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Foreword

On the evening of 31 January 1958, in the Great Hall of the US National Academy of
Sciences, James A. Van Allen, Wernher von Braun, and William Pickering held aloft
the engineering model of the Explorer I spacecraft that had just been successfully
launched into orbit by the United States. The discoveries made by instruments
within this small artificial terrestrial satellite and the succeeding several space
missions showed that the Earth’s magnetic field is capable of confining energetic
particles in a highly effective manner. Subsequent research showed that the region
surrounding the Earth is not just a passive reservoir of trapped radiation, but is—in
fact—an example of a powerful, efficient astronomical particle accelerator. Having
such a remarkable accelerator in our cosmic backyard, so to speak, has made
the discovery of Van Allen and coworkers all the more important to the broader
discipline of astrophysics.

Several generations of researchers have grown up, in a scientific sense, grappling
with the issue of how charged particles are accelerated, transported, and ultimately
lost in the terrestrial magnetic environs. The explorer’s guide to this fascinating
realm of magnetospheric mystery has been the classic textbook of J. G. Roederer
entitled Dynamics of Geomagnetically Trapped Radiation published in 1970. This
book showed in clear, concise ways how the Earth’s magnetic field was configured
and showed how and why energetic particles moved in the complex way that they
were observed to do. Since the pioneering work of Van Allen and coworkers,
space research has shown that essentially all magnetized planets have variants of
the Earth’s radiation regions surrounding them. A gas giant planet like Jupiter
has unimaginably intense radiation belt particle populations. A small, airless,
magnetized body like Mercury does not have stable radiation belts in a strict
sense, but nonetheless energetic electrons and ions spiral, bounce, and drift in that
planetary magnetic field as much as the physical system will permit. Truly, the
processes played out in the terrestrial magnetospheric laboratory have relevance to
every plasma system human machines have visited directly. It is not an unreasonable
extrapolation to conclude that the physics that has been worked out for the
geomagnetic domain will have great applicability to many of the thousands of extra-
solar system planets now discovered around other stars.
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viii Foreword

Since the publication of Roederer’s book in 1970, there has been an exponential
increase in the exploitation of space for human societal purposes. The fact that the
space environment greatly affects operational spacecraft and many other technolo-
gies has given rise to the concept of “Space Weather”. The need to understand the
near-Earth radiation environment even to the point of accurate predictive modeling
has made the value of Roederer’s book even more obvious. Now a new NASA
mission, the Radiation Belt Storm Probes (renamed the “Van Allen Probes” mission)
has recently come on the scene. This amazing mission has already been reworking
the observational landscape and it will require even deeper physical understanding
of energetic particle behavior.

In light of the renewed interest and public fascination with radiation belt science,
it is entirely fitting that a new version of the classic Roederer textbook be published.
In these pages, Prof. Roederer and his colleague Hui Zhang have completely
modernized and reworked the original book. Those familiar with the original text
will recognize the structure and approach to particle motion and trapping properties.
But the reader will also find new treatments, deeper physical insights, and better ties
to broader plasma physical issues. Thus, this revamped version of the classic text
provides a refreshing and timely new contribution to a field of study that got its start
over five decades ago and, yet, is as important to space science as it ever was.

University of Colorado Daniel N. Baker
Boulder, Colorado, USA Director, Laboratory for

Astrophysics and Space Physics



Preface

The discovery in 1958 of magnetically trapped energetic particles surrounding
planet Earth [1, 2] marked the beginnings of a new scientific discipline—Space
Physics. Early US and Soviet satellites provided a wealth of initial data on the
radiation belts; internationally coordinated satellite missions in the 1970s led to
the study of relevant source, acceleration and diffusion processes. In the 1980s
and 1990s, with the Pioneer, Galileo and Cassini missions, space physics turned
its interest to the outer planets; terrestrial radiation belt studies fell somewhat into a
hiatus. The situation, however, is changing, with several satellite missions like the
NASA Van Allen Probes, the Canadian Outer Radiation Belt Injection, Transport,
Acceleration, and Loss Satellite (ORBITALS) and the Japanese Energization and
Radiation in Geospace (ERG) mission, all designed to enhance our understanding
of radiation belt dynamics. After only a few months in orbit, the Van Allen Probes
duo already has provided unsuspected and tantalizing results on the dynamics of
geomagnetically trapped particles [3, 4]. This whole development—we may call it
rejuvenation of radiation belt physics—will also require revitalizing the theoretical
studies of all physical processes involved.

This book represents a thorough revision, expansion and update of Juan
G. Roederer’s 1970 “classic” Dynamics of Geomagnetically Trapped Radiation [5]
(Russian translation: Dinamika Radiatsiy, Zakhvatchennoi Geomagnitnim Polyem,
Publishing House Mir 1971, Moscow). It is complemented and amplified with
material from more recent lecture notes from both authors and their research
experience in the study of terrestrial and Jovian magnetospheres.

Like its old predecessor, this is not a cookbook with recipes that can be followed
blindly to obtain some concrete results. Emphasis is not on the “what” but on
the “why” of things out there in near-earth space. Our goal is not to tell but to
explain, leading the student and beginning scientist on a path of understanding the
underlying physics—rather than just offering a collection of laws and rules and their
mathematical expressions. Our hope is to provide the reader with the mental tools
to find out, not only what physical variables are related to each other, but why they
are related at all, and to seek new causal relationships as new experimental results
become available. In short, old equations can be looked up in books—new ones must
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x Preface

be created by the brain. Essential theoretical complements for the present volume
are Northrop’s classic booklet [6], mathematically rigorous but highly compressed
(it has everything!), and the detailed and highly didactical treatise by Rossi and
Olbert [7] (it’s all relativistic!).

The senior author (JGR) thanks his wife Beatriz for her infinite patience when,
after almost 20 years of “active retirement” and his defection into a biology-
related research field, he decided to come back to the good old topic on which
he once built his career as a young scientist. The junior author (HZ) wishes to
express her gratitude to Robert McCoy, Director of the Geophysical Institute, for
his encouragement and the financial support from the Geophysical Institute for
her time to participate in this enterprise. And both authors are immensely grateful
to SolJene Lejosne, who during the course of her thesis work at the University of
Toulouse (France) [8] had contacted JGR with a number of very pointed questions
and comments on his old book. On that basis we took the fortunate decision
to ask Ms. Lejosne to help us as an unbiased critical reviewer from a grad-
student’s perspective, which she did with painstaking precision and dedication. Her
collaboration confirmed the long-suspected fact that young scientists are far more
valuable judges of the pedagogical value of a written piece than older experts!

The prerequisites for understanding the physics discussed in this book are
some basic understanding of the magnetosphere and its principal regions and
perturbations, and a reasonably good knowledge of electromagnetism, up to and
including Maxwell’s equations. To remind the reader of some necessary tools from
that latter discipline, we have written Appendix A.1 which, rather than a mere
presentation of algebraic, differential and geometric vector relationships between
magnetic and electric field quantities needed in the main text, presents a discussion
of the physical meaning and field-topological consequences of such relationships.
We briefly elaborate in a perhaps less traditional way on Maxwell’s equations and
some important conceptual aspects that are germane to a better understanding of
cause-and-effect relationships in the physics of radiation belts and magnetospheric
plasmas. We strongly recommend that Appendix A.1 be read first.

Chapter 1 develops the adiabatic theory of particle motion from first principles.
It is presented as a prime example of physics as the art of modeling, in which
a complex real system is replaced by a highly simplified virtual, i.e., imagined
one. In our case, the original system is a charged particle in complex multi-
periodic motion in a magnetic field, replaced by a so-called guiding center particle
(a model!) of equal mass and charge, moving in a smooth, uncomplicated way
(having averaged out the smaller scale turns and loops of the real particle).
The instantaneous position of this virtual particle is the guiding center, a point in
space whose coordinates depend on the local magnetic field and the properties of
the real particle. In addition, we show why the guiding center particle is endowed
with a magnetic moment which impersonates average electromagnetic properties
of the rapidly cycling motion of the original particle. The notion of drift velocity
is introduced, and other fundamental physical magnitudes germane to adiabatic
motion are defined; drift velocities are classified into zero order (independent of
the particle’s dynamic properties), first order and higher order. The first adiabatic
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invariant is defined and a simple demonstration of its near-constancy under certain
restrictions (the adiabatic conditions) is given. We then discuss in detail what
happens to a charged particle in its cyclotron motion when the magnetic field is
slowly time-dependent, demonstrating the fundamental role of the often neglected
magnetic vector potential. Examples are given for zero and first order drifts in
simple field configurations. However simple, these examples (e.g., ion pick-up,
adiabatic breakdown, closed vs. open drift orbits and their separatrix, co-rotating
vs. convecting regions in an externally imposed electric field) illustrate some
important basic properties of particles trapped in the equatorial region of the
magnetosphere. In the course of this chapter, we emphasize that magnetic field lines
are purely geometric entities, useful for one’s mental representation of magnetic
field configurations but, like the notion of a guiding center particle, devoid of any
physical reality; nonetheless we give a phenomenological definition of field line
velocity—again putting to good use the vector potential and its local time variation.

Chapter 2 formalizes the definition of drift velocity in general terms for arbitrary
field configurations; some specific second order drifts are discussed. We show
why guiding center particles follow curved magnetic field lines (a non-trivial fact)
and discuss the conditions for that to happen. Since drifts are, by definition,
perpendicular to the local magnetic field vector, we then examine the parallel
motion of the guiding center, introducing the all-important concepts of particle
trapping, mirror points and periodic bounce motion. In discussing the concept of
bounce period we show that, like a pendulum at rest, even non-bouncing equatorial
(90ı-pitch angle) particles have an intrinsic bounce period (with which external
perturbations can resonate). In the second part of this chapter, we take a close
look at the guiding center particle’s parallel acceleration and total kinetic energy
change along a magnetic field line in the presence of a field-aligned electric field,
deriving the energy equation and the so-called betatron and Fermi accelerations.
The chapter ends with a thorough discussion of the effects of given potential
(conservative) parallel electrostatic fields on a particle’s bounce motion, identifying
distinct regions of behavior in a parallel/perpendicular velocity map—a subject of
importance in auroral physics.

Chapter 3, based mainly on the 1970 edition [5], defines the fundamental
concept of trapped particle drift shells. Two additional field-geometric concepts
are introduced and added to the concept of guiding center: the guiding field line
and the guiding drift shell. All this leads to the definition of the second adiabatic
invariant and several related simplified expressions thereof valid for some special
cases. The conservation of the second invariant is demonstrated (in Appendix A.2).
Using this theorem, it is possible to trace drift shells in general fields, and despite the
“cookbook” disclaimer at the beginning of this Preface, some practical recipes are
given for numerical methods to accomplish this. The concepts of shell splitting and
pseudo-trapping in azimuthally asymmetric fields are discussed, and consequences
for particle trapping and diffusion are mentioned. Several examples are analyzed in
detail and analytical expressions for near-equatorial particles are given. A special
look is taken at the dipole field as a first approximation of the geomagnetic field.
Old but still much used quantities are introduced and discussed, such as the L-value
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and the system of invariant coordinates. We examine the situation of near-equatorial
particles (pitch angles near 90ı), for whose drift orbits analytical relationships can
be written down for first-order magnetospheric field approximations. The last part
of this chapter deals with slowly time-varying fields and the resulting effects on drift
shells. We introduce the third adiabatic invariant, a purely field-geometric quantity
(the magnetic flux enclosed by a drift shell), and demonstrate (in Appendix A.3) its
constancy under adiabatic conditions. The process during the adiabatic change is
examined “under a microscope”, showing that adiabatic constancy is not absolute
but valid only when averaged over a drift period: under time-dependent conditions,
identical particles on the same drift shell share a common drift shell only at times
that are integer multiples of their drift period. Without proof, we mention that this
really is also true for the other two adiabatic invariants and their related periodicities.
A generalized L-parameter, or “L-star” is introduced, and a general method for its
calculation is presented.

Chapter 4 comes down from the lofty heights of pure theory and introduces the
concept of flux of an ensemble of adiabatically behaving particles. It defines the
corresponding physical concepts of differential directional flux and that of the ubiq-
uitous distribution function as average quantities linking actual particle ensembles
with macroscopic, measurable quantities like the mass, charge, number and energy
densities; bulk velocity; pressure and temperature. Particular attention is given to
transformation of phase-space related coordinates and corresponding transforma-
tions of the distribution function. A whole section is dedicated to the pressure
tensors and related definitions, and the physical meaning of their components,
especially the perpendicular and parallel pressures in the case of a magnetically
trapped ensemble of charged particles. In the definition of the perpendicular and
parallel temperatures, we try to deactivate the usual tendency to associate these
concepts with a Maxwellian distribution of particle velocities, showing that even
a mono-energetic and mono-pitch angle ensemble of particles can have both.
The example of a static distribution of trapped particles is examined in detail.
Another section is dedicated to flux mapping in invariant ˚; J; M space and
corresponding expressions, including their mutual transformations and relations to
particle distribution functions in phase space and other invariant coordinate spaces.
The chapter concludes with a brief discussion of trapped particle diffusion, with
emphasis on the processes involved and their effects on the distribution function.
The Fokker-Planck equation is derived for the radial diffusion case, and some
general qualitative rules for the determination of diffusion coefficients are given.

The aim of Chap. 5 is to analyze and help understand the magnetospheric plasma
as a self-organizing entity with self-generated electromagnetic fields (whereas in all
previous chapters, the magnetic and electric fields were given, of sources external
to the particle population). It starts with an introduction to collisionless plasma
physics exclusively based on the understanding of adiabatic motion of individual
particles. The concepts of particle (kinetic) and guiding center fluids are introduced
as yet another example of “physics as the art of modeling”. The corresponding
distribution functions and their relations to macroscopic quantities are examined for
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the hypothetical case of identical particle ensembles, linking magnetization density
with perpendicular pressure in a guiding center fluid. On the basis of very simple
examples (throughout the text we call these “kindergarten examples”), the physical
meanings of equivalent and convective current densities and their return circuits
in a guiding center fluid are analyzed in detail, with emphasis on their origin in
geometric aspects of cyclotron motion. Different classes of current densities are
defined in general terms and their role in the generation of magnetic stresses in a
particle ensemble is thoroughly examined. We finally turn to quasi-neutral mixtures
of positive and negative particles, introducing the so-called center of mass fluid,
discussing its properties and related equations. The concept of quasi-neutrality is
examined and the plasma parameter known as Debye length is introduced; the reason
why the magnetic field does not appear in the Debye length is discussed explicitly.
All this leads to the plasma momentum and magnetohydrodynamic equations. The
chapter concludes with the introduction of collisions and the formulation of the so-
called generalized Ohm equation; the physical meaning of its terms is discussed as
well its link to Maxwell’s equations and the “chicken-and-egg” problem of whether
currents drive fields or fields drive currents in a plasma. Several simplifications for
some special situations are discussed, introducing concepts like Hall conductivity,
magnetic field diffusion, frozen-in magnetic field lines and AlfvKen waves.

To conclude this Preface and to facilitate the job of eventual book reviewers, we
list some likely critical comments and give our pertinent replies/justifications:

1. There are no problems, questions or exercises. Correct. We believe that any
instructor lecturing on this subject will be perfectly able to create meaningful
problems which are not just mathematical “plug-in” exercises, and are tailored
appropriately to the level of his/her class. Besides, throughout the text there are
several standard statements such as “it is easy to show that . . . ”. So just do that
as an exercise!

2. Where are the data? Nowhere. For two reasons: the book is on theory and the
really exciting new data are only now coming in.

3. Why are magnetospheric models not discussed? To show the fundamental
physics of trapped particles, it is enough to deal with uncomplicated, unsophisti-
cated models that still feature the most important characteristics of the real field,
and which can even lead to analytical expressions.

4. Where are the Euler coordinates? In some footnotes. They are very useful
tools for the math involved, but devoid of physical meaning (no direct, intuitive
relation to the sources of the field).

5. There are very few references, and my own work is not quoted. True. But for
instance in basic physics textbooks there usually are no references whenever
Newton’s or Maxwell’s equations are used. Ours is a textbook, not a collection
of review articles. Besides, there are some references—of papers which include
abundant literature sources.

6. The title of the book should be “Kinematics of Magnetically . . . ”. TouchKe! But
consider this: in any basic dynamics textbook, we find statements such as “let’s
apply a force here” or “consider a system of mass points under the following
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constraints . . . ”, with no words about the interaction processes responsible for
those forces or constraints. And none are necessary if we just want to understand
what happens and why.

Happy reading and, more importantly, happy understanding!

Fairbanks, Alaska, USA Juan G. Roederer
August 2013 Hui Zhang
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Chapter 1
Particle Drifts and the First Adiabatic Invariant

1.1 Introduction: Adiabatic Theory and the Guiding Center
Approximation

The equation which describes the motion of a particle of charge q and mass m in
a magnetic field B, under the action of an electric field E and an external non-
electromagnetic force F , is given by

d

dt

�
m

dr

dt

�
D q

�
dr

dt
� B C E

�
C F 1 (1.1)

The solution r D r.t; r0; v0/ represents the position of the particle as a function of
time t , initial position r0 and initial velocity v0. Equation (1.1) is described from
a given inertial frame of reference which we henceforth call the original frame of
reference (OFR) (also called the laboratory system).

The solution of (1.1) may represent a very complicated trajectory. For instance,
cosmic ray particle orbits in the geomagnetic field usually are of such nature. But
under certain conditions of field geometry, external forces and particle energy like
those prevalent in the radiation belts during geomagnetically quiet times, standard
periodicities appear which then allow a simplified description if one is not interested
in the actual instantaneous values of the phases in question, that is, if only average
or approximate positions of the particles are wanted. There can be as many as
three distinct types of periodicities: (i) the cyclotron motion, a periodicity in the
particle’s motion perpendicular to the magnetic field; (ii) the bounce motion, a
periodic motion up and down a magnetic field line; and (iii) the drift motion, a
periodic motion on a closed surface or drift shell, made up of field lines. Periodicity

1We shall use rationalized SI (Système International) units throughout this book. q is thus
expressed in Coulombs (elementary charge D 1:6021 � 10�19 Coulombs), B in Tesla (D 104

Gauss)—see Appendix A.1.

J.G. Roederer and H. Zhang, Dynamics of Magnetically Trapped Particles,
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2 1 Particle Drifts and the First Adiabatic Invariant

Fig. 1.1 Cyclotron motion
along a field line

(i) is always the first to appear and has the highest frequency. It may exist even in
absence of (ii) and (iii). For instance, when a not-too-high energy cosmic ray particle
approaches the earth in the polar regions, it may have a clear-cut cyclotron motion
but no other periodicity. Bounce frequencies are usually orders of magnitude lower
than cyclotron frequencies; drift frequencies are orders of magnitude lower than
bounce frequencies. Any magnetic field in which particles have the capability of
bounce motion (ii) is called a trapping field. If, in addition, periodicity (iii) may
occur, we say that it has a configuration of stable trapping.

Cyclotron motion qualitatively represents a helical motion of the particle around
a field line (Fig. 1.1). In more precise terms, we say that cyclotron motion exists
if at any instant of time we can find a (moving) frame of reference in which an
observer sees the particle in a nearly circular periodic orbit, nearly perpendicular
to the magnetic field (with single periodicity at least during a few cycles). If such
a frame of reference can be found, we say that the guiding center approximation
holds, and we call this particular frame of reference the guiding center system
(GCS). The geometric center of the orbit is the guiding center; the (average)
radius �C is called Larmor radius, cyclotron radius or gyroradius. The period
associated with the cyclotron motion (time to complete one turn) is called the
cyclotron period �C . If no reference frame can be found in which the orbit is
periodic and closed, there is no cyclotron motion. This happens with very high
energy cosmic rays in the earth’s field. Note carefully that these are rather qualitative
descriptions, and that �C and �C are quantities defined in the yet-to-be-determined
GCS.

With the terms “nearly circular”, “nearly periodic”, “nearly perpendicular” we
mean that any deviation from “exactly. . . ” is very small in relation to the order
of magnitude of the variable in question. Such approximations are typical for the
adiabatic theory of particle motion, about which we may state in “kindergarten
terms” that it provides correct answers only as long as “we don’t look too close
and are not expecting too detailed information”. A more precise definition and
description of the conditions under which adiabatic theory is useful will be given
further below.

In the OFR we can picture the motion of a charged particle as the superposition
of a displacement of its guiding center with a cyclotron rotation of the particle about
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Fig. 1.2 Guiding center C , cyclotron radius �C and phase angle '

OFR

Fig. 1.3 Cyclotron orbit during one turn �C . The little orbital displacement vectors ır D vıt

add up to the vector �r in one turn. �r=�C in the limit ıt ! 0 defines the guiding center system
velocity V . The position rC of the guiding center is defined as the cyclotron-average of the particle
position vector r during one turn. In all this it is assumed that adiabatic conditions prevail, i.e., that
�r � hr � rC i and �C � �t , a characteristic time interval of “practical interest”

the guiding center. By definition, the instantaneous velocity of the guiding center
is that of the GCS. The actual position r of the particle can thus be specified by
the position rC of the guiding center C, and a cyclotron phase angle ' in the GCS
(provided the radius of gyration is known, Fig. 1.2). In many problems dealing with
magnetically trapped particles, knowledge of the cyclotron phase is unimportant
and the guiding center description is all that one needs. But forgetting ' completely
would lead to nasty mistakes!

Considering Fig. 1.3, it is reasonable to define the instantaneous guiding center
velocity vector V as the average of the particle’s instantaneous velocity vector v in
the OFR over a cyclotron period:

V D hvi� D 1=�C

Z �C

0

v dt 2 (1.2)

2For the time being we’ll just consider �C as a priori known. As we shall see in the next section,
in a non-relativistic situation �C is independent of the particle’s dynamic state, depending only on
mass, charge and the local magnetic field.
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In adiabatic theory it is customary to divide the GC velocity into two components
with respect to the direction of the local magnetic field (the natural coordinate
system, Appendix A.1), each one of which behaves physically in a very distinct
manner: V D V ? C V k. The perpendicular velocity V ? of the GCS is called the
particle’s drift velocity V D:

V D D V ? D hv?i� (1.3)

because it represents the velocity with which we see the particle “drift away” from
the initial field line in the OFR. Likewise, the parallel velocity V k is the average of
the particle’s instantaneous parallel velocity vk. However, contrary to what happens
with vector v?, whose direction turns a full 2� during one cyclotron period, the
parallel velocity vector changes very little, and we can write

V k D hvki
�

Š vk (1.4)

Quite generally, the cyclotron-averaging symbol h . . . i� represents the integral
operator 1=�C

R �C

0 . . . dt .3

Finally, the position vector of the guiding center is the cyclotron average of the
particle’s position vector (Figs. 1.2 and 1.3):

rGC D hri� (1.5)

In the GCS (starred quantities), the particle’s instantaneous velocities parallel and
perpendicular to the magnetic field are, respectively,

v�k D 0

v�? D v? � V D (1.6)

By definition, for the particle velocity vector in the GCS:

hv�?i� D 0 (1.7)

For the moduli:

v�?2 D v?2 � 2v? � V D C VD
2

hv�?2i� D hv?2i� � VD
2 (1.8)

3Later we will run into the cyclotron phase average operator, h . . . i' D 1=2�
R 2�

0 . . .d' D
1=�C

R �C

0 . . . .d'=dt/dt . When the cyclotron motion in the GCS is uniform, both operators are
identical and will be designated as h iC D h i� D h i' . A compilation of all phase averages used
in this book is given in a footnote on page 186 of Appendix A.3.
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The latter equation tells us that 0 � hv�?2i� � hv?2i� . In particular, when the
magnitudes hv?2i� and hv�?2i� coincide, VD D 0, i.e., there is no drift. Less
trivially, when hv?2i� D VD

2 we have v�? � 0 and there is no cyclotron motion:
the particle follows, at least locally, an “uncurled” trajectory in the OFR (an example
will be discussed in the next section).

For the magnetic and electric fields in a moving GCS the following transforma-
tions apply:

B� D B

E� D E C V � B (1.9)

Notice that only the perpendicular part V D of the GCS velocity V contributes to the
induced electric field term in (1.9). We have used non-relativistic transformations in
anticipation of the fact that, for all practical radiation belt and plasma configurations
VD � c (velocity of light)—even if the particles themselves may be relativistic.

Expression (1.9) is particularly important. It indicates that for any given point
in a B; E field one can always find a moving frame of reference for which the
component of E perpendicular to the local B has been “transformed away”, i.e., in
which E�

? D 0 at that point (if both B and E are uniform over a finite domain, one
can find one common frame for all points therein). This fact plays a fundamental
role both in adiabatic theory and plasma physics.

The velocity U of this special frame at point r (in the OFR) and time t can be
obtained by multiplying vectorially the second equation of (1.9) by B:

U .r ; t/ D E � B

B2
(1.10)

U.r; t/ D E?
B

(1.11)

Note that, again, only the perpendicular component E? intervenes in these relations.
Ek survives transformation (1.9) intact.4

There are different types of drifts (1.3), which appear under different well-defined
circumstances. They can be classified into various groups according to whether
they depend on the dynamic variables of the particle or according to the restrictive
conditions that have to be imposed to guarantee their validity. We shall discuss each
group independently on the basis of particular examples.

4In regions where B ! 0 (e.g., near a neutral line) the concept of “transforming away E
?

” breaks
down. See page 18.
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1.2 Uniform Magnetic Field; Basic Definitions; Magnetic
Moment

As the most basic example we consider a charged particle in a uniform, static
magnetic field, in absence of any external forces. We rewrite (1.1) in the form:

dp

dt
D qv � B (1.12)

where p is the particle’s momentum, and v its velocity in the OFR. The right hand
side is called the Lorentz force; it is always perpendicular to the particle’s velocity.
Therefore, in absence of non-magnetic forces, the speed v and the kinetic energy T

remain constant. We can write (1.12) in the form

ma D qv � B (1.13)

which also holds relativistically because m D const in this particular case. Also B

is constant in space and time. The angle between v and B

˛ D arccos
vk
v

D arcsin
v?
v

(1.14)

is called the particle’s pitch angle. For the parallel component of (1.13) we have:

mak D qjv � Bjk � 0

This means the motion of the particle projected along a uniform magnetic field is
rectilinear uniform. Since jvj D const, we also conclude that

v? D const. (1.15)

˛ D const. (1.16)

For the perpendicular component of (1.12) we can write ma? D qjv � Bj?. The
acceleration a? is therefore always perpendicular to v? and its magnitude

a? D q

m
v?B D const. (1.17)

in view of (1.15).5

5Henceforth, whenever the charge q appears in the expression of a scalar quantity as a
?

, it will
be meant to represent the absolute value of q (unless explicitly stated to the contrary). If on the
other hand q appears in the expression of a vector quantity, it is assumed to carry its actual sign;
otherwise it will be explicitly written as jqj.
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This means that the particle’s motion projected on a plane perpendicular to the
magnetic field is circular uniform and a? is the centripetal acceleration.

In the case under discussion, the GCS moves along the magnetic field with
velocity

V k D vk D const. and V ? D 0 (1.18)

In the GCS, v? D const and the particle trajectory is a circle with a gyroradius that
can be obtained from (1.17):

�C D v�
?

2

a?
D mv�

?
qB

D p�
?

qB
(1.19)

We have used the starred quantity v�? to re-emphasize the fact that the gyroradius
�C is defined in the GCS (in the particular case under discussion, though, v� D v

because VD � 0.) Notice that, in view of the factor q in (1.13), positive and negative
particles have mutually opposite senses in their cyclotron rotations.

Associated with the particle’s cyclotron motion, we have the cyclotron period
(defined in the GCS like �C ):

�C D 2��C

v�?
D 2�m

qB
(1.20)

and the cyclotron angular frequency

!C D 2�

�C

D qB

m
(1.21)

Expressions (1.19)–(1.21) are valid relativistically, provided one considers m as the
relativistic mass m D m0� (m0 rest mass; � D .1 � ˇ2/�1=2I ˇ D v=c). In the non-
relativistic case, !C and �C are independent of the particle’s velocity, depending
only on the field intensity and the class of particles (q=m); in other words they are
a function of space (a scalar field). This fully justifies the definition of the drift
velocity (1.2) as an average over cycle time. Using (1.14), it is useful to express
(1.19) and (1.20) in the form:

�C D m0c

q

1

B
ˇ� sin ˛ (1.22)

�C D 2�m0

q

1

B
� (1.23)
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Fig. 1.4 Positive and
negative particles in a
uniform field

For electrons and protons, respectively, the constant factors have values:

m0c

q
D 1:705 � 10�3 and 3:13 (Tesla�m)

2�m0

q
D 3:57 � 10�11and 6:56 � 10�8 (Tesla�s)

From now on we shall deal mainly with non-relativistic (� D 1) cases. It is possible
to express the gyroradius in vector form taking into account (1.19) and (1.21):

�C D � m

qB2
v� � B D � 1

!C

v� � e (1.24)

where e D B=B is a unit vector in the direction of B (see Appendix A.1). The
vector �C points from the guiding center to the particle . The instantaneous position
of the guiding center of a particle of velocity v at point r thus becomes

rGC D r C m

qB2
v� � B D r C 1

!C

v� � e (1.25)

Since during one cyclotron turn the vector hv�i� D 0 (1.6), we have rGC D hri� ,
as defined earlier.

The motion of a charged particle in a uniform magnetic field is circular helicoidal.
Positive particles spiral clockwise around the field lines if we look at them in a
direction opposite to B; negative particles spiral counter-clockwise (Fig. 1.4). When
the pitch angle is 90ı, vk D 0 and the motion is perpendicular to B; the particle has
cyclotron motion only and stays on a circle forever. In that case, the GCS coincides
with the OFR. If ˛ D 0, there is no cyclotron motion at all; the particle moves
along a straight field line. Notice that in general �C is not the radius of curvature of
the particle’s trajectory in the OFR (this is true only if ˛ D �=2). For a helicoid,
the radius of curvature RC is always greater than the radius of the cylinder around
which the helicoid is wound (RC D �C = sin2 ˛ D �C .v=v?/2).

As viewed from the GCS, the cyclotron motion of a charged particle about the
guiding center is equivalent to a circular electric current loop with radius �C and
intensity I D jqj=�C D q2B=.2�m/ of the same direction for both positive and
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I

Fig. 1.5 Magnetic moment
M and angular momentum l

of positive and negative
particles

negative particles, Fig. 1.5.6 The associated magnetic moment M D IıS is directed
opposite to B, of magnitude M D I��C

2 D mv�
?

2=2B D p�
?

2=.2mB/ (1.19).
Thus we can write:

M D �mv�?
2

2B

B

B
D � p�?

2

2mB
e D �T �?

B
e

M D mv�
?

2

2B
D p�

?
2

2mB
D T �?

B
(1.26)

The expression of the transverse kinetic energy T �? D 1=2mv�
?

2 is valid only for
the non-relativistic case. It is important to emphasize that v�

? is the modulus of the
transverse velocity in the GCS.

In its cyclotron motion, the particle also has an angular momentum or spin about
the guiding center l D m�C �v� directed opposite to B for a positive charge and in
the same direction for negative particles (Fig. 1.5). Taking into account (1.19) and
(1.26) we can write:

l D �m2v�?
2

qB
e D 2

m

q
M (1.27)

Although we have defined (1.26) and (1.27) for the case of a uniform B

field in absence of other forces, they are of general validity and, indeed, of
crucial importance: M and l are constants of motion within the guiding center
approximation, i.e., adiabatic invariants. In other words, the magnetic moment
M and the spin l are intrinsic parameters associated with a particle in cyclotron
motion. This is the reason why in the Introduction we talked about replacing the
original particle with a virtual particle, normally called “guiding center particle”
or “magnetized charged particle” of the same mass m and charge q, but in which
the “averaged-out” cyclotron motion is represented by just one vector: the magnetic
moment M (or the intrinsic angular momentum l ) which we mentally picture as
being attached to the GC particle. What we lose in this “remodeling” process are

6Yet another model is to imagine the charge q smeared evenly over the cyclotron circle in the GCS,
rotating uniformly with period �C . See page 23.
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the details of the cyclotron motion, specifically, the cyclotron phase of the original
particle (angular coordinate of the particle in its cyclotron motion, Fig. 1.2). The full
kinetic energy of the particle can be retrieved from the value of M and the local B

(1.26), plus the parallel GCS velocity Vk. The overall condition for the validity of
the guiding center particle model is that the requirements for the GC approximation
apply, i.e., that it is possible to identify a frame of reference (the GCS) in which
the particle executes a closed-orbit periodic motion (for a more precise definition of
the GC approximation, see next section). In the case of Fig. 1.4, a GC particle just
moves straight up or down along the magnetic field line with a velocity V k equal to
the parallel velocity of the parent particle.

It is important to note that for the external field’s magnetic flux ˚ through the
cyclotron orbit in the GCS (see (1.26) and (1.27)),

j˚ j D ��C
2B D �.m2v�

?
2
=q2B/ D .2�m=q2/M D .�=q/l (1.28)

Consequently, ˚ is also an adiabatic constant of motion.
The expression (1.28) can be used for a “kindergarten”-level demonstration of

the conservation of the magnetic moment M (non-relativistic case). Suppose that
in the field configuration under discussion (90ı particles in a uniform B-field), the
magnetic field intensity changes in time very slowly, so that �C � B=.dB=dt/.
According to Faraday’s law, the induced electric field E I will change the transverse
kinetic energy of the particle during one cyclotron turn by ıT �? D q

H
E I ds D

q d˚=dt (absolute values only). To first order (in which we consider �C constant),
the change per unit time will be (first equality in (1.28)): dT?=dt ' ıT �?=�C D
q =�C .d˚=dt/ D T �?=B .dB=dt/—therefore, T �?=B D M D const. In essence,
this means that in the above cyclotron loop model, the current I is a closed current
with the well-known property of a superconducting system to react (driven by the
induced electric field) to any change of the magnetic field in such a way so as to
maintain constant the flux ˚ through its own loop. Thus a cycling particle will
adjust its cyclotron orbit so as to preserve ˚ , hence its magnetic moment M (as long
as the variation of the magnetic field satisfies the adiabatic condition). Although we
have shown this for the simplest magnetic field configuration possible, it has general
validity: the particle doesn’t care why the flux through its cyclotron orbit changes—
only that it does!7

When the particle velocity is relativistic, it can be demonstrated that the quantity
that is conserved is the relativistic magnetic moment

7In Hamiltonian mechanics (e.g., [1]) of point charges in a magnetic field, it is demonstrated that
for cyclic variables like the arc l (see Fig. 1.5) the so-called canonical path or action integral J DH

.p C qA/ � dl is a constant of motion for a single particle (provided that the fields and the forces
change very little during one cycle). Taking dl in the direction of a positive particle (Fig. 1.5)
and carefully considering that, therefore, the magnetic flux through the cyclotron loop

H
A � dl

is negative, we have Jc D H
.p C qA/ � dl D 2��C mv�

?

� ��C
2B D .2�m=q/M , therefore

M D const:
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Mr D p�?
2

2m0B
D 1 C �

2

T �
r?
B

(1.29)

where m0 is the rest mass and T �
r? the perpendicular relativistic kinetic energy (Tr D

m0c
2.� � 1/ D m0v

2�2=.1 C �/). Since the rest of the book deals mainly with
non-relativistic particles, some of the principal equations can be easily converted
to relativistic ones by replacing the magnetic moment, wherever it appears, with
its relativistic expression (1.29) and the kinetic energy with the relativistic kinetic
energy Tr (for a full relativistic treatment of adiabatic theory, see [2, 3] which also
shows the full relativistic expressions of the most important relationships).

Speaking of relativity, it is interesting to briefly examine the cyclotron motion
of a charged particle from the quantum physics point of view. The stronger the
magnetic field, for a given transverse velocity of the particle the higher will be
its cyclotron frequency (1.21) and the smaller its gyroradius (1.19). For ultra-
high intensity fields, quantum mechanics must be applied in the description of
the cyclotron motion; this situation is of importance in the theoretical study
of particles trapped in the magnetic field of a neutron star or black hole. The
magnetic field intensities in the environment of such an object may be as high
as 106 � 1011 Tesla. Consider Heisenberg’s uncertainty relation �x�px 	 „=2

(„ D Planck’s constant=2� D 1:05 � 10�26 J). If as a meaningful maximum order
of magnitude we insert for �x the gyroradius (1.17) and for �px the product
mv?, taking into account (1.27) the uncertainty relation gives a lower limit for
the GC particle’s angular momentum: l 	 „=2. In other words, zero is not an
option and the intrinsic angular momentum of a GC particle in a magnetic field
is quantized. As a matter of fact, the quantum energy levels (called Landau levels,
[4]) of an elementary charged particle gyrating in an intense magnetic field B turn
out to be

En D q„
m0

.n C 1

2
/B n D 0; 1; 2;. . .

This leads to energy levels of the order of hundreds of keV to thousands of MeV,
for electrons trapped in extreme magnetic environments. It also means that the
cyclotron frequency is quantized:

!n D qB

m0

.n C 1

2
/ n D 0; 1; 2;. . .

Considerations of quantum spin of the original particle and relativistic effects
complicate somewhat the picture, but are outside the scope of this book.
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1.3 Zero-Order Drifts

We now consider the case of a charged particle in a uniform static magnetic field
under the action of an external non-magnetic, non-inertial, interaction force F

which is constant in time and space. We divide the force into two components F k
and F ?, parallel and perpendicular to B, respectively. The equation of motion (1.1)
can be split into the following pair:

dpk
dt

D F k

dp?
dt

D F ? C qv? � B

The first equation tells us that the particle is accelerated along the field line in a
“conventional” way by F k. Let us assume for the time being that F k D 0 (i.e. F D
F ?). This means that the particle will have a constant velocity vk along the field
line and so will the GCS. Thus we only need to determine the GCS’s perpendicular
velocity or drift velocity, which we call V F . This is the instantaneous velocity of
a frame of reference in which the particle executes a circular motion. To find V F ,
we will use the “trick” of creating a motion-induced electric field E� (1.9) in a
moving frame of reference such that the external force is balanced out by a force
qE� D qV F � B:

qE� C F �? D qV F � B C F ? D 0 (1.30)

Multiplying vectorially by e=qB , where e is again the unit vector in the direction of
B, we obtain

V F D F ? � e

qB
D F � e

qB
(1.31)

V F is called the force drift. Since F k does not affect (1.31), this expression is also
valid in the more general case when F k ¤ 0.

As viewed from the OFR, the particle has a cyclotron motion (that in the GCS)
plus a translation with constant velocity V F given by (1.31), plus a translation
parallel to the field line. If both F k and vk are zero, the resulting motion is a cycloid
in a plane perpendicular to B (Fig. 1.6). Notice that V F is always perpendicular to
both B and F . The particle thus “reacts” perpendicularly to the external force and
no average work is done on the particle during its drift motion under the present
condition of a uniform field, although in the OFR, the kinetic energy of the particle
changes periodically in its cyclotron turns; in the GCS, however, the perpendicular
velocity is v�? D const. Positive and negative particles drift in mutually opposite
directions. Most importantly, V F is independent of the particles’ mass and energy.
It is called a zero order drift because the only condition for its validity is that the
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Fig. 1.6 Drift V
C

F in a homogenous magnetic field B under a force F
?

Fig. 1.7 Physical cause for the existence of a force drift

extension of the uniform field domain be large enough to allow the particle to
execute its cyclotron or spiral turns undisturbed (domain 
 �C ). Note that for a
force field, zero order drifts are a function of position r only—a vector field. We
cannot independently impart some arbitrary zero order drift to a particle as an initial
condition.

One can easily understand the physical reasons for the drift of a charged particle
under the action of a constant external force, perpendicular to B. As sketched in
Fig. 1.7, the kinetic energy of a particle in the OFR is not constant; during one
cycloid turn, the particle is alternatively being accelerated (larger radius of curvature
�—do not confuse with Larmor radius!) and decelerated by the external force F —
v? is not constant during one turn (see below). It should be clear that in this case
the magnetic moment cannot be defined in the OFR.

If the external force is not constant but derives from a general force field
F D �rW (W : force field potential), (1.31) still is valid. Let us assume that
Fk D 0 everywhere, which means that the magnetic field lines lie in electrostatic
equipotential surfaces. The force-drift velocity (1.31) is tangent to such an equipo-
tential surface and the guiding center of a 90ı pitch angle particle will thus follow
an equipotential line in a plane perpendicular to the uniform field B (Fig. 1.8). This,
however is true only under the assumption that the variation of W over a gyroradius
is very small with respect to the particle’s kinetic energy:

�W�C � T (1.32)

This in turn implies that

VF D F

qB
� v? (1.33)
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Fig. 1.8 Force drifts along a
force-equipotential line

Fig. 1.9 Electric drifts in
homogeneous B and E fields

The particle will execute many overlapping cyclotron turns as it drifts along a
W D const curve.

The most important kind of external force is the electric field force qE . The
only non-electric external force of interest would be gravitation; it plays a role for
plasmas in stellar environments but none in planetary magnetospheres. However, as
we shall see later, there are inertial forces of importance (virtual non-interaction-
based forces arising in an accelerated frame of reference). With an electric field, the
drift velocity (1.31) becomes

V E D E � B

B2
D U (1.34)

This is called the “E-cross-B drift”, for which we shall always use the letter U . Note
the crucial fact that the electric charge has canceled out; both positive and negative
particles drift in the same direction with the same speed, regardless of their mass and
energy (Fig. 1.9). This common electric drift U is identical to the velocity (1.10) of a
frame of reference in which the perpendicular component E? has been transformed
away. It should come as no surprise, for in our case this is, indeed, the frame of
reference in which there are no forces other than the Lorentz force acting on the
particle—the very definition of the GCS! The fact that U is a drift velocity common
to all particles confirms its fundamental role as the bulk velocity of the ensemble
of particles that constitute a plasma. In contrast, the charge-dependent force drift
(1.31), and other drifts which we shall introduce later, give rise to electric currents
in a plasma (Chap. 5).
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Fig. 1.10 OFR parameters
for an “E cross B” drift

1.4 Examples of “E Cross B” Drifts; Uniform Magnetic
Field of Time-Dependent Intensity

It is instructive to examine the motion of a charged particle in uniform B & E fields
as viewed “under a magnifying glass” in the OFR. Consider Fig. 1.10. The uniform
magnetic field is directed out of the paper, and vk D 0. We assume only the direction
of U as known, but not its modulus. Call vP and vQ the velocities along the x axis
of the particle at points P and Q, respectively (consider one of these velocities as
given). We will have, from (1.6) and with v� D v�? D const::

vP D v� C U

vQ D v� � U

On the other hand, we have the following energy relation:

1

2
m.vP

2 � vQ
2/ D qE 2�C

Therefore, with (1.19)

U D E

B

which is identical to (1.11). But in this case we have not used in any way the
transformation (1.9).

The gyroradius �C (1.19) can be expressed as a function of vP or vQ:

�C D m

qB

ˇ̌
ˇ̌vP � E

B

ˇ̌
ˇ̌ D m

qB

ˇ̌
ˇ̌vQ C E

B

ˇ̌
ˇ̌

Note that this is not the radius of curvature of the trajectory in the OFR!
It is interesting to compare the total forces acting in the OFR on the particle at P

and Q, respectively:

jfP;Qj D qvP;QB � qE D qv�B
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Fig. 1.11 Special case of an
“E cross B” drift

Both relations represent the constant magnitude of the Lorentz force in the GCS.
The different radii of curvature of the orbit at P and Q in the OFR arise from the
difference in particle velocities at these points (1.35):

RP;Q D mv2
P;Q

fP;Q

D m.v� ˙ U /2

qv�B
D �C

�
1 ˙ U

v�

�2

Notice that if U D E=B D 1=2 vP , we have v� D U and RQ D 0; the
trajectory is the limit of an open cycloid (Fig. 1.11). This shows that a particle can be
instantaneously at rest in the OFR and yet possess cyclotron and drift motion!8 On
the other hand, if U D E=B D vP , we have v� D 0 and RQ D 1; the trajectory
in the OFR is a straight line (in the GCS the particle is at rest!). In this case, in the
OFR, the Lorentz force is balanced out by the electric field force at all times (the
principle of a velocity spectrometer!).

Returning to the kinetic energy, in the GCS the particle’s T � is constant, as is its
speed v�. The cyclotron-average kinetic energy transverse to B in the OFR will be
hT?i D 1=2mhv2?i. Taking into account that v? D v�? C U (we reintroduce the
subindex ? because what follows is valid in general, also for vk ¤ 0), and that by
definition (see (1.3) and (1.6)) hv?i D U and hv�?i D 0, we have

hT?i D T �? C 1

2
mU 2 (1.35)

To consolidate the understanding of the electric drift velocity (1.34) (answering
for instance the question: When B ! 0, what does it really mean that the guiding
center races away with VE ! 1?) we discuss another simple but illustrative
example of possible detailed configurations of charged particle trajectories in a
uniform B&E field. Consider the case of positive particles injected one after
another with the same initial velocity vi , as shown in Fig. 1.12 (B ? E ? v).
While each particle is traveling, B (and E) are held constant; initially, the magnetic
field is large. Then B is decreased before the next injection. This process is repeated
until B reaches zero.

8If we place a charged particle in a B&E field with zero initial velocity (for instance, by ionizing
a neutral atom at rest), it will start moving in an open cycloid (Fig. 1.11), with a drift velocity U

given by (1.10) and a Larmor radius �C D mE=qB2. The maximum kinetic energy of the particle
(at point P) will be T D 2m.E=B/2 D 2mU 2, and the average energy, according to (1.35), will
be mU 2. This so-called “ion pick-up” process plays an important role in space physics.
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Fig. 1.12 Set-up for particles
injected with constant
velocity vi into a E ? B

field, in which E D const.
and B is gradually being
decreased to zero

Region C  Region B  Region A

Region A

Point R

Region B 

Point S

Region C   

Fig. 1.13 Top: Larmor radius
�C as a function of jBj for the
example of a charged particle
of given initial velocity vi

injected perpendicularly into
uniform B and E fields.
Definition of characteristic
regions and points discussed
in the text. Bottom: Sketch of
typical orbits in the OFR for
characteristic regions and
points. Not in scale!

Let us analyze in detail the cyclotron and drift motions of the particles, as they
are injected into smaller and smaller magnetic fields. From (1.35) we have

�C D m

qB

ˇ̌̌
ˇvi � E

B

ˇ̌̌
ˇ (1.36)

(bars because �C > 0 always!). Figure 1.13 (top) shows the graph of the function
�C D �C .B/.

Consider the distinct regions A, B and C, and the “notable points” R and S, where
BR D 2E=vi and BS D E=vi , respectively.

Region A: For large B’s the drift velocity (1.10) and the Larmor radius (1.19) are
very small and the particle behaves adiabatically, turning many times before drifting
away (see Fig. 1.13, lower graph). As the B decreases, the gyroradius and the drift
velocity U increase. In the GCS, the particle velocity v� decreases.

Point R: The Larmor radius reaches a maximum; in the GCS the velocity v� D U

and in the OFR the particle trajectory becomes the limit of an open cycloid, with
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cuspidal points at which the particle comes momentaneously to rest (see footnote
on page 16).

Region B: As the B field decreases further, the gyroradius begins to decrease.
The drift velocity continues to increase and the trajectory is an open cycloid with
increasing “wavelength” and amplitude—the drift U wins over the velocity vi . In
the GCS, the particle velocity v� continues to decrease, and the cyclotron circles
become smaller and smaller.

Point S: In the GCS the cyclotron circle has been reduced to a point: the particle
is at rest, v� D 0! In the OFR the particle moves in uniform rectilinear motion with
speed U (the velocity spectrometer effect mentioned above).

Region C: As the magnetic field intensity continues to decrease, the drift
speed increases further, and in the OFR the particle follows an open cycloid with
decreasing amplitude and wavelength. However now it is a cycloid turning upwards
from the injection point, into the direction of E . In this regime the GC velocity is
larger than the particle injection velocity; the GCS “races away” from the particle to
the right in the figure. An observer in the GCS will in turn see the particle initially
moving to the left, being at the lowest point of a circular motion.

The domain c . E=B . 1 deserves special attention. Would this really
represent a relativistic or “transrelativistic” situation for the GCS? What is the
physical meaning of such apparent nonsense? Obviously we have a breakdown
of the very concept of guiding center. Let us not forget that the GC is a purely
geometric feature and that the “GC particle” is a virtual artifact, a useful model,
product of our imagination—the only physical reality is the original cycling particle!
The drift velocity U is also a geometric concept, mathematically tied to the original
particle. All this can be summarized by stating that the restriction for the validity of
zero-order drifts is that the spatial domain of the B & E field be much larger than the
gyroradius �C of the particle. More specifically, if Ltrans and Lp are the extensions
of the field domain transverse and parallel to the particle drift U , respectively, the
conditions for adiabatic behavior in a uniform E-cross-B field are

�C � L or v � qB

m
Ltrans

Nturns 
 1 or U D E

B
� qB

2�m
Lp (1.37)

In the second equation Nturns is the number of cyclotron turns when the particle
drifts the length Lp . When according to (1.36) �C becomes large enough but the
conditions of validity still hold, the particle could, indeed, be accelerated by the
E field to relativistic velocities before the Lorentz force wins and the particle turns
over and enters a deceleration phase. For a B-value strictly zero, we simply have the
case of a particle under the action of just one force (qE ), and the trajectory becomes
a parabola in the non-relativistic domain.

The example discussed above shows that what must be used in the expression of
M (1.26) and l (1.27) is the perpendicular velocity v� of the particle in the GCS, not
in the OFR where the transverse velocity of the particle v? is variable. For instance,
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in case S above (B D E=vi ), �C D 0, and M and l are both zero! On the other
hand, a particle injected into a B&E field with zero initial velocity does have a non-
zero magnetic moment M D mE2=2B3 (the “ion pick-up mechanism” mentioned
in the footnote on page 16—best argument yet that the transverse velocity in the
definition (1.26) of M is not the velocity in the OFR!). It is important to emphasize
again that zero order drifts are independent of the particle’s energy as long as the
physical domain of uniform fields is large enough (1.37).

Our next example of E cross B drift, of particular conceptual importance in
magnetospheric plasma physics, is that of the drift of a guiding center particle in
a purely induced electric field (time-dependent magnetic field, no charges present
anywhere)

V ind D E ind � B

B2
D �@A

@t
� r � A

jr � Aj2 (1.38)

(see Appendix A.1). The first obvious case should be that of a stationary uniform
magnetic field, whose source current system moves rigidly with constant velocity
V 0 with respect to a frame of reference at rest (the OFR). No electric charges are
present. A 90ı pitch angle charged particle would be subjected to an induced electric
field drift velocity given by (A.57) of Appendix A.1; in other words, it would drift
with the moving frame velocity and thus obviously remain part of the magnetic field
system. Notice that this time we have appealed to the vector potential and Maxwell’s
equations rather than simply using the postulated rule of field transformation (1.9).
Although we only considered a uniform magnetic field in pure translation here,
the same procedure applies to rigidly rotating fields like the internal geomagnetic
and planetary fields (neglecting external magnetospheric currents): at each point
there will be an induced electric field and associated zero-order drift velocity (1.38),
which in this case is called corotational drift, causing all trapped particles to corotate
with the planet. Of course, additional drifts (see next sections) will complicate the
picture. In the case of Earth, the corotational electric field will have a significant
effect only on very low energy particles (e.g., the constituents of the plasmasphere),
but in the magnetospheres of Giant Planets it plays a very important role even for
relativistic electrons of their radiation belts.

As another example of induced electric field drift, we consider a long circular
solenoid with a time-dependent current (Fig. 1.14). We again shall assume the scalar
potential to be zero (no free electric charges present); the vector potential will be that
of relation (A.56) of Appendix A.1, directed as shown in the figure and of magnitude
A D B r . We now inject a 90ı pitch angle particle of energy or magnetic moment
such that �C � R, radius of the solenoid. If nothing else happens, its guiding
center will remain at rest. Now we adiabatically increase the current in the solenoid,
such that PB > 0. An induced electric field will appear as shown in Fig. 1.14,
given by (A.58). Independently of its mass, charge and energy, the particle will
drift toward the center of the solenoid with an induced drift speed of Vind D PB r .
Due to the conservation of magnetic moment (1.26), its energy will change at a
rate dT =dt D M PB—i.e., in this example, gradually increase. A whole ensemble
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Uniform
field

Cyclotron
orbit

Soleoid intersection

Fig. 1.14 Configuration of the vector potential A and the induced electric field E ind in a solenoid
field which decreases in time

of particles trapped in the increasing uniform field would thus be energized and
compressed toward the axis.

This example allows us to introduce the concept of field line motion (e.g., [5])
in a phenomenological way. Because the preceding process affects all ˛ D 90ı
charged particles equally regardless of their nature, if we “paint” a given initial field
line by placing such particles all along it, they will all drift together and remain
on a common field line (see first corollary at the end of Appendix A.2) in a way
governed exclusively by what happens to the magnetic field (its sources) time-wise.
It is thus possible to declare the “painted” field line to be the same as the initial one
and adopt (1.38) as the ad hoc operational definition of velocity of the point of a
field line. Although we only have considered the oversimplified case of a uniform
magnetic field, it can be shown that the property of remaining on a common field
line applies to any changing magnetic field configuration—as long as there are no
potential electric fields (r � E � 0 everywhere) and no parallel electric fields are
present (@A=@t � B � 0).9 For the general case, we also must add the condition of
near-zero energy (T ! 0) for the probe particle, to avoid the action of other drifts
(see following sections), which are all energy-dependent. Note that the above ad hoc

9Without the first condition we would run into the undesirable situation of having “moving field
lines” in a static magnetic field crossed by a static electric field, as for instance in the case of two
oppositely charged plates placed parallel to B in the gap of a magnet. It can be shown that the
above definition is not only independent of the particular position of the guiding center along the
field line but that it is magnetic flux-preserving (i.e., flux tubes preserve their identity). There is
nothing artificial with a definition using probe particles placed along a field line: after all, as we
know from elementary textbooks, the electric and magnetic field vectors themselves are formally
defined by forces on probe particles! Neither is the condition that all � be turned off artificial: in
elementary electromagnetism books, the self-field of probe charges are also “turned off” (ignored).
While it is tempting to exaggerate the physical significance of a purely mathematical-geometric
concept such as a field line, we must never lose sight of the fact that the only “physical reality” in
electromagnetism is mutually interacting electrically charged matter. Here are some perhaps too
strong words from Richard Feynman: “ . . . not only is it not possible to say whether field lines
move or do not move with charges—they may disappear completely in certain coordinate frames
. . . ” (see [6]).
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To axis

Deceleration

Acceleration

Fig. 1.15 Single cyclotron
orbit dynamics in a gradually
increasing B-field

definition of moving field line is valid even in a vacuum situation; note also that thus
defined, it is always perpendicular to the field line in question—a parallel field line
velocity cannot be defined in a physically meaningful way (although we may well
imagine it, for instance, for the field of a long solenoid being transported parallel to
its axis). The reason for using terms like “to declare” and “ad hoc” is related to the
fact that, as mentioned in Appendix A.1, a physical distinction between the potential
and inductive contributions to an electric field as required prior to use of (1.38) is
not possible through a single measurement operation (we would “have to know”
the system a priori, or probe it through an experimental protocol by turning off all
electrostatic sources).

Finally, we take advantage of the above very simple example to present a
better “microscopic” view of the cyclotron acceleration (or deceleration) process
ultimately responsible for the conservation of a particle’s magnetic moment under
adiabatic conditions. Looking with a magnifying glass at the particle in Fig. 1.14
in the OFR, we see it gyrating in an induced electric field more explicitly shown
in Fig. 1.15. Notice that since the A-vector increases linearly with r , the particle
will be alternatively accelerated and decelerated, with the acceleration phase always
winning a bit in our example. This causes both the drift toward the axis and the
gradual increase in kinetic energy, and is why, in reality, the orbit shown in Fig. 1.15
is not closed in the OFR. Now we can come up with a more convincing analytical,
less kindergarten-like, proof of the conservation of magnetic moment—albeit only
for a very simple field configuration. In the figure and according to the discussion
on page 176 of Appendix A.1, the magnitude of the induced electric field will be
Eind D PA D PB.r C �C cos '/, where ' is the cyclotron phase as measured from
the lower point of the orbit. In addition to the near-constant transverse Lorentz force
qv�B , in the case of a varying magnetic field there will be a tangential electric force
ft D q PB.r C �C cos '/ cos ', varying from positive to negative during one half-
turn. Although under adiabatic condition this tangential force will be much smaller
in magnitude than the Lorentz force, the near-circular motion of the gyrating particle
is not uniform. The work of this tangential force during a half-turn, i.e., the kinetic
energy gain of the particle, turns out �T D R �

0
ft �C d' D q PB�C

2 �=2. Dividing
by �C =2 we obtain the change of kinetic energy per unit time of the gyrating particle
in a time dependent (increasing) uniform field: PT D 2�T =�C D 1=2mv2 . PB=B/ or
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. PT =T / D . PB=B/, which if integrated gives T=B D M D const. (1.26). In a similar
way one can easily figure out the induced drift of the gyrating particle toward the
central axis of the solenoid.

As an interesting addendum to this proof we note that if at time t there are several
particles of identical velocities on a common cyclotron orbit like the one shown in
Fig. 1.15 (i.e., having only different phases), a simple dynamic calculation shows
that they would not be on common orbits at later times except at times tn after
intervals that are integer multiples of the cyclotron period: tn D t C n �C . We will
find a similar behavior in the case of other periodicities of adiabatic motion (bounce
and drift).

1.5 First Order Drifts

We now drop the assumption of a uniform magnetic field. Gradients in the magnetic
field (assumed constant in time) cause first order drifts which are energy-dependent.
A magnetic field is inhomogeneous when any of the components of the gradient
tensor @Bi =@xk (Appendix A.1) are non-zero in some region of space. There are
different kinds of field gradients from the geometrical point of view which play quite
distinct roles in adiabatic theory. For the time being, we work only with the vector
gradient of the modulus B , which we denote by rB . Its components are of course
related to those of the tensor gradient (see relation (A.35) of Appendix A.1). We
divide this vector into two components, parallel and perpendicular to the magnetic
field, respectively (see Appendix A.1, (A.20) and (A.19)):

rB D r?B C rkB

Each component has a distinct effect on the guiding center motion.
In this section we examine the effect of the perpendicular gradient r?B . In

Appendix A.1 (A.21) and (A.15) it is shown that in a current-free region in which
r?B ¤ 0, all field lines are curved; in spite of this, we shall ignore field line
curvature for the time being (as we shall see in Sect. 1.6 this is fully justified for 90ı
pitch angle particles in the equatorial (minimum-B) surface of a trapping magnetic
field). We shall also assume condition (1.39) to apply: the magnetic field varies very
little over the Larmor radius of the particle. If rB is the modulus of the gradient of
B and B=rB is a characteristic length for the change of B , the adiabatic condition
can be written in the following equivalent ways:

�C � B

r?B
I r?B � jqjB2

mv?
(1.39)

Let us inject a 90ı pitch angle particle with velocity v? into a field with
(almost) straight field lines and a perpendicular gradient (Fig. 1.16). We realize
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Fig. 1.16 Showing the
physical reasons for the
gradient-B drift of a positive
particle

Fig. 1.17 Cyclotron orbit in
the GCS in a non-uniform
field

that there must be a drift to the right: for a positive particle the field at points
P, R, . . . is weaker than that at points Q, S, . . . , causing an alternating change of
the radius of curvature of the particle orbit (note carefully that the orbit in the
figure is drawn “stretched-out”; because of condition (1.39), the particle really
turns many times before appreciably drifting away from the initial position). We
now want to find the general expression for the corresponding gradient-B drift
velocity V G , i.e., the perpendicular velocity of the GCS. First, we note that the
particle must move with constant speed v? in the OFR (rather than in the GCS
as happens with force drifts), since there are no external non-magnetic forces
acting. As we did in the case of a zero order drift in a uniform B&E field,
we shall use the motion-induced electric field trick. Let us assume that the GCS
indeed moves to the right with velocity V G as intuitively shown in Fig. 1.16.
The particle velocity in the GCS is v� (we drop the obvious subindex ?); but
now the motion-induced electric field E� D �V G � B (1.9) will alternatively
accelerate and decelerate the particle. Therefore, its speed in the GCS will not be
constant: the motion in the GCS is circular but non-uniform (reverse situation from
the force drift case in the precious section!) In particular, for points P and Q in
Fig. 1.17:

v�
P;Q D v? � VG

BP;Q D B � �C r?B (1.40)

E� D VGB

B is the magnetic field at the guiding center C.
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For a generic cyclotron phase angle ' (Fig. 1.17), and taking into account (1.6)
for the speed of the particle in its circular orbit in the GCS,

v�.'/ D v?
�

1 � VG

v?
sin '

�
(1.41)

Therefore, averaging over one cyclotron turn we obtain

hv�i D v? (1.42)

Note that in this case of drift in an inhomogeneous magnetic field, the particle
velocity in the GCS is not constant (despite the orbit being a closed circle), but its
average value is equal to the constant speed in the OFR. In the GCS, conservation
of energy leads, for points P and Q in Fig. 1.16, to 1

2
m.v�

P
2 � v�

Q
2/ D 2�C qE�.

Replacing v�
P , v�

Q and E� by their expressions in (1.40), we find that VG cancels
out, leaving

�C D mv?
qB

(1.43)

Notice that in this case, what enters in the expression of the Larmor radius is not
the varying velocity in the GCS, but its average value, which in this case happens
to be equal to the constant speed in the OFR. The same happens with the magnetic
moment. Defined in the GCS, we really must use in its fundamental expression
(1.26) the average hv�

?i. Does this invalidate the derivation of this expression based
on a simple circuit model? No, we just have to improve a bit that model: instead
of one particle of charge q circling with a velocity v�

? we must “smear” the charge
along the circle with a linear charge density � D q=.2��C /. The current I at any
given point will be I D �v�

?. If the velocity varies along the circuit, as happens
in the case under discussion, conservation of charge requires that I D �v�

? D
const. along the circle. Since the resulting magnetic moment only cares about I and
not how the latter is made up as a convection current, the model circuit remains
intact! Confused? Such nitpicking details do happen in adiabatic theory! It also
shows how every model in physics must be constantly and carefully examined in
detail regarding its validity and the degree of its approximation to the “reality out
there”.

We continue our detailed examination considering Newton’s equation at points P
and Q, involving centripetal accelerations:

maP;Q D m.v? � VG/2

�C

D qv?.B � �C r?B/ (1.44)

The last terms are the Lorentz forces in the OFR at points P and Q, respectively.
From either of the second equalities we obtain, inserting the above expression
for �C :
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�
1 � VG

v?

�2

D 1 � mv?
qB2

r?B

or, finally, for the moduli:

VG D mv?2

2qB2
r?B D T?

qB2
r?B D M

q

r?B

B
(1.45)

With (1.26) and (1.27), and observing Fig. 1.16, we obtain several versions for the
vector expression of the gradient-B drift velocity:

V G D 1

2

mv2?
qB3

B � r?B

D T?
qB2

e � r?B D � 1

q
M � r?B

B
D l

2m
� r?B

B
(1.46)

These expressions are non-relativistic; for relativistic particles, we have for the
magnitude of VG :

VG D m0c
2

2q
ˇ?2�

r?B

B2
(1.47)

in which

m0c
2

2q
D 2:56 � 105 Tesla m2/s for electrons

m0c
2

2q
D 4:70 � 108 Tesla m2/s for protons

Although the above expression is valid for relativistic particles, the actual values of
the drift velocity in typical magnetospheric fields are non-relativistic; as we shall
see, this is also the case for other drifts. The first equalities in (1.46) tell us that
given a surface perpendicular to the magnetic field, a 90ı pitch angle particle on it
will drift along a B D const. contour. As we shall see in the next section, this is an
important result for magnetospheric physics.

Relations (1.46) were proven here for the very restricted case of a 90ı pitch angle
particle in a non-uniform magnetic field with nearly parallel field lines. They have
general validity, provided condition (1.39) holds for the magnetic field gradient.
Note that in contrast to the zero order drift (1.34), the gradient-B drift velocity
depends on the energy, mass and charge of the particle and that, according to (1.45)
and (1.43), the adiabatic condition (1.39) leads to

VG � v? (1.48)

We now complete the “microscopic” examination of this case by returning to the
OFR to calculate the different radii of curvature RP and RQ at points P and Q in
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Fig. 1.18 Gradient-B drift
obeying the adiabatic
condition

Fig. 1.16—a difference that is responsible for the shape of the cycloidal orbit in the
OFR. Taking the expressions for the Lorentz force at these points (last equalities
in (1.44)), and equating them to the centripetal accelerations in the OFR (times
mass), we obtain

RP;Q D �C

�
1 ˙ �C

r?B

B

�

If condition (1.39) holds, the difference between RP and RQ is, indeed, extremely
small, and the cycloid will be tightly closed (Fig. 1.18). As an important remark, we
note the following: if we determine the vector expression of the centripetal Lorentz
force f .'/L in the GCS as a function of the phase angle (as we did with the velocity
v� in (1.41)), we would discover that the gradient-B drift (1.46) is nothing but a
force drift caused by the phase-average force hf .'/Li' . It does not count as a zero-
order drift, however, because the phase-average force is a first-order quantity, it is
not energy independent and VG � v? always. We will return to this in detail in the
next chapter.

Let us summarize some of the principal properties of zero-order and first-order
drifts, for non-relativistic, 90ı pitch angle particles. In the zero-order drift due to
the action of an external force, the drift of the particle is independent of its energy;
the orbit in the original frame of reference is in general a cycloid and the particle
velocity is variable (periodic). In the guiding center frame of reference, the orbit is
circular uniform. The constant particle speed in the GCS is equal to the average of
the particle speed in the OFR. There are no restrictions on particle energy, as long
as there is enough space for the particle to execute its periodic motion. In a first-
order drift due to a transverse magnetic field gradient, the drift motion depends on
the particle energy; the orbit in the OFR is also a cycloid, but the speed is constant.
In the GCS, the orbit is circular, but the speed is variable (periodic). The average
speed in the GCS is equal to the constant speed in the OFR. There are restrictions
on energy and field gradient.

1.6 Example: Drift of 90ı Pitch-Angle Particles
in the Magnetospheric Equator; Effects of an Electric
Field

We shall now analyze the motion of 90ı pitch angle particles on the equatorial
(minimum-B) surface of the earth’s magnetosphere making some simplifying
assumptions about magnetic and electrostatic field models. The study of equatorial
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Fig. 1.19 Experimentally determined average contours of constant magnetic field intensity in the
equatorial surface [9]. These contours represent drift paths for energetic, 90ı pitch angle particles.
Radial distances are in earth radii (1 RE D 6;371 km)

particles is useful for several reasons: (i) as we shall see later, the equatorial point
of a field line represents an equilibrium position for mirroring particles—hence the
study of equatorial particles provides “first order” information on the behavior of
the off-equatorial population; (ii) the theoretical treatment of equatorial and near-
equatorial particles can be done analytically by using simple field models, providing
physical insight (though not quantitative accuracy) into fundamental aspects of
trapped particle dynamics [7, 8]; (iii) many characteristic effects of spatial field
asymmetries are most pronounced for equatorial particles; (iv) more experimental
information is available on trapped particles at low geomagnetic latitudes, especially
in the outer magnetosphere.

Let us consider the drift motion of charged particles and assume that no external
forces are acting (this is nearly the case for radiation belt electrons and protons of
energies greater than about 100 keV). The guiding centers of these particles will
experience a pure gradient drift (1.46) following constant-B curves; electrons will
drift eastwards, protons westwards. Figure 1.19 sketches the principal features of
constant magnetic field intensity contours as observed in systematic measurements
[9]. A qualitative examination of the figure leads to the following conclusions:

(i) Within about 7�8 earth radii (1 RE D 6;371 km) all drift paths are closed. In
that region an equatorial particle thus remains stably trapped (assuming that
there are no external perturbations.)

(ii) The trajectories’ day-night asymmetry increases as one moves away from the
earth. Within about 4 RE , they are approximately circles, as prescribed by a
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dipole-like field. Further out, the asymmetry is such that a given drift path has
its closest approach to earth at magnetic midnight.

(iii) Constant-B contours going through the midnight meridian at distances greater
than about 7 RE do not close around the earth. Particles drifting along them
are trapped in the magnetosphere for only a limited time, running into the
boundary at the flanks of the magnetosphere. We call them pseudo-trapped or
quasi-trapped particles. The last closed contour represents the “limit of stable
trapping” for equatorial particles. (Magnetic field lines through this contour
intersect the earth near the equatorward edge of the auroral oval.)

(iv) A satellite in circular orbit (for instance, a geostationary satellite at 6.6 RE

from the center of the earth), cuts through different drift paths as the local time
or longitude of its position changes. In particular, at midnight it samples the
outermost B-ring, at noon the innermost one, of a certain B-range. Assuming
that particles are distributed evenly along a drift path, their flux will be only a
function of B (see Chap. 4). If this flux decreases outwards (i.e. with decreasing
B), a detector on a geostationary satellite measuring equatorial particles will
reveal a diurnal variation of its counting rate with maxima occurring at local
noon.

(v) Drift paths are closer to each other at midnight. This means that the transverse
gradient of the field is larger there. Thus, according to (1.46), a particle’s drift
velocity will be larger at night than at noon. As a consequence, stably trapped
equatorial particles spend more time on the day side than on the night side
during their drift. This difference becomes more pronounced as we approach
the limit of stable trapping.

An analytical expression of the equatorial magnetospheric field intensity B0

at point r0, �0 (longitude east of midnight), reasonably good during quiet and
moderately disturbed times in the region 1.5–7 RE , is given:

B0 D BE

�
RE

r0

�3�
1 C b1

BE

�
r0

RE

�3

� b2

BE

�
r0

RE

�4

cos �0

�
(1.49)

The three terms represent, respectively, (i) the main dipole field (with BE �
30;438 nT the dipole magnetic field intensity on the Earth surface at r0 D 1RE);
(ii) the contribution from a uniform field compression by the Chapman-Ferraro
boundary currents; and (iii) a day-night asymmetry caused by the cross-tail current.
The second and third terms are small compared to the dipole term. To first order, the
coefficients b1 and b2 depend on the stand-off distance to the subsolar point of the
magnetopause; the following relations represent this relationship reasonably well:

b1 D 25

�
10

Rs

�3

nT

b2 D 2:1

�
10

Rs

�4

nT (1.50)
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Notice the strong dependence with the stand-off distance Rs (Rs D 10RE

corresponds to the normal state of the magnetosphere). The equation of the drift
trajectory B0.r0; �0/ D const. generated by a particle injected at point r0i , �0i with
a 90ı pitch angle is, to first order:

r0.�0/ D r0i � RE

3

b2

BE

�
r0i

RE

�5

.cos �0 � cos �0i / (1.51)

Note that only the day-night asymmetry coefficient b2 appears. This equation
represents eccentric circles with closest approach to the earth on the night side (as in
Fig. 1.19); their eccentric displacement increases very rapidly with radial distance
r0i . Close to Earth higher order multipoles from the internal geomagnetic field must
be taken into account for a more realistic description (Sect. 3.4).

Evaluating the drift velocity (1.46) of a particle along this B0 D const. contour,
we find

VD.�0/ D 3mv2

2qREB0

�
B0

BE

�1=3�
1 � 4

3

b1

B0

�
C 5mv2

2qRE

b2

B0
2

cos �0 (1.52)

This function passes through a maximum at midnight and a minimum at noon.
Trapped equatorial particles thus indeed spend more time on the dayside than on
the nightside of the magnetosphere, as we have anticipated above.

The drift period �d is given to first order by

�d D
Z 2�

0

r0d�0

VD

D 4�qR2
E

3mv2
B0

�
BE

B0

�2=3�
1 C 5

3

b1

B0

�
(1.53)

In this case only the compression coefficient b1 intervenes. For particles of the
same energy, �d increases as B0 decreases (as the particle’s drift contour radius
increases), passes through a maximum for B0 Š .20=3/b1 (�160 nT, or a radial
distance of approximately 5.8 RE), and then decreases again. The approximations
used to derive these expressions start breaking down at these radial distances (for a
more realistic field model the actual position of the contour of maximum drift period
is slightly larger than the figure quoted.)

Our next examples involve the drift motion of equatorial particles subject to an
electric field E 0 D �rV parallel to the minimum-B surface (please do not confuse
the electric scalar potential V with the drift velocity vector V D!). Each particle will
be subjected to a drift that is the vector sum of (1.46) and (1.34):

V D D �M r?B0 � B0

qB0
2

� r?V � B0

B0
2

D �r?
�M

q
B0 C V

� � B0

B0
2

(1.54)

For equatorial particles, this means that they will drift along curves of constant
	 D .M=q/B0 C V , which plays the role of an “extended” potential (note that
q	 D E, total energy of the particle). The functions B0.r0; �0/ and V.r0; �0/ can



30 1 Particle Drifts and the First Adiabatic Invariant

be determined using analytical or numerical models of the magnetic and electric
fields. If the initial position of the particle’s guiding center is r0i ; �0i , the drift
trajectory r0 D r0.�0/ is found by solving 	 D .M=q/B0.r0; �0/ C V.r0; �0/ D
.M=q/B0i C V i D const:, where the magnetic moment M D T0=B0 D T0i =B0i

(non-relativistic case) serves to determine the particle’s kinetic energy along its path.
To calculate the time �t to reach a given point of its drift path (or to determine
the drift period in a closed orbit), it is necessary to integrate the inverse of (1.54):
�t D R

.r0=VD/d�0 (dl : element of arc of the drift path).
We shall discuss examples using simple analytical approximations for B0 and W0.

We choose a pure dipole field B D BE.RE=r0/
3, and an electric field consisting of

two terms: (i) an ubiquitous corotational field arising from the rotation of the dipole
(co-axial rotation in this simplified model), and (ii) a uniform dawn-dusk electric
field (assumed to be driven by the solar wind flow). The corotational field is an
induced field with the property, mentioned on page 19, that any near-zero energy
particle (regardless of its mass and charge) will drift with the local rotational speed
(vcorot D ˝Er0) in the dipole field: Ecorot D vcorot B0 D ˝ERE

3BEr0
�2 (˝E D

7:272 � 10�5 rad/s) is the angular rotational speed of the Earth). Despite being an
induced field (of the type �@A=@t; see Appendix A.1), in the domain of interest this
expression can be written as the gradient of a potential Vcorot D �˝ERE

3BE=r0.
Concerning the uniform dawn-dusk electric field Edd , its potential is Vdd D
Edd r0 sin �0 (positive, to have E pointing in the �y direction). The final expression
of 	 is then

	 D .M=q/B0 C V D .M=q/BE.RE=r0/
3 � ˝ERE

3BE=r0 C Edd r0 sin �0 (1.55)

Taking into account that r? D r?r C r?� and that there is a vector product
operation in (1.54), the corresponding drift velocity (1.54), in its polar components
on the equatorial plane, is given by:

VDr D � Edd

BERE
3

r3
0 cos �0

VD� D �3M

q r0

C ˝E r0 C Edd

BERE
3

r3
0 sin �0 (1.56)

Let us examine some characteristics of the equatorial particle drift paths r0 D
r0.�/, solution of 	 D 	i D const:, where 	i is defined by the initial values r0i ,
�0i and M D Ti =Bi . We begin with analyzing the electric equipotentials, i.e., the
drift trajectories of M ! 0 equatorial particles. Their equation will be, according
to (1.55),

V D �˝ERE
3BE=r0 C Edd r0 sin �0 D const. (1.57)

Near the earth, the (negative) corotation potential will prevail (V < 0), and the
equipotentials will approximate circles around the Earth; far away, e.g., toward
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Sun

Dawn

Dusk

Fig. 1.20 Sketch of electric
equipotentials on the
magnetospheric equator for a
magnetic dipole and a
corotational plus dawn-dusk
electric field. These
equipotentials also represent
the drift trajectories of
near-zero energy equatorial
particles (sunward convection
and corotation)

the magnetotail, the equipotentials will approximate straight lines, representing a
general sunward drift. The equation for the zero equipotential V0 D 0 is r0

2 D
.˝ERE

3BE/=.Edd sin �0/. Note that it is valid only for sin �0 > 0, i.e., it lies
entirely in the dawn quadrants (see Fig. 1.20). Its intersection R0 with the dawn
meridian (y-axis) is located at

R0 D
q

.˝ERE
3BE/=.Edd / (1.58)

from the center of the Earth. This value will come handy as a geometric scaling
parameter. The larger the electric field, the closer to the Earth the zero potential
curve will come (the smaller the corotational region in the figure).

The solution of the quadratic equation (1.57) is

r0.�0/ D V

2Edd sin �0

�
1 ˙

s
1 C 4Edd ˝ERE

3BE

V 2
sin �0

�
(1.59)

The presence of the function sin �0 in the square root indicates that the character-
istics of the equipotentials in both dawn quadrants (sin �0 > 0) will in general be
different from those in the dusk quadrants. Figure 1.20 sketches the different types
of equipotentials for the general case. Since the value of r0 must come out positive,
in the dawn side there can only be one solution (the positive sign of the square
root); in the dusk side two different solutions are possible. Note first the existence of
two topological regions, a corotation region with closed equipotential lines around
the Earth, and the convection region with open equipotentials, where low energy
particles flow from the tail toward the front of the magnetosphere. The potential VS

of the separatrix limiting both regions will be that for which the two solutions along
the dusk meridian (sin �0 D �1) coincide, i.e., for which the square root in (1.59)
is zero: VS D �2

p
Edd ˝ERE

3BE D �2Edd R0 (only the negative value of the
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square root will lead to positive r0 in (1.59)). The equation of the separatrix will be,
taking into account (1.58):

rS.�0/ D �R0

1 ˙ p
1 C sin �0

sin �0

(1.60)

The geometric form is independent of the intensity of the dawn-dusk electric field;
the latter only appears in the scaling factor R0 (1.58). Again, the larger Edd the
smaller will be the corotation region. For sin �0 > 0 only the negative sign of the
square root is acceptable; for sin �0 < 0 both signs are possible, and two solutions
may exist. Observe in the figure the notable points, intersections of the separatrix
with the y-axis (sin �0 D ˙1) and on the x-axis (for the latter, consider that the
limit of the geometric factor in (1.60) for sin �0 ! 0 is 1=2).

Some words about the concept of field line motion (page 20) in relation to
the equipotentials shown in Fig. 1.20. As stated above, these equipotentials are
the trajectories of near-zero energy charged particles, moving with a velocity (1.54)
(without the M -term). Would this then also be the velocity of the corresponding field
lines? Would the entire magnetic field be convecting and corotating as prescribed
by the motion of the field lines’ equatorial points, up to their intersection with
the Earth? First of all, we haven’t said anything about the electric field off the
minimum-B equator. If all field lines are equipotentials (Ek � 0) such a picture
might indeed be correct. Yet in the definition of field line velocity, did we not
require that the electric field be an induced electric field (1.38)? Well, just as the
induced rotational electric field (page 19) can be expressed as the gradient of a
scalar in the region of interest, the dawn-dusk electric field Edd was also expressed
as a potential field in the region of interest, despite also being an induced field (the
moving or changing source currents to be found in the solar wind). So indeed we
could visualize the curves of Fig. 1.20 as the trajectories of the equatorial footprints
of magnetospheric field lines in our model. Unfortunately, their intersection with
the conducting ionosphere substantially complicates the picture. Despite these
reservations, the field lines through the closed portion of the separatrix may be
viewed as an approximation to the limit of corotating low energy plasma particles
that form the plasmasphere. Such limiting surface is called the plasmapause, and
Eq. (1.60) may be viewed as “the plasmapause equation”; its form and dependence
of a dawn-dusk electric field indeed bear some observed geometric and dynamic
characteristics of the plasmapause.

We now turn to particles of arbitrary energy. If, say, Ti & 100 keV, the electric
field drift can be neglected and electrons and protons drift in opposite senses along
constant B lines, as discussed in relation to Fig. 1.19. In the intermediate range of
energies the drift motion is more complicated. Electrons in general behave rather
“normally” because in general the electric drift and the gradient drift point roughly
in the same direction. For protons, however, these drifts may point in opposite direc-
tions on some parts of the dusk side; depending on which is the greater, the proton
drift will be eastward or westward. Figure 1.21a, b show drift trajectories calculated
using (1.54) for 1 keV electrons and protons, respectively, injected on the disk
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Fig. 1.21 (a) Broken lines: equipotentials for an electric field of potential Edd D 1:8 kV R�1
E .

Solid lines: drift paths of electrons injected with 1 keV along the dusk meridian (dots). Notice
corotation vs. convection. Equipotentials in the corotation region (not shown) are close, but not
equal to the drift paths. (b) Solid lines: drift paths of protons injected with 1 keV along the dusk
meridian (dots). Notice three types of paths: corotational, “vortices” not enclosing the earth, and
sunward convection

meridian (solid curves), for a dawn-dusk electric field of 1.8 kV/RE . Close to Earth,
the electrons are stably trapped; beyond the stagnation point 1 keV electrons are
quasi-trapped, being convected into the boundary. There is a reversal of drift sense
at the stagnation point. Notice also how corotating electron drift paths approach the
earth closer at dawn; their energy there can be up to ten times greater than at dusk.
The behavior of protons (Fig. 1.21b), again injected with 1 keV at several positions
along the dusk meridian, is more complex. Starting at 3, 4 or 5 RE at dusk, the coro-
tational field takes them eastwards around the earth in orbits similar to those of elec-
trons; the energy-dependentgradient drift, directed opposite to the electric field drift,
is negligible. Between 5 and 7 RE on the dusk meridian, we have a zone in which
protons get sufficiently accelerated in their eastward drift so that, eventually, the gra-
dient drift takes over and turns them around westwards against the corotation drift,
on the same evening side of the earth. After crossing the dusk meridian, these pro-
tons are decelerated and the electric field drift takes over again. We thus have closed
drift paths which do not encircle the earth. Beyond 7 RE on the dusk meridian,
1 keV protons are quasi-trapped, following a convection pattern toward the Sun.

Thus far we have assumed static conditions. Equation (1.54) can be integrated
also for a slowly, adiabatically varying dawn-dusk field (V D V.t/). This can
be used to determine the fate of low energy equatorial protons injected from the
magnetospheric tail and convecting toward the Earth during conditions of high Edd ,
and then captured around the Earth in corotating orbits when a decrease in Edd sets
in (having the effect of expanding the separatrix). This, in connection with more
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realistic field models and consideration of local plasma effects, may play a role in
substorm ring current injection dynamics.
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Chapter 2
Higher Order Drifts and the Parallel Equation
of Motion

2.1 General Expression of the Drift Velocity and Higher
Order Drifts

We are now in the position of defining a charged particle’s guiding center system in a
mathematically more rigorous, less qualitative, way. We shall use the three examples
discussed in the preceding chapter (force drift, electric field drift, gradient-B drift)
and realize that in each one, our implicit “recipe” was to look for a reference frame
moving with velocity V in which, in a plane perpendicular to B, the motion-induced
electric field force qV � B cancels the phase-average of the resultant of all other
forces acting on the particle as it makes one cyclotron turn. We can now generalize
this rule in a more formal way.

First, we should make it clear that all that follows assumes the validity of the
adiabatic conditions, which we write here in more general form in terms of the order
of magnitude of characteristic space and time variations of any field quantity Q:

�C � Q

rQ
(2.1)

�C � Q

dQ=dt
(2.2)

It is important to clearly understand the meaning and consequences of these
conditions. Condition (2.1) tells us that the quantity Q should vary only very little
(in relative magnitude and direction, if it is a vector) along the cyclotron trajectory
of the particle (whose dimension depends on the particle’s perpendicular velocity
for a given magnetic field intensity (1.19)). Concerning the second condition, the
time derivative is a total derivative, i.e., it represents change as seen by the particle.
Therefore, (2.2) tells us that the quantity Q should change only very little (in relative
magnitude or direction) during a cyclotron period (which in the non-relativistic
domain does not depend on the particle’s velocity).
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Fig. 2.1 Magnetic field
configuration on a cyclotron
orbit in the “natural” frame of
reference

Second, we identify the type of forces that in most general terms may act on a
charged particle at point r and time t in its cyclotron motion in the yet-to-be defined
GCS. They are: (1) the external electric field force qE (electric field in the OFR); (2)
a non-electromagnetic external force F (unimportant in magnetospheric physics);
(3) the motion-induced electric field force qV � B (V is the yet-to-be determined
velocity vector of the GCS); (4) the Lorentz force qv� � B (v� is the particle’s
velocity vector in the GCS); and as a new element, (5) the inertial force �mdV =dt

which appears whenever the GCS is an accelerated frame of reference.
Our formal definition can now be formulated in the following way: The guiding

center system is a moving (usually non-inertial) frame of reference in which at any
given time the cyclotron phase average of all forces acting on the particle is zero.
Mathematically:

�
qE C F C qV � B C qv� � B � m

dV

dt

	
� 0 (2.3)

Each term of this equation is a cyclotron phase average of the type

hP i' D 1=2�

Z 2�

0

P.'/d' (2.4)

Refer to Fig. 2.1, in which the origin is the instantaneous guiding center (position rC

in the OFR, (1.25)) and the axes represent the natural frame defined in Appendix A.1
(z-axis along e D B=B; x-axis along binormal b; y-axis along normal n). Since we
are assuming the adiabatic condition (2.1) to apply, we can relate any vector P.r/

on the particle’s cyclotron orbit to its value at the guiding center via a first order
Taylor expansion:

P.r/ D P.rC / C ıP D P.rC / C r ˝ PjT �C (2.5)

where r ˝ PjT is the transposed tensor gradient of P (see (A.34) and footnote on
page 170 of Appendix A.1) and �C D �C .rC ; '/ is given by (1.25). The last term
has components r ˝ P jT �C ji D ˙k@Pi =@xk�C k .
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The first and second term averages in (2.3) are just the electric field and the
external force at the position of the guiding center rC , respectively (hıEi D
hıF i D 0 because only sin ' and cos ' would appear in the integral (2.4)). The
same applies to the third term (V is a quantity characterizing the whole GCS,
not a vector field). In the fourth term, when we replace B.r/ by an expansion
like (2.5), we must take into account that for the vector velocity hv�i D 0 in the
GCS (1.7), so only the “little Lorentz force” qhv�? � ıBi would survive. The fifth
term is an inertial force, which also should be considered a characteristic of the
whole GCS.

The fourth term, qhv� �.r ˝B �C /i requires careful and detailed consideration.
Consider a particle of mass m and electric charge q gyrating with a 90ı pitch angle
in a non-uniform magnetic field, as shown (for a positive charge) in Fig. 2.1. First
we must find the expression of the tensor product. To that effect we note that by
components,

v� D .
q

jqj?
v�? sin ' ; � q

jqj?
v�? cos ' ; 0/

�C D .�C cos ' ; �C sin ' ; 0/

We inserted the ratio q=jqj in order to put in evidence the effect of the sign of the
electric charge.

The components of ıB D r ˝ BjT �C are (A.16):

ıBx D @Bx

@x
�C cos ' C @Bx

@y
�C sin '

ıBy D @By

@x
�C cos ' � �@B

@s
C @Bx

@x

�
�C sin '

ıBz D rxB�C cos ' C ryB�C sin '

Remember that in the natural coordinate system Bz D jBj, @Bz=@z D @B=@s, and
that rB D .@B=@x; @B=@y; @B=@s/ and r � B D 0 (Appendix A.1).

For hv� � ıBi we need the component products qv�
i ıBk and average over

one cyclotron turn. All terms containing cos ' sin ' will average out to zero;
in the remaining terms we will have integrals of the type 1=2�

R
sin2 'd' D

1=2�
R

cos2 'd' D 1=2. The end results are:

qhv� � ıBix D 1

2
q
� � q

jqj
�
v�?�C rxB D �1

2
jqjv�?�C rxB

qhv� � ıBiy D �1

2
jqjv�?�C ryB

qhv� � ıBiz D �1

2
jqjv�?�C

@B

@s
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In vector form, we can write:

qhv� � ıBi D �mv?�2

2B
rB D �M rB (2.6)

The projection of this result perpendicular to B represents the gradient-B force,

f ? D f g D �M r?B (2.7)

which can be interpreted as the cause of the gradient-B drift ((1.45)—see also
below). The parallel component of the average Lorentz force is what is called the
mirror force

fk D �M rkB D �M
@B

@s
(2.8)

This force accelerates and decelerates particles spiralling along a field line into and
away from decreasing or increasing B values, respectively. As we shall see later, it
governs the bounce motion along a field line and is responsible for particle trapping
in the geomagnetic field. Relations (2.7) and (2.8) provide further legitimacy to the
model of a virtual guiding center particle and the concept of its magnetic moment:
any magnetic moment M placed in a non-uniform magnetic field is subjected to a
net force f D r.M � B/ which in our case is D �M rB because of (1.26) and the
fact that M is an adiabatic invariant. One cautionary note is in order: we emphasized
repeatedly that the velocity v�? in the definition (1.26) of the magnetic moment is not
that of the original particle in the OFR, but its transverse velocity in the GCS. When,
in the GCS, this velocity is a function of the cyclotron phase the phase-average must
be taken (see (1.41) and pertinent discussion). From now on, we shall drop the star
supraindex to simplify the aspect of the equations, but we will remind the reader
when necessary to distinguish between OFR and GCS variables.1

In summary, the condition (2.3) defining the guiding center system has now
become

1It is advisable to revisit the above derivation process starting with Fig. 2.1 and relation (2.3). That
process really developed in stages: what the figure intended to show implicitly was a “pre-GCS”
in which the particle was circling free of external forces—i.e., a system which was moving with a
transverse drift velocity, sum of U (1.34) and V F (1.31) and in which the corresponding motion-
induced field force balanced the external field forces. In such a system the particle gyrates with
constant speed v

?

� (example of Sect. 1.3). However, due to any inhomogeneity of the magnetic
field, there was another resultant force, the term (2.6), which leads to an additional drift and
the “final GCS”. Now the particle’s transverse velocity v

?

is no longer independent of ' (see
expression (1.41)), but its cyclotron average is equal to the (constant) velocity in the “pre-GCS”
(see expression (1.42)). It is precisely this average transverse velocity that enters in the definition of
the magnetic moment (1.46). Confused again? Unfortunately, this detail is conceptually important,
especially for the fundaments of plasma physics.
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qE C F C qV � B � M rB � m
dV

dt
� 0 (2.9)

The quantities involved are evaluated at the GC point, not at the original particle’s
actual position in its gyromotion. This equation will lead us to a dynamic equation
of motion for the guiding center, to be discussed in the next section. At this time we
focus on the fact that there is only one drift velocity that satisfies it (multiply the
equation vectorially by B=qB2 and extract V ?):

V D D V ? D �
qE C F � M rB � m

dV

dt

� � B

qB2
(2.10)

This equation displays the four fundamental drifts of a guiding center particle: (1)
the E-cross-B drift (1.34); (2) the force drift (1.31); (3) a gradient-B drift like
(1.46); and (4) an inertial force drift.

For the parallel velocity of a guiding center particle, all we can do is repeat
relation (1.4):

V k D hvki Š vk (2.11)

Our last task is to further analyze the inertial term in (2.10). An apparent
problem arises at once: this term contains the unknown vector V which we are
trying to determine! But there are “unknown unknowns” and “known unknowns”.
This particularly applies to adiabatic theory because of its goal of providing useful
approximations rather than impractical exactitude. If we divide the velocity into the
two vectors V D V k C V ? we have:

dV

dt
D d.V k C V D/

dt
D d

dt
.vke C V D/ D dvk

dt
e C vk

de

dt
C dV D

dt
(2.12)

The second term calls our attention to the fact that the natural coordinate system
(Appendix A.1) is a local frame of reference, that in an inhomogeneous magnetic
field varies from point to point. In the above equation (and many future ones) the
operator d=dt represents the total variation per unit time as seen by the particle,
always consisting of two parts: (i) a variation in time at a fixed point in space, and
(ii) a variation due to the displacement (which can be both perpendicular as well as
parallel to B) while the field is frozen in time: d=dt D @=@t C V � r (the latter
operator being

P
Vk@=@xk). We obtain the following:

dV

dt
D dvk

dt
e C vk


@e

@t
C .V � r /e

�C dV D

dt

D dvk
dt

e C vk

@e

@t
C .vk � r/e C .V D � r/e

�C dV D

dt

D dvk
dt

e C vk2 @e

@s
C vk.V D � r/e C vk

@e

@t
C dV D

dt
(2.13)
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Carefully note that this is a purely kinematic/field-geometric equation—it has
nothing to do with the dynamics of the particular particle involved, and might
as well apply to little balls sliding without friction along bent and moving wires
(the field lines)! Since vk D ds=dt , the first term is the “real” guiding center
particle acceleration along the field line, measuring how its actual speed along the
line varies; it is the one we are really interested in. The other terms are inertial
accelerations due to the fact that a particle traveling along a bent and eventually
moving field line experiences additional accelerations; they are important through
the action of the inertial forces they represent. For instance, we recognize in the
second term of the last equality a centripetal acceleration governed by the radius
of curvature RC of the field line in question (because according to (A.15) of
Appendix A.1 @e=@s D �n=RC ); this indeed represents the fact that the guiding
center follows the curved field line in its parallel motion. The third term is an
inertial acceleration that appears if the guiding center has a drift component along
the normal n of the field line; if ıl is an element of the GC trajectory, this term
can be written as vkVD@e=@l . The fourth term is an acceleration due to a time-
change of the direction of the magnetic field (e.g., in rotating field lines). Finally,
concerning the third and fifth term, in most of what follows we will replace V by the
electric drift U (1.34) in order to avoid (to first order) the problem of the “unknown
unknown” mentioned above. This replacement is more than just a convenience: it is
fully justified as a legitimate approximation.

We now insert (2.13) (times the particle mass m) into the corresponding term
on the right side of Eq. (2.10) to obtain the most complete expression of the drift
velocity. With U and V F given by (1.34) and (1.31), respectively, we write it in two
equivalent forms:

V D D e

qB
�
�

� qE � F C M r?B C mv2
k
@e

@s
C mvk

@e

@t

C mvk.V D � r/e C m
dV D

dt

�

D U C V F C mv2?
2qB3

B � r?B C mv2k
qB2

B � @e

@s
(2.14)

C m

qB2
B �

�
vk

@e

@t
C vk.U � r /e C dU

dt

�

The first equality (first two lines) expresses it all as a force drift made up of different
contributions. The two lines in the second equality represent three different orders
in the adiabatic approximation. Specifically, the first two lines show the zero-order
E-cross-B and force drifts (1.34) and (1.31). The third line shows two first-order
drifts:

Gradient-B drift: V G D mv2?
2qB3

B � r?B D �M � r?B

qB
(2.15)
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Curvature drift: V C D mv2k
qB2

B � @e

@s
(2.16)

According to (A.22) in Appendix A.1, in absence of any currents B@e=@s D r?B ,
thus under this special condition, we can combine the last two equations into one:

Gradient-curvature drift: V GC D 1

2

m

qB3
.v2? C 2v2k/B � r?B (2.17)

The fourth line in the second equality of (2.14) contains second and higher order
drifts; in the latter we have replaced V D with its own first approximation, U (for
F D 0). The first term represents the effect of time-dependence of the direction of
the magnetic field; the second represents the effect of a spatial variation of the e

direction.
The last term is of importance in some electric field situations, in particular, for

a stationary magnetic field but varying electric field. Taking into account (1.34), we
obtain the so-called

Polarization drift: V P D m

qB2

@E?
@t

(2.18)

Finally, a few nitpicking remarks about adiabatic drifts. What exactly are
the particle velocities that appear in the general expression (2.14)? We strongly
recommend that the reader review again the statements in the footnote on page 38
and all its implications. Another important point is the following. Carefully observe
how the various terms in Eqs. (2.14)–(2.18) depend on the velocities v? and vk of
the original (real!) particle. Zero order drifts do not depend on them at all, only on
the local B, E and force fields. The gradient-B drift depends on M (see its second
expression in (2.15)), which is an adiabatic constant of motion, i.e., depends only
on the initial transverse velocity of the particle. The curvature drift does depend on
its instantaneous vk. What enters in the remaining higher order drifts is the full drift
velocity itself—but as stated above, for a second order approximation, the known
drift U suffices.

2.2 Motion Along the Field Line and the Energy Equation

Before we discuss the dynamics of guiding center particles in their field-aligned
motion, we should answer a fundamental question: Why does the guiding center
particle actually follow a curved field line? Usually, this is a fact taken for granted,
based on the appearance of a centripetal acceleration term vk2.@e=@s/ in (2.13)
and confirmed by the beautiful pictures of glowing plasma-filled coronal loops.
However, as stated before, this equation is a purely kinematic and field-geometric
one, having to do with the way we represent our guiding center velocity vector in the
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Fig. 2.2 Motion of the GC
along a curved field line:
geometric parameters

natural frame of reference (2.12). A more legitimate proof is the following. Consider
a magnetic field configuration as shown in Fig. 2.2, with a central rectilinear field
line along axis z and a magnetic intensity that increases toward positive z. A
probe particle is placed on a near-by field line with small perpendicular velocity
v?, therefore also with a small gyroradius �C � y.s/. Assuming cylindrical
symmetry around the z axis, the differential equation of the particle’s field line
(see Appendix A.1, footnote on page 164) can be easily derived from the flux tube
property By2 D const: along z:

dy

ds
D � 1

2B

@B

@s
y

Now we determine the trajectory of the GC particle under the drift imposed by the
“little Lorentz force” q.vk � by/ directed along x (into the paper):

V D D q.vk � by/ � B

qB2
Therefore VDy D dy

dt
D vk

B
by

But by D .@By=@y/y D �1=2.@B=@s/y, because of r � B D 0 and the symmetry
around the z axis. Thus, the equation of the GC trajectory will be:

dy

dt
D dy

ds

ds

dt
D dy

ds
vk D �vk

1

2B

@B

@s
y (2.19)

Cancelling the particle variable vk on both sides of the last equality leaves us with
the differential equation of the particle’s magnetic field line! (Footnote, page 164).
In summary, under adiabatic conditions the “little Lorentz force” caused by any
small non-uniformity b of the magnetic field acting on the parallel motion of a
charged particle is always such as to impart an acceleration ? B that makes the
guiding center follow the curved field line.

There is a limit, though, to the property of “following the field line”, imposed
by adiabatic condition (2.2). If 
C D vk�C is the displacement of the GC along a
field line during one cyclotron turn, this condition requires that the magnetic field,
including its direction e, change very little along 
C . This implies 
C .@e=@s/ � 1

or 
C � Rf l , where Rf l is the field line’s radius of curvature. For small pitch
angles (vk ' v) the particle velocity must then be v � Rf l=�C . Note that rather
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than a restriction on pitch angles, this is a restriction on velocity or energy: particles
with small pitch angles and too high energy will “fly off” tangentially from their
home field line (happens to trapped particles on sharply bent field lines in the neutral
sheet)! This is equivalent to what happens to energetic particles with pitch angles
 90ı: when condition (2.1) is violated, they will “fly off” perpendicularly to B

(happens to trapped particles in the vicinity of the dayside boundary)!
We now go back to the guiding center system definition (2.9) and extract the time

derivative of the GC velocity V in its parallel projection:

m
dV

dt
� e D ak D qEk C Fk � M

@B

@s
(2.20)

Then we turn to (2.13) and consider its parallel projection

dV

dt

ˇ̌
ˇ̌
k

D .dV =dt/ � e D ak D dvk
dt

C dV D

dt
� e D dvk

dt
� V D � de

dt

the latter equality because of V D � e D 0. But d=dt D @=@t C .V � r / which leaves
the above equation as

dV

dt

ˇ̌
ˇ̌
k

D ak D dvk
dt

� vkV D � @e

@s
� V D � @e

@t
� V D � .V D � r/e (2.21)

Note carefully that ak is not d 2s=dt2! Inserting (2.21) in (2.20), we finally obtain
the parallel equation of motion of the guiding center:

m
dvk
dt

D m
d 2s

dt2
D qEk C Fk � M

@B

@s

CmvkV D � @e

@s
C mV D � @e

@t
C mV D � .V D � r /e (2.22)

The first line includes zero- and first-order terms in which we recognize the external
forces and the mirror force; the second line contains higher-order terms, corrections
that are the result of field-geometric effects related to the drift velocity.

Let us give just two quick examples for the action of the second order 4th and
5th terms in (2.22) (quick, because they can be neglected in radiation belt physics),
consider Figs. 2.3 and 2.4, respectively. The first one depicts a particle spiralling
about the central line in a nearly uniform magnetic field in a long rotating solenoid.
As viewed from the OFR (which is fixed to the rotating solenoidal field), the particle
is subjected to an induced electric field E i D �.˝ � r/ � B which in turn causes a
drift V D , responsible for the particle corotating with the solenoid (see discussion on
page 19). The term mV D �@e=@t D m˝2r is the centrifugal force leading to a “sling
shot effect” on the GC particle. The second example is a particle spiralling along a
circular field line around a linear current I and subjected to a uniform electric field
parallel to the current, out of the paper. Besides the gradient-B and curvature drifts
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Fig. 2.3 Example of particle
drifting in a rotating solenoid
field

 line

 drift

Fig. 2.4 Example of particle
drifting in the field of a linear
current I with an electric
field along it

perpendicular to the paper, there will be an E-cross-B drift toward the center line,
in the direction of @e=@s. So the 4th term will be ¤ 0, representing an acceleration
as the GC particle drifts into higher B-values.

In absence of any drift, or if all three higher order terms can be neglected, and
if the external forces derive from a scalar potential along the field line W(s), the
parallel equation of guiding center motion is reduced to

m
dvk
dt

D � @

@s



MB.s/ C W.s/

�
(2.23)

The guiding center moves along the field line as if it was subjected to a total scalar
parallel potential Pk D MB.s/CW.s/, and one can apply to that parallel motion all
the familiar energy graphs and related methods of mass point mechanics (see next
section).

Finally, there is one more important general equation to be derived. Consider the
instantaneous kinetic energy of a gyrating particle in the OFR:

T D 1

2
mv2? C 1

2
mv2

k

Taking into account relations (1.8), (1.26) and (2.11), we can write for the cyclotron
average:

hT iC D MB C 1

2
mV 2

k C 1

2
mV 2

D (2.24)

In the guiding center particle model, the first term represents the GC particle’s
“internal energy” (cyclotron energy), the second term represents the kinetic energy
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of the GC particle in its motion along the field line, the third term the kinetic energy
in its drift motion. The energy equation refers to the time rate of change of the GC
particle’s average kinetic energy, which we write:

d hT iC

dt
D M

dB

dt
C mvk

dvk
dt

C mV D � dV D

dt
(2.25)

Setting in the first term d=dt D @=@t C vk@=@s C V D � r and replacing dvk=dt

with its expression in (2.22), we have:

d hT iC

dt
D M

@B

@t
CVk.qEk CFk/CV D ��M r?B Cmvk2 @e

@s
Cmvk

de

dt
Cm

dV D

dt

�

The parenthesis appears as part of the expression of V D in (2.14). Extracting
mdV D=dt from (2.13) and then dV =dt from (2.9), the last term of the above
equation turns out to be equal to V D � .qE ? C F ?/, which leaves the energy
equation as

d hT i
dt

D M
@B

@t
C Vk.qEk C Fk/ C V D � .qE? C F ?/

D M
@B

@t
C V � .qE C F / (2.26)

This result is easy to understand intuitively, and again confirms the physical
adequacy and conceptual value of the guiding center particle model.2 The first term
is the power delivered by a changing magnetic field to the internal state of the virtual
GC particle (the cyclotron motion of the real particle); note that it only includes the
local time derivative of B . The agent responsible for the delivery or extraction of
power is the induced electric field associated with the locally changing magnetic
field E ind D �@A=@t (page 176 in Appendix A.1). This induced electric field
acts on the real particle in its cyclotron motion, as sketched in Fig. 1.15.3 Although
trivial, we still must point out that changes in B as seen by the guiding center particle
(i.e., convective changes in an inhomogeneous field V �rB or vk@B=@s) do not enter
in the first term. For instance, a particle drifting in a static magnetic and electric field
like in Fig. 1.21 does experience a varying B-field (in the GCS) because it is driven
into it by the electric drift (otherwise the guiding center particle would follow a
B D const: contour, like in Fig. 1.19); whenever that electric field has a component

2For the relativistic version, use (1.29) as the relation between the relativistic magnetic moment
and kinetic energy.
3When the local time derivative @B=@t is entirely due to changes in the external current intensities,
but not their configuration in space, one usually calls this process a betatron acceleration; if the
current intensities are constant, but their position or distribution changes in space, one calls it a
Fermi acceleration. This distinction is made mainly in astrophysics. However, the particle doesn’t
care about what causes the local field to change!
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in the drift direction (V D � E ¤ 0), it will do work on the particle. Another trivial
but relevant remark: drifts due to the electric field do not play any role in the second
term, because by definition (1.34) their contribution to the total drift V D is always
perpendicular to E . This is particularly important to keep in mind when one deals
with purely induced electric fields in absence of potential electric fields: we must
include the induced electric field in the second term, but only non-electric drifts can
lead to energy change (if they have a component along E ind ). This sometimes is
called drift-betatron, in distinction from the above gyro-betatron.

2.3 Particle Trapping and Parallel Electric Fields

In the previous section we have derived three fundamental and most general
equations that under the adiabatic conditions (2.1) and (2.2) describe the dynamics
of a virtual guiding center particle of given mass, charge, field-aligned velocity
and magnetic moment. For the perpendicular motion, the drift velocity in its most
general form is given by (2.14); we must emphasize again that this drift velocity
does not appear as the result of the integration of a dynamic equation but, rather,
is defined as the result of an averaging process, which then allows the replacement
of the rapidly gyrating original particle by a virtual particle at the guiding center.
For the parallel motion, we do have a real dynamic equation (2.22) determining the
average acceleration of the particle along a field line. As a corollary, a third equation
was derived, giving the average rate of change of the kinetic energy of the guiding
center particle (2.26).

In this section we will focus on the parallel motion along a field line and, for
that purpose, consider cases in which the particle drift is either a priori zero (say,
for symmetry reasons), or negligible with respect to the parallel motion (VD � vk).
For instance, consider the field geometry of a “mirror machine”, shown at right
in Fig. 2.5, with the guiding center particle along the z-axis field line. But here
comes a disappointment: instead of using the laboriously derived dynamic parallel
equation (2.22), we turn to the following relations based on two simple conservation
principles:

Conservation of magnetic moment M : v2?.s/ D 2M

m
B.s/ (2.27)

Conservation of total energy E: v2
k.s/ C v2

?.s/ D 2

m



E � W.s/

�
(2.28)

E is the total mechanical energy, W.s/ is the potential energy. The initial conditions
determine the constants: M D Ti=Bi and E D Ti C Wi , in which the subindex i

denotes value of the variable at the initial field line point si .
Of more practical significance are the equivalent equations in the variables v?,

vk and pitch angle ˛ (1.14), and their respective initial values (see Fig. 2.6):
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Mirror machineDipole

Fig. 2.5 Two fundamental types of trapping magnetic field geometries

Fig. 2.6 Change of v
?

and v
k

vectors along a magnetic field line

v2?.s/ D v2
i

sin2 ˛i

Bi

B.s/ (2.29)

v2
k.s/ D v2

i

�
1 � sin2 ˛i

Bi

B.s/
� � 2

m

�
W.s/ � Wi

�
(2.30)

sin2 ˛.s/ D sin2 ˛i

Bi

B.s/

�
1 � W.s/ � Wi

Ti

��1

(2.31)

Note that the function v?.s/ (and therefore the perpendicular kinetic energy
T?) is governed only by the local magnetic field intensity B.s/ (and the initial
conditions)—it cannot be influenced by external forces! To change it, the conser-
vation of magnetic moment M has to be violated, e.g., by scattering or resonance
with cyclotron-resonant waves.

Our first example will be one in which field-aligned forces are absent, i.e., when
magnetic field lines are equipotentials: W.s/ D Wi D const:, T D const: and

v D
q

v2? C v2
k D const:, and with no time variations of B. Equation (2.31) is now

sin2 ˛.s/ D sin2 ˛i

Bi

B.s/ (2.32)
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The pitch angle ˛.s/ increases toward higher B.s/ values and becomes �=2 when

Bm.sm/ D Bi

sin2 ˛i

(2.33)

Bm is the mirror field and sm a mirror point of the particle on the field line. Field
line points on which B > Bm are off limits: the guiding center particle stops
instantaneously at sm (vk D 0 there, with all the motion in cyclotron mode: v? D v),
and then reverses its sense. To understand why the GC particle doesn’t just slow
down and stop dead, we must turn to the parallel equation (2.22), which in this
particular case is simply m dvk=dt D �M @B=@s: it is the mirror force (2.8) that
turns the particle around in its parallel motion. If we inject a particle with a 90ı
initial pitch angle at any point s of a field line, this initial point will also be a mirror
point and the mirror force will start accelerating the particle along the field line
toward lower B-values. Note that for an equipotential field line, the mirror point field
intensity Bm is an adiabatic invariant because at such point the transverse velocity
in the definition of M (1.26) is equal to the constant velocity v.

In general, in field configurations like the dipole field or a mirror machine in
Fig. 2.5, there are two mirror points on either side of any initial point si : as a
particle reverses its parallel motion at a mirror point, it will move toward lower
B values, which will pass through a minimum (see below) and increase again; as
a consequence, another mirror point may eventually be reached. The end result of
all this is that a guiding center particle is trapped, bouncing back-and-forth between
two conjugate mirror points. The bounce period of a particle trapped between two
mirror points sm and s0

m on an equipotential field line will be, according to (2.30),

�b D 2

Z sm

s0

m

ds

vk.s/
D 2

v

Z sm

s0

m

ds

1 � B.s/=Bm

� 1
2

(2.34)

The integral is extended along the field line between mirror points located at s0
m and

sm, where the field intensity Bm is given by (2.33). The integral

Sb D 1

2
v �b D

Z sm

s0

m

ds

1 � B.s/=Bm

� 1
2

(2.35)

is the half-bounce path, i.e., the rectified path of the original cycling particle between
one mirror point and its conjugate. Note that it is a purely field-geometric quantity,
independent of the particle in question. We can think of it as a function of space,
a scalar field Sb.sm/ representing the rectified inter-mirror-point path of a trapped
particle mirroring at that point. Unfortunately, even for simple field geometries like
a dipole field, the integral in (2.34) and (2.35) cannot be expressed in analytical,
closed form and in practice must be calculated numerically. In Sect. 3.1 we will use
the following relationship which will help overcome the numerically annoying fact
that the integrand in the above relations has an integrable singularity at the mirror
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points:

Sb D I C 2Bm

@I

@Bm

ˇ̌
ˇ̌
f l

(2.36)

where

I D
Z sm

s0

m



1 � B.s/=Bm

� 1
2 ds (2.37)

This function, whose integrand is the inverse of the integrand in (2.35) is easier
to calculate numerically. Moreover, it is directly related to the second adiabatic
invariant, as we shall show in the next section. The derivative with respect to Bm

in (2.36) is to be taken on I as a function of the mirror point field intensity Bm

on the given field line. Notice that not only the integrands of (2.35) and (2.37) are
functions of Bm but also their integration limits, and that Sb > I always.

Another notable point on a field line is where B has a local minimum: the pitch
angle there will be minimum, too, whereas vk will be maximum. In a dipole or
dipole-like field, the minimum-B point is called the field-line’s equatorial point
(whether or not its geographic latitude actually is zero.) Note that in absence of
parallel forces all trapped particles on a field line must transit through it. For this
reason it is preferentially chosen as a fundamental reference point and origin for
the curvilinear coordinate s (with positive values increasing toward the North in
the geomagnetic case). Instead of ˛ we shall work with the pitch angle variable
� D cos ˛, commonly used in magnetospheric physics for reasons that will become
apparent later. Equations (2.32) and (2.33) referred to the minimum-B point of a
field line will now be:

�2.s/ D 1 � .1 � �2
0/

B.s/

B0

and Bm D B0

1 � �2
0

(2.38)

By definition, at a minimum-B point @B=@s D 0; in its neighborhood the
function B.s/ can be approximated as B.s/ ' B0 C1=2as2, where a D @2B=@s2 at
s0. Near the minimum-B point the parallel equation of motion (2.22) now becomes

m
dvk
dt

D �Ma s (2.39)

which indeed looks like that of an harmonic oscillator with a constant k D Ma.
If we inject a GC particle with a 90ı pitch angle at the minimum-B point, it will
stay there in an equilibrium position (just cyclotron circling—remember that for the
time being we are ignoring any drifts, but if we do take them into account, the GC
particle will stay on a minimum-B surface even if the latter is slightly warped).
If the pitch angle is slightly less than 90ı, the particle will bounce in harmonic
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field-aligned motion between very close-by mirror points4 with a bounce period
derived from (2.39):

�b D 2�

r
m

Ma
 2�

p
2

v

r
B

a
(2.40)

The second near-equality is justified because v?  v in the expression of the
magnetic moment M . Note that this period (or the bounce angular frequency
!b D 2�=�b) to first order only depends on the local magnetic field geometry and
the particle’s (mostly transverse) velocity. Under the adiabatic condition (2.2), the
bounce period is always much larger than the cyclotron period (1.20), �b 
 �C .
The half-bounce path Sb D 1=2 v�b is independent of the particle and it, too,
is much larger than the Larmor radius under adiabatic condition (2.1). Note the
apparently curious fact that even a 90ı equatorial particle does have a finite bounce
period and a half-bounce path—but that’s the same thing as a mechanical oscillator
in equilibrium position having a non-zero fundamental frequency despite being at
rest! It can be shown that for near-equatorial particles, a D B=RC

2, where RC is
the field line curvature at the equatorial point. The bounce path (2.35) and bounce
period are then:

Sb D �
p

2RC or �b D .2�
p

2=v/RC (2.41)

Finally, there will always be points on a field line beyond which a particle is lost
(intersection with the ionosphere in the geomagnetic field, maximum-B point in the
coils of a mirror machine, Fig. 2.5). This leads to the concept of loss cone ˛L at
point s, which in absence of field-aligned electric field and forces has an aperture

sin2 ˛L.s/ D B.s/

BL

(2.42)

where BL is the magnetic field intensity at point sL where the field line intersects
the ionosphere (or passes through the coil in a mirror machine). At any point of a
field line in the examples of Fig. 2.5 there will be always two loss cones, one for
direction Cs and one for �s. If there is complete hemispheric symmetry of the field
intersections with the ionosphere, or for a mirror machine along the z-axis, the two
loss cones will be equal.

Our second example will consist of a geomagnetic dipole-like field line with
a parallel electrostatic potential V.s/ (again, please do not confuse this symbol
with drift velocity!). Now we must use the more general Eqs. (2.29)–(2.31). The
right-hand side of the third equation consists of two factors, .sin2 ˛i =Bi /B.s/,

4This justifies the entire discussion in Sect. 1.6 of equatorial particles: even if their pitch angles
deviate a bit from 90ı, during their drift they will always be tied to an equilibrium position on the
minimum-B surface.
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P

Fig. 2.7 Field parameters
and particle loss cone in the
northern hemisphere of a
terrestrial field line

which is the value of sin2 ˛.s/ in absence of parallel forces, and an energy-
dependent correction function Œ1 � q.V .s/ � Vi /=Ti �

�1. Under these circumstances
the expressions of the bounce period (2.34) and half-bounce path (2.35) have to
be appropriately modified and the position of the mirror points sm will be energy-
dependent, solution(s) of the following equation directly derived from (2.31):

B.sm/

B�
m

D 1 � q
.V .sm/ � Vi /

Ti

(2.43)

In this expression B�
m D Bi =.1 � �2

i /, the mirror point field intensity in absence of
field-aligned forces.

Let us examine the case in detail. The result of Eq. (2.31) (which always should
be compromised between 0 and +1) may “go wrong” in two ways, representing an
off-limits place for the particle. First, it could be > 1 because of too large values of
B(s) (as it happened in our previous discussion of mirror points regarding (2.33)),
or because of the energy-dependent correction function. Second, it could turn out
< 0 because of this correction function between brackets. We shall discuss these
situations in more detail.

First, to the mirror points. Refer to Fig. 2.7; at point P (arc-length si from the
equatorial point) a particle is injected with kinetic energy Ti and pitch angle ˛i

traveling toward the Earth. L is the intersection with a loss region where the potential
is VL. First assume that qVL > qVi , which corresponds to a force directed toward
the equator, away from L (for electrons, it would be an electric field directed toward
the Earth). If Ti < q.VL � Vi/, according to (2.31) the value of sin2.˛L/ would be
negative, i.e. the point sL would be inaccessible to the particle. This means that all
particles through P, even those with a 0ı pitch angle, would mirror before reaching
the loss region—turned around by the combined action of the electric force and
the mirror force. On the other hand, if qVL < qVi (parallel electric force directed
toward the loss point L), sin2.˛L/ > B=BL and the loss cone at P will be bigger than
in absence of the electric field. Thus, in general terms, decelerating potentials will
narrow the loss cone (maybe even eliminate it), while accelerating potentials will
widen it. This has important consequences for the action of an auroral mechanism
which in general involves the generation of a field-aligned electric field directed
from the ionosphere toward the equatorial point of a field line (qVL > qV.s/), in
both hemispheric branches of the field line.

Under an earthward-directed parallel electric force an interesting situation may
arise for particles injected from P toward the equator (vki < 0), i.e., away from
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Fig. 2.8 Case of a particle
trapped between two mirror
points in the same
hemisphere, for certain
conditions of the field-aligned
electric field
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map, for charged
particles at a given point P of
a centered dipole field line,
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points to the
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the ionosphere. An examination of relation (2.31) shows that for certain V ’s and
Ti ’s, the correction function may win over the other term .sin2 ˛i =Bi/B.s/, and
the particle may reach a mirror point before it crosses the equatorial point of the
field line. In other words, a particle may be trapped on the same hemispheric side
of a field line (see sketch in Fig. 2.8)! This indeed can happen to electrons under
auroral electric field conditions. Positive ions, on the other hand, traveling under
these electric field conditions upwards from the ionosphere decrease their pitch
angles; bundles of ions from the upper ionosphere accelerated and focused along the
field line because of this process are called “conics”. In Sect. 3.3 we shall mention
a region of the dayside magnetosphere near the boundary where the magnetic field
has a slight secondary maximum on the equator, where particles can be trapped in
high-latitute pockets on the same side of the equator.

A useful representational device are the so-called velocity maps in which a
guiding center particle is represented as a point, and on which directional particle
fluxes (see Sect. 4.1) can be mapped and key regions and their delimitations
identified. For instance, in absence of any external forces, the velocity map of a
particle injected at a point P of the field line would look as shown in Fig. 2.9. This
figure is drawn for a given guiding center position on a field line of a pure dipole,
and shows constant kinetic energy T and pitch angle ˛ contours; trapping and loss
regions are also indicated. One point on the map represents a particle with a given
pair of velocities v?; vk at that guiding center position on the field line.

This map becomes more interesting when the field line is no longer an equipo-
tential. Let us combine (2.29) and (2.30) into the following equation, for the case of
a field-aligned electrostatic potential V.s/:

v2
k.s/ D v2

ki C v2
?i



1 � B.s/

Bi

� � 2q

m



V.s/ � Vi

�
(2.44)
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Trapped electrons 
and protons

Precipitating 
electrons and 
protons

Precipitating 
electrons
Trapped 
protons

Fig. 2.10 Limiting curves
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electrons and ions on a v
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map

v2
k.s/ will now be equal to zero at mirror points due to the combined action of

a mirror force and an electric field force; these points always separate an allowed
segment of the field line from an off-limits one. In our example, for particles starting
from si toward the Earth, we have B.s/ > Bi and qV.s/ > qVi ; for particles starting
toward the equator, reverse the inequalities.

The regions of the velocity map representing particles which either mirror or
precipitate will be separated by a curve of points v?, vk for which at sL the value
of (2.44) is v2

k.sL/ D 0. For electrons, the equation of this separatrix (Fig. 2.10) is
given by

v? D
s

v2
k C 2jqj=m.VL � Vi/

.BL=Bi � 1/
(2.45)

Notice in the figure the two regions separated by the hyperbola branch given by
this equation: (i) the upper region of initial v?; vk values, for which the electron
will mirror as it travels toward the Earth before it precipitates into the ionosphere
at L; (ii) the lower region of initial values for which the electron accelerated by
the electric field will precipitate. The asymptote of the hyperbola branch shown
represents the loss cone in absence of any field-aligned electric field. Note that even
electrons with an initial 90ı pitch angle (vk D 0; v? D v�

?) can be drawn into the
ionosphere and precipitate. For positive ions, Eq. (2.45) will have a negative sign in
front of 2jqj and the separatrix is a conjugate hyperbola, as shown in broken line
in Fig. 2.10. Ions that would have been lost in absence of an electric field will now
mirror before reaching the ionosphere as the result of a concerted action of electric
and mirror forces.

Our next task is to examine what will happen to electrons initially traveling in
the opposite direction, i.e., toward the equator (decreasing s, vki < 0). Those are
the particles which, as mentioned above, will be decelerated by the external force
and may have a chance, under specific conditions, of mirroring before reaching the
equator, i.e., of being trapped within one hemispheric branch of the field line. The
separatrix between these two regions is given by the curve that corresponds to initial
v? and vk values for which the electron mirrors exactly at the minimum-B point,
i.e., at B0. Replacing B.s/ and V.s/ in (2.44) by B0 and V0, respectively, and taking
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Mirror before
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Fig. 2.11 Same as Fig. 2.10, for equatorward moving particles
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Fig. 2.12 Sketch of characteristic regions in a v
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map, for electrons injected at a northern
hemisphere point of a centered dipole field line with an ionosphere-to-equator directed parallel
electric field. The separatrix curves are given by (2.45) (hyperbola) and (2.46) (ellipse), respec-
tively. For explanation, see text

into account that now B.s/ < B0 and V.s/ < V0, we obtain for the case vk0 D 0:

v? D
s

2jqj=m.Vi � V0/ � v2
k

.1 � B0=Bi /
(2.46)

The curve is now the quadrant of an ellipse (Fig. 2.11). For initially mirroring
electrons (vki D 0) and for which v?i < v��

? , there is another mirror point before
they reach the equator. For locally field-aligned electrons (v?i D 0) for which
vki < v��

k , there is a mirror point, too, before they reach the equator!
It is very instructive to “play” with these velocity maps and learn how different

forms of electrostatic potential, electric charge of particles, degrees of field asym-
metries and initial positions and kinetic energies group the particles into different
classes with respect to their parallel motion along a field line (see also Fig. 1 in
[1]). As a final example, we combine the upward and downward injection cases of
electrons in a symmetric dipole-like field under auroral electric field conditions into
just one velocity map in Fig. 2.12. This sketch is drawn for electrons passing through
a field line point in the northern hemisphere. Carefully observe the properties of
five distinct classes. In a real case, regions I, II and III would be empty, except
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for backscattered electrons; region IV is a class all by itself, consisting of electrons
trapped within the northern half of the field line. Region V includes all stably trapped
electrons with mirror points in both hemispheres. It is a good exercise to draw a
similar map for positive ions on auroral field lines.

Reference

1. Y.T. Chiu, M. Schulz, Self-consistent particle and parallel electrostatic field distributions in the
magnetospheric-ionospheric auroral region. J. Geophys. Res. 83, 629–642 (1978)



Chapter 3
Drift Shells and the Second and Third Adiabatic
Invariants

3.1 Bounce-Average Drift Velocity and Drift Shells

When a particle bounces along a field line it also drifts perpendicularly to it with
an instantaneous drift velocity given by the general expression (2.14). We shall
assume this drift to be “slow”: during one bounce a particle drifts less than one
Larmor radius away from the initial field line, a condition that is usually fulfilled
under the adiabatic conditions (2.1), (2.2) or (1.48). In previous sections, we have
averaged out the particle’s cyclotron motion and worked with a fictitious guiding
center particle, with the electromagnetic effects of the periodic cyclotron motion
mimicked by the action of an invariant quantity, the magnetic moment M D T?=B .1

There are many situations, especially in radiation belt physics, in which it is not
necessary to keep track of the periodic bounce motion up and down the field line, or
“bounce phase” (conveniently represented by the field line’s arc length s). In such
a case, the second periodicity characterized by the bounce period (2.34) can also
be averaged out, leaving us with the concept of a “bare” drift motion of the field
lines successively occupied by the bouncing guiding center particle, thus generating
a surface (Fig. 3.1). We may call the field line along which a particle is bouncing
at any given time the guiding field line. Each guiding field line is limited by the
particle’s mirror points. The surface generated by the guiding field line is called a
drift shell. The mirror points generate the two limiting curves m; m0 called mirror
point traces (or rings if the surface is closed). To define the geometric features
of a drift shell we need to: (i) identify the initial guiding field line; (ii) find the
velocity with which the particle is changing guiding field lines; and (iii) integrate
this velocity, thus identifying the subsequent guiding field lines.

1In the case of radiation belt particles, it is safe to neglect in (1.6) the drift velocity VD , therefore
it is also safe to replace the GCS velocity v

?

� in the definition of the magnetic moment (1.24) by
the transverse velocity v

?

in the OFR. We shall do so until further notice.

J.G. Roederer and H. Zhang, Dynamics of Magnetically Trapped Particles,
Astrophysics and Space Science Library 403, DOI 10.1007/978-3-642-41530-2__3,
© Springer-Verlag Berlin Heidelberg 2014
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Fig. 3.1 Guiding field lines
and generated drift shell ˙

Fig. 3.2 Reference surface
and coordinates of the point
of a field line

There are many ways of geometrically or analytically identifying a field line in a
given magnetic field. The most practical one for our purpose here is the following:
Consider a given fixed reference surface ˝ (Fig. 3.2) orthogonal to all field lines;
in usual trapping geometries such a surface always exists—the condition is that no
field-aligned currents flow (to avoid field line torsion, see Appendix A.1), which
we will assume to hold until further notice. Each field line is completely specified
by the position of its intersection point O on the reference surface ˝ . If ˛; ˇ is
a curvilinear coordinate system on ˝ , the two scalars ˛; ˇ specify a given field
line ` (Fig. 3.2).2 We already mentioned in the previous section that a particularly
convenient referencein the geomagnetic field is the minimum-B equatorial surface

2For a divergence-free vector field like the magnetic field, the so-called Euler coordinates (e.g.,
[1, 2]) can be used, defined as ˛ D ˛.r ; t /, ˇ D ˇ.r ; t /, with the property vector potential
A D ˛r ˇ and therefore B D r ˛ � r ˇ. A magnetic field line ` is defined by ˛ D ˛` D
const., ˇ D ˇ` D const.; the third coordinate in the Euler system can be the field line arc length s,
a curvilinear distance to some reference surface ? B.
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Fig. 3.3 Euler coordinates
L, � and s for a dipole field

Fig. 3.4 Instantaneous and
bounce-average drift
velocities

(locus of the minimum-B points of all field lines and, therefore, also locus of all
bounce motion equilibrium points). In the case of a pure dipole (or any field with
north—south symmetry) it is a plane, in which case the two most convenient ˛; ˇ

parameters are proportional to the polar coordinates (radius vector r0 and longitude
�0) of the equatorial point E of the field line (see Fig. 3.3): ˛ � r0 and ˇ � �0.
In a dipole field, r0 can be thought of as a 3-D scalar function L D L.r/, namely
the modulus of the radius vector of the minimum-B point of a field line traced
through that point r . All points of a dipole field line have the same L-value (for the
relations between L; s and r ; � see Sect. 3.4). In the general case of a more complex
field (e.g., the field in a mirror machine or field lines near the dayside boundary
of the magnetosphere) there may be more than one minimum-B point along one
field line and the equatorial surface may have several branches (e.g., [3]). We shall
not consider such a complication. As a guiding center particle bounces and drifts
occupying successive guiding field lines, the intersection point O with the reference
surface moves along that surface. We can introduce what is called the particle’s
bounce-average drift velocity. Refer to Fig. 3.4: if V s is the actual, instantaneous
drift velocity of the particle while its guiding center is passing through a point P
at arc position sp , the displacement of point O associated with the instantaneous
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displacement V sıt (where ıt < �c) will be given by
��!
OO0 (jOO0j � �L). The

point O0 is obtained by tracing the field line `0 that goes through P0 down to the

reference surface ˝ . The associated drift velocity V 0s D ��!
OO0=ıt on the reference

surface is related to the actual local drift velocity V s through a transformation
that only depends on the actual field geometry (in the case of a dipole field, it is
V0s D cos�3 �Vs , where � is the latitude of point P). The bounce-average drift
velocity of O will then be given by:

hV 0i D 1

�b

Z �b

0

V 0sdt D 2

�b

Z sm

s0

m

V 0s

ds

vk
(3.1)

Let us consider the case of a static magnetic field without field-aligned currents,
in which a trapped particle is subjected to an electrostatic field always perpendicular
to B. When the guiding center particle is at position s and the pitch angle cosine of
the original particle is �s , we have for the local drift velocity, taking into account
(1.34), (2.17) and (1.14):

V s D E s � Bs

Bs
2

C mvs
2

2qBs
3
.1 C �s

2/Bs � r?Bs (3.2)

Based on purely field-geometric arguments we prove in Appendix A.2 that the
bounce-average (3.1) of expression (3.2) is given by

hV 0i D r0J � e0

q�bB0

(3.3)

in which

J D
I

pkds D m

I
v � ds (3.4)

is an integral taken along the guiding field line for a complete bounce cycle
(
H D 2

R sm

s0

m
). In the specific case of equipotential field lines, v is constant during

one bounce, and taking into account the definition of the purely field-geometric
quantity I (2.37),

J D 2pI (3.5)

In Appendix A.2 we also show that for equipotential field lines (p is constant along
a field line, but not across it!):

r 0J D 2pr0I C q �b E 0 (3.6)
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Fig. 3.5 Field line
configuration for the
definition of the gradient of
J or I

With this relation, (3.3) becomes, replacing �b with 2Sb=v:

hV 0i D E 0 � B0

B0
2

C mv2

qSbB0

r 0I � e0 (3.7)

All quantities in (3.3) and (3.7) are defined at the reference point O. These
expressions thus represent the average drift velocity of the reference point of the
guiding field line. In principle, since the surface ˝ could be any surface normal to
the field lines, that reference point could be any point of a field line between the
particle’s mirror points. Choosing for instance one of the latter, (3.7) would then
become the average drift velocity of one of the particle’s mirror points.

Although everybody knows how a gradient is defined, it is prudent to give the
“recipe” for the numerical calculation of the gradients of J or I in the above
expressions (see Fig. 3.5). It consists of the following steps: (i) Consider a particle of
given magnetic moment (or kinetic energy) and pitch angle, for which r0J (or r 0I )
is wanted (˝ is a reference surface perpendicular to all field lines). (ii) Compute
numerically the integral (3.4) (or (2.37)) for the guiding field line between the
mirror points (given through M and ˛). (iii) Take a neighboring field line `0 and
compute J or I between the mirror points that would result for a particle with
the same magnetic moment and total energy placed on that field line (same Bm

if there are no forces). (iv) Form the ratio ıJ =ır D .J 0 � J /=jOO0j. (v) Repeat
the process for other neighboring field lines (chosen in some “logical” way) until
the one for which jıJ =ır j is maximum is found. The direction of r 0J will be

that of the vector
��!
OO0; its magnitude will be the limit of ıJ =ır for ır ! 0.

Notice carefully that just like hV 0i, r 0J or r0I depend on the reference surface
(point O).

With (3.7) we can find specific adiabatic conditions required for the validity of all
preceding definitions. We stated before that the drift displacement of the reference
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point during one bounce should be much less than one typical Larmor radius (1.22):

ı0 D hV0i�b D E0

B0

�b C 2pr0I

qB0

� �C

which leads to the simultaneously required conditions

VE D E0=B0 � �C

�b

� v
�C

�b

and r0I � 1 (3.8)

Given a particle injected along an initial field line, one can find the intersection
with the reference surface ˝ of all subsequent guiding field lines by integration of
(3.3) or (3.7) along that intersection curve. The full drift shell is then determined by
tracing the field lines through all reference points up and down to the local mirror
points defined by the conservation of M and E. This may be quite lengthy; in many
practical applications one just wants to find the guiding field line at some given
longitude far away from the initial field line, without having to trace the intermediate
drift track. To accomplish that, we can use the fundamental property of J (or I for
a static magnetic field without external forces) as a second adiabatic invariant and
search for the particle’s mirror point at the wanted longitude—as we shall show in
the next section.

3.2 The Second Adiabatic Invariant

The quantity J (3.4) is an adiabatic invariant conserved during the drift of a guiding
center particle in a trapping geometry,3 provided adiabatic conditions (2.1), (2.2)
and (3.8) apply. This conservation theorem follows at once from (3.3): since hV 0i
is of the form “scalar times .r0J � e/”, the drift is in a direction normal to the
gradient of J , so that on the following guiding field lines the value of J will remain
constant. Remember that J must be computed for constant M and E, and that the
mirror points must be determined through (2.38) or (2.43).

Let us first consider the case in which no external forces are acting and the
magnetic field is static. Conservation of J implies that of the field-geometric integral
I (2.37). Furthermore, since the potential energy W and the particle’s kinetic energy
T are constant in this case, the conservation of magnetic moment M D T?=B D
T=Bm leads to the conservation of mirror field intensity. In summary, we have

3Going back to the footnote on page 10 concerning canonical path integrals, we can consider the
bounce motion as a cyclic motion, with the field line arc length s as the variable. In that case,
Jb D H

.p C qA/ � ds. This time the cyclic orbit (up and down the field line) encompasses zero
magnetic flux; therefore only the first term subsists and is equal to Jb D H

p � ds, equal precisely
to what we defined as the second invariant J , which is therefore adiabatically constant.
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Fig. 3.6 Sketch of the
geometric relations between
B = const., I = const. and drift
shell surfaces

I D const. (3.9)

Bm D const. (3.10)

These relations define the drift shell of a particle as the surface generated by all
field lines that pass through the intersection curves m; m0 (mirror traces) of the
corresponding I D const. and Bm D const. surfaces (Fig. 3.6). The values of I and
Bm are determined by (2.37) and (2.33), respectively, which in turn are calculated
for the initial position and pitch angle of the particle in question. In all this, the
second invariant has to be envisioned as a scalar function of space I D I.r/ defined
by the I -value of a particle mirroring at that point r . Relations (3.9) and (3.10) tell
us that for a static case in absence of external forces, drift shells are independent of a
particle’s mass, charge and energy: they only depend on the particle’s initial guiding
center position and pitch angle. Note carefully that the constancy of I and Bm for
a drifting particle does not imply constancy of the bounce path (2.35) or bounce-
average drift velocity, which in this special case is

hV 0i D mv2

qSbB0

r 0I � e0 (3.11)

In a pure dipole magnetic field we do not have to invoke the conservation of the
second invariant I : for reasons of azimuthal and N-S symmetry, it is enough to
determine the field line (given by the parameter L, see Fig. 3.3) through the initial
position and the mirror point Bm given by (2.33), and then rotate the portion of field
line between conjugate mirror points around the dipole axis.

Unfortunately, for any other field geometry with no symmetries, no simple
analytical expressions exist that can be used to determine the drift shell field
lines of a trapped particle. The integral function I D I.r/ must be determined
numerically, using a mathematical model (numerical or analytical) of the magnetic
field B D B.r/. Given a particle injected with a certain pitch angle at a point of
some initial field line, the computational procedure to find the particle’s shell field
line at any other longitude is then as follows. First, once you have the initial point
B value, determine Bm and compute I by tracing the field line between the two
initial conjugate mirror points. Then go to the wanted longitude and by picking
different points for which B D Bm (see Fig. 3.6) instruct the computer to find by
an iterative method that field line for which the value of (2.37) between mirror
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Fig. 3.7 Schematic view of the drift contour of an equatorial particle (�0i D cos ˛oi D 0) and of
the drift shell of a �0i ¤ 0 particle, in an azimuthally asymmetric field

points is equal to the initial value I˙ prefixed error. If no such field line can
be found, it means that on that meridian no trapping is possible for a particle of
the prescribed I; Bm values—the particle must have left its trapping region before
drifting to the longitude in question. Notice that in this way we indeed can find shell
field lines at arbitrary longitudes without having to proceed in small longitudinal
drift steps from the initial guiding field line. Of course, if the drift time from initial
to final longitude is wanted, it is necessary to integrate (3.11): �D D H hV0i�1d`.

For particles mirroring close to the equator, we can use an expansion of B.s/

similar to the one leading to (2.39) and (2.40) in the definition of I (2.37), to obtain
to first order:

I Š �p
2

�
Bm

a0

�1=2 �
1 � B0

Bm

�
Š �p

2

�
B0

a0

�1=2

�2
0 (3.12)

where a0 D @2B=@s2, B0 and �0 are taken at the minimum-B point. This expression
and the constancy of Bm and I lead us to an analytical expression to first order in
�0

2 of the equatorial trace (in terms of equatorial B-values) of a drift shell for near-
90ı pitch angle particles (Fig. 3.7):

B0.�/ D B0i

"
1 �

�
a0.�/

a0i

�1=2

�2
0i

#
(3.13)

For �0i ¤ 0, the second derivative a0.�/ D @2B=@s2j0� only needs to be evaluated
at the B0.�/ D B0i D const. contour (see Fig. 3.7), since under the present
approximation �2

0i is very small. Clearly, for equatorial 90ı pitch angle particles
as well as for azimuthally symmetric fields, the equation of the shell intersection
is B0.�/ D B0i D const., as we have seen for a special case in Sect. 1.6. The
longitudinal variation of B0.�/, i.e., the azimuthal distortion of the drift shell, is
determined by the longitudinal variation of a0.�/: in all azimuthally asymmetric
fields, particles with different initial pitch angles will generate different drift shells.
This is called shell-splitting and will be discussed in more general terms and without
pitch angle restrictions in the next section.
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We end this section with a return to the more realistic situation of particle
trapping in a static magnetic field under the action of external forces perpendicular
to the magnetic field lines (i.e., still excluding field-aligned forces). Assuming that
the external force derives from an electrostatic potential F D �qrV.r/, field
lines will be equipotentials, each with a potential which we denote by V0.r0/, the
potential of its intersection with the minimum-B surface. Under such conditions,
the integral I (2.37) will no longer be an adiabatic invariant; however, we can easily
derive one, which we call K , by combining the invariance of the magnetic moment
M (1.26) with (3.5):

K D J

2
p

2mM
D I

p
Bm D

Z sm

s0

m

.Bm � B.s//1=2 ds D const. (3.14)

This quantity still is “purely field-geometric” like I , independent of the
particle—but only to a certain point: the limits of the integral in (3.14) are not
constant (invariants) like those in (3.9), but depend on the initial mirror points
and the local kinetic energy of the particle, which is no longer constant. The
conservation of total energy E and the adiabatic constancy of M and K yield the
following equations that allow us to determine a particle’s guiding field line at any
longitude �, thus if we wish, the entire drift shell (subindex i stands for initial):

E D T .�/ C qV.�/ D Ti C qVi D const. (3.15)

M D E � qV.�/

Bm.�/
D Ti

Bmi

D const. (3.16)

K D I�

p
Bm.�/ D Ii

p
Bmi D const. (3.17)

The numerical determination of drift shells for given models of B.r/ and V0.r0/

is qualitatively similar to the procedures given above for a magnetic field in absence
of an electrostatic field, except that now the mirror point B-values are energy
dependent and have to be recalculated for each field line using (3.16), and that
at the wanted longitude the iterative process must zero-in on a prefixed K value
(˙ prefixed error) instead of I .

3.3 Shell Splitting and Pseudo-trapping

It is important to analyze in general terms some characteristic geometric properties
of trapped particle drift shells in typical asymmetric magnetospheric field models
(in absence of electric fields). Take a particle that starts at a given longitude �0,
circling and bouncing about a guiding field line between conjugate mirror points at
a field value Bm. The integral (2.37) has a value I . This means that when drifting
through any other longitude, for example 180ı away, this particle will bounce along
a field line that passes through the intersection of the corresponding I D const. and
Bm D const. surfaces (Fig. 3.8). Now take a particle which starts on the same initial
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Fig. 3.8 Geometric depiction
of shell splitting in an
asymmetric field

field line but mirrors at a lower value, B 0
m < Bm. Its integral I 0 will also be smaller,

I 0 < I . After a 180ı drift this second particle will be bouncing along a field line that
passes through the intersection of the surfaces I 0 D const. and B 0

m D const. Only
in the case of perfect azimuthal symmetry (as in a pure dipole) will these surfaces
intersect exactly on the same field line as that of the first particle, and thus the shells
of both particles will be coincident. This latter case is called shell degeneracy. In the
general case, however, as we already have seen for the near-equatorial case in (3.13),
particles starting on a common field line at a given longitude will populate different
shells according to their initial mirror point fields or, which is equivalent, according
to their initial equatorial pitch angles. This effect is called shell splitting [4].
Of course, all these drift shells will be tangent to each other on the initial field line.

Let us analyze a quantitative example. In doing so, we will not insist in the
accuracy of the magnetospheric field model used; the principal conclusions depend
on broad features, common to all specific models. We will use some of the old,
analytically simple and computationally fast models of the 1960s and 1970s, such
as the Mead-Williams model [5]. Figure 3.9 shows how particles, starting from a
common field line in the noon meridian with equatorial pitch angle cosines �0 of
0.2, 0.4, 0.6, 0.8 and nearly 1 (mirroring close to the Earth’s surface), do indeed
drift on different shells which intersect the midnight meridian along different field
lines. The dots represent the particle’s mirror points. Curves giving the position
of mirror points for constant equatorial pitch angles are shown for comparison
(in a dipole field, they should be constant latitude lines, Appendix A.2). Notice
the change (decrease) in equatorial pitch angle for the same particle when it
drifts from noon to midnight. Figure 3.10 depicts the same features for particles
starting on a common field line in the midnight meridian. In this case, again,
the equatorial pitch angle changes considerably when the particle drifts to the
opposite meridian (increasing at noon). Notice from these two examples that,
as equatorial pitch angles increase, shell splitting is directed radially earthwards
for particles starting on the same field line at noon, and radially outwards for
particles starting on a common field line at midnight. Furthermore, shell splitting
is maximum for particles mirroring close to the equator. The more distorted the
magnetospheric field (compared to a dipole-like field), the more pronounced these
effects are.
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Fig. 3.9 Computed shell splitting for particles starting on common field lines in the noon meridian
(a simple magnetospheric field model was used [6]). Dots represent particles’ mirror points. Curves
giving the position of mirror points for constant equatorial pitch angle ˛0 are shown

Fig. 3.10 Same as Fig. 3.9, for particles starting on common field lines in the midnight meridian

An interesting feature (not shown in Figs. 3.9 and 3.10) arises with particles of
equatorial pitch angles smaller than �45ı–50ı .�0 � 0:45/, i.e., mirroring closer
and closer to the earth. For that “magic” pitch angle4 drift shells are azimuthally
symmetric (like in a dipole); as the pitch angle decreases further (�0 increases),

4Magic, because it is practically independent of magnetospheric field model details and of the
radial distance to the field line’s equatorial point!
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Fig. 3.11 Value of the geometric factors intervening in the bounce-average angular drift velocity
as a function of the equatorial distance of the corresponding field line, for different pitch angles
and or midnight and noon, respectively. To obtain drift velocities in degrees/sec, multiply the above
values by the factor 2:321 � 10�2.�2 � 1/=� times rest mass (in electron masses)

shell splitting, while small, reverses its sense: particles on the same field line at
midnight are found on field lines closer to the earth at noon, and the opposite for
particles that mirror on the same field line at noon. Looking at Figs. 3.9 and 3.10,
we realize that the dependence of shell splitting on the initial pitch angle is most
pronounced for near equatorial particles (�2

0 � 1). For this reason, the variability
along a constant-B contour of the ratio a.�/=a0 in (3.13) is a good indicator of the
“strength” of shell splitting in a given magnetospheric field model.

Concerning the bounce-average drift velocity (3.11), numerical calculations also
reveal a considerable local-time (longitudinal) dependence for any azimuthally
asymmetric field, as we already have seen in the case of equatorial particles
(Sect. 1.6). The particle-independent geometric factors appearing in (3.11) are
represented in Fig. 3.11 as a function of the equatorial distance of the corresponding
field line, for different pitch angles and for the midnight and noon meridians,
respectively. For better understanding angular drift factors are shown. For radial
distances .3 RE we observe a dipolar dependence. Beyond �3 RE there is a
considerable departure. Angular drift velocities on the night side are appreciably
higher than on the dayside. The peculiar inversion of the pitch angle dependence
occurring on the dayside is due to the fact that particles mirroring at low latitudes
experience on the average during their bounce a greatly reduced field gradient,
whereas those mirroring at high latitudes spend a larger fraction of their bounce-
time in a dipole-like field and hence drift faster. A closer inspection of the local-time
dependence of the bounce-average drift velocity (not shown) shows that a given
particle trapped in the outer magnetosphere (r & 6 RE) spends from 2/3 to 3/4
of its time on the dayside. In other words, there is always a higher probability of
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finding a trapped particle on the dayside than on the night side. This has important
consequences for trapped particle diffusion.

When a field line has its equatorial point beyond about 8 RE , a fraction of
the particles mirroring on it are pseudo-trapped or quasi-trapped, being unable
to complete a drift around the Earth. In particular, as we already have seen
for equatorial particles in Sect. 1.6, particles mirroring at midnight close to the
minimum-B surface, will abandon the magnetosphere through the boundary near
dawn or dusk (depending on their charge, i.e., the direction of drift) before reaching
the noon meridian. On the other hand, particles mirroring at high latitudes on the
dayside will run into the magnetospheric tail before reaching the midnight meridian.
Figure 3.12 shows computed limits between stable trapping and quasi-trapping
regions on the noon-midnight meridian. At other local times one quasi-trapping
region disappears at the expense of the growth of the other. The calculation of
open drift shells in the pseudo-trapping regions using the adiabatic invariants
is cumbersome; recently, full particle orbits in the high-latitude pseudo-trapping
region were computed by integrating numerically Eq. (1.1) (Fig. 3 in [7]).

The theoretical boundary of stable trapping is thus a surface that separates two
regions in which lie the mirror points of particles whose drift shells are either closed
around the Earth or open, respectively. Whatever particles one finds mirroring and
drifting inside the regions of quasi-trapping must have been injected from elsewhere;
this is why one should expect low and fluctuating fluxes in the regions of quasi-
trapping, as opposed to a larger, more smoothly varying flux in the region of
stable trapping. The regions of quasi-trapping are limited on their outer side by
the boundary of closed field lines, along which no adiabatic trapping is possible. An
equivalent way of characterizing the limit of stable trapping is with the concept of a
drift loss cone. At the minimum-B equator, this cone encompasses all pitch angles
for which a particle mirrors inside the region of quasi-trapping. On the night side,
the drift loss cone is oriented perpendicularly to the local field line; on the dayside,
it is directed along the field line. Figure 3.13 shows the drift loss cones in addition
with the “conventional” bounce loss cones along the field line.

Much of the preceding results obtained through numerical computer calculations
using a model magnetospheric field can be described in a more approximate,
but still physically meaningful, analytical way if one restricts the discussion
to near-equatorial particles (cos ˛ � 1) and uses a simple first-order analytical
approximation of the magnetospheric field, as we did in Sect. 1.6. Neglecting any
electric currents in the region to be examined (say, between 3 and 5 RE during quiet
times), we shall consider a field [8] derived from the following magnetic scalar
potential (which gives the equatorial magnetic field (1.49) used in Sect. 1.6):

V.r; ; �/ D RE

"
�BE

�
RE

r

�2

C b1

�
r

RE

�
cos  C 1

2
b2

�
r

RE

�2

sin.2/ cos �

#

(3.18)

The coefficients b1 and b2 are those of relations (1.50).
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Fig. 3.12 Location of the quasi-trapping regions in the magnetosphere. Particles mirroring inside
those regions are unable to complete a 360ı drift around the earth. Those injected into the left
side will be lost into the tail; those injected into the right portion will abandon the magnetosphere
through the boundary on the dayside

Fig. 3.13 Drift and bounce loss cones on the midnight and noon meridians
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For convenience, we reproduce here the expression (1.49) for the magnetic field
intensity B0 on the equatorial plane:

B0 D BE

�
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1 � b1

BE

�
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�3

� b2
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�
r0

RE

�4

cos �0

#

The quantity a0 D @2B=@s2 at a given equatorial point r0; �0 can be (laboriously)
calculated to obtain [9]:

a0.r0; �0/ D 9BE

r0
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(3.19)

Combination of the two latter equations with (3.12) and (3.13) leads to the equation of
the equatorial trace of the drift shell generated by a particle injected at point r0i , �0i with
a pitch angle cosine �0i .� 1/:

r0 D r0i � RE

3

b2

BE

�
r0i

RE

�5 �
1 � 43

18
�0i

2

�
.cos �0 � cos �0i / (3.20)

Compare this with (1.51); again, only the day-night asymmetry coefficient b2 appears.
An analysis of the case of equatorial particles (�0i D 0) was given in Sect. 1.6.

According to (3.19) and for field parameters with Rs D 10, the quantity a0 D
@2B=@s2 goes through zero at r0

� D 6:9 RE on the noon meridian (�0 D �), becoming
negative beyond. As one moves away from the noon meridian toward dawn or dusk,
the critical distance r0

� increases and approaches the magnetospheric boundary. This
obviously means that beyond a certain distance on the dayside, the  D �=2 plane is
no longer a minimum-B surface. We already mentioned (page 59) that in that region,
field lines attain their minimum B-value at two points situated at a certain finite latitude
up and down from the equatorial plane. Again, since the field approximation used here
starts breaking down at these distances, more realistic field models must be used to
explore numerically the actual geometry of these minimum-B pockets and their effects
on quasi-trapped particles.

Let us now examine Eq. (3.20) for �0i ¤ 0 (but still �1). Drift-shell splitting
becomes apparent. For a particle injected at midnight (�0i D 0), the maximum radial
deviation from a �0i D 0 orbit occurs at noon (�0 D �) and is given by

�r0 D r0

ˇ̌
�0i D0

� r0

ˇ̌
�0i ¤0
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�
r0i

RE
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�0i
2 (3.21)

This is a positive quantity, which means that for particles with decreasing pitch angle at
the midnight point (�0i increasing), drift shells will reach out farther on the dayside
(see Fig. 3.10). For a particle injected at noon, the situation at midnight is reversed
(the above equation has a minus sign); for smaller pitch angles at noon, the shells are
displaced inward (toward the earth) at midnight. Notice the strong dependence on radial
distance r0i .
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An interesting fact is the appearance of the combination Œ1 � .43=18/�0i
2� in

(3.20). If we forget for a moment the condition �0i � 1, it would mean that
there is a “magic” pitch angle ˛� D arccos

p
18=43 D 49:6ı, a sort of “universal

constant” for a field of the type given by (3.18) (i.e., independent of the actual
values of the parameters BE; b1; b2 and of the coordinates r0; �0), for which drift
shells are azimuthally symmetric. As we shall see in Sect. 3.5, this characteristic
is still retained if one uses more refined external field models and numerical shell
tracing. One consequence is that whenever one measures particles with equatorial
pitch angles of about 45ı–50ı (mirroring at about 23ı geomagnetic latitude), it really
is not necessary to specify the local time (or longitude) of the measurement, in
spite of the asymmetry of the magnetic field. There is a simple physical explanation
for the reversal of the shell asymmetry for a certain equatorial pitch angle. When
�0i D 0, particles follow constant-B contours, which approach the earth closest
on the nightside. When �0i ! 1, on the other hand, conservation of the invariant
I can be shown to lead to the approximate constancy of the field-line arc length
between mirror points. Since field lines are stretched out farther on the nightside,
the corresponding shells also must reach out farther on the dayside because of the
more compressed field lines there. Hence there must be an intermediate value of
the pitch angle for which a shell is axisymmetric. The remarkable thing is that for
magnetospheric-type field geometries this pitch angle depends very little on position
and field parameters.

3.4 Effects of Internal Field Multipoles on Inner
Magnetosphere Particle Shells; McIlwain’s L-Value

In a pure dipole field, for reasons of longitudinal and latitudinal symmetry, drift shells
are degenerate and there is no shell splitting—particles on one given field line, regardless
of their pitch angle, will share the same field lines as they drift; only their drift
speeds will differ, depending on pitch angle. Figure 3.14 reminds the reader of the
symbols used. The fundamental sets of equivalent coordinates are (r; �), (L; �) or
(B; L), with the parameter L D r0=RE (r0: equatorial point of a field line, RE= Earth
radius ' 6,371 km). BL is the B-value at the field line intersection with the Earth
(or ionosphere) and BE the value of B at the equatorial point on the Earth’s surface
(proportional to the Earth’s dipole moment: BE D k0 R�3

E ' 0:31 Gauss). Of course, in
three dimensions we must also include the longitude �. For other planets or magnetized
moons, just insert the corresponding values for RE and BE in what follows (e.g., for
Jupiter, BJ Š 4:28 Gauss).

The most important relationships between those variables for what follows
(see Fig. 3.14) are:

L D r

RE

1

cos2 �
(3.22)

cos2 �L D 1

L
(3.23)
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Fig. 3.14 Dipole field line
parameters

B.L; �/ D BE
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p
4 � 3 cos2 �

cos6 �
D B0

p
4 � 3 cos2 �

cos6 �
(3.24)

BL D BE

p
4 � 3=L (3.25)

A D BERE=.L2 cos �/ (in the direction of C�) (3.26)

ds D LRE cos �
p

4 � 3 cos2 �d� (3.27)

For the loss cone pitch angle at any B; L point we have

�2
L D 1 � B

BE

1p
4 � 3=L

(3.28)

Concerning the invariant I (2.37), there is a direct relationship with the L-value and Bm

for a dipole field, based on the above relations:

I D LRE
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BmL3

p
4 � 3 cos2 �

cos6 �

p
4 � 3 cos2 � cos �d� (3.29)

The integral limits ˙�m are the latitudes of the conjugate mirror points, obtainable from
the inverse function of (3.24), �m D �m.BmL3=BE/. Expression (3.29) is of the form

I D LREh

�
BmL3

BE

�

where h is a function for which there is no closed analytical expression; it must be
determined by numerical integration. Cubing and multiplying both sides by Bm=BE , we
obtain for the inverse relationship

L3Bm

BE

D F

�
I 3Bm

R3
EBE

�
(3.30)

This defines the L-parameter as a function of the pair I; Bm. The dimensionless function
y D L3Bm=BE D F.x/ of the dimensionless argument x D I 3Bm=.R3

EBE/ can be
found in published tables (e.g., Appendix VI in [6]). Notice that (3.30) also represents
the relation between I and Bm along a given field line or, in general, on a given L-shell
in a dipole field.
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In non-dipole trapping fields, one still can use relationship (3.30) to assign an L-value
to a particle of given I and Bm values (calculated with the pertinent magnetic field model
through (2.33) and (2.37), respectively):

L D
�

BE

Bm

�1=3

f

�
I 3Bm

R3
EBE

�
(3.31)

The function f is the cubic root of F . However, defined in this way, L will not be
constant along a field line as in the pure dipole field case, and it will lose its geometric
meaning as the radial distance to the equatorial point of its guiding field line. Still, it is
a useful parameter in “quasi-dipole” fields like the magnetosphere out to about L D 7

during quiet times, giving intuitive information about the radial extension of a drift shell.
It is certainly more convenient than the original invariants I or the energy-dependent J ,
both of which of course vary strongly along a field line. For near-equatorial particles
(�0 ! 0, I ! 0) an expansion of function f in powers of its argument can be used.
Using (3.12) we obtain to first order
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(3.32)

This shows that for a pure dipole field L is independent of �0 because in that case
a0 D @2B=@s2 D 9.B0=R2

E/.BE=B0/�2=3 and the bracket is zero. For a dipole-like
field with additional internal and external distortions, the definition of L in (3.31) still
gives as zeroth approximation the radial distance in Earth radii to the equatorial point of
a pure dipole field line with the same equatorial magnetic intensity B0.

Just as velocity maps are a useful graphic instrument (e.g., Fig. 2.12) for the
representation of field-aligned properties of trapped particles, so are B � L maps for
the representation of stably trapped particle properties on a drift shell in dipole-like
fields. This “B � L space” has a physical region bounded by the equatorial field
B0.L/ D BE=L3 and the Earth intersection field BL.L/ D BE

p
4 � 3=L (3.25), as

shown in Fig. 3.15. Drift shells map into vertical lines between the two curves; a given
B � L ring (e.g., a mirror point trajectory) maps into a point.

The Earth’s internal magnetic field is not that of a pure dipole. Within about 4 RE ,
where contributions from external currents can be neglected during magnetospherically
quiet times, the internal geomagnetic field is indeed mainly dipolar with very slowly
time-varying perturbations caused by irregularities in the electric current flow in the
Earth’s core and effects of the irregular distribution of matter with varying magnetic
properties in the mantle and rocky crust. Solid earth geophysicists express the internal
magnetic field above the earth surface as deriving from a scalar magnetic potential
Vm.r; ; �/ where r; ; � are the geographic spherical coordinates of the point in
question:

Vm.r; ; �/ D RE
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Fig. 3.15 The “good old”
B � L space and limiting
curves defining the physically
meaningful portion

Magnetic center

Minimum-B 
   equator

Geomagnetic 
     equator

Magnetic axis
Fig. 3.16 Field line
configuration of an off-center
geomagnetic dipole

P m
n are the associate Legendre functions, and the coefficients gm

n and hm
n are determined

from data of the world network of magnetic observatories; they vary in time on a scale
of decades to centuries (secular variation). The index n represents the multipole order,
whose strength decreases with distance like r�.nC1/. A more convenient and more
physical form of representation of the internal field for space studies is obtained using
the geomagnetic coordinate system, oriented in such a way that only one of the order
n D 1 coefficients is non-zero (g0

1 ' 0:31 Gauss; g1
1 D h0

1 D h1
1 � 0). In that

system, the n D 1 dipolar axis is parallel to the polar axis. However, the dipole is not
centered: the quadrupole terms with n D 2 and m D 0; 1 control the displacement
of the main dipole away from the Earth’s center. Since trapped particle drift shells
are “frozen” into the magnetic field, their resulting geometric situation with respect to
planet Earth is shown in Fig. 3.16 (exaggerated scale). In other words, the Earth sits off-
center in the radiation belts (solid earth geophysicists would prefer a reverse statement!)
with the result that it takes a bite out of them in a geographically limited region in
the South Atlantic where mirror points come closest to the ionosphere, and loss cones
widen,5 and trapped particles may precipitate into the ionosphere (the area is called the

5This is precisely how James Van Allen and his group [10] discovered the radiation belt with the
Explorer I and III satellites: a cosmic ray counter blacked out every time the satellites crossed the
South Atlantic region. A careful analysis of the orbital points of saturation and recovery of the
instrument and of the respective local magnetic field intensities led the scientists to the conclusion
that the saturation had to be caused by a high flux of energetic particles trapped in the Earth’s
magnetic field (initially it was not clear whether the radiation was natural or consisting of trapped
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Fig. 3.17 Sketch of internal
multipole-distorted field line
(broken curve)

South Atlantic Anomaly). The upper limiting curve in Fig. 3.15 dips down in longitude-
dependent fashion (more details below). Electrons, which drift from west to east, are
wiped out in the anomaly at low L-shells and smaller pitch angles, but the flux recovers
rapidly several tens of degrees longitude east of that area due to pitch angle scattering,
which fills the emptied loss cones (in the early times this was called the “windshield
wiper effect”).

The multipole terms give rise to field distortions which decrease with distance faster
than the dipole field. Thus the field distortion caused by them is much greater near the
surface than further out in space. Let us imagine that we can switch these higher order
multipoles on and off at will. If we start with a pure dipole field, the field line going
through the equatorial point O is ` (Fig. 3.17). Now we turn on all higher multipoles.
The field line through the same point O (which may no longer may be a minimum-B
point) may look like the broken curve `0. It will differ only very little from line ` near
the equator, but may depart considerably from it near the earth.

A particle injected with a given pitch angle ˛0 at O along the dipole field line ` will
mirror at points P, P0 where the field intensity is Bm D Bo= sin2 ˛0 (2.33). Its L-value
will be given by (3.22). The same particle, injected with the same pitch angle along
the field line `0 with all multipoles turned on, will mirror at the pair Q, Q0, different
from P, P0 but where the field intensity is practically the same (different only to the
extent that the equatorial field intensity B0 differs a tiny bit from the original dipole
value—see relation (2.33)). Will its I value be very different? Since the mirror points
Q, Q0 are at positions different from P, P0, one may expect the I -value to be substantially
different, too. Yet numerical calculations for the real geomagnetic field show that this is
not the case. The reason for this near-equality is that the integrand

p
1 � B.s/=Bm in

(2.37) mainly contributes in the equatorial region where the multipole effect is strongly
attenuated; toward the mirror points, where the multipole field distortion becomes
more and more pronounced, the integrand decreases toward zero. The situation is quite
different with the bounce period �b (2.34) or the half-bounce path length Sb (2.35) whose

beta decay electrons from fission products of secret high altitude explosions.) At nearly the same
time, Sergei Vernov and his groupt at Moscow State University [11] saw the same effect happening
to cosmic ray detectors on Sputnik satellites, but initially he attributed it to equipment failure.
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Fig. 3.18 Angular drift velocity (in arbitrary units) and bounce path Sb for particles at L D 1:25

and mirroring at Bm D 0:18 and 0.22 Gauss, respectively [12] (To obtain drift velocity in
degrees/sec, multiply by factor given for Fig. 3.11)

integrands contain the same function but in the denominator. Its main influence now
occurs in the region near the mirror points, causing bounce period and bounce path to
differ appreciably from the dipole case (remember that a trapped particle always spends
more time of its bounce oscillation near its mirror points than around the equatorial
point!). Figure 3.18 shows the variation with longitude due to internal geomagnetic field
multipoles of the bounce-average drift velocity and the bounce path, for particles at
L D 1:25 mirroring near the Earth surface at Bm D 0:18 and 0.22 Gauss.
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The above discussion leads to the following mutually equivalent consequences: (i)
The L-value defined through dipole relation (3.31) (but computed using field values
derived from (3.33)) will be nearly the same along a given field line in the real field as
well as on the whole shell defined by particles mirroring on that field line. This is called
McIlwain’s L value [13]. (ii) All particles initially mirroring on a common field line will
mirror on nearly coincident field lines at all other longitudes, generating a common drift
shell; in other words, there is negligible shell splitting in the internal geomagnetic field.
These facts also led to the use of another pair of invariant coordinates, the parameters
R and �, solutions of the pair of equations

R D L cos2 �

B D BE

R3

r
4 � 3R

L
(3.34)

In these relations, B is the local B-value and L the solution of (3.31) for the local
B; I values. For a pure dipole, of course R D r=RE and � D �. Sometimes the
parameter � D arccos

p
.1=L/ is called “invariant latitude” and used for the description

of high-latitude ionospheric phenomena. However, this is a misnomer: due to the
effect of multipoles, R D 1 does not necessarily correspond to the Earth’s surface
(or, approximately, an ionospheric height). Only the simultaneous solutions of (3.34)
are true invariant coordinates of a given point in space. Another warning: if used at
high latitudes, even if at low altitude, the corresponding field lines are highly distorted
by the external magnetospheric currents, and the use of any dipolar-like relationship
(as in (3.31)) will be increasingly illegitimate.

3.5 Time-Changing Fields and the Third Adiabatic Invariant

Conservation of the adiabatic invariants M (1.26) and J (3.4) or I (2.37) hold only if
fields and external forces change very little during a cyclotron period (2.2) and a bounce
period (3.8), respectively. In this chapter we shall examine explicitly the effect of time
variations of the magnetic field under certain limiting conditions on particle drift shells
and energy.

Let us imagine a trapping magnetic field configuration whose time variations can
be turned on and off, at our own will. We first impose the restriction of dealing only
with particles which during static conditions are on closed shells (i.e., stably trapped
whenever time variations are turned off). In this situation, the drift motion represents the
third periodicity of the general equation of motion (1.1).

Quite often one is not interested in the actual drift phase of a particle; in such a
case the drift motion may be averaged out. One can still investigate the configuration
and time-change of the “bare” drift shell without worrying about where on that drift
shell the particle is located at any given time. This is physically analogous to averaging
out the cyclotron phase and working with the guiding center, or to averaging out the
bounce motion and working with the guiding field line, without specifying the cyclotron
or bounce phases, respectively. The quantity
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Fig. 3.19 Parameters of the
drift shell of a positive
particle in the earth’s field

Fig. 3.20 Illustrating the
concept of instantaneous
guiding drift shell in a
time-dependent field

�d D
I

d`

hV0i (3.35)

is the drift period (hV0i is the bounce-average drift velocity (3.7)). The integral is
computed along a closed line on the drift shell (Fig. 3.19) under static conditions
(with all time variations turned off). In (3.35) d` is the element of arc length of the
intersection of the drift shell with the reference surface ˝ (usually the minimum-B
surface). Whereas hV 0i and the integration path depend on the reference surface, �d

does not. Under the conditions (2.2) and (3.8) for conservation of M and J , we have
�c � �b � �d ; any field time variation PB that fulfills the condition

�d � B

PB (3.36)

may be called a “fully adiabatic” change. The other restrictive condition which we
impose for our discussion in this section is that no non-electromagnetic forces act on
the particle.

We now switch on a time variation of the magnetic field. A force will appear, given
by the induced electric field associated with the time-dependent magnetic field. This
induced electric field Eind causes an additional drift (1.34) which drives the particle out
of its initial shell. During the interval of transient conditions the particle’s drift shell may
not be closed. Consider such a transient drift shell ˙t as shown in Fig. 3.20. At a given
time t the particle’s guiding field line is `. If at that instant we turn off the time variation
and “freeze” the magnetic field configuration, we may again have the particle following
a static closed drift shell ˙ . For each time and position on the transient shell we can
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Fig. 3.21 Induced electric
field in a dipole field of
increasing dipole moment k0

thus define an associated closed shell, which is the one that would be generated by the
particle if we were to turn off all time variations at that instant. We call this static shell by
analogy the guiding drift shell. The drift period of the particle on the guiding drift shell
may be called the instantaneous drift period of the particle. During static conditions the
guiding drift shell represents the actual drift shell of a particle, just as a guiding field line
represents the actual portion of a field line on which a particle is momentarily bouncing.
When the field changes, a particle is transferred from one guiding drift shell to another
by the drift caused by the induced electric field.

For instance, if we have a dipole field and gradually increase the dipole moment
k0, we will induce an azimuthal electric field of the direction as shown in Fig. 3.21
(using Faraday’s law, Eind D .dk0=dt/ r�2). This electric field produces an outward
drift (for positive and negative charges) and the guiding drift shell will inflate. Likewise,
a decrease of the dipole moment causes guiding drift shells to contract. A change in
drift shell is, of course, accompanied by a change in particle energy. In order to compute
this change, we envisage Eq. (2.26) and average it over a bounce period (in absence of
external forces):

�
dT

dt

	
b

D M

�
@B

@t

	
b

C qhV � E indib

As to the second term hV � E indib , we first notice that it is equal to hV GC � E indib ,
in view of the fact that there are no external forces other than qE ind and that the drift
component .E ind � B/=B2 caused by E ind is perpendicular to it (V GC is the gradient-
curvature drift (2.17)). It can be shown (on similar lines as for (3.6)) that

hV GC � E indib D hV GC 0ib � E ind0

The subindex 0 refers to the minimum-B point of the guiding field line. We thus have,
finally,

�
dT

dt

	
b

D M

�
@B

@t

	
b

C qhV GC 0ib � E ind0 (3.37)
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The first term represents what has been called the gyro-betatron acceleration effect
(see also Sect. 2.2), because it gives the power delivered by the induced electric field
force to the particle in its cyclotron motion mode. The second term represents the drift-
betatron, i.e., the power delivered by the induced electric field to the particle’s gradient-
B drift mode.

In order to find the actual drift shell of a particle in a time-dependent magnetic field,
we have to integrate the bounce-average total drift velocity (3.7), in which E 0 D E ind,
and make use of the conservation of M and K D I

p
Bm. The main practical problem

lies with the determination of E ind, which has to be computed numerically. Assuming
zero field-aligned electric fields and that the magnetic field lines are rooted into the
ionosphere (frozen-in field lines, Sect. 5.5), one reasonable way is to (i) trace the field
line from the minimum-B surface point P (at which E ind is wanted) to the ionosphere;
(ii) let the external magnetospheric field change in time �t ; (iii) re-trace back from the
fixed ionospheric point to the new minimum-B point P 0 D P C�r; (iv) take the vector
�r=�tB0 as a good approximation of E ind. As examples, consider two extreme cases.

(i) If the time variation is fast with respect to the drift period (but still slow compared to
the bounce period, �b � B= PB � �d ), the induced electric field drift will dominate
over the gradient-curvature drift, and the particle will be driven mainly by the former
during the transient interval. The drift velocity will be that of the guiding field line
or, which is equivalent, the particle’s guiding field line will be “frozen” into the
changing magnetic field configuration and move with the latter. The acceleration
(or deceleration) is then of “gyro-betatron” type (first term of (3.37)). If the time
variation persists long enough, the particle may acquire sufficient energy to let the
gradient-curvature drift take over and move it away from the initial moving field
line. As a matter of fact, this represents a fundamental acceleration mechanism
of radiation belt particles during geomagnetic substorms during which field lines
are being “pulled from the tail towards the earth” in the midnight meridian region.
Low energy particles are thus carried with these field lines by the induced electric
field drift and accelerated by the gyro-betatron until the gradient-curvature drift
takes over, ejecting them from their guiding field line and the acceleration region,
eventually placing them on closed shells (stably trapped orbits). For the same
reason, sudden asymmetric compressions of the magnetosphere caused by brusque
variations of the dynamic pressure of the solar wind, can cause acceleration of
particles found on the dayside and their placement into trapped orbits (see later).
It should also be clear that, unless there is azimuthal symmetry both in drift shells
and @B=@t , particles belonging to the same drift shell but with different drift phases
(e.g., longitude or arc position of their equatorial crossings) will in general not end
up on a common drift shell as the time variation goes on—a fact that can lead to
radial diffusion (see Chap. 4).

(ii) The other extreme case is given by time variations that are fully adiabatic, i.e.,
very slow compared to a drift period. In such a case a third conservation theorem
applies, which can be conveniently used in numerical computations: The magnetic
flux encompassed by the guiding drift shell of a particle remains constant, provided
condition (3.36) is fulfilled:

˚ D
I

A0 � d` D const. (3.38)
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Surface for 
flux calculation
(from               )

right-hand rule
for Faraday’s law

Disk for 
flux calculation
(from             )

right-hand rule
for flux calculation

a b

Fig. 3.22 Definition of the third invariant (flux ˚) for a dipole-like (a) and mirror machine-like
(b) closed drift shell. In (a), because of the singularity at the origin, the flux ˚ must be calculated
over the surface lying outside the drift shell

A0 is the magnetic vector potential and the integral is carried out along a curve
which lies in the (time-frozen) guiding drift shell of the particle (e.g., intersection
with the minimum-B surface; see Fig. 3.22). It is important to remind the reader that
in a static situation in absence of any external forces, a drift shell is independent of
the particle’s kinetic energy and fully determined by just two invariants M (or Bm)
and I (e.g., relations (3.9) and (3.10)). ˚ is not an independent parameter under
these conditions. For a time-dependent magnetic field, Bm and I are no longer
invariant, and a shell must be determined by the general invariants M , J (or K in
absence of field-aligned electric fields) and ˚ , as we shall describe below.

The demonstration of the conservation theorem for ˚ is lengthy [1, 14].6 In
Appendix A.3 we give a simplified demonstration limited to equatorial (90ı) pitch angle
particles. It is very important to emphasize that ˚ is defined and computed for the
guiding drift shell (i.e., holding the field constant and finding out what closed shell
would be generated by the particle), and not for the actual drift shell of the particle
during transient conditions. However, in view of the condition of slow changes (3.36),
the actual drift shell will differ only very little from the instantaneous guiding drift shell.
Indeed, we may picture this situation as having the particle drifting many times around
a closed shell while the latter is slowly changing its shape. Note that if (3.36) holds for a
given class of particles, because of the energy-dependence of the gradient-curvature drift
this may not be true for other particles on the same initial shell. For a given scale B= PB
of time variation, the lower the particle energy, the more likely it is that condition (3.36)
will be violated. On the other hand, particles of the same kind but different drift phases
starting on a common drift shell may end up on different drift shells as the time-variation
goes on. In Appendix A.3 we show under what conditions these particles do reassemble

6Or we may just refer again to analytical mechanics (see footnote on page 10) and remark that in
the canonical path integral for the cyclic drift motion Jd D H

.p C qA/ � dl, the first term is zero
to first order (the average p vector is just mV D), so that what remains is Jd D H

qA � dl D q˚ D
const.!



3.5 Time-Changing Fields and the Third Adiabatic Invariant 83

Fig. 3.23 Projection of a
drift shell ˙ onto the polar
cap (�) along its magnetic
field lines

on one common drift shell (integer multiples of �d !). In those cases the conservation of ˚

is true only in drift-average terms. This is equivalent to what happens in shell splitting
(Sect. 3.3): particles with different pitch angles on a common initial guiding field line
will all pass through that same initial field line at integer multiples of drift time.

For a dipole field the magnetic flux encompassed by a particle shell defined by the
parameter L (3.22) (Fig. 3.22) is given in absolute value by

˚ D 2�k0

r
D 2�BERE

2

L
D 1:953

L
GaussR2

E (3.39)

For other magnetized planets, the corresponding value of BE must be used. It is
important to note that in this case and all dipole-like field geometries, ˚ is equal to
the flux

R
B � dS integrated over the portion of the equatorial surface outside of the

intersection O of the shell with ˝. This obliges us to be careful with the sense of
integration of the vector potential in the determination of the flux (3.38).

For a more complex field geometry the integral (3.38) has to be carried out
numerically. This requires knowledge of the vector potential A. A more practical way
for the closed field lines in the Earth’s magnetosphere is to find the intersection C of a
series of shell field lines with the earth’s surface (Fig. 3.23), and to numerically compute
the flux

˚ D
Z

�

B � dS

over the polar cap ˘ , using the earth’s known surface field Bs in that cap. For most
magnetospheric models it will be sufficient to use the dipole approximation for Bs .
Calling �C .�/ the dipole latitude of the intersection C at a given longitude �, the shell
flux will be, in absolute value (using (3.24)):

˚ Š 2BERE
2

Z 2�

0

d�

Z �=2

�C .�/

cos � sin �d� D BERE
2

Z 2�

0

cos2Œ�C .�/�d�

(3.40)

A convenient “recipe” to evaluate numerically the third invariant in the outer
magnetosphere is therefore: (i) Trace the particle’s guiding shell by methods given
in Sect. 3.2; (ii) Find the intersection dipole latitude �C .�/ as a function of longitude
for a set of shell field lines tracing them down to the earth’s surface; (iii) Integrate
numerically (3.40).
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Let us show how the third adiabatic invariant can now be used to determine the fate
of a (non-relativistic) particle trapped in a time-dependent field subject to the adiabatic
condition (3.36), in absence of external forces. We start with a static field and a non-
relativistic particle of energy T , having invariant parameters I; Bm. As long as the field
remains static, the particle will drift on a closed shell of flux ˚ given by (3.38) or (3.40).
We now switch on the time variations. The particle will drift away from the initial shell
surface. If the time variation ceases after an interval �t , the particle will again be found
on a closed, static shell. The flux through the shell in this final state must be equal to
the flux through the initial shell. But the energy of the particle T � and its parameters I �

and B�

m will have changed—yet M D T �=B�

m and K D I �

p
B�

m must be the same as
in the initial state. Therefore, to determine the final shell, one proceeds as follows: (i)
pick a (reasonable) pair of values I � and B�

m that satisfy I �

p
B�

m D I
p

Bm; (ii) trace
the shell in the final field configuration for these two values, as explained on page 63;
(iii) find the flux ˚� (3.40) through this shell; (iv) iterate steps (ii) and (iii), changing
I � and B�

m as many times as necessary until the final ˚�-value is equal to the initial one
(˙ prefixed error); (v) compute the particle’s final energy from T � D .T=Bm/B�

m .
Adiabatic time changes satisfying the condition (3.36) are reversible: when the field

configuration comes back to the initial state, all particles come back to their initial
drift shells. This follows directly from the conservation of ˚ . For non-adiabatic time
variations this is no longer true, even if M and J are still conserved. It is important
to note that in absence of external forces shell behavior in an adiabatic time-dependent
field is independent of particle energy, mass and charge (as happens in the static case).
Theorem (3.38) holds even if external forces are acting. Moreover, it holds when B

is static but the external forces are adiabatically time-dependent. One final remark on
condition (3.36): if the time-dependent magnetic field is azimuthally symmetric at all
times (i.e., symmetric field with symmetric perturbations), ˚ happens to be conserved
even if the adiabatic condition is not fulfilled.

We are now in the position to create an ideal, truly invariant reference representation
of particles found stably trapped in any non-symmetric magnetospheric field config-
uration. For that purpose, we need a sophisticated numerical model of the magnetic
field, with parameters that can be conveniently adjusted to reproduce quantitatively the
trapping magnetic field configuration of the moment (e.g., based on some real-time
magnetic field measurements in strategic regions of the magnetosphere). Suppose we
have such a sophisticated model on hand. For a given particle of energy T , pitch angle ˛

and position r , the model can be used to determine numerically the local magnetic field
intensity B and the particle’s invariant parameters M , K and, through shell tracing, ˚ .
Now we imagine turning off very slowly all external field sources (e.g., boundary and
neutral sheet currents) and, if we are close to the Earth’s surface, also the internal
multipoles, leaving just the field of a central pure dipole of moment k0 D BER3

E .
The particle, while conserving the values of its adiabatic invariants, will end up in
a beautifully symmetric dipole drift shell defined by what we can call the adiabatic
reference parameters and designate as “L-star” L� and “B-star” B�

m , respectively.7

The particle kinetic energy, of course, will also be different, T �.

7In the literature L� has sometimes been called the “Roederer L-value” to distinguish it from the
“McIlwain L-value” (3.30).
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= Const. Surface
(    = Const.)

Field Lines

Fig. 3.24 Mirror points on
different field lines for which
trapped particles have the
same L� value

The adiabatic conservation theorems allow us to calculate the values of these refer-
ence parameters. The determination of L� is straightforward, based on relation (3.39):

L� D 2�BERE
2

˚
(3.41)

Once we have L�, we can use dipole relation (3.31) to determine B�

m by replacing on
the right side the I �-value by I � D K.B�

m/
�1=2 and solving the functional relationship

for B�

m . The particle energy is then obtained through the conservation of M : T � D
T .B�

m=Bm/ (relativistically, we would obtain for the momenta p�2 D p2.B�

m=Bm/).
If we are using the transformation to a stationary reference dipole field for standard
flux mapping purposes, also the flux values must be transformed; this will be addressed
in the next chapter. Finally, it is important to be well aware of the fact that a surface
of constant L� (see Fig. 3.24) represents neither a particle shell nor a collection of
field lines. It simply gives the locus of all mirror points P; P 0 . . . Q; Q0 . . . of particles
whose drift shells have the same ˚ -value. Transforming adiabatically into a pure dipole
field, all mirror points shown in this figure will assemble on one single dipole field
line and shell surface (with different energies though, if initially they all had the same).
Conversely, the L� value (or ˚ ) will vary along a given field line in the real field because
particles mirroring at different points of that field line generate different drift shells with
different ˚ values.

We can figure out the differences in ˚ or L� values. Let us use the same approxi-
mations for the field and other field-related quantities for near-equatorial particles as in
Sects. 1.6, 3.2 and 3.3 (particularly (3.19) and (3.20)), to obtain following approximate
expression for the L� value of a particle injected at the equatorial point r0; �0 with a
pitch angle close to 90ı (�0 � 1):

L�.r0; �0; �0/ ' r0

RE

 
1 C 1

2

b1

BE

�
r0

RE

�3

� 1

3

b2

BE

�
r0

RE

�4 �
1 � 43

18
�2

0

�
cos �0

!

(3.42)

Note the effects of magnetospheric compression (b1 term) and day-night asymmetry
(b2 term).

The quantity


A D �1

3

b2

BE

�
r0

RE

�5 �
1 � 43

18
�2

0

�
cos �0 (3.43)
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may be called the shell asymmetry parameter. According to (1.50) any changes of the
stand-off distance Rs will lead to changes in the radial parameter L�. It is important to
interpret Eq. (3.42) correctly: it gives the approximate L� value of a particle injected
at an initial equatorial point with an initial pitch angle under magnetospheric field
conditions given by the constants b1 and b2. If these constants change adiabatically
(slowly compared to a drift period), the value of L� will remain constant (conservation
of ˚ !) but the drift shell will change. To obtain the new drift trace one has to solve
(3.43) for r0 D r0.�0/ and constant L� given by the initial conditions. For fast changes
of b1 and b2, the drift-average of the change in L� (only the constant b2 will contribute)
will give a measure of the effect on third invariant changes (see next chapter).

The dimensionless quantity


S D @2L�

@�2
D 43

54

b2

BE

L�

5 cos �0 (3.44)

can be taken as a quantitative measure of shell splitting (second derivative, because the
first derivative is zero on the equator). Only in the case of shell degeneracy, i.e., for
azimuthally symmetric fields, will L� and ˚ be constant along a field line and 
 D 0.
Notice that 
S < 0 on the day side (cos � < 0) and positive on the night side. In
other words, particles mirroring at higher latitude (i.e., with smaller equatorial pitch
angles) on the noon/midnight field line, have smaller/larger L�-values (larger/smaller
third invariant ˚ ). This is directly related to the inward/outward reversal of shell splitting
for noon/midnight field line particles (see Figs. 3.9 and 3.10). The drift-average of 
2

S is
a good measure of the influence of the general state of the magnetosphere (represented
by the parameter Rs) and the asymmetry of drift shells and its relation to drift shell
splitting. As such it plays a role in radiation belt diffusion. Taking into account (1.50)
we can establish the following proportionality (the actual factors of proportionality are
magnetospheric model dependent):

h
2
S i � R�8

s L10 (3.45)

Notice the strong dependence on the stand-off distance of the magnetospheric boundary
and the even stronger dependence on the radial shell parameter L.

Turning back to the general case of off-equatorial particles, one important remark.
We often talk about the L�-value of this or that point r in real 3-D space. One has to
have clearly in one’s mind what is meant by that, because, in general, the drift shell
of a particle will depend on its energy. Can we even talk of the L�-value “of a point”
(Fig. 3.24) in such a case? Yes we can—provided we define it clearly: it is the L�-value
of a particle mirroring at that point when the magnetic field is held constant in time, and
when all electric fields have been turned off.

Finally, Fig. 3.25 gives an example for particles with a series of different pitch angles
detected at several different local times in synchronous orbit (r D 6:6 RE ), using a
magnetospheric field model for quiet time [15]. The picture clearly shows the portions
of invariant reference B�-L� space scanned by such detectors. In a pure dipole field,
each detector would just “see” one point in B; L space; there would be no local-time
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Fig. 3.25 Coordinates in
invariant B� � L� space (see
text) of the particles
registered with a directional
detector in synchronous orbit
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Fig. 3.26 Same as Fig. 3.25,
in McIlwain’s B � L space

effect, and the region sampled would just be a straight vertical line (Fig. 3.26). For
increased magnetospheric compression, the pattern in the figure spreads out in L�

coverage. Notice in Fig. 3.25 that for pitch angles around 45ı–50ı, the whole local-time
asymmetry disappears and its effect reverses. This is related to what we have mentioned
on page 72 in connection to shell splitting and its reversal at what we have called a
“magic” pitch angle, because it barely changes as a function of specific parameters
governing the external current contributions in the magnetospheric model. We shall
come back to this invariant mapping procedure in the next chapter.
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Chapter 4
Particle Fluxes, Distribution Functions
and Violation of Invariants

4.1 Particle Fluxes and Pitch Angle Distributions

So far we have been concerned with individual particle or guiding center motion
in given magnetic and electric fields. In the real magnetosphere, however, we
always deal with large ensembles of particles of different species, different energies,
velocities and spatial densities. In this chapter we will describe how particle
distributions are represented and how they are handled within the framework
of adiabatic theory, i.e., when particles exhibit a consistent “micro-behavior” of
cyclotron motion, a “meso-behavior” of bounce motion, and a “macro-behavior”
of drifts. We will come across two types of distributions, the actual or “kinetic”
distributions of the original particles, and the distributions of their guiding centers,
in which information on their cyclotron motion has been averaged out and replaced
by a magnetic moment (Sect. 1.2).

Suppose we have an ideal particle detector of sensitive area ıA? that registers
the incidence of particles of a given class (charge, mass) traveling in a direction u
perpendicular to the area, lying within a very narrow solid angle cone ı˝ (Fig. 4.1),
and whose kinetic energy falls into the interval T and T C ıT (non-relativistic
energies). If ıN is the number of such particles arriving in the time interval ıt , we
can write

ıN D j ıA?ı˝ıT ıt (4.1)

The constant of proportionality j is called the directional differential flux of the
particles; in general, it will be a function of position, time, energy and direction.
It represents the average number of particles per unit area perpendicular to their
direction of movement, per unit of time, energy and solid angle; in magnetospheric
physics its units are usually chosen as m�2s�1kev�1ster�1 (a steradian being the
solid angle of a cone of aperture = 1 radian). The directional flux can be conferred
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© Springer-Verlag Berlin Heidelberg 2014

89



90 4 Particle Fluxes, Distribution Functions and Violation of Invariants

Fig. 4.1 Most relevant
aspects of the geometry
of a particle detector

Fig. 4.2 Definition
of directional flux j

Fig. 4.3 Case of a “large”
detector counting guiding
centers

vectorship by setting j D j u, so that the number of particles traversing an element
of area ıA oriented in any direction n (Fig. 4.2) is

ıNA D j u � nıAı˝ıT ıt D j .r ; t; T; u/ � ıAı˝ıT ıt (4.2)

In all this we have assumed that the area ıA � �2
C . On the other extreme, if ıA 


�2
C the detector would be mainly counting guiding centers (Fig. 4.3) traveling in the

direction u. In experimental radiation belt physics, most detectors are of the first
kind; their actual output is directional counting rate, which under ideal conditions
of collimation and efficiency is proportional to the local flux j.r ; t; T; u/ in the
direction u.1 Note that the directional flux vector j .r ; t; T; u/ is not a traditional
vector field: it represents a manifold, assigning a number to each point of space
and direction. It is a local characteristic of the particle ensemble, now viewed as a
macroscopic model fluid in which the original discontinuous stream of particles is
replaced by a flowing continuum.

It is important to realize that in the adiabatic motion picture, a directional flux in
the direction u does not necessarily imply that those particles actually come from
the direction �u when viewed on a larger scale. For instance, consider the ensemble
of 90ı pitch angle particles in a homogeneous magnetic field as shown in Fig. 4.4a:

1An ideal differential detector gives counting rate ıN=ıt as direct output, i.e., measures j , but real
detectors have transmission functions that must be determined in careful calibration measurements,
and they respond in finite intervals of energy �T , direction and solid angle �˝. The conversion
of instrument counts to directional particle fluxes is usually a difficult task for the experimentalist.
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a b c

Fig. 4.4 Three cases of 90ı pitch angle, monoenergetic particles—see text

an ideal directional detector would respond only when it is pointing perpendicularly
to B for any azimuthal orientation ' (independent of ', if the individual cyclotron
phase angles are random). The detected particles, while locally coming from the
direction �u, are really just circling in situ around their guiding center. A large
detector (with ıA > �2

C ) in principle would not respond at all, because there is no
flow of guiding centers. If now we impose an electric field E ? B (Fig. 4.4b),
the particles will drift; a small detector will again respond only when oriented
perpendicularly to B, but the response will be '-dependent because their energy
will vary (1.35) and more particles will fall in from the direction of the drift (1.10).
A large detector will register, too, because of the flow of guiding centers. Finally,
if there is a gradient in particle density perpendicular to B (in absence of E ), there
will be an anisotropic response in the plane perpendicular to the magnetic field,
due to the effect depicted in Fig. 4.4c. In all of this, we have assumed that the
detectors were at rest; two detectors that move with respect to each other will see
different flux functions. Usually, a flux function is defined in the original frame of
reference; in some cases it will be necessary to transform j into the local guiding
center system.

In what follows, we shall ignore the space and time dependence of j , i.e., we
shall concentrate on the flux of particles at one given point and time and just write
j D j.T; u/. The T dependence of j is called the differential energy spectrum of the
particles (traveling in direction u through the point r at time t); the dependence on
the direction u is called the angular distribution. In addition, we have the following
designations:

I.T; u/ D
Z T

0

j.T 0; u/dT 0 integral spectrum flux (4.3)

F.T / D
Z

4�

j.T; u/d˝ omnidirectional differential flux (4.4)

All these functions are, of course, also functions of r and t .
In radiation belt and magnetospheric plasma physics one usually uses the natural

coordinate system (Appendix A.1) determined by the local magnetic vector field
(measured, or as given by a numerical field model), and polar coordinates (Fig. 4.5)
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Fig. 4.5 Coordinates in the
natural frame of reference

Fig. 4.6 Geometric
parameters concerning
the discussion of gyrotropic
distributions

for the direction. If � D cos ˛, where ˛ is the particle’s pitch angle, ı˝ D ı�ı',
we write

j D j.T; �; '/

at a given point and instant of time. The unit directional vector u has components
.
p

1 � �2 cos 'Ip1 � �2 sin 'I �/. Note that j represents the number of particles
traversing the surface element per unit time, unit area (perpendicular to u) and unit
energy. The vector j ? D j .T; 0; '/, sometimes called “jay-perp”, is the flux of
particles mirroring at or near the point in question.

If @j =@' D 0, the flux is called gyrotropic (random cyclotron phases). In such
a case, one often integrates .

R
jd'/ı� D 2�jı�. This represents the number of

particles (per unit area, time and energy) in a ring around B, as shown in the sketch
Fig. 4.6. One often leaves out the phase angle in j altogether, but this is dangerous
because some 2�’s may disappear in the process! One has to be very careful with
the concept of gyrotropic fluxes. When there are drifts, a particle distribution will
in general not be gyrotropic (just examine again Fig. 4.4b, c), even if the particle
distribution is gyrotropic in the guiding center system.

If in addition to being gyrotropic the flux is independent of �, @j =@� D 0, it
is called isotropic (random pitch angles). For an isotropic flux, equal intervals of
cos ˛ D � contain equal number of particles. This is the reason why pitch angle
distributions are always plotted as a function of � (not ˛)—an isotropic flux is
represented by a horizontal straight line. Figure 4.7shows some typical pitch angle
distributions of trapped particles, and their usual designations.
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Fig. 4.7 Typical pitch angle distributions of trapped particles

4.2 Distribution Functions and Their Transformations

Measurements provide information about the flux j . Theory, however, works with
distribution functions, which serve as a quantitative bridge between the detailed but
unknown instantaneous microscopic state of a particle ensemble and macroscopic
variables more accessible to intuitive comprehension, theoretical treatment and mea-
surement. Consider a small spatial volume ır3 and call ın the number of particles
in that volume whose momentum or velocity vectors fall into given ranges of
magnitude and direction (black circles, Fig. 4.8) at a given time t .2 In cartesian coor-
dinates, that number will be proportional to ır3 and to the element of volume ıp3

in momentum space, or ıv3 in velocity space, into which the pertinent vectors fall:

ın D fp.r; t; p/ır3ıp1ıp2ıp3 D fv.r; t; v/ır3ıv1ıv2ıv3 (4.5)

fv and fp are distribution functions. Obviously, fp D fvm�3. Note that fp is the
distribution function or phase-space density in the traditional six-dimensional phase
space of statistical mechanics. The velocity space distribution function fv can only
be used in non-relativistic situations.

It often is convenient to work with other dynamical variables in the distribution
function. Examples are .T; �; '/; .v?; vk; '/; etc. Therefore, it is important to
know the rule of transformation of the distribution function from a set of “old”
variables, say v1; v2; v3, to a “new” set X1; X2; X3, each one of which is a function
Xi D Xi .v1; v2; v3/ of the three old variables (and, implicitly, space). The inverse
transformations are vk D vk.X1; X2; X3/. Obviously, we must have

ın=ır3 D fnew.X1; X2; X3/dX1dX2dX3 D fold.v1; v2; v3/dv1dv2dv3 (4.6)

The integral over the dynamic variables Xi

n.r ; t/ D
Z

Xi

f .r ; t; X1; X2; X3/dX1dX2dX3 (4.7)

2All “delta” differentials in Fig. 4.8 (and in all that follows) are “physical” differentials as described
in the footnote on page 185 in Appendix A.3: small, but still big enough to contain o1 particles.
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Fig. 4.8 Sketch to illustrate
the definition of distribution
function

is the number density of the particle ensemble at point r and time t (total number of
particles per unit spatial volume at time t).

The corresponding elements of volume in (4.6) are related by the rule of the
Jacobian dX1dX2dX3 D JXVdv1dv2dv3 with the determinant (not a tensor!):

JXV D Jnew=old D

ˇ̌
ˇ̌̌
ˇ̌

@X1

@v1

@X1

@v2

@X1

@v3

@X2

@v1

@X2

@v2

@X2

@v3

@X3

@v1

@X3

@v2

@X3

@v3

ˇ̌
ˇ̌̌
ˇ̌ D

ˇ̌
ˇ̌DX

DV

ˇ̌
ˇ̌ (4.8)

The inverse transformation fnew ! fold is given by the inverse JVX of the Jacobian:
JVX D Jold=new D jDV=DXj D 1=JXV , or dv1dv2dv3 D JVX dX1dX2dX3. All this
can be summarized by the relation

fnew D fold � Jold=new (4.9)

in which the functions on the right side must be expressed explicitly in terms of the
new variables, e.g.,

fold D foldŒv1.X1; X2; X3/; v2.X1; X2; X3/; v3.X1; X2; X3/�

A confusing fact is that sometimes the relation (4.9) is written as fnew D fold,
attaching the Jacobian to the volume element whenever the latter appears explicitly.
Also, in some books the Jacobian is defined with the transposed matrix of (4.8),
with rows and columns exchanged. Note that when each one of the new variables
is function of only one of the old variables (Xk D Xk.vk/), the Jacobian is just the
product Jnew=old D @X1=@v1 � @X2=@v2 � @X3=@v3.

Let us discuss two important examples. First, the transformation from velocity
space to the variables ŒT; �; '� in the natural frame of reference (x k bI y k nI z k e

and v3 D vk). We have

v1 D v
p

1 � �2 cos '

v2 D v
p

1 � �2 sin '

v3 D v�
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where v D p
2T=m. The Jacobian jD.v1; v2; v3/=D.T; �; '/j turns out to be

Jold=new D v=m D .
p

2T=m/=m; therefore

fnew.T; �; '/ D 1

m

r
2T

m
fold.v1; v2; v3/

D 1

m

r
2T

m
fold

�r
2T

m

p
1 � �2 cos 'I

r
2T

m

p
1 � �2 sin 'I

r
2T

m
�

�
(4.10)

Observe how we have replaced in fold the components of v by their functions of the
new variables.

The other example is the transformation from a variable set Œv; �; '� to the set
Œv?; vk; '� we encountered in Sect. 2.3. The relationships are v? D v

p
1 � �2,

vk D v� and ' D '. The inverse Jacobian Jnew=old is easier to calculate:

Jnew=old D

ˇ̌
ˇ̌
ˇ̌̌
p

1 � �2 � 0

� v�p
1��2

v 0

0 0 1

ˇ̌
ˇ̌
ˇ̌̌ D v=

p
1 � �2 D 1=Jold=new

Calling F the new distribution function, we obtain, expressing v and � in the new
variables v?; vk:

F.v?; vk; '/ D v?
v2? C v2

k
f .
q

v2? C v2
kI vk=

q
v2? C v2

kI '/ (4.11)

The preceding discussion enables us to find the relation between particle flux
j.T; �; '/ and the corresponding distribution function. Consider a surface element
ıA? and ıN particles crossing it perpendicularly during the interval ıt with velocity
v D vu within an element ı˝ . The number �N of these particles is given by (4.1);
prior to crossing, they all were contained in a cylinder perpendicular to the surface
element of volume ıV D vıt ıA?. Hence, by definition of distribution function we
can also write �N D f .T; �; �/vıt ıA?ıT; ı˝ . Hence

j.T; �; '/ D v f .T; �; '/ (4.12)

Based on (4.10) we then will have:

j.T; �; '/ D v2

m
fv.v1; v2; v3/ D p2fp.p1; p2; p3/ (4.13)

This connects the phase space density (mostly wanted by theoreticians) with the
particle flux (mostly provided by the experimentalists): fp D j=p2.

When a particle distribution is gyrotropic, the distribution functions do not
depend on '. But as stated in connection with Fig. 4.6, the integrations with
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Fig. 4.9 Three cases
in which the particle phase
angles are not distributed
equally (bunching)

respect to ' must not be forgotten, i.e., a factor 2� must always be added to the
distribution function. Indeed, in practice trapped particle populations are gyrotropic,
with equiprobable cyclotron phase angles that could be averaged out. Under stable
magnetospheric conditions, during the lifetime of a trapped particle it will circle its
drift shell many times so that, even if the particle population started as a compact
bunch (e.g., in an artificial injection) (see Fig. 4.9) small initial differences in
dynamic parameters as well as small time-dependent disturbances would smooth
out the distribution throughout the entire shell.

4.3 Macroscopic Variables and the Particle Pressure Tensor

The distribution function is the “workhorse” of radiation belt and plasma theory.
In the previous section we anticipated that it represents a bridge between the
microscopic state of individual particles and macroscopic variables, which represent
average effects of “zillions” of particles. The number density in (4.7) is an example.
Quite generally, given a distribution function fv , the average in velocity space of
any microscopic variable X.r; t; v/ will be

hX.r; t/i D
R

X.r; t; v/fv.r; t; v/dv1dv2dv3R
fv.r ; t; v/dv1dv2dv3

D 1

n

Z
Xfvd 3v (4.14)

In the following we list a series of such variables (called velocity moments when
they involve velocity), which also play a fundamental role in plasma physics. f is
the distribution function in velocity space fv.r; t; v1; v2; v3/, but could be replaced
by the distribution function in phase space fp , provided that integrations are all
carried out over p.
Number density: n.r ; t/ D R

f dv

Mass density: �m.r ; t/ D m n.r; t/ D m
R

f dv

Average (or bulk) velocity: V D hvi D R
vf dv=

R
f dv
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Fig. 4.10 Illustration
showing why the effect
of momentum transfer
through a surface
is independent of the
direction of v

Momentum density: G D nmV D m
R

vf dv

Average kinetic energy density: � D 1=2 n mhv2i D 1=2 m
R

v2f dv

Internal energy density (kinetic energy density in a frame traveling with bulk
velocity V ): w D 1=2 m

R
.v � hvi/2

f dv D 1=2n m.hv2i�hvi2/ D ��1=2 n m V 2

These relations are written for any frame of reference. In a local natural reference
frame, the average or bulk velocity of an ensemble of adiabatically moving charged
particles is composed of the ensemble-average drift velocity perpendicular to the
magnetic field and the ensemble-average parallel velocity along it. Under adiabatic
conditions, these are also the average guiding center velocity components.

To the above list we must add an important macroscopic quantity, the pressure
tensor. First, let us remember that the primary, kinetic, concept of pressure is related
to momentum transfer across a surface. Consider Fig. 4.10: a body on the left side
either receives or ejects a little mass m that traverses a perpendicular surface ıA?.
The picture shows that the effect on the body will be the same, regardless of the
sense of motion of the little mass through the surface. Trivially (but sometimes
forgotten): a gain of momentum from the right has the same effect as a loss of
momentum to the right. If there are many particles (with number density n and the
same mass and velocity perpendicular to ıA?) the flux of momentum per unit area
and time will be .nmv/ � v; again, independent of the sense of v.

Second, a “kindergarten” example will show us why at all there is pressure in an
adiabatic ensemble of charged particles, even in the case when they all have the same
kinetic energy and pitch angle. We consider the ubiquitous example of a gyrotropic
distribution of 90ı pitch angle particles in a uniform magnetic field, in absence of
other forces (Fig. 4.11). If we cut this distribution with a surface (perpendicular to
the paper) each circling particle whose guiding center lies within 2�C of the x-line
will transfer a perpendicular momentum mv? sin  every turn (of duration �C D
2�m=qB—note that there are two angles  per turn!). There are ndy�x�z guiding
centers in the hatched band dy D �C sin d . Therefore, the total perpendicular
momentum flux �G? per unit area and time will be

�G

�x�z
D p? D nmv2?

2�

Z 2�

0

sin2 d D 1=2nmv2?



98 4 Particle Fluxes, Distribution Functions and Violation of Invariants

Fig. 4.11 Cyclotron orbit
geometry illustrating how
the perpendicular pressure on
the x � z plane arises from
the cyclotron motion

Clearly, this perpendicular pressure (see below) arises from the fact that the non-
drifting ensemble “rattles” on any surface perpendicular to their cyclotron motion.
Even if all particles have the same velocity, as happens in this example, it is the
collective macroscopic action of their random cyclotron phases that is represented
in the pressure variable. A similar consideration can be made if particles also have a
parallel velocity vk (˛ ¤ 90ı); in that case the momentum flux parallel to B would
be �Gk=�x�y D pk D nmv2

k.
Finally, the perpendicular way is not the only way to transport momentum

through a surface: horizontal momentum mvx can be transported vertically through
a horizontal surface ıA (think of what happens when you are cleaning the deck with
a water hose: you are transferring vertically downwards the horizontal momentum
needed to push the dirt out of the way!). For a large ensemble a downward horizontal
momentum transfer in the x-direction would be .nmvx/ � vz. Momentum transfer
quantities are thus components of a tensor (Appendix A.1). If we have a whole
velocity distribution of particles, we define the kinetic tensor as K D nhv ˝ pi D
m
R

v ˝ vfv.v/d 3v, with components

Kik D
Z

vi pkfp.p/d 3p D m

Z
vi vkfv.v/d 3v (4.15)

Note that K is a symmetric tensor, so that only six components are independent.
The product ıG D KıA (ıGi D P

k KikıAk) is the momentum flow through the
element of area ıA.

More attune to our concept of pressure would be a physical entity whose
components represent momentum transfer in a frame of reference that locally moves
with the bulk velocity V of the particle ensemble. Like in thermodynamics this
would give us a better picture of the “randomness” of the motion of individual
particles and potential effects on macroscopic bodies or obstacles like walls. We
thus define the pressure tensor as
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P D m

Z
.v � V / ˝ .v � V /fv.v/d 3v D K � D (4.16)

where D D nmV ˝ V is the dynamic pressure tensor, representing the contribution
to the momentum transfer of the common translational motion of the ensemble.

Let us now examine an example in the natural frame of reference. We shall
consider a gyrotropic ensemble in a uniform magnetic field and no forces, with a
distribution function F.v?; vk/ like in (4.11), but independent of ' (a fact which,
nevertheless, must not be forgotten in the integrals in phase space!) If the x3 axis is
k B (unit vector e) and the other axes x1; x2 are b and n respectively (see Fig. A.1
of Appendix A.1), the vector components of v? will be v? cos ' and v? sin ',
respectively. Therefore, in the expression (4.15) of the kinetic tensor components,
all integrals over the cyclotron phase angle that have sin '; cos '; sin ' cos ' will be
zero. This leaves only the diagonal components (with the squares of sin and cos),
which turn out to be K11 D K22 D 1=2nmhv2?i and K33 D nmhv2

ki. In these expres-

sions, the density is n D R
Fdv?dvkd' D 2�

R
Fdv?dvk. Taking into account

(4.16), we finally have for the pressure tensor in the natural coordinate system:

P D
0
@ p? 0 0

0 p? 0

0 0 pk

1
A

p? D 1

2
nm

hv2?i � hv?i2

� D 1

2
nm

hv2?i � V 2

D

�
(4.17)

pk D nm

hv2

ki � hvki2
� D nm


hv2
ki � V 2

k
�

Notice that the scalar trace (Appendix A.1) of the pressure tensor is related to the
internal energy density:

w D 1

2
TrP

When the pitch angle distribution is independent of the particle’s energy, i.e.,
when we have separation of variables in the distribution function f D h.T /g.�/,
we’ll have hv2?i D hv2i.1 � h�2i/, hv2

ki D hv2ih�2i and hvki2 D hvi2h�i2 (where
the averages are taken over the respective variables). Neglecting the average drift
velocity VD , relations (4.17) become

p? D 1

2
nmhv2i
1 � h�2i� (4.18)

pk D nmhv2i
h�2i � h�i2
�

For an isotropic distribution, h�i D 0 and h�2i D R C1

�1
�2d�=

RC1

�1
d� D 1=3, so

that
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p? D pk D p D 1

3
nmhv2i (4.19)

is the isotropic pressure, a scalar that is the common diagonal element of the tensor
P, which in this case can be written as P D p I, with I the unit tensor of elements
ıik D 1 if i D k and zero otherwise.

Taking into account that the tensor square of the unitary vector e D B=B in the
natural coordinate system is represented by a matrix with zeros everywhere except
1 at i; j D 3; 3, we can write the following for the pressure tensor (4.17):

P D p?I C .pk � p?/e ˝ e D p?I C .pk � p?/.B ˝ B=B2/ (4.20)

The last expression is useful when the components of P have to be transformed to
other coordinate systems. In particular, a quantity that is important in plasma physics
is the divergence of tensor P, of components (in any coordinate system) rPji D
˙k@Pik=@xk (see Appendix A.1). Manipulating the second part of Eq. (4.20) by
components, one obtains (rather laboriously) the following expressions for the
perpendicular and parallel components of the divergence:

rPj? D r?p? C �
pk � p?

�@e

@s

rPjk D @pk
@s

C �
p? � pk

� 1

B

@B

@s
(4.21)

Some may wonder: how come a purely “mechanical” quantity like the divergence
of the pressure tensor depends on the magnetic field? Certainly, the pressure tensor
per se as defined in (4.16) is independent of B, but the above relations (and even its
form (4.17)) are representations in the natural coordinate system which does depend
on the magnetic field geometry (see Fig. A.1) and which for an inhomogeneous field
varies from point to point. In this context, notice the following important facts: (i)
if the particle distribution is fully isotropic, pk D p?, the terms containing the
magnetic field in Eqs. (4.21) are indeed zero and rP D rp; (ii) in the general case,
only the field geometry intervenes: multiplying the magnetic field magnitude by a
number everywhere does not change the values of the last terms in (4.21).

With the pressure tensor P one can define a temperature tensor T in the form

T D 1

nk
P

where k D 1:38 � 10�23 Joule/ıK is Boltzmann’s constant. In case of isotropy,
we have a scalar temperature T (do not confuse with kinetic energy!) nkT D p D
1=3nmhv2i, or

kT D 1=3mhv2i D mvth
2 (4.22)
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where vth is called the thermal speed. For a gyrotropic distribution (not necessarily
isotropic) we have two types of temperatures:

T? D 1

nk
p? D 1

2k
m

hv?2i � hv?i2

�
(4.23)

Tk D 1

nk
pk D 1

k
m

hvk2i � hvki2

�

Note that in the case of a monoenergetic, mono-pitch-angle distribution of particles,
the parallel temperature would be zero but we still would have a perpendicular
temperature T? ¤ 0 ! This perpendicular temperature arises from the randomness of
the particles’ cyclotron motion (page 98). As we decrease gyrotropicity (bunching
of the cyclotron motion, Fig. 4.9 left), the perpendicular temperature will decrease
until it hits zero when all particles gyrate in phase.

The final point of this section concerns the magnetization density of an ensemble
of adiabatic charged particles. In the guiding center particle model, each particle
has an intrinsic magnetic moment given by (1.26) in which, as we must remember,
the transverse velocity or kinetic energy is that of the particle in the GCS: M D
�m.v? � V D/2=.2B/ e. Averaging over all particles in an element of volume, and
taking into account the definition (4.17), we obtain the following expression for the
magnetic moment density (which henceforth we will designate with M , hoping that
there will not be too much confusion with the magnetic moment of an individual
particle):

M D �p?
B

e (4.24)

4.4 Liouville’s Theorem and Stationary Trapped Particle
Ensembles

There is a general theorem which can be derived directly from Hamiltonian theory,
valid for any ensemble of collisionless particles subjected to non-dissipative forces:
Liouville’s Theorem states that the distribution function along the trajectory through
any point r ; p in phase space3 is constant. In other words, nearby particles in phase
space “stick together” in such a way that as time evolves, their local phase space
density fp (not to confuse with the ordinary number density n.r ; t/ D R

fp dp)
does not change. This means that for the total time derivative:

dfp

dt
D @fp

@t
C dr

dt
� rrfp C dp

dt
� rpfp D 0 (4.25)

3Remember that through each point in phase space there is only one trajectory for a given force
field.
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minimum-B surface

Fig. 4.12 Space variables
used in the example

In this expression (non-relativistic case!) dr=dt D p=m, and dp=dt D F is the
common acceleration caused by the local force field F acting on the particles in
the infinitesimal neighborhood of .r ; p/. The vector operator rr has components
@=@xi , those of rp are @=@pi . It is useful to point out that for a magnetic flux tube
filled with streaming particles, it is possible to demonstrate the constancy of j=p2

(see (4.13)) without invoking Hamilton’s equations.
To achieve a more practical understanding of some of the relations presented in

the preceding section, let us examine several concrete examples. First we consider
an ensemble of identical particles trapped on field lines under adiabatic conditions—
for instance, radiation belt protons. We still uphold some basic restrictions like
absence of field-aligned electric fields, no time-variations, and symmetric angular
distributions everywhere so that no bounce-phase bunching occurs. Finally, we
make another fundamental, though not too unrealistic, assumption that the distri-
bution function of trapped particles is separable in the form:

F.r ; T; �/ D h.r ; T /g.r ; �/ D h.r0; T /g.r0; s; �/

In the second equality, we have chosen three coordinates related to the so-called
˛; ˇ system (see Fig. 3.2): the position of the intersection point of the field line
with the minimum-B surface (denoted by the vector r0.˛; ˇ/), plus the curvilinear
variable s along the field line (see Fig. 4.12). Since the field lines were assumed to
be electric equipotentials, all adiabatic relations linking field-aligned quantities are
energy-independent and the functional form of the energy spectrum is the same for
all particles s along a field line. Moreover, since initially we will only be interested
in the dynamic relationships between particle density and pitch angle distribution
along just one given field line, we choose the notation

F.s; T; �/ D h.T / gs.�s/ (4.26)

Again, h.T / is the common energy spectral form on the field line and gs.�s/ the
pitch angle distribution function at point s of the field line. Note carefully that
because of our a priori restrictions, all pitch angle distributions must be symmetric:
gs.�s/ D gs.��s/. With this notation, the integral particle density at the equatorial
point will be n0 D R1

0
h.T /dT and the average (non-relativistic) particle kinetic

energy hT i D R1
0

T h.T /dT (a quantity that is constant along the field line).
It is clear that the pitch angle distribution gs.�s/ must be related to that at the

minimum-B point, g0.�0/, because all particles that traverse point s must pass
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Fig. 4.13 Sketch of a pitch
angle dependence
of distribution function at
the equatorial point (g0)
and on a generic field line
point (gs)

through r0. The relation comes from Liouville’s equation (4.25) (see also Fig. 2.6),
and is simply written in terms of the pitch angle distribution functions:

gs.�s/ D g0.�0/

The pitch angle �s is the pitch angle at point s of a particle that has a pitch angle �0

at the equator. The two pitch angles are related by (2.38):

�s D
s

1 � B.s/

B0

.1 � �0
2/ or �0 D

s
1 � B0

B.s/
.1 � �s

2/ (4.27)

Given the pitch angle distribution g0.�0/ at the equatorial point, at any other off-
equatorial point of the field line

gs.�s/ D g0

�s
1 � B0

B.s/
.1 � �s

2/

�
(4.28)

Figure 4.13 is useful to interpret the relationship, and it allows to construct
graphically the pitch angle distribution at any point of a field line, given the
one at the minimum-B point. Particles with � below the limiting value ��

0 Dp
1 � B0=B.s/ at the equator mirror before reaching point s. Concerning the loss

cone (2.42), we assume it to be included in the functional form of g0.
Next we examine the total particle density along a field line. At point s it will be:

n.s/ D
Z 1

0

h.T /dT
Z C1

�1

gs.�s/d�s D n0

Z C1

�1

g0.�0/
d�s

d�0

d�0

In this relation, d�s=d�0 is obtained from (4.27). As an integral over �0, we can go
only from �1 to ���

0 , and then from C��
0 to +1 (for the definition of ��

0 , observe
carefully Fig. 4.13!); both sections are equal because of the symmetry of the function
g.�/. This leaves us with

n.s/ D n0

B.s/

B0

2

Z 1

��

0

g0.�0/
�0d�0q

1 � .B.s/=B0/.1 � �2
0/

(4.29)
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Fig. 4.14 Same as Fig. 4.13,
for a butterfly distribution

Given the pitch angle distribution g0.�0/ and integral density n0 at the equatorial
point of an equipotential field line, this equation gives us the density anywhere
along that field line. And conversely, given the density function of a trapped particle
population as a function of s along a magnetic field line, it is possible to find
the pitch angle distribution at the equatorial point g0.�0/ as the inverse solution of
(4.29) (a Volterra-Abel integral equation). This may be useful for experimentalists
when the only available source of data are integral density or flux measurements
with omnidirectional detectors.

We can extract further important facts from Eq. (4.29). First, for an isotropic
distribution (g0 D const.) the integral density n.s/ will be constant along the field
line (verify analytically, or graphically using Fig. 4.13). This seems contradictory:
as we move away from the minimum-B point, should we not be losing the particles
which mirror on the way? We will, indeed, but as B increases, the flux tube narrows
down and the remaining particles get compressed in exactly such a way that for an
isotropic angular distribution the particle density remains constant! Second, for a
pancake distribution (peak at ˛ D 90ı) a graphic examination of Fig. 4.13 shows
that the number density will decrease as we move away from the equator. Third, in
contrast, a similar graphic examination shows that for a butterfly distribution (dip at
90ı, Fig. 4.14) the integral particle density will increase as we move away from the
equator.

Next, we examine the particle pressures along a field line as a function of the
pitch angle distribution at the equatorial point. Starting with the definitions (4.15)
and (4.16), and taking into account that in our case the ensemble-average (bulk)
velocities hV?i and hVki are both zero, we have, at point s:

p?.s/ D 1

2

Z 1

0

mv2h.T /dT
Z C1

�1

.1 � �2
s /gs.�s/d�s

Taking into account the integral transformations leading to (4.29) and realizing thatR1
0

1=2mv2h.T /dT D hT i, the constant average particle energy, we end up with

p?.s/ D 2hT i
�

B.s/

B0

�2 Z 1

��

0

.1 � �2
0/g0.�0/

�0d�0q
1 � .B.s/=B0/.1 � �2

0/

(4.30)
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Fig. 4.15 Relation between
pitch angles on the equator
and a generic point s

Likewise, for the parallel pressure we obtain:

pk.s/ D 4hT iB.s/

B0

Z 1

��

0

g0.�0/

q
1 � .B.s/=B0/.1 � �2

0/�0d�0 (4.31)

At any point s the two pressures are mathematically related. If we laboriously
but straightforwardly evaluate the partial derivative @=@s.pk=B.s// using Eq. (4.31)
and take into account (4.30), we obtain

B.s/
@

@s

�
pk

B.s/

�
C p?

B.s/

@B

@s
D @pk

@s
C �

p? � pk
� 1

B

@B

@s
D 0 (4.32)

A similar procedure for r?p? leads to relation

r?p? C .pk � p?/
@e

@s
D 0 (4.33)

These indeed correspond to the expressions of the parallel and perpendicular
components of the divergence of tensor P (Eqs. (4.21)) when there is equilibrium:
rP D 0.

A discussion of some special questions is in order. First, consider an isotropic
distribution at the equatorial point (g0.�0/ Dconst.). In that case, relations (4.28),
(4.30), (4.31) and Fig. 4.13 show us that the pitch angle distribution will be isotropic
at all points of the field line, and p? D pk D p =const. An apparent paradox arises:
If p is independent of s, since B increases as we move away from the minimum-
B point, this means that the average magnetic moment density M D p?=B will
decrease. The magnetic moment of individual particles is conserved—Shouldn’t
one expect the ensemble-average M also to be conserved? Examine Fig. 4.15 and
consider all particles at point S (with pitch angles between 0 and 90ı). When
they pass through the equatorial point O they form a sub-population contained in
a solid angle cone shown in the figure. Clearly, their average perpendicular velocity
hv2

?0i at that point is less than hv2
?si, in order to conserve their individual magnetic

moments T?=B . It is the additional particles at the equatorial point O, filling the
rest of the pitch angle range and which mirror before they can reach point s, which
contribute to an increase of the ensemble-average hv?i at that point, so as to keep
it and the perpendicular pressure constant at all points (and cause a change in
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Fig. 4.16 Sketch of the
particle density as a function
of L at the equator in a
dipole field

the magnetic moment density M along the field line). No adiabatic conservation
theorem is violated! To make this picture even a little more complicated, let us
mention another apparent paradox. If because of the individual conservation of
magnetic moment the sub-population of Fig. 4.15 increases its average hv?i as
it moves away from O, its average vk must decrease because of the conservation
of kinetic energy (see the projections of the vectors k to B). How come, then, does
not the parallel pressure decrease, either? The explanation is a bit more complicated,
but is based on the same argument as before: the parallel pressure of the total particle
population is what remains constant along a field line! Remember that all this was
shown for the special case of an isotropic distribution of trapped particles, separable
in energy, and an equilibrium situation.

For the last example we will restrict the magnetic field to that of a pure dipole
field, a reasonable approximation for inner radiation belt. But now the discussion
will not be limited to just one field line—we will first examine what happens on
one meridian, and then extend the picture into three dimensions (albeit cylindrically
symmetric). Again, refer to relations (3.22)–(3.28) for the most important geometric
features and relationships. Figure 3.14 reminds the reader of the symbols used. We
are interested in finding the relationships between variables like integral particle
density n, and the pressures p? and pk at any point B; L of the dipole field, given
the (thus far arbitrary) particle density at the equatorial surface n0.L/. For our semi-
quantitative analysis, we shall adopt as integral density n0.L/ a function of the
type shown in Fig. 4.16, and assume, as above, a separable distribution function
like (4.26). As to the pitch angle distribution at the minimum-B surface we shall
assume that it is isotropic everywhere, but with a local loss cone cosine �L given by
(3.28): g0.�0/ D g0 if j�0j � �L and g0.�0/ D 0 for �L < j�0j � 1. The particle
density at any point L; s of the dipole field will be given by (4.29), which in this
particular case turns out to be

n.L; s/ D
Z 1

0

h.T /dT
Z C�L.s/

��L.s/

g0d�s D n0.L/
�L.s/

�L

If instead of s we choose the local magnetic field B , we obtain quite simple relations:

n.L; B/ D n0.L/

s
1 � B=BL

1 � B0=BL

(4.34)

Figure 4.17 shows qualitatively the density dependence along a dipole field line
between the minimum-B point and the Earth intersection for an isotropic pitch
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Fig. 4.17 Sketch of particle
density along a field line for
an isotropic distribution at
the equator cut off by the
loss cone

Fig. 4.18 Sketch of the
corresponding parallel and
perpendicular pressures

Fig. 4.19 Sketch of parallel
and perpendicular isobars on
a meridional plane

angle distribution (with loss cones) at the equator. The variation of this otherwise
isotropic angular distribution is due entirely to the ever-increasing loss cone as one
approaches the Earth. For the pressures we only need their original definition (4.17),
and figure out the averages for an isotropic pitch angle distribution cut off at the loss
cone cosine �L. We obtain

p?.L; B/ D 2

3
n0.L/hT i

s
1 � B=BL

1 � B0=BL

�
1 � 1

2

B

BL

�
(4.35)

and

pk.L; B/ D 2

3
n0.L/hT i

s
1 � B=BL

1 � B0=BL

�
1 � B

BL

�
(4.36)

Note that 2=3 n0.L/hT i is the isotropic pressure p that would exist on the equator
if the loss cone were exactly = 0 (�L D 1). As a function of B along a dipole field
line, the pressures vary as sketched in Fig. 4.18. It is important to observe how each
type of pressure approaches zero (their second derivatives) at the Earth intersection
(BL). Contours of constant p? and pk in B; L space, a frequent representation of
radiation belt intensity, are given by (4.35) and (4.36) and sketched in Fig. 4.19.
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Observe carefully how they are tangent to the field lines close to the equatorial
points.

It is important to remember that in the preceding discussion we were dealing with
a stationary situation. In that case, the entire trapped particle population is governed
by the function n0.L/—but we don’t really know yet how this function is determined
for an equilibrium situation! Dynamic processes take care of that (Chap. 5).

4.5 Particle Distributions and Mapping in Invariant Space

Let us return to the general distribution function in (4.7), taking as its variables
(X1; X2; X3) the three adiabatic invariants of a particle pertaining to an ensemble
trapped in a given magnetic field B.r; t/ (and eventually, electric field E.r ; t/).
It is advisable to have a clear understanding of the physical meaning of the
theoretically important invariant space M; J; ˚ , the distribution of guiding center
particles in invariant space (which we now will designate with F.M; J; ˚/), the
comparison with other distribution functions, and the relation to the experimentally
accessible particle flux j.r ; T; �; '/ (or 2�j.r ; T; �/ if gyrotropic). A point in
invariant space represents one entire drift shell, limited by the mirror point traces
(see shell ˚ in Fig. 4.20), engendered by a specific class of particles, regardless
of their actual cyclotron, bounce and drift phases in their adiabatic motion (we
are assuming no bunching in any of the periodic motions). The quantity ıN D
F.M; J; ˚/ıM ıJ ı˚ represents the total number of guiding center particles with
magnetic moment lying between M and M C ıM and second invariant value
between J and J CıJ , which are found anywhere in longitude and latitude on shells
(note plural!) whose third invariant value lies between ˚ and ˚ C ı˚ , as shown
in Fig. 4.20. F.M; J; ˚/ is, therefore, a guiding center particle number density in
invariant space. Again, there is no mention of particular phases of real particle
periodic motions. Similar to phase space in statistical mechanics, one single point in
the adiabatic invariant space represents one specific but very complex configuration
of particles (their guiding centers) in real space.

Let us discuss an extreme example: when the invariant space distribution function
is a delta function: F.M; J; ˚/ D NıŒ.M � M0/; .J � J0/; .˚ � ˚0/�. This means
that we have an ensemble of N particles, all with the same magnetic moment
and J -value with guiding centers on a single shell of flux ˚0. The corresponding
density function in invariant space is an integrable singularity on a single point
.M0; J0; ˚0/ of invariant space. In real space, it means that an ideal directional
differential detector (page 89) will only register particles if placed on the right drift
shell (Fig. 4.21), looking into the right direction with the right energy spectrum
window (both extractable from the local expressions of M and J ). Now assume
that the fields change slowly, adiabatically (relations (2.1) and (2.2)), so that all
three invariants are conserved, and consider (A.74) and the last paragraphs of
Appendix A.3. On the average, the place .M0; J0; ˚0/ of the delta function will
remain the same—but looking with a magnifying glass into invariant space we will
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Drift shells

Mirror point
   contour

Minimum B contour

Fig. 4.20 Sketch of drift shells ˚ and ˚ C ı˚ (in a dipole-like trapping field the third invariant
is defined by the magnetic flux outside the shell; Fig. 3.22). ıN is the number of guiding center
particles with the given M; J and ˚ values inside the space between shells, at a given time. The
little cone shown on the right is really the same as in Fig. 4.6: jıA

?

ı� ıT is the number per unit
time of the “real” particles in that space which cross the surface element perpendicular to their
motion at shell point r and the � and T values there

Fig. 4.21 Drift shell of particles of the same values of M0, J0 and ˚0 and sketch of their flux
directions

see the peaked density function pulsate slightly along the ˚-axis with period �d ,
as the particles of the ensemble occupy slightly different guiding drift shells with
slightly different ˚-values between integer multiples of the drift period (this is the
physical meaning of relation (A.74)). In real space, on the other hand, the initial drift
shell may change appreciably as the field changes (so as to maintain the enclosed
magnetic flux constant); but it, too, will be “sharp” (i.e., occupied by all guiding
centers) only at integer multiples of �d . When, on the other hand, the field variations
do not fulfill the adiabatic conditions and do change on a time-scale shorter than �d ,
the point representing the initial group of particles will wander around in invariant
space and the delta function singularity will dissolve irreversibly (see next section).

We return to the general case and take a directional differential particle detector to
a point r0 of any of the drift shells of Fig. 4.20 with ˚-value in the specified range,
pointing it in the direction given by the particles’ local �-value. The directional
flux j.r ; T; �/ (expression (4.13)) with � and T to be obtained from M and J ,
Eqs. (3.14)–(3.17) will be related to the invariant space density by

j.r ; T; �/ D p2

2�
fp.p/ D p2

2�m
F.M; J; ˚/ D T

�
F.M; J; ˚/ (4.37)
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The last equality is valid only in the non-relativistic case. It will not hurt to point out
again the following steps to be taken, to relate F to j : Given the shell [M; J; ˚], (i)
pick one point r0 on that shell (Fig. 4.20). (ii) Consider the local B and E (or scalar
potential V of the local field line). (iii) Using J (or K) determine the local Bm and
�. (iv) Using M determine T . In the figure, the mirror point traces are the contours
of Bm points, where the mirror field intensity must be determined for each field line
in question (unless there are no electric fields).

Under special circumstances, other invariant coordinates can be more practical.
For instance, we may introduce the triplet M , K (3.14) and L� (3.41), in which
only M depends on the particle energy and in which L� is a more intuitive shell
coordinate than ˚ . However, there is a limitation to the use of this set of coordinates:
K is an invariant only if field lines are equipotentials, i.e., if there are no field-
aligned electric fields (Sect. 3.2). Particle shells will now be totally specified by
only two field-geometric quantities: L� and K . When there are no electric fields at
all, the set T; Bm; L� can be used (the good old B-L space); under this restriction,
each one is a particle invariant as long as there are no time variations at all.

At this stage, it is convenient to recall the meaning of L� in asymmetric fields
(Sect. 3.5): it represents the radial parameter of that shell (its McIlwain L-value)
on which a particle would end up if the real field were adiabatically transformed
into a dipole reference field, with all other forces (the electric field) adiabatically
turned off. The fact that, in the real field, particles at a given longitude with the
same L� value are on different field lines (Fig. 3.24), while particles on the same
field line have different L� values, should not confuse the image of L� as a
parameter ordering particles radially: indeed, we should always mentally make the
transformation to the reference dipole field when dealing with L�. In what follows
we shall drop the asterisk in L�. We also should recall that in that transformation
the values of a particle’s kinetic energy T � in that dipole reference field will be
different and so will be the flux j �. Expression (4.37) can be used to obtain the
following relation:

j � D .T �=T /j (4.38)

For each one of the above examples of coordinates, we’ll have a distribution
function, F.M; J; ˚/, FL.M; J; L/ and FK.M; K; L/ respectively, which will be
related among each other (4.9). Evaluating the Jacobian (4.8) for each relationship
we obtain the following links:

FL.M; J; L/ D 2�BER3
EL�2F.M; J; ˚/ (4.39)

FK.M; K; L/ D 4
p

2�BER2
Em1=2L�2M 1=2 F.M; J; ˚/ (4.40)

Please note the conditions discussed above for the last distribution function. To the
above set, one should add the relation to the particle flux (4.37) to complete the set
of particle ensemble relationships.
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4.6 Basics of the Diffusion Process of Trapped Particles

During their lifetime, radiation belt particles are subjected to the action of five
distinct processes: (i) injection of charged particles into the trapping region of the
magnetosphere; (ii) acceleration; (iii) adiabatic trapping; (iv) diffusion; and (v) loss.
Both acceleration and loss processes may be coupled to, or the consequences of,
diffusion. If this chain operates at a rate in which injection and loss are roughly
in equilibrium, the particle flux and spectrum at any given point in the trapping
region are constant; this in turn means that the distribution function in invariant
space F.M; J; ˚/ (Sect. 4.5) will remain constant. The trapping mechanisms were
discussed in detail in Chaps. 1–3. We will not deal with injection and loss per se;
in the following we will limit ourselves to describing the fundaments of trapped
particle diffusion theory.

Let us begin by summarizing in a nutshell what happens in a drift shell, especially
as it is germane to the process of diffusion. Under adiabatic conditions (2.1),
(2.2) a particle gyrates around the magnetic field, bounces back and forth between
mirror points and drifts azimuthally around the Earth (Chaps. 1–3). Adiabatic theory
introduces the concept of guiding center (page 2), guiding field line (page 57) and
guiding drift shell (page 80) by averaging out the phases of a particle’s periodic
cyclotron, bounce and drift motions, respectively. A “guiding center particle” is a
virtual particle with the same mass and charge as the original “real particle”, carry-
ing a magnetic moment that impersonates the magnetic properties of the washed-out
cyclotron motion (Chap. 1). At any given time, under stationary field conditions,
the GC particle bounces back and forth along the instantaneous guiding field line
(Chap. 2) and as it drifts perpendicularly to the magnetic field under time-constant
conditions, it continuously changes guiding field lines, thus generating the guiding
drift shell (Chap. 3). Associated to a particle’s periodic cyclotron, bounce and drift
motions, adiabatic theory introduces the quantities M; J; ˚ (relations (1.26), (3.4),
(3.38)) which are constants of motion within the adiabatic approximation (pages
10, 82, 62, and Appendix A.3). These adiabatic invariants are chosen as the natural
coordinates in invariant space (Sect. 4.5). The kinetic energy of the particle and its
pitch angle at any given point of the drift shell (e.g., as given by its longitude � and
arc distance s to the minimum-B contour) can be retrieved from the values of M

and J (see (3.14)–(3.17)).
When a whole ensemble of identical particles is trapped on the same guiding drift

shell, it can be described by the differential, directional particle flux j .r ; �; T /

(Sects. 4.1 and 4.5), related to the distribution function F in invariant space
by Eq. (4.37). To keep with common practice, we now call this invariant space
distribution with the letter f , so the flux relation reads f D 2� m j=p2. In all
this, the assumption is made that there is no “phase bunching” (Fig. 4.9), i.e., that
cyclotron, bounce and drift phase variables are random but equiprobable. This three-
fold randomness at the three different time scales �c; �b; �d (1.23), (2.34) and (3.7)
plays a fundamental role in the trapped particle diffusion process (we already hinted
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this on pages 82 and 186), just as an evenly distributed but random cyclotron and
bounce cycling was responsible for the existence of perpendicular and parallel
pressures and temperatures—even for monoenergetic ensembles (Sect. 4.3). The
key issue here is the following: the effect of any given short-term time variation
of the field (shorter scale than the period under consideration) on particles with
the same coordinates in invariant space will depend on where exactly (with what
instantaneous phase value) the particle was caught in its periodic motion (see
discussion at end of Appendix A.3). The end result is that, as seen in the example of
page 108, trapped particles with identical M; J; ˚ values represented by one point
in invariant space will be “torn apart” and mix with other groups—in other words,
diffuse! By being torn apart, the particles’ common invariant coordinate related to
the periodic motion in question will “dissolve”—i.e., its invariance will be violated
and the distribution function—initially a delta function in invariant space—will
spread out.

Note that invariance violation may happen in azimuthally asymmetric fields even
if the externally driven time variation is perfectly smooth, i.e., continuous. Only if
the field variability time scale is considerably longer than the particle periodicity
being examined, will the corresponding invariant be conserved (see discussion at the
end of Appendix A.3 for the case of the third invariant ˚). This can be re-formulated
by saying that as long as all particles on different points of a common cyclotron,
bounce or drift orbit are affected nearly equally by an external field variation, they
will, on the average, remain together on a common cyclic orbit as time goes on (e.g.,
pages 82 and 186). But when the field change is appreciable during one cycle, we
can anticipate that the effect on particles that were initially on a common orbit with
different phases will depend on the autocovariance in time of the perturbing signal
along the orbit during an orbital period � . If the autocovariance is zero or near-zero
(as happens with signals that change very little during �), the particles will assemble
again on a common cyclotron orbit, guiding field line or guiding drift shell, as we
demonstrated in Appendix A.3 for the third invariant; this game will repeat itself,
and the corresponding invariant will be conserved on the average. If on the other
hand there is high autocovariance, as happens with a signal that is in synchrony
with � , systematically affecting different particles on that common orbit differently,
the dispersion will be large, and the corresponding invariant will be violated.

It is important to be clearly aware of the dependence of the three relevant time
scales �c; �b; �d on the trapping field and the original particle’s energy or velocity.
If we turn to relations (1.23), (2.34) and (3.7), or the equivalent relations for
near-equatorial particles (see (1.52), (2.41) and (3.12), and remember that even
90ı equatorial particles do have a bounce eigenfrequency!) we obtain for the
corresponding equatorial angular frequencies to zeroth (dipole) order:

!c D qBE

mL3
I !b D 3vp

2LRE

I !d D 3mv2L

2qBER2
E

(4.41)
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Let us emphasize the following proportionalities (valid also for � ¤ 0):

!c � .q=m/1 v0 L�3I !b � .q=m/0 v1 L�1I !d � .q=m/�1 v2 L (4.42)

For the relativistic case, instead of m use m0� and instead of v insert ˇc. The highest
frequency parameter !c depends on the local magnetic field intensity (or L) but is
independent of the particle energy (velocity); it only begins to decrease at relativistic
energies (the “synchrotron effect”). The bounce frequency is proportional to the
particle’s velocity but does not depend on particle mass; it decreases with increasing
L. The drift frequency, the lowest frequency of all three, increases with the square of
the velocity (linearly with kinetic energy), and linearly with m and L. The important
fact is that as the particle energy increases the gaps between the three frequencies
(which for low energies are of the order of a factor of 100) decrease. The same
happens as one moves out to larger L-values. This is important for resonance
effects: at higher energies, there can be simultaneous resonance with, for instance,
the bounce and drift frequencies at frequencies m!b C n!d , where m and n are
small integer numbers.

Thus far we have considered the randomness in the phases of the periodic
motions of trapped particles. To this we must add the possible randomness of
the external perturbations per se. Typical perturbations of the fields include the
effects of irregular solar wind behavior such as sudden compressions of the whole
magnetosphere (see comment on page 69) and sudden increases of the convection
dawn-dusk electric field (page 34); stochastic pitch angle changes due to collisions
with ionospheric ions; and the appearance of different types of waves triggered in the
omnipresent magnetospheric plasma such as large-scale hydromagnetic ultra-low
frequency (ULF) waves (e.g., [1]) and natural and anthropogenic electromagnetic
very low frequency (VLF) waves (e.g., [2]). These external irregular or periodic
disturbances with their own characteristic randomness of course complicate consid-
erably the theoretical treatment of diffusion.

Summarizing: if the time scale ıt of the perturbation satisfies �d & ıt 
 �b 

�c , the third invariant will be violated for a given class of particles whilst the first
two invariants will be conserved. Typically this occurs for ıt of the order of minutes.
If �b & ıt 
 �c ( ıt  seconds), both ˚ and J will be violated; the first invariant
is conserved and the guiding center approximation is still useful. Finally, if ıt . �c

(milliseconds), all three invariants will be violated. It is important to realize that,
in general, once a perturbation process has ceased, even if only temporarily, the
particles will resume their adiabatic motion—provided the adiabatic conditions still
apply. If all three adiabatic invariants break down, the guiding center approximation
becomes invalid and we must deal with the full, exact, particle motion (1.1).

Not only externally triggered perturbations can lead to such a breakdown: if a
trapped particle runs into a perfectly static field region such as a plasma boundary
where the magnetic field changes direction on a small spatial scale, or into a neutral
line or sheet where B ! 0, the guiding center approximation will suddenly no
longer be valid for that particle—a situation which we may visualize as a (virtual)
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Fig. 4.22 General trapped
particle transport by radial
and pitch angle diffusion

guiding center particle “decaying” into its original (real) particle. The motion will no
longer be adiabatic; for an ensemble of particles it would become randomly thermal,
an effect that, too, can be viewed as diffusion.4

Diffusion processes of radiation belt particles can be grouped morphologically
into two main categories: radial diffusion, which drives particles across drift
shells, and pitch angle diffusion, which disperses particle mirror points along field
lines (Fig. 4.22). Both kinds usually appear linked intimately with acceleration
mechanisms. For instance, consider some global change of the trapping magnetic
field configuration, of a time scale of the order of a drift period �d , leading to
a change in the third invariant. As we have shown in Appendix A.3, particularly
Fig. A.9 and when going from Eqs. (A.71) to (A.73), during this process the
trapped particle changes its bounce-average kinetic energy through the two distinct
mechanisms originally described on page 45: a betatron acceleration due to local
change in B and a Fermi acceleration due to the effect of the large scale induced
electric field along the drift contour. Looking carefully at Fig. A.9 and taking into
account the direction of the vector potential, these changes are always such that an
increase in ˚ (decrease in L) will always lead to an increase in energy. Therefore,
for a general trapped particle source at high L, the resulting inward diffusion
through magnetically caused third invariant violation will lead to a general energy
increase of the particle population. For many years this diffusive acceleration was
considered to be a fundamental mechanism for populating and energizing the outer
radiation belt (e.g., [3]). The most effective magnetic field variations responsible
for this mechanism form a subgroup of the above-mentioned ULF waves—mostly
standing AlfvKen waves (to be briefly discussed in Sect. 5.5) in the milliHertz range

4The much talked-about magnetic merging mechanism, a plasma process in which magnetic energy
is converted into particle thermal and bulk kinetic energy, can be understood in the above terms of
a “guiding center decay”: equivalent currents in a plasma (to be discussed in Sect. 5.2) normally
sustained by the organized adiabatic behavior of plasma particles and which hold the balance of
magnetic field pressure via a macroscopic Lorentz force, break down and the magnetic energy
thus freed is converted via induced or polarization electric fields into disorganized thermal particle
energy. It should be clear that in this process, part of the ensuing random thermal nature of particle
motion is due to the unpredictable cyclotron phase with which a particle is caught by the adiabatic
breakdown.
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triggered by solar wind pressure fluctuations. Their power spectrum covers the
resonance frequencies of drift (and also bounce) periods of particles trapped in the
outer belt (e.g., [4,5]), with electric field vectors that may be polarized in the particle
drift direction (poloidal waves) with maximum Fermi energization if in appropriate
resonance with the drift periodicity. This mechanism even works in azimuthally
symmetric fields, i.e., at low L values (e.g., [6, 7]). The toroidal ULF waves exhibit
a radial electric field polarization; they cannot directly energize the particles, but
in strongly compressed (azimuthally asymmetric) drift orbits such as at higher L

values during a compressed state of the magnetosphere, there will always be a small
radial component of the bounce-average drift velocity (examine the equatorial orbit
equation (3.20)), and acceleration is possible (e.g., [8]).

The violations of the first and second adiabatic invariants mainly manifest
themselves as changes in pitch angle and may or may not be coupled to energy
changes. The physically simplest mechanism is pitch angle scattering by elastic
Coulomb interactions with atoms of the ionosphere. Turning to the expression
(1.26) of the magnetic moment, such interactions change M without affecting
kinetic energy and guiding field line (within a gyroradius): particles diffuse in
M , Bm or � space along their field lines and, considering Fig. 3.13, end up
running into the bounce loss cone, i.e., precipitating into the atmosphere (unless
quickly replenished along longitudinal drift—see the old “windshield-wiper effect”
on page 76), or they end up diffusing into the magnetopause (drift loss cone).
A more complex, but more general, pitch angle diffusion mechanism consists
of resonant interactions with VLF waves, which in essence are magnetically
guided electromagnetic waves whose E -vector, if circularly polarized, may enter in
resonance with the (appropriately Doppler-shifted) cyclotron frequency of trapped
particles. When these VLF waves are coherent (the so-called chorus emissions,
found outside the plasmapause mostly during times of sunward-convecting tail
plasma—see regions outside the separatrices in Fig. 1.21), cyclotron resonance can
lead to both, pitch angle scattering and acceleration. In the latter case we are in
presence of a local acceleration mechanism, spatially delimited, as opposed to the
radial diffusion-driven acceleration mentioned above. There are also incoherent
VLF waves (the so-called plasmaspheric hiss, trapped in a limited region near
the plasmapause), which do not energize but pitch-angle-scatter the particles.
They are believed to be responsible for the formation of the “slot” separating
the inner radiation belt from the outer one. The recent unexpected finding of
a newly-formed “third electron Van Allen belt” precisely inside that slot [9],
points to local acceleration as a fundamental, perhaps the most important, trapped
particle energization mechanism. Most of the preceding description refers to trapped
electrons. Ions (protons, alpha particles) are also subjected to these mechanisms,
but there is a host of other magnetospheric plasma waves (e.g., electromagnetic
ion cyclotron waves, electrostatic electron cyclotron harmonic waves) with specific
effects on these particles [2].

Diffusion theory is used to calculate the time evolution of the particle distribution
function. The usual recipe is as follows: (i) Choose an adequate invariant 3-D
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coordinate space in which the whole particle population is to be described by a dis-
tribution function. (ii) Set up a diffusion equation (see next section). (iii) Single out
the individual diffusion mechanisms that will be taken into account, and establish
mathematical expressions for the corresponding diffusion coefficients, identifying
adjustable parameters related to the models of the fields, their variations, and the
postulated interaction mechanisms. (iv) Define the source and loss mechanisms.
(v) Integrate the diffusion equation (numerically, or analytically for near-equatorial
particles). (vi) Adjust the parameters so as to achieve a best fit to the data set at hand.
Sounds straightforward, but almost as a rule there are several different mechanisms
coupled together, which makes finding the coefficient expressions difficult and the
mathematical description multidimensional. For a basic detailed treatment, see the
classic [3]; for a recent summary, see [2].

In the following sections we will discuss violations of the adiabatic invariants,
with a discussion of the governing evolution equation. We shall focus on the
third adiabatic invariant since it is the most likely to be violated by large solar
wind triggered perturbations. Since the theory of radiation belt diffusion is still
evolving (e.g., [10–13])5 we shall discuss only some main guidelines with some
explanation of the physics involved. A detailed analysis of diffusion theory and
recent experiment would require several chapters, enough to fill a separate book.

4.7 Derivation of the Fokker-Planck Equation

Let us consider a time-dependent distribution function of trapped particles
f0.˚; J; M; t/. We should remember that this is the distribution function of the
particles’ guiding centers (designated F.M; J; ˚/ in Sect. 4.5) that is proportional
to the particle density in phase space and, hence, to the measurable quantity j=p2

(4.13) (proportional to j=T non-relativistically). To derive an evolution equation
for f0 we must relate this distribution function at time t C �t with the distribution
function of the same group of particles at time t . We shall set �t ' �d ; furthermore,
we assume that for stochastic interactions during �t there are very many individual
acts of random changes of the variable in question, yet still with a small total effect.

To facilitate the derivation of the Fokker-Planck equation, let us initially limit
the case to just one variable, say, the third invariant ˚ : f0 D f0.˚; t/. As the first

5Historically, trapped particle diffusion theory began with gusto during the early days of radiation
belt study, stimulated by an ideal experimental situation (and Cold War military encouragement):
several high-altitude nuclear detonations were conducted by the USA and the USSR between 1958
and 1962, in which large fluxes of trapped electrons from bomb fission products were injected into
a limited range of L-shells. The time evolution of these trapped electron fluxes could be measured
with radiation detectors on early satellites under most ideal conditions: a well known initial state in
time, space and energy spectrum and a greatly limited initial trapping region! No such controlled
conditions occurred afterwards; only natural events like big geomagnetic storms provided some
identifiable initial conditions.
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Fig. 4.23 Third invariant
variables in the definition
of the probability function ˘

step, we introduce a probability function playing a central role in diffusion theory
and quantitatively representing the physical mechanism responsible for the small
random variations of the third invariant ˚ . We designate it ˘.˚ � �; �; t/, the
probability that a particle with an invariant shell coordinate ˚ � � at time t will end
up with coordinate ˚ at time t C �t .

Figure 4.23 sketches the variables involved in this process. The two horizontal
axes represent the one-dimensional invariant space of coordinate ˚ , and the over-
lapping domain of the change � in third invariant of a particle after the time lapse �t

(the variable of the integrations below). The sketched arcs indicate possible “jumps”
of particles’ ˚-values from their state at time t to the ˚-value at time t C �t (each
jump really made up of many small ones).

For a given perturbation, ˘ represents not only the effect on particles due to
random external physical effects (induced electric field accelerations, collisions)
but also the effect due to the fact that in an asymmetric B-field, under equal
external perturbations, the actual change of ˚ will depend on the instantaneous
position (phases) of the particle on the drift shell (e.g., its longitude and latitude)
(see comments in Appendix A.3 concerning Fig. A.9). If �t is of the order of �d ,
˘.˚ � �; �; t/ will be proportional to �t . As any legitimate probability function,
˘ must be normalized:

Z
˚�space

˘d� D 1 (4.43)

In principle, during the interval �t particles may jump into ˚ from any third
invariant value, so the integral must be taken over the entire ˚-space.

The quantity
R

˚
�˘d� D h�˚i is the average change of ˚ for one particle on

the shell ˚ during that time interval. The average change per unit time is called the
first order Fokker-Planck diffusion coefficient:

D˚ D h�˚i
�t

D 1

�t

Z
˚�space

�˘d� (4.44)

Likewise, we have a second order coefficient

D˚˚ D h�.˚/2i
�t

D 1

�t

Z
˚�space

�2˘d� (4.45)

In the case of several invariant variables (see below), integrals of the product of
any two of them (always weighted with ˘ ) will also be second order diffusion
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coefficients. As we shall see below, second order coefficients represent the strength
of the diffusion mechanism; when they are zero, there is no diffusion. The first order
coefficient (4.44) may be zero even if diffusion is present; however, as we shall
show below this coefficient is related to the corresponding second order coefficient.
If during the interval �t no variations of ˚ are expected, i.e., if the invariant
coordinate remains constant (this does not mean that no changes are taking place,
only that they are adiabatic, on a time-scale much longer than �d ), the probability
function is a delta-function, ˘ D ı.�/ (� D 0 means no change), and the
corresponding diffusion coefficients will be zero.

To find the evolution equation for f0 we relate the distribution function at time t

with that at time t C �t :

f0.˚; t C �t/ D
Z

˚�space
f0.˚ � �; t/ ˘.˚ � �; �; t/d� C �

Q.˚; t/ � S.˚; t/
�
�t

We added the functions Q and S to represent source injections and sink absorptions
per unit time. Expanding in Taylor series both f0 and ˘ up to the second order in ˚

in the integral, and f0 to first order in t on the left side, sorting and grouping terms,
and taking into account (4.43) and the definition of diffusion coefficients (4.44) and
(4.45), we obtain the one-dimensional Fokker-Planck equation

@f0

@t
D � @

@˚
.D˚ f0/ C 1

2

@2

@˚2
.D˚˚ f0/ C Q � S (4.46)

We now introduce a quantity which we may call the net diffusion velocity. It is the
average collective displacement per unit time in invariant space of an ensemble of
trapped particles due to diffusion (in the present one-dimensional case, the average
rate of change of ˚ of the ensemble of particles, that at time t were in a given ı˚

bin). If we designate this velocity by V̊ , the conservation of number of particles
(continuity equation in one-dimensional ˚-space) would be written as

@f0

@t
D � @

@˚
. V̊ f0/ (4.47)

Combining with Eq. (4.46) and integrating over ˚ , we obtain (assuming there
are no sources nor sinks):

V̊ D D˚ � 1

2f0

@.D˚˚ f0/

@˚
D D˚ � 1

2

@D˚˚

@˚
� D˚˚

2f0

@f0

@˚
(4.48)

The integration constant was set to zero. Each term in the above equation has a
specific physical meaning. We begin with the third term containing the gradient of
f0 in ˚-space and take a look at Fig. 4.23. If initially there are more particles on the
side of positive � values (i.e., a positive gradient of f0 at � D 0, more particles with
a third invariant value greater than the ˚ to which they will jump), the end effect



4.7 Derivation of the Fokker-Planck Equation 119

of diffusion after the time interval �t will be a general migration of particles to the
left in the figure, indicating a negative net diffusion velocity. Clearly, the coefficient
D˚˚ represents the strength of the diffusive process. Now let us consider the second
term in (4.48). A positive gradient of D˚˚ means a diffusion process more effective
on the right side than on the left, which again will lead to a higher probability of
particles jumping to the left during �t . Finally, regarding the first term, it represents,
by the very definition of the first order diffusion coefficient D˚ (4.44), the measure
of unequal dispersion of particles from their initial position in ˚-space; if D˚ is

positive, it represents a positive contribution to the net velocity V̊ .
This discussion provides the opportunity for a “kindergarten demonstration” of

an important relation between the first and second diffusion coefficients. Consider
the case of a uniform distribution function f0 = const. According to (4.48), the net

diffusion velocity would be V̊ D D˚ � 1=2.@D˚˚ =@˚/, independent of the actual
value of the distribution function. Given the meaning of net diffusion velocity, the
value of V̊ must be zero for a uniform distribution: whatever group of particles
moves away from their initial ˚ bin, should be replaced by an equal number of
particles coming into that bin during �t . This can happen only if at all times the
contribution of D� exactly cancels that of 1=2.@D˚˚ =@˚/:

D˚ D 1=2

�
@D˚˚

@˚

�
(4.49)

This relationship leaves us with the following simpler expressions for the one-
dimensional Fokker Planck equation and net diffusion velocity:

@f0

@t
D 1

2

@

@˚

�
D˚˚

@

@˚
f0

�
C Q � S (4.50)

V̊ D �D˚˚

2f0

@f0

@˚
D �D˚˚

2

@ ln .f0/

@˚
D �D˚˚

2

@

@˚

�
ln

j

T

�
(4.51)

Taking into account (4.37), this clearly shows that diffusive flows run from higher
to lower phase space density.

The general one-dimensional equation (4.46) can be extended easily to the three
invariant variables M; J; ˚ to obtain:
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The probability function must be normalized in the 3-D invariant space:

•
˘d� dJ dM D 1 (4.53)

The diffusion coefficients in (4.52) are
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The same criteria as for the elimination of the first order diffusion coefficient D˚

can be applied to DM and DJ , which leads to a simplified equation. Uniformizing
the notation by changing the three natural invariants M; J; ˚ to X1; X2; X3 and
introducing diffusion coefficients DXi ;Xj that are one-half of the original Fokker-
Planck coefficients (4.54), we can write:
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If for practical reasons it is advisable to switch to another system of invariant
coordinates, one must use the rules of transformation discussed in Sects. 4.2 and 4.5.
For an arbitrary coordinate system (I1; I2; I3), the Fokker Planck equation will be:
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(4.56)

where GXI is the Jacobian (4.8) for the transformation from (X1; X2; X3) to
(I1; I2; I3). QDIi Ij are the new diffusion coefficients in the (I1; I2; I3) coordinate
system, which can be calculated from the original diffusion coefficients DXi Xj by
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As an example, we consider again the case in which there is no other diffusion
except one caused by violations of the third invariant. We choose the more conve-
nient distribution function F.M; J; L/ of Sect. 4.5, the corresponding Jacobian to
relate the old variables to the new ones has only one element, derived from (3.41):
G˚L D j@L=@˚ j D L2=2�BER2

E . Equation (4.50) becomes
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Concerning the net diffusion velocity in this case, we obtain
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The last near-equality considers that due to conservation of the first invariant M , the
kinetic energy of a radially diffusing particle varies like T � B � L�3. Note that it
is the gradient of jL3 that determines the net radial diffusion velocity. This is why
a plot of jL3 vs L helps identify the regions in the magnetosphere where radial
diffusion is inwards or outwards. Concerning the radial diffusion coefficient DLL,
if the process is in any way dependent on fluctuations of the azimuthal magnetic
field asymmetry and its effect on drift shells (3.42), it should be proportional to the
drift-average of the fluctuations of 
2

A (see (3.43) and (1.50)):

DLL D h.�L/2i=�d � h.�
/2i � R�8
s L10.�Rs=Rs/

2

where �Rs=Rs is the relative fluctuation of dipole-distortion parameter. Note the
strong dependence on the radial parameter L and also on Rs which in the simple
model that was used to derive relation (3.45) is the stand-off distance Rs (but in
reality would be represented by a parameter globally describing magnetospheric
activity, such as Kp or, in the case of ULF waves, the wave power). For an
azimuthally symmetric magnetic field under azimuthally symmetric perturbations,
the coefficient b2 in (1.50) is zero and according to (3.43), 
2

A would remain zero.
Under these circumstances, radial diffusion would not be possible: shells would
fluctuate, but according to our comments on page 186 of Appendix A.3, retain at
all times the value of their third invariant, i.e., their L-value. As a consequence, the
trapped particle population in a pure dipole with stochastically fluctuating dipole
strength (or a fluctuating symmetric compression as described by the parameter b1)
would “jitter or pulsate” radially, but never diffuse. Only a longitudinally localized
perturbation, like an azimuthal electric field parallel to the particles’ drift velocity
would place them on drift shells with different ˚ or L values.

Fokker-Planck diffusion theory is “the art of creating pleasing diffusion coeffi-
cients” (where “pleasing” means yielding solutions of the diffusion equation that are
in agreement with the data). Among other things, concerning large scale third and
second invariant violations, it is always the induced electric field E ind D �@A=@t

which ultimately is responsible for orbital and energy changes of a trapped particle,
for any given time variation of B, whether big or small, long-term or short-term.
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This demands skill in handling correctly the vector potential A (see pages 83
and 176 in Appendix A.1 and A.3). Concerning the smaller scale first invariant
violations, the key physical quantity is the wave electric field, which in turn requires
great skill in handling the bewildering host of waves in the magnetospheric plasma.
Currently, there is a rapidly increasing activity in experimental and theoretical
research on radiation belt diffusion (e.g., [12, 14] respectively). Still, as of now, a
compilation of diffusion coefficients shows differences of many orders of magnitude
between the values obtained or used by different authors. It would fall outside of the
scope of this book to go into details.
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Chapter 5
Collisionless Plasmas

5.1 Introduction: From Individual Particles to Fluids

In the previous chapters we have studied the dynamics of trapped particles in given
magnetic and electric fields of sources that are external to the particle population
of interest (such as the geomagnetic field, boundary and cross-tail currents, solar-
wind-imposed electric field, etc.). On occasion we examined the electric currents
and charge density generated by the particles as the result of their motion in the
given fields, but neglected any retro-effects on such fields and resulting feedback on
the collective behavior of the particles that caused such effects in the first place.

The population of radiation belt particles represents a very small proportion of
total kinetic energy and mass in the terrestrial magnetosphere. The magnetosphere
itself is shaped by currents carried by a much denser, quasi-neutral and mostly
collisionless ensemble of lower energy ions and electrons confined by the magnetic
field—the magnetospheric plasma—representing the bulk of kinetic energy flow
and mass1 in the terrestrial outer environment. In the remaining sections of this
book we shall study the dynamics of these multi-species particle ensembles as a
natural extension of our preceding discussion of the adiabatic theory of individual
particle motion. This approach (sometimes called orbit-theory approach) will allow
us to gain a better physical understanding of the sometimes intricate structure and
behavior of a plasma as represented by local macroscopic temporal and/or spatial
averages of particle properties—the macroscopic fluid variables for which our
instruments provide the data and which we invoke whenever we picture mentally,
describe mathematically or model numerically a collisionless plasma. Our ultimate
aim is to analyze and help understand a plasma and its electromagnetic fields as
one whole—a self-organizing entity with distinct but thoroughly interacting regions
which in general cannot be studied and understood in isolation from each other.

1This sounds a bit pompous. The maximum total energy flow in the astronomically-sized
magnetosphere can be estimated at barely �20,000 MW, its total plasma mass a mere 20 t.

J.G. Roederer and H. Zhang, Dynamics of Magnetically Trapped Particles,
Astrophysics and Space Science Library 403, DOI 10.1007/978-3-642-41530-2__5,
© Springer-Verlag Berlin Heidelberg 2014
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There are several ways to visualize and represent an ensemble of charged
particles in a magnetic field. For pedagogical reasons, at this early stage of our
discussion we will make three fundamental simplifying assumptions. First, we shall
consider separately only one of the different species of charged particles that may
constitute a plasma (electrons, protons, alpha particles, heavier ions). Second, in
considering only one given species, we shall neglect any electrostatic effects caused
by the spatial accumulation of same-sign electric charges (for instance, by assuming
that in the case of a positive ion ensemble, there would be enough low-energy
ambient electrons around to neutralize any such effect). Third, we shall neglect
collisions and the field singularities in the proximity of each particle (i.e., assume
a continuous, finite magnetic and electric field everywhere in the ensemble). In
addition, we shall consider only non-relativistic particle ensembles (a limitation
that excludes plasmas in the extreme environments of neutron stars and black holes).
Later we shall turn to the realistic situation of an electrically quasi-neutral mixture of
at least two different species of opposite charges. In all this, the particle distribution
function (see Sect. 4.1 for definition and examples) will be the “workhorse” for
the initial mathematical description of an ensemble, providing the link between
microscopic properties and more intuitive and measurable macroscopic physical
variables. Let us point out that as mentioned in Sect. 4.1, a distribution function
already represents an average, in which an enormous number of degrees of freedom
(the exact positions and velocities of each one of the particles in an ensemble) are
condensed into just six variables—the coordinates of a point in 6-D phase space
at which the distribution function represents a density (number of particles per unit
volume of coordinate and momentum space).

Our point of departure will be the kinetic theory of an ensemble of charged par-
ticles, each species of which is described by a time-dependent particle distribution
function f .r ; p; t/ in phase space fr; pg, obeying Liouville’s equation (4.25). In
non-relativistic plasma physics, it is customary to define the particle distribution
function in velocity subspace, as we did in Sect. 4.4; henceforth we shall use the
general distribution function f D f .r ; v; t/. Taking into account (1.1) for the
local force (and neglecting other external forces such as gravitation), we write the
Liouville equation in the form:

@f

@t
C v � rrf C q

m
.E C v � B/ � rvf D 0 (5.1)

This is called the Vlasov equation, basis of the kinetic theory of collisionless
plasmas. The vector operator rv has components @=@vi .

As shown in Sect. 4.3, the distribution function f serves to define macroscopic
quantities as average values of physical variables of the ensemble particles. For a
given species, we list them again:

Number density: n.r ; t/ D R
f dv

Mass density: �m.r ; t/ D mn.r ; t/

Bulk (or average) velocity: V D hvi D R
vf dv=

R
f dv
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Kinetic (or momentum flux) tensor (see (4.15)): K.r; t/ D m
R

v˝vf dv

Pressure tensor (kinetic tensor in a frame traveling with bulk velocity V , (4.16)):
P.r ; t/ D m

R
.v � V / ˝ .v � V /f dv D K � mn V ˝ V

Average kinetic energy density: � D 1=2 nmhv2i D 1=2 m
R

v2f dv

Internal energy density (kinetic energy density in a frame traveling with bulk
velocity V ): w D 1=2 m

R
.v � hvi/2

f dv D � � 1=2nmV 2 D 1=2 TrP
Charge density: �q.r ; t/ D q n.r ; t/

Electric current density: J D q nV D q
R

vf dv

These are the fundamental macroscopic variables for a particle fluid (also called
kinetic fluid) description of an ensemble of charged particles.2 Notice that the
electromagnetic field does not appear explicitly, except in the expression of the
forces on the particles that ultimately control the distribution function via the Vlasov
equation.

5.2 The Guiding Center Fluid Model

In many situations of collisionless magnetospheric plasmas the constituent charged
particles behave adiabatically, i.e., they gyrate rapidly in cyclotron motion perpen-
dicular to B, they move parallel to B (bounce, if the field geometry is right) and they
drift perpendicularly to B—as long as the conditions (2.1) and (2.2) hold for the
particles and the field. As we have done in the adiabatic theory of single particles in
Chaps. 1–3, the mathematical description and mental visualization of the ensemble
can be simplified by averaging all dynamic variables over one cyclotron turn and
replacing each “madly gyrating” particle by a virtual particle at its guiding center,
bouncing along and drifting across magnetic field lines. However, to accomplish

2A brief detour into Foundations of Physics is in order here. In the Preface we already stated
that “physics is the art of modeling”, and in Sect. 1.1 we introduced the model of a “guiding
center particle”. A fluid (any fluid!) is also a model—the model of a system in which a huge,
mathematically unmanageable, number of physically real particles (molecules, atoms, electrons,
nucleons, quarks, gluons, sand grains, etc., depending on the ensemble in question) has been
replaced in our mental image and in the quantitative description by a virtual continuum (see also
Appendix A.1, page 160). We speak of and quantitatively describe “parcels” of fluid and imagine
how they are deformed as they move, and guided by what our physiological senses experience
when exposed to liquids or flowing gases, we introduce macroscopic variables which can be
used for practical purposes, like density, bulk velocity, pressure, temperature, internal energy,
entropy, etc. Statistical mechanics and, as a corollary, plasma physics were developed to link
approximate but intuitive macroscopic continuum descriptions of matter with their physically real
microscopic structures that can only be revealed through the use of scientific instruments. In our
case, distribution functions and the differential equations which they obey establish such a link. The
main aim of any fluid description is to formulate physical-mathematical relationships between the
macroscopic variables so as to provide a “coarse-grained” quantitative description of the dynamic
state of the ensemble—regardless of the unknowable detailed state (position, velocity) of each
elementary constituent.
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this we must require as an additional condition that the particle distribution be
gyrotropic (strictly speaking, gyrotropic in a local coordinate system that moves
with the average guiding center velocity (2.14) at that point). This means that
there should be no synchronized cyclotron phase bunching (Fig. 4.9); in presence of
electromagnetic waves of the order of the particles’ gyrofrequency, this assumption
is no longer valid. All this allows us to dispense of one degree of freedom, the phase
angle ' of a particle’s cyclotron motion, and use the distribution function

F D F.r; t; v?; vk/ (5.2)

where r is not the position rp of the actual particle but that of its guiding
center r D rp C .m=q/v � B=B2 (see relation (1.25)). The quantity ın D
F.r; t; v?; vk/ırıv?ıvk represents the number of virtual guiding centers in ır at
point r and time t , whose “parent” particles have velocities v? and vk in the element
ıv?ıvk. Of course, it is also possible to use derived distribution functions such as
F.r; t; T; �/ (Sect. 4.2).

Having eliminated ' does not mean that we can neglect collective effects of
the cyclotron motion. First, notice the hidden presence of the B vector: at each
point in space it defines the ? and k directions, the natural frame of coordinates
(Appendix A.1) (or, in derived distribution functions, the parameters �, M or
I ). Second, the magnetic moment M (1.26) generated by the now “washed-out”
cyclotron motion must be retained in the contribution of the particles to the magnetic
field. Likewise, the particle’s angular momentum l D .2m=q/ M (1.27) must be
retained as a contribution to the macroscopic dynamic state of the fluid. Third, we
must retain the contribution of a particle’s cyclotron motion to the perpendicular
pressure p? and that of its parallel motion to the parallel pressure pk (4.17), as
well as to the internal kinetic energy density w. As a consequence of all this we
picture the guiding center fluid as a model fluid consisting of magnetized virtual
GC particles with intrinsic angular momentum, and endowed with local vorticity,
internal kinetic energy, temperature and perpendicular and parallel pressures. The
magnetic field thus assumes in explicit form the role of a “scaffolding”, an internal
skeleton that greatly aids in visualizing plasmas but whose local asymmetry obliges
us to always be aware of the different character of transverse and field aligned
properties, respectively.

In particular, concerning the field-aligned motion of the guiding center particles,
the conservation of each individual particle’s magnetic moment (1.26) provides a
fundamental link between points of a given field line in a guiding center fluid.
For instance, great care has to be taken with the interpretation and handling of
distribution functions in the guiding center fluid model. As shown in Sect. 4.4, they
are causally connected along a given field line because of the bounce motion; for
instance, in an equilibrium situation in which there is no particle bunching, the
distribution function in a guiding center fluid can only be prescribed on a specified
surface such as the minimum-B surface which is traversed by all trapped particles
on a field line (Fig. 4.12); it cannot be chosen arbitrarily all along a field line.
In what follows, the position vector r in the distribution function F will usually
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signify “distribution function at a reference (e.g., minimum-B) point of the field line
going through point r”. Although in the preceding text we have been mentioning
bounce motion, in plasma physics neither bounce nor drift periodicities (and the
related adiabatic invariants J and ˚) play any direct role; mainly, because the
field geometries, their time variations and the presence of multiple but mutually
interacting classes of particles do not favor sustained particle trapping. Therefore,
for guiding center particles in a GC fluid there will be no bounce-average drift
velocities nor any drift-average quantities—only instantaneous ones. The only
averaging is done over cyclotron motion.

We can list expressions for the macro-variables in the guiding center description,
as we did for a kinetic fluid:

Number density: n.r ; t/ D R
F dv?dvk

Mass and charge densities: �m.r ; t/ D m n.r; t/ and �q.r; t/ D q n.r ; t/

Perpendicular and parallel pressures (refer to relations (4.17)): p? D 1=2 mn
.hv2

?i � hv?i2
/ and pk D mn.hv2

ki � hvki2
/

Magnetic moment density (refer to (4.24)): M D �1=2mnh.v? � V D/2i B=

B2 D �p?=B e

Angular momentum density: L D .2m=q/ M

For the bulk velocity things are different. Each virtual guiding center particle has
a perpendicular drift velocity V D which, however, is not an independent variable:
it is a function of v?, vk and the local magnetic field (2.14). On the other hand,
the parallel velocity of a guiding center particle is a vector equal to the original
particle’s parallel velocity vk, and it is an independent variable (2.11). Thus for a
guiding center fluid we write:

Bulk perpendicular (or drift) velocity: V g? D R
V DF dv?dvk=

R
F dv?dvk3

Bulk parallel (or field-aligned) velocity: V gk D R
vkF dv?dvk=

R
F dv?dvk

As mentioned above, we will mainly deal with ensembles with symmetric pitch
angle distributions in which there is no field-aligned bulk streaming (no field-aligned
convection currents) and Vgk D hvki � 0.

It is important to understand the difference between the bulk velocities in both
fluid models. In the kinetic model, V is the spatial average of the instantaneous
velocity vectors of actual particles in an element of volume, whereas in the GC
fluid, V g is a double average: the spatial average of the velocities V D , V k, which
are averages (over a cyclotron turn) of the velocity components of a particle:
V g D hhvi'i. The “missing part” of particle motion in the GC fluid model is
encoded in the magnetic moment of each GC particle. The bulk velocity vector
V g of an ensemble of guiding center particles always describes true macroscopic
mass transport, whereas the mean velocity vector V of the ensemble of the original
particles may not—both velocity vectors in general will differ from each other

3From now on, all macro-variables in the guiding center fluid will carry the subindex g, whereas
homologous variables in the kinetic particle fluid model will not be subindexed.
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(V g ¤ V ); in fact, they even may be opposite to each other. Below we’ll show
some simple examples.

What both models must have in common, are the values of local current density
J , which links the ensemble dynamically with the local magnetic field (action of the
Lorentz force J � B on the current, and contribution of the current to the sources
r � B of the magnetic field). In the kinetic fluid model, which doesn’t care whether
or not individual particles in a given element of volume have mesoscopically
organized motion (such as cyclotron gyration), the current density is J D �qV ,
a pure convection current. In the guiding center fluid, we must use the usual
E&M expression for magnetized media taking into account the equivalent currents
J eq D r�M (Appendix A.1). The total electric current density will thus be:

J D �qV g C r�M (5.3)

and consequently4

V D V g C �q
�1r�M D V g � �q

�1r�.
p?
B2

B/ D V g C 1=2�m
�1r�L (5.4)

The last equality stems from the definition of angular momentum density

L D 2.m=q/ M (5.5)

We end this section with the promised discussion of some “kindergarten”
examples, to show in semi-quantitative form that the perpendicular component
V ? of the bulk velocity of a kinetic fluid is indeed not necessarily equal to
the perpendicular bulk velocity of the corresponding guiding center fluid. Quite
generally, these examples are intended to shed some light on the physical nature
of different, distinct classes of currents in a guiding center fluid. Consider Fig. 5.1
left side, which depicts a gyrotropic ensemble of mono-energetic 90ı pitch angle
particles, with a particle density gradient rn in the direction of the x-axis, cycling
in a uniform external magnetic field B directed along the z-axis. If we do a cyclotron
average of the perpendicular velocity vector of any given particle to obtain its
guiding center drift velocity (1.3), we obviously get V D D hv?icyclotron D 0. The
particles are all gyrating in situ and the guiding centers are all at rest—there is no
flow in the guiding center fluid and there is no net transport of mass or electric
charge: the guiding center convection current is J g D �qV g D 0. But in the
guiding center fluid there also will be an equivalent current J eq D r�M D
r�.�1=2mnv?2=B/ e D �.1=2mv?2=B/ rn�e ¤ 0, always in the direction of
Cy (regardless of the particles’ charge q). This (and the next set) describes the effect

4The following relation (5.4) can be deduced directly for gyrotropic ensembles by linking the
distribution functions f (4.5) and F (5.2) using (1.25) and the definitions of V , V g and M (the
proof is lengthy!).
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Return 

Fig. 5.1 Sketch showing the physical origin of an equivalent current density in a non-uniform
distribution of 90ı pitch angle particles (zero GC current, no net charge transport)

of the magnetic field on a specific distribution of guiding center particles; later we
will discuss the effect of specific ensembles (their currents) on the magnetic field.

We now turn to the kinetic model description of the same ensemble of Fig. 5.1.
For this, we must look at the figure “with a magnifying glass” (or, more realistically,
with a very small detector) and realize that the individual particle distribution will be
anisotropic: considering a domain much smaller than �C

3 (right side of the figure)
we will always see (or detect) more particles traveling in the Cy direction than in
any other. This represents a local convection current J along the y-axis.5 Since we
demand that both fluid model descriptions must be consistent with each other in
terms of their macroscopic electromagnetic manifestations, for the case of Fig. 5.1
the convection current in the kinetic fluid must be the same as the equivalent current
in the guiding center fluid: J D r�M .

In the example of Fig. 5.1 there is no net transport of electric charge (�q D
0; @�q=dt D 0), yet there is a current density everywhere inside the ensemble.
Obviously, conservation of charge tells us that r � J D 0, so both, the equivalent
currents and (in the particle fluid picture) the convection currents must be closed
somewhere. Observe Fig. 5.1 (left side): the distribution of particles does not extend
to infinity—it must have a boundary somewhere along the x and y axes, which
means that, eventually, somewhere there must be negative number density gradients.
Such gradients represent current densities, precisely the ones that close the Jy

current system in the above example, as sketched in the figure. This observation
shows that quite generally it is extremely dangerous to speculate qualitatively about
current systems in the magnetosphere (e.g., about the neutral sheet current) without
explicitly including a precise picture of all closing currents, too (e.g., the current
system where the neutral sheet merges into the tail boundary).

5Remember that this is the usual explanation given in E&M texts to justify the appearance of an
equivalent r �M current in magnetized materials (although in ferromagnetism the magnetization
is not due to “little current loops” in atoms but due to the intrinsic quantum magnetic moment
(spin) of electrons). Since in an ensemble of trapped particles the magnetic moment associated to
a guiding center particle is always directed antiparallel to B , plasmas behave like a diamagnetic
gas—as we already had anticipated.
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Particle fluid             Guiding center fluid

Fig. 5.2 Flux cylinder in a uniform field with a uniform distribution of positive, mono-energetic
90ı pitch angle particles. Left: Viewed as a guiding center fluid; there are no flows anywhere, but
an equivalent current r �M in the boundary layer due to magnetic moment cut-off. Right: Viewed
as a particle fluid at the microscopic level; laminar flow within 2�C of the outer boundary

compressedexpanded

Fig. 5.3 Origin of the “bent sausage” equivalent current

To consolidate understanding of the case of Fig. 5.1, consider a cylinder of field
lines in a uniform magnetic field (a magnetic flux tube) filled with 90ı mono-
energetic particles with uniform guiding center density, Fig. 5.2. Viewed as a particle
fluid, the distribution inside the cylinder will be isotropic everywhere, with zero
average velocity except in a thin boundary layer of thickness ır D 2�C , where
there will be a laminar flow (macroscopically a surface current). Viewed as a guiding
center particle fluid, the velocity inside the cylinder will be zero, too, but now it is
the sudden jump to zero of the magnetization density in the boundary layer (due to
the cut-off of guiding center density) which will lead to an equivalent current that
must be equal to the surface convection current in the kinetic model description.
Note that in this case, the current system is closed in itself.

Next consider the example of 90ı pitch angle particles uniformly distributed
along curved field lines as shown in Fig. 5.3, with B nearly constant along and
across those field lines. Such a situation is, indeed, highly artificial and can only
represent an instant snapshot: the mirror force (2.8) would immediately start moving
the particles along B—anyway, this is just a kindergarten example! Viewed either
as a guiding center fluid or a particle fluid, the respective average velocities V gk
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Return displacement 
current 

Fig. 5.4 Origin of the equivalent counter-current Jeq in a uniform particle distribution of gradient-
B drifting particles

and V k along the field lines are assumed to be zero (no field-aligned current).
But there should be an equivalent current perpendicular to B (into the plane of
the figure), of value J eq D r�.�p?=B/e D p?=B .@e=@s � e/ (remember that
@e=@s D �n=RC , with RC the field line radius of curvature, relation (A.15) in
Appendix A.1). Its origin is simple: just look at the figure with a magnifying glass,
and you’ll see that positive particles move toward you in their cyclotron motion
on the convex side of the field line, and go into the paper in a slightly compressed
fashion, on the concave side. In other words, a tiny detector would see, per unit
surface, more particles going into the paper than coming out of it. This is yet another
case in which J D r�M (perpendicular components only!).

Another example, sketched in Fig. 5.4, is that of a uniform 90ı pitch angle mono-
energetic particle distribution on the minimum-B surface of a magnetic field with a
constant gradient r?B ¤ 0 in the x direction, but no gradient in number density
n. Guiding centers will drift with velocity V g to the right along the x-axis, which
represents a guiding center convection current to the right J g D �p?=B2 r?B �e.
In addition, there will be an equivalent current r�M , where M D �.p?=B/ e.
Since for a uniform distribution only B depends on the position r this equivalent
current is directed to the left and exactly cancels the convection drift current J g

(remember that r � e D �1=B.rB � e), so that in this case the total current
density in the guiding center fluid model is zero. Therefore, the convection current in
the particle fluid model should also be zero. It is a little trickier to convince oneself,
by looking at the figure, that the pertinent velocity distribution of particles on the
minimum-B surface is indeed isotropic, and that the number of particles moving in
the Cy direction in a very small element of volume is always the same as the number
of those going in the opposite direction, for constant p?. In summary, in the case
of Fig. 5.4, the current density in the particle fluid is J D J g C r�M � 0. Here
we have an example of a particle distribution with net mass and charge transport
(to the right in the figure), but in which the local average particle velocity is zero
(the implication of this fact for the magnetospheric ring current will be discussed
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Fig. 5.5 Case of a GC current equal to the convection current (zero equivalent current)

Fig. 5.6 Sketch (not in scale!) of positive particles on field lines twisted by a parallel current
along the central axis (snapshot from the guiding center system moving with velocity V

k

). The
cyclotron loops are perpendicular to the local, inclined, B 0. Near the central axis there is a net
uncompensated velocity component from the cyclotron motion of the particles into the plane ?
to B

briefly in the next section). Note that in this example there is no equivalent current
to close because there just is no current. It is an interesting exercise to figure out the
electrodynamics near the right edge of the drifting particle distribution (something
quite relevant to the physics of magnetospheric plasma blobs!)

A uniform gyrotropic distribution of mono-energetic particles in a uniform
magnetic field, crossed by a uniform electric field E (Fig. 5.5), is a typical example
where r�M � 0, i.e., in which the convection currents in both models are equal:
J D J g. Note however the difference in physical character of the two types of
currents: the particle current J in the kinetic model is due to the fact that, because
of electric field acceleration, particles moving to the right in the figure are on the
“upper” arc of the cyclotron orbit where their speed is higher than that of left-moving
lower arc particles (see (1.35) and Fig. 1.7). Guiding center particles drift at constant
speed, equal to the average speed of the actual particles in their OFR.

Our last kindergarten example is that of a configuration in which the mono-
energetic particles have a pitch angle <90ı in a near-uniform magnetic field. Now
there will be a component of J g parallel to B . As explained in Appendix A.1,
any parallel current causes a twist of the magnetic field lines: r�M will have
a component parallel to B. Consider Fig. 5.6, shown in the guiding center frame
of reference that moves with the velocity vk (assumed common to all particles in
this example) along the central field line. As sketched in the figure, because of the
torsion, neighboring cyclotron loops are slanted with respect to those of particles
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circling the central field line. As a result, a geometry arises such that near the axis of
symmetry the neighboring particles have a component of motion counter the main
parallel drift whenever they cross the central loops, a motion that is uncompensated
by upward-moving particles from neighboring cyclotron loops. In other words, a
parallel equivalent current r�M jk will always counteract, i.e., diminish the effect
of whatever field-aligned guiding center current flows in the first place.

The discussion of these five simple examples suggests that it is always important
to clearly state which fluid model, kinetic or guiding center, is being invoked in a
plasma6 description. In theoretical analysis and numerical calculations one mostly
works with the kinetic model, but when describing intuitively and qualitatively a
plasma system, or even when trying to interpret measurement results, physicists
more often than not are thinking about, or visualizing, the system in guiding center
model terms (often without explicitly saying so). However, there is a danger of using
the guiding center fluid model, despite its greater physical intuitiveness concerning
the ensemble’s macroscopic properties such as electric currents and internal stresses
(see next section). One too often forgets that this model is valid only provided
that: (i) the guiding center approximations (2.1) and (2.2) apply everywhere (thus
excluding neutral lines, sharp gradients, rapid oscillations, etc.), (ii) the collision rate
is negligible (thus excluding the ionospheric regions), and (iii) particle distributions
are gyrotropic (thus excluding waves in the cyclotron frequency or higher range).

5.3 Currents and Stresses Arising from Interactions
with the Magnetic Field

In order to analyze the types of currents sustained by an ensemble of guiding
center particles defined by a distribution function F.r ; t; v?; vk/, we turn to the
general expression of the drift velocity (2.14) given in Sect. 2.1. We shall assume
that the guiding center approximation is valid everywhere and that there is no
bounce bunching (hvki D 0), and we shall neglect the action of external non-
electromagnetic forces (F � 0) as well as all higher order drift terms, i.e., we
shall retain only the 1st, 3rd and 4th terms. We thus write, for the transverse drift
velocity vector of a single guiding center particle:

V g? D V D D
h
qE � mv�?2

2B
rB � mvk2

@e

@s
� m

dV D

dt

i
� B

qB2

Remember that v�? is the modulus of the perpendicular component of the actual
particle’s velocity in its guiding center system at the point in question (v?� D
v? � V D , relation (1.6)). It is evident that in the bracket, only the perpendicular

6Never mind that in these kindergarten examples we have considered only one class of particles—
the results about currents thus far are independent of the electric charge of the particles involved.
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components of E and dV D=dt will contribute. The parallel guiding center velocity
V gk will be equal to the cyclotron-average of the parallel velocity of the actual
particle (2.11), but as mentioned above, for the time being we will exclude streaming
along field lines (V gk � 0).

We now use this equation to determine the macroscopic quantity hV Di (trans-
verse bulk velocity), by multiplying each term by the guiding center distribution
function F.r ; t; v?; vk/ and integrating over velocity space [v?; vk]. We obtain,
taking into account the definitions (4.17) of p? and pk (the latter, with V gk D 0):

V g? D hV Di D
h
�qE � p?

B
r?B � pk

@e

@s
� �m

dV g?
dt

i
� B

�qB2
(5.6)

To obtain the total current J , we have to multiply this equation with �q and add
r � M . This latter magnetization current density is

r � M D r �
�

� p?
B2

B


D �p?
B2

r � B � rp? � B

B2
C 2

p?
B

rB � B

B2

The second and third terms are perpendicular to B. Using (A.26) and (A.27) of
Appendix A.1 for r � Bj? and r � ej? D e � @e=@s, we obtain for the ? and k
components of the equivalent current density:

r � M j? D
h

� r?p? C p?
@e

@s
C p?

r?B

B

i
� B

B2
(5.7)

r � M jk D �p?
B2

r � Bjk (5.8)

Turning first to the transverse equations, we add expressions (5.7) and (5.6)
(multiplied by �q) to obtain for the total transverse current density J ? (which of
course must also be the total transverse current density in the corresponding particle
fluid model):

J ? D J g? C r � M j?

D
h
�qE � r?p? � .pk � p?/

@e

@s
� �m

dV g?
dt

i
� B

B2

D J E C J D C J A C J I (5.9)

where

J E D �q

E

B
� e Electric field drift current (5.10)

J D D �r?p?
B

� e diamagnetic current (5.11)
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J A D � .pk � p?/

B

@e

@s
� e “pressure anisotropy” current (5.12)

J I D �m

B

dV g?
dt

� e Inertial current (5.13)

Notice that an important rearrangement has taken place by adding the equivalent
current that arises from the magnetization of the guiding center fluid. In particular,
the gradient-B drift current term (second one in (5.6)) has dropped out, cancelled
by an homologous term in (5.7). This is exactly what happened in our “kindergarten
example” shown in Fig. 5.4 in the preceding section!7 In the above list, J E and J I

are convection currents, J D is an equivalent current and J A is mixed: the first part
(with pk) is a convection current carried by the field-line curvature drift (see (2.14))
whereas the second part (with p?) is the equivalent current whose microscopic
origin was shown in the “kindergarten” example of Fig. 5.3. Notice that for isotropic
pressure (pk D p?) J A � 0, which means that also the curvature drift drops out,
cancelled by the (unnamed) equivalent current part of J A. All currents depend on
B and the particle distribution (pressure tensor or density): the local magnetic field
dictates, and the particle ensemble properties drive, the currents! Note that in (5.6)
only the electric field drift is independent of the particles’ properties; thus it will not
contribute to the total current density in a collisionless charge-neutral ensemble of
two or more species.

An important point is that relations (5.9)–(5.12) are valid in both fluid models,
the kinetic and the guiding center one. Concerning relation (5.13), it can be shown
(rather laboriously), that although in general V g ¤ V , for the total time derivatives
dV g=dt Š dV =dt within the guiding center approximation, so that this relation
(5.13) is valid, too, in both models. The current (5.9) is thus indeed the total current
density that acts as the source of a magnetic field, i.e., the one that enters in
Maxwell’s equations (A.49). This somewhat trivial remark will be important later.

Concerning the parallel bulk velocity, let us lift for a moment the initial
assumption that it is zero. We shall have

V gk D hvki; (5.14)

basically an independent variable in the sense that at one given point it only depends
on the particle distribution function there—which, however, as we will show in the
next section, varies in a specific manner along any given magnetic field line. For an
equation for J k, complement to (5.9), we write

7This dropout, predicted by theoreticians in the early days of magnetospheric physics, caused
confusion among experimentalists studying ring current data, who from the beginning assumed
this West-East current to be due to the convective E-W and W-E drift of trapped protons and
electrons, respectively. However, the ring current is the superposition of a E-W convection drift
current with an equivalent diamagnetic current (5.11), the latter with an W-E inner ring (radially
outward directed density or pressure gradient in (4.24)) and a E-W outer ring where the density
gradient is reversed.
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J k D �qV gk C r � M jk D �qV gk � p?=B2r � Bjk
or, taking into account that under stationary or slowly varying conditions r �Bjk D
�0J k, where J k is the total field-aligned current,

J k D J gk
1

1 C p?=.B2=�0/
(5.15)

Note that always Jk � Jgk. This confirms what we have anticipated in the fifth
kindergarten example of the previous section (see Fig. 5.6). The equation shows
that if Vgk D 0 (no average parallel velocity of guiding centers, symmetric pitch
angle distribution), the total field-aligned current density is always zero—in other
words, a field-aligned current cannot “be made of” an equivalent current alone.
If on the other hand, there is GC field-aligned streaming (J gk ¤ 0) and the
transverse particle pressure p? is much smaller than the magnetic energy density
B2=2�0 (Appendix A.1, relation (A.40)—the ratio p=u is called the beta of the
plasma), which in general implies low particle number density, the total field-
aligned current density Jk is maximum and equal to it. If in the other extreme
p? � B2=2�0 (high number density), Jk ! 0 again, regardless of the parallel
streaming of guiding centers (cancelled by the equivalent current in the guiding
center model). This is an example of the above-mentioned special nature of parallel
motions in the fluid descriptions. As we have seen in Appendix A.1, the field-aligned
current is responsible for a twist of magnetic field lines; in the present example
it also controls the proportion between convection and equivalent currents in the
guiding center fluid. But remember that field-aligned currents, while causing torsion
in the magnetic field ((A.28) and (A.29)), cannot sustain any magnetic stresses:
J k � B � 0.

We now turn to the general stresses, i.e., the average macroscopic Lorentz
force densities acting inside the guiding center fluid, J � B D J ? � B D
.J E C J D C J A C J I / � B (5.9). Let us begin again with the kindergarten
example of 90ı pitch angle particles filling a cylindrical flux tube in a uniform B-
field (Fig. 5.2). Regardless of the fluid model considered (left or right in the figure),
there will be a thin layer of current on the surface of the cylinder, as shown in
that figure. If there are “many, many” particles, two things will happen: (i) the
magnetic field inside the cylinder will decrease noticeably due to the solenoidal
surface currents (diamagnetic property of the ensemble), and (ii) an average non-
negligible Lorentz force will appear acting on the outer equivalent current-carrying
part of the ensemble. This latter outward-directed force density J � B represents
an internal stress in the ensemble, quite similar to the magnetostriction acting on
equivalent r � M currents inside condensed matter with magnetization density
M . Our kindergarten example can be carried further qualitatively: as the magnetic
field in the cylinder decreases with time, an induced electric field will appear (see
example with the case of an increasing field on page 21!) and the associated outward
drift will expand the particle ensemble. But equivalently, in the GC model we could
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well attribute the expansion to the action of an outward Lorentz force stress! A
similar quantitative analysis can be made with the example of Fig. 5.6: here we have
a convection current density; the average Lorentz force on it counteracts exactly the
electric field force—a good example to convince a skeptic that a plasma exposed
to an electric field is not accelerated in the direction of the field but will drift
perpendicularly to it!

If we cross Eq. (5.9) with B and rearrange terms, we are led to the following
dynamic equation for the perpendicular bulk flow in a guiding center fluid:

�m

dV g

dt

ˇ̌
ˇ̌̌
?

D �qE? � r?p? � .pk � p?/
@e

@s
C J ? � B (5.16)

Observe that this is not a “true” dynamic equation which, by integration, would lead
to the calculation of V g; it merely serves to display the stresses or force densities
responsible for the transverse acceleration of parcels in the guiding center fluid
model.

To derive a dynamic equation of flow parallel to the magnetic field, complement
to Eq. (5.16), we can convert the single-particle parallel equation (2.20) (without
non-electric forces) into a macroscopic equation for an ensemble of particles by
multiplying it with the guiding center distribution function F and integrating, to
obtain:

�m

dV g

dt

ˇ̌̌
ˇk D �m

dV g

dt
� e D �qEk � @pk

@s
C .pk � p?/

B

@B

@s
(5.17)

The two above equations can be combined into one by taking into account (4.21):

�m

dV g

dt
D �qE � rP C J � B (5.18)

This general equation for the bulk velocity of an ensemble of guiding centers
explicitly reveals the dynamic action of three types of physical causes: (i) non-
magnetic forces (the first term, to which any non-electromagnetic force density
could be added), (ii) the “mechanical stresses” represented by the pressure tensor,
and (iii) the action of the magnetic field on the ensemble through Lorentz-type
forces (the third term). It is important to remember that at this stage of our
discussion, we are still dealing with just one species of particles and that the
magnetic and electric fields are given, i.e., that the contribution to the fields of
charges and currents in the ensemble are being neglected.

Before we get real and drop this limitation, we end this section with an analysis
of the physical meaning of the stresses in a guiding center fluid, as illustrated by the
hypothetical example of a “magnetohydrostatic” equilibrium state of the ensemble:
no time dependence, no total current density, no external forces, no electric field.
The condition of equilibrium implies that transverse equation (5.16) now should be:
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r?p? C .pk � p?/
@e

@s
D 0

This equation is identical to (4.33), only that here it has been derived in a more
general way. According to (5.9), this equation also implies that J D C J A D 0 in
the case of a stationary state.

Along the respectively binormal and normal x and y axes (in the natural
coordinate system, Appendix A.1),

@p?
@x

D 0

@p?
@y

� .pk � p?/
1

Rc

D 0

where Rc D j@e=@sj�1 is the field line’s radius of curvature. These two equations
show how the perpendicular pressure and the pressure anisotropy pk � p? must
obey stringent conditions of spatial variability in a magnetostatic field to remain in
equilibrium (indeed, it is useful to re-examine the example given in Sect. 4.4, where
the equilibrium conditions were derived for a specific case.) Under the same static
equilibrium conditions, the following relation is obtained for the parallel stresses
from (5.17), in partnership with the transverse equation (4.33):

@pk
@s

� .pk � p?/

B

@B

@s
D 0

This equation is identical to (4.32).
To interpret the detailed physical meaning of the various terms in the above

equilibrium relations (4.33) and (4.32), consider a guiding center fluid element
in a magnetic flux tube, as sketched in Fig. 5.7. In this figure, the axes represent
the natural reference frame, with z k e, y along the normal n and x along the
binormal b (Appendix A.1). As always, RC is the radius of curvature of the field
lines, and we have the following relations between the side areas: ıA�

x D ıAx

(binormal axis); ıA�
y D ıAy.1 C ıy=RC / (field-geometric factor) and ıA�

z D
ıAz.1 � 1=B .@B=@s/ ıs/ (conservation of magnetic flux).

Along the y-axis, the following forces act on the GC fluid element in hydrostatic
balance:

�.p? C @p?
@y

ıy/ıAy.1 C ıy

Rc

/ C p?ıAy C pk
ˇ̌̌@e

@s

ˇ̌̌
ıAyıy D 0

in which the third term represents the total centrifugal force on the particles. This
means that

@p?
@y

� .pk � p?/
ˇ̌̌@e

@s

ˇ̌̌
D 0
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Fig. 5.7 Flux tube element
filled with guiding center
fluid in “hydrostatic”
equilibrium

To find the other term @p?=@x, we have along the x axis:

�
�
p? C @p?

@x
dx

ıAx C p?ıAx D 0

which means that

@p?
@x

D 0

The above relations represent the vector equilibrium condition (4.33) along the y

and x axes perpendicular to B.
For the parallel equation of equilibrium (along the z-axis), consider again

Fig. 5.7. With the total mirror force density on the guiding center particles in the
flux tube element (�p?=B .@B=@s/), we have the following equilibrium condition:

�
�
pk C @pk

@s
ıs
�

1� 1

B

@B

@s
ıs


Cpk � p?
B

@B

@s
ısD

�
� @pk

@s
C .pk � p?/

B

@B

@s

�
ısD0

leading to (4.32).
Finally, we may relax a bit the a priori conditions in our example and admit

transverse currents that, however, are independent of time—i.e., limited to a
stationary ensemble. This does not change the parallel equation (4.32) and its
physical meaning (Fig. 5.7). The perpendicular equation (5.16) now becomes, taking
into account (A.36) of Appendix A.1:

r?p? C .pk � p?/
@e

@s
D J ? � B D B2

�0

@e

@s
� r?

�
B2

2�0

�
(5.19)
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or:

r?
�

p? C B2

2�0

�
C
�

pk � p? � B2

�0

�
@e

@s
D 0 (5.20)

In this equation, the magnetic energy density B2=2�0 (A.40) plays the role of
transverse magnetic field pressure; .B2=�0/ @e=@s is the perpendicular magnetic
tension of Maxwell’s theory.

To summarize, we end this section with a “kindergarten” view of the preceding
equilibrium expressions (4.32) and (4.33). Refer again to Fig. 5.7. The element of
fluid is subjected to pressure forces on its sides (p?-related) and a “buoyancy force”
(pk-related, which can be interpreted as the differential of parallel pressure forces on
the tops of the flux element), and to two internal magnetostrictive forces: the mirror
force (which can be interpreted as being responsible for the “slippery soap” effect
of a narrowing magnetic flux tube squeezing the incoming particles and bouncing
them back in their parallel motion) and the inertial centrifugal force (on the guiding
center particles in a bent flux tube while they travel up and down in their bounce
motion). If this force system is in hydrostatic equilibrium, there is no macroscopic
bulk acceleration in any direction (perpendicular or parallel to B). As a result, the
particle ensemble is stationary; a locally time-independent guiding center bulk flow
V g? is allowed, but only in such a way that no total current J ? occurs. No net
field-aligned bulk flow (or current) is allowed.

This entire discussion involved the guiding center fluid model—the kinetic model
does not care about what the individual particles do elsewhere (like whether they
are executing a systematic cyclotron gyration and come back to the same volume
element repeatedly to be counted each time as a contribution to a current, or whether
they fly away and are replaced by other incoming particles); what counts in the
kinetic fluid model is what happens locally to each particle at any given point in
space and instant of time. In this more general kinetic formalism one loses track of
the integral, macrophysical picture and related intuitive understanding. Remarkably,
however, as we shall see in the next section the equations discussed above are valid
also in the kinetic particle model, with the velocities and pressures defined in the list
on page 124. This is a relief because, as hinted before, the kinetic fluid model is the
only recourse available for the quantitative study of regions in which the adiabatic
conditions break down for the particles in question, such as in the vicinity of neutral
sheets and lines, boundaries and shocks.

5.4 From the Guiding Center Fluid to a Quasi-neutral
Center-of-Mass Fluid

It is high time to turn to quasi-neutral mixtures of positive and negative plasma
particles. Most of the examples to be considered will be, for simplicity, singly-
charged positive ions and negative electrons. We also must turn our attention to
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the fact that, as hinted at the beginning of this chapter, in a real plasma we cannot
neglect the contribution of the plasma currents to the field: there is a circular cause-
effect relationship: particle dynamics ) currents ) magnetic field ) particle
dynamics—in other words, we must activate the link between Maxwell’s equations
and fluid dynamics, in which the magnetic field still plays the grand role of a
common framework holding the different components and regions of a plasma
together. It is important to point out, as we shall see in a later section, that neither
fields nor particles come first (a “chicken-and-egg” situation)—except when one or
the other has separate and dominating externally controlled sources or sinks (e.g.,
the internal geomagnetic field; solar wind particle injections, atmospheric losses).
And since thus far we were dealing with collisionless ensembles in which the only
interaction between particles is mediated by the macroscopic electromagnetic field,
at one point we must get real and turn inter-particle collisions on.

First of all, we start with Eq. (5.18) for one species and note that it really can
also be derived directly from Vlasov’s equation (5.1) for collisionless ensembles:
just multiply all terms of this equation tensorially by mv and integrate over velocity
space! This means that it is valid for a kinetic fluid, too, provided one accepts the
fact that, as mentioned on page 135, for the bulk accelerations dV g=dt D dV =dt
despite both velocities being different. For that reason, we shall drop the subindex
“g” from the velocity vector V .8 This means that (5.18) has more general validity
than the perpendicular and parallel guiding center fluid equations from which we
extracted it.

It is our task now to merge two ensembles with mutually opposite charges, each
one representing a class of particles under one common electromagnetic field. In
this way we obtain yet another fluid which provides a quantitative macroscopic
description of the overall system, and from which one can extract some useful
information about the behavior of each one of the merged ensembles. To develop
this “grand” new fluid model, we shall use C and � as subindices characterizing
each species. With this notation, we rewrite (5.18) in the forms

nCmC
dV C

dt
D nCqCE � rPC C J C � B (5.21)

n�m�
dV �

dt
D n�q�E � rP� C J � � B (5.22)

To these we must add a continuity equation for each species (we are assuming that
there are no sources or sinks of particles in our collisionless mixed ensembles):

8A question still subsists: How can two different solutions, either V g or V , be obtained for the two
different fluid models from one and the same equation? The answer is that V g or V sit inside J ,
which in the case of the magnetized guiding center fluid model also contains r � M , with M in
turn being a function of B and p

?

.
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@n˙
@t

C r � .n˙V ˙/ D 0 (5.23)

What specific properties must we expect from our new single-fluid mixed-species
model? First of all, its mass, charge and current densities should be the sum of the
individual densities:

�m D nCmC C n�m� (5.24)

�q D nCqC � n�jq�j (5.25)

J D J C C J � D nCqCV C � n�jq�jV � (5.26)

Second, the bulk velocity of the fluid V should be such that the momentum
density G D �mV is equal to the sum of the momentum densities of each
component:

G D nCmCV C C n�m�V � (5.27)

For that purpose we now introduce the center of mass velocity of the two fluids:

V D nCmCV C C n�m�V �
nCmC C n�m�

(5.28)

We can now officially introduce the center of mass fluid as one with mass density
�m (5.24), charge density �q (5.25), current density J (5.26) and momentum density
G D �mV . A continuity equation can be derived from (5.23),

@�m

@t
C r � .�mV / D 0 (5.29)

with a charge continuity equation

@�q

@t
C r � .�qV / D 0 (5.30)

We have sketched the situation of a center of mass fluid in Fig. 5.8:Consider an
element of volume ır3 at time t with two classes of particles of opposite charge,
ı and �.9 Each class came, in principle, from a different volume element at time
t � ıt , and each will end up in a different parcel at time t C ıt . The centers of mass
of the parcel pairs at these different times are shown (please note that in reality these
parcels are only infinitesimal time intervals and distances apart!). With the center of
mass fluid model we have replaced two distinct, intercrossing ı and � fluids with

9Of course, we can show only a subgroup of particles of each class in the central element of volume
at time t ; it may be crossed by many other particles coming from other pairs of pre-t parcels.
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CM                                                     CM

Fig. 5.8 Sketch of two
guiding center fluids in their
partial motions and that of the
virtual center of mass fluid.
The corresponding electric
current density vector is
shown. In an ion-electron
fluid, the center of mass
motion would be nearly
identical with the bulk motion
of the ions

+ + +
+ + +
+ + +
+ + +
+ + +

        +    ++
Fig. 5.9 Mutual
displacement of positive and
negative particle ensembles;
generation of a local
electrostatic field

another virtual fluid whose parcels follow the center of mass line (horizontal in
the figure), whose (virtual) density is the sum of the individual fluid densities, and
which sustains a current density given by the relative convection of opposite charges
(vertical in the figure).

Figure 5.8 shows two ensembles of oppositely charged particles running through
each other—What prevents them from separating, what keeps them together? Evi-
dently, it must be the electric field that would build up rapidly between oppositely
charged “clouds” of particles if a local charge density fluctuation occurs in an
electrically neutral distribution. As a matter of fact, just a tiny collective charge
separation in a limited volume would build up a space charge and generate a large
local electric field (thanks to the large value of the constant �0, Appendix A.1) acting
against any further separation. Refer to Fig. 5.9 showing a portion of the electron
population displaced by an amount � to the right (� � L), and assume for a
moment that all particles are “frozen” into their instantaneous position. A positive
electrostatic space charge will appear in the thin rectangular element of volume
�S � (�2 � �S ).

The electric field on the right of this thin, flat element would be approximately
uniform and of value E D .ne�/=�0, directed as shown (e: absolute value of the
elementary charge; ne�: charge per unit surface S of the thin element). This field
will exert a total force F D qE D �.neL�S/.ne�/=�0 on the electron cloud of
total mass M D nmeL�S . Newton’s equation F D M R� turns out to be that of an
harmonic oscillator R� C !e

2 � D 0, where

!e
2 D ne2

�0me

(5.31)
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Despite the very artificial nature of the model used in the derivation, this frequency
of coherently oscillating electrons (and also of the oscillating local electric field
E ) is a basic plasma parameter which plays a fundamental role in certain types of
plasma waves (e.g., Langmuir and upper hybrid waves) and affects the propagation
velocity of electromagnetic waves in dense plasmas. It is called the electron plasma
frequency. One also defines an ion plasma frequency !i

2 D ne2=�0mi , and,
combining the two, the plasma frequency !2

p D !2
e C !2

i . However, since !i
2 is

at least three orders of magnitude smaller than !e
2, one also uses the term plasma

frequency for !e .
In our artificial model, the cloud of slightly displaced electrons will oscillate

about the neutral charge position (where �e D �i ) with a frequency !e that only
depends on their number density (5.31). By loosening the initial restrictions and
allowing the particles to be in thermal motion (no collisions and still no magnetic
field), it is possible to estimate the upper limit of the amplitude Amax noting that
the electrostatic oscillation energy must compete with the kinetic energy of the
particles. A reasonable limit should therefore be Amax Š hjvji=!e, where hjvji is
the average thermal velocity of the electrons. Taking into account (5.31) and (4.22),
we introduce the Debye length as another important plasma parameter, which in our
specific example would be equal to Amax:

�D
2 D �0kTe

ne2
(5.32)

Removing the last artificial restriction and allowing the presence of a magnetic
field B will complicate the model of Fig. 5.9 considerably because of the additional
action of the Lorentz force10; one should anticipate that the behavior will be different
for a magnetic field parallel to the x-axis than for a perpendicular field. If we call
�Ce the average cyclotron radius of the electrons, we can write

!c

!e

D �D

�Ce

D 1

c

Bp
.�0nme/

(5.33)

The lower limit of this ratio in the magnetosphere is about 0.001; only in some very
limited regions it may exceed 1. This is an indication that the electrostatic effect in
our simplified model sketched in Fig. 5.9 will in general affect only a small portion
of a typical Larmor orbit in the magnetosphere; the “thermal” motion is then given
by the random cyclotron phases (even for mono-energetic particles)—neglecting the
magnetic field in the derivation of (5.32) was not such an unrealistic choice after all!

10In most plasma physics books, the Debye length and the plasma frequency are introduced at the
very beginning, without any mention of the magnetic field (and often assuming a Maxwellian
distribution). This sometimes confuses the student, especially if the book mainly deals with
magnetized plasmas.
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The requirement that �D � scale of the system is usually taken as the very
definition of a plasma. For what follows, we need not concern ourselves with the
detailed mechanism by means of which quasi-neutrality �C ' �� is maintained; we
simply make the assumption that this condition is upheld at all times through some
local mechanism. This is quite similar to what one does in analytical mechanics:
setting predetermined constraints without in any way specifying how such limiting
conditions are physically maintained!

Returning to our center of mass fluid, it is important to be aware of the
relationships between the species’ bulk velocities and the total current:

V˙ D V C m	
q˙

J=�m (5.34)

Carefully note the C and � correspondences. If the negative particles are electrons,
and the ensemble is quasi-neutral, we can write:

n ' nC ' n�

�m ' nCmC
�q ' 0

J D J C C J � ' ne.V C � V �/ ' �neV �
V C ' V and V � ' V � J=ne (5.35)

We now have to come up with a single dynamic equation for the center of
mass fluid. Unfortunately, we cannot simply add algebraically the species-specific
equations (5.21) and (5.22). There are several reasons. First, they contain total time
derivatives, which follow each species of particles traveling with different bulk
speeds in different directions. So we need to break them up into local and convective
operators: d=dt D @=@t C r � V ˙. Second, the pressure tensor components are not
additive either: according to the definition (4.16) and the discussion in Sect. 4.3,
the pressure tensor is controlled by the velocity dispersion of a species of particles
in a frame of reference moving at each point with the bulk velocity V ˙ of that
particular species. It is thus necessary to introduce another entity, a pressure tensor
which for each species links the particles’ velocity distribution with the common
center of mass frame of reference. For that purpose the partial pressure tensor P�̇
is introduced, defined as

P
�
˙ D m˙

Z
f˙.v � V / ˝ .v � V /dv3 (5.36)

in which V now is the center of mass velocity (5.28). Note the algebraic relationship
with the respective species-specific kinetic tensors (4.15) which indeed are additive:

P
�
˙ D K˙ � n˙m˙V ˝ V (5.37)
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Therefore, the partial pressure tensors P
�̇ are legitimately additive for different

species, too.
To accomplish all this, let us go back to Eqs. (5.21) and (5.22) and replace the

original pressure tensors P˙ with their relation to their kinetic tensors and species-
specific bulk velocities: P˙ D K˙ � n˙m˙V ˙ ˝ V ˙ (4.16). We then have

rP˙ D rK˙ � r .n˙m˙V ˙ ˝ V ˙/

One can verify by components that

r .n˙m˙V ˙ ˝ V ˙/ D n˙m˙.V ˙ � r/V ˙ C V ˙Œr � .n˙m˙V ˙/�

Using the continuity equation (5.23) for the last term, we obtain

rP˙ D rK˙ � n˙m˙.V ˙ � r /V ˙ C V ˙
@.n˙m˙/

@t

Inserting in (5.21) and (5.22), rearranging terms and remembering that d=dt D
@=@t C V � r ,

@

@t
.n˙m˙V ˙/ D n˙m˙

dV ˙
dt

� n˙m˙.V ˙ � r /V ˙ C V ˙
@.n˙m˙/

@t

D n˙q˙E � rK˙ C J ˙ � B

With G ˙ D n˙m˙V ˙ as the momentum density of each partial fluid, we finally
have a pair of momentum equations for the two fluids which are indeed summable:

@G C
@t

D nCqCE � rKC C J C � B

@G �
@t

D n�q�E � rK� C J � � B (5.38)

Adding the two equations, we obtain

@G

@t
D �qE � rK C J � B (5.39)

with K D KC C K� the total kinetic tensor of the center of mass fluid. This is the
momentum magnetohydrodynamic equation.

Now we can revert to a true dynamic equation, with a total time derivative that
represents the acceleration of a fluid element in the new model as it flows. This can
be done by starting with (5.39) and “undoing” some of the previous steps, to obtain
the familiar magnetohydrodynamic equation
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�m

dV

dt
D �qE � rP C J � B (5.40)

Note that it looks just as the Eq. (5.18) for one species, but here V is the center of
mass velocity and P D P

�C C P
�� is the total pressure tensor (5.36), sum of partial

pressure tensors (5.37).
At once, with this equation we can retrieve several earlier relations that we have

deduced for conditions of stationary equilibrium. In particular, for a given static
magnetic field and V D const. there are strong restrictions on the admissible particle
distributions of a quasi-neutral ensemble. Remembering relations (A.37) and (A.38)
of Appendix A.1, we can write (5.40) in the form r .P � S/ D 0 or, in general,
the equilibrium between the plasma pressure tensor and Maxwell’s magnetic stress
tensor P D S.

It is easy to extend the center of mass fluid equations to a mixture of particles with
more components than two: if we replace the C and � subindices in the preceding
derivations with the subindex s, we just have to sum everything over s. We end up
with the following list of macroscopic variables for a center of mass fluid of any
number of constituents:

Total mass density: �m D P
s nsms

Total charge density: �q D P
s nsqs (' 0 in quasi-neutrality)

Total current density:
P

s nsqsV s

Bulk or center of mass velocity: V D .
P

s nsmsV s/=.
P

s nsms/

Total momentum density: G D �mV

Total pressure tensor: P D R P
s msfs.v � V / ˝ .v � V /dv3 (sum of partial

pressure tensors).

With these macroscopic variables, the continuity equation (5.29) remains
unchanged, and so does the magnetohydrodynamic equation (5.40).

5.5 Collisions and the Generalized Ohm Equation

It is prudent to take stock of what we have accomplished so far in the develop-
ment of quantitative relationships between macroscopic variables for quasi-neutral
ensembles of electrically charged particles, and the dynamic equations governing
their time changes. Electrostatic forces which may appear on a mesoscopic scale
(the Debye length (5.32), large compared to inter-particle distances but small with
respect to the overall scale of the system) overwhelm the local magnetic field forces
that normally dominate the behavior of a collisionless particle ensemble and prevent
any local charge density fluctuations from growing to a macroscopic scale. This
omnipresent mechanism justifies adopting quasi-neutrality as one of the defining
properties of a plasma.

To arrive at the momentum and magnetohydrodynamic equations we have
followed two possible routes by introducing two models. (1) The model of a
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guiding center fluid ruled by adiabatic theory, restricted to situations in which the
guiding center approximation, gyrotropicity and trapping conditions are valid at
all points of the fluid. (2) A particle or kinetic fluid model that follows directly
from the Vlasov equation (5.1), with no restrictions such as adiabatic conditions.
The latter, however, does not offer the intuitive visualization of “what particles
are really doing at the microscopic level, and why”. Both approaches lead to
identical results wherever the adiabatic conditions are satisfied, and both involve
a distribution function (of six and seven variables, respectively) as the fundamental
physical and measurable quantity at the mesoscopic level. Initially formulated for
just one species of particles, we combined two oppositely charged species into a
quasi-neutral mixture by introducing yet another model, the center of mass fluid.
As a fundamental result we obtained a single center of mass fluid momentum
equation (5.39) and the magnetohydrodynamic (MHD) equation (5.40).

The principal aim of this formalism is to be able to predict or retrodict the
behavior of a given plasma, eventually subjected to some externally controlled
electromagnetic field and particle sources and sinks, which at a given initial time
is found in a given macroscopic state. In more practical terms for magnetospheric
physics, the aim is to develop a mathematical framework that, given some observed
large-scale phenomena such as the trigger and development of a magnetospheric
substorm, an auroral breakup, a sudden energetic trapped particle injection, etc.,
would allow us to pinpoint the ultimate external cause, understand the quantitative
evolution, and formulate associated prediction algorithms. Taken in isolation, the
MHD equation would be useful only to address some oversimplified situations,
where there is an a priori set symmetries and isotropies, absence of collisions,
and a priori imposed equilibrium conditions. In fact, to use it at this stage, the
electromagnetic field vectors must be pre-specified, and all retro-effects on the
plasma on the field must be ignored. The real problem is that we still have too many
unknowns but not enough equations: we have not yet properly linked the MHD
equation with the overall electromagnetic field!

The MHD equation was derived by manipulating the two momentum equa-
tions (5.38) for oppositely charges species. From the mathematical point of view,
we are still allowed to extract one more independent equation from those two, which
explicitly reflects the local interaction between plasma and field. But before we do
so, we shall introduce elastic collision processes (Coulomb scattering) between the
particles of the ensemble, thus dropping yet another of the restrictions imposed at
the beginning of this chapter. Let us call krs the average momentum transfer density
per unit time from the fluid of s particles to the r-particle species. Obviously,
krs D �ksr for elastic collisions. These quantities would then have to be added,
respectively, to each momentum equation (we assume that although particles may
collide with their own kind, there should be no net average momentum transfer
between them). It should be clear, then, that this addition would not affect at
all the procedure followed on page 146 (the extra collision terms would cancel
each other), which means that the MHD equation (5.40) is valid even in presence
of elastic collisions. For our next purpose, however, we have to come up with
a quantitative expression for k; to simplify the argument, we shall do it for a
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quasi-neutral mixture of singly-charged positive ions and electrons. If V i and V e

are the average bulk velocities of ions and electrons, it is reasonable to assume that
kie D C.V e � V i /, where C should be proportional, again on the average, to the
mass density of electrons times their collision frequency �coll with ions: neme�coll.11

And, for Coulomb interactions, it also should be proportional on the average to the
absolute value of their charge densities e2ni ne , which for charge neutrality amounts
to e2n2. In summary, we can set

kie D � e2 n2.V e � V i / with � D 1



D �coll

me

e2n
D �coll

�0!2
e

(5.41)

!e is the electron plasma frequency (5.31), � is called the plasma resistivity and 


its conductivity.
We return to the momentum equation as it appears in (5.38) and write it for a

generic species s, adding the collision momentum exchange term ks , which now
represents the total momentum transfer density to fluid s from collisions with all
other constituents. Multiplying all terms by qs=ms , adding over all s and rearranging
terms, we obtain, remembering the expression (4.15) for the kinetic tensor K and
the multispecies expression for the current density on page 147:

@J

@t
Cr

Z
.
X

s

qsfs/v ˝ v dv3

D
X

qs
2ns=ms E C .

X
qs

2ns=msV s/ � B C
X

.qs=ms/ks (5.42)

The integral can be re-written by considering the following relation involving the
partial pressures P�

s (5.36):

X
.qs=ms/P

�
s D

Z X
s

qsfs.v � V / ˝ .v � V / dv3

D
Z X

s

qsfsv ˝ v dv3 C �qV ˝ V � V ˝ J � J ˝ V

This leads us to the weird-looking generalized Ohm equation:

@J

@t
Cr

�
V ˝ J C J ˝ V � �qV ˝ V

�
(5.43)

D
�X

qs
2ns=ms

�
E C

�X
qs

2ns=msV s

�
� B � r

X
qs=msP

�
s C

X
.qs=ms/ks

11It is assumed that the actual momentum transfer can vary with equal probability distribution
between 0 and a maximum of 2neme�coll.



150 5 Collisionless Plasmas

What we have here is a companion equation to the dynamic fluid equation (5.40),
connecting field sources J and �q internal to the center of mass fluid to the
macroscopic particle ensemble variables V , ns , P�

s and ks . This connection is local,
but the overall connecting agent is the electromagnetic E and B field, which, as
discussed in Appendix A.1, depends on all charges and currents, including those
externally controlled which have nothing to do with the plasma under consideration.
This means that to Eqs. (5.40) and (5.43) we must add Maxwell’s equations
(Appendix A.1, (A.48)–(A.51)) in which the current density J (and the charge
density �q) must also include all external sources, and complete the set with the
conservation equations (5.29) and (5.30).12 Note the distinct character of each one:
(1) The MHD equation controls the dynamics of the particle ensemble—it must be
integrated like any dynamics equation to provide information on temporal behavior.
(2) The generalized Ohm equation binds together local properties of plasma and
field—there is nothing there to integrate, but it leads to the electric field which
then appears in the Eq. (A.53) defining @B=@t . (3) Maxwell’s equations tie together
concurrent behavior at distant points—concurrent in the relativistic sense (however,
retardation ((A.41) and (A.42)) usually plays no role in plasmas of planetary system
dimension). (4) Conservation equations are the “balance sheets” for the movements
of mass and electric charge.

The resulting equation framework is, unfortunately, unmanageable, and we must
first trim some fat from Ohm’s general equation before we can turn to some simple
examples. Instead of first doing a rigorous comparative analysis of the order of
magnitude of different terms under different conditions, our first step will be to
again limit ourselves to electrons and singly charged positive ions, under guaranteed
quasi-neutrality ni D ne D n, �q D n.qi C qe/ D 0 (the term “quasi” meaning
eventual allowance for little departures from charge neutrality within a Debye
domain). Under these conditions, we have the following relations for some of the
coefficients in Eq. (5.43):

X
qs

2ns=ms D e2n
mi C me

mime

D �0.!
2
e C !2

i /

X
.qs=ms/ks D �e3 n2 mi C me

mime

.V i � V e/ D e2n
mi C me

mime

�J

and

X
qs

2ns=msV s D e2n
meV i C miV e

mime

We took into account relations (5.31) and (5.41). Multiplying the generalized Ohm
equation for a two-component plasma by the first factor above, we obtain:

12Equation (5.43) only includes plasma-driven currents (5.9) and (5.15)—herein lies the crux of
understanding correctly the “chicken-and-egg” question of what comes first, B or J?! See also [1].
The set of equations (5.40), (5.43), (5.29) and (5.30) is usually called the MHD equations (plural!).
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mi me

mi C me

1

n e2

�
@J

@t
C r .V ˝ J C J ˝ V /

�

D E C V � B � �J � mi � me

mi C me

J � B

n e

� 1

.mi C me/

1

ne
r�meP

�
i � miP

�
e

�
(5.44)

For isotropic pressures pi and pe , the divergence vectors of the partial pressure
tensors become gradient vectors of the respective scalar pressures. As an aside, note
that if instead of ions and electrons we had a positron-electron or an antiproton-
proton plasma (mC D m�), the last two terms in the right side would drop out, and
we would be left with a very simple generalized Ohm equation. Unfortunately, it
is too dangerous to play with such plasmas, especially if � ¤ 0, so our next great
simplification will rather be to stick to an ion-electron plasma and take into account
that me � mi . Hence, V ' V i , which leads to the following equation (using
(5.31)):

1

�0!2
p

�
@J

@t
Cr .V ˝ J C J ˝ V /

�

D E C V � B � �J � J � B

n e
C 1

n e
r�P�

e

�
(5.45)

For an ion-electron plasma, this reduced Ohm equation has a basic physical
interpretation, namely, that it is equivalent to a dynamic equation for the electron
fluid (with a collision term) as seen from a reference system fixed to, and traveling
with the ion fluid. In other words, we can imagine the ion-electron plasma as a
mass fluid (the ions) and, embedded in it, a massless negative charge fluid (the
electrons) guided by its own dynamic equation, and whose flow confers the main
electromagnetic properties to the coupled system. The transformation of Eq. (5.45)
from the original frame of reference to the ion fluid frame is simple but lengthy
[2]; here we will just ask ourselves how such an equation would look. For that
purpose, we start with an equation of the type (5.18) (plus the collision term).
Calling V � D V e � V i the velocity of the electron fluid, we have J D neV �
and E� D E C V i � B the electric field seen in the frame moving with the ion
fluid, the equation in the moving ion frame should obviously be

ne me

dV �

dt
D � nee.E� C V � � B/ � rP

�
e � �n2

ee
2V � � ne me.V

� � r /V i

The additional last term is the inertial force density acting on the electron fluid due
to the acceleration of the frame of reference used (motional change in velocity V i ).
Transforming the relevant quantities back to the original frame of reference, leads
indeed to Eq. (5.45)! One might argue whether this invalidates the earlier assertion
that the generalized Ohm equation is not a dynamic equation, but one which brings
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out local relations in the center of mass fluid. It does not, because although it is a
dynamic equation in the ion frame, it describes only a part of the whole system.

We may now venture to discuss some simple examples. First we shall examine
Eq. (5.45), neglecting the left side on the grounds that it is a quantity divided by the
square of the electron plasma frequency. We then can write for the natural system
components of the electric field in the center of mass fluid:

E cm? D E? C V � B D �J ? C J � B

ne
� r?P�

e

ne

E cm
k D Ek D �J k � r kP�

e

ne
(5.46)

The quantity E cm? is the electric field seen in the center of mass fluid; the first term
on the right side represents the ohmic resistance field; the second term is the Hall
field (which exists in any current-carrying conductor placed in a magnetic field); and
the third term is called the ambipolar electric field (similar to the field responsible
for the e.m.f. in a battery). We now turn to the MHD equation, which in stationary
state (and charge neutrality) leads to J � B D r?P (P D P

�
i C P

�
e ). Taking this

into account, the transverse component in (5.46) becomes

E? C V � B D �J ? � r?P�
i

ne
(5.47)

Multiplying vectorially by B=B2, we obtain an expression for the perpendicular
component of the bulk velocity of the center of mass fluid (nearly equal to that of
the ion fluid):

V ? D E � B

B2
� �

B2
r?P � rP

�
i � B

neB2
(5.48)

The first term is the pure electric drift velocity—the velocity a near-zero energy
probe particle would have, and therefore also the velocity of a magnetic field line
(1.38), provided no potential electric fields are present. The second term (with
its sign) is called diffusion velocity and the third term (also with its sign) is the
diamagnetic ion drift velocity (think of the surface currents on the cylinders in
Fig. 5.2!).

Next, we shall neglect the term containing the vector divergence of the total
pressure tensor divided by the number density n in (5.46). This leaves us with the
following pair for the electric field natural components in the center of mass fluid:

E cm? D E? C V � B D �J ? C J � B

ne

E cm? D �J k (5.49)

With a little vector algebra we arrive at the following:
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E cm � B D �neE cm? � �2neJ ? � J ?
B2

ne

or

J ? D �neE cm? � E cm � B

B2=ne C �2ne

We now introduce a series of plasma parameters, particularly important in iono-
spheric physics:

Field-aligned conductivity: 
k D 
 D 1=�

Hall coefficient (take into account (1.21) and (5.41):

H D !C

�ei

D B

�ne
(5.50)

Transverse conductivity: 
T D 
=.1 C H 2/

Hall conductivity: 
H D 
=.H C 1=H/

With these designations, the expression for the perpendicular component of the
current density becomes:

J ? D 
T E cm? C 
H e � E cm (5.51)

All this, including the parallel equation, can be condensed into one tensor equation

J D � E cm (5.52)

where � is the grand conductivity tensor13:

� D
0
@ 
T �
H 0


H 
T 0

0 0 
k

1
A

It is important to note that even in absence of collisions (� D 0), there is a relation
between the current density and the electric field in the center of mass system: J ? D
ne=Be � E cm. This is why E cm is also called the Hall field. In this case of zero
resistivity, and considering that V ' V i , we can conclude from the second equality
in (5.49) that

0 D E ? C V i � B � .V i � V e/ � B D E? C V e � B (5.53)

13Radio propagation engineers define the Hall coefficient and Hall conductivity with opposite sign.
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But this just tells us that the electric field in the electron fluid is zero in this case! In
other words, a near-zero probe particle in the OFR will drift with the electron fluid.
Calling up the image of moving field lines, in a collisionless plasma magnetic field
lines are “frozen” into the electron fluid.

Our next example will have a further simplification in the reduced Ohm
equation (5.45): not only will we neglect the left-hand side, but by comparing the
order of magnitude of the Hall term (ŒJB=ne� D ŒH�J �, see (5.50) and (5.41)) with
that of the resistive term Œ�J �, we see that it, too, can be neglected when the Hall
coefficient H is sufficiently small (resistivity sufficiently high). And if we neglect
the Hall term, we can also neglect rP=ne, because if we assume a stationary state
dV =dt D 0, we have J � B D rP. In the Maxwell equations, we shall consider
@E=@t D 0, and that there are no external sources of the field. These “fat-cutting”
measures leave us with the following set of equations:

E D �J � V � B

r � B D �0J

r � E D �@B

@t
(5.54)

Of course, we always must consider r � B D 0, r � B D 0 and r � E D �q=�0 ' 0.
Inserting E into the last equation and taking into account that r�.r�B/ D �r2B,
we obtain the following partial differential equation:

@B

@t
D �

�0

r2B C r � .V � B/ (5.55)

This equation tells us that, under these simplified conditions, the magnetic field in
a resistive plasma can change locally in time because of the local resistivity and
because of the local hydrodynamic flow pattern. It is a relationship that, by the way,
is valid for all conducting fluids!

When the plasma is at rest (V ' 0), (5.55) becomes a regular diffusion equation,
with solutions that have a factor e�t=� , with a decay time � D �0L

2=� (L: scale
size of the system). In absence of any external sources, the self-generated magnetic
field of a plasma will decay exponentially. Since in Appendix A.1 we have assigned
primary physical “reality” to the currents that sustain a magnetic field, we should
re-state this: in a plasma under these conditions, the currents r � B will decay
exponentially! The physical reason is easy to understand: collisions destroy the
adiabatic behavior of the electrons; they diffuse and “smear out” the equivalent
currents. Consider Fig. 5.2, and suppose that instead of sparsely populated by
cycling particles, the cylinder is filled with denser, colliding ions and electrons. The
boundary equivalent currents r �M are mainly carried by electrons. Collisions with
the ions will disperse them and decrease exponentially the boundary surface current
system. Since there is an overall uniform external field which originally was reduced
inside the cylinder (diamagnetic effect), the total field intensity inside will increase
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back to the external field value. In the picture of moving field lines, originally
outward-displaced field lines will straighten and move back into the cylinder.

The case of zero resistivity (collisionless plasma) in (5.55) should be reconsid-
ered from the beginning. We arrived at this equation by neglecting the Hall term
when compared to �J . When the latter is zero, we must compare the Hall term with
V �B in the simplified Ohm’s equation. The current density is J D �ne.V e �V i /;
if V ' V i 
 .V e � V i / we can neglect the Hall term in a collisionless plasma,
and (5.55) becomes

@B

@t
D r � .V � B/ (5.56)

This equation tells us that magnetic field flux tubes will move with the guiding
center fluid. Indeed, the time-change of the magnetic flux through a contour whose
points move with the fluid will be

d˚

dt
D
Z

S

@B

@t
� dA C

I
B � .V � dl/ D

Z
S

�
@B

@t
� r � .V � B/

�
� dA D 0

It can be easily shown that any contour on a flux tube will conserve the enclosed flux
while moving with the plasma, thus preserving the identity of the entire flux tube.
This was the feature that led AlfvKen to formulate the concept of “frozen-in magnetic
fields”.

Speaking of AlfvKen, we come to the last example and with it to the end of this
chapter (and the book). It describes a wave process in collisionless plasmas, alluded
to earlier in Chap. 4; however, we will only mention the most basic concepts (plasma
waves deserve an entire book!) Consider a collisionless plasma in equilibrium in a
uniform magnetic field B0 directed along the z-axis under the same conditions as
in the previous paragraph (V D 0I �m D 0). We introduce a small perturbation v

and b perpendicular to the uniform magnetic field. The equations to be used for the
perturbations will be to first order in the perturbations:

�m

@v

@t
D 1

�0

�r � b
� � B0

@b

@t
D .B0 � r /v (5.57)

If b is directed along the x-axis, v will also be directed along that axis and we can
find two solutions b D b.z/ and v D v.z/ that obey

�m

@v

@t
D B0

�0

@b

@z

and

@b

@t
D B0

@v

@z
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Taking @=@t of both we end up with two wave equations for v and b:

�
@2

@z2
� 1

V 2
A

@2

@t2

�
.vI b/ D 0

with

VA D B0p
�0�m

(5.58)

the AlfvKen velocity, with which any perturbation propagates in a collisionless plasma
in the direction of the originally unperturbed magnetic field. It can be shown
geometrically that in this process the elicited displacement pattern of the field line
is proportional to the pattern of field and velocity perturbation and propagates with
them. AlfvKen waves are commonly interpreted as transverse oscillations of magnetic
field lines. A bit more precisely, AlfvKen waves are transverse fluid oscillations
which, as they propagate in the direction of the main field, distort the field lines
in their oscillatory motion. The oscillatory electric field is perpendicular to the mag-
netic field variations, and both are mutually out of phase by �=2, and perpendicular
to the propagation vector. The AlfvKen wave velocity only depends on the local mag-
netic field intensity and plasma mass density; thus there is no dispersion (frequency
dependence) and the wave profile remains the same as it propagates. Historically,
it was soon recognized that the so-called micropulsations of the ground-based
geomagnetic field were standing oscillations of field-aligned AlfvKen waves—
making the magnetosphere a planetary-scale “musical instrument” of vibrating field
lines. At the time of the discovery of these ultra low frequency (ULF) AlfvKen waves,
it was quite difficult to imagine the possibility of a wave propagation process in a
collisionless gas—AlfvKen waves became a prime example of the intricate interplay
between currents and fields in a collisionless plasma. And, as we have mentioned in
Chap. 4, they indeed play a fundamental role in the dynamics of the radiation belt.

In this chapter we just gave a somewhat superficial description aimed at
showing how collisionless plasmas can be understood intuitively by focusing on the
fundamental properties of the adiabatic behavior of charged particles in magnetic
and electric fields. Formal and detailed descriptions can be found, for instance, in
[2] (includes the most important relativistic equations), [3] and [4].

5.6 Epilogue

In his waning days AlfvKen insistently lamented to one of us (JGR) about having
promulgated the concept of “frozen-in magnetic field” and “moving field lines”
too much during the early times of space plasma physics. He fully recognized
that the field line is a purely geometric concept that can be very helpful in
visualizing magnetic field geometry and, in certain situations, its time-changes, but
that this image must be handled with great care. Field lines do not drag plasma,
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nor does plasma drag field lines—plasma moves in response to magnetic and
electric forces acting on currents and charges embedded in the fluid, a process
mathematically described by linking plasma and Maxwell’s equations. It so happens
that under certain circumstances we can visualize in our minds this motion as that
of continuously changing magnetic field lines, co-moving with the plasma or, rather,
its constituent electron fluid (see (5.53)).

As a tribute to AlfvKen, let us end the book with the “grand finale” of a
kindergarten example. Turn back to Fig. 5.2, and assume that now we have a neutral
dense ensemble of 90ı particles evenly distributed in that cylinder, in an external
homogeneous magnetic field B. To avoid undesirable equivalent polarization
charges and other complications, we’ll assume it to be a low-beta plasma (p �
B2=.2�0/, page 136). The field inside the cylinder B� D B C b will be reduced
in intensity due to the diamagnetic effect of the boundary equivalent currents; the
field topology of the self-field b is in effect that of a solenoid, opposed to B inside.
This means that the total field will exhibit field lines bent somewhat outwards all
along the lateral boundary surface, leaving a reduced flux inside. Now we turn on a
uniform electrostatic field, say, perpendicular into the paper in Fig. 5.2, E ? B.
Obviously, the circling particles will all drift to the right with the same speed
VE D E=B , independent of their energy, mass and charge (Sect. 1.3). Will they
carry with them the magnetic field lines? According to our probe particle definition
of field line velocity (1.38), the answer is no! This definition indeed mandates (see
page 20) that we turn off all contributions from potential electric fields, and examine
the probe particle drift exclusively under the action of the �@A=@t induced electric
field. And, carefully depicting in our mind the rigidly drifting axisymmetric A-
vector field configuration of the equivalent current system, regions of appreciable
�@A=@t will only be found in the vicinities of this moving cylindrical surface
current system. In other words, the plasma will drift to the right in the figure (a
kindergarten version of plasma propulsion motor!) and open its way through the
external B-field lines as if you were walking though a corn field by bending the
stocks around you. Field lines will never detach from the original magnet but just
bend out and snap back as the cylindrical surface current system moves by; this
applies to field lines both outside and inside the cylinder. At no time will this plasma
be carrying any frozen magnetic field lines with it!14

14All this is valid only for a low energy density, i.e., low-beta plasma. At higher densities the
situation changes considerably. For instance, the equivalent current envelope may be intense
enough so that the inner field B� is so weak that the guiding center approximation breaks down
and a kinetic description is necessary; in that case we can no longer talk about a common electric
drift. Moreover, if the boundary current is intense enough, field line loops may appear enclosing
parts of the equivalent current system and indeed move together with the bulk motion of the latter;
this happens with the plasmoids in the magnetospheric tail or the solar magnetic loops that detach
from photospheric loops to form the initial stage of a solar mass ejection. In summary, whether
“magnetic field lines carry plasma” or “plasma carries magnetic field lines” depends entirely on the
characteristics and the dynamic behavior of the currents around which those field lines are wound
(remember that a magnetic field line is always part of a closed loop because of r � B D 0—even
if that closure involves an infinite number of turns or occurs at infinity!).
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Appendices

A.1 What You Should Know About B but Maybe Forgot

This book deals with the dynamics of electrically charged particles in the radiation
belts and collisionless plasmas. We are interested in certain common physical
characteristics of their motions in certain configurations of magnetic (and sometimes
also electric) fields under certain a priori limiting conditions of energy and spatio-
temporal scales. In most chapters the fields are given, i.e., controlled by sources
external to the regions of interest, such as the Earth’s internal core currents and the
currents in the ionosphere, outer magnetosphere and interface with the solar wind.
Only in the last chapter do we consider the contributions to the fields by the particles
themselves. This appendix should serve not as a boring presentation of the algebraic,
differential and geometric vector relationships between magnetic field quantities
needed in the main text, but, rather, as a discussion of the physical meaning
and field-topological consequences of such relationships. They are important not
only from the mathematical point of view but should also be of interest to the
experimentalist—indeed, of all space variables of interest, the magnetic field
vector is perhaps the one most accessible to accurate, global and standardized
measurements. In addition to these more “practical” aspects, in this appendix
we will briefly elaborate on Maxwell’s equations and some important conceptual
aspects thereof that are germane to a better understanding of cause-and-effect
relationships in magnetospheric plasma physics.

A.1.1 Magnetostatics in a Nutshell

Much of this book deals with cases in which a static magnetic field imposed from
outside provides the organizing structure within which ensembles of individual
particles move. For reasons that will become apparent further below, we shall
introduce the equations ruling magneto- and electrostatics in the following, less

J.G. Roederer and H. Zhang, Dynamics of Magnetically Trapped Particles,
Astrophysics and Space Science Library 403, DOI 10.1007/978-3-642-41530-2,
© Springer-Verlag Berlin Heidelberg 2014
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traditional way. We begin with an “ideal experiment” (by which we mean an
experiment feasible in principle that would come out the way we claim, but which
would be difficult to conduct accurately in practice). Let us assemble a given
macroscopic distribution of charges and currents in a limited portion of 3-D space
by bringing in charge elements ıq D �dr3 from infinity, and turning on closed
current loops made of current elements ıj D J dr3 with some e.m.f. (e.g., batteries).
We do this very, very slowly, holding the charges in equilibrium at all times by
some external mechanical forces, and registering the mechanical or chemical energy
delivered or extracted by the e.m.f.’s (assuming that no other matter is present, there
should be no ohmic losses or polarization effects). Once the charges and current
loops are assembled, we make sure, again through external forces, that the system
remains in a steady equilibrium state. The total mechanical work Ue and Um that
must be done to assemble these distributions in vacuum turns out to be

Ue D 1

4��0

1

2

“
�.r/�.r 0/ˇ̌

r � r 0ˇ̌ dr3dr03 (A.1)

Um D �0

4�

1

2

“
J .r/ � J .r 0/ˇ̌

r � r 0 ˇ̌ dr3dr03 (A.2)

These are sextuple integrals over the spatial coordinates r and r 0, representing
the linear sum of mutual, symmetric interactions of pairs of static charge and
current elements, respectively. The constants of proportionality 1=4��0 and �0=4�

universally represent the intensity of electrostatic and magnetostatic interactions.
They are written to conform to traditional notation; each �0 and �0 must be sepa-
rately determined experimentally once a unit of charge is adopted by international
agreement (the unit of current density J follows from J D �v).1 Notice in (A.1)
and (A.2) that none of two interacting elements is “privileged” in any way over
its partner—electro/magnetostatic interactions have no cause-effect direction, or
preferred “source-probe” relationship. The singularity at jr � r 0j D 0 is no problem
as long as � and J are “well-behaved” continuous functions.

In reality, � and J are densities, i.e., macroscopic physical quantities; each
element of volume dr3, when examined with a magnifying glass, will be seen to
contain huge amounts of microscopic “point” particles. In other words, when using
the functions � and J in electromagnetism we are replacing “microscopic reality”
(a statistical distribution of particles) with a model, a virtual continuum of electri-
cally charged matter; � and J are local space-time averages of point charges in an
element of volume dr3. This is neither mathematical nor philosophical nitpicking—
it is quite germane to understanding correctly the fundamental relations (A.1)

1In the SI system of units, �0 D 8:85 � 10�12 .C/2 .N/�2 m�2, �0 D 4�10�7 .N/ .C/�2 s2 and
the unit of charge (the Coulomb) is that of 6:2418 � 1018 protons (number of elementary charges
which makes the figure in the value of �0 come out exactly 4�10�7).
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and (A.2): they represent the total energy of assembling macroscopic charge and/or
current distributions, but they do not include the energy needed to create the
microscopic charges themselves!2

In (A.2) and (A.1) the charge and current densities are not completely inde-
pendent: although we have assumed quasi-equilibrium, they must obey the most
absolute conservation principle of physics, namely that the total electric charge in a
closed system is constant, or, in general form:

d

dt

Z
V

�dr3 D �
I

˙

J � dS (A.3)

where ˙ is a fixed, closed surface and V the volume enclosed. It is this conservation
theorem that requires the distribution of currents to consist of closed current loops
(rJ D 0) in order to secure a stationary state. There is another important point
to make. In our “ideal” experiment above we assumed that the current loops and
charges were given, i.e., assembled by means of outside intervention—actions
controlled by, and energy delivered by, systems external to the electromagnetic
environment under consideration. In the real world, in presence of other matter, we
also encounter macroscopic currents and charges which appear as a function of the
local electromagnetic environment (field). Among them are the so-called equivalent
currents and charges (the magnetization currents and polarization charges in certain
materials and plasma); although they do not represent macroscopic transport or
accumulation of individual charges, their macroscopic electromagnetic effects are
similar to those of “real” charge convection currents (J c D �v) and “free charge”
density (�).3 In what follows we shall ignore this distinction for the time being.

2The following example will illuminate this better. Consider two separate spheres uniformly
charged (a macroscopic model!) with total charge CQ and �Q, respectively. � at any interior
point will be given by Q=Œvolume of sphere�. The total energy as given by the integral (A.1) can
be divided into two big positive parts corresponding to the integrals over the pairs r ; r0 that lie
within each sphere (energy needed to assemble each sphere in isolation), and a much smaller third
negative component containing the split pairs with jr � r0j going from one point r in one sphere
to another one r 0 in the other (energy needed to bring the already assembled charged spheres
together). If one shrinks the size of the spheres to a point while maintaining the charge jQj, those
big positive contributions will run into infinity. Now, consider the fact that by using delta functions,
a single point charge at r0 can be expressed as a charge density in the form �.r0/ D q ı.r �r0/ (the

defining property of the delta-function is
R

C1

�1

f .x/ı.x � a/dx D f .a/). Likewise, the current
density of a moving point charge is J .r0/ D qv ı.r � r0/. For an ensemble of point charges qi ,
the integral in (A.1) will turn into sums over the point charges: Ue � ˙.qi qk/=jr i � rk j—but we
must eliminate the singularities at r D r 0 by imposing the condition i ¤ k. This is like leaving
out the self-energy of both spheres in the preceding example, with the total energy Ue coming out
negative. Note that it is impossible to create a single charge “from scratch”, but that we can create
an element of current by just setting a charge in motion.
3Equivalent currents and charges can also be external sources of a magnetic or electric field: the
magnets and electrets are materials of “given” quasi-permanent magnetization and polarization,
respectively.
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It is convenient to define the potentials V and A as scalar and vector functions
of position:

V.r/ D 1

4��0

Z
�.r 0/ˇ̌
r � r 0ˇ̌dr03 (A.4)

A.r/ D �0

4�

Z
J .r 0/ˇ̌
r � r 0 ˇ̌dr03 (A.5)

and express the total energies in simpler terms:

Ue D 1

2

Z
�.r/V .r/dr3 and Um D 1

2

Z
J .r/ � A.r/dr3 (A.6)

It can be deduced from the above energy equations (a tricky task for closed
current distributions!) that the electro- and magnetostatic force densities at a given
point of a charge and current distribution are, respectively,

f e D ��rV (A.7)

f m D J � .r � A/ (A.8)

It also follows that the functions qV and qv � A appear in the Hamiltonian of
mechanical systems with point charges—a fact that confers to the electromagnetic
potentials a physical meaning far beyond that of merely being mathematically
convenient functions.4 Finally, we introduce the electrostatic and magnetostatic
fields

E D �rV and B D r � A

so that the total electromagnetic force density acting on a distribution of charges and
currents can be written as f D �E C J � B, which for just one point charge leads
to (1.1).5 For the field vectors we can verify that the following first-order differential
equations are a consequence of (A.1) and (A.2):

r � B D 0 (A.9)

r � B D �0J (A.10)

4Contrary to the scalar potential V , which plays a direct practical role because it can be manipulated
in the lab, the vector potential A plays a lesser practical role in magnetostatics.
5The fields thus defined are macroscopic entities inside a charge and current distribution—i.e., they
must be viewed as fields in a virtual continuum of charge and current. The actual “real” microscopic
fields inside a material medium are a wild bunch, fluctuating around from zero to near-infinity as
point charges fly by. Older E&M textbooks spend many pages with rigorous proofs that inside
a medium the E and B vectors in Maxwell’s equations are indeed space-time averages of the
microscopic fields.
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r � E D 0 (A.11)

r � E D 1

�0

� (A.12)

These are the Maxwell’s equations for static fields in vacuum. Turning around the
issue (as it is normally presented in textbooks), given a distribution of charges � and
currents J in space, the general solution of these differential equations are, in terms
of the potentials, the integrals (A.4) and (A.5).

Concerning the current density J in (A.10), we mentioned that in presence
of matter there are two distinct types: (i) convection currents, i.e., collectively
moving charges J c D �V , and (ii) equivalent currents J e D r � M due to matter
of magnetization density M and/or an ensemble of charged particles in cyclotron
motion (1.26). Although not an issue in this book, also the charge density � can be
of two types, free charges � and equivalent charges �r � P , where P is the electric
polarization density in an ensemble of charged particles or a material medium. In
Chap. 5 we deal with quasi-neutral ensembles of charged particles, in which the
total charge density is always extremely small, i.e., where j�Cj Š j��j; in that case,
convection currents can only flow when V C ¤ V �. And in presence of collisions,
we will encounter a third kind, the conduction related to the electric field J D 
E .
The magnetization and polarization densities as well as the conductivity may all be
functions of corresponding local macroscopic fields, hence they are not independent
variables; in a plasma or conducting fluid, even convection currents (bulk charge
flows) may be field-dependent variables under certain circumstances.

The field vectors E and B are usually viewed as the principal physical
magnitudes of electromagnetism since Maxwell’s times. Indeed, they are defined
in whole space and can be considered intuitively as local “ambassadors”—even in
vacuum—of all distant electromagnetic sources. In the post-Faraday era a transition
indeed has taken place from the “action-at-a-distance” point of view to the picture of
local field!charge and charge!field actions. And yet, we wish to emphasize that,
in the end, what is wanted in electromagnetism is quantitative information about
effects on electrically charged matter—regardless of how we depict in our minds,
and what physical properties we assign to, the empty space between clumps of that
charged matter.6 Indeed, forces and energy are the only physical magnitudes that
can be directly measured, and electric charges attached to physical matter the only
ones that we can manipulate from outside through non-electromagnetic interactions.
To create a field, to delete a field, to change a field, to measure a field, to probe
its alleged mechanical properties, inevitably requires the presence of electrically
charged matter—and this is even true in quantum electrodynamics!

6Maxwell himself cautioned that “his theory was to be regarded as a mere picture of nature, a
mere analogy, which at the moment allowed one to summarize all the phenomena in the most
comprehensive way” (quoted in [1], page 68).
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field line

Fig. A.1 The local natural
coordinate system

A.1.2 “Natural” Coordinate Systems in a Magnetic Field

In this section we shall examine some fundamental geometric/topological properties
of a static magnetic field satisfying Eqs. (A.9), (A.10) and related relationships and
physical meanings. First, we shall discuss the meaning of the spatial derivatives
@Bi =@xk . For this purpose we introduce a “natural coordinate system” as a local
Cartesian system whose axes are oriented as shown in Fig. A.1. Clearly, there is a
different system for each point of a B–field; for this reason the natural system is
only used as a coordinate system in the infinitesimal environment of the point in
question (unless the field is homogeneous). The z-axis is parallel to B at O and the
(y; z) plane is the osculating plane of the field line7 through O (i.e., the limit of a
plane defined by O and two field line points on either side, as the latter approach O).
Axis x is normal to that plane. e is a unit vector parallel to B; n lies in the osculating
plane and is normal to the field line; the binormal b is perpendicular to both. We can
write e D B=B; note that this expression is valid in any coordinate system. C is
the center of curvature of the field line at O ; ıs is an element of arc length, and,
by definition of radius of curvature Rc , we have ıs D Rcı˛. The components of
the magnetic field at the origin of a natural system are Bx.0/ D 0, By.0/ D 0

and Bz.0/ D B . It is very important to realize that in a non-uniform magnetic field
the natural system varies from point to point, i.e., that the unit vectors b; n; e have
non-zero spatial derivatives.

7Field lines are geometric entities useful for the visualization of any vector field F .x; y; z/. They
are 3-D curves with the property that at each point the field vector is tangent: F D F e, where e is a
unit vector tangent to the curve. A field line is defined through the geometric-differential relations
dx=Fx D dy=Fy D dz=Fz on each one of its points xf ; yf ; zf . If we express the equations
determining a 3-D curve as the pair of functions xf D xf .zf /; yf D yf .zf /, the differential
definition of a field line leads to the pair of simultaneous differential equations that define it:
dx=dz D Fx=Fz and dy=dz D Fy=Fz, with the initial condition given by the coordinates of the
point through which the line should be traced. The right hand sides are known functions of x; y; z.
The solutions x; y as a function of z are the equations of the field line.
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a b

Fig. A.2 Depiction of geometric field and field line parameters

Figure A.2a, b show two aspects of the geometric meaning of the partial
derivatives @Bi =@xk in the natural coordinate system. B 0 and e0 are the field vector
and the unit vector along it at a neighboring point P , on the y-axis in Fig. A.2a and
along the field line in Fig. A.2b. There are some important “a priori” relationships
(henceforth we shall use indistinctly ız or ıs as the displacement along B or the
field line):

@Bx

@z
D 0 (by definition of osculating plane) (A.13)

@By

@z
D � B

Rc

(see Fig. A.2b) (A.14)

@e

@s
D � n

Rc

(by definition of curvature) (A.15)

From (A.9) we conclude that

@Bz

@z
D @B

@s
D ��@Bx

@x
C @By

@y

�
(A.16)

From all this we obtain the components of the curl of B in the natural system:

r � B D
�

@B

@y
C B

Rc

�
b C

�
� @B

@x

�
n C

�
@By

@x
� @Bx

@y

�
e (A.17)

An often-used quantity is the gradient of the modulus B , or rB D Œ@B=@x;

@B=@y; @B=@z�. The first two components represent the vector r?B D @B=@x bC
@B=@y n; the z component is r kB D e @B=@s. This allows us to introduce the
gradient operator r in its natural components:

r D r? C r k (A.18)
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which can be written for a general coordinate system as

rk D e
@

@s
D e.e � r / D B

B

�
B

B
� r
�

(A.19)

r? D r � r k D r � e.e � r / D r � B

B

�
B

B
� r
�

(A.20)

In this business, it is indeed important to always find the most general vector
expressions whose form is independent of the particular coordinate system in which
they are formulated.

There is another expression for the perpendicular gradient valid in all coordinate
systems, and used in several parts of the main text. It is obtained by crossing (A.17)
with the unit vector e, taking into account (A.15) and rearranging terms:

r?B D B
@e

@s
� �r � B

� � e D �
B � r�

�
B

B

�
� �r � B

� �
�

B

B

�
(A.21)

In absence of local currents (r � B D 0), we have

r?B D B
@e

@s
D �

B � r�
�

B

B

�
and rkB D e

@B

@s
D
�

B

B
� r
�

B (A.22)

The latter, because in view of (A.13) and (A.14), the components of @B=@s

are Œ0I �B=Rc I @B=@s�. Another set of useful relations, trivially resulting from
B D Be is

@B

@s
j? D e

@B

@s
D
�

B

B
� r
�

B

@B

@s
jk D B

@e

@s
D �

B � r�
�

B

B

�
(A.23)

We now bring in more explicitly the current density J . First we evaluate the curl
of the unit vector e. At first sight it may seem strange that the spatial derivative of
a unit vector which determines the direction of an axis of a coordinate system is
not zero. But remember that the coordinate system in question is local, i.e., changes
from point to point—and with it, its axes change (see Fig. A.2). We have, taking into
account that B � rB D B � r?B and making use of (A.21):

r � e D r � B

B
D e � @e

@s
C e

B � �r � B
�

B2
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Fig. A.3 Divergence/
convergence of field lines

This leads us to the pair of expressions:

r � e
ˇ̌
? D e � @e

@s
(A.24)

r � e
ˇ̌
k D e

e � �r � B
�

B
(A.25)

In the main text, we deal frequently with the perpendicular and parallel compo-
nents of the current density. From (A.21) and taking into account (A.20) and (A.25)
for a static field, we obtain the pair:

�0J ? D r � B
ˇ̌
? D B �

�
@e

@s
� r?B

B

�
(A.26)

D B

B
�
��B

B
� r�B � rB C .B � r/

�B

B

��

�0J k D r � B
ˇ̌
k D B


�r � e
� � e

� D B
�r � B

B

�
(A.27)

Notice that the expression of J k cannot be reduced any further than just being the
parallel component of the curl of B. As shown in the main text, this is one of the
fundamental properties responsible for the quite different character of field-aligned
currents as compared to that of perpendicular currents in a plasma.

We now turn specifically to the geometric properties of a magnetostatic field,
in particular the topology of its field lines, as determined by the spatial derivatives
of its components. In Fig. A.3 we illustrate how the diagonal components @Bi =@xi

control the divergence or convergence of magnetic field lines. 1=B .@Bx=@x/ and
1=B .@By=@y/ give the angular measure of this spread, and 1=B .@Bz=@z/ D
1=B .@B=@s/ that of the relative rate of change of the magnitude of B which assures
the constancy of the flux through an infinitesimally thin expanding or constricting
flux tube. Of course, because of (A.16), this trio of derivatives is not independent.
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Fig. A.4 Torsion of field
lines

Fig. A.5 Torsion effect of a
field-aligned current density
tube

Next we consider the derivatives that appear in the parallel (z) component of
the curl of B: @By=@x and @Bx=@y (assume that all other derivatives are zero).
Figure A.4 shows the case when both add up to zero:

@By

@x
C @Bx

@y
D 0

Observing the figure, this obviously means that the field lines surrounding the axis
z are wound up, with a torsion parameter (absolute values only!)

� D ı˛

ı�
D 1

B

@By

@x
D 1

B

@Bx

@y
(A.28)

In this case we must have a parallel current

�0Jk D @By

@x
� @Bx

@y
D 2B� (A.29)

Do not think that this current only flows along the z-axis: it is a current density,
and as we move away from that axis (ı� increases) the torsion increases and the local
z or n axis gets more and more tilted (see sketch in Fig. A.5). So the picture becomes
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Fig. A.6 Shear of field lines

increasingly complicated and will depend on exactly how the derivatives in (A.28)
themselves vary in space. The resulting flux ropes are topologically complicated
entities, and applying intuition is indeed a dangerous game! The bottom line of all
this, in particular relation (A.29), is that any field-aligned current J k causes torsion
of neighboring magnetic field lines. The reverse, however, is not necessarily true:
there exist field-line topologies that look like torsion but wherein r � B D 0—
e.g., the vacuum field around a current-carrying wire with a weak magnetic field
parallel to the wire, or the vacuum field in a solenoid with a weak longitudinal
linear current, as in some plasma fusion machines.

The other extreme case with these two derivatives arises when

@Bx

@y
� @By

@x
D 0

Now certainly there are no field-aligned currents; the effect on the field topology is
that of shear—see Fig. A.6. The shear rate is defined as (absolute values only!)

˙ D ı˛

ı�
D 1

B

@Bx

@y
D 1

B

@By

@x
(A.30)

In this case

@By

@x
C @Bx

@y
D 2B˙ (A.31)

We can summarize the torsion-shear cases in the relations:

@Bx

@y
D B.˙ C �/ (A.32)

@By

@x
D B.˙ � �/ (A.33)
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It is instructive to pull together all the spatial derivatives of the magnetic field
vector into the gradient tensor of the vector B, which is the tensor product of the
gradient operator and B8:

r ˝ B D
0
@ @Bx=@x @By=@x @Bz=@x

@Bx=@y @By=@y @Bz=@y

@Bx=@z @By=@z @Bz=@z

1
A (A.34)

The sum of the diagonal elements or trace of this tensor, a scalar, is zero according
to (A.9). To write the components of this tensor in the natural coordinate system,
we can take into account relations (A.14), (A.16), (A.32) and (A.33):

r ˝ B D
0
@ @Bx=@x B.˙ � �/ r?xB

B.˙ C �/ �.@B=@s C @Bx=@x/ r?yB

0 �B=Rc @B=@s

1
A (A.35)

In absence of local currents, � and r?xB are both zero, r?yB D �B=Rc and
the gradient tensor is symmetric. The condition for a uniform magnetic field is
r ˝ B � 0 in a finite region of space.

In Chap. 5 we will come across an expression that involves the divergence
operator acting on a second order tensor T, of components rTji D ˙k@=@xkTik.
Using (A.26) and (A.21) we can verify that

�0J � B D �0J ? � B D �r�B2

2

�C .B � r/B (A.36)

The components of the first term can be written

@

@xi

�B2

2

� D ˙k

@

@xk

�
B2

2
ıik

�

8A tensor of second rank T is a mathematical entity of nine components Tik which linearly assigns
to any vector P another vector Q in the form Qi D P

k TikPk (in Cartesian space). To assure that
the correspondence P ! Q is independent of the particular coordinate system when changing
from the original Cartesian system O to a rotated system O*, the components of the tensor must
be transformed according to the rule T �

mn D P
ik �mi�nkTik, where the �’s are the cosines of the

angles between the coordinate systems’ axes: �rs D e�

r � es . The tensor product between two
vectors A ˝ B is a tensor whose components are Tik D Ai Bk: The product of a tensor with a
vector (also called contraction) is a vector B D TA with components Bi D P

k TikAk (the very
definition of a tensor). In a Cartesian system there coexists a second version of the product, with
components Bk

T D P
i TikAi (sum over the first index of the tensor); for a symmetric tensor, of

course, B D BT . For the same reason, there are two gradients of a tensor: the one shown in (A.34)
and one transposed, of components r ˝ BjTik D @Bi =@xk .
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where ıik D 1 if i D k and zero otherwise. Likewise, taking into account (A.9) we
can verify that

.B � r/Bji D ˙k

@

@xk

�
Bi Bk

�

The preceding two expressions lead us to an important relation for the magnetic
force density fm, which in components reads

fi D J � Bji D ˙k

@

@xk

1

�0

�
Bi Bk � B2

2
ıik

�
(A.37)

The quantities

Sm;ik D 1

�0

�
Bi Bk � B2

2
ıik

�
(A.38)

are components of Maxwell’s magnetostatic field stress tensor.9 So in vector form:

f m D J � B D rSm (A.39)

where

S D 1

�0

B ˝ B � B2

2�0

I

Finally, it can be shown that relation (A.2) can be converted into an integral over
all space of the quantity u D .1=2�0/B

2:

Um D
Z C1

�1
B2

2�0

dr3 (A.40)

This is why u is called magnetic energy density. Notice that (A.38) and (A.40) are
defined in all of space, i.e., also in vacuum. This is the basis of Maxwell’s
fundamental contribution to the “mechanification” of the electromagnetic field,
assigning it properties similar to those of an elastic medium (but beware: this is
just a model . . . !).

9There is another equivalent stress tensor for the electric field: Se;ik D �0ŒEi Ek � .E2=2/ ıik�.
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A.1.3 Electrodynamics in a Nutshell: Interpreting
Maxwell’s Equations

Let return to the relations (A.1) and (A.2). We introduced them as expressions of
the energy (work of external forces and batteries) needed to build (very slowly,
always in quasi-equilibrium) stationary distributions of charges � and currents J .
We stated that from the physical point of view, these expressions represent the
mutual electrostatic and magnetostatic interactions between elements of charge
(at rest or moving in closed current loops). What if we lifted the restriction of slow,
adiabatic assembly, and the distributions are no longer stationary in the end state?
We must turn to “ideal experiments” again, which will tell us that the fundamental
expressions (A.4) and (A.5) are still valid, but need a small yet very significant
correction:

V.r ; t/ D 1

4��0

Z
�.r 0; tret/ˇ̌
r � r 0ˇ̌ dr03 (A.41)

A.r ; t/ D �0

4�

Z
J .r 0; tret/ˇ̌

r � r 0ˇ̌ dr03 (A.42)

in which

tret D t � jr 0 � rj
c

is the retarded time, i.e., the time retarded by what it takes electromagnetic infor-
mation to travel with speed c from point r 0 to r . In other words, electromagnetic
interactions between charges and currents are not instantaneous: an electric charge
or current is not affected by what is happening elsewhere now, but what happened at
other places earlier—by the time it takes electromagnetic information to travel from
those other places to the point in question. This is no different than what happens
with the acoustical sound field at any given time t : you hear what has been emitted
from any other point in space not at time t (as it is always wrongly shown in the
movies!) but at a retarded time (csound ' 330 m=s).

The law of conservation of electric charge (A.3) remains as stated, but we must
emphasize that in this latter expression everything is taken at the simultaneous
present time t .10 A fundamental fact is that this conservation law links the two

10This is not a trivial statement, especially having the theory of relativity in mind, which tells us that
simultaneity depends on the frame of reference. For instance, take a distribution of charges �.r/

moving rigidly with a common velocity V to the right. Seen from the original frame of reference
(OFR), there is as a convective current distribution J D �V between the left and right edges of
the charge distribution. At the right extreme, again as viewed by an OFR observer, charges will
gradually appear in initially uncharged elements of volume fixed to the OFR; at the left extreme,
fixed volume elements initially covered by the distribution will loose electric charges (@�=@t ¤ 0

there!). The corresponding balance between current and time-rate of change of charge must be
taken at the same instant of time left and right, in the OFR!
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potentials. The distribution of currents in (A.42) can now consist of open current
loops—e.g., current filaments running from one charge accumulation to another,
provided (A.3) is satisfied. All this leads to a surprising relation between the
velocity c and the “static” universal constants �0 and �0. Indeed, the following are
consequences of (A.41), (A.42) and (A.3)11:

r � A C 1

c2

@V

@t
D 0 (called Lorentz gauge) (A.43)

c D 1p
�0�0

(a universal constant) (A.44)

Another result is that the electrical force density (A.7) now becomes

f e D ��
�rV C @A

@t

�
(A.45)

The additional term is an expression of Faraday’s induction law: an electric charge
at rest is subjected to an additional force in a changing magnetic field. For the same
reason, the electric field E D f e=� must be redefined, while the expression for the
magnetic field remains the same:

E D �rV � @A

@t
(A.46)

B D r � A (A.47)

The two terms in the electric field can be called the potential and induced parts,
respectively. The first one originates in all electric charges, the second one in all
changes of currents.12

With the above definitions and relationships, Maxwell’s equations in vacuum
follow at once. There are two ways of writing them, each way conveying a specific

11Just apply the operators @=@t and r � to the integrals (A.41) and (A.42), respectively, and then use
the differential form of (A.3) (once inside the integral, switch the operator r to one with respect
to the variable r 0: r 0 D �r ) [2].
12Note that in the approach followed above, with the potentials defined a priori in (A.41) and
(A.42), the time derivative @�=dt and gradient �r � (with � an arbitrary scalar function) that
respectively can be added to V and A so as to yield the same fields, are zero (Lorentz gauge
(A.43)). Still, physically it is not possible to separate the two parts of E in (A.46) unless one
makes the comparison with a system in which all electric charges have been eliminated, leaving
only a time-dependent current system. The induced part of the electric field is crucial, however, for
the definition of magnetic field line motion, as discussed in Chaps. 1 and 5.
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meaning. The usual presentation13 is the following (as always using rationalized SI
units):

r � B D 0 (A.48)

r � B D �0J C �0�0

@E

@t
(A.49)

r � E D 1

�0

� (A.50)

r � E D �@B

@t
(A.51)

The first Eq. (A.48) can be considered a direct consequence of the fourth, so only
three of the above equations are mathematically independent. The differential form
of the conservation of electric charge

r � J D �@�

@t
(A.52)

can be added as a dependent fifth equation.
Equations (A.48) and (A.50) above tell us, respectively, that magnetic monopoles

(the magnetic equivalents of electric charges) do not exist and that the sources of the
electric field are charge distributions of density �. Therefore, the magnetic field is
purely rotational, with vorticity originating in the electric currents (of density J )
and in the time-changes of the electric field (the “displacement current”), according
to the second Eq. (A.49). The fourth Eq. (A.51) tells us that in a stationary case the
electric field is conservative, but that in a time-dependent situation it has a vorticity
linked to the changing magnetic field (Faraday’s law).

We may be tempted to interpret Maxwell’s equations as showing that the elec-
tromagnetic field at any point r ; t in space-time is determined by local properties
like electric charge and current densities. This is not legitimate, however: what these
equations really tell us is how the spatial and temporal variations of the fields are
locally interconnected and affected by local electric charges and currents. Indeed,
to find out the actual values of E and B vectors at any point r; t in space-time,
one has to integrate the equations (via the electromagnetic potentials V and A;
see above). What ultimately counts in this operation are the charges �.r 0; t 0/ and

13Ludwig Boltzmann once wrote [3]: “War es ein Gott der diese Zeichen schrieb?” (Was it a God
who wrote these signs? . . . ). Indeed, not only does all of classical electromagnetism follow from
these partial differential vector equations, but they also serve as the foundation of special relativity
which revolutionized classical mechanics and the entire conception of space and time (tragically,
Boltzmann hanged himself before he could find this out!)
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currents J.r 0; t 0/ everywhere, near and far,14 taken at the appropriately retarded
times t 0 D tret as shown in (A.41) and (A.42).

The other way of writing down Maxwell’s equations is by just rearranging
the terms and presenting them as “evolution equations” (like the Hamilton and
Schroedinger equations):

@B

@t
D �r � E (A.53)

@E

@t
D 1

�0�0

�r � B � �0J
�

(A.54)

@�

@t
D �r � J (A.55)

with the following source equations as consequence of the above:

r � B D 0 r � E D 1

�0

�

Presented in this fashion we can now legitimately state that what is determined
by the local conditions are the local time evolutions of E , B and �. For the magnetic
field, the time evolution is governed by the local vorticity of E (which disappears
in a static case); for the electric field, it is the local imbalance between the curl
of B and the local current density (this imbalance is zero in a static case); and for
the charge density it is the local net generation (or sink) of currents. However, we
are still kicking the can down the road: vorticity and imbalance are still controlled
by distant causes! And we must always remember that in a plasma (and any other
material medium), equivalent currents appear that in themselves are functions of
the local field that we are trying to determine, but which is a function of all
distant sources. In Chap. 5 we shall address more explicitly this often misunderstood
“chicken-and-egg” or cause-and-effect issue [4]: is it changes in the currents that
lead to changes of the magnetic field or vice versa? Is it changes in the electric field
that drive changes in currents and flows, or do changes in currents and flows shape
the electric field?15 The above evolutionary presentation of Maxwell’s equations

14The case of a plane electromagnetic wave running from �1 to C1 (in which there are no
sources anywhere because it is the solution of a homogeneous wave equation) is useful for teaching
purposes but without any real physical meaning: there are no electromagnetic waves in nature
without a source somewhere at some earlier time!
15An equivalent example of this question can be found in familiar electrostatics. Conductors
are materials which do not admit spatial charge densities when in an equilibrium state—the
free electrons distribute themselves on the surface so as to always maintain a zero electric field
inside (i.e., constant electrostatic potential). Now take a system of several charged conductors
in electrostatic equilibrium. The electric field in the vacuum between them may be extremely
complex, if the shape of the surfaces is very complex. When you change the position (or charge)
of any conductor, both the field and the surface densities on each conductor will change. Question:
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will be helpful, but the inclusion of equivalent currents which do depend on the
local field will be playing the deciding role.

Finally, a few remarks about the often orphaned magnetic vector potential. For a
uniform magnetic field B0, the expression is

A0 D C � r (A.56)

where the vector C is a constant. To this expression the gradient of an arbitrary
function can be added without changing the resulting value of B0 D r � A; this
will be necessary in non-symmetrical situations, in order to conform to the geometry
of the current system giving rise to the uniform field (all uniform fields have a limit
in the real world!). This is one of the tricky aspects of the vector potential: for
instance, in (A.56) what is r? For the field in a circular long solenoid it would
be the radius vector from the axis (see Fig. 1.14); in that case C D B0 (careful:
r � r D 2 because it is a two-dimensional radius vector!). For the near-uniform field
close to a planar laminar 2-D current flow r would be the local vector distance to
the flow surface, and C D B0. The key for a uniform field is the linearity of the
vector potential function A.r/. Notice that (A.5) shows that, in general, the vector
potential will tend to be parallel to the average of the current density distribution
nearest in space and retarded time; the magnetic field, being the curl of A, will tend
to be perpendicular to A; and an induced electric field will tend to be perpendicular
to B if the variation of A is mainly in magnitude (the usual situation), and parallel to
B if A only changes in direction (as in rotating magnetic field systems—e.g., see
Fig. 2.3).

If the sources of a magnetic field are constant in time but move rigidly with
constant velocity V 0, the A-vector in the original frame of reference (OFR) will
vary locally only due to displacement:

@A=@t D �.V 0 � r /A D V 0 � .r � A/ D V 0 � B (A.57)

For the second equality we took into account that in this case r � A D 0. Since
E ind D �@A=@t , relation (A.57) leads precisely to the system transformation for
the electric field given in (1.9). If now instead of moving, a uniform magnetic field
is changing in magnitude PB ¤ 0, the local induced electric field will be

E ind D � PB e � r (A.58)

does the change in electric charge density drive the change in the electric field, or is it the other way
round? The answer is: Yes! Both are true! While it is unquestionable that the scalar potential of the
electric field everywhere is determined (i.e., caused) by the electric charges as prescribed by (A.4),
these charges, if subjected to a field inside the conductor will flow with a density J D 
E inside

(
 is the conductivity) until they are all assembled on the surface in such a way as to zero out the
field inside the conductor. In other words “changes in charge density drive changes in E , changes in
E drive changes in charge density, these changes in charge density drive changes in E , . . . ”—until
equilibrium is reached (a dynamic process that for good conductors takes fractions of a second).
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A.1.4 The Mess with Electromagnetic Units: Why?

Students often complain about the “mess” with electromagnetic units. The reasons
for the existence of several competing systems are found in the history of magnetism
and electricity. It all boils down to the fact that they initially developed as
independent branches of science. The following is a summary of the principal
definitions and relations, translated into current terms and experiments.

Magnets have fascinated scientists for centuries with their capability of action at
a distance (no apparent medium to transmit force and energy from one magnet to
another). The concept of a magnetic field filling the empty space between magnets
existed for a long time—especially when it was recognized that the Earth itself
was a giant magnet. When laboratory experiments and methodical measurements
became a fundamental ingredient of the scientific method, it was possible to define
both, the magnetic dipole moment m and the magnetic field H through the relation
T m D m � H , where T m is the torque on a little “probe” magnet in presence of
a “source” magnet. Another set of experiments showed that the magnetic field at
point r surrounding the source magnet depended on its magnetic moment m0 and
the position in the following way H .r/ D �r .m0 � r=��r3/, with �� a universal
constant (our notation! In reality the concept of “magnetic mass” preceded that of
dipole moment).

Later came the experiments with electrically charged bodies, which if translated
into experiments with electric dipoles of moment p, could be summarized as
T e D p � E , thus defining the electric dipole moment and the electric field. The
field of a source dipole p0 turns out E.r/ D �r .p0 � r=��r3/, with �� another
universal constant (of course, historically, it was experiments with singly-charged
bodies, leading to “Coulomb’s law”). Then came “Oersted’s surprise”, namely that
electric currents generate a magnetic field: a small electric current loop (of intensity
I and area a) behaves like a little magnet of magnetic moment m D ��Ia, with ��
yet another universal constant (again, historically the experiments involved linear
conductors and the magnetic dipole unit was chosen so as to assure that m D Ia
without any new constant). The magnetic field of small current loops, however, had
to be rotational (there was nothing physically at r D 0 to justify a singularity!),
and so another vector was introduced, with the name of “magnetic induction”
B D ��H , which for a small source loop is given by the divergence-free relation
B D r � .��Ia � r=r3/.16 On the other hand, the torque on a little current loop is
T m D ��=�� Ia � B. Finally, in our notation, the force densities in a distribution
of charges and currents are f e D �E and f m D ��=�� J � B, respectively, and
the electric force on a point charge is F e D �qrV , the magnetic (Lorentz) force
F m D ��=�� qv � B. Notice the following rule with our notation: (i) whenever a
charge is acted upon by an electric field, it appears as q in the equations; whenever

16The above vector expressions for H (as a gradient) and B (as a curl) yield identical values
except at the origin, where they differ by �m ı.r/ (which physically represents the singularity of
the conservative field of a point dipole of magnetic “masses”).
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it is the source of an electric field it appears as q=��; (ii) whenever a moving charge
is acted upon by a magnetic field, it appears as ��=��qv; when it is the source of a
magnetic field, it is ��qv.

Then came the study of time variation of the fields. In view of the above
expression of the Lorentz force, Faraday’s law must be written as r � E D � ��=

��@B=@t , and Maxwell’s displacement current is ��=4�@E=@t . The end result is
that Maxwell’s equations, with our notation of the three universal constants read:

r � B D 0 r � B D 4���J C ���� @E

@t

r � E D 4�

�� � r � E D � ��

��
@B

@t
(A.59)

In terms of the potentials, the field vectors will be B D r � A and E D �rV �
��=��@A=@t . The relation between the V and A imposed by the conservation of
charge (Lorentz gauge, (A.43)) is now r �A C��=��@V =@t D 0. Most importantly,
the fundamental relation (A.44) linking now four constants becomes

c2 D ��

��2�� (A.60)

Why are we doing all this? Because from the set of Eqs. (A.59) and (A.60)
one can easily deduce electromagnetic equation forms in all systems of units. For
instance, let us retrieve Maxwell’s equations for the rationalized SI system used in
this book. The main characteristic of this system, besides using MKS mechanical
units, is to define the electric charge as an independent unit, the Coulomb.
Obviously, to obtain the set (A.48)–(A.51) from (A.59), we must set �� D 4�� and
�� D �� D �0=4�. There is another, older system of units in use today, mostly by
astrophysicists and laboratory plasma physicists. It is the Gauss system, in which the
electric charge is a derived unit, selected in such a way that �� D �� D 1 without
units. The unit of charge is called “statCoulomb” (D0:33 � 10�9 C); two charges
of 1 statCoulomb at 1 cm from each other attract or repel themselves with the force
of 1 dyne. In this system, the relation (A.60) demands that �� D 1=c. Maxwell’s
equations and aleatory relationships look as follows in the Gauss system:

r � B D 0 r � B D 4�

c
J C 1

c

@E

@t

r � E D 4�� r � E D �1

c

@B

@t
(A.61)

r � J D �@�

@t

E D �rV � 1

c

@A

@t

B D r � A
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Some claim that Maxwell’s equations in the Gauss system are simpler: “whenever
something changes in time or moves, it has a 1=c in front” (in the conservation of
charge, both 1=c factors cancel). More importantly, they point to the fact that
(i) the field vectors E and B have the same units (and therefore sit together
more harmoniously in the electromagnetic field tensor) and (ii) if one writes the
Maxwell’s equations in 4-D space-time (in which the fourth axis is x4 D �ct), no
universal constants at all appear. We wish to point out, however, that (i) it is most
reasonable to adopt the electric charge, which obeys the perhaps most absolute
conservation law of all, as an independent unit; (ii) even in relativity, space and
time and the B and E components are different animals in all coordinate systems
(never mind that they are interdependent when one system is Lorentz-transformed
into another). These are some of the reasons why it is internationally recommended
to adopt the SI electromagnetic unit system.

A.2 Expression for the Bounce-Average Drift Velocity

To demonstrate relation (3.3), and with it, the conservation of the second invariant J ,
we shall first prove (3.7) for equipotential field lines and static conditions. We begin
by turning off the electric field and/or any external force field; the only drift will be
the gradient-curvature drift (3.2). Consider Fig. A.7. When the guiding center is at
point S of field line `0, the instantaneous drift displacement ıxs is directed along
the binormal bs (positive for positive particles). `Q is a field line traced through
neighboring point P situated along the normal ns; `�

0 is a field line traced through
point S0; carefully observe the nomenclature for the infinitesimal vectors ıxs (drift
displacement), ıs0 (field-aligned or bounce displacement) and ırs (needed for
the gradient calculation). The points O, O0 and Q are field line intersections with
the reference (minimum-B) surface ˝ . It can be shown that in absence of field-
aligned currents, field lines `Q and `�

0 cut through all normals and binormals of
field line `, respectively, regardless of the point S,17 including n0 and b0 on the
reference surface ˝ .

First we seek a general expression of the gradient vector rI (2.37) when it is
operationally defined as described in the main text for a particle mirroring at Bm

(see Fig. 3.5). This gradient will be the limit of ıI=ır0 D .IQ � I0/=ır0. Obviously,

I0 D
Z s0.Bm/

s�

0 .Bm/

�
1 � B.s0/=Bm

� 1
2

ds0 and IQ D
Z sQ.Bm/

s�

Q.Bm/

�
1 � B.sQ/=Bm

� 1
2

dsQ

17The surfaces generated by all normals or binormals of a magnetic field line are respectively
tangent to two orthogonal constant Euler-potential surfaces (e.g., [5]) which intersect along `0;
hence they must contain the field lines `Q and `�

0 , respectively.
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Fig. A.7 Parameters of a
magnetic flux tube in the
natural frame of reference

The variables in the second integral can be related to those in the first one:

B.sQ/ D B.s0/ � jr?Bjırs

and, taking into account that in absence of currents r � B D 0, B.sQ/dsQ �
B.s0/ds0 D 0

dsQ D ds0

�
1 C jr?Bj

B.s0/
ırs

�

Replacing these variables in the integral IQ and expanding to first order, we obtain
for the gradient:

jr0I j D IQ � I0

ır0

D
Z sm

s�

m

�
1 � 1

2
B.s0/=Bm

�

B.s0/

�
1 � B.s0/=Bm

� 1
2

jr?Bjırs

ır0

ds0 (A.62)

In this relation jr?Bjırs=ır0 is dependent on the particular field geometry.
To find the expression of the drift velocity, we first note that in Fig. A.7

B.s0/ıxsırs D B0ıx0ır0; therefore,

V0s D ıx0

ıt
D Vs

B.s0/ırs

B0ır0

(A.63)
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The direction of the vector V 0s is that of the binormal b0, regardless of the position
S of the particle. Taking this relation into account, the magnitude of the bounce-
average drift velocity (3.1) is

hV0i D 2

�b

Z sm

s�

m

V0s

ds0

vk
D 2

�bB0v

Z sm

s�

m

VsB.s0/
ırs

ır0

ds

Œ1 � B.s0/=Bm�
1
2

Taking now expression (2.17) for Vs , we finally obtain

hV0i D 2p

q�bB0

Z sm

s�

m

�
1 � 1

2
B.s0/=Bm

�

B.s0/

�
1 � B.s0/=Bm

� 1
2

jr?Bjırs

ır0

ds0 (A.64)

The integral is identical to the above expression (A.62) for the gradient of I ; hence
we can write, in vector form:

hV0i D 2p

q�bB2
0

rI0 � B0 (A.65)

which is identical to the last term of (3.7).
The next task is to find an expression of the bounce-average drift velocity

for a force field (ignoring for a moment the contribution from (A.65)). If F s

is the external force acting on the particle at any field line point S, taking into
account (A.63) and considering that for equipotential field lines Fsırs D F0ır0 (see
geometry in Fig. A.7),

V0s D Fs

qB0

ırs

ır0

D F0

qB0

(A.66)

This can be expressed in vector form V 0s D F 0 � B0=qB2
0 independently of the

actual position S of the guiding center. The bounce-average thus turns out to be of
the same form:

hV0i D F 0 � B0

qB2
0

Adding this expression to (A.65), we obtain the full Eq. (3.7).
Finally, we must relate this to the “official” second invariant (in the non-

relativistic, equipotential field lines case),

J D 2pI D 2.2mM/1=2

Z sm

s�

m

ŒBm � B.s0/�1=2ds0
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The gradient of J , which assumes constant magnetic moment M , can be decom-
posed into two parts: a spatial variation at constant Bm plus a variation due to
the variation of Bm that stems from a change of particle energy when it drifts to
a different field line:

r0J D r 0J

ˇ̌̌
ˇ
BmDconst

C @J

@Bm

r0Bm

The first term is, by definition, equal to 2pr0I . If U is the potential of the force F ,
taking into account that M D .W � U /=Bm the gradient of Bm will be

r 0BmjMDconst D �r 0U

M
D F0

M

Note that r 0Bm is not the gradient of the local field and that in absence of external
forces r 0Bm D 0.

On the other hand, from the above expression of J and (2.35),

@J

@Bm

D .2mM/1=2

Z sm

s�

m

ds

ŒBm � B.s0/�1=2
D
�

2mM

Bm

�1=2

Sb

The term arising from the derivation of the integral limits is zero. Combining these
results we obtain

r0J D 2pr 0I C �bF 0 (A.67)

It is important to note that Eq. (3.3) holds in the most general case, even if field lines
are not equipotentials and fields and forces vary in time under adiabatic conditions
(2.1) and (2.2).

As a first corollary, an important note on the above relation (A.66). If the external
force at a given point S of the magnetic field line is an electric field E (and
as expected, the field lines are equipotentials), the projected drift velocity of the
reference point O V 0s D 1=B0E 0 � e0 is the same for all points S . This means that
if we place 90ı pitch angle particles of near-zero energy all along a given field line,
after a time ıt they will all still be on a common guiding field line. This is crucial
for the definition of field line velocity ((1.38) and page 20).

As the second corollary, with a bit of boring vector algebra using the above
equations, one can show that all particles of given magnetic moment and J or I

value whose guiding centers are contained at one given time in one given field line
tube of flux �˚ (like the one shown in Fig. A.7) will always occupy flux tubes of
the same flux value during their drift. In other words, not only is the flux through a
cyclotron orbit conserved, also the magnetic flux of a bundle of guiding field lines
of particles of the same M and J remains constant.
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A.3 Conservation of the Third Adiabatic Invariant

We shall prove the conservation theorem of the third adiabatic invariant (3.38) for
equatorial non-relativistic particles only. Consider an initial guiding drift shell ˙

in a stably-trapping magnetic field. For equatorial particles any guiding drift shell
is reduced to a closed B D const. curve on the minimum-B surface, as shown in
Fig. A.8. Remember that for a dipole-like geometry (which has a singularity at
the origin) the flux to be considered in (3.38) is that outside the drift contour18

(Fig. 3.22a). In general, the drift period is given by �d D H
˙ d`=VD (3.35) with

a drift speed which in our case is VD D .T=qB2/r?B (relation (2.15); in the
figure we have assumed positive particles and an inward-pointing field gradient).
Let us assume that at time tP the magnetic field begins to increase adiabatically,
such that condition (3.36) is fulfilled. At time tQ, V D and the electric drift
V E D .E ind � B/=B2 will have brought the particle’s guiding center to point Q,
as shown in Fig. A.9, which is very close to point Q* because of adiabatic condition
(3.36) (a negative particle would gradient-drift in the opposite direction, but the
induced electric field drift would still be outwards). The differential vector �r is
perpendicular to ˙ . The contour ˙Q shown in the figure is the guiding drift shell at
that instant, i.e., the drift path if we were to stop the time variation at time tQ. The
change in B would be:

�B D B.r C �r ; t C �tPQ/ � B.r ; t/ D .@B=@t/�tPQ � r?B�r (A.68)

where �tPQ D tQ � tP ; the minus sign in (A.68) reflects the field geometry and its
time variation adopted for Fig. A.8. Note that this is a purely local relationship; it
can be written for any point of the initial contour ˙ .

Now we calculate the change in the magnetic flux. If ˚ is the magnetic flux
outside the initial drift contour ˙ , the induced electric field during the time-variation
will be related to the changing magnetic field through Faraday’s law:

@˚

@t
D �

I
˙

E ind � d`

with the sense of d` prescribed by the right-hand rule (as applied to the portion
outside of the contour), and ˙ considered as fixed in space—which it is anyway by
definition of guiding drift shell. Since we have assumed that the magnetic field is
increasing ( PB > 0) (Fig. A.8), we’ll have

H
E ind � dl < 0, i.e., E ind indeed points

counterclockwise as shown, causing an additional outward drift—precisely, the drift

18In the field geometry of a mirror machine (see Fig. 2.5) the magnetic flux to be considered is that
inside the more or less cylindrical drift shells. This would reverse the sign of the final result (A.74)
in this appendix.
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Fig. A.8 Sketch of relative
directions of key vectors for a
positive particle drifting in a
slowly increasing magnetic
field

initial guiding 
drift shell

actual drift path 

final guiding 
drift shell

Fig. A.9 Actual drift path of
a particle during a time
interval �tPQ < �d

responsible for the path of the guiding center from P to Q. More specifically, we
now compute the change �˚PQ of the magnetic flux once the particle has arrived
at point Q. By definition, it is the flux delimited by the new contour ˙Q in the final
field minus the flux delimited by the initial contour ˙ in the initial field: �˚PQ D
˚˙Q .t C �t/ � ˚˙ .t/. According to the figure, to first order this is equal to the
time-change of the flux �˚˙ for the fixed contour ˙ in the time-dependent field,
minus the flux through the strip � between the two contours for a time-constant
field. Therefore,

�˚PQ D �˚˙ � �˚� (A.69)

where

�˚˙ D ��tPQ

I
˙

E ind � ı` D �tPQ

I
˙

Eindı`

�˚� D B

I
j�r � ı`j D B

I
�rı` (A.70)
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where the magnitude of the segments �r (? ı`) can be obtained from relation
(A.68) above19:

�r D 1

r?B

�
@B

@t
�tPQ � �B

�
D T

qB2

�
@B

@t

�tPQ

VD

� �B

VD

�
(A.71)

To integrate this equation along the contour ˙ as prescribed in (A.70), we must take
into account the fact that in (A.71), only r?B (i.e., VD) and @B=@t are functions of
`. We obtain

�˚� D T

qB

�
�tPQ

I
˙

�
@B

@t

�
d`

VD

� �d �B

�
(A.72)

What we now need is to find an expression for �B , the change of B along
the actual transient drift path PQ of the particle that ended up on ˙Q when the time
variation was stopped at tQ. For that purpose, we relate �B to the energy change
�TPQ experienced by the particle, using the conservation of the first invariant:
�B D M�TPQ. The result is

�˚� D M

q
�tPQ

I �
@B

@t

�
d`

VD

� �d

q
�TPQ (A.73)

Inserting �˚˙ and �˚� in (A.69) and dividing by �tPQ, we finally have for the
differential quotient:

�˚

�t

ˇ̌
ˇ̌
PQ

D
Z tP C�d

tP

EVDdt C �d

q

�TPQ

�tPQ
� 1

q

Z tP C�d

tP

M
@B

@t
dt

In this relation, note that �TPQ is the integral over time of the time-rate of change
of the particle’s energy between tP and tQ, so that

�˚

�t

ˇ̌
ˇ̌
PQ

D �d

q

Z tQ

tP

dT

dt
dt � 1

q

Z tP C�d

tP

�
M

@B

@t
� qEVD

�
dt

19Here we come to one of those typical intricacies of adiabatic theory. In the above equations we
have two kinds of differentials: mathematical or true differentials, which are supposed to tend
to zero in order to validate the operation in which they participate (a derivative, an integral, a
differential quotient, or just an algebraic relationship). In this book we usually denote them with a
“d” or “@”, like in the expression of Faraday’s law above. And then we have physical differentials,
which represent very small quantities (compared to typical values of intervening variables) but still
must remain finite. We usually indicate them with “ı” or “�”. An example of the latter is �r in
(A.70), which for each point on the drift contour is “physically” a vector sum (integral) of higher
order differential vectors .E ind � B=B2/ıt , all perpendicular to the guiding drift contour ˙ (see
Fig. A.8). But even the higher order differentials like this ıt have lower limits, in this case imposed
by the condition that ıt 
 �C !
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Considering the general energy equation (2.26), we realize that the second integral
is just the time-integral of dT=dt over a full drift cycle! In summary, the final
expression of the rate of change of ˚ can be written:

�˚

�t

ˇ̌
ˇ̌
PQ

D �d

q

�
1

.tQ � tP /

Z tQ

tP

dT

dt
dt � 1

�d

Z tP C�d

tP

dT

dt
dt

�

The two quantities between the brackets are the drift-average values20 of the
particle’s kinetic energy rate of change—in other words the power delivered (or
taken) by the induced electric field in the cyclotron and drift motions, during the
partial drift between points P and Q and one full drift turn, respectively:

�˚

�t

ˇ̌̌
ˇ
PQ

D �d

q

��
dTX

dt

	
PQ

�
�

dT

dt

	
˙

�
(A.74)

This is an interesting result: we may even call it a temporal type of shell splitting!
Whenever �tPQ D n�d , which means that the particle has drifted exactly an integer
multiple of times around, the change of the drift shell flux value is exactly zero, any
dependence on the initial contour point P disappears and all particles on the original
drift contour ˙ will assemble again on one and the same shell. This is no longer true
at any other times tQ ¤ n�d , at which the drift contour appears split into a fuzzy
continuum, until another integer multiple of �d is reached. We may summarize this
in the relation

lim
�t!n�d

�˚

�t
� 0 (A.75)

provided that n�d � �B=.dB=dt/. This represents a “pulsating sharpness” of drift
shells in a slowly changing magnetic field. Of course, because of the adiabatic
condition (3.36) all these drift shells will be very close to each other; still this
can lead to radial diffusion under certain circumstances [6]. It also allows us to
declare that on the average over many drift times, the third invariant is conserved to
first adiabatic order. For azimuthally symmetric @B=@t and V D , the two averages

20Throughout this text we use “phase averages” of some quantity X . Let us summarize them in
one place in orderly fashion:

Cyclotron average: hXic D .1=�c/
H

Xd�= P�; �c D H
d�= P�

Bounce average: hXib D .1=�b/
H

Xds=hv
k

ic ; �b D H
ds=hv

k

ic

Drift average: hXid D .1=�d /
H

Xdl=hVDib ; �d D H
dl=hVDib

For variable l see Fig. A.8; the integrals are to be taken along closed geometric entities:
respectively, the Larmor circle in the GCS (not the actual cyclotron orbit), the guiding field line (not
the actual field lines occupied by the bouncing particle), and the guiding drift shell (not the actual
drift shell engendered by the drifting particle in a changing field). Note that the bounce average
contains a cyclotron average, and that the drift average contains the bounce average of a cyclotron
average!
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in (A.74) are identical, (A.75) is satisfied at all times and particles stay on the
same shell at all times during an adiabatic time variation. Although we have limited
ourselves to equatorial particles (for which noon-midnight, dawn-dusk asymmetry
effects would be maximum anyway), it can be shown that the above conclusions
hold for arbitrary pitch angles [7, 8].
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Betatron acceleration, 45
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–perpendicular velocity, 127
–velocity, 96

Butterfly distribution, 104

Center of mass
–fluid, 142, 152
–velocity, 147

Charge
–conservation, 161, 172
–density, 125
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Coefficient transformation, 120
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–pitch angle, 114
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–coefficient, 121
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Divergence
–or convergence of magnetic field line, 167
–of pressure tensor, 100

Drift
–average, 186
–betatron, 81
–frequency, 112
–loss cone, 69
–period, 79, 183
–phases, 81
–shell, 57, 78

–equations, 65
–tracing, 62

–velocity, 4, 40, 77
Dynamic equation

–guiding center fluid, 137
Dynamic pressure tensor, 99

E-cross-B drift, 14, 39
Elastic collision, 148
Electric field, 173

–dawn-dusk, 30, 113
–drift, 14, 81
–drift current, 134

Electrical force density, 173
Electromagnetic

–force density, 162
–interactions, 160
–units, 177

Electron plasma frequency, 144
Electrostatic field, 162
Energy equation, 45, 80
Equatorial field model, 28
Equatorial particles

–bounce period, 50
–drift contour, 29
–drift period, 29
–drift velocity, 29
–electric field drifts, 30
–half-bounce path, 50

Equipotential field lines, 64, 179
Equivalent charges, 163
Equivalent currents, 128, 130, 134, 154, 161,

163
Euler coordinates, 58
Evolution equations, 175

Fermi acceleration, 45
Field-aligned conductivity, 153
Field-aligned currents, 167
Field line, 164

–equation, 42, 164

–equipotentials, 47
–motion, 20, 32, 157
–velocity, 20, 182

First invariant, 10, 21, 108
First order drifts, 22
Fluid model, 133
Flux invariant, 81
Fokker-Planck equation, 116
Force drift, 12, 39
Free charges, 163
Frozen-in magnetic field, 81, 155

Gauss system, 178
General diffusion equation, 119
Gradient

–of I , 61
–of J , 61
–operator, 165
–tensor, 170

Gradient-B drift, 23, 39
Gradient-B force, 38
Gradient-curvature drift, 41
Guiding center (GC), 3, 8

–approximation, 2
–distribution function, 126
–fluid, 126, 128
–particle, 9, 111
–system (GCS), 2, 36

Guiding drift shell, 80, 82, 111, 183
Guiding field line, 57, 111
Gyro-betatron, 81
Gyroradius, 2, 7
Gyrotropic flux, 92

Half-bounce path, 48
Hall

–coefficient, 153
–conductivity, 153
–field, 152

Hamiltonian, 162

Induced electric field, 19, 79
–numerical calculation, 81

Inertial
–current, 135
–force density, 151
–force drift, 39

Integral flux, 91
Internal

–energy density, 97, 125
–magnetic field, 74
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–multipole effects, 76
–stress, 136

Invariance violation, 112
Invariant latitude, 78
Invariant space, 108

–density, 109
Ion pick-up, 16
Ion plasma frequency, 144
Isotropic distribution, 104
I-value, 49, 60, 73, 84

Jacobian, 94
J-invariant, 60

Kindergarten examples, 128
Kinetic

–energy density, 97
–fluid, 129, 140
–tensor, 98, 125
–tensors, 146

K-value, 65, 84, 110

Larmor radius, 2
Liouville’s Theorem, 101
Lorentz force, 6

–densities, 136
Lorentz gauge, 173
L� or L-star, see L-value

–Roederer, 85
Loss cone, 50
L-value

–McIlwain, 74, 78
–Roederer, 85, 110

Magic pitch angle, 67, 72
Magnetic

–energy density, 140, 171
–field, 173

–H , 177
–flux tubes, 155

–induction B, 177
–merging, 114
–moment, 9, 126

–conservation, 10, 21, 46
–density, 101, 127

–vector potential, 19, 82, 176
Magnetohydrodynamic equation, 146

–momentum, 146
Magnetohydrostatic equilibrium, 137

Magnetosphere compression, 81, 113
Magnetostatic field, 162
Mass density, 96
Mathematical differentials, 185
Maxwell’s equations, 150, 173

–static field, 163
Maxwell’s stress tensor, 171
Mead-Williams model, 66
Minimum-B

–point, 49
–surface, 58

Mirror
–field, 48
–force, 38
–point, 48
–point traces, 57

Momentum
–density, 97
–transfer, 97

Moving field lines, 154

Natural coordinate system, 91, 164
Near-equator field model, 71
Near-equatorial particles

–I-value, 64
–L-value, 74
–drift trace, 71
–drift trace B-value, 64

Normal, 164

Ohm equation
–generalized, 149
–reduced, 151

Omnidirectional flux, 91
Original frame of reference (OFR), 1

Parallel
–current density, 136
–dynamic equation, 137
–electrostatic potential, 50
–equation of motion, 43
–pressure, 99, 104, 127
–temperature, 101

Partial pressure tensor, 145
Particle

–bunching, 96
–detector, 90
–distribution function, 124
–fluid, 125
–flux, 108
–trapping, 48
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Perpendicular
–current density, 134
–dynamic equation, 137
–pressure, 99, 104, 127
–temperature, 101

Phase
–average, 4, 36, 186
–bunching, 111
–space, 124

Physical differentials, 185
Pitch angle, 6

–cosine, 49
–distribution, 92, 104

Plasma, 145
–resistivity, 149

Plasmapause, 32
Polar cap, 83
Polarization drift, 41
Pressure, 97

–anisotropy current, 135
–equilibrium, 105
–tensor, 98, 125

Pseudo-trapping, 28, 69

Quasi-neutrality, 145
Quasi-neutral mixtures, 140
Quasi-trapped, 28

Reference dipole field, 85
Retarded time, 172
Ring current, 131, 135

Scaler potential, 162, 172
Second invariant, 60, 108, 179
Self-energy, 161

Shear rate, 169
Shell

–degeneracy, 66
–splitting, 66

Shell-splitting function, 86
SI system of units, 1, 160
South Atlantic Anomaly, 76
Synchrotron effect, 113

Temperature tensor, 100
Tensor, 170
Tensor product, 170
Third invariant, 81, 108, 186
Time-dependent field, 19, 84
Torsion parameter, 168
Total

–current density, 128
–energy conservation, 46
–momentum density, 147
–pressure tensor, 147

Transverse conductivity, 153
Transverse drift velocity, 133

ULF waves, 113
Unit vector e, 8, 164, 166

˚-value, 81
–calculation, 83

Vector potential, 162, 172
Velocity maps, 52
Vlasov equation, 124
VLF waves, 113

Zero-order drifts, 12
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