only a few studies have discussed using au-
tomated verification of industrial model transformations. We previously
demonstrated how transformations can be used to migrate GM legacy
models to AUTOSAR models. In this study, we investigate using au-
tomated verification for such industrial transformations. We report on
applying an automated verification approach to the GM-to-AUTOSAR
transformation that is based on checking the satisfiability of a relational
transformation representation, or a transformation model, with respect
to well-formedness OCL constraints. An implementation of this approach
is available as a prototype for the ATL language. We present the verifi-
cation results of this transformation and discuss the practicality of using
such tools on industrial size problems.

Keywords: Model Transformation, Automated Verification, Automo-
tive Industry.

1 Introduction

Model Driven Development (MDD) has been increasingly used in the last decade
for software development and, in many cases, has replaced traditional, code-
centric approaches. In MDD, models or software abstractions are the basic build-
ing blocks in the software development life cycle and model transformations are
the technology used to map between models conforming to different metamod-
els. Transformations are used for different purposes in MDD, e.g., refactoring,
migration, and code generation. Since transformations are essential in MDD,
transformation testing and verification is essential to the success of MDD.

� This work was partially funded by the Nouvelles Équipes Program of the Pays de la
Loire Region (France), and by NSERC (Canada), as part of the NECSIS Automotive
Partnership with General Motors, IBM Canada and Malina Software Corp.

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 690–706, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Verification of Model Transformations 691

Several studies have reported on industrial experiences in adoptingMDD[13,25].
However, only a few of them have specifically discussed using model transforma-
tions in industry. Daghsen et al. [14] used transformations to map AUTOSAR
timing models to classical scheduling models to perform timing analysis. Giese et
al. [15] used triple graph grammars to synchronize SysML system engineeringmod-
els with AUTOSAR software engineering models. Studies reporting on automated
verification of industrial transformations have also been limited.

In this study, we report on using a light-weight, automated verification pro-
totype to reason about the correctness of an ATL [22] transformation developed
for the automotive industry [29]. More specifically, we check the correctness of
the transformation with respect to OCL well-formedness constraints after trans-
lating the ATL transformation into a logical satisfiability problem. The basic
approach has been presented in previous work [10] but to our knowledge we are
the first reporting on its application to an industrial-sized verification problem.

While the transformation itself is not exceptionally large (in the number of
transformation rules), the corresponding metamodels are. Together, they com-
prise 1586 classes, 897 associations, and 371 multiplicity constraints. Since even
types not directly touched by the transformation are relevant for the verifica-
tion (due to constraints that relate them), we have to deal with large potential
instances. To verify our transformation, we have successfully checked models of
up to 20000 potential elements with reasonable runtimes (although all counter
examples found contained much fewer elements and were found quite quickly).
Hence we claim that the verification approach is applicable to realistic verifica-
tion scenarios.

The rest of this paper is organized as follows: Section 2 gives an overview
of the GM-to-AUTOSAR transformation previously presented in [29]; Section 3
introduces the applied verification approach and prototype; Section 4 describes
the case study conducted to verify the GM-to-AUTOSAR transformation using
the aforementioned prototype; Section 5 summarizes the results of the case study
and investigates the performance of the used approach; Section 6 discusses its
strengths and limitations; Section 7 summarizes related work in the literature
and Section 8 concludes and discusses future work.

2 Background: Model Transformation in the Automotive
Industry

We now review the GM-to-AUTOSAR transformation presented in [29] which
was used to migrate GM legacy models to the AUTOSAR standard.

2.1 Overview of the Model Transformation Problem

As one of the leading automotive companies, General Motors has been adopting
MDD for the develoment of automotive software. GM engineers have been using
a domain-specific metamodel for the development of vehicle control software
(VCS). We refer to their domain-specific metamodel as the GM metamodel.

692 G.M.K. Selim et al.

AUTOSAR (the AUTomotive Open System ARchitecture) [2] has been devel-
oped and adopted by many organizations as an automotive industry standard
that is meant to facilitate the development and integration of software compo-
nents from different vendors. AUTOSAR specifies requirements for software that
is meant to conform to the standard. Further, AUTOSAR has its own metamodel
with a well-defined architecture and interfaces.

Since the majority of organizations in the automotive industry are migrat-
ing to AUTOSAR, transforming models conforming to the GM metamodel to
their equivalent AUTOSAR models is an important goal. Thus, we have previ-
ously developed and reported on a transformation that maps between subsets
of the GM metamodel and the AUTOSAR metamodel as its source and target
metamodels. In that work, we focused on subsets of the two metamodels that
represent the deployment and interaction of software components.

2.2 The GM Metamodel

Fig. 1 illustrates the subset of the GM metamodel that we manipulated in our
transformation in [29]1. The PhysicalNode models a physical node on which soft-
ware is deployed. A PhysicalNode may contain multiple Partitions (i.e., process-
ing units or memory partitions) on which software is deployed. Multiple Modules
can be deployed on a single Partition. A Module is an atomic, deployable, and
reusable element in a product line and can contain multiple Schedulers. A Sched-
uler is the basic unit for software scheduling. It contains behavior-encapsulating
entities, and is responsible for managing services provided or required by the
behavior-encapsulating entities. Each Scheduler may provide and/or require Ser-
vices, which model the services provided or required by the Scheduler.

Fig. 1. Subset of the GM metamodel directly used by our transformation in [29]

2.3 The AUTOSAR Metamodel

The AUTOSAR metamodel is defined as a set of templates. Each template spec-
ifies an AUTOSAR artifact such as software components. Among the defined
templates, the System template [1] models the configuration of a system or an
Electronic Component Unit (ECU). An ECU is a physical unit on which software
is deployed. When used for modeling the configuration of an ECU, the System
template is referred to as the ECU Extract. Fig. 2 shows the subset of the ECU
Extract manipulated by our transformation. The ECU extract is modeled us-
ing the System type that aggregates SoftwareComposition and SystemMapping

1 In this study, we follow the same obfuscated naming conventions that we used for
the GM metamodel in [29] for reasons of confidentiality.

Automated Verification of Model Transformations 693

Fig. 2. Subset of the AUTOSAR System Template directly used by our transformation

elements. The SoftwareComposition type points to the CompositionType type
which eliminates any nested software components in a SoftwareComposition. The
SoftwareComposition type models the architecture of the software components
deployed on an ECU, the ports of these software components and the ports’
connectors. Each Software component is modeled using the ComponentProto-
type type, which defines the structure and attributes of a software component;
each port is modeled using the PortPrototype type (i.e., a PPortPrototypeor a
RPortPrototype) for providing or requiring data and services.

The SystemMapping type binds the software components to ECUs and
the data elements to signals and frames (not shown). The SystemMapping
type aggregates the SwcToEcuMapping type, which assigns SwcToEcuMap-
ping components to an EcuInstance. SwcToEcuMapping components in turn,
refer to ComponentPrototype elements. According to AUTOSAR, only one Swc-
ToEcuMapping should be created for each processing unit or memory partition
in an ECU.

3 Verification Methodology

We apply the automated verification approach presented in [10] to the GM-to-
AUTOSAR transformation. In short, we translate the ATL transformation T ,
its source metamodel MMsrc, and its target metamodel MMtar into a combined
model, or a transformation model, consisting of MMsrc and MMtar and addi-
tional model elements that represent the transformation rules. Additionally, a
set Sem of OCL constraints is generated for the combined model that char-
acterizes the execution semantics of the ATL rules. For declarative ATL rules
without recursion, the constraints describe the ATL semantics one-to-one, i.e.,
each valid instance of the transformation model corresponds to an execution of
the transformation and vice versa.

Using this representation we can check partial correctness of the transfor-
mation with respect to properties specified as OCL constraints over the source
and/or the target model, by checking if there exists a counterexample within
a specific scope (i.e., maximum number of objects per class). More specifically,
for a set of transformation preconditions (or assumptions) Pre1, . . . ,Pren and a
set of postconditions (or assertions) Post1, . . . ,Postm, we want to show that for
each instance M of the transformation model,

694 G.M.K. Selim et al.

(
Sem1 and Sem2 and . . . and Semk and

Pre1 and Pre2 and . . . and Pren
)
implies(

Post1 and Post2 and . . . and Postm
) (1)

holds. This can be expressed equivalently as follows: For each postcondition
Post i (1 ≤ i ≤ m), the following formula must be unsatisfiable (i.e., there is no
model M under which the formula is true):

Sem1 and . . . and Semk and Pre1 and . . . and Pren and not(Post i) (2)

Fig. 3 illustrates this using a simple example. In the upper part we have
an ATL transformation (c) over the shown source and target metamodels (a)
and (b). The transformation copies the A-B structure to the C-D structure, but
creates an additional D object when copying an ‘empty’ A object. The middle
part shows the transformation model of this transformation. In the class diagram
(d), each of the three rules is translated into a trace class and connected to the
source and target classes according to the from and to patterns of the rule. The
OCL constraints (e) capture the execution semantics of the transformation such
as the matching of rule R1, the binding of primitive and object-typed properties,
and the controlled creation of target objects. Some pre-/post- conditions are
shown in (f) and (g), respectively.

A

x : Integer
B

b*

(a) Source MM

C

x : Integer
D

d*

(b) Target MM

create OUT : Tar from IN : Src
rule R1 { from a : Src!A (a.b−>notEmpty())

to c : Tar!C (d <− a.b) }
rule R2 { from a : Src!A (a.b−>isEmpty())

to c : Tar!C (d <− Set{d1}),
d : TargetMM!D (x <− 0) }

rule R3 { from b : Src!B to d : Tar!D (x <− b.x) }
(c) ATL transformation

*

R1C A

x : Integer
B

b*R2

R3x : Integer
D

d

(d) Transformation model

context a : A inv Sem R1 match: a.b−>notEmpty() implies
R1. allInstances ()−>one(r1|r1.a = a)

context R1 inv Sem R1 cond: self .a.b−>notEmpty()
context R1 inv Sem R1 bind c:

self .d−>forAll(d | self .a.b−>exists(b | b.r2 = d) and
self .a.b−>forAll(b | self .d−>exists(b | b.r2 = d)

context R3 inv Sem R3 bind d: self .d.x = self .b.x
context C inv Sem C create:

self . r1−>size() + self . r2−>size() = 1

(e) OCL constraints for ATL semantics (excerpt)

context A inv Pre1: self .b.x−>sum() >= 0
context A inv Pre2: self .b−>size() >= 1

(f) Preconditions

context C inv Post1: self .d−>size() >= 1
context C inv Post2: self .b.x−>sum() >= 0

(g) Postconditions

Fig. 3. Transformation model example

Automated Verification of Model Transformations 695

To verify that, for example, postcondition Posti is implied by the transfor-
mation (given the preconditions), we have to check that Eq. (2) is unsatisfiable.
This can be tested using metamodel satisfiability checkers, or model finders, such
as the USE Validator [23] which is publicly available [35]. The USE Validator
translates the UML model and the OCL constraints into a relational logic for-
mula and employs the SAT-based solver Kodkod [33] to check the unsatisfiability
of Eq. (2) for each of the post-conditions Posti within a given scope. Thus, we
have four different representations of the problem space, (i) ATL + OCL, (ii)
OCL, (iii) relational logic, and (iv) propositional logic (for the SAT solver).

We have implemented the whole chain as an verification prototype (Fig. 4).
We have implemented the ATL-to-OCL transformation [10] as a higher-order
ATL transformation [32], i.e., a transformation from Ecore and ATL metamodels
to Ecore metamodels (where the Ecore model can contain OCL constraints as
annotations). Our implementation automatically generates the Sem constraints
from the ATL transformation as well as Pre and Post constraints from the
structural constraints in the source and target metamodels (further constraints
to be verified can be added manually). Since the USE validator has a proprietary
metamodel syntax, we have created a converter from Ecore to generate a USE
specification. We also generate a default search space configuration, which is
a file specifying the scopes and ranges for the attribute values. In the search
configuration, we can disable or negate individual invariants or constraints.

transformations
higher−order ATL once per

postcondition

Counterexample

Additional pre− /

(to be verified)
postconditions (OCL)

− or −

UNSAT

Source metamodel
(Ecore + OCL)

Target metamodel
(Ecore + OCL)

T
yp

e
ch

ec
ke

r

A
T

L−
to

−
T

M

C
on

ve
rt

er

U
S

E
 V

al
id

at
or

model
Transformation

(Ecore + OCL)

Search
configurations

USE
specificationTransformation

(ATL)

Fig. 4. The tool chain used to perform the transformation verification

Steps to Verify a Postcondition Using the Prototype: To check Eq. (2)
for a postcondition, we have to negate the respective postcondition and disable
all other postconditions in the generated search configuration (Fig. 4) and then
run USE. If USE reports ‘unsat’, this implies that there is no input model in
the search space for which the transformation can produce an output model
that violates the postcondition. If there exists a counterexample, USE provides
the object diagram of the counterexample which can be analyzed using many
browsing features of the tool. Although the implementation is a prototype, it is
not specific to the GM-to-AUTOSAR transformation.

4 Case Study: Evaluating Transformations in the
Automotive Industry Using Automated Verification

We use the prototype described in Section 3 to verify our GM-to-AUTOSAR
transformation. However, the verification prototype can only verify ATL

696 G.M.K. Selim et al.

transformations composed of declarative matched rules and non-recursive lazy
rules. Thus we have changed the implementation described in [29] to be com-
pletely declarative and compatible with the format required by the prototype.
The final reimplementation is intended to achieve the same mapping as the orig-
inal implementation described in [29].

In this section, we describe the constructs used to re-implement our transfor-
mation and the different kinds of constraints formulated for verification.

4.1 Reimplementation of the GM-to-AUTOSAR Model
Transformation

In the first implementation of the GM-to-AUTOSAR transformation, we used
two ATL matched rules, 9 functional helpers and 6 attribute helpers to imple-
ment the required mapping between the two metamodels. After reimplementing
the transformation to be completely declarative, the new transformation was
composed of three matched rules and two lazy rules. Although we had to reim-
plement the transformation to use the verification prototype, we point out that
the new declarative implementation is simpler and more readable. The rules im-
plemented are listed in Table 1 together with the types of the rules, the input
element matched by the rule, and the output elements generated by the rule.

Table 1. The types of ATL constructs used to reimplement the transformation, their
designated names, and their input and output element types

Rule Type Rule Name Input Types Output Types

Matched Rule createComponent Module
SwCompToEcuMapping component,
ComponentPrototype

Matched Rule initSysTemp PhysicalNode
System, SystemMapping, SoftwareCom-
position, CompositionType, EcuInstance

Matched Rule initSingleSwc2EcuMapping Partition SwcToEcuMapping

Lazy Rule createPPort Scheduler PPortPrototype

Lazy Rule createRPort Scheduler RPortPrototype

As described in [29], the relationships between the outputs of the
matched rules are built using the ATL predefined function resolveTemp. The
resolveTemp function allows a rule to reference the elements that are yet
to be generated by another rule at runtime. For example, the resolveTemp

function was used to connect the SwcToEcuMapping elements created by the
initSingleSwc2EcuMapping matched rule to the SystemMapping element cre-
ated by the initSysTempmatched rule. Further, the matched rule initSysTemp
calls the two lazy rules and assigns the union of the lazy rules’ outputs to the
ports of the CompositionType produced by the initSysTemp rule.

4.2 Formulation of OCL Pre- and Postconditions

In general, the OCL postconditions in our approach can be either defined on
elements of the target metamodel only (then we call them target invariants), or

Automated Verification of Model Transformations 697

they can relate the elements of the source and target metamodels (then we call
them transformation contracts). Usually, a transformation contract specifies an
implication ‘when an input has a property then it’s corresponding output has
a property’. The OCL preconditions are propositions about the input that we
assume to always hold.

In our case study, the preconditions were given by the multiplicity and com-
position constraints automatically extracted from the GM metamodel as OCL
constraints. The formulated OCL postconditions are summarized in Table 2.
We divide the formulated postconditions into four categories: Multiplicity In-
variants, Uniqueness Contracts, Security Invariants, and Pattern Contracts. For
each constraint in Table 2, we add to the beginning of its formulation an abbre-
viation (e.g., (M1), (U2)) that will be used in the rest of the paper to refer to
the constraint. The Multiplicity Invariants were automatically generated by the
prototype. All the other postconditions were manually formulated.

Table 2. Formulated OCL Constraints

Multiplicity Invariants:

– (M1) Context CompositionType inv CompositionType component: self.component→size() ≥ 1
– (M2) Context SoftwareComposition inv SoftwareComposition softwareComposition:

self.softwareComposition
= null
– (M3) Context SwcToEcuMapping inv SwcToEcuMapping component: self.component→size() ≥ 1
– (M4) Context SwcToEcuMapping inv SwcToEcuMapping ecuInstance: self.ecuInstance
= null
– (M5) Context System inv System softwareComposition: self.softwareComposition
= null
– (M6) Context System inv System mapping: self.mapping
= null

Uniqueness Contracts: Let Unique (invName, X, Y) be
Context Global inv invName: (X.allInstances()→forAll(x1:X, x2:X| x1.Name=x2.Name implies
x1=x2)) implies (Y.allInstances()→ forAll(y1:Y, y2:Y| y1.shortName = y2.shortName implies
y1=y2))

– (U1) UnqCompName= Unique (UNQCOMPNAME, Module, ComponentPrototype)
– (U2) UnqSysMName= Unique (UNQSYSMNAME, PhysicalNode, SystemMapping)
– (U3) UnqSysName= Unique (UNQSYSNAME, PhysicalNode, System)
– (U4) UnqSwcmpsName= Unique (UNQSWCMPSNAME, PhysicalNode, SoftwareComposition)
– (U5) UnqCmpstyName= Unique (UNQCMPSTYNAME, PhysicalNode, CompositionType)
– (U6) UnqEcuiName= Unique (UNQECUINAME, PhysicalNode, EcuInstance)
– (U7) UnqS2EName= Unique (UNQS2ENAME, Partition, SwcToEcuMapping)
– (U8) UnqPpName= Unique (UNQPPNAME, Scheduler, PPortPrototype)
– (U9) UnqRpName= Unique (UNQRPNAME, Scheduler, RPortPrototype)

Security Invariant:

– (S1) Context System inv Self Cont: mapping.swMapping→forAll(swc2ecumap:
SwcToEcuMapping| swc2ecumap.component → forAll(mapcomp :
SwCompToEcuMapping component| mapcomp.componentPrototype→forAll(comppro:
ComponentPrototype| softwareComposition.softwareComposition.component→ exists(c:
ComponentPrototype| c=comppro))))

Pattern Contracts:

– (P1) Context Global inv Sig2P: PhysicalNode.allInstances()→ forAll(e1:PhysicalNode|
e1.partition→ forAll(vd: Partition| vd.module→ forAll(di: Module| di.scheduler→
forAll(ef:Scheduler| (ef.provided→notEmpty()) implies (System.allInstances()→one(sy:System|
(sy.shortName=e1.Name) and (sy.softwareComposition.softwareComposition.port→
one(pp:PortPrototype| (pp.shortName=ef.Name) and (pp.oclIsTypeOf(PPortPrototype))))))))))

– (P2) Context Global inv Sig2R: PhysicalNode.allInstances()→ forAll(e1:PhysicalNode|
e1.partition→ forAll(vd:Partition| vd.module→ forAll(di: Module| di.scheduler→
forAll(ef:Scheduler| (ef.required→notEmpty()) implies (System.allInstances()→ one(sy:System|
(sy.shortName=e1.Name) and (sy.softwareComposition.softwareComposition.port→
one(rp:PortPrototype| (rp.shortName=ef.Name) and (rp.oclIsTypeOf(RPortPrototype))))))))))

698 G.M.K. Selim et al.

Multiplicity Invariants ensure that the transformation does not produce an
output that violates the multiplicities in the AUTOSAR metamodel (Fig. 2).
As described in Section 3, the prototype generates a USE specification with a
multiplicity invariant for each multiplicity in the AUTOSAR metamodel. Ide-
ally, we would check the satisfiability of all the multiplicity invariants generated
for the AUTOSAR metamodel. Since our transformation manipulates a subset
of the metamodels, we only check multiplicity invariants for output elements af-
fected by our transformation. We have identified six of the generated multiplicity
invariants that are affected by our transformation. (M1) ensures that each Com-
positionType is associated to more than one ComponentPrototype through the
component association. (M2) ensures that each SoftwareComposition is associ-
ated with one CompositionType through the softwareComposition association.
The rest of the multiplicity invariants can be interpreted in a similar way.

Uniqueness Contracts require the output element (of type Y) generated by a
rule to be uniquely named (by the shortName attribute) within its respective
scope if the corresponding input element (of type X) matched by the rule is
uniquely named (by the Name attribute) within its scope too. For example, in
Section 4.1, we discussed that the matched rule createComponentmaps Modules
to ComponentPrototypes. Thus, U1 mandates that the ComponentPrototypes
generated by the transformation are uniquely named, if the corresponding Mod-
ules are uniquely named too. The rest of the uniqueness contracts are similar
and ensure uniqueness of the output elements of each rule described in Section
4.1 if their corresponding input elements are unique too.

The only security invariant defined, S1, mandates that within any System ele-
ment, all its composite SwcToEcuMappings must refer to ComponentPrototypes
that are contained within the CompositionType lying under the same System
element (refer to Fig. 2). Thus, this invariant assures that any ECU configura-
tion (modeled by a System element) is self contained and does not refer to any
ComponentPrototype that is not allocated in that ECU configuration.

Pattern contracts require that if a certain pattern of elements is found in the
input model, then a corresponding pattern of elements must be found in the
output model. Pattern contracts also mandate that corresponding elements in
the input and output patterns must have the same name. P1 mandates that if a
PhysicalNode is connected to a Service through the provided association (in the
input model), then the corresponding System element will eventually be con-
nected to a PPortPrototype. P1 also ensures that the names of the PhysicalNode
and the System are equivalent and that the names of the Scheduler (containing
the Service) and the PPortPrototype are equivalent. The contract P2 is similar
to P1 but manipulates required Services and RPortPrototypes instead.

Since invariants are constraints on target metamodel elements, the Multi-
plicity and Security invariants are specified within the context of their respec-
tive AUTOSAR elements. Since contracts are constraints on the relationships
between the source and target metamodel elements, they do not relate to an
AUTOSAR element per se. Thus, we add a class to the USE specification file,
Global, which is used as the context of the Uniqueness and Pattern contracts.

Automated Verification of Model Transformations 699

Fig. 5. Counterexample generated for the mult. inv. CompositionType component

5 Results

In this section, we discuss the results of verifying the OCL contraints defined in
Section 4.2 using the verification prototype. We show how the verification pro-
totype was able to uncover bugs in the GM-to-AUTOSAR transformation that
were fixed and re-verified. We also describe the results of a study to determine
the performance of the used verification approach.

5.1 Verifying the Formulated OCL Constraints

Using the verification prototype, we generated a USE specification and a search
configuration as shown in Fig. 4. After adding the constraints (Table 2) to the
USE specification, we ran the USE tool once for each constraint.

Out of the 18 constraints defined in Table 2, two multiplicity invariants were
found to be violated by the transformation: CompositionType component and
SwcToEcuMapping component. In other words, our transformation can generate
a CompositionType with no ComponentPrototypes and/or a SwcToEcuMapping
with no ComponentPrototypes. Both of these possible outputs violate the mul-
tiplicities defined in the AUTOSAR metamodel (Fig. 2). The counterexamples
were found by USE even within a scope of just one object per concrete class.

Due to the page limit, we only show an excerpt of the counterexample gen-
erated for the invariant CompositionType component in Fig. 5. The counterex-
ample shows that the rule initSysTemp maps a PhysicalNode to five elements,
one of which is CompositionType. Since the rule does not have any restrictions
on the generated CompositionType, it was created without associating it to any
ComponentPrototype through the component association. The counterexample
for the SwcToEcuMapping component invariant was similar showing that the
initSingleSwc2EcuMapping rule creates a SwcToEcuMapping element with-
out mandating that it is associated to any SwCompToEcuMapping component
element through the component association.

After examining the two counterexamples generated by USE for the two vio-
lated multiplicity invariants, we identified two bugs in two rules shown in Table 3:
initSysTemp and initSingleSwc2EcuMapping. The bold, underlined text are
the updates to the rules that fix the two bugs. initSysTemp initially mapped
a PhysicalNode to many elements, including a CompositionType that must con-
tain at least one ComponentPrototype. If the PhysicalNode did not have any

700 G.M.K. Selim et al.

Table 3. The two rules that required updates to address the two violations of multi-
plicity invariants

rule initSysTemp{
from ph: GM!PhysicalNode (ph.partition→exists(p|p.Module→notEmpty()))

to
. . .
compostype:autosar!CompositionType(
. . .
component ←ph.partition→collect(p|p.Module)→flatten()→collect(m|
thisModule.resolveTemp(m, ’comp’))) }

rule initSingleSwc2EcuMapping {
from p:GM!Partition((GM!PhysicalNode.allInstances()→one(ph|ph.partition→includes(p)))

and(p.module→notEmpty()))

to
mapping:autosar!SwcToEcuMapping (
shortName ← p.Name,
component ← p.Module→collect(m|thisModule.resolveTemp(m, ’mapComp’)),
ecuInstance ←thisModule.resolveTemp((GM!PhysicalNode.allInstances()→select(ph|
ph.partition→includes(p)))→first(),’EcuInst’))}

Module in any of its Partitions, then the created CompositionType will not con-
tain any ComponentPrototypes. Thus we added a matching constraint to the
PhysicalNode matched by the rule to ensure that any of its Partitions must
contain at least one Module. Similarly, initSingleSwc2EcuMapping initially
mapped a Partition to a SwcToEcuMapping that must contain at least one
SwCompToEcuMapping component. If the Partition did not have any Module,
then the created SwcToEcuMapping will not contain any SwCompToEcuMap-
ping component. Thus we added a matching constraint to the Partition matched
by the rule to ensure that it must contain at least one Module.

The 18 constraints were reverified on the updated transformation, and were
all found to be satisfied.

5.2 Performance of the Verification Approach

To explore the performance of our approach, we used the verification prototype
to verify the 18 constraints (Table 2) for different scopes. We ran the verification
with scopes between one and 12. We only show the results for scopes 6, 8, 10, and
12 due to the page limit. The scope determines the maximum number of objects
per concrete class in the search space. In our tests, we used the same scope for
all classes, although it could be set individually. Since our transformation model
has 1586 classes, a scope of n generates a model with 1586n potential elements
(and their corresponding links and attribute values). All experiments where run
on a standard laptop at 2.50 GHz and 16 GB of memory, using Java 7, Kodkod
2.0, and Glucose 2.1.

For each combination of constraint and scope, the prototype generates two
time values: the time the prototype takes to translate the relational logic formula
into a propositional formula (i.e., translation time) and the time the SAT solver
takes to solve the formula (i.e., constraint solving time).

We show these two time values (in seconds) in Table 4. Each column rep-
resents the time intervals for each of the 18 constraints, where the Constraint

Automated Verification of Model Transformations 701

Abbreviation is the abbreviation given to each constraint in Table 2 (e.g., (M1)
and (U5)). Each row represents the time intervals for a different scope. Thus,
each cell within the table shows the translation time and the constraint solving
time of a certain constraint at a specific scope.

Table 4. Translation\Constraint Solving times (seconds) for the 18 constraints on
different scopes. For a scope of 12, the verification of S1 did not terminate in a week.

Constraint Abbreviation (from Table 2)

U1 U2 U3 U4 U5 U6 U7 U8 U9

Sc
op

e

6 76 \ 25 76 \ 19 76 \ 22 76 \ 7 77 \ 19 76 \ 24 76 \ 7 76 \ 7 74 \ 5
8 169 \ 74 165 \ 79 168 \ 106 165 \ 37 168 \ 85 171 \ 68 167 \ 38 166 \ 57 169 \ 45

10 279 \ 165 280 \ 188 279 \ 210 281 \ 114 277 \ 211 280 \ 207 281 \ 147 282 \ 170 279 \ 206
12 455 \ 976 434 \ 643 431 \ 623 428 \ 322 426 \ 827 428 \ 616 425 \ 584 427 \ 604 430 \ 501

 Constraint Abbreviation (from Table 2)
M1 M2 M3 M4 M5 M6 S1 P1 P2

Sc
op

e

6 74 \ 2 73 \ 0.4 74 \ 1 74 \ 1 75 \ 0.5 74 \ 0.5 74 \ 40 242 \ 14 244 \ 7
8 162 \ 2 162 \ 1 164 \ 2 163 \ 2 164 \ 1 166 \ 1 168 \ 429 1453 \ 37 1422 \ 65

10 280 \ 12 281 \ 1 277 \ 6 281 \ 3 275 \ 1 274 \ 1 277 \ 3619 6225 \ 80 6178 \ 249
12 426 \ 18 425 \ 1 421 \ 25 424 \ 4 422 \ 1 425 \ 1 * 21312 \ 710 21092 \ 814

Two observations can be made from Table 4. First, despite the exponential
complexity of checking boolean satisfiability, we could verify the postconditions
for scopes up to 12 in most of the cases; only the analysis of S1 did not finish
for scope 12; the constraint solving time of S1 in scope 10 was the longest (just
over an hour). Although we have no proof that no bugs will appear for bigger
scopes, we are confident that a scope of 12 was sufficient to uncover any bugs in
our transformation with respect to the defined constraints. In fact, the two bugs
that were uncovered and fixed were found at a scope of one.

Second, the translation times are larger than expected and grow mostly poly-
nomially. This can be attributed to the approach used by Kodkod to unfold a
first-order relational formula into a set of clauses in conjunctive normal form
(CNF), given an upper bound for the relation extents [33]. While transforming
a formula into CNF grows exponentially with the length of the formula, it only
grows polynomially with the scope in our case (as the formula’s length does not
change significantly). For example, each pair of nested quantifiers will generate a
number of clauses that grows quadratically with the scope. The relational logic
constraints generated implicitly by USE for all associations expand similarly.
This justifies why the two pattern contracts (i.e., P1 and P2) show the highest
translation times; they have the most quantifiers of the 18 constraints.

Using an incremental SAT solver would improve the performance of the pro-
totype. Since most of the generated Boolean formula is the same for all the 18
constraints (i.e., the encoding of classes, associations, multiplicities, and precon-
ditions), we expect that the translation (i.e., the first number in each cell of
Table 4) can be done once for the entire verification process; except for P1 and
P2 which differ in their high number of nested quantifiers.

702 G.M.K. Selim et al.

6 Discussion

6.1 Strengths of the Verification Approach

We claim that the verification approach is practical to use for two reasons. First,
the used approach provides a fully automated translation from ATL transfor-
mations and their constrained metamodels to OCL and relational logic. The
approach further provides a fully automated verification of the generated trans-
lation. Even when applied to a realistic case study, the approach scaled to a scope
that was large enough to strongly suggest that the analysis did not overlook a
bug in the transformation due to the boundedness of the underlying satisfiabil-
ity solving approach. If we wanted to perform the same verification on a Java
implementation of the transformation, we would require equally rich class and
operation contracts for, say, Ecore in JML [21]. To the best of our knowledge, no
research has explored automatically inferring such contracts. Even then, we ex-
pect that the user would have to explicitly specify loop invariants as soon as the
transformation contains non-trivial loops, like the loops in our transformation.

Second, the study translates a substantial subset of ATL for verification, i.e.,
all rules except for imperative blocks, recursive lazy rules and recursive query
operations other than relational closures. Thus, the approach takes advantage of
the ways declarative, rule-based transformation languages (e.g., ATL) provide to
iterate over the input model without requiring recursion or looping. This simpli-
fies verification by, for instance, obviating the need for loop invariants. Although
this subset of ATL is not Turing-complete, it can be used to implement many
non-trivial transformations. We have statically checked the 131 transformations
(comprising 2825 individual rules) in the ATL transformation zoo [36], and 83
of them fall into the described fragment, i.e., neither use recursive rules nor
imperative features. Of the remaining 48 transformations, 24 of them that use
imperative blocks but no recursion could be expressed declaratively, too.

We conclude that our verification approach greatly benefited from the concep-
tual simplicity of the declarative fragment of ATL compared to, e.g., a general-
purpose programming language such as Java.

6.2 Limitations of the Verification Approach

We identify two limitations of the verification approach.

Correctness of ATL-to-Relational-Logic Translation: Extensive testing
and inspection was used to ensure that all steps involved in the translation of
ATL and OCL to first-order relational logic are correct. However, in the absence
of a formal semantics of ATL and OCL, a formal correctness proof is impossible
and the possibility of a bug in the translation remains. This should be taken into
account before our approach is used in the context of safety-critical systems.

Bounded Search Approach: All verification approaches based on a bounded
search space cannot guarantee correctness of a transformation because the scopes
experimented with may have been too small. The maximum scope sufficient

Automated Verification of Model Transformations 703

to show bugs in a transformation is transformation-dependent. For example, a
transformation with a multiplicity invariant that requires a multiplicity to be 10,
will require a scope of 11 to generate a counterexample for that invariant, if any.
With respect to our case study, we are confident that a scope of 5 is sufficient
to detect violations of the given constraints; we ran analyses with scopes up to
12, because we wanted to study the performance of the approach. Real proofs
of unsatisfiability can be created using SMT solvers and quantifier reasoning [9],
but the problem is generally undecidable (i.e., the SAT solver does not terminate
on all transformations), and the mapping presented in [9] does not yet cover all
language features used in our case study. Further, we have not yet applied any a
priori optimizations of the search problem, e.g., metamodel pruning [30], which
we plan to apply for future work.

7 Related Work

There are several approaches that translate declarative model transformations
into some logic or logic-like language to perform automated verification. Anas-
tasakis et al. [3] and Baresi and Spoletini [5] use relational logic and the Alloy
analyzer to check for inconsistencies in a transformation. Inaba et al. [19] verify
the typing of transformations with respect to a metamodel using second-order
monadic logic and the MONA solver. Troya and Vallecillo [34] define an encod-
ing of ATL in rewriting logic, that can be used to check the possible executions
of a transformation in Maude. Cabot et al. [11] translated QVT-R and triple
graph grammar transformations into OCL contracts, requiring an OCL model
finder to conduct the counterexample checking. Our translation of ATL into OCL
(based on [10]) closely resembles this approach. In another previous work [9], we
have presented a mapping of ATL directly into first-order logic, using quantifier
reasoning to prove transformation properties with SMT solvers.

Asztalos et al. [4] formulated transformations and their properties as asser-
tions in first-order logic. A deduction system was implemented to deduce the
properties from the rules. Lucio et al. [24] verified correctness constraints for
transformations in DSLTrans language using a model checker implemented in
Prolog. Rensink [28] checked first-order linear temporal properties for graph
transformation systems. Becker et al. [6] verified a metamodel refactoring imple-
mented as a graph rewriting system by extending the metamodel with predicate
structures which were used to specify well-formedness graph constraints. Sten-
zel et al. [31] implemented an algebraic formalization of a subset of operational
QVT in the KIV theorem prover.

There are also several approaches that use OCL constraints to specify con-
tracts for model transformations. Guerra et al. [18], Gogolla and Vallecillo [16],
Braga et al. [7], and Cariou et al. [12] discussed testing transformations against
contracts. In the same vein, Narayanan et al. [26] discuss a methodology to spec-
ify structural correspondence rules between source and target. Our constraints
presented in Sect. 4.2 can be considered a transformation contract in this sense,
although we do not use the contracts to test the actual transformation imple-
mentation but use them to verify the transformation independent of any input.

704 G.M.K. Selim et al.

Regarding the used approach to check the satisfiability of OCL-constrained
models, there are several potential alternatives to the USE Model Validator [23]
that we employed. Gonzalez et al. [17] implemented the EMFtoCSP model finder
that encodes metamodels and OCL constraints as constraint-logic programs
(performing bounded verification). Queralt and Teniente [27] implemented a
symbolic reasoning procedure for OCL constraints, based on predicate calculus.
Brucker et al. [8] implemented the HOL-OCL theorem prover to interactively
prove correctness constraints. Jackson et al. [20] used the FORMULA tool to
reason about metamodels, but they did not support OCL.

The novel aspect of our study is two-fold: First, we have applied an automated
verification methodology to an industrial model transformation implemented
in the ATL transformation language. Second, we have shown the applicability
of this approach to realistic search spaces and discussed the performance of
our approach. Most of the referenced research papers evaluate their verification
approach on small examples and do not address the performance aspect.

8 Conclusion and Future Work

In this study, we demonstrated how automated verification can be useful in
verifying industrial transformations. First, we described the GM-to-AUTOSAR
transformation that we have developed for General Motors [29]. We also dis-
cussed an automated transformation verification prototype that works on the
declarative, non-recursive subset of ATL and its application to our transforma-
tion. The prototype was able to uncover two bugs in the transformation that
violated two multiplicities in the AUTOSAR metamodel. We further discussed
the performance of the verification prototype by showing the translation and
constraint solving times for all the constraints over different scopes. The num-
bers showed that both the Translation times and the Constraint Solving times
grow exponentially with the scope. Nonetheless, analysis of the transformation
in sufficiently large scopes (up to 12) was possible. We conclude that the appli-
cation of our verification approach to the case study was successful and provides
evidence for its practicality, even in industrial contexts.

For future work, this study can be extended in several ways. First, other
industrial transformations should be incorporated in the case study to have a
better idea of the practicality of using automated verification on such transfor-
mations. Our case study explored a transformation that manipulates metamodels
that are considered large on an industrial scale. The transformation, although
far from being trivial, does not fully manipulate the two metamodels. We con-
ducted a couple of experiments that show that the verification problem scales
almost linearly when more independent rules are added. However, we still need
to investigate the performance on larger and more complex transformations. As
a result of our demonstration of the effectiveness of our approach in migrating
a subset of the GM metamodel to its AUTOSAR equivalent, engineers at Gen-
eral Motors have expressed interest in extending the transformation to the full
scope of the GM metamodel. Second, incremental SAT solvers can be used in the

Automated Verification of Model Transformations 705

bounded search approach to improve the performance and the execution time
of the approach, as suggested in Section 5.2. Third, pruning of the manipulated
metamodels or the transformation model can be applied before executing the
bounded search, as suggested in Section 6.2.

References

1. AUTOSAR Consortium. AUTOSAR System Template,
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/

AUTOSAR TPS SstemTemplate.pdf (2007)
2. AUTOSAR Consortium. AUTOSAR (2007), http://{AUTOSAR}.org/
3. Anastasakis, K., Bordbar, B., Küster, J.: Analysis of Model Transformations via

Alloy. MoDeVVa, pp. 47–56 (2007)
4. Asztalos, M., Lengyel, L., Levendovszky, T.: Towards Automated, Formal Verifi-

cation of Model Transformations. In: ICST, Paris, France, pp. 15–24 (2010)
5. Baresi, L., Spoletini, P.: On the Use of Alloy to Analyze Graph Transformation

Systems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006)

6. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative Development of
Consistency-Preserving Rule-Based Refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011)

7. Braga, C., Menezes, R., Comicio, T., Santos, C., Landim, E.: On the Specification,
Verification and Implementation of Model Transformations with Transformation
Contracts. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021, pp.
108–123. Springer, Heidelberg (2011)

8. Brucker, A.D., Wolff, B.: Semantics, Calculi, and Analysis for Object-Oriented
Specifications. Acta Informatica 46(4), 255–284 (2009)

9. Büttner, F., Egea, M., Cabot, J.: On verifying ATL Transformations Using ‘Off-
the-Shelf’ SMT Solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

10. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL Transformations
Using Transformation Models and Model Finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012)

11. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and Validation of
Declarative Model-to-Model Transformations Through Invariants. Systems and
Software 83(2), 283–302 (2010)

12. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL Contracts for the Verification
of Model Transformations. EASST 24 (2009)

13. Cottenier, T., Van Den Berg, A., Elrad, T.: The Motorola WEAVR: Model Weaving
in a Large Industrial Context. In: AOSD, Vancouver, Canada, vol. 32 (2007)

14. Daghsen, A., Chaaban, K., Saudrais, S., Leserf, P.: Applying Holistic Distributed
Scheduling to AUTOSAR Methodology. In: ERTSS, Toulouse, France (2010)

15. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
sysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–
579. Springer, Heidelberg (2010)

16. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: France,
R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698,
pp. 221–235. Springer, Heidelberg (2011)

http://{AUTOSAR}.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/{AUTOSAR}_{TPS}_{S}stem{T}emplate.pdf
http://{AUTOSAR}.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/{AUTOSAR}_{TPS}_{S}stem{T}emplate.pdf
http://{AUTOSAR}.org/

706 G.M.K. Selim et al.

17. González Pérez, C.A., Büttner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A Tool for
the Lightweight Verification of EMF Models. In: FormSERA, Zurich, Switzerland,
pp. 44–50 (2012)

18. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated Verification of Model Transformations
Based on Visual Contracts. Automated Software Engineering 20(1), 5–46 (2013)

19. Inaba, K., Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Graph-Transformation Veri-
fication Using Monadic Second-Order Logic. In: PPDP, pp. 17–28 (2011)

20. Jackson, E., Levendovszky, T., Balasubramanian, D.: Automatically reasoning
about metamodeling. SoSyM, pp. 1–15 (2013)

21. Jacobs, B., Poll, E.: A Logic for the Java Modeling Language JML. In: Hussmann,
H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 284–299. Springer, Heidelberg (2001)

22. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Sci. Comput. Program. 72(1-2), 31–39 (2008)

23. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

24. Lúcio, L., Barroca, B., Amaral, V.: A Technique for Automatic Validation of Model
Transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS
2010, Part I. LNCS, vol. 6394, pp. 136–150. Springer, Heidelberg (2010)

25. Mohagheghi, P., Dehlen, V.: Where is the Proof? - A Review of Experiences from
Applying MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

26. Narayanan, A., Karsai, G.: Verifying Model Transformations by Structural Corre-
spondence. EASST 10 (2008)

27. Queralt, A., Teniente, E.: Verification and Validation of UML Conceptual Schemas
with OCL Constraints. TOSEM 21(2), 13 (2012)

28. Rensink, A.: Explicit State Model Checking for Graph Grammars. In: Degano,
P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 114–132. Springer, Heidelberg (2008)

29. Selim, G.M.K., Wang, S., Cordy, J.R., Dingel, J.: Model Transformations for Mi-
grating Legacy Models: An Industrial Case Study. In: Vallecillo, A., Tolvanen,
J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349,
pp. 90–101. Springer, Heidelberg (2012)

30. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model Pruning. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg
(2009)

31. Stenzel, K., Moebius, N., Reif, W.: Formal Verification of QVT Transformations
for Code Generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011.
LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011)

32. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use of Higher-
Order Model Transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

33. Torlak,E., Jackson,D.:Kodkod:ARelationalModelFinder. In:Grumberg,O.,Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

34. Troya, J., Vallecillo, A.: A Rewriting Logic Semantics for ATL. Journal of Object
Technology 10(5), 1–29 (2011)

35. The USE Validator,
http://sourceforge.net/projects/useocl/files/Plugins/ModelValidator/

36. The ATL Transformation Zoo,
http://www.eclipse.org/atl/atlTransformations/.

http://sourceforge.net/projects/useocl/files/Plugins/ModelValidator/
http://www.eclipse.org/atl/atlTransformations/

Data-Flow Based Model Analysis

and Its Applications

Christian Saad and Bernhard Bauer

University of Augsburg, Germany
{saad,bauer}@informatik.uni-augsburg.de

Abstract. In this paper we present a data-flow based approach to static
model analysis to address the problem of current methods being either
limited in their expressiveness or employing formalisms which complicate
seamless integration with standards and tools in the modeling domain.

By applying data-flow analysis - a technique widely used for static pro-
gram analysis - to models, we realize what can be considered a generic
“programming language” for context-sensitive model analysis through
declarative specifications. This is achieved by enriching meta models
with data-flow attributes which are afterward instantiated for models.
The resulting equation system is subjected to a fixed-point computation
that yields a static approximation of the model’s dynamic behavior as
specified by the analysis. The applicability of the approach is evaluated in
the context of a running example, the examination of viable application
domains and a statistical review of the algorithm’s performance.

1 Introduction and Motivation

Modeling languages have become a prominent instrument in the field of com-
puter science as they enable the formalization of an application domain’s con-
cepts, their properties and the relationships between them. An abstract syntax
given in the form of a meta model allows to validate and enforce structural
constraints and fosters automated processing of the formalized information, e.g.
through code generation or model transformations. In addition, the rise of mod-
eling techniques has lead to new approaches to software engineering such as the
Model-driven Architecture [1] and Model-based Testing [2].

Since their introduction, the OMG’s [3] Meta-Object Facility (MOF) and
derived languages like the Unified Modeling Language (UML) have become the
de-facto standard in industry and research alike. Building upon a common meta
meta model, the MOF’s M3 layer, a family of M2 languages has evolved with
applications ranging from software engineering to business process management.

An important factor for the popularity of modeling techniques is that they
are often perceived to provide an intuitive way for practitioners to formalize
application domains. However, the less rigorous theoretical framework can also
be a serious drawback when attempting to assert a model’s correctness: Although
the basic form of the language expressions (models) is given by the abstract
syntax (meta model), it is often necessary to enforce additional constraints on

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 707–723, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

708 C. Saad and B. Bauer

the language’s structural layout. The subset of these constraints that can be
statically verified is known as the static semantics or the well-formedness rules
of a language. To formalize these rules, a technique is required that allows to
enrich meta model elements with a specification of their static semantics.

Over time, existing formal approaches have been proposed for the purpose
of model analysis. However, this usually involves a translation of (meta) models
into logic-based representations [4, 5] resulting in a gap between the two domains
that can be difficult to manage on a technical level but may also lead to problems
on a conceptual level as model-specific semantics have to be mapped to the logic-
based systems on which the analyses are defined and executed.

This issue is addressed by the OMG’s Object Constraint Language (OCL)
which allows to annotate constraints at meta model elements and to evaluate
them for models. However, limitations of its expressiveness due to its static nav-
igational expressions are the subject of ongoing discussion [6, 7]. The closure()
operator1 introduced in version 2.3.1 (January 2012) of the specification only
applies to Set types and is limited to calculating the transitive closure of a rela-
tionship. Finally, it has been argued that OCL itself lacks a proper formalization
[8] and multiple proposals have been made to address this problem [9–11].

The approach detailed in this paper represents a generic, declarative method
for computing properties that can be derived from the structural layout of a
model. It is based on attribute grammars (AG) and data-flow analysis (DFA),
two well-understood and well-defined methods from the field of compiler con-
struction used to validate static semantics and to derive optimizations from a
program’s control-flow respectively. Data-flow analysis is a powerful method that
implicitly provides support for transitive declarations. For example, the follow-
ing (recursive) definition computes the transitive closure of the parent relation-
ship: allParents = directParent ∪ directParent.allParents. Since DFA
applies fixed-point semantics to resolve cyclic dependencies, analyses can derive
static approximations of dynamic behavior, e.g. by computing which nodes will
be visited on all paths leading to an action in an activity diagram.

In this paper we detail the approach initially outlined in [12]. Its intended
target audience are language engineers responsible for developing (model-based)
domain-specific languages (DSL) and tooling as opposed to users of the imple-
mented languages (who may also be developers in their respective domain).

The presented methodology allows to attach data-flow attributes to elements
of MOF-based meta models in a fashion similar to OCL’s derived attributes.
These attributes can then be automatically instantiated and evaluated for de-
rived models. Result computation consists of the execution of data-flow rules,
applying fixed-point evaluation semantics when necessary. Structural differences
between modeling and formal languages required an adaption of the worklist
algorithm commonly employed to solve DFA equation systems.

The proposed analysis specification language is a textual DSL which itself
is based on a meta model that is tied to the MOF. On a technical level, the

1 An example use case would be the enforcement of non-cyclic generalization hierar-
chies for Classifiers: self->closure(superClass)->excludes(self).

Data-Flow Based Model Analysis and Its Applications 709

presented approach therefore integrates with standards, languages and tools in
the modeling domain, avoiding the inherent difficulties in the application of
formal methods. Its applicability is evaluated in the context of several use cases.

This paper is structured as follows: In Section 2, we outline basic principles of
data-flow analysis and attribute grammars. Their suitability for model analysis
is examined in Section 3.1 through a comparison of the domains of modeling and
formal languages. Section 3.2 describes the structure and semantics of the speci-
fication language while Section 3.3 demonstrates how resulting equation systems
can be computed taking into account the adjustments made to traditional DFA.
The approach is evaluated in Section 4 and its versatility is exemplified through
several use cases in Section 5. We conclude with a survey of related work and a
summary of the approach along with an outlook on future developments.

2 Background

Data-flow analysis (DFA, [13]) is a method commonly used in compiler construc-
tion in order to derive context-sensitive information from a program’s control-
flow, usually for optimization purposes. Canonical examples for this approach
include the calculation of reaching definitions or variable liveness analysis.

Data-flow equations are annotated at control-flow nodes n ∈ N and operate on
sets containing values from a specific value domain: Applying a join operatorΔ ∈
{
⋂
,
⋃
} to the output values calculated at neighboring nodes in the flow graph

yields the input value for each node: in(n) = Δm∈Θ(n)out(m) where Θ is either
the direct predecessor or successor relationship. By using values at preceding
nodes as input, information is propagated in a forward direction2. Inserting
the intersection operator for Δ retains only values which are contained in any
incoming set, i.e. information which reaches a node on all of its incoming paths,
while the use of the union operator aggregates results “arriving” on any incoming
path. The result out(n) is determined by removing (kill) information which
is locally destroyed and adding (gen) information which is locally generated:
out(n) = gen(n)∪ (in(n)−kill(n)). The equation system formed by the entirety
of all equation instances induces a global information flow throughout the graph
as local results are distributed along outgoing paths.

In the presence of back edges in the control-flow, the equation system contains
cyclic dependencies. This case is handled by applying fixed-point evaluation
semantics: First, all nodes are initialized with either the empty set in the case
of Δ =

⋃
, or the complete value domain for Δ =

⋂
. Then, the equations are

evaluated repeatedly until all values are stable. This indicates that the most
accurate approximation, a minimal or maximal fixed-point, has been detected.
The existence of a fixed-point itself is guaranteed if operations are monotonic
and performed on values which have a partial order with finite height.

2 Some analyses, for example the detection of live variables, require information flow
in a backwards direction in which case the process is reversed, i.e. results calculated
at successor nodes are used as the equations’ arguments.

710 C. Saad and B. Bauer

A canonical optimization is the worklist algorithm: Starting with the execu-
tion of the flow-equation at the entry node, each time the (re)calculation of an
equation yields a value that differs from its previous result, the equations at the
depending nodes are added to the worklist since they are the ones affected by
the new input. This process is repeated until the worklist is empty.

A second technique for static analysis used in compiler construction are at-
tribute grammars. Introduced by [14], they are used to analyze context-sensitive
information - e.g. the set of defined variables - depending on the layout of the
language expression’s syntax tree. Traditional AGs extend a context-free gram-
mar G with a set of attributes A, each of which is assigned to a (non) terminal
symbol X ∈ N ∪ T and is either of the type Inh (inherited) or Syn (synthe-
sized). The attributes can be thought of as property fields of the nodes in the
syntax trees, their values being calculated by semantic rules R assigned to the
productions that describe how an attribute value can be calculated from the
values of other attributes in the same production. Semantic rules are given in
the form Xi.a = f(...), where a is an attribute assigned to Xi and f is an arbi-
trary function that calculates a result for a based on its arguments. This leads
to information being transported from one place in the AST to another, either
bottom-up (synthesized) or top-down (inherited). Therefore, attribute grammars
can be considered to be form of data-flow analysis [15] and support the definition
of regular DFA if supplemented with fixed-point semantics [16, 17].

3 Data-Flow Based Model Analysis

3.1 Applying Data-Flow Analysis to Models

Transferring DFA to the modeling area requires a careful consideration of con-
ceptual similarities and differences between the domains of formal languages and
modeling. As discussed in [18, 19], relationships between these technical spaces
can be identified by aligning their respective layers of abstraction.

Fig. 1. Alignment of abstraction layers Fig. 2. Analysis specification/instances

Figure 1 illustrates how MOF employs a common meta meta model on the M3
abstraction layer to implement capabilities for defining M2 meta models which
represent the abstract syntax of a modeling language. Prominent examples in-
clude the Unified Modeling Language (UML) and the Business Process Modeling

Data-Flow Based Model Analysis and Its Applications 711

Notation (BPMN). In MOF terminology models, e.g. UML diagrams or BPMN
processes, are located on M1. A model is syntactically valid if it complies with
the syntactic restrictions defined in its meta model. A similar hierarchy is used
by formal languages, more specifically context-free grammars, which are used for
programming language specification. In addition to enforcing syntactic correct-
ness, the integrity of static semantic constraints can be validated by extending
the grammar with semantic attributes as described in Section 2.

From a conceptual view point, the analysis of instances (models / syntax trees)
therefore requires analysis specification on the language level which has to be
supported by appropriate constructs on the M3/language definition layer. In the
DFA context, a method is required which enables to assign flow equations to meta
model elementsModelM1 �MetaModelM2 alongside semantics for instantiating
and solving the analysis for arbitrary models (� signifies instanceof).

To accomplish this, an approach was chosen that mirrors the concept of at-
tribute grammars to assign semantic attributes to meta model elements. While
this could be achieved by either extending the M3 layer or the meta model with
constructs for analysis specification, this would lead to incompatibilities with
standards and tools that depend on compliance to MOF. Instead, attributes
and their instantiations are defined separately (Figure 2), allowing all artifacts
to remain unaware of the analyses. The language for analysis specifications -
termed Attributions is given by an attribution meta model (Attr.MM) while
their instantiations are defined by a separate meta model (Instance MM).

Computing flow-based analyses for models requires adaptations of the tradi-
tional algorithms for evaluating attribute grammars and DFA. The reason for
that is that edges in model graphs - which are instances of associations or refer-
ences defined in its meta model - denote relationships between objects which may
possess arbitrary semantics depending on the domain for which the meta model
was defined. In fact, associations between elements are often not directed, and
if they are, two elements may be connected via multiple paths with undefined
semantics in the context of flow-analysis. As such, they cannot be aligned with
edges in flow graphs which carry the implicit semantics of a control flow, making
it safe to automatically route information along incoming/outgoing paths.

In attribute grammars, attributes in syntax trees depend on results from the
same grammatical production as input. This means that different rules may
apply in different contexts depending on the production instance’s respective
neighbors in the syntax tree. In that, productions compare to classifiers in the
meta model while the occurrences of productions in the syntax tree correspond
to objects in the model. However, compared to syntax trees, the graph structure
of models does not offer an easily identifiable direction for inheritance/synthesis.

In summary, information flow in models is highly specific to an application
domain and an analysis since they don’t possess an inherent flow direction as ex-
ists for control-flow graphs and syntax trees. This problem can be circumvented
by ensuring that information is routed only along relevant, analysis-dependent
paths: To provide maximal flexibility, rather than flow-equations being auto-
matically supplied with input values depending on the context in which they

712 C. Saad and B. Bauer

appear, they must be able to request required input as needed. Input/output
dependencies between attribute instances are therefore encoded inside the flow-
equations, thereby superimposing the model with a (dynamically constructed)
data-flow graph. The work-list algorithm must be adapted to record dependen-
cies as they become visible through the execution of the rules and to schedule
the re-computation of unstable attribute values using this information.

3.2 Analysis Specification and Instantiation

In this section we describe the language for analysis specification and the in-
stantiation semantics in the context of a running example. They are based on
and comply to the Essential MOF (EMOF) subset of MOF and have been im-
plemented using the Eclipse Modeling Framework (EMF, [20]).

Fig. 3. Analysis meta model (Attr.MM) Fig. 4. Instantiation MM

Figure 3 shows the elementary concepts of the analysis specification meta
model: In the notion of attribute grammars, attribute occurrences indicate the
presence of attribute definitions (of the type assignment or constraint) at classes
(EClass) in the target meta model. Attribute extension containers connect these
occurrences to meta model classes through the attributedClass relationship. At-
tached to the definitions and occurrences are semantics rules (corresponding to
data-flow equations) that calculate the fixed-point initialization and iteration
values respectively. They may be defined in an arbitrary language for which the
language interpreter implements an interface to the DFA solver (cf. Section 3.3).

The instantiation meta model (cf. Figure 2) is shown in Figure 4. Each at-
tribute instance links to the occurrence from which it was instantiated and to
the model object for which it was created. Depending on the attribute definition
type, it is either an assignment instance, returning a result value complying to
the definition’s data type, or a constraint instance of type boolean indicating
whether a constraint/well-formedness rule was violated.

This is exemplified in Figure 5(a) which shows a reachability analysis an-
notated at a control-flow graph meta model. It is assumed that an attribute
definition with the id is reachable, the type boolean and the initialization
value false was specified. Two occurrences of this definition have been assigned
to the classes node and startnode, the latter overwriting the first to always

Data-Flow Based Model Analysis and Its Applications 713

(a) Attributed meta model (b) Abstract syntax of the attribution

Fig. 5. Reachability analysis defined for control-flow graph meta model

return true at instances of startnode. The abstract syntax of the attributed
meta model can be seen in Figure 5(b). The OCL rule uses the injected operation
is reachable()3 to request the value of this attribute at the respective prede-
cessor nodes from the DFA solver, resulting in a recursive definition in which a
node is considered to be reachable if at least one of its predecessors is reachable.

The instantiation semantics for attributes follows the EMOF semantics for the
instantiation of meta model classes: An attribution AT(MM, ATDEF , ATRULE ,
ATOCC , ATDT , ATTY PE , ATANN)4 extends a meta model MM(MMCL,
MMGEN) given by the set of classes MMCL and their generalization relation-
ships MMGEN indicating inheritance of structural and behavioral features in
accordance to EMOF semantics. The attribution consists of attribute defini-
tions ATDEF , each possessing a data type (ATDT) and an initialization rule
(ATRULE) assigned by the relation ATTY PE . Furthermore, the annotation re-
lation ATANN ties each occurrence in ATOCC to a class c ∈ MMCL and an
iteration rule in ATRULE .

An instantiation INST(AT, M, INSTAT , INSTLINK) contains attribute in-
stances INSTAT for an attribution AT and a model M � MM with objects MOBJ

and a relation MTY PEOF denoting their class type. For each obj ∈ MOBJ , an
attribute instance i ∈ INST exists iff there are ≥ 1 occurrences occ ∈ ATOCC

for the class type of obj or its super-types. To realize overwriting at subtypes the
most specialized type is used. This can be implemented by starting at a model
object’s concrete type and traversing the generalization hierarchy upwards. For
the first occurrence of each distinct attribute definition which is encountered an
instance is created. Multiple inheritance is only supported if generalization rela-
tions are diamond-shaped and a unique occurrence candidate can be identified.

The control-flow model in Figure 6 depicts the instances of the attribute
is reachable which are attached to the corresponding model elements. The
dashed lines indicate the implicit dependencies encoded in the flow equations.
The corresponding abstract syntax representation is shown in Figure 7.

The meta model is complemented by a concrete syntax using the Eclipse
Xtext parser/editor generator which maps grammatical symbols to meta model

3 Attribute access operations can be automatically injected into an OCL environment:
For all attribute definitions connected to a class through occurrences, an operation
is added to the class with the id of the definition and the data type as return type.

4 Multiple attributions can be merged if they extend the same meta model.

714 C. Saad and B. Bauer

Fig. 6. Attributed model Fig. 7. Abstract syntax

elements. The syntax comprises all relevant artifacts: Attribute definitions, at-
tribute extensions, semantic rules and datatypes. Except attribute extensions
(and the therein contained attribute occurrences), all objects can be cross-referenced
by other parts of the attribution. This excerpt from the language’s grammar
defines the declaration syntax for assignments and occurrences and their con-
nection to the targeted meta model classes:

Attribution returns attribution::Attribution:
’attribution’ id=ID ’{’ ((attrDefinitions+=AttributeDefinition)∗ &

(attrSemanticRules+=SemanticRule)∗ &
(attrDataTypes+=AttrDataType)∗ &
(attrExtensions+=AttrExtension)∗) ’}’ ;

AttributeDefinition returns attributes::AttrDefinition:
’attribute’ (AttrAssignDefinition | AttrConstDefinition) ;

AttrAssignDefinition returns attributes::AttrAssignDefinition:
’assignment’ id=ID (name=STRING)? (‘‘[”description=STRING‘‘]”)? ’:’

dataType=[datatypes::AttrDataType]
’initWith’ initializationRule=[semanticrules::AttrSemanticRule] ’;’ ;

AttrExtension returns attributes::AttrExtension:
’extend’ attributedClass=[ecore::EClass] ’with’ ’{’ (attributes += AttrOccurrence)∗ ’}’ ;

AttrOccurrence returns attributes::AttrOccurrence:
’occurrenceOf’ definedBy=[attributes::AttrDefinition]
’calculateWith’ calculatedBy=[semanticrules::AttrSemanticRule] ’;’ ;

The following example5 specifies the attributes is reachable,
all predecessors and scc id which perform reachability analysis and
calculate a node’s transitive predecessors as well as strongly connected
component (SCC) membership.

attribution flowanalysis {
– attribute definitions (consisting of id, data type and initialization rule)
attribute assignment is reachable : OCLBoolean initWith boolean false;
attribute assignment all predecessors : OCLSet initWith set empty;
attribute assignment scc id : OCLBoolean initWith int zero;

– semantic rules (ocl rules using helper operations injected into OCL environment)
rule ocl isreachable node : standard
” self .incoming.source. is reachable()−>includes(true)”;

rule ocl allpredecessors node : imperative
” self .incoming.source ∪ self .incoming.source. all predecessors ()”;

5 Common types (e.g. OCLBoolean) and rules for trivial calculations such as
boolean true are contained in a “standard library” omitted here for lack of space.
For the same reason, imperative OCL statements were converted to formula.

Data-Flow Based Model Analysis and Its Applications 715

rule ocl sccid node : imperative
” self ∪ self . all predecessors () == self.incoming.source. all predecessors ()”;

– attribute occurrences (define occurrences and bind them to classes)
extend node with {
occurrenceOf is reachable calculateWith isreachable node;
occurrenceOf all predecessors calculateWith allpredecessors node ;
occurrenceOf scc id calculateWith sccid node;

}
extend startnode with {
occurrenceOf is reachable calculateWith boolean true;

}
}

3.3 Dynamic, Demand-Driven Fixed-Point Analysis

Compared to an exhaustive algorithm, a demand-driven DFA solver limits com-
putation to a subset of requested results [21]. In this context, this subset corre-
sponds to a set of requested instances INSTAT (REQ) ⊆ INSTAT , e.g. all instances
of a specific attribute, all attributes located at a given class etc. However, un-
known to the solver, transitive dependencies to instances INSTAT�INSTAT (REQ)

may exist. For example, scc id relies on all predecessors. INSTAT (REQ) must
therefore be expanded dynamically on discovery of these dependencies.

Because dependencies between attribute instances are “hidden” inside flow-
equations, traditional methods for call-graph construction [22, 23] are not appli-
cable. The dependency graph that superimposes the attributed model therefore
has to be constructed on-the-fly during the fixed-point computation using dy-
namic dependency discovery. As a side-effect, support for the inclusion of transi-
tive dependencies as described above is implicitly provided by such an algorithm.

The adapted worklist algorithm carries out the following steps: The requested
instances INSTAT (REQ) are initialized before their associated iteration rules are
executed. If a rule requests another instance’s value as input, this access is relayed
to the solver which is thereby able to record the dependency between the calling
and the called instance and at the same time can discover calls to attributes
not in INSTAT (REQ). A new iteration starts at the leaves of the constructed
dependency graph, i.e. at instances without input dependencies, and at cyclic
dependencies whose values are updated after each iteration.

As an optimization for this method in the context of flow-based model anal-
ysis, we propose a demand-driven, iterative algorithm that constructs and oper-
ates on a directed acyclic dependency graph with multiple root and leaf nodes.
Each root node represents an attribute instance not required as input by other
instances. Leaves are either instances which themselves do not depend on input
or so-called reference nodes that indicate the presence of cyclic dependencies
and are used to trigger the fixed-point computation. This method compensates
for the absence of a CFG structure by maintaining a set of starting points for
the fixed-point iterations (the leaf nodes) while the identification of independent
branches enables parallelized computation. It also provides a comprehensive rep-
resentation of the computation process useful for debugging purposes.

716 C. Saad and B. Bauer

(a) Recorded dependencies (b) After iteration it0 (c) Final result after it1

Fig. 8. Dependency discovery and result computation

In the first phase of the evaluation process, the DFA equations corresponding
to the instances from INSTAT (REQ) are executed. By monitoring the
input requests during the rules’ execution, the solver is able to construct an ini-
tial dependency graph from the recorded data-flow dependencies. The graph is
then converted into an acyclic representation by identifying cyclic dependencies
through a depth-first traversal strategy and replacing back edges with reference
nodes. Finally, all instances in are reset to their respective initialization value.
This is demonstrated in Figure 8(a) for the example presented in Figure 6: The
back edge between is reachable instances at nodes 3 and 2 has been replaced
by a reference node and all values have been reset to false.

In the second phase, the graph is traversed repeatedly in a bottom-up fash-
ion, starting at unstable leaf nodes. Each instance node’s iteration rule can be
executed once its input dependencies have been satisfied, i.e. all of its children
have been either executed or do not have an unstable node in their transitive
children set. Parallelization is possible if rules are executed through a working
queue to which the parents of traversed nodes are added once the aforemen-
tioned condition applies. Since rules are free of side effects, it is safe to stop
traversal at nodes if their execution yields the same result for an instance as in
the last iteration. This avoids unnecessary recalculations of stable results. Af-
ter the traversal, unstable instances at cyclic dependencies can be detected: A
reference node is classified as unstable if its result from the previous iteration
it(n−1) is different from the current iteration (itn) value at the referenced node.
As long as instances with values that differ between iteration it(n−1) and itn
are identified, a new fixed-point iteration it(n+1) is triggered starting with the
parents of the unstable reference nodes. For the first iteration it0, all leaves are
classified as unstable with the DFA initialization values representing it(n−1).

Figure 8(b) shows the result after the initial iteration with the highlighted
nodes representing the executed rules. Since is reachable at the model object
2 now differs from its previous value, the new result is transferred to the reference
node. Its predecessor, the instance at model node 3, is scheduled as starting point

Data-Flow Based Model Analysis and Its Applications 717

for bottom-up traversal in it1. The stable fixed point is reached after iteration
it1, shown in Figure 8(c). Since the value for model object 1 has not changed,
the traversal can be aborted without recalculation of 2 and E.

The discovery of new dependencies during the evaluation process can result
in the introduction of additional nodes, the reconnection of existing nodes or the
merging of previously separate graphs. To handle this case, the required mod-
ifications are postponed until after the current iteration itn finishes. Then, an
intermediate step itn′ is carried out in which the existing graphs are extended
by repeating the chain-building steps of phase 1 for the discovered attribute
instances. For iteration it(n+1), re-evaluation is scheduled to start at the small-
est set of leaf nodes that includes all newly created instances and nodes which
introduced new dependencies to existing instances as parents.

4 Evaluation

In this section we present our findings in the evaluation of the scalability of
the fixed-point computation for models. Both the number of rule executions in
relation to the amount of instances and the time for the analysis are indicators for
its performance aspects. The goal is a qualitative assessment of the applicability
of the approach for the analysis of large models. The evaluation employs the
attributes defined in Section 3.2 - is reachable, all predecessors and scc id

- as well as all predecessors min which calculates the dominating sets, using
equivalent bitvector-based implementations of the semantic rules. To evaluate
the scalability with respect to the amount of instances, five models have been
generated randomly to contain 50, 100, 500, 1000 and 2000 nodes. Except the
start and the final node, each node has exactly two outgoing connections to
arbitrary targets. Because each attribute is calculated for each node, the number
of results therefore amounts to four times the number of nodes. The computation
has been carried out with the algorithm described in Section 3.3 and a modified
worklist algorithm that does not construct a dependency graph to demonstrate
the unoptimized application of traditional DFA to the modeling context. The
values represent the median of 90 of 100 analysis runs (to eliminate caching
issues, the first 10% have been discarded) on an Intel i7 2,20GHz computer.

Fig. 9. Number of rule executions Fig. 10. Analysis time in ms (log. scale)

718 C. Saad and B. Bauer

Figure 9 shows the total amount of rules executed in the fixed-point iterations.
The time in milliseconds is pictured in Figure 10 using a logarithmic scale. From
the results it can be deduced that while the worklist method is faster at a
lower number of instances, it is soon outperformed by the dependency graph
approach. This can be explained by the overhead induced by the complex data
structures maintained by the graph-based algorithm. The dependency graph
algorithm breaks even between 100 and 500 nodes (400-2000 instances) as the
time and the amount of rule executions scales with the total number of results.

In the master thesis [24] our approach has been applied to detect illegal back-
ward data dependencies in AUTOSAR6 models. The author concludes that with
an execution time of 2.4 seconds (including pre-analysis steps) for the TIMMO-
2-USE breaking system use case, the “case study shows that the analysis tool is
able to cope with medium sized systems”.

5 Applications

The presented approach has been applied to different domains to verify its vi-
ability and versatility as a technique that supports a wide range of use cases.
The open source Model Analysis Framework7 (MAF, [25]), was developed as
a proof-of-concept platform and a reference implementation. The tooling suite
is built on top of Eclipse technology such as the Eclipse Modeling Framework,
Xtext, MDT OCL and M2M QVT. It contains a DFA solver module which can
be integrated into third party applications and an IDE that supports analysis
specification, configuration and debugging.

(a) Minimal availability (b) Maximal availability

Fig. 11. Minimal and maximal availability of d3

Multiple analyses (available from the MAF repository) have been implemented
for Eclipse’s Java Workflow Tooling8 (JWT) project - a tooling suite for mod-
eling executable business processes. In the process shown in Figures 11(a) and
11(b), resource objects have been assigned to business actions, outgoing arrows
denoting the production and incoming arrows the use of a resource.

6 http://www.autosar.org, http://www.timmo-2-use.org/
7 http://code.google.com/a/eclipselabs.org/p/model-analysis-framework/
8 http://www.eclipse.org/jwt/

http://www.autosar.org
http://www.timmo-2-use.org/
http://code.google.com/a/eclipselabs.org/p/model-analysis-framework/
http://www.eclipse.org/jwt/

Data-Flow Based Model Analysis and Its Applications 719

Flow-analysis can now be used to detect whether resources will be available
at steps where they are required as input. Fixed-point computation yields two
results: We can track the propagation of resources assuming that all paths are
taken (Δ =

⋃
, maximal availability) and the case where only information is

regarded arriving on all paths at once (Δ =
⋂
, minimal availability). The latter

case differs from the former if resources are created inside cycles or in diamond-
shaped (i.e. alternative) paths because not every execution of such a process
will traverse these paths. In the figures the availability of the resource d3 is
highlighted in green. The notable difference lies in node 5 where d3 will only be
available after the cycle has been traversed at least once. This is reflected in the
minimal availability result depicted in Figure 11(a). It indicates that it cannot
be guaranteed that the resource will be available at 5 on all executions of this
process. On the other hand, from Figure 11(b) we can deduce that there is at
least one path on which d3 will have been created once we arrive at this point.

By combining this information with the local input/output of each node, the
user can be given an indication about the validity of the process with respect
to resource availability. This use case can be extended in multiple ways, e.g. to
approximate how many instances of a resource must be provisioned if it can be
accessed multiple times at once in parallel execution paths.

Additional use cases which are currently being evaluated include the detection
of structural clones, the formalization of modeling guidelines and the computa-
tion of model metrics for different application domains (cf. [26]).

Currently, the Model Analysis Framework is also used in several research
projects, including the ITEA2 project VERDE9 and WEMUCS10 (IuK Bayern).

VERDE employs state-machines to derive test cases in the notion of model-
based testing (cf. Deliverables 5.3.1, 5.4.2). Subjecting them to static analysis
therefore enables early feedback to the developer on whether a model conforms
to its intended behavior. Specifically, DFA is used to compute edge coverage
information to drive test path generation and to perform a variable analysis in
the notion of compiler construction on the code embedded in the state machine’s
states and transitions. Results of static analysis are used to detect relevant test
cases, e.g. paths where variables are accessed that might not have been initialized
or adopt border case values. Applying static analysis to state machine models
presents a unified approach that enables early violation detection and indication
of potential problems as well as a focused test case generation.

The goal of the ongoing WEMUCS project is to provide methods and tools for
the development, optimization and testing of software for embedded multi-core
systems. The analysis of AUTOSAR models (cf. Section 4) is used to iden-
tify dependencies between functions (RunnableEntities) incurred by their data
accesses. The dependencies detected using DFA are used to derive a valid execu-
tion order for the entities (or to ask for manual problem resolution if this is not

9 Validation-driven design for component-based architectures,
http://www.itea-verde.org/

10 Methods and tools for iterative development and optimization of software for em-
bedded multicore systems, http://www.multicore-tools.de

http://www.itea-verde.org/
http://www.multicore-tools.de

720 C. Saad and B. Bauer

possible). Afterward, a DFA implementation of the token flow algorithm [27] is
applied to the constructed control-flow graph to cluster the entities into single-
entry-single-exit (SESE) components. These components represent parallelizable
blocks and can subsequently be used as input for a scheduling algorithm.

6 Related Work

The canonical method for formalizing the static semantics of modeling languages
is the Object Constraint Language which was recently extended with the ability
to handle transitive closures11. However, as a constraint language it is not well
suited for the derivation and approximation of context-sensitive information - a
limitation removed by the fixed-point semantics of the data-flow method.

Several attempts were made to convert UML models with annotated OCL
constraints to other technical spaces by translating constraints into satisfiabil-
ity problems [28–30]. With the existence of powerful OCL interpreters, these
methods are not strictly required for constraint evaluation, however in some
cases they provide additional features, e.g. snapshot generation [31], to validate
whether the semantics of the modeling language are preserved.

The relevance of flow-based analysis is evident from the amount of research
work that employs DFA: The authors of [32] convert UML sequence diagrams to
control-flow graphs for validation purposes while [33, 34] attempt to improve test
case generation from statecharts. Def-use relationships for UML Action Seman-
tics are derived in [35] and [36] applies DFA to identify patterns for translating
graph-oriented BPMN models into block-oriented BPEL code. While originally
given as an imperative algorithm, the SESE decomposition proposed in [27] was
easily converted to a declarative flow analysis (cf. Section 5). It can be assumed
that these methods could have profited from the presented approach as a unified
method for defining flow-based analyses in their respective domains.

Although there are many usage scenarios for DFA in the modeling area, there
exists - to our knowledge - only one approach that is directly comparable in
that it provides a generalized technique for analysis specification and evalua-
tion: JastEMF [37] translates meta models to circular reference attribute gram-
mars (CRAG) [38], an extension of traditional attribute grammars, by mapping
the containment hierarchy of the meta model to grammatical productions. Both
the cross-references between meta model elements and semantic specifications
(comparable to flow equations) are then defined as semantic attributes. CRAGs
support fixed-point evaluation semantics through designated remote and circu-
lar attributes. Compared to the flow-analysis, this method strongly relies on the
formalism of formal languages and attribute grammars, substituting the syntax
tree with the model’s containment tree to which the notion of attribute inher-
itance/synthesis is applied while the graph structure of the model has to be
specified as part of the analysis in form of reference attributes.

11 http://www.omg.org/issues/issue13944.txt

http://www.omg.org/issues/issue13944.txt

Data-Flow Based Model Analysis and Its Applications 721

7 Conclusions and Outlook

In this paper we presented an approach for static model analysis in the notion
of data-flow analysis, a well-understood technique from the field of compiler
construction. The stated goal was to provide language engineers with a unified
method for complementing (existing) model-based DSLs with static analysis ca-
pabilities. By validating well-formedness constraints and deriving static approxi-
mations of behavioral properties based on contextual, flow-sensitive information,
many aspects of modeled systems can be evaluated on a conceptual level.

To motivate the applicability of flow analysis, we studied the relationships be-
tween the area of formal languages, in which this method is traditionally applied,
and the field of modeling. Based on an alignment of the respective abstraction
layers, we proposed an analysis specification DSL that transfers the underlying
principles to the modeling domain. Because this language itself is model-based,
it closely integrates with the target domain, eliminating the need for transfor-
mations between different technological and conceptual backgrounds and thus
reducing the effort for implementation and usage. Since analyses are defined non-
intrusively and arbitrary languages can be used to specify DFA equations, full
compatibility with existing modeling languages and tools is retained and flexi-
bility is provided with regard to adaption to diverse technological ecosystems.

As opposed to traditional DFA where dependencies between flow-equation in-
stances are derived from the control flow itself, the ambiguous edge semantics in
model graphs make the automatic propagation of results along these paths im-
practical. To overcome this problem, we use a demand-driven, iterative algorithm
supporting the dynamic discovery of dependencies during solving. It allows for
partial parallelization and its performance has been evaluated experimentally.

In conclusion, this approach provides the capabilities and the versatility re-
quired to implement sophisticated analyses - as demonstrated in the context of
several use cases - along with a close integration with modeling concepts, namely
the widely-used OMG standards. It provides a generic “programming language”
for specifying declarative analyses that rely on an examination of flow-sensitive
properties. The application range also extends to structural models, e.g. com-
puting metrics for UML class diagrams such as the Attribute Inheritance Factor
(AIF) relating the inherited attributes at a class to all available attributes [39].

Next steps include the examination of additional application areas and an
evaluation of practical experiences with relation to the specification process.
The solving algorithm will be complemented with a formalized description and
in-depth evaluation. A “standard library” containing common flow analyses will
be defined to serve as starting point for custom implementations.

References

1. Object Management Group. Model-Driven Architecture (June 2003),
http://www.omg.org/mda/

2. Apfelbaum, L., Doyle, J.: Model based testing. In: Software Quality Week Confer-
ence, pp. 296–300 (1997)

http://www.omg.org/mda/

722 C. Saad and B. Bauer

3. Object Management Group (OMG) specifications, http://www.omg.org/spec
4. Malgouyres, H., Motet, G.: A UML model consistency verification approach based

on meta-modeling formalization. In: Proceedings of the 2006 ACM Symposium on
Applied Computing, pp. 1804–1809. ACM (2006)

5. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to alloy and back again. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Heidelberg
(2010)

6. Mandel, L., Cengarle, M.V.: On the expressive power of OCL. In: Wing, J.M.,
Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, p. 854. Springer, Heidelberg (1999)

7. Baar, T.: The definition of transitive closure with OCL – limitations and applica-
tions. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 358–365.
Springer, Heidelberg (2004)

8. Brucker, A.D., Doser, J., Wolff, B.: Semantic issues of OCL: Past, present, and
future. Electronic Communications of the EASST 5 (2007)

9. Cengarle, M.V., Knapp, A.: A formal semantics for OCL 1.4. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 118–133. Springer, Heidelberg
(2001)

10. Marković, S., Baar, T.: An OCL semantics specified with QVT. In: Wang, J.,
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
661–675. Springer, Heidelberg (2006)

11. Brucker, A.D., Wolff, B.: A proposal for a formal OCL semantics in isabelle/HOL.
In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410,
pp. 99–114. Springer, Heidelberg (2002)

12. Saad, C., Bauer, B.: Data-flow based model analysis. In: Proceedings of the Sec-
ond NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-216215,
pp. 227–231. NASA (April 2010)

13. Kildall, G.A.: A unified approach to global program optimization. pp. 194–206
(1973)

14. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Sys-
tems 2(2), 127–145 (1968)

15. Babich, W.A., Jazayeri, M.: The Method of Attributes for Data Flow Analysis.
Acta Inf. 10, 245–264 (1978)

16. Rodney, F.: Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. In: Proceedings of the 1986 SIGPLAN Sym-
posium on Compiler Construction, SIGPLAN 1986, pp. 85–98. ACM, New York
(1986)

17. Jones, L.G.: Efficient evaluation of circular attribute grammars. ACM Trans. Pro-
gram. Lang. Syst. 12(3), 429–462 (1990)

18. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. In: Bruel, J.-
M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006)

19. Alanen, M., Porres, I.: A Relation between Context-Free Grammars and Meta
Object Facility Metamodels. Technical report, TUCS (2004)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2009)

21. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In:
Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of Software
Engineering, SIGSOFT 1995, pp. 104–115. ACM, NY (1995)

22. Ryder, B.G.: Constructing the call graph of a program. IEEE Transactions on
Software Engineering (3), 216–226 (1979)

23. Jahromi, S.A.H.M., Honar, E.: A framework for call graph construction (2010)

http://www.omg.org/spec

Data-Flow Based Model Analysis and Its Applications 723

24. Minnerup, P.: Models in the development process for parallelizing embedded sys-
tems. Master’s thesis, Augsburg University, 86159 Augsburg, Germany (2012)

25. Saad, C., Bauer, B.: The Model Analysis Framework An IDE for Static Model
Analysis. In: Industry Track of Software Language Engineering (ITSLE), 4th In-
ternational Conference on Software Language Engineering (SLE 2011) (May 2011)

26. Baroni, A.L., Abreu, O.B.E.: An OCL-based formalization of the MOOSE metric
suite. In: Proceedings of ECOOP Workshop on Quantative Approaches in Object-
Oriented Software Engineering (2003)

27. Götz, M., Roser, S., Lautenbacher, F., Bauer, B.: Token Analysis of Graph-
Oriented Process Models. In: New Zealand Second International Workshop on
Dynamic and Declarative Business Processes (DDBP), 13th IEEE International
EDOC Conference (EDOC 2009) (September 2009)

28. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE International Conference on Software Testing
Verification and Validation Workshop, ICSTW 2008, pp. 73–80. IEEE (2008)

29. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1), 69–86 (2010)

30. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-
L/OCL models using Boolean satisfiability. In: Proceedings of the Conference on
Design, Automation and Test in Europe, pp. 1341–1344. European Design and
Automation Association (2010)

31. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by
Automatic Snapshot Generation. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003. LNCS, vol. 2863, pp. 265–279. Springer, Heidelberg (2003)

32. Garousi, V., Bri, L., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence
Diagrams (2005)

33. Briand, L., Labiche, Y., Lin, Q.: Improving the coverage criteria of uml state ma-
chines using data flow analysis. Software Testing, Verification and Reliability 20(3),
177–207 (2010)

34. Kim, Y.G., Hong, H.S., Bae, D.-H., Cha, S.-D.: Test cases generation from uml
state diagrams. IEEE Proceedings Software 146, 187–192 (1999)

35. Waheed, T., Iqbal, M.Z.Z., Malik, Z.I.: Data Flow Analysis of UML Action Seman-
tics for Executable Models. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 79–93. Springer, Heidelberg (2008)

36. Garćıa-Bañuelos, L.: Pattern Identification and Classification in the Translation
from BPMN to BPEL. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS,
vol. 5331, pp. 436–444. Springer, Heidelberg (2008)

37. Bürger, C., Karol, S., Wende, C., Aßmann, U.: Reference Attribute Grammars for
Metamodel Semantics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 22–41. Springer, Heidelberg (2011)

38. Magnusson, E., Hedin, G.: Circular Reference Attributed Grammars - Their Eval-
uation and Applications. ENTCS 82(3) (2003)

39. Abreu, F.B., Carapuça, R.: Object-oriented software engineering: Measuring and
controlling the development process. In: Proceedings of the 4th International Con-
ference on Software Quality (1994)

Contract-Aware Slicing of UML Class Models

Wuliang Sun, Robert B. France, and Indrakshi Ray

Colorado State University, Fort Collins, USA

Abstract. Slicing is a reduction technique that has been applied to class
models to support model comprehension, analysis, and other modeling
activities. In particular, slicing techniques can be used to produce class
model fragments that include only those elements needed to analyze se-
mantic properties of interest. In this paper we describe a class model
slicing approach that takes into consideration invariants and operation
contracts expressed in the Object Constraint Language (OCL). The ap-
proach is used to produce model fragments, each of which consists of only
the model elements needed to analyze specified properties. We use the
slicing approach to support a technique for analyzing sequences of opera-
tion invocations to uncover invariant violations. The slicing technique is
used to produce model fragments that can be analyzed separately. The
preliminary evaluation we performed provides evidence that the pro-
posed slicing technique can significantly reduce the time to perform the
analysis.

Keywords: Class model slicing, UML/OCL, Contract.

1 Introduction

Slicing techniques [22] produce reduced forms of artifacts that can be used to
support, for example, analysis of artifact properties. Slicing criteria are used to
determine the elements that are included in slices. Slicing techniques have been
proposed for different software artifacts, including programs (e.g., see [5][22]),
and models (e.g., see [1][2][4][9][10]). In the model-driven development (MDD)
arena, model slicing techniques have been used to support a variety of mod-
eling tasks, including model comprehension [1][2][10], analysis [7][11][12], and
verification [4][17][18].

Rigorous analysis of structural invariants and operation contracts expressed
in the Object Constraint Language (OCL) [19] can be expensive when the class
models are large. Model slicing techniques can be used in these situations to re-
duce large models to just those fragments needed to perform the analysis. This
reduction can help minimize the cost of analysis. However, many of the existing
class model slicing techniques do not take constraints and operation contracts
expressed in auxiliary constraint languages into consideration when producing
model slices. Their applicability is thus limited to situations in which the deter-
mination of slices does not require information found in constraints. There are
a few slicing approaches that take into consideration class model constraints ex-
pressed in the OCL, but either they handle only invariants [17] or only operation

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 724–739, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Contract-Aware Slicing of UML Class Models 725

contracts [7], or they can only be used to slice a single class (e.g., see [11]). In this
paper we describe a class model slicing approach that takes into consideration
both structural invariants and operation contracts expressed in the OCL.

We developed the approach to improve the efficiency of a model analysis
technique we created to check that operation contracts do not allow invariant
violations when sequences of conforming operations are invoked [21]. The slicing
technique is used to reduce the problem of analyzing a large model with many in-
variants to smaller subproblems that involve analyzing a model fragment against
a subset of invariants and operation contracts. Each model fragment can be an-
alyzed independently of other fragments.

Given a class model with OCL constraints, the slicing approach automatically
generates slicing criteria consisting of a subset of invariants and operation con-
tracts, and uses the criteria to extract model fragments. Each model fragment
is obtained by identifying and analyzing relationships between model elements
and the constraints (invariants and operation contracts) included in a generated
slicing criterion.

The analysis results are preserved by the slicing technique. This assertion is
based on the observation that the technique produces the fragments by identi-
fying the model elements that are directly referenced by OCL expressions and
analyzing their dependencies with other model elements. The preliminary eval-
uation also provides some evidence (albeit, not formal) that the analysis results
are preserved by the slicing technique.

The rest of the paper is organized as follows. Section 2 presents an example
that will be used to illustrate the slicing approach in the rest of the paper. Section
3 describes the model slicing approach, and Section 4 describes the results of a
preliminary evaluation of the approach. Section 5 discusses related work, and
Section 6 concludes the paper with an overview of plans for future related work.

2 Background

We will use the Location-aware Role-Based Access Control (LRBAC) model,
proposed by Ray et al. [13] [14] [15], to illustrate the contract-aware model slicing
approach. LRBAC is an extension of Role-Based Access Control (RBAC) [16]
that takes location into consideration when determining whether a user has
permission to access a protected resource.

In LRBAC, roles can be assigned to, or deassigned from users. A role can be
associated with a set of locations in which it can be assigned to, or activated by
users. A role that is associated with locations can be assigned to a user only if
the user is in a location in which the role can be assigned. A user can create a
session and activate his assigned roles in the session. A role can be activated in
a session only if the user that creates the session is in a location in which the
role can be activated. Figure 1 shows part of a design class model that describes
LRBAC features.

Permissions are granted to roles, and determine the resources (objects) that a
user can access (read, write or execute) via his activated roles. Permissions are

726 W. Sun, R.B. France, and I. Ray

Fig. 1. A Partial LRBAC Class Model

associated with locations via two relationships: PermRoleLoc and PermObjLoc.
PermRoleLoc links a permission to its set of allowable locations for the role
associated with the permission, and PermObjLoc links a permission to its set
of allowable locations for the object associated with the permission.

Operation contracts and invariants in the LRBAC model are specified us-
ing the OCL. For example, the OCL contracts for operations UpdateUserID,
AssignRole and UpdateLoc are given below:

// Update a user’s ID
Context User::UpdateUserID(id:Int)
Pre: self.UserID != id
Post: self.UserID = id

// Assign a role r to user u
Context User::AssignRole(r:Role)
Pre: self.UserAssign→excludes(r) and r.AssignLoc→includes(self.UserLoc)
Post: self.UserAssign = self.UserAssign@pre→including(r)

// Move a user into a new location l
Context User::UpdateLoc(l:Location)
Pre: self.UserLoc→excludes(l) and self.UserAssign→isEmpty()
Post: self.UserLoc→includes(l)

Examples of OCL invariants for the LRBAC model are given below:

Contract-Aware Slicing of UML Class Models 727

// Each user has a unique ID.
Context User inv UniqueUserID::
User.allInstances()→forAll(u1, u2:User|u1.UserID = u2.UserID

// For every role r that is assigned to a user, the user’s location belongs to
// the set of locations in which role r can be assigned.
Context User inv CorrectRoleAssignment:
self.UserAssign→forAll(r|r.AssignLoc→includes(self.UserLoc))

// The number of roles a user can activate in a session cannot exceed the value
// of the session’s attribute, MaxRoles.
Context Session inv MaxActivatedRoles:
self.MaxRoles >= self.SesRole→size()

For the LRBAC model, one may want to determine if there is a scenario in
which the operation contracts allow the system to move into a state in which a
user has unauthorized access to resources. In previous work [21], we developed a
class model analysis technique that uses the Alloy Analyzer [6] to find scenarios
(sequences of operation invocations) that start in valid states (states that satisfy
the invariants in the class model) and end in an invalid state. The analysis uses
the operation contracts to determine the effects operations have on the state. If
analysis uncovers a sequence of operation calls that moves the system from a valid
state to an invalid state, then the designer uses the trace information provided
by the analysis to determine how the operation contracts should be changed
to avoid this scenario. Like other constraint solving approaches, performance
degrades as the size of the model increases. The slicing technique described in
the paper can improve the scalability of the analysis approach by reducing the
problem to one of separately analyzing smaller model fragments.

3 The Slicing Approach

The model slicing approach described in this paper is used to decompose a large
model into fragments, where each fragment contains model elements needed to
analyze a subset of the invariants and operation contracts in the model. Fig. 2
shows an overview of the slicing approach.

The input to the approach is a UML class model with invariants and oper-
ation contracts expressed in the OCL. The approach has two major steps. In
the first step, the input class model with OCL constraints is analyzed to pro-
duce a dependency graph that relates (1) invariants to their referenced model
elements, and (2) operation contracts to their containing classes and other ref-
erenced classes and class properties. The dependencies among model elements
are determined by relationships defined in the UML metamodel.

728 W. Sun, R.B. France, and I. Ray

Fig. 2. Approach Overview

Table 1. Referenced Classes and Attributes for Each Operation Contract/Invariant
Defined in the LRBAC model

Operation Contract/Invariant Referenced Classes Referenced Attributes

Op1 AssignRole User, Role, Location None

Op2 UpdateUserID User UserID

Op3 UpdateLoc User, Role, Location None

Op4 UpdateAge User Age

Op5 UpdateUserName User UserName

Op6 UpdateMaxRoles Session MaxRoles

Op7 UpdateRoleName Role RoleName

Op8 AddAssignLoc Role, Location None

Op9 UpdateLocName Location LocName

Op10 UpdatePermName Permission PermName

Op11 UpdateObjID Object ObjID

Inv1 NonNegativeAge User Age

Inv2 UniqueUserID User UserID

Inv3 GenderConstraint User Gender

Inv4 CorrectRoleAssignment User, Role, Location None

Inv5 MaxActivatedRoles Session, Role MaxRoles

Inv6 UniqueObjectID Object ObjID

In the second step of the approach, the dependency graph is used to generate
slicing criteria, and the criteria are then used to extract one or more model
fragments from the class model. The generated model fragments can be analyzed
separately.

In the remainder of this section we describe the process for generating a
dependency graph and the slicing algorithm used to decompose the class model
into model fragments.

3.1 Constructing a Dependency Graph

Dependencies among invariants, operation contracts andmodel elements are com-
puted by traversing the syntax tree of the OCL invariants and operation contracts.
For example, consider the analysis of the operation contract for AssignRole (the
contract is given in Section 2). The expression self.UserAssign is an association
end call expression and it returns a set of roles assigned to the user (referred to by

Contract-Aware Slicing of UML Class Models 729

Fig. 3. A Dependency Graph

self). There is thus a dependency between this contract and the class Role. The
expression self.AssignLoc returns a user’s current location, and thus there is a
dependency with the classLocation. The parameter r refers to an instance of class
Role, and r.AssignLoc returns a set of locations in which role r can be assigned
to any user. The analysis thus reveals the operation contract for AssignRole ref-
erences and thus depends on, the following classes: User, Role and Location. If
an OCL constraint involves a statement like Role.allInstances(), then the OCL
constraint references class Role. A similar analysis is done for each OCL contract
and invariant. Table 1 lists the referenced classes and attributes for the contracts
and invariants defined in the LRBAC model.

The computed dependencies and relationships defined in the UML metamodel
are used to build a dependency graph. A dependency graph consists of nodes
and edges, where each node represents a model element (e.g., classes, attributes,
operations and invariants), and each edge represents a dependency between two
elements. For example, if a class model has only one class that includes only
one attribute, the generated dependency graph consists of two nodes, a node
representing the class and a node representing the attribute, and one edge that
represents the relationship between the attribute and its containing class.

Figure 3 shows a graph that describes the dependency relationship among
classes, attributes, operations and invariants of the LRBAC class model de-
scribed in Fig. 1. Algorithm 1 describes the process used to generate the graph.

Steps 1 to 5 describe how the metamodel relationships and computed de-
pendencies between OCL invariants and contracts and their referenced model
elements are used to build an initial dependency graph. In step 6 of the algo-
rithm, if an operation contract (op) or invariant (inv) only references its context
class, cls, and an attribute in cls, attr, the edge that points to vertex cls from
vertex op (or inv), can be removed because the dependency can be inferred from
the dependency between the vertex cls and the vertex attr. For example, Table 1
shows that operation UpdateUserID’s (Op2) only references class User and its
attribute UserID in its specification. The edge pointing to vertex User from ver-
tex Op2 is redundant, and is thus removed from the dependency graph shown in

730 W. Sun, R.B. France, and I. Ray

Algorithm 1. Dependency Graph Generation Algorithm

Input: A UML Class Model + OCL Operation Contracts/Invariants
Output: A Dependency Graph
Algorithm Steps:
Step 1. Create a vertex for each class, attribute, operation contract and invariant of
the class model in the dependency graph.
Step 2. For every attribute, attr defined in a class, cls, create a directed edge from
vertex attr to vertex cls.
Step 3. For every class, sub, that is a subclass of a class, super, create a directed
edge from vertex sub to vertex super.
Step 4. For every class that is part of a container class (i.e., a class in a composition
relationship), create a directed edge to a container class vertex from a contained
class vertex.
Step 5. If there is an association between class x and y, and the lower bound of the
multiplicity of the association end in y is equal to or greater than 1, create a directed
edge to vertex y from vertex x.
Step 6. For every referenced class (or attribute, attr), cls, of an operation contract
(or invariant, inv), op, create a directed edge to vertex cls (or attr) from vertex op
(or inv). If the operation contract (or invariant) only references its context class,
cls, and its context class’s attribute (or attributes) in its specification, the edge that
points to vertex cls from vertex op (or inv), is removed.

Fig. 3. Invariant Inv5 in Table 1 references its context class, Session, and class
Session’s attribute, MaxRoles, in the specification. But the edge pointing to
vertex Session from vertex Inv5 cannot be removed from Fig. 3 since invariant
Inv5 also references class Role in its specification through the navigation from
class Session to class Role.

3.2 Slicing a Class Model

The generated dependency graph is used to guide the decomposition of a model
into fragments that can be analyzed separately. The first step is to identify model
elements that are not involved in the analysis. These are referred to as irrele-
vant model elements. The intuition behind this step is based on the following
observation: If the classes and attributes that are referenced by an operation, are
not referenced by any invariant, the operation as well as its referenced classes
and attributes (i.e., analysis-irrelevant model elements) can be removed from
the class model because a system state change triggered by the operation in-
vocation will not violate any invariant defined in the model. Similarly, if the
classes and attributes that are referenced by an invariant, are not referenced
by any operation, the invariant as well as its referenced classes and attributes
(i.e., analysis-irrelevant model elements) can be removed from the class model
because any operation invocation that starts in a valid state will not violate the
invariant. Irrelevant model elements are identified using the process described in
Algorithm 2, and are removed from the class model.

Contract-Aware Slicing of UML Class Models 731

Fig. 4. A Dependency Graph Representing a LRBAC Model with the Irrelevant Model
Elements Removed

The second step is to identify model elements that are involved in a local
analysis problem. A local analysis problem refers to an analysis that can be
performed within the boundary of a class [17]. Model elements that are involved
in a local analysis problem are referred to as local analysis model elements.
For example, operation UpdateUserID in Fig. 1 is used to modify the value
of attribute UserID in class User, and invariant Inv2 defines the uniqueness
constraint on UserID. The invocation of operation UpdateUserID may or may
not violate the constraint specified in Inv2, but it will not violate other invariants
because UserID is not referenced by other operations or invariants. Thus an
analysis that involves checking if an invocation of UpdateUserID violates Inv2
can be performed within the boundary of User. Model elements that are involved
in local analysis problems are identified using the process described in Algorithm
3. Note that in the above example, UpdateUserID, UserID and Inv2 are identified
local analysis model elements. Thus these model elements and their dependent
model elements (User and User’s dependent class Location) can be extracted
from the LRBAC model and analyzed separately.

In the third step, the class model is further decomposed into a list of model
fragments using Algorithm 4.

Identifying Irrelevant Model Elements: Algorithm 2 is used to re-
move analysis-irrelevant model elements. The algorithm first computes
ARClsAttrV Set, a set of analysis relevant class and attribute vertices, where
each vertex is directly dependent on at least one operation vertex and at least one
invariant vertex. The algorithm then computes AROpInvV Set, a set of analysis
relevant operation and invariant vertices, where each vertex has a directly de-
pendent vertex that belongs to ARClsAttrV Set. The algorithm then performs
a Depth-First Search (DFS) from each vertex in AROpInvV Set, and labels all
the analysis-relevant vertices, ARV Set. The vertices not in ARV Set represent
the irrelevant model elements that need to be removed from the class model.

732 W. Sun, R.B. France, and I. Ray

Algorithm 2. Irrelevant Model Elements Identification Algorithm

1: Input: A dependency graph
2: Output: A set of analysis-irrelevant vertices
3: Algorithm Steps:
4: Set OpV Set = a set of operation vertices, InvV Set = a set of invariant vertices;
5: Set V Set = all the vertices in the dependency graph, OpDV Set = {}, InvDV Set

= {};
6: for each operation vertex OpV in OpV Set do
7: Get a set of OpV ’s directly dependent vertices, OpV DDSet;
8: OpDV Set = OpDV Set ∪ OpV DDSet;
9: end for
10: for each invariant vertex InvV in InvV Set do
11: Get a set of InvV ’s directly dependent vertices, InvV DDSet;
12: InvDV Set = InvDV Set ∪ InvV DDSet;
13: end for
14: Set ARClsAttrV Set = OpDV Set ∩ InvDV Set, Set AROpInvV Set = {};
15: for each vertex V in OpV Set ∪ InvV Set do
16: if one of V ’s directly dependent vertex is in ARClsAttrV Set then
17: AROpInvV Set = AROpInvV Set ∪ V ; Break;
18: end if
19: end for
20: Set ARV Set = {};
21: for each vertex V in AROpInvV Set do
22: Perform a Depth-First Search (DFS) from vertex V ;
23: Get a set of labeling vertices, V DFSSet, from vertex V ’s DFS tree;
24: ARV Set = ARV Set ∪ V DFSSet;
25: end for
26: Return (V Set - ARV Set);

Figure 4 shows a dependency graph representing a LRBAC model with the
analysis irrelevant model elements removed. Lines 6-14 of Algorithm 2 compute
ARClsAttrV Set. Lines 6-9 compute OpDV Set, a set of directly dependent
attribute and class vertices from each operation vertex. Similarly, lines 10-13
compute InvDV Set, a set of directly dependent attribute and class vertices
from each invariant vertex. ARClsAttrV Set is the intersection of OpDV Set
and InvDV Set.

Lines 15-19 compute AROpInvV Set. For example, vertex Op4 is an analysis-
relevant operation vertex because its directly dependent vertex, Age, is an
analysis-relevant attribute vertex, while vertex Op5 is analysis-irrelevant because
UserName is not an analysis-relevant vertex. Lines 21-25 compute ARV Set.

Identifying Local Analysis Model Elements: Algorithm 3 is used to iden-
tify fragments representing local analysis problems. The algorithm first computes
a set of attribute and class vertices, LocalV Set, that are involved in the local
analysis problems. A vertex, ClsAttrV , is added to LocalV Set only if (1) the
vertex is a member of ARClsAttrV Set (indicated by Line 6), and (2) all ver-
tices directly dependent on ClsAttr have no other directly dependent vertices

Contract-Aware Slicing of UML Class Models 733

(a) Local Analysis Model Elements
identified by Algorithm 3

(b) Reduced Dependency Graph with
Local Analysis Model Elements Re-
moved

Fig. 5. Dependency Graphs Representing Model Fragments Extracted from the LR-
BAC Model in Fig. 1

(indicated by Lines 7-15). The algorithm then uses the vertices in LocalV Set to
construct new dependency graphs, where each graph represents a model frag-
ment involved in a local analysis problem.

The dependency graph in Fig. 4 is decomposed into several subgraphs, as
shown in Fig. 5a and Fig. 5b, using Algorithm 3. Each dependency graph in
Fig. 5a represents a model fragment involved in a local analysis problem.

For example, {UserID,Age,ObjID} is the LocalV Set set of the dependency
graph in Fig. 4. The vertices that directly depend on vertex ObjID are Op11
and Inv6, and they are moved from DG to a new dependency graph. Vertex
ObjID’s DFS tree consists of ObjID, Object and Location, and they are copied
from DG to the new dependency graph. ObjID is then removed from DG.
Note that vertex Object becomes analysis-irrelevant in DG after vertex ObjID,
Op11, and Inv6 have been removed from DG. Thus it is necessary to perform
Algorithm 2 on DG to remove the analysis-irrelevant vertices, as indicated by
Line 25.

Decomposing the Dependency Graph: Algorithm 4 is used to decompose a
dependency graph without analysis-irrelevant vertices and local analysis problem
related vertices. The algorithm computes a set of slicing criteria where each crite-
rion consists of a set of operation and invariant vertices. Each slicing criterion is
then used to generate a new dependency graph that represents a model fragment.

For example, for each vertex, v, in ARClsAttrV Set, Line 5 of Algorithm 4
computes a collection Col, where each member of Col is a set of operation and in-
variant vertices that directly depend on v. ARClsAttrV Set (see Algorithm 2) is a
set of class and attributes vertices on which both operation and invariant vertices
directly depend. For example, ARClsAttrV Set for the graph shown in Fig. 5b
is {MaxRoles, User, Location, Role}. Thus Col for the graph is {{Op6, In5},
{In4, Op1, Op3}, {In4, Op1, Op3, Op8}, {In4, Op1, Op3, Op8, In5}}.

734 W. Sun, R.B. France, and I. Ray

Algorithm 3. Local Analysis Problem Identification Algorithm

1: Input: A dependency graph, DG, produced from the original graph after removing
the irrelevant vertices produced by Algorithm 2

2: Output: A set of dependency graphs
3: Algorithm Steps:
4: Reuse ARClsAttrV Set in Algorithm 2;
5: Set LocalV Set = {};
6: for each vertex, ClsAttrV , in ARClsAttrV Set do
7: Set F lag = TRUE;
8: for each vertex, V , that is directly dependent on ClsAttrV do
9: if V has other directly dependent vertices then
10: Set F lag = FALSE; Break;
11: end if
12: end for
13: if F lag == TRUE then
14: LocV Set = LocV Set ∪ ClsAttrV ;
15: end if
16: end for
17: for each vertex, LocalV , in LocalV Set do
18: Create an empty dependency graph, SubDG;
19: Move the operation and invariant vertices that directly depend on LocalV , from

DG to SubDG;
20: Perform a DFS from vertex LocalV ;
21: Get a set of labeling vertices, LocalV DFSSet, from vertex LocalV ’s DFS tree;
22: Copy LocalV DFSSet from DG to SubDG;
23: Remove LocalV from DG;
24: end for
25: Perform Algorithm 2 on DG to remove analysis-irrelevant vertices;

Line 6 uses the union-find algorithm described in [3] to merge the non-disjoint
sets in Col, and produce a collection of sets with disjoint operation and in-
variant vertices. For example, Col for the graph shown in Fig. 5b becomes
{Op6, In5, In4, Op1, Op3, Op8, In5} with the union-find algorithm being used.

Lines 7-16 use each disjoint set, S, in Col to construct a new dependency
graph from the input dependency graph DG. Lines 8-13 build a forest for S
from each DFS tree of a vertex in S. Lines 14-15 create a new dependency graph
that consists of all vertices in the forest. Since Col for the graph shown in Fig. 5b
has only one disjoint set, the forest generated from the disjoint set consists of
all the vertices in the dependency graph, indicating that the graph in Fig. 5b is
the minimum dependency graph that cannot be decomposed further.

4 Preliminary Evaluation

We developed a research prototype to investigate the feasibility of developing
tool support for the slicing approach. The prototype was developed using Ker-
meta [8], an aspect-oriented metamodeling tool. The inputs to the prototype are

Contract-Aware Slicing of UML Class Models 735

Algorithm 4. Dependency Graph Decomposition Algorithm

1: Input: A dependency graph, DG, produced from the original graph by Algorithm
3

2: Output: A set of dependency graphs
3: Algorithm Steps:
4: Recompute ARClsAttrV Set for DG using Algorithm 2;
5: Compute a collection Col = S1, S2,...,Sv of operation and invariant vertex sets,

where Sv represents a set of operation and invariant vertices that directly depend
on vertex v, a member of ARClsAttrV Set;

6: Use the disjoint-set data structure and algorithm described in [3] to merge the
nondisjoint-sets in Col;

7: for each set, S, in Col do
8: Set SubV Set = {};
9: for each vertex, V , in S do
10: Perform a DFS from vertex V ;
11: Get a set of labeling vertices, V DFSSet, from vertex V ’s DFS tree;
12: SubV Set = SubV Set ∪ V DFSSet;
13: end for
14: Create an empty dependency graph, SubDG;
15: Copy all the vertices in SubV Set, from DG to SubDG;
16: end for
17: Delete DG;

Fig. 6. A List of Model Fragments Generated from the LRBAC Model in Fig. 1

(1) an EMF Ecore [20] file that describes a UML design class model, and (2) a
textual file that contains the OCL invariants and operation specifications. The
prototype produces a list of model fragments extracted from the input model.
The prototype implementation uses a visitor pattern based transformation ap-
proach to generate a dependency graph from a UML class model with OCL
invariants and operation specifications.

Figure 6 shows fourmodel fragments extracted from theLRBACmodel inFig. 1.
Each model fragment corresponds to a dependency graph in Fig. 5. The model

736 W. Sun, R.B. France, and I. Ray

(a) Analyzing Model Fragment against
Inv1

(b) Analyzing Model Fragment against
Inv2

(c) Analyzing Model Fragment against
Inv3

(d) Analyzing Model Fragment against
Inv4

(e) Analyzing Model Fragment against
Inv5

(f) Analyzing Model Fragment against
Inv6

Fig. 7. Analyzing Unsliced Model and Model Fragments against each Invariant of
Table 1

fragments and the unsliced model were analyzed against the invariants defined in
Table 1 by the Alloy Analyzer (version 4.2 with SAT4J), on a laptop computer
with 2.17 GHz Intel Dual Core CPU, 3 GB RAM and Windows 7.

Figure 7 shows the results of a preliminary evaluation we performed on the
unsliced model and the model fragments. Each subfigure in 7 has an x axis,
namely SearchScope, indicating the maximum number of instances the Alloy
Analyzer can produce for a class, and a y axis, namely T ime, showing the total
analysis time (in millisecond) for building the SAT formula and finding an Alloy
instance.

Contract-Aware Slicing of UML Class Models 737

For example, Fig. 7a shows the time used to analyze the unsliced model Model
and the model fragment Submodel2 against the invariant Inv1. The difference
between the time used for analyzing Model and that for Submodel2 is relatively
small when the Alloy search scope is below 5. For a search scope above 10,
the time used for analyzing Model becomes significantly large while that for
Submodel2 is still below 5000 ms. Fig. 7c shows that the invariant Inv3 was not
analyzed in any model fragment (the analysis time remains at 0). This is because
Inv3 was removed after the dependency analysis identified the invariant as an
analysis-irrelevant element.

Note that the four algorithms described in the paper use set addition/deletion
operations, a depth-first-search algorithm, and a disjoint-set algorithm. Thus the
execution time for implementations of these four algorithms should not increase
significantly as the size of the class model increases. Since the execution time
of SAT solver-based tools (e.g., Alloy) could be exponential on the size of the
class model, the slicing algorithm described in the paper could speed up the
verification process for large models.

The preliminary evaluation also showed that the analysis results are pre-
served by the slicing technique. For example, the analysis performed on the un-
sliced model and the model fragments both found that the constraints specified
in invariant Inv2, Inv5 and Inv6 were violated by operation UpdateUserID,
UpdateMaxRoles and UpdateObjID respectively. The analysis of the full model
also revealed that Inv3 is not violated by operation invocations; this is consistent
with the identification of Inv3 as an analysis-irrelevant element.

Note that the approach is limited in its ability to produce smaller model
fragments from a larger model w.r.t. the slicing criteria. There may be properties
that require all model elements to be present when analyzed (reflecting a very
tight coupling across all model elements). The slicing approach described in
this paper does not guarantee that more than one independently analyzable
fragments will be produced from a model.

5 Related Work

Kagdi et al. [9] proposed an approach to slicing UML class models. The slices are
applicable to models that do not require a context (e.g., a set of scenarios in which
objects are involved) for the computation of a model slice. OCL invariants and
operations are not considered in their slicing approach. Blouin et al. [2] described
a modeling language, Kompren, for modeling model slicers for different domain
specific modeling languages. The slicer produced byKompren, however, requires
a modeler to specify a slicing criterion. In the approach described in this paper
the criteria is automatically generated.

Shaiky et al. [17][18] proposed a slicing approach for UML class models with
OCL invariants, and utilized the approach to improve the scalability of verifying
the satisfiability property. The model partitioning process is guided by the fol-
lowing rule: All constraints restricting the same model element should be verified
together and therefore must be contained in the same slice. Unlike the slicing

738 W. Sun, R.B. France, and I. Ray

technique described in the paper, their approach cannot be used to decompose
a model with both OCL invariants and operation specifications.

Lano et al. [11][12] presented an approach to slicing a UML class with opera-
tion specifications and OCL invariants. Their approach uses a state machine to
specify a sequence of operation invocations on an instance of a class. If a class
feature (e.g., an attribute) does not occur in any operation defined in the class,
it can be removed together with any invariants that refer to it. Compared with
their approach, our slicing approach focuses on a class model rather than a class,
and does not require a state machine to guide the slicing process.

6 Conclusion

We presented a slicing approach for UML class models that includes OCL in-
variants and operation contracts. The slicing approach is used to improve the
efficiency of a model analysis technique that involves checking a sequence of op-
eration invocations to uncover violations in specified invariants. The approach
takes as input a UML class model with operation contracts and OCL invariants,
and decomposes the model into model fragments with disjoint operations and
invariants. The results of the preliminary evaluation we performed showed that
the proposed slicing technique can significantly reduce the time to perform the
analysis. We are currently using large models (e.g., UML metamodels) that have
a substantial number of invariants and operation contracts to evaluate the slicing
approach.

Acknowledgment. The work described in this report was supported by the
National Science Foundation grant CCF-1018711.

References

1. Androutsopoulos, K., Binkley, D., Clark, D., Gold, N., Harman, M., Lano, K.,
Li, Z.: Model projection: simplifying models in response to restricting the envi-
ronment. In: 2011 33rd International Conference on Software Engineering (ICSE),
pp. 291–300. IEEE (2011)

2. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Modeling model slicers.
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp.
62–76. Springer, Heidelberg (2011)

3. Cormen, T.H.: Introduction to algorithms. The MIT press (2001)
4. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE

Transactions on Software Engineering 30(7), 437–447 (2004)
5. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE

Transactions on Software Engineering 17(8), 751–761 (1991)
6. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology (TOSEM) 11(2), 256–290 (2002)
7. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model operations. In:

2011 33rd International Conference on Software Engineering (ICSE), pp. 601–610.
IEEE (2011)

Contract-Aware Slicing of UML Class Models 739

8. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with
kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative
and Transformational Techniques in Software Engineering III. LNCS, vol. 6491,
pp. 201–221. Springer, Heidelberg (2011)

9. Kagdi, H., Maletic, J.I., Sutton, A.: Context-free slicing of UML class models.
In: Proceedings of the 21st IEEE International Conference on Software Mainte-
nance, ICSM 2005, pp. 635–638. IEEE (2005)

10. Korel, B., Singh, I., Tahat, L., Vaysburg, B.: Slicing of state-based models.
In: Proceedings of the International Conference on Software Maintenance,
ICSM 2003, pp. 34–43. IEEE (2003)

11. Lano, K., Kolahdouz-Rahimi, S.: Slicing of UML models using model transforma-
tions. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part II.
LNCS, vol. 6395, pp. 228–242. Springer, Heidelberg (2010)

12. Lano, K., Kolahdouz-Rahimi, S.: Slicing techniques for UML models. Journal of
Object Technology, 10 (2011)

13. Ray, I., Kumar, M.: Towards a location-based mandatory access control model.
Computers & Security 25(1), 36–44 (2006)

14. Ray, I., Kumar, M., Yu, L.: Lrbac: A location-aware role-based access control
model. Information Systems Security, 147–161 (2006)

15. Ray, I., Yu, L.: Short paper: Towards a location-aware role-based access control
model. In: First International Conference on Security and Privacy for Emerging
Areas in Communications Networks, SecureComm 2005, pp. 234–236. IEEE (2005)

16. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access
control models. Computer 29(2), 38–47 (1996)

17. Shaikh, A., Clarisó, R., Wiil, U.K., Memon, N.: Verification-driven slicing of UM-
L/OCL models. In: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, pp. 185–194. ACM (2010)

18. Shaikh, A., Wiil, U.K., Memon, N.: Evaluation of tools and slicing techniques for
efficient verification of UML/OCL class diagrams. Advances in Software Engineer-
ing (2011)

19. O.M.G.A. Specification. Object constraint language (2007)
20. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling

Framework. Addison-Wesley Professional (2008)
21. Sun, W., France, R., Ray, I.: Rigorous analysis of UML access control policy mod-

els. In: IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY), pp. 9–16. IEEE (2011)

22. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press (1981)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 740–756, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Usability Inspection in Model-Driven Web Development:
Empirical Validation in WebML

Adrian Fernandez1, Silvia Abrahão1, Emilio Insfrán1, and Maristella Matera2

1 ISSI Research Group, Universitat Politècnica de València, Spain
{afernandez,sabrahao,einsfran}@dsic.upv.es

2 Politecnico di Milano, Italy
matera@elet.polimi.it

Abstract. There is a lack of empirically validated usability evaluation methods
that can be applied to models in model-driven Web development. Evaluation of
these models allows an early detection of usability problems perceived by the
end-user. This motivated us to propose WUEP, a usability inspection method
which can be integrated into different model-driven Web development
processes. We previously demonstrated how WUEP can effectively be used
when following the Object-Oriented Hypermedia method. In order to provide
evidences about WUEP’s generalizability, this paper presents the
operationalization and empirical validation of WUEP into another well-known
method: WebML. The effectiveness, efficiency, perceived ease of use, and
satisfaction of WUEP were evaluated in comparison to Heuristic Evaluation
(HE) from the viewpoint of novice inspectors. The results show that WUEP was
more effective and efficient than HE when detecting usability problems on
models. Also, inspectors were satisfied when applying WUEP, and found it
easier to use than HE.

Keywords: Model-driven Web development, Usability inspections, Measure
operationalization, Empirical validation, WebML.

1 Introduction

Usability is considered as one of the most important quality factors for Web applications:
the ease or difficulty experienced by users largely determines their success or failure
[26]. The challenge of developing more usable Web applications has promoted the
emergence of a large number of usability evaluation methods [24]. However, most of
these approaches only consider usability evaluations after the Web application is fully
implemented and deployed. Studies such as that of Matera et al. [20] and Juristo et al.
[18] however claim that usability evaluations should also be performed at early stages of
the Web development (e.g., at modeling time) in order to detect early how to improve the
user experience and decrease maintenance costs. This is in line with the results of a
recently performed systematic mapping study on usability evaluation methods for Web
applications [9], which revealed a lack of usability evaluation methods that have been
empirically validated and that can be properly used to evaluate analysis and design
models of a Web application under development.

 Usability Inspection in Model-Driven Web Development 741

In order to address these issues, we have proposed a usability inspection method
(Web Usability Evaluation Process – WUEP [10]), which can be instantiated and
integrated into different model-driven Web development processes. The peculiarity of
these development processes is that Platforms-Independent Models (PIMs) and
Platform-Specific Models (PSMs) are built to represent the different views of a Web
application (e.g., content, navigation, presentation); finally, the source code (Code
Model - CM) is obtained from these models using model-to-text automatic
transformations. In this context, inspections of the PIMs and PSMs can provide early
usability evaluation reports to identify potential usability problems that can be
corrected prior to the generation of the source code.

In our view, comparative empirical studies are useful to evaluate and improve any
newly proposed evaluation method, since valuable information can be achieved when
a method is compared to others. Several empirical studies for validating Web usability
evaluation methods have been reported in literature (e.g., [8]). However, they focus
on traditional Web development processes, while only few studies address model-
driven Web development processes (e.g., [1][19][27]). Among these studies, we
presented in [12] an operationalization and validation of WUEP in a specific process
based on the Object-Oriented Hypermedia (OO-H) method. In this study, WUEP was
compared against Heuristic Evaluation (HE) [25]. The results showed that WUEP is
more effective and efficient than HE in supporting the detection of usability problems.

In order to verify the generalization of WUEP into another process, we also
operationalized WUEP for its application to the Web Modeling Language (WebML)
[6], one of the most well-known industrial model-driven Web development process.
We adapted generic measures, taken from the Web Usability Model [10] on which
WUEP is based, to specific WebML modeling constructs, as a means to predict and
improve the usability of Web applications generated from these models. A pilot
experiment was conducted to analyze the feasibility and validity of this
operationalization [11]. In this paper, we present the results of an experiment
replication aimed at providing further analysis about its effectiveness, efficiency,
perceived ease of use, and satisfaction in comparison to HE.

This paper is structured as follows. Section 2 discusses existing work that
addresses usability evaluations in model-driven Web development. Section 3 provides
an overview of WUEP. Section 4 describes how WUEP has been instantiated for use
with WebML. Section 5 describes the experiments designed to empirically validate
WUEP. Section 6 shows the analysis of the results obtained and discusses threats to
the validity. Finally, Section 7 presents our conclusions and further work.

2 Related Work

Despite the fact that several model-driven development (MDD) methods have been
proposed since late 2000 for developing Web-based interactive applications, few
work address usability evaluations in this type of processes (e.g., [2],[13],[22]).

Atterer and Schmidt [2] proposed a prototype of a model-based usability validator.
The aim was to perform an analysis of operative Web applications by previously

742 A. Fernandez et al.

tagging its sections in order to build a page model. This model is then compared by
patterns extracted from usability guidelines.

Fraternali et al. [13] presented the Web Quality Analyzer, a framework which is
able to automatically analyze the XML specification of Web applications designed
through WebML for identifying the occurrence of some design patterns, and
calculating metrics revealing if they are used consistently throughout the application.

Molina and Toval [22] presented a method to integrate usability goals in model-
driven Web development by extending the expressiveness of navigation models to
incorporate these usability goals. A meta-model was defined in order to describe the
requirements to be achieved for these navigational models.

These works represent the first steps to incorporate usability evaluation in model-
driven Web development, however from them it does not emerge any systematic
process. Furthermore, only few of them have been validated through empirical studies
to show evidence about the effectiveness of performing usability evaluations on
models (e.g., [1] [19] [27]).

There are some studies in literature that compare usability evaluation methods
through empirical studies. Abrahão et al. [1] present an empirical study which
evaluates the user interfaces generated automatically by a model-driven development
tool. This study applies two usability evaluation methods: an inspection method
(Action Analysis) and an empirical method (User Testing) with the aim of comparing
what types of usability problems the two methods are able to detect in the user
interfaces, and what their implications are for transformations rules and PIMs.

Matera et al. [19] presented the empirical validation of the Systematic Usability
Evaluation (SUE) method for hypermedia applications based on the adoption of
operational guidelines called Abstract Tasks. The experiment showed the major
effectiveness and efficiency of the inspection method with respect to traditional
heuristic evaluation techniques.

Panach et al. [27] provided metrics to evaluate the understandability attributes of
Web applications (i.e., a usability sub-characteristic) as result of a model-driven
development process. Metrics values were aggregated to obtain indexes which were
compared to the perception of these same attributes by end users. However, the study
did not consider any performance measure of method usage. As indicated by
Hornbæk [14], for assessing the quality of usability evaluation methods it is important
to consider not only the evaluators’ observations and satisfaction with the methods
under evaluation but also the performance of the methods (e.g., in terms of number of
usability detected problems).

The analysis of the previous works highlights a lack of empirical validations of
usability inspection methods for model-driven Web development processes. This
motivated us to conduct a family of experiments to validate our usability inspection
method when it was applied to the Object-Oriented Hypermedia (OO-H) method [12].
However, generalizations about the usefulness of WUEP require it to be instantiated
and validated in other model-driven Web development methods. Hence, this paper
focuses on the operationalization of WUEP to another method, WebML, and on its
validation through an experimental study.

 Usability Inspection in Model-Driven Web Development 743

3 Web Usability Evaluation Process

The Web Usability Evaluation Process (WUEP) has been defined by extending and
refining the quality evaluation process that is proposed in the ISO 25000 standard
[16]. The aim of WUEP is to integrate usability evaluation into model-driven Web
development processes by employing a Web Usability Model as the principal input
artifact. This model breaks down the usability concept into 16 sub-characteristics and
66 measurable attributes, which are then associated with 106 measures in order to
quantify them. These measures provide a generic definition, which should be
operationalized in order to be applied to models obtained at different abstraction
levels (PIMs, PSMs, and, CMs) in different MDWD processes (e.g., WebML, OO-H).

The aim of applying measures is to reduce the subjectivity inherent to existing
inspection methods. It is important to remark that by applying measures, the
evaluators inspect models in order to predict usability problems (i.e., to detect
problems that would be experienced by end-users when using the generated Web
application). We are not intended to evaluate the usability of the models themselves.
Therefore, inspection of these models (by considering the traceability among them)
allows us to discover the source of the detected usability problems and facilitates the
provision of recommendations to correct these problems at earlier stages of the Web
development process.

We are aware that not all usability problems can be detected based on the
evaluation of models since they are limited by their own expressiveness and, most
importantly, they may not predict the user behavior or preferences. However, studies
such as that of Hwang and Salvendy [15] claim that usability inspections, applying
well-known usability principles on software artifacts, may find around 80% of
usability problems. In addition, the use of inspection methods for detecting usability
problems in models can be complemented with other evaluation methods performed
with end-users before releasing a Web application to the public.

The main stages of WUEP are:

1. In the establishment of the evaluation requirements stage, the evaluation designer
defines the scope of the evaluation by (a) establishing the purpose of the
evaluation; (b) specifying the evaluation profiles (type of Web application, Web
development method employed, context of use); (c) selecting the Web artifacts
(models) to be inspected; and (d) selecting the usability attributes from the Web
usability model which are going to be evaluated.

2. In the specification of the evaluation stage, the evaluation designer operationalizes
the measures associated with the selected attributes in order for them to be applied
to the models to be evaluated. This operationalization consists of establishing a
mapping between the generic definition of the measure and the concepts that are
represented in the Web artifacts (modeling primitives of models or UI elements in
the final Web application). In addition, thresholds are established for ranges of
values obtained for each measure by considering their scale type and the guidelines
related to each measure whenever possible. These thresholds provide a usability
problem classification based on their severity: low, medium, or critical. It is
important to note that the operationalization needs to be performed once within a
specific model-driven Web development method, and can be reused in further
evaluations that involve Web applications developed using the same method.

744 A. Fernandez et al.

3. In the design of the evaluation stage, the template for usability reports is defined
and the evaluation plan is elaborated (e.g., number of evaluators, evaluation
constraints).

4. In the execution of the evaluation stage, the evaluator applies the operationalized
measures to the selected Web artifacts (i.e., models) in order to detect usability
problems by considering the rating levels established for each measure.

5. In the analysis of changes stage, the Web developer analyzes all the usability
problems in order to propose changes with which to correct the affected artifacts
from a specific stage of the Web development process. The changes are applicable
to the previous intermediate artifacts (i.e., PIMs, PSMs and model transformations
if the evaluation is performed on the final Web user interface).

4 Instantiation in WebML

This section presents how WUEP can be instantiated for evaluating the usability of
Web applications developed using the Web Modeling Language (WebML) method.
This method is complemented by the WebRatio tool, which offers visual editors for
the definition of the models and transformation techniques for code generation in
different platforms. WebML was selected because: i) it is a well-known model-driven
Web development method in industry with several success stories reported [28], ii) it
offers conceptual models of real Web applications and their corresponding generated
source code, and iii) it can be considered a representative method of the whole set of
model-driven Web development methods [23] .

In the rest of this section, we first give a short overview about WebML to present
its main modeling primitives. Secondly, we provide some examples of how some
generic measures were operationalized in WebML models. Finally, we also provide a
proof of concept about how WUEP can be applied in a WebML-based Web
application in order to detect and report usability problems at early stages of the Web
development process.

4.1 Overview of WebML

WebML is a domain-specific language for specifying the content structure of Web
applications (i.e., Data Model) and the organization and presentation of their contents in
one or more hypertexts (i.e., Hypertext Model). Considering that the Hypertext Model is
obtained early in the Web development process, it plays a relevant role in ensuring the
usability of the final Web application since it describes how data resources are
assembled, interconnected and presented into information units and pages. Table 1 shows
some of the most representative modeling primitives provided by the Hypertext Model.
These primitives are classified according to three perspectives: a) Composition, defining
pages and their internal organization in terms of elementary interconnected units; b)
Navigation, describing links between pages and content units to be provided to facilitate
information location and browsing; and c) Operation, specifying the invocation of
external operations for managing and updating content.

Composition primitives are based on containers called Pages (which can be
grouped by Areas) and a set of building blocks called Content units. Pages and Areas
can be marked as Homepage (H), Landmark (L), or Default (D). The content units

 U

represent one or more ins
selected by means of queri
particular, they allow re
(DataUnits), and list of prop

Navigation primitives ar
the hypertext. Links conne
navigation mechanisms. Th
Web application (OK or K
parameters between modeli

Table 1

Composition/Content primitive

Operation primitives

Operation primitives en
after any operation (MultiM
as creating, deleting or mo
through the CreateUnit, De
fields (EntryUnits). From th
effect of navigating a conte
but only one is the activatin

The Data Model and Hy
is able to automatically gen
by the WebRatio tool wh
customize the presentation

4.2 Operationalizing M

The operationalization of m
generic definition of the me
specific model defined duri

For WebML, we have o
model (http://www.dsi
As an example, Table 2 pr
Usability Model and shows
The details regarding the g
first rows: name, attached u
and interpretation. The de

Usability Inspection in Model-Driven Web Development

tances of the entities of the structural schema, typica
ies over the entity attributes or over their relationships
presenting a set of attributes for an entity insta
perties of a given set of entity instances (IndexUnits).
e based on links that connect units and pages, thus form
ect units in several configurations, yielding to compo
hey can be activated by a user action (Normal Link);
KO Link); or even can be employed only as transport
ing primitives (Transport Link).

1. WebML Hypertext modeling primitives

es Navigation primitives

Normal Link

Transport Link

OK/KO Link

nable managing the messages that are prompted to the u
MessageUnit), expressing built-in update operations, s
odifying an instance of an entity (respectively represen
eleteUnit and ModifyUnit), and collecting input values i
he user point of view the execution of an operation is a s
extual link. Operations may have different incoming lin
ng-one.
ypertext Model are taken as input of a model compiler t
nerate the Web application source code. This is suppor
hich also provides predefined presentation templates
of the final Web application.

Measures for WebML

measures is a mean to establish a mapping between
easure and the modeling primitives that are represented i
ing a specific MDWD process.
operationalized a total of 16 measures for the Hypert
c.upv.es/~afernandez/MODELS13/operationalizatio

resents two measures (i.e., PAE and UOC) from the W
s their operationalization for the WebML Hypertext Mo
generic definition of the measure are provided by the f
usability attribute, generic description, measurement sc
etails regarding the operationalization of the measure

745

ally
. In

ance

ming
osite

the
t of

user
uch

nted
into
side
nks,

that
rted
s to

the
in a

text
on).

Web
del.
five
ale,
are

746 A. Fernandez et al.

provided in the last two rows: operationalization and thresholds established in order
to detect a usability problem (UP). In these examples, thresholds were established by
dividing the range of obtained values in convenient intervals. However, other
examples of measures provide empirically validated thresholds (e.g., navigation
depth). Domain experts (Web designers) have validated these values. The mapping
between each element from the generic measure definition and the modeling
primitives is highlighted in bold and marked with asterisks (*).

Table 2. Examples of operationalized measures to be applied in WebML

Measure Name Proportion of actions with error messages associated (PAE)
Usability Attribute Appropriateness recognizability / User guidance / Message availability
Generic
Description

Ratio between the number of user actions (*) without an error message (**) to
provide feedback and the total number of user actions.

Scale Ratio between 0 and 1
Interpretation The higher the value worse is the guidance (in terms of messages) that is provided

to the user..
Operationalization Let HM : Hypertext Model

PAE(HM) =

Number of Operation Units (*) that not provide a KO
link leading to a MultiMessage Unit (**) (1)

Total number of Operation Units (*)

Where Operation Units can be any CreateUnit, ModifyUnit and DeleteUnit
Thresholds [PAE = 0]: No UP [0.3 < PAE ≤ 0.6]: Medium UP

[0 < PAE ≤ 0.3]: Low UP [0.6 < PAE ≤ 1]: Critical UP

Measure Name User operation cancellability (UOC)
Usability Attribute Operability / Controllability / Cancel support
Generic
Description

Proportion between the number of implemented functions (*) that cannot be
cancelled by the user (**) prior to completion and the total number of functions
requiring the pre-cancellation capability.

Scale Ratio between 0 and 1.
Interpretation The higher the value the worse controllability the WebApp presents due to the

fact that it is necessary to use external operations (i.e., browser actions) in order to
go back to a previous state if user wants to cancel the current operation.

Operationalization Let HM : Hypertext Model

OUC(HM) =

Number of Operation Units (*) reached by a unit which
has not a Normal Link (**) to its predecessor unit (2)

Total number of Operation Units (*)
Where Operation Units can be any CreateUnit, ModifyUnit and DeleteUnit

Thresholds
[UOC = 0]: No UP [0.3 < UOC ≤ 0.6]: Medium UP
[0 < UOC ≤ 0.3]: Low UP [0.6 < UOC ≤ 1]: Critical UP

4.3 Applying WUEP into Practice with WebML

We here show a proof of concept about the feasibility of WUEP by applying it to
evaluate the usability of a WebML-based Web application. We follow the steps
introduced in Section 3.

Establishment of Evaluation Requirements. The purpose of the evaluation is to
perform an early usability evaluation during the development of an e-commerce Web
application. The application selected is a furniture online store aimed at supporting
two types of users: potential customers, and the website administrator. The Web
artifact to be evaluated is the Hypertext Model HM0 (see Figure 1), which covers the
Store editing functionality issued by the administrator. The Area Store editing allows

 Usability Inspection in Model-Driven Web Development 747

the administrator to access all the stores (IndexUnit All Stores) and their details
(Normal Link expand and DataUnit Store details), adding new stores (Normal Link
new, EntryUnit New Store, and CreateUnit Create store); removing existing stores
(Normal Link drop and DeleteUnit Delete store), and modifying existing stores
(EntryUnit Modify Store, Normal Link apply, and CreateUnit Create store). All the
operations include their OK and KO links after its completion.

The usability attributes to be evaluated are Message availability and Cancel
support. These attributes were selected because of their relevance for any data-
intensive Web applications [7].

Fig. 1. Hypertext Model HM0

Specification of the Evaluation. The generic measures selected were the ones
presented in Table 2.

Design of the Evaluation. A template for reporting usability problems (UP) is defined
by considering the following fields: ID, description of the UP, affected usability
attribute, severity level, artifact evaluated, source of the problem, occurrences, and
recommendations.

Execution of the Evaluation. The operationalized measures are applied in the Web
artifacts in order to detect usability problems:

Proportion of Actions with Error Messages Associated (PAE). Applying this measure
(Table 2, Equation 1), we obtain the value 3/3 = 1 since from a total of three
Operation Units (Create Store, Modify Store, and Delete Store) none of them has its
KO link connected to a MultiMessageUnit. This means that a critical usability
problem was detected (and reported as UP01 in Table 3(a)) since the value obtained is
in the threshold [0.6 < PAE ≤ 1].

User Operation Cancellability (UOC). Applying this measure (Table 2, Equation 2),
we obtain the value 2/3 = 0.66 since from the total of three Operation Units (Create
Store, Modify Store, and Delete Store) only two OperationUnits (Create Store, and
Delete Store) are not reached by a unit with a return link to its predecessor. This
means that a critical usability problem was detected (and reported as UP02 in Table
3(b)) since the value obtained is in the threshold [0.6 < UOC ≤ 1].

748 A. Fernandez et al.

Table 3. Usability report

a) ID UP01
Description There are no messages that help Web designers to identify which types of errors

have occurred during performing operations
Affected attribute Appropriateness recognisability / User guidance / Message availability
Severity level Critical: [0.6 < PAE=1 ≤ 1]:
Artifact evaluated Hypertext Model HM0
Problem source Hypertext Model HM0
Occurrences 3 Operation Units: Create Store, Modify Store, and Delete Store.
Recommendations Connect a MultiMessage Unit to the KO link for each Operation Unit.

b) ID UP02
Description There some operations that cannot be cancelled by the user
Affected attribute Operability / Controllability / Cancel support
Severity level Critical: [0.6 < UOC=0.66 ≤ 1].
Artifact evaluated Hypertext Model HM0
Problem source Hypertext Model HM0
Occurrences 2 Operation Units: Create Store, and Delete Store.
Recommendations In relation to the OperationUnit Create Store: add a new Normal Link cancel from

the EntryUnit New Store to the Page All Stores. With regard the OperationUnit
Delete Store: add a EntryUnit confirmation between the IndexUnit All stores and
the OperationUnit itself. The new EntryUnit confirmation would have a new
Normal Link cancel from itself to the Page All Stores.

Analysis of Changes. The changes proposed by this report are analyzed by the Web
developers (e.g., cost, impact, difficulty) and lately corrected. Figure 2 shows the
Hypertext Model which was manually corrected by the Web developer considering
the usability report. However, we aim at automatizing the application of changes. By
considering the traceability between the Hypertext Model and the final Web
application, the corrections proposed are aimed at obtaining a more usable Web
application by construction [1], where each model of a Web application is inspected
and improved before the source code is generated.

Fig. 2. Hypertext Models corrected after the usability evaluation

 Usability Inspection in Model-Driven Web Development 749

5 Empirical Validation

This section first presents an overview of the original experiment, then the design and
execution of the experiment replication. The results obtained in both experiments are
also presented and discussed. We followed the guidelines proposed by Wohlin et al.
[29] and Juristo and Moreno [17].

5.1 Overview of the Original Experiment (EXP)

According to the Goal-Question-Metric (GQM) paradigm [3], the goal of the
experiment was to analyze the WUEP operationalization for the WebML
development process, for the purpose of evaluating it with regard to its effectiveness,
efficiency, perceived ease of use, and the evaluators’ perceived satisfaction of it in
comparison to Heuristic Evaluation (HE) from the viewpoint of a group of novice
usability evaluators. The context of the experiment is the evaluation of two Web
applications performed by novice inspectors. This context is determined by the Web
applications to be evaluated, the usability evaluation methods to be applied and the
subject selection.

The Web applications selected were a Web Calendar for meeting appointment
management, and an e-commerce application for a Book Store. They were developed
by the WebRatio company using the WebML model-driven development process.
Two different functionalities of the Web Calendar application (appointment
management and user comments support) were selected for defining the experimental
object O1, whereas two different functionalities of the Book Store application (search
and shopping) were selected for defining the experimental object O2. Each
experimental object contains two Web artifacts: a Hypertext model (HM) and a Final
User Interface (FUI) generated from the model. We selected these four functionalities
since they are relevant to the end-users and similar in size and complexity.

The usability inspection methods to be evaluated were WUEP and HE. Since the
context of the experiments was from the viewpoint of a group of usability inspectors,
we evaluated the execution stages of both methods. Two of the authors therefore
performed the evaluation designer role in both methods in order to design an
evaluation plan. In critical activities such as the selection of usability attributes in
WUEP, we required the help of two external Web usability experts. In the case of the
HE, all 10 heuristics were selected. In the case of the WUEP, a set of 20 usability
attributes were selected as candidates from the Web Usability Model through the
consensus reached by the two evaluator designers and other two Web usability
experts. The attributes were selected by considering the evaluation profiles (i.e.,
which of them would be more relevant to the type of Web application and the context
in which it is going to be used). Only 12 out of 20 attributes were randomly selected
in order to maintain a balance in the number of measures and heuristics to be applied.
The associated measures from the 12 attributes were operationalized to be applied at
the selected Web artifacts (6 measures for HMs and 6 measures for FUIs).

The experiment was conducted in the context of an Advanced Software
Engineering course from September 2011 to January 2012 at the Universitat
Politècnica de València (UPV). Specifically, the subjects were 30 fifth-year students
enrolled in the undergraduate program in Computer Science.

750 A. Fernandez et al.

The experiment has two independent variables: the evaluation method (WUEP and
HE) and the experimental objects (O1 and O2). There are two objective dependent
variables: effectiveness, which is calculated as the ratio between the number of
usability problems detected and the total number of existing (known) usability
problems; and efficiency, which is calculated as the ratio between the number of
usability problems detected and the total time spent on the inspection process. There
are also two subjective dependent variables: perceived ease of use and evaluators’
perceived satisfaction. Both were calculated by closed questions from a five-point
Likert-scale questionnaire (i.e., arithmetic mean from 5 questions assigned to each
variable), which also includes open-questions to obtain feedback from the evaluators.

The hypotheses of the experiment were the following:

• H10: There is no significant difference between the effectiveness of WUEP and HE
/ H1a: WUEP is significantly more effective than HE.

• H20: There is no significant difference between the efficiency of WUEP and HE /
H2a: WUEP is significantly more efficient than HE.

• H30: There is no significant difference between the perceived ease of use of WUEP
and HE / H3a: WUEP is perceived to be significantly easier to use than HE.

• H40: There is no significant difference between the evaluators’ perceived
satisfaction of applying WUEP and HE / H4a: WUEP is perceived to be
significantly more satisfactory to use than HE.

The results of the experiment show that WUEP was more effective and efficient
than HE in the detection of usability problems in artifacts obtained using a specific
model-driven Web development process. In addition, the evaluators were satisfied
when they applied WUEP, and found it easier to use than HE. Preliminary results of
this experiment have been reported in [11]. The experimental material is available for
download at http://www.dsic.upv.es/~afernandez/MODELS13/instrumentation.

5.2 The Experiment Replication (REP)

We conducted a strict replication of the experiment using a group of more
experienced students in software modeling (i.e., Master students). The same materials
used in the original experiment were used in the replication experiment. Strict
replications are needed to increase confidence in the conclusion validity of the
experiment. The subjects were 24 students enrolled on the “Quality of Web
Information Systems” course on the Masters in Software Engineering, Formal
Methods and Information Systems at the UPV. The alternative hypotheses tested were
the same as the original experiment. It also was analyzed the order influence of the
method and the two experimental objects employed.

The experiment was planned as a balanced within-subject design with a
confounding effect, signifying that the same subjects use both methods in a different
order and with different experimental objects (the subjects’ assignation was random).
Table 4 shows the schedule of the experiment operation in more detail. In addition,
before the controlled experiment, a control group was created in order to provide an
initial list of usability problems by applying an ad-hoc inspection method, and to
determine whether the usability problems reported by the subjects were real or false
positives. This group was formed of two independent evaluators who are experts in

 Usability Inspection in Model-Driven Web Development 751

usability evaluations, and one of the authors of this paper. Several documents were
designed as instrumentation for the experiment: slides for training session, an
explanation of the methods, gathering data forms, and two questionnaires.

Table 4. Schedule of the replication experiment

 Group 1 (6 subjects) Group 2 (6 subjects) Group 3 (6 subjects) Group 4 (6 subjects)
1st Day

(120 min)
1st: WebML Introduction; 2nd: Training with HE; and 3rd: Training with WUEP

2nd Day
(30 + 90 min)

1st:WebML Introduction; 2nd:Training with WUEP; and 3rd Training with HE
WUEP in O1 WUEP in O2 HE in O1 HE in O2

Questionnaire for WUEP Questionnaire for HE

3rd Day
(30 + 90 min)

1st: WebML Introduction; 2nd: Training with HE; and 3rd: Training with WUEP
HE in O2 HE in O1 WUEP in O2 WUEP in O1

Questionnaire for HE Questionnaire for WUEP

6 Analysis of Results

After the execution of each experiment, the control group analyzed all the usability
problems detected by the subjects. If a usability problem was not in the initial list, this
group determined whether it could be considered as a real usability problem or a false
positive. Replicated problems were considered only once. Discrepancies in this
analysis were solved by consensus.

6.1 Quantitative and Qualitative Results

The quantitative analysis was performed by using the SPSS v16 statistical tool and α
= 0.05. Table 5 summarizes the overall results of the usability evaluations. Mean and
standard deviation were used also for the subjective variables being the five-point
Likert scale adopted for their measurement as an interval scale [5].

Table 5. Overall results of the usability evaluations from both experiments

Statistics Method
EXP (N=30) REP (N=24)
Mean SD Mean SD

Number of problems per subject HE 3.29 1.08 4.29 0.99
WUEP 6.50 1.14 6.91 1.24

False positives per subject HE 1.38 1.24 1.91 1.24
WUEP 0.54 0.66 0.29 0.46

Replicated problems per subject HE 0.88 0.80 1.50 0.93
WUEP 0.00 0.00 0.00 0.00

Duration (min) HE 70.13 13.52 67.66 14.01
WUEP 80.88 18.46 72.75 11.14

Effectiveness (%) HE 33.04 10.85 37.24 8.04
WUEP 65.32 11.54 60.16 10.32

Efficiency (Problems / min) HE 0.05 0.02 0.06 0.02
WUEP 0.08 0.02 0.09 0.02

Perceived Ease of Use HE 3.38 0.73 3.73 0.76
WUEP 3.80 0.72 3.94 0.65

Perceived Satisfaction of Use HE 3.63 0.67 3.74 0.73
WUEP 3.92 0.75 4.08 0.53

752 A. Fernandez et al.

The overall results obtained have allowed us to interpret that WUEP has achieved
the subjects’ best performance in about all the analyzed statistics (see cells in bold),
The only exception is the duration of the evaluation session, which however was
longer for WUEP due to the longer time required to read the material containing the
WUEP description. As indicated by the results, WUEP tends to provide a low degree
of false positives and replicated problems. The lack of false positives can be
explained by the fact that WUEP tends to minimize the subjectivity of the evaluation.
The lack of replicated problems can be explained by the fact that WUEP provides
operationalized measures that are classified to be applied in one type of Web artifact.

The boxplots with the distribution of each dependent variable per subject per
method (see Figure 3) show that WUEP was more effective and efficient than HE,
and WUEP was also perceived by the evaluators as being easier to use and more
satisfactory than HE.

Fig. 3. Boxplots for each dependent variable in both experiments

We applied the Shapiro-Wilk test to verify whether the data was normally
distributed with the aim to select which tests are needed in order to determine whether
or not these results were significant. Table 6 provides the results of all the hypothesis
verifications. We applied the Mann-Whitney non-parametric test for variables that
resulted not normally distributed (i.e., In EXP: Effectiveness(WUEP) with p-value
0.021; and in REP: Efficiency(WUEP) with p-value 0.011, and Perceived Ease of
Use(HE) with p-value 0.012). We applied the 1-tailed t-test for variables that resulted
normally distributed. All the alternative hypotheses were accepted except H4 in EXP
and H3 in REP. We believe this may be caused owing the subjects would need more
training with WebML artifacts in order to perceived it more useful.

Table 6. p-values obtained for the test of hypothesis

 Significance Test p-value Accept Alternative Hypothesis?
EXP H1 Mann-Whitney 0.000 (< 0.05) YES (WUEP more effective than HE)

H2 1-tailed t-test 0.000 (< 0.05) YES (WUEP more efficient than HE)
H3 1-tailed t-test 0.026 (< 0.05) YES (WUEP more easier to use than HE)
H4 1-tailed t-test 0.086 (> 0.05) NO (no significant differences in satisfaction)

REP H1 1-tailed t-test 0.000 (< 0.05) YES (WUEP more effective than HE)
H2 Mann-Whitney 0.000 (< 0.05) YES (WUEP more efficient than HE)
H3 Mann-Whitney 0.202 (> 0.05) NO (no significant differences in ease of use)
H4 1-tailed t-test 0.036 (< 0.05) YES (WUEP more satisfactory than HE)

 Usability Inspection in Model-Driven Web Development 753

In order to strengthen our analysis, we used the method suggested in [4] to test the
effect of the order of both independent variables (usability evaluation methods and
experimental objects). We used the Diff function: Diffx = observationx(A) -
observationx(B), where x denotes a particular subject, and A, B are the two possible
values of one independent variable. We created Diffs variables from each dependent
variable. Finally, we verified that there were no significant differences between Diff
functions since that would signify that there was no influence in the order of the
independent variables (all the p-values obtained were > 0.05).

Finally, a qualitative analysis was performed by analyzing the open-questions that
were included in the questionnaire. This analysis revealed some important issues
which can be considered to improve WUEP (e.g., “WUEP might be more useful if it
were automated by a tool, especially the calculation of certain metrics”), and it also
collected positive impressions from the participants (e.g., “I was surprised because I
was able to systematically detect usability problems without previous experience”).

6.2 Threats to the Validity

The main threats to the internal validity of the experiment are: learning effect,
evaluation design, subject experience, method authorship, and information exchange
among evaluators. The learning effect was alleviated by ensuring that each subject
applied each method to different experimental objects, and all the possible order
combinations were considered. The evaluation design might have affected the results
owing to the selection of attributes to be evaluated during the design stage of WUEP.
We attempted to alleviate this threat by considering relevant usability attributes
involving experts. Subject experience was alleviated due to the fact that none of the
subjects had any experience in usability evaluations. The possibility of students
knowing about our WUEP’s authorship might have biased the results. We attempted
to alleviate this threat by not disclosing more information; we also intend to conduct
external replications with different conductors. Information exchange might have
affected the results since the experiment took place over two days, and it is difficult to
be certain whether the subjects exchanged any information with each other.

The main threats to the external validity of the experiment are: representativeness
of the results, and duration of the experiment. Despite the fact that the experiment was
performed in an academic context, the results could be representative with regard to
novice evaluators with no experience in usability evaluations. However, the previous
selection of usability attributes with their operationalized measures and the selection
of the Web application might have affected the representativeness. To alleviate these
issues, we intend to carry out a survey with Web designers to determine the relative
importance of the usability attributes for different categories of Web applications.
Since the duration of the experiment was limited to 90 min, only 2 representative
software artifacts were selected from the different available types , although WUEP
can be instantiated in more artifacts such as layout position-grids and style-templates.

The main threats to the construct validity of the experiment are: measures that are
applied in the quantitative analysis and the reliability of the questionnaire. Measures
that are commonly employed in this kind of experiment were used in the quantitative
analysis [8]. The reliability of the questionnaire was tested by applying the Cronbach
test. Questions related to the Perceived Ease of Use obtained a Cronbach’s alpha of

754 A. Fernandez et al.

0.80 and 0.82, in EXP and REP respectively, whereas Perceived Satisfaction of Use
obtained a Cronbach’s alpha of 0.78 and 0.75, in EXP and REP respectively. These
values are higher than the acceptable minimum (0.70) [21].

The main threat to the conclusion validity of the experiment is the validity of the
statistical tests applied. This was alleviated by applying the most common tests that
are employed in the empirical software engineering field [17].

7 Discussion and Outlook

This paper presented the operationalization and empirical validation of a usability
inspection method (WUEP) for its use within the WebML development process. From
a practical point of view, our usability inspection strategy enables the development of
more usable Web applications by construction [1]. Usability by construction means
that each model built at different stages of a model-driven Web development process
(PIM, PSM, Code) satisfies a certain level of usability of the corresponding Web
application, thereby reducing the effort of fixing usability problems when the Web
application is generated.

The effectiveness, efficiency, perceived ease of use and satisfaction of WUEP were
compared in two experiments against a widely-used inspection method: Heuristic
Evaluation (HE). The results show that WUEP was more effective and efficient than
HE in the detection of usability problems in WebML models. Although the evaluators
found it easier to use than HE and they were also more satisfied when applying
WUEP, these variables resulted not statistically significant in some cases. These
results confirmed our previous findings [12] when an instantiation of WUEP into the
OO-H method was compared against HE, strengthening the case for using WUEP
rather than HE, at least in contexts with fairly inexperienced usability evaluators.
Although the experimental results provided good results on the usefulness of WUEP
as a usability inspection method for Web applications developed through MDWD
processes, we are aware that more experimentation is needed to confirm these results,
since they need to be interpreted with caution being them only valid within the
context established in these experiments. However, the replication presented here
significantly adds to the existing validation of WUEP. We also obtained valuable
feedback from these experiments based on which we can improve our proposal.

As future work, we plan to replicate this experiment with practitioners with
different level of experience in usability evaluations, and to analyze in depth the
empirical evidences collected by identifying which type of usability problems are
most detected in models in order to suggest new mechanisms (modeling primitives,
model-transformations, or patterns) to directly support some usability attributes. We
also plan to validate the completeness of problem prediction through experiments in
which the results of the evaluations obtained at the model level will be compared to
the ones obtained when users interact with the generated Web applications.

Acknowledgements. This paper has been funded by the MULTIPLE project
(MICINN TIN2009-13838) and the Erasmus Mundus Programme of the European
Commission under the Transatlantic Partnership for Excellence in Engineering – TEE
Project.

 Usability Inspection in Model-Driven Web Development 755

References

1. Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability Evaluation of User Interfaces
Generated with a Model-Driven Architecture Tool. In: Maturing Usability: Quality in
Software, Interaction and Value, pp. 3–32. Springer (2007)

2. Atterer, R., Schmidt, A.: Adding Usability to Web Engineering Models and Tools.
In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 36–41. Springer,
Heidelberg (2005)

3. Basili, V., Rombach, H.: The TAME Project: Towards Improvement-Oriented Software
Environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)

4. Briand, L., Labiche, Y., Di Penta, M., Yan-Bondoc, H.: An experimental investigation of
formality in UML-based development. IEEE TSE 31(10), 833–849 (2005)

5. Carifio, J., Perla, R.: Ten Common Misunderstandings, Misconceptions, Persistent Myths
and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes.
Journal of Social Sciences 3(3), 106–116 (2007)

6. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (WebML): a modeling
language for designing Web sites. In: 9th International World Wide Web Conference, pp.
137–157 (2000)

7. Ceri, S., Fraternali, P., Acerbis, R., Bongio, A., Butti, S., Ciapessoni, F., Conserva, C.,
Elli, R., Greppi, C., Tagliasacchi, M., Toffetti, G.: Architectural issues and solutions in the
development of data-intensive Web applications. In: Proceedings of the 1st Biennial
Conference on Innovative Data Systems Research, Asilomar, CA (2003)

8. Conte, T., Massollar, J., Mendes, E., Travassos, G.H.: Usability Evaluation Based on Web
Design Perspectives. In: Proceedings of the International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), pp. 146–155 (2007)

9. Fernandez, A., Insfran, E., Abrahão, S.: Usability evaluation methods for the Web:
a systematic mapping study. Information and Software Technology 53, 789–817 (2011)

10. Fernandez, A., Abrahão, S., Insfran, E.: A Web usability evaluation process for model-
driven Web development. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 108–122. Springer, Heidelberg (2011)

11. Fernandez, A., Abrahão, S., Insfran, E., Matera, M.: Further Analysis on the Validation of
a Usability Inspection Method for Model-Driven Web Development. In: 6th International
Symposium on Empirical Software Engineering and Measurement (ESEM 2012),
pp. 153–156 (2012)

12. Fernandez, A., Abrahão, S., Insfran, E.: Empirical Validation of a Usability Inspection
Method for Model-Driven Web Development. Journal of Systems and Software 86,
161–186 (2013)

13. Fraternali, P., Matera, M., Maurino, A.: WQA: an XSL Framework for Analyzing the
Quality of Web Applications. In: Proceedings of IWWOST 2002 - ECOOP 2002
Workshop, Malaga, Spain (2002)

14. Hornbæk, K.: Dogmas in the assessment of usability evaluation methods. Behaviour &
Information Technology 29(1), 97–111 (2010)

15. Hwang, W., Salvendy, G.: Number of people required for usability evaluation: the 10±2
rule. Communications of the ACM 53(5), 130–113 (2010)

16. International Organization for Standardization: ISO/IEC 25000, Software Engineering –
Software Product Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE
(2005)

17. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers (2001)

756 A. Fernandez et al.

18. Juristo, N., Moreno, A., Sanchez-Segura, M.I.: Guidelines for eliciting usability
functionalities. IEEE Transactions on Software Engineering 33(11), 744–758 (2007)

19. Matera, M., Costabile, M.F., Garzotto, F., Paolini, P.: SUE inspection: an effective method
for systematic usability evaluation of hypermedia. IEEE Transactions on Systems, Man,
and Cybernetics, Part A 32(1), 93–103 (2002)

20. Matera, M., Rizzo, F., Carughi, G.: Web Usability: Principles and Evaluation Methods.
In: Web Engineering, pp. 143–180. Springer (2006)

21. Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series.
Prentice Hall (2002)

22. Molina, F., Toval, A.: Integrating usability requirements that can be evaluated in design
time into Model Driven Engineering of Web Information Systems. Advances in
Engineering Software 40(12), 1306–1317 (2009)

23. Moreno, N., Vallecillo, A.: Towards interoperable Web engineering methods. Journal of
the American Society for Information Science and Technolog 59(7), 1073–1092 (2008)

24. Neuwirth, C.M., Regli, S.H.: IEEE Internet Computing Special Issue on Usability and the
Web 6(2) (2002)

25. Nielsen, J.: Heuristic evaluation. In: Usability Inspection Methods. John Wiley & Sons,
NY (1994)

26. Offutt, J.: Quality attributes of Web software applications. IEEE Software: Special Issue
on Software Engineering of Internet Software, 25–32 (2002)

27. Panach, I., Condori, N., Valverde, F., Aquino, N., Pastor, O.: Understandability
measurement in an early usability evaluation for MDD. In: International Symposium on
Empirical Software Engineering (ESEM 2008), pp. 354–356 (2008)

28. Webratio. Success stories, Online article,
http://www.webratio.com/portal/content/en/success-stories

29. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.:
Experimentation in Software Engineering - An Introduction. Kluwer (2000)

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 757–773, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Model-Driven Approach
for Supporting the Mapping of Parallel Algorithms

to Parallel Computing Platforms

Ethem Arkın1, Bedir Tekinerdogan2, and Kayhan M. İmre1

1 HacettepeUniversity, Dept. of Computer Engineering, Ankara, Turkey
{earkin,ki}@hacettepe.edu.tr

2 BilkentUniversity, Dept. of Computer Engineering, Ankara, Turkey
bedir@cs.bilkent.edu.tr

Abstract. The trend from single processor to parallel computer architectures
has increased the importance of parallel computing. To support parallel compu-
ting it is important to map parallel algorithms to a computing platform that
consists of multiple parallel processing nodes. In general different alternative
mappings can be defined that perform differently with respect to the quality re-
quirements for power consumption, efficiency and memory usage. The mapping
process can be carried out manually for platforms with a limited number of pro-
cessing nodes. However, for exascale computing in which hundreds of thou-
sands of processing nodes are applied, the mapping process soon becomes in-
tractable. To assist the parallel computing engineer we provide a model-driven
approach to analyze, model, and select feasible mappings. We describe the de-
veloped toolset that implements the corresponding approach together with the
required metamodels and model transformations. We illustrate our approach for
the well-known complete exchange algorithm in parallel computing.

Keywords: Model Driven Software Development, Parallel Computing, High
Performance Computing, Domain Specific Language, Tool Support.

1 Introduction

The famous Moore’s law states that the number of transistors on integrated circuits
and likewise the performance of processors doubles approximately every eighteen
months [1]. Since the introduction of the law in 1965, the law seems to have quite
accurately described and predicted the developments of the processing power of com-
ponents in the semiconductor industry [2]. Although Moore’s law is still in effect,
currently it is recognized that increasing the processing power of a single processor
has reached the physical limitations [3]. Hence, to increase the performance the cur-
rent trend is towards applying parallel computing on multiple nodes. Here, unlike
serial computing in which instructions are executed serially, multiple processing ele-
ments are used to execute the program instructions simultaneously.

To benefit from the parallel computing power usually parallel algorithms are de-
fined that can be executed simultaneously on multiple nodes. As such, increasing the

758 E. Arkın, B. Tekinerdogan, and K.M. İmre

processing nodes will increase the performance of the parallel programs [4][5][6]. An
important challenge in this context is the mapping of parallel algorithms on a compu-
ting platform that consists of multiple parallel processing nodes. In general a parallel
algorithm can be mapped in different alternative ways to the processing nodes. Fur-
ther, each mapping alternative will perform differently with respect to the quality
requirements for speedup, efficiency and memory usage that are important in parallel
computing [7]. The mapping process can be carried out manually for platforms with a
limited number of processing nodes. However, over the last decade the number of
processing nodes has increased dramatically to tens and hundreds of thousands of
nodes providing processing performance from petascale to exascale levels [8]. As a
consequence selecting a feasible mapping of parallel algorithm to computing plat-
forms has become intractable for the human parallel computing engineer. Once the
feasible mapping is selected the parallel algorithm needs to be transformed to the
target parallel computing platform such as MPI, OpenMP, MPL, and CILK [15]. Due
to the complexity and size of the parallel computing platform usually it is not easy to
implement the algorithm manually on these platforms based on the selected mapping.
Moreover, in case of requirements for changing the implementation platform porting
the system to a new platform will be cumbersome.

In this paper we provide a model-driven approach to analyze, model, and select
feasible mappings of parallel algorithms to a parallel computing platform. In the ap-
proach we provide the steps for defining models of the computing platform and the
parallel algorithm. Based on the analysis of the algorithm and the computing platform
feasible mappings are generated. The approach is supported by a corresponding tool-
set that builds on a predefined metamodel. Using model-to-model and model-to-text
transformations we provide a solution to the code generation and portability prob-
lems. We provide an evaluation of our approach for the well-known complete ex-
change algorithm in parallel computing. The evaluation considers both the time to
generate the alternative mappings, and the feasibility of the generated alternative on a
real computing platform with respect to speedup and efficiency performance quality
attributes.

The remainder of the paper is organized as follows. In section 2, we describe the
problem statement. Section 3 presents the metamodel which is used by the approach
that is described in section 4. Section 5 presents the tool that implements the ap-
proach. In section 6 we describe the evaluation of the approach. Section 7 presents the
related work and finally we conclude the paper in section 8.

2 Problem Statement

In this section we will describe the problem statement in more detail by considering
the mapping of the complete exchange parallel algorithm to a parallel computing
platform. Fig. 1 shows the complete exchange algorithm which purpose is to collect
all data from all nodes and to distribute data to all nodes [9][10][11]. This algorithm is
a commonly used parallel algorithm that is often used as part of a bigger parallel algo-
rithm. For instance, in simulation of molecular dynamics, the data of all particles are
exchanged with each other to calculate some values like affinity between molecules.
The complete exchange algorithm refers to nodes of a computing platform on which

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 759

the algorithm will run. Hereby, some nodes are selected as dominating nodes [12] that
collect data, exchange data with each other and distribute the data to the other nodes.

Procedure Complete-Exchange:
For i=1 to n-1
 Collect data to the dominating nodes from the dominated nodes
Endfor
For i=n-1 downto 1
 Exchange the selected data between dominating nodes
 Distribute data from dominating nodes to the dominated nodes
Endfor

Fig. 1. Pseudo code for Complete Exchange Algorithm

The algorithm is mapped to a computation platform that is defined as a configura-
tion of nodes. We distinguish among the physical configuration and logical configu-
ration. The physical configuration defines the actual physical configuration of the
system with the physical communication links among the processing units. We as-
sume a distributed memory model in which each node has its own memory unit. The
logical configuration is a view of the physical configuration that defines the logical
communication structure among the physical nodes. Typically, for the same physical
configuration we can have many different logical configurations. An example of a
physical configuration and its logical configurations is shown in Fig. 2.

Fig. 2. Physical configuration of a topology (left) with two different logical configurations
(middle and right)

Given a parallel algorithm like the complete exchange algorithm, it is important to
define a feasible mapping of the algorithm steps to the logical configuration. The
feasibility of a mapping is defined by the extent to which it supports the performance
quality attributes of speedup with respect to serial computing and efficiency [7].
Speedup Sp is defined by the following formula:

 (1)

where Ts is the execution time of the serial algorithm.
Tp is the execution time of the parallel algorithm with p processors.

Efficiency metric defines how well the processors are utilized in executing the al-
gorithm. The formula for Efficiency Ep is as follows:

 (2)
where Sp is the speed up as defined in equation (1) above and p is the number of processors.

760 E. Arkın, B. Tekinerdogan, and K.M. İmre

To measure speedup and efficiency the following metrics are applied:

• Number of Cores Used- the number of cores that are used in the computing plat-
form for executing the algorithm.

• Port Count Used - the total number of ports of all cores that are used in the com-
munication among the cores.

• Communication Length - the total number of communication links among cores
that are needed to realize the execution of the algorithm.

To define a feasible mapping of the parallel algorithm to the computing platform the
values for the above metrics should be minimized as much as possible to increase
speedup and efficiency [7][13][14].

We can now refer to these metrics to discuss the feasibility of the mapping of the al-
gorithm to the computing platform. Fig. 3 shows, for example, three different alternative
logical configurations of the computing platform to execute the complete exchange
algorithm. Each given logical configuration consists of 12x12 cores and represents actu-
ally a mapping alternative. The realization of the configurations will differ with respect
to the assignment of dominating nodes, the number of cores used, the port count used
and the communication length. Hence each logical configuration of the computing plat-
form will result in a different speedup and efficiency. Similar to the example logical
configurations in Fig. 3 we can identify many other different logical configurations.
Selecting the optimal logical configuration with respect to speedup and efficiency is an
important challenge for the parallel computing engineer. For smaller computing plat-
forms with a limited number of cores the generation and selection of feasible alternative
could be done to some extent. However, for larger multicore platform with thousand or
tens of thousands of nodes this process becomes intractable.

Fig. 3. Three alternative mapping of complete-exchange algorithm

Here we focus on two important and related problems. First of all, for a given par-
allel algorithm and physical configuration we need to define and generate the possible
logical configurations and accordingly the mapping alternatives. Secondly, once a
feasible mapping alternative is selected the required code for the parallel computing
platform needs to be provided to realize the parallel algorithm. Due to the complexity
and size of the mapping problem it is not easy to implement the parallel algorithm
manually on the parallel computing platforms. Moreover, in case the implementation
platform requires changing, porting the system to a new platform will be cumbersome
and require considerable time [15]. Obviously, a systematic approach that is
supported by tools is necessary to analyze the parallel algorithm, model the logical
configuration, select feasible mapping alternatives and generate the code for the com-
puting platform.

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 761

3 Approach

Fig. 4 shows the approach for supporting the mapping of a parallel algorithm for a
parallel computing platform, and the generation of the code for the parallel computing
platform. The approach consists of two basic sub-processes, library definition and
parallel algorithm mapping and model transformations. The main purpose of the
library definition sub-process is to define reusable assets including primitive tiles,
communication patterns and operation definitions, which will be explained in subse-
quent sections. The activities of the library definition process include Define Logical
Configuration, Define Communication Patterns and Define Operations. The created
reusable assets are stored in the Parallel Algorithm Mapping Library (PAML). The
parallel algorithm mapping and model transformations sub-process consists of the
activities Analyze Algorithm, Select Logical Configuration Size, Generate Alternative
Models, Select Feasible Model, and Model Transformation. This sub-process reuses
the PAML assets to analyze the parallel algorithm and generate the alternative map-
ping models. The metrics for speedup and efficiency are calculated for each model
and a feasible model is selected to be used on transformation and generation of arti-
facts. In the following subsections we will describe the metamodel and each step of
the approach.

Fig. 4. Approach for mapping of parallel algorithm to parallel computing platforms

3.1 Metamodel

Fig. 5 shows the abstract syntax of the metamodel that is used by the approach in Fig.
4. The metamodel integrates the concepts for parallel algorithms (upper part of figure)
with the concepts of parallel computing platforms (lower part of figure). In the
metamodel, Algorithm includes one or more Sections. Section can be either Serial
Section or Parallel Section and can be composed of other sections. Each section maps
to one Operation. Logical Configuration defines the configuration that we have de-
fined in section 2, and is composed of a number of Tiles. Tile can be either a (single)
Core, or Pattern that represents a composition of tiles. Patterns are shaped by the
operations of the sections in the algorithm. Pattern includes also the communication
links among the cores.

762 E. Arkın, B. Tekinerdogan, and K.M. İmre

Fig. 5. Abstract Syntax of the Parallel Algorithm Mapping Metamodel (PAMM)

3.2 Define Primitive Tiles

As shown in Fig. 4, the first step of the definition of the library is the definition of
primitive tiles. As stated before, we distinguish among the physical configuration and
logical configuration of the topology. For very large topologies including a large
number of cores, as in the case of exascale computing, the logical topology cannot be
drawn on the same scale. Instead, for representing the topology in a more succinct
way the topology can be defined as a regular pattern that can be built using tiles. Tiles
as such can be considered as the basic building blocks of the logical configuration.
The tile notation is used for addressing group of processing elements that form a
neighborhood region on which processes and communication links are mapped. The
smallest part of a tile is a processing element (core).

2×2 3×3 4×4 5×5 7x7

Fig. 6. Primitive tiling examples

Tiles can be used to construct the logical configuration using scaling that can be
defined as the composition of the larger structure from the smaller tiles. In general we
can distinguish among different primitive tiles which can be constructed in different
ways. The selected tiling configuration will be dependent on the required communica-
tion patterns of the algorithm that will be explained in the next sub-section. Examples
of primitive tiles are shown in Fig. 6 [16][17][9].

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 763

3.3 Define Communication Patterns

Each primitive tile defines the structure among the nodes but initially does not de-
scribe the dynamic behavior among these nodes. Hence, after defining the primitive
tiles, we need to define the dynamic behavior among the nodes. This is defined using
communication patterns for each tile configuration. A communication pattern in-
cludes communication paths that consist of a source node, a target node and a route
between the source and target nodes. An example communication pattern is shown in
Fig. 7.

Communication Paths Tile Communication Pattern

Fig. 7. Communication patterns constructed with tile and matching communication paths

3.4 Define Operations

To define the mapping of an algorithm to a computing platform we consider an algo-
rithm as consisting of a number of sections that include either parallel or serial code.
As shown in the metamodel in Fig. 5 each section is mapped to a primitive operation
that represents a reusable abstraction of recurring instructions in parallel algorithms.
We can identify for example the following primitive operations: Scatter that distrib-
utes a set of data to nodes; Gather that collects data from nodes; Reduce that confines
a mapped data. To realize an operation a corresponding communication pattern will
be needed in the logical configuration. In general, one operation could be realized
using different communication patterns. Fig. 8 shows, for example, some of the pos-
sible communication patterns for the scatter primitive operation.

Operation 2x2 3x3 4×4

Scatter

Fig. 8. Example communication patterns on different tiles for selected primitive operations

Each operation will in the end run on the tiles of the logical configuration. To
compose the logical configuration using the primitive tiles, the tiles must be scaled to
larger dimensions. When the tiles are scaled to a larger size, the operations, in other
words the communication patterns assigned to operations, must also be scaled to larg-
er logical configuration. Hereby, the scaling strategy of the operation affects the order
of communication patterns when scaling the operations. Scaling strategy is the order
of communication pattern generation for operation as bottom up or top down.

764 E. Arkın, B. Tekinerdogan, and K.M. İmre

3.5 Analyze Algorithm

In the previous steps we composed our reusable library with the primitive tiles, commu-
nication patterns and operation. Hereby, to support the mapping of the algorithm to paral-
lel computing platform, first we need to analyze the parallel algorithm. In this paper, the
complete-exchange algorithm is selected for demonstrating the approach. Since the in-
herent complexity of the algorithm is relatively high for large input size, providing paral-
lel implementations of these algorithms is usually considered to be important.

First of all we identify the separate sections of the algorithm. This is typically de-
fined by considering separate code blocks which form a coherent set of steps to per-
form a computation. For example in Fig. 9 we have identified three separate sections
for the complete exchange algorithm. The first section defines the transfer process of
the data from the dominated nodes to the dominating nodes. The second section de-
fines the exchange of the selected messages between the dominating nodes. Finally
the third section defines the distribution of the data from dominating nodes to the
dominated nodes. Note that the second and third sections belong to the same for loop,
but they have been distinguished as separate sections since they form two separate
coherent set of steps.

NO PAR/SER Algorithm Section
1 PAR Procedure Complete-Exchange:

For i=1 to n-1
Collect data to the dominating nodes from the domi-
nated nodes
Endfor

2 PAR For i=n-1 downto 1
Exchange the selected data between dominating nodes

3 PAR Distribute data from dominating nodes to the dominat-
ed nodes
Endfor

Fig. 9. Sections of Complete Exchange Algorithm

The second step of the analysis includes the characterization of the serial (SER) and
parallel sections (PAR) of the algorithm. A serial section is a part of the algorithm that
will run on a single node, for instance an arithmetic operation. Typically a serial section
is identified with a serial code block. A parallel section is the part of the algorithm to
coordinate data with communications to be processed on different nodes. The decision of
the section types of an algorithm is carried out manually by the parallel programming
engineer. This is because the automatic analysis of the parallel algorithms is not trivial
and no tool support has been provided for this yet. Moreover, the manual approach ena-
bles the parallel programming engineer to support different selection decisions, if this is
possible with respect to the properties of the analyzed algorithm.

3.6 Select Logical Configuration Size

The selected algorithm will run on a number of processors that together form the logi-
cal configuration. The logical configuration size states the number of processors and
determines which primitive tiles and communication patterns will be selected from
the reusable library to construct the logical configuration. The primitive tiles and

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 765

communication patterns are selected based on the scale factors that are calculated
using the logical configuration size. The scale factor is the ratio of a logical configura-
tion size to another logical configuration size. For example a 6x6 logical configura-
tion has a scale factor of 3 to a 2x2 logical configuration. Hereby, we can construct a
6x6 logical configuration using a 3x3 logical configuration each node consisting of
2x2 logical configuration.

To calculate all the scale factors of a logical configuration we adopt prime factori-
zation [18]. Prime factorization is the decomposition of a composite number into
smaller primitive numbers. The primitive tiles with the primitive size numbers can be
scaled to larger logical configuration by using prime factors as scale factors. For ex-
ample if we have a 12x12 torus topology, the prime factors of 12 are 2, 2 and 3. As
such, we can use a 3x3, and two 2x2 primitive tiles to construct the entire logical
topology.

3.7 Generate Alternative Models

After finding the scale factors of logical configuration and decomposing the algorithm
to parallel and serial sections, we can now generate the alternative mapping models.
Since we labeled each algorithm section as PAR or SER, we need to select communi-
cation patterns assigned to operations from parallel domain library.

For complete-exchange example, gather, scatter and exchange operations are de-
fined for various primitive tiles. Fig. 10 shows the example 2x2 (named as A2) and
3x3 (named as A3) size primitive tiles and patterns.

Fig. 10. Complete Exchange Operations

To generate the Parallel Algorithm Mapping Model (PAMMO), the patterns that
are assigned to operations are scaled according to scale factors that are found by
prime factorization. For example for 12x12 topology, the scale factors are found as 3,
2 and 2. A3S, A2S and A2S patterns are selected from the library to generate scatter
operation. After selection of patterns, a sequence of patterns for each scale factor is
generated. Fig. 11 shows this generated sequence of scatter operation patterns for
12x12 logical configuration.

Tile Scatter Gather Exchange

A2

A2S

A2G

A2E

A3

A3S

A3G

A3E

766 E. Arkın, B. Tekinerdogan, and K.M. İmre

The model generation algorithm is given in Fig. 12. Hereby, if the section is serial,

than the serial code part is directly gathered to the mapping model. If the section is
parallel, the pattern for the operation is generated whether the scaling strategy is UP
or DOWN.

Fig. 11. Scatter operation patterns for a 12x12 topology

Procedure GenerateModel (section, size)
if typeof(section) = SER then Add section with code endif
if typeof(section) = PAR then
 Get the operation pattern from PAML
if scaling = UP then create pattern bottom up endif
if scaling = DOWN then create pattern top down endif
 ScalePattern(pattern, size)
endif
for each subsection in section GenerateModel(subsection) endfor
end

Fig. 12. Pseudo code for generating models

The algorithm just generates the one possible mapping for the algorithm. To gener-
ate all alternative mapping models, all variants of scale factors are found by using
permutation. For example for 12x12 topology, scale factors [3,2,2] will have three
permutations of [3,2,2], [2,3,2] and [2,2,3].

3.8 Select Feasible Model

After generating the possible mapping alternatives a feasible alternative needs to be
selected by the parallel computing engineer. As stated before in section 2, alternatives
will be selected based on the performance metric values for the number of cores used,
port count used, and communication length. The calculation of the number of cores
used is defined by summing all the cores that appear in the communications for exe-
cuting the algorithm. The calculation of the number of ports is defined by summing
the ports of the source and target nodes in the communications. Finally, the communi-
cation length is calculated by summing up the paths that occur within the communica-
tions for executing the algorithm.

3.9 Model Transformations

The previous steps have focused on analyzing the parallel algorithm and selecting a
feasible mapping alternative. Subsequently, the algorithm needs to be implemented on

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 767

the computing platform that is represented by the logical configuration. In practice
there are several computing platforms to implement the mapping such as, MPI,
OpenMP, MPL, and CILK [15]. For different purposes different platforms might need
to be selected. For example, if the parallel computing platform is built using distribut-
ed memory architecture then the MPI implementation platform needs to be chosen. In
case shared memory architecture is used then OpenMP will be typically preferred.
Other considerations for choosing the implementation platform can be driven by per-
formance of these platforms.

Fig. 13. Example model transformation chain of selected parallel algorithm mapping model in
which a MPI implementation platform is chosen

To support the required platform independence requirement we apply the concepts
of Model-Driven Architecture [19] in which a distinction is made between platform
independent models (PIM), platform specific models (PSM) and code. In our case the
PIM is represented by the logical configuration on which the parallel algorithm is
mapped. We term this as Parallel Algorithm Mapping Model (PAM). The PSMs can
be defined based on the existing parallel computing platforms. In Fig. 13 we show an
example transformation chain for mapping the PAM to the MPI Model [20]. The
mapping is defined by the M2M Transformation. MPI [20] is a popular and widely
used parallel programming framework that adopts language-independent specifica-
tions to program parallel computers.

Fig. 14. MPI metamodel

Fig. 14 shows the metamodel for the MPI platform, which is used in the model
transformation chain in Fig. 13. A typical MPI model defines the abstract processes
and the communications that will run on the nodes, which together realize the parallel
algorithm. An MPI model consists of a number of MPIGroup objects that define the
selection and configuration of physical nodes. MPIGroup includes MPISections,
which are composed of Processes. Process has Communication structures for mes-
sage passing between the nodes.

768 E. Arkın, B. Tekinerdogan, and K.M. İmre

From the final MPI model eventually the required code will be generated using
M2T transformation techniques [21]. The details about the transformation will be
explained in the next section in which we describe the tool that implements the ap-
proach.

4 Tool

For supporting the process as defined in the previous sections we have developed the
tool ParMapper1. This tool is a Java based application that can run on any Java Virtual
Machine. The conceptual architecture of ParMapper is shown in Fig. 15. ParMapper
includes two different types of tools including (1) tools for defining and preparing the
configurations and likewise the development of the library, and (2) tools for defining
the mapping of an algorithm to a given parallel computing platform using the library.
The Library Definition Toolset supports the steps for defining primitive tiles (section
3.2), defining patterns (section 3.3), and defining the corresponding operations (sec-
tion 3.4). The remaining steps of the process are supported by the Parallel Algorithm
Mapping Toolset for analyzing algorithm (section 3.5), selecting topology size (sec-
tion 3.6), generating alternative models (section 3.7), and selecting the feasible model
(section 3.8). The last step of the process, model transformations, (section 3.9) is sup-
ported by third party transformation tools like ATL [22] and XPand [23].

Fig. 15. Conceptual Architecture of the ParMapper Tool

The Model and Code Transformation Toolset are implemented in the Eclipse De-
velopment environment. For M2M and M2T transformations we used ATL and
XPand, respectively. Fig. 16 shows part of the transformation rules from PAMM to

1 The tool can be downloaded from
 http://web.cs.hacettepe.edu.tr/~earkin/parmapper/

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 769

MPI metamodel. The transformation rules define the mapping of the communication
patterns to MPI sections, cores to processes and communications to MPI communica-
tions. Fig. 17 shows part of the XPand code templates that we implemented to trans-
form a MPI model to C code. In the first part of the template the MPI initializations
and type definitions are provided (not shown). Subsequently, for each section the data
initialization and the communication between the processes are defined. Each section
is finalized with a barrier command that triggers the next step in the control flow of
the parallel algorithm.

rule Algorithm2MpiModel {
 from algorithm: ParallelModel!Algorithm
 to application: MpiModel!MpiModel (
 name<- algorithm.name, groups <- OrderedSet{mpiGroup}),
 mpiGroup: MpiModel!MpiGroup (
 name <- algorithm.name,sections<- algorithm.getPatterns())}
rule Pattern2Section {
 from pattern: ParallelModel!Pattern
 to section: MpiModel!MpiSection (
 name<- pattern.name, processes <- pattern.getCores(),
 communications <- pattern.getCommunications())}
rule Core2Process {
 from core: ParallelModel!Core
 to process: MpiModel!Process (
 rank<- core.i.mod(core.getGlobalSize()) * core.getGlobalSize() +
 core.mod(core.getGlobalSize()), data <- core.data)}
rule Comm2Comm {
 fromp_communication : ParallelModel!Communication
 to communication : MpiModel!Communication (
 from<- p_communication.from, to <- p_communication.to,
 fromData<- p_communication.fromData,)}

Fig. 16. Transformation rules from PAMM to MPI metamodel

«IMPORT mpi»
… // MPI initializations and type definitions
 «FOREACH groups AS group»
 «FOREACH group.sections AS section»
 «FOREACH section.processes AS process»
 «FOREACH process.data AS data»
 «data.type»* «data.name»;
if(rank == «process.rank») «data.name» = («data.type»*)
 malloc(«data.size»*sizeof(«data.type»));
 «ENDFOREACH»
 «ENDFOREACH»
 «FOREACH section.communications AS comm»
if(rank == «comm.from.rank») {
MPI_Isend(«comm.fromData.name», «comm.fromData.size», MPI_«comm.fromData.type»,
«comm.to.rank», «comm.from.rank», MPI_COMM_WORLD, &request); }
if(rank == «comm.to.rank») {
MPI_Irecv(«comm.toData.name»+«(comm.toData.size/4) * 0», «comm.fromData.size»,
MPI_«comm.toData.type», «comm.from.rank», MPI_ANY_TAG, MPI_COMM_WORLD, &request);
 }
 «ENDFOREACH»
MPI_Barrier(MPI_COMM_WORLD);
 «ENDFOREACH»
 «ENDFOREACH»
… // Final code

Fig. 17. Transformation template from MPI metamodel to MPI source code

5 Evaluation

In the previous sections we have provided a model-driven development approach for
generating the mapping alternatives. Obviously, for large scale multi core platform

770 E. Arkın, B. Tekinerdogan, and K.M. İmre

the question is whether the alternatives are generated in feasible time. We have evalu-
ated the generation process by considering various logical configuration sizes for the
mapping alternatives of the complete exchange algorithm that is defined in the prob-
lem statement section. The mapping alternatives have been generated on a multicore
PC with 12 core Intel Xeon 2.67Ghz processor and 40 GB of RAM.

Table 1 shows the result of the evaluation. The left column of the table shows the
adopted logical configuration size which range from 36x36 to 1296x1296. The latter
configuration size is typical for exascale computing. The middle column shows the
number of generated mapping alternatives. The right column shows the time-to-
generate the total number of alternatives. For the largest logical configuration size
(1296x1296) the overall time to generate the alternatives took around 3 hours, which
we consider to be feasible for that scale. We could reduce the time further by running
the program on an even more powerful machine.

Table 1. Mapping model generation times

Logical Configuration Size # Mapping Alternatives Time To Generate
1296 (36x36) 6 00:00:02
5184 (72x72) 10 00:00:05

46656 (216x216) 20 00:00:55
419904 (648x648) 35 00:16:44
944784 (972x972) 21 00:22:19

1679616 (1296x1296) 70 02:45:43

Table 2. Metric and time to run values for alternative mappings for complete exchange
algorithm

Mapping Calculated Metric Values Measured Values
Ports
Used

Communication
Length

Core
Used

Time To
Run(ms)

Speedup*

Efficiency*
(for 144 cores)

Alternative 1 792 880 516 200.07980 4.9980t 0.0347t
Alternative 2 792 952 516 202.37916 4.9412t 0.0343t
Alternative 3 792 1024 516 205.23701 4.8724t 0.0338t
Alternative 4 792 1024 588 203.90900 4.9041t 0.0340t
Alternative 5 792 1024 624 209.87113 4.7648t 0.0330t

*t is the total time for the computation running on single processing unit.

Besides of the evaluation of the generation time that is needed in model-driven
transformations we have also looked at the speedup and efficiency measures for the
generated alternatives. Since we used a PC with 12 cores we run the generated five
alternatives from a 12x12 logical configuration size. Table 2 shows the measurement
results of the parallel application that uses the complete exchange algorithm (5 map-
ping alternatives) for exchanging data while executing the parallel computations. The
columns Port Number, Communication Length and Core Used are computed by
ParMapper tool. The column Time To Run is measured, based on which the Speedup
and Efficiency values are calculated (See equations (1) and (2) in section 2). To
achieve reliable results we have in fact run the program 1000 times for each alterna-
tive and took the mean value of these 1000 runs.

From Table 2, we can derive that calculated metric values of ParMapper seem to
directly correlate with the measured values. For example, in the table it appears that

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 771

Alternative 1 has the minimal time to run value and as such will perform the most
optimal with respect to the speedup and efficiency metrics. If we look at the calculat-
ed metric values on the left of the table then we can see that these are also minimal
values with respect to the other alternatives.

6 Related Work

Optimizing the mapping of parallel algorithms to parallel computing platforms has
been addressed before and several tools have been introduced. These tools very often
support the optimization of the mapping process by tracing or profiling the applica-
tions during run-time. Examples of these tools are TAU [24], HPC Toolkit [25],
Open|Speedshop[26], and Scalasca[27]. Since the optimization is done at run-time
these tools usually require that the implementation of the algorithm is completed be-
fore the analysis. However, for large scale parallel computing platforms the effort for
the implementation is usually substantially high and as such an early analysis ap-
proach as defined in ParMapper is needed. Integration of ParMapper with existing
profiling tools can be helpful to achieve an optimization after running the feasible
alternative. Tools such as CUDA-CHiLL[28] and hiCUDA [29], support code genera-
tion and also include mechanism to auto tune the code. But the analysis is again done
after the implementation. Moreover, the space of different implementation alterna-
tives and the reasoning with respect to metrics of speedup and efficiency is not direct-
ly supported.

ParMapper supports a model-driven approach to support different platform specific
parallel programming frameworks and code generation. Similarly Gamatié et al. [30]
present the so-called GASPARD design framework for massively parallel embedded
systems. In GASPARD, high-level specifications of an embedded system are defined
with the MARTE standard profile [31]. The resulting models are then automatically
refined into low-level implementations. Different from ParMapper the approach as
used in Gaspard does neither provide early analysis nor the design space generation
and exploration of feasible mappings. Sussman [32] explains a model-driven mapping
approach for distributed memory parallel computers. But this approach provides a
running framework and does not support code transformation.

7 Conclusion

In this paper we have provided a systematic approach and the corresponding tool
support for mapping parallel algorithms to parallel computing platforms. We have
illustrated the approach for the complete exchange algorithm. With the tool we could
generate the logical configurations for even large scale multi core applications such as
in exascale computing. We have evaluated the approach by considering the required
time for generating the models, as well as the reliability of the generated alternatives
with respect to the actually measured values. Our study shows that ParMapper is reli-
able and can be used by parallel computing engineers to generate alternative map-
pings, provide an early analysis of these with respect to speedup and efficiency, and
generate the platform specific model and the source code.

772 E. Arkın, B. Tekinerdogan, and K.M. İmre

The tool is publicly made available to share our results and get feedback from the
parallel computing community. Although we have applied the approach for one
parallel computing algorithm, we believe that the approach is general and can be ap-
plied to other algorithms as well. In our approach we have assumed a parallel compu-
ting platform based on a distributed memory model. Further we assume a physical
configuration that can be organized as mesh or torus that is widely used in parallel
computing platforms. In our future work we will also consider the analysis of other
parallel algorithms and execute ParMapper program on large scale multi core com-
puters. In this context, we will enhance the analysis approach by considering various
other quality factors such as power consumption and memory consumption and we
will consider possible extensions to metamodels and approach.

References

1. Moore, G.E.: Cramming More Components Onto Integrated Circuits. Proceedings of the
IEEE 86(1), 82–85 (1998)

2. Aizcorbe, A.M., Kortum, S.S.: Moore’s Law and the Semiconductor Industry: A Vintage
Model. Scandinavian Journal of Economics 107(4), 603–630 (2005)

3. Frank, M.P.: The physical limits of computing. Computing in Science & Engineering 4(3),
16–26 (2002)

4. Amdahl, G.M.: Validity of the Single Processor Approach to Achieving Large Scale Com-
puting Capabilities. Reprinted from the AFIPS Conference Proceedings, Atlantic City,
N.J., April 18-20, vol. 30, pp. 483–485. AFIPS Press, Reston (1967); when Dr. Amdahl
was at International Business Machines Corporation, Sunnyvale, California. IEEE Solid-
State Circuits Newsletter 12(3), 19–20 (Summer 2007)

5. Gustafson, J.L.: Reevaluating Amdahl’s law. Communications of the ACM 31(5),
532–533 (1988)

6. Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. Computer 41(7), 33–38
(2008)

7. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Commun. ACM 33(5),
539–543 (1990)

8. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards,
M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S., Yelick, K., Bergman,
K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod,
W., Hiller, J., Keckler, S., Klein, D., Williams, R.S., Yelick, K.: Exascale Computing
Study: Technology Challenges in Achieving Exascale Systems. DARPA (2008)

9. İmre, K.M., Baransel, C., Artuner, H.: Efficient and Scalable Routing Algorithms for Col-
lective Communication Operations on 2D All–Port Torus Networks. International Journal
of Parallel Programming 39(6), 746–782 (2011) ISSN: 0885-7458

10. Kim, S.-G., Maeng, S.-R., Cho, J.-W.: Complete exchange algorithms in wormhole-routed
torus networks: a divide-and-conquer strategy. In: Proceedings of the Fourth International
Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN 1999),
pp. 296–301 (1999)

11. Suh, Y.-J., Shin, K.G.: All-to-all personalized communication in multidimensional torus
and mesh networks. IEEE Transactions on Parallel and Distributed Systems 12(1), 38–59
(2001)

 Model-Driven Approach for Supporting the Mapping of Parallel Algorithms 773

12. Tsai, Y.J., McKinley, P.K.: An extended dominating node approach to collective commu-
nication in all-port wormhole-routed 2D meshes. In: Proceedings of the Scalable High-
Performance Computing Conference, pp. 199–206 (1994)

13. Chien, A.A., Konstantinidou, M.: Workloads and Performance Metrics for Evaluating
Parallel Interconnects, pp. 23–27. Morgan-Kaufmann (Summer-Fall 1994)

14. Zhang, X.D., Yan, Y., He, K.Q.: Latency Metric: An Experimental Method for Measuring
and Evaluating Parallel Program and Architecture Scalability. Journal of Parallel and
Distributed Computing 22(3), 392–410 (1994) ISSN 0743-7315, 10.1006/jpdc.1994.1100

15. Talia, D.: Models and Trends in Parallel Programming. Parallel Algorithms and Applica-
tions 16(2), 145–180 (2001)

16. Baransel, C., İmre, K.M.: A Parallel Implementation of Strassen’s Matrix Multiplication
Algorithm for Wormhole-Routed All-Port 2D Torus Networks. Journal of Supercomputing
62(1), 486–509 (2012)

17. Peters, J.G., Syska, M.: Circuit-Switched Broadcasting in Torus Networks. IEEE Transac-
tions on Parallel and Distributed Systems 7(3), 246–255 (1996)

18. Lenstra, H.W., Pomerance, C.: A Rigorous Time Bound for Factoring Integers. Journal of
the American Mathematical Society 5(3), 483–516 (1992)

19. Object Management Group (OMG), Model Driven Architecture (MDA), ormsc/2001-07-
01 (2001)

20. MPI: A Message-Passing Interface Standart, version 1.1 (2013),
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

21. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3), 621–645 (2006)

22. ATL: ATL Transformation Language (2013), http://www.eclipse.org/atl/
23. Xpand, Open Architectureware (2013), http://wiki.eclipse.org/Xpand
24. Shende, S.S., Malony, A.D.: The Tau Parallel Performance System. Int. J. High Perform.

Comput. Appl. 20(2), 287–311 (2006)
25. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,

Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience 22(6), 685–701 (2010)

26. Krell Institute, Open|Speedshop (2013), http://www.openspeedshop.org
27. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Further Im-

proving the Scalability of the Scalasca Toolset. In: Jónasson, K. (ed.) PARA 2010, Part II.
LNCS, vol. 7134, pp. 463–473. Springer, Heidelberg (2012)

28. Rudy, G., Khan, M.M., Hall, M., Chen, C., Chame, J.: A programming language interface
to describe transformations and code generation. In: Cooper, K., Mellor-Crummey, J.,
Sarkar, V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 136–150. Springer, Heidelberg (2011)

29. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-Level GPGPU Programming. IEEE Trans-
actions on Parallel and Distributed Systems 22(1), 78–90 (2011)

30. Gamatié, A., Le Beux, S., Piel, É., Ben Atitallah, R., Etien, A., Marquet, P., Dekeyser, J.-
L.: A Model-Driven Design Framework for Massively Parallel Embedded Systems. ACM
Transactions on Embedded Computing Systems 10(4), 1–36 (2011)

31. Object Management Group. A UML profile for MARTE (2009),
http://www.omgmarte.org

32. Sussman, A.: Model-driven mapping onto distributed memory parallel computers.
In: Proceedings Supercomputing 1992, pp. 818–829 (1992)

Compositional Synthesis of Controllers
from Scenario-Based Assume-Guarantee

Specifications

Joel Greenyer1 and Ekkart Kindler2

1 Software Engineering Group, Leibniz Universität Hannover, Germany
greenyer@inf.uni-hannover.de

2 DTU Compute, Technical University of Denmark, Denmark
ekki@dtu.dk

Abstract. Modern software-intensive systems often consist of multiple
components that interact to fulfill complex functions in sometimes safety-
critical situations. During the design, it is crucial to specify the system’s
requirements formally and to detect inconsistencies as early as possi-
ble in order to avoid flaws in the product or costly iterations during its
development. We propose to use Modal Sequence Diagrams (MSDs), a
formal, yet intuitive formalism for specifying the interaction of a system
with its environment, and developed a formal synthesis approach that
allows us to detect inconsistencies and even to automatically synthesize
controllers from MSD specifications. The technique is suited for specifi-
cations of technical systems with real-time constraints and environment
assumptions. However, synthesis is computationally expensive. In order
to employ synthesis also for larger specifications, we present, in this pa-
per, a novel assume-guarantee-style compositional synthesis technique
for MSD specifications. We provide evaluation results underlining the
benefit of our approach and formally justify its correctness.

Keywords: Scenario-Based Specification, Compositional Controller
Synthesis, Consistency Checking, Assume-Guarantee.

1 Introduction

Modern software-intensive systems in areas like transportation or production of-
ten consist of many components that interact to provide complex functionality
in sometimes safety-critical situations. In the early design, interactions are typi-
cally specified by scenarios. We propose a model-based approach and use Modal
Sequence Diagrams (MSDs), introduced by Harel and Maoz [8], to specify inter-
action scenarios. MSDs are a formal interpretation of UML sequence diagrams,
based on the concepts of Live Sequence Charts (LSCs) [6], and allow engineers
to specify which sequences of events may, must, or must not happen in a sys-
tem that reacts to events in its environment. We extended MSDs to support
real-time constraints and assumptions on the environment. These extensions are
important for the specification of mechatronic systems where the software inter-
acts with physical/mechanical parts of the system. Furthermore, we developed

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 774–789, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Compositional Synthesis of Controllers 775

a technique for synthesizing controllers from such specifications and for showing
their consistency [7].

Formal scenario-based modeling and synthesis techniques have the potential
to immensely aid engineers in the development of modern technical systems, but
unfortunately, synthesis is computationally complex. To make synthesis feasible
also for bigger specifications, we present, in this paper, a novel technique that
for certain kinds of specifications, allows engineers to decompose the synthesis
problem into two parts that can be solved more efficiently.

The technique comprises of four manual steps that require the engineer to (1)
subdivide the component structure of the system in two parts, (2) possibly split-
ting components in two, and (3) subdividing the MSD specification accordingly.
Last (4), additional MSDs may be introduced as additional requirements that
one part of the system can assume about the other, in order to help it realize its
part specification. If controllers can be successfully synthesized for the resulting
part specifications, the composition of these controllers forms an implementation
of the overall specification. We present a formal justification for the soundness
of our technique, which was inspired by Stark [18].

The technique presented in this paper is the first that allows for the decom-
position of the synthesis problem for LSC/MSD specifications into two synthe-
sis tasks that can be solved independently. Kugler and Segall also proposed a
compositional synthesis approach for LSC specifications [13] that improves the
synthesis’ efficiency. In their approach, controllers are also synthesized for spec-
ification parts. Ultimately, however, always a last synthesis step is required to
obtain a controller for the complete specification from the controllers for the
specification parts. This is not the case with our technique, and thus we can of-
ten more drastically reduce the complexity of the synthesis problem. Also Maoz
and Sa’ar recently proposed a technique for synthesizing controllers from LSC
specifications with environment assumptions [16], but they do not address the
decomposition of the synthesis problem.

Our technique requires the creativity of the engineer in finding a viable de-
composition of the specification as well as assume/guarantee properties that are
small enough so that the compositional synthesis is of advantage. If, for a chosen
decomposition of the specification, no controllers could be synthesized, this does
not imply that there does not exist a controller for the global specification. There
might be other decompositions for which synthesizing controllers was possible. In
this sense, our technique is not complete. Another limitation of our approach is
that, in the decomposition, the second part specification can make assumptions
about the first, but not vice versa. Supporting assumptions in both directions
would require extra mechanisms, which we plan to investigate in future work.

This paper is structured as follows. We introduce an example in Sect. 2 and
explain the foundations in Sect. 3. We describe our compositional synthesis tech-
nique in Sect. 4. Here we focus mainly on the technical aspects of creating a
correct specification decomposition, but give a brief discussion on the methodol-
ogy for using our technique. We then present realization details and evaluation
results in Sect. 5, discuss related work in Sect. 6, and conclude in Sect. 7.

776 J. Greenyer and E. Kindler

�����

�����	
������
��

�

	��
��

����

��

��������
������������
��������	
������	����	��������������
�����������
	���������������

���������	���������	
�����������������������
��	��
������
�������
�������

�!�������	���������	
������"����������������
������������	������������������������	����������
����������	��������
�"�����
��"����

�#�������	�������������������������������
$�
������	��������
�%�����
��%����

�
����
�
��� ��
&���-��
������
$����������	���������������;��������<����	>$�	��<�;�����	��������������;��
����������	��	
��������������
�����������
��������������>$�������������;�������	���<������	�������������
�@�����
$����	���

&���-��
���������������������������
$�	
������������;������������<���������	�;��
�����
�����"��<����	>$�<������������

&!��-��
�����"������	>$���<���������>�����������;�	���<������
����������������������������	�������

&#��-��
�����"��������	���������������	������;�	���<������������������>�������������
�����
�������>$��������������

&B���������<����
�H��������������
$�	
�������������	������"������	>$���<���������>���������������������������

&J���������<���
���������������	>$�<������
�@�����
$����������	
�����<�
����������������

&K������"��<���
���������������	>$�<�����������������������������	
�����<�
����������������

>QY�
�������

Fig. 1. A sketch of the production cell system and its textual specification

2 Example

As an example, we consider a simplified specification of a production cell [14],
an industrial production robot with two arms. One arm, arm A, picks up metal
blanks that arrive from a feed belt on a table and places them into a press, where
they are pressed into plates. The other arm, arm B, picks up the pressed plates
and places them on a deposit belt, where they are transported off again. Figure 1
shows the system with its requirements and environment assumptions in plain
text. Initially, arm A is located at the table, and arm B is located at the press.

After formalizing the above requirements and assumptions into an MSD spec-
ification MS for a single controller component c, the technique described in this
paper will allow us to

1. split the controller component c into two components, c1 for arm A, and c2
for arm B and the press,

2. split MS into two part specifications MS1 and MS2 for c1 resp. c2,
3. introduce additional properties as assumptions to MS2 and as requirements

to MS1, with the aim of helping c2 in being able to realize MS2, while not
making it impossible for c1 to realize MS1,

so that finally, if controllers c1 and c2 can be synthesized, they together form an
implementation for the global specification MS.

3 Foundations

As foundations, we first formalize a notion of components that interact via mes-
sages. Then we introduce controllers and MSDs. As time is relevant in our ex-
ample, we consider a timed setting. Our technique, however, is also applicable
in an untimed setting.

Compositional Synthesis of Controllers 777

3.1 Object Systems, Message Events, Runs

We consider systems of objects that interact via messages. Our definitions are
based on Harel and Marelly [9]. For brevity, we consider synchronous messages
only. Our technique would in principle also work for asynchronous communica-
tion, but this would need to be formalized.

Definition 1 (Object system, message, messages event, alphabet). An
object system consists of a set of objects O that exchange messages. A message
has a name (from a set of names Name) and a sending and receiving object.
The sending and receiving of a message in an object system is a single message
event, or simply event, e ∈ O × Name × O. The set of possible message events
is called the alphabet, denoted with Σ ⊆ O × Name × O.

We consider a timed setting where message events occur at certain points in
time. The progress of time is represented by a sequence of positive, increasing
real values [1]. A message event itself does not take any time.

Definition 2 (Timed event, timed words, timed language). A timed
event is a pair (e, r) ∈ (Σ ×R≥0) where e is a message event occurring at time r.
A timed word π ∈ (Σ ×R≥0)ω is an infinite sequence of timed events. For every
two subsequent timed events in a timed word π = . . . , (ei, ri), (ei+1, ri+1), . . ., we
require that ri ≤ ri+1. Furthermore, for every r ∈ R≥0, we require that there
exists a timed event (ei, ri) such that ri > r, i.e., time must progress. The set of
all timed words is denoted by L and a subset L ⊆ L is called a timed language.
The complement of a language L is denoted by L and defined as L = L \ L.

3.2 Controllers and Parallel Composition

Subsets of objects in the object system can be controlled by a controller. There
can be multiple controllers, but the objects controlled by different controllers
must be disjoint. We consider a controller to be a timed automaton [1] with
some additional constraints, which will be described shortly. We rely on the usual
definitions [1,5], and only briefly and informally explain the essential concepts,
since the concrete controller formalism is not important for our approach.

A timed automaton T A = (Σ, S, S0, X, I, T) is an automaton with a finite
set of locations S, S0 ⊆ S being start locations, and a finite set of real-valued
variables X , called clocks, which increase synchronously and monotonically over
time. I are invariants for locations, which specify that a timed automaton must
not be in a location at a certain time. A timed automaton has edges between
locations, which are defined through a relation T ⊆ S × Σ × C(X) × 2X × S.
An edge (ss, e, ψ, λ, st) goes from location ss to location st and is labeled by an
event e. The element ψ ∈ C(X) is called a constraint on clock variables that is
the guard of an edge, permitting it to be taken only at certain times. λ ∈ 2X

is a subset of clocks that are reset when the edge is taken. A timed automaton
accepts a timed language. For an automaton T A, we denote the accepted timed
language as L(T A).

778 J. Greenyer and E. Kindler

If two timed automata share some events but have a disjoint set of clocks, we
can form the parallel composition of the two automata, which is defined through
the construction of the product of the two automata. For two timed automata
T A1 and T A2, the parallel composition is denoted as T A1||T A2.

For a controller of a subset of objects in the object system, we require that for
each message event not sent or received by an object that is controlled by the
controller, each location has unguarded self-edges labelled with that event and
without any clock reset. This requirement reflects the fact that a controller for a
particular subset of objects should not be able to block the sending or receiving
of messages among objects that it does not control.

Definition 3 (Controller). We define a controller C as an extended timed
automaton: C = (Σ, S, S0, X, I, T, OC), where OC ⊆ O is a subset of objects
in an object system O controlled by C. Let ΣC = Σ ∩ ((OC × Name × O) ∪
(O × Name × OC)) be the messages sent and received by the objects in OC .
Then for every controller C we require that for every location s ∈ S and every
event e ∈ Σ \ ΣC, there is an edge (s, e, true, ∅, s) ∈ T (unguarded, no clocks
reset). If C1 and C2 are controllers for objects OC1 and OC2, we require that
OC1 ∩ OC2 = ∅.

The additional self-edge for all the message events sent and received by the
object not controlled by a controller allow us to infer the following.

Lemma 1 (Composition is conjunction). Let C1 and C2 be two controllers
accepting the languages L(C1) and L(C2). Then L(C1||C2) = L(C1) ∩ L(C2).

We assume an open-world setting where the object system is subdivided into
system objects and environment objects. System objects are controllable, i.e., the
objects we seek an implementation for. Environment objects are uncontrollable;
they represent for example sensors and actuators by which a software controller
monitors and acts upon the physical world.

In this setting, we assume that if an environment event occurs, the system ob-
jects can immediately take any finite number of steps to react to this event before
the next environment event occurs (in accordance with Harel and Marelly [9]).
If the system waits for time to pass, environment events may occur again. This
behavior can be ensured by formulating certain restrictions for the controllers of
the environment and system objects, but we omit these restrictions for brevity.

3.3 MSD Specifications

An MSD specification specifies the valid interaction behavior in an object sys-
tem [8]. We consider MSD specifications that not only formulate requirements
on the system, but also formulate assumptions on how the environment behaves.
The requirements and assumptions are two sets of MSDs.

Furthermore, MSDs can be existential or universal. Existential diagrams spec-
ify sequences of events that must be possible to occur in the object system and
universal diagrams specify requirements that must be satisfied by all the se-
quences of events. We consider only universal MSDs in this paper.

Compositional Synthesis of Controllers 779

MSDs, Lifelines, and Messages. An MSD is a sequence diagram where
each lifeline represents an object in the object system. A message in an MSD
represents a message event. Furthermore, a message has a temperature and an
execution kind. The temperature can be either hot or cold; the execution kind
can be either monitored or executed. Figure 2 shows two MSDs ArmATransport-
BlankToPress and PressPlateAfterArmAReleasesBlankPlate from the production
cell specification. They formalize the requirements R1 and R2 and refer to the
object system sketched at the top of Fig. 1. The temperature and execution
kind are indicated by a label (e.g., h,c, e,m). The hot or cold temperature is also
represented by red or blue color of the arrows. Monitored messages also have a
dashed arrow; executed messages have a solid arrow.

Intuitively, a monitored message says that something may happen whereas an
executed message says that something must eventually happen (liveness). A hot
message says that no event expected at another point in the scenario must occur
(safety) before the event represented by that message occurs. A cold message,
by contrast, says that this may happen. We assume that an MSD has only one
first message, which must be cold and monitored.

For example, consider the MSD ArmATransportBlankToPress in Fig. 2: The hot
and executed message pickUp says that after blankArrived occurred, pickUp
must eventually occur and no other event represented by a message in the dia-
gram is allowed to occur. Then, likewise, moveToPress must occur. The hot, but
monitored message arrivedAtPress means that arrivedAtPress may occur,
but as long as it does not occur, no other message event in the diagram must
occur. Then releaseBlank must occur, etc. This interpretation of the message
temperature and execution kind extends the original definition [8] where the
temperature alone reflects both the safety and liveness requirements.

More specifically, the semantics of these messages is as follows: When an
event occurs in the system that is represented by the first message in an MSD,
an active copy of the MSD or active MSD is created. As further events occur
that are represented by the subsequent messages in the diagram, the active MSD
progresses. This progress is captured by the cut, which marks for every lifeline
the locations where the occurred messages are attached to the lifeline. If the cut
reaches the end of an active MSD, the active copy is terminated.

��������	
��

�����������

�	���

���	
���������

������������	
����������

��
��������

������������

��
��������

���	
���������

������������

�����������

������	���	��������������
������	�

�����

��

��
�	���

�������������� ������ ������ ������� ������

�����	���	�	����

���

���

���

���

���

��

���

��

���

���

���
��	�����

��	�����

Fig. 2. The MSDs of the production cell specification for requirements R1 and R2

780 J. Greenyer and E. Kindler

��������	
��

�������������������	�
���

����

�������

���
����
��
����������
��
��������	
������

��

�����

���
�������

����

���� ���

���
����
��
����������
��
�����������������	��

������
!��
��"�#

���� ��$
��

�� ����

������ ����

���
�������

����

��������

���
����
��
����������
��
������
����������

���������	���������	��

������#�� ����

�������$

%����

�����������

������#�������
&%����##�
'

&%����##�
'

��

������

�����������

���
�������

����

��������

���
����
��
����������
��
������
�����������

��������	���������	��

������#�������

�������$

%����

������ ����

������#�� ����
&%����##�
'

&%����##�
'

��

������
(�

(�

(� (�

"(�"(�

"

"

"(�

"

"

"

"

" "

"

Fig. 3. The MSDs of the production cell specification for assumptions A1, A2, and A4

If the cut is in front of a message on its sending and receiving lifeline, the
message is enabled. If a hot message is enabled, the cut is also hot; otherwise the
cut is cold. Similarly, if an executed message is enabled, the cut is also executed;
otherwise the cut is monitored.

A safety violation occurs if, in a hot cut, a message event occurs that is
represented by a message in the MSD that is not currently enabled. If the same
situation occurs in a cold cut, it is called a cold violation. Safety violations must
never happen, while cold violations may occur and result in terminating the
active copy of the MSD. If the cut is executed, this means that the active MSD
must progress and it is a liveness violation if an active MSD never terminates
or progresses to a monitored cut.

There can be multiple active copies of MSDs at a time. Figure 2 shows a
reachable configuration of cuts for (active copies of) the MSDs ArmATransport-
BlankToPress and PressPlateAfterArmAReleasesBlankPlate.

Environment Assumptions, Time, and Forbidden Messages. We model
environment assumptions by MSDs that have an additional label «Environment-
Assumption». Figure 3 shows assumption MSDs from the production cell example.
BlankArrivalDelay models the assumption A1. The MSDs ArmAMoveFromPress-
ToTableTimeAssumptionand ArmAMoveFromTableToPressTimeAssumptionmodel
the assumptions A2, and the MSD PressPlateAssumption models the assumption
A4. The MSDs modeling the assumption A3 are very similar to those modeling as-
sumption A2, and are thus omitted. In these MSDs, we find additional constructs,
namely clock resets, conditions, and forbidden messages.

Time constraints can be modeled in MSDs with resets of real-valued clock
variables and conditions, similar to timed automata. Clock resets and conditions
are boxes resp. hexagons that span one or multiple lifelines. If the cut is imme-
diately before a clock reset or condition on all the lifelines it spans, the clock reset

Compositional Synthesis of Controllers 781

or condition is enabled. If a clock reset is enabled, then immediately, and before
any other message event occurs, the clock variable is reset to zero and the cut
progresses beyond the clock reset.

Conditions have a temperature (hot or cold), represented by a red resp. blue
border color. In our figures, they have an additional label (h/c). We distinguish
timed and untimed conditions. In this paper, untimed conditions have only the
expression true or false. Timed conditions have an attached hour-glass symbol
and can have expressions of the form x �� expr where x is a clock variable, expr
is an integer constant, and �� is an operator <, ≤, >, ≥.

If a condition is enabled, and its expression evaluates to true, the cut pro-
gresses immediately and before any other message event occurs. If the expres-
sion of a cold condition evaluates to false, the active MSD is terminated. If the
expression of a hot condition evaluates to false, the cut cannot progress, but at
the same time it is a liveness violation if the cut never progresses. From this
follows that it is a liveness violation if a hot untimed false condition is enabled.

For hot timed conditions, we distinguish minimal delays (�� ∈ {>, ≥}) and
maximal delays (�� ∈ {<, ≤}). If a minimal delay evaluates to false, the cut
progresses as soon as it becomes true. Meanwhile the cut is hot, i.e., no message
that is not currently enabled in the active MSD is allowed to occur. If a maximal
delay evaluates to false, this is a liveness violation of the MSD.

In the MSD BlankArrivalDelay, for example, a clock reset followed by a minimal
delay is used to formalize the assumption that blanks arrive on the table with a
certain minimal delay: after blankArrived occurred, the clock c is immediately
reset to zero and then the minimal delay will be enabled until FMIN time units
have passed. In this time blankArrived must not occur.

At the end of an MSD, separated by a terminal cold false condition, there
can be hot or cold forbidden messages. If there is an active MSD and a message
event occurs that is represented in the MSD by a cold forbidden message, this is
a cold violation, and the active MSD terminates. If a message event occurs that
is represented by a hot forbidden message, this is a safety violation.

In the MSD ArmAMoveFromTableToPressTimeAssumption a clock reset and
hot time conditions are used to express that after moveToPress, the event
arrivedAtPress must occur within a certain interval. The hot forbidden mes-
sage states that, in this interval, also arrivedAtTable must not occur. The cold
forbidden message moveToTable states that moveToTable is allowed to occur,
but, since this leads to the termination of the active MSD, then it cannot be
assumed that the arm will arrive at the press in the specified interval.

To complete the example, Fig. 4 shows the MSDs for the requirements R3-R7.

Satisfying and Implementing a Specification, and Consistency. Without
giving a more formal definition on the MSD semantics, we denote the (timed)
language accepted by an MSD D as L(D).

Definition 4 (Language accepted by a set of MSDs). For an object system
O and a set of message events Σ, Let M = {D1, . . . , Dn} be a finite set of MSDs.
We define the language accepted by M as L(M) =

⋂n
i=1 L(Di).

782 J. Greenyer and E. Kindler

��������		
�

����������������	���
��	���
��	��
����������	��

�����

���
���
������
	�

������

��

��������		
�

������������	�	��	������	��	�
����	�	���	��!����

�
	
��
�	��
�����

��	�

�
	
��
�	��

��������
��

���
����
��

��������		
�

������������
����������
�	��	�	����	�����"�	

�����

�����
������	

��	�

��������
��

���
���
������
	�

��������		
�

������������
��������	�
�	��	�	����	�����	��

�����

�����
�����
��

��	�

��������
��

�#

�$ �%

������ ������

������������

���
���
������
	�

��������		
�

�����	�	��	����	�
����	��������	��

�
	
��
�	��

�����
����
������
	�

���
����
��
�&

������

���

��

���
���

�

�

� �

���

���

��

��

���

���

��� ���

���

� �

Fig. 4. The MSDs of the production cell specification for requirements R3–R7

A (timed) word satisfies an MSD specification if it is accepted by the require-
ment MSDs or not accepted by the assumption MSDs1.

Definition 5 (Satisfying an MSD specification). For an object system O
and a set of message events Σ, MS = (A, G, OE , OS) is an MSD specification
where A and G are sets of MSDs. A is called the assumptions and G is called
the requirements or guarantees. OE are the environment objects and OS are
the system objects, OE ∪ OS = O, OE ∩ OS = ∅. The language satisfying MS,
denoted with L(MS), is defined as L(MS) = L(A) ∪ L(G). A controller C for
all objects O satisfies an MSD specification MS iff L(C) ⊆ L(MS).

A system controller for all the system objects implements an MSD speci-
fication if the controller that results from the composition with any possible
environment controller satisfies the specification.

Definition 6 (Implementing an MSD specification, consistency). Given
an MSD specification MS = (A, G, OE , OS), a system controller CS for OS

implements MS if, for the closed system formed by the composition with every
possible environment controller CE for OE holds L(CE ||CS) ⊆ L(MS). From
Lemma 1 and our definition of environment controllers, this is equivalent to
L(CS) ⊆ L(MS). An MSD specification is consistent if there exists a system
controller for all the system objects OS that implements the specification.

4 The Assume-Guarantee Synthesis Approach

Given an MSD specification MS, called the global specification in the following,
this section explains how to decompose this specification into two specifications
1 Of course, we expect the environment to satisfy the assumptions, but in environments

that do not, the system is not required to satisfy the requirements.

Compositional Synthesis of Controllers 783

MS1 and MS2, called part specifications, possibly adding MSDs as requirements
to MS1 and assumptions to MS2, so that the consistency of the global specifi-
cation follows from the consistency of the part specifications.

4.1 Decomposing the Global Specification

Assume a given MSD specification MS = (A, G, OE , OS) for the objects O.
Then, we can decompose this specification as follows.
Step 1 (Subdivide the set of system objects). We subdivide the objects
OS into two disjoint sets OS1 and OS2 with OS1 ∪OS2 = OS and OS1 ∩OS2 = ∅
with the respective environment objects OE1 = O \ OS1 and OE2 = O \ OS2.
Step 2 (Create subsets of MSDs for the part specifications). We create two
part specifications MS1 = (A1, G1, OE1, OS1) and MS2 = (A2, G2, OE2, OS2)
such that G1 ∪ G2 = G and each part specification may contain any subset of the
assumption MSDs in the global specification: i.e. A1, A2 ⊆ A.

If we can now successfully synthesize system controllers from the part spec-
ifications, this means that these controllers implement their part specification
regardless of the behavior of their opposite controller. It may be, however, that
one controller must assume additional properties about the other controller,
which, in turn, must guarantee these properties.
Step 3 (Add assume/guarantee properties to the part specifications).
A set of MSDs, called AG+, can be added as additional assumptions to part
specification MS2 and as additional requirements to part specification MS1,
i.e., MS1 = (A1, G1 ∪ AG+, OE1, OS1) and MS2 = (A2 ∪ AG+, G2, OE2, OS2)

Now the implementation of the second part specification makes assumptions
on the implementation of the first. Currently, we allow this only in one direction.
Otherwise, we could always easily construct two part specifications that are
consistent only because both controllers can mutually violate their assumptions,
but then fail to implement the global specification.

4.2 Decomposing System Objects

In many cases, as in our production cell, it is necessary to decompose a system
object into two objects that fulfill distinct functions in the two part specifications.
This requires also to change the MSD specification such that for the two resulting
objects an equivalent behavior is specified as for the initial object.

The goal is to split up the modified specification in such a way that one part of
the specification specifies the behavior of the first object and another part of the
specification specifies the behavior of the second object. In order to successfully
apply the described compositional synthesis technique, the behavior of the first
object must be independent from the behavior of the second, i.e., there may
remain MSDs that specify how the second object must react to events involving
the first object, but not vice versa. An example follows in Sect. 4.3.

Decomposing a system object is done before Step 1; thus, we call it “Step 0”:

784 J. Greenyer and E. Kindler

Step 0 (Decomposing system objects). An object that is a system object in the
global specification can be decomposed into two system objects. This implies the
following changes:

1. The events that the initial object sends and receives have to be separated
into the message events that the resulting objects send and receive.

2. In each MSD of the specification where a lifeline represents the initial object,
this lifeline must be split into two lifelines that represent the two objects
resulting from the decomposition.

3. Also the diagram messages attached to the original lifelines must be attached
to one of the resulting lifelines according to the changed message events. In
MSDs where the effect is that one of the lifelines does not send or receive
any messages, this lifeline can then be removed. Otherwise,

4. the lifelines must be synchronized so that the order of the events as in the orig-
inal MSD is preserved. This can be achieved by introducing conditions with
the expression true that cover both lifelines. These conditions must always be
introduced between two messages where a message attached to one lifeline is
followed by a message attached to the other lifeline. (We assume that the spec-
ified synchronization can always be realized in the final implementation.)

4.3 The Decomposition of the Production Cell Specification

For our production cell example, we first decompose the system object c into
the objects c1 and c2 as already explained in Sect. 2: c1 interacts with the table
sensor and arm A, c2 with the press and arm B. With an according separation
of message events, the MSDs shown previously must be altered as follows:

1. The MSDs representing the requirements R1 and R6 and assumptions A1
and A2 are changed so that the lifeline representing object c is replaced by
one lifeline representing the object c1.

2. The MSDs representing the requirements R3, R4, and R7 as well as the
assumptions A3 and A4 are changed so that the lifeline representing object
c is replaced by one lifeline representing the object c2.

3. The MSDs for the requirements R2 and R5 are replaced as shown in Fig. 5.

The part specifications are created such that c1 is the system object in the
first part specification and c2 is the system object in the second part specifi-
cation. Then the MSDs (as modified in Step 0) are split up so that the first
part specification is made up of the requirements MSDs for R1 and R6 and the
assumption MSDs for A1 and A2. The second part specification is made up of
the MSDs for R2 – R5, R7, and A3 and A4.

Finally, the MSD BlankArrivalAtPressDelay as shown in Fig. 6 is added as
an additional assumption to the second part specification and as an additional
requirement to the first part specification. The MSD specifies that controller c1
must order arm A to release blank plates into the press with a minimal time
delay of RMIN . For certain values for RMIN and the other constants, Sect. 5
documents the results of the controllers synthesized for the global specification
and the part specifications.

Compositional Synthesis of Controllers 785

������������

	
���������

����������������

�����������	�����
������������������

�����
����

��

������ �������	����������� ������

������������

	
���������

��	���

�����

������������
����������

����

��
���������������������	����
�������
��������
�

��

	����������� ������������
	��

���

���

���

	��

	��

	

�

�

�

��	���

Fig. 5. The MSDs for the requirements R2 and R5 after decomposing the controller

��������	
���	���������	

������������

	��������		���

���

�������

������

�

��

Fig. 6. The MSDs representing the additional assume-guarantee property

4.4 Soundness of the Compositional Synthesis Technique

For proving the soundness of the composition, we assume that we have specifi-
cations MS, MS1 and MS2 as defined in Sect. 4.1. And we assume that we have
two system controllers C1 and C2 which implement MS1 and MS2 respectively:

L(C1) ⊆ L(MS1) (1)
L(C2) ⊆ L(MS2) (2)

In order to show L(C1||C2) ⊆ L(MS), we use the following properties, which
can be derived from Def. 4, 5, and 6, and the definition of MS, MS1 and MS2:

L(MS1) = L(A1) ∪ (L(G1) ∩ L(AG+)) (3)

L(MS2) = L(A2) ∪ L(AG+) ∪ L(G2) (4)

L(MS) = L(A1) ∪ L(A2) ∪ (L(G1) ∩ L(G2)) (5)

Combining these properties we obtain
L(C1||C2) = by Lemma 1
L(C1) ∩ L(C2) ⊆ by (1) and (2)
L(MS1) ∩ L(MS2) = by (3) and (4)
(L(A1) ∪ (L(G1) ∩ L(AG+))) ∩

(L(A2) ∪ L(AG+) ∪ L(G2)) = laws of boolean algebra
(L(A1) ∩ L(A2)) ∪ (L(A1) ∩ L(AG+)) ∪

(L(A1) ∩ L(G2)) ∪
(L(G1) ∩ L(AG+) ∩ L(A2)) ∪
(L(G1) ∩ L(AG+) ∩ L(AG+)) ∪
(L(G1) ∩ L(AG+) ∩ L(G2)) ⊆ laws of boolean algebra

L(A1) ∪ L(A2) ∪ (L(G1) ∩ L(G2)) = by (5)
L(MS)

786 J. Greenyer and E. Kindler

4.5 Methodology

Once an engineer has decomposed a specification in such a way that the technical
conditions of Sect. 4.1 are met, the presented approach is fully automatic. The
question remains how an engineer can come up with such a decomposition. This
is a question of methodology, which we can only address briefly here.

We argue that engineers who design a complex system typically have a good
idea of how to split up the system in order to keep on top of its complexity. The
split into components would follow this “mindset”.

Our approach works for systems where we can identify components that build
on each other, so that later components can make assumptions on earlier ones,
avoiding cyclic assumptions. The additional assume-guarantee properties AG+
can be used to restrict the timing or relative order of message events that one
component shares with an other.

5 Realization and Evaluation

In ScenarioTools2 [7], we implemented a synthesis technique for timed MSD
specifications by a mapping from a UML-based MSD specifications in Eclipse
to Timed Game Automata (TGA) that are input for Uppaal Tiga [3,2], an
extension of the Uppaal model checker for solving two-player games.

With this mapping, we formulate a winning condition that checks whether
there is a strategy for the system to always eventually reach a state where all
cuts of requirement MSDs are monitored and no safety violation occurred in any
requirement MSDs, or there is an executed cut in an assumption MSD, or a safety
violation occurred in an assumption MSD. We call this the AGAF condition.
We also check a weaker condition for which strategies can be synthesized more
quickly: here we only check that never safety violations occur in requirement
MSDs or they occur in assumption MSDs. We call this the AG condition. If
the winning condition is satisfied, the tool generates a winning strategy for the
system; if not, a winning strategy for the environment is generated. From the
winning strategy, a controller can be derived.

In our MSD-to-TGA mapping, we can also specify different degrees of freedom
for the system: Either it can always choose to send any system message and also
consider to wait for environment events, or we can restrict it to immediately send
only system messages that correspond to an executed message in a requirement
MSD that is enabled in a current cut. The latter corresponds to the behavior
of the play-out algorithm, an executable semantics for LSCs/MSDs [10,15], and
can drastically simplify the synthesis. If a strategy could be synthesized in the
latter setting, the specification is called consistently executable.

Figure 7 shows the synthesis times and results from checking the consistent
executability of the part specifications and the global specification for the pro-
duction cell example with different values for FMIN , RMIN , etc. RMIN is
irrelevant for the global specification, since it was only added with the MSD
2 http://www.cs.uni-paderborn.de/index.php?id=scenariotools

http://www.cs.uni-paderborn.de/index.php?id=scenariotools

Compositional Synthesis of Controllers 787

� � � � � � � � � ��� ���� ��	� ��� ��� ��

 ��� ���	 ����

� � � � � � � � � �	 ���	 ���	 ��� �������� �������� �	 ��	� ���
�

 � � � � � � � � �	 ���	 ���� ��� �������� �������� �	 ���� �����

� � � � � � � � � �	 ���� ��� ��� �������� �������� �	
��� �
��

� � � � � � � � � �	 ���
 ��
� ��� �������� �������� �	 ���
 	��	�

 � � � � � � � � ��� �������� �������� �	 ���� ���� �	 ���
 �����

� � � � � �
 � ��� �������� �������� �	 ���� ���
 �	
��
 ������

� � � � � �
 � � ��� �������� �������� �	 ���� ��
� �	 ���� ����	�

� �
 � � � � � � ��� ���� ���� �	 ��
 ��	� �� �� ��

�� � � � � � � � � �	 ���
 ��� ��� ��� ��
� �� �� ��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
����
��
 !�
��
	�
�"�
���
�#�
��$
�

(��
)#�

*

+",
��-
	��
��
��.
!��

/�
 	
�0
!

+",
��-
	��
��
��.
!��

/�
��
	�

0!

��
����
��
 !�
���
	�
�"�
���
�#�
��$
�

(��
)#�

*

+",
��-
	��
���

�.!
��/

� 	
�0
!

+",
��-
	��
��
��.
!��

/�
��
	�

0!

/#
)
�#�
��
�
!�
	�
�"�
���
�#�
��$
�

(��
)#�

*�

7"9
�	
�"�

9�:
�#(
��
�-	
���
��
�;

+",
��-
	��
��
��.
!��

/�
 	
�0
!

+",
��-
	��
��
��.
!��

/�
��
	�

0!

������������������������������������
������� ���!�"�����#�����$%&��������'�(
������')�*+,��-����.���/����!0�����
��������
')�*+,������Z0�&[[!���\�

Fig. 7. The synthesis times for the part specifications vs. the global specification of
the production cell with different values for the constants F MIN , RMIN , etc

PressPlateAssumption, see Fig. 6. The table shows that in the case of consistent
constant values the sum of the time needed to synthesize a strategy for the part
specifications (0.68 seconds + 0.44 seconds = 1.12 seconds) is only one fifth
of the time needed for synthesizing a strategy for the global specification (5.17
seconds). For more evaluation results and discussion, see [7, Appendix C].

6 Related Work

Our technique is the first that allows for the decomposition of the synthesis
problem for LSCs/MSDs into two problems that can be solved independently.

Kugler and Segall also proposed a compositional approach for synthesizing
controllers from LSC specifications [13]. With their approach, however, the syn-
thesis problem cannot be split into two separate parts. They first do synthesize
controllers for subsets of LSC in a specification—the resulting controllers, how-
ever, are then input for a subsequent synthesis step. Ultimately, a controller for
the whole specification must be synthesized, which is not the case in our ap-
proach. While their approach may be more flexibly applicable, our approach can
often more drastically reduce the time required by the synthesis.

Maoz and Sa’ar recently proposed a technique for synthesizing controllers from
LSC specifications with environment assumptions [16], but they do not address
the decomposition of the synthesis problem. Their approach also differs from ours
in the way that assumptions are formulated. They propose to model environment
assumptions by specially labeled environment messages in LSCs. We instead
propose to model assumptions by specially labeled MSDs. Only this makes it
possible to model the same property as requirements in one specifications and
assumptions in another, which is the key to our technique.

Chatterjee and Henzinger also present a compositional assume-guarantee syn-
thesis approach from specifications in temporal logic [4]. They, however, regard
a different problem: translated into our terminology, they regard the problem of
synthesizing controllers for two system objects that interact with an environment

788 J. Greenyer and E. Kindler

and have local, possibly interdependent specifications. The goal is to synthesize
two controllers that fulfill each system object’s local specification without violat-
ing the specification of the other system object. This process, called co-synthesis,
does not aim at being more efficient than synthesizing a global controller—in
general the problem is even more complex. They, however, sketch an abstraction
approach to make the co-synthesis more efficient.

Nejati et al. present a compositional approach for synthesizing sequential com-
positions of features. Features are units of functionality that are modeled with
state machines, to fulfill certain requirements [17]. They, however, are only con-
sidering to find a viable composition of features and do not consider the synthesis
of state machines themselves.

Krüger proposes a mapping from (High-Level) Message Sequence Charts to
assume-guarantee specifications of components [12]. The scenario language re-
garded by Krüger, however, does not allow for flexible overlappings of scenarios
as it is allowed for LSCs or MSDs. So the resulting synthesis problem is more
simple than the MSD/LSC synthesis problem that we consider.

7 Conclusion and Outlook

We presented a novel compositional synthesis technique for scenario-based spec-
ifications, which makes use of the assume-guarantee paradigm. The technique
allows engineers to decompose the problem of synthesizing a controller for an
MSD specification into two synthesis problems that can be solved independently
from each other. This can significantly reduce the overall computation time for
synthesizing the controllers. We provided a soundness proof and some evaluation
results that document the benefit of our technique.

A limitation of our technique is that we currently allow only for one controller
to make assumptions about the other. The reasons for this lies in the nature of
liveness properties: a violation of a liveness property cannot be pinpointed to
a specific point of the run at which it is violated. Therefore, if both controllers
violate some assumptions which are liveness properties, it is not clear which one
violated its assumption first. If there were cyclic assumptions and guarantees
concerning liveness properties, each controller could blame the violation on the
other. Therefore, no component would need to guarantee anything.

There are different ways of dealing with this problem. One idea is applying
a concept for composing controllers proposed in [11]. This concept relies on
explicit dependency graphs between the involved assume-guarantee properties of
a components, which need to stay acyclic when combining components. Another
idea would be to apply the compositional synthesis technique of Chatterjee and
Henzinger [4] (see also Sect. 6), if by using the described abstraction techniques
the co-synthesis problem can be sufficiently simplified.

References
1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-

ence 126(2), 183–235 (1994)

Compositional Synthesis of Controllers 789

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

3. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

4. Chatterjee, K., Henzinger, T.A.: Assume-Guarantee Synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007)

5. Clarke Jr. E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press
(1999)

6. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts.
In: Formal Methods in System Design, vol. 19, pp. 45–80. Kluwer Academic Pub-
lishers (2001)

7. Greenyer, J.: Scenario-based Design of Mechatronic Systems. Ph.D. thesis, Univer-
sity of Paderborn (October 2011)

8. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling (SoSyM) 7(2), 237–252 (2008)

9. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (August 2003)

10. Harel, D., Marelly, R.: Playing with time: On the specification and execution of
time-enriched LSCs. In: Proc. 10th Int. Symp. on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems, pp. 193–202 (2002)

11. Kindler, E.: Modularer Entwurf verteilter Systeme mit Petrinetzen, Edition Ver-
sal, vol. 1. Bertz Verlag, dissertation, Technische Universität München (December
1995)

12. Krüger, I.: Distributed System Design with Message Sequence Charts. Ph.D. thesis,
Technische Universität München, Institut für Informatik (2000)

13. Kugler, H., Segall, I.: Compositional synthesis of reactive systems from live se-
quence chart specifications. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 77–91. Springer, Heidelberg (2009)

14. Lewerentz, C., Lindner, T.: KORSO: Methods, Languages, and Tools for the Con-
struction of Correct Software. In: Jähnichen, S., Broy, M. (eds.) KORSO 1995.
LNCS, vol. 1009, pp. 388–416. Springer, Heidelberg (1995)

15. Maoz, S., Harel, D.: From multi-modal scenarios to code: Compiling LSCs into
AspectJ. In: Proc. Int. 14th Symp. on Foundations of Software Engineering (FSE
2005), pp. 219–230. ACM (2006)

16. Maoz, S., Sa’ar, Y.: Assume-guarantee scenarios: Semantics and synthesis. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 335–351. Springer, Heidelberg (2012)

17. Nejati, S., Sabetzadeh, M., Chechik, M., Uchitel, S., Zave, P.: Towards composi-
tional synthesis of evolving systems. In: Harrold, M.J., Murphy, G.C. (eds.) Proc.
16th Int. Symp. on Foundations of Software Engineering, pp. 285–296. ACM (2008)

18. Stark, E.W.: A proof technique for rely/guarantee properties. In: Maheshwari, S.N.
(ed.) FSTTCS 1985. LNCS, vol. 206, pp. 369–391. Springer, Heidelberg (1985)

Author Index

Abbas, Syed 589
Abrahão, Silvia 388, 740
Acher, Mathieu 352
Alam, Omar 604
Alexandrova, Assia 589
Ali, Shaukat 237, 370
Al-Refai, Mohammed 271
Arendt, Thorsten 254
Arkın, Ethem 757
Azanza, Maider 121

Balaban, Mira 454
Barais, Olivier 352
Barrett, Stephen 555
Batory, Don 121
Baudry, Benoit 187
Bauer, Bernhard 707
Burden, H̊akan 1
Burgueño, Loli 203
Büttner, Fabian 690

Cabot, Jordi 52
Cadavid, Juan 187
Cazzola, Walter 271
Chavez, Hector M. 220
Chechik, Marsha 673
Chen, Xing 572
Choura, Hassene 656
Clarke, Aidan 555
Clarke, Siobhán 555
Collet, Philippe 352
Combemale, Benoit 187, 352
Cordy, James R. 690
Crégut, Xavier 336
Cuppens, Frédéric 52
Cuppens-Boulahia, Nora 52

de la Vara, Jose Luis 69
Demuth, Andreas 287
Dingel, Juergen 304, 690
Duprat, Stéphane 320

Egyed, Alexander 287
Elaasar, Maged 154
Eschbach, Robert 87

Famelis, Michalis 673
Fan, Zhiqiang 370
Farias, Kleinner 639
Faunes, Martin 187
Fernandes Pires, Anthony 320
Fernandez, Adrian 740
Fish, Andrew 104
Fondement, Frédéric 138
Forestier, Germain 138
France, Robert B. 220, 271, 352, 724
Francis, Mārtiņš 35

Garcia, Alessandro 639
Garcia-Alfaro, Joaquin 52
Gemmar, Matthias 87
Gérard, Sébastien 505
Giese, Holger 436
Gogolla, Martin 488
González-Huerta, Javier 388
Gotlieb, Arnaud 237
Greenyer, Joel 774

Hamann, Lars 488
Haugen, Øystein 405
Hebig, Regina 436
Heldal, Rogardt 1
Hilpold, Thomas 589
Holling, Dominik 87
Horváth, Ákos 538
Huang, Gang 572
Hutchinson, John 1

İmre, Kayhan M. 757
Insfrán, Emilio 388, 740
Iordanov, Borislav 589

Kienzle, Jörg 604
Kindler, Ekkart 774
Kolovos, Dimitrios S. 35
Kulkarni, Vinay 622
Kuschke, Tobias 170

Lahire, Philippe 352
Lamo, Yngve 254
Latimer, Eric 121
Levendovszky, Tihamer 471

792 Author Index

Liaaen, Marius 237
Lin, Qiang 572
Lindecker, David 471
Lopez-Herrejon, Roberto E. 287
Lucena, Carlos 639

Mäder, Patrick 170
Mantz, Florian 254
Maraee, Azzam 454
Mart́ınez, Salvador 52, 656
Matera, Maristella 740
Matragkas, Nicholas 35
Mechling, Benjamin A. 220
Muller, Pierre-Alain 138
Mussbacher, Gunter 604

Neal, Adam 154
Neema, Sandeep 471
Nie, Kunming 370
Noyrit, Florian 505

Paige, Richard F. 35
Panesar-Walawege, Rajwinder Kaur 69
Pantel, Marc 336
Polacsek, Thomas 320
Pretschner, Alexander 87

Rajbhoj, Asha 422
Ray, Indrakshi 724
Reddy, Sreedhar 422
Rempel, Patrick 170
Rossini, Nicole Alicia 271
Rouncefield, Mark 1
Roychoudhury, Suman 622

Saad, Christian 707
Sahraoui, Houari 187
Salay, Rick 673
Sandro, Alessio Di 673
Schneider, Martin 405
Seibel, Andreas 436

Selim, Gehan M.K. 690
Semeráth, Oszkár 538
Shen, Wuwei 220
Simko, Gabor 471
Song, Hui 555
Stallmann, Florian 436
Steimann, Friedrich 18
Störrle, Harald 104
Sun, Wuliang 724
Sunkle, Sagar 622
Sztipanovits, Janos 471

Taentzer, Gabriele 254
Tekinerdogan, Bedir 757
Terrier, François 505
Thiry, Laurent 138
Tisi, Massimo 656

Ulke, Bastian 18
Upadrasta, Phani 589

Varró, Dániel 538

Wang, Shige 690
Wang, Shuai 237
Wendland, Marc-Florian 405
Whittle, Jon 1, 639
Wiels, Virginie 320
Wimmer, Manuel 203
Wittmann, Brice 138
Wouters, Laurent 522
Wu, Yihan 572

Yao, Wei 572
Yue, Tao 370

Zalila, Faiez 336
Zhang, Li 370
Zhang, Xiaodong 572
Zhang, Ying 572
Zurowska, Karolina 304

	Preface
	Organization
	The Magic of Software
	Model-Based Development of Software:
	A Panacea or Academic Poppycock
	Creativity vs Rigor:
	Informal Modeling is OK
	Table of Contents
	Tool Support 1
	Industrial Adoption of Model-Driven Engineering: Are the Tools Really the Problem?
	1 Introduction
	2 Context and Related Work
	3 Study Method
	4 A Taxonomy of MDE Tool Considerations
	4.1 Technical Factors
	4.2 Internal Organizational Factors
	4.3 External Organizational Factors
	4.4 Social Factors

	5 A Study of MDE Practice in Two Companies
	5.1 Technical Factors
	5.2 External Organizational Factors
	5.3 Internal Organizational Factors
	5.4 Social Factors
	5.5 Taxonomy Validation

	6 Discussion and Conclusions
	References

	Generic Model Assist
	1 Introduction
	2 Motivation
	2.1 Model Completion
	2.2 Controlled Model Change
	2.3 Model Fixing
	2.4 Combining Completions and Fixes with Controlled Changes

	3 A Declarative Approach to Model Assist
	3.1 Deriving Model Completions from Well-Formedness Rules
	3.2 Model Completion as Constraint Solving
	3.3 Specifying Model Assists: Intended and Allowed Changes
	3.4 Generating the Constraints

	4 Implementation
	5 Evaluation
	5.1 Checking Well-Formedness
	5.2 Fixing Ill-Formed Models
	5.3 Completing Incomplete Models
	5.4 Well-Formedness Preserving Change of Models
	5.5 Discussion

	6 Related Work
	7 Conclusion
	References

	Adding Spreadsheets to the MDE Toolkit
	1 Introduction
	2 Background and Motivation
	3 Querying and Modifying Spreadsheets Using OCL-Based Languages
	3.1 Querying Spreadsheets
	3.2 Modifying Spreadsheets
	3.3 Efficient Querying

	4 Prototype
	4.1 Epsilon
	4.2 The EMC Google Spreadsheet Driver

	5 Case Study
	5.1 Hybrid SUV Example
	5.2 Managing Requirements Spreadsheets with Epsilon

	6 Related Work
	7 Conclusions and Further Work
	References

	Dependability
	Model-Driven Extraction and Analysis of Network Security Policies
	1 Introduction
	2 Motivation
	2.1 Example Evaluation

	3 Approach
	3.1 Injection
	3.2 Platform-Specific to Platform-Independent Model
	3.3 Aggregation of Individual PIMs

	4 Application Scenarios
	5 Implementation
	6 Related Work
	7 Conclusions and Future Work
	References

	SafetyMet: A Metamodel for Safety Standards
	1 Introduction
	2 Background
	2.1 OPENCOSS
	2.2 Related Work

	3 Metamodel for Safety Standards
	3.1 Scope and Purpose
	3.2 SafetyMet
	3.3 Preliminary Validation

	4 Discussion
	4.1 Application and Be enefits of SafetyMet
	4.2 Limitations of SafetyMet and Its Application
	4.3 Open Issues

	5 Conclusion
	References

	A Generic Fault Model for Quality Assurance
	1 Introduction
	2 Related Work
	3 A Generic Fault Model
	3.1 Preliminaries
	3.2 Fault Models
	3.3 Effective Fault Models

	4 Instantiation
	4.1 Stuck-At
	4.2 Division by Zero
	4.3 Mutation Testing
	4.4 Finite State Machine Testing
	4.5 Object-Oriented Testing
	4.6 Aspect-Oriented Testing
	4.7 Performance Testing
	4.8 Concurrency Testing
	4.9 Security Testing
	4.10 Limit Testing
	4.11 Combinatorial Testing

	5 Conclusion
	References

	Comprehensibility
	Towards an Operationalization of the “Physics of Notations” for the Analysis of Visual Languages
	1 Introduction
	2 UML Use Case Diagrams (UCDs)
	3 Physics of Notations
	3.1 A: Semiotic Clarity
	3.2 B: Perceptual Discriminability

	4 Semiotic Clarity of UCDs
	5 Perceptual Discriminability of UCDs
	6 Discussion
	7 Conclusion
	References

	Teaching Model Driven Engineering from a Relational Database Perspective
	1 Introduction
	2 MDEModelsand
	2 MDE Models and MetaModels
	3 Model Constraints
	4 Model-to-Model Transformations
	5 Model-to-Text Transformations
	6 Text-to-Model Transformations
	7 MDELite and Its Applications
	8 Evaluation: A Case Study of MDELite
	9 Towards Bootstrapping
	10 Personal Experiences, Insights, and a Small Second Case Study
	11 RelatedWork
	12 Conclusions
	References

	Big Metamodels Are Evil
	1 Introduction and Motivation
	2 Extending Metamodels
	3 Unmerging Metamodels
	4 Unmerge Algorithm
	5 Example
	6 Implementation
	7 Related Works
	8 Conclusion
	References

	Tool Support 2
	Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study
	1 Introduction
	2 Overview of Open Services for Lifecycle Collaboration
	2.1 Service Provider
	2.2 Resource
	2.3 Resource Shape
	2.4 Data Integration Protocols
	2.5 User Interface Integration Protocols

	3 Case Study: Publishing MOF-Based Models as OSLC Resources
	3.1 Running Example
	3.2 Converting XMI Models to RDF Resources
	3.3 Providing the RDF Resources as OSLC Resources
	3.4 Providing Other OSLC Resources and Services
	3.5 Enabling Key Development Workflows with OSLC

	4 Discussion
	5 Related Works
	6 Conclusion and Future Work
	References

	Recommending Auto-completions for Software Modeling Activities
	1 Introduction
	2 Related Work
	3 Modeling Activities and Illustrating Example
	4 Approach
	4.1 Step 1: Recognizing Partly Performed Modeling Activities
	4.2 Step 2: Filtering Invalid Activity Candidates
	4.3 Step 3: Ranking Activity Candidates by Relevance
	4.4 Step 4: Presenting Recommendations

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experiment 1: Modeling Variance Toleration
	5.3 Experiment 2: Performance
	5.4 Experiment 3: Quality of Recommendations

	6 Discussion
	7 Conclusions and Future Work
	References

	Automatically Searching for Metamodel Well-Formedness Rulesin Examples and Counter-Examples
	1 Introduction
	2 Problem Definition
	2.1 Definitions
	2.2 Illustration of Precise Metamodeling
	2.3 Problem Definition

	3 Approach Description
	3.1 Approach Overview
	3.2 Genetic Programming
	3.3 Using GP to Derive Well-Formedness Rules

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Setting
	4.3 Results
	4.4 Threats to Validity and Performence Issues

	5 RelatedWork
	6 Conclusions
	References

	Testing
	Testing M2T/T2M Transformations
	1 Introduction
	2 Tracts for Testing Model-to-Model Transformations
	3 A Generic Metamodel for Text
	4 M2T/T2M Transformation Testing By-Example
	4.1 M2T Example: UML to Java
	4.2 T2M Example: USE to UML
	4.3 Tool Support

	5 Evaluation
	5.1 Selected Tracts and Test Models
	5.2 Selected Tools
	5.3 Evaluation Procedure
	5.4 Results

	6 Related Work
	7 Conclusions and Future Work
	References

	An Approach to Testing Java Implementation against Its UML Class Model
	1 Introduction
	2 Background
	3 An Illustrative Example
	4 CCUJ Algorithm
	4.1 Initialization of CCUJ
	4.2 Execution of Methods
	4.3 Evaluation of Results and Input Generation

	5 Experiments
	5.1 Effectiveness
	5.2 Efficiency

	6 Related Work and Conclusions
	References

	Automated Test Case Selection Using Feature Model: An Industrial Case Study
	1 Introduction
	2 Background
	2.1 Feature Model (FM)
	2.2 Component Family Model (CFM)

	3 Running Example
	4 Methodology
	4.1 Feature Model for Testing (FM_T)
	4.2 Component y Family Model for Testing (CFM_T)
	4.3 Process to Select Test Cases for a Product

	5 Automation
	6 Evaluation
	6.1 Industrial Case Stu udy
	6.2 Questionnaire-Based Study

	7 Related Work
	8 Conclusion and Future Work
	References

	Semantics Evolution 1
	Customizable Model Migration Schemes for Meta-model Evolutions with Multiplicity Changes
	1 Introduction
	2 An Example Evolution Scenario
	3 Co-evolutions with Multiplicity Changes
	3.1 Finitely Satisfiable Meta-model with Multiplicities
	3.2 Model Migration Process
	3.3 Increase Lower Bound of Multiplicity
	3.4 Decrease upper Bound of Multiplicity
	3.5 Add Obligatory Association
	3.6 Further Multiplicity-Related Meta-model Evolutions
	3.7 Post-processing

	4 Related Work
	5 Conclusion and Further Work
	References

	Fine-Grained Software Evolution Using UML Activity and Class Models
	1 Motivation
	2 Architecture and Overview
	3 Operators for Model Adaptation
	3.1 Class Model Operators
	3.2 Activity Model Operators

	4 From Model to Code Changes
	5 Demonstration Case Study
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Supporting the Co-evolution of Metamodels and Constraints through Incremental Constraint Management
	1 Introduction
	2 Example and Motivation
	2.1 Incremental Consistency Checking
	2.2 Co-evolution Examples

	3 Constraint Templates and Template Engine
	3.1 Template Definition
	3.2 Template Instantiation
	3.3 Change Management

	4 Evaluation and Analysis
	4.1 Prototype Implementation
	4.2 Case Study: UML
	4.3 Applicability

	5 Related Work
	6 Conclusions and Future Work
	References

	Verification
	Model Checking of UML-RT Models Using Lazy Composition
	1 Introduction
	2 UML-RT Models and Their Symbolic Execution
	2.1 Overview of the UML-RT Language
	2.2 Symbolic Execution of UML-RT Models

	3 Logic to Query UML-RT Models
	4 Algorithm to Check Formulas
	4.1 Exploration Step
	4.2 Labeling Step
	4.3 Correctness of the Algorithm

	5 Implementation and Illustration
	5.1 PBX Model Case Study
	5.2 Scalability

	6 Related Work
	7 Conclusions
	References

	Behavioural Verification in Embedded Software, from Model to Source Code
	1 Introduction
	2 State Machine Modelling in Embedded Software Context
	2.1 Modelling Language
	2.2 Semantics

	3 Formal Verification from Model to Code
	3.1 Our Method
	3.2 State Machine Implementation Pattern
	3.3 Behavioural Properties as Function Contract

	4 OurTool
	5 Related Work
	6 Conclusion
	References

	Formal Verification Integration Approach for DSML
	1 Introduction
	2 DSML End-User Requirements
	2.1 DSML End-User Models
	2.2 DSML End-User Verifications
	2.3 Verification Feedback

	3 MDEforV&VCASETools
	3.1 The Executable DSML pattern
	3.2 Formalizing Behavioral Properties

	4 Verification Methodology
	4.1 Fiacre Formal Language
	4.2 Translational Semantics xSPEM2Fiacre
	4.3 Translating TOCL Properties
	4.4 Guidelines for Validating the Translation Semantics
	4.5 Formal Verification

	5 Feedback Verification Results
	5.1 DSML-Fiacre Traceability Links
	5.2 Feedback Verification Results at DSML Level

	6 Related Work
	7 Conclusion
	References

	Product Lines
	Composing Your Compositionsof Variability Models
	1 Introduction
	2 Background
	3 Meanings of Composition-Based Operators
	3.1 Different Strategies for Matching and Merging
	3.2 Different Semantic Properties

	4 Variations in the Compositions of Feature Models
	4.1 Denotational-Based Composition (Logic-Based)
	4.2 Operational-Based Composition (Reference-Based)
	4.3 Hybrid
	4.4 Tooling Support

	5 A Framework for Composing your Compositions
	5.1 Comparison Framework and Reading Grid
	5.2 Instantiating the Framework

	6 Conclusion and Perspectives
	References

	Constraints: The Core of Supporting Automated Product Configuration of Cyber-Physical Systems*
	1 Introduction
	2 Background
	2.1 Key PLE Terminologies
	2.2 Industrial Applications

	3 Constraints Classification Framework
	3.1 Main Functionalities of Automated Configuration Solutions
	3.2 Classification of Constraints

	4 Industrial Case Studies
	4.1 Subsea Production System (SPS)
	4.2 Video Conferencing System (VCS)
	4.3 Vessel Prognostics and Health Management System (VPHMS)
	4.4 Summary of Constraint Instances Collected

	5 Related Work
	6 Conclusion
	References

	Defining and Validating a Multimodel Approach for Product Architecture Derivation and Improvement
	1 Introduction
	2 Related Work
	3 QuaDAI: Architecture Derivation and Improvement
	3.1 A Multimodel for Specifying SPLs
	3.2 QuaDAI Process

	4 Validation
	4.1 Experiment Planning
	4.2 Experiment Operation and Execution
	4.3 Data Analysis
	4.4 Threats to the Validity

	5 Conclusions and Future Work
	References

	Evolution 2
	Evolution of the UML Interactions Metamodel
	1 Introduction
	2 Related Work
	3 Relevant Parts of the UML Interactions Metamodel
	4 Improving Messages and CombinedFragments
	4.1 Precise and Robust Specification of Message Arguments
	4.2 Using References as Message Arguments
	4.3 Assigning Values of a Message to Assignment Targets
	4.4 Improving Loop CombinedFragments

	5 Lessons Learned
	5.1 Avoid Implicitly Related Elements
	5.2 Enumeration vs. Metaclass

	6 Conclusion and Outlook
	References

	A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection in a General-Purpose Model Versioning System
	1 Introduction
	2 Modeling Framework
	3 Versioning Model
	4 Delta Model
	4.1 Delta Optimizations

	5 Diff-Merge
	5.1 Pattern Model
	5.2 Diff Algorithm
	5.3 Merge Operation

	6 Related Work
	7 Discussion and Results
	References

	On the Complex Nature of MDE Evolution
	1 Introduction
	2 Possible Change Types
	3 Existence and Relevance of Structural Evolution
	3.1 Data Collection and Analysis
	3.2 Threats to Validity
	3.3 Data
	3.4 Summary on Hypotheses

	4 Case Studies on Structural Evolution Steps
	4.1 Data Collection and Analysis
	4.2 Threats to Validity
	4.3 Case Studies
	4.4 Business Object Modeling in SAP Business By Design
	4.5 Observations

	5 Literature on Support for Evolution
	6 Conclusion and Implications
	References

	Semantics
	Simplification and Correctness of UML Class Diagrams – Focusing on Multiplicity and Aggregation/Composition Constraints
	1 Introduction
	2 Background
	2.1 Abstract Syntax and Semantics of Class Diagrams
	2.2 Semantic Problems in Class Diagrams

	3 Identification of Redundancy Problems Caused by Non Tight Multiplicity Constraints
	3.1 Heuristics for the Multiplicity Tightening Algorithm

	4 Correctness of Aggregation/Composition Constraints
	4.1 Identification Methods

	5 Related Work
	6 Conclusion and Future Work
	References

	Specification of Cyber-Physical Components with Formal Semantics–Integration and Composition
	1 Introduction
	2 Related Work
	3 Background
	3.1 Cyber-Physical Systems
	3.2 Structural and Behavioral Semantics
	3.3 FORMULA Notation

	4 A Cyber-Physical Modeling Language
	5 Formalization of Semantics
	5.1 Structural Semantics
	5.2 Denotational Semantics

	6 Formalization of Language Integration
	7 Semantic Backplane
	8 Conclusion
	References

	Endogenous Metamodeling Semantics for Structural UML 2 Concepts
	1 Introduction
	2 Metamodeling Semantics
	3 OCL-Based Instance and Value Semantics
	3.1 Subsetting and Derived Unions
	3.2 Derived Properties

	4 Tool Based Validation
	5 Related Work
	6 Conclusion and Future Work
	References

	Domain-Specific Modeling Languages
	Computer Assisted Integration of Domain-Specific Modeling Languages Using Text Analysis Techniques
	1 Introduction
	2 Challenges to Integrate DSML
	2.1 Complexity of the Integration Cases: There Are Many Pairs to Evaluate
	2.2 Domain Models Don’t Contain Much Information
	2.3 UML Particularities

	3 Related Work
	4 The SemAnalysis Approach
	4.1 From Domain Model to UML
	4.2 Find Semantic Similarities between DSMLs

	5 Evaluation
	5.1 Test Set
	5.2 Evaluation Procedure
	5.3 Analysis and Interpretation of the Results
	5.4 Analysis of Two Success Factors

	6 Summary and Future Work
	References

	Towards the Notation-Driven Development of DSMLs
	1 Introduction
	2 State of the Art
	2.1 Grammar-Based Approaches
	2.2 Metamodel-Based Approaches
	2.3 Conclusion

	3 Generating Abstract Syntaxes from Visual Languages
	3.1 Concrete Visual Syntax Specification Language
	3.2 Abstract Syntax Generation
	3.3 Limitations
	3.4 Conclusion

	4 Validation
	4.1 Industrial Use Case
	4.2 Empirical Study

	5 Discussion
	6 Conclusion
	References

	Validation of Derived Features and Well-Formedness Constraints in DSLs
	1 Introduction
	2 Preliminaries: Domain Modeling
	2.1 Metamodel of the Case Study
	2.2 Derived Features
	2.3 Well-Formedness Constraints

	3 Overview of the Approach
	4 Mapping DSLs to FOL Formulae
	4.1 Mapping of the Ecore Model
	4.2 Mapping of the Graph Queries
	4.3 Search Parameters

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Models@RT
	Self-adaptation with End-User Preferences: Using Run-Time Models and Constraint Solving
	1 Introduction
	2 Approach Overview
	2.1 Background and Terminology
	2.2 Motivating Example
	2.3 The Adaptation Approach with User Preference

	3 Transforming a Run-Time Model to CSP
	4 Adaptation Planning Based on CSP
	5 End User Preference Recording
	6 Evaluation
	6.1 Effectiveness
	6.2 Scalability
	6.3 Threats and Discussion

	7 Related Work
	8 Conclusion and Future Work
	References

	Runtime Model Based Management of Diverse Cloud Resources
	1 Introduction
	2 A Brief Overview of the Approach
	3 The Construction of Cloud Resource Runtime Models
	4 The Construction of the Composite Runtime Model
	5 Model Transformation from the Composite Model to the Customized Model
	6 Case Study
	6.1 Runtime Model Construction of Cloud Resources
	6.2 The Composite Runtime Model of Diverse Cloud Resources
	6.3 Transformation from the Composite Model to the Customized Model
	6.4 Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

	The Semantic Web as a Software Modeling Tool:An Application to Citizen Relationship Management
	1 Introduction
	1.1 Motivation
	1.2 The OWL MDD Landscape
	1.3 Structure of the Paper

	2 TheProblem
	2.1 Domain
	2.2 General Requirements

	3 Platform Architecture
	3.1 Overview
	3.2 Meta Services
	3.3 Operation Services
	3.4 Client-Side Components

	4 Modeling with OWL
	4.1 Why OWL?
	4.2 Upper Ontologies
	4.3 Domain Model
	4.4 Software Model
	4.5 Problems with OWL

	5 Model Change Management and Operational Data – Two Implementation Highlights
	5.1 Model Change Management
	5.2 Operational Data as Ontologies

	6 Conclusion
	References

	Design and Architecture
	Concern-Oriented Software Design
	1 Introduction
	2 Motivation
	2.1 Units of Reuse
	2.2 Interfaces
	2.3 The Need for a Broader Unit of Reuse

	3 Reusable Software Design Concerns
	3.1 Specifying a Variation Interface
	3.2 Integrating Concern-Oriented Reuse with RAM
	3.3 RAM Design of the Association Concern
	3.4 Concern Reuse Process

	4 Concerns Dependencies
	4.1 Observer Concern Design Using RAM

	5 Relation to Related Research
	6 Conclusion and Outlook
	References

	Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology
	1 Introduction
	2 Motivation and Outline
	3 EA Ontology
	3.1 Enterprise Metamodel
	3.2 Case Study and Instantiated EA Ontology

	4 Using Ontology for EA Analysis
	4.1 Change Impact Analysis for EA
	4.2 Landscape Mapping Analysis for EA

	5 Discussion and Related Work
	6 Conclusion
	References

	Analyzing the Effort of Composing Design Models of Large-Scale Software in Industrial Case Studies
	1 Introduction
	2 Background
	2.1 Model Composition Tasks and Effort
	2.2 Composition Conflict and Inconsistency

	3 Study Methodology
	3.1 Objective and Research Questions
	3.2 Context and Case Studies
	3.3 Subjects
	3.4 Study Design

	4 Study Results
	4.1 RQ1: Composition Effort Analysis
	4.2 RQ2: Influential Factors on Composition Effort

	5 Related Work
	6 Concluding Remarks and Future Work
	References

	Model Transformation
	Parallel Execution of ATL Transformation Rules
	1 Introduction
	2 The ATL Language
	3 ATL Parallelization
	3.1 Decomposition
	3.2 Task Synchronization

	4 The Parallel ATL Engine
	4.1 Virtual Machine
	4.2 Compiler

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Transformation of Models Containing Uncertainty
	1 Introduction
	2 Motivating Example
	3 Background
	4 Lifting Transformations
	4.1 Lifting Example
	4.2 General Case
	4.3 Analysis

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Automated Verification of Model Transformations in the Automotive Industry
	1 Introduction
	2 Background: Model Transformation in the Automotive Industry
	2.1 Overview of the Model Transformation Problem
	2.2 The GM Metamodel
	2.3 The AUTOSAR Metamodel

	3 Verification Methodology
	4 Case Study: Evaluating Transformations in the Automotive Industry Using Automated Verification
	4.1 Reimplementation of the GM-to-AUTOSAR Model Transformation
	4.2 Formulation of OCL Pre- and Postconditions

	5 Results
	5.1 Verifying the Formulated OCL Constraints
	5.2 Performance of the Verification Approach

	6 Discussion
	6.1 Strengths of the Verification Approach
	6.2 Limitations of the Verification Approach

	7 Related Work
	8 Conclusion and Future Work
	References

	Model Analysis
	Data-Flow Based Model Analysis and Its Applications
	1 Introduction and Motivation
	2 Background
	3 Data-Flow Based Model Analysis
	3.1 Applying Data-Flow Analysis to Models
	3.2 Analysis Specification and Instantiation
	3.3 Dynamic, Demand-Driven Fixed-Point Analysis

	4 Evaluation
	5 Applications
	6 Related Work
	7 Conclusions and Outlook
	References

	Contract-Aware Slicing of UML Class Models
	1 Introduction
	2 Background
	3 The Slicing Approach
	3.1 Constructing a Dependency Graph
	3.2 Slicing a Class Model

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion
	References

	Usability Inspection in Model-Driven Web Development: Empirical Validation in WebML
	1 Introduction
	2 Related Work
	3 Web Usability Evaluation Process
	4 Instantiation in WebML
	4.1 Overview of WebML
	4.2 Operationalizing M Measures for WebML
	4.3 Applying WUEP into Practice with WebML

	5 Empirical Validation
	5.1 Overview of the Original Experiment (EXP)
	5.2 The Experiment Replication (REP)

	6 Analysis of Results
	6.1 Quantitative and Qualitative Results
	6.2 Threats to the Validity

	7 Discussion and Outlook
	References

	System Synthesis
	Model-Driven Approach for Supporting the Mapping of Parallel Algorithms to Parallel Computing Platforms
	1 Introduction
	2 Problem Statement
	3 Approach
	3.1 Metamodel
	3.2 Define Primitive Tiles
	3.3 Define Communication Patterns
	3.4 Define Operations
	3.5 Analyze Algorithm
	3.6 Select Logical Configuration Size
	3.7 Generate Alternative Models
	3.8 Select Feasible Model
	3.9 Model Transformations

	4 Tool
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Compositional Synthesis of Controllersfrom Scenario-Based Assume-Guarantee Specifications
	1 Introduction
	2 Example
	3 Foundations
	3.1 Object Systems, Message Events, Runs
	3.2 Controllers and Parallel Composition
	3.3 MSD Specifications

	4 The Assume-Guarantee Synthesis Approach
	4.1 Decomposing the Global Specification
	4.2 Decomposing System Objects
	4.3 The Decomposition of the Production Cell Specification
	4.4 Soundness of the Compositional Synthesis Technique
	4.5 Methodology

	5 Realization and Evaluation
	6 Related Work
	7 Conclusion and Outlook
	References

	Author Index

