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Abstract. Concurrent data structures are often used with large concurrent soft-
ware. An iterator that traverses the data structure items is a highly desirable in-
terface that often exists for sequential data structures but is missing from (almost
all) concurrent data-structure implementations. In this paper we introduce a tech-
nique for adding a linearizable wait-free iterator to a wait-free or a lock-free data
structure that implements a set. We use this technique to implement an iterator
for the wait-free and lock-free linked-lists and for the lock-free skip-list.
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1 Introduction

The rapid deployment of highly parallel machines resulted in the design and imple-
mentation of a variety of lock-free and wait-free linearizable data structures in the last
fifteen years. However, almost none of these designs support operations that require
global information on the data structure, such as counting the number of elements in
the structure or iterating over its nodes. In general, operations such as these will be triv-
ially enabled if snapshot operations are supported because snapshot operations enable a
thread to obtain an atomic view of the structure. But creating a “consistent” or lineariz-
able snapshot without blocking simultaneous updates to the data structure is a difficult
task. The main focus of this study is to obtain such a view in a wait-free manner.

A common interface in many lock-free and wait-free data structures consists of the
INSERT, DELETE and CONTAINS operations. An INSERT operation inserts an integer
key (possibly associated with a value) into the data structure, if it is not already present
(otherwise it just returns false). A DELETE operation removes a key from the structure,
or fails (returning false) if there is no such key, and a CONTAINS operation returns
true (and possibly a value associated with this key) if the key is in the list, and false
otherwise. Examples of data structures implementing this interface are the lock-free
linked-lists [9,8], the wait-free linked-lists [15], the lock-free skiplist [10], and search
trees [6,4]. None of these structures implements an iterator.

In this work we present a design which allows the construction of wait-free, highly
efficient iterators for concurrent data structures that implement sets. We use this design
to implement iterators for the linked-list and skiplist. The iterator is implemented by
first obtaining a consistent snapshot of the data structure, i.e., an atomic view of all the
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nodes currently in it. Given this snapshot, it is easy to provide an iterator, or to count
the number of nodes in the structure.

A well-known related problem is the simpler atomic snapshot object of shared mem-
ory [1], which has been extensively studied in the literature. An atomic snapshot object
supports only two types of operations: UPDATE and SCAN. An UPDATE writes a new
value to a register in the shared memory, and a SCAN returns an atomic view of all the
registers.

Unfortunately, existing snapshot algorithms cannot support a (practical) data struc-
ture iterator. Three problems hinder such use. First, atomic snapshot objects are de-
signed for pre-allocated and well-defined memory registers. Therefore, they are not
applicable to concurrent data structures that tend to grow and shrink when nodes are
added or removed. Second, the UPDATE operation in the classic snapshot object algo-
rithms [1,3] requires O(n) steps (n is the number of threads), which is too high an over-
head to impose on all operations that modify the data structure. Finally, many atomic
snapshot objects do not support an efficient READ operation of the shared memory. This
lack of support allows linearization arguments that would fail in the presence of a read.
But it is hard to imagine a practical data structure that does not employ a read operation,
and instead relies on obtaining a full snapshot just to read a single field in the structure.

The first problem is the least bothersome, because one could imagine borrowing
ideas from snapshot objects, generalizing them, and building a snapshot algorithm for
a memory space that grows and shrinks. But the other two problems are harder to elim-
inate. The classic algorithms for an atomic snapshot can be easily extended to support
a READ operation, but they require O(n) steps for each UPDATE operation, which is
too high. Later snapshot algorithms support UPDATE in O(1) steps. Examples are the
coordinated collect algorithm of Riany et al. [14], later improved to the interrupting
snapshots algorithm [2], and the time optimal snapshot algorithms of Fatourou and
Kallimanis [7]. However, these algorithms do not support a READ operation. This lack
of support seems inherent as the algorithms employ unusual linearization properties,
which sometimes allow the linearization point of an UPDATE to occur before the new
value has actually been written to any register in the memory. Thus, it is not clear how
to add a READ operation that does not require a substantial overhead.

Another wait-free algorithm that supports UPDATE operations in O(1) is the algo-
rithm of Jayanti [11]. Jayanti’s algorithm does not support a read operation, and it is not
trivial to add an efficient read to it, but our work builds on ideas from this algorithm.
An UPDATE operation of Jayanti’s algorithm first updates the memory as usual, and
then checks whether a SCAN is currently being taken. If so, the update operation regis-
ters the update in a designated memory register. In this work we extend this basic idea
to provide a snapshot that supports an efficient read as well as the INSERT, DELETE,
and CONTAINS operations, which are more complex than the simple UPDATE opera-
tion. This facilitates the desirable iterator operation for the data structure. The simplest
algorithm of Jayanti, from which we start, is described in Section 2.

Although most lock-free data structures do not provide iterators, one notable ex-
ception is the recent CTrie of Prokopec et al. [13]. This lock-free CTrie efficiently
implements the creation of a snapshot, but the performance of updates deteriorates
when concurrent snapshots are being taken, because each updated node must be copied,
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together with the path from the root to it. Another recent work presenting a concurrent
data structure supporting snapshot operations is the practical concurrent binary search
tree of Bronson et al. [5]. But their work uses locks, and does not provide a progress
guarantee.

In this paper, we present a wait-free snapshot mechanism that implements an O(1)
update and read operations. We have implemented a linked-list and skiplist that employ
the snapshot and iterator and measured the performance overheads. In our implemen-
tation we made an effort to make updates as fast as possible, even if iterations take a
bit more time. The rational for this design is that iterations are a lot less frequent than
updates in typical data structures use. It turns out that the iterator imposes an overhead
of roughly 15% on the INSERT, DELETE, and CONTAINS operations when iterators are
active concurrently, and roughly 5% otherwise. When compared to the ad-hoc CTrie
iterator of [13], our (general) iterator demonstrates lower overhead on modifications
and read operations, whereas the iteration of the data structure is faster with the ad-hoc
CTrie iterator.

2 Jayanti’s Single Scanner Snapshot

Let us now review Jayanti’s snapshot algorithm [11] whose basic idea serves the (more
complicated) construction in this paper. This basic algorithm is limited in the sense that
each thread has an atomic read/write register associated with it (this variant is some-
times referred to as a single-writer snapshot, in contrast to a snapshot object that allows
any thread to write to any of the shared registers). Also, it is a single scanner algorithm,
meaning that it assumes only one single scanner acting at any point in time, possibly
in parallel to many updaters. In [11], Jayanti extends this basic algorithm into more
evolved versions of snapshot objects that support multiple writers and scanners. But it
does not deal with the issue of a READ operation, which imposes the greatest difficulty
for us. In this section we review the basic algorithm, and later present a snapshot al-
gorithm that implements a read operation (as well as eliminating the single-writer and
single-scanner limitations), and combines it with the INSERT, DELETE, and CONTAINS

operations.
Jayanti’s snapshot object supports two operations: UPDATE and SCAN. An UPDATE

operation modifies the value of the specific register associated with the updater, and a
SCAN operation returns an atomic view (snapshot) of all the registers. Jayanti uses two
arrays of read/write registers, A[n], B[n], initialized to null, and an additional read/write
binary field, which we denote ongoingScan. This field is initialized to false. The first
array may be intuitively considered the main array with all the registers. The second
array is used by threads that write during a scan to report the new values they wrote.
A third array of n registers, C[n], is never read in the algorithm; it is used to store
the snapshot the scanner collects. The algorithm is depicted in figure 1. When thread
number k executes an UPDATE, it acts as follows. First, it writes the new value to A[k].
Second, it reads the ongoingScan boolean. If it is set to false, then the thread simply
exits. If it is set to true, then the threads reports the new value by also writing it to B[k],
and then it exits.

When the scanner wants to collect a snapshot, it first sets the ongoingScan binary
field to true. Then, in the second step, it sets the value of each register in the array B to
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A[n], B[n], C[n]:  arrays of read/write 
registers initiated to Null 
ongoingScan: a binary read/write register 
initiated to 0. 
 
Update(tid, newValue) 

1. A[tid] = newValue 
2. If (ongoingScan==1) 
3.       B[tid]=newValue 

Scan() 
1. ongoingScan = 1 
2. For i in 1..n 
3.       B[i] = NULL 
4. For i in 1..n 
5.       C[i] = A[i] 
6. ongoingScan = 0 
7. For i in 1..n 
8.       If (B[i] != NULL) 
9.             C[i] = B[i] 
10. Array C now holds the Snapshot 

Fig. 1. Jayanti’s single scanner snapshot algorithm

null (in order to avoid leftovers from previous snapshots). Third, it reads the A registers
one by one and copies them into the C array. Fourth, it sets the ongoingScan to false.
This (fourth) step is the linearization point for the SCAN. At this point array C might
not hold a proper snapshot yet, since the scanner might have missed some updates that
happened concurrently with the reading of the A registers. To rectify this, the scanner
uses the reports in array B; thus in the final step, it reads the B registers one by one, and
copies any non-null value into C. After that, C holds a proper snapshot.

The linearizability correctness argument is relatively simple [11]. The main point is
that any UPDATE which completes before the linearization point of the SCAN (line 6)
is reflected in the snapshot (either it was read in lines 4-5 or will be read in lines 7-9),
while any UPDATE that begins after the linearization point of the SCAN is not reflected
in the snapshot. The remaining updates are concurrent with each other and with the
scan since they were all active during the linearization point of the SCAN (line 6). This
gives full flexibility to reorder them to comply with the semantics of the snapshot object
ADT.

3 From Single Scanner Snapshot to Multiple Iterators

Our goal is to add an iterator to existing lock-free or wait-free data structures. We are in-
terested in data structures that support three standard operations: INSERT, DELETE, and
CONTAINS. Similarly to the scanner object, threads executing the INSERT, the DELETE,
or the CONTAINS operations cooperate with a potential scanner in the following way.

– Execute the operation as usual.
– Check whether there exists a parallel ongoing scan that has not yet been linearized.
– If the check is answered positively, report the operation.

Two major complications that do not arise with a single scanner snapshot algorithm
arise here: the need to report operations of other threads, and the need to support multi-
ple concurrent iterators.

3.1 Reporting the Operations of Other Threads

The first problem stems from dependency of operations. Suppose, for example, that
two INSERT operations of the same value (not currently exist in the data structure) are
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executed concurrently. One of these operations should succeed and the other should fail.
This creates an implicit order between the two INSERTs. The successful INSERT must
be linearized before the unsuccessful INSERT. In particular, we cannot let the second
operation return before the linearization of the snapshot and still allow the first operation
not to be visible in the snapshot. Therefore, we do not have the complete flexibility of
linearizing operations according to the time they were reported, as in Section 2.

To solve this problem, we add a mechanism that allows threads, when necessary, to
report operations executed by other threads. Namely, in this case, the failing INSERT

operation will first report the previous successful INSERT of T2, and only then exit.
This will ensure that the required order dependence is satisfied by the order of reports.
In general, threads need to report operations of other threads if: (1) the semantics of
the ADT requires that the operation of the other thread be linearized before their own
operation, and (2) there is a danger that the iterator will not reflect the operation of the
other thread.

3.2 Supporting Multiple Iterators

In the basic snapshot algorithm described in Section 2, only a single simultaneous scan-
ning is allowed. To construct a useful iterator, we need to support multiple simultaneous
iterators. A similar extension was also presented in [11], but our extension is more com-
plicated because the construction in [11] does not need to even support a read, whereas
we support INSERT, DELETE, and CONTAINS.

In order to support multiple iterators, we can no longer use the same memory for all
the snapshots. Instead, the data structure will hold a pointer to a special object denoted
the snap-collector. The snap-collector object holds the analogue of both arrays B and
C in the single scanner snapshot, meaning it will hold the “copied” data structure, and
the reports required to “fix” it. The snap-collector will also hold a Boolean equivalent
to ongoingScan, indicating whether the iteration has already been linearized.

4 The Iterator Algorithm

The pseudo-code for the iterator is depicted in Figure 2. This algorithm applies as is
to the wait-free linked-list [15], the lock-free linked-list [9], and the lock-free skiplist
[10].

When a thread wishes to execute an iteration over the data structure elements, it
will first obtain a snapshot of the data structure. To optimize performance, we allow
several concurrent threads executing an iteration to cooperate in constructing the same
snapshot. For this purpose, these threads need to communicate with each other. Other
threads, which might execute other concurrent operations, also need to communicate
with the iterating threads and forward to them reports regarding operations which the
iterating threads might have missed. This communication will be coordinated using a
snap-collector object.

The snap-collector object is thus a crucial building block of the iterator algorithm.
During the presentation of the iterator algorithm, we will gradually present the interface
the snap-collector should support. The implementation of the snap-collector object that
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supports the required interface is deferred to Section 5. All snap-collector operations
are implemented in a wait-free manner so that it can work with wait-free and lock-free
iterator algorithms.

To integrate an iterator, the data structure holds a pointer, denoted PSC, to a snap-
collector object. The PSC is initialized during the initialization of the structure to point
to a dummy snap-collector object. When a thread begins to take a (new) snapshot of the
data structure, it allocates and initializes a new snap-collector object. Then, it attempts
to change the PSC to point to this object using a compare-and-swap (CAS) operation.

4.1 The Reporting Mechanism

A thread executing INSERT, DELETE or CONTAINS operation might need to report its
operation to maintain linearizability, if a snapshot is being concurrently taken. It firsts
executes the operation as usual. Then it checks the snap-collector object, using the
later’s IsActive method, to see whether a concurrent snapshot is afoot. If so, and
in case forwarding a report is needed, it will use the snap-collector Report method.
The initial dummy snap-collector object should always return false when the IsActive
method is invoked.

There are two types of report. An insert-report is used to report a node has been
inserted into the data structure, and a delete-report used to report a removal. A report
consists of a pointer to a node, and an indication which type of report it is. Using a
pointer to a node, instead of a copy of it, is essential for correctness (and is also space
efficient). It allows an iterating thread to tell the difference between a relevant delete-
report to a node it observed, and a belated delete-report to a node with the same key
which was removed long ago.

Reporting a Delete Operation. It would have been both simple and elegant to allow
a thread to completely execute its operation, and only then make a report if necessary.
Such is the case in all of Jayanti’s snapshot algorithms presented in [11]. Unfortunately,
in the case of a DELETE operation, such a complete separation between the ”normal”
operation and the submission of the report is impossible because of operation depen-
dence. The following example illustrates this point.

Suppose a thread S starts taking a snapshot while a certain key x, is in the data
structure. Now, another thread T1 starts the operation DELETE(x) and a third thread T2

concurrently starts the operation CONTAINS(x). Suppose T1 completes the operation
and removes x, but the scanner missed this development because it already traversed
x, and suppose that now T1 is stalled and does not get to reporting the deletion. Now
T2 sees that there is no x in the list, and is about to return false and complete the
CONTAINS(x) operation. Note that the CONTAINS operation must linearize before it
completes, whereas the snapshot has not yet linearized, so the snapshot must reflect
the fact that x is not in the data structure anymore. Therefore, to make the algorithm
linearizable, we must let T2 first report the deletion of x (this is similarly to the scenario
discussed in Section 3.1.). However, it cannot do so: to report that a node has been
deleted, a pointer to that node is required, but such a pointer is no longer available,
since x has been removed.
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We solve this problem by exploiting the delete mechanism of the linked-list and skiplist
(and other lock-free data structures as well). As first suggested by Harris in [9], a node is
deleted in two steps. First, the node is marked. A marked node is physically in the data
structure, and still enables traversing threads to use it in order to traverse the list, but it is
considered logically deleted. Second, the node is physically removed from the list. The
linearization of the DELETE operation is in the first step. We will exploit this mechanism
by reporting the deletion between these two steps (lines 11-13 in Figure 2).

Any thread that is about to physically remove a marked node will first report a dele-
tion of that node (given a snapshot is concurrently being taken). This way, the report is
appropriately executed after the linearization of the DELETE operation. Yet, if a node
is no longer physically in the list, it is guaranteed to have been reported as deleted (if
necessary). Turning back to the previous scenario, if T2 sees the marked node of x, it
will be able to report it. If it doesn’t, then it can safely return. The deletion of x has
already been reported.

Reporting an Insert Operation. After inserting a node, the thread that inserted it
will report it. To deal with operation dependence, a CONTAINS method that finds a
node will report it as inserted before returning, to make sure it did not return prior to
the linearization of the corresponding insertion. Furthermore, an INSERT operation that
fails because there is already a node N with the same key in the list will also report the
insertion of node N before returning, for similar reasons.

However, there is one additional potential problem: an unnecessary report might
cause the iterator to see a node that has already been deleted. Consider the following
scenario. Thread T1 starts INSERT(3). It successfully inserts the node, but get stalled
before checking whether it should report it (between lines 22 and 23). Now thread
T2 starts a DELETE(3) operation. It marks the node, checks to see whether there is
an ongoing iteration, and since there isn’t, continues without reporting and physically
removes the node. Now thread S starts an ITERATION, announces it is scanning the
structure, and starts scanning it. T1 regains control, checks to see whether a report is
necessary, and reports the insertion of the 3. The report is of course unnecessary, since
the node was inserted before S started scanning the structure, but T1 does not know
that. T2 did see in time that no report is necessary, and that is why it did not report the
deletion. The trouble is that, since the deletion is not reported, reporting the insertion is
not only unnecessary, but also harmful.

We solve this problem by exploiting again the fact that a node is marked prior to its
deletion. An insertion will be reported in the following manner (lines 31-35).

– Read PSC, and record a private pointer to the snap-collector object, SC.
– Check whether there is an ongoing iteration, by calling SC.IsActive().
– If not, return. If there is, check whether the node you are about to report is marked.
– If it is, return without reporting. If it is not marked, then report it.

The above scheme solves the problem of harmfully reporting an insertion. If the
node was unmarked after the relevant ITERATION has already started, then a later delete
operation that still takes place before the linearization of the iteration will see that it
must report the node as deleted. There is, however, no danger of omitting a necessary
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report; if a node has been deleted, there is no need to report its insertion. If the delete
occurred before the linearization of the iteration, then the iteration does not include the
node. If the delete occurred after the linearization of the iteration, then the insert must
be present after the linearization of the iteration as well (since it had a chance to see the
node is marked), and therefore it is possible to set the linearization of the insertion after
the iteration as well.

4.2 Performing an Iteration

A thread that desires to perform an ITERATION first reads the PSC pointer and checks
whether the previous iteration has already been linearized by calling the IsActive method
(line 53). If the previous iteration has already been linearized, then it cannot use the
same snapshot, and it will allocate a new snap-collector. After allocating it, it will at-
tempt to make the global PSC pointer point to it using a CAS (line 56). Even if the
CAS fails, the thread can continue by taking the new value pointed by the PSC pointer,
because the linearization point of the new snap-collector is known not to have occurred
before the thread started its ITERATION operation. Therefore, this CAS doesn’t interfere
with wait-freedom, because the thread can continue even if the CAS fails.

A snapshot of the data structure is essentially the set of nodes present in it. The
iterating thread scans the data structure, and uses the snap-collector to add a pointer to
each node it sees along the way (lines 62-68), as long as this node is not marked as
logically deleted. The iterating thread calls the AddNode method of the snap-collector
for this purpose.

When the iterating thread finishes going over all the nodes, it is time to linearize
the snapshot (and iteration). It calls the Deactivate method in the snap-collector
for this purpose (this is similar to setting ongoingScan to zero in Jayanti’s algorithm).
Afterwards, further calls to the IsActive method will return false. An INSERT, DELETE,
or CONTAINS operation that will start after the deactivation will not report to this snap-
collector object. If a new ITERATION starts, it is no longer able to use this snap-collector,
and so it allocates a new one.

To ensure proper linearization in the presence of multiple iterating threads, some
further synchronization is required between them. A subtle implied constraint is that
all threads that iterate concurrently and use the same snap collector object must decide
on the same snapshot view. This is needed, because the linearization point of opera-
tions that occur concurrently with the closure of the snapshot picture is determined by
whether they appear in the snapshot or not. So if an operation appears in the snapshot
view of one thread but not in a snapshot view of another, then the linearization argument
fails.

To assure the snapshot is consistent for all threads we enforce the following. First,
before a thread calls the Deactivate method, it calls the BlockFurtherNodes (line
66). The snap-collector ensures that after a call of BlockFurtherNodes returns, further
invocations of AddNode cannot install a new pointer, or have any other effect. Second,
before the first iterating thread starts putting together the snapshot according to the
collected nodes and reports, it blocks any further reports from being added to the snap-
collector. This is achieved by invoking the BlockFurtherReports method (line
69). From this point on, the snap-collector is in a read-only mode.
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Next, the iterating thread assembles the snapshot from the nodes and reports stored in
the snap-collector. It reads them using the ReadPointers and ReadReportsmeth-
ods. A node is in the snapshot iff: 1) it is among the nodes added to the snap-collector
OR there is a report indicating its insertion AND 2) there is no report indicating its
deletion.

Calculating the snapshot according to these rules can be done efficiently if the nodes
and reports in the snap-collector are sorted first. As explained in Section 5.1, the snap-
collector is optimized so that it holds the nodes sorted throughout the execution, and
thus sorting them requires no additional cost. The reports, however, still need to be
sorted. Finally, once the iterating thread assembled the snapshot, it can trivially perform
an iteration, by simply going over the nodes present in the snapshot one after the other.
Thus, the overall complexity of an ITERATION is O(#nodes + #reports*log(#reports)).

5 The Snap-Collector Object

One can think of the snap-collector object as holding a list of node pointers and a list of
reports. The term install refers to the act of adding something to these lists. Thus, the
snap-collector enables the iterating threads to install pointers, and the modifying threads
to install reports. It supports concurrent operations, and it must be wait-free since it is
designed as a building block for wait-free and lock-free algorithms. The semantics and
interface of the snapshot object follow. To relate the new algorithm to the basic one, we
also mention for each method (in italics), its analogue in the single scanner snapshot.
Tid is short for Thread Identifier.

– NewSnapCollector(). No equivalent. Allocates a new snap-collector object.
– AddNode(Node* node, int tid). Analogue to copying a register into array C. In-

stalls a pointer to the given node. May fail to install the pointer if the BlockFurther-
Pointers() method (see below) has previously been invoked.

– Report(Report* report, int tid). Analogue to reporting a new value in array B.
Installs the given report. May fail to install the report if the BlockFurtherReports()
method (see below) has previously been invoked.

– IsActive(). Analogue to reading the ongoingScan binary field. Returns true if the
Deactivate() method has not yet been called, and false otherwise. (True means the
iteration is still ongoing and further pointers might still be installed in the snapshot
object.)

– BlockFurtherPointers(). No analogue. Required to synchronize between multiple
iterators. After this method is completed, any further calls to AddNode will do
nothing. Calls to AddNode concurrent with BlockFurtherPointers may fail or suc-
ceed arbitrarily.

– Deactivate(). Analogue to setting ongoingScan to false. After this method is com-
plete, any call to IsActive returns false, whereas before this method is invoked for
the first time, IsActive returns true.

– BlockFurtherReports(). No analogue. Required to synchronize between multiple
iterators. After this method is completed, any further calls to Report will do noth-
ing. Calls to Report concurrent with BlockFurtherReports may succeed or fail ar-
bitrarily.
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37. Contains(int key) 
38.    search for a node n with the key 
39.    if not found  then return false 
41.    else if n is marked 
42.       ReportDelete(pointer to n) 
43.       return false 
44.    else   ReportInsert(pointer to n)  
45.              return true                  
 
46. TakeSnapshot() 
47.    SC = AcquireSnapCollector() 
48.    CollectSnapshot(SC) 
49.    ReconstructUsingReports(SC) 
50. 
51. AcquireSnapCollector() 
52.    SC = (dereference) PSC 
53.    if (SC.IsActive()) 
54.       return SC 
55.    newSC = NewSnapCollector() 
56.    CAS(PSC, SC, newSC) 
57.    newSC = (dereference) PSC 
58.    return newSC 
59. 
60. CollectSnapshot(SC) 
61.    Node curr = head of structure 
62.    While (SC.IsActive()) 
63.       if (curr is not marked) 
64.          SC.AddNode(pointer to curr) 
65.       if (curr.next is null) // curr is the last 
66.          SC.BlockFurtherNodes() 
67.          SC.Deactivate() 
68.       curr = curr.next 
69.    SC.BlockFurtherReports() 
70. 
71. ReconstructUsingReports(SC) 
72.   nodes = SC.ReadPointers() 
73.   reports = SC.ReadReports() 
74.   a node N belong to the snapshot iff: 
75.     ((N has a reference in nodes 
             OR  N has an INSERTED report) 
           AND  
           (N does not have a DELETED report)         

General:  The data structure will hold an 
additional field, PSC, which is a pointer to a 
snap-collector object. 
1.  Initialize() 
2.     Initialize the data structure as usual 
3.     PSC = (address of) NewSnapCollector() 
4.     PSC->Deactivate() 
5. 
6.  Delete(int key) 
7.    search for a node with required key 
8.    if not found  
9.       return false 
10.  else   // found a victim node with the key 
11.     mark the victim node 
12.     ReportDelete(pointer to victim) 
13.     physically remove the victim node 
14.     return true 
15. 
16. Insert(Node n) 
17.    search for the place to insert the node  
          n as usual, but before removing  
          a marked node, first call ReportDelete() 
18.    If n.key is already present in the data  
             data structure on a different node h 
19.       ReportInsert(pointer to h) 
20.       return false 
21.    else 
22.       Insert n into the data structure 
23.       ReportInsert(pointer to n) 
24.       return true 
25. 
26. ReportDelete(Node *victim) 
27.   SC = (dereference) PSC 
28.   If (SC.IsActive()) 
29.      SC.Report(victim, DELETED) 
30. 
31. ReportInsert(Node* newNode) 
32.    SC = (dereference) PSC 
33.    if (SC.IsActive()) 
34.       if (newNode is not marked) 
35.          Report(newNode, INSERTED) 
36. 

Fig. 2. The Iterator
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– ReadPointers(). No analogue. Returns a list of all the pointers installed in the
snapshot object. Should be called only after BlockFurtherPointers is completed by
some thread.

– ReadReports(). No analogue. Returns a list of all the reports installed in the snap-
shot object. Should be called only after BlockFurtherReports is called by some
thread.

5.1 The Snap-Collector Implementation

The implementation of the snap-collector object is orthogonal to the iterator algorithm,
but different implementations can affect its performance dramatically. This section
briefly explains the particulars of the implementation used in this work.

The proposed implementation of the snap-collector object maintains a separate linked-
list of reports for each thread. It also maintains a single linked-list of pointers to the nodes
of the data structure, and one boolean field indicating whether it is currently active (not
yet linearized).

IsActive, Deactivate. The IsActive method is implemented simply by reading the bool-
ean field. The Deactivate method simply writes false to this field.

AddReport. When a thread needs to add a report using the AddReport method, it adds
it to the end of its local linked-list dedicated to this thread’s reports. Due to the locality
of this list its implementation is fast, which is important since it is used also by threads
that are not attempting to iterate over the data structure. Thus, it facilitates low overhead
for threads that only update the data structure.

Although no other thread may add a report to the thread local linked- list, a report is
still added via a CAS, and not a simple write. This is to allow the iterating threads to
block further reports in the BlockFurtherReports method. However, when a thread adds
a report, it does not need to check whether the CAS succeeded. Each thread might only
fail once in adding a report for every new iteration. After failing such a CAS, it will
hold that the IsActive method will already return false for this iteration and therefore
the thread will not even try to add another report.

BlockFurtherReports. This method goes over all the threads local linked-lists of re-
ports, and attempts by a CAS to add a special dummy report at the end of each to block
further addition of reports. This method should only be invoked after the execution of
the Deactivate method is completed. The success of this CAS need not be checked. If
the CAS succeeds, no further reports can be added to this list, because a thread will
never add a report after a dummy. If the CAS fails, then either another iterating thread
has added a dummy, or a report has just been added. The first case guarantees blocking
further repots, but even in the latter case, no further reports can now be added to this list,
because the thread that just added this report will see that the snap-collector is inactive
and will not attempt to add another report.

AddNode. The basic idea in the implementation of AddNode is to use the lock-free
queue of Michael and Scott [12]. To install a pointer to a node, a thread reads the tail
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pointer. If the tail node is last, it attempts to add its node after the last node and then
fix the tail to point to the newly added node. If the tail node is not the last node, i.e., its
next field hold to a non-null node, then the thread tries by a CAS to change the tail to
point to the next node (similarly to [12]), and retries adding its node again.

Clearly, this implementation is not wait-free as the thread may repeatedly fail to
add its node and make progress. We therefore use a simple optimization that slightly
alters the semantics of the AddNode method. To this end, we note that nodes should
be added to the snapshot view in an ascending order of keys. The AddNode method
will (intentionally) fail to add any node whose key is smaller than or equal to the key
of the last node added to the snap-collector. When such a failure happens, AddNode
returns a pointer to the data structure node that was last added to the snap-collector
view of the snapshot. This way, an iterating thread that joins in after a lot of pointers
have already been installed, simply jumps to the current location. This also reduces
the number of pointers in the snap-collector object to reflect only the view of a single
sequential traverse, avoiding unnecessary duplications. But most importantly, it allows
wait-freedom.

The snap-collector object still holds a tail pointer to the queue (which might at times
point to the node before last). To enqueue a pointer to a node that holds the key k, a
thread reads the tail pointer. If the tail node holds a key greater than or equal to k, it
doesn’t add the node and simply returns the tail node. If the tail node is not the last
node, i.e., its next field hold to a non-null node, then this means that there is another
thread that has just inserted a new node to the snapshot view. In this case, this new node
is either the same node we are trying to add or a larger one. So in this case the thread
tries by a CAS to change the tail to point to the next node (similarly to [12]), and then
it returns the new tail, again without adding the new node.

This optimization serves three purposes: it allows new iterating threads to jumps to
the current location; It makes the AddNode method fast and wait-free; and it keeps the
list of pointers to nodes sorted by their keys, which then allows a simple iteration over
the keys in the snapshot.

BlockFurtherNodes. This method sets the tail pointer of the nodes list to point to a
special dummy with a key set to the maximum value and the node set to null. Combined
with our special implementation of AddNode, further calls to AddNode will then read
the tail’s special maximum value and will not be able to add additional nodes.

ReadPointers, ReadReports. These methods simply return a list with the pointers /
reports stored in the snap-collector. They are normally called only after the BlockFurth-
erNodes, Deactivate, and BlockFurtherReports methods have all been completed, thus
the lists of pointers and reports in the snap-collector are immutable at this point.

5.2 Some Simple Optimizations

The implementation used for the performance measurements also includes the follow-
ing two simple optimizations.
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Elimination of many of the reports. An additional binary field was added to each node,
initialized to zero. When a thread successfully inserts a node, and after reporting it
if necessary, this binary field is set to 1. Future INSERT operations that fail due to this
node, and future CONTAINS operations that successfully find this node, first check to see
if this bit is set. If so, then they know that this node has been reported, and therefore,
there is no need to report the node’s insertion.

If a large portion of the operations are CONTAINS operations, as is the case in typical
data structure usage, this optimization avoids a significant portion of the reports. This
is because in such cases most of the reports are the result of successful CONTAINS

operations. However, note that this optimization is not always recommended, as it adds
overhead to the INSERT operations even if ITERATION is never actually called.

Avoidance of repeated sorting. After a single thread has finished sorting the reports,
it posts a pointer to a sorted list of the reports, and saves the time it would take other
threads to sort them as well, if they haven’t yet started to do so.

6 Performance

In this section we report the performance of the proposed iterator, integrated with the
lock-free linked-list and skiplist in Java. We used the linked-list implementation as in-
cluded in the book “The Art of Multiprocessor Programming” by Herlihy and Shavit
[10], and added to it the iterator mechanism described in this paper. For the skiplist,
we used the Java code of ConcurrentSkipListMap by Doug Lea, and added our mecha-
nism. We also measured the performance of the CTrie, which is the only other lock-free
data structure with comparable semantics that supports ITERATION. The CTrie is in-
cluded in the Scala 2.10.0 distribution, and we used this implementation to measure its
performance.

All the tests were run on SUN’s Java SE Runtime, version 1.6.0, on a system that
features 4 AMD Opteron(TM) 6272 2.1GHz processors. Each processor has 8 cores (32
cores overall), and each core runs 2 hyper-threads (i.e., 64 concurrent threads overall).
The system employs a memory of 128GB and an L2 cache of 2MB per processor.

The algorithms were tested on a micro-benchmark in which one thread repeatedly
executes ITERATION operations, going over the nodes one by one continually. For the
other threads, 50% of the operations are CONTAINS, 25% are INSERT, and 25% are
DELETE, with the number of threads varying between 1-31. In each test the keys for
each operation were randomly and uniformly chosen in the ranges [1, 32], [1, 128], or
[1, 1024]. In each test, all the threads were run concurrently for 2 seconds. All the tests
were run in one long execution. The different data structures were run alternately: for
a specific test-case parameters (i.e., the number of threads and the key range) first the
linked-list was run for a 2 seconds interval, then the CTrie, and then the skiplist. After
a single 2 seconds interval run of each data structure, the next test-case was run for all
the three. After all the test-cases were completed once, a second iteration of the tests
was initiated. The execution consisted of overall 16 such iterations; however, the first
iteration was omitted from the results, and only served to allow the JVM the time to
warm up. The averages of the other 15 iterations are reported in the figures.
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Fig. 3. Results for 32 possible keys (left) 128 possible keys (middle) 1024 possible keys (right)

For each key range, we present three different graphs. In the first graph, we measure
the number of operations executed as a fraction of the number of operations executed
without the additional iterating thread. For example, for a range of keys [1, 32], for 16
threads, the number of operations executed while an additional thread is continually
iterating the nodes is 86% of the number of operations executed by 16 threads in the
skiplist data structure that does not support iteration at all. Thus, this graph presents
the cost of adding the support for an iterator, and having a single thread continually
iterate over the structure. For the CTrie, there is no available lock-free implementation
that does not support iteration at all, so we simply report the number of operations as
a fraction of the number of operations executed when there is no additional concurrent
thread iterating over the structure. In the second graph, we report the absolute number
of INSERT, DELETE, and CONTAINS operations executed in the different data structures
while a single thread was iterating, and in the third graph we report the number of
ITERATION operations that the single thread completed. This last measure stands for
the efficiency of the iterator itself.

The results appear in Figure 3. In general, the results show that the iterator proposed
in this paper has a small overhead on the other threads (which execute INSERT, DELETE

and CONTAINS), and in particular, much smaller than the overhead imposed by the
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CTrie iterator. The overhead of the proposed iterator for other threads is usually lower
than 20%, except when the overall number of threads is very small. This means that the
proposed iterator does relatively little damage to the scalability of the data structure.
As for overall performance, we believe it is less indicative of the contribution of our
work, as it reflects mainly the performance of the original data structures regardless of
the iterator. Having said that, the linked-list performs best for 32 keys, the skiplist for
128 keys, and the CTrie and skiplist performs roughly the same for 1024 keys.
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