
Chapter 2
Higher Order Drifts and the Parallel Equation
of Motion

2.1 General Expression of the Drift Velocity and Higher
Order Drifts

We are now in the position of defining a charged particle’s guiding center system in a
mathematically more rigorous, less qualitative, way. We shall use the three examples
discussed in the preceding chapter (force drift, electric field drift, gradient-B drift)
and realize that in each one, our implicit “recipe” was to look for a reference frame
moving with velocity V in which, in a plane perpendicular to B, the motion-induced
electric field force qV � B cancels the phase-average of the resultant of all other
forces acting on the particle as it makes one cyclotron turn. We can now generalize
this rule in a more formal way.

First, we should make it clear that all that follows assumes the validity of the
adiabatic conditions, which we write here in more general form in terms of the order
of magnitude of characteristic space and time variations of any field quantity Q:

�C � Q

rQ
(2.1)

�C � Q

dQ=dt
(2.2)

It is important to clearly understand the meaning and consequences of these
conditions. Condition (2.1) tells us that the quantity Q should vary only very little
(in relative magnitude and direction, if it is a vector) along the cyclotron trajectory
of the particle (whose dimension depends on the particle’s perpendicular velocity
for a given magnetic field intensity (1.19)). Concerning the second condition, the
time derivative is a total derivative, i.e., it represents change as seen by the particle.
Therefore, (2.2) tells us that the quantity Q should change only very little (in relative
magnitude or direction) during a cyclotron period (which in the non-relativistic
domain does not depend on the particle’s velocity).
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36 2 Higher Order Drifts and the Parallel Equation of Motion

Fig. 2.1 Magnetic field
configuration on a cyclotron
orbit in the “natural” frame of
reference

Second, we identify the type of forces that in most general terms may act on a
charged particle at point r and time t in its cyclotron motion in the yet-to-be defined
GCS. They are: (1) the external electric field force qE (electric field in the OFR); (2)
a non-electromagnetic external force F (unimportant in magnetospheric physics);
(3) the motion-induced electric field force qV � B (V is the yet-to-be determined
velocity vector of the GCS); (4) the Lorentz force qv� � B (v� is the particle’s
velocity vector in the GCS); and as a new element, (5) the inertial force �mdV =dt

which appears whenever the GCS is an accelerated frame of reference.
Our formal definition can now be formulated in the following way: The guiding

center system is a moving (usually non-inertial) frame of reference in which at any
given time the cyclotron phase average of all forces acting on the particle is zero.
Mathematically:

�
qE C F C qV � B C qv� � B � m

dV

dt

�
� 0 (2.3)

Each term of this equation is a cyclotron phase average of the type

hP i' D 1=2�

Z 2�

0

P.'/d' (2.4)

Refer to Fig. 2.1, in which the origin is the instantaneous guiding center (position rC

in the OFR, (1.25)) and the axes represent the natural frame defined in Appendix A.1
(z-axis along e D B=B; x-axis along binormal b; y-axis along normal n). Since we
are assuming the adiabatic condition (2.1) to apply, we can relate any vector P.r/

on the particle’s cyclotron orbit to its value at the guiding center via a first order
Taylor expansion:

P.r/ D P.rC / C ıP D P.rC / C r ˝ PjT �C (2.5)

where r ˝ PjT is the transposed tensor gradient of P (see (A.34) and footnote on
page 170 of Appendix A.1) and �C D �C .rC ; '/ is given by (1.25). The last term
has components r ˝ P jT �C ji D ˙k@Pi =@xk�C k .
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The first and second term averages in (2.3) are just the electric field and the
external force at the position of the guiding center rC , respectively (hıEi D
hıF i D 0 because only sin ' and cos ' would appear in the integral (2.4)). The
same applies to the third term (V is a quantity characterizing the whole GCS,
not a vector field). In the fourth term, when we replace B.r/ by an expansion
like (2.5), we must take into account that for the vector velocity hv�i D 0 in the
GCS (1.7), so only the “little Lorentz force” qhv�? � ıBi would survive. The fifth
term is an inertial force, which also should be considered a characteristic of the
whole GCS.

The fourth term, qhv� �.r ˝B �C /i requires careful and detailed consideration.
Consider a particle of mass m and electric charge q gyrating with a 90ı pitch angle
in a non-uniform magnetic field, as shown (for a positive charge) in Fig. 2.1. First
we must find the expression of the tensor product. To that effect we note that by
components,

v� D .
q

jqj?
v�? sin ' ; � q

jqj?
v�? cos ' ; 0/

�C D .�C cos ' ; �C sin ' ; 0/

We inserted the ratio q=jqj in order to put in evidence the effect of the sign of the
electric charge.

The components of ıB D r ˝ BjT �C are (A.16):

ıBx D @Bx

@x
�C cos ' C @Bx

@y
�C sin '

ıBy D @By

@x
�C cos ' � �@B

@s
C @Bx

@x

�
�C sin '

ıBz D rxB�C cos ' C ryB�C sin '

Remember that in the natural coordinate system Bz D jBj, @Bz=@z D @B=@s, and
that rB D .@B=@x; @B=@y; @B=@s/ and r � B D 0 (Appendix A.1).

For hv� � ıBi we need the component products qv�
i ıBk and average over

one cyclotron turn. All terms containing cos ' sin ' will average out to zero;
in the remaining terms we will have integrals of the type 1=2�

R
sin2 'd' D

1=2�
R

cos2 'd' D 1=2. The end results are:

qhv� � ıBix D 1

2
q
� � q

jqj
�
v�?�C rxB D �1

2
jqjv�?�C rxB

qhv� � ıBiy D �1

2
jqjv�?�C ryB

qhv� � ıBiz D �1

2
jqjv�?�C

@B

@s
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In vector form, we can write:

qhv� � ıBi D �mv?�2

2B
rB D �M rB (2.6)

The projection of this result perpendicular to B represents the gradient-B force,

f ? D f g D �M r?B (2.7)

which can be interpreted as the cause of the gradient-B drift ((1.45)—see also
below). The parallel component of the average Lorentz force is what is called the
mirror force

fk D �M rkB D �M
@B

@s
(2.8)

This force accelerates and decelerates particles spiralling along a field line into and
away from decreasing or increasing B values, respectively. As we shall see later, it
governs the bounce motion along a field line and is responsible for particle trapping
in the geomagnetic field. Relations (2.7) and (2.8) provide further legitimacy to the
model of a virtual guiding center particle and the concept of its magnetic moment:
any magnetic moment M placed in a non-uniform magnetic field is subjected to a
net force f D r.M � B/ which in our case is D �M rB because of (1.26) and the
fact that M is an adiabatic invariant. One cautionary note is in order: we emphasized
repeatedly that the velocity v�? in the definition (1.26) of the magnetic moment is not
that of the original particle in the OFR, but its transverse velocity in the GCS. When,
in the GCS, this velocity is a function of the cyclotron phase the phase-average must
be taken (see (1.41) and pertinent discussion). From now on, we shall drop the star
supraindex to simplify the aspect of the equations, but we will remind the reader
when necessary to distinguish between OFR and GCS variables.1

In summary, the condition (2.3) defining the guiding center system has now
become

1It is advisable to revisit the above derivation process starting with Fig. 2.1 and relation (2.3). That
process really developed in stages: what the figure intended to show implicitly was a “pre-GCS”
in which the particle was circling free of external forces—i.e., a system which was moving with a
transverse drift velocity, sum of U (1.34) and V F (1.31) and in which the corresponding motion-
induced field force balanced the external field forces. In such a system the particle gyrates with
constant speed v?

� (example of Sect. 1.3). However, due to any inhomogeneity of the magnetic
field, there was another resultant force, the term (2.6), which leads to an additional drift and
the “final GCS”. Now the particle’s transverse velocity v? is no longer independent of ' (see
expression (1.41)), but its cyclotron average is equal to the (constant) velocity in the “pre-GCS”
(see expression (1.42)). It is precisely this average transverse velocity that enters in the definition of
the magnetic moment (1.46). Confused again? Unfortunately, this detail is conceptually important,
especially for the fundaments of plasma physics.
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qE C F C qV � B � M rB � m
dV

dt
� 0 (2.9)

The quantities involved are evaluated at the GC point, not at the original particle’s
actual position in its gyromotion. This equation will lead us to a dynamic equation
of motion for the guiding center, to be discussed in the next section. At this time we
focus on the fact that there is only one drift velocity that satisfies it (multiply the
equation vectorially by B=qB2 and extract V ?):

V D D V ? D �
qE C F � M rB � m

dV

dt

� � B

qB2
(2.10)

This equation displays the four fundamental drifts of a guiding center particle: (1)
the E-cross-B drift (1.34); (2) the force drift (1.31); (3) a gradient-B drift like
(1.46); and (4) an inertial force drift.

For the parallel velocity of a guiding center particle, all we can do is repeat
relation (1.4):

V k D hvki Š vk (2.11)

Our last task is to further analyze the inertial term in (2.10). An apparent
problem arises at once: this term contains the unknown vector V which we are
trying to determine! But there are “unknown unknowns” and “known unknowns”.
This particularly applies to adiabatic theory because of its goal of providing useful
approximations rather than impractical exactitude. If we divide the velocity into the
two vectors V D V k C V ? we have:

dV

dt
D d.V k C V D/

dt
D d

dt
.vke C V D/ D dvk

dt
e C vk

de

dt
C dV D

dt
(2.12)

The second term calls our attention to the fact that the natural coordinate system
(Appendix A.1) is a local frame of reference, that in an inhomogeneous magnetic
field varies from point to point. In the above equation (and many future ones) the
operator d=dt represents the total variation per unit time as seen by the particle,
always consisting of two parts: (i) a variation in time at a fixed point in space, and
(ii) a variation due to the displacement (which can be both perpendicular as well as
parallel to B) while the field is frozen in time: d=dt D @=@t C V � r (the latter
operator being

P
Vk@=@xk). We obtain the following:

dV

dt
D dvk

dt
e C vk

�@e

@t
C .V � r /e

� C dV D

dt

D dvk
dt

e C vk
�@e

@t
C .vk � r/e C .V D � r/e

� C dV D

dt

D dvk
dt

e C vk2 @e

@s
C vk.V D � r/e C vk

@e

@t
C dV D

dt
(2.13)
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Carefully note that this is a purely kinematic/field-geometric equation—it has
nothing to do with the dynamics of the particular particle involved, and might
as well apply to little balls sliding without friction along bent and moving wires
(the field lines)! Since vk D ds=dt , the first term is the “real” guiding center
particle acceleration along the field line, measuring how its actual speed along the
line varies; it is the one we are really interested in. The other terms are inertial
accelerations due to the fact that a particle traveling along a bent and eventually
moving field line experiences additional accelerations; they are important through
the action of the inertial forces they represent. For instance, we recognize in the
second term of the last equality a centripetal acceleration governed by the radius
of curvature RC of the field line in question (because according to (A.15) of
Appendix A.1 @e=@s D �n=RC ); this indeed represents the fact that the guiding
center follows the curved field line in its parallel motion. The third term is an
inertial acceleration that appears if the guiding center has a drift component along
the normal n of the field line; if ıl is an element of the GC trajectory, this term
can be written as vkVD@e=@l . The fourth term is an acceleration due to a time-
change of the direction of the magnetic field (e.g., in rotating field lines). Finally,
concerning the third and fifth term, in most of what follows we will replace V by the
electric drift U (1.34) in order to avoid (to first order) the problem of the “unknown
unknown” mentioned above. This replacement is more than just a convenience: it is
fully justified as a legitimate approximation.

We now insert (2.13) (times the particle mass m) into the corresponding term
on the right side of Eq. (2.10) to obtain the most complete expression of the drift
velocity. With U and V F given by (1.34) and (1.31), respectively, we write it in two
equivalent forms:

V D D e

qB
�

�
� qE � F C M r?B C mv2

k
@e

@s
C mvk

@e

@t

C mvk.V D � r/e C m
dV D

dt

	

D U C V F C mv2?
2qB3

B � r?B C mv2k
qB2

B � @e

@s
(2.14)

C m

qB2
B �

�
vk

@e

@t
C vk.U � r /e C dU

dt

	

The first equality (first two lines) expresses it all as a force drift made up of different
contributions. The two lines in the second equality represent three different orders
in the adiabatic approximation. Specifically, the first two lines show the zero-order
E-cross-B and force drifts (1.34) and (1.31). The third line shows two first-order
drifts:

Gradient-B drift: V G D mv2?
2qB3

B � r?B D �M � r?B

qB
(2.15)
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Curvature drift: V C D mv2k
qB2

B � @e

@s
(2.16)

According to (A.22) in Appendix A.1, in absence of any currents B@e=@s D r?B ,
thus under this special condition, we can combine the last two equations into one:

Gradient-curvature drift: V GC D 1

2

m

qB3
.v2? C 2v2k/B � r?B (2.17)

The fourth line in the second equality of (2.14) contains second and higher order
drifts; in the latter we have replaced V D with its own first approximation, U (for
F D 0). The first term represents the effect of time-dependence of the direction of
the magnetic field; the second represents the effect of a spatial variation of the e

direction.
The last term is of importance in some electric field situations, in particular, for

a stationary magnetic field but varying electric field. Taking into account (1.34), we
obtain the so-called

Polarization drift: V P D m

qB2

@E?
@t

(2.18)

Finally, a few nitpicking remarks about adiabatic drifts. What exactly are
the particle velocities that appear in the general expression (2.14)? We strongly
recommend that the reader review again the statements in the footnote on page 38
and all its implications. Another important point is the following. Carefully observe
how the various terms in Eqs. (2.14)–(2.18) depend on the velocities v? and vk of
the original (real!) particle. Zero order drifts do not depend on them at all, only on
the local B, E and force fields. The gradient-B drift depends on M (see its second
expression in (2.15)), which is an adiabatic constant of motion, i.e., depends only
on the initial transverse velocity of the particle. The curvature drift does depend on
its instantaneous vk. What enters in the remaining higher order drifts is the full drift
velocity itself—but as stated above, for a second order approximation, the known
drift U suffices.

2.2 Motion Along the Field Line and the Energy Equation

Before we discuss the dynamics of guiding center particles in their field-aligned
motion, we should answer a fundamental question: Why does the guiding center
particle actually follow a curved field line? Usually, this is a fact taken for granted,
based on the appearance of a centripetal acceleration term vk2.@e=@s/ in (2.13)
and confirmed by the beautiful pictures of glowing plasma-filled coronal loops.
However, as stated before, this equation is a purely kinematic and field-geometric
one, having to do with the way we represent our guiding center velocity vector in the
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Fig. 2.2 Motion of the GC
along a curved field line:
geometric parameters

natural frame of reference (2.12). A more legitimate proof is the following. Consider
a magnetic field configuration as shown in Fig. 2.2, with a central rectilinear field
line along axis z and a magnetic intensity that increases toward positive z. A
probe particle is placed on a near-by field line with small perpendicular velocity
v?, therefore also with a small gyroradius �C � y.s/. Assuming cylindrical
symmetry around the z axis, the differential equation of the particle’s field line
(see Appendix A.1, footnote on page 164) can be easily derived from the flux tube
property By2 D const: along z:

dy

ds
D � 1

2B

@B

@s
y

Now we determine the trajectory of the GC particle under the drift imposed by the
“little Lorentz force” q.vk � by/ directed along x (into the paper):

V D D q.vk � by/ � B

qB2
Therefore VDy D dy

dt
D vk

B
by

But by D .@By=@y/y D �1=2.@B=@s/y, because of r � B D 0 and the symmetry
around the z axis. Thus, the equation of the GC trajectory will be:

dy

dt
D dy

ds

ds

dt
D dy

ds
vk D �vk

1

2B

@B

@s
y (2.19)

Cancelling the particle variable vk on both sides of the last equality leaves us with
the differential equation of the particle’s magnetic field line! (Footnote, page 164).
In summary, under adiabatic conditions the “little Lorentz force” caused by any
small non-uniformity b of the magnetic field acting on the parallel motion of a
charged particle is always such as to impart an acceleration ? B that makes the
guiding center follow the curved field line.

There is a limit, though, to the property of “following the field line”, imposed
by adiabatic condition (2.2). If �C D vk�C is the displacement of the GC along a
field line during one cyclotron turn, this condition requires that the magnetic field,
including its direction e, change very little along �C . This implies �C .@e=@s/ � 1

or �C � Rf l , where Rf l is the field line’s radius of curvature. For small pitch
angles (vk ' v) the particle velocity must then be v � Rf l=�C . Note that rather
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than a restriction on pitch angles, this is a restriction on velocity or energy: particles
with small pitch angles and too high energy will “fly off” tangentially from their
home field line (happens to trapped particles on sharply bent field lines in the neutral
sheet)! This is equivalent to what happens to energetic particles with pitch angles
� 90ı: when condition (2.1) is violated, they will “fly off” perpendicularly to B

(happens to trapped particles in the vicinity of the dayside boundary)!
We now go back to the guiding center system definition (2.9) and extract the time

derivative of the GC velocity V in its parallel projection:

m
dV

dt
� e D ak D qEk C Fk � M

@B

@s
(2.20)

Then we turn to (2.13) and consider its parallel projection

dV

dt

ˇ̌
ˇ̌
k

D .dV =dt/ � e D ak D dvk
dt

C dV D

dt
� e D dvk

dt
� V D � de

dt

the latter equality because of V D � e D 0. But d=dt D @=@t C .V � r / which leaves
the above equation as

dV

dt

ˇ̌
ˇ̌
k

D ak D dvk
dt

� vkV D � @e

@s
� V D � @e

@t
� V D � .V D � r/e (2.21)

Note carefully that ak is not d 2s=dt2! Inserting (2.21) in (2.20), we finally obtain
the parallel equation of motion of the guiding center:

m
dvk
dt

D m
d 2s

dt2
D qEk C Fk � M

@B

@s

CmvkV D � @e

@s
C mV D � @e

@t
C mV D � .V D � r /e (2.22)

The first line includes zero- and first-order terms in which we recognize the external
forces and the mirror force; the second line contains higher-order terms, corrections
that are the result of field-geometric effects related to the drift velocity.

Let us give just two quick examples for the action of the second order 4th and
5th terms in (2.22) (quick, because they can be neglected in radiation belt physics),
consider Figs. 2.3 and 2.4, respectively. The first one depicts a particle spiralling
about the central line in a nearly uniform magnetic field in a long rotating solenoid.
As viewed from the OFR (which is fixed to the rotating solenoidal field), the particle
is subjected to an induced electric field E i D �.˝ � r/ � B which in turn causes a
drift V D , responsible for the particle corotating with the solenoid (see discussion on
page 19). The term mV D �@e=@t D m˝2r is the centrifugal force leading to a “sling
shot effect” on the GC particle. The second example is a particle spiralling along a
circular field line around a linear current I and subjected to a uniform electric field
parallel to the current, out of the paper. Besides the gradient-B and curvature drifts
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Fig. 2.3 Example of particle
drifting in a rotating solenoid
field

 line

 drift

Fig. 2.4 Example of particle
drifting in the field of a linear
current I with an electric
field along it

perpendicular to the paper, there will be an E-cross-B drift toward the center line,
in the direction of @e=@s. So the 4th term will be ¤ 0, representing an acceleration
as the GC particle drifts into higher B-values.

In absence of any drift, or if all three higher order terms can be neglected, and
if the external forces derive from a scalar potential along the field line W(s), the
parallel equation of guiding center motion is reduced to

m
dvk
dt

D � @

@s

�
MB.s/ C W.s/

�
(2.23)

The guiding center moves along the field line as if it was subjected to a total scalar
parallel potential Pk D MB.s/CW.s/, and one can apply to that parallel motion all
the familiar energy graphs and related methods of mass point mechanics (see next
section).

Finally, there is one more important general equation to be derived. Consider the
instantaneous kinetic energy of a gyrating particle in the OFR:

T D 1

2
mv2? C 1

2
mv2

k

Taking into account relations (1.8), (1.26) and (2.11), we can write for the cyclotron
average:

hT iC D MB C 1

2
mV 2

k C 1

2
mV 2

D (2.24)

In the guiding center particle model, the first term represents the GC particle’s
“internal energy” (cyclotron energy), the second term represents the kinetic energy
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of the GC particle in its motion along the field line, the third term the kinetic energy
in its drift motion. The energy equation refers to the time rate of change of the GC
particle’s average kinetic energy, which we write:

d hT iC

dt
D M

dB

dt
C mvk

dvk
dt

C mV D � dV D

dt
(2.25)

Setting in the first term d=dt D @=@t C vk@=@s C V D � r and replacing dvk=dt

with its expression in (2.22), we have:

d hT iC

dt
D M

@B

@t
CVk.qEk CFk/CV D ��M r?B Cmvk2 @e

@s
Cmvk

de

dt
Cm

dV D

dt

�

The parenthesis appears as part of the expression of V D in (2.14). Extracting
mdV D=dt from (2.13) and then dV =dt from (2.9), the last term of the above
equation turns out to be equal to V D � .qE ? C F ?/, which leaves the energy
equation as

d hT i
dt

D M
@B

@t
C Vk.qEk C Fk/ C V D � .qE? C F ?/

D M
@B

@t
C V � .qE C F / (2.26)

This result is easy to understand intuitively, and again confirms the physical
adequacy and conceptual value of the guiding center particle model.2 The first term
is the power delivered by a changing magnetic field to the internal state of the virtual
GC particle (the cyclotron motion of the real particle); note that it only includes the
local time derivative of B . The agent responsible for the delivery or extraction of
power is the induced electric field associated with the locally changing magnetic
field E ind D �@A=@t (page 176 in Appendix A.1). This induced electric field
acts on the real particle in its cyclotron motion, as sketched in Fig. 1.15.3 Although
trivial, we still must point out that changes in B as seen by the guiding center particle
(i.e., convective changes in an inhomogeneous field V �rB or vk@B=@s) do not enter
in the first term. For instance, a particle drifting in a static magnetic and electric field
like in Fig. 1.21 does experience a varying B-field (in the GCS) because it is driven
into it by the electric drift (otherwise the guiding center particle would follow a
B D const: contour, like in Fig. 1.19); whenever that electric field has a component

2For the relativistic version, use (1.29) as the relation between the relativistic magnetic moment
and kinetic energy.
3When the local time derivative @B=@t is entirely due to changes in the external current intensities,
but not their configuration in space, one usually calls this process a betatron acceleration; if the
current intensities are constant, but their position or distribution changes in space, one calls it a
Fermi acceleration. This distinction is made mainly in astrophysics. However, the particle doesn’t
care about what causes the local field to change!
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in the drift direction (V D � E ¤ 0), it will do work on the particle. Another trivial
but relevant remark: drifts due to the electric field do not play any role in the second
term, because by definition (1.34) their contribution to the total drift V D is always
perpendicular to E . This is particularly important to keep in mind when one deals
with purely induced electric fields in absence of potential electric fields: we must
include the induced electric field in the second term, but only non-electric drifts can
lead to energy change (if they have a component along E ind ). This sometimes is
called drift-betatron, in distinction from the above gyro-betatron.

2.3 Particle Trapping and Parallel Electric Fields

In the previous section we have derived three fundamental and most general
equations that under the adiabatic conditions (2.1) and (2.2) describe the dynamics
of a virtual guiding center particle of given mass, charge, field-aligned velocity
and magnetic moment. For the perpendicular motion, the drift velocity in its most
general form is given by (2.14); we must emphasize again that this drift velocity
does not appear as the result of the integration of a dynamic equation but, rather,
is defined as the result of an averaging process, which then allows the replacement
of the rapidly gyrating original particle by a virtual particle at the guiding center.
For the parallel motion, we do have a real dynamic equation (2.22) determining the
average acceleration of the particle along a field line. As a corollary, a third equation
was derived, giving the average rate of change of the kinetic energy of the guiding
center particle (2.26).

In this section we will focus on the parallel motion along a field line and, for
that purpose, consider cases in which the particle drift is either a priori zero (say,
for symmetry reasons), or negligible with respect to the parallel motion (VD � vk).
For instance, consider the field geometry of a “mirror machine”, shown at right
in Fig. 2.5, with the guiding center particle along the z-axis field line. But here
comes a disappointment: instead of using the laboriously derived dynamic parallel
equation (2.22), we turn to the following relations based on two simple conservation
principles:

Conservation of magnetic moment M : v2?.s/ D 2M

m
B.s/ (2.27)

Conservation of total energy E: v2
k.s/ C v2

?.s/ D 2

m

�
E � W.s/

�
(2.28)

E is the total mechanical energy, W.s/ is the potential energy. The initial conditions
determine the constants: M D Ti=Bi and E D Ti C Wi , in which the subindex i

denotes value of the variable at the initial field line point si .
Of more practical significance are the equivalent equations in the variables v?,

vk and pitch angle ˛ (1.14), and their respective initial values (see Fig. 2.6):
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Mirror machineDipole

Fig. 2.5 Two fundamental types of trapping magnetic field geometries

Fig. 2.6 Change of v? and vk vectors along a magnetic field line

v2?.s/ D v2
i

sin2 ˛i

Bi

B.s/ (2.29)

v2
k.s/ D v2

i

�
1 � sin2 ˛i

Bi

B.s/
� � 2

m

�
W.s/ � Wi

�
(2.30)

sin2 ˛.s/ D sin2 ˛i

Bi

B.s/

�
1 � W.s/ � Wi

Ti

	�1

(2.31)

Note that the function v?.s/ (and therefore the perpendicular kinetic energy
T?) is governed only by the local magnetic field intensity B.s/ (and the initial
conditions)—it cannot be influenced by external forces! To change it, the conser-
vation of magnetic moment M has to be violated, e.g., by scattering or resonance
with cyclotron-resonant waves.

Our first example will be one in which field-aligned forces are absent, i.e., when
magnetic field lines are equipotentials: W.s/ D Wi D const:, T D const: and

v D
q

v2? C v2
k D const:, and with no time variations of B. Equation (2.31) is now

sin2 ˛.s/ D sin2 ˛i

Bi

B.s/ (2.32)
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The pitch angle ˛.s/ increases toward higher B.s/ values and becomes �=2 when

Bm.sm/ D Bi

sin2 ˛i

(2.33)

Bm is the mirror field and sm a mirror point of the particle on the field line. Field
line points on which B > Bm are off limits: the guiding center particle stops
instantaneously at sm (vk D 0 there, with all the motion in cyclotron mode: v? D v),
and then reverses its sense. To understand why the GC particle doesn’t just slow
down and stop dead, we must turn to the parallel equation (2.22), which in this
particular case is simply m dvk=dt D �M @B=@s: it is the mirror force (2.8) that
turns the particle around in its parallel motion. If we inject a particle with a 90ı
initial pitch angle at any point s of a field line, this initial point will also be a mirror
point and the mirror force will start accelerating the particle along the field line
toward lower B-values. Note that for an equipotential field line, the mirror point field
intensity Bm is an adiabatic invariant because at such point the transverse velocity
in the definition of M (1.26) is equal to the constant velocity v.

In general, in field configurations like the dipole field or a mirror machine in
Fig. 2.5, there are two mirror points on either side of any initial point si : as a
particle reverses its parallel motion at a mirror point, it will move toward lower
B values, which will pass through a minimum (see below) and increase again; as
a consequence, another mirror point may eventually be reached. The end result of
all this is that a guiding center particle is trapped, bouncing back-and-forth between
two conjugate mirror points. The bounce period of a particle trapped between two
mirror points sm and s0

m on an equipotential field line will be, according to (2.30),

�b D 2

Z sm

s0
m

ds

vk.s/
D 2

v

Z sm

s0
m

ds�
1 � B.s/=Bm

� 1
2

(2.34)

The integral is extended along the field line between mirror points located at s0
m and

sm, where the field intensity Bm is given by (2.33). The integral

Sb D 1

2
v �b D

Z sm

s0
m

ds�
1 � B.s/=Bm

� 1
2

(2.35)

is the half-bounce path, i.e., the rectified path of the original cycling particle between
one mirror point and its conjugate. Note that it is a purely field-geometric quantity,
independent of the particle in question. We can think of it as a function of space,
a scalar field Sb.sm/ representing the rectified inter-mirror-point path of a trapped
particle mirroring at that point. Unfortunately, even for simple field geometries like
a dipole field, the integral in (2.34) and (2.35) cannot be expressed in analytical,
closed form and in practice must be calculated numerically. In Sect. 3.1 we will use
the following relationship which will help overcome the numerically annoying fact
that the integrand in the above relations has an integrable singularity at the mirror
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points:

Sb D I C 2Bm

@I

@Bm

ˇ̌
ˇ̌
f l

(2.36)

where

I D
Z sm

s0
m

�
1 � B.s/=Bm

� 1
2 ds (2.37)

This function, whose integrand is the inverse of the integrand in (2.35) is easier
to calculate numerically. Moreover, it is directly related to the second adiabatic
invariant, as we shall show in the next section. The derivative with respect to Bm

in (2.36) is to be taken on I as a function of the mirror point field intensity Bm

on the given field line. Notice that not only the integrands of (2.35) and (2.37) are
functions of Bm but also their integration limits, and that Sb > I always.

Another notable point on a field line is where B has a local minimum: the pitch
angle there will be minimum, too, whereas vk will be maximum. In a dipole or
dipole-like field, the minimum-B point is called the field-line’s equatorial point
(whether or not its geographic latitude actually is zero.) Note that in absence of
parallel forces all trapped particles on a field line must transit through it. For this
reason it is preferentially chosen as a fundamental reference point and origin for
the curvilinear coordinate s (with positive values increasing toward the North in
the geomagnetic case). Instead of ˛ we shall work with the pitch angle variable
� D cos ˛, commonly used in magnetospheric physics for reasons that will become
apparent later. Equations (2.32) and (2.33) referred to the minimum-B point of a
field line will now be:

�2.s/ D 1 � .1 � �2
0/

B.s/

B0

and Bm D B0

1 � �2
0

(2.38)

By definition, at a minimum-B point @B=@s D 0; in its neighborhood the
function B.s/ can be approximated as B.s/ ' B0 C1=2as2, where a D @2B=@s2 at
s0. Near the minimum-B point the parallel equation of motion (2.22) now becomes

m
dvk
dt

D �Ma s (2.39)

which indeed looks like that of an harmonic oscillator with a constant k D Ma.
If we inject a GC particle with a 90ı pitch angle at the minimum-B point, it will
stay there in an equilibrium position (just cyclotron circling—remember that for the
time being we are ignoring any drifts, but if we do take them into account, the GC
particle will stay on a minimum-B surface even if the latter is slightly warped).
If the pitch angle is slightly less than 90ı, the particle will bounce in harmonic
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field-aligned motion between very close-by mirror points4 with a bounce period
derived from (2.39):

�b D 2�

r
m

Ma
� 2�

p
2

v

r
B

a
(2.40)

The second near-equality is justified because v? � v in the expression of the
magnetic moment M . Note that this period (or the bounce angular frequency
!b D 2�=�b) to first order only depends on the local magnetic field geometry and
the particle’s (mostly transverse) velocity. Under the adiabatic condition (2.2), the
bounce period is always much larger than the cyclotron period (1.20), �b � �C .
The half-bounce path Sb D 1=2 v�b is independent of the particle and it, too,
is much larger than the Larmor radius under adiabatic condition (2.1). Note the
apparently curious fact that even a 90ı equatorial particle does have a finite bounce
period and a half-bounce path—but that’s the same thing as a mechanical oscillator
in equilibrium position having a non-zero fundamental frequency despite being at
rest! It can be shown that for near-equatorial particles, a D B=RC

2, where RC is
the field line curvature at the equatorial point. The bounce path (2.35) and bounce
period are then:

Sb D �
p

2RC or �b D .2�
p

2=v/RC (2.41)

Finally, there will always be points on a field line beyond which a particle is lost
(intersection with the ionosphere in the geomagnetic field, maximum-B point in the
coils of a mirror machine, Fig. 2.5). This leads to the concept of loss cone ˛L at
point s, which in absence of field-aligned electric field and forces has an aperture

sin2 ˛L.s/ D B.s/

BL

(2.42)

where BL is the magnetic field intensity at point sL where the field line intersects
the ionosphere (or passes through the coil in a mirror machine). At any point of a
field line in the examples of Fig. 2.5 there will be always two loss cones, one for
direction Cs and one for �s. If there is complete hemispheric symmetry of the field
intersections with the ionosphere, or for a mirror machine along the z-axis, the two
loss cones will be equal.

Our second example will consist of a geomagnetic dipole-like field line with
a parallel electrostatic potential V.s/ (again, please do not confuse this symbol
with drift velocity!). Now we must use the more general Eqs. (2.29)–(2.31). The
right-hand side of the third equation consists of two factors, .sin2 ˛i =Bi /B.s/,

4This justifies the entire discussion in Sect. 1.6 of equatorial particles: even if their pitch angles
deviate a bit from 90ı, during their drift they will always be tied to an equilibrium position on the
minimum-B surface.
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P

Fig. 2.7 Field parameters
and particle loss cone in the
northern hemisphere of a
terrestrial field line

which is the value of sin2 ˛.s/ in absence of parallel forces, and an energy-
dependent correction function Œ1 � q.V .s/ � Vi /=Ti �

�1. Under these circumstances
the expressions of the bounce period (2.34) and half-bounce path (2.35) have to
be appropriately modified and the position of the mirror points sm will be energy-
dependent, solution(s) of the following equation directly derived from (2.31):

B.sm/

B�
m

D 1 � q
.V .sm/ � Vi /

Ti

(2.43)

In this expression B�
m D Bi =.1 � �2

i /, the mirror point field intensity in absence of
field-aligned forces.

Let us examine the case in detail. The result of Eq. (2.31) (which always should
be compromised between 0 and +1) may “go wrong” in two ways, representing an
off-limits place for the particle. First, it could be > 1 because of too large values of
B(s) (as it happened in our previous discussion of mirror points regarding (2.33)),
or because of the energy-dependent correction function. Second, it could turn out
< 0 because of this correction function between brackets. We shall discuss these
situations in more detail.

First, to the mirror points. Refer to Fig. 2.7; at point P (arc-length si from the
equatorial point) a particle is injected with kinetic energy Ti and pitch angle ˛i

traveling toward the Earth. L is the intersection with a loss region where the potential
is VL. First assume that qVL > qVi , which corresponds to a force directed toward
the equator, away from L (for electrons, it would be an electric field directed toward
the Earth). If Ti < q.VL � Vi/, according to (2.31) the value of sin2.˛L/ would be
negative, i.e. the point sL would be inaccessible to the particle. This means that all
particles through P, even those with a 0ı pitch angle, would mirror before reaching
the loss region—turned around by the combined action of the electric force and
the mirror force. On the other hand, if qVL < qVi (parallel electric force directed
toward the loss point L), sin2.˛L/ > B=BL and the loss cone at P will be bigger than
in absence of the electric field. Thus, in general terms, decelerating potentials will
narrow the loss cone (maybe even eliminate it), while accelerating potentials will
widen it. This has important consequences for the action of an auroral mechanism
which in general involves the generation of a field-aligned electric field directed
from the ionosphere toward the equatorial point of a field line (qVL > qV.s/), in
both hemispheric branches of the field line.

Under an earthward-directed parallel electric force an interesting situation may
arise for particles injected from P toward the equator (vki < 0), i.e., away from
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Fig. 2.8 Case of a particle
trapped between two mirror
points in the same
hemisphere, for certain
conditions of the field-aligned
electric field

Lost in 
southern hemisphere

Lost in
northern ionosphere

= const
Trapped

Fig. 2.9 Background of a
v?; vk map, for charged
particles at a given point P of
a centered dipole field line,
showing loss-cone angle and
constant kinetic energy
contours. Cvk points to the
northern hemisphere

the ionosphere. An examination of relation (2.31) shows that for certain V ’s and
Ti ’s, the correction function may win over the other term .sin2 ˛i =Bi/B.s/, and
the particle may reach a mirror point before it crosses the equatorial point of the
field line. In other words, a particle may be trapped on the same hemispheric side
of a field line (see sketch in Fig. 2.8)! This indeed can happen to electrons under
auroral electric field conditions. Positive ions, on the other hand, traveling under
these electric field conditions upwards from the ionosphere decrease their pitch
angles; bundles of ions from the upper ionosphere accelerated and focused along the
field line because of this process are called “conics”. In Sect. 3.3 we shall mention
a region of the dayside magnetosphere near the boundary where the magnetic field
has a slight secondary maximum on the equator, where particles can be trapped in
high-latitute pockets on the same side of the equator.

A useful representational device are the so-called velocity maps in which a
guiding center particle is represented as a point, and on which directional particle
fluxes (see Sect. 4.1) can be mapped and key regions and their delimitations
identified. For instance, in absence of any external forces, the velocity map of a
particle injected at a point P of the field line would look as shown in Fig. 2.9. This
figure is drawn for a given guiding center position on a field line of a pure dipole,
and shows constant kinetic energy T and pitch angle ˛ contours; trapping and loss
regions are also indicated. One point on the map represents a particle with a given
pair of velocities v?; vk at that guiding center position on the field line.

This map becomes more interesting when the field line is no longer an equipo-
tential. Let us combine (2.29) and (2.30) into the following equation, for the case of
a field-aligned electrostatic potential V.s/:

v2
k.s/ D v2

ki C v2
?i

�
1 � B.s/

Bi

� � 2q

m

�
V.s/ � Vi

�
(2.44)
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Trapped electrons 
and protons

Precipitating 
electrons and 
protons

Precipitating 
electrons
Trapped 
protons

Fig. 2.10 Limiting curves
for earthward moving
electrons and ions on a v?-vk

map

v2
k.s/ will now be equal to zero at mirror points due to the combined action of

a mirror force and an electric field force; these points always separate an allowed
segment of the field line from an off-limits one. In our example, for particles starting
from si toward the Earth, we have B.s/ > Bi and qV.s/ > qVi ; for particles starting
toward the equator, reverse the inequalities.

The regions of the velocity map representing particles which either mirror or
precipitate will be separated by a curve of points v?, vk for which at sL the value
of (2.44) is v2

k.sL/ D 0. For electrons, the equation of this separatrix (Fig. 2.10) is
given by

v? D
s

v2
k C 2jqj=m.VL � Vi/

.BL=Bi � 1/
(2.45)

Notice in the figure the two regions separated by the hyperbola branch given by
this equation: (i) the upper region of initial v?; vk values, for which the electron
will mirror as it travels toward the Earth before it precipitates into the ionosphere
at L; (ii) the lower region of initial values for which the electron accelerated by
the electric field will precipitate. The asymptote of the hyperbola branch shown
represents the loss cone in absence of any field-aligned electric field. Note that even
electrons with an initial 90ı pitch angle (vk D 0; v? D v�

?) can be drawn into the
ionosphere and precipitate. For positive ions, Eq. (2.45) will have a negative sign in
front of 2jqj and the separatrix is a conjugate hyperbola, as shown in broken line
in Fig. 2.10. Ions that would have been lost in absence of an electric field will now
mirror before reaching the ionosphere as the result of a concerted action of electric
and mirror forces.

Our next task is to examine what will happen to electrons initially traveling in
the opposite direction, i.e., toward the equator (decreasing s, vki < 0). Those are
the particles which, as mentioned above, will be decelerated by the external force
and may have a chance, under specific conditions, of mirroring before reaching the
equator, i.e., of being trapped within one hemispheric branch of the field line. The
separatrix between these two regions is given by the curve that corresponds to initial
v? and vk values for which the electron mirrors exactly at the minimum-B point,
i.e., at B0. Replacing B.s/ and V.s/ in (2.44) by B0 and V0, respectively, and taking
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Mirror before
reaching 
equator

Pass 
through
equator

Fig. 2.11 Same as Fig. 2.10, for equatorward moving particles

Lost in south
ionosphere

Toward South                 Toward North

III
III

IV
V

Trapped on same
side of equator

Lost in north ionosphere after
mirroring before equator

Lost in north ionosphere

Stably trapped between
north and south mirror points

Fig. 2.12 Sketch of characteristic regions in a v?; vk map, for electrons injected at a northern
hemisphere point of a centered dipole field line with an ionosphere-to-equator directed parallel
electric field. The separatrix curves are given by (2.45) (hyperbola) and (2.46) (ellipse), respec-
tively. For explanation, see text

into account that now B.s/ < B0 and V.s/ < V0, we obtain for the case vk0 D 0:

v? D
s

2jqj=m.Vi � V0/ � v2
k

.1 � B0=Bi /
(2.46)

The curve is now the quadrant of an ellipse (Fig. 2.11). For initially mirroring
electrons (vki D 0) and for which v?i < v��

? , there is another mirror point before
they reach the equator. For locally field-aligned electrons (v?i D 0) for which
vki < v��

k , there is a mirror point, too, before they reach the equator!
It is very instructive to “play” with these velocity maps and learn how different

forms of electrostatic potential, electric charge of particles, degrees of field asym-
metries and initial positions and kinetic energies group the particles into different
classes with respect to their parallel motion along a field line (see also Fig. 1 in
[1]). As a final example, we combine the upward and downward injection cases of
electrons in a symmetric dipole-like field under auroral electric field conditions into
just one velocity map in Fig. 2.12. This sketch is drawn for electrons passing through
a field line point in the northern hemisphere. Carefully observe the properties of
five distinct classes. In a real case, regions I, II and III would be empty, except
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for backscattered electrons; region IV is a class all by itself, consisting of electrons
trapped within the northern half of the field line. Region V includes all stably trapped
electrons with mirror points in both hemispheres. It is a good exercise to draw a
similar map for positive ions on auroral field lines.
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