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Abstract. Secure multiparty computation (MPC) allows a set of n
parties to securely compute a function of their private inputs against
an adversary corrupting up to t parties. Over the previous decade, the
communication complexity of synchronous MPC protocols could be im-
proved to O(n) per multiplication, for various settings. However, design-
ing an asynchronous MPC (AMPC) protocol with linear communication
complexity was not achieved so far. We solve this open problem by pre-
senting two AMPC protocols with the corruption threshold t < n/4.
Our first protocol is statistically secure (i.e. involves a negligible error)
in a completely asynchronous setting and improves the communication
complexity of the previous best AMPC protocol in the same setting by a
factor of Θ(n). Our second protocol is perfectly secure (i.e. error free) in a
hybrid setting, where one round of communication is assumed to be syn-
chronous, and improves the communication complexity of the previous
best AMPC protocol in the hybrid setting by a factor of Θ(n2).

Like other efficient MPC protocols, we employ Beaver’s circuit ran-
domization approach (Crypto ’91) and prepare shared random multipli-
cation triples. However, in contrast to previous protocols where triples
are prepared by first generating two random shared values which are
then multiplied distributively, in our approach each party prepares its
own multiplication triples. Given enough such shared triples (potentially
partially known to the adversary), we develop a method to extract shared
triples unknown to the adversary, avoiding communication-intensive mul-
tiplication protocols. This leads to a framework of independent interest.

1 Introduction

Threshold unconditionally secure multiparty computation (MPC) is a powerful
concept in secure distributed computing. It enables a set of nmutually distrusting
parties to jointly and securely compute a publicly known function f of their private
inputs over some finite field F, even in the presence of a computationally unbounded

� Full version of the paper available as Cryptology ePrint Archive, Report 2012/517.
�� This work has been supported in part by EPSRC via grant EP/I03126X.

��� Work supported by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO.

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 388–402, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Asynchronous MPC with Linear Communication Complexity 389

active adversary Adv, capable of corrupting any t out of the n parties. In a general
MPCprotocol [7,12,20,2], f is usually expressed as an arithmetic circuit (consisting
of addition and multiplication gates) over F and then the protocol evaluates each
gate in the circuit in a shared/distributed fashion. More specifically, each party se-
cret share its private inputs among the parties using a linear secret-sharing scheme
(LSS), say Shamir [21], with threshold t; informally such a scheme ensures that
the shared value remains information-theoretically secure even if upto t shares are
revealed. The parties then maintain the following invariant for each gate in the cir-
cuit: given that the input values of the gate are secret-shared among the parties, the
corresponding output value of the gate also remains secret-shared among the parties.
Finally the circuit output is publicly reconstructed. Intuitively, the privacy follows
since each intermediate value during the circuit evaluation remains secret-shared.
Due to the linearity of the LSS, the addition gates are evaluated locally by the par-
ties. However, maintaining the above invariant for the multiplication (non-linear)
gates requires the parties to interact. The focus therefore is rightfully placed on
measuring the communication complexity (i.e. the total number of elements from
F communicated) to evaluate the multiplication gates in the circuit.

In the recent past, several efficient unconditionally secure MPC protocols have
been proposed [17,3,14,5,9]. The state of the art unconditionally secure MPC
protocols have linear (i.e. O(n) field elements) amortized communication com-
plexity per multiplication gate for both the perfect setting [5] as well as for the
statistical setting [9]. The amortized communication complexity is derived under
the assumption that the circuit is large enough so that the terms that are inde-
pendent of the circuit size can be ignored [9]. Moreover, these protocols have the
optimal resilience of t < n/3 and t < n/2 respectively. The significance of linear
communication complexity roots from the fact that the amortized communica-
tion done by each party for the evaluation of a multiplication gate is independent
of n. This makes the protocol “scalable” in the sense that the communication
done by an individual party does not grow with the number of parties in the
system. We note that if one is willing to reduce the resilience t from the opti-
mal resilience by a constant fraction of t, then by using techniques like packed
secret-sharing [16], one can break the O(n) barrier as shown in [13]. However,
the resultant protocols are quiet involved. An alternate approach to break the
O(n) barrier was presented in [15], where instead of involving all the n parties,
only a designated set of Θ(log n) parties are involved for shared evaluation of
each gate. However the protocol involves a negligible error in the privacy; on
contrary we are interested in protocols with no error in the privacy.

Our Motivation. The above results are obtained in the synchronous network
setting, where the delay of every message in the network is bounded by a known
constant. However, it is well-known that such networks do not appropriatelymodel
the real-life networks like the Internet. On contrary, in the asynchronous network
model [6], there are no timing assumptions and the messages can be arbitrarily
delayed. The protocols in the asynchronous model are much more involved due
to the following phenomenon, which is impossible to avoid in a completely asyn-
chronous setting: if a party does not receive an expected message, then it does
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not know whether the sender is corrupted (and did not send the message at all)
or the message is just delayed in the network. Thus, at any “stage” of an asyn-
chronous protocol, no party can afford to listen the communication from all the
n parties, as the wait may turn out to be endless and so the communication from
t (potentially honest) parties has to be ignored. It is well known that perfectly-
secure asynchronous MPC (AMPC) is possible if and only if t < n/4 [6], while
statistically secure AMPC is possible if and only if t < n/3 [8]. The best known
unconditional AMPC protocol is reported in [19]. The protocol is perfectly secure
with resilience t < n/4 and communication complexity of O(n2) per multiplica-
tion gate. Designing AMPC protocols with linear communication complexity per
multiplication gate is the focus of this paper.

Our Results. We present two AMPC protocols with (amortized) communica-
tion complexity of O(n) field elements per multiplication gate and with resilience
t < n/4. The first protocol is statistically secure and works in a completely
asynchronous setting. Though non-optimally resilient, the protocol is the first
AMPC protocol with linear communication complexity per multiplication gate.
Our second protocol trades the network model to gain perfect security with opti-
mal resilience of t < n/4. The protocol is designed in a hybrid setting, that allows
a single synchronous round at the beginning, followed by a fully asynchronous
setting. The hybrid setting was exploited earlier in [4] to enforce “input provi-
sion”, i.e. to consider the inputs of all the n parties for the computation, which
is otherwise impossible in a completely asynchronous setting. The best known
AMPC protocol in the hybrid setting [4] has perfect security, resilience t < n/4
and communication complexity of O(n3) field elements per multiplication gate.
Thus, our protocol significantly improves over the hybrid model protocol of [4].

2 Overview of Our Protocols

Without loss of generality, we assume n = 4t+ 1; thus t = Θ(n). We follow the
well-known “offline-online” paradigm used in most of the recent MPC protocols
[3,4,14,5,9]: the offline phase produces t-sharing1 of cM random multiplication
triples {(a(i), b(i), c(i))}i∈[cM ] unknown to Adv, where c(i) = a(i)b(i) and cM de-
notes the number of multiplication gates in the circuit. The multiplication triples
are independent of f ; so this phase can be executed well ahead of the actual cir-
cuit evaluation. Later, during the online phase the shared triples are used for the
shared evaluation of the multiplication gates in the circuit, using the standard
Beaver’s circuit randomization technique [2] (see Sec. 4). The efficiency of the
MPC protocol is thus reduced to the efficiency of generating shared random mul-
tiplication triples. Our new proposed approach for the task of generating random
triples outperforms the existing ones in terms of the efficiency and simplicity.

The traditional way of generating the shared multiplication triples is the fol-
lowing: first the individual parties are asked to t-share random pairs of values

1 A value v is d-shared (see Definition 1) if there exists a polynomial p(·) of degree at
most d with p(0) = v and every party holds a distinct point on p(·).
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on which a “randomness extraction” algorithm (such as the one based on Van-
dermonde matrix [14]) is applied to generate t-sharing of “truly” random pairs
{a(i), b(i)}i∈[cM ]. Then known multiplication protocols are invoked to compute

t-sharing of {c(i)}i∈[cM ]. Instead, we find it a more natural approach to ask in-
dividual parties to “directly” share random multiplication triples and then “ex-
tract” random multiplication triples unknown to Adv from the triples shared by
the individual parties. This leads to a communication efficient, simple and more
natural “framework” to generate the triples, built with the following modules:

– Multiplication Triple Sharing (Section 7.1). The first module allows
a party Pi to “verifiably” t-share Θ(n) random multiplication triples with
O(n2) communication complexity and thus requires O(n) “overhead”. The
verifiability ensures that the shared triples are indeed multiplication triples.
If Pi is honest, the shared triples remain private from Adv. Such triples,
shared by the individual parties are called local triples.

– Multiplication Triple Extraction (Section 7.2). The second module
allows the parties to securely extract Θ(n) t-shared random multiplication
triples unknown to Adv from a set of 3t+1 local t-shared multiplication triples
with O(n2) communication complexity (and thus with O(n) “overhead”),
provided that at least 2t+ 1 out of the 3t+1 local triples are shared by the
honest parties (and hence are random and private). We stress that known
techniques for extracting shared random values from a set of shared random
and non-random values fail to extract shared random multiplication triples
from a set of shared random and non-random multiplication triples.

For our first module, we present two protocols: the first one probabilistically
verifies the correctness of the shared multiplication triples, leading to our sta-
tistical AMPC protocol. The second protocol verifies the shared multiplication
triples in an error-free fashion in a hybrid setting, leading to our perfectly-
secure hybrid AMPC protocol. For the second module, we present an error-free
triple-extraction protocol. We do not employ (somewhat complex) techniques
like player elimination [17,5] and dispute control [3,14,9] in our protocols. These
techniques have been used in the most recent synchronous unconditional MPC
protocols to obtain linear complexity. Briefly, these techniques suggest to carry
out a computation optimistically first assuming no corruption will take place and
in case corruption occurs, fault/dispute is detected and memorized so that the
same fault/dispute does not cause failure in the subsequent computation. How-
ever, their applicability is yet to be known in the asynchronous setting. Central
to our protocols lie the following two building blocks.

Verifiable Secret Sharing with Linear Overhead (Section 5): We pro-
pose a robust asynchronous verifiable secret sharing (AVSS) protocol that allows
a dealer D to “verifiably” t-share (t+ 1) = Θ(n) secret values with O(n2) com-
munication complexity (i.e. O(n) overhead). The protocol is obtained by modi-
fying the perfectly-secure AVSS protocol of [19] that allows D to 2t-share a single
value. To the best of our knowledge, we are unaware of any robust secret-sharing
protocol (with t < n/4) having linear overhead, even in the synchronous setting.
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Transforming Independent Triples to Co-related Triples with Linear
Overhead (Section 6): Taking 3t + 1 = Θ(n) t-shared input triples (which
may not be multiplication triples), say {(x(i), y(i), z(i))}i∈[3t+1], the protocol

outputs 3t+1 t-shared triples, say {(x(i),y(i), z(i))}i∈[3t+1], lying on three poly-
nomials of degree 3t/2, 3t/2 and 3t respectively. Namely, there exist polyno-
mials X(·),Y(·) and Z(·) of degree at most 3t

2 ,
3t
2 and 3t respectively, where

X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for 3t + 1 distinct αi values.
The protocol has communication complexity O(n2) (i.e. O(n) overhead). The
protocol further ensures the following one-to-one correspondence between the
input and the output triples: (1). the ith output triple is a multiplication triple
if and only if the ith input triple is a multiplication triple; (2). the ith output
triple is known to Adv if and only if the ith input triple is known to Adv. The
former guarantees that the relation Z(·) = X(·)Y(·) is true if and only if all the
3t+ 1 input triples are multiplication triples, while the later guarantees that if
Adv knows t′ input triples, then it implies 3t

2 + 1 − t′ “degree of freedom” in
the polynomials X(·),Y(·) and Z(·), provided t′ ≤ 3t

2 . The protocol is borrowed
from the batch verification protocol of [9], where the goal was to probabilistically
check whether a set of input triples are multiplication triples.

Given the above two building blocks, our first module (of the framework) is re-
alized by asking each party Pi to invoke the AVSS protocol to generate t-sharing
of 3t+1 random multiplication triples {(x(i), y(i), z(i))}i∈[3t+1]. All that is left is
to verify if the shared triples are indeed multiplication triples. This is achieved by
transforming the shared triples to {(x(i),y(i), z(i))}i∈[3t+1] using the triple trans-

formation protocol and then verifying if Z(·) ?
= X(·)Y(·) where X(·),Y(·) and

Z(·) are the underlying polynomials, associated with {(x(i),y(i), z(i))}i∈[3t+1].
Two different methods are then proposed for the verification; one leads to our
statistical AMPC and the other leads to our perfect AMPC in hybrid model.

The second module takes the set of 3t+1 local t-shared multiplication triples
(verifiably shared by individual parties), say {(x(i), y(i), z(i))}i∈[3t+1] such that
at least 2t+1 of them are shared by the honest parties. Using our triple transfor-
mation protocol, shared multiplication triples {(x(i),y(i), z(i))}i∈[3t+1] are then
computed. Since all the input triples are guaranteed to be multiplication triples,
the relation Z(·) = X(·)Y(·) holds. Moreover, as Adv may know at most t input
local triples, t output triples are leaked, leaving t

2 “degree of freedom” in the
polynomials, which is used to extract t

2 = Θ(n) random multiplication triples.

3 Model, Definitions and Notations

We assume a set P = {P1, . . . , Pn} of n = 4t+ 1 parties, connected by pairwise
private and authentic channels; here t is the number of parties which can be un-
der the control of a computationally unbounded Byzantine adversary Adv. The
adversary can force the corrupted parties to deviate in any arbitrary manner dur-
ing the execution of a protocol. The communication channels are asynchronous
allowing arbitrary, but finite delay (i.e. the messages will reach to their destina-
tion eventually). The order of the message delivery is decided by a scheduler; to
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model the worst case scenario, we assume that the scheduler is under the control
of Adv. The scheduler can schedule the messages exchanged between the honest
parties, without having access to the “contents” of these messages.

The function f to be computed is specified as an arithmetic circuit C over a
finite field F, where |F| > 2n and α1, . . . , αn, β1, . . . , βn are publicly known dis-
tinct elements from F. For our statistical AMPC protocol, we additionally require
that |F| ≥ n2 · 2κ, for a given error parameter κ, to bound the error probability
by 2−κ. The circuit C consists of input, addition (linear), multiplication, random
and output gates. We denote by cM and cR the number of multiplication and
random gates in C respectively. Similar to [14,5], for the sake of efficiency, we
evaluate t+1 multiplication gates at once in our AMPC protocol by applying the
Beaver’s method, assuming that the circuit is well-spread, with sufficiently many
“independent” multiplication gates to evaluate in parallel. By [X ] we denote the
set {1, . . . , X}, while [X,Y ] with Y ≥ X denote the set {X,X + 1, . . . , Y }.
Definition 1 (d-sharing [3,4,14,5]). A value s ∈ F is said to be d-shared
among a set of parties P ⊆ P if every (honest) party Pi ∈ P holds a share si of
s, such that there exists a polynomial p(·) of degree at most d, where p(0) = s and
p(αi) = si holds for every (honest) Pi ∈ P. The vector of shares corresponding

to the (honest) parties in P is called a d-sharing of s and denoted by [s]Pd . A
vector S = (s(1), . . . , s(�)) of � values is said to be d-shared among a set of parties
P if each s(l) ∈ S is d-shared among the parties in P.

We write [s]d (ignoring the superscript) to mean that s is d-shared among all
the n parties. A standard property of d-sharings is its linearity: given sharings
[x(1)]d, . . . , [x

(�)]d and a publicly known linear function g : F� → F
m w g(x(1),

. . . , x(�)) = (y(1), . . . , y(m)), then g([x(1)]d, . . . , [x
(�)]d) = ([y(1)]d, . . . , [y

(m)]d).
By saying that the parties compute (locally) ([y(1)]d, . . . , [y

(m)]d) = g([x(1)]d, . . . ,

[x(�)]d), we mean that every party Pi (locally) computes (y
(1)
i , . . . , y

(m)
i ) = g(x

(1)
i ,

. . . , x
(�)
i ), where y

(l)
i and x

(l)
i denotes the ith share of y(l) and x(l) respectively.

4 Existing Building Blocks

Private and Public Reconstruction of d-shared Values: Let [v]Pd be a
d-sharing of v, shared through a polynomial p(·), where d < |P|− 2t. The online
error correction (OEC) algorithm [6], based on the Reed-Solomon (RS) error-
correction allows any designated party PR to reconstruct p(·) and thus v = p(0).

We call the protocol as OEC(PR, d, [v]
P
d ), which has communication complexity

O(n). Moreover if PR is honest then no additional information about v is leaked.

Let {[u(i)]Pd }i∈[t+1] be a set of d-shared values where d < |P|− 2t. The goal is

to make every party in P reconstruct {u(i)}i∈[t+1]. This is achieved by protocol
BatRecPubl with communication complexity O(n2) by using the idea of “data
expansion”, based on RS codes, as used in [14,5].

Batch Multiplication of � Pairs of t-shared Values Using Beaver’s Tech-
nique: Beaver’s circuit randomization method [2] is a well known method for
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securely computing [x · y]t from [x]t and [y]t, at the expense of two public re-
constructions, using a pre-computed t-shared random multiplication triple (from
the offline phase), say ([a]t, [b]t, [c]t). For this, the parties first (locally) compute
[e]t and [d]t, where [e]t = [x]t − [a]t = [x − a]t and [d]t = [y]t − [b]t = [y − b]t,
followed by the public reconstruction of e = (x − a) and d = (y − b). Since the
relation xy = ((x− a) + a)((y − b) + b) = de+ eb+ da+ c holds, the parties can
locally compute [xy]t = de+ e[b]t+ d[a]t+ [c]t, once d and e are publicly known.
The above computation leaks no information about x and y if a and b are ran-
dom and unknown to Adv. For the sake of efficiency, we will apply the Beaver’s
trick on a batch of � pairs of t-shared values simultaneously, where � ≥ t + 1.
BatRecPubl is then used to efficiently perform the public reconstruction of the 2�
(e and d) values with a communication of O(� 2�

t+1� · n2) = O(n�) field elements.

We call the protocol as BatchBeaver({([x(i)]t, [y
(i)]t, [a

(i)]t, [b
(i)]t, [c

(i)]t)}i∈[�]).

Agreement on a Common Subset (ACS) and Asynchronous Broadcast:
Protocol ACS [6,8] allows the (honest) parties to agree on a common subset
Com of (n − t) parties, who have correctly shared “values”; the values may be
the inputs of the individual parties or a multiplication triple or a random value.
The protocol has communication complexity O(poly(n)).

Bracha’s asynchronous broadcast protocol (called A-Cast) [10] allows a sender
Sen ∈ P to send some message m identically to all the n parties. If Sen is
honest then all the honest parties eventually terminate with output m. If Sen is
corrupted and some honest party terminates with output m′, then every other
honest party eventually does the same. The protocol needs a communication of
O(n2|m|) for a message of size |m|. We say that Pi receives m from the broadcast
of Pj if Pi outputs m in the instance of A-Cast where Pj is acting as Sen.

Generating a Random Value: Protocol Rand is a standard protocol to gen-
erate a uniformly random value and has communication complexity O(poly(n)).

5 Verifiably Generating Batch of t-shared Values

We design a protocol called Sh, which allows a dealer D ∈ P to “verifiably”
t-share � values S = (s(1), . . . , s(�)), where � ≥ t+ 1. The “verifiability” ensures
that if the honest parties terminate the protocol then the output sharings are
t-sharing. Moreover the shared secrets are private if D is honest. The protocol
communicates O(n�) field elements and broadcastsO(n2) field elements. We first
explain the protocol assuming that S contains t+ 1 secrets.

The starting point of Sh is the sharing protocol of the perfectly-secure AVSS
scheme of [19]. The AVSS protocol of [19] enables D to 2t-share (note the de-
gree of sharing) a single secret s. The 2t-sharing is achieved via a univariate
polynomial F (x, 0) of degree at most 2t, where F (x, y) is a random bi-variate
polynomial of degree at most 2t in x and at most t in y (note the difference in
degrees), such that F (0, 0) = s. Initially, D is asked to pick F (x, y) and hand over
the ith row polynomial fi(x) of degree at most 2t and the ith column polynomial
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gi(y) of degree at most t to the party Pi, where fi(x)
def
= F (x, αi) and gi(y)

def
=

F (αi, y). If the sharing protocol terminates, then it is ensured that there exists a
bi-variate polynomial F ′(x, y) of degree at most 2t in x and at most t in y, such
that every honest party Pj holds a column polynomial g′j(y) of degree at most

t, where g′j(y) = F ′(αj , y). This makes the secret s′
def
= F ′(0, 0) to be 2t-shared

through the polynomial f ′
0(x) of degree at most 2t where f ′

0(x)
def
= F ′(x, 0) and

every honest party Pj holds its share s′j of the secret s′, with s′j = f ′
0(αj) =

F ′(αj , 0) = g′j(0). For an honest D, F ′(x, y) = F (x, y) will hold and thus s will

be 2t-shared though the polynomial f0(x)
def
= F (x, 0).

g1(y) · · · gj(y) · · · gn(y) gβ1(y) · · · gβt+1(y)

f1(x) F (α1, α1) · · · F (αj , α1) · · · F (αn, α1) ⇒ s
(1)
1 = f1(β1) · · · s(t+1)

1 = f1(βt+1)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fi(x) F (α1, αi) · · · F (αj , αi) · · · F (αn, αi) ⇒ s

(1)
i = fi(β1) · · · s(t+1)

i = fi(βt+1)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

fn(x) F (α1, αn) · · · F (αj , αn) · · · F (αn, αn) ⇒ s
(1)
n = fn(β1) · · · s(t+1)

n = fn(βt+1)
⇓ · · · ⇓ · · · ⇓

︸ ︷︷ ︸

· · ·
︸ ︷︷ ︸

f0(x) s1 = g1(0) · · · sj = gj(0) · · · sn = gn(0) [s(1)]t · · · [s(t+1)]t

︸ ︷︷ ︸

s(1) = gβ1(0) · · · s(t+1) = gβt+1(0)

[s]2t, s = f0(0)

Fig. 1. Pictorial representation of the values distributed in the AVSS of [19] and proto-
col Sh. The polynomials f1(x), . . . , fn(x), g1(y), . . . , gn(y) computed from the bi-variate
polynomial F (x, y) of degree at most 2t and t in x and y are distributed in both the pro-
tocols. In the AVSS protocol, s is 2t-shared through the row polynomial f0(x) (shown
in red color) of degree 2t, while in Sh, t+1 values s(1), . . . , s(t+1) are t-shared through
the column polynomials gβ1(y), . . . , gβt+1(y) (shown in blue color) of degree t.

In the above sharing protocol of [19], we note that Adv’s view leaves (t+1)(2t+
1)− t(2t+1)− t= (t+1) “degree of freedom” in F (x, y) when D is honest. This
is because Adv receives t(2t+1)+ t distinct points on F (x, y) through the t row
and column polynomials of the corrupted parties while (t + 1)(2t + 1) distinct
points are required to completely define F (x, y). While [19] used the t+1 degree
of freedom for a single 2t-sharing by embedding a single secret in F (x, y), we
use it to create t-sharing of t+ 1 different secrets by embedding t+ 1 secrets in
F (x, y). Namely, given t + 1 secrets S = (s(1), . . . , s(t+1)), the dealer D in our
protocol fixes F (βl, 0) = s(l) for l ∈ [t+ 1], where F (x, y) is otherwise a random
polynomial of degree at most 2t in x and at most t in y. At the end, the goal is
that the secret s(l) is t-shared among the parties through the polynomial F (βl, y)
of degree at most t, which we denote by gβl

(y). As depicted in Fig. 1 (in blue
color), an honest party Pi can compute its shares of the secrets in S by local
computation on the polynomial fi(x) = F (x, αi). This follows from the fact that

for l ∈ [t+ 1] the ith share s
(l)
i of the secret s(l) satisfies s

(l)
i = gβl

(αi) = fi(βl).
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So all that is left is to ensure that every honest Pi gets fi(x) in Sh protocol.
For this recall that the sharing protocol of [19] ensures that every honest Pj holds
g′j(y) such that there exists a bi-variate polynomial F ′(x, y) of degree at most 2t
in x and at most t in y where F ′(αj , y) = g′j(y) holds; furthermore for an honest
D, F ′(x, y) = F (x, y) holds. Now note that g′j(αi) is the same as f ′

i(αj) and thus
every Pj holds a point on every f ′

i(x). Now Pi can reconstruct f ′
i(x) by asking

every party Pj to send its point on f ′
i(x) to Pi. Since f

′
i(x) has degree at most 2t

and there are 4t+1 parties, OEC enables Pi to compute f ′
i(x) from the received

points. Finally, we note that for a corrupted D, S′ = (F ′(β1, 0), . . . , F
′(βt+1, 0))

will be t-shared and for an honest D, S′ = S will hold.
Our idea of embedding several secrets in a single bi-variate polynomial is dif-

ferent from the notion of packed secret-sharing [16] where k secrets are embedded
in a single univariate polynomial of degree t and each party receives a single share
(a distinct point on the polynomial). In the latter, a single share is the share for
k secrets and the robust reconstruction of the secrets is possible only if at most
t−k+1 parties are corrupted. Protocol Sh, on the other hand, ensures that each
secret in S is independently t-shared and thus the robust reconstruction of each
secret is possible even when the adversary corrupts t parties.

Sharing More Than t + 1 Values Together: On having � secrets for � >
t+ 1, D can divide them into groups of t+ 1 and execute an instance of Sh for
each group. This will require communication of O(� �

(t+1)� · n2) = O(n�) field

elements, since (t+1) = Θ(n). The broadcast communication can be kept O(n2)
(independent of �) by executing all instances of Sh (each handling t+ 1 secrets)
in parallel and by asking each party to broadcast only once for all the instances,
after confirming the veracity of the “pre-condition” for the broadcast for all the
instances of Sh. The sharing protocol of the AVSS scheme of [19] describes the
same idea to keep the broadcast communication independent of � when D 2t-
shares � secrets. In the rest of the paper, we will say that a party t-shares �
values, where � ≥ t+ 1 using an instance of Sh to mean the above.

6 Transforming Independent Triples to Co-related Triples

Protocol TripTrans takes as input a set of (3t+ 1) “independent” shared triples,
say {([x(i)]t, [y

(i)]t, [z
(i)]t)}i∈[3t+1], and outputs a set of (3t + 1) “co-related”

shared triples, say {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1], such that: (a) There exist

polynomials X(·),Y(·) and Z(·) of degree at most 3t
2 ,

3t
2 and 3t respectively, such

that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds, for i ∈ [3t+ 1]. (b) The
ith output triple (x(i),y(i), z(i)) is a multiplication triple if and only if the ith
input triple (x(i), y(i), z(i)) is a multiplication triple. This further implies that
Z(·) = X(·)Y(·) is true iff all the 3t + 1 input triples are multiplication triples.
(c) If Adv knows t′ input triples and if t′ ≤ 3t

2 , then Adv learns t′ distinct values
of X(·),Y(·) and Z(·), implying 3t

2 + 1− t′ “degree of freedom” on X(·),Y(·) and
Z(·). If t′ > 3t

2 , then Adv will completely know X(·),Y(·) and Z(·).
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The protocol (see Fig. 2) is inherited from the protocol for the batch veri-
fication of the multiplication triples proposed in [9]. The idea is as follows: we
assume X(·) and Y(·) to be “defined” by the first and second component of
the first 3t

2 + 1 input triples, compute 3t
2 “new” points on the X(·) and Y(·)

polynomials and compute the product of the 3t
2 new points using Beaver’s tech-

nique making use of the remaining 3t
2 input triples. The Z(·) is then defined by

the 3t
2 computed products and the third component of the first 3t

2 + 1 input
triples. In a more detail, we define the polynomial X(·) of degree at most 3t

2

by setting X(αi) = x(i) for i ∈ [ 3t2 + 1] and get [x(i)]t = [X(αi)]t = [x(i)]t for

i ∈ [ 3t2 + 1]. Following the same logic, we define Y(αi) = y(i) for i ∈ [ 3t2 + 1] and

get [y(i)]t = [Y(αi)]t = [y(i)]t for i ∈ [ 3t2 + 1]. Moreover, we set Z(αi) = z(i) for

i ∈ [ 3t2 + 1] and get [z(i)]t = [Z(αi)]t = [z(i)]t for i ∈ [ 3t2 + 1].

Protocol TripTrans({([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1])

1. The parties set [x(i)]t = [x(i)]t, [y
(i)]t = [y(i)]t and [z(i)]t = [z(i)]t for i ∈ [ 3t

2
+ 1].

2. Let the points {(αi,x
(i))}i∈[ 3t

2
+1] and {(αi,y

(i))}i∈[ 3t
2

+1] define the polynomial

X(·) and Y(·) respectively of degree at most 3t
2
. The parties locally compute

[x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t, for each
a i ∈ [ 3t

2
+ 2, 3t+ 1].

3. The parties compute 3t
2

sharings {[z(i)]t}i∈[ 3t
2
+2,3t+1] by executing

BatchBeaver({([x(i)]t, [y
(i)]t, [x

(i)]t, [y
(i)]t, [z

(i)]t)}i∈[ 3t
2

+2,3t+1]). Let the points

{(αi, z
(i))}i∈[3t+1] define the polynomial Z(·) of degree at most 3t. The parties

output {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1] and terminate.

a This is a linear function.

Fig. 2. Transforming independent shared triples to co-related shared triples

Now for i ∈ [ 3t2 +2, 3t+1], we compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t
which requires only local computation on the t-sharings

{
([x(i)]t, [y

(i)]t)
}
i∈[ 3t2 +1]

.

For i ∈ [ 3t2 + 2, 3t + 1], fixing z(i) to be the same as z(i) will, however, violate
the requirement that Z(·) = X(·)Y(·) holds when all the input triples are mul-
tiplication triples; this is because for i ∈ [ 3t2 + 2, 3t + 1], x(i) = X(αi) 	= x(i)

and Y(αi) = y(i) 	= y(i) and thus z(i) = x(i)y(i) 	= x(i)y(i). Here we resort
to the Beaver’s technique to find [z(i)]t = [x(i)y(i)]t from [x(i)]t and [y(i)]t,
using the t-shared triples {([x(i)]t, [y

(i)]t, [z
(i)]t)}i∈[ 3t2 +2,3t+1]. We note that the

triples {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[ 3t2 +2,3t+1] used for the Beaver’s technique are
never touched before for any computation.

It is easy to see that (x(i),y(i), z(i)) is a multiplication triple if and only if
(x(i), y(i), z(i)) is a multiplication triple. For i ∈ [ 3t2 + 1], this is trivially true, as

for such an i, ([x(i)]t, [y
(i)]t, [z

(i)]t) = ([x(i)]t, [y
(i)]t, [z

(i)]t). For i ∈ [ 3t2 + 2, 3t+
1], it follows from the correctness of the Beaver’s technique and the fact that
([x(i)]t, [y

(i)]t, [z
(i)]t) is used to compute [z(i)]t from [x(i)]t and [y(i)]t and so

z(i) = x(i)y(i) if and only if z(i) = x(i)y(i). For privacy, we see that if Adv knows
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the ith input triple then the ith output triple will be known to Adv: for i ∈
[ 3t2 +1] the statement is trivially true, while for i ∈ [ 3t2 +2, 3t+1], the statement

follows because Adv will know the ith input triple (x(i), y(i), z(i)), which is used
to compute [z(i)]t from [x(i)]t and [y(i)]t. Since (x(i) − x(i)) and (y(i) − y(i)) are
disclosed during the computation of [z(i)]t, Adv will learn x(i), y(i) and z(i). Thus
if Adv knows t′ input triples where t′ ≤ 3t

2 then Adv will learn t′ output triples
and hence t′ values of X(·),Y(·) and Z(·), leaving 3t

2 + 1 − t′ degree of freedom
in these polynomials. We note that all the honest parties eventually terminate
the protocol and the protocol incurs communication of O(n2) elements from F.

7 The Framework for Generating Multiplication Triples

We are now ready to present our new framework for generating t-sharing of cM+
cR randommultiplication triples unknown to Adv, which requires communication
of O((cM + cR)n) and broadcast of O(n3) field elements. As discussed earlier,
the framework consists of two modules, elaborated next.

7.1 Module I: Verifiably Sharing Multiplication Triples

A Probabilistic Solution in a Completely Asynchronous Setting: Our
protocol TripleSh allows a party D ∈ P to verifiably share multiplication triples
with linear “overhead”, where the verification resorts to a probabilistic ap-
proach. In the protocol, D is asked to t-share 3t + 1 random multiplication
triples {(x(i), y(i), z(i))}i∈[3t+1] using Sh. To check if the triples are multiplication

triples, the shared triples are first transformed to {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1]

via TripTrans and then the relation Z(·) ?
= X(·) ·Y(·) is verified through a public

checking of Z(α)
?
= X(α)·Y(α) for a random α. To ensure that no corrupted D can

pass this test, α should be generated using Rand once D completes sharing of the
triples. It follows via the property of TripTrans that if some of the input triples
{(x(i), y(i), z(i))}i∈[3t+1] are not multiplication triples, then Z(α) 	= X(α) · Y(α)
except with probability at most 3t

|F| for a random α, since Z(α) is of degree

at most 3t. Moreover if D is honest then Adv will learn only one point on
X(·),Y(·) and Z(·) (namely at α) leaving 3t

2 “degree of freedom” in these poly-
nomials. So if the verification passes, then the parties output 3t

2 shared triples

{([a(i)]t, [b(i)]t, [c
(i)]t)} on the “behalf” of D, where a(i) = X(βi),b

(i) = Y(βi)
and c(i) = Z(βi) for

3t
2 βis distinct from the random α.

In TripleSh, the above idea is applied on � batches of 3t + 1 t-shared triples,
where � ≥ t + 1 and a single random α is used for all the � batches. Using
BatRecPubl, we then efficiently perform the public reconstruction of 3� values,
namely the values of the polynomials at α. The protocol thus outputs � · 3t

2 =
Θ(n�) shared multiplication triples, with communication complexity O(n2�) and
requires broadcast of O(n2) elements from F.



Asynchronous MPC with Linear Communication Complexity 399

An Error-Free Solution in a Hybrid Setting: An inherent drawback of a
completely asynchronous setting is that the inputs of up to t potentially honest
parties may get ignored. To get rid of this, [4] introduced a “partial synchronous”
or hybrid setting wherein the very first communication round is a synchronous
round. It was shown in [4] how to enforce “input provision” from all the n parties
using the synchronous round (with some additional technicalities). We further
utilize the first synchronous round to present an error-free triple sharing protocol
called HybTripleSh for t-sharing multiplication triples.

HybTripleSh follows the footstep of TripleSh, except that it verifies the relation
Z(·) = X(·)Y(·) in an error-free fashion, by leaking at most t points on the
polynomials to Adv. Since this leaves at least t

2 degree of freedom on each of the
polynomials for an honest D, the parties output t

2 shared multiplication triples

{[a(i)]t, [b(i)]t, [c
(i)]t}i∈[ t2 ]

on the behalf of D after successful verification, where

a(i) = X(βi),b
(i) = Y(βi) and c(i) = Z(βi). The idea for the error-free verification

is the following: each party Pi is given “access” to the triple (X(αi),Y(αi),Z(αi))
and is given the responsibility of confirming if it is a multiplication triple. If
the confirmation comes from all the parties, then it can be concluded that the
relation Z(·) = X(·)Y(·) is true. This is because the confirmation comes from at
least (n− t) = 3t+1 honest parties and the degree of the polynomials X(·), Y(·)
is at most 3t

2 and the degree of Z(·) is at most 3t. Moreover, at most t values
on each polynomial are leaked to Adv through the t corrupted parties (for an
honest D). Unfortunately, in a completely asynchronous setting, we cannot wait
for the confirmation from all the parties in P , as the wait may turn out to be
endless2. The synchronous round in the hybrid setting comes to our rescue.

In the synchronous round, every party Pi is asked to “non-verifiably” t-share
a dummy multiplication triple, say (f (i), g(i), h(i)) which is used later to verify if
(X(αi),Y(αi),Z(αi)) is a multiplication triple on behalf of Pi, although without
further participation of Pi. By non-verifiably we mean that neither the correct-
ness of the t-sharing nor the fact that the shared triple is a multiplication triple
is guaranteed if Pi is corrupted. The synchronous round however ensures that a
dummy triple is non-verifiably shared on the behalf of every party Pi. Even if a
corrupted Pi does not send the shares of the dummy triples to some party by
the end of the round, the receiver can take some default value to complete the
sharing. By defining “good” dummy triples as the ones that are t-shared and
are multiplication triples, we now show how the verification is carried out using
these dummy triples. Note that the honest parties share good dummy triples.

Given a dummy triple (f (i), g(i), h(i)), we check if (X(αi),Y(αi),Z(αi)) is a
multiplication triple by computing the sharing of the product of X(αi) and Y(αi)
via the Beaver’s technique and using the shared dummy triple and then pub-
licly verifying if the resultant product is the same as Z(αi). The latter can
be verified by checking if the difference of the product and Z(αi) is 0 or not.
If Pi is honest then the dummy triple is random and thus no information is
leaked about (X(αi),Y(αi),Z(αi)). If the checking fails, then the sharing of

2 The confirmation is needed from all the n parties as we need 3t+1 “true” confirma-
tions and t corrupted parties may provide a “false” confirmation.
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(X(αi),Y(αi),Z(αi)) are publicly reconstructed for its public verification. Note
that in such a case, either Pi or D must be corrupted and thus the privacy of
the triple is lost already. However, if (X(αi),Y(αi),Z(αi)) is found to be a non-
multiplication triple then D is definitely corrupted in which case the protocol is
halted after outputting t

2 default sharing of multiplication triples.

When the shared triple (f (i), g(i), h(i)) is not a good dummy triple due to the
reason that it is a non-multiplication triple (but t-shared correctly), the checking
of the corresponding multiplication triple (X(αi),Y(αi),Z(αi)) might fail leading
to its public reconstruction and verification. But in this case Pi is surely cor-
rupted and thus losing the privacy of the triple does not matter. Furthermore,
the public verification of the multiplication triple will be successful for an honest
D, implying that an honest D can not be disqualified. The case when the shared
triple (f (i), g(i), h(i)) is not a good dummy triple due to the reason that it is not
t-shared correctly is more intricate to handle. The problem could be during the
reconstruction of the values that are not t-shared, while executing the Beaver’s
technique. We solve this problem via a “variant” of OEC that concludes the
reconstructed value upon receiving shares from any 3t + 1 parties without fur-
ther waiting. This however, might cause different parties to reconstruct different
values when the input sharing is not t-shared. So an asynchronous Byzantine
agreement (ABA) protocol [1] is run to agree on a unique value.

Finally we note that in the protocol HybTripleSh, the above idea is actually
applied on � batches of 3t+ 1 t-shared triples in parallel, where � ≥ t+ 1. This
allows the efficient public reconstruction of all the required sharings (correspond-
ing to the � batches) using BatRecPubl. The protocol thus outputs � · t

2 = Θ(n�)
shared multiplication triples.

7.2 Module II: Extracting Random Multiplication Triples

Let Com ⊂ P be a publicly known set of 3t + 1 parties, such that every party
in Com has verifiably t-shared � multiplication triples among the parties in P ,
where the triples shared by the honest parties are random and unknown to Adv.
Protocol TripExt then “extracts” � · t

2 = Θ(n�) random t-shared multiplication
triples unknown to Adv from these � · (3t + 1) “local” t-shared multiplication
triples with a communication of O(n2�). The idea is as follows: the input triples
from the parties in Com are perceived as � batches of 3t + 1 triples where the
lth batch contains the lth local triple from each party in Com. Then the trans-
formation protocol TripTrans is executed on the lth batch to obtain a new set
of 3t + 1 triples and the three associated polynomials of degree 3t

2 ,
3t
2 and 3t,

namely Xl(·),Yl(·) and Zl(·). Since each input triple is guaranteed to be a mul-
tiplication triple, the multiplicative relation holds among the polynomials, i.e.
Zl(·) = Xl(·)Yl(·). Since Adv gets to know at most t input triples in the lth
batch, the transformation ensures that Adv gets to know at most t points on
each of the three polynomials, leaving t

2 degree of freedom on each polynomial.
The random output multiplication triples for the lth batch, unknown to Adv,
are then extracted as

{
([Xl(βi)]t, [Y

l(βi)]t, [Z
l(βi)]t)

}
i∈[ t2 ]

.
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7.3 Module I + Module II ⇒ Preprocessing (Offline) Phase

Our preprocessing phase protocol now consists of the following steps: (1) Every

party in P acts as a dealer and t-share � = 2(cM+cR)
t random multiplication

triples, either using an instance TripleSh (if it is a completely asynchronous set-
ting) or an an instance of HybTripleSh (if it is a hybrid setting). (2) The parties
then execute an instance of ACS to decide on a common set Com of 3t+1 dealers
who have correctly shared multiplication triples in their respective instances of
TripleSh/HybTripleSh. (3) Finally the parties execute the triple-extraction proto-
col TripExt on the triples shared by the parties in Com to extract �· t2 = (cM+cR)
random shared multiplication triples. Now depending upon whether we use the
protocol TripleSh or HybTripleSh above, we get either a completely asynchronous

preprocessing phase protocol PreProc involving an error of at most t · 3t
|F| =

3t2

|F|
in the output or an error-free preprocessing phase protocol HybPrePro for the
hybrid setting. The output triples will be private, as the multiplication triples
of the honest dealers in Com are random and private.

8 The New AMPC Protocols

Once we have a preprocessing phase protocol, the online phase protocol for the
shared circuit evaluation is straight forward (as discussed in the introduction);
we refer to the full version of the paper for complete details. We note that
in our hybrid AMPC protocol, during the offline phase, apart from t-sharing
of (cM + cR) random multiplication triples, the parties generate t-sharing of
n · (t + 1) additional multiplication triples. The additional triples are used to
enforce “input provision” from all the n parties during the online phase by using
the method of [4]; see the full version of the paper for details.

Theorem 1 (The AMPC Theorem). Let f : Fn → F be a function expressed
as an arithmetic circuit over a finite field F, consisting of cM and cR multipli-
cation and random gates. Then for every possible Adv, there exists a statistical
AMPC protocol with error probability at most 2−κ to securely compute f , pro-
vided |F| ≥ max{3t2 · 2κ, 2n} for a given error parameter κ. The protocol incurs
communication of O((cM+cR)n) elements and broadcast of O(n3) elements from
F and requires two invocations to ACS and n invocations to Rand.

If the first communication round is synchronous, then there exists a perfect
AMPC protocol to securely compute f , provided |F| ≥ 2n. In the protocol, the
inputs of all (the honest) parties are considered for the computation. The protocol
requires communication of O((cM + cR)n+n3) and broadcast of O(n3) elements
from F. It also requires two invocations to ACS and n2 invocations to ABA.
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