
Chapter 5
Collisionless Plasmas

5.1 Introduction: From Individual Particles to Fluids

In the previous chapters we have studied the dynamics of trapped particles in given
magnetic and electric fields of sources that are external to the particle population
of interest (such as the geomagnetic field, boundary and cross-tail currents, solar-
wind-imposed electric field, etc.). On occasion we examined the electric currents
and charge density generated by the particles as the result of their motion in the
given fields, but neglected any retro-effects on such fields and resulting feedback on
the collective behavior of the particles that caused such effects in the first place.

The population of radiation belt particles represents a very small proportion of
total kinetic energy and mass in the terrestrial magnetosphere. The magnetosphere
itself is shaped by currents carried by a much denser, quasi-neutral and mostly
collisionless ensemble of lower energy ions and electrons confined by the magnetic
field—the magnetospheric plasma—representing the bulk of kinetic energy flow
and mass1 in the terrestrial outer environment. In the remaining sections of this
book we shall study the dynamics of these multi-species particle ensembles as a
natural extension of our preceding discussion of the adiabatic theory of individual
particle motion. This approach (sometimes called orbit-theory approach) will allow
us to gain a better physical understanding of the sometimes intricate structure and
behavior of a plasma as represented by local macroscopic temporal and/or spatial
averages of particle properties—the macroscopic fluid variables for which our
instruments provide the data and which we invoke whenever we picture mentally,
describe mathematically or model numerically a collisionless plasma. Our ultimate
aim is to analyze and help understand a plasma and its electromagnetic fields as
one whole—a self-organizing entity with distinct but thoroughly interacting regions
which in general cannot be studied and understood in isolation from each other.

1This sounds a bit pompous. The maximum total energy flow in the astronomically-sized
magnetosphere can be estimated at barely �20,000 MW, its total plasma mass a mere 20 t.
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124 5 Collisionless Plasmas

There are several ways to visualize and represent an ensemble of charged
particles in a magnetic field. For pedagogical reasons, at this early stage of our
discussion we will make three fundamental simplifying assumptions. First, we shall
consider separately only one of the different species of charged particles that may
constitute a plasma (electrons, protons, alpha particles, heavier ions). Second, in
considering only one given species, we shall neglect any electrostatic effects caused
by the spatial accumulation of same-sign electric charges (for instance, by assuming
that in the case of a positive ion ensemble, there would be enough low-energy
ambient electrons around to neutralize any such effect). Third, we shall neglect
collisions and the field singularities in the proximity of each particle (i.e., assume
a continuous, finite magnetic and electric field everywhere in the ensemble). In
addition, we shall consider only non-relativistic particle ensembles (a limitation
that excludes plasmas in the extreme environments of neutron stars and black holes).
Later we shall turn to the realistic situation of an electrically quasi-neutral mixture of
at least two different species of opposite charges. In all this, the particle distribution
function (see Sect. 4.1 for definition and examples) will be the “workhorse” for
the initial mathematical description of an ensemble, providing the link between
microscopic properties and more intuitive and measurable macroscopic physical
variables. Let us point out that as mentioned in Sect. 4.1, a distribution function
already represents an average, in which an enormous number of degrees of freedom
(the exact positions and velocities of each one of the particles in an ensemble) are
condensed into just six variables—the coordinates of a point in 6-D phase space
at which the distribution function represents a density (number of particles per unit
volume of coordinate and momentum space).

Our point of departure will be the kinetic theory of an ensemble of charged par-
ticles, each species of which is described by a time-dependent particle distribution
function f .r ; p; t/ in phase space fr; pg, obeying Liouville’s equation (4.25). In
non-relativistic plasma physics, it is customary to define the particle distribution
function in velocity subspace, as we did in Sect. 4.4; henceforth we shall use the
general distribution function f D f .r ; v; t/. Taking into account (1.1) for the
local force (and neglecting other external forces such as gravitation), we write the
Liouville equation in the form:

@f

@t
C v � rrf C q

m
.E C v � B/ � rvf D 0 (5.1)

This is called the Vlasov equation, basis of the kinetic theory of collisionless
plasmas. The vector operator rv has components @=@vi .

As shown in Sect. 4.3, the distribution function f serves to define macroscopic
quantities as average values of physical variables of the ensemble particles. For a
given species, we list them again:

Number density: n.r ; t/ D R
f dv

Mass density: �m.r ; t/ D mn.r ; t/

Bulk (or average) velocity: V D hvi D R
vf dv=

R
f dv
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Kinetic (or momentum flux) tensor (see (4.15)): K.r; t/ D m
R

v˝vf dv

Pressure tensor (kinetic tensor in a frame traveling with bulk velocity V , (4.16)):
P.r ; t/ D m

R
.v � V / ˝ .v � V /f dv D K � mn V ˝ V

Average kinetic energy density: � D 1=2 nmhv2i D 1=2 m
R

v2f dv

Internal energy density (kinetic energy density in a frame traveling with bulk
velocity V ): w D 1=2 m

R
.v � hvi/2

f dv D � � 1=2nmV 2 D 1=2 TrP
Charge density: �q.r ; t/ D q n.r ; t/

Electric current density: J D q nV D q
R

vf dv

These are the fundamental macroscopic variables for a particle fluid (also called
kinetic fluid) description of an ensemble of charged particles.2 Notice that the
electromagnetic field does not appear explicitly, except in the expression of the
forces on the particles that ultimately control the distribution function via the Vlasov
equation.

5.2 The Guiding Center Fluid Model

In many situations of collisionless magnetospheric plasmas the constituent charged
particles behave adiabatically, i.e., they gyrate rapidly in cyclotron motion perpen-
dicular to B, they move parallel to B (bounce, if the field geometry is right) and they
drift perpendicularly to B—as long as the conditions (2.1) and (2.2) hold for the
particles and the field. As we have done in the adiabatic theory of single particles in
Chaps. 1–3, the mathematical description and mental visualization of the ensemble
can be simplified by averaging all dynamic variables over one cyclotron turn and
replacing each “madly gyrating” particle by a virtual particle at its guiding center,
bouncing along and drifting across magnetic field lines. However, to accomplish

2A brief detour into Foundations of Physics is in order here. In the Preface we already stated
that “physics is the art of modeling”, and in Sect. 1.1 we introduced the model of a “guiding
center particle”. A fluid (any fluid!) is also a model—the model of a system in which a huge,
mathematically unmanageable, number of physically real particles (molecules, atoms, electrons,
nucleons, quarks, gluons, sand grains, etc., depending on the ensemble in question) has been
replaced in our mental image and in the quantitative description by a virtual continuum (see also
Appendix A.1, page 160). We speak of and quantitatively describe “parcels” of fluid and imagine
how they are deformed as they move, and guided by what our physiological senses experience
when exposed to liquids or flowing gases, we introduce macroscopic variables which can be
used for practical purposes, like density, bulk velocity, pressure, temperature, internal energy,
entropy, etc. Statistical mechanics and, as a corollary, plasma physics were developed to link
approximate but intuitive macroscopic continuum descriptions of matter with their physically real
microscopic structures that can only be revealed through the use of scientific instruments. In our
case, distribution functions and the differential equations which they obey establish such a link. The
main aim of any fluid description is to formulate physical-mathematical relationships between the
macroscopic variables so as to provide a “coarse-grained” quantitative description of the dynamic
state of the ensemble—regardless of the unknowable detailed state (position, velocity) of each
elementary constituent.
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this we must require as an additional condition that the particle distribution be
gyrotropic (strictly speaking, gyrotropic in a local coordinate system that moves
with the average guiding center velocity (2.14) at that point). This means that
there should be no synchronized cyclotron phase bunching (Fig. 4.9); in presence of
electromagnetic waves of the order of the particles’ gyrofrequency, this assumption
is no longer valid. All this allows us to dispense of one degree of freedom, the phase
angle ' of a particle’s cyclotron motion, and use the distribution function

F D F.r; t; v?; vk/ (5.2)

where r is not the position rp of the actual particle but that of its guiding
center r D rp C .m=q/v � B=B2 (see relation (1.25)). The quantity ın D
F.r; t; v?; vk/ırıv?ıvk represents the number of virtual guiding centers in ır at
point r and time t , whose “parent” particles have velocities v? and vk in the element
ıv?ıvk. Of course, it is also possible to use derived distribution functions such as
F.r; t; T; �/ (Sect. 4.2).

Having eliminated ' does not mean that we can neglect collective effects of
the cyclotron motion. First, notice the hidden presence of the B vector: at each
point in space it defines the ? and k directions, the natural frame of coordinates
(Appendix A.1) (or, in derived distribution functions, the parameters �, M or
I ). Second, the magnetic moment M (1.26) generated by the now “washed-out”
cyclotron motion must be retained in the contribution of the particles to the magnetic
field. Likewise, the particle’s angular momentum l D .2m=q/ M (1.27) must be
retained as a contribution to the macroscopic dynamic state of the fluid. Third, we
must retain the contribution of a particle’s cyclotron motion to the perpendicular
pressure p? and that of its parallel motion to the parallel pressure pk (4.17), as
well as to the internal kinetic energy density w. As a consequence of all this we
picture the guiding center fluid as a model fluid consisting of magnetized virtual
GC particles with intrinsic angular momentum, and endowed with local vorticity,
internal kinetic energy, temperature and perpendicular and parallel pressures. The
magnetic field thus assumes in explicit form the role of a “scaffolding”, an internal
skeleton that greatly aids in visualizing plasmas but whose local asymmetry obliges
us to always be aware of the different character of transverse and field aligned
properties, respectively.

In particular, concerning the field-aligned motion of the guiding center particles,
the conservation of each individual particle’s magnetic moment (1.26) provides a
fundamental link between points of a given field line in a guiding center fluid.
For instance, great care has to be taken with the interpretation and handling of
distribution functions in the guiding center fluid model. As shown in Sect. 4.4, they
are causally connected along a given field line because of the bounce motion; for
instance, in an equilibrium situation in which there is no particle bunching, the
distribution function in a guiding center fluid can only be prescribed on a specified
surface such as the minimum-B surface which is traversed by all trapped particles
on a field line (Fig. 4.12); it cannot be chosen arbitrarily all along a field line.
In what follows, the position vector r in the distribution function F will usually
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signify “distribution function at a reference (e.g., minimum-B) point of the field line
going through point r”. Although in the preceding text we have been mentioning
bounce motion, in plasma physics neither bounce nor drift periodicities (and the
related adiabatic invariants J and ˚) play any direct role; mainly, because the
field geometries, their time variations and the presence of multiple but mutually
interacting classes of particles do not favor sustained particle trapping. Therefore,
for guiding center particles in a GC fluid there will be no bounce-average drift
velocities nor any drift-average quantities—only instantaneous ones. The only
averaging is done over cyclotron motion.

We can list expressions for the macro-variables in the guiding center description,
as we did for a kinetic fluid:

Number density: n.r ; t/ D R
F dv?dvk

Mass and charge densities: �m.r ; t/ D m n.r; t/ and �q.r; t/ D q n.r ; t/

Perpendicular and parallel pressures (refer to relations (4.17)): p? D 1=2 mn
.hv2

?i � hv?i2
/ and pk D mn.hv2

ki � hvki2
/

Magnetic moment density (refer to (4.24)): M D �1=2mnh.v? � V D/2i B=

B2 D �p?=B e

Angular momentum density: L D .2m=q/ M

For the bulk velocity things are different. Each virtual guiding center particle has
a perpendicular drift velocity V D which, however, is not an independent variable:
it is a function of v?, vk and the local magnetic field (2.14). On the other hand,
the parallel velocity of a guiding center particle is a vector equal to the original
particle’s parallel velocity vk, and it is an independent variable (2.11). Thus for a
guiding center fluid we write:

Bulk perpendicular (or drift) velocity: V g? D R
V DF dv?dvk=

R
F dv?dvk3

Bulk parallel (or field-aligned) velocity: V gk D R
vkF dv?dvk=

R
F dv?dvk

As mentioned above, we will mainly deal with ensembles with symmetric pitch
angle distributions in which there is no field-aligned bulk streaming (no field-aligned
convection currents) and Vgk D hvki � 0.

It is important to understand the difference between the bulk velocities in both
fluid models. In the kinetic model, V is the spatial average of the instantaneous
velocity vectors of actual particles in an element of volume, whereas in the GC
fluid, V g is a double average: the spatial average of the velocities V D , V k, which
are averages (over a cyclotron turn) of the velocity components of a particle:
V g D hhvi'i. The “missing part” of particle motion in the GC fluid model is
encoded in the magnetic moment of each GC particle. The bulk velocity vector
V g of an ensemble of guiding center particles always describes true macroscopic
mass transport, whereas the mean velocity vector V of the ensemble of the original
particles may not—both velocity vectors in general will differ from each other

3From now on, all macro-variables in the guiding center fluid will carry the subindex g, whereas
homologous variables in the kinetic particle fluid model will not be subindexed.
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(V g ¤ V ); in fact, they even may be opposite to each other. Below we’ll show
some simple examples.

What both models must have in common, are the values of local current density
J , which links the ensemble dynamically with the local magnetic field (action of the
Lorentz force J � B on the current, and contribution of the current to the sources
r � B of the magnetic field). In the kinetic fluid model, which doesn’t care whether
or not individual particles in a given element of volume have mesoscopically
organized motion (such as cyclotron gyration), the current density is J D �qV ,
a pure convection current. In the guiding center fluid, we must use the usual
E&M expression for magnetized media taking into account the equivalent currents
J eq D r�M (Appendix A.1). The total electric current density will thus be:

J D �qV g C r�M (5.3)

and consequently4

V D V g C �q
�1r�M D V g � �q

�1r�.
p?
B2

B/ D V g C 1=2�m
�1r�L (5.4)

The last equality stems from the definition of angular momentum density

L D 2.m=q/ M (5.5)

We end this section with the promised discussion of some “kindergarten”
examples, to show in semi-quantitative form that the perpendicular component
V ? of the bulk velocity of a kinetic fluid is indeed not necessarily equal to
the perpendicular bulk velocity of the corresponding guiding center fluid. Quite
generally, these examples are intended to shed some light on the physical nature
of different, distinct classes of currents in a guiding center fluid. Consider Fig. 5.1
left side, which depicts a gyrotropic ensemble of mono-energetic 90ı pitch angle
particles, with a particle density gradient rn in the direction of the x-axis, cycling
in a uniform external magnetic field B directed along the z-axis. If we do a cyclotron
average of the perpendicular velocity vector of any given particle to obtain its
guiding center drift velocity (1.3), we obviously get V D D hv?icyclotron D 0. The
particles are all gyrating in situ and the guiding centers are all at rest—there is no
flow in the guiding center fluid and there is no net transport of mass or electric
charge: the guiding center convection current is J g D �qV g D 0. But in the
guiding center fluid there also will be an equivalent current J eq D r�M D
r�.�1=2mnv?2=B/ e D �.1=2mv?2=B/ rn�e ¤ 0, always in the direction of
Cy (regardless of the particles’ charge q). This (and the next set) describes the effect

4The following relation (5.4) can be deduced directly for gyrotropic ensembles by linking the
distribution functions f (4.5) and F (5.2) using (1.25) and the definitions of V , V g and M (the
proof is lengthy!).



5.2 The Guiding Center Fluid Model 129

Return 

Fig. 5.1 Sketch showing the physical origin of an equivalent current density in a non-uniform
distribution of 90ı pitch angle particles (zero GC current, no net charge transport)

of the magnetic field on a specific distribution of guiding center particles; later we
will discuss the effect of specific ensembles (their currents) on the magnetic field.

We now turn to the kinetic model description of the same ensemble of Fig. 5.1.
For this, we must look at the figure “with a magnifying glass” (or, more realistically,
with a very small detector) and realize that the individual particle distribution will be
anisotropic: considering a domain much smaller than �C

3 (right side of the figure)
we will always see (or detect) more particles traveling in the Cy direction than in
any other. This represents a local convection current J along the y-axis.5 Since we
demand that both fluid model descriptions must be consistent with each other in
terms of their macroscopic electromagnetic manifestations, for the case of Fig. 5.1
the convection current in the kinetic fluid must be the same as the equivalent current
in the guiding center fluid: J D r�M .

In the example of Fig. 5.1 there is no net transport of electric charge (�q D
0; @�q=dt D 0), yet there is a current density everywhere inside the ensemble.
Obviously, conservation of charge tells us that r � J D 0, so both, the equivalent
currents and (in the particle fluid picture) the convection currents must be closed
somewhere. Observe Fig. 5.1 (left side): the distribution of particles does not extend
to infinity—it must have a boundary somewhere along the x and y axes, which
means that, eventually, somewhere there must be negative number density gradients.
Such gradients represent current densities, precisely the ones that close the Jy

current system in the above example, as sketched in the figure. This observation
shows that quite generally it is extremely dangerous to speculate qualitatively about
current systems in the magnetosphere (e.g., about the neutral sheet current) without
explicitly including a precise picture of all closing currents, too (e.g., the current
system where the neutral sheet merges into the tail boundary).

5Remember that this is the usual explanation given in E&M texts to justify the appearance of an
equivalent r �M current in magnetized materials (although in ferromagnetism the magnetization
is not due to “little current loops” in atoms but due to the intrinsic quantum magnetic moment
(spin) of electrons). Since in an ensemble of trapped particles the magnetic moment associated to
a guiding center particle is always directed antiparallel to B , plasmas behave like a diamagnetic
gas—as we already had anticipated.
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Particle fluid             Guiding center fluid

Fig. 5.2 Flux cylinder in a uniform field with a uniform distribution of positive, mono-energetic
90ı pitch angle particles. Left: Viewed as a guiding center fluid; there are no flows anywhere, but
an equivalent current r �M in the boundary layer due to magnetic moment cut-off. Right: Viewed
as a particle fluid at the microscopic level; laminar flow within 2�C of the outer boundary

compressedexpanded

Fig. 5.3 Origin of the “bent sausage” equivalent current

To consolidate understanding of the case of Fig. 5.1, consider a cylinder of field
lines in a uniform magnetic field (a magnetic flux tube) filled with 90ı mono-
energetic particles with uniform guiding center density, Fig. 5.2. Viewed as a particle
fluid, the distribution inside the cylinder will be isotropic everywhere, with zero
average velocity except in a thin boundary layer of thickness ır D 2�C , where
there will be a laminar flow (macroscopically a surface current). Viewed as a guiding
center particle fluid, the velocity inside the cylinder will be zero, too, but now it is
the sudden jump to zero of the magnetization density in the boundary layer (due to
the cut-off of guiding center density) which will lead to an equivalent current that
must be equal to the surface convection current in the kinetic model description.
Note that in this case, the current system is closed in itself.

Next consider the example of 90ı pitch angle particles uniformly distributed
along curved field lines as shown in Fig. 5.3, with B nearly constant along and
across those field lines. Such a situation is, indeed, highly artificial and can only
represent an instant snapshot: the mirror force (2.8) would immediately start moving
the particles along B—anyway, this is just a kindergarten example! Viewed either
as a guiding center fluid or a particle fluid, the respective average velocities V gk
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Return displacement 
current 

Fig. 5.4 Origin of the equivalent counter-current Jeq in a uniform particle distribution of gradient-
B drifting particles

and V k along the field lines are assumed to be zero (no field-aligned current).
But there should be an equivalent current perpendicular to B (into the plane of
the figure), of value J eq D r�.�p?=B/e D p?=B .@e=@s � e/ (remember that
@e=@s D �n=RC , with RC the field line radius of curvature, relation (A.15) in
Appendix A.1). Its origin is simple: just look at the figure with a magnifying glass,
and you’ll see that positive particles move toward you in their cyclotron motion
on the convex side of the field line, and go into the paper in a slightly compressed
fashion, on the concave side. In other words, a tiny detector would see, per unit
surface, more particles going into the paper than coming out of it. This is yet another
case in which J D r�M (perpendicular components only!).

Another example, sketched in Fig. 5.4, is that of a uniform 90ı pitch angle mono-
energetic particle distribution on the minimum-B surface of a magnetic field with a
constant gradient r?B ¤ 0 in the x direction, but no gradient in number density
n. Guiding centers will drift with velocity V g to the right along the x-axis, which
represents a guiding center convection current to the right J g D �p?=B2 r?B �e.
In addition, there will be an equivalent current r�M , where M D �.p?=B/ e.
Since for a uniform distribution only B depends on the position r this equivalent
current is directed to the left and exactly cancels the convection drift current J g

(remember that r � e D �1=B.rB � e), so that in this case the total current
density in the guiding center fluid model is zero. Therefore, the convection current in
the particle fluid model should also be zero. It is a little trickier to convince oneself,
by looking at the figure, that the pertinent velocity distribution of particles on the
minimum-B surface is indeed isotropic, and that the number of particles moving in
the Cy direction in a very small element of volume is always the same as the number
of those going in the opposite direction, for constant p?. In summary, in the case
of Fig. 5.4, the current density in the particle fluid is J D J g C r�M � 0. Here
we have an example of a particle distribution with net mass and charge transport
(to the right in the figure), but in which the local average particle velocity is zero
(the implication of this fact for the magnetospheric ring current will be discussed
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Fig. 5.5 Case of a GC current equal to the convection current (zero equivalent current)

Fig. 5.6 Sketch (not in scale!) of positive particles on field lines twisted by a parallel current
along the central axis (snapshot from the guiding center system moving with velocity Vk). The
cyclotron loops are perpendicular to the local, inclined, B 0. Near the central axis there is a net
uncompensated velocity component from the cyclotron motion of the particles into the plane ?
to B

briefly in the next section). Note that in this example there is no equivalent current
to close because there just is no current. It is an interesting exercise to figure out the
electrodynamics near the right edge of the drifting particle distribution (something
quite relevant to the physics of magnetospheric plasma blobs!)

A uniform gyrotropic distribution of mono-energetic particles in a uniform
magnetic field, crossed by a uniform electric field E (Fig. 5.5), is a typical example
where r�M � 0, i.e., in which the convection currents in both models are equal:
J D J g. Note however the difference in physical character of the two types of
currents: the particle current J in the kinetic model is due to the fact that, because
of electric field acceleration, particles moving to the right in the figure are on the
“upper” arc of the cyclotron orbit where their speed is higher than that of left-moving
lower arc particles (see (1.35) and Fig. 1.7). Guiding center particles drift at constant
speed, equal to the average speed of the actual particles in their OFR.

Our last kindergarten example is that of a configuration in which the mono-
energetic particles have a pitch angle <90ı in a near-uniform magnetic field. Now
there will be a component of J g parallel to B . As explained in Appendix A.1,
any parallel current causes a twist of the magnetic field lines: r�M will have
a component parallel to B. Consider Fig. 5.6, shown in the guiding center frame
of reference that moves with the velocity vk (assumed common to all particles in
this example) along the central field line. As sketched in the figure, because of the
torsion, neighboring cyclotron loops are slanted with respect to those of particles
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circling the central field line. As a result, a geometry arises such that near the axis of
symmetry the neighboring particles have a component of motion counter the main
parallel drift whenever they cross the central loops, a motion that is uncompensated
by upward-moving particles from neighboring cyclotron loops. In other words, a
parallel equivalent current r�M jk will always counteract, i.e., diminish the effect
of whatever field-aligned guiding center current flows in the first place.

The discussion of these five simple examples suggests that it is always important
to clearly state which fluid model, kinetic or guiding center, is being invoked in a
plasma6 description. In theoretical analysis and numerical calculations one mostly
works with the kinetic model, but when describing intuitively and qualitatively a
plasma system, or even when trying to interpret measurement results, physicists
more often than not are thinking about, or visualizing, the system in guiding center
model terms (often without explicitly saying so). However, there is a danger of using
the guiding center fluid model, despite its greater physical intuitiveness concerning
the ensemble’s macroscopic properties such as electric currents and internal stresses
(see next section). One too often forgets that this model is valid only provided
that: (i) the guiding center approximations (2.1) and (2.2) apply everywhere (thus
excluding neutral lines, sharp gradients, rapid oscillations, etc.), (ii) the collision rate
is negligible (thus excluding the ionospheric regions), and (iii) particle distributions
are gyrotropic (thus excluding waves in the cyclotron frequency or higher range).

5.3 Currents and Stresses Arising from Interactions
with the Magnetic Field

In order to analyze the types of currents sustained by an ensemble of guiding
center particles defined by a distribution function F.r ; t; v?; vk/, we turn to the
general expression of the drift velocity (2.14) given in Sect. 2.1. We shall assume
that the guiding center approximation is valid everywhere and that there is no
bounce bunching (hvki D 0), and we shall neglect the action of external non-
electromagnetic forces (F � 0) as well as all higher order drift terms, i.e., we
shall retain only the 1st, 3rd and 4th terms. We thus write, for the transverse drift
velocity vector of a single guiding center particle:

V g? D V D D
h
qE � mv�?2

2B
rB � mvk2

@e

@s
� m

dV D

dt

i
� B

qB2

Remember that v�? is the modulus of the perpendicular component of the actual
particle’s velocity in its guiding center system at the point in question (v?� D
v? � V D , relation (1.6)). It is evident that in the bracket, only the perpendicular

6Never mind that in these kindergarten examples we have considered only one class of particles—
the results about currents thus far are independent of the electric charge of the particles involved.
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components of E and dV D=dt will contribute. The parallel guiding center velocity
V gk will be equal to the cyclotron-average of the parallel velocity of the actual
particle (2.11), but as mentioned above, for the time being we will exclude streaming
along field lines (V gk � 0).

We now use this equation to determine the macroscopic quantity hV Di (trans-
verse bulk velocity), by multiplying each term by the guiding center distribution
function F.r ; t; v?; vk/ and integrating over velocity space [v?; vk]. We obtain,
taking into account the definitions (4.17) of p? and pk (the latter, with V gk D 0):

V g? D hV Di D
h
�qE � p?

B
r?B � pk

@e

@s
� �m

dV g?
dt

i
� B

�qB2
(5.6)

To obtain the total current J , we have to multiply this equation with �q and add
r � M . This latter magnetization current density is

r � M D r �
�

� p?
B2

B
�

D �p?
B2

r � B � rp? � B

B2
C 2

p?
B

rB � B

B2

The second and third terms are perpendicular to B. Using (A.26) and (A.27) of
Appendix A.1 for r � Bj? and r � ej? D e � @e=@s, we obtain for the ? and k
components of the equivalent current density:

r � M j? D
h

� r?p? C p?
@e

@s
C p?

r?B

B

i
� B

B2
(5.7)

r � M jk D �p?
B2

r � Bjk (5.8)

Turning first to the transverse equations, we add expressions (5.7) and (5.6)
(multiplied by �q) to obtain for the total transverse current density J ? (which of
course must also be the total transverse current density in the corresponding particle
fluid model):

J ? D J g? C r � M j?

D
h
�qE � r?p? � .pk � p?/

@e

@s
� �m

dV g?
dt

i
� B

B2

D J E C J D C J A C J I (5.9)

where

J E D �q

E

B
� e Electric field drift current (5.10)

J D D �r?p?
B

� e diamagnetic current (5.11)
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J A D � .pk � p?/

B

@e

@s
� e “pressure anisotropy” current (5.12)

J I D �m

B

dV g?
dt

� e Inertial current (5.13)

Notice that an important rearrangement has taken place by adding the equivalent
current that arises from the magnetization of the guiding center fluid. In particular,
the gradient-B drift current term (second one in (5.6)) has dropped out, cancelled
by an homologous term in (5.7). This is exactly what happened in our “kindergarten
example” shown in Fig. 5.4 in the preceding section!7 In the above list, J E and J I

are convection currents, J D is an equivalent current and J A is mixed: the first part
(with pk) is a convection current carried by the field-line curvature drift (see (2.14))
whereas the second part (with p?) is the equivalent current whose microscopic
origin was shown in the “kindergarten” example of Fig. 5.3. Notice that for isotropic
pressure (pk D p?) J A � 0, which means that also the curvature drift drops out,
cancelled by the (unnamed) equivalent current part of J A. All currents depend on
B and the particle distribution (pressure tensor or density): the local magnetic field
dictates, and the particle ensemble properties drive, the currents! Note that in (5.6)
only the electric field drift is independent of the particles’ properties; thus it will not
contribute to the total current density in a collisionless charge-neutral ensemble of
two or more species.

An important point is that relations (5.9)–(5.12) are valid in both fluid models,
the kinetic and the guiding center one. Concerning relation (5.13), it can be shown
(rather laboriously), that although in general V g ¤ V , for the total time derivatives
dV g=dt Š dV =dt within the guiding center approximation, so that this relation
(5.13) is valid, too, in both models. The current (5.9) is thus indeed the total current
density that acts as the source of a magnetic field, i.e., the one that enters in
Maxwell’s equations (A.49). This somewhat trivial remark will be important later.

Concerning the parallel bulk velocity, let us lift for a moment the initial
assumption that it is zero. We shall have

V gk D hvki; (5.14)

basically an independent variable in the sense that at one given point it only depends
on the particle distribution function there—which, however, as we will show in the
next section, varies in a specific manner along any given magnetic field line. For an
equation for J k, complement to (5.9), we write

7This dropout, predicted by theoreticians in the early days of magnetospheric physics, caused
confusion among experimentalists studying ring current data, who from the beginning assumed
this West-East current to be due to the convective E-W and W-E drift of trapped protons and
electrons, respectively. However, the ring current is the superposition of a E-W convection drift
current with an equivalent diamagnetic current (5.11), the latter with an W-E inner ring (radially
outward directed density or pressure gradient in (4.24)) and a E-W outer ring where the density
gradient is reversed.
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J k D �qV gk C r � M jk D �qV gk � p?=B2r � Bjk
or, taking into account that under stationary or slowly varying conditions r �Bjk D
�0J k, where J k is the total field-aligned current,

J k D J gk
1

1 C p?=.B2=�0/
(5.15)

Note that always Jk � Jgk. This confirms what we have anticipated in the fifth
kindergarten example of the previous section (see Fig. 5.6). The equation shows
that if Vgk D 0 (no average parallel velocity of guiding centers, symmetric pitch
angle distribution), the total field-aligned current density is always zero—in other
words, a field-aligned current cannot “be made of” an equivalent current alone.
If on the other hand, there is GC field-aligned streaming (J gk ¤ 0) and the
transverse particle pressure p? is much smaller than the magnetic energy density
B2=2�0 (Appendix A.1, relation (A.40)—the ratio p=u is called the beta of the
plasma), which in general implies low particle number density, the total field-
aligned current density Jk is maximum and equal to it. If in the other extreme
p? � B2=2�0 (high number density), Jk ! 0 again, regardless of the parallel
streaming of guiding centers (cancelled by the equivalent current in the guiding
center model). This is an example of the above-mentioned special nature of parallel
motions in the fluid descriptions. As we have seen in Appendix A.1, the field-aligned
current is responsible for a twist of magnetic field lines; in the present example
it also controls the proportion between convection and equivalent currents in the
guiding center fluid. But remember that field-aligned currents, while causing torsion
in the magnetic field ((A.28) and (A.29)), cannot sustain any magnetic stresses:
J k � B � 0.

We now turn to the general stresses, i.e., the average macroscopic Lorentz
force densities acting inside the guiding center fluid, J � B D J ? � B D
.J E C J D C J A C J I / � B (5.9). Let us begin again with the kindergarten
example of 90ı pitch angle particles filling a cylindrical flux tube in a uniform B-
field (Fig. 5.2). Regardless of the fluid model considered (left or right in the figure),
there will be a thin layer of current on the surface of the cylinder, as shown in
that figure. If there are “many, many” particles, two things will happen: (i) the
magnetic field inside the cylinder will decrease noticeably due to the solenoidal
surface currents (diamagnetic property of the ensemble), and (ii) an average non-
negligible Lorentz force will appear acting on the outer equivalent current-carrying
part of the ensemble. This latter outward-directed force density J � B represents
an internal stress in the ensemble, quite similar to the magnetostriction acting on
equivalent r � M currents inside condensed matter with magnetization density
M . Our kindergarten example can be carried further qualitatively: as the magnetic
field in the cylinder decreases with time, an induced electric field will appear (see
example with the case of an increasing field on page 21!) and the associated outward
drift will expand the particle ensemble. But equivalently, in the GC model we could
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well attribute the expansion to the action of an outward Lorentz force stress! A
similar quantitative analysis can be made with the example of Fig. 5.6: here we have
a convection current density; the average Lorentz force on it counteracts exactly the
electric field force—a good example to convince a skeptic that a plasma exposed
to an electric field is not accelerated in the direction of the field but will drift
perpendicularly to it!

If we cross Eq. (5.9) with B and rearrange terms, we are led to the following
dynamic equation for the perpendicular bulk flow in a guiding center fluid:

�m

dV g

dt

ˇ
ˇ
ˇ
ˇ
ˇ?

D �qE? � r?p? � .pk � p?/
@e

@s
C J ? � B (5.16)

Observe that this is not a “true” dynamic equation which, by integration, would lead
to the calculation of V g; it merely serves to display the stresses or force densities
responsible for the transverse acceleration of parcels in the guiding center fluid
model.

To derive a dynamic equation of flow parallel to the magnetic field, complement
to Eq. (5.16), we can convert the single-particle parallel equation (2.20) (without
non-electric forces) into a macroscopic equation for an ensemble of particles by
multiplying it with the guiding center distribution function F and integrating, to
obtain:

�m

dV g

dt

ˇ
ˇ
ˇ
ˇk

D �m

dV g

dt
� e D �qEk � @pk

@s
C .pk � p?/

B

@B

@s
(5.17)

The two above equations can be combined into one by taking into account (4.21):

�m

dV g

dt
D �qE � rP C J � B (5.18)

This general equation for the bulk velocity of an ensemble of guiding centers
explicitly reveals the dynamic action of three types of physical causes: (i) non-
magnetic forces (the first term, to which any non-electromagnetic force density
could be added), (ii) the “mechanical stresses” represented by the pressure tensor,
and (iii) the action of the magnetic field on the ensemble through Lorentz-type
forces (the third term). It is important to remember that at this stage of our
discussion, we are still dealing with just one species of particles and that the
magnetic and electric fields are given, i.e., that the contribution to the fields of
charges and currents in the ensemble are being neglected.

Before we get real and drop this limitation, we end this section with an analysis
of the physical meaning of the stresses in a guiding center fluid, as illustrated by the
hypothetical example of a “magnetohydrostatic” equilibrium state of the ensemble:
no time dependence, no total current density, no external forces, no electric field.
The condition of equilibrium implies that transverse equation (5.16) now should be:
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r?p? C .pk � p?/
@e

@s
D 0

This equation is identical to (4.33), only that here it has been derived in a more
general way. According to (5.9), this equation also implies that J D C J A D 0 in
the case of a stationary state.

Along the respectively binormal and normal x and y axes (in the natural
coordinate system, Appendix A.1),

@p?
@x

D 0

@p?
@y

� .pk � p?/
1

Rc

D 0

where Rc D j@e=@sj�1 is the field line’s radius of curvature. These two equations
show how the perpendicular pressure and the pressure anisotropy pk � p? must
obey stringent conditions of spatial variability in a magnetostatic field to remain in
equilibrium (indeed, it is useful to re-examine the example given in Sect. 4.4, where
the equilibrium conditions were derived for a specific case.) Under the same static
equilibrium conditions, the following relation is obtained for the parallel stresses
from (5.17), in partnership with the transverse equation (4.33):

@pk
@s

� .pk � p?/

B

@B

@s
D 0

This equation is identical to (4.32).
To interpret the detailed physical meaning of the various terms in the above

equilibrium relations (4.33) and (4.32), consider a guiding center fluid element
in a magnetic flux tube, as sketched in Fig. 5.7. In this figure, the axes represent
the natural reference frame, with z k e, y along the normal n and x along the
binormal b (Appendix A.1). As always, RC is the radius of curvature of the field
lines, and we have the following relations between the side areas: ıA�

x D ıAx

(binormal axis); ıA�
y D ıAy.1 C ıy=RC / (field-geometric factor) and ıA�

z D
ıAz.1 � 1=B .@B=@s/ ıs/ (conservation of magnetic flux).

Along the y-axis, the following forces act on the GC fluid element in hydrostatic
balance:

�.p? C @p?
@y

ıy/ıAy.1 C ıy

Rc

/ C p?ıAy C pk
ˇ
ˇ
ˇ
@e

@s

ˇ
ˇ
ˇıAyıy D 0

in which the third term represents the total centrifugal force on the particles. This
means that

@p?
@y

� .pk � p?/
ˇ
ˇ
ˇ
@e

@s

ˇ
ˇ
ˇ D 0
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Fig. 5.7 Flux tube element
filled with guiding center
fluid in “hydrostatic”
equilibrium

To find the other term @p?=@x, we have along the x axis:

�
�
p? C @p?

@x
dx

�
ıAx C p?ıAx D 0

which means that

@p?
@x

D 0

The above relations represent the vector equilibrium condition (4.33) along the y

and x axes perpendicular to B.
For the parallel equation of equilibrium (along the z-axis), consider again

Fig. 5.7. With the total mirror force density on the guiding center particles in the
flux tube element (�p?=B .@B=@s/), we have the following equilibrium condition:

�
�
pk C @pk

@s
ıs

��
1� 1

B

@B

@s
ıs

�
Cpk � p?

B

@B

@s
ısD

�

� @pk
@s

C .pk � p?/

B

@B

@s

�

ısD0

leading to (4.32).
Finally, we may relax a bit the a priori conditions in our example and admit

transverse currents that, however, are independent of time—i.e., limited to a
stationary ensemble. This does not change the parallel equation (4.32) and its
physical meaning (Fig. 5.7). The perpendicular equation (5.16) now becomes, taking
into account (A.36) of Appendix A.1:

r?p? C .pk � p?/
@e

@s
D J ? � B D B2

�0

@e

@s
� r?

�
B2

2�0

�

(5.19)
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or:

r?
�

p? C B2

2�0

�

C
�

pk � p? � B2

�0

�
@e

@s
D 0 (5.20)

In this equation, the magnetic energy density B2=2�0 (A.40) plays the role of
transverse magnetic field pressure; .B2=�0/ @e=@s is the perpendicular magnetic
tension of Maxwell’s theory.

To summarize, we end this section with a “kindergarten” view of the preceding
equilibrium expressions (4.32) and (4.33). Refer again to Fig. 5.7. The element of
fluid is subjected to pressure forces on its sides (p?-related) and a “buoyancy force”
(pk-related, which can be interpreted as the differential of parallel pressure forces on
the tops of the flux element), and to two internal magnetostrictive forces: the mirror
force (which can be interpreted as being responsible for the “slippery soap” effect
of a narrowing magnetic flux tube squeezing the incoming particles and bouncing
them back in their parallel motion) and the inertial centrifugal force (on the guiding
center particles in a bent flux tube while they travel up and down in their bounce
motion). If this force system is in hydrostatic equilibrium, there is no macroscopic
bulk acceleration in any direction (perpendicular or parallel to B). As a result, the
particle ensemble is stationary; a locally time-independent guiding center bulk flow
V g? is allowed, but only in such a way that no total current J ? occurs. No net
field-aligned bulk flow (or current) is allowed.

This entire discussion involved the guiding center fluid model—the kinetic model
does not care about what the individual particles do elsewhere (like whether they
are executing a systematic cyclotron gyration and come back to the same volume
element repeatedly to be counted each time as a contribution to a current, or whether
they fly away and are replaced by other incoming particles); what counts in the
kinetic fluid model is what happens locally to each particle at any given point in
space and instant of time. In this more general kinetic formalism one loses track of
the integral, macrophysical picture and related intuitive understanding. Remarkably,
however, as we shall see in the next section the equations discussed above are valid
also in the kinetic particle model, with the velocities and pressures defined in the list
on page 124. This is a relief because, as hinted before, the kinetic fluid model is the
only recourse available for the quantitative study of regions in which the adiabatic
conditions break down for the particles in question, such as in the vicinity of neutral
sheets and lines, boundaries and shocks.

5.4 From the Guiding Center Fluid to a Quasi-neutral
Center-of-Mass Fluid

It is high time to turn to quasi-neutral mixtures of positive and negative plasma
particles. Most of the examples to be considered will be, for simplicity, singly-
charged positive ions and negative electrons. We also must turn our attention to
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the fact that, as hinted at the beginning of this chapter, in a real plasma we cannot
neglect the contribution of the plasma currents to the field: there is a circular cause-
effect relationship: particle dynamics ) currents ) magnetic field ) particle
dynamics—in other words, we must activate the link between Maxwell’s equations
and fluid dynamics, in which the magnetic field still plays the grand role of a
common framework holding the different components and regions of a plasma
together. It is important to point out, as we shall see in a later section, that neither
fields nor particles come first (a “chicken-and-egg” situation)—except when one or
the other has separate and dominating externally controlled sources or sinks (e.g.,
the internal geomagnetic field; solar wind particle injections, atmospheric losses).
And since thus far we were dealing with collisionless ensembles in which the only
interaction between particles is mediated by the macroscopic electromagnetic field,
at one point we must get real and turn inter-particle collisions on.

First of all, we start with Eq. (5.18) for one species and note that it really can
also be derived directly from Vlasov’s equation (5.1) for collisionless ensembles:
just multiply all terms of this equation tensorially by mv and integrate over velocity
space! This means that it is valid for a kinetic fluid, too, provided one accepts the
fact that, as mentioned on page 135, for the bulk accelerations dV g=dt D dV =dt
despite both velocities being different. For that reason, we shall drop the subindex
“g” from the velocity vector V .8 This means that (5.18) has more general validity
than the perpendicular and parallel guiding center fluid equations from which we
extracted it.

It is our task now to merge two ensembles with mutually opposite charges, each
one representing a class of particles under one common electromagnetic field. In
this way we obtain yet another fluid which provides a quantitative macroscopic
description of the overall system, and from which one can extract some useful
information about the behavior of each one of the merged ensembles. To develop
this “grand” new fluid model, we shall use C and � as subindices characterizing
each species. With this notation, we rewrite (5.18) in the forms

nCmC
dV C

dt
D nCqCE � rPC C J C � B (5.21)

n�m�
dV �

dt
D n�q�E � rP� C J � � B (5.22)

To these we must add a continuity equation for each species (we are assuming that
there are no sources or sinks of particles in our collisionless mixed ensembles):

8A question still subsists: How can two different solutions, either V g or V , be obtained for the two
different fluid models from one and the same equation? The answer is that V g or V sit inside J ,
which in the case of the magnetized guiding center fluid model also contains r � M , with M in
turn being a function of B and p?.
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@n˙
@t

C r � .n˙V ˙/ D 0 (5.23)

What specific properties must we expect from our new single-fluid mixed-species
model? First of all, its mass, charge and current densities should be the sum of the
individual densities:

�m D nCmC C n�m� (5.24)

�q D nCqC � n�jq�j (5.25)

J D J C C J � D nCqCV C � n�jq�jV � (5.26)

Second, the bulk velocity of the fluid V should be such that the momentum
density G D �mV is equal to the sum of the momentum densities of each
component:

G D nCmCV C C n�m�V � (5.27)

For that purpose we now introduce the center of mass velocity of the two fluids:

V D nCmCV C C n�m�V �
nCmC C n�m�

(5.28)

We can now officially introduce the center of mass fluid as one with mass density
�m (5.24), charge density �q (5.25), current density J (5.26) and momentum density
G D �mV . A continuity equation can be derived from (5.23),

@�m

@t
C r � .�mV / D 0 (5.29)

with a charge continuity equation

@�q

@t
C r � .�qV / D 0 (5.30)

We have sketched the situation of a center of mass fluid in Fig. 5.8:Consider an
element of volume ır3 at time t with two classes of particles of opposite charge,
ı and �.9 Each class came, in principle, from a different volume element at time
t � ıt , and each will end up in a different parcel at time t C ıt . The centers of mass
of the parcel pairs at these different times are shown (please note that in reality these
parcels are only infinitesimal time intervals and distances apart!). With the center of
mass fluid model we have replaced two distinct, intercrossing ı and � fluids with

9Of course, we can show only a subgroup of particles of each class in the central element of volume
at time t ; it may be crossed by many other particles coming from other pairs of pre-t parcels.
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CM                                                     CM

Fig. 5.8 Sketch of two
guiding center fluids in their
partial motions and that of the
virtual center of mass fluid.
The corresponding electric
current density vector is
shown. In an ion-electron
fluid, the center of mass
motion would be nearly
identical with the bulk motion
of the ions

+ + +
+ + +
+ + +
+ + +
+ + +

        +    ++
Fig. 5.9 Mutual
displacement of positive and
negative particle ensembles;
generation of a local
electrostatic field

another virtual fluid whose parcels follow the center of mass line (horizontal in
the figure), whose (virtual) density is the sum of the individual fluid densities, and
which sustains a current density given by the relative convection of opposite charges
(vertical in the figure).

Figure 5.8 shows two ensembles of oppositely charged particles running through
each other—What prevents them from separating, what keeps them together? Evi-
dently, it must be the electric field that would build up rapidly between oppositely
charged “clouds” of particles if a local charge density fluctuation occurs in an
electrically neutral distribution. As a matter of fact, just a tiny collective charge
separation in a limited volume would build up a space charge and generate a large
local electric field (thanks to the large value of the constant �0, Appendix A.1) acting
against any further separation. Refer to Fig. 5.9 showing a portion of the electron
population displaced by an amount � to the right (� 	 L), and assume for a
moment that all particles are “frozen” into their instantaneous position. A positive
electrostatic space charge will appear in the thin rectangular element of volume
�S � (�2 	 �S ).

The electric field on the right of this thin, flat element would be approximately
uniform and of value E D .ne�/=�0, directed as shown (e: absolute value of the
elementary charge; ne�: charge per unit surface S of the thin element). This field
will exert a total force F D qE D �.neL�S/.ne�/=�0 on the electron cloud of
total mass M D nmeL�S . Newton’s equation F D M R� turns out to be that of an
harmonic oscillator R� C !e

2 � D 0, where

!e
2 D ne2

�0me

(5.31)
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Despite the very artificial nature of the model used in the derivation, this frequency
of coherently oscillating electrons (and also of the oscillating local electric field
E ) is a basic plasma parameter which plays a fundamental role in certain types of
plasma waves (e.g., Langmuir and upper hybrid waves) and affects the propagation
velocity of electromagnetic waves in dense plasmas. It is called the electron plasma
frequency. One also defines an ion plasma frequency !i

2 D ne2=�0mi , and,
combining the two, the plasma frequency !2

p D !2
e C !2

i . However, since !i
2 is

at least three orders of magnitude smaller than !e
2, one also uses the term plasma

frequency for !e .
In our artificial model, the cloud of slightly displaced electrons will oscillate

about the neutral charge position (where �e D �i ) with a frequency !e that only
depends on their number density (5.31). By loosening the initial restrictions and
allowing the particles to be in thermal motion (no collisions and still no magnetic
field), it is possible to estimate the upper limit of the amplitude Amax noting that
the electrostatic oscillation energy must compete with the kinetic energy of the
particles. A reasonable limit should therefore be Amax Š hjvji=!e, where hjvji is
the average thermal velocity of the electrons. Taking into account (5.31) and (4.22),
we introduce the Debye length as another important plasma parameter, which in our
specific example would be equal to Amax:

�D
2 D �0kTe

ne2
(5.32)

Removing the last artificial restriction and allowing the presence of a magnetic
field B will complicate the model of Fig. 5.9 considerably because of the additional
action of the Lorentz force10; one should anticipate that the behavior will be different
for a magnetic field parallel to the x-axis than for a perpendicular field. If we call
�Ce the average cyclotron radius of the electrons, we can write

!c

!e

D �D

�Ce

D 1

c

B
p

.�0nme/
(5.33)

The lower limit of this ratio in the magnetosphere is about 0.001; only in some very
limited regions it may exceed 1. This is an indication that the electrostatic effect in
our simplified model sketched in Fig. 5.9 will in general affect only a small portion
of a typical Larmor orbit in the magnetosphere; the “thermal” motion is then given
by the random cyclotron phases (even for mono-energetic particles)—neglecting the
magnetic field in the derivation of (5.32) was not such an unrealistic choice after all!

10In most plasma physics books, the Debye length and the plasma frequency are introduced at the
very beginning, without any mention of the magnetic field (and often assuming a Maxwellian
distribution). This sometimes confuses the student, especially if the book mainly deals with
magnetized plasmas.
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The requirement that �D 	 scale of the system is usually taken as the very
definition of a plasma. For what follows, we need not concern ourselves with the
detailed mechanism by means of which quasi-neutrality �C ' �� is maintained; we
simply make the assumption that this condition is upheld at all times through some
local mechanism. This is quite similar to what one does in analytical mechanics:
setting predetermined constraints without in any way specifying how such limiting
conditions are physically maintained!

Returning to our center of mass fluid, it is important to be aware of the
relationships between the species’ bulk velocities and the total current:

V˙ D V C m�
q˙

J=�m (5.34)

Carefully note the C and � correspondences. If the negative particles are electrons,
and the ensemble is quasi-neutral, we can write:

n ' nC ' n�

�m ' nCmC
�q ' 0

J D J C C J � ' ne.V C � V �/ ' �neV �
V C ' V and V � ' V � J=ne (5.35)

We now have to come up with a single dynamic equation for the center of
mass fluid. Unfortunately, we cannot simply add algebraically the species-specific
equations (5.21) and (5.22). There are several reasons. First, they contain total time
derivatives, which follow each species of particles traveling with different bulk
speeds in different directions. So we need to break them up into local and convective
operators: d=dt D @=@t C r � V ˙. Second, the pressure tensor components are not
additive either: according to the definition (4.16) and the discussion in Sect. 4.3,
the pressure tensor is controlled by the velocity dispersion of a species of particles
in a frame of reference moving at each point with the bulk velocity V ˙ of that
particular species. It is thus necessary to introduce another entity, a pressure tensor
which for each species links the particles’ velocity distribution with the common
center of mass frame of reference. For that purpose the partial pressure tensor P�̇
is introduced, defined as

P
�
˙ D m˙

Z
f˙.v � V / ˝ .v � V /dv3 (5.36)

in which V now is the center of mass velocity (5.28). Note the algebraic relationship
with the respective species-specific kinetic tensors (4.15) which indeed are additive:

P
�
˙ D K˙ � n˙m˙V ˝ V (5.37)
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Therefore, the partial pressure tensors P
�̇ are legitimately additive for different

species, too.
To accomplish all this, let us go back to Eqs. (5.21) and (5.22) and replace the

original pressure tensors P˙ with their relation to their kinetic tensors and species-
specific bulk velocities: P˙ D K˙ � n˙m˙V ˙ ˝ V ˙ (4.16). We then have

rP˙ D rK˙ � r .n˙m˙V ˙ ˝ V ˙/

One can verify by components that

r .n˙m˙V ˙ ˝ V ˙/ D n˙m˙.V ˙ � r/V ˙ C V ˙Œr � .n˙m˙V ˙/�

Using the continuity equation (5.23) for the last term, we obtain

rP˙ D rK˙ � n˙m˙.V ˙ � r /V ˙ C V ˙
@.n˙m˙/

@t

Inserting in (5.21) and (5.22), rearranging terms and remembering that d=dt D
@=@t C V � r ,

@

@t
.n˙m˙V ˙/ D n˙m˙

dV ˙
dt

� n˙m˙.V ˙ � r /V ˙ C V ˙
@.n˙m˙/

@t

D n˙q˙E � rK˙ C J ˙ � B

With G ˙ D n˙m˙V ˙ as the momentum density of each partial fluid, we finally
have a pair of momentum equations for the two fluids which are indeed summable:

@G C
@t

D nCqCE � rKC C J C � B

@G �
@t

D n�q�E � rK� C J � � B (5.38)

Adding the two equations, we obtain

@G

@t
D �qE � rK C J � B (5.39)

with K D KC C K� the total kinetic tensor of the center of mass fluid. This is the
momentum magnetohydrodynamic equation.

Now we can revert to a true dynamic equation, with a total time derivative that
represents the acceleration of a fluid element in the new model as it flows. This can
be done by starting with (5.39) and “undoing” some of the previous steps, to obtain
the familiar magnetohydrodynamic equation
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�m

dV

dt
D �qE � rP C J � B (5.40)

Note that it looks just as the Eq. (5.18) for one species, but here V is the center of
mass velocity and P D P

�C C P
�� is the total pressure tensor (5.36), sum of partial

pressure tensors (5.37).
At once, with this equation we can retrieve several earlier relations that we have

deduced for conditions of stationary equilibrium. In particular, for a given static
magnetic field and V D const. there are strong restrictions on the admissible particle
distributions of a quasi-neutral ensemble. Remembering relations (A.37) and (A.38)
of Appendix A.1, we can write (5.40) in the form r .P � S/ D 0 or, in general,
the equilibrium between the plasma pressure tensor and Maxwell’s magnetic stress
tensor P D S.

It is easy to extend the center of mass fluid equations to a mixture of particles with
more components than two: if we replace the C and � subindices in the preceding
derivations with the subindex s, we just have to sum everything over s. We end up
with the following list of macroscopic variables for a center of mass fluid of any
number of constituents:

Total mass density: �m D P
s nsms

Total charge density: �q D P
s nsqs (' 0 in quasi-neutrality)

Total current density:
P

s nsqsV s

Bulk or center of mass velocity: V D .
P

s nsmsV s/=.
P

s nsms/

Total momentum density: G D �mV

Total pressure tensor: P D R P
s msfs.v � V / ˝ .v � V /dv3 (sum of partial

pressure tensors).

With these macroscopic variables, the continuity equation (5.29) remains
unchanged, and so does the magnetohydrodynamic equation (5.40).

5.5 Collisions and the Generalized Ohm Equation

It is prudent to take stock of what we have accomplished so far in the develop-
ment of quantitative relationships between macroscopic variables for quasi-neutral
ensembles of electrically charged particles, and the dynamic equations governing
their time changes. Electrostatic forces which may appear on a mesoscopic scale
(the Debye length (5.32), large compared to inter-particle distances but small with
respect to the overall scale of the system) overwhelm the local magnetic field forces
that normally dominate the behavior of a collisionless particle ensemble and prevent
any local charge density fluctuations from growing to a macroscopic scale. This
omnipresent mechanism justifies adopting quasi-neutrality as one of the defining
properties of a plasma.

To arrive at the momentum and magnetohydrodynamic equations we have
followed two possible routes by introducing two models. (1) The model of a
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guiding center fluid ruled by adiabatic theory, restricted to situations in which the
guiding center approximation, gyrotropicity and trapping conditions are valid at
all points of the fluid. (2) A particle or kinetic fluid model that follows directly
from the Vlasov equation (5.1), with no restrictions such as adiabatic conditions.
The latter, however, does not offer the intuitive visualization of “what particles
are really doing at the microscopic level, and why”. Both approaches lead to
identical results wherever the adiabatic conditions are satisfied, and both involve
a distribution function (of six and seven variables, respectively) as the fundamental
physical and measurable quantity at the mesoscopic level. Initially formulated for
just one species of particles, we combined two oppositely charged species into a
quasi-neutral mixture by introducing yet another model, the center of mass fluid.
As a fundamental result we obtained a single center of mass fluid momentum
equation (5.39) and the magnetohydrodynamic (MHD) equation (5.40).

The principal aim of this formalism is to be able to predict or retrodict the
behavior of a given plasma, eventually subjected to some externally controlled
electromagnetic field and particle sources and sinks, which at a given initial time
is found in a given macroscopic state. In more practical terms for magnetospheric
physics, the aim is to develop a mathematical framework that, given some observed
large-scale phenomena such as the trigger and development of a magnetospheric
substorm, an auroral breakup, a sudden energetic trapped particle injection, etc.,
would allow us to pinpoint the ultimate external cause, understand the quantitative
evolution, and formulate associated prediction algorithms. Taken in isolation, the
MHD equation would be useful only to address some oversimplified situations,
where there is an a priori set symmetries and isotropies, absence of collisions,
and a priori imposed equilibrium conditions. In fact, to use it at this stage, the
electromagnetic field vectors must be pre-specified, and all retro-effects on the
plasma on the field must be ignored. The real problem is that we still have too many
unknowns but not enough equations: we have not yet properly linked the MHD
equation with the overall electromagnetic field!

The MHD equation was derived by manipulating the two momentum equa-
tions (5.38) for oppositely charges species. From the mathematical point of view,
we are still allowed to extract one more independent equation from those two, which
explicitly reflects the local interaction between plasma and field. But before we do
so, we shall introduce elastic collision processes (Coulomb scattering) between the
particles of the ensemble, thus dropping yet another of the restrictions imposed at
the beginning of this chapter. Let us call krs the average momentum transfer density
per unit time from the fluid of s particles to the r-particle species. Obviously,
krs D �ksr for elastic collisions. These quantities would then have to be added,
respectively, to each momentum equation (we assume that although particles may
collide with their own kind, there should be no net average momentum transfer
between them). It should be clear, then, that this addition would not affect at
all the procedure followed on page 146 (the extra collision terms would cancel
each other), which means that the MHD equation (5.40) is valid even in presence
of elastic collisions. For our next purpose, however, we have to come up with
a quantitative expression for k; to simplify the argument, we shall do it for a
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quasi-neutral mixture of singly-charged positive ions and electrons. If V i and V e

are the average bulk velocities of ions and electrons, it is reasonable to assume that
kie D C.V e � V i /, where C should be proportional, again on the average, to the
mass density of electrons times their collision frequency 	coll with ions: neme	coll.11

And, for Coulomb interactions, it also should be proportional on the average to the
absolute value of their charge densities e2ni ne , which for charge neutrality amounts
to e2n2. In summary, we can set

kie D 
 e2 n2.V e � V i / with 
 D 1

�
D 	coll

me

e2n
D 	coll

�0!2
e

(5.41)

!e is the electron plasma frequency (5.31), 
 is called the plasma resistivity and �

its conductivity.
We return to the momentum equation as it appears in (5.38) and write it for a

generic species s, adding the collision momentum exchange term ks , which now
represents the total momentum transfer density to fluid s from collisions with all
other constituents. Multiplying all terms by qs=ms , adding over all s and rearranging
terms, we obtain, remembering the expression (4.15) for the kinetic tensor K and
the multispecies expression for the current density on page 147:

@J

@t
Cr

Z
.
X

s

qsfs/v ˝ v dv3

D
X

qs
2ns=ms E C .

X
qs

2ns=msV s/ � B C
X

.qs=ms/ks (5.42)

The integral can be re-written by considering the following relation involving the
partial pressures P�

s (5.36):

X
.qs=ms/P

�
s D

Z X

s

qsfs.v � V / ˝ .v � V / dv3

D
Z X

s

qsfsv ˝ v dv3 C �qV ˝ V � V ˝ J � J ˝ V

This leads us to the weird-looking generalized Ohm equation:

@J

@t
Cr

�

V ˝ J C J ˝ V � �qV ˝ V

�

(5.43)

D
� X

qs
2ns=ms

�

E C
� X

qs
2ns=msV s

�

� B � r
X

qs=msP
�
s C

X
.qs=ms/ks

11It is assumed that the actual momentum transfer can vary with equal probability distribution
between 0 and a maximum of 2neme	coll.
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What we have here is a companion equation to the dynamic fluid equation (5.40),
connecting field sources J and �q internal to the center of mass fluid to the
macroscopic particle ensemble variables V , ns , P�

s and ks . This connection is local,
but the overall connecting agent is the electromagnetic E and B field, which, as
discussed in Appendix A.1, depends on all charges and currents, including those
externally controlled which have nothing to do with the plasma under consideration.
This means that to Eqs. (5.40) and (5.43) we must add Maxwell’s equations
(Appendix A.1, (A.48)–(A.51)) in which the current density J (and the charge
density �q) must also include all external sources, and complete the set with the
conservation equations (5.29) and (5.30).12 Note the distinct character of each one:
(1) The MHD equation controls the dynamics of the particle ensemble—it must be
integrated like any dynamics equation to provide information on temporal behavior.
(2) The generalized Ohm equation binds together local properties of plasma and
field—there is nothing there to integrate, but it leads to the electric field which
then appears in the Eq. (A.53) defining @B=@t . (3) Maxwell’s equations tie together
concurrent behavior at distant points—concurrent in the relativistic sense (however,
retardation ((A.41) and (A.42)) usually plays no role in plasmas of planetary system
dimension). (4) Conservation equations are the “balance sheets” for the movements
of mass and electric charge.

The resulting equation framework is, unfortunately, unmanageable, and we must
first trim some fat from Ohm’s general equation before we can turn to some simple
examples. Instead of first doing a rigorous comparative analysis of the order of
magnitude of different terms under different conditions, our first step will be to
again limit ourselves to electrons and singly charged positive ions, under guaranteed
quasi-neutrality ni D ne D n, �q D n.qi C qe/ D 0 (the term “quasi” meaning
eventual allowance for little departures from charge neutrality within a Debye
domain). Under these conditions, we have the following relations for some of the
coefficients in Eq. (5.43):

X
qs

2ns=ms D e2n
mi C me

mime

D �0.!
2
e C !2

i /

X
.qs=ms/ks D 
e3 n2 mi C me

mime

.V i � V e/ D e2n
mi C me

mime


J

and

X
qs

2ns=msV s D e2n
meV i C miV e

mime

We took into account relations (5.31) and (5.41). Multiplying the generalized Ohm
equation for a two-component plasma by the first factor above, we obtain:

12Equation (5.43) only includes plasma-driven currents (5.9) and (5.15)—herein lies the crux of
understanding correctly the “chicken-and-egg” question of what comes first, B or J?! See also [1].
The set of equations (5.40), (5.43), (5.29) and (5.30) is usually called the MHD equations (plural!).
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mi me

mi C me

1

n e2

�
@J

@t
C r .V ˝ J C J ˝ V /

�

D E C V � B � 
J � mi � me

mi C me

J � B

n e

� 1

.mi C me/

1

ne
r�

meP
�
i � miP

�
e

	
(5.44)

For isotropic pressures pi and pe , the divergence vectors of the partial pressure
tensors become gradient vectors of the respective scalar pressures. As an aside, note
that if instead of ions and electrons we had a positron-electron or an antiproton-
proton plasma (mC D m�), the last two terms in the right side would drop out, and
we would be left with a very simple generalized Ohm equation. Unfortunately, it
is too dangerous to play with such plasmas, especially if 
 ¤ 0, so our next great
simplification will rather be to stick to an ion-electron plasma and take into account
that me 	 mi . Hence, V ' V i , which leads to the following equation (using
(5.31)):

1

�0!2
p

�
@J

@t
Cr .V ˝ J C J ˝ V /

�

D E C V � B � 
J � J � B

n e
C 1

n e
r�

P
�
e

	
(5.45)

For an ion-electron plasma, this reduced Ohm equation has a basic physical
interpretation, namely, that it is equivalent to a dynamic equation for the electron
fluid (with a collision term) as seen from a reference system fixed to, and traveling
with the ion fluid. In other words, we can imagine the ion-electron plasma as a
mass fluid (the ions) and, embedded in it, a massless negative charge fluid (the
electrons) guided by its own dynamic equation, and whose flow confers the main
electromagnetic properties to the coupled system. The transformation of Eq. (5.45)
from the original frame of reference to the ion fluid frame is simple but lengthy
[2]; here we will just ask ourselves how such an equation would look. For that
purpose, we start with an equation of the type (5.18) (plus the collision term).
Calling V � D V e � V i the velocity of the electron fluid, we have J D neV �
and E� D E C V i � B the electric field seen in the frame moving with the ion
fluid, the equation in the moving ion frame should obviously be

ne me

dV �

dt
D � nee.E� C V � � B/ � rP

�
e � 
n2

ee
2V � � ne me.V

� � r /V i

The additional last term is the inertial force density acting on the electron fluid due
to the acceleration of the frame of reference used (motional change in velocity V i ).
Transforming the relevant quantities back to the original frame of reference, leads
indeed to Eq. (5.45)! One might argue whether this invalidates the earlier assertion
that the generalized Ohm equation is not a dynamic equation, but one which brings
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out local relations in the center of mass fluid. It does not, because although it is a
dynamic equation in the ion frame, it describes only a part of the whole system.

We may now venture to discuss some simple examples. First we shall examine
Eq. (5.45), neglecting the left side on the grounds that it is a quantity divided by the
square of the electron plasma frequency. We then can write for the natural system
components of the electric field in the center of mass fluid:

E cm? D E? C V � B D 
J ? C J � B

ne
� r?P�

e

ne

E cm
k D Ek D 
J k � r kP�

e

ne
(5.46)

The quantity E cm? is the electric field seen in the center of mass fluid; the first term
on the right side represents the ohmic resistance field; the second term is the Hall
field (which exists in any current-carrying conductor placed in a magnetic field); and
the third term is called the ambipolar electric field (similar to the field responsible
for the e.m.f. in a battery). We now turn to the MHD equation, which in stationary
state (and charge neutrality) leads to J � B D r?P (P D P

�
i C P

�
e ). Taking this

into account, the transverse component in (5.46) becomes

E? C V � B D 
J ? � r?P�
i

ne
(5.47)

Multiplying vectorially by B=B2, we obtain an expression for the perpendicular
component of the bulk velocity of the center of mass fluid (nearly equal to that of
the ion fluid):

V ? D E � B

B2
� 


B2
r?P � rP

�
i � B

neB2
(5.48)

The first term is the pure electric drift velocity—the velocity a near-zero energy
probe particle would have, and therefore also the velocity of a magnetic field line
(1.38), provided no potential electric fields are present. The second term (with
its sign) is called diffusion velocity and the third term (also with its sign) is the
diamagnetic ion drift velocity (think of the surface currents on the cylinders in
Fig. 5.2!).

Next, we shall neglect the term containing the vector divergence of the total
pressure tensor divided by the number density n in (5.46). This leaves us with the
following pair for the electric field natural components in the center of mass fluid:

E cm? D E? C V � B D 
J ? C J � B

ne

E cm? D 
J k (5.49)

With a little vector algebra we arrive at the following:
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E cm � B D 
neE cm? � 
2neJ ? � J ?
B2

ne

or

J ? D 
neE cm? � E cm � B

B2=ne C 
2ne

We now introduce a series of plasma parameters, particularly important in iono-
spheric physics:

Field-aligned conductivity: �k D � D 1=


Hall coefficient (take into account (1.21) and (5.41):

H D !C

	ei

D B


ne
(5.50)

Transverse conductivity: �T D �=.1 C H 2/

Hall conductivity: �H D �=.H C 1=H/

With these designations, the expression for the perpendicular component of the
current density becomes:

J ? D �T E cm? C �H e � E cm (5.51)

All this, including the parallel equation, can be condensed into one tensor equation

J D � E cm (5.52)

where � is the grand conductivity tensor13:

� D
0

@
�T ��H 0

�H �T 0

0 0 �k

1

A

It is important to note that even in absence of collisions (
 D 0), there is a relation
between the current density and the electric field in the center of mass system: J ? D
ne=Be � E cm. This is why E cm is also called the Hall field. In this case of zero
resistivity, and considering that V ' V i , we can conclude from the second equality
in (5.49) that

0 D E ? C V i � B � .V i � V e/ � B D E? C V e � B (5.53)

13Radio propagation engineers define the Hall coefficient and Hall conductivity with opposite sign.
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But this just tells us that the electric field in the electron fluid is zero in this case! In
other words, a near-zero probe particle in the OFR will drift with the electron fluid.
Calling up the image of moving field lines, in a collisionless plasma magnetic field
lines are “frozen” into the electron fluid.

Our next example will have a further simplification in the reduced Ohm
equation (5.45): not only will we neglect the left-hand side, but by comparing the
order of magnitude of the Hall term (ŒJB=ne� D ŒH
J �, see (5.50) and (5.41)) with
that of the resistive term Œ
J �, we see that it, too, can be neglected when the Hall
coefficient H is sufficiently small (resistivity sufficiently high). And if we neglect
the Hall term, we can also neglect rP=ne, because if we assume a stationary state
dV =dt D 0, we have J � B D rP. In the Maxwell equations, we shall consider
@E=@t D 0, and that there are no external sources of the field. These “fat-cutting”
measures leave us with the following set of equations:

E D 
J � V � B

r � B D �0J

r � E D �@B

@t
(5.54)

Of course, we always must consider r � B D 0, r � B D 0 and r � E D �q=�0 ' 0.
Inserting E into the last equation and taking into account that r�.r�B/ D �r2B,
we obtain the following partial differential equation:

@B

@t
D 


�0

r2B C r � .V � B/ (5.55)

This equation tells us that, under these simplified conditions, the magnetic field in
a resistive plasma can change locally in time because of the local resistivity and
because of the local hydrodynamic flow pattern. It is a relationship that, by the way,
is valid for all conducting fluids!

When the plasma is at rest (V ' 0), (5.55) becomes a regular diffusion equation,
with solutions that have a factor e�t=� , with a decay time � D �0L

2=
 (L: scale
size of the system). In absence of any external sources, the self-generated magnetic
field of a plasma will decay exponentially. Since in Appendix A.1 we have assigned
primary physical “reality” to the currents that sustain a magnetic field, we should
re-state this: in a plasma under these conditions, the currents r � B will decay
exponentially! The physical reason is easy to understand: collisions destroy the
adiabatic behavior of the electrons; they diffuse and “smear out” the equivalent
currents. Consider Fig. 5.2, and suppose that instead of sparsely populated by
cycling particles, the cylinder is filled with denser, colliding ions and electrons. The
boundary equivalent currents r �M are mainly carried by electrons. Collisions with
the ions will disperse them and decrease exponentially the boundary surface current
system. Since there is an overall uniform external field which originally was reduced
inside the cylinder (diamagnetic effect), the total field intensity inside will increase
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back to the external field value. In the picture of moving field lines, originally
outward-displaced field lines will straighten and move back into the cylinder.

The case of zero resistivity (collisionless plasma) in (5.55) should be reconsid-
ered from the beginning. We arrived at this equation by neglecting the Hall term
when compared to 
J . When the latter is zero, we must compare the Hall term with
V �B in the simplified Ohm’s equation. The current density is J D �ne.V e �V i /;
if V ' V i 
 .V e � V i / we can neglect the Hall term in a collisionless plasma,
and (5.55) becomes

@B

@t
D r � .V � B/ (5.56)

This equation tells us that magnetic field flux tubes will move with the guiding
center fluid. Indeed, the time-change of the magnetic flux through a contour whose
points move with the fluid will be

d˚

dt
D

Z

S

@B

@t
� dA C

I
B � .V � dl/ D

Z

S

�
@B

@t
� r � .V � B/

�

� dA D 0

It can be easily shown that any contour on a flux tube will conserve the enclosed flux
while moving with the plasma, thus preserving the identity of the entire flux tube.
This was the feature that led AlfvKen to formulate the concept of “frozen-in magnetic
fields”.

Speaking of AlfvKen, we come to the last example and with it to the end of this
chapter (and the book). It describes a wave process in collisionless plasmas, alluded
to earlier in Chap. 4; however, we will only mention the most basic concepts (plasma
waves deserve an entire book!) Consider a collisionless plasma in equilibrium in a
uniform magnetic field B0 directed along the z-axis under the same conditions as
in the previous paragraph (V D 0I �m D 0). We introduce a small perturbation v

and b perpendicular to the uniform magnetic field. The equations to be used for the
perturbations will be to first order in the perturbations:

�m

@v

@t
D 1

�0

�r � b
	 � B0

@b

@t
D .B0 � r /v (5.57)

If b is directed along the x-axis, v will also be directed along that axis and we can
find two solutions b D b.z/ and v D v.z/ that obey

�m

@v

@t
D B0

�0

@b

@z

and

@b

@t
D B0

@v

@z
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Taking @=@t of both we end up with two wave equations for v and b:

�
@2

@z2
� 1

V 2
A

@2

@t2

�

.vI b/ D 0

with

VA D B0p
�0�m

(5.58)

the AlfvKen velocity, with which any perturbation propagates in a collisionless plasma
in the direction of the originally unperturbed magnetic field. It can be shown
geometrically that in this process the elicited displacement pattern of the field line
is proportional to the pattern of field and velocity perturbation and propagates with
them. AlfvKen waves are commonly interpreted as transverse oscillations of magnetic
field lines. A bit more precisely, AlfvKen waves are transverse fluid oscillations
which, as they propagate in the direction of the main field, distort the field lines
in their oscillatory motion. The oscillatory electric field is perpendicular to the mag-
netic field variations, and both are mutually out of phase by =2, and perpendicular
to the propagation vector. The AlfvKen wave velocity only depends on the local mag-
netic field intensity and plasma mass density; thus there is no dispersion (frequency
dependence) and the wave profile remains the same as it propagates. Historically,
it was soon recognized that the so-called micropulsations of the ground-based
geomagnetic field were standing oscillations of field-aligned AlfvKen waves—
making the magnetosphere a planetary-scale “musical instrument” of vibrating field
lines. At the time of the discovery of these ultra low frequency (ULF) AlfvKen waves,
it was quite difficult to imagine the possibility of a wave propagation process in a
collisionless gas—AlfvKen waves became a prime example of the intricate interplay
between currents and fields in a collisionless plasma. And, as we have mentioned in
Chap. 4, they indeed play a fundamental role in the dynamics of the radiation belt.

In this chapter we just gave a somewhat superficial description aimed at
showing how collisionless plasmas can be understood intuitively by focusing on the
fundamental properties of the adiabatic behavior of charged particles in magnetic
and electric fields. Formal and detailed descriptions can be found, for instance, in
[2] (includes the most important relativistic equations), [3] and [4].

5.6 Epilogue

In his waning days AlfvKen insistently lamented to one of us (JGR) about having
promulgated the concept of “frozen-in magnetic field” and “moving field lines”
too much during the early times of space plasma physics. He fully recognized
that the field line is a purely geometric concept that can be very helpful in
visualizing magnetic field geometry and, in certain situations, its time-changes, but
that this image must be handled with great care. Field lines do not drag plasma,
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nor does plasma drag field lines—plasma moves in response to magnetic and
electric forces acting on currents and charges embedded in the fluid, a process
mathematically described by linking plasma and Maxwell’s equations. It so happens
that under certain circumstances we can visualize in our minds this motion as that
of continuously changing magnetic field lines, co-moving with the plasma or, rather,
its constituent electron fluid (see (5.53)).

As a tribute to AlfvKen, let us end the book with the “grand finale” of a
kindergarten example. Turn back to Fig. 5.2, and assume that now we have a neutral
dense ensemble of 90ı particles evenly distributed in that cylinder, in an external
homogeneous magnetic field B. To avoid undesirable equivalent polarization
charges and other complications, we’ll assume it to be a low-beta plasma (p 	
B2=.2�0/, page 136). The field inside the cylinder B� D B C b will be reduced
in intensity due to the diamagnetic effect of the boundary equivalent currents; the
field topology of the self-field b is in effect that of a solenoid, opposed to B inside.
This means that the total field will exhibit field lines bent somewhat outwards all
along the lateral boundary surface, leaving a reduced flux inside. Now we turn on a
uniform electrostatic field, say, perpendicular into the paper in Fig. 5.2, E ? B.
Obviously, the circling particles will all drift to the right with the same speed
VE D E=B , independent of their energy, mass and charge (Sect. 1.3). Will they
carry with them the magnetic field lines? According to our probe particle definition
of field line velocity (1.38), the answer is no! This definition indeed mandates (see
page 20) that we turn off all contributions from potential electric fields, and examine
the probe particle drift exclusively under the action of the �@A=@t induced electric
field. And, carefully depicting in our mind the rigidly drifting axisymmetric A-
vector field configuration of the equivalent current system, regions of appreciable
�@A=@t will only be found in the vicinities of this moving cylindrical surface
current system. In other words, the plasma will drift to the right in the figure (a
kindergarten version of plasma propulsion motor!) and open its way through the
external B-field lines as if you were walking though a corn field by bending the
stocks around you. Field lines will never detach from the original magnet but just
bend out and snap back as the cylindrical surface current system moves by; this
applies to field lines both outside and inside the cylinder. At no time will this plasma
be carrying any frozen magnetic field lines with it!14

14All this is valid only for a low energy density, i.e., low-beta plasma. At higher densities the
situation changes considerably. For instance, the equivalent current envelope may be intense
enough so that the inner field B� is so weak that the guiding center approximation breaks down
and a kinetic description is necessary; in that case we can no longer talk about a common electric
drift. Moreover, if the boundary current is intense enough, field line loops may appear enclosing
parts of the equivalent current system and indeed move together with the bulk motion of the latter;
this happens with the plasmoids in the magnetospheric tail or the solar magnetic loops that detach
from photospheric loops to form the initial stage of a solar mass ejection. In summary, whether
“magnetic field lines carry plasma” or “plasma carries magnetic field lines” depends entirely on the
characteristics and the dynamic behavior of the currents around which those field lines are wound
(remember that a magnetic field line is always part of a closed loop because of r � B D 0—even
if that closure involves an infinite number of turns or occurs at infinity!).
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