
Distributed Minimum Cut Approximation

Mohsen Ghaffari1 and Fabian Kuhn2

1 Computer Science and Artificial Intelligence Lab, MIT, USA
ghaffari@mit.edu

2 Department of Computer Science, University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Abstract. We study the problem of computing approximate minimum edge cuts
by distributed algorithms. We use a standard synchronous message passing model
where in each round, O(log n) bits can be transmitted over each edge (a.k.a. the
CONGEST model). The first algorithm is based on a simple and new approach for
analyzing random edge sampling, which we call the random layering technique.
For any weighted graph and any ε ∈ (0, 1), the algorithm with high probability
finds a cut of size at most O(ε−1λ) in O(D) + Õ(n1/2+ε) rounds, where λ is
the size of the minimum cut and the Õ-notation hides poly-logarithmic factors in
n. In addition, based on a centralized algorithm due to Matula [SODA ’93], we
present a randomized distributed algorithm that with high probability computes a
cut of size at most (2 + ε)λ in Õ((D +

√
n)/ε5) rounds for any ε > 0.

The time complexities of our algorithms almost match the Ω̃(D+
√
n) lower

bound of Das Sarma et al. [STOC ’11], thus leading to an answer to an open
question raised by Elkin [SIGACT-News ’04] and Das Sarma et al. [STOC ’11].

To complement our upper bound results, we also strengthen the Ω̃(D +
√
n)

lower bound of Das Sarma et al. by extending it to unweighted graphs. We show
that the same lower bound also holds for unweighted multigraphs (or equivalently
for weighted graphs in which O(w log n) bits can be transmitted in each round
over an edge of weight w). For unweighted simple graphs, we show that comput-
ing an α-approximate minimum cut requires time at least Ω̃(D +

√
n/α1/4).

1 Introduction

Finding minimum cuts or approximately minimum cuts are classical and fundamen-
tal algorithmic graph problems with many important applications. In particular, min-
imum edge cuts and their size (i.e., the edge connectivity) are relevant in the context
of networks, where edge weights might represent link capacities and therefore edge
connectivity can be interpreted as the throughput capacity of the network. Decompos-
ing a network using small cuts helps designing efficient communication strategies and
finding communication bottlenecks (see, e.g., [20,27]). Both the exact and approximate
variants of the minimum cut problem have received extensive attention in the domain of
centralized algorithms (cf. Section 1.1 for a brief review of the results in the centralized
setting). This line of research has led to (almost) optimal centralized algorithms with
running times Õ(m+n) [19] for the exact version andO(m+n) [24] for constant-factor
approximations, where n and m are the numbers of nodes and edges, respectively.

As indicated by Elkin [6] and Das Sarma et al. [4], the problem has remained essen-
tially open in the distributed setting. In the LOCAL model [26] where in each round, a

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Ghaffari and F. Kuhn

message of unbounded size can be sent over each edge, the problem has a trivial time
complexity of Θ(D) rounds, where D is the (unweighted) diameter of the network.
The problem is therefore more interesting and also practically more relevant in models
where messages are of some bounded size B. The standard model incorporating this re-
striction is the CONGEST model [26], a synchronous message passing model where in
each time unit, B bits can be sent over every link (in each direction). It is often assumed
that B = Θ(log n). The only known non-trivial result is an elegant lower bound by Das
Sarma et al. [4] showing that any α-approximation of the minimum cut in weighted
graphs requires at least Ω(D +

√
n/(B log n)) rounds.

Our Contribution: We present two distributed minimum-cut approximation algorithms
for undirected weighted graphs, with complexities almost matching the lower bound
of [4]. We also extend the lower bound of [4] to unweighted graphs and multigraphs.

Our first algorithm, presented in Section 4, with high probability1 finds a cut of
size at most O(ε−1λ), for any ε ∈ (0, 1) and where λ is the edge connectivity, i.e.,
the size of the minimum cut in the network. The time complexity of this algorithm
is O(D) + O(n1/2+ε log3 n log logn log∗ n). The algorithm is based on a simple and
novel approach for analyzing random edge sampling, a tool that has proven extremely
successful also for studying the minimum cut problem in the centralized setting (see,
e.g., [20]). Our analysis is based on random layering, and we believe that the ap-
proach might also be useful for studying other connectivity-related questions. Assume
that each edge e ∈ E of an unweighted multigraph G = (V,E) is independently
sampled and added to a subset E′ ⊂ E with probability p. For p ≤ 1

λ , the graph
G′ = (V,E′) induced by the sampled edges is disconnected with at least a constant
probability (just consider one min-cut). In Section 3, we use random layering to show
that if p = Ω(log n

λ), the sampled graph G′ is connected w.h.p. This bound is optimal
and was known previously, with two elegant proofs: [23] and [15]. Our proof is simple
and self-contained and it serves as a basis for our algorithm in Section 4.

The second algorithm, presented in Section 5, finds a cut with size at most (2 + ε)λ,
for any constant ε > 0, in time O((D+

√
n log∗ n) log2 n log logn · 1

ε5). This algorithm
combines the general approach of Matula’s centralized (2+ε)-approximation algorithm
[24] with Thurimella’s algorithm for sparse edge-connectivity certificates [29] and with
the famous random edge sparsification technique of Karger (see e.g., [16]).

To complement our upper bounds, we also extend the lower bound of Das Sarma et
al. [4] to unweighted graphs and multigraphs. When the minimum cut problem (or more
generally problems related to small edge cuts and edge connectivity) are in a distributed
context, often the weights of the edges correspond to their capacities. It therefore seems
reasonable to assume that over a link of twice the capacity, we can also transmit twice
the amount of data in a single time unit. Consequently, it makes sense to assume that
over an edge of weight (or capacity) w ≥ 1, O(w logn) bits can be transmitted per
round (or equivalently that such a link corresponds to w parallel links of unit capacity).
The lower bound of [4] critically depends on having links with (very) large weight over
which in each round only O(log n) bits can be transmitted. We generalize the approach
of [4] and obtain the same lower bound result as in [4] for the weaker setting where
edge weights correspond to edge capacities (i.e., the setting that can be modeled using

1 We use the phrase with high probability (w.h.p.) to indicate probability greater than 1− 1
n

.

Distributed Minimum Cut Approximation 3

unweighted multigraphs). Formally, we show that if Bw bits can be transmitted over
every edge of weight w ≥ 1, for every λ ≥ 1 and every α ≥ 1, there are λ-edge-
connected networks with diameter O(log n) on which computing an α-approximate
minimum cut requires time at least Ω

(√
n/(B logn)

)
. Further, for unweighted simple

graphs, we show that computing an α-approximate minimum cut in λ-edge-connected

networks of diameter O(log n) requires at least time Ω
(√

n/(B logn)

(αλ)1/4

)
.

In addition, our technique yields a structural result about λ-edge-connected graphs
with small diameter. We show that for every λ > 1, there are λ-edge-connected graphs
G with diameter O(log n) such that for any partition of the edges of G into spanning
subgraphs, all but O(log n) of the spanning subgraphs have diameter Ω(n) (in the case
of unweighted multigraphs) or Ω(n/λ) (in the case of unweighted simple graphs). As
a corollary, we also get that when sampling each edge of such a graph with probability
p ≤ γ/ logn for a sufficiently small constant γ > 0, with at least a positive constant
probability, the subgraph induced by the sampled edges has diameter Ω(n) (in the case
of unweighted multigraphs) and Ω(n/λ) (in the case of unweighted simple graphs). For
lack of space, the details about these results are deferred to the full version [10].

1.1 Related Work in the Centralized Setting

Starting in the 1950s [5, 8], the traditional approach to the minimum cut problem was
to use max-flow algorithms (cf. [7] and [20, Section 1.3]). In the 1990s, three new
approaches were introduced which go away from the flow-based method and provide
faster algorithms: The first method, presented by Gabow [9], is based on a matroid
characterization of the min-cut and it finds a min-cut in O(m + λ2n log n

m) steps, for
any unweighted (but possibly directed) graph with edge connectivity λ. The second ap-
proach applies to (possibly) weighted but undirected graphs and is based on repeatedly
identifying and contracting edges outside a min-cut until a min-cut becomes apparent
(e.g., [14, 20, 25]). The beautiful random contraction algorithm (RCA) of Karger [14]
falls into this category. In the basic version of RCA, the following procedure is re-
peated O(n2 logn) times: contract uniform random edges one by one until only two
nodes remain. The edges between these two nodes correspond to a cut in the original
graph, which is a min-cut with probability at least 1/O(n2). Karger and Stein [20] also
present a more efficient implementation of the same basic idea, leading to total running
time of O(n2 log3 n). The third method, which again applies to (possibly) weighted but
undirected graphs, is due to Karger [18] and is based on a “semiduality” between min-
imum cuts and maximum spanning tree packings. This third method leads to the best
known centralized minimum-cut algorithm [19] with running time O(m log3 n).

For the approximation version of the problem (in undirected graphs), the main known
results are as follows. Matula [24] presents an algorithm that finds a (2 + ε)-minimum
cut for any constant ε > 0 in time O((m + n)/ε). This algorithm is based on a graph
search procedure called maximum adjacency search. Based on a modified version of the
random contraction algorithm, Karger [17] presents an algorithm that finds a (1 + ε)-
minimum cut in time O(m + n log3 n/ε4).

4 M. Ghaffari and F. Kuhn

2 Preliminaries

Notations and Definitions: We usually work with an undirected weighted graph G =
(V,E,w), where V is a set of n vertices, E is a set of (undirected) edges e = {v, u} for
u, v ∈ V , and w : E → R

+ is a mapping from edges E to positive real numbers. For
each edge e ∈ E, w(e) denotes the weight of edge e. In the special case of unweighted
graphs, we simply assume w(e) = 1 for each edge e ∈ E.

For a given non-empty proper subset C ⊂ V , we define the cut (C, V \C) as the set
of edges in E with exactly one endpoint in set C. The size of this cut, denoted by w(C)
is the sum of the weights of the edges in set (C, V \C). The edge-connectivity λ(G) of
the graph is defined as the minimum size of w(C) as C ranges over all nonempty proper
subsets of V . A cut (C, V \ C) is called α-minimum, for an α ≥ 1, if w(C) ≤ αλ(G).
When clear from the context, we sometimes use λ to refer to λ(G).

Communicaton Model and Problem Statements: We use a standard message passing
model (a.k.a. the CONGEST model [26]), where the execution proceeds in synchronous
rounds and in each round, each node can send a message of size B bits to each of its
neighbors. A typically standard case is B = Θ(log n).

For upper bounds, for simplicity we assume that B = Θ(log n)2. For upper bounds,
we further assume that B is large enough so that a constant number of node identifiers
and edge weights can be packed into a single message. For B = Θ(log n), this implies
that each edge weight w(e) is at most (and at least) polynomial in n. W.l.o.g., we further
assume that edge weights are normalized and each edge weight is an integer in range
{1, . . . , nΘ(1)}. Thus, we can also view a weighted graph as a multi-graph in which all
edges have unit weight and multiplicity at most nΘ(1) (but still only O(log n) bits can
be transmitted over all these parallel edges together).

For lower bounds, we assume a weaker model where B · w(e) bits can be sent in
each round over each edge e. To ensure that at least B bits can be transmitted over
each edge, we assume that the weights are scaled such that w(e) ≥ 1 for all edges. For
integer weights, this is equivalent to assuming that the network graph is an unweighted
multigraph where each edge e corresponds to w(e) parallel unit-weight edges.

In the problem of computing an α-approximation of the minimum cut, the goal is to
find a cut (C∗, V \C∗) that is α-minimum. To indicate this cut in the distributed setting,
each node v should know whether v ∈ C∗. In the problem of α-approximation of the
edge-connectivity, all nodes must output an estimate λ̃ of λ such that λ̃ ∈ [λ, λα]. In
randomized algorithms for these problems, time complexities are fixed deterministically
and the correctness guarantees are required to hold with high probability.

2.1 Black-Box Algorithms

In this paper, we make frequent use of a connected component identification algorithm
due to Thurimella [29], which itself builds on the minimum spanning tree algorithm of
Kutten and Peleg [22]. Given a graph G(V,E) and a subgraph H = (V,E′) such that

2 Note that by choosing B = b log n for some b ≥ 1, in all our upper bounds, the term that does
not depend on D could be improved by a factor

√
b.

Distributed Minimum Cut Approximation 5

E′ ⊆ E, Thurimella’s algorithm identifies the connected components of H by assign-
ing a label 	(v) to each node v ∈ V such that two nodes get the same label iff they
are in the same connected component of H . The time complexity of the algorithm is
O(D +

√
n log∗ n) rounds, where D is the (unweighted) diameter of G. Moreover, it

is easy to see that the algorithm can be made to produce labels 	(v) such that 	(v) is
equal to the smallest (or the largest) id in the connected component of H that contains
v. Furthermore, the connected component identification algorithm can also be used to
test whether the graph H is connected (assuming that G is connected). H is not con-
nected if and only if there is an edge {u, v} ∈ E such that 	(u) 	= 	(v). If some node
u detects that for some neighbor v (in G), 	(u) 	= 	(v), u broadcasts not connected.
Connectivity of H can therefore be tested in D additional rounds. We refer to this as
Thurimella’s connectivity-tester algorithm. Finally, we remark that the same algorithms
can also be used to solve k independent instances of the connected component iden-
tification problem or k independent instances of the connectivity-testing problem in
O(D + k

√
n log∗ n) rounds. This is achieved by pipelining the messages of the broad-

cast parts of different instances.

3 Edge Sampling and the Random Layering Technique

Here, we study the process of random edge-sampling and present a simple technique,
which we call random layering, for analyzing the connectivity of the graph obtained
through sampling. This technique also forms the basis of our min-cut approximation
algorithm presented in the next section.

Edge Sampling: Consider an arbitrary unweighted multigraph G = (V,E). Given a
probability p ∈ [0, 1], we define an edge sampling experiment as follows: choose subset
S ⊆ E by including each edge e ∈ E in set S independently with probability p. We
call the graph G′ = (V, S) the sampled subgraph.

We use the random layering technique to answer the following network reliability
question: “How large should p be, as a function of minimum-cut size λ, so that the
sampled graph is connected w.h.p.?”3 Considering just one cut of size λ we see that if
p ≤ 1

λ , then the probability that the sampled subgraph is connected is at most 1
e . We

show that p ≥ 20 log n
λ suffices so that the sampled subgraph is connected w.h.p. Note

that this is non-trivial as a graph has exponential many cuts. It is easy to see that this
bound is asymptotically optimal [23].

Theorem 1. Consider an arbitrary unweighted multigraph G = (V,E) with edge con-
nectivity λ and choose subset S ⊆ E by including each edge e ∈ E in set S indepen-
dently with probability p. If p ≥ 20 logn

λ , then the sampled subgraph G′ = (V, S) is
connected with probability at least 1− 1

n .

We remark that this result was known prior to this paper, via two different proofs by
Lomonosov and Polesskii [23] and Karger [15]. The Lomonosov-Polesskii proof [23]
uses an interesting coupling argument and shows that among the graphs of a given

3 A rephrased version is, how large should the edge-connectivity λ of a network be such that it
remains connected w.h.p. if each edge fails with probability 1− p.

6 M. Ghaffari and F. Kuhn

edge-connectivity λ, a cycle of length n with edges of multiplicity λ/2 has the smallest
probability of remaining connected under random sampling. Karger’s proof [15] uses
the powerful fact that the number of α-minimum cuts is at most O(n2α) and then uses
basic probability concentration arguments (Chernoff and union bounds) to show that,
w.h.p., each cut has at least one sampled edge. There are many known proofs for the
O(n2α) upper bound on the number of α-minimum cuts (see [19]); an elegant argument
follows from Karger’s random contraction algorithm [14].

Our proof of Theorem 1 is simple and self-contained, and it is the only one of the
three approaches that extends to the case of random vertex failures4 [2, Theorem 1.5].

Proof (Proof of Theorem 1). Let L = 20 logn. For each edge e ∈ E, we independently
choose a uniform random layer number from the set {1, 2, . . . , L}. Intuitively, we add
the sampled edges layer by layer and show that with the addition of the sampled edges
of each layer, the number of connected components goes down by at least a constant
factor, with at least a constant probability, and independently of the previous layers.
After L = Θ(log n) layers, connectivity is achieved w.h.p.

We start by presenting some notations. For each i ∈ {1, . . . , L}, let Si be the set of
sampled edges with layer number i and let Si− =

⋃i
j=1 Sj , i.e., the set of all sampled

edges in layers {1, . . . , i}. Let Gi = (V, Si−) and let Mi be the number of connected
components of graph Gi. We show that ML = 1, w.h.p.

For any i ∈ [1, L − 1], since Si− ⊆ S(i+1)−, we have Mi+1 ≤ Mi. Consider the
indicator variable Xi such that Xi = 1 iff Mi+1 ≤ 0.87Mi or Mi = 1. We show the
following claim, after which, applying a Chernoff bound completes the proof.

Claim. For all i ∈ [1, L− 1] and T ⊆ E, we have Pr[Xi = 1|Si− = T] ≥ 1/2.

To prove this claim, we use the principle of deferred decisions [21] to view the two
random processes of sampling edges and layering them. More specifically, we con-
sider the following process: first, each edge is sampled and given layer number 1 with
probability p/L. Then, each remaining edge is sampled and given layer number 2 with
probability p/L

1−p/L ≥ p/L. Similarly, after determining the sampled edges of layers 1
to i, each remaining edge is sampled and given layer number i + 1 with probability

p/L
1−(i p)/L ≥ p/L. After doing this for L layers, any remaining edge is considered not
sampled and it receives a random layer number from {1, 2, . . . , L}. It is easy to see that
in this process, each edge is independently sampled with probability exactly p and each
edge e gets a uniform random layer number from {1, 2, . . . , L}, chosen independently
of the other edges and also independently of whether e is sampled or not.

Fix a layer i ∈ [1, . . . , L− 1] and a subset T ⊆ E. Let Si− = T and consider graph
Gi = (V, Si−). Figure 1 presents an example graph Gi and its connected components.
If Mi = 1 meaning that Gi is connected, then Xi = 1. Otherwise, suppose that Mi ≥ 2.
For each component C of Gi, call the component bad if (C, V \ C)∩ Si+1 = ∅. That is,
C is bad if after adding the sampled edges of layer i + 1, C does not get connected to
any other component. We show that Pr[C is bad] ≤ 1

e .

4 There, the question is, how large the vertex sampling probability p has to be chosen, as a
function of vertex connectivity k, so that the vertex-sampled graph is connected, w.h.p. The
extension to the vertex version requires important modifications and leads to p = Ω(log n√

k
)

being a sufficient condition. Refer to [2, Section 3] for details.

Distributed Minimum Cut Approximation 7

Fig. 1. Graph Gi and its connected components. The green solid links represent edges in Si− and
the blue dashed links represent E \ Si−.

Since G is λ-edge connected, we have w(C) ≥ λ. Moreover, none of the edges in
(C, V \C) is in Si−. Thus, using the principle of deferred decisions as described, each of
the edges of the cut (C, V \C) has probability p/L

1−(i p)/L ≥ p/L to be sampled and given

layer number i+1, i.e., to be in Si+1. Since p ≥ 20 logn
λ , the probability that none of the

edges (C, V \ C) is in set Si+1 is at most (1− p/L)λ ≤ 1/e. Thus, Pr[C is bad] ≤ 1/e.
Having this, since each component that is not bad gets connected to at least one other
component (when we look at graph Gi+1), a simple application of Markov’s inequality
proves the claim, and after that, a Chernoff bound completes the proof. See [10] for
details. �
Theorem 1 provides a very simple approach for finding an O(log n)-approximation of
the edge connectivity of a network graph G in O(D+

√
n log2 n log∗ n) rounds, simply

by trying exponentially growing sampling probabilities and checking the connectivity.
The proof appears the full version [10]. We note that a similar basic approach has been
used to approximate the size of min-cut in the streaming model [1].

Corollary 1. There exists a distributed algorithm that for any unweighted multi-graph
G = (V,E), in O(D+

√
n log2 n log∗ n) rounds, finds an approximation λ̃ of the edge

connectivity such that λ̃ ∈ [λ, λ ·Θ(log n)] with high probability.

4 Min-Cut Approximation by Random Layering

Now we use random layering to design a min-cut approximation algorithm. We present
the outline of the algorithm and its major ideas but defer putting the pieces together to
the proof of Theorem 2 in the full version [10].

Theorem 2. There is a distributed algorithm that, for any ε ∈ (0, 1), finds an O(ε−1)-
minimum cut in O(D) +O(n0.5+ε log3 n log logn log∗ n) rounds, w.h.p.

4.1 Algorithm Outline

The algorithm is based on closely studying the sampled graph when the edge-sampling
probability is between the two extremes of 1

λ and Θ(logn)
λ . Throughout this process, we

identify a set F of O(n log n) cuts such that, with at least a ‘reasonably large probabil-
ity’, F contains at least one ‘small’ cut.

8 M. Ghaffari and F. Kuhn

The Crux of the Algorithm: Sample edges with probability p = ε logn
2λ for a

small ε ∈ (0, 1). Also, assign each edge to a random layer in [1, . . . , L], where
L = 20 log n. For each layer i ∈ [1, . . . , L− 1], let Si be the set of sampled edges
of layer i and let Si− =

⋃i
j=1 Sj . For each layer i ∈ [1, . . . , L − 1], for each

component C of graph Gi = (V, Si−), add the cut (C, V \ C) to the collection F .

We show that with probability at least n−ε/2, at least one of the cuts in F is an
O(ε−1)-minimum cut. Note that thus repeating the experiment for Θ(nε logn) times is
enough to get that an O(ε−1)-minimum cut is found w.h.p.

Theorem 3. Consider performing the above sampling and layering experiment with
edge sampling probability p = ε logn

2λ for ε ∈ (0, 1) and L = 20 logn layers. Then,
Pr[F contains an O(ε−1)-minimum cut] ≥ n−ε/2.

Proof. Fix an edge sampling probability p = ε logn
2λ for an ε ∈ (0, 1) and let α =

40ε−1. We say that a sampling and layering experiment is successful if F contains an
α-minimum cut or if the sampled graph GL = (V, SL−) is connected. We first show
that each experiment is successful with probability at least 1− 1

n . The proof of this part
is very similar to that of Theorem 1.

For an arbitrary layer number 1 ≤ i ≤ L − 1, consider graph Gi = (V, Si−). If
Mi = 1 meaning that Gi is connected, then GL is also connected. Thus, in that case,
the experiment is successful and we are done. In the more interesting case, suppose
Mi ≥ 2. For each component C of Gi, consider the cut (C, V \C). If any of these cuts is
α-minimum, then the experiment is successful as then, set F contains an α-minimum
cut. On the other hand, suppose that for each component C of Gi, we have w(C) ≥ αλ.
Then, for each such component C, each of the edges of cut (C, V \ C) has probability

p/L
1−(i p)/L ≥ p/L to be in set Si+1 and since w(C) ≥ αλ, where α = 20ε−1, the

probability that none of the edges of this cut in set Si+1 is at most (1 − p/L)αλ ≤
e

p
L ·αλ = e−

ε log n
2λ · 1

L · 40ε ·λ = 1/e. Hence, the probability that component C is bad as
defined in the proof of Theorem 1 (i.e., in graph Gi+1, it does not get connected to any
other component) is at most 1/e. The rest of the proof can be completed exactly as the
last paragraph of of the proof of Theorem 1, to show that

Pr[successful experiment] ≥ 1− 1/n.

Using a union bound, we know that

Pr[successful experiment] ≤ Pr[F contains an α-min cut] + Pr[GL is connected].

On the other hand,
Pr[GL is connected] ≤ 1− n−ε.

This is because, considering a single mininmum cut of size λ, the probability that none
of the edges of this cut are sampled, in which case the sampled subgraph is discon-
nected, is (1− ε log n

2λ)λ ≥ n−ε. Hence, we can conclude that

Pr[F contains an α-min cut] ≥ (1− 1/n)− (1−n−ε) = n−ε− 1/n ≥ n−ε/2. �

Distributed Minimum Cut Approximation 9

Remark: It was brought to our attention that the approach of Theorem 3 bears some
cosmetic resemblance to the technique of Goel, Kapralov and Khanna [11]. As noted
by Kapralov [13], the approaches are fundamentally different; the only similarity is
having O(log n) repetitions of sampling. In [11], the objective is to estimate the strong-
connectivity of edges via a streaming algorithm. See [11] for related definitions and note
also that strong-connectivity is (significantly) different from (standard) connectivity. In
a nutshell, [11] uses O(log n) iterations of sub-sampling, each time further sparsifying
the graph until at the end, all edges with strong-connectivity less than a threshold are
removed (and identified) while edges with strong connectivity that is a Θ(log n) factor
larger than the threshold are preserved (proven via Benczur-Karger’s sparsification).

4.2 Testing Cuts

So far we know that F contains an α-minimum cut with a reasonable probability. We
now need to devise a distributed algorithm to read or test the sizes of the cuts in F and
find that α-minimum cut, in O(D) + Õ(

√
n) rounds.

Consider a layer i and the graph Gi = (V, Si−). Notice that we do not need to read
the exact size of the cut (C, V \C). Instead, it is enough to devise a test that passes w.h.p.
if w(C) ≤ αλ, and does not pass w.h.p. if w(C) ≥ (1 + δ)αλ, for a small constant
δ ∈ (0, 1/4). In the distributed realization of such a test, it would be enough if all the
nodes in C consistently know whether the test passed or not. Next, we explain a simple
algorithm for such a test. This test itself uses random edge sampling. Given such a test,
in each layer i ∈ [1, . . . , L − 1], we can test all the cuts and if any cut passes the test,
meaning that, w.h.p., it is a ((1 + δ)α)-minimum cut, then we can pick such a cut.5

Lemma 1. Given a subgraphG′ = (V,E′) of the network graphG = (V,E), a thresh-
old κ and δ ∈ (0, 1/4), there exists a randomized distributed cut-tester algorithm with
round complexity Θ

(
D + 1

δ2
√
n logn log∗ n

)
such that, w.h.p., for each node v ∈ V ,

we have: Let C be the connected component of G′ that contains v. If w(C) ≤ κ/(1+ δ),
the test passes at v, whereas if w(C) ≥ κ(1 + δ), the test does not pass at v.

For pseudo-code, we refer to the full version [10]. We first run Thurimella’s connected
component identification algorithm (refer to Section 2.1) on graph G for subgraph G′,
so that each node v ∈ V knows the smallest id in its connected component of graph
G′. Then, each node v adopts this label componentID as its own id (temporarily).
Thus, nodes of each connected component of G′ will have the same id. Now, the test
runs in Θ(log2 n/δ2) experiments, each as follows: in the jth experiment, for each edge
e ∈ E \E′, put edge e in set Ej with probability p′ = 1−2−

1
κ . Then, run Thurimella’s

algorithm on graph G with subgraph Hj = (V,E′ ∪ Ej) and with the new ids twice,
such that at the end, each node v knows the smallest and the largest id in its connected
component of Hj . Call these new labels 	min

j (v) and 	max
j (v), respectively. For a node

v of a component C of Gi, we have that 	min
j (v) 	= v.id or 	max

j (v) 	= v.id iff at
least one of the edges of cut (C, V \ C) is sampled in Ej , i.e., (C, V \ C) ∩ Ej 	= ∅.
Thus, each node v of each component C knows whether (C, V \ C) ∩ Ej 	= ∅ or not.

5 This can be done for example by picking the cut which passed the test and for which the related
component has the smallest id among all the cuts that passed the test.

10 M. Ghaffari and F. Kuhn

Moreover, this knowledge is consistent between all the nodes of component C. After
Θ(log n/δ2) experiments, each node v of component C considers the test passed iff v
noticed (C, V \C)∩Ej 	= ∅ in at most half of the experiments. We defer the calculations
of the proof of Lemma 1 to of the full version [10].

5 Min-Cut Approximation via Matula’s Approach

In [24], Matula presents an elegant centralized algorithm that for any constant ε > 0,
finds a (2 + ε)-min-cut in O(|V | + |E|) steps. Here, we explain how with the help of
a few additional elements, this general approach can be used in the distributed setting,
to find a (2 + ε)-minimum cut in O

(
(D+

√
n log∗ n) log2 n log logn · 1

ε5

)
rounds. We

first recap the concept of sparse certificates for edge connectivity.

Definition 1. For a given unweighted multi-graph H = (VH , EH) and a value k > 0,
a set E∗ ⊆ EH of edges is a sparse certificate for k-edge-connectivity of H if (1)
|E∗| ≤ k|VH |, and (2) for each edge e ∈ EH , if there exists a cut (C, V \ C) of H such
that |(C)| ≤ k and e ∈ (C, V \ C), then we have e ∈ E∗.

Thurimella [29] presents a simple distributed algorithm that finds a sparse certificate
for k-edge-connectivity of a network graph G in O(k(D +

√
n log∗ n)) rounds. With

simple modifications, we get a generalized version, presented in Lemma 2. Details of
these modification appear in the full version of this paper [10].

Lemma 2. Let Ec be a subset of the edges of the network graphG and define the virtual
graph G′ = (V ′, E′) as the multi-graph that is obtained by contracting all the edges of
G that are in Ec. Using the modified version of Thurimella’s certificate algorithm, we
can find a set E∗ ⊆ E \Ec that is a sparse certificate for k-edge-connectivity of G′, in
O(k(D +

√
n log∗ n)) rounds.

Following the approach of Matula’s centralized algorithm6 [24], and with the help of
the sparse certificate algorithm of Lemma 2 and the random sparsification technique of
Karger [15], we get the following result.

Theorem 4. There is a distributed algorithm that, for any constant ε > 0, finds a
(2 + ε)-minimum cut in O((D +

√
n log∗ n) log2 n log logn · 1

ε5) rounds.

Proof (Proof Sketch). We assume that nodes know a (1 + ε/10)-factor approximation
λ̃ of the edge connectivity λ, and explain a distributed algorithm with round complexity
O((D +

√
n log∗ n) log2 n · 1

ε4). Note that this assumption can be removed at the cost
of a Θ(log log n

log (1+ε/10)) = Θ(log logn · 1
ε) factor increase in round complexity by trying

Θ(log logn
ε) exponential guesses λ̃(1 + ε/10)i for i ∈ [0, Θ(log logn

ε)] where λ̃ is an
O(log n)-approximation of the edge-connectivity, which can be found by Corollary 1.

For simplicity, we first explain an algorithm that finds a (2 + ε)-minimum cut in
O(λ(D +

√
n log∗ n) logn · 1

ε2) rounds. Then, we explain how to reduce the round
complexity to O((D +

√
n log∗ n) log2 n · 1

ε4).

6 We remark that Matula [24] never uses the name sparse certificate but he performs maximum
adjacency search which indeed generates a sparse certificate.

Distributed Minimum Cut Approximation 11

Pseudo-code is given in the full version [10]. First, we compute a sparse certificate
E∗ for λ̃(1+ε/5)-edge-connectivity of G, using Thurimella’s algorithm. Now consider
the graph H = (V,E \E∗). We have two cases: either (a) H has at most |V |(1− ε/10)
connected components, or (b) there is a connected component C of H such that w(C) ≤
2λ(1+ε/10)(1+ε/5)

1−ε/10 ≤ (2 + ε)λ. Note that if (a) does not hold, case (b) follows because

H has at most (1 + ε/5)λ̃|V | edges.
In Case (b), we can find a (2+ε)-minimum cut by testing the connected components

of H versus threshold κ = λ̃(2 + ε/3), using the Cut-Tester algorithm presented in
Lemma 1. In Case (a), we solve the problem recursively on the virtual graph G′ =
(V ′, E′) that is obtained by contracting all the edges of G that are in Ec = E \ E∗.
Note that this contraction preserves all the cuts of size at most λ̃(1 + ε/5) ≥ λ but
reduces the number of nodes (in the virtual graph) at least by a (1 − ε/10)-factor.
Consequently, O(log(n)/ε) recursions reduce the number of components to at most 2
while preserving the min-cut.

The dependence on λ can be removed by considering the graph GS = (V,ES),
where ES independently contains every edge of G with probability Θ

(
log n
ε2λ

)
. It can be

shown that the edge connectivity of GS is Θ(log(n)/ε2) and a min-cut of GS gives a
(1 +O(ε))-min-cut of G. The details appear in the full version [10]. �

6 Lower Bounds

In this section, we describe a lower bound that allows to strengthen and generalize
some of the lower bounds of Das Sarma et al. from [4]. Our lower bound uses the
same basic approach as the lower bounds in [4]. The lower bounds of [4] are based
on an n-node graph G with diameter O(log n) and two distinct nodes s and r. The
proof deals with distributed protocols where node s gets a b-bit input x, node r gets a
b-bit input y, and apart from x and y, the initial states of all nodes are globally known.
Slightly simplified, the main technical result of [4] (Simulation Theorem 3.1) states that
if there is a randomized distributed protocol that correctly computes the value f(x, y)

of a binary function f : {0, 1}b × {0, 1}b → {0, 1} with probability at least 1 − ε
in time T (for sufficiently small T), then there is also a randomized ε-error two-party
protocol for computing f(x, y) with communication complexity O(TB logn). For our
lower bounds, we need to extend the simulation theorem of [4] to a larger family of
networks and to a slightly larger class of problems.

6.1 Generalized Simulation Theorem

Distributed Protocols: Given a weighted network graph G = (V,E,w) (∀e ∈ E :
w(e) ≥ 1), we consider distributed tasks for which each node v ∈ V gets some private
input x(v) and every node v ∈ V has to compute an output y(v) such that the collection
of inputs and outputs satisfies some given specification. To solve a given distributed
task, the nodes of G apply a distributed protocol. We assume that initially, each node
v ∈ V knows its private input x(v), as well as the set of neighbors in G. Time is divided
into synchronous rounds and in each round, every node can send at most B · w(e) bits

12 M. Ghaffari and F. Kuhn

over each of its incident edges e. We say that a given (randomized) distributed protocol
solves a given distributed task with error probability ε if the computed outputs satisfy
the specification of the task with probability at least 1− ε.

Graph Family G(n, k, c): For parameters n, k, and c, we define the family of graphs
G(n, k, c) as follows. A weighted graph G = (V,E,w) is in the family G(n, k, c) iff
V = {1, . . . , n} and for all h ∈ {1, . . . , n}, the total weight of edges between nodes
in {1, . . . , h} and nodes in {h+ k + 1, . . . , n} is at most c. We consider distributed
protocols on graphs G ∈ G(n, k, c) for given n, k, and c. For an integer η ≥ 1, we
define Lη := {1, . . . , η} and Rη := {n− η + 1, . . . , n}. Given a parameter η ≥ 1 and
a network G ∈ G(n, k, c), we say that a two-party protocol between Alice and Bob η-
solves a given distributed task for G with error probability ε if a) initially Alice knows
all inputs and all initial states of nodes in V \Rη and Bob knows all inputs and all initial
states of nodes in V \Lη, and b) in the end, Alice outputs y(v) for all v ∈ Ln/2 and Bob
outputs y(v) for all v ∈ Rn/2 such that with probability at least 1 − ε, all these y(v)
are consistent with the specification of the given distributed task. A two-party protocol
is said to be public coin if Alice and Bob have access to a common random string. The
proof of the following theorem appears in the full version [10].

Theorem 5 (Generalized Simulation Theorem). Assume we are given positive inte-
gers n, k, and η, a parameter c ≥ 1, as well as a subfamily G̃ ⊆ G(n, k, c). Further
assume that for a given distributed task and graphs G ∈ G̃, there is a randomized proto-
col with error probability ε that runs in T ≤ (n−2η)/(2k) rounds. Then, there exists a
public-coin two-party protocol that η-solves the given distributed task on graphs G ∈ G̃
with error probability ε and communication complexity at most 2BcT .

We now describe a generic construction to obtain graphs of the family G(n, k, c). Given
some integer n > 0, we define Tn = (V,ET) to be a fixed unweighted binary tree on
the nodes V = {1, . . . , n} with depth �log2 n� where an in-order DFS traversal of Tn

(starting at the root) reproduces the natural order 1, 2, . . . , n. The tree Tn can thus be
seen as a binary search tree: Given any node i, for all nodes j of the left subtree of i, it
holds that j < i and for all nodes j of the right subtree of i, it holds that j > i.

Lemma 3. Given an integer p ∈ {1, . . . , n− 1}, consider the cut (Sp, V \ Sp), where
Sp = {1, . . . , p}. For every p ∈ {1, . . . , n− 1}, the number of edges between over the
cut (Sp, V \ Tp) is at most �log2 n�.

Using the tree Tn, we can construct graphs from the family G(n, k, c) for c = �log2 n�.
Let H(n, k) be the family of weighted graphs H = (V,EH , wH) with node set V =
{1, . . . , n} such that for all edges {i, j} ∈ EH , |j−i| ≤ k. Given a graphH ∈ H(n, k),
we define a graph G(H) = (V,E,w) with node set V = {1, . . . , n} as follows: (a) The
edge set E of G(H) is E := EH ∪ET . (b) The weight w(e) of an edge e ∈ E is given
as w(e) := max {1, wH(e)}.

Lemma 4. Given a graph H ∈ H(n, k), graph G(H) ∈ G(n, k, c) for c = �log2 n�.
Further, the diameter of G(H) is O(log n).

Distributed Minimum Cut Approximation 13

6.2 Lower Bound for Approximating Minimum Cut

We start by proving a lower bound on approximating min-cut in weighted graphs (or
equivalently in unweighted multigraphs).

Theorem 6. In weighted graphs, for any α ≥ 1 and any λ ≥ 1, computing an α-
approximate minimum cut requires at least Ω

(
D +

√
n/(B logn)

)
rounds.

Proof. We prove the theorem by reducing from the two-party set disjointness problem
[3,12,28]. Assume that as input, Alice gets a set X and Bob get a set Y such that both X
and Y are of size p and the elements of X and Y are from a universe of size O(p). It is
known that for Alice and Bob need to exchange at least Ω(p) bits to determine whether
X and Y are disjoint [12,28]. This lower bound holds even for public coin randomized
protocols with constant error probability and it also holds if Alice and Bob are given
the promise that if X and Y intersect, they intersect in exactly one element [28]. As
a consequence, if Alice and Bob receive sets X and Y of size p as inputs such that
|X ∩ Y | = 1, finding X ∩ Y also requires Alice and Bob to exchange Ω(p) bits.

Assume that there is a protocol to find an α-minimum cut or to α-approximate the
size of a minimum cut in time T with a constant error probability ε. In both cases, we
show that Alice and Bob can use this protocol to efficiently solve set disjointness by
simulating the distributed protocol on a special network.

We now describe the construction of this network. Let a and b be two positive integer
parameters. We construct a graph G ∈ G(n, λ,O(log n)) as follows: First, we construct
a weighted graph H = (VH , EH , wH) ∈ H(a, 1) where the node set of H is VH =
{1, . . . , a} and there is an edge e of weight wH(e) = αλ + 1 between nodes i and j if
and only if |i−j| = 1. By Lemma 4, we can then get a graphG(H) ∈ G(a, 1, O(log n)).
To get a graph G, we add b additional copies of graph H . Call node i in the original
copy (i, 0) and node i in the jth additional copy node (i, j). In each copy j ≥ 1, we
connect node (1, j) with node (1, 0) by an edge of weight λ. By renaming node (i, j) to
κ(i, j) := j+(i−1)(b+1), we can see that graph G is in G(a(b+1), b+1, O(logn)).
In the following, let n = a(b+1) be the number of nodes of G. The first b+1 nodes of
G are nodes (1, j) for 0 ≤ j ≤ b, the last b+1 nodes of G are nodes (a, j) for 0 ≤ j ≤
b. Note that graph G is exactly λ-edge connected as any of the edges {(1, j), (1, 0)}
defines a cut of size λ. Note also that every cut which divides one of the copies of H
into two or more parts has size at least αλ+ 1.

Assume that Alice and Bob need to solve a set disjointness instance where X ⊂
{1, . . . , b}, Y ⊂ {1, . . . , b}, |X ∩ Y | ≤ 1, and |X |, |Y | = Ω(b). The graph G is ex-
tended such that the minimum cut problem in G represents the given set cover instance.
For each x 	∈ X , the weight of the edge {(1, x), (1, 0)} is increased to αλ+ 1. Further,
for every y 	∈ Y , we add an edge {(a, y), (a, 0)} of weight αλ + 1. Now, if and only if
X ∩ Y = ∅, every copy of H is connected to the first copy by a link of weight αλ+ 1.
Therefore, if X and Y are disjoint, the size of a minimum cut is at least αλ + 1 and if
X and Y intersect, there is a cut of size λ.

Alice knows the initial states of nodes (i, j) for all i < a and thus for the nodes
(i, j) with 1 ≤ κ(i, j) < n − b (i.e., all except the last b + 1 nodes) and Bob knows
the initual states of nodes (i, j) for all i > 1 and thus for the nodes (i, j) with b + 1 <
κ(i, j) ≤ n (i.e., all except the first b+1 nodes). If we have T < (n− 2)/(2(b+1)) =

14 M. Ghaffari and F. Kuhn

O(n/b) = O(a) for the time complexity T of the distributed minimum cut approx-
imation protocol, Theorem 5 implies that Alice and Bob can (b + 1)-solve the dis-
tributed task of α-approximating the minimum cut with total communication complex-
ity at most O(TB logn). As a consequence, Alice and Bob can also solve the given
set disjointness instance using the same protocol and from the known set disjointness
communication complexity lower bound, we therefore get TB logn = Ω(b). Choosing
a = Θ(

√
n/(B logn) and b = Θ(

√
nB logn) this implies the claimed lower bound

for approximating the size of the minimum cut. Assuming that Alice and Bob already
know that |X ∩ Y | = 1, the communication complexity lower bound on finding X ∩ Y
also implies the same lower bound for finding an α-minimum cut, even if the size λ of
the minimum cut is known. �
We now present our lower bound about min-cut approximation in unweighted simple
graphs.

Theorem 7. In unweighted simple graphs, for any α ≥ 1 and λ ≥ 1, computing an
α-approximate minimum cut requires at least Ω

(
D +

√
n

B
√
αλ logn

)
rounds.

Proof (Proof Sketch). The proof is essentially done in the same way as the proof of
Theorem 6. We therefore only describe the differences between the proofs. Because in
a simple unweighted graph, we cannot add edges with different weights and we cannot
add multiple edges, we have to construct the graph differently. Let us first describe the
simple, unweighted graph H ′ corresponding to H in the construction of Theorem 7.
Instead of a being path of length a with edges of weight αλ + 1, H ′ is a sequence
of a cliques of size �√αλ + 1�. Adjacent cliques are connected by complete bipartite
graphs (with at least αλ + 1 edges). We again have b + 1 copies of H ′, where copy 0
is augmented with a complete binary tree by using Lemma 4. Each edge {(1, 0), (1, j)}
of weight λ is replaced by λ edges between clique (1, 0) and clique (1, j). Edges of
weight αλ + 1 between nodes (1, 0) and (1, j) and between nodes (a, 0) and (a, j)
are replaced by complete bipartite graphs between the respective cliques. Again, by
simulating a minimum cut approximation algorithm on the constructed graph, Alice
and Bob can solve a given set disjointness instance for a universe of size b. However,
the number of nodes of the network in this case is Θ(ab

√
αλ) leading to the lower

bound claimed by the theorem. �

Acknowledgment. We thank David Karger for helpful discussions in the early stages
of this work and thank Michael Kapralov for discussing cosmetic similarities with [11].

References

1. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs.
In: Proc. of the 31st Symp. on Princ. of Database Sys., PODS 2012, pp. 5–14 (2012)

2. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: A new perspective on vertex connectivity. arXiv
(2013), http://arxiv.org/abs/1304.4553

3. Chattapodhyay, A., Pitassi, T.: The story of set disjointness. SIGACT News Complexity The-
ory Column 67 (2011)

http://arxiv.org/abs/1304.4553

Distributed Minimum Cut Approximation 15

4. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D.,
Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM
J. on Comp. 41(5), 1235–1265 (2012)

5. Elias, P., Feinstein, A., Shannon, C.E.: Note on maximum flow through a network. IRE Trans-
actions on Information Theory IT-2, 117–199 (1956)

6. Elkin, M.: Distributed approximation: a survey. SIGACT News 35(4), 40–57 (2004)
7. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press (2010)
8. Ford, L.R., Fulkersonn, D.R.: Maximal flow through a network. Canad. J. Math. 8, 399–404

(1956)
9. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences.

In: Proc. 23rd ACM Symposium on Theory of Computing (STOC), pp. 112–122 (1991)
10. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. arXiv (2013),

http://arxiv.org/abs/1305.5520
11. Goel, A., Kapralov, M., Khanna, S.: Graph sparsification via refinement sampling. arXiv

(2010), http://arxiv.org/abs/1004.4915
12. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set in-

tersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)
13. Kapralov, M.: Personal communication (August 2013)
14. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-out algo-

rithm. In: Prc. 4th ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 21–30 (1993)
15. Karger, D.R.: Random sampling in cut, flow, and network design problems. In: Proc. 26th

ACM Symposium on Theory of Computing (STOC), STOC 1994, pp. 648–657 (1994)
16. Karger, D.R.: Random sampling in cut, flow, and network design problems. In: Proc. 26th

ACM Symposium on Theory of Computing (STOC), pp. 648–657 (1994)
17. Karger, D.R.: Using randomized sparsification to approximate minimum cuts. In: Proc. 5th

ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 424–432 (1994)
18. Karger, D.R.: Minimum cuts in near-linear time. In: Proc. 28th ACM Symp. on Theory of

Computing (STOC), pp. 56–63 (1996)
19. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)
20. Karger, D.R., Stein, C.: An Õ(n2) algorithm for minimum cuts. In: Proc. 25th ACM Sym-

posium on Theory of Computing (STOC), pp. 757–765 (1993)
21. Knuth, D.E.: Stable Marriage and Its Relation to Other Combinatorial Problems: An Intro-

duction to the Mathematical Analysis of Algorithms. AMS (1996)
22. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and applications.

In: Proc. of the 14th Annual ACM Symp. on Principles of Dist. Comp., PODC 1995,
pp. 238–251 (1995)

23. Lomonosov, M.V., Polesskii, V.P.: Lower bound of network reliability. Problems of Informa-
tion Transmission 7, 118–123 (1971)

24. Matula, D.W.: A linear time 2 + ε approximation algorithm for edge connectivity. In: Proc.
of the 4th Annual ACM-SIAM Symposium on Disc. Alg., SODA 1993, pp. 500–504 (1993)

25. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated
graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)

26. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
27. Picard, J.C., Queyranne, M.: Selected applications of minimum cuts in networks. Infor. 20,

19–39 (1982)
28. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comp. Sci. 106,

385–390 (1992)
29. Thurimella, R.: Sub-linear distributed algorithms for sparse certificates and biconnected com-

ponents. Journal of Algorithms 23(1), 160–179 (1997)

http://arxiv.org/abs/1305.5520
http://arxiv.org/abs/1004.4915

	Distributed Minimum Cut Approximation
	1 Introduction
	1.1 RelatedWork in the Centralized Setting

	2 Preliminaries
	2.1 Black-Box Algorithms

	3 Edge Sampling and the Random Layering Technique
	4 Min-Cut Approximation by Random Layering
	4.1 Algorithm Outline
	4.2 Testing Cuts

	5 Min-Cut Approximation via Matula’s Approach
	6 Lower Bounds
	6.1 Generalized Simulation Theorem
	6.2 Lower Bound for Approximating Minimum Cut

	References

