
Chapter 1
Particle Drifts and the First Adiabatic Invariant

1.1 Introduction: Adiabatic Theory and the Guiding Center
Approximation

The equation which describes the motion of a particle of charge q and mass m in
a magnetic field B, under the action of an electric field E and an external non-
electromagnetic force F , is given by

d

dt

�
m
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dt

�
D q

�
dr

dt
� B C E

�
C F 1 (1.1)

The solution r D r.t; r0; v0/ represents the position of the particle as a function of
time t , initial position r0 and initial velocity v0. Equation (1.1) is described from
a given inertial frame of reference which we henceforth call the original frame of
reference (OFR) (also called the laboratory system).

The solution of (1.1) may represent a very complicated trajectory. For instance,
cosmic ray particle orbits in the geomagnetic field usually are of such nature. But
under certain conditions of field geometry, external forces and particle energy like
those prevalent in the radiation belts during geomagnetically quiet times, standard
periodicities appear which then allow a simplified description if one is not interested
in the actual instantaneous values of the phases in question, that is, if only average
or approximate positions of the particles are wanted. There can be as many as
three distinct types of periodicities: (i) the cyclotron motion, a periodicity in the
particle’s motion perpendicular to the magnetic field; (ii) the bounce motion, a
periodic motion up and down a magnetic field line; and (iii) the drift motion, a
periodic motion on a closed surface or drift shell, made up of field lines. Periodicity

1We shall use rationalized SI (Système International) units throughout this book. q is thus
expressed in Coulombs (elementary charge D 1:6021 � 10�19 Coulombs), B in Tesla (D 104

Gauss)—see Appendix A.1.
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2 1 Particle Drifts and the First Adiabatic Invariant

Fig. 1.1 Cyclotron motion
along a field line

(i) is always the first to appear and has the highest frequency. It may exist even in
absence of (ii) and (iii). For instance, when a not-too-high energy cosmic ray particle
approaches the earth in the polar regions, it may have a clear-cut cyclotron motion
but no other periodicity. Bounce frequencies are usually orders of magnitude lower
than cyclotron frequencies; drift frequencies are orders of magnitude lower than
bounce frequencies. Any magnetic field in which particles have the capability of
bounce motion (ii) is called a trapping field. If, in addition, periodicity (iii) may
occur, we say that it has a configuration of stable trapping.

Cyclotron motion qualitatively represents a helical motion of the particle around
a field line (Fig. 1.1). In more precise terms, we say that cyclotron motion exists
if at any instant of time we can find a (moving) frame of reference in which an
observer sees the particle in a nearly circular periodic orbit, nearly perpendicular
to the magnetic field (with single periodicity at least during a few cycles). If such
a frame of reference can be found, we say that the guiding center approximation
holds, and we call this particular frame of reference the guiding center system
(GCS). The geometric center of the orbit is the guiding center; the (average)
radius �C is called Larmor radius, cyclotron radius or gyroradius. The period
associated with the cyclotron motion (time to complete one turn) is called the
cyclotron period �C . If no reference frame can be found in which the orbit is
periodic and closed, there is no cyclotron motion. This happens with very high
energy cosmic rays in the earth’s field. Note carefully that these are rather qualitative
descriptions, and that �C and �C are quantities defined in the yet-to-be-determined
GCS.

With the terms “nearly circular”, “nearly periodic”, “nearly perpendicular” we
mean that any deviation from “exactly. . . ” is very small in relation to the order
of magnitude of the variable in question. Such approximations are typical for the
adiabatic theory of particle motion, about which we may state in “kindergarten
terms” that it provides correct answers only as long as “we don’t look too close
and are not expecting too detailed information”. A more precise definition and
description of the conditions under which adiabatic theory is useful will be given
further below.

In the OFR we can picture the motion of a charged particle as the superposition
of a displacement of its guiding center with a cyclotron rotation of the particle about
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Fig. 1.2 Guiding center C , cyclotron radius �C and phase angle '

OFR

Fig. 1.3 Cyclotron orbit during one turn �C . The little orbital displacement vectors ır D vıt

add up to the vector �r in one turn. �r=�C in the limit ıt ! 0 defines the guiding center system
velocity V . The position rC of the guiding center is defined as the cyclotron-average of the particle
position vector r during one turn. In all this it is assumed that adiabatic conditions prevail, i.e., that
�r � hr � rC i and �C � �t , a characteristic time interval of “practical interest”

the guiding center. By definition, the instantaneous velocity of the guiding center
is that of the GCS. The actual position r of the particle can thus be specified by
the position rC of the guiding center C, and a cyclotron phase angle ' in the GCS
(provided the radius of gyration is known, Fig. 1.2). In many problems dealing with
magnetically trapped particles, knowledge of the cyclotron phase is unimportant
and the guiding center description is all that one needs. But forgetting ' completely
would lead to nasty mistakes!

Considering Fig. 1.3, it is reasonable to define the instantaneous guiding center
velocity vector V as the average of the particle’s instantaneous velocity vector v in
the OFR over a cyclotron period:

V D hvi� D 1=�C

Z �C

0

v dt 2 (1.2)

2For the time being we’ll just consider �C as a priori known. As we shall see in the next section,
in a non-relativistic situation �C is independent of the particle’s dynamic state, depending only on
mass, charge and the local magnetic field.
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In adiabatic theory it is customary to divide the GC velocity into two components
with respect to the direction of the local magnetic field (the natural coordinate
system, Appendix A.1), each one of which behaves physically in a very distinct
manner: V D V ? C V k. The perpendicular velocity V ? of the GCS is called the
particle’s drift velocity V D:

V D D V ? D hv?i� (1.3)

because it represents the velocity with which we see the particle “drift away” from
the initial field line in the OFR. Likewise, the parallel velocity V k is the average of
the particle’s instantaneous parallel velocity vk. However, contrary to what happens
with vector v?, whose direction turns a full 2� during one cyclotron period, the
parallel velocity vector changes very little, and we can write

V k D hvki
�

Š vk (1.4)

Quite generally, the cyclotron-averaging symbol h . . . i� represents the integral
operator 1=�C

R �C

0 . . . dt .3

Finally, the position vector of the guiding center is the cyclotron average of the
particle’s position vector (Figs. 1.2 and 1.3):

rGC D hri� (1.5)

In the GCS (starred quantities), the particle’s instantaneous velocities parallel and
perpendicular to the magnetic field are, respectively,

v�k D 0

v�? D v? � V D (1.6)

By definition, for the particle velocity vector in the GCS:

hv�?i� D 0 (1.7)

For the moduli:

v�?2 D v?2 � 2v? � V D C VD
2

hv�?2i� D hv?2i� � VD
2 (1.8)

3Later we will run into the cyclotron phase average operator, h . . . i' D 1=2�
R 2�

0 . . .d' D
1=�C

R �C

0 . . . .d'=dt/dt . When the cyclotron motion in the GCS is uniform, both operators are
identical and will be designated as h iC D h i� D h i' . A compilation of all phase averages used
in this book is given in a footnote on page 186 of Appendix A.3.
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The latter equation tells us that 0 � hv�?2i� � hv?2i� . In particular, when the
magnitudes hv?2i� and hv�?2i� coincide, VD D 0, i.e., there is no drift. Less
trivially, when hv?2i� D VD

2 we have v�? � 0 and there is no cyclotron motion:
the particle follows, at least locally, an “uncurled” trajectory in the OFR (an example
will be discussed in the next section).

For the magnetic and electric fields in a moving GCS the following transforma-
tions apply:

B� D B

E� D E C V � B (1.9)

Notice that only the perpendicular part V D of the GCS velocity V contributes to the
induced electric field term in (1.9). We have used non-relativistic transformations in
anticipation of the fact that, for all practical radiation belt and plasma configurations
VD � c (velocity of light)—even if the particles themselves may be relativistic.

Expression (1.9) is particularly important. It indicates that for any given point
in a B; E field one can always find a moving frame of reference for which the
component of E perpendicular to the local B has been “transformed away”, i.e., in
which E�

? D 0 at that point (if both B and E are uniform over a finite domain, one
can find one common frame for all points therein). This fact plays a fundamental
role both in adiabatic theory and plasma physics.

The velocity U of this special frame at point r (in the OFR) and time t can be
obtained by multiplying vectorially the second equation of (1.9) by B:

U .r ; t/ D E � B

B2
(1.10)

U.r; t/ D E?
B

(1.11)

Note that, again, only the perpendicular component E? intervenes in these relations.
Ek survives transformation (1.9) intact.4

There are different types of drifts (1.3), which appear under different well-defined
circumstances. They can be classified into various groups according to whether
they depend on the dynamic variables of the particle or according to the restrictive
conditions that have to be imposed to guarantee their validity. We shall discuss each
group independently on the basis of particular examples.

4In regions where B ! 0 (e.g., near a neutral line) the concept of “transforming away E
?

” breaks
down. See page 18.
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1.2 Uniform Magnetic Field; Basic Definitions; Magnetic
Moment

As the most basic example we consider a charged particle in a uniform, static
magnetic field, in absence of any external forces. We rewrite (1.1) in the form:

dp

dt
D qv � B (1.12)

where p is the particle’s momentum, and v its velocity in the OFR. The right hand
side is called the Lorentz force; it is always perpendicular to the particle’s velocity.
Therefore, in absence of non-magnetic forces, the speed v and the kinetic energy T

remain constant. We can write (1.12) in the form

ma D qv � B (1.13)

which also holds relativistically because m D const in this particular case. Also B

is constant in space and time. The angle between v and B

˛ D arccos
vk
v

D arcsin
v?
v

(1.14)

is called the particle’s pitch angle. For the parallel component of (1.13) we have:

mak D qjv � Bjk � 0

This means the motion of the particle projected along a uniform magnetic field is
rectilinear uniform. Since jvj D const, we also conclude that

v? D const. (1.15)

˛ D const. (1.16)

For the perpendicular component of (1.12) we can write ma? D qjv � Bj?. The
acceleration a? is therefore always perpendicular to v? and its magnitude

a? D q

m
v?B D const. (1.17)

in view of (1.15).5

5Henceforth, whenever the charge q appears in the expression of a scalar quantity as a
?

, it will
be meant to represent the absolute value of q (unless explicitly stated to the contrary). If on the
other hand q appears in the expression of a vector quantity, it is assumed to carry its actual sign;
otherwise it will be explicitly written as jqj.
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This means that the particle’s motion projected on a plane perpendicular to the
magnetic field is circular uniform and a? is the centripetal acceleration.

In the case under discussion, the GCS moves along the magnetic field with
velocity

V k D vk D const. and V ? D 0 (1.18)

In the GCS, v? D const and the particle trajectory is a circle with a gyroradius that
can be obtained from (1.17):

�C D v�
?

2

a?
D mv�

?
qB

D p�
?

qB
(1.19)

We have used the starred quantity v�? to re-emphasize the fact that the gyroradius
�C is defined in the GCS (in the particular case under discussion, though, v� D v

because VD � 0.) Notice that, in view of the factor q in (1.13), positive and negative
particles have mutually opposite senses in their cyclotron rotations.

Associated with the particle’s cyclotron motion, we have the cyclotron period
(defined in the GCS like �C ):

�C D 2��C

v�?
D 2�m

qB
(1.20)

and the cyclotron angular frequency

!C D 2�

�C

D qB

m
(1.21)

Expressions (1.19)–(1.21) are valid relativistically, provided one considers m as the
relativistic mass m D m0� (m0 rest mass; � D .1 � ˇ2/�1=2I ˇ D v=c). In the non-
relativistic case, !C and �C are independent of the particle’s velocity, depending
only on the field intensity and the class of particles (q=m); in other words they are
a function of space (a scalar field). This fully justifies the definition of the drift
velocity (1.2) as an average over cycle time. Using (1.14), it is useful to express
(1.19) and (1.20) in the form:

�C D m0c

q

1

B
ˇ� sin ˛ (1.22)

�C D 2�m0

q

1

B
� (1.23)
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Fig. 1.4 Positive and
negative particles in a
uniform field

For electrons and protons, respectively, the constant factors have values:

m0c

q
D 1:705 � 10�3 and 3:13 (Tesla�m)

2�m0

q
D 3:57 � 10�11and 6:56 � 10�8 (Tesla�s)

From now on we shall deal mainly with non-relativistic (� D 1) cases. It is possible
to express the gyroradius in vector form taking into account (1.19) and (1.21):

�C D � m

qB2
v� � B D � 1

!C

v� � e (1.24)

where e D B=B is a unit vector in the direction of B (see Appendix A.1). The
vector �C points from the guiding center to the particle . The instantaneous position
of the guiding center of a particle of velocity v at point r thus becomes

rGC D r C m

qB2
v� � B D r C 1

!C

v� � e (1.25)

Since during one cyclotron turn the vector hv�i� D 0 (1.6), we have rGC D hri� ,
as defined earlier.

The motion of a charged particle in a uniform magnetic field is circular helicoidal.
Positive particles spiral clockwise around the field lines if we look at them in a
direction opposite to B; negative particles spiral counter-clockwise (Fig. 1.4). When
the pitch angle is 90ı, vk D 0 and the motion is perpendicular to B; the particle has
cyclotron motion only and stays on a circle forever. In that case, the GCS coincides
with the OFR. If ˛ D 0, there is no cyclotron motion at all; the particle moves
along a straight field line. Notice that in general �C is not the radius of curvature of
the particle’s trajectory in the OFR (this is true only if ˛ D �=2). For a helicoid,
the radius of curvature RC is always greater than the radius of the cylinder around
which the helicoid is wound (RC D �C = sin2 ˛ D �C .v=v?/2).

As viewed from the GCS, the cyclotron motion of a charged particle about the
guiding center is equivalent to a circular electric current loop with radius �C and
intensity I D jqj=�C D q2B=.2�m/ of the same direction for both positive and
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I

Fig. 1.5 Magnetic moment
M and angular momentum l

of positive and negative
particles

negative particles, Fig. 1.5.6 The associated magnetic moment M D IıS is directed
opposite to B, of magnitude M D I��C

2 D mv�
?

2=2B D p�
?

2=.2mB/ (1.19).
Thus we can write:

M D �mv�?
2

2B

B

B
D � p�?

2

2mB
e D �T �?

B
e

M D mv�
?

2

2B
D p�

?
2

2mB
D T �?

B
(1.26)

The expression of the transverse kinetic energy T �? D 1=2mv�
?

2 is valid only for
the non-relativistic case. It is important to emphasize that v�

? is the modulus of the
transverse velocity in the GCS.

In its cyclotron motion, the particle also has an angular momentum or spin about
the guiding center l D m�C �v� directed opposite to B for a positive charge and in
the same direction for negative particles (Fig. 1.5). Taking into account (1.19) and
(1.26) we can write:

l D �m2v�?
2

qB
e D 2

m

q
M (1.27)

Although we have defined (1.26) and (1.27) for the case of a uniform B

field in absence of other forces, they are of general validity and, indeed, of
crucial importance: M and l are constants of motion within the guiding center
approximation, i.e., adiabatic invariants. In other words, the magnetic moment
M and the spin l are intrinsic parameters associated with a particle in cyclotron
motion. This is the reason why in the Introduction we talked about replacing the
original particle with a virtual particle, normally called “guiding center particle”
or “magnetized charged particle” of the same mass m and charge q, but in which
the “averaged-out” cyclotron motion is represented by just one vector: the magnetic
moment M (or the intrinsic angular momentum l ) which we mentally picture as
being attached to the GC particle. What we lose in this “remodeling” process are

6Yet another model is to imagine the charge q smeared evenly over the cyclotron circle in the GCS,
rotating uniformly with period �C . See page 23.
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the details of the cyclotron motion, specifically, the cyclotron phase of the original
particle (angular coordinate of the particle in its cyclotron motion, Fig. 1.2). The full
kinetic energy of the particle can be retrieved from the value of M and the local B

(1.26), plus the parallel GCS velocity Vk. The overall condition for the validity of
the guiding center particle model is that the requirements for the GC approximation
apply, i.e., that it is possible to identify a frame of reference (the GCS) in which
the particle executes a closed-orbit periodic motion (for a more precise definition of
the GC approximation, see next section). In the case of Fig. 1.4, a GC particle just
moves straight up or down along the magnetic field line with a velocity V k equal to
the parallel velocity of the parent particle.

It is important to note that for the external field’s magnetic flux ˚ through the
cyclotron orbit in the GCS (see (1.26) and (1.27)),

j˚ j D ��C
2B D �.m2v�

?
2
=q2B/ D .2�m=q2/M D .�=q/l (1.28)

Consequently, ˚ is also an adiabatic constant of motion.
The expression (1.28) can be used for a “kindergarten”-level demonstration of

the conservation of the magnetic moment M (non-relativistic case). Suppose that
in the field configuration under discussion (90ı particles in a uniform B-field), the
magnetic field intensity changes in time very slowly, so that �C � B=.dB=dt/.
According to Faraday’s law, the induced electric field E I will change the transverse
kinetic energy of the particle during one cyclotron turn by ıT �? D q

H
E I ds D

q d˚=dt (absolute values only). To first order (in which we consider �C constant),
the change per unit time will be (first equality in (1.28)): dT?=dt ' ıT �?=�C D
q =�C .d˚=dt/ D T �?=B .dB=dt/—therefore, T �?=B D M D const. In essence,
this means that in the above cyclotron loop model, the current I is a closed current
with the well-known property of a superconducting system to react (driven by the
induced electric field) to any change of the magnetic field in such a way so as to
maintain constant the flux ˚ through its own loop. Thus a cycling particle will
adjust its cyclotron orbit so as to preserve ˚ , hence its magnetic moment M (as long
as the variation of the magnetic field satisfies the adiabatic condition). Although we
have shown this for the simplest magnetic field configuration possible, it has general
validity: the particle doesn’t care why the flux through its cyclotron orbit changes—
only that it does!7

When the particle velocity is relativistic, it can be demonstrated that the quantity
that is conserved is the relativistic magnetic moment

7In Hamiltonian mechanics (e.g., [1]) of point charges in a magnetic field, it is demonstrated that
for cyclic variables like the arc l (see Fig. 1.5) the so-called canonical path or action integral J DH

.p C qA/ � dl is a constant of motion for a single particle (provided that the fields and the forces
change very little during one cycle). Taking dl in the direction of a positive particle (Fig. 1.5)
and carefully considering that, therefore, the magnetic flux through the cyclotron loop

H
A � dl

is negative, we have Jc D H
.p C qA/ � dl D 2��C mv�

?

� ��C
2B D .2�m=q/M , therefore

M D const:
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Mr D p�?
2

2m0B
D 1 C �

2

T �
r?
B

(1.29)

where m0 is the rest mass and T �
r? the perpendicular relativistic kinetic energy (Tr D

m0c
2.� � 1/ D m0v

2�2=.1 C �/). Since the rest of the book deals mainly with
non-relativistic particles, some of the principal equations can be easily converted
to relativistic ones by replacing the magnetic moment, wherever it appears, with
its relativistic expression (1.29) and the kinetic energy with the relativistic kinetic
energy Tr (for a full relativistic treatment of adiabatic theory, see [2, 3] which also
shows the full relativistic expressions of the most important relationships).

Speaking of relativity, it is interesting to briefly examine the cyclotron motion
of a charged particle from the quantum physics point of view. The stronger the
magnetic field, for a given transverse velocity of the particle the higher will be
its cyclotron frequency (1.21) and the smaller its gyroradius (1.19). For ultra-
high intensity fields, quantum mechanics must be applied in the description of
the cyclotron motion; this situation is of importance in the theoretical study
of particles trapped in the magnetic field of a neutron star or black hole. The
magnetic field intensities in the environment of such an object may be as high
as 106 � 1011 Tesla. Consider Heisenberg’s uncertainty relation �x�px � „=2

(„ D Planck’s constant=2� D 1:05 � 10�26 J). If as a meaningful maximum order
of magnitude we insert for �x the gyroradius (1.17) and for �px the product
mv?, taking into account (1.27) the uncertainty relation gives a lower limit for
the GC particle’s angular momentum: l � „=2. In other words, zero is not an
option and the intrinsic angular momentum of a GC particle in a magnetic field
is quantized. As a matter of fact, the quantum energy levels (called Landau levels,
[4]) of an elementary charged particle gyrating in an intense magnetic field B turn
out to be

En D q„
m0

.n C 1

2
/B n D 0; 1; 2;. . .

This leads to energy levels of the order of hundreds of keV to thousands of MeV,
for electrons trapped in extreme magnetic environments. It also means that the
cyclotron frequency is quantized:

!n D qB

m0

.n C 1

2
/ n D 0; 1; 2;. . .

Considerations of quantum spin of the original particle and relativistic effects
complicate somewhat the picture, but are outside the scope of this book.
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1.3 Zero-Order Drifts

We now consider the case of a charged particle in a uniform static magnetic field
under the action of an external non-magnetic, non-inertial, interaction force F

which is constant in time and space. We divide the force into two components F k
and F ?, parallel and perpendicular to B, respectively. The equation of motion (1.1)
can be split into the following pair:

dpk
dt

D F k

dp?
dt

D F ? C qv? � B

The first equation tells us that the particle is accelerated along the field line in a
“conventional” way by F k. Let us assume for the time being that F k D 0 (i.e. F D
F ?). This means that the particle will have a constant velocity vk along the field
line and so will the GCS. Thus we only need to determine the GCS’s perpendicular
velocity or drift velocity, which we call V F . This is the instantaneous velocity of
a frame of reference in which the particle executes a circular motion. To find V F ,
we will use the “trick” of creating a motion-induced electric field E� (1.9) in a
moving frame of reference such that the external force is balanced out by a force
qE� D qV F � B:

qE� C F �? D qV F � B C F ? D 0 (1.30)

Multiplying vectorially by e=qB , where e is again the unit vector in the direction of
B, we obtain

V F D F ? � e

qB
D F � e

qB
(1.31)

V F is called the force drift. Since F k does not affect (1.31), this expression is also
valid in the more general case when F k ¤ 0.

As viewed from the OFR, the particle has a cyclotron motion (that in the GCS)
plus a translation with constant velocity V F given by (1.31), plus a translation
parallel to the field line. If both F k and vk are zero, the resulting motion is a cycloid
in a plane perpendicular to B (Fig. 1.6). Notice that V F is always perpendicular to
both B and F . The particle thus “reacts” perpendicularly to the external force and
no average work is done on the particle during its drift motion under the present
condition of a uniform field, although in the OFR, the kinetic energy of the particle
changes periodically in its cyclotron turns; in the GCS, however, the perpendicular
velocity is v�? D const. Positive and negative particles drift in mutually opposite
directions. Most importantly, V F is independent of the particles’ mass and energy.
It is called a zero order drift because the only condition for its validity is that the
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Fig. 1.6 Drift V
C

F in a homogenous magnetic field B under a force F
?

Fig. 1.7 Physical cause for the existence of a force drift

extension of the uniform field domain be large enough to allow the particle to
execute its cyclotron or spiral turns undisturbed (domain 	 �C ). Note that for a
force field, zero order drifts are a function of position r only—a vector field. We
cannot independently impart some arbitrary zero order drift to a particle as an initial
condition.

One can easily understand the physical reasons for the drift of a charged particle
under the action of a constant external force, perpendicular to B. As sketched in
Fig. 1.7, the kinetic energy of a particle in the OFR is not constant; during one
cycloid turn, the particle is alternatively being accelerated (larger radius of curvature
�—do not confuse with Larmor radius!) and decelerated by the external force F —
v? is not constant during one turn (see below). It should be clear that in this case
the magnetic moment cannot be defined in the OFR.

If the external force is not constant but derives from a general force field
F D �rW (W : force field potential), (1.31) still is valid. Let us assume that
Fk D 0 everywhere, which means that the magnetic field lines lie in electrostatic
equipotential surfaces. The force-drift velocity (1.31) is tangent to such an equipo-
tential surface and the guiding center of a 90ı pitch angle particle will thus follow
an equipotential line in a plane perpendicular to the uniform field B (Fig. 1.8). This,
however is true only under the assumption that the variation of W over a gyroradius
is very small with respect to the particle’s kinetic energy:

�W�C � T (1.32)

This in turn implies that

VF D F

qB
� v? (1.33)
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Fig. 1.8 Force drifts along a
force-equipotential line

Fig. 1.9 Electric drifts in
homogeneous B and E fields

The particle will execute many overlapping cyclotron turns as it drifts along a
W D const curve.

The most important kind of external force is the electric field force qE . The
only non-electric external force of interest would be gravitation; it plays a role for
plasmas in stellar environments but none in planetary magnetospheres. However, as
we shall see later, there are inertial forces of importance (virtual non-interaction-
based forces arising in an accelerated frame of reference). With an electric field, the
drift velocity (1.31) becomes

V E D E � B

B2
D U (1.34)

This is called the “E-cross-B drift”, for which we shall always use the letter U . Note
the crucial fact that the electric charge has canceled out; both positive and negative
particles drift in the same direction with the same speed, regardless of their mass and
energy (Fig. 1.9). This common electric drift U is identical to the velocity (1.10) of a
frame of reference in which the perpendicular component E? has been transformed
away. It should come as no surprise, for in our case this is, indeed, the frame of
reference in which there are no forces other than the Lorentz force acting on the
particle—the very definition of the GCS! The fact that U is a drift velocity common
to all particles confirms its fundamental role as the bulk velocity of the ensemble
of particles that constitute a plasma. In contrast, the charge-dependent force drift
(1.31), and other drifts which we shall introduce later, give rise to electric currents
in a plasma (Chap. 5).
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Fig. 1.10 OFR parameters
for an “E cross B” drift

1.4 Examples of “E Cross B” Drifts; Uniform Magnetic
Field of Time-Dependent Intensity

It is instructive to examine the motion of a charged particle in uniform B & E fields
as viewed “under a magnifying glass” in the OFR. Consider Fig. 1.10. The uniform
magnetic field is directed out of the paper, and vk D 0. We assume only the direction
of U as known, but not its modulus. Call vP and vQ the velocities along the x axis
of the particle at points P and Q, respectively (consider one of these velocities as
given). We will have, from (1.6) and with v� D v�? D const::

vP D v� C U

vQ D v� � U

On the other hand, we have the following energy relation:

1

2
m.vP

2 � vQ
2/ D qE 2�C

Therefore, with (1.19)

U D E

B

which is identical to (1.11). But in this case we have not used in any way the
transformation (1.9).

The gyroradius �C (1.19) can be expressed as a function of vP or vQ:

�C D m

qB

ˇ̌
ˇ̌vP � E

B

ˇ̌
ˇ̌ D m

qB

ˇ̌
ˇ̌vQ C E

B

ˇ̌
ˇ̌

Note that this is not the radius of curvature of the trajectory in the OFR!
It is interesting to compare the total forces acting in the OFR on the particle at P

and Q, respectively:

jfP;Qj D qvP;QB 
 qE D qv�B
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Fig. 1.11 Special case of an
“E cross B” drift

Both relations represent the constant magnitude of the Lorentz force in the GCS.
The different radii of curvature of the orbit at P and Q in the OFR arise from the
difference in particle velocities at these points (1.35):

RP;Q D mv2
P;Q

fP;Q

D m.v� ˙ U /2

qv�B
D �C

�
1 ˙ U

v�

�2

Notice that if U D E=B D 1=2 vP , we have v� D U and RQ D 0; the
trajectory is the limit of an open cycloid (Fig. 1.11). This shows that a particle can be
instantaneously at rest in the OFR and yet possess cyclotron and drift motion!8 On
the other hand, if U D E=B D vP , we have v� D 0 and RQ D 1; the trajectory
in the OFR is a straight line (in the GCS the particle is at rest!). In this case, in the
OFR, the Lorentz force is balanced out by the electric field force at all times (the
principle of a velocity spectrometer!).

Returning to the kinetic energy, in the GCS the particle’s T � is constant, as is its
speed v�. The cyclotron-average kinetic energy transverse to B in the OFR will be
hT?i D 1=2mhv2?i. Taking into account that v? D v�? C U (we reintroduce the
subindex ? because what follows is valid in general, also for vk ¤ 0), and that by
definition (see (1.3) and (1.6)) hv?i D U and hv�?i D 0, we have

hT?i D T �? C 1

2
mU 2 (1.35)

To consolidate the understanding of the electric drift velocity (1.34) (answering
for instance the question: When B ! 0, what does it really mean that the guiding
center races away with VE ! 1?) we discuss another simple but illustrative
example of possible detailed configurations of charged particle trajectories in a
uniform B&E field. Consider the case of positive particles injected one after
another with the same initial velocity vi , as shown in Fig. 1.12 (B ? E ? v).
While each particle is traveling, B (and E) are held constant; initially, the magnetic
field is large. Then B is decreased before the next injection. This process is repeated
until B reaches zero.

8If we place a charged particle in a B&E field with zero initial velocity (for instance, by ionizing
a neutral atom at rest), it will start moving in an open cycloid (Fig. 1.11), with a drift velocity U

given by (1.10) and a Larmor radius �C D mE=qB2. The maximum kinetic energy of the particle
(at point P) will be T D 2m.E=B/2 D 2mU 2, and the average energy, according to (1.35), will
be mU 2. This so-called “ion pick-up” process plays an important role in space physics.
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Fig. 1.12 Set-up for particles
injected with constant
velocity vi into a E ? B

field, in which E D const.
and B is gradually being
decreased to zero

Region C  Region B  Region A

Region A

Point R

Region B 

Point S

Region C   

Fig. 1.13 Top: Larmor radius
�C as a function of jBj for the
example of a charged particle
of given initial velocity vi

injected perpendicularly into
uniform B and E fields.
Definition of characteristic
regions and points discussed
in the text. Bottom: Sketch of
typical orbits in the OFR for
characteristic regions and
points. Not in scale!

Let us analyze in detail the cyclotron and drift motions of the particles, as they
are injected into smaller and smaller magnetic fields. From (1.35) we have

�C D m

qB

ˇ̌̌
ˇvi � E

B

ˇ̌̌
ˇ (1.36)

(bars because �C > 0 always!). Figure 1.13 (top) shows the graph of the function
�C D �C .B/.

Consider the distinct regions A, B and C, and the “notable points” R and S, where
BR D 2E=vi and BS D E=vi , respectively.

Region A: For large B’s the drift velocity (1.10) and the Larmor radius (1.19) are
very small and the particle behaves adiabatically, turning many times before drifting
away (see Fig. 1.13, lower graph). As the B decreases, the gyroradius and the drift
velocity U increase. In the GCS, the particle velocity v� decreases.

Point R: The Larmor radius reaches a maximum; in the GCS the velocity v� D U

and in the OFR the particle trajectory becomes the limit of an open cycloid, with



18 1 Particle Drifts and the First Adiabatic Invariant

cuspidal points at which the particle comes momentaneously to rest (see footnote
on page 16).

Region B: As the B field decreases further, the gyroradius begins to decrease.
The drift velocity continues to increase and the trajectory is an open cycloid with
increasing “wavelength” and amplitude—the drift U wins over the velocity vi . In
the GCS, the particle velocity v� continues to decrease, and the cyclotron circles
become smaller and smaller.

Point S: In the GCS the cyclotron circle has been reduced to a point: the particle
is at rest, v� D 0! In the OFR the particle moves in uniform rectilinear motion with
speed U (the velocity spectrometer effect mentioned above).

Region C: As the magnetic field intensity continues to decrease, the drift
speed increases further, and in the OFR the particle follows an open cycloid with
decreasing amplitude and wavelength. However now it is a cycloid turning upwards
from the injection point, into the direction of E . In this regime the GC velocity is
larger than the particle injection velocity; the GCS “races away” from the particle to
the right in the figure. An observer in the GCS will in turn see the particle initially
moving to the left, being at the lowest point of a circular motion.

The domain c . E=B . 1 deserves special attention. Would this really
represent a relativistic or “transrelativistic” situation for the GCS? What is the
physical meaning of such apparent nonsense? Obviously we have a breakdown
of the very concept of guiding center. Let us not forget that the GC is a purely
geometric feature and that the “GC particle” is a virtual artifact, a useful model,
product of our imagination—the only physical reality is the original cycling particle!
The drift velocity U is also a geometric concept, mathematically tied to the original
particle. All this can be summarized by stating that the restriction for the validity of
zero-order drifts is that the spatial domain of the B & E field be much larger than the
gyroradius �C of the particle. More specifically, if Ltrans and Lp are the extensions
of the field domain transverse and parallel to the particle drift U , respectively, the
conditions for adiabatic behavior in a uniform E-cross-B field are

�C � L or v � qB

m
Ltrans

Nturns 	 1 or U D E

B
� qB

2�m
Lp (1.37)

In the second equation Nturns is the number of cyclotron turns when the particle
drifts the length Lp . When according to (1.36) �C becomes large enough but the
conditions of validity still hold, the particle could, indeed, be accelerated by the
E field to relativistic velocities before the Lorentz force wins and the particle turns
over and enters a deceleration phase. For a B-value strictly zero, we simply have the
case of a particle under the action of just one force (qE ), and the trajectory becomes
a parabola in the non-relativistic domain.

The example discussed above shows that what must be used in the expression of
M (1.26) and l (1.27) is the perpendicular velocity v� of the particle in the GCS, not
in the OFR where the transverse velocity of the particle v? is variable. For instance,
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in case S above (B D E=vi ), �C D 0, and M and l are both zero! On the other
hand, a particle injected into a B&E field with zero initial velocity does have a non-
zero magnetic moment M D mE2=2B3 (the “ion pick-up mechanism” mentioned
in the footnote on page 16—best argument yet that the transverse velocity in the
definition (1.26) of M is not the velocity in the OFR!). It is important to emphasize
again that zero order drifts are independent of the particle’s energy as long as the
physical domain of uniform fields is large enough (1.37).

Our next example of E cross B drift, of particular conceptual importance in
magnetospheric plasma physics, is that of the drift of a guiding center particle in
a purely induced electric field (time-dependent magnetic field, no charges present
anywhere)

V ind D E ind � B

B2
D �@A

@t
� r � A

jr � Aj2 (1.38)

(see Appendix A.1). The first obvious case should be that of a stationary uniform
magnetic field, whose source current system moves rigidly with constant velocity
V 0 with respect to a frame of reference at rest (the OFR). No electric charges are
present. A 90ı pitch angle charged particle would be subjected to an induced electric
field drift velocity given by (A.57) of Appendix A.1; in other words, it would drift
with the moving frame velocity and thus obviously remain part of the magnetic field
system. Notice that this time we have appealed to the vector potential and Maxwell’s
equations rather than simply using the postulated rule of field transformation (1.9).
Although we only considered a uniform magnetic field in pure translation here,
the same procedure applies to rigidly rotating fields like the internal geomagnetic
and planetary fields (neglecting external magnetospheric currents): at each point
there will be an induced electric field and associated zero-order drift velocity (1.38),
which in this case is called corotational drift, causing all trapped particles to corotate
with the planet. Of course, additional drifts (see next sections) will complicate the
picture. In the case of Earth, the corotational electric field will have a significant
effect only on very low energy particles (e.g., the constituents of the plasmasphere),
but in the magnetospheres of Giant Planets it plays a very important role even for
relativistic electrons of their radiation belts.

As another example of induced electric field drift, we consider a long circular
solenoid with a time-dependent current (Fig. 1.14). We again shall assume the scalar
potential to be zero (no free electric charges present); the vector potential will be that
of relation (A.56) of Appendix A.1, directed as shown in the figure and of magnitude
A D B r . We now inject a 90ı pitch angle particle of energy or magnetic moment
such that �C � R, radius of the solenoid. If nothing else happens, its guiding
center will remain at rest. Now we adiabatically increase the current in the solenoid,
such that PB > 0. An induced electric field will appear as shown in Fig. 1.14,
given by (A.58). Independently of its mass, charge and energy, the particle will
drift toward the center of the solenoid with an induced drift speed of Vind D PB r .
Due to the conservation of magnetic moment (1.26), its energy will change at a
rate dT =dt D M PB—i.e., in this example, gradually increase. A whole ensemble
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Uniform
field

Cyclotron
orbit

Soleoid intersection

Fig. 1.14 Configuration of the vector potential A and the induced electric field E ind in a solenoid
field which decreases in time

of particles trapped in the increasing uniform field would thus be energized and
compressed toward the axis.

This example allows us to introduce the concept of field line motion (e.g., [5])
in a phenomenological way. Because the preceding process affects all ˛ D 90ı
charged particles equally regardless of their nature, if we “paint” a given initial field
line by placing such particles all along it, they will all drift together and remain
on a common field line (see first corollary at the end of Appendix A.2) in a way
governed exclusively by what happens to the magnetic field (its sources) time-wise.
It is thus possible to declare the “painted” field line to be the same as the initial one
and adopt (1.38) as the ad hoc operational definition of velocity of the point of a
field line. Although we only have considered the oversimplified case of a uniform
magnetic field, it can be shown that the property of remaining on a common field
line applies to any changing magnetic field configuration—as long as there are no
potential electric fields (r � E � 0 everywhere) and no parallel electric fields are
present (@A=@t � B � 0).9 For the general case, we also must add the condition of
near-zero energy (T ! 0) for the probe particle, to avoid the action of other drifts
(see following sections), which are all energy-dependent. Note that the above ad hoc

9Without the first condition we would run into the undesirable situation of having “moving field
lines” in a static magnetic field crossed by a static electric field, as for instance in the case of two
oppositely charged plates placed parallel to B in the gap of a magnet. It can be shown that the
above definition is not only independent of the particular position of the guiding center along the
field line but that it is magnetic flux-preserving (i.e., flux tubes preserve their identity). There is
nothing artificial with a definition using probe particles placed along a field line: after all, as we
know from elementary textbooks, the electric and magnetic field vectors themselves are formally
defined by forces on probe particles! Neither is the condition that all � be turned off artificial: in
elementary electromagnetism books, the self-field of probe charges are also “turned off” (ignored).
While it is tempting to exaggerate the physical significance of a purely mathematical-geometric
concept such as a field line, we must never lose sight of the fact that the only “physical reality” in
electromagnetism is mutually interacting electrically charged matter. Here are some perhaps too
strong words from Richard Feynman: “ . . . not only is it not possible to say whether field lines
move or do not move with charges—they may disappear completely in certain coordinate frames
. . . ” (see [6]).
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To axis

Deceleration

Acceleration

Fig. 1.15 Single cyclotron
orbit dynamics in a gradually
increasing B-field

definition of moving field line is valid even in a vacuum situation; note also that thus
defined, it is always perpendicular to the field line in question—a parallel field line
velocity cannot be defined in a physically meaningful way (although we may well
imagine it, for instance, for the field of a long solenoid being transported parallel to
its axis). The reason for using terms like “to declare” and “ad hoc” is related to the
fact that, as mentioned in Appendix A.1, a physical distinction between the potential
and inductive contributions to an electric field as required prior to use of (1.38) is
not possible through a single measurement operation (we would “have to know”
the system a priori, or probe it through an experimental protocol by turning off all
electrostatic sources).

Finally, we take advantage of the above very simple example to present a
better “microscopic” view of the cyclotron acceleration (or deceleration) process
ultimately responsible for the conservation of a particle’s magnetic moment under
adiabatic conditions. Looking with a magnifying glass at the particle in Fig. 1.14
in the OFR, we see it gyrating in an induced electric field more explicitly shown
in Fig. 1.15. Notice that since the A-vector increases linearly with r , the particle
will be alternatively accelerated and decelerated, with the acceleration phase always
winning a bit in our example. This causes both the drift toward the axis and the
gradual increase in kinetic energy, and is why, in reality, the orbit shown in Fig. 1.15
is not closed in the OFR. Now we can come up with a more convincing analytical,
less kindergarten-like, proof of the conservation of magnetic moment—albeit only
for a very simple field configuration. In the figure and according to the discussion
on page 176 of Appendix A.1, the magnitude of the induced electric field will be
Eind D PA D PB.r C �C cos '/, where ' is the cyclotron phase as measured from
the lower point of the orbit. In addition to the near-constant transverse Lorentz force
qv�B , in the case of a varying magnetic field there will be a tangential electric force
ft D q PB.r C �C cos '/ cos ', varying from positive to negative during one half-
turn. Although under adiabatic condition this tangential force will be much smaller
in magnitude than the Lorentz force, the near-circular motion of the gyrating particle
is not uniform. The work of this tangential force during a half-turn, i.e., the kinetic
energy gain of the particle, turns out �T D R �

0
ft �C d' D q PB�C

2 �=2. Dividing
by �C =2 we obtain the change of kinetic energy per unit time of the gyrating particle
in a time dependent (increasing) uniform field: PT D 2�T =�C D 1=2mv2 . PB=B/ or
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. PT =T / D . PB=B/, which if integrated gives T=B D M D const. (1.26). In a similar
way one can easily figure out the induced drift of the gyrating particle toward the
central axis of the solenoid.

As an interesting addendum to this proof we note that if at time t there are several
particles of identical velocities on a common cyclotron orbit like the one shown in
Fig. 1.15 (i.e., having only different phases), a simple dynamic calculation shows
that they would not be on common orbits at later times except at times tn after
intervals that are integer multiples of the cyclotron period: tn D t C n �C . We will
find a similar behavior in the case of other periodicities of adiabatic motion (bounce
and drift).

1.5 First Order Drifts

We now drop the assumption of a uniform magnetic field. Gradients in the magnetic
field (assumed constant in time) cause first order drifts which are energy-dependent.
A magnetic field is inhomogeneous when any of the components of the gradient
tensor @Bi =@xk (Appendix A.1) are non-zero in some region of space. There are
different kinds of field gradients from the geometrical point of view which play quite
distinct roles in adiabatic theory. For the time being, we work only with the vector
gradient of the modulus B , which we denote by rB . Its components are of course
related to those of the tensor gradient (see relation (A.35) of Appendix A.1). We
divide this vector into two components, parallel and perpendicular to the magnetic
field, respectively (see Appendix A.1, (A.20) and (A.19)):

rB D r?B C rkB

Each component has a distinct effect on the guiding center motion.
In this section we examine the effect of the perpendicular gradient r?B . In

Appendix A.1 (A.21) and (A.15) it is shown that in a current-free region in which
r?B ¤ 0, all field lines are curved; in spite of this, we shall ignore field line
curvature for the time being (as we shall see in Sect. 1.6 this is fully justified for 90ı
pitch angle particles in the equatorial (minimum-B) surface of a trapping magnetic
field). We shall also assume condition (1.39) to apply: the magnetic field varies very
little over the Larmor radius of the particle. If rB is the modulus of the gradient of
B and B=rB is a characteristic length for the change of B , the adiabatic condition
can be written in the following equivalent ways:

�C � B

r?B
I r?B � jqjB2

mv?
(1.39)

Let us inject a 90ı pitch angle particle with velocity v? into a field with
(almost) straight field lines and a perpendicular gradient (Fig. 1.16). We realize
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Fig. 1.16 Showing the
physical reasons for the
gradient-B drift of a positive
particle

Fig. 1.17 Cyclotron orbit in
the GCS in a non-uniform
field

that there must be a drift to the right: for a positive particle the field at points
P, R, . . . is weaker than that at points Q, S, . . . , causing an alternating change of
the radius of curvature of the particle orbit (note carefully that the orbit in the
figure is drawn “stretched-out”; because of condition (1.39), the particle really
turns many times before appreciably drifting away from the initial position). We
now want to find the general expression for the corresponding gradient-B drift
velocity V G , i.e., the perpendicular velocity of the GCS. First, we note that the
particle must move with constant speed v? in the OFR (rather than in the GCS
as happens with force drifts), since there are no external non-magnetic forces
acting. As we did in the case of a zero order drift in a uniform B&E field,
we shall use the motion-induced electric field trick. Let us assume that the GCS
indeed moves to the right with velocity V G as intuitively shown in Fig. 1.16.
The particle velocity in the GCS is v� (we drop the obvious subindex ?); but
now the motion-induced electric field E� D �V G � B (1.9) will alternatively
accelerate and decelerate the particle. Therefore, its speed in the GCS will not be
constant: the motion in the GCS is circular but non-uniform (reverse situation from
the force drift case in the precious section!) In particular, for points P and Q in
Fig. 1.17:

v�
P;Q D v? 
 VG

BP;Q D B 
 �C r?B (1.40)

E� D VGB

B is the magnetic field at the guiding center C.
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For a generic cyclotron phase angle ' (Fig. 1.17), and taking into account (1.6)
for the speed of the particle in its circular orbit in the GCS,

v�.'/ D v?
�

1 � VG

v?
sin '

�
(1.41)

Therefore, averaging over one cyclotron turn we obtain

hv�i D v? (1.42)

Note that in this case of drift in an inhomogeneous magnetic field, the particle
velocity in the GCS is not constant (despite the orbit being a closed circle), but its
average value is equal to the constant speed in the OFR. In the GCS, conservation
of energy leads, for points P and Q in Fig. 1.16, to 1

2
m.v�

P
2 � v�

Q
2/ D 2�C qE�.

Replacing v�
P , v�

Q and E� by their expressions in (1.40), we find that VG cancels
out, leaving

�C D mv?
qB

(1.43)

Notice that in this case, what enters in the expression of the Larmor radius is not
the varying velocity in the GCS, but its average value, which in this case happens
to be equal to the constant speed in the OFR. The same happens with the magnetic
moment. Defined in the GCS, we really must use in its fundamental expression
(1.26) the average hv�

?i. Does this invalidate the derivation of this expression based
on a simple circuit model? No, we just have to improve a bit that model: instead
of one particle of charge q circling with a velocity v�

? we must “smear” the charge
along the circle with a linear charge density � D q=.2��C /. The current I at any
given point will be I D �v�

?. If the velocity varies along the circuit, as happens
in the case under discussion, conservation of charge requires that I D �v�

? D
const. along the circle. Since the resulting magnetic moment only cares about I and
not how the latter is made up as a convection current, the model circuit remains
intact! Confused? Such nitpicking details do happen in adiabatic theory! It also
shows how every model in physics must be constantly and carefully examined in
detail regarding its validity and the degree of its approximation to the “reality out
there”.

We continue our detailed examination considering Newton’s equation at points P
and Q, involving centripetal accelerations:

maP;Q D m.v? 
 VG/2

�C

D qv?.B 
 �C r?B/ (1.44)

The last terms are the Lorentz forces in the OFR at points P and Q, respectively.
From either of the second equalities we obtain, inserting the above expression
for �C :



1.5 First Order Drifts 25

�
1 
 VG

v?

�2

D 1 
 mv?
qB2

r?B

or, finally, for the moduli:

VG D mv?2

2qB2
r?B D T?

qB2
r?B D M

q

r?B

B
(1.45)

With (1.26) and (1.27), and observing Fig. 1.16, we obtain several versions for the
vector expression of the gradient-B drift velocity:

V G D 1

2

mv2?
qB3

B � r?B

D T?
qB2

e � r?B D � 1

q
M � r?B

B
D l

2m
� r?B

B
(1.46)

These expressions are non-relativistic; for relativistic particles, we have for the
magnitude of VG :

VG D m0c
2

2q
ˇ?2�

r?B

B2
(1.47)

in which

m0c
2

2q
D 2:56 � 105 Tesla m2/s for electrons

m0c
2

2q
D 4:70 � 108 Tesla m2/s for protons

Although the above expression is valid for relativistic particles, the actual values of
the drift velocity in typical magnetospheric fields are non-relativistic; as we shall
see, this is also the case for other drifts. The first equalities in (1.46) tell us that
given a surface perpendicular to the magnetic field, a 90ı pitch angle particle on it
will drift along a B D const. contour. As we shall see in the next section, this is an
important result for magnetospheric physics.

Relations (1.46) were proven here for the very restricted case of a 90ı pitch angle
particle in a non-uniform magnetic field with nearly parallel field lines. They have
general validity, provided condition (1.39) holds for the magnetic field gradient.
Note that in contrast to the zero order drift (1.34), the gradient-B drift velocity
depends on the energy, mass and charge of the particle and that, according to (1.45)
and (1.43), the adiabatic condition (1.39) leads to

VG � v? (1.48)

We now complete the “microscopic” examination of this case by returning to the
OFR to calculate the different radii of curvature RP and RQ at points P and Q in
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Fig. 1.18 Gradient-B drift
obeying the adiabatic
condition

Fig. 1.16—a difference that is responsible for the shape of the cycloidal orbit in the
OFR. Taking the expressions for the Lorentz force at these points (last equalities
in (1.44)), and equating them to the centripetal accelerations in the OFR (times
mass), we obtain

RP;Q D �C

�
1 ˙ �C

r?B

B

�

If condition (1.39) holds, the difference between RP and RQ is, indeed, extremely
small, and the cycloid will be tightly closed (Fig. 1.18). As an important remark, we
note the following: if we determine the vector expression of the centripetal Lorentz
force f .'/L in the GCS as a function of the phase angle (as we did with the velocity
v� in (1.41)), we would discover that the gradient-B drift (1.46) is nothing but a
force drift caused by the phase-average force hf .'/Li' . It does not count as a zero-
order drift, however, because the phase-average force is a first-order quantity, it is
not energy independent and VG � v? always. We will return to this in detail in the
next chapter.

Let us summarize some of the principal properties of zero-order and first-order
drifts, for non-relativistic, 90ı pitch angle particles. In the zero-order drift due to
the action of an external force, the drift of the particle is independent of its energy;
the orbit in the original frame of reference is in general a cycloid and the particle
velocity is variable (periodic). In the guiding center frame of reference, the orbit is
circular uniform. The constant particle speed in the GCS is equal to the average of
the particle speed in the OFR. There are no restrictions on particle energy, as long
as there is enough space for the particle to execute its periodic motion. In a first-
order drift due to a transverse magnetic field gradient, the drift motion depends on
the particle energy; the orbit in the OFR is also a cycloid, but the speed is constant.
In the GCS, the orbit is circular, but the speed is variable (periodic). The average
speed in the GCS is equal to the constant speed in the OFR. There are restrictions
on energy and field gradient.

1.6 Example: Drift of 90ı Pitch-Angle Particles
in the Magnetospheric Equator; Effects of an Electric
Field

We shall now analyze the motion of 90ı pitch angle particles on the equatorial
(minimum-B) surface of the earth’s magnetosphere making some simplifying
assumptions about magnetic and electrostatic field models. The study of equatorial
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Fig. 1.19 Experimentally determined average contours of constant magnetic field intensity in the
equatorial surface [9]. These contours represent drift paths for energetic, 90ı pitch angle particles.
Radial distances are in earth radii (1 RE D 6;371 km)

particles is useful for several reasons: (i) as we shall see later, the equatorial point
of a field line represents an equilibrium position for mirroring particles—hence the
study of equatorial particles provides “first order” information on the behavior of
the off-equatorial population; (ii) the theoretical treatment of equatorial and near-
equatorial particles can be done analytically by using simple field models, providing
physical insight (though not quantitative accuracy) into fundamental aspects of
trapped particle dynamics [7, 8]; (iii) many characteristic effects of spatial field
asymmetries are most pronounced for equatorial particles; (iv) more experimental
information is available on trapped particles at low geomagnetic latitudes, especially
in the outer magnetosphere.

Let us consider the drift motion of charged particles and assume that no external
forces are acting (this is nearly the case for radiation belt electrons and protons of
energies greater than about 100 keV). The guiding centers of these particles will
experience a pure gradient drift (1.46) following constant-B curves; electrons will
drift eastwards, protons westwards. Figure 1.19 sketches the principal features of
constant magnetic field intensity contours as observed in systematic measurements
[9]. A qualitative examination of the figure leads to the following conclusions:

(i) Within about 7�8 earth radii (1 RE D 6;371 km) all drift paths are closed. In
that region an equatorial particle thus remains stably trapped (assuming that
there are no external perturbations.)

(ii) The trajectories’ day-night asymmetry increases as one moves away from the
earth. Within about 4 RE , they are approximately circles, as prescribed by a
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dipole-like field. Further out, the asymmetry is such that a given drift path has
its closest approach to earth at magnetic midnight.

(iii) Constant-B contours going through the midnight meridian at distances greater
than about 7 RE do not close around the earth. Particles drifting along them
are trapped in the magnetosphere for only a limited time, running into the
boundary at the flanks of the magnetosphere. We call them pseudo-trapped or
quasi-trapped particles. The last closed contour represents the “limit of stable
trapping” for equatorial particles. (Magnetic field lines through this contour
intersect the earth near the equatorward edge of the auroral oval.)

(iv) A satellite in circular orbit (for instance, a geostationary satellite at 6.6 RE

from the center of the earth), cuts through different drift paths as the local time
or longitude of its position changes. In particular, at midnight it samples the
outermost B-ring, at noon the innermost one, of a certain B-range. Assuming
that particles are distributed evenly along a drift path, their flux will be only a
function of B (see Chap. 4). If this flux decreases outwards (i.e. with decreasing
B), a detector on a geostationary satellite measuring equatorial particles will
reveal a diurnal variation of its counting rate with maxima occurring at local
noon.

(v) Drift paths are closer to each other at midnight. This means that the transverse
gradient of the field is larger there. Thus, according to (1.46), a particle’s drift
velocity will be larger at night than at noon. As a consequence, stably trapped
equatorial particles spend more time on the day side than on the night side
during their drift. This difference becomes more pronounced as we approach
the limit of stable trapping.

An analytical expression of the equatorial magnetospheric field intensity B0

at point r0, �0 (longitude east of midnight), reasonably good during quiet and
moderately disturbed times in the region 1.5–7 RE , is given:

B0 D BE

�
RE

r0

�3�
1 C b1

BE

�
r0

RE

�3

� b2

BE

�
r0

RE

�4

cos �0

�
(1.49)

The three terms represent, respectively, (i) the main dipole field (with BE �
30;438 nT the dipole magnetic field intensity on the Earth surface at r0 D 1RE);
(ii) the contribution from a uniform field compression by the Chapman-Ferraro
boundary currents; and (iii) a day-night asymmetry caused by the cross-tail current.
The second and third terms are small compared to the dipole term. To first order, the
coefficients b1 and b2 depend on the stand-off distance to the subsolar point of the
magnetopause; the following relations represent this relationship reasonably well:

b1 D 25

�
10

Rs

�3

nT

b2 D 2:1

�
10

Rs

�4

nT (1.50)
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Notice the strong dependence with the stand-off distance Rs (Rs D 10RE

corresponds to the normal state of the magnetosphere). The equation of the drift
trajectory B0.r0; �0/ D const. generated by a particle injected at point r0i , �0i with
a 90ı pitch angle is, to first order:

r0.�0/ D r0i � RE

3

b2

BE

�
r0i

RE

�5

.cos �0 � cos �0i / (1.51)

Note that only the day-night asymmetry coefficient b2 appears. This equation
represents eccentric circles with closest approach to the earth on the night side (as in
Fig. 1.19); their eccentric displacement increases very rapidly with radial distance
r0i . Close to Earth higher order multipoles from the internal geomagnetic field must
be taken into account for a more realistic description (Sect. 3.4).

Evaluating the drift velocity (1.46) of a particle along this B0 D const. contour,
we find

VD.�0/ D 3mv2

2qREB0

�
B0

BE

�1=3�
1 � 4

3

b1

B0

�
C 5mv2

2qRE

b2

B0
2

cos �0 (1.52)

This function passes through a maximum at midnight and a minimum at noon.
Trapped equatorial particles thus indeed spend more time on the dayside than on
the nightside of the magnetosphere, as we have anticipated above.

The drift period �d is given to first order by

�d D
Z 2�

0

r0d�0

VD

D 4�qR2
E

3mv2
B0

�
BE

B0

�2=3�
1 C 5

3

b1

B0

�
(1.53)

In this case only the compression coefficient b1 intervenes. For particles of the
same energy, �d increases as B0 decreases (as the particle’s drift contour radius
increases), passes through a maximum for B0 Š .20=3/b1 (�160 nT, or a radial
distance of approximately 5.8 RE), and then decreases again. The approximations
used to derive these expressions start breaking down at these radial distances (for a
more realistic field model the actual position of the contour of maximum drift period
is slightly larger than the figure quoted.)

Our next examples involve the drift motion of equatorial particles subject to an
electric field E 0 D �rV parallel to the minimum-B surface (please do not confuse
the electric scalar potential V with the drift velocity vector V D!). Each particle will
be subjected to a drift that is the vector sum of (1.46) and (1.34):

V D D �M r?B0 � B0

qB0
2

� r?V � B0

B0
2

D �r?
�M

q
B0 C V

� � B0

B0
2

(1.54)

For equatorial particles, this means that they will drift along curves of constant
	 D .M=q/B0 C V , which plays the role of an “extended” potential (note that
q	 D E, total energy of the particle). The functions B0.r0; �0/ and V.r0; �0/ can
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be determined using analytical or numerical models of the magnetic and electric
fields. If the initial position of the particle’s guiding center is r0i ; �0i , the drift
trajectory r0 D r0.�0/ is found by solving 	 D .M=q/B0.r0; �0/ C V.r0; �0/ D
.M=q/B0i C V i D const:, where the magnetic moment M D T0=B0 D T0i =B0i

(non-relativistic case) serves to determine the particle’s kinetic energy along its path.
To calculate the time �t to reach a given point of its drift path (or to determine
the drift period in a closed orbit), it is necessary to integrate the inverse of (1.54):
�t D R

.r0=VD/d�0 (dl : element of arc of the drift path).
We shall discuss examples using simple analytical approximations for B0 and W0.

We choose a pure dipole field B D BE.RE=r0/
3, and an electric field consisting of

two terms: (i) an ubiquitous corotational field arising from the rotation of the dipole
(co-axial rotation in this simplified model), and (ii) a uniform dawn-dusk electric
field (assumed to be driven by the solar wind flow). The corotational field is an
induced field with the property, mentioned on page 19, that any near-zero energy
particle (regardless of its mass and charge) will drift with the local rotational speed
(vcorot D ˝Er0) in the dipole field: Ecorot D vcorot B0 D ˝ERE

3BEr0
�2 (˝E D

7:272 � 10�5 rad/s) is the angular rotational speed of the Earth). Despite being an
induced field (of the type �@A=@t; see Appendix A.1), in the domain of interest this
expression can be written as the gradient of a potential Vcorot D �˝ERE

3BE=r0.
Concerning the uniform dawn-dusk electric field Edd , its potential is Vdd D
Edd r0 sin �0 (positive, to have E pointing in the �y direction). The final expression
of 	 is then

	 D .M=q/B0 C V D .M=q/BE.RE=r0/
3 � ˝ERE

3BE=r0 C Edd r0 sin �0 (1.55)

Taking into account that r? D r?r C r?� and that there is a vector product
operation in (1.54), the corresponding drift velocity (1.54), in its polar components
on the equatorial plane, is given by:

VDr D � Edd

BERE
3

r3
0 cos �0

VD� D �3M

q r0

C ˝E r0 C Edd

BERE
3

r3
0 sin �0 (1.56)

Let us examine some characteristics of the equatorial particle drift paths r0 D
r0.�/, solution of 	 D 	i D const:, where 	i is defined by the initial values r0i ,
�0i and M D Ti =Bi . We begin with analyzing the electric equipotentials, i.e., the
drift trajectories of M ! 0 equatorial particles. Their equation will be, according
to (1.55),

V D �˝ERE
3BE=r0 C Edd r0 sin �0 D const. (1.57)

Near the earth, the (negative) corotation potential will prevail (V < 0), and the
equipotentials will approximate circles around the Earth; far away, e.g., toward



1.6 Example: Drift of 90ı Pitch-Angle Particles in the Magnetospheric Equator; : : : 31

Sun

Dawn

Dusk

Fig. 1.20 Sketch of electric
equipotentials on the
magnetospheric equator for a
magnetic dipole and a
corotational plus dawn-dusk
electric field. These
equipotentials also represent
the drift trajectories of
near-zero energy equatorial
particles (sunward convection
and corotation)

the magnetotail, the equipotentials will approximate straight lines, representing a
general sunward drift. The equation for the zero equipotential V0 D 0 is r0

2 D
.˝ERE

3BE/=.Edd sin �0/. Note that it is valid only for sin �0 > 0, i.e., it lies
entirely in the dawn quadrants (see Fig. 1.20). Its intersection R0 with the dawn
meridian (y-axis) is located at

R0 D
q

.˝ERE
3BE/=.Edd / (1.58)

from the center of the Earth. This value will come handy as a geometric scaling
parameter. The larger the electric field, the closer to the Earth the zero potential
curve will come (the smaller the corotational region in the figure).

The solution of the quadratic equation (1.57) is

r0.�0/ D V

2Edd sin �0

�
1 ˙

s
1 C 4Edd ˝ERE

3BE

V 2
sin �0

�
(1.59)

The presence of the function sin �0 in the square root indicates that the character-
istics of the equipotentials in both dawn quadrants (sin �0 > 0) will in general be
different from those in the dusk quadrants. Figure 1.20 sketches the different types
of equipotentials for the general case. Since the value of r0 must come out positive,
in the dawn side there can only be one solution (the positive sign of the square
root); in the dusk side two different solutions are possible. Note first the existence of
two topological regions, a corotation region with closed equipotential lines around
the Earth, and the convection region with open equipotentials, where low energy
particles flow from the tail toward the front of the magnetosphere. The potential VS

of the separatrix limiting both regions will be that for which the two solutions along
the dusk meridian (sin �0 D �1) coincide, i.e., for which the square root in (1.59)
is zero: VS D �2

p
Edd ˝ERE

3BE D �2Edd R0 (only the negative value of the
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square root will lead to positive r0 in (1.59)). The equation of the separatrix will be,
taking into account (1.58):

rS.�0/ D �R0

1 ˙ p
1 C sin �0

sin �0

(1.60)

The geometric form is independent of the intensity of the dawn-dusk electric field;
the latter only appears in the scaling factor R0 (1.58). Again, the larger Edd the
smaller will be the corotation region. For sin �0 > 0 only the negative sign of the
square root is acceptable; for sin �0 < 0 both signs are possible, and two solutions
may exist. Observe in the figure the notable points, intersections of the separatrix
with the y-axis (sin �0 D ˙1) and on the x-axis (for the latter, consider that the
limit of the geometric factor in (1.60) for sin �0 ! 0 is 1=2).

Some words about the concept of field line motion (page 20) in relation to
the equipotentials shown in Fig. 1.20. As stated above, these equipotentials are
the trajectories of near-zero energy charged particles, moving with a velocity (1.54)
(without the M -term). Would this then also be the velocity of the corresponding field
lines? Would the entire magnetic field be convecting and corotating as prescribed
by the motion of the field lines’ equatorial points, up to their intersection with
the Earth? First of all, we haven’t said anything about the electric field off the
minimum-B equator. If all field lines are equipotentials (Ek � 0) such a picture
might indeed be correct. Yet in the definition of field line velocity, did we not
require that the electric field be an induced electric field (1.38)? Well, just as the
induced rotational electric field (page 19) can be expressed as the gradient of a
scalar in the region of interest, the dawn-dusk electric field Edd was also expressed
as a potential field in the region of interest, despite also being an induced field (the
moving or changing source currents to be found in the solar wind). So indeed we
could visualize the curves of Fig. 1.20 as the trajectories of the equatorial footprints
of magnetospheric field lines in our model. Unfortunately, their intersection with
the conducting ionosphere substantially complicates the picture. Despite these
reservations, the field lines through the closed portion of the separatrix may be
viewed as an approximation to the limit of corotating low energy plasma particles
that form the plasmasphere. Such limiting surface is called the plasmapause, and
Eq. (1.60) may be viewed as “the plasmapause equation”; its form and dependence
of a dawn-dusk electric field indeed bear some observed geometric and dynamic
characteristics of the plasmapause.

We now turn to particles of arbitrary energy. If, say, Ti & 100 keV, the electric
field drift can be neglected and electrons and protons drift in opposite senses along
constant B lines, as discussed in relation to Fig. 1.19. In the intermediate range of
energies the drift motion is more complicated. Electrons in general behave rather
“normally” because in general the electric drift and the gradient drift point roughly
in the same direction. For protons, however, these drifts may point in opposite direc-
tions on some parts of the dusk side; depending on which is the greater, the proton
drift will be eastward or westward. Figure 1.21a, b show drift trajectories calculated
using (1.54) for 1 keV electrons and protons, respectively, injected on the disk
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Fig. 1.21 (a) Broken lines: equipotentials for an electric field of potential Edd D 1:8 kV R�1
E .

Solid lines: drift paths of electrons injected with 1 keV along the dusk meridian (dots). Notice
corotation vs. convection. Equipotentials in the corotation region (not shown) are close, but not
equal to the drift paths. (b) Solid lines: drift paths of protons injected with 1 keV along the dusk
meridian (dots). Notice three types of paths: corotational, “vortices” not enclosing the earth, and
sunward convection

meridian (solid curves), for a dawn-dusk electric field of 1.8 kV/RE . Close to Earth,
the electrons are stably trapped; beyond the stagnation point 1 keV electrons are
quasi-trapped, being convected into the boundary. There is a reversal of drift sense
at the stagnation point. Notice also how corotating electron drift paths approach the
earth closer at dawn; their energy there can be up to ten times greater than at dusk.
The behavior of protons (Fig. 1.21b), again injected with 1 keV at several positions
along the dusk meridian, is more complex. Starting at 3, 4 or 5 RE at dusk, the coro-
tational field takes them eastwards around the earth in orbits similar to those of elec-
trons; the energy-dependentgradient drift, directed opposite to the electric field drift,
is negligible. Between 5 and 7 RE on the dusk meridian, we have a zone in which
protons get sufficiently accelerated in their eastward drift so that, eventually, the gra-
dient drift takes over and turns them around westwards against the corotation drift,
on the same evening side of the earth. After crossing the dusk meridian, these pro-
tons are decelerated and the electric field drift takes over again. We thus have closed
drift paths which do not encircle the earth. Beyond 7 RE on the dusk meridian,
1 keV protons are quasi-trapped, following a convection pattern toward the Sun.

Thus far we have assumed static conditions. Equation (1.54) can be integrated
also for a slowly, adiabatically varying dawn-dusk field (V D V.t/). This can
be used to determine the fate of low energy equatorial protons injected from the
magnetospheric tail and convecting toward the Earth during conditions of high Edd ,
and then captured around the Earth in corotating orbits when a decrease in Edd sets
in (having the effect of expanding the separatrix). This, in connection with more
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realistic field models and consideration of local plasma effects, may play a role in
substorm ring current injection dynamics.
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