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Abstract. We study the convergence of influence networks, where each node
changes its state according to the majority of its neighbors. Our main result is a
new Ω(n2/ log2 n) bound on the convergence time in the synchronous model,
solving the classic “Democrats and Republicans” problem. Furthermore, we give
a bound of Θ(n2) for the sequential model in which the sequence of steps is
given by an adversary and a bound of Θ(n) for the sequential model in which the
sequence of steps is given by a benevolent process.
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1 Introduction

What do social networks, belief propagation, spring embedders, cellular automata, dis-
tributed message passing algorithms, traffic networks, the brain, biological cell systems,
or ant colonies have in common? They are all examples of “networks”, where the enti-
ties of the network are continuously influenced by the states of their respective neigh-
bors. All of these examples of influence networks (INs) are known to be difficult to
analyze. Some of the applications mentioned are notorious to have long-standing open
problems regarding convergence.

In this paper we deal with a generic version of such networks: The network is given
by an arbitrary graph G = (V,E), and all nodes of the graph switch simultaneously to
the state of the majority of their respective neighbors. We are interested in the stability
of such INs with a binary state. Specifically, we would like to determine whether an
IN converges to a stable situation or not. We are interested in how to specify such
a stable setting, and in the amount of time needed to reach such a stable situation. We
study several models how the nodes take turns, synchronous, asynchronous, adversarial,
benevolent.

Our main result is for synchronous INs: Each node is assigned an initial state from
the set {R,B}, and in every round, all nodes switch their state to the state of the ma-
jority of their neighbors simultaneously. This specific problem is commonly referred
to as “Democrats and Republicans”, see e.g. Peter Winkler’s CACM column [Win08].
It is well known that this problem stabilizes in a peculiar way, namely that each node
eventually is in the same state every second round [GO80]. This result can be shown
by using a potential bound argument, i.e., until stabilization, in each round at least one
more edge becomes “more stable”. This directly gives a O(n2) upper bound for the
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convergence time. On the other hand, using a slightly adapted linked list topology, one
can see that convergence takes at least Ω(n) rounds. But what is the correct bound for
this classic problem? Most people that worked on this problem seem to believe that the
linear lower bound should be tight, at least asymptotically. Surprisingly, in the course
of our research, we discovered that this is not true. In this paper we show that the upper
bound is in fact tight up to a polylogarithmic factor. Our new lower bound is based on
a novel graph family, which has interesting properties by itself. We hope that our new
graph family might be instrumental to research concerning other types of INs, and may
prove useful in obtaining a deeper understanding of some of the applications mentioned
above.

We complement our main result with a series of smaller results. In particular, we look
at asynchronous networks where nodes update their states sequentially. We show that
in such a sequential setting, convergence may take Θ(n2) time if given an adversarial
sequence of steps, and Θ(n) if given a benevolent sequence of steps.

2 Related Work

Influence networks have become a central field of study in many sciences. In biology,
to give three examples from different areas, [RT98] study networks in the context of
brain science, [AAB+11] study cellular systems and their relation to distributed algo-
rithms, and [AG92] study networks in the context of ant colonies. In optimization the-
ory, believe propagation [Pea82, BTZ+09] has become a popular tool to analyze large
systems, such as Bayesian networks and Markov random fields. Nodes are continuously
being influenced by their neighbors; repeated simulation (hopefully) quickly converges
to the correct solution. Belief propagation is commonly used in artificial intelligence
and information theory and has demonstrated empirical success in numerous applica-
tions such as coding theory. A prominent example in this context are the algorithms that
classify the importance of web pages [BP98, Kle99]. In physics and mechanical engi-
neering, force-based mechanical systems have been studied. A typical model is a graph
with springs between pairs of nodes. The entire graph is then simulated, as if it was
a physical system, i.e. forces are applied to the nodes, pulling them closer together or
pushing them further apart. This process is repeated iteratively until the system (hope-
fully) comes to a stable equilibrium, [KK89, Koh89, FR91, KW01]. Influence networks
are also used in traffic simulation, where nodes (cars) change their position and speed
according to their neighboring nodes [NS92]. Traffic networks often use cellular au-
tomata as a basic model. A cellular automaton [Neu66, Wol02] is a discrete model
studied in many fields, such as computability, complexity, mathematics, physics, and
theoretical biology. It consists of a regular grid of cells, each in one of a finite number
of states, for instance 0 and 1. Each cell changes its state according to the states of its
neighbors. In the popular game of life [Gar70], cells can be either dead or alive, and
change their states according to the number of alive neighbors.

Our synchronous model is related to cellular automata, on a general graph; however,
nodes change their opinion according to the majority of their neighbors. As majority
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functions play a central role in neural networks and biological applications this model
was already studied during the 1980s. Goles and Olivos [GO80] have shown that a
synchronous binary influence network with a generalized threshold function always
leads to a fixed point or to a cycle of length 2. This means that after a certain amount of
synchronous rounds, each participant has either a fixed opinion or changes its mind in
every round. Poljak and Sura [PS83] extended this result to a finite number of opinions.
In [GT83], Goles and Tchuente show that an iterative behavior of threshold functions
always leads to a fixed point. Sauerwald and Sudholt [SS10] study the evolution of cuts
in the binary influence network model. In particular, they investigate how cuts evolve
if unsatisfied nodes flip sides probabilistically. To some degree, one may argue that we
look at the deterministic case of that problem instead.

In sociology, understanding social influence (e.g. conformity, socialization, peer pres-
sure, obedience, leadership, persuasion, sales, and marketing) has always been a cor-
nerstone of research, e.g. [Kel58]. More recently, with the proliferation of online social
networks such as Facebook, the area has become en vogue, e.g. [MMG+07, AG10].
Leskovec et al. [LHK10] for instance verify the balance theory of Heider [Hei46] re-
garding conformity of opinions; they study how positive (and negative) influence links
affect the structure of the network. Closest to our paper is the research dealing with
influence, for instance in the form of sales and marketing. For example, [LSK06] in-
vestigate a large person-to-person recommendation network, consisting of four million
people who made sixteen million recommendations on half a million products, and
then analyze cascades in this data set. Cascades can also be studied in a purely theoret-
ical model, based on random graphs with a simple threshold model which is close to
our majority function [Wat02]. Rumor spreading has also been studied algorithmically,
using the random phone call model, [KSSV00, SS11, DFF11]. Using real data from
various sources, [ALP12] show that networks generally have a core of influential (elite)
users. In contrast to our model, nodes cannot change their state back and forth, once
infected, a node will stay infected. Plenty of work was done focusing on the prediction
of influential nodes. One wants to find subset of influential nodes for viral marketing,
e.g. [KKT05, CYZ10]. In contrast, [KOW08] studies the case of competitors, which is
closer to our model since nodes can have different opinions. However, also in [KOW08]
nodes only change their opinion once. However, in all these social networks the under-
lying graph is fixed and the dynamics of the stabilization process takes place on the
changing states of the nodes only. An interesting variant changes the state of the edges
instead. A good example for this is matching. A matching is (hopefully) converging
to a stable state, based on the preferences of the nodes, e.g. [GS62, KPS10, FKPS10].
Hoefer takes these edge dynamics one step further, as not only the state of the edge
changes, but the edge itself [Hoe11].

3 Model Definition

An influence network (IN) is modeled as a graph G = (V,E, o0). The set of nodes
V is connected by an arbitrary set of edges E. Each node has an initial opinion (or
state) o0(v) ∈ {R(ed), B(lue)}. A node only changes its opinion if a majority of its
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neighbors has a different opinion. One may consider several options to breaking ties,
e.g., using the node’s current opinion as a tie-breaker, or weighing the opinions of indi-
vidual neighbors differently. As it turns out, for many natural tie-breakers, graphs can
be reduced to equivalent graphs in which no tie breaker is needed. For instance, using
a node’s own opinion as a tie-breaker is equivalent to cloning the whole graph, and
connecting each node with its clone and the neighbors of its clone.

In this paper we study both synchronous and asynchronous INs. The state of a syn-
chronous IN evolves over a series of rounds. In each round every node changes its state
to the state of the majority of its neighbors simultaneously. The opinion of a node v in
round t is denoted as ot(v).

As will be explained in Section 5, the only interesting asynchronous model is the
sequential model. In this model, we call the change of opinion of one node a step. The
opinion of node v after t steps is defined as ot(v). In general, more than one node may
be ready to take a step. Depending on whether we want convergence to be fast or slow,
we may choose different nodes to take the next step. If we aim for fast convergence, we
call this the benevolent sequential model. Slow conversion on the other hand we call the
adversarial sequential model.

We say that an IN stabilizes if it reaches a state where no node will ever change its
opinion again, or if each node changes its opinion in a cyclic pattern with periodic-
ity q. In other words, a state can be stable even though some nodes still change their
opinion.

Definition 1. An IN G = (V,E, o0) is stable at time t with periodicity q, if for all
vertices v ∈ V : ot+q(v) = ot(v). A fixed state of an IN G is a stable state with
periodicity 1. The convergence time c of an IN G is the smallest t for which G is stable.

Note that since INs are deterministic an IN which has reached a stable state will stay
stable.

In this paper we investigate the stability, the convergence time c and the periodicity
q of INs in the described models. Clearly, the convergence process depends not only on
the graph structure, but also on the initial opinions of the nodes. We investigated graphs
and initial opinions that maximize convergence time. In the benevolent sequential in
particular, we investigate graphs and sets of initial opinions leading to the worst possible
convergence time, given the respectively best sequence of steps.

4 Synchronous IN

A synchronous IN may stabilize in a state where some nodes change their opinion in
every round. For example, consider the graph K2 (two nodes, connected by an edge)
where the first node has opinion B and the second node has opinion R. After one round,
both vertices have changed their state, which leads to a symmetric situation. This IN
remains in this stable state forever with a period of length 2. As has already been shown
in [GO80, Win08], a synchronous IN always reaches a stable state with a periodicity of
at most 2 after O(n2) rounds.
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Theorem 1 ([Win08]). A synchronous influence network reaches a stable state after at
most O(n2) rounds.

Theorem 2 ([GO80]). The periodicity of the stable state of a synchronous influence
network is at most 2.

We prove this bound to be almost tight.

Theorem 3. There exists a family of synchronous influence networks with convergence

time of Ω
(

n2

(log logn)2

)
.

Due to page limitations the technical proof of Theorem 3 does not fit here, but can be
found in the full version of this paper. In this section, we instead present a simpler IN
with convergence time Ω

(
n3/2

)
.

The basic idea is to construct a mechanism which forces vertices on a simple path
graph to change their opinion one after the other. Every time the complete path has
changed, the mechanism should force the vertices of the path to change their opinions
back again in the same order. To create this mechanism, we introduce an auxiliary
structure called transistor, which is depicted in Figure 1.

B2

B3

E3B1 E1

C1 C3

E0 E2

C2C0

Fig. 1. A transistor T (4). The dotted lines indicate how the transistor will be connected.

Definition 2. A transistor of size k, denoted as T (k), is an undirected graph consisting
of three base vertices B = {B1,B2,B3}, k collector vertices C = {Ci | 0 ≤ i ≤ k− 1}
and k emitter vertices E = {E i | 0 ≤ i ≤ k− 1}. All edges between collector and emit-
ter vertices, all edges between any two base vertices, and all edges between collector
vertices and the third base vertex exist. Formally:

T (s) =(V,E)

V =C ∪ E ∪ B
E ={{u, v} | u ∈ C, v ∈ E} ∪ {{u,B3} | u ∈ C}∪

{{u, v} | u, v ∈ B, u �= v}
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All nodes in a transistor are initialized with the same opinionX ∈ {R = 1, B = −1}.
The 3 + k+ k2 collector edges (dotted edges pointing to the top of Figure 1, including
those originating fromB1,B2 andB3) are connected to vertices with the constant opinion
−X , while up to k2 − k emitter edges (dotted edges pointing to the bottom) and the 2
base edges (dotted edges pointing to the left) may be connected to any vertex. As soon
as both base edges advertise opinion −X , the transistor will flip to opinion −X in 4
rounds regardless of what is advertised over the emitter edges, i.e., the following sets of
vertices will all change their opinion to −X in the given order: {B1}, {B2,B3}, C, E .

TR
1

Fig. 2. Path with 4 vertices connected to one
transistor T (3)

TR
1

T0
B T2

B

Fig. 3. Path with 4 vertices connected to
3 transistors T (3). Note that transistors at
bottom of figures are always upside down.

TR
1

T1
B

TR
2 T0

R

T0
B T2

B

Fig. 4. Two copies of Figure 3 with inverse
opinions

TR
1

T1
B

TR
2 T0

R

T0
B T2

B

Fig. 5. In this graph, every time the path has
run through completely the next transistor
will flip, causing the path to run again

Note that T (k) contains only O(k) many vertices, yet its emitter vertices can poten-
tially be connected to Ω(k2) other vertices. Given a path graph of length O(k2) and
a transistor T (k), the emitter vertices of the transistor are connected to the path in the
following way: The first vertex in the path is connected to exactly two emitter vertices,
the last is connected to none and each of the remaining nodes of the path is connected
to exactly one emitter vertex. Furthermore, the collector edges of transistors of opinion
X are always connected to constant reservoirs of opinion −X . Such a reservoir can be
implemented as a clique. An illustration of this graph with k = 3 is given in Figure 2.
Without loss of generality, we set the initial state of the nodes of the path to B, and that
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TR
1

T1
B

TR
2 T0

R

T0
B T2

B

Fig. 6. Final graph in which the paths run 3 times. For an illustration with colors please refer to
the electronic version of this paper.

of the transistor to R. As long as the transistor remains red, the path will turn red one
vertex at a time. As soon as the transistor flips its opinion to blue (as a result of both
base edges having advertised blue) the path will turn blue again, one vertex at a time.
To force the path to change k times, k transistors are needed. Each of these transistors
(note that we make use of red as well as blue transistors) is connected with the path in
the same way as the first transistor. The resulting graph is given in Figure 3. A series of
k switches of the complete path can now be provoked by switching transistors of alter-
nating opinions in turns. For the example depicted in the Figures, the switching order
of the transistors is given by their respective indices.

Now, a way is needed to flip the next transistor every time the last vertex of the path
has changed its opinion. Assume the last vertex has changed to red. It is necessary to flip
a red transistor to blue in order to change the path to blue; however, the path changing
to red can only cause a blue transistor to turn red. To this end, the graph is extended by
a copy of itself with all opinions inverted. The resulting graph is given in Figure 4. As
in every round each vertex in the copy is of the opposite opinion than its original, the
copy of the last vertex in the path enables us to flip a red transistor to blue as desired.
The edges necessary to achieve this (highlighted in green in Figure 5) connect the end
of a path to B1 of each transistor in the other half of the graph. To ensure that the
transistors flip in the required order, additional edges (highlighted in magenta in Figure
5) are introduced, connecting an emitter node of each transistor TX

i to the node B1 of
transistor TX

i+1.
The green edges cause an unwanted influence on the last vertex of the paths. This

influence can be negated by introducing additional edges (highlighted in cyan in Fig-
ure 6). These edges connect the last vertex of each path with an emitter vertex of each
transistor not yet connected to that vertex.
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The resulting graph contains O(k2) vertices, yet has a convergence time of Ω(k3).
In terms of the number of vertices n, the convergence time is n3/2. The detailed proof
in the full version of this paper shows that this technique can be applied to run the entire
graph repeatedly, just as the graph in this section runs two paths repeatedly. This leads
to a convergence time of Ω(n7/4). In this new graph, the transistors change back and
fourth repeatedly, always taking on the opinion advertised over the collector edges, just
like real transistors. When applied recursively log logn times, an asymptotic conver-
gence time of Ω(n2/(log logn)2) is reached. Since the full proof is long and involved,
to complement our formal proof, we also simulated this recursively constructed net-
works for path lengths of up to 100. Table 1 and Figure 7 show the outcome of this
simulation.

Table 1. Table summarizing
the simulated results

path #nodes convergence
length time
1 10 1

2 12 2

3 96 22

10 494 310

20 1614 3331

30 2010 5701

100 5518 45985

Fig. 7. Shows how our simulation results compare to a
quadratic curve. The point clusters arise when for sev-
eral consecutive path lengths no new transistor is created.
Small jumps in the number of vertices indicate that a new
transistor was added; big jumps indicate that a new layer
of transistors was added.

5 Sequential IN

To complement our results for the synchronous model, we consider an asynchronous
setting in this section. In an asynchronous setting, nodes can take steps independently
of each other, i.e. subsets of nodes may reassess and change their opinion concurrently.
Unfortunately, in such a setting, convergence time is not well defined. To see this, con-
sider a star-graph where the center has a different initial opinion than the leaves. An
adversary may arbitrarily often chooses the set of all nodes to reassess their opinion.
After r such rounds the adversary chooses only the center node. Now this IN stabilizes,
after r rounds for an arbitrary r → ∞. In other words, asynchrony in its most general
form is not well defined, and we restrict ourselves to sequential steps only, whereas a
step is a single node changing its opinion. The sequence of steps is chosen by an ad-
versary which tries to maximize the convergence time. Note that the convergence upper
bound presented in Lemma 1 implies immediately that the IN stabilizes in a fixed state.
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Lemma 1. A sequential IN reaches a fixed state after at most O(n2) steps.

Proof. Divide the nodes into the following two sets according to their current opinion:
SR = {v | o(v) = R} and SB : {v | o(v) = B}. If a node changes its opinion, it
has more neighbors in the opposite set than in its current set. Therefore the number of
edges X = {{u, v} | u ∈ SR, v ∈ SB} between nodes in set SR and set SB is strictly
decreasing. Each change of opinion reduces the number of edges of X by at least one.
Therefore the number of steps is bounded by the number of edges in X . In a graph G
with n nodes |X | is at most n2/4, therefore at most O(n2) steps can take place until
the IN reaches a fixed state. �	
It is more challenging to show that this simple upper bound is tight. We show a graph
and a sequence of steps in which way an adversary can provoke Ω(n2) convergence
time.

Lemma 2. There is a family of INs with n vertices such that a fixed state is reached
after Ω(n2) steps.

Algorithm 1. Adversarial Sequence

S ← ()
for i = 0 to n/3 do

S = reverse(S);
S ← (i, S);
for all x ∈ S do

take step x;
end for

end for

Proof. Consider the following graph G with n nodes. The nodes are numbered from 0
to n−1, whereas nodes with an even id are initially assigned opinion B and nodes with
an odd id are assigned opinion R. See also Figure 8. All even nodes with id ≤ n/3
are connected to all odd nodes. All odd nodes with id ≤ n/3 are connected to all
even nodes respectively. In addition an even node with id ≤ n/3 is connected to nodes
{0, 2, 4, . . . , n − 2 · id − 2}, respectively an odd node with id ≤ n/3 is connected to
nodes {1, 3, 5, . . . , n − 2 · id − 3}. For example, node 0 is a neighbor of all nodes,
whereas node 1 is neighbor of all nodes except the nodes n − 1 and n − 3. Note that
each node i with i ≤ n/3 is connected to all other nodes with id ≤ n/3. For each node
v the change potential P (v) is defined as:

P (v) = |{u | o(u) �= o(v)}| − |{u | o(u) = o(v)}|
Put differently, if the change potential of a node is larger than 0, and it is requested to
reassess its opinion, it takes a step. A large change potential of a node v, means that
many neighbors of v have the opposite opinion from v. If a neighbor of v with the same
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Fig. 8. In this graph an adversary can provoke Ω(n2) changes of opinion

opinion takes a step, v′s change potential P (v) is increased by 2. On the other hand, if
a neighbor changes from the opposite opinion to the same opinion as node v, P (v) is
decreased by 2. If v itself changes its opinion, its change potential turns from p to −p.
The change potential of v is basically the number of edges by which the total number
of edges between set SB and set SR is reduced if v changes its opinion. As the total
amount of steps is bounded by the number of edges between set SB and SR, a node v
with P (v) = p reduces the remaining number of possible changes by p if it takes a step.
E.g. in the previously constructed graph G, the first nodes have the following change
potential: P (0) = 1, P (1) = 3, P (2) = 3, P (3) = 5 Generally, node i has a change
potential P (i) = n/2 − (n/2 − i − 1) = i + 1 if i is even respectively P (i) = i + 2
if i is odd. In order to provoke as many steps as possible, the adversary selects the
nodes which have to reassess their opinion according to the following rule: He chooses
the node with the smallest id for which P (v) = 1. Therefore each step reduces the
remaining number of possible steps by 1. G is constructed in such a way, that a step
from a node triggers a cascade of steps from nodes which have already changed their
opinion whereas each change reduces the overall potential by 1.

The adversary chooses the nodes in phases according to algorithm 1. Phase i starts
with the selection of node i followed by the selections of all nodes with id < i, where
the adversary chooses the nodes in the reverse order than it did in round i− 1. Phase 0
consists of node 0 changing its opinion, in phase 1 node 1 and then node 0 make steps,
and in phase 2 the nodes change in the sequence 2, 0, 1. As a node v can only change
its opinion if P (v) > 0, we need to show that this is the case for each node v which is
selected by the adversary. It is sufficient to show that each node which is selected has a
change potential of 1.
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We postulate:

(i) At the beginning of phase i, it holds that: P (i) = 1 and ∀v < i : o(v) = o(i).
(ii) Each node the adversary selects has change potential 1 and each node with id ≤ i

is selected eventually in phase i.
(iii) At the end of phase i, all nodes with id ≤ i have opinionR if i is even and opinion

B if i is odd.

We prove (i), (ii) and (iii) by induction. Initially, part (i) holds, as no node with id < 0
exists and as node 0 is connected to n/2 nodes with opinion R and to n/2 − 1 nodes
with opinion B and therefore has change potential 1. In phase 0 only node 0 is selected,
therefore part (ii) of holds as well. Node 0 changed its opinion and has therefore at the
end of phase 0 opinion R, therefore part (iii) holds as well.

Now the induction step: To simplify the proof of part (i) of we consider odd and even
phases separately. Consider an odd phase i. At the start of phase i, no node with id ≥ i
has changed its opinion yet. Therefore node i still has its initial opinion o(i) = R.
According to (iii), each node with id ≤ i − 1 has at the end of phase i − 1 opinion
R = o(i). So (i + 1)/2 neighbors of i have compared to the initial state, changed
their opinion from B to R. If a neighbor u of a node v with a different opinion than
v changes it, v′s change potential is decreased by 2. Therefore node i′s initial change
potential Pt0(i) = n/2− (n/2− i− 2) = i+ 2 is decreased by 2 · (i + 1)/2 = i + 1
and is therefore P (i) = i + 2 − (i + 1) = 1 at the beginning of phase i. Therefore (i)
holds before an odd phase.

Now consider an even phase i. At its start, all nodes with id ≥ i still have their
initial opinion. Therefore node i has opinion o(i) = B. According to (iii) each node
with id ≤ i − 1 has at the end of phase i − 1 opinion B = o(i). As node i′s initial
change potential was Pt0(i) = n/2 − (n/2 − i − 1) = i + 1 and i/2 neighbors of
i changed from opinion R to opinion B compared to the initial state, i′s new change
potential is calculated as P (i) = i+1− 2 · i/2 = 1. Therefore (i) holds before an even
phase, hence (i) holds.

To prove part (ii) let v be the last node which was selected in phase i − 1. As v was
selected, it had according to (ii) a change potential of 1. If a node changes its opinion,
its change potential gets inversed. Therefore node v had at the beginning of phase i
a change potential of −1. In addition, node v is by construction a neighbor of node i
and has according to (i) at the start of phase i the same opinion as node i. As node
i changes its opinion, node v′s change potential is increased by 2. Therefore v′s new
change potential is again −1 + 2 = 1, when it is selected by the adversary. The same
argument holds for the second last selected node u. After it was selected in phase i− 1
its change potential was −1. Then v has changed its opinion which led to P (u) = −3.
As node i and node v changed their opinions in phase i, P (u) was again 1. Hence if
the adversary selects the nodes in the inverse sequence as in phase i− 1, each selected
node has a change potential of 1 and is selected eventually. Therefore (ii) holds.

As node i and all nodes with id ≤ i − 1 had at the beginning of phase i the opinion
o(i) according to (iii) and all nodes have changed their opinion in phase i according to
(ii), all nodes with id ≤ i must have the opposite opinion at the end of phase i, namely
R if i is even or B otherwise. Therefore (iii) holds as well.
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We now have proven that in phase i, i nodes change their opinion. As the adversary
starts n/3 phases, the total number of steps is 1/2 · n/3 · (n/3− 1) ∈ Ω(n2). �	

Directly from Lemma 1 and Lemma 2, we get the following theorem.

Theorem 4. A worst case sequential IN reaches a fixed state after Θ(n2) steps.

We have seen, that with an adapted graph and an adversary an IN takes up to Θ(n2)
steps until it stabilizes. But how bad can it get, if the process is benevolent instead?

Theorem 5. An IN with a benevolent sequential process reaches a fixed state after
Θ(n) steps.

Proof. A benevolent process needs Ω(n) steps to reach a stable state. This can be seen
by considering the complete graph Kn with initially �n/2−1 red nodes and 
n/2�+1
blue nodes. Independently of the chosen sequence this IN needs exactly �n/2−1 steps
to stabilize because the only achievable stable state is all nodes being blue. To proof that
the number of steps is bounded by O(n) we define the following two sets: The set of
all red nodes which want to change: CRi = {v | o(v) = R ∧ P (v) > 0} and the set of
all blue nodes which want to change: CB = {v | o(v) = B ∧P (v) > 0}. A benevolent
process chooses nodes in two phases. In the first phase it chooses nodes from CB until
the set is empty. During this phase, it may happen that additional nodes join CB (e.g.
a leaf of a node v ∈ CB , after v made a step). However, no node which left CB will
rejoin, as those nodes turned red and can not turn blue again in this phase. In the second
phase, the benevolent process chooses nodes from CR until this set is empty. The set
CB will stay empty during the second phase since nodes turning blue can only reinforce
blue nodes in their opinion. Both phases take at most n steps, therefore proving our
upper bound. �	
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for Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer,
Heidelberg (2005)

[Kle99] Kleinberg, J.M.: Hubs, Authorities, and Communities. ACM Computing Surveys,
CSUR (1999)

[Koh89] Kohonen, T.: Self-Organization and Associative Memory. Springer (1989)
[KOW08] Kostka, J., Oswald, Y.A., Wattenhofer, R.: Word of mouth: Rumor dissemination

in social networks. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS,
vol. 5058, pp. 185–196. Springer, Heidelberg (2008)

[KPS10] Kipnis, A., Patt-Shamir, B.: On the Complexity of Distributed Stable Matching with
Small Messages. Distributed Computing, 151–161 (2010)

[KSSV00] Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized Rumor Spread-
ing. In: Foundations of Computer Science, FOCS (2000)

[KW01] Kaufmann, M., Wagner, D.: Drawing Graphs: methods and models. Springer (2001)
[LHK10] Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed Networks in Social Me-

dia. In: Conference on Human Factors in Computing Systems (CHI), pp. 1361–1370
(2010)

[LSK06] Leskovec, J., Singh, A., Kleinberg, J.M.: Patterns of Influence in a Recommendation
Network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006.
LNCS (LNAI), vol. 3918, pp. 380–389. Springer, Heidelberg (2006)

[MMG+07] Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measure-
ment and Analysis of Online Social Networks. In: 7th ACM SIGCOMM Conference
on Internet Measurement, pp. 29–42 (2007)

[Neu66] Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press
(1966)



446 S. Frischknecht, B. Keller, and R. Wattenhofer

[NS92] Nagel, K., Schreckenberg, M.: A Cellular Automaton Model for Freeway Traffic.
Journal de Physique I, 2221–2229 (1992)

[Pea82] Pearl, J.: Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach. In: Second National Conference on Artificial Intelligence (AAAI),
pp. 133–136 (1982)

[PS83] Poljak, S., Sra, M.: On Periodical Behaviour in Societies with Symmetric Influences.
Combinatorica, 119–121 (1983)

[RT98] Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University
Press, USA (1998)

[SS10] Sauerwald, T., Sudholt, D.: A Self-Stabilizing Algorithm for Cut Problems in Syn-
chronous Networks. Theoretical Computer Science, 1599–1612 (2010)

[SS11] Sauerwald, T., Stauffer, A.: Rumor Spreading and Vertex Expansion on Regular
Graphs. In: Symposium on Discrete Algorithms (SODA), pp. 462–475 (2011)

[Wat02] Watts, D.J.: A Simple Model of Global Cascades on Random Networks. Proceedings
of the National Academy of Sciences, 5766–5771 (2002)

[Win08] Winkler, P.: Puzzled: Delightful Graph Theory. Communications of the ACM, 104
(2008)

[Wol02] Wolfram, S.: A New Kind of Science. Wolfram Media (2002)


	Convergence in (Social) Influence Networks
	1 Introduction
	2 Related Work
	3 Model Definition
	4 Synchronous IN
	5 Sequential IN
	References




