
A Super-Fast Distributed Algorithm

for Bipartite Metric Facility Location�

James Hegeman and Sriram V. Pemmaraju��

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA
{james-hegeman,sriram-pemmaraju}@uiowa.edu

Abstract. The facility location problem consists of a set of facilities
F , a set of clients C, an opening cost fi associated with each facility
xi, and a connection cost D(xi, yj) between each facility xi and client
yj . The goal is to find a subset of facilities to open, and to connect
each client to an open facility, so as to minimize the total facility open-
ing costs plus connection costs. This paper presents the first expected-
sub-logarithmic-round distributed O(1)-approximation algorithm in the
CONGEST model for the metric facility location problem on the com-
plete bipartite network with parts F and C. Our algorithm has an ex-
pected running time of O((log log n)3) rounds, where n = |F|+ |C|. This
result can be viewed as a continuation of our recent work (ICALP 2012)
in which we presented the first sub-logarithmic-round distributed O(1)-
approximation algorithm for metric facility location on a clique network.
The bipartite setting presents several new challenges not present in the
problem on a clique network. We present two new techniques to overcome
these challenges.

1 Introduction

This paper continues the recently-initiated exploration [2,1,7,9,16] of the de-
sign of sub-logarithmic, or “super-fast” distributed algorithms in low-diameter,
bandwidth-constrained settings. To understand the main themes of this explo-
ration, suppose that we want to design a distributed algorithm for a problem on
a low-diameter network (we have in mind a clique network or a diameter-2 net-
work). In one sense, this is a trivial task since the entire input could be shipped
off to a single node in a single round and that node can simply solve the problem
locally. On the other hand, the problem could be quite challenging if we were to
impose reasonable constraints on bandwidth that prevent the fast delivery of the
entire input to a small number of nodes. A natural example of this phenomenon
is provided by the minimum spanning tree (MST) problem. Consider a clique
network in which each edge (u, v) has an associated weight w(u, v) of which only

� This work is supported in part by National Science Foundation grant CCF 0915543.
�� Corresponding author.

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 522–536, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 523

the nodes u and v are aware. The problem is for the nodes to compute an MST
of the edge-weighted clique such that after the computation, each node knows all
MST edges. It is important to note that the problem is defined by Θ(n2) pieces of
input and it would take Ω

(
n
B

)
rounds of communication for all of this informa-

tion to reach a single node (where B is the number of bits that can travel across
an edge in each round). Typically, B = O(log n), and this approach is clearly too
slow given our goal of completing the computation in a sub-logarithmic number
of rounds. Lotker et al. [9] showed that the MST problem on a clique can in fact
be solved in O(log logn) rounds in the CONGEST model of distributed compu-
tation, which is a synchronous, message-passing model in which each node can
send a message of size O(log n) bits to each neighbor in each round. The algo-
rithm of Lotker et al. employs a clever merging procedure that, roughly speaking,
causes the sizes of the MST components to square with each iteration, leading
to an O(log logn)-round computation time. The overall challenge in this area is
to establish the round complexity of a variety of problems that make sense in
low-diameter settings. The area is largely open with few upper bounds and no
non-trivial lower bounds known. For example, it has been proved that computing

an MST requires Ω
(
(n
logn)

1/4
)
rounds in the CONGEST model for diameter-3

graphs [10], but no lower bounds are known for diameter-2 or diameter-1 (clique)
networks.

The focus of this paper is the distributed facility location problem, which has
been considered by a number of researchers [12,4,14,15,2,1] in low-diameter set-
tings. We first describe the sequential version of the problem. The input to the
facility location problem consists of a set of facilities F = {x1, x2, . . . , xnf

},
a set of clients C = {y1, y2, . . . , ync}, a (nonnegative) opening cost fi associ-
ated with each facility xi, and a (nonnegative) connection cost D(xi, yj) be-
tween each facility xi and client yj. The goal is to find a subset F ⊆ F of
facilities to open so as to minimize the total facility opening costs plus connec-
tion costs, i.e. FacLoc(F) :=

∑
xi∈F fi +

∑
yj∈C D(F, yj), where D(F, yj) :=

minxi∈F D(xi, yj). Facility location is an old and well-studied problem in op-
erations research that arises in contexts such as locating hospitals in a city or
locating distribution centers in a region. The metric facility location problem
is an important special case of facility location in which the connection costs
satisfy the following “triangle inequality:” for any xi, xi′ ∈ F and yj , yj′ ∈ C,
D(xi, yj) + D(yj , xi′) + D(xi′ , yj′) ≥ D(xi, yj′). The facility location problem,
even in its metric version, is NP-complete and finding approximation algorithms
for the problem has been a fertile area of research. There are several constant-
factor approximation algorithms for metric facility location (see [8] for a recent
example). This approximation factor is known to be near-optimal [5].

More recently, the facility location problem has also been used as an abstrac-
tion for the problem of locating resources in wireless networks [3,13]. Motivated
by this application, several researchers have considered the facility location prob-
lem in a distributed setting. In [12,14,15], as well as in the present work, the
underlying communication network is a complete bipartite graph G = F + C,
with F and C forming the bipartition. At the beginning of the algorithm, each

524 J. Hegeman and S.V. Pemmaraju

node, whether a facility or client, has knowledge of the connection costs (“dis-
tances”) between itself and all nodes in the other part. In addition, the facilities
know their opening costs. The problem is to design a distributed algorithm that
runs on G in the CONGEST model and produces a subset F ⊆ F of facilities
to open. To simplify exposition we assume that every cost in the problem input
can be represented in O(log n) bits, thus allowing each cost to be transmitted
in a single message. Each chosen facility will then open and provide services to
any and all clients that wish to connect to it (each client must be served by
some facility). The objective is to guarantee that FacLoc(F) ≤ α ·OPT , where
OPT is the cost of an optimal solution to the given instance of facility location
and α is a constant. We call this the BipartiteFacLoc problem. In this paper
we present the first sub-logarithmic-round algorithm for the BipartiteFacLoc
problem; specifically, our algorithm runs in O((log lognf)

2 · log logmin{nf , nc})
rounds in expectation, where nf = |F| and nc = |C|. All previous distributed
approximation algorithms for BipartiteFacLoc require a logarithmic number
of rounds to achieve near-optimal approximation factors.

1.1 Overview of Technical Contributions

In a recent paper (ICALP 2012, [2]; full version available as [1]), we presented
an expected-O(log logn)-round algorithm in the CONGEST model for Cliq-
ueFacLoc, the “clique version” of BipartiteFacLoc. The underlying com-
munication network for this version of the problem is a clique with each edge
(u, v) having an associated (connection) cost c(u, v) of which only nodes u and v
are aware (initially). Each node u also has an opening cost fu, and may choose
to open as a facility; nodes that do not open must connect to an open facility.
The cost of the solution is defined as before – as the sum of the facility open-
ing costs and the costs of established connections. Under the assumption that
the connection costs form a metric, our algorithm for CliqueFacLoc yields
an O(1)-approximation. We had hoped that a “super-fast” algorithm for Bi-
partiteFacLoc would be obtained in a straightforward manner by extending
our CliqueFacLoc algorithm. However, it turns out that moving from a clique
communication network to a complete bipartite communication network raises
several new and significant challenges related to information dissemination and a
lack of adequate knowledge. Below we outline these challenges and our solutions
to them.

Overview of Solution to CliqueFacLoc. To solve CliqueFacLoc on an
edge-weighted clique G [2,1] we reduce it to the problem of computing a 2-ruling
set in an appropriately-defined spanning subgraph of G. A β-ruling set of a
graph is an independent set S such that every node in the graph is at most β
hops away from some node in S; a maximal independent set (MIS) is simply a
1-ruling set. The spanning subgraph H on which we compute a 2-ruling set is
induced by clique edges whose costs are no greater than a pre-computed quantity
which depends on the two endpoints of the edge in question.

We solve the 2-ruling set problem on the spanning subgraph H via a combi-
nation of deterministic and randomized sparsification. Briefly, each node selects

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 525

itself with a uniform probability p chosen such that the subgraphH ′ ofH induced
by the selected nodes has Θ(n) edges in expectation. The probability p is a func-
tion of n and the number of edges in H . We next deliver all of H ′ to every node.
It can be shown that a graph with O(n) edges can be completely delivered to ev-
ery node in O(1) rounds on a clique and since H ′ has O(n) edges in expectation,
the delivery of H ′ takes expected-O(1) rounds. Once H ′ has been disseminated
in this manner, each node uses the same (deterministic) rule to locally compute
an MIS of H ′. Following the computation of an MIS of H ′, nodes in the MIS
and nodes in their 2-neighborhood are all deleted from H and H shrinks in size.
Since H is now smaller, a larger probability p can be used for the next iteration.
This increasing sequence of values for p results in a doubly-exponential rate of
progress, which leads to an expected-O(log logn)-round algorithm for computing
a 2-ruling set of H . See [1] for more details.

Challenges for BipartiteFacLoc. The same algorithmic framework can be
applied to BipartiteFacLoc; however, challenges arise in trying to implement
the ruling-set computation on a bipartite communication network. As in Cliq-
ueFacLoc [1], we define a particular graph H on the set of facilities with edges
connecting pairs of facilities whose connection cost is bounded above. Note that
there is no explicit notion of connection cost between facilities, but we use a nat-
ural extension of the facility-client connection costs D(·, ·) and define for each
xi, xj ∈ F , D(xi, xj) := miny∈C D(xi, y) +D(xj , y). The main algorithmic step
now is to compute a 2-ruling set on the graph H . However, difficulties arise
because H is not a subgraph of the communication network G, as it was in
the CliqueFacLoc setting. In fact, initially a facility xi does not even know
to which other facilities it is adjacent in H . This adjacency knowledge is col-
lectively available only to the clients. A client y witnesses edge {xi, xj} in H
if D(xi, y) +D(xj , y) is bounded above by a pre-computed quantity associated
with the facility-pair xi, xj . However, (initially) an individual client y cannot
certify the non-existence of any potential edge between two facilities in H ; as,
unbeknownst to y, some other client may be a witness to that edge. Furthermore,
the same edge {xi, xj} could have many client-witnesses. This “affirmative-only”
adjacency knowledge and the duplication of this knowledge turn out to be key
obstacles to overcome. For example, in this setting, it seems difficult to even
figure out how many edges H has.

Thus, an example of a problem we need to solve is this: without knowing
the number of edges in H , how do we correctly pick a probability p that will
induce a random subgraph H ′ with Θ(n) edges? Duplication of knowledge of H
leads to another problem as well. Suppose we did manage to pick a “correct”
value of p and have induced a subgraph H ′ having Θ(n) edges. In the solution
to CliqueFacLoc, we were able to deliver all of H ′ to a single node (in fact, to
every node). In the bipartite setting, how do we deliver H ′ to a single node given
that even though it has O(n) edges, information duplication can cause the sum
of the number of adjacencies witnessed by the clients to be as high as Ω(n2)?

We introduce new techniques to solve each of these problems. These techniques
are sketched below.

526 J. Hegeman and S.V. Pemmaraju

– Message dissemination with duplicates. We model the problem of de-
livering all of H ′ to a single node as the following message-dissemination
problem on a complete bipartite graph.

Message Dissemination with Duplicates (MDD).
Given a bipartite graph G = F + C, with nf := |F| and nc := |C|,
suppose that there are nf messages that we wish to be known to all
client nodes in C. Initially, each client possesses some subset of the nf

messages, with each message being possessed by at least one client.
Suppose, though, that no client yj has any information about which
of its messages are also held by any other client. Disseminate all nf

messages to each client in the network in expected-sub-logarithmic
time.

We solve this problem by presenting an algorithm that utilizes probabilistic
hashing to iteratively reduce the number of duplicate copies of each mes-
sage. Note that if no message exists in duplicate, then the total number of
messages held is only nf , and each can be sent to a distinct facility which
can then broadcast it to every client. The challenge, then, lies in coordinat-
ing bandwidth usage so as to avoid “bottlenecks” that could be caused by
message duplication. Our algorithm for MDD runs in O(log logmin{nf , nc})
rounds in expectation.

– Random walk over a probability space. Given the difficulty of quickly
acquiring even basic information about H (e.g., how many edges does it
have?), we have no way of setting the value of p correctly. So we design an
algorithm that performs a random walk over a space of O(log lognf) prob-
abilities. The algorithm picks a probability p, uses this to induce a random
subgraph H ′ of H , and attempts to disseminate H ′ to all clients within
O(log logmin{nf , nc}) rounds. If this dissemination succeeds, p is modified
in one way (increased appropriately), otherwise p is modified differently (de-
creased appropriately). This technique can be modeled as a random walk on a
probability space consisting ofO(log lognf) elements, where the elements are
distinct values that p can take. We show that after a random walk of length
at most O(log lognf), sufficiently many edges of H are removed, leading to
O(log lognf) levels of progress. Thus we have a total of O((log lognf)

2) steps
and since in each step an instance of MDD is solved for disseminating ad-
jacencies, we obtain an expected-O((log lognf)

2 · log logmin{nf , nc})-round
algorithm for computing a 2-ruling set of H .

To summarize, our paper makes three main technical contributions. (i) We
show (in Section 2) that the framework developed in [1] to solve CliqueFa-
cLoc can be used, with appropriate modifications, to solve BipartiteFacLoc.
Via this algorithmic framework, we reduce BipartiteFacLoc to the problem of
computing a 2-ruling set of a graph induced by facilities in a certain way. (ii) In
order to compute a 2-ruling set of a graph, we need to disseminate graph adjacen-
cies whose knowledge is distributed among the clients with possible duplication.

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 527

We model this as a message dissemination problem and show (in Section 3),
using a probabilistic hashing scheme, how to efficiently solve this problem on a
complete bipartite graph. (iii) Finally, we present (in Section 4) an algorithm
that performs a random walk over a probability space to efficiently compute a
2-ruling set of a graph, without even basic information about the graph. This al-
gorithm repeatedly utilizes the procedure for solving the message-dissemination
problem mentioned above.

Note: This paper does not contain any proofs, due to space restrictions. All
proofs appear in the archived full version of the paper [6].

2 Reduction to the Ruling Set Problem

In this section we reduce BipartiteFacLoc to the ruling set problem on a cer-
tain graph induced by facilities. The reduction is achieved via the distributed
facility location algorithm called LocateFacilities and shown as Algorithm 1.
This algorithm is complete except that it calls a subroutine, RulingSet(H, s)
(in Step 4), to compute an s-ruling set of a certain graph H induced by facili-
ties. In this section we first describe Algorithm 1 and then present its analysis.
It is easily observed that all the steps in Algorithm 1, except the one that calls
RulingSet(H, s) take a total of O(1) communication rounds. Thus the running
time of RulingSet(H, s) essentially determines the running time of Algorithm
1. Furthermore, we show that if F ∗ is the subset of facilities opened by Algo-
rithm 1, then FacLoc(F ∗) = O(s) ·OPT . In the remaining sections of the paper
we show how to implement RulingSet(H, 2) in expected O((log lognf)

2 · log log
min{nf , nc}) rounds. This yields an expected O((log lognf)

2 · log log
min{nf , nc})-round, O(1)-approximation algorithm for BipartiteFacLoc.

2.1 Algorithm

Given F , C, D(·, ·), and {fi}, define the characteristic radius ri of facility xi to
be the nonnegative real number satisfying

∑
y∈B(xi,ri)

(ri−D(xi, y)) = fi, where

B(x, r) (the ball of radius r) denotes the set of clients y such that D(x, y) ≤ r.
This notion of a characteristic radius was first introduced by Mettu and Plaxton
[11], who use it to drive their sequential, greedy algorithm. We extend the client-
facility distance function D(·, ·) to facility-facility distances; let D : F × F →
R

+ ∪ {0} be defined by D(xi, xj) = minyk∈C{D(xi, yk) +D(xj , yk)}. With these
definitions in place we are ready to describe Algorithm 1. The algorithm consists
of three stages, which we now describe.

Stage 1. (Steps 1-2) Each facility knows its own opening cost and the distances
to all clients. So in Step 1 facility xi computes ri and broadcasts that value
to all clients. Once this broadcast is complete, each client knows all of the ri
values. This enables every client to compute the same partition of the facilities
into classes as follows (Step 2). Define the special value r0 := min1≤i≤nf

{ri}.
Define the class Vk, for k = 0, 1, . . ., to be the set of facilities xi such that

528 J. Hegeman and S.V. Pemmaraju

Algorithm 1. LocateFacilities

Input: A complete bipartite graph G with partition (F , C); (bipartite) metric
D(·, ·); opening costs {fi}nf

i=1; a sparsity parameter s ∈ Z
+

Assumption: Each facility knows its own opening cost and its distances to all
clients; each client knows its distances to all facilities
Output: A subset of facilities (a configuration) to be declared open.

1. Each facility xi computes and broadcasts its radius ri to all clients; r0 := mini ri.
2. Each client computes a partition of the facilities into classes {Vk} such that

3k · r0 ≤ ri < 3k+1 · r0 for xi ∈ Vk.
3. For k = 0, 1, . . ., define a graph Hk with vertex set Vk and edge set:

{{xi, xi′} | xi, xi′ ∈ Vk and D(xi, xi′) ≤ ri + ri′}
(Observe from the definition of facility distance that such edges may be known
to as few as one client, or as many as all of them.)

4. All nodes in the network use procedure RulingSet(∪kHk, s) to compute a
2-ruling set T of ∪kHk. T is known to every client. We use Tk to denote T ∩ Vk.

5. Each client yj sends an open message to each facility xi, if and only if both of
the following conditions hold:
(i) xi is a member of the set Tk ⊆ Vk, for some k.
(ii) yj is not a witness to the existence of a facility xi′ belonging to a class Vk′ ,

with k′ < k, such that D(xi, xi′) ≤ 2ri.
6. Each facility xi opens, and broadcasts its status as such, if and only if xi received

an open message from every client.
7. Each client connects to the nearest open facility.

3k · r0 ≤ ri < 3k+1 · r0. Every client computes the class into which each facility
in the network falls.

Stage 2. (Steps 3-4) Now that the facilities are divided into classes having com-
parable ri’s, and every client knows which facility is in each class, we focus our
attention on class Vk. Suppose xi, xi′ ∈ Vk. Then we define xi and xi′ to be
adjacent in class Vk if D(xi, xi′) ≤ ri + ri′ (Step 3). These adjacencies define
the graph Hk with vertex set Vk. Note that two facilities xi, xi′ in class Vk are
adjacent if and only if there is at least one client witness for this adjacency. Next,
the network computes an s-ruling set T of ∪kHk with procedure RulingSet()
(Step 4). We describe a super-fast implementation of RulingSet() in Section
4. After a ruling set T has been constructed, every client knows all the members
of T . Since the Hk’s are disjoint, Tk := T ∩ Vk is a 2-ruling set of Hk for each k.

Stage 3. (Steps 5-7) Finally, a client yj sends an open message to facility xi

in class Vk if (i) xi ∈ Tk, and (ii) there is no facility xi′ of class Vk′ such that
D(xi, yj) + D(xi′ , yj) ≤ 2ri, and for which k′ < k (Step 5). A facility opens if
it receives open messages from all clients (Step 6). Lastly, open facilities declare
themselves as such in a broadcast, and every client connects to the nearest open
facility (Step 7).

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 529

2.2 Analysis

The approximation-factor analysis of Algorithm 1 is similar to the analysis of
our algorithm for CliqueFacLoc [1]. Here we present a brief summary.
First we show a lower bound on the cost any solution to BipartiteFacLoc.
For yj ∈ C, define rj as rj = min1≤i≤nf

{ri +D(xi, yj)}. See [1] for a motivation
for this definition.

Lemma 1. FacLoc(F) ≥ (
∑nc

j=1 rj)/6 for any subset F ⊆ F .

To obtain an upper bound on the cost of the solution produced by Algorithm
1 we start by “charging” the cost of a facility location solution to clients in a
standard way [11]. For a client yj ∈ C and a facility subset F , define the charge of
yj with respect to F by charge(yj , F) = D(F, yj) +

∑

xi∈F

max{0, ri −D(xi, yj)}.

Simple algebraic manipulation can be used to show that for any facility subset
F , FacLoc(F) is equal to

∑nc

j=1 charge(yj , F). Finally, if F ∗ is the subset of
facilities selected by Algorithm 1, we show the following upper bounds.

Lemma 2. D(F ∗, yj) ≤ (s+ 1) · 15 · rj.

Lemma 3.
∑

xi∈F∗ max{0, ri −D(xi, yj} ≤ 3 · rj.

Putting the lower bound, charging scheme, and upper bound together gives
FacLoc(F ∗) ≤ (15s+ 33) ·

∑nc

j=1 rj ≤ 6 · (15s+ 33) ·OPT . Also, noting that all
the steps in Algorithm 1, except the one that calls RulingSet(∪kHk, s) take a
total of O(1) communication rounds, we obtain the following theorem.

Theorem 1. Algorithm 1 (LocateFacilities) computes an O(s)-factor ap-
proximation to BipartiteFacLoc in O(T (n, s)) rounds, where T (n, s) is the
running time of procedure RulingSet(H, s), called an n-node graph H.

3 Dissemination on a Bipartite Network

In the previous section we reduced BipartiteFacLoc to the problem of com-
puting an s-ruling set on a graph H = ∪kHk defined on facilities. Our technique
for finding an s-ruling set involves selecting a set M of facilities at random,
disseminating the induced subgraph H [M] to every client and then having each
client locally compute an MIS of H [M] (details appear in Section 4). A key sub-
routine needed to implement this technique is one that can disseminate H [M]
to every client efficiently, provided the number of edges in H [M] is at most nf .
In Section 1 we abstracted this problem as the Message Dissemination with
Duplicates (MDD) problem. In this section, we present a randomized algorithm
for MDD that runs in expected O(log logmin{nf , nc}) communication rounds.

Recall that the difficulty in disseminatingH [M] is the fact that the adjacencies
in this graph are witnessed only by clients, with each adjacency being witnessed
by at least one client. However, an adjacency can be witnessed by many clients
and a client is unaware of who else has knowledge of any particular edge. Thus,

530 J. Hegeman and S.V. Pemmaraju

even if H [M] has at most nf edges, the total number of adjacency observations
by the clients could be as large as n2

f . Below we use iterative probabilistic hashing
to rapidly reduce the number of “duplicate” witnesses to adjacencies in H [M].
Once the total number of distinct adjacency observations falls to 48nf , it takes
only a constant number of additional communication rounds for the algorithm to
finish disseminating H [M]. The constant “48” falls out easily from our analysis
(Lemma 7, in particular) and we have made no attempt to optimize it in any
way.

3.1 Algorithm

The algorithm proceeds in iterations and in each iteration a hash function is
chosen at random for hashing messages held by clients onto facilities. Denote
the universe of possible adjacency messages by U . Since messages represent ad-
jacencies among facilities, |U| =

(
nf

2

)
. However, it is convenient for |U| to be

equal to n2
f and so we extend U by dummy messages so that this is the case. We

now define a family HU of hash functions from U to {1, 2, . . . , nf} and show how
to pick a function from this family, uniformly at random. To define HU , fix an
ordering m1,m2,m3, . . . of the messages of U . Partition U into groups of size nf ,
with messages m1,m2, . . . ,mnf

as the first group, the next nf elements as the
second group, and so on. The family HU is obtained by independently mapping
each group of messages onto (1, 2, . . . , nf) via a cyclic permutation. For each
group of nf messages in U , there are precisely nf such cyclic maps for it, and so
a map in HU can be selected uniformly at random by having each facility choose
a random integer in {1, 2, . . . , nf} and broadcast this choice to all clients (in the
first round of an iteration). Each client then interprets the integer received from
facility xi as the image of message m(i−1)·nf+1.

In round 2, each client chooses a destination facility for each adjacency mes-
sage in its possession (note that no client possesses more than nf messages),
based on the hash function chosen in round 1. For a message m in the possession
of client yj , yj computes the hash h(m) and marks m for delivery to facility
xh(m). In the event that more than one of yj ’s messages are intended for the
same recipient, yj chooses one uniformly at random for correct delivery, and
marks the other such messages as “leftovers.” During the communication phase
of round 2, then, client yj delivers as many messages as possible to their correct
destinations; leftover messages are delivered uniformly at random over unused
communication links to other facilities.

In round 3, a facility has received a collection of up to nc messages, some of
which may be duplicates of each other. After throwing away all but one copy
of any duplicates received, each facility announces to client y1 the number of
(distinct) messages it has remaining. In round 4, client y1 has received from
each facility its number of distinct messages, and computes for each an index
(modulo nc) that allows facilities to coordinate their message transfers in the
next round. Client y1 transmits the indices back to the respective facilities in
round 5.

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 531

In round 6, facilities transfer their messages back across the bipartition to
the clients, beginning at their determined index (received from client y1) and
working modulo nc. This guarantees that the numbers of messages received by
two clients yj, yj′ in this round can differ by no more than one. (Although it is
possible that some of these messages will “collapse” as duplicates.) Clients now
possess subsets of the original nf messages, and the next iteration can begin.

Algorithm 2. DisseminateAdjacencies
Input: A complete bipartite graph G, with partition (F , C); an overlay network H on F with
|E[H]| ≤ nf

Assumption: For each adjacency e′ in H, one or more clients has knowledge of e′

Output: Each client should know the entire contents of E[H]

1. while true do
Start of Iteration:

2. Each client yj sends the number of distinct messages currently held, nj , to facility x1.
3. if

∑nc
j=1 nj ≤ 48nf then

4. Facility x1 broadcasts a break message to each client.
5. Client y1, upon receiving a break message, broadcasts a break message to each facility.

end-if-then
6. Each facility xi broadcasts an integer in {1, . . . , nf} chosen uniformly at random;

this collection of broadcasts determines a map h ∈ HU .
7. For each adjacency message m′ currently held, client yj maps m′ to xh(m′).
8. For each i ∈ {1, . . . , nf}, if |{m′ held by yj : h(m′) = i}| > 1, client yj chooses

one message to send to xi at random from this set and marks the others as leftovers.
9. Each client yj sends the messages chosen in Lines 7-8 to their destinations; leftover

messages are delivered to other facilities (for whom yj has no intended message) in an
arbitrary manner (such that yj sends at most one message to each facility).

10. Each facility xi receives a collection of at most nc facility adjacency messages; if duplicate
messages are received, xi discards all but one of them so that the messages held
by xi are distinct.

11. Each facility xi sends its number of distinct messages currently held, bi, to client y1.

12. Client y1 responds to each facility xi with an index c(i) = (
∑i−1

k=1 bk mod nc).
13. Each facility xi distributes its current messages evenly to the clients in the set

{yc(i)+1, yc(i)+2, . . . , yc(i)+bi
} (where indexes are reduced modulo nc as necessary).

14. Each client yj receives at most nf messages; the numbers of messages received by
any two clients differ by at most one.

15. Each client discards any duplicate messages held.
End of Iteration:

16. At this point, at most 48nf total messages remain among the nc clients; these
messages may be distributed evenly to the facilities in O(1) communication rounds.

17. The nf facilities can now broadcast the (at most) 2nf messages to all clients in O(1) rounds.

3.2 Analysis

Algorithm 2 is proved correct by observing that (i) the algorithm terminates only
when dissemination has been completed; and (ii) for a particular message m′, in
any iteration, there is a nonzero probability that all clients holding a copy of m′

will deliver m′ correctly, after which there will never be more than one copy of
m′ (until all messages are broadcast to all clients at the end of the algorithm).
The running time analysis of Algorithm 2 starts with two lemmas that follow
from our choice of the probabilistic hash function.

Lemma 4. Suppose that, at the beginning of an iteration, client yj possesses a
collection Sj of messages, with |Sj | = nj. Let Ei,j be the event that at least one

532 J. Hegeman and S.V. Pemmaraju

message in Sj hashes to facility xi. Then the probability of Ei,j (conditioned on
all previous iterations) is bounded below by 1− e−nj/nf .

Lemma 5. Suppose that, at the beginning of an iteration, client yj possesses a
collection Sj of messages, with |Sj | = nj. Let Mj ⊆ Sj be the subset of messages
that are correctly delivered by client yj in the present iteration. Then the expected

value of |Mj | (conditioned on previous iterations) is bounded below by nj −
n2
j

2nf
.

By Lemma 5, the number of incorrectly delivered messages in Sj is bounded

above (in expectation) by
n2
j

2nf
. Informally speaking, this implies that the se-

quence nf ,
nf

2 ,
nf

23 ,
nf

27 , . . . bounds from above the number of incorrectly deliv-
ered messages (in expectation) in each iteration. This doubly-exponential rate
of decrease in the number of undelivered messages leads to the expected-doubly-
logarithmic running time of the algorithm.

We now step out of the context of a single client and consider the progress of
the algorithm on the whole. Using Lemma 5, we derive the following recurrence
for the expected total number of messages held by all clients at the beginning of
each iteration.

Lemma 6. Suppose that the algorithm is at the beginning of iteration I, I ≥
2, and let TI be the total number of messages held by all clients (i.e. TI =∑nc

j=1 nj(I), where nj(I) is the number of messages held by client yj at the
beginning of iteration I). Then the conditional expectation of TI+1 given TI,
E(TI+1 | TI), satisfies

E(TI+1 | TI) ≤

⎧
⎨

⎩
nf + (TI+nc)

2

2nf ·nc
if TI > nc

nf + TI

2nf
if TI ≤ nc

We now define a sequence of variables ti (via the recurrence below) that bounds
from above the expected behavior of the sequence of TI ’s established in the
previous lemma. Let t1 = nf · min{nf , nc}, ti = 1

2 ti−1 for 2 ≤ i ≤ 5, and for
i > 5, define ti by

ti =

⎧
⎨

⎩
2nf + (ti−1+nc)

2

nf ·nc
if ti−1 > nc

2nf + ti−1

nf
if ti−1 ≤ nc

The following lemma establishes that the ti’s fall rapidly.

Lemma 7. The smallest index i for which ti ≤ 48nf is at most log log
min{nf , nc}+ 2.

Lemma 8. For i > 5, if TI ≤ ti, then the conditional probability (given iter-
ations 1 through I − 1) of the event that TI+1 ≤ ti+1 is bounded below by 1

2 .

Theorem 2. Algorithm 2 solves the dissemination problem in O(log logmin
{nf , nc}) rounds in expectation.

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 533

4 Computing a 2-Ruling Set of Facilities

In this section, we show how to efficiently compute a 2-ruling set on the graph
H (with vertex set F) constructed in Algorithm 1 (LocateFacilities). Our al-
gorithm (called Facility2RulingSet and described as Algorithm 3) computes
a 2-ruling set in H by performing iterations of a procedure that combines ran-
domized and deterministic sparsification steps. In each iteration, each facility
chooses (independently) to join the candidate set M with probability p. Two
neighbors in H may both have chosen to join M , so M may not be independent
in H . We would therefore like to select an MIS of the graph induced by M ,
H [M]. In order to do this, the algorithm attempts to communicate all known
adjacencies in H [M] to every client in the network, so that each client may
(deterministically) compute the same MIS. The algorithm relies on Algorithm
DisseminateAdjacencies (Algorithm 2) developed in Section 3 to perform
this communication.

Algorithm 3. Facility2RulingSet
Input: Complete bipartite graph G with partition (F ,C) and H, an overlay network on F .
Output: A 2-ruling set T of H

1. i := 1; p := p1 = 1

8·n1/2
f

; T := ∅
2. while |E(H)| > 0 do

Start of Iteration:
3. M := ∅
4. Each facility x joins M with a probability p.
5. Run Algorithm DisseminateAdjacencies for 7 log logmin{nf , nc} iterations

to communicate the edges in H[M] to all clients in the network.
6. if DisseminateAdjacencies completes in the allotted number of iterations then
7. Each client computes the same MIS L on M using a deterministic algorithm.
8. T := T ∪ L
9. Remove M ∪ N(M) from H.
10. i := i+ 1; p := pi = 1

8·n2−i
f

11. else
12. i := i− 1; p := pi = 1

8·n2−i
f

13. if |E(H)| = 0 then break;
End of Iteration:

14. Output T .

For Algorithm DisseminateAdjacencies to terminate quickly, we require
that the number of edges in H [M] be O(nf). This requires the probability p
to be chosen carefully as a function of nf and the number of edges in H . Due
to the lack of aggregated information, nodes of the network do not generally
know the number of edges in H and thus the choice of p may be “incorrect” in
certain iterations. To deal with the possibility that pmay be too large (and hence
H [M] may have too many edges), the dissemination procedure is not allowed
to run indefinitely – rather, it is cut off after 7 log logmin{nf , nc} iterations
of disseminating hashing. If dissemination was successful, i.e. the subroutine
completed prior to the cutoff, then each client receives complete information

534 J. Hegeman and S.V. Pemmaraju

about the adjacencies in H [M], and thus each is able to compute the same MIS
in H [M]. Also, if dissemination was successful, then M and its neighborhood,
N(M), are removed fromH and the next iteration is run with a larger probability
p. On the other hand, if dissemination was unsuccessful, the current iteration of
Facility2RulingSet is terminated and the next iteration is run with a smaller
probability p (to make success more likely the next time).

To analyze the progress of the algorithm, we define two notions – states and
levels. For the remainder of this section, we use the term state (of the algorithm)
to refer to the current probability value p. The probability p can take on values(

1

8·n2−i

f

)
for i = 0, 1, . . . , Θ(log lognf). We use the term level to refer to the

progress made up until the current iteration. Specifically, the jth level Lj , for
j = 0, 1, . . . , Θ(log lognf), is defined as having been reached when the number
of facility adjacencies remaining in H becomes less than or equal to lj = 8 ·
n1+2−j

f . In addition, we define one special level L∗ as the level in which no
facility adjacencies remain. These values for the states and levels are chosen so
that, once level Li has been reached, one iteration run in state i+1 has at least
a probability- 12 chance of advancing progress to level Li+1.

4.1 Analysis

It is easy to verify that the setT computedbyAlgorithm3(Facility2RulingSet)
is a 2-ruling set and we now turn our attention to the expected running time of this
algorithm. The algorithm halts exactly when level L∗ is reached (this termination
condition is detected in Line 15), and so it suffices to bound the expected number
of rounds necessary for progress (removal of edges from H) to reach level L∗. The
following lemmas show that quick progress is madewhen the probability pmatches
the level of progress made thus far.

Lemma 9. Suppose |E(H)| ≤ li (progress has reached level Li) and in this
situation one iteration is run in state i+1 (with p = pi+1). Then in this iteration,
the probability that Algorithm DisseminateAdjacencies succeeds is at least 3

4 .

Lemma 10. Suppose |E(H)| ≤ li (progress has reached level Li). Then, after
one iteration run in state i + 1 (with p = pi+1), the probability that level Li+1

will be reached (where |E(H)| ≤ li+1) is at least 1
2 .

Thus, once level Li has been reached, we can expect that only a constant number
of iterations run in state i+ 1 would be required to reach level Li+1. Therefore,
the question is, “How many iterations of the algorithm are required to execute
state i+1 enough times?” To answer this question, we abstract the algorithm as
a stochastic process that can be modeled as a (non-Markov) simple random walk
on the integers 0, 1, 2, . . . , Θ(log lognf) with the extra property that, whenever
the random walk arrives at state i+1, a (fair) coin is flipped. We place a bound
on the expected number of steps before this coin toss comes up heads.

A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location 535

First, consider the return time to state i + 1. In order to prove that the
expected number of iterations (steps) necessary before either |E(H)| ≤ li+1 or
p = pi+1 is O(log lognf), we consider two regimes – p > pi+1 and p < pi+1.
When p is large (in the regime consisting of probability states intended for fewer
edges than currently remain in H), it is likely that a single iteration of Algorithm
3 will generate a large number of adjacencies between candidate facilities. Thus,
dissemination will likely not complete before “timing out,” and it is likely that p
will be decreased prior to the next iteration. Conversely, when p is small (in the
regime consisting of probability states intended for more edges than currently
remain in H), a single iteration of Algorithm 3 will likely generate fewer than nf

adjacencies between candidate facilities, and thus it is likely that dissemination
will complete before “timing out.” In this case, p will advance prior to the next
iteration. This analysis is accomplished in the following lemmas and leads to the
subsequent theorem.

Lemma 11. Consider a simple random walk on the integers [0, i] with transition
probabilities {pj,k} satisfying pj,j+1 = 3

4 (j = 0, . . . , i − 1), pj,j−1 = 1
4 , (j =

1, . . . , i), pi,i = 3
4 , and p0,0 = 1

4 . For such a random walk beginning at 0, the
expected hitting time of i is O(i).

Lemma 12. When j ≤ i, the expected number of iterations required before re-
turning to state i+ 1 is O(log lognf).

Lemma 13. When j > i, the expected number of iterations required before re-
turning to state i+ 1 or advancing to at least level Li+1 is O(log lognf).

Lemma 14. Suppose that Algorithm 3 has reached level Li, and let Ti+1 be a
random variable representing the number of iterations necessary before reaching
level Li+1. Then E(Ti+1) = O(log lognf).

Theorem 3. Algorithm 3 has an expected running time of O((log lognf)
2 ·

log logmin{nf , nc}) rounds in the CONGEST model.

References

1. Berns, A., Hegeman, J., Pemmaraju, S.V.: Super-fast distributed algorithms for
metric facility location. CoRR (archived on August 11, 2013),
http://arxiv.org/abs/1308.2473

2. Berns, A., Hegeman, J., Pemmaraju, S.V.: Super-fast distributed algorithms for
metric facility location. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R.
(eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 428–439. Springer, Heidelberg
(2012)

3. Frank, C.: Algorithms for Sensor and Ad Hoc Networks. Springer (2007)
4. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed O(1)-approximation algo-

rithm for the uniform facility location problem. In: Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2006, pp. 237–243. ACM Press, New York (2006)

http://arxiv.org/abs/1308.2473

536 J. Hegeman and S.V. Pemmaraju

5. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In:
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 649–657. Society for Industrial and Applied Mathematics (1998)

6. Hegeman, J., Pemmaraju, S.V.: A super-fast distributed algorithm for bipartite
metric facility location. CoRR (archived on August 12, 2013),
http://arxiv.org/abs/1308.2694

7. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique.
CoRR, abs/1207.1852 (2012)

8. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location
problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

9. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120–
131 (2005)

10. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed mst for constant diameter
graphs. Distributed Computing 18(6), 453–460 (2006)

11. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput. 32(3),
816–832 (2003)

12. Moscibroda, T., Wattenhofer, R.: Facility location: distributed approximation. In:
Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 108–117. ACM Press, New York (2005)

13. Pandit, S., Pemmaraju, S.V.: Finding facilities fast. Distributed Computing and
Networking, 11–24 (2009)

14. Pandit, S., Pemmaraju, S.V.: Return of the primal-dual: distributed metric facility
location. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, PODC 2009, pp. 180–189. ACM Press, New York (2009)

15. Pandit, S., Pemmaraju, S.V.: Rapid randomized pruning for fast greedy distributed
algorithms. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pp. 325–334. ACM (2010)

16. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting: ex-
tended abstract. In: PODC, pp. 249–256. ACM Press (2011)

http://arxiv.org/abs/1308.2694

	A Super-Fast Distributed Algorithmfor Bipartite Metric Facility Location
	1 Introduction
	1.1 Overview of Technical Contributions

	2 Reduction to the Ruling Set Problem
	2.1 Algorithm
	2.2 Analysis

	3 Dissemination on a Bipartite Network
	3.1 Algorithm
	3.2 Analysis

	4 Computing a 2-Ruling Set of Facilities
	4.1 Analysis

	References

