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Abstract. In the advent of large-scale multi-hop wireless technologies,
such as MANET, VANET, iThings, it is of utmost importance to devise
efficient distributed protocols to maintain network architecture and pro-
vide basic communication tools. One of such fundamental communication
tasks is broadcast, also known as a 1-to-all communication. We present
a randomized algorithm that accomplishes broadcast in O(D+ log(1/δ))
rounds with probability at least 1 − δ on any uniform-power network
of n nodes and diameter D, when each station is equipped with its co-
ordinates and local estimate of network density. Next, we develop al-
gorithms for the model where no estimate of local density is available,
except of the value n of the size of a given network. First, we provide a
simple and almost oblivious algorithm which accomplishes broadcast in
O(D log n(log n + log(1/δ))) rounds with probability at least 1 − δ. We
further enhance this algorithm with more adaptive leader election routine
and show that the resulting protocol achieves better time performance
O((D + log(1/δ)) log n) with probability at least 1 − δ. Our algorithms
are the first provably efficient and well-scalable randomized distributed
solutions for the (global) broadcast task in the ad hoc setting with coor-
dinates. This could be also contrasted with the complexity of broadcast
by weak devices, for which such scalable algorithms (with respect to D
and log n) cannot be obtained [11].

Keywords: Ad hoc wireless networks, Signal-to-Interference-and-Noise-
Ratio (SINR) model, Broadcast, Distributed algorithms.

1 Introduction

1.1 The Model

We consider the model of a wireless network consisting of n stations, also called
nodes, deployed into an Euclidean plane and communicating by a wireless
medium. Euclidean metric on the plane is denoted dist(·, ·). Each station v has
its transmission power Pv, which is a positive real number.
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There are three fixed model parameters: path loss α > 2, threshold β ≥ 1,
ambient noise N > 0. We also have connectivity graph parameter ε ∈ (0, 1). The
SINR(v, u, T ) ratio, for given stations u, v and a set of (transmitting) stations
T , is defined as follows:

SINR(v, u, T ) =
Pvdist(v, u)

−α

N +
∑

w∈T \{v} Pwdist(w, u)−α
(1)

In the Signal-to-Interference-and-Noise-Ratio (SINR) model a station u success-
fully receives a message from a station v in a round if v ∈ T , u /∈ T , and

SINR(v, u, T ) ≥ β ,

where T is the set of stations transmitting at that round.
In order to specify the details of broadcasting task and performance analysis,

we first introduce the notion of transmission ranges and communication graphs.

Ranges and Uniformity. The communication range rv of a station v is the ra-
dius of the ball in which a message transmitted by the station is heard, provided
no other station transmits at the same time. A network is uniform, when trans-
mission powers Pv and thus ranges of all stations rv are equal, or nonuniform
otherwise. In this paper, only uniform networks are considered and without loss
of generality we assume that rv = r = 1 for any v, i.e., (P/(Nβ))1/α = 1, where
P is the transmission power of a station.

Communication Graph and Graph Notation. The communication graph
G(V,E) of a given network consists of all network nodes and edges (v, u) such
that dist(v, u) ≤ (1 − ε)r = 1 − ε, where 0 < ε < 1 is a fixed model param-
eter. The meaning of the communication graph is as follows: even though the
idealistic communication range is r, it may be reached only in a very unrealistic
case of single transmission in the whole network. In practice, however, many
nodes located in different parts of the network often transmit simultaneously,
and therefore it is reasonable to assume that we may only hope for a slightly
smaller range to be achieved. The communication graph envisions the network of
such“reasonable reachability”. Note that the communication graph is symmetric
for uniform power networks. By a neighborhood of a node u we mean the set of
all neighbors of u in G, i.e., the set {w | (w, u) ∈ E(G)}. The graph distance from
v to w is equal to the length of a shortest path from v to w in the communi-
cation graph, where the length of a path is equal to the number of its edges.
The eccentricity of a node is the maximum graph distance from this node to any
other node (note that the eccentricity is of order of the diameter D).

Synchronization. It is assumed that algorithms work synchronously in rounds,
each station can either act as a sender or as a receiver during a round. We do
not assume global clock ticking.

Carrier Sensing. We consider the model without carrier sensing, that is, a
station u has no other feedback from the wireless channel than receiving or not
receiving a message in a round t.

Knowledge of Stations. Each station has its unique ID, which is only needed
for distinguishing various stations. Each station also knows its location and the
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number of stations in the network, n. Our algorithms also work when stations
share, instead of n, an estimate ν ≥ n of this value which is O(n). We assume
that each sender can enclose its ID and location to each transmitted message.1

Broadcast Problem and Complexity Parameters. In the broadcast prob-
lem, there is one distinguished node, called the source, which initially holds a
piece of information (also called a source message or a broadcast message). The
goal is to disseminate this message to all other nodes. We are interested in min-
imizing the time complexity of this task being the minimum number of rounds
after which, for all communication networks defined by some set of parameters,
the broadcast occurs with the probability at least 1 − δ for a given 0 < δ < 1.
This time is counted since the source is activated. For the sake of complexity
formulas, we consider the following parameters: n, D and δ.

Messages and Initialization of Stations Other Than Source. We assume
that a single message sent in an execution of any algorithm can carry the broad-
cast message and at most logarithmic, in the size of the network, number of
control bits. A station other than the source starts executing the broadcast pro-
tocol after the first successful receipt of the source message; it is often called a
non-spontaneous wake-up model. We say that a station which receives the source
message for the first time is waken up at this moment and it is awake after-
wards. Our algorithms are described from a “global” perspective, i.e., we count
rounds starting from the moment when the source sends its first message. In or-
der to synchronize stations, we assume that each message contains the number
of rounds elapsed from the beginning of the execution of the algorithm.

1.2 Our Results

We present randomized distributed algorithms for broadcasting in wireless con-
nected networks deployed in two dimensional Euclidean space under the SINR
model, with uniform power assignment and any ε ∈ (0, 1). We distinguish two
settings: one with local knowledge of density, in which each station knows the
upper bound on the number of other stations in its close proximity (dependent
on parameter ε) and the other when no extra knowledge is assumed.

In the former model, we develop a randomized broadcasting algorithm with
time complexity O(D+log(1/δ)), where D is the eccentricity of the communica-
tion graph, and δ is the maximum error probability. In the latter model, we first
provide a simple and almost oblivious algorithm that accomplishes broadcast in
O(D(log n + log(1/δ)) logn) rounds with probability at least 1 − δ. Finally, we
give a solution with time complexity O((D+log(1/δ)) logn), with probability at
least 1− δ, which is only slightly worse than the complexity of the algorithm re-
lying on the density estimates. All these results hold for model parameter α > 2
(for α = 2 all the solutions are slower by a factor logn).

Our algorithms are the first provably efficient and well-scalable randomized
distributed solutions for the (global) broadcast task, which work in the model

1 For the purpose of algorithms presented in this paper, it is sufficient that each station
knows only some good approximation of its coordinates.
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with coordinates, without spontaneous wake-up (i.e., no preprocessing is allowed)
and for arbitrary value of the parameter ε defining the communication graph.
This could be also contrasted with the complexity of broadcast by weak devices,
for which such scalable algorithms (with respect to D and logn) cannot be
obtained [11]. Due to the space limit, some proofs are deferred to the full version.

1.3 Previous and Related Results

We discuss most relevant results in the SINR-based models and in the older
Radio Network model.

SINR Models. One of the first communication problems studied from algo-
rithmic point in distributed ad hoc setting under the SINR model was local
broadcasting, in which each node has to transmit a message only to its neigh-
bors in the corresponding communication graph. This problem was addressed
in [8,10,19] for ε > 1/2. Randomized solutions for contention resolution [14]
and packet scheduling (with power control) [13] were also obtained. Usually, the
considered setting allowed power control in which, in order to avoid collisions,
stations could transmit with any power smaller than the maximal one. Recently,
a distributed randomized algorithm for multi-broadcast has been presented [18]
for uniform networks. Although the problem solved in that paper is a generaliza-
tion of a broadcast, the presented solution needs the power control mechanism
and it is restricted to networks having the communication graph connected for
ε = 2

3r, where r is the largest possible range. Moreover, spontaneous wake-up
of stations is necessary in their algorithm. In contrast, our solutions are efficient
and scalable for any networks with communication graph connected for any value
of ε < 1

2 .
2 Moreover, we do not use the power control mechanism. On the other

hand, unlike ours, the algorithm from [18] works even if stations do not know
their coordinates (or their estimates).

As shown recently [12], there exists an efficient deterministic broadcasting al-
gorithm in the model considered in this paper. More precisely, it is worse than the
best algorithm in this work by only a logarithmic factor. Independently, Daum
et al. [4] proposed another randomized broadcasting algorithm. Their solution
works for a broader family of metrics (not only the Euclidean) and does not
rely on the knowledge of coordinates by stations. However, the time complexity
of this solution is poly-logarithmic with respect to the ratio R between longest
and shortest distance between stations, and R might be even exponential with
respect to the size n of a given network.

There is a vast amount of work on centralized algorithms under the classical
SINR models. The most studied problems include connectivity, capacity maxi-
mization, and link scheduling types of problems; for recent results and references
we refer the reader to the survey [9].

Radio Network Model.There are several papers analyzing broadcasting in the
radio model of wireless networks, under which a message is successfully heard if

2 In case of ε ∈ [1/2, 1), one could take our algorithm for ε′ = 1/3, which guarantees
at least as good asymptotic performance.
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there are no other simultaneous transmissions from the neighbors of the receiver
in the communication graph. This model does not take into account the real
strength of the received signals, and also the signals from outside of some close
proximity.

The problem of broadcasting is well-studied in the setting of graph radio model,
in which stations are not necessarily deployed in a metric space. The first effi-
cient randomized solution was developed by Bar-Yehuda et al. [1], while the
close lower bound was proved in [17]. The algorithms closing the gap between
the upper and the lower bound appeared in [3,16]. Since the solutions for a graph
model are quite efficient, there are only few studies of the problem restricted to
the geometric setting. However, solutions for some other communication prob-
lems can be significantly faster in geometric (uniform) radio networks than in
general ones [7]. There is also a vast literature on deterministic algorithms for
broadcasting in graph and geometric radio models, c.f., [2,15,16,5,6].

1.4 Technical Preliminaries

In this section we formulate some properties and notation that simplify the
specification and analysis of algorithms.

Message Content and Global Clock. In the broadcast problem, a round
counter could be easily maintained by already informed nodes by passing it
along the network with the source message, thus in all algorithms we may in
fact assume having a global clock. For simplicity of analysis, we also assume that
every message sent during the execution of our broadcast protocols contains the
broadcast message; in practice, further optimization of a message content could
be done in order to reduce the total number of transmitted bits in real executions.

Successful Transmissions. We say that a station v transmits c-successfully
in a round t if v transmits a message in round t and this message is heard by
each station u in the Euclidean distance at most c from v. A station v transmits
successfully to u in round t if v transmits a message and u receives this message in
round t. We say that a station that received the broadcast message is informed.

Grids. Given a parameter c > 0, we define a partition of the 2-dimensional
space into square boxes of size c × c by the grid Gc, in such a way that: all
boxes are aligned with the coordinate axes, point (0, 0) is a grid point, each box
includes its left side without the top endpoint and its bottom side without the
right endpoint and does not include its right and top sides. We say that (i, j)
are the coordinates of the box with its bottom left corner located at (c · i, c · j),
for i, j ∈ Z. A box with coordinates (i, j) ∈ Z

2 is denoted Cc(i, j) or C(i, j)
when the side of a grid is clear from the context. In the following sections we
will always refer to boxes of the grid Gγ , where γ is a parameter specific for a
considered algorithm. For a station v, boxc(v) (or simply box(v)) denotes the
box of Gc containing v.

Dilution. For the tuples (i1, i2), (j1, j2) the relation (i1, i2) ≡ (j1, j2) mod d
for d ∈ N denotes that (|i1 − i2| mod d) = 0 and (|j1 − j2| mod d) = 0. A set
of stations A on the plane is d-diluted wrt Gc, for d ∈ N \ {0}, if for any two
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stations v1, v2 ∈ A with grid coordinates Gc(v1) = (i1, j1) and Gc(v2) = (i2, j2),
respectively, the relationship (i1, i2) ≡ (j1, j2) mod d holds.

2 An Algorithm for Known Local Density

In this section we describe our broadcasting algorithm for networks of known lo-
cal density, which makes use of some properties exploited e.g., in local broadcast-
ing [8,10]. That is, every station v knows the total number of stations Δ = Δ(v)
in its box of the grid Gγ . In this section we assume γ = ε

2
√
2
. Without loss of

generality we can assume, that for some k ∈ N the equality (2k+1)γ = 2 holds.
This means that each box B from the grid Gγ lies in the center of some square
2 × 2 consisting of (2k + 1)2 = (2/γ)2 boxes of Gγ . We call this square the su-
perbox S(B) of B. Note that all stations in the distance at most 1− ε/2 from B
are in S(B).

Algorithm 1. RandBroadcast(Δ, d, T ) 	 code for node v

1: the source s transmits
2: for counter = 1, 2, 3, . . . , T do
3: for each a, b : 0 ≤ a, b < d do
4: if v ∈ C(i, j) : (i, j) ≡ (a, b) mod d then
5: v transmits with probability 1/Δ

Analysis of Time Performance of RandBroadcast. We define interfer-
ence at a station u with respect to the set of transmitters T as

∑
w∈T \{v}

Pdist(w, u)−α, see Eq. (1). The boxes C(i1, j1) and C(i2, j2) are connected if
there exist stations v1 ∈ C(i1, j1) and v2 ∈ C(i2, j2) such that (v1, v2) is an
edge of the communication graph. We start with stating three general properties
regarding interference in the SINR model.

Fact 1. If the interference at the receiver is at most Nαx, then it can hear the
transmitter from the distance 1− x.

Proof. By the Bernoulli inequality we get (1 + x)α ≥ 1 + αx. Thus

SINR ≥ P

(N +Nαx)(1 − x)α
≥ P

N (1 + x)α(1− x)α

=
P

N (1− x2)α
≥ P

N = β .

where the last equality follows from the assumption that the range of stations is

equal to 1 which implies
(

P
Nβ

)1/α

= 1. ��
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We say that a function dα,Q : N → N is flat for α ≥ 2 and a (possibly empty)
sequence of constant parameters Q if

dα,Q(n) =

{
O(1) for α > 2

O((log n)1/2) for α = 2
(2)

Let C(a, b) be a box of Gγ . Assume that, in a given round of a random-
ized algorithm, only stations in superboxes S(C(i, j)) such that (i, j) ≡ (a, b)
mod d transmit. In each box the expected number of transmitting stations is at
most 1. We denote by Id the average maximum of the interference over superbox
S(C(a, b)) from transmitting stations located outside S(C(a, b)):

Id = E

⎛

⎝ max
u∈S(C(a,b))

∑

v∈T ,v �∈S(C(a,b))

Pdist(u, v)−α

⎞

⎠ ,

provided the algorithm uses the dilution parameter d.

Fact 2. If in the above described process, the expected number of transmitting
stations in a superbox does not exceed x instead of 1, then for any d we have the
maximum expected interference in superbox S(C(a, b)) equal to x · Id.

Let sα(n) = min
{

lnn
2 + ln 2, 1

2α−2(α−2)

}
+ 1

2α(α−1) and

dα,I,γ(n) =

⌈
1
γ

(
8Psα(n)

I

)1/α
⌉

.

Lemma 1. For any I > 0 there exists a flat function d such that Id ≤ I.
Moreover, for I ≤ 8Psα

2α we have Id ≤ I when d = dα,I,γ(n).

We proceed with the analysis of algorithm RandBroadcast.

Fact 3. Consider a round of algorithm RandBroadcast, different from the first
one. The probability that in a box (i, j) ≡ (a, b) exactly one station transmits is
bigger than 1/e.

Fact 4. Consider a round of algorithm RandBroadcast(Δ, d, T ) for
d = dα,Nαε/4,γ , different from the first one. The probability that exactly one
station in box C(i, j), where (i, j) ≡ (a, b), transmits and the interference from
other stations measured in all boxes connected with box C(i, j) is smaller or equal
to Nαε/2 is bigger than 1

2e .

Lemma 2. Consider a Bernoulli scheme with success probability p < 1 − ln 2.
The probability of obtaining at most D successes in 2D/p+ 2 ln(1/δ)/p trials is
smaller than (D + 1)δ.

We say that a subset of nodes W of a graph G is an l-net if any other node in
G is in distance at most l from the closest node in W .

Fact 5. If G is of eccentricity D, then there exists a (1−ε)-net W of cardinality
at most 4(D + 1)2.
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Proof. Let q = 1 − ε. Ranges q of all the stations must be all inside the circle
of radius (D + 1)q. The area of this circle is π(D + 1)2q2. Let us greedily pick
a maximal set of nodes such that any two nodes are in distance at least q. This
set is a q-net W . Let us estimate the cardinality of W . All the circles of radius
q/2 and center belonging to W are disjoint and have areas πq2. They have total
area at most π(D + 1)2q2, so |W | ≤ 4(D + 1)2. ��

Using the above results we conclude the analysis.

Theorem 1. Algorithm RandBroadcast(Δ, d, T ) completes broadcast in any net-
work in time O(d2(D + log(1/δ))) with probability 1 − δ, for d = dα,Nαε/4,γ(n)
and some T = O(D + log(1/δ)).

Proof. To complete broadcasting it is enough that all the boxes containing sta-
tions of the (1−ε)-netW transmit the message (1−ε/2)-successfully at least once.
This is done for box containing v ∈ W if the message is (1 − ε/2)-successfully
transmitted at most D times on the shortest path from the source s to v in G,
and finally is successfully transmitted by the box(v). The sufficient condition for
this to happen is that a chain of altogether at most D + 1 (1 − ε/2)-successful
transmissions heard by all potential receivers occurs. In each round the proba-
bility of a successful transmission within this chain is bigger than p = 1

2e , by
Fact 4 (recall that Fact 4 uses our assumption d = dα,Nαε/4,γ).

Now we estimate the probability that algorithm RandBroadcast completes
the broadcast. Let the number of trials be T = 2D/p + 2 ln(1/δ′)/p, for some
δ′ ∈ R. By Lemma 2, Fact 1 and Fact 5, the probability that box(v) transmits
(1− ε/2)-successfully for each v ∈ W

P ≥ 1−
∑

v∈W

Pr(box(v) doesn’t transmit successfully) ≥ 1− 4(D + 1)3δ′ .

This is bigger than 1−δ for our choice of T . Note also that T = O(D+log(1/δ)).
Because we have a trial every d2 rounds, we need altogether O(d2(D+log(1/δ)))
rounds, for d = dα,Nαε/4,γ . ��

We would like also to point out that the knowledge of the density with respect to
the grid Gγ (and not just with respect to some small neighborhood of a station)
is essential for efficiency of Algorithm 1.

3 Algorithms for Unknown Local Density

In this section we describe our broadcasting algorithms for networks of unknown
local density. First, we describe a simple almost oblivious algorithm, where the
probability of transmitting a message by a station depends merely on the time
when it receives the broadcast message for the first time, the current time slot
and the fact whether it received a message from a station in its own box. Then,
a more involved algorithm is presented which is slower than the (asymptotically
optimal) solution for known density only by the multiplicative factor O(log n).
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3.1 A Simple and Almost Oblivious Algorithm

In this section we present an almost oblivious algorithm based only on the size of
a network and nodes positions up to a box in the grid Gγ , where here γ is set to
ε/(2

√
2) and α > 2. A computation of the algorithm is split into phases. A phase

consists of T logn+R rounds, where T and R are some parameters which will be
determined later. A station awakes when it receives a message for the first time
and after that it is waiting by the end of the current phase. It becomes active in
the following phase, when it executes Algorithm 2. However, if the station from
a box B receives a message from another station in B in any round, it switches
off and does not transmit any message in the remaining part of the algorithm.
We call our algorithm Antibackoff, as each stations starts transmitting using
small probabilities and then increases them gradually. This contrasts to classical
backoff protocols, where stations are trying to transmit with large probabilities
first and then decrease them gradually.

Algorithm 2. Antibackoff-Phase(n, T,R, d) 	 code for node v ∈ C(i, j) = B

1: if at any time v receives a message from a station in B then switch off

2: for i = 1, 2, 3, . . . , �log n� − 1 do
3: for k = 1, 2, 3, . . . , T do

4: transmit with probability 2i

n

5: for j = 1, 2, 3, . . . , R do
6: transmit with probability 1

8(d+1)2

We refer to iterations of the first loop in Algorithm 2 as to stages. The idea
behind the algorithm Antibackoff is that the i-th stage deals with boxes contain-
ing around n/2i−1 active stations by reducing the number of active stations in
such boxes to no more than n/2i. Thus, after the last stage, we expect that there
is (exactly) one active station in each box containing an active station (at least
one) at the beginning of a phase. Then, such a station is supposed to transmit
(1−ε/2)-successfully in the“for j” loop, thus transmitting the broadcast message
on behalf of all stations from its box. Indeed, if a station v transmits (1 − ε/2)-
successfully, then the message is received by all neighbors in the communication
graph of all stations from the box containing v.

Now, we formulate some properties of Algorithm 2 which will conclude in
Theorem 2 establishing its time complexity.

The following lemma limits the expected interference at a station caused by
stations from distant boxes, provided there is an upper bound on the expected
number of transmitters in the same box of Gγ . We define the max-distance
between the boxes C(i1, i2) and C(j1, j2) as max{|i1 − j1|, |i2 − j2|}.
Lemma 3. Let IB,k be the maximal interference in a box B = C(i, j) caused by
boxes in max-distance at least k+1 from B under condition that expected number
of transmitting station in every box is at most t and let κ(t, x) = 
(8tP (α −
1)/x(α− 2)γα)1/(α−2)�+ 1 for x > 0. Then E[IB,k] ≤ x for k ≥ κ(t, x).



382 T. Jurdzinski et al.

Now, we evaluate the probability that the number of active stations in each
box is at most n/2i after the ith stage of a phase.

Fact 6. The probability that at any phase, the number of active stations in
any box after the i-th iteration of the first loop is at most n/2i is at least
1− n logn/ exp(T/216c(c+1)+5), where c = κ(2,Nα(1 −

√
2γ)/2).

The proof of the above fact is obtained by bounding the probability that, for a
given box B, the following events appear simultaneously in a round of the ith
stage:

– exactly one station from B is transmitting a message;
– no station from boxes within max-distance at most c from B is transmitting;
– maximal interference caused by stations from boxes at max-distance greater

than c from B is at most Nα(1 −
√
2γ));

provided at least n/2i stations are active in B and at most n/2i−1 stations are
active in any other box.

While the previous fact deals with the progress in the process of eliminating
stations from dense boxes, now we concentrate on the chance that a (station
from a) box containing active stations transmits (1 − ε/2)-successfully in the
“for j” loop, provided there are no boxes with more than two active stations.

Fact 7. Consider any phase K. Assume that, after the first loop of phase K,
every box has at most two active stations. Let r be the probability that, for every
box B with active stations in phase K, every station connected by an edge with
a station v ∈ B in G will receive a message from some station in B. Then, r is
at least 1− n/ exp(R/64(d+ 1)2) with d = κ(2,Nαε/4).

By combining the above facts, we obtain a time bound of the algorithm.

Theorem 2. Algorithm Antibackoff(n, d, T,R) completes broadcast in any n-
node network in time O(D logn (logn+log(1/δ))) with probability at least 1−δ,
for some T,R ∈ O(log n+ log(1/δ)) and d = κ(2,Nαε/4).

Proof. If events from Fact 6 and Fact 7 occur during an execution of the algo-
rithm, then the maximal number of phases needed for the message to be heard
by every station is at most D, since after the K-th phase every node within
distance K from the source (in the communication graph) receives the message.
Let c = κ(2,Nα(1 −

√
2γ)/2). One can easily verify that choosing R ≥ 64(d +

1)2(lnn + ln(1/δ1)) and T ≥ 216c(c+1)+5(lnn + ln(1/δ2)), the probability that
one of the events did not occur is smaller than δ1 + δ2. With δ1 = δ2 = δ/2, the
probability of successful transmission in time O(D logn(logn + log(1/δ))) is at
least 1− δ. ��

3.2 A Fast Algorithm with Local Leader Election

In this section we describe our broadcasting algorithm for networks of unknown
local density. To construct this algorithm we consider the grid Gγ , where γ =
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ε
6
√
2
. For further references observe that this choice of γ satisfies the following

property. Let B and U = C(i, j) be boxes of Gγ and let v ∈ B, u ∈ U , (u, v) ∈
E(G) for some nodes u and v. In such a case, if any node v′ ∈ B transmits
(1 − ε/2)-successfully, then its message is received by all stations in all boxes
C(i+ a, j + b), where a, b ∈ [−2, 2].

We say that two boxes B and U are adjacent if the Euclidean distance between
any two of their points is at most 1− ε/2. But with one exception – boxes that
are very close to each other are not adjacent. More precisely the box C(i, j)
is not adjacent to any box C(i + a, j + b), where a, b ∈ [−2, 2]. Note that if
(u, v) ∈ E(G) and v ∈ B, u ∈ U = C(i, j), then any two points x ∈ B and
y ∈ C(i + a, j + b), a, b ∈ [−2, 2] are in the Euclidean distance at most 1− ε/2;
that is, B is adjacent to all boxes C(i + a, j + b), unless these boxes are also
very close to B. The neighborhood of a box B is the set of all boxes U adjacent
to B. This definition guarantees that each station v ∈ B is connected by an
edge with each station u ∈ U if U is in the neighborhood of B. However, the
Euclidean distance dist(v, u) for such u, v is larger than the distance between
v and any other station from B. This property is essential for our method of
electing leaders in boxes of Gγ .

To formulate the algorithm we define an octant of the neighborhood of the box
B = C(i, j). Let us place on the plane a Cartesian coordinate system with the
origin in the center of the box B. This coordinate system is naturally subdivided
into four quadrants i.e. the plane areas bounded by two reference axes forming
the 90o angle. The quadrant can be divided by the bisector of this angle into
two octants corresponding to the angle of 45o. We attribute one of the rays
forming the boundaries of the octants to each octant, so that they are disjoint
(and connected) as the subsets of the plane. An octant of the neighborhood of B
is the set of all boxes U in the neighborhood of B that have centers in a given
octant of the coordinate system.

Fact 8. Each two stations in an octant of the neighborhood of a box B are in
the distance at most (1− ε/2).

Now we give an intuition how Algorithm 3 works. A station v joins the execution
of the algorithm after obtaining the broadcast message (waking up); it can learn
the number of executed rounds of the algorithm from the value of the clock
attached to each message. The algorithm consists of T iterations of the most
external loop. Each of these iterations consists of two parts. The first part is a
deterministic broadcast from the leaders of the boxes to all nodes in the distance
at most 1− ε/2 from these leaders. It is assumed that new nodes are woken up
only in the very beginning and in this first part. The second part is a probabilistic
algorithm attempting to elect the leaders in all the boxes in which the message
was heard in the first part and which currently do not have leaders.

Now, let us fix the values of parameters for which the algorithm will by ana-
lyzed. Let d = dα,Nαε/2,γ which assures that, in the first“for each a, b”, loop each
leader is heard in the distance 1− ε/2. Moreover, we take d̄ = dα,Nαε/28,γ . This
choice guarantees that, if there are on average less than 7 transmitting stations
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Algorithm 3. RandUnknownBroadcast(d, T )

1: the source s transmits and becomes the leader of its box of Gγ

2: for counter ← 1, 2, . . . , T do
3: for each a, b : 0 ≤ a, b < d do
4: if v is the leader of C(i, j) such that (i, j) ≡ (a, b) mod d then v transmits

5: for each a, b : 0 ≤ a, b < d̄ do
6: for each octant of neighborhood of each B = C(i, j) fulfilling
7: (i, j) ≡ (a, b) mod d̄ do
8: u← the leader of the box with lexicographically smallest
9: coordinates in the octant

10: for each v ∈ B: conflict(v)← false
11: for k = 0, 1, 2, 3, ..., log n do
12: if B has no leader, u exists and not conflict(v) then
13: K1: Each vertex v ∈ B transmits with the probability (1/n)2k

14: K2: if u hears v in K1 then
15: u transmits “v” and v becomes the leader
16: if v transmitted in K1 and hears nothing in K2 then
17: conflict(v)← true
18: K3: nodes v transmitting in K1 and u transmit
19: if v not transmitting in K1 does not hear u then
20: conflict(v)← true

attributed to each box C(i′, j′) in the second loop “for each a, b”, then we have
the probability at least 1/2 that the only station transmitting for C(i, j) does
it (1− ε/2)-successfully. We prove that, during the second part, the probability
of electing a leader is bigger than some constant. This is done for each octant
in the “for k” loop and the result is either selecting the leader of B or silencing
all stations in B till the end of this loop (in order to decrease interference in
other boxes). To make such an attempt some help from the leader u of a box
U adjacent to B is needed. Within an octant the leaders hear each other in
the first part, so they all can determine without any additional communication
which of them has lexicographically smallest coordinates. Also any node in B
knows whether any leader in the octant exists. Let us emphasize here that the
second loop lasts 8 · 3 · d̄2(1 + logn) rounds, since we try to elect a leader in
each B = C(i, j) with help of leaders from various octants of its neighborhood
separately.

In the loop“for k”the transmission probability in K1 grows twice per iteration
starting from 1/n. In rounds K2 and K3 stations from B are “switched off” till
the end of the loop “for k”. It is done in three cases. The first case is when the
external noise causes this “switching off” (v cannot hear u in K3). We show that
the probability that any stations in B is switched off this way in the whole“for k”
loop is smaller than 1/2. In the second case the leader is chosen, because u hears
some station transmitting in K1. The station u then notifies deterministically
all the stations in B who the leader is. In the third case many stations of B
transmit in K1 which causes “switching off” all stations in B.
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We now show, that if in some step K1 at least one station of B transmits,
then after K3 all stations in B are“switched off”. We already considered the case
when u hears some of them and the leader is elected. So now assume, that u
does not hear anything in K1. Note, that in K2 all stations v transmitting in K1
get the value conflict equal true. In K3 any station v not transmitting in K1 is
closer to any of the transmitting stations in B than to u (this fact follows from
the properties of neighborhood). So v does not hear u and gets the value conflict
equal true.

The above discussion gives the following conclusion.

Fact 9. Let l be the first round K1 of loop “for k” in which some station from
a box B transmits a message. Then in the next rounds K2 and K3 either the
leader is elected or all stations v ∈ B set conflict(v) =true.

Now we formulate an analog of Fact 5 for our algorithm.

Lemma 4. Let G be of eccentricity D. There exists a set of boxes W of the grid
Gγ of cardinality at most 4(D + 1)2 having the two following properties

(i) if we choose one station from each box of W then these stations form a
(1− ε/2)-net in the set of all the stations,

(ii) for each box B of W there exists a sequence of at most D+1 nonempty (i.e.,
containing stations) boxes, starting from box(s) and ending in B, in which
each two consecutive boxes are adjacent.

In what follows, we estimate what is the average maximal number of stations
transmitting in the box C(i, j), then we bound the probability of successful leader
election in a single call of the loop “for k”, and finally we conclude the analysis
of algorithm RandUnknownBroadcast.

Fact 10. The expected value of the maximum number of stations transmitting
in the box C(i, j) in round K1 during one call of the loop “ for k” is at most 6.

Fact 11. Assume that at least one station from a box C(i, j) is awaken in the
first “for each (a, b)” loop. Then, the probability, that in one call of the loop “for
k” the leader of the box C(i, j) is elected is at least 1/18.

Theorem 3. Algorithm RandUnknownBroadcast(d, T ) accomplishes broadcast
in O(d̄2(D + log(1/δ)) logn) rounds, with probability 1 − δ, when run for d =
dα,Nαε/2,γ , d̄ = dα,Nαε/28,γ and for some T = O(D + log(1/δ)).

Proof. LetW be a set of boxes satisfying the properties (i) and (ii) from Lemma 4.
A sufficient condition for the broadcast is that each box of B ∈ W obtains the
message and broadcasts it at least once to all stations in the range 1− ε/2. (We
say that a box obtains a message when at least one station in that box receives
it, and a box broadcasts a message in a particular range r0 when at least one
of its stations transmits the message r0-successfully.) This happens, when the
message is successfully transmitted at most D times on the shortest sequence of
boxes from the source to B and finally is successfully transmitted by the box B.
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The sufficient condition for this is that a chain of altogether at most D successful
leader elections happen. The probability of such a successful leader election is,
by Fact 11, at least p = 1/18.

Now we estimate the probability that our algorithm completes the broad-
cast. Let the number of repetitions of the most external loop be t = 2D/p +
2 ln(1/δ′)/p, for some δ′ ∈ R. By Lemma 2,

Pr(some B ∈ W does not transmit successfully) ≤
≤

∑

B∈W

Pr(box B does not transmit successfully) ≤ 4(D + 1)2δ′ .

To get this probability smaller than δ we need the number of repetitions of the
most external loop

T =
2D

p
+

2 ln(1/δ)

p
+

2 ln(4(D + 1))

p
= O(D + log(1/δ)) .

Each run of the most external loop takes O(d̄2 logn) rounds, which yields
O(d̄2(D + log(1/δ)) logn) rounds in total. ��

4 Conclusions and Future Work

In this work we showed provably well-scalable randomized distributed solutions
for the broadcast problem in any wireless networks under the SINR physical
model without spontaneous wake-up and without strong assumptions about the
connectivity of a given network. Our algorithms rely on the knowledge of its own
coordinates by each station; some results without such knowledge were obtained
in [4]. We develop a new technique for fast election of local leaders in any network,
which may be adopted for the purpose of other communication problems.

Our solutions could be extended to more generalized model settings. In par-
ticular, nodes do not have to know their exact coordinates, but only with some
O(ε) accuracy. Parameters α ≥ 2 and β ≥ 1 can be set up individually for every
link, which would only change constants hidden in the big-Oh formulas (these
constants would depend on the upper and lower bounds on the range of indi-
vidual parameters α, β). The knowledge of exact number of stations n is also
not necessary — an upper bound O(n) is enough to obtain asymptotically the
same results.

There are several interesting directions arising from or related with our work.
The main one is to extend the proposed approach to other communication prob-
lems, such as multi-broadcast, gathering, group communication and routing.
The second interesting direction is to study the impact of model setting, such as
knowledge of coordinates (or other parameters), or the quality parameter 1−ε of
the communication graph on the complexity of a communication task. Finally,
analyzing algorithms in more advanced models, e.g., with failures, mobility, or
other forms of uncertainty, is another perspective research direction.
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