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Preface

DISC, the International Symposium on DIStributed Computing, is an interna-
tional forum on the theory, design, analysis, implementation, and application of
distributed systems and networks. DISC is organized in cooperation with the
European Association for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2013, the 27th Interna-
tional Symposium on Distributed Computing, held during October 15–17, 2013,
in Jerusalem, Israel. The volume also includes the citation for the 2013 Eds-
ger W. Dijkstra Prize in Distributed Computing, and the 2013 Principles of
Distributed Computing Doctoral Dissertation Award, both jointly sponsored by
the EATCS Symposium on Distributed Computing (DISC) and the ACM Sym-
posium on Principles of Distributed Computing (PODC), and were presented
at DISC 2013 in Jerusalem. The Dijkstra Prize was given to Nati Linial, for
his work on locality in distributed graph algorithms, and the Doctoral Disserta-
tion Award was given jointly to Shiri Chechik and Danupon Nanongkai for their
respective dissertations.

There were 142 regular papers submitted to the symposium (in addition to a
large number of abstract-only submissions). The ProgramCommittee selected 37
contributions out of the 142 full-paper submissions for regular presentations at
the symposium. Each presentation was accompanied by a paper of up to 15 pages
in this volume (with one exception of two papers whose presentation was merged
into one presentation). Every submitted paper was read and evaluated by at
least three members of the Program Committee. The committee was assisted by
about 180 external reviewers. The Program Committee made its final decisions
in discussions carried out mostly over the Web, using EasyChair, from June
25 to July 12, 2013. Revised and expanded versions of several selected papers
will be considered for publication in a special issue of the journal Distributed
Computing.

The Best Paper Award of DISC 2013 was presented to Mohsen Ghaffari and
Fabian Kuhn for their paper “Distributed Minimum Cut Approximation.”

Although the best paper awardee is also a student paper (Mohsen Ghaffari
is a full time student) the Program Committee selected an additional paper
as the Best Student Paper of DISC 2013 and that award was given to Shahar
Timnat for the paper “Lock-Free Data Structure Iterators,” co-authored with
Erez Petrank.

The Program Committee also considered about 44 papers for brief announce-
ments, among the papers that were submitted as brief announcements, as well
as the regular submissions that generated substantial interest from the members
of the committee, but could not be accepted for regular presentations. This vol-
ume contains 16 brief announcements. Each two-page announcement presents
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ongoing work or recent results, and it is expected that these results will appear
as full papers in later conferences or journals.

The program also featured two invited lectures, presented by Ravi Rajwar
from Intel and Nati Linial from the Hebrew University, the Dijkstra awardee.
Abstracts of these invited lectures are included in these proceedings.

In addition, the program included a tutorial given by Teemu Koponen from
VMware discussing “The Evolution of SDN and How Your Network Is Chang-
ing”.

Five workshops were co-located with the DISC symposium this year: the
First Workshop on Biological Distributed Algorithms (BDA), organized by Ziv
Bar-Joseph, Yuval Emek, and Amos Korman, on October 14; the Second Work-
shop on Advances on Distributed Graph Algorithms (ADGA) chaired by Jukka
Suomela, on October 14; the 5th Workshop on the Theory of Transactional
Memory (WTTM 2013) organized by Alessia Milani, Panagiota Fatourou, Paolo
Romano, and Maria Couceiro, on October 14; the 9th Workshop on Founda-
tions of Mobile Computing (FOMC), organized by Keren Censor-Hillel and Va-
lerie King, during October 17–18; and the 5th Workshop on Theoretical Aspects
of Dynamic Distributed Systems (TADDS), organized by Lélia Blin and Yann
Busnel, on October 18.

August 2013 Yehuda Afek
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The 2013 Edsger W. Dijkstra Prize in

Distributed Computing

The Dijkstra Prize Committee has selected Nati Linial as the recipient of this
year’s Edsger W. Dijkstra Prize in Distributed Computing. The prize is given
to him for his outstanding paper “Locality in distributed graph algorithms”,
published in SIAM Journal on Computing, 21 (1992) 193-201.

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for an
outstanding paper on the principles of distributed computing, whose significance
and impact on the theory and/or practice of distributed computing has been
evident for at least a decade.

This paper has had a major impact on distributed message-passing algo-
rithms. It explored the notion of locality in distributed computation and raised
interesting questions concerning the locality level in various problems, in terms
of their time complexity in different classes of networks. Linial developed a clean
model for studying locality that ignores message sizes, asynchrony and failures.
The model allowed researchers to isolate the effects of locality and study the
roles of distances and neighborhoods, as graph theoretic notions, and their in-
terrelations with algorithmic and complexity-theoretic problems.

Linial’s paper also presents an O(Δ2)-coloring algorithm for graphs with
degree at most Δ that runs in O(log∗ n) time. It is based on a new connection
between extremal set theory and distributed computing. This result serves as a
cornerstone for other coloring algorithms, including the current best algorithm.
Whether one can get an O(Δ2−ε)-coloring within the same time bound remains
a major open problem.

His paper also proves that, for any function f , any f(Δ)-coloring algorithm
requires Ω(log∗ n) time. Moreover, the same bound is shown for 3-coloring an
oriented path or cycle. To obtain these lower bounds, Linial introduced the
concept of the neighborhood graph of a distributed network and analyzed it. An
enhanced form of his technique was recently used for establishing the best known
lower bounds for Maximal Independent Set and Maximal Matching.

In summary, Linial’s paper opened new approaches to distributed symmetry
breaking and remains one of the most important papers in this area.
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The Prize is sponsored jointly by the ACM Symposium on Principles of Dis-
tributed Computing (PODC) and the EATCS Symposium on Distributed Com-
puting (DISC). This prize is presented annually, with the presentation taking
place alternately at PODC and DISC. This year it was presented at DISC.

Dijkstra Prize Committee 2013

Yehuda Afek, Tel-Aviv Univ.
Faith Ellen, Univ. of Toronto
Boaz Patt-Shamir, Tel-Aviv Univ.
Sergio Rajsbaum, UNAM
Alexander Shvartsman, Univ. of Connecticut
Gadi Taubenfeld, IDC, Chair



The 2013 Principles of Distributed Computing

Doctoral Dissertation Award

The abundance of excellent candidates made the choice very difficult. Even after
narrowing the list down, the committee still decided to split the award between
two winners, listed next alphabetically by last name. Dr. Shiri Chechik completed
her thesis “Fault-tolerant structures in graphs” in 2012 under the supervision of
Prof. David Peleg at the Weizmann Institute of Science. Dr. Danupon Nanongkai
completed his thesis “Graphs and geometric algorithms on distributed networks
and databases” in 2011 under the supervision of Prof. Richard J. Lipton at the
Georgia Institute of Technology.

The thesis of Dr. Chechik includes a comprehensive and deep body of work
on fault-tolerant graph spanners and related structures. It contains many strong
results, one of which received a best student paper award, and one solved a
long-standing open problems. In one of these results, Dr. Chechik shows that
it is possible to compute, ahead of time, a compact routing table that provides
good routes even if several edges fail. The thesis targets an area of research
that has been well studied, but Dr. Chechik’s contributions advances the area
significantly and promises to have a deep and long-lasting impact.

The thesis of Dr. Nanongkai shows a useful approach to make communication
complexity a powerful tool for establishing lower bounds bounds for distributed
computing. It also contains several sophisticated almost matching upper bounds.
The thesis shows that this tool is applicable in diverse contexts, such as random
walks, graph problems, and more.

Besides being technically deep, the thesis combines distributed computing,
communication complexity, and theory of random walks, in natural and novel
ways. These results suggest and open the path for much exciting follow-up work
on distributed communication complexity and distributed random walks.

The award is sponsored jointly by the ACM Symposium on Principles of Dis-
tributed Computing (PODC) and the EATCS Symposium on Distributed Com-
puting (DISC). This award is presented annually, with the presentation taking
place alternately at PODC and DISC. This year it was presented at DISC.

Principles of Distributed Computing Doctoral
Dissertation Award Committee, 2013

Marcos K. Aguilera, Microsoft Research
Rachid Guerraoui, EPFL
Shay Kutten (Chair), Technion
Michael Mitzenmacher, Harvard
Alessandro Panconesi. Sapienza



DISC 2013 Tutorial: The Evolution

of SDN and How Your Network Is Changing

Teemu Koponen

VMware

Network data planes have greatly evolved since the invention of Ethernet: the
port densities, forwarding latencies and capacities of modern switches are all
at levels no one would have predicted. Yet at the same time, the principles of
network control planes have remained unchanged; control planes have largely
been a story of distributed algorithms and manual configuration of individual
network elements.

As seen in the trade press and networking conference proceedings, Software
Defined Networks (SDN) is quickly changing this, and in networking, the past
few years have been all about the evolution of the control plane, almost to the
point that it’s difficult to tell what SDN is!

In this tutorial, I’ll cover the evolution of the SDN: its beginning, current
state, and where it might be heading next. Using the industry use cases as ex-
amples I’ll discuss the management challenges SDN is solving today, as well as
how the implementation of SDN control planes has evolved and most impor-
tantly how SDN has opened new avenues for control plane design. While SDN
revolves around the idea of replacing distributed route computation with logical
centralization, the practical requirements for scalability and availability do ne-
cessitate distribution of functionality. To this end, networking community might
be more interested in distributed algorithms than ever before – however, this
time they are not for route computation.



DISC 2013 Invited Lecture:

Adventures in Parallel Dimensions

Ravi Rajwar

Intel Corporation

Historically, transparent hardware improvements meant software just ran faster.
However, the slowing growth in single-thread performance has meant an in-
creasingly parallel future – involving parallelism across data, threads, cores, and
nodes.

In this talk, I’ll explore some of the dimensions of parallelism and their grow-
ing interplay with software, discuss the resulting system challenges, and share
some experiences.



DISC 2013 Invited Lecture: Simplicial

Complexes - Much more than a Trick
for Concurrent Computation Lower Bounds

Nati Linial

The Hebrew University

As (hopefully) everyone in this audience knows simplicial complexes are very
useful in distributed computing. It is not hard to understand the reason for this
success. Graphs are the perfect tool in the modeling of systems that are driven
by pairwise interactions. In contrast, distributed systems are all about multiway
interactions involving many processors at once. This suggests the search for
the high-dimensional counterparts of many basic concepts and ideas from graph
theory. What plays the role of trees?What is the analog of graph connectivity? Of
expansion? Is there a good theory that resembles the theory of random graphs?
In this lecture I will describe work done in recent years to address these questions.

I have many excellent partners and collaborators in this research effort: Lior
Aronshtam, Tomasz Luczak, Roy Meshulam, Ilan Newman, Tahl Nowik, Yuval
Peled, Yuri Rabinovich and Mishael Rosenthal
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Lélia Blin and Sébastien Tixeuil

Time Optimal Synchronous Self Stabilizing Spanning Tree . . . . . . . . . . . . 91
Alex Kravchik and Shay Kutten

Software Transactional Memory

Proving Non-opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Mohsen Lesani and Jens Palsberg

Exploiting Locality in Lease-Based Replicated Transactional Memory
via Task Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Danny Hendler, Alex Naiman, Sebastiano Peluso,
Francesco Quaglia, Paolo Romano, and Adi Suissa

Generic Multiversion STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Li Lu and Michael L. Scott

Practical Parallel Nesting for Software Transactional Memory . . . . . . . . . 149
Nuno Diegues and João Cachopo



XX Table of Contents

Shared Memory Executions

Asynchronous Resilient Linearizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Sagar Chordia, Sriram Rajamani, Kaushik Rajan,
Ganesan Ramalingam, and Kapil Vaswani

Fair Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Gadi Taubenfeld

Gossip and Rumor

Gossip Protocols for Renaming and Sorting . . . . . . . . . . . . . . . . . . . . . . . . . 194
George Giakkoupis, Anne-Marie Kermarrec, and Philipp Woelfel

Faster Rumor Spreading: Breaking the logn Barrier . . . . . . . . . . . . . . . . . . 209
Chen Avin and Robert Elsässer
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Abstract. We study the problem of computing approximate minimum edge cuts
by distributed algorithms. We use a standard synchronous message passing model
where in each round, O(log n) bits can be transmitted over each edge (a.k.a. the
CONGEST model). The first algorithm is based on a simple and new approach for
analyzing random edge sampling, which we call the random layering technique.
For any weighted graph and any ε ∈ (0, 1), the algorithm with high probability
finds a cut of size at most O(ε−1λ) in O(D) + Õ(n1/2+ε) rounds, where λ is
the size of the minimum cut and the Õ-notation hides poly-logarithmic factors in
n. In addition, based on a centralized algorithm due to Matula [SODA ’93], we
present a randomized distributed algorithm that with high probability computes a
cut of size at most (2 + ε)λ in Õ((D +

√
n)/ε5) rounds for any ε > 0.

The time complexities of our algorithms almost match the Ω̃(D+
√
n) lower

bound of Das Sarma et al. [STOC ’11], thus leading to an answer to an open
question raised by Elkin [SIGACT-News ’04] and Das Sarma et al. [STOC ’11].

To complement our upper bound results, we also strengthen the Ω̃(D +
√
n)

lower bound of Das Sarma et al. by extending it to unweighted graphs. We show
that the same lower bound also holds for unweighted multigraphs (or equivalently
for weighted graphs in which O(w log n) bits can be transmitted in each round
over an edge of weight w). For unweighted simple graphs, we show that comput-
ing an α-approximate minimum cut requires time at least Ω̃(D +

√
n/α1/4).

1 Introduction

Finding minimum cuts or approximately minimum cuts are classical and fundamen-
tal algorithmic graph problems with many important applications. In particular, min-
imum edge cuts and their size (i.e., the edge connectivity) are relevant in the context
of networks, where edge weights might represent link capacities and therefore edge
connectivity can be interpreted as the throughput capacity of the network. Decompos-
ing a network using small cuts helps designing efficient communication strategies and
finding communication bottlenecks (see, e.g., [20,27]). Both the exact and approximate
variants of the minimum cut problem have received extensive attention in the domain of
centralized algorithms (cf. Section 1.1 for a brief review of the results in the centralized
setting). This line of research has led to (almost) optimal centralized algorithms with
running times Õ(m+n) [19] for the exact version andO(m+n) [24] for constant-factor
approximations, where n and m are the numbers of nodes and edges, respectively.

As indicated by Elkin [6] and Das Sarma et al. [4], the problem has remained essen-
tially open in the distributed setting. In the LOCAL model [26] where in each round, a

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Ghaffari and F. Kuhn

message of unbounded size can be sent over each edge, the problem has a trivial time
complexity of Θ(D) rounds, where D is the (unweighted) diameter of the network.
The problem is therefore more interesting and also practically more relevant in models
where messages are of some bounded size B. The standard model incorporating this re-
striction is the CONGEST model [26], a synchronous message passing model where in
each time unit,B bits can be sent over every link (in each direction). It is often assumed
thatB = Θ(log n). The only known non-trivial result is an elegant lower bound by Das
Sarma et al. [4] showing that any α-approximation of the minimum cut in weighted
graphs requires at least Ω(D +

√
n/(B log n)) rounds.

Our Contribution: We present two distributed minimum-cut approximation algorithms
for undirected weighted graphs, with complexities almost matching the lower bound
of [4]. We also extend the lower bound of [4] to unweighted graphs and multigraphs.

Our first algorithm, presented in Section 4, with high probability1 finds a cut of
size at most O(ε−1λ), for any ε ∈ (0, 1) and where λ is the edge connectivity, i.e.,
the size of the minimum cut in the network. The time complexity of this algorithm
is O(D) + O(n1/2+ε log3 n log logn log∗ n). The algorithm is based on a simple and
novel approach for analyzing random edge sampling, a tool that has proven extremely
successful also for studying the minimum cut problem in the centralized setting (see,
e.g., [20]). Our analysis is based on random layering, and we believe that the ap-
proach might also be useful for studying other connectivity-related questions. Assume
that each edge e ∈ E of an unweighted multigraph G = (V,E) is independently
sampled and added to a subset E′ ⊂ E with probability p. For p ≤ 1

λ , the graph
G′ = (V,E′) induced by the sampled edges is disconnected with at least a constant
probability (just consider one min-cut). In Section 3, we use random layering to show
that if p = Ω( log nλ ), the sampled graph G′ is connected w.h.p. This bound is optimal
and was known previously, with two elegant proofs: [23] and [15]. Our proof is simple
and self-contained and it serves as a basis for our algorithm in Section 4.

The second algorithm, presented in Section 5, finds a cut with size at most (2 + ε)λ,
for any constant ε > 0, in timeO((D+

√
n log∗ n) log2 n log logn · 1

ε5 ). This algorithm
combines the general approach of Matula’s centralized (2+ε)-approximation algorithm
[24] with Thurimella’s algorithm for sparse edge-connectivity certificates [29] and with
the famous random edge sparsification technique of Karger (see e.g., [16]).

To complement our upper bounds, we also extend the lower bound of Das Sarma et
al. [4] to unweighted graphs and multigraphs. When the minimum cut problem (or more
generally problems related to small edge cuts and edge connectivity) are in a distributed
context, often the weights of the edges correspond to their capacities. It therefore seems
reasonable to assume that over a link of twice the capacity, we can also transmit twice
the amount of data in a single time unit. Consequently, it makes sense to assume that
over an edge of weight (or capacity) w ≥ 1, O(w logn) bits can be transmitted per
round (or equivalently that such a link corresponds to w parallel links of unit capacity).
The lower bound of [4] critically depends on having links with (very) large weight over
which in each round onlyO(log n) bits can be transmitted. We generalize the approach
of [4] and obtain the same lower bound result as in [4] for the weaker setting where
edge weights correspond to edge capacities (i.e., the setting that can be modeled using

1 We use the phrase with high probability (w.h.p.) to indicate probability greater than 1− 1
n

.
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unweighted multigraphs). Formally, we show that if Bw bits can be transmitted over
every edge of weight w ≥ 1, for every λ ≥ 1 and every α ≥ 1, there are λ-edge-
connected networks with diameter O(log n) on which computing an α-approximate
minimum cut requires time at least Ω

(√
n/(B logn)

)
. Further, for unweighted simple

graphs, we show that computing an α-approximate minimum cut in λ-edge-connected

networks of diameter O(log n) requires at least time Ω
(√

n/(B logn)

(αλ)1/4

)
.

In addition, our technique yields a structural result about λ-edge-connected graphs
with small diameter. We show that for every λ > 1, there are λ-edge-connected graphs
G with diameter O(log n) such that for any partition of the edges of G into spanning
subgraphs, all but O(log n) of the spanning subgraphs have diameter Ω(n) (in the case
of unweighted multigraphs) or Ω(n/λ) (in the case of unweighted simple graphs). As
a corollary, we also get that when sampling each edge of such a graph with probability
p ≤ γ/ logn for a sufficiently small constant γ > 0, with at least a positive constant
probability, the subgraph induced by the sampled edges has diameter Ω(n) (in the case
of unweighted multigraphs) andΩ(n/λ) (in the case of unweighted simple graphs). For
lack of space, the details about these results are deferred to the full version [10].

1.1 Related Work in the Centralized Setting

Starting in the 1950s [5, 8], the traditional approach to the minimum cut problem was
to use max-flow algorithms (cf. [7] and [20, Section 1.3]). In the 1990s, three new
approaches were introduced which go away from the flow-based method and provide
faster algorithms: The first method, presented by Gabow [9], is based on a matroid
characterization of the min-cut and it finds a min-cut in O(m + λ2n log nm ) steps, for
any unweighted (but possibly directed) graph with edge connectivity λ. The second ap-
proach applies to (possibly) weighted but undirected graphs and is based on repeatedly
identifying and contracting edges outside a min-cut until a min-cut becomes apparent
(e.g., [14, 20, 25]). The beautiful random contraction algorithm (RCA) of Karger [14]
falls into this category. In the basic version of RCA, the following procedure is re-
peated O(n2 logn) times: contract uniform random edges one by one until only two
nodes remain. The edges between these two nodes correspond to a cut in the original
graph, which is a min-cut with probability at least 1/O(n2). Karger and Stein [20] also
present a more efficient implementation of the same basic idea, leading to total running
time ofO(n2 log3 n). The third method, which again applies to (possibly) weighted but
undirected graphs, is due to Karger [18] and is based on a “semiduality” between min-
imum cuts and maximum spanning tree packings. This third method leads to the best
known centralized minimum-cut algorithm [19] with running time O(m log3 n).

For the approximation version of the problem (in undirected graphs), the main known
results are as follows. Matula [24] presents an algorithm that finds a (2 + ε)-minimum
cut for any constant ε > 0 in time O((m + n)/ε). This algorithm is based on a graph
search procedure called maximum adjacency search. Based on a modified version of the
random contraction algorithm, Karger [17] presents an algorithm that finds a (1 + ε)-
minimum cut in time O(m + n log3 n/ε4).
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2 Preliminaries

Notations and Definitions: We usually work with an undirected weighted graph G =
(V,E,w), where V is a set of n vertices,E is a set of (undirected) edges e = {v, u} for
u, v ∈ V , and w : E → R+ is a mapping from edges E to positive real numbers. For
each edge e ∈ E, w(e) denotes the weight of edge e. In the special case of unweighted
graphs, we simply assume w(e) = 1 for each edge e ∈ E.

For a given non-empty proper subset C ⊂ V , we define the cut (C, V \C) as the set
of edges inE with exactly one endpoint in set C. The size of this cut, denoted by w(C)
is the sum of the weights of the edges in set (C, V \C). The edge-connectivity λ(G) of
the graph is defined as the minimum size ofw(C) asC ranges over all nonempty proper
subsets of V . A cut (C, V \ C) is called α-minimum, for an α ≥ 1, if w(C) ≤ αλ(G).
When clear from the context, we sometimes use λ to refer to λ(G).

Communicaton Model and Problem Statements: We use a standard message passing
model (a.k.a. the CONGEST model [26]), where the execution proceeds in synchronous
rounds and in each round, each node can send a message of size B bits to each of its
neighbors. A typically standard case is B = Θ(log n).

For upper bounds, for simplicity we assume that B = Θ(log n)2. For upper bounds,
we further assume that B is large enough so that a constant number of node identifiers
and edge weights can be packed into a single message. For B = Θ(log n), this implies
that each edge weightw(e) is at most (and at least) polynomial in n. W.l.o.g., we further
assume that edge weights are normalized and each edge weight is an integer in range
{1, . . . , nΘ(1)}. Thus, we can also view a weighted graph as a multi-graph in which all
edges have unit weight and multiplicity at most nΘ(1) (but still only O(log n) bits can
be transmitted over all these parallel edges together).

For lower bounds, we assume a weaker model where B · w(e) bits can be sent in
each round over each edge e. To ensure that at least B bits can be transmitted over
each edge, we assume that the weights are scaled such that w(e) ≥ 1 for all edges. For
integer weights, this is equivalent to assuming that the network graph is an unweighted
multigraph where each edge e corresponds to w(e) parallel unit-weight edges.

In the problem of computing an α-approximation of the minimum cut, the goal is to
find a cut (C∗, V \C∗) that is α-minimum. To indicate this cut in the distributed setting,
each node v should know whether v ∈ C∗. In the problem of α-approximation of the
edge-connectivity, all nodes must output an estimate λ̃ of λ such that λ̃ ∈ [λ, λα]. In
randomized algorithms for these problems, time complexities are fixed deterministically
and the correctness guarantees are required to hold with high probability.

2.1 Black-Box Algorithms

In this paper, we make frequent use of a connected component identification algorithm
due to Thurimella [29], which itself builds on the minimum spanning tree algorithm of
Kutten and Peleg [22]. Given a graph G(V,E) and a subgraph H = (V,E′) such that

2 Note that by choosing B = b log n for some b ≥ 1, in all our upper bounds, the term that does
not depend on D could be improved by a factor

√
b.



Distributed Minimum Cut Approximation 5

E′ ⊆ E, Thurimella’s algorithm identifies the connected components of H by assign-
ing a label 
(v) to each node v ∈ V such that two nodes get the same label iff they
are in the same connected component of H . The time complexity of the algorithm is
O(D +

√
n log∗ n) rounds, where D is the (unweighted) diameter of G. Moreover, it

is easy to see that the algorithm can be made to produce labels 
(v) such that 
(v) is
equal to the smallest (or the largest) id in the connected component of H that contains
v. Furthermore, the connected component identification algorithm can also be used to
test whether the graph H is connected (assuming that G is connected). H is not con-
nected if and only if there is an edge {u, v} ∈ E such that 
(u) 	= 
(v). If some node
u detects that for some neighbor v (in G), 
(u) 	= 
(v), u broadcasts not connected.
Connectivity of H can therefore be tested in D additional rounds. We refer to this as
Thurimella’s connectivity-tester algorithm. Finally, we remark that the same algorithms
can also be used to solve k independent instances of the connected component iden-
tification problem or k independent instances of the connectivity-testing problem in
O(D + k

√
n log∗ n) rounds. This is achieved by pipelining the messages of the broad-

cast parts of different instances.

3 Edge Sampling and the Random Layering Technique

Here, we study the process of random edge-sampling and present a simple technique,
which we call random layering, for analyzing the connectivity of the graph obtained
through sampling. This technique also forms the basis of our min-cut approximation
algorithm presented in the next section.

Edge Sampling: Consider an arbitrary unweighted multigraph G = (V,E). Given a
probability p ∈ [0, 1], we define an edge sampling experiment as follows: choose subset
S ⊆ E by including each edge e ∈ E in set S independently with probability p. We
call the graphG′ = (V, S) the sampled subgraph.

We use the random layering technique to answer the following network reliability
question: “How large should p be, as a function of minimum-cut size λ, so that the
sampled graph is connected w.h.p.?”3 Considering just one cut of size λ we see that if
p ≤ 1

λ , then the probability that the sampled subgraph is connected is at most 1
e . We

show that p ≥ 20 log n
λ suffices so that the sampled subgraph is connected w.h.p. Note

that this is non-trivial as a graph has exponential many cuts. It is easy to see that this
bound is asymptotically optimal [23].

Theorem 1. Consider an arbitrary unweighted multigraphG = (V,E) with edge con-
nectivity λ and choose subset S ⊆ E by including each edge e ∈ E in set S indepen-
dently with probability p. If p ≥ 20 logn

λ , then the sampled subgraph G′ = (V, S) is
connected with probability at least 1− 1

n .

We remark that this result was known prior to this paper, via two different proofs by
Lomonosov and Polesskii [23] and Karger [15]. The Lomonosov-Polesskii proof [23]
uses an interesting coupling argument and shows that among the graphs of a given

3 A rephrased version is, how large should the edge-connectivity λ of a network be such that it
remains connected w.h.p. if each edge fails with probability 1− p.
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edge-connectivity λ, a cycle of length n with edges of multiplicity λ/2 has the smallest
probability of remaining connected under random sampling. Karger’s proof [15] uses
the powerful fact that the number of α-minimum cuts is at most O(n2α) and then uses
basic probability concentration arguments (Chernoff and union bounds) to show that,
w.h.p., each cut has at least one sampled edge. There are many known proofs for the
O(n2α) upper bound on the number of α-minimum cuts (see [19]); an elegant argument
follows from Karger’s random contraction algorithm [14].

Our proof of Theorem 1 is simple and self-contained, and it is the only one of the
three approaches that extends to the case of random vertex failures4 [2, Theorem 1.5].

Proof (Proof of Theorem 1). Let L = 20 logn. For each edge e ∈ E, we independently
choose a uniform random layer number from the set {1, 2, . . . , L}. Intuitively, we add
the sampled edges layer by layer and show that with the addition of the sampled edges
of each layer, the number of connected components goes down by at least a constant
factor, with at least a constant probability, and independently of the previous layers.
After L = Θ(log n) layers, connectivity is achieved w.h.p.

We start by presenting some notations. For each i ∈ {1, . . . , L}, let Si be the set of
sampled edges with layer number i and let Si− =

⋃i
j=1 Sj , i.e., the set of all sampled

edges in layers {1, . . . , i}. Let Gi = (V, Si−) and let Mi be the number of connected
components of graphGi. We show that ML = 1, w.h.p.

For any i ∈ [1, L − 1], since Si− ⊆ S(i+1)−, we have Mi+1 ≤ Mi. Consider the
indicator variable Xi such that Xi = 1 iff Mi+1 ≤ 0.87Mi or Mi = 1. We show the
following claim, after which, applying a Chernoff bound completes the proof.

Claim. For all i ∈ [1, L− 1] and T ⊆ E, we have Pr[Xi = 1|Si− = T ] ≥ 1/2.

To prove this claim, we use the principle of deferred decisions [21] to view the two
random processes of sampling edges and layering them. More specifically, we con-
sider the following process: first, each edge is sampled and given layer number 1 with
probability p/L. Then, each remaining edge is sampled and given layer number 2 with
probability p/L

1−p/L ≥ p/L. Similarly, after determining the sampled edges of layers 1
to i, each remaining edge is sampled and given layer number i + 1 with probability
p/L

1−(i p)/L ≥ p/L. After doing this for L layers, any remaining edge is considered not
sampled and it receives a random layer number from {1, 2, . . . , L}. It is easy to see that
in this process, each edge is independently sampled with probability exactly p and each
edge e gets a uniform random layer number from {1, 2, . . . , L}, chosen independently
of the other edges and also independently of whether e is sampled or not.

Fix a layer i ∈ [1, . . . , L− 1] and a subset T ⊆ E. Let Si− = T and consider graph
Gi = (V, Si−). Figure 1 presents an example graph Gi and its connected components.
IfMi = 1 meaning thatGi is connected, thenXi = 1. Otherwise, suppose thatMi ≥ 2.
For each component C ofGi, call the component bad if (C, V \ C)∩ Si+1 = ∅. That is,
C is bad if after adding the sampled edges of layer i + 1, C does not get connected to
any other component. We show that Pr[C is bad] ≤ 1

e .

4 There, the question is, how large the vertex sampling probability p has to be chosen, as a
function of vertex connectivity k, so that the vertex-sampled graph is connected, w.h.p. The
extension to the vertex version requires important modifications and leads to p = Ω( log n√

k
)

being a sufficient condition. Refer to [2, Section 3] for details.



Distributed Minimum Cut Approximation 7

Fig. 1. Graph Gi and its connected components. The green solid links represent edges in Si− and
the blue dashed links represent E \ Si−.

Since G is λ-edge connected, we have w(C) ≥ λ. Moreover, none of the edges in
(C, V \C) is in Si−. Thus, using the principle of deferred decisions as described, each of
the edges of the cut (C, V \C) has probability p/L

1−(i p)/L ≥ p/L to be sampled and given

layer number i+1, i.e., to be in Si+1. Since p ≥ 20 logn
λ , the probability that none of the

edges (C, V \ C) is in set Si+1 is at most (1− p/L)λ ≤ 1/e. Thus, Pr[C is bad] ≤ 1/e.
Having this, since each component that is not bad gets connected to at least one other
component (when we look at graphGi+1), a simple application of Markov’s inequality
proves the claim, and after that, a Chernoff bound completes the proof. See [10] for
details. �

Theorem 1 provides a very simple approach for finding an O(log n)-approximation of
the edge connectivity of a network graphG inO(D+

√
n log2 n log∗ n) rounds, simply

by trying exponentially growing sampling probabilities and checking the connectivity.
The proof appears the full version [10]. We note that a similar basic approach has been
used to approximate the size of min-cut in the streaming model [1].

Corollary 1. There exists a distributed algorithm that for any unweighted multi-graph
G = (V,E), in O(D+

√
n log2 n log∗ n) rounds, finds an approximation λ̃ of the edge

connectivity such that λ̃ ∈ [λ, λ ·Θ(log n)] with high probability.

4 Min-Cut Approximation by Random Layering

Now we use random layering to design a min-cut approximation algorithm. We present
the outline of the algorithm and its major ideas but defer putting the pieces together to
the proof of Theorem 2 in the full version [10].

Theorem 2. There is a distributed algorithm that, for any ε ∈ (0, 1), finds an O(ε−1)-
minimum cut in O(D) +O(n0.5+ε log3 n log logn log∗ n) rounds, w.h.p.

4.1 Algorithm Outline

The algorithm is based on closely studying the sampled graph when the edge-sampling
probability is between the two extremes of 1

λ and Θ(logn)
λ . Throughout this process, we

identify a set F of O(n log n) cuts such that, with at least a ‘reasonably large probabil-
ity’, F contains at least one ‘small’ cut.
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The Crux of the Algorithm: Sample edges with probability p = ε logn
2λ for a

small ε ∈ (0, 1). Also, assign each edge to a random layer in [1, . . . , L], where

L = 20 log n. For each layer i ∈ [1, . . . , L− 1], let Si be the set of sampled edges

of layer i and let Si− =
⋃i
j=1 Sj . For each layer i ∈ [1, . . . , L − 1], for each

component C of graph Gi = (V, Si−), add the cut (C, V \ C) to the collection F .

We show that with probability at least n−ε/2, at least one of the cuts in F is an
O(ε−1)-minimum cut. Note that thus repeating the experiment for Θ(nε logn) times is
enough to get that an O(ε−1)-minimum cut is found w.h.p.

Theorem 3. Consider performing the above sampling and layering experiment with
edge sampling probability p = ε logn

2λ for ε ∈ (0, 1) and L = 20 logn layers. Then,
Pr[F contains an O(ε−1)-minimum cut] ≥ n−ε/2.

Proof. Fix an edge sampling probability p = ε logn
2λ for an ε ∈ (0, 1) and let α =

40ε−1. We say that a sampling and layering experiment is successful if F contains an
α-minimum cut or if the sampled graph GL = (V, SL−) is connected. We first show
that each experiment is successful with probability at least 1− 1

n . The proof of this part
is very similar to that of Theorem 1.

For an arbitrary layer number 1 ≤ i ≤ L − 1, consider graph Gi = (V, Si−). If
Mi = 1 meaning that Gi is connected, then GL is also connected. Thus, in that case,
the experiment is successful and we are done. In the more interesting case, suppose
Mi ≥ 2. For each component C ofGi, consider the cut (C, V \C). If any of these cuts is
α-minimum, then the experiment is successful as then, set F contains an α-minimum
cut. On the other hand, suppose that for each component C ofGi, we have w(C) ≥ αλ.
Then, for each such component C, each of the edges of cut (C, V \ C) has probability
p/L

1−(i p)/L ≥ p/L to be in set Si+1 and since w(C) ≥ αλ, where α = 20ε−1, the

probability that none of the edges of this cut in set Si+1 is at most (1 − p/L)αλ ≤
e

p
L ·αλ = e−

ε log n
2λ · 1

L · 40ε ·λ = 1/e. Hence, the probability that component C is bad as
defined in the proof of Theorem 1 (i.e., in graphGi+1, it does not get connected to any
other component) is at most 1/e. The rest of the proof can be completed exactly as the
last paragraph of of the proof of Theorem 1, to show that

Pr[successful experiment] ≥ 1− 1/n.

Using a union bound, we know that

Pr[successful experiment] ≤ Pr[F contains an α-min cut] + Pr[GL is connected].

On the other hand,
Pr[GL is connected] ≤ 1− n−ε.

This is because, considering a single mininmum cut of size λ, the probability that none
of the edges of this cut are sampled, in which case the sampled subgraph is discon-
nected, is (1− ε log n

2λ )λ ≥ n−ε. Hence, we can conclude that

Pr[F contains an α-min cut] ≥ (1− 1/n)− (1−n−ε) = n−ε− 1/n ≥ n−ε/2. �
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Remark: It was brought to our attention that the approach of Theorem 3 bears some
cosmetic resemblance to the technique of Goel, Kapralov and Khanna [11]. As noted
by Kapralov [13], the approaches are fundamentally different; the only similarity is
havingO(log n) repetitions of sampling. In [11], the objective is to estimate the strong-
connectivity of edges via a streaming algorithm. See [11] for related definitions and note
also that strong-connectivity is (significantly) different from (standard) connectivity. In
a nutshell, [11] uses O(log n) iterations of sub-sampling, each time further sparsifying
the graph until at the end, all edges with strong-connectivity less than a threshold are
removed (and identified) while edges with strong connectivity that is a Θ(log n) factor
larger than the threshold are preserved (proven via Benczur-Karger’s sparsification).

4.2 Testing Cuts

So far we know that F contains an α-minimum cut with a reasonable probability. We
now need to devise a distributed algorithm to read or test the sizes of the cuts in F and
find that α-minimum cut, in O(D) + Õ(

√
n) rounds.

Consider a layer i and the graph Gi = (V, Si−). Notice that we do not need to read
the exact size of the cut (C, V \C). Instead, it is enough to devise a test that passes w.h.p.
if w(C) ≤ αλ, and does not pass w.h.p. if w(C) ≥ (1 + δ)αλ, for a small constant
δ ∈ (0, 1/4). In the distributed realization of such a test, it would be enough if all the
nodes in C consistently know whether the test passed or not. Next, we explain a simple
algorithm for such a test. This test itself uses random edge sampling. Given such a test,
in each layer i ∈ [1, . . . , L − 1], we can test all the cuts and if any cut passes the test,
meaning that, w.h.p., it is a ((1 + δ)α)-minimum cut, then we can pick such a cut.5

Lemma 1. Given a subgraphG′ = (V,E′) of the network graphG = (V,E), a thresh-
old κ and δ ∈ (0, 1/4), there exists a randomized distributed cut-tester algorithm with
round complexity Θ

(
D + 1

δ2
√
n logn log∗ n

)
such that, w.h.p., for each node v ∈ V ,

we have: Let C be the connected component ofG′ that contains v. If w(C) ≤ κ/(1+ δ),
the test passes at v, whereas if w(C) ≥ κ(1 + δ), the test does not pass at v.

For pseudo-code, we refer to the full version [10]. We first run Thurimella’s connected
component identification algorithm (refer to Section 2.1) on graph G for subgraph G′,
so that each node v ∈ V knows the smallest id in its connected component of graph
G′. Then, each node v adopts this label componentID as its own id (temporarily).
Thus, nodes of each connected component of G′ will have the same id. Now, the test
runs inΘ(log2 n/δ2) experiments, each as follows: in the jth experiment, for each edge
e ∈ E \E′, put edge e in set Ej with probability p′ = 1−2−

1
κ . Then, run Thurimella’s

algorithm on graph G with subgraph Hj = (V,E′ ∪ Ej) and with the new ids twice,
such that at the end, each node v knows the smallest and the largest id in its connected
component of Hj . Call these new labels 
minj (v) and 
maxj (v), respectively. For a node
v of a component C of Gi, we have that 
minj (v) 	= v.id or 
maxj (v) 	= v.id iff at
least one of the edges of cut (C, V \ C) is sampled in Ej , i.e., (C, V \ C) ∩ Ej 	= ∅.
Thus, each node v of each component C knows whether (C, V \ C) ∩ Ej 	= ∅ or not.

5 This can be done for example by picking the cut which passed the test and for which the related
component has the smallest id among all the cuts that passed the test.
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Moreover, this knowledge is consistent between all the nodes of component C. After
Θ(log n/δ2) experiments, each node v of component C considers the test passed iff v
noticed (C, V \C)∩Ej 	= ∅ in at most half of the experiments. We defer the calculations
of the proof of Lemma 1 to of the full version [10].

5 Min-Cut Approximation via Matula’s Approach

In [24], Matula presents an elegant centralized algorithm that for any constant ε > 0,
finds a (2 + ε)-min-cut in O(|V | + |E|) steps. Here, we explain how with the help of
a few additional elements, this general approach can be used in the distributed setting,
to find a (2 + ε)-minimum cut in O

(
(D+

√
n log∗ n) log2 n log logn · 1

ε5

)
rounds. We

first recap the concept of sparse certificates for edge connectivity.

Definition 1. For a given unweighted multi-graphH = (VH , EH) and a value k > 0,
a set E∗ ⊆ EH of edges is a sparse certificate for k-edge-connectivity of H if (1)
|E∗| ≤ k|VH |, and (2) for each edge e ∈ EH , if there exists a cut (C, V \ C) of H such
that |(C)| ≤ k and e ∈ (C, V \ C), then we have e ∈ E∗.

Thurimella [29] presents a simple distributed algorithm that finds a sparse certificate
for k-edge-connectivity of a network graph G in O(k(D +

√
n log∗ n)) rounds. With

simple modifications, we get a generalized version, presented in Lemma 2. Details of
these modification appear in the full version of this paper [10].

Lemma 2. LetEc be a subset of the edges of the network graphG and define the virtual
graphG′ = (V ′, E′) as the multi-graph that is obtained by contracting all the edges of
G that are in Ec. Using the modified version of Thurimella’s certificate algorithm, we
can find a set E∗ ⊆ E \Ec that is a sparse certificate for k-edge-connectivity of G′, in
O(k(D +

√
n log∗ n)) rounds.

Following the approach of Matula’s centralized algorithm6 [24], and with the help of
the sparse certificate algorithm of Lemma 2 and the random sparsification technique of
Karger [15], we get the following result.

Theorem 4. There is a distributed algorithm that, for any constant ε > 0, finds a
(2 + ε)-minimum cut in O((D +

√
n log∗ n) log2 n log logn · 1

ε5 ) rounds.

Proof (Proof Sketch). We assume that nodes know a (1 + ε/10)-factor approximation
λ̃ of the edge connectivity λ, and explain a distributed algorithm with round complexity
O((D +

√
n log∗ n) log2 n · 1

ε4 ). Note that this assumption can be removed at the cost
of a Θ( log log n

log (1+ε/10) ) = Θ(log logn · 1
ε ) factor increase in round complexity by trying

Θ( log logn
ε ) exponential guesses λ̃(1 + ε/10)i for i ∈ [0, Θ( log logn

ε )] where λ̃ is an
O(log n)-approximation of the edge-connectivity, which can be found by Corollary 1.

For simplicity, we first explain an algorithm that finds a (2 + ε)-minimum cut in
O(λ(D +

√
n log∗ n) logn · 1

ε2 ) rounds. Then, we explain how to reduce the round
complexity to O((D +

√
n log∗ n) log2 n · 1

ε4 ).

6 We remark that Matula [24] never uses the name sparse certificate but he performs maximum
adjacency search which indeed generates a sparse certificate.
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Pseudo-code is given in the full version [10]. First, we compute a sparse certificate
E∗ for λ̃(1+ε/5)-edge-connectivity ofG, using Thurimella’s algorithm. Now consider
the graphH = (V,E \E∗). We have two cases: either (a)H has at most |V |(1− ε/10)
connected components, or (b) there is a connected component C ofH such that w(C) ≤
2λ(1+ε/10)(1+ε/5)

1−ε/10 ≤ (2 + ε)λ. Note that if (a) does not hold, case (b) follows because

H has at most (1 + ε/5)λ̃|V | edges.
In Case (b), we can find a (2+ε)-minimum cut by testing the connected components

of H versus threshold κ = λ̃(2 + ε/3), using the Cut-Tester algorithm presented in
Lemma 1. In Case (a), we solve the problem recursively on the virtual graph G′ =
(V ′, E′) that is obtained by contracting all the edges of G that are in Ec = E \ E∗.
Note that this contraction preserves all the cuts of size at most λ̃(1 + ε/5) ≥ λ but
reduces the number of nodes (in the virtual graph) at least by a (1 − ε/10)-factor.
Consequently, O(log(n)/ε) recursions reduce the number of components to at most 2
while preserving the min-cut.

The dependence on λ can be removed by considering the graph GS = (V,ES),
where ES independently contains every edge of G with probability Θ

(
log n
ε2λ

)
. It can be

shown that the edge connectivity of GS is Θ(log(n)/ε2) and a min-cut of GS gives a
(1 +O(ε))-min-cut of G. The details appear in the full version [10]. �

6 Lower Bounds

In this section, we describe a lower bound that allows to strengthen and generalize
some of the lower bounds of Das Sarma et al. from [4]. Our lower bound uses the
same basic approach as the lower bounds in [4]. The lower bounds of [4] are based
on an n-node graph G with diameter O(log n) and two distinct nodes s and r. The
proof deals with distributed protocols where node s gets a b-bit input x, node r gets a
b-bit input y, and apart from x and y, the initial states of all nodes are globally known.
Slightly simplified, the main technical result of [4] (Simulation Theorem 3.1) states that
if there is a randomized distributed protocol that correctly computes the value f(x, y)
of a binary function f : {0, 1}b × {0, 1}b → {0, 1} with probability at least 1 − ε
in time T (for sufficiently small T ), then there is also a randomized ε-error two-party
protocol for computing f(x, y) with communication complexity O(TB logn). For our
lower bounds, we need to extend the simulation theorem of [4] to a larger family of
networks and to a slightly larger class of problems.

6.1 Generalized Simulation Theorem

Distributed Protocols: Given a weighted network graph G = (V,E,w) (∀e ∈ E :
w(e) ≥ 1), we consider distributed tasks for which each node v ∈ V gets some private
input x(v) and every node v ∈ V has to compute an output y(v) such that the collection
of inputs and outputs satisfies some given specification. To solve a given distributed
task, the nodes of G apply a distributed protocol. We assume that initially, each node
v ∈ V knows its private input x(v), as well as the set of neighbors inG. Time is divided
into synchronous rounds and in each round, every node can send at most B · w(e) bits
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over each of its incident edges e. We say that a given (randomized) distributed protocol
solves a given distributed task with error probability ε if the computed outputs satisfy
the specification of the task with probability at least 1− ε.
Graph Family G(n, k, c): For parameters n, k, and c, we define the family of graphs
G(n, k, c) as follows. A weighted graph G = (V,E,w) is in the family G(n, k, c) iff
V = {1, . . . , n} and for all h ∈ {1, . . . , n}, the total weight of edges between nodes
in {1, . . . , h} and nodes in {h+ k + 1, . . . , n} is at most c. We consider distributed
protocols on graphs G ∈ G(n, k, c) for given n, k, and c. For an integer η ≥ 1, we
define Lη := {1, . . . , η} and Rη := {n− η + 1, . . . , n}. Given a parameter η ≥ 1 and
a network G ∈ G(n, k, c), we say that a two-party protocol between Alice and Bob η-
solves a given distributed task for G with error probability ε if a) initially Alice knows
all inputs and all initial states of nodes in V \Rη and Bob knows all inputs and all initial
states of nodes in V \Lη, and b) in the end, Alice outputs y(v) for all v ∈ Ln/2 and Bob
outputs y(v) for all v ∈ Rn/2 such that with probability at least 1 − ε, all these y(v)
are consistent with the specification of the given distributed task. A two-party protocol
is said to be public coin if Alice and Bob have access to a common random string. The
proof of the following theorem appears in the full version [10].

Theorem 5 (Generalized Simulation Theorem). Assume we are given positive inte-
gers n, k, and η, a parameter c ≥ 1, as well as a subfamily G̃ ⊆ G(n, k, c). Further
assume that for a given distributed task and graphsG ∈ G̃, there is a randomized proto-
col with error probability ε that runs in T ≤ (n−2η)/(2k) rounds. Then, there exists a
public-coin two-party protocol that η-solves the given distributed task on graphsG ∈ G̃
with error probability ε and communication complexity at most 2BcT .

We now describe a generic construction to obtain graphs of the family G(n, k, c). Given
some integer n > 0, we define Tn = (V,ET ) to be a fixed unweighted binary tree on
the nodes V = {1, . . . , n} with depth �log2 n� where an in-order DFS traversal of Tn
(starting at the root) reproduces the natural order 1, 2, . . . , n. The tree Tn can thus be
seen as a binary search tree: Given any node i, for all nodes j of the left subtree of i, it
holds that j < i and for all nodes j of the right subtree of i, it holds that j > i.

Lemma 3. Given an integer p ∈ {1, . . . , n− 1}, consider the cut (Sp, V \ Sp), where
Sp = {1, . . . , p}. For every p ∈ {1, . . . , n− 1}, the number of edges between over the
cut (Sp, V \ Tp) is at most �log2 n�.

Using the tree Tn, we can construct graphs from the family G(n, k, c) for c = �log2 n�.
Let H(n, k) be the family of weighted graphs H = (V,EH , wH) with node set V =
{1, . . . , n} such that for all edges {i, j} ∈ EH , |j−i| ≤ k. Given a graphH ∈ H(n, k),
we define a graphG(H) = (V,E,w) with node set V = {1, . . . , n} as follows: (a) The
edge set E ofG(H) is E := EH ∪ET . (b) The weight w(e) of an edge e ∈ E is given
as w(e) := max {1, wH(e)}.

Lemma 4. Given a graph H ∈ H(n, k), graph G(H) ∈ G(n, k, c) for c = �log2 n�.
Further, the diameter of G(H) is O(log n).
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6.2 Lower Bound for Approximating Minimum Cut

We start by proving a lower bound on approximating min-cut in weighted graphs (or
equivalently in unweighted multigraphs).

Theorem 6. In weighted graphs, for any α ≥ 1 and any λ ≥ 1, computing an α-
approximate minimum cut requires at least Ω

(
D +

√
n/(B logn)

)
rounds.

Proof. We prove the theorem by reducing from the two-party set disjointness problem
[3,12,28]. Assume that as input, Alice gets a setX and Bob get a set Y such that bothX
and Y are of size p and the elements of X and Y are from a universe of size O(p). It is
known that for Alice and Bob need to exchange at least Ω(p) bits to determine whether
X and Y are disjoint [12,28]. This lower bound holds even for public coin randomized
protocols with constant error probability and it also holds if Alice and Bob are given
the promise that if X and Y intersect, they intersect in exactly one element [28]. As
a consequence, if Alice and Bob receive sets X and Y of size p as inputs such that
|X ∩ Y | = 1, findingX ∩ Y also requires Alice and Bob to exchangeΩ(p) bits.

Assume that there is a protocol to find an α-minimum cut or to α-approximate the
size of a minimum cut in time T with a constant error probability ε. In both cases, we
show that Alice and Bob can use this protocol to efficiently solve set disjointness by
simulating the distributed protocol on a special network.

We now describe the construction of this network. Let a and b be two positive integer
parameters. We construct a graphG ∈ G(n, λ,O(log n)) as follows: First, we construct
a weighted graph H = (VH , EH , wH) ∈ H(a, 1) where the node set of H is VH =
{1, . . . , a} and there is an edge e of weight wH(e) = αλ + 1 between nodes i and j if
and only if |i−j| = 1. By Lemma 4, we can then get a graphG(H) ∈ G(a, 1, O(log n)).
To get a graph G, we add b additional copies of graph H . Call node i in the original
copy (i, 0) and node i in the jth additional copy node (i, j). In each copy j ≥ 1, we
connect node (1, j) with node (1, 0) by an edge of weight λ. By renaming node (i, j) to
κ(i, j) := j+(i−1)(b+1), we can see that graphG is in G(a(b+1), b+1, O(logn)).
In the following, let n = a(b+1) be the number of nodes ofG. The first b+1 nodes of
G are nodes (1, j) for 0 ≤ j ≤ b, the last b+1 nodes ofG are nodes (a, j) for 0 ≤ j ≤
b. Note that graph G is exactly λ-edge connected as any of the edges {(1, j), (1, 0)}
defines a cut of size λ. Note also that every cut which divides one of the copies of H
into two or more parts has size at least αλ+ 1.

Assume that Alice and Bob need to solve a set disjointness instance where X ⊂
{1, . . . , b}, Y ⊂ {1, . . . , b}, |X ∩ Y | ≤ 1, and |X |, |Y | = Ω(b). The graph G is ex-
tended such that the minimum cut problem inG represents the given set cover instance.
For each x 	∈ X , the weight of the edge {(1, x), (1, 0)} is increased to αλ+ 1. Further,
for every y 	∈ Y , we add an edge {(a, y), (a, 0)} of weight αλ + 1. Now, if and only if
X ∩ Y = ∅, every copy of H is connected to the first copy by a link of weight αλ+ 1.
Therefore, if X and Y are disjoint, the size of a minimum cut is at least αλ + 1 and if
X and Y intersect, there is a cut of size λ.

Alice knows the initial states of nodes (i, j) for all i < a and thus for the nodes
(i, j) with 1 ≤ κ(i, j) < n − b (i.e., all except the last b + 1 nodes) and Bob knows
the initual states of nodes (i, j) for all i > 1 and thus for the nodes (i, j) with b + 1 <
κ(i, j) ≤ n (i.e., all except the first b+1 nodes). If we have T < (n− 2)/(2(b+1)) =
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O(n/b) = O(a) for the time complexity T of the distributed minimum cut approx-
imation protocol, Theorem 5 implies that Alice and Bob can (b + 1)-solve the dis-
tributed task of α-approximating the minimum cut with total communication complex-
ity at most O(TB logn). As a consequence, Alice and Bob can also solve the given
set disjointness instance using the same protocol and from the known set disjointness
communication complexity lower bound, we therefore get TB logn = Ω(b). Choosing
a = Θ(

√
n/(B logn) and b = Θ(

√
nB logn) this implies the claimed lower bound

for approximating the size of the minimum cut. Assuming that Alice and Bob already
know that |X ∩ Y | = 1, the communication complexity lower bound on findingX ∩ Y
also implies the same lower bound for finding an α-minimum cut, even if the size λ of
the minimum cut is known. �

We now present our lower bound about min-cut approximation in unweighted simple
graphs.

Theorem 7. In unweighted simple graphs, for any α ≥ 1 and λ ≥ 1, computing an
α-approximate minimum cut requires at least Ω

(
D +

√
n

B
√
αλ logn

)
rounds.

Proof (Proof Sketch). The proof is essentially done in the same way as the proof of
Theorem 6. We therefore only describe the differences between the proofs. Because in
a simple unweighted graph, we cannot add edges with different weights and we cannot
add multiple edges, we have to construct the graph differently. Let us first describe the
simple, unweighted graph H ′ corresponding to H in the construction of Theorem 7.
Instead of a being path of length a with edges of weight αλ + 1, H ′ is a sequence
of a cliques of size �

√
αλ + 1�. Adjacent cliques are connected by complete bipartite

graphs (with at least αλ + 1 edges). We again have b + 1 copies of H ′, where copy 0
is augmented with a complete binary tree by using Lemma 4. Each edge {(1, 0), (1, j)}
of weight λ is replaced by λ edges between clique (1, 0) and clique (1, j). Edges of
weight αλ + 1 between nodes (1, 0) and (1, j) and between nodes (a, 0) and (a, j)
are replaced by complete bipartite graphs between the respective cliques. Again, by
simulating a minimum cut approximation algorithm on the constructed graph, Alice
and Bob can solve a given set disjointness instance for a universe of size b. However,
the number of nodes of the network in this case is Θ(ab

√
αλ) leading to the lower

bound claimed by the theorem. �
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Abstract. We consider a number of fundamental statistical and graph problems
in the message-passing model, where we have k machines (sites), each holding
a piece of data, and the machines want to jointly solve a problem defined on the
union of the k data sets. The communication is point-to-point, and the goal is to
minimize the total communication among the k machines. This model captures
all point-to-point distributed computational models with respect to minimizing
communication costs. Our analysis shows that exact computation of many statis-
tical and graph problems in this distributed setting requires a prohibitively large
amount of communication, and often one cannot improve upon the communica-
tion of the simple protocol in which all machines send their data to a central-
ized server. Thus, in order to obtain protocols that are communication-efficient,
one has to allow approximation, or investigate the distribution or layout of the
data sets.

1 Introduction

Recent years have witnessed a spectacular increase in the amount of data being col-
lected and processed in various applications. In many of these applications, data is of-
ten distributed across a group of machines, referred to as sites in this paper, which are
connected by a communication network. These sites jointly compute a function defined
on the union of the data sets by exchanging messages with each other. For example,
consider the following scenarios.

1. We have a set of network routers, each observing a portion of the network, and
periodically they want to compute some functions defined on the global network
which can be used to determine the overall condition/health of the network. Con-
crete functions include the number of distinct source IP addresses, the set of most
frequent destination IP addresses, etc.

2. The massive social network graphs are usually stored in many sites, and those
graphs are keeping changing. To answer queries such as whether the whole graph
is connected, or whether the graph exhibit a particular property (e.g., bipartiteness,
cycle-freeness), we have to synthesize data from all the sites.
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In distributed computational models for big data, besides traditional measurement
like local CPU processing time and the number of disk accesses, we are also interested
in minimizing two other objectives, namely, the communication cost and the round
complexity. The communication cost, which we shall also refer to as the communication
complexity, denotes the total number of bits exchanged in all messages across the sites
during a computation. The round complexity refers to the number of communication
rounds needed for the computation, given various constraints on what messages can be
sent by each site in each round.

The communication cost is a fundamental measure since communication is often the
bottleneck of applications (e.g., applications mentioned above), and so it directly re-
lates to energy consumption, network bandwidth usage, and overall running time. The
round complexity is critical when the computation is partitioned into rounds and the
initialization of each round requires a large overhead. In this paper we will focus on
the communication complexity, and analyze problems in an abstract model called the
message-passing model (see the definition in Section 1.1) that captures all models for
point-to-point distributed computation in terms of their communication costs. In par-
ticular, our lower bound results hold even if the communication protocol sends only a
single bit in each message, and each site has an unbounded amount of local memory
and computational power. Note that this means our lower bounds are as strong as pos-
sible, not requiring any assumptions on the local computational power of the machines.
We also present several upper bounds, all of which are also locally computationally
efficient, meaning the protocols we present do not need extra memory beyond what is
required to accommodate the input. We will briefly discuss the issue of round-efficiency
in Section 7.

Common sources of massive data include numerical data, e.g., IP streams and logs of
queries to a search engine, as well as graph data, e.g., web graphs, social networks, and
citation graphs. In this paper we investigate the communication costs for solving several
basic statistical and graph problems in the message-passing model. Solving these prob-
lems is a minimal requirement of protocols seeking to solve more complicated functions
on distributed data.

We show that if we want to solve many of these problems exactly, then there are no
better solutions than the almost trivial ones, which are usually quite communication-
inefficient. The motivation of this work is thus to deliver the following message to
people working on designing protocols for solving problems on distributed systems:
for many statistical and graph problems in the distributed setting, if we want efficient
communication protocols, then we need to consider the following relaxations to the
original problem:

1. Allow for returning an approximate solution. Here, approximation can be defined
as follows: for a problem whose output is a single numerical value x, allowing an
approximation means that the protocol is allowed to return any value x̃ for which
x̃ ∈ [(1 − ε)x, (1 + ε)x], for some small user-specified parameter ε > 0. For a
problem whose output is YES or NO, e.g., a problem deciding if a certain property
of the input exists or not, we could instead allow the protocol to return YES if
the input is close to having the property (under some problem-specific notion of
closeness) and NO if the input is far from having that property. For example, in the
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graph connectivity problem, we return YES if the graph can be made connected by
adding a small number of edges, while we return NO if the graph requires adding
a large number of edges to be made connected. This latter notion of approximation
coincides with the property testing paradigm [12] in the computer science literature.
By allowing certain approximations we can sometimes drastically reduce the com-
munication costs. Concrete examples and case studies will be given in Section 2
and Section 6.

2. Use well-designed input layouts. Here are two examples: (1) All edges from the
same node are stored in the same site or on only a few sites. In our lower bounds
the edges adjacent to a node are typically stored across many different sites. (2)
Each edge is stored on a unique (or a small number) of different sites. Our results
in Table 1 show that whether or not the input graph has edges that occur on multiple
sites can make a huge difference in the communication costs.

3. Explore prior distributional properties of the input dataset, e.g., if the dataset is
skewed, or the underlying graph is sparse or follows a power-law distribution. In-
stead of developing algorithms targeting the worst-case distributions, as those used
in our lower bounds, if one is fortunate enough to have a reasonable model of
the underlying distribution of inputs, this can considerably reduce communication
costs. An extreme example is that of a graph on n vertices - if the graph is com-
pletely random, meaning, each possible edge appears independently with probabil-
ity p, then the k sites can simply compute the total number of edges m to decide
whether or not the input graph is connected with high probability. Indeed, by results
in random graph theory, if m ≥ 0.51n logn then the graph is connected with very
high probability, while ifm ≤ 0.49n logn then the graph is disconnected with very
high probability [8]. Of course, completely random graphs are unlikely to appear in
practice, though other distributional assumptions may also result in more tractable
problems.

1.1 The Message-Passing Model

In this paper we consider the message-passing model, studied, for example, in [23,26].
In this model we have k sites, e.g., machines, sensors, database servers, etc., which we
denote as P1, . . . , Pk. Each site has some portion of the overall data set, and the sites
would like to compute a function defined on the union of the k data sets by exchanging
messages. There is a two-way communication channel between all pairs of players Pi
and Pj . Then, since we will prove lower bounds, our lower bounds also hold for topolo-
gies in which each player can only talk to a subset of other players. The communication
is point-to-point, that is, if Pi talks to Pj , then the other k − 2 sites do not see the mes-
sages exchanged between Pi and Pj . At the end of the computation, at least one of the
sites should report the correct answer. The goal is to minimize the total number of bits
and messages exchanged among the k sites. For the purposes of proving impossibility
results, i.e., lower bounds, we can allow each site to have an infinite local memory and
infinite computational power; note that such an assumption will only make our lower
bounds stronger. Further, we do not place any constraints on the format of messages or
any ordering requirement on the communication, as long as it is point-to-point.
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The message-passing model captures all point-to-point distributed communication
models in terms of the communication cost, including the BSP model by Valiant [25],
theMRC MapReduce framework proposed by Karloff et al. [19], the generic MapRe-
duce model by Goodrich et al. [13], and the Massively Parallel model by Koutris and
Suciu [20].

Remark 1. We comment that in some settings, where the primary goal is to parallelize
a single computation on a big dataset, communication may not be the only bottleneck;
CPU time and disk accesses are also important. However, in this paper we are mainly
interested in the following setting: The data has already been distributed to the sites,
and perhaps keeps changing. The goal is to periodically compute some function that is
defined on the dataset (e.g., queries). In this setting, communication is usually the most
expensive operation, since it directly connects to network bandwidth usage and energy
consumption.

1.2 Our Results

We investigate lower bounds (impossibility results) and upper bounds (protocols) of the
exact computation of the following basic statistical and graph problems in the message-
passing model.

1. Statistical problems: computing the number of distinct elements, known asF0 in the
database literature; and finding the element with the maximum frequency, known as
the 
∞ or iceberg query problem. We note that the lower bound for 
∞ also applies
to the heavy-hitter problem of finding all elements whose frequencies exceed a
certain threshold, as well as many other statistical problems for which we have to
compute the elements with the maximum frequency exactly.

2. Graph problems: computing the degree of a vertex; testing cycle-freeness; testing
connectivity; computing the number of connected components (#CC); testing bi-
partiteness; and testing triangles-freeness.

For each graph problem, we study its lower bound and upper bound in two cases: with
edge duplication among the different sites and without edge duplication. Our results are
summarized in Table 1. Note that all lower bounds are matched by upper bounds up to
some logarithmic factors. For convenience, we use Ω̃(f) and Õ(f) to denote functions
of forms f/ logO(1)(f) and f · logO(1)(f), respectively. That is, we hide logarithmic
factors.

We prove most of our lower bound results via reductions from a meta-problem that
we call THRESHrθ . Its definition is given in Section 4.

In Section 6 we make a conjecture on the lower bound for the diameter problem,
i.e., the problem of computing the distance of the farthest pair of vertices in a graph.
This problem is one of the few problems that we cannot completely characterize by the
technique proposed in this paper. We further show that by allowing an error as small
as an additive-2, we can reduce the communication cost of computing the diameter by
roughly a

√
n factor, compared with the naive algorithm for exact computation. This

further supports our claim that even a very slight approximation can result in a dramatic
savings in communication.
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Table 1. All results are in terms of number of bits of communication. Our lower bounds hold for
randomized protocols which succeed with at least a constant probability of 2/3, while all of our
upper bounds are deterministic protocols (which always succeed). k refers to the number of sites,
with a typical value ranging from 100 to 10000 in practice. For F0 and �∞, n denotes the size
of the element universe. For graph problems, n denotes the number of vertices and m denotes
the number of edges. dv is the degree of the queried vertex v. We make the mild assumption that
Ω(log n) ≤ k ≤ min{n,m}. Let r = min{n,m/k}. Except for the upper bound for cycle-
freeness in the “without duplication” case, for which m ≥ n implies that a cycle necessarily
exists (and therefore makes the problem statement vacuous), we assume that m ≥ n in order to
avoid a messy and uninteresting case-by-case analysis.

With duplication Without duplication
Problem LB UB LB UB

F0 Ω̃(kF0) Õ(k(F0 + log n)) – –
�∞ Ω̃(min{k, �∞}n) Õ(min{k, �∞}n) – –

degree Ω̃(kdv) O(kdv logn) Ω̃(k) O(k log n)

cycle-freeness Ω̃(kn) Õ(kn) Ω(min{n,m}) Õ(min{n,m})
connectivity Ω̃(kn) Õ(kn) Ω̃(kr) Õ(kr)

#CC Ω̃(kn) Õ(kn) Ω̃(kr) Õ(kr)

bipartiteness Ω̃(kn) Õ(kn) Ω̃(kr) Õ(kr)

triangle-freeness Ω̃(km) Õ(km) Ω(m) Õ(m)

1.3 Related Work

For statistical problems, a number of approximation algorithms have been proposed
recently in the distributed streaming model, which can be thought of as a dynamic
version of the one-shot distributed computation model considered in this paper: the k
local inputs arrive in the streaming fashion and one of the sites has to continuously
monitor a function defined on the union of the k local inputs. All protocols in the dis-
tributed streaming model are also valid protocols in our one-shot computational model,
while our impossibility results in our one-shot computational model also apply to all
protocols in the distributed streaming model. Example functions studied in the dis-
tributed streaming model include F0 [7], F2 (size of self join) [7,26], quantile and
heavy-hitters [15], and the empirical entropy [3]. All of these problems have much
lower communication cost if one allows an approximation of the output number x in
a range [(1 − ε)x, (1 + ε)x], as mentioned above (the definition as to what ε is for
the various problems differs). These works show that if an approximation is allowed,
then all these problems can be solved using only Õ(k/εO(1)) bits of communication. A
suite of (almost) matching lower bounds for approximate computations was developed
in [26]. For exact F0 computation, the best previous communication cost lower bound
was Ω(F0 + k) bits. In this paper we improve the communication cost lower bound to
Ω̃(kF0), which is optimal up to a small logarithmic factor.

For graph problems, Ahn, Guha and McGregor [1,2] developed an elegant technique
for sketching graphs, and showed its applicability to many graph problems including
connectivity, bipartiteness, and minimum spanning tree. Each sketching step in these
algorithms can be implemented in the message-passing model as follows: each site
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computes a sketch of its local graph and sends its sketch to P1. The site P1 then com-
bines these k sketches into a sketch of the global graph. The final answer can be ob-
tained based on the global sketch that P1 computes. Most sketches in [1,2] are of size
Õ(n1+γ) bits (for a small constant γ ≥ 0), and the number of sketching steps varies
from 1 to a constant. Thus direct implementations of these algorithms in the message-
passing model have communication Õ(k ·n1+γ) bits. On the lower bound side, it seems
not much is known. Phillips et al. [23] proved an Ω(kn/ log2 k) bits lower bound for
connectivity. Their lower bound proof relies on a well-crafted graph distribution. In this
paper we improve their lower bound by a factor of log k. Another difference is that
their proof requires the input to have edge duplications, while our lower bound holds
even if there are no edge duplications, showing that the problem is hard even if each
edge occurs on a single site. Very recently in an unpublished manuscript, Huang et. al.
[14] showed that Ω(kn) bits of communication is necessary in order to even compute
a constant factor approximation to the size of the maximum matching of a graph. Their
result, however, requires that the entire matching has to be reported, and it is unknown
if a similar lower bound applies if one is only interested in estimating the matching size.

Besides statistical and graph problems, Koutris and Suciu [20] studied evaluating
conjunctive queries in their massively parallel model. Their lower bounds are restricted
to one round of communication, and the message format has to be tuple-based, etc.
Some of these assumptions are removed in a recent work by Beame et al. [5]. We stress
that in our message-passing model there is no such restriction on the number of rounds
and the message format; our lower bounds apply to arbitrary communication protocols.
Recently, Daumé III et al. [16,17] and Balcan et al. [4] studied several problems in the
setting of distributed learning, in the message-passing model.

1.4 Conventions

Let [n] = {1, . . . , n}. All logarithms are base-2. All communication complexities are
in terms of bits. We typically use capital letters X,Y, . . . for sets or random variables,
and lower case letters x, y, . . . for specific values of the random variablesX,Y, . . .. We
write X ∼ μ to denote a random variable chosen from distribution μ. For convenience
we often identify a setX ⊆ [n] with its characteristic vector when there is no confusion,
i.e., the bit vector which is 1 in the i-th bit if and only if element i occurs in the set X .

All our upper bound protocols are either deterministic or only using private random-
ness. We make a mild assumption that Ω(logn) ≤ k ≤ min{n,m}, where for F0 and

∞, n denotes the size of the element universe; and for graph problems, n denotes the
number of vertices and m denotes the number of edges.

1.5 Roadmap

In Section 2, we give a case study on the number of distinct elements (F0) problem.
In Section 3, we include background on communication complexity which is needed
for understanding the rest of the paper. In Section 4, we introduce the meta-problem
THRESHrθ and study its communication complexity. In Section 5 and Section 6, we
show how to prove lower bounds for a set of statistical and graph problems by perform-
ing reductions from THRESHrθ . We conclude the paper in Section 7.
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2 The Number of Distinct Elements: A Case Study

In this section we give a brief case study on the number of distinct elements (F0) prob-
lem, with the purpose of justifying the statement that approximation is often needed in
order to obtain communication-efficient protocols in the distributed setting.

The F0 problem requires computing the number of distinct elements of a data set.
It has numerous applications in network traffic monitoring [9], data mining in graph
databases [22], data integration [6], etc., and has been extensively studied in the last
three decades, mainly in the data stream model. It began with the work of Flajolet and
Martin [11] and culminated in an optimal algorithm by Kane et al. [18]. In the streaming
setting, we see a stream of elements coming one at a time and the goal is to compute
the number of distinct elements in the stream using as little memory as possible. In
[10], Flajolet et al. reported that their HyperLogLog algorithm can estimate cardinalities
beyond 109 using a memory of only 1.5KB, and achieve a relative accuracy of 2%,
compared with the 109 bytes of memory required if we want to compute F0 exactly.

Similar situations happen in the distributed communication setting, where we have
k sites, each holding a set of elements from the universe [n], and the sites want to
compute the number of distinct elements of the union of their k data sets. In [7], a
(1 + ε)-approximation algorithm (protocol) with O(k(log n + 1/ε2 log 1/ε)) bits of
communication was given in the distributed streaming model, which is also a protocol in
the message-passing model. In a typical setting, we could have ε = 0.01, n = 109 and
k = 1000, in which case the communication cost is about 6.6× 107 bits 1. On the other
hand, our result shows that if exact computation is required, then the communication
cost among the k sites needs to be at least be Ω(kF0/ log k) (See Corollary 1), which
is already 109 bits even when F0 = n/100.

3 Preliminaries

In this section we introduce some background on communication complexity. We refer
the reader to the book by Kushilevitz and Nisan [21] for a more complete treatment.

In the basic two-party communication complexity model, we have two parties (also
called sites or players), which we denote by Alice and Bob. Alice has an input x and Bob
has an input y, and they want to jointly compute a function f(x, y) by communicating
with each other according to a protocolΠ . LetΠ(x, y) be the transcript of the protocol,
that is, the concatenation of the sequence of messages exchanged by Alice and Bob,
given the inputs x and y. In this paper when there is no confusion, we abuse notation by
using Π for both a protocol and its transcript, and we further abbreviate the transcript
Π(x, y) by Π .

The deterministic communication complexity of a deterministic protocol is defined
to be max{|Π(x, y)| | all possible inputs (x, y)}, where |Π(x, y)| is the number of bits
in the transcript of the protocol Π on inputs x and y. The randomized communication
complexity of a randomized protocolΠ is the maximum number of bits in the transcript
of the protocol over all possible inputs x, y, together with all possible random tapes of

1 In the comparison we neglect the constants hidden in the big-O and big-Ω notation which
should be small.
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the players. We say a randomized protocolΠ computes a function f correctly with error
probability δ if for all input pairs (x, y), it holds that Pr[Π(x, y) 	= f(x, y)] ≤ δ, where
the probability is taken only over the random tapes of the players. The randomized δ-
error communication complexity of a function f , denoted by Rδ(f), is the minimum
communication complexity of a protocol that computes f with error probability δ.

Let μ be a distribution over the input domain, and let (X,Y ) ∼ μ. For a deterministic
protocolΠ , we say that Π computes f with error probability δ on μ if Pr[Π(X,Y ) 	=
f(X,Y )] ≤ δ, where the probability is over the choices of (X,Y ) ∼ μ. The δ-error
μ-distributional communication complexity of f , denoted by Dδμ(f), is the minimum
worst-case communication complexity of a deterministic protocol that gives the correct
answer for f on at least (1−δ) fraction of all inputs (weighted by μ). We denote EDδμ(f)
to be the δ-error μ-distributional expected communication complexity, which is define
to be the minimum expected cost (rather than the worst-case cost) of a deterministic
protocol that gives the correct answer for f on at least (1 − δ) fraction of all inputs
(weighted by μ), where the expectation is taken over distribution μ.

We can generalize the two-party communication complexity to the multi-party set-
ting, which is the message-passing model considered in this paper. Here we have k
players (also called sites) P1, . . . , Pk with Pj having the input xj , and the players want
to compute a function f(x1, . . . , xk) of their joint inputs by exchanging messages with
each other. The transcript of a protocol always specifies which player speaks next. In
this paper the communication is point-to-point, that is, if Pi talks to Pj , the other play-
ers do not see the messages sent from Pi to Pj . At the end of the communication, only
one player needs to output the answer.

The following lemma shows that randomized communication complexity is lower
bounded by distributional communication complexity under any distribution μ. We in-
clude a proof in Appendix A, since the original proof is for the two-party communica-
tion setting.

Lemma 1 (Yao’s Lemma [28]). For any function f , any δ > 0,Rδ(f) ≥ maxμD
δ
μ(f).

Therefore, one way to prove a lower bound on the randomized communication com-
plexity of f is to first pick a (hard) input distribution μ for f , and then study its distri-
butional communication complexity under μ.

Note that given a 1/3-error randomized protocol for a problem f whose output is 0
or 1, we can always run the protocol C log(1/δ) times using independent randomness
each time, and then output the majority of the outcomes. By a standard Chernoff bound
(see below), the output will be correct with error probability at most e−κC log(1/δ) for
an absolute constant κ, which is at most δ if we choose C to be a sufficiently large
constant. Therefore R1/3(f) = Ω(Rδ(f)/ log(1/δ)) = Ω(maxμD

δ
μ(f)/ log(1/δ))

for any δ ∈ (0, 1/3]. Consequently, to prove a lower bound on R1/3(f) we only need
to prove a lower bound on the distributional communication complexity of f with an
error probability δ ≤ 1/3.

Chernoff Bound. LetX1, . . . , Xn be independent Bernoulli random variables such that
Pr[Xi = 1] = pi. LetX =

∑
i∈[n]Xi. Let μ = E[X ]. It holds that Pr[X ≥ (1+δ)μ] ≤

e−δ
2μ/3 and Pr[X ≤ (1− δ)μ] ≤ e−δ2μ/2 for any δ ∈ (0, 1).
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4 A Meta-problem

In this section we discuss a meta-problem THRESHrθ and we derive a communication
lower bound for it. This meta-problem will be used to derive lower bounds for statistical
and graph problems in our applications.

In THRESHrθ , site Pi (i ∈ [k]) holds an r-bit vector xi = {xi,1, . . . , xi,r}, and the k
sites want to compute

THRESHrθ(x1, . . . , xk) =

{
0, if

∑
j∈[r](∨i∈[k]xi,j) ≤ θ,

1, if
∑
j∈[r](∨i∈[k]xi,j) ≥ θ + 1.

That is, if we think of the input as a k×r matrix with x1, . . . , xk as the rows, then in the
THRESHrθ problem we want to find out whether the number of columns that contain a
1 is more than θ for a threshold parameter θ.

We will show a lower bound for THRESHrθ using the symmetrization technique
introduced in [23]. First, it will be convenient for us to study the problem in the
coordinator model.

The Coordinator Model. In this model we have an additional site called the coordi-
nator 2, which has no input (formally, his input is the empty set). We require that the k
sites can only talk to the coordinator. The message-passing model can be simulated by
the coordinator model since every time a site Pi wants to talk to Pj , it can first send the
message to the coordinator, and then the coordinator can forward the message to Pj .
Such a re-routing only increases the communication complexity by a factor of 2 and
thus will not affect the asymptotic communication complexity.

Let f : X × Y → {0, 1} be an arbitrary function. Let μ be a probability distribution
over X × Y . Let fkOR : X k × Y → {0, 1} be the problem of computing f(x1, y) ∨
f(x2, y)∨ . . .∨ f(xk, y) in the coordinator model, where Pi has input xi ∈ X for each
i ∈ [k], and the coordinator has y ∈ Y . Given the distribution μ onX ×Y , we construct
a corresponding distribution ν on X k × Y: We first pick (X1, Y ) ∼ μ, and then pick
X2, . . . , Xk from the conditional distribution μ | Y .

The following theorem was originally proposed in [23]. Here we improve it by a
log k factor by a slightly modified analysis, which we include here for completeness.

Theorem 1. For any function f : X × Y → {0, 1} and any distribution μ on X × Y
for which μ(f−1(1)) ≤ 1/k2, we have D1/k3

ν (fkOR) = Ω(k · ED1/(100k2)
μ (f)).

Proof. Suppose Alice has X and Bob has Y with (X,Y ) ∼ μ, and they want to com-
pute f(X,Y ). They can use a protocol P for fkOR to compute f(X,Y ) as follows. The
first step is an input reduction. Alice and Bob first pick a random I ∈ [k] using shared
randomness, which will later be fixed by the protocol to make it deterministic. Alice
simulates PI by assigning it an input XI = X . Bob simulates the coordinator and
the remaining k − 1 players. He first assigns Y to the coordinator, and then samples
X1, . . . , XI−1, XI+1, . . . , Xk independently according to the conditional distribution
μ | Y , and assigns Xi to Pi for each i ∈ [k]\I . Now {X1, . . . , Xk, Y } ∼ ν. Since

2 We can also choose, for example, P1 to be the coordinator and avoid the need for an additional
site, though having an additional site makes the notation cleaner.
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μ(f−1(1)) ≤ 1/k2, with probability (1− 1/k2)k−1 ≥ 1− 1/k, we have f(Xi, Y ) = 0
for all i ∈ [k]\I . Consequently,

fkOR(X1, . . . , Xk, Y ) = f(X,Y ). (1)

We say such an input reduction is good.
Alice and Bob construct a protocol P ′ for f by independently repeating the input

reduction three times, and running P on each input reduction. The probability that at
least one of the three input reductions is good is at least 1 − 1/k3, and Bob can learn
which reduction is good without any communication. This is because in the simulation
he locally generates all Xi (i ∈ [k]\I) together with Y . On the other hand, by a union
bound, the probability that P is correct for all three input reductions is at least 1−3/k3.
Note that if we can compute fkOR(X1, . . . , Xk, Y ) correctly for a good input reduction,
then by (1), P can also be used to correctly compute f(X,Y ). ThereforeP can be used
to compute f(X,Y ) with probability at least 1− 3/k3 − 1/k3 ≥ 1− 1/(100k2).

Since in each input reduction,X1, . . . , Xk are independent and identically distributed,
and since I ∈ [k] is chosen randomly in the two input reductions, we have that in ex-
pectation over the choice of I , the communication between PI and the coordinator is at
most a 2/k fraction of the expected total communication of P given inputs drawn from
ν. By linearity of expectation, if the expected communication cost ofP for solving fkOR

under input distribution ν with error probability at most 1/k3 is C, then the expected
communication cost of P ′ for solving f under input distribution μ with error probabil-
ity at most 1/(100k2) is O(C/k). Finally, by averaging there exists a fixed choice of
I ∈ [k], so that P ′ is deterministic and for which the expected communication cost of
P ′ for solving f under input distribution μ with error probability at most 1/(100k2) is

O(C/k). Therefore we have D1/k3

ν (fkOR) = Ω(k · ED1/(100k2)
μ (f)).

4.1 The 2-DISJr Problem

Now we choose a concrete function f to be the set-disjointness problem. In this problem
we have two parties: Alice has x ⊆ [r] while Bob has y ⊆ [r], and the parties want to
compute 2-DISJr(x, y) = 1 if x∩ y 	= ∅ and 0 otherwise. Set-disjointness is a classical
problem used in proving communication lower bounds. We define an input distribution
τβ for 2-DISJr as follows. Let 
 = (r + 1)/4. With probability β, x and y are random
subsets of [r] such that |x| = |y| = 
 and |x ∩ y| = 1, while with probability 1−β, x and
y are random subsets of [r] such that |x| = |y| = 
 and x∩y = ∅. Razborov [24] proved
that for β = 1/4, D(1/4)/100

τ1/4 (2-DISJr) = Ω(r), and one can extend his arguments to
any β ∈ (0, 1/4], and to the expected distributional communication complexity where
the expectation is take over the input distribution.

Theorem 2 ([23], Lemma 2.2). For any β ∈ (0, 1/4], it holds that EDβ/100τβ
(2-DISJr)

= Ω(r), where the expectation is taken over the input distribution.

4.2 The OR-DISJr Problem

If we choose f to be 2-DISJr and let μ = τβ with β = 1/k2, then we call fkOR in the
coordinator model the OR-DISJr Problem. By Theorem 1 and Theorem 2. We have
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Theorem 3. D1/k3

ν (OR-DISJr) = Ω(kr).

The Complexity of THRESHr
θ . We prove our lower bound for the setting of the param-

eter θ = (3r− 1)/4. We define the following input distribution ζ for THRESHr(3r−1)/4:
We choose {X1, . . . , Xk, Y } ∼ ν where ν is the input distribution for OR-DISJr, and
then simply use {X1, . . . , Xk} as the input for THRESHrθ .

Lemma 2. Under the distribution ζ, assuming k ≥ ck log r for a large enough constant
ck, we have that

∨
i∈[k]Xi,j = 1 for all j ∈ [r]\Y with probability 1− 1/k10.

Proof. For each j ∈ [r]\Y , we have
∨
i∈[k]Xi,j = 1 with probability at least 1− (1−

1/4)k. This is because Pr[Xi,j = 1] ≥ 1/4 for each j ∈ [r]\Y , by our choices of Xi.
By a union bound, with probability 1− (3/4)k · |[r]\Y | = 1− (3/4)k · (3r − 1)/4) ≥
1 − 1/k10. (by our assumption ck log r ≤ k ≤ r for a large enough constant ck), we
have

∨
i∈[k]Xi,j = 1 for all j ∈ [r]\Y .

Theorem 4. D1/k4

ζ (THRESHr(3r−1)/4) = Ω(kr), assuming ck log r ≤ k ≤ r for a
large enough constant ck.

Proof. By Lemma 2, it is easy to see that any protocolP that computes THRESHr(3r−1)/4

on input distribution ζ correctly with error probability 1/k4 can be used to compute OR-
DISJr on distribution ν correctly with error probability 1/k4 + 1/k10 < 1/k3, since if
(X1, . . . , Xk, Y ) ∼ ν, then with probability 1− 1/k10, we have

OR-DISJr(X1, . . . , Xk, Y ) = THRESHr(3r−1)/4(X1, . . . , Xk).

The theorem follows from Theorem 3.

5 Statistical Problems

For technical convenience, we make the mild assumption that ck logn ≤ k ≤ n where
ck is some large enough constant. For convenience, we will repeatedly ignore an addi-
tive O(1/k10) error probability introduced in the reductions, since these will not affect
the correctness of the reductions, and can be added to the overall error probability by a
union bound.

5.1 F0 (#Distinct-Elements)

Recall that in the F0 problem, each site Pi has a set Si ⊆ [n], and the k sites want to
compute the number of distinct elements in

⋃
i∈[k] Si.

For the lower bound, we reduce from THRESHn(3n−1)/4. Given {X1, . . . , Xk} ∼ ζ
for THRESHn(3n−1)/4, each site sets Si = Xi. Let σF be the input distribution of F0

after this reduction.
By Lemma 2 we know that under distribution ζ, with probability 1 − 1/k10, for all

j ∈ [n]\Y (recall that Y is the random subset of [n] of size (n + 1)/4 we used to
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construct X1, . . . , Xk in distribution ζ),
∨
i∈[k]Xi,j = 1. Conditioned on this event,

we have THRESHn(3n−1)/4(X1, . . . , Xk) = 1 ⇐⇒ F0(∪i∈[k]Si) > (3n − 1)/4.

Therefore, by Theorem 4 we have thatD1/k4

σF (F0) = Ω(kn). Note that in this reduction,
we have to choose n = Θ(F0). Therefore, it makes more sense to write the lower bound

as D1/k4

σF (F0) = Ω(kF0). The following corollary follows from Yao’s Lemma and the
discussion following it.

Corollary 1. R1/3(F0) = Ω(kF0/ log k).

An almost matching upper bound of O(k(F0 logF0 + logn)) can be obtained as fol-
lows: the k sites first compute a 2-approximationF ′

0 to F0 using the protocol in [7] (see
Section 2), which costs O(k logn) bits. Next, they hash every element to a universe of
size (F ′

0)
3, so that there are no collisions among hashed elements with probability at

least 1 − 1/F0, by a union bound. Finally, all sites send their distinct elements (after
hashing) to P1 and then P1 computes the number of distinct elements over the union of
the k sets locally. This step costs O(kF0 logF0) bits of communication.

5.2 �∞ (MAX)

In the 
∞ problem, each site Pi has a set Si ⊆ [n], and the k sites want to find an
element in

⋃
i∈[k] Si with the maximum frequency.

For the lower bound, we again reduce from THRESHn(3n−1)/4. Recall that in our
hard input distribution for THRESHn(3n−1)/4, there is one special column that contains
zero or a single 1. The high level idea is that we try to make this column to have the
maximum number of 1’s if originally it contains a single 1, by flipping bits over a ran-
dom set of rows. Concretely, given an input {X1, . . . , Xk} ∼ ζ for THRESHn(3n−1)/4,
the k sites create an input {S1, . . . , Sk} as follows: first, P1 chooses a set R ⊆ [k]
by independently including each i ∈ [k] with probability 7/8, and informs all sites
Pi (i ∈ R) by sending each of them a bit. This step costs O(k) bits of communication.
Next, for each i ∈ R, Pi flips Xi,j for each j ∈ [n]. Finally, each Pi includes j ∈ Si if
Xi,j = 1 after the flip and j 	∈ Si if Xi,j = 0. Let σL be the input distribution of 
∞
after this reduction.

They repeat this input reduction independently T times where T = cT log k for
a large constant cT , and at each time they run 
∞(∪i∈[k]Si). Let R1, . . . , RT be the
random set R sampled by P1 in the T runs, and let O1, . . . , OT be the outputs of the
T runs. They return THRESHn(3n−1)/4(X1, . . . , Xk) = 1 if there exists a t ∈ [T ] such
that Ot ≥ |Rt|+ 1 and 0 otherwise.

We focus on a particular input reduction. We view an input for THRESHn(3n−1)/4

as a k × n matrix. The i-th row of the matrix is Xi. After the bit-flip operations,
for each column j ∈ [n]\Y , we have for each i ∈ [k] that Pr[Xi,j = 1] ≤ 7/8 ·(
1− (n+1)/4−1

(3n−1)/4

)
+ 1/8 · (n+1)/4

(3n−1)/4 < 3/4. By a Chernoff bound, for each j ∈ [n]\Y ,∑
i∈[k]Xi,j < 13k/16 with probability 1− e−Ω(k). Therefore with probability at least

(1 − e−Ω(k) · n) ≥ (1 − 1/k10) (assuming that ck logn ≤ k ≤ n for a large enough
constant ck),

∑
i∈[k]Xi,j < 13k/16 holds for all j ∈ [n]\Y .
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Now we consider columns in Y . We can show again by Chernoff bound that |R| >
13k/16with probability (1−1/k10) for all columns in Y , since each i ∈ [k] is included
into R with probability 7/8, and before the flips, the probability that Xi,j = 1 for
an i when j ∈ Y is negligible. Therefore with probability (1 − 1/k10), the column
with the maximum number of 1s is in the set Y , which we condition on in the rest of
the analysis.

In the case when THRESHn(3n−1)/4(X1, . . . , Xk) = 1, then with probability at least
1/8, there exists a column j ∈ Y and a row i ∈ [k]\R for which Xi,j = 1. If this
happens, then for this j we have

∑
i∈[k]Xi,j ≥ |R|+1, or equivalently, 
∞(∪i∈[k]Si) ≥

|R|+1. Otherwise, if THRESHn(3n−1)/4(X1, . . . , Xk) = 0, then
∑
i∈[k]Xi,j = |R| for

all j ∈ Y . Therefore, if THRESHn(3n−1)/4(X1, . . . , Xk) = 1, then the probability that

there exists a t ∈ [T ] such thatOt ≥ |Rt|+1 is at least 1− (1−1/8)T > 1−1/k10 (by
choosing cT large enough). Otherwise, if THRESHn(3n−1)/4(X1, . . . , Xk) = 0, then
Ot = |Rt| for all t ∈ [T ].

Since our reduction only uses T · O(k) = O(k log k) extra bits of communication
and introduces an extra error of O(1/k10), which will not affect the correctness of the

reduction. By Theorem 4, we have that D1/k4

σL (
∞) = Ω(kn). Note that in the reduc-
tion, we have to assume that Θ(
∞) = Θ(k). In other words, if 
∞ � k then we
have to choose k′ = Θ(
∞) sites out of the k sites to perform the reduction. There-

fore it makes sense to write the lower bound as D1/k4

σL (
∞) = Ω(min{
∞, k}n). The
following corollary follows from Yao’s Lemma and the discussion following it.

Corollary 2. R1/3(
∞) = Ω(min{
∞, k}n/ log k).

A simple protocol that all sites send their elements-counts to the first site solves 
∞
with O(min{k, 
∞}n logn) bits of communication, which is almost optimal in light of
our lower bound above.

6 Graph Problems

Due to the space constraints, we defer this section to the full version of this paper [27].
We refer readers to Table 1 for all the results.

7 Concluding Remarks

In this paper we show that exact computation of many basic statistical and graph
problems in the message-passing model are necessarily communication-inefficient. An
important message we want to deliver through these negative results, which is also
the main motivation of this paper, is that a relaxation of the problem, such as an ap-
proximation, is necessary in the distributed setting if we want communication-efficient
protocols. Besides approximation, the layout and the distribution of the input are also
important factors for reducing communication.

An interesting future direction is to further investigate efficient communication
protocols for approximately computing statistical and graph problems in the message-
passing model, and to explore realistic distributions and layouts of the inputs.
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One question which we have not discussed in this paper but is important for practice,
is whether we can obtain round-efficient protocols that (almost) match the lower bounds
which hold even for round-inefficient protocols? Most simple protocols presented in this
paper only need a constant number of rounds, except the ones for bipartiteness and (ap-
proximate) diameter, where we need to grow BFS trees which are inherently sequential
(require Ω(Δ) rounds where Δ is the diameter of the graph). Using the sketching al-
gorithm in [1], we can obtain a 1-round protocol for bipartiteness that uses Õ(kn) bits
of communication. We do not know whether a round-efficient protocol exists for the
additive-2 approximate diameter problem that could (almost) match the Õ(kn3/2) bits
upper bound obtained by the round-inefficient protocol in Section 6.
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A Proof for Lemma 1

Proof. The original proof is for two players, though this also holds for k > 2 play-
ers since for any distribution μ, if Π is a δ-error protocol then for all possible inputs
x1, . . . , xk to the k players,

Prrandom tapes of the players[Π(x1, . . . , xk) = f(x1, . . . , xk)] ≥ 1− δ,

which implies for any distribution μ on (x1, . . . , xk) that

Prrandom tapes of the players,(x1,...,xk)∼μ[Π(x1, . . . , xk) = f(x1, . . . , xk)] ≥ 1− δ,

which implies there is a fixing of the random tapes of the players so that

Pr(x1,...,xk)∼μ[Π(x1, . . . , xk) = f(x1, . . . , xk)] ≥ 1− δ,

which implies Dδμ(f) is at most Rδ(f).
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Abstract. Topology recognition is one of the fundamental distributed
tasks in networks. Each node of an anonymous network has to deter-
ministically produce an isomorphic copy of the underlying graph, with
all ports correctly marked. This task is usually unfeasible without any a
priori information. Such information can be provided to nodes as advice.
An oracle knowing the network can give a (possibly different) string of
bits to each node, and all nodes must reconstruct the network using this
advice, after a given number of rounds of communication. During each
round each node can exchange arbitrary messages with all its neighbors
and perform arbitrary local computations. The time of completing topol-
ogy recognition is the number of rounds it takes, and the size of advice
is the maximum length of a string given to nodes.

We investigate tradeoffs between the time in which topology recogni-
tion is accomplished and the minimum size of advice that has to be given
to nodes. We provide upper and lower bounds on the minimum size of
advice that is sufficient to perform topology recognition in a given time,
in the class of all graphs of size n and diameter D ≤ αn, for any constant
α < 1. In most cases, our bounds are asymptotically tight. More precisely,
if the allotted time is D − k, where 0 < k ≤ D, then the optimal size of
advice is Θ((n2 log n)/(D−k+1)). If the allotted time is D, then this op-
timal size is Θ(n log n). If the allotted time is D+k, where 0 < k ≤ D/2,
then the optimal size of advice is Θ(1 + (log n)/k). The only remaining
gap between our bounds is for time D + k, where D/2 < k ≤ D. In this
time interval our upper bound remains O(1+ (log n)/k), while the lower
bound (that holds for any time) is 1. This leaves a gap if D ∈ o(log n).
Finally, we show that for time 2D+1, one bit of advice is both necessary
and sufficient.

Our results show how sensitive is theminimum size of advice to the time
allowed for topology recognition: allowing just one round more, from D to
D+ 1, decreases exponentially the advice needed to accomplish this task.
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1 Introduction

The Model and the Problem. Learning an unknown network by its nodes
is one of the fundamental distributed tasks in networks. Once nodes acquire a
faithful labeled map of the network, any other distributed task, such as leader
election [19, 26], minimum weight spanning tree construction [5], renaming [4],
etc. can be performed by nodes using only local computations. Thus constructing
a labeled map converts all distributed problems to centralized ones, in the sense
that nodes can solve them simulating a central monitor.

If nodes are a priori equipped with unique identifiers, they can determinis-
tically construct a labeled map of the network, by exchanging messages, with-
out any additional information about the network. However, even if nodes have
unique identities, relying on them for the task of learning the network is not
always possible. Indeed, nodes may be reluctant to reveal their identities for
security or privacy reasons. Hence it is important to design algorithms recon-
structing the topology of the network without assuming any node labels, i.e., for
anonymous networks. In this paper we are interested in deterministic solutions.

Ports at each node of degree d are arbitrarily numbered 0, . . . , d − 1, and
there is no assumed coherence between port numbers at different nodes. A node
is aware of its degree, and it knows on which port it sends or receives a message.
The goal is, for each node, to get an isomorphic copy of the graph underlying the
network, with all port numbers correctly marked. There are two variants of this
task: a weaker version, that we call anonymous topology recognition, in which
the nodes of the reconstructed map are unlabeled, and a stronger version, that
we call labeled topology recognition, in which all nodes construct a map of the
network assigning distinct labels to all nodes in the same way, and know their
position in this map. Even anonymous topology recognition is not always feasible
without any a priori information given to nodes, as witnessed, e.g., by the class of
oriented rings in which ports at each node are numbered 0,1 in clockwise order.
No amount of information exchange can help nodes to recognize the size of the
oriented ring and hence to reconstruct correctly its topology. Thus, in order to
accomplish (even anonymous) topology recognition for arbitrary networks, some
information must be provided to nodes. This can be done in the form of advice.
An oracle knowing the network gives a (possibly different) string of bits to each
node. Then nodes execute a deterministic distributed algorithm that does not
assume knowledge of the network, but uses message exchange and the advice
provided by the oracle to nodes, in order to reconstruct the topology of the
network by each of its nodes.

In this paper we study tradeoffs between the size of advice provided to nodes
and the time of topology recognition. The size of advice is defined as the length
of the longest string of bits given by the oracle to nodes. For communication, we
use the extensively studied LOCAL model [25]. In this model, communication
proceeds in synchronous rounds and all nodes start simultaneously. In each round
each node can exchange arbitrary messages with all its neighbors and perform
arbitrary local computations. The time of completing a task is the number of
rounds it takes. The central question of the paper is: what is the minimum size of
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advice that enables (anonymous or labeled) topology recognition in a given time
T , in the class of n-node networks of diameter D?

Our Results. We provide upper and lower bounds on the minimum size of
advice sufficient to perform topology recognition in a given time, in the class
C(n,D) of all graphs of size n and diameter D ≤ αn, for any constant α < 1.
All our upper bounds are valid even for the harder task of labeled topology
recognition, while our lower bounds also apply to the easier task of anonymous
topology recognition. Hence we will only use the term topology recognition for all
our results. We prove upper bounds f(n,D, T ) on the minimum size of advice
sufficient to perform topology recognition in a given time T , for the class C(n,D),
by providing an assignment of advice of size f(n,D, T ) and an algorithm, us-
ing this advice, that accomplishes this task, within time T , for any network in
C(n,D). We prove lower bounds on the minimum size of advice, sufficient for a
given time T , by constructing graphs in C(n,D) for which topology recognition
within this time is impossible with advice of a smaller size.

The meaningful span of possible times for topology recognition is between 0
and 2D+1. Indeed, while advice of size O(n2 logn) permits topology recognition
in time 0 (i.e., without communication), we show that topology recognition in
time 2D + 1 can be done with advice of size 1, which is optimal.

For most values of the allotted time, our bounds are asymptotically tight. This
should be compared to many results from the literature on the advice paradigm
(see, e.g., [9,12,13,15,24]), which often either consider the size of advice needed
for feasibility of a given task, or only give isolated points in the curve of tradeoffs
between resources (such as time) and the size of advice.

We show that, if the allotted time is D−k, where 0 < k ≤ D, then the optimal
size of advice is Θ((n2 logn)/(D − k + 1)). If the allotted time is D, then this
optimal size is Θ(n logn). If the allotted time is D+k, where 0 < k ≤ D/2, then
the optimal size of advice is Θ(1 + (log n)/k). The only remaining gap between
our bounds is for time D + k, where D/2 < k ≤ D. In this time interval our
upper bound remains O(1 + (logn)/k), while the lower bound (that holds for
any time) is 1. This leaves a gap if D ∈ o(log n).

Our results show how sensitive is the minimum size of advice to the time
allowed for topology recognition: allowing just one round more, from D to D+1,
decreases exponentially the advice needed to accomplish this task. Our tight
bounds on the minimum size of advice also show a somewhat surprising fact
that the amount of information that nodes need to reconstruct a labeled map
of the network, in a given time, and that needed to reconstruct an anonymous
map of the network in this time, are asymptotically the same in most cases.

Due to the lack of space, most proofs are omitted.

Related Work. Providing nodes with information of arbitrary type that can be
used to perform network tasks more efficiently has been proposed in [1, 7, 9–16,
18,20–22,24,27]. This approach was referred to as algorithms using informative
labeling schemes, or equivalently, algorithms with advice. Advice is given either to
nodes of the network or to mobile agents performing some network task. Several
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authors studied the minimum size of advice required to solve the respective
network problem in an efficient way. Thus the framework of advice permits to
quantify the amount of information needed for an efficient solution of a given
network problem, regardless of the type of information that is provided.

In [9] the authors investigated the minimum size of advice that has to be given
to nodes to permit graph exploration by a robot. In [22], given a distributed
representation of a solution for a problem, the authors investigated the number
of bits of communication needed to verify the legality of the represented solution.
In [13] the authors compared the minimum size of advice required to solve two
information dissemination problems using a linear number of messages. In [14]
the authors established the size of advice needed to break competitive ratio 2 of
an exploration algorithm in trees. In [15] it was shown that advice of constant
size permits to carry on the distributed construction of a minimum spanning tree
in logarithmic time. In [11] the advice paradigm was used for online problems.
In [12] the authors established lower bounds on the size of advice needed to
beat time Θ(log∗ n) for 3-coloring of a cycle and to achieve time Θ(log∗ n) for
3-coloring of unoriented trees. In the case of [24] the issue was not efficiency but
feasibility: it was shown that Θ(n logn) is the minimum size of advice required
to perform monotone connected graph clearing.

Distributed computation on anonymous networks has been investigated by
many authors, e.g., [2, 3, 6, 17, 23, 25, 28] for problems ranging from leader elec-
tion to computing boolean functions and communication in wireless networks.
Feasibility of topology recognition for anonymous graphs with adversarial port
labelings was studied in [28]. The problem of efficiency of map construction by
a mobile agent, equipped with a token, exploring an anonymous graph has been
studied in [8]. In [10] the authors investigated the minimum size of advice that
has to be given to a mobile agent, in order to enable it to reconstruct the topol-
ogy of an anonymous network or to construct its spanning tree. Notice that the
mobile agent scenario makes the problem of map construction much different
from our setting. Since all the advice is given to a single agent, it is impossi-
ble to break symmetry. Hence reconstructing a labeled map in an anonymous
network is usually impossible, and even anonymous map construction often re-
quires to provide a large amount of information to the agent, regardless of the
exploration time. To the best of our knowledge, tradeoffs between time and the
size of advice for topology recognition have never been studied before.

2 Preliminaries

Unless otherwise stated, we use the word graph to mean a simple undirected
connected graph without node labels, and with ports at each node of degree d
labeled {0, . . . , d−1}. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic,
if and only if, there exists a bijection f : V −→ V ′ such that the edge {u, v},
with port numbers p at u and q at v is in E, if and only if, the edge {f(u), f(v)}
with port numbers p at f(u) and q at f(v) is in E′.

The size of a graph is the number of its nodes. Throughout the paper we
consider a fixed positive constant α < 1 and the class of graphs of size n and
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diameter D ≤ αn. We use log to denote the logarithm to the base 2. For a graph
G, a node u in G, and any integer t, we denote by Nt(u) the set of nodes in G
at distance at most t from u.

We will use the following notion from [28]. The view from node u in graph
G is the infinite tree V(u) rooted at u with unlabeled nodes and labeled ports,
whose branches are infinite sequences of port numbers coding all infinite paths
in the graph, starting from node u. The truncated view V l(u) is the truncation
of this tree to depth l ≥ 0.

Given a graph G = (V,E), a function f : V −→ {0, 1}∗ is called a decoration
of G. Notice that an assignment of advice to nodes of G is a decoration of G. For
a given decoration f of a graph G we define the decorated graph Gf as follows.
Nodes of Gf are ordered pairs (v, f(v)), for all nodes v in V . Gf has an edge
{(u, f(u)), (v, f(v))} with port numbers p at (u, f(u)) and q at (v, f(v)), if and
only if, E contains the edge {u, v}, with port numbers p at u and q at v.

We define the decorated view at depth l of node v in G, according to f , as the
truncated view at depth l of node (v, f(v)) in the decorated graph Gf .

The following two lemmas will be used in the proofs of our upper bounds.

Lemma 1. Let G be a graph and let r be a positive integer. There exists a set
X of nodes in G satisfying the following conditions.

• For any node w of G there is a node u ∈ X such that the distance between w
and u is at most r.
• For each pair {u, v} of distinct nodes in X, the distance between u and v is
larger than r.

Lemma 2. Let G be a graph of diameter D and let A be an injective decoration
of G. Then each node u in G can accomplish topology recognition using its view,
decorated according to A, at depth D + 1, even without knowing D a priori.

The following proposition can be easily proved by induction on the round number.
Intuitively it says that, if two nodes executing the same algorithm have the same
decorated views at depth t, then they behave identically for at least t rounds.

Proposition 1. Let G and G′ be two graphs, let u be a node of G and let u′

be a node of G′. Let A be a decoration of G and let A′ be a decoration of G′.
Let A be any topology recognition algorithm. Let σt be the set of triples 〈p, r,m〉,
where m is the message received by node u in round r ≤ t through port p when
executing algorithm A on the graph G, decorated according to A. Let σ′t be defined
as σt, but for u

′, G′, and A′ instead of u, G, and A. If the view of u at depth
t, decorated according to A is the same as the view of u′ at depth t, decorated
according to A′, then σt = σ′t.

Wewill use the above proposition to prove our lower bounds as follows. If the size of
advice is too small, then there are two non-isomorphic graphsG and G′ resulting,
for some node u in G and some node u′ in G′, in the same decorated view at the
depth equal to the time available to perform topology recognition. Hence either u
or u′ must incorrectly reconstruct the topology (even anonymous) of G or G′.
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3 Time 2D + 1

We start our analysis by constructing a topology recognition algorithm that
works in time 2D + 1 and uses advice of size 1. Since we will show that, for
arbitrary D ≥ 3, there are networks in which topology recognition without
advice is impossible in any time, this shows that the meaningful time-span to
consider for topology recognition is between 0 and 2D + 1.

Algorithm TR-1

Advice: The oracle assigns bit 1 to one node (call it v), and bit 0 to all others.
Let A be this assignment of advice.
Node protocol: In round i, each node u sends its view at depth i−1, decorated
according to A, to all its neighbors; it receives such views from all its neighbors
and constructs its view at depth i, decorated according to A. This task continues
until termination of the algorithm.

Let t be the smallest round number at which node u sees a node with advice 1
in its view decorated according to A (at depth t). Node u assigns to itself a label
in round t as follows. The label 
(u) is the lexicographically smallest shortest
path, defined as a sequence of consecutive port numbers (each traversed edge
corresponds to a pair of port numbers), from u to any node with advice 1, in its
decorated view at depth t. (Notice that since there can be many shortest paths
between u and v, this node can appear many times in the decorated view at
depth t of u.) Let A∗ be the decoration corresponding to the labeling obtained
as above. (We will show that labels in A∗ are unique.)

After round t, node u starts constructing its decorated view, according to
decoration A∗. In any round t′ > t, node u sends both its view, decorated
according to A, at depth t′, and its view, decorated according to A∗, at the
largest possible depth. Messages required to perform this task are piggybacked
to those used for constructing views, decorated according to A, at increasing
depths. In each round t′, node u checks for newly discovered values of A∗. As
soon as there are no new values, node u reconstructs the labeled map and outputs
it. Then node u computes the diameter D of the resulting graph and continues
to send its views, decorated according to A and according to A∗, at increasing
depths, until round 2D + 1. After round 2D + 1 node u terminates. �

Proposition 2. Algorithm TR-1 completes topology recognition for all graphs of
size n and diameter D in time 2D + 1, using advice of size 1.

The following proposition shows that advice of size 1, as used by Algorithm TR-1,
is necessary, regardless of the allotted time. As opposed to the n-node rings men-
tioned in the introduction as graphs that require at least one bit of advice, but
whose diameter is �n/2�, the class of graphs we will use to prove the proposition
allows greater flexibility of the diameter.

Proposition 3. Let D ≥ 3 and let n ≥ D + 6 be an even integer. The size of
advice needed to perform topology recognition for the class of all graphs of size
n and diameter D is at least 1.
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4 Time above D

In this section we study the size of advice sufficient to perform topology recog-
nition in arbitrary time larger than D, i.e., large enough for allowing each node
to see all nodes and edges of the graph. We first give an algorithm using advice
of size O(1 + log(n)/k) that performs topology recognition in time D + k.

Algorithm TR-2

Advice: Let G be a graph of size n and diameter D. Let t = �k/4�− 1. If t = 0
then the oracle gives a unique label of size �logn� as advice to each node. Suppose
that t ≥ 1. The oracle picks a set of nodes X satisfying Lemma 1, for r = 2t.
Then it chooses a unique label 
(v) from the set {0, . . . , n−1} for each node v in
X . For any node u ∈ Nt−1(v) let πv(u) be the lexicographically smallest shortest
path (coded as a sequence of consecutive port numbers) from u to v. Sort the
nodes u in Nt−1(v) in the increasing lexicographic order of πv(u). The binary
representation of 
(v) is partitioned into |Nt−1(v)| consecutive segments, each of
length at most �(logn)/|Nt−1(v)|�. The oracle assigns the first segment, with a
trailing bit 1, as advice to node v. For 1 < i ≤ |Nt−1(v)|, the i-th segment, with
a trailing bit 0, is assigned as advice to the i-th node of Nt−1(v). (Notice that
some nodes in Nt−1(v) could receive only the trailing bit 0 as advice.) All other
nodes get the empty string as advice. Let A1 be the above assignment of advice.
Node protocol: We first describe the protocol when t ≥ 1. In round i, each
node u sends its view at depth i − 1, decorated according to A1, to all its
neighbors; it receives such views from all its neighbors and constructs its view
at depth i, decorated according to A1. This task continues until termination of
the algorithm.

Each node u whose advice has a trailing bit 0 assigns to itself a temporary
label 
′(u) as follows. Let s be the smallest round number at which node u sees a
node with advice with a trailing bit 1 in its view decorated according to A1 (at
depth s). The label 
′(u) is the lexicographically smallest shortest path, defined
as a sequence of consecutive port numbers, from u to any node with advice with
a trailing bit 1 in its view, decorated according to A1, at depth s.

Let u be a node whose advice has a trailing bit 0. After reconstructing its
label 
′(u), node u sends (
′(u), A1(u)) to the node v ∈ X closest to it, along
the lexicographically smallest shortest path that determined label 
′(u). Nodes
along this path relay these messages piggybacking them to any message that
they should send in a given round.

Each node v ∈ X (having a trailing bit 1 in its advice) computes t as the
first depth in which its view, decorated according to A1 contains nodes without
any advice. In round 2t each such node reconstructs its label 
(v) from messages
(
′(u), A1(u)) it received (which it sorts in the increasing lexicographic order of

′(u)), and from A1(v).

Let A2 be the decoration of G where each node v in the set X is mapped to
the binary representation of its unique label 
(v), and each node outside of X is
mapped to the empty string.
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Nodes outside of X start constructing their decorated view, according to A2.
This construction is put on hold by a node v in X until the time when it re-
constructs its unique label 
(v). Upon reconstructing its label 
(v), each node
v ∈ X starts constructing its view decorated according to A2, hence allowing its
neighbors to construct their view, decorated according to A2, at depth 1. This
process continues for 2t steps, during which nodes construct and send their views
at increasing depth, decorated according to A2.

Each node u assigns a label 
′′(u) to itself as follows. Let s′ be the smallest
depth at which the view of u, decorated according to A2, contains a node v with
label 
(v) and let λ(u, v) be the lexicographically smallest path connecting u to
such a node v (coded as a sequence of consecutive port numbers). Node u sets

′′(u) = (λ(u, v), 
(v)).

Let A3 be the decoration of G where each node u is mapped to 
′′(u). (We
will prove that A3 is an injective function.) Upon computing its value in A3

each node starts constructing its decorated view, according to A3. In each round
t′, node u checks for newly discovered values of A3. As soon as there are no
new values, node u reconstructs the labeled map and outputs it. Then node u
computes the diameter D of the resulting graph and continues to send its views,
decorated according to A1, according to A2, and according to A3, at increasing
depths, until round D + 4t+ 1. After round D + 4t+ 1 node u terminates.

If t = 0, the protocol consists only of the last step described above, with deco-
ration A3 replaced by the assignment of advice given to nodes by the oracle. �

Theorem 1. Let 0 < k ≤ D. Algorithm TR-2 completes topology recognition
for all graphs of size n and diameter D within time D + k, using advice of size
O(1 + (logn)/k).

We now provide a lower bound on the minimum size of advice sufficient to
perform topology recognition. This bound matches the upper bound given by
Algorithm TR-2 in the time-interval [D + 1, . . . , 3�D/2�].

Theorem 2. Let 2 ≤ D ≤ αn and 0 < k ≤ D/2. The size of advice needed to
perform topology recognition in time D + k in the class of graphs of size n and
diameter D is in Ω((log n)/k).

Proof. Our lower bound will be proved using the following classes B(n,D, k)
of graphs of size n and diameter D, called brooms. We define these classes for
n sufficiently large and for k < logn. Nodes in a broom B ∈ B(n,D, k) are
partitioned into three sets, called the bristles, the stick, and the handle. Let m
be the largest even integer such that km+D − k < n.

The set bristles consists of km nodes, partitioned into m pairwise disjoint sets
B1, . . . , Bm, each of size k. The stick consists of D− k nodes, and the remaining
n− (km+D− k) nodes are in the handle. Hence the bristles, the stick, and the
handle are non-empty sets. We now describe the set of edges in each part.

Edges of the bristles are partitioned into two sets, E1 and E2. Edges in E1

connect nodes of each set Bi into a path with port numbers 0 and 1 at each
edge. We call head of each set Bi the endpoint of the path to which port number
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1 has been assigned, and tail the other endpoint (to which port number 0 has
been assigned). Notice that sets Bi can be of size 1, in which case heads coincide
with tails. Edges in E2 form a perfect matching M among tails of the bristles.
These edges have port number 1 at both endpoints.

Edges of the stick form a path of length D − k − 1 with port numbers 0 and
1 at each edge. (Notice that this path is of length 0, i.e., the stick consists of a
single node, when D = 2.) The handle has no edges.

The bristles, the stick, and the handle are connected as follows. Let u be the
endpoint of the stick to which port number 1 has been assigned, and let v be
the other endpoint of the stick (to which port number 0 has been assigned).
Nodes v and u coincide when D = 2. Node v is connected to the head of each
set Bi by an edge with port numbers i at v and 0 at each head. Node u is
connected to each node in the handle. Port numbers at u corresponding to these
connecting edges are numbered {0, 2, . . . , n − (km + D − k)}, if u 	= v, and
{0,m + 1, . . . , n − (k − 1)m − 2}, if u = v. Nodes in the handle are of degree
1, so they have a unique port with number 0. See Figure 1 for an example of a
broom in B(23, 6, 3). Notice that all brooms in B(n,D, k) are defined over the
same set of nodes and share the same edges, apart from those in sets forming
perfect matchings among tails of the bristles. Moreover notice that growing the
length of the bristles above �D/2� would result in a graph of diameter larger
than D, which explains the assumption k ≤ D/2.
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Fig. 1. A broom in B(23, 6, 3)

For two brooms B′ and B′′ in B(n,D, k) we define corresponding nodes as
follows. Let h′ and h′′ in B′ and B′′, respectively, be the nodes in the handles
whose only incident edge has port number 0 at both endpoints. Node u′ ∈ T ′

corresponds to node u′′ ∈ T ′′, if and only if, the (unique) shortest path (defined
as the sequence of port numbers on consecutive edges) from h′ to u′ is the same
as the shortest path from h′′ to u′′.

The idea of the proof is to show that if the size of advice is smaller than
c(logn)/k, for a sufficiently small constant 0 < c < 1, then there exist two
brooms in B(n,D, k), whose corresponding nodes receive the same advice, for
which the decorated view at depth D + k of each node in the handle remains
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the same in both brooms. Since different brooms are non-isomorphic, this will
imply the theorem, in view of Proposition 1.

Observe that for k ∈ Ω(logn), we have that c(log n)/k is constant, and Ω(1)
is a lower bound on the size of advice for topology recognition, regardless of the
allowed time. Hence we do not need to define brooms when k ≥ logn to prove
the theorem.

We now provide a lower bound on the size of the class B(n,D, k). This size
depends on the number m of tails of the bristles among which perfect matchings
M can be defined. For given n and k, the size of the class B(n,D, k) cannot
increase when D grows. Hence the class is smallest for the largest considered
value of D, i.e., D = �αn�. We do the estimation for this value of D.

The number of perfect matchings among tails is at least (m − 1) · (m − 3) ·
(m− 5) · . . . · 3 · 1 > (m/2)!.

Suppose, from now on, that the size of advice is bounded by c(logn)/k,
for some constant 0 < c < 1. Then there are at most 2(c(logn)/k+1)n ways of
assigning advice to nodes of a broom in B(n,D, k). Hence there are at least
(m/2)!/2(c(logn)/k+1)n brooms in B(n,D, k) for which corresponding nodes get
the same advice. Fix one such assignment A of advice.

We now provide an upper bound on the number of distinct decorated views,
at depth D+ k, of any node in the handle, when advice is assigned to nodes ac-
cording to A. Consider two brooms B′ and B′′ in B(n,D, k), decorated according
to assignment A. Let M ′ and M ′′ be the perfect matchings among tails of the
bristles corresponding to brooms B′ and B′′, respectively. B′ and B′′ result in
distinct decorated views, at depth D+ k, of corresponding nodes in the handle,
if and only if, there exist corresponding tails of the bristles t′i ∈ B′ and t′′i ∈ B′′,
such that the decorated path B′

j , whose tail t′j is matched to t′i in M
′ and the

decorated path B′′
h , whose tail t

′′
h is matched to t′′i inM

′′, are different. The num-
ber of distinct decorated paths Bi of length k− 1 is at most x = 2(c(logn)/k+1)k.
Since m ≤ n/k, it follows that there are at most xn/k = 2(c(logn)/k+1)n distinct
decorated views, at depth D + k, for any node in the handle, for assignment A.

We will show that the following inequality (m/2)! > 22(c(logn)/k+1)n which we
denote by (*), holds for c < (1−α)/128, when n is sufficiently large. Indeed, for
sufficiently large n we have m > n(1− α)/(2k); in view of k < logn, taking the
logarithms of both sides we have

log
(m
2
!
)
>
m

4
log

m

4
>
n(1− α)

8k
log

n(1− α)
8k

≥ 2

(
c logn

k
+ 1

)
n.

Inequality (*) implies that (m/2)!/2(c(logn)/k+1)n > 2(c(logn)/k+1)n . Hence
the number of brooms from B(n,D, k), decorated according to assignment A,
exceeds the number of distinct decorated views, at depth D+ k, of any node in
the handle, for these brooms. It follows that some decorated view corresponds
to different brooms from B(n,D, k). In view of Proposition 1, this proves that
(even anonymous) topology recognition in time D+ k, for the class of graphs of
diameter D and size n, requires advice of size at least (1 − α)(log n)/(128k) ∈
Ω(log n/k). �
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Since the lower bound Ω(1) on the size of advice holds regardless of time,
theorems 1 and 2 imply the following corollary.

Corollary 1. Let D ≤ αn and 0 < k ≤ D/2. The minimum size of advice
sufficient to perform topology recognition in time D+ k in the class of graphs of
size n and diameter D is in Θ(1 + (log n/k)).

5 Time D

In this section we provide asymptotically tight upper and lower bounds on the
minimum size of advice sufficient to perform topology recognition in time equal
to the diameter D of the network. Together with the upper bound proved in
Theorem 1, applied to time D+1, these bounds show an exponential gap in the
minimum size of advice due to time difference of only one round.

Algorithm TR-3

Advice: The oracle assigns a unique label 
(u) from the set {0, . . . , n − 1} to
each node u. The advice given to each node u consists of the diameter D, the
label 
(u), and the collection of all edges incident to u, coded as quadruples
〈
(u), p, q, 
(v)〉, where p is the port number at node u corresponding to edge
{u, v}, and q is the port number at node v corresponding to this edge.
Node protocol: In round i, each node sends to all its neighbors the collection
of edges learned in all previous rounds. After D rounds each node reconstructs
the topology and stops. �

Proposition 4. Algorithm TR-3 completes topology recognition for all graphs of
size n and diameter D in time D, using advice of size O(n log n).

The following lemma will be used for our lower bound.

Lemma 3. There are at least (
∏n−1
i=1 i!i

i)/n! non-isomorphic cliques of size n.

We define the following classes L(n,D) of graphs of size n and diameter D ≤ αn,
called lollipops. These graphs will be used to prove our lower bounds for time D
and below. Nodes in a lollipop L ∈ L(n,D) are partitioned into two sets, called
the candy and the stick. The candy consists of n − D nodes; for the purpose
of describing our construction we will call these nodes w1, . . . , wn−D. The stick
consists of the remaining D nodes.

Nodes in the candy are connected to form a clique; port numbers for these
edges are assigned arbitrarily from the set {0, . . . , n−D− 2}. Edges of the stick
form a path of length D − 1 with port numbers 0 and 1 at each edge. The stick
and the candy are connected as follows. Let v be the endpoint of the stick to
which port number 1 has been assigned and let u be the other endpoint of the
stick (to which port number 0 has been assigned). Notice that u and v coincide,
when D = 1. Node v is connected to all nodes in the candy. The port number, at
node v, corresponding to edge {v, wi} is 0, if i = 1. For i > 1 this port number
is i, when u 	= v and i − 1, when u = v. The port number, at all nodes wi,
corresponding to edge {v, wi} is n−D − 1.

Since, for D ≤ αn, the size of the candy of a lollipop in L(n,D) is at least
�n(1− α)�, Lemma 3 implies the following corollary:
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Corollary 2. The size of the class L(n,D), for D ≤ αn is at least

(
∏	n(1−α)
−1
i=1 i!ii)/�n(1− α)�! .

Theorem 3. Let D ≤ αn. The size of advice needed to perform topology recog-
nition in time D in the class of graphs of size n and diameter D is in Ω(n logn).

Proof. If we consider a lollipop of diameter D ≤ αn, then there are Ω(n2) edges
of the candy that are outside of the view at depthD of the endpoint u of the stick.
The idea of the proof is based on the fact that information about these edges
has to be assigned to nodes of the graph as advice that will become available to
u within time D.

First observe that the view at depth D of the endpoint u of the stick is the
same for all lollipops in L(n,D). Hence, if the size of advice is at most cn logn,

then the number of distinct decorated views of node u is at most 2cn
2 logn+n <

2cn
2(log n+1). We will show that, if c < (1 − α)2/7, then, for sufficiently large n,

the number of lollipops in L(n,D) exceeds this bound. Indeed, by Corollary 2,

the size of the class L(n,D) is at least
∏�n(1−α)�−1

i=1 i!ii

	n(1−α)
! . For sufficiently large n we

have∏�n(1−α)�−1
i=1 i!ii

�n(1− α)�! >

�n(1−α)�−2∏
i=1

i!ii >

((
n(1− α)

2

)
!

(
n(1− α)

2

)n(1−α)/2
)n(1−α)/3

.

It is enough to show that
(
n(1−α)

2

)n2(1−α)2/6
> 2n

2(log n+1)(1−α)2/7, which is

immediate to verify by taking the logarithm of both sides.
It follows that the same decorated view at depth D of node u corresponds to

different lollipops from L(n,D). In view of Proposition 1, this proves that (even
anonymous) topology recognition in time D, for the class of graphs of size n and
diameterD ≤ αn, requires advice of size at least (n logn)(1−α)2/7 ∈ Ω(n log n).

�

Proposition 4 and Theorem 3 imply the following corollary.

Corollary 3. Let D ≤ αn. The minimum size of advice sufficient to perform
topology recognition in time D in the class of graphs of size n and diameter D
is in Θ(n logn).

6 Time below D

In this section we study the minimum size of advice sufficient to perform topology
recognition when the time allotted for this task is too short, for some node, to
communicate with all other nodes in the network.

Algorithm TR-4

Advice: Let G be a graph of size n and diameter D. The oracle assigns a unique
label 
(v) from {0, . . . , n− 1} to each node v in the graph G. It codes all edges
of the graph as quadruples 〈
(u), p, q, 
(v)〉, where 
(u) and 
(v) are the labels
of two adjacent nodes u and v, p is the port number at node u corresponding to
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edge {u, v}, and q is the port number at node v corresponding to this edge. Let
E be the set of all these codes.

Let t = �(D − k)/3�. If t = 0, then the advice provided by the oracle to each
node u is: 
(u), the collection E of all edges, and the integer 0.

If t ≥ 1, then the oracle picks a set X of nodes in G satisfying Lemma 1,
for r = 2t. Let z(x) = |Nt(x)|. Moreover, let E1, . . . , Ez(x) be a partition of the
edges in E into z(x) pairwise disjoint sets of sizes differing by at most 1. Let
v1, . . . , vz(x) be an enumeration of nodes in Nt(x). The advice given by the oracle
to node vi ∈ Nt(x) consists of the label 
(vi), of the set Ei, and of the integer
t. Every other node u only gets 
(u) and t as advice. Let A be the resulting
assignment of advice.
Node protocol: Let t be the integer received by all nodes as part of their advice.
In round i, with 1 ≤ i ≤ 3t, each node sends to all its neighbors the collection
of edges learned in all previous rounds. (In particular, if t = 0, then there is no
communication.) After 3t rounds of communication each node reconstructs the
topology and stops. �

Theorem 4. Let 0 < k ≤ D. Algorithm TR-4 completes topology recognition
for all graphs of size n and diameter D within time D − k, using advice of size
O((n2 logn)/(D − k + 1)).

The following lower bound shows that the size of advice used by Algorithm TR-4

is asymptotically optimal.

Theorem 5. Let D ≤ αn and 0 < k ≤ D. The size of advice needed to perform
topology recognition in time D − k in the class of graphs of size n and diameter
D is in Ω((n2 logn)/(D − k + 1)).

Theorems 4 and 5 imply the following corollary.

Corollary 4. Let D ≤ αn and 0 < k ≤ D. The minimum size of advice suffi-
cient to perform topology recognition in time D− k in the class of graphs of size
n and diameter D is in Θ((n2 logn)/(D − k + 1)).

7 Conclusion and Open Problems

We presented upper and lower bounds on the minimum size of advice sufficient to
perform topology recognition, in a given time T , in n-node networks of diameter
D. Our bounds are asymptotically tight for time T = 2D + 1 and, if D ≤ αn
for some constant α < 1, in the time interval [0, . . . , 3D/2]. Moreover, in the
remaining time interval (3D/2, . . . , 2D] our bounds are still asymptotically tight
if D ∈ Ω(log n). Closing the remaining gap between the lower bound 1 and the
upper bound O(1+ (log n)/k) in this remaining time interval, for graphs of very
small diameter D ∈ o(logn), is a natural open problem. In particular, it would
be interesting to find the minimum time in which topology recognition can be
accomplished using advice of constant size, or even of size exactly 1.

Other open problems remain in the case of networks with very large diameter,
those which do not satisfy the assumption D ≤ αn for some constant α < 1, or
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equivalently those for which n−D ∈ o(n). Our upper bounds do not change in
this case (we did not use the assumption D ≤ αn in their analysis), while our
lower bounds change as follows, using the same constructions. The lower bound
for time above D, i.e., when T = D+ k, where 0 < k ≤ D, becomes Ω((log(n−
D))/k); our lower bound for time D becomes Ω(((n −D)2 log(n −D))/n); the
lower bound for time below D, i.e., when T = D−k, where 0 < k ≤ D, becomes
Ω(((n−D)2 log(n−D))/(D−k+1)). It remains to close the gaps between these
lower bounds and the upper bounds that we gave for each allotted time.

Finally, let us address the issue of node identities vs. advice given to nodes.
We did our study for unlabeled networks, arguing that nodes may be reluctant
to disclose their identities for security or privacy reasons. As we have seen, how-
ever, for anonymous networks some advice has to be given to nodes, regardless of
the allotted time. Does the oracle have to provide new distinct labels to nodes?
Our results show that for time above D this is not the case, as the minimum size
of advice enabling topology recognition in this time is too small for assigning a
unique identifier to each node. Hence, in spite of not having been given, a priori,
unique identifiers, nodes can perform labeled topology recognition in this time
span. On the other hand for time at most D, the minimum size of advice is
sufficiently large to provide distinct identifiers to nodes, and indeed our oracles
inserted unique identifiers as part of advice. However, this should not raise con-
cerns about security or privacy, as these identifiers may be arbitrary and hence
should be considered as “nicknames” temporarily assigned to nodes.
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Abstract. We present a deterministic obstruction-free implementation
of leader election from O(

√
n) atomic O(log n)-bit registers in the stan-

dard asynchronous shared memory system with n processes. We provide
also a technique to transform any deterministic obstruction-free algo-
rithm, in which any process can finish if it runs for b steps without
interference, into a randomized wait-free algorithm for the oblivious ad-
versary, in which the expected step complexity is polynomial in n and
b. This transformation allows us to combine our obstruction-free algo-
rithm with the leader election algorithm by Giakkoupis and Woelfel [21],
to obtain a fast randomized leader election (and thus test-and-set) im-
plementation from O(

√
n) O(log n)-bit registers, that has expected step

complexity O(log∗ n) against the oblivious adversary.
Our algorithm provides the first sub-linear space upper bound for

obstruction-free leader election. A lower bound of Ω(logn) has been
known since 1989 [29]. Our research is also motivated by the long-
standing open problem whether there is an obstruction-free consensus
algorithm which uses fewer than n registers.

Keywords: leader election, test-and-set, shared memory model, ran-
domized algorithms, obstruction-free algorithms.

1 Introduction

One of the fundamental theoretical questions in shared memory research is
whether certain standard primitives can be simulated from other ones (given
certain progress conditions), and if yes, how much resources (usually time and
space) are necessary for such simulations. Perhaps the best studied problem
in this context is that of consensus, where each process receives an input and
processes have to agree on one of their inputs. Consensus cannot be solved de-
terministically with wait-free progress in shared memory systems that provide
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only shared atomic registers [20]. The study of which primitives can be used to
solve consensus deterministically in systems with a certain number of processes
has led to Herlihy’s famous wait-free hierarchy [24]. Randomized algorithms can
solve consensus and guarantee randomized wait-freedom even if only registers are
available. The randomized step complexity of the consensus problem has been
studied thoroughly and is well understood for most of the common adversary
models [8–13].

On the other hand, it is still open how many registers are needed in a system
with n processes to have a randomized wait-free implementation of consensus, or
even an obstruction-free one. Fich, Herlihy and Shavit [18] showed that at least
Ω(
√
n) registers are necessary, but no obstruction-free algorithm that uses fewer

than n registers is known. (The lower bound holds in fact even for the weaker
progress condition of nondeterministic solo termination, and for implementations
from any historyless base objects.) The space complexity of other fundamental
primitives has also been investigated, e.g., the implementation of timestamp
objects from registers and historyless objects [17, 23], or that of a wide class of
strong primitives called perturbable objects such as counters, fetch-and-add and
compare-and-swap from historyless objects [25].

In this paper we consider leader election, another fundamental and well-
studied problem, which is related to consensus but is seemingly much simpler.
In a leader election protocol for n processes, each process has to decide on one
value, win or lose, such that exactly one process (the leader) wins. The prob-
lem is related to name consensus, where processes have to agree on the ID of a
leader—whereas in leader election each process only has to decide whether it is
the leader or not. Leader election is also closely related to, and in most models
equally powerful as, the test-and-set (TAS) synchronization primitive. TAS is
perhaps the simplest standard shared memory primitive that has no wait-free
deterministic implementation from registers. A TAS object stores one bit, which
is initially 0, and supports a TAS() operation which sets the bit’s value to 1
and returns its previous value. It has consensus number two, so it can be used
together with registers to solve deterministic wait-free consensus only in systems
with two processes. TAS objects have been used to solve many classical problems
such as mutual exclusion and renaming [4–6, 14, 15, 26, 28]. Processes can solve
leader election using one TAS object by simply calling TAS() once, and return-
ing win if the TAS() call returned 0, or lose otherwise. On the other hand a
very simple algorithm using a leader election protocol and one additional binary
register can be used to implement a linearizable TAS object, where for a TAS()

operation each process needs to execute only a constant number of operations
in addition to the leader election protocol [22].

Significant progress has been made in understanding the step complexity of
randomized leader election [2, 3, 6, 21, 30]. In particular, in the oblivious ad-
versary model (where the order in which processes take steps is independent
of random decisions made by processes), the most efficient algorithm guaran-
tees that the expected step complexity (i.e., the expected maximum number
of steps executed by any process) is O(log∗ k), where k is the contention [21].
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Little is known, however, about the space complexity of randomized wait-free
or obstruction-free leader election. For the much weaker progress condition of
deadlock freedom, it is known that the space complexity of leader election is
Θ(log n) [29]. Clearly, this implies also a space lower bound of Ω(log n) for ran-
domized wait-free and obstruction-free leader election. Still, prior to our work
presented here, no obstruction-free (or even nondeterministic solo terminating)
algorithm was known for solving leader election with fewer than n registers.

We devise the first deterministic obstruction-free algorithm for leader election
(and thus for TAS) which uses only O(

√
n) registers. The algorithm is simple

but elegant.

Theorem 1. There is an obstruction-free implementation of a leader election
object for n processes from

√
2n+ o(

√
n) atomic O(log n)-bit registers.

This result raises the question whether it is also possible to obtain a fast random-
ized wait-free algorithm for leader election. The relation between wait-freedom
and obstruction-freedom has been investigated before: Fich, Luchangco, Moir,
and Shavit [19] showed that obstruction-free algorithms can be transformed to
wait-free ones in the unknown-bound semi-synchronous model.

In this paper we follow a different approach, as we use randomization, but
stay in the fully asynchronous model. It is easy to see that any deterministic
obstruction-free algorithm can be transformed into an algorithm which is ran-
domized wait-free against the oblivious adversary: Whenever a process is about
to perform a shared memory step in the algorithm, it can flip a coin, and with
probability 1/2 it performs the step of the algorithm (called “actual” step), while
with the remaining probability it executes a “dummy” step, e.g., reads an ar-
bitrary registers. Suppose a process is guaranteed to finish the obstruction-free
algorithm if it performs b unobstructed steps. Any execution of length bn (i.e.,
where exactly bn shared memory steps are performed) must contain a process
that executes at least b steps, and with probability at least 1/2bn that process
executes b actual steps while all other processes execute just dummy steps. Then
during an execution of length bn ·2bn ·(log n+c) some process runs unobstructed
for at least b actual steps with probability 1−O(1/2c). Hence, the algorithm is
randomized wait-free.

This naive transformation yields exponential expected step complexity. We
provide a slightly different but also simple transformation (which requires a
more sophisticated analysis) to show the following result.

Theorem 2. Suppose there is a deterministic obstruction-free algorithm which
guarantees that any process finishes after it has executed at most b steps without
interference from other processes. Then the algorithm can be transformed into
a randomized one that has the same space complexity, and for any fixed sched-
ule (determined by an oblivious adversary) each process returns after at most
O
(
b(n+b) log(n/δ)

)
of its own steps with probability at least 1−δ, for any δ > 0

that can be a function of n.

As mentioned above, Giakkoupis and Woelfel [21] have recently presented a ran-
domized leader election algorithm which has O(log∗ k) expected step complexity
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against the oblivious adversary, where k is the contention. The algorithm requires
Θ(n) registers, but with high probability (w.h.p.) processes access only the first
poly-logarithmic number of them. The idea is now to reduce the space require-
ments of this algorithm by removing the registers which are not needed in most
executions, and then in the unlikely event that processes run out of registers, they
switch to the algorithm obtained by applying the transformation of Theorem 2 to
the algorithm from Theorem 1.

Theorem 3. There is a randomized implementation of leader election from√
2n + o(

√
n) atomic O(log n)-bit registers which guarantees that for any fixed

schedule (determined by an oblivious adversary), the maximum number of steps
executed by any process is O(log∗ k) in expectation and O(log n) w.h.p., where k
is the contention.

Model and Preliminaries

We consider the standard asynchronous shared memory model where up to n
processes communicate by reading and writing to shared atomic multi-reader
multi-writer O(log n)-bit registers. Processes may fail by crashing at any time.

An algorithm may be deterministic or randomized. If it is randomized, then
processes can use local coin-flips to make random decisions. For randomized
algorithms, the scheduling and process crashes are controlled by an adversary,
which at any point of an execution decides which process will take the next step.
In this paper we only deal with the oblivious adversary, which determines the
entire (infinite) schedule ahead of time, i.e., before the first process takes a step.

A deterministic algorithm is wait-free if every process finishes in a finite num-
ber of its own steps. It is obstruction-free, if it guarantees that any process will
finish if it performs enough steps alone (i.e, without interference from other pro-
cesses). If the algorithm is randomized, and every process finishes in an expected
finite number of steps, then the algorithm is randomized wait-free [24].

Our algorithms use an obstruction-free and linearizable scan() operation,
which returns a view of an M -element array R (a view is the vector of all array
entry values). Implementations ofM -component snapshot objects which provide
M -element arrays supporting linearizable scan() operations are well-known [1,
7, 16]. But in order to achieve our space upper bounds we need a snapshot im-
plementation that uses only O(M) bounded registers. The wait-free implemen-
tation by Fich, Fatourou, and Ruppert [16] has space-complexity O(M) but uses
unbounded registers. In Appendix A we present a linearizable obstruction-free
implementation of a linearizable snapshot object from M +1 O(log n)-bit regis-
ters, where each scan() operation finishes after O(M) unobstructed steps.

2 Obstruction-Free Leader Election

We present an obstruction-free implementation of leader election from O(
√
n)

registers. The algorithm proceeds in phases, during which processes have access
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Algorithm 1. Pseudocode for process p.

/* Let m =
√
2n+ c 4

√
n, where c > 0 is a suitable constant */

shared: array R[0 . . .m] of pairs (process ID, phase number) initialized to (0, 0)
1 φ ← 1 /* p’s current phase number */

2 while φ ≤ m do
3 r[0 . . .m] ← R.scan()
4 if ∃ i, p′, φ′ > φ : r[i] = (p′, φ′)
5 or

(
|{j : r[j] = (p, φ)}| ≤ 1 and ∃ q |{j : r[j] = (q, φ)}| ≥ 2

)
then

6 return lose

7 else if r[0 . . . φ] = [(p, φ) . . . (p, φ)] then
8 φ ← φ+ 1 /* proceed to the next phase */

9 else
10 Let i be the smallest index such that r[i] 
= (p, φ). /* i ≤ φ */

11 R[i] ← (p, φ)

12 end

13 end
14 return win

to a shared array R[0 . . .m] of registers, where m =
√
2n+ o(

√
n). Each register

of R stores a pair (process ID, phase number). In phase 1 ≤ φ ≤ m, process p
tries to write value (p, φ) on all registers R[0 . . . φ]. After each write, p obtains a
view r of array R using a scan().

Process p loses if one of the two happens: (i) some entry of view r contains
a phase number larger than p’s phase φ; or (ii) two (or more) entries of r have
the same value (q, φ) for some q 	= p, while at most one entry has value (p, φ).
If neither (i) nor (ii) happens, then p picks the smallest i such that i ≤ φ for
which r[i] 	= (p, φ) and writes (p, φ) to R[i]. If no such i exists, i.e., all entries of
r[0 . . . φ] are equal to (p, φ), then p enters the next phase, φ+ 1. A process wins
when it reaches phase m+ 1. Pseudocode is given in Algorithm 1.

The above algorithm is not wait-free: First of all, our scan() operation is only
obstruction-free. But even if we used wait-free snapshot objects, no process may
finish the algorithm for certain schedules. E.g., suppose two processes alternate
in executing the while-loop of Algorithm 1 (and each of them executes the entire
loop without obstruction). Then whenever one of them scans R in line 3, R[0]
does not contain that process’ ID, so the process remains in phase 1 and writes
to R[0] in line 11. We show below that our algorithm is obstruction-free.

The proof of Theorem 1 unfolds in a series of lemmas. First we show that
not all processes lose; thus at least one process wins or does not finish. Then
we argue that a process finishes if it runs without interruption for long enough.
Last, we show that no two processes win.

To distinguish between the local variables of different processes, we may
explicitly state the process as a subscript, e.g., φp.

Lemma 1. There is no execution in which all participating processes lose.
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Proof. Suppose, towards a contradiction, that there is some non-empty execution
in which all participating processes lose. Let φmax be the largest phase in which
any process participates in this execution. Clearly φmax ≤ m, because if for some
process p we have φp = m+ 1 then φp must have increased from m to m+ 1 in
line 8, and after that p cannot lose as it does not do another iteration of the while-
loop. Among all processes participating in phase φmax, consider the last process
p that executes a scan() in line 3, i.e., the linearization point of the scan()

by p is after the corresponding linearization points of the scan() operations by
any other process participating in phase φmax. After p has executed line 3 for
the last time, rp must satisfy the condition of the if-statement in the next line
(otherwise p does not lose), i.e., either (i) ∃ i, p′, φ′ > φmax : r[i] = (p′, φ′), or
(ii) we have

|{j : rp[j] = (p, φmax)}| ≤ 1 ∧ ∃ q |{j : rp[j] = (q, φmax)}| ≥ 2. (1)

By φmax’s definition, condition (i) does not hold; hence, condition (ii) holds.
Consider now a process q that realizes this condition, and consider the last
scan() by that process. Then by the same argument as for p, after this scan()
we have that rq satisfies

|{j : rq[j] = (q, φmax)}| ≤ 1 ∧ ∃w |{j : rq [j] = (w, φmax)}| ≥ 2. (2)

Since q does not execute any write to R after its scan(), and since we have
assumed that the last scan() by p linearizes after the scan() by q, it follows
that {j : rp[j] = (q, φmax)} ⊆ {j : rq[j] = (q, φmax)}. However, the cardinality of
the set to the left is at least 2 by (1), and the cardinality of the set to the right
is at most 1 by (2). We have thus reached the desired contradiction. �
Lemma 2. For any reachable configuration C, an execution started at C in
which just a single process p takes steps finishes after at most O(n3/2) steps.

Proof. The step complexity of the execution is dominated by the step complexity
of the scan() operations by p, in line 3. Each of these operations is completed
in O(m) steps, as p runs solo. Further, for each phase φ in which p participates
it performs (at most) φ + 1 iterations of the while-loop, until it overwrites all
entries of R[0 . . . φ] by (p, φ), in line 11. It follows that p finishes after a number
of steps bounded by O

(∑
1≤φ≤m φm

)
= O(m3) = O(n3/2). �

Lemma 3. There is a constant c > 0 such that if m ≥
√
2n+ c 4

√
n, then in any

execution at most one process wins.

Proof. For each 1 ≤ φ ≤ m + 1, let Nφ be the set of processes that participate
in phase φ and let nφ = |Nφ|. To simplify notation, we assume that there is also
phase 0, in which all n processes participate by default, and phases φ > m+1 in
which no process participates; we extend the definitions of Nφ and nφ to those
dummy phases as well. Clearly, the sequence of nφ, φ ≥ 0, is non-increasing.
Below we analyze how fast this sequence decreases.

We show that the number k of phases after phase φ, until at most k processes
are left is bounded by

√
2nφ +O

(
4
√
nφ

)
, and at most nφ + 1 phases are needed

after φ to be left with a single process. Formally, for any 0 ≤ φ ≤ m we show
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(a) min{k : nφ+k ≤ k} ≤
√
2nφ +O

(
4
√
nφ

)
; and

(b) min{k : nφ+k ≤ 1} ≤ nφ + 1.

From this claim, Lemma 3 follows easily: For φ = 0 it follows from (a) that
nk1 ≤ k1 for some k1 ≤

√
2n0+O( 4

√
n0) =

√
2n+O( 4

√
n). Applying (a) again, for

φ = k1, yields nk1+k2 ≤ k2 for some k2 ≤
√
2nk1 +O( 4

√
nk1) ≤

√
2k1+O(

4
√
k1) =

O( 4
√
n). Finally, for φ = k1+k2, we obtain from (b) that nk1+k2+k2 ≤ 1 for some

k3 ≤ k2 + 1. Therefore, nφ ≤ 1 for φ = k1 + k2 + k3 ≤
√
2n+O( 4

√
n).

It remains to prove (a) and (b). We start with the proof of (b), which is more
basic. Suppose that nφ = 
 > 1. We must show that nφ+�+1 ≤ 1. Assume, for
the sake of contradiction, that nφ+�+1 ≥ 2, and let p be the first process to
enter phase φ+ 
+1, i.e., p’s last scan() operation in phase φ+ 
 precedes the
corresponding operations of other processes from Nφ+�+1. This scan() returns a
view r of R in which all entries of r[0 . . . φ+
] have value (p, φ+
). We claim that
after this happens no other process can enter phase φ+ 
+1, thus contradicting
the assumption that nφ+�+1 ≥ 2. Observe that each process writes to R at most
once before it executes a scan() on R. Further at most nφ− 1 = 
− 1 processes
q 	= p can write to R[φ . . . φ + 
]. Thus, if any such process q executes a scan()

on R, it will find at least two entries with values (p, k), for k ≥ φ + 
, and at
most one entry (q, φ + 
), and thus q will lose.

Next we prove (a). We proceed as follows. For a phase i = φ+k, if ni−ni+1 < k
(i.e., fewer than k of the processes participating in phase i fail to enter the
next phase, i + 1), we argue that during the time interval in which the last
di = k− (ni−ni+1) processes enter phase i+1, at least some minimum number
of processes from Nφ perform their “final” write operation to R. We show that
this minimum number of processes is at least di(di− 1)/2 if ni ≥ k, and observe
that the total number of such processes for all i ≥ φ is bounded by nφ. Further,
we have that the sum of the differences k−di is also bounded by nφ. Combining
these two inequalities yields the claim.

We give now the detailed proof. Consider a phase i ≥ φ, let k = i − φ, and
suppose that ni ≥ k. Let di = max{0, k − (ni − ni+1)}. Suppose that di ≥ 2,
and consider the last di processes from Ni to enter phase i + 1. Let ti be the
time when the first of these di processes enters phase i + 1, and t′i be the time
when the last one does. We argue now that at least

∑
1≤j<di j = di(di − 1)/2

processes from Nφ perform their last write operation between times ti and t
′
i.

First note that no process enters a phase other than i+1 between times ti and t
′
i.

Suppose now that the j-th of the di processes has just entered phase i+1, where
1 ≤ j < di, and let p be that process. Then, right after p’s scan() we have that
all entries in R[0 . . . i] are equal to (p, i). Unless all but at most one of the entries
R[φ . . . i] are subsequently overwritten by processes in phase i or smaller, no
other process can enter phase i+1. Since p is not the last process to enter phase
i+1, and the number of processes left in phase i is (di− j)+(ni−ni+1) = k− j,
it follows that to overwrite i − φ = k of the k + 1 entries of R[φ . . . i] at least
k − (k − j) = j of them must be overwritten by processes that are in phases
smaller than i; this will be the final write for those processes. It follows that
at least

∑
1≤j<di j = di(di − 1)/2 processes from Nφ perform their last write
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operation between ti and t
′
i, as desired. Note that this result holds also when

di < 2, as in this case the above sum is 0. Observe now that for two distinct i
with di ≥ 2 the intervals [ti, t

′
i] do not overlap, and thus the sets of processes

that do their final write to each of these intervals are distinct. It follows that
the total number of processes from Nφ that do a final write in the execution is
at least

∑
φ≤i<κ di(di − 1)/2, where κ = min{k : nφ+k ≤ k}. Since this number

cannot exceed the size of Nφ, we have

nφ ≥
∑

φ≤i<φ+κ
di(di − 1)/2. (3)

In addition to the above inequality, we have that

nφ =
∑

φ≤i<φ+κ
(ni − ni+1) + nφ+κ ≥

∑
φ≤i<φ+κ

(ni − ni+1)

≥
∑

φ≤i<φ+κ
(i− φ− di) = κ(κ− 1)/2−

∑
φ≤i<φ+κ

di. (4)

(The second inequality follows from the definition of di.)
We now combine the two inequalities above to bound κ. Let λ =

∑
φ≤i<φ+κ di.

Then (3) gives

nφ ≥
∑

φ≤i<φ+κ
d2i /2− λ/2 ≥ λ2/(2κ)− λ/2 (by Cauchy-Schwarz Inequality).

Solving for λ gives λ ≤ (κ +
√
κ2 + 8κnφ)/2. Applying this bound of λ =∑

φ≤i<φ+κ di to (4) and rearranging gives κ2 ≤ 2nφ+2κ+
√
κ2 + 8κnφ. Solving

for κ yields κ ≤
√
2nφ+O

(
4
√
nφ

)
. This completes the proof of (a) and the proof

of Lemma 3. �
Lemmas 1-3 imply that Algorithm 1 is a correct obstruction-free leader election
algorithm using 2

√
n+ o(

√
n) registers, proving Theorem 1.

Remark 1. We can use an early termination criterion, in which p exits the while-
loop (and wins) if the condition of line 7 is satisfied and, in addition, p has seen no
process other than itself during phases φ and φ− 1: Since p does not see another
process during phase φ− 1, it follows that no process finishes phase φ− 1 before
p. And since p does not see any process during phase φ either, it follows that
no process finishes phase φ− 1 before p finishes phase φ. Thus, no process other
than p ever completes phase φ. The detailed argument is straightforward and
is omitted due to space constraints. Applying this early termination criterion
achieves that each process p finishes after O(n) instead of O(n3/2) solo steps.

3 Obstruction Freedom vs. Randomized Wait Freedom

We present now a simple technique that transforms any deterministic
obstruction-free algorithm into a randomized one that has the same space com-
plexity and is randomized wait-free against the oblivious adversary. In partic-
ular, if the deterministic implementation guarantees that any process finishes
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after executing at most b steps without interference, then the randomized im-
plementation guarantees that any process finishes w.h.p. after a number of steps
that is bounded by a polynomial function of n and b, namely, O(b(n+ b) logn).

We apply the above transformation to Algorithm 1 presented in Section 2,
to obtained a randomized implementation for leader election that has the same
O(
√
n) space complexity, and polynomial step complexity against the adaptive

adversary. Then we explain how this randomized implementation can be com-
bined with known faster randomized leader election implementation to achieve
simultaneously both space- and time-efficiency.

Next we describe the simple transformation technique. Suppose we are given a
deterministic obstruction-free algorithm which guarantees that any participating
processes p finishes its execution after it takes a sequence of at most b steps
during which no other process takes steps. (E.g., from Lemma 2, we have that
b = O(n3/2) for Algorithm 1.) The randomized implementation we propose is as
follows. Every process p flips a biased coin before its first step, and also again
every b steps. Each coin flip returns heads with probability 1/n and tails with
probability 1 − 1/n, independently of other coin flips. If the outcome of a coin
flip by p is heads, then in the next b steps following the coin flip, p executes the
next b steps of the given deterministic algorithm; if the outcome is tails then the
next b steps of p are dummy steps, e.g., p repeatedly reads some shared register.

Analysis. We show that the requirements of Theorem 2 are met by the random-
ized implementation described above, i.e., a process flips a coin every b steps and
with probability 1/n it executes the next b steps of the deterministic algorithm,
while with probability 1− 1/n it takes b dummy steps instead.

Let σ = (π1, π2, . . .) be an arbitrary schedule determining an order in which
processes take steps. We assume that σ is fixed before the execution of the algo-
rithm, and in particular before processes flip their coins. For technical reasons
we assume that after a process finishes it does not stop, but it takes no-op steps
whenever it is its turn to take a step according to σ. Also the process continues
to flip a coin every b steps; the outcome of this coin flip has no effect on the
execution, but is used for the analysis.

We start with a rough sketch of the proof. We sort processes participating in
schedule σ in increasing order in which they are scheduled to take their (λb)-th
step, where λ = Θ

(
(n+ b) log(n/δ)

)
. Let pi denote the i-th process in this order.

We will argue about p1 first. We define λ disjoint blocks of σ, where the 
-th
block starts with the first step of p1 after its 
-th coin flip, and finishes after the
last step of p1 before its (
+ 1)-th coin flip. Let m� denote the number of steps
contained in block 
; then

∑
�m� ≤ nλb by p1’s definition. Further, the number

of coin flips that occur in block 
 is at most O(m�/b+n). These coin flips, plus at
most n additional coin flips preceding the block (one by each process), determine
which of the steps in the block are actual steps and which ones are dummy. If
all these coin flips by processes other than p1 return tails, we say that the block
is unobstructed. Such a block does not contain any actual steps by processes
other than p1. It follows that the probability of block 
 to be unobstructed is at
least (1 − 1/n)O(m�/b+n). The expected number of unobstructed blocks is then
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�(1− 1/n)O(m�/b+n), and we show that this is Ω(λ) using that
∑
�m� ≤ nλb.

We then show that this Ω(λ) bound on the number of unobstructed blocks
holds also w.h.p. This would follow easily if for different blocks the events that
the blocks are unobstructed were independent; but they are not, as they may
depend on the outcome of the same coin flip. Nevertheless we observe that the
dependence is limited, as each coin flip affects steps in at most b different blocks
and each block is affected by at most O(n) coin flips on average. To obtain the
desired bound we use a concentration inequality from [27], which is a refinement
of the standard method of bounded differences. Once we have established that
Ω(λ) blocks are unobstructed, it follows that the probability that process p1
flips heads at the beginning of some unobstructed block is 1 − (1 − 1/n)Ω(λ) =
1− e−Ω(λ/n) ≥ 1− δ/n for the right choice of constants. Hence with at least this
probability, p1 finishes after at most λb steps.

Similar bounds are obtained also for the remaining processes: We use the same
approach as above for each pi, except that in place of σ we use the schedule σi
obtained from σ by removing all instances of pj except for the first λb ones, for
all 1 ≤ j < i. We conclude that with probability 1− δ/n, pi finishes after taking
at most λb steps, assuming that each of p1, . . . , pi−1 also finishes after at most
λb steps. The theorem then follows by combining the results for all processes.

We give now the detailed proof. Let λ = β(n+b) ln(n/δ), for a constant β > 0
to be quantified later. Let p1, . . . , pk be the processes participating in schedule
σ, listed in the order in which they are scheduled to take their (λb)-th step;
processes that take fewer steps than λb are not listed. Let σi, for 1 ≤ i ≤ k, be
the schedule obtained from σ after removing all instances of pj except for the
first λb ones, for all 1 ≤ j < i. For each 1 ≤ i ≤ k, we identify λ disjoint blocks
of σi, where the 
-th block, denoted σi,�, starts with pi’s step following its 
-th
coin flip, and finishes after the last step of pi before its (
 + 1)-th coin flip. By
|σi,�| we denote the number of steps contained in σi,�. We have

∑
� |σi,�| ≤ nλb,

i.e., blocks σi,1, . . . , σi,λ contain at most nλb steps in total, namely, λb steps by
each of processes p1, . . . , pi, and fewer than λb steps by each of the remaining
processes.

Observe that if pi has not finished before block σi,� begins, and if pi’s coin
flip before block σi,� returns heads, then pi is guaranteed to finish during σi,� if
all other steps by non-finished processes during σi,� are dummy steps.

We say that a coin flip potentially obstructs σi,� if it is performed by a process
p 	= pi, and at least one of the b steps by p following that coin flip takes place
during σi,�. This step will be an actual step only if the coin flip is heads (this is
not ‘if and only if’ because p may have finished, in which case it does a no-op).
We say that block σi,� is unobstructed if all coin flips that potentially obstruct
this block are tails. The number of coin flips that potentially obstruct σi,� is
bounded by |σi,�|/b + 2n, because if process p 	= pi takes s > 0 steps in σi,�,
then the coin-flips by p that potentially obstruct σi,� are the at most �s/b� ones
during σi,�, plus at most one before σi,�.

From the above, the probability that σi,� is unobstructed is at least
(1 − 1/n)|σi,�|/b+2n. Thus the expected number of unobstructed blocks among
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σi,1, . . . , σi,λ is at least
∑
�(1 − 1/n)|σi,�|/b+2n. Using now that

∑
� |σi,�| ≤ nλb,

and that (1−1/n)x+2n is a convex function of x, we obtain that the above sum is
minimized when all λ blocks have the same size, equal to nb. Thus, the expected
number of unobstructed blocks is at least∑
�

(1 − 1/n)|σi,�|/b+2n ≥ λ(1 − 1/n)(nb)/b+2n ≥ λ(1 − 1/n)3n > λ/43 = λ/64.

Next we use Theorem 4, from Appendix B, to lower bound the number
of unobstructed blocks w.h.p. Let the binary random variables X1, X2, . . . de-
note the outcome of the coin flips that potentially obstruct at least one block
σi,1, . . . , σi,λ (Xj = 1 if and only if the j-th of those coin flips is heads). Then,
Pr[Xj = 1] = 1/n. Let f(X1, X2, . . .) denote the number of unobstructed blocks.
We showed above that E[f(X1, X2, . . .)] ≥ λ/64. Further, we observe that chang-
ing the value of Xj can change the value of f by at most the number of blocks
that Xj potentially obstructs; let cj denote that number. Then, maxj cj ≤ b. Fi-
nally, since each block mi,� is potentially obstructed by at most |σi,�|/b + 2n
coin flips,

∑
j cj ≤

∑
�(|σi,�|/b + 2n) ≤ 3nλ, as

∑
� |σi,�| ≤ nλb, and thus∑

j c
2
j ≤ (3nλ/b) · b2 = 3nbλ. Applying now Theorem 4 for t = λ/128 ≤

E[f(X1, X2, . . .)]/2 gives Pr
(
f(X1, . . . , Xn) ≤ t

)
≤ 2 exp

(
− t2

6bλ+2tb/3

)
. Substi-

tuting t = λ/128 = (β/128)(n+ b) ln(n/δ) and letting β = 2(6 · 1282+2 · 128/3)
yields Pr

(
f(X1, . . . , Xn) ≤ λ/128

)
≤ 2e−2 ln(n/δ) < δ/(2n). Thus, with

probability at least 1 − δ/(2n) at least λ/128 of the blocks σi,1, . . . , σi,λ are
unobstructed. The probability that process pi flips heads in at least one un-
obstructed block is then at least

(
1 − δ/(2n)

)
·
(
1 − (1 − 1/n)λ/128

)
. Since

1 − (1 − 1/n)λ/128 ≥ 1 − eλ/(128n) > 1 − δ/(2n), the above probability is at

least
(
1− δ/(2n)

)2 ≥ 1− δ/n.
We have just shown that for any 1 ≤ i ≤ k, with probability at least 1 −

δ/n process pi finishes after at most λb steps assuming schedule σi. However,
schedules σ and σi yield identical executions if processes p1, . . . , pi−1 all finish
after executing at most λb steps (the executions are identical assuming that the
same coin flips are used in both). Then, by the union bound, the probability
that all processes pi finish after executing no more than λb steps each is at least
1− n · δ/n = 1− δ. This concludes the proof of Theorem 2.

Randomized Leader Election. From Theorem 2 and Lemma 2 it follows that
Algorithm 1 can be transformed into a randomized leader election implementa-
tion with step complexity O(n3 logn).

Corollary 1. There is a randomized variant of Algorithm 1 that has the same
space complexity, and for any fixed schedule (determined by an oblivious adver-
sary), w.h.p. every process finishes after at most O(n3 logn) steps.

If we use a variant of Algorithm 1 which employs the early termination criterion
described in Remark 1 on page 53, then b = O(n) and thus the step complexity
of the randomized algorithm obtained is O(n2 logn) w.h.p.
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Giakkoupis and Woelfel [21] proposed a randomized implementation for leader
election from Ω(n) registers with expected step complexity O(log∗ n) against
the oblivious adversary. Next we give an overview of this algorithm, and explain
how to combine it with the randomized variant of Algorithm 1 to reduce space
complexity to O(

√
n), without increasing the asymptotic step complexity.

The algorithm in [21] uses a chain of n group-election objects G1, . . . , Gn
alternating with n deterministic splitters S1, . . . , Sn, and a chain of n 2-process
leader election objects L1, . . . , Ln. Each group-election objectGi guarantees that
at least one of the processes accessingGi gets elected, and if k processes accessGi
then O(log k) get elected in expectation. Each splitter Si returns one of the three
outcomes: win, lose, or cont (for continue). It guarantees that if k processes
access it, then at most one wins, at most k−1 lose, at most k−1 continue; thus,
if only one process accesses the splitter, that process wins.

A process p proceeds by accesses the group-election objects in increasing index
order. If p accesses Gi and fails to get elected, it loses immediately; if it does get
elected, it then tries to win splitter Si. If it loses Si, it loses also the implemented
leader election; if it returns cont it continues to the next group-election object,
Gi+1; and if it wins Si, it switches to the chain of 2-process leader election
objects. In the last case it subsequently tries to win Li, Li−1, . . . , L1 (in this
order). If it succeeds, it wins the implemented leader election, else it loses.

The analysis of the above algorithm given in [21] shows that in expectation
only the first O(log∗ n) group-election objects are used. Further, for any i =
ω(log∗ n), the probability that Si is used is bounded by 2−Ω(i).

We propose the following simple modification to this algorithm: For an index
K = Θ(log2 n), we replace group-election objectGK with the randomized variant
of Algorithm 1, and then remove all objects Gi, Si, and Li, for i > K. Clearly,
the first modification does not affect the correctness of the algorithm, since any
leader election algorithm is also a group-election algorithm. This modification
guarantees that at most one process will ever access SK . It follows that objects
Gi, Si, and Li for i > K will never be used, and thus are no longer needed. Hence,
the space complexity of the new implementation is equal to that of Algorithm 1
plus O(log3 n) registers, as each group-election object can be implemented from
O(log n) registers. Further, the step complexity of the algorithm is the same
as that of the original algorithm from [21], because a process reaches GK with

probability at most 2−Ω(log2 n) = n−Ω(logn), and when this happens at most
O(n3 logn) additional steps are needed w.h.p., by Corollary 1. Thus, we have
proved Theorem 3.

4 Conclusion

We provided a randomized wait-free algorithm for leader election (and thus
test-and-set) from O(

√
n) registers and with O(log∗ n) expected step complex-

ity against the oblivious adversary. To obtain our result we first developed an
obstruction-free algorithm with O(

√
n) space complexity. Then we devised and

applied a general construction that shows how any deterministic obstruction-
free algorithm can be transformed to a randomized wait-free one, such that the
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expected step complexity is polynomial in n and in the maximum number of
unobstructed steps a process needs to finish the obstruction-free algorithm.

We are not aware of any other obstruction-free implementation of an object
with consensus number two or higher from o(n) registers. Perhaps the most in-
teresting open questions remains to be whether there is a consensus algorithm
that needs only sub-linear many registers. While it is not clear whether our tech-
niques can help developing such an algorithm, we believe that it yields interesting
insights. Finding an o(n)-space algorithm for consensus would seem hopeless if
it weren’t even possible for the seemingly simpler problem of leader election.
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Appendix A: Obstruction-Free M -Component Snapshots

We present an obstruction-free implementation of anM -component snapshot ob-
ject fromM+1 bounded registers. Formally, anM -component snapshot stores a
vector V = (V1, . . . , VM ) ofM values from some domainD. It supports two oper-
ations; scan() takes no parameter and returns the value of V , and update(i,x),
i ∈ {1, . . . ,M}, x ∈ D, writes x to the i-th component of V and returns nothing.

Our implementation uses an array A[1 . . .M ] of shared registers and a register
S. Each array entry A[i] stores a triple (wi, pi, bi), where wi ∈ D represents the
i-th entry in the vector V of the snapshot object, pi is a process ID or ⊥ which
identifies the last process that wrote to A[i], and bi ∈ {0, 1} is a bounded (modulo
2) sequence number. Initially, S = ⊥ and each array entry A[i] has the value
(wi,⊥, 0) for some fixed wi ∈ D.

Now suppose process p calls update(i, x), and this is p’s j-th update of the
i-th component of V . To perform the update, p first writes its ID to S and then
it writes the triple (x, p, j mod 2) to A[i].

To execute a scan(), process p first writes its ID to S. Then it performs a
collect (i.e., it reads all entries of A) to obtain a view a[1 . . .M ], and another
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collect to obtain a second view a′[1 . . .M ]. Finally, the process reads S. If S does
not contain p’s ID or if the views a and a′ obtained in the two collects differ,
then p starts its scan() over; otherwise it returns view a.

Obviously scan() is obstruction-free, and update() is even wait-free. Note
also that a process which runs without obstruction can finish each operation in
O(M) steps.

To prove linearizability, we use the following linearization points: Each
update(i, x) operation linearizes at the point when the calling process writes
to A[i], and each scan() operation that terminates linearizes at the point just
before the calling process performs its last collect during its scan(). (We don’t
linearize pending scan() operations.)

Consider a scan() operation by process p which returns the view a =
a[1 . . .M ]. Let t be the point when that scan() linearizes, i.e., just before p
starts its last collect. To prove linearizability it suffices to show that A = a at
point t.

For the purpose of a contradiction assume that this is not the case, i.e., there is
an index i ∈ {1, . . . ,M} such that at time t the triple stored in A[i] is not equal to
a[i]. Let t1 and t2 be the points in time when p reads the value (w, q, b) = a[i] from
A[i] during its penultimate and ultimate collect, respectively. Then t1 < t < t2.
Since A[i] 	= (w, q, b) at time t but A[i] = (w, q, b) at times t1 and t2, process q
writes (w, q, b) to A[i] at some point in the interval (t, t2) ⊆ (t1, t2). Since p does
not write to A during its scan(), this implies q 	= p.

First suppose q writes to A[i] at least twice during (t1, t2). Each such write
must happen during an update() operation by q. Since each update() operation
starts with a write to S, q writes its ID to S at least once in (t1, t2). But since
the penultimate collect of p’s scan() starts before t1 and the ultimate collect
finishes after t2, S cannot change in the interval (t1, t2), which is a contradiction.

Hence, suppose q writes to A[i] exactly once in (t1, t2); in particular it writes
the triple (w, q, b) to A[i] at some point t∗ ∈ (t1, t2). Recall that each time q
writes to A[i] it alternates the bit it writes to the third component. Hence, at
no point in [t1, t

∗] the second and third component of A[i] can have value q and
b. In particular, A[i] 	= (w, q, b) at point t1, which is a contradiction.

Appendix B: A Concentration Inequality

The next result follows from [27, Theorem 3.9], which is an extension to the
standard method of bounded differences.

Theorem 4. Let X1, . . . , Xn be independent 0/1 random variables with
Pr(Xi = 1) = p. Let f be a bounded real-valued function defined on {0, 1}n,
such that |f(x) − f(x′)| ≤ ci, whenever vectors x, x′ ∈ {0, 1}n differ only in the
i-the coordinate. Then for any t > 0,

Pr
(
|f(X1, . . . , Xn)−E[f(X1, . . . , Xn)]| ≥ t

)
≤ 2 exp

(
− t2

2p
∑

i c
2
i+2tmaxi{ci}/3

)
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Abstract. We do a game-theoretic analysis of leader election, under the assump-
tion that each agent prefers to have some leader than to have no leader at all. We
show that it is possible to obtain a fair Nash equilibrium, where each agent has
an equal probability of being elected leader, in a completely connected network,
in a bidirectional ring, and a unidirectional ring, in the synchronous setting. In
the asynchronous setting, Nash equilibrium is not quite the right solution con-
cept. Rather, we must consider ex post Nash equilibrium; this means that we
have a Nash equilibrium no matter what a scheduling adversary does. We show
that ex post Nash equilibrium is attainable in the asynchronous setting in all the
networks we consider, using a protocol with bounded running time. However,
in the asynchronous setting, we require that n > 2. We can get a fair ε-Nash
equilibrium if n = 2 in the asynchronous setting, under some cryptographic as-
sumptions (specifically, the existence of a pseudo-random number generator and
polynomially-bounded agents), using ideas from bit-commitment protocols. We
then generalize these results to a setting where we can have deviations by a coali-
tion of size k. In this case, we can get what we call a fair k-resilient equilibrium
if n > 2k; under the same cryptographic assumptions, we can a get a k-resilient
equilibrium if n = 2k. Finally, we show that, under minimal assumptions, not
only do our protocols give a Nash equilibrium, they also give a sequential equi-
librium [23], so players even play optimally off the equilibrium path.

1 Introduction

As has been often observed, although distributed computing and game theory are inter-
ested in much the same problems—dealing with systems where there are many agents,
facing uncertainty, and having possibly different goals—in practice, there has been a
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significant difference in the models used in the two areas. In game theory, the focus
has been on rational agents: each agent is assumed to have a utility on outcomes, and
be acting so as to maximize expected utility. In distributed computing, the focus has
been on the “good guys/bad guys” model. The implicit assumption here is that there
is a system designer who writes code for all the processes in the system, but some of
the processes may get taken over by an adversary, or some computers may fail. The
processes that have not been corrupted (either by the adversary or because of a faulty
computer) follow the designer’s protocol. The goal has typically been to prove that the
system designer’s goals are achieved, no matter what the corrupted processes do.

More recently, there has been an interest in examining standard distributed computed
problems under the assumption that the agents are rational, and will deviate from the
designer’s protocol if it is in their best interest to do so. Halpern and Teague [19] were
perhaps the first to do this; they showed (among other things) that secret sharing and
multiparty communication could not be accomplished by protocols with bounded run-
ning time, if agents were using the solution concept of iterated admissibility (i.e., iter-
ated deletion of weakly dominated strategies). Since then, there has been a wide variety
of work done at the border of distributed computing and game theory. For one thing,
work has continued on secret sharing and multiparty computation, taking faulty and ra-
tional behavior into account (e.g., [1,10,17,18,28]). There has also been work on when
and whether a problem that can be solved with a trusted third party can be converted to
one that can be solved using cheap talk, without a third party, a problem that has also at-
tracted the attention of game theorists (e.g., [1,2,4,6,11,16,20,21,25,29,34,35,36]). This
is relevant because there are a number of well-known distributed computing problems
that can be solved easily by means of a “trusted” mediator. For example, if fewer than
half the agents are corrupted, then we can easily do Byzantine agreement with a medi-
ator: all the agents simply tell the mediator their preference, and the mediator chooses
the majority. Another line of research was initiated by work on the BAR model [3];
see, for example, [30,37]. Like the work in [1,2], the BAR model allows Byzantine
(or faulty) players and rational players; in addition, it allows for acquiescent players,
who follow the recommended protocols.1 Traditional game theory can be viewed as
allowing only rational players, while traditional distribution computing considers only
acquiescent and Byzantine players.

In this paper, we try to further understand the impact of game-theoretic thinking on
standard problems in distributed computing. We consider the classic distributed com-
puting problem of electing a leader in an anonymous network (a network where, ini-
tially, each process knows its own name, but does not know the name of any other
process). Leader election is a fundamental problem in distributed computing. Not sur-
prisingly, there are numerous protocols for this problem (see, e.g., [9,14,24,27,32]) if
we assume that no agents have been corrupted; there have also been extensions that deal
with corrupted agents [15,22]. Much of this work focuses on leader election in a ring
(e.g., [9,14,24,27,32]).

In this paper we study what happens if we assume that agents are rational. It is
easy to show that if all agents (a) prefer to have a leader to not having a leader and

1 Originally, the “A” in “BAR” stood for altruistic, but it was changed to stand for “acquiescent”
[37].
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(b) are indifferent as to who is the leader, then all the standard distributed computing
protocols work without change. This can be viewed as formalizing the intuition that in
the standard setting in distributed computing, we are implicitly assuming that all the
agents share the system designer’s preferences. But what happens if the agents have
different preferences regarding who becomes the leader? For example, an agent may
prefer that he himself becomes the leader, since this may make the cost of routing to
other agents smaller. In this case, the standard protocols (which typically assume that
each agent has a distinct id, and end up electing the agent with the lowest id, or the agent
with the highest id, as the leader) do not work; agents have an incentive to lie about their
id. Nevertheless, there is always a trivial Nash equilibrium for leader election: no one
does anything. Clearly no agent has any incentive to do anything if no one else does.
We are thus interested in obtaining a fair Nash equilibrium, one in which each agent
has an equal probability of being elected leader. Moreover, we want the probability
that someone will be elected to be 1.2 In the language of the BAR model, we allow
acquiescent and rational players, but not Byzantine players.

It is easy to solve leader election with a mediator: the agents simply send the mediator
their ids, and the mediator picks an id at random as the leader and announces it to the
group. We cannot immediately apply the ideas in the work on solving the problem with
a mediator and then replacing the mediator with cheap talk to this problem because all
these results assume (a) that agents have commonly-known names, (b) that the network
is completely connected, and (c) the network is synchronous. Nevertheless, we show
that thinking in terms of mediators can be helpful in deriving a simple protocol in the
case of a completely connected network that is a fair Nash equilibrium in which a leader
is elected with probability 1. We can then modify the protocol so that it works when the
network is a ring. We also show that our protocol is actually k-resilient [1,2]: it tolerates
coalitions of size k, as long as n > k. This forms an interesting contrast to work on
Byzantine agreement, where it is known that the network must be 2k + 1 connected to
tolerate k Byzantine failures [12]. But we can tolerate coalitions of k rational players
even in a unidirectional ring.

These protocols work if the network is synchronous. What happens in an asyn-
chronous setting? Before answering this question, we need to deal with a subtlety: what
exactly a Nash equilibrium is in an asynchronous setting? To make sense of Nash equi-
librium, we have to talk about an agent’s best response. An action for an agent i is a
best response if it maximizes i’s expected utility, given the other agents’ strategies. But
to compute expected utility, we need a probability on outcomes. In general, in an asyn-
chronous setting, the outcome may depend on the order that agents are scheduled and on
message-delivery times. But we do not have a probability on these. We deal with these

2 Without the last requirement, the existence of a fair Nash equilibrium follows from well-known
results, at least in the case of a completely connected network. We can model our story as a
symmetric game, one where all agents have the same choice of actions, and an agent’s payoff
depends only on what actions are performed by others, not who performs them. In addition to
showing that every game has a Nash equilibrium, Nash also showed that a symmetric game
has a symmetric Nash equilibrium, and a symmetric equilibrium is clearly fair. However, in a
symmetric equilibrium, it may well be the case that there is no leader chosen. For example, a
trivial symmetric equilibrium for our game is one where everyone chooses a candidate leader
at random. However, in most cases, agents choose different candidates, so there is no leader.
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problems in this setting by using the standard approach in distributed computing. We
assume that an adversary chooses the scheduling and chooses message-delivery times,
and try to obtain a strategy that is a Nash equilibrium no matter what the adversary does.
This intuition gives rise to what has been called in the literature an ex post Nash equilib-
rium. We provide a simple protocol that gives a fair ex post Nash equilibrium provided
that n > 2. More generally, we provide a fair ex post k-resilient equilibrium as long as
n > 2k. We then show that these results are optimal: there is no fair k-resilient ex post
Nash equilibrium if n ≤ 2k.

The lower bounds assume that agents are not computationally bounded. If we as-
sume that agents are polynomially-bounded (and make a standard assumption from the
cryptography literature, namely, that a pseudorandom number generator exists), then
we can show, using ideas of Naor [31], that there is a fair ex post ε-Nash equilibrium
in this case (one where agents can gain at most ε by deviating) for an arbitrarily small
ε; indeed, we can show that there is a fair ex post ε–k-resilient equilibrium as long as
n > k.

Finally, we show that, under minimal assumptions, not only do our protocols give
a Nash equilibrium, they also give a sequential equilibrium [23], so players even play
optimally off the equilibrium path.

2 The Model

We model a network as a directed, simple (so that there is at most one edge between
each pair of nodes), strongly connected, and finite graph. The nodes represent agents,
and the edges represent communication links. We assume that the topology of the net-
work is common knowledge, so that if we consider a completely connected network,
all agents know that the network is completely connected, and know that they know,
and so on; this is similarly the case when we consider unidirectional or bidirectional
rings. Deviating agents can communicate only using the network topology; there is no
“out of band” communication. We assume that, with each agent, there is associated a
unique id, taken from some commonly-known name space, which we can take to be a
set of natural numbers. Initially agents know their ids, but may not know the id of any
other agent. For convenience, if there are n agents, we name them 1, . . . , n. These are
names used for our convenience when discussing protocols (so that we can talk about
agent i); these names are not known by the agents. Message delivery is handled by the
channel (and is not under the control of the agents). Agents can identify on which of
their incoming links a message comes in, and can distinguish outgoing links.

When we consider synchronous systems, we assume that agents proceed in lockstep.
In roundm, (ifm > 0) after all messages sent in roundm−1 are received by all agents,
agents do whatever internal computation they need to do (including setting the values
of variables); then messages are sent (which will be received at the beginning of round
m + 1). 3 In the asynchronous setting, agents are scheduled to move at arbitrary times
by a (possibly adversarial) scheduler. When they are scheduled, they perform the same
kinds of actions as in the synchronous case: receive some messages that were sent to
them earlier and not yet received, do some computation, and send some messages. For
ease of exposition, we assume that the message space is finite. While we assume that

3 Thus, the synchronous model assumes no “rushing”.
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all messages sent are eventually received (uncorrupted), there is no bound on message
delivery time. Nor do we make any assumption on the number of times one agent can be
scheduled relative to another, although we do assume that agents are scheduled infinitely
often (so that, for all agents i and times t, there will be a time after twhen i is scheduled).

For leader election, we assume that each agent i has a variable leader i which can be
set to some agent’s id. If, at the end of the protocol, there is an id v such that leader i = v
for all agents i, then we say that the agent with id v has been elected leader. Otherwise,
we say that there is no leader. (Note that we are implicitly requiring that, when there
is a leader, all the players know who that leader is.) We assume that each agent i has a
utility on outcomes of protocols. For the purposes of this paper, we assume that agents
prefer having a leader to not having one, in the weak sense that each agent i never
assigns a higher utility to an outcome where there is no leader than to one in which
there is a leader (although we allow the agent to be indifferent between an outcome
where there is no leader and an outcome where there is a leader). We make no further
assumptions on the utility function. It could well be that i prefers that he himself is
the leader rather than anyone else; i could in addition prefer a protocol where he sends
fewer messages, or does less computation, to one where he sends more messages or does
more computation. Nevertheless, our eassumptions require that player i never prefers
an outcome where there is no leader to one where there is, even if the latter outcome
involves sending many messages and a great deal of computation (although in fact our
protocols are quite message-efficient and do not require much computation). Note that
our assumptions imply that agent i can “punish” other agents by simply setting leader i
to ⊥; this ensures that there will be no leader. In the language of [6], this means that
each agent has a punishment strategy.

A strategy profile (i.e., a strategy or protocol for each agent) is a Nash equilibrium
if no agent can unilaterally increase his expected utility by switching to a different
protocol (assuming that all the other agents continue to use their protocols). It is easy
to see that if all the agents are indifferent regarding who is the leader (i.e., if, for each
agent i, i’s utility of the outcome where j is the leader is the same for all j, including
j = i), then any protocol that solves leader election is a Nash equilibrium. Note that it
is possible that one Nash equilibrium Pareto dominates another: all agents are better off
in the first equilibrium. For example, if agents are indifferent about who the leader is,
so that any protocol that solves leader election is a Nash equilibrium, all agents might
prefer an equilibrium where fewer messages are sent; nevertheless, a protocol for leader
election where all agents send many messages could still be a Nash equilibrium.

For the remainder of this paper, we assume that each agent has a preference for
leadership: agent i’s utility function is such that i does not give higher utility to an
outcome where there is no leader than to one where there is a leader. (Agent i may also
prefer to be the leader himself, or have preferences about which agent j is the leader if
he is not the leader; these preferences do not play a role in this paper.)

3 The Protocols

We consider protocols in three settings: a completely connected network, a unidirec-
tional ring, and a bidirectional ring. We also consider both the synchronous case and
the asynchronous case.
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3.1 Completely Connected Network, Synchronous Case

Consider leader election in a completely connected network. First suppose that we have
a mediator, that is, a trusted third party. Then there seems to be a naive protocol that can
be used: each agent tells the mediator his id, then the mediator picks the highest id, and
announces it to all the agents. The agent with this id is the leader. This naive protocol
has two obvious problems. First, since we assume that the name space is commonly
known, and all agents prefer to be the leader, agents will be tempted to lie about their
ids, and to claim that the highest id is their id. Second, even if all agents agree that an
agent with a particular id v is the leader, they don’t know which agent has that id.

We solve the first problem by having the mediator choose an id at random; we solve
the second problem by having agents share their ids. In more detail, we assume that in
round 1, agents tell each other their ids. In round 2, each agent tells the mediator all the
set of ids he has heard about (including his own). In round 3, the mediator compares all
the sets of ids. If they are all the same, the mediator chooses an id v at random from the
set; otherwise, the mediator announces “no leader”. If the mediator announces that v is
the leader, each agent i sets leader i = v (and marks the incoming link on which the id
v was originally received); otherwise, leader i is undefined (and there is no leader).

It is easy to see that everyone using this protocol gives a Nash equilibrium. If some
agent does not send everyone the same id, then the mediator will get different lists from
different agents, and there will be no leader. And since a leader is chosen at random, no
one has any incentive not to give his actual id. Note that this protocol is, in the language
of [1,2], k-resilient for all k < n, where n is the number of agents. That is, not only is
it the case that no single agent has any incentive to deviate, neither does any coalition
of size k. Moreover, the resulting Nash equilibrium is fair: each agent is equally likely
to be the chosen leader.

Now we want to implement this protocol using cheap talk. Again, this is straight-
forward. At round 1, each agent i sends everyone his id; at round 2, i sends each other
agent j the set of ids that he (i) has received (including his own). If the sets received
by agent i are not all identical or if i does not receive an id from some agent, then i
sets leader i to ⊥, and leader election fails. Otherwise, let n be the cardinality of the
set of ids. Agent i chooses a random number Ni in {0, . . . , n − 1} and sends it to all
the other agents. Each agent i then computes N =

∑n
i=1Ni (mod n), and then takes

the agent with the N th highest id in the set to be the leader. (If some agent j does
not send i a random number, then i sets leader i = ⊥.) Call this protocol for agent i
LEADcc

i . The formal pseudocode of the protocol appears in the full paper, available
at http://www.cs.cornell.edu/home/halpern/papers/leader.pdf. Let LEADcc denote the
profile (LEADcc

1 , . . . ,LEAD
cc
1 ) (we use boldface for profiles throughout the paper).

Clearly, with the profile LEADcc , all the agents will choose the same leader. It is also
easy to see that no agent (and, indeed, no group of size k < n) has any incentive to
deviate from this strategy profile.

Theorem 1. LEADcc is a fair, k-resilient equilibrium in a completely connected
network of n agents, for all k < n. 4

4 All proofs can be found in the full paper.
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Up to now we have implicitly assumed that each agent somehow gets a signal regarding
when to start the protocol. This assumption is unnecessary. Even if only some agents
want to start the protocol, they send a special round 0 message to everyone asking them
to start a leader election protocol. The protocol then proceeds as above.

3.2 Unidirectional Ring, Synchronous Case

We give a Nash equilibrium for leader election in a unidirectional ring, under the as-
sumption that the ring size n is common knowledge. This assumption is necessary, for
otherwise an agent can create k sybils, for an arbitrary k, and pretend that the sybils are
his neighbors. That is, i can run the protocol as if the ring size is n + k rather than n,
simulating what each of his sybils would do. No other agent can distinguish the situa-
tion where there are n agents and one agent has created k sybils from a situation where
there are actually n+k agents. Of course, if any of i’s sybils are elected, then it is as if i
is elected. Thus, creating sybils can greatly increase i’s chances of being elected leader,
giving i an incentive to deviate. (However, the overhead of doing may be sufficient to
deter an agent from doing so. See the discussion in Section 4.) Note that in the case
of a completely connected network, given that the topology is common knowledge, the
number of agents is automatically common knowledge (since each agent can tell how
many agents he is connected to).

The protocol is based on the same ideas as in the completely connected case. It
is easy to ensure that there is agreement among the agents on what the set of agents
is; implementing a random selection is a little harder. We assume that the signal to
start leader election may come to one or more agents. Each of these agents then sends
a “signed” message (i.e., a message with his id) to his neighbor. Messages are then
passed around the ring, with each agent, appending his id before passing it on. If an
agent receives a second message that originated with a different agent, the message is
ignored if the originating agent has a lower id; otherwise it is passed on. Eventually the
originator of the message with the highest id gets back the message. At this point, he
knows the ids of all the agents. The message is then sent around the ring a second time.
Note that when an agent gets a message for the second time, he will know when the
message should make it back to the originator (since the system is synchronous and he
knows the size of the ring).

At the round when the originator gets back the message for the second time, each
agent i chooses a random numberNi < n and sends it around the ring. After n rounds,
all agents will know all the numbers N1, . . . , Nn, if each agent indeed sent a message.
They can then computeN =

∑n
i=1Ni (modn), and take the agent with theN th highest

id in the set to be the leader. If agent i does not receive a message when he expects
to, then he aborts, and no leader is elected. For example, if an agent who originated
a message does not get his message back n rounds and 2n rounds after he sent it,
or gets a message from an originator with a lower id, then he aborts. Similarly, if an
agent who forwarded an originator’s message does not get another message from that
originator n rounds later or get a message from another originator with a lower id, then
he aborts. Finally, for each of the n rounds after the originator with the highest id gets
back his message for the second time, each agent i should get a random number from
the appropriate agent (i.e., k rounds after the originator with the highest id gets back his
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message for the second time, agent i should get agent j’s random number, j is k steps
before i on the ring). If any of these checks is not passed, then i aborts, and no leader
is chosen. Call this protocol for agent i LEADuni

i . The formal pseudocode of this and
all other protocols mentioned in this paper appear int the full paper.

We would now like to show that LEADuni gives a k-resilient fair Nash equilib-
rium. But there is a subtlety, which we already hinted at in the introduction. In a Nash
equilibrium, we want to claim that what an agent does is a best response to what the
other agents are doing. But this implicitly assumes that the outcome depends only on
the strategies chosen by the agents. But in this case, the outcome may in principle also
depend on the (nondeterministic) choices made by nature regarding which agents get
an initial signal. Thus, we are interested in what has been called an ex post Nash equi-
librium. We must show that, no matter which agents get an initial signal, no agent has
any incentive to deviate (even if the deviating agent knows which agents get the initial
signal, and knows the remaining agents are playing their part of the Nash equilibrium).
In fact, we show that no coalition of k < n agents has any incentive to deviate, inde-
pendent of nature’s choices.

Theorem 2. LEADuni is a fair, k-resilient (ex post) equilibrium in a unidirectional
ring with n agents, for all k < n.

3.3 Bidirectional Ring, Synchronous Case

It is easy to see that the same protocol will work for the case of the bidirectional ring.
More precisely, if there is agreement on the ring orientation, each agent implements the
protocol above by just sending left, ignoring the fact that he can send right. If there is
no agreement on orientation, then each originating agent can just arbitrarily choose a
direction to send; each agent will then continue forwarding in the same direction (by
forwarding the message with his id appended to the neighbor from which he did not
receive the message). The originator with the highest id will still be the only one to
receive his original message back. At that point the protocol continues with round 2
of the protocol for the unidirectional case, and all further messages will be sent in the
direction of the original message of the originator with the highest id. Since it is only in
the second round that agents append their random numbers to messages, what happened
in the first round has no effect on the correctness of the algorithm; we still get a Nash
equilibrium as before.

3.4 Asynchronous Ring

We now consider an asynchronous setting. It turns out to be convenient to start with a
unidirectional ring, then apply the ideas to a bidirectional ring. For the unidirectional
ring, we can find a protocol that gives an ex post Nash equilibrium provided that there
are at least 3 agents in the ring.

Consider the following protocol. It starts just as the protocol for the unidirectional
case in the synchronous setting. Again, we assume that the signal to start a leader elec-
tion may come to one or more agents. Each of these agents then sends a message with
his id to his neighbor. Messages are then passed around the ring, with each agent ap-
pending his id before passing it on. If an agent receives a second message that originated
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with a different agent, the message is ignored if the originating agent has a lower id;
otherwise it is passed on. Eventually the originator of the message with the highest id
gets back the message. The originator checks to make sure that the message has n (dif-
ferent) ids, to ensure that no “bogus” ids were added. The message is then sent around
the ring a second time. When an agent i gets the message the second time, he chooses
a random number Ni mod n and sends it to his neighbor (as well as passing on the list
of names). Agent i’s neighbor does not pass on Ni; he just keeps it. Roughly speak-
ing, by sending Ni to his neighbor, agent i is committing to the choice. Crucially, this
commitment must be made before i knows any of the random choices other than that
of the agent j of whom i is the neighbor (if i is not the originator). When the origina-
tor gets the message list for the second time (which means that it has gone around the
ring twice), he sends it around the ring the third time. This time each agent i adds his
random choice Ni to the list; agent i’s neighbor j checks that the random number that
i adds to the list is the same as the number that i sent j the previous time. When the
originator gets back the list for the third time, it now includes each agent i’s random
number. The originator then sends the list around the ring for a fourth time. After the
fourth time around the ring, all agents know all the random choices. Each agent then
computes N =

∑n
i=1Ni (mod n), and then takes the agent with the N th highest id

in the set to be the leader. Each time an agent i gets a message, he checks that it is
compatible with earlier messages that he has seen; that is, the second time he gets the
message, all the ids between the originator and his id must be the same; the third time
he gets the message, all the ids on the list must be the same as they were the second
time he saw the message; and the fourth time he gets the message, not only must the list
of ids be the same, but all the random choices that he has seen before can not have been
changed. If the message does not pass all the checks, then agent i sets leader i to ⊥.

Clearly this approach will not work with two agents: The originator’s neighbor will
get the originator’s random choice before sending his own, and can then choose his
number so as to ensure that he becomes leader. (We discuss how this problem can be
dealt with in Section 3.7.) As we now show, this approach gives a fair ex post Nash
equilibrium provided that there are at least three agents. In an asynchronous setting,
nature has much more freedom than in the synchronous setting. Now the outcome may
depend not only on which agents get an initial signal, but also on the order in which
agents are scheduled and on message delivery times. Ex post equilibrium implicitly
views all these choices as being under the control of the adversary; our protocol has the
property that, if all agents follow it, the distribution of outcomes is independent of the
adversary’s choices. However, for the particular protocol we have given, it is easy to see
that, no matter what choices are made by the adversary, we have a Nash equilibrium.
While considering ex post Nash equilibrium seems like a reasonable thing to do in
asynchronous systems (or, more generally, in settings where we can view an adversary
as making choices, in addition to the agents making choices), it is certainly not the only
solution concept that can be considered. (See Section 4.)

What about coalitions? Observe that, for the protocol we have given, a coalition
of size two does have an incentive to deviate. Suppose that i1 is the originator of the
message, and i1 is i2’s neighbor (so that i2 will be the last agent on the list originated
by i1). If i1 and i2 form a coalition, then i2 does not have to bother sending i1 a random
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choice on the second time around the ring. After receiving everyone’s random choices,
i2 can choose Ni2 so that he (or i1) becomes the leader. This may be better for both i1
and i2 than having a random choice of leader.

We can get a protocol that gives a k-resilient (ex post) Nash equilibrium if n > 2k.
We modify the protocol above by having each agent i send his random choice k steps
around the ring, rather than just one step (i.e., to his neighbor). This means that i is
committing Ni to k other agents. In more detail, we start just as with the protocol
presented earlier. Each agent who gets a signal to start the protocol sends a message
with his id to his neighbor. The messages are then passed around the ring, with each
agent appending his id. If an agent receives a second message that originated with a
different agent, the message is ignored if the originating agent has a lower id; otherwise
it is passed on. Eventually the originator of the message with the highest id gets back the
message. The originator checks to make sure that the message has n ids, to ensure that
no “bogus” ids were added. The message is then sent around the ring a second time;
along with the message, each agent i (including the sender) sends a random number
Ni. Agent i’s neighbor does not pass on Ni; he just keeps it, while forwarding the
list of ids. When the originator gets the message the third time, he forwards to his
neighbor the random number he received in the previous round (which is the random
number generated by his predecessor on the ring). Again, his neighbor does not forward
the message; instead he sends to his successor the random number he received (from
the originator) on the previous round. At the end of this phase, each agent knows his
random id and that of his predecessor. We continue this process for k phases altogether.
That is, to when the originator gets a message for the third time, he sends this message
(which is the random number chosen by his predecessor’s predecessor) to his successor.
Whenever an agent gets a message, he forwards the message he received in the previous
phases. At the end of the jth phase for j ≤ k, each agent knows the random numbers of
his j closest predecessors. After these k phases complete, the sender sends his random
number to his neighbor; each agent then appends his id to the list, and it goes around
the ring twice. Each agent checks that the random numbers of his k predecessors agree
with what they earlier told him. At the end of this process, each agent knows all the
random numbers. As usual, each agent then computes N =

∑n
i=1Ni (mod n) and

chooses as leader the agent with the N th highest id.
Each time an agent i gets a message, he checks that that it is compatible with earlier

messages that he has seen; that is, the second time he gets the message, all the ids
between the originator and his id must be the same; the third time he gets the message,
all the ids on the list must be the same as they were the second time he saw the message;
and the fourth time he gets the message, not only must the list of ids be the same, but all
the random choices that he has seen before can not have been changed. He also checks
that he has gotten the random choices of his k predecessors on the ring. If the message
does not pass all the checks, then agent i sets leader i to ⊥. Call this protocol for agent
i A-LEADuni

i .

Theorem 3. If n > 2k, then A-LEADuni is a fair, k-resilient ex post equilibrium in
an asynchronous unidirectional ring.

We can also use this approach to get a fair Nash equilibrium in a bidirectional net-
work. If agents know the network orientation, they send all their messages in only one
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direction, implementing the protocol in the unidirectional case. If they do not know the
orientation, they first proceed as in the synchronous, exchanging ids to determine who
has the highest id. That agent then chooses a direction for further messages, and again
they can proceed as in the unidirectional case.

3.5 Asynchronous Completely Connected Network

We can use the ideas above to get a protocol for a completely connected network, em-
bedding a unidirectional ring into the network, but now the added connectivity hurts
us, rather than helping. When we embed a ring into the network, each coalition mem-
ber may be able to find out about up to k other random choices. Since now coalition
members can talk to each other no matter where they are on the ring, we must have
n > k(k + 1) to ensure that a coalition does not learn all the random choices before
the last member announces his random choice. We can do better by using ideas from
secure multi-party computation and secret sharing [5].

To do secret sharing, we must work in a finite field; so, for ease of exposition, assume
that n is a power of a prime. As in the synchronous case, agents start by sending their
ids to all other agents, and then exchanging the set of ids received, so that they all agree
on the set of ids in the system. (Of course, if an agent i does not get the same set of
ids from all agents, then i sets leader i = ⊥.) We denote by agent i the agent with
the ith largest id. Each agent i chooses a random value Ni ∈ {0, . . . , n − 1} and a
random degree-(k + 1) polynomial fi over the field Fn = {0, . . . , n − 1} such that
fi(0) = Ni. Then i sends each agent j the message fi(j). Once i receives fj(i) from
all agents j, then i sends DONE to all agents. Once i receives DONE messages from
all agents, i sends si =

∑n
j=1 fj(i) to all agents. After receiving these messages, i will

have n points on the degree-(k + 1) polynomial
∑n
j=1 fj (if no agents have lied about

their values). After i has received the messages sj for all agents j, i checks if there is a
unique polynomial f of degree k + 1 such that f(j) = sj for j = 1, . . . , n. If such a
polynomial f exists, and f(0) = N , then i takes the agent with the N th highest id as
leader; otherwise, i sets leader i to ⊥. Call this protocol A-LEADcc

i .

Theorem 4. If n > 2k then A-LEADcc is a fair, ex post k-resilient equilibrium in an
asynchronous completely connected network.

3.6 A Matching Lower Bound

We now show that Theorems 3 and 4 are the best we can hope for; we cannot find a fair
ex post k-resilient strategy if n ≤ 2k.

Theorem 5. If n ≤ 2k, then there is no fair, ex post k-resilient equilibrium for an asyn-
chronous unidirectional ring (resp., bidirectional ring, completely connected network).

Observe that all the protocols above are bounded; although they involve randomization,
there are only boundedly many rounds of communication. This is also the case for
the protocol presented in the next section. If we restrict to bounded protocols, using
ideas of [8,33], we can get a stronger result: we cannot even achieve an ε–k-resilient
equilibrium (where agents do not deviate if they can get within ε of the utility they can
get by deviating) for sufficiently small ε.
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Theorem 6. If n ≤ 2k, then there exists an ε > 0 such that for all ε′ with 0 < ε′ < ε,
there is no fair, ex post ε′–k resilient equilibrium for an asynchronous unidirectional
ring (resp., bidirectional ring, completely connected network).

3.7 Doing Better with Cryptography
In the impossibility result of Section 3.6, we implicitly assumed that the agents were
computationally unbounded. For example, even though our proof shows that, in the 2-
agent case, one agent can always do better by deviating, it may be difficult for that agent
to recognize when it has a history where it could do better by deviating. As we now
show, if agents are polynomially-bounded and we make an assumption that is standard
in cryptography, then we can get a fair ε–k-resilient equilibrium in all these topologies,
even in the asynchronous settings, as long as n > k. Our solution is based on the bit-
commitment protocol of Naor [31]. Bit commitment ideas can be traced back to the
coin-flipping protocol of Blum [7].

The key idea of the earlier protocol is that i essentially commitsNi to his neighbor,
so that he cannot later change it once he discovers the other agents’ random choices.
We can achieve essentially the same effect by using ideas from commitment protocols
[31]. In a commitment protocol, an agent Alice commits to a number m in such a way
that another agent Bob has no idea what m is. Then at a later stage, Alice can revealm
to Bob. Metaphorically, when Alice commits to m, she is putting it in a tamper-proof
envelope; when she reveals it, she unseals the envelope.

It should be clear how commitment can solve the problem above. Each agent i com-
mits to a random number Ni. After every agent has received every other agents’ com-
mitment, they all reveal the random numbers to each other. This approach will basically
work in our setting, but there are a few subtleties. Naor’s commitment protocol requires
agents to have access to a pseudorandom number generator, and to be polynomially
bounded. We can get an ε–k-resilient protocol for ε as small as we like (provided that
Bob is polynomially bounded) by choosing a sufficiently large security parameter for
the pseudorandom number generator, but we cannot make it 0. Thus, we actually do not
get a fair ex post Nash equilibrium, but a fair ex post ε-Nash equilibrium.

In the full paper, we show how the protocol in the synchronous setting for the uni-
directional ring can be modified by using Naor’s commitment scheme to get a protocol
A-LEADps,uni

i that works in the asynchronous setting. There is another subtlety here.
It is not enough for the commitment scheme to be secure; it must also be non-malleable
[13]. Intuitively, this means that each choice made by each agent j must be independent
of the choices made by all other agents. To understand the issue, suppose that the agent
i just before the originator on the ring knows every other agent j’s random choice Nj
before committing to his own random choice; metaphorically, i has an envelope contain-
ingNj for each agent j 	= i. (This is actually the case in our protocol.) Even if i cannot
computeNj , if he could choose Ni in such a way that

∑n
i=1Ni (mod n) is 3, he could

then choose his id to be 3. If the scheme were malleable, it would be possible for j’s
choice to depend on the other agents’ choices even if j did not know the other agents’
choices. Indeed, we want not just non-malleability, but concurrent non-malleability. In
the protocol, agents engage in a number of concurrent commitment protocols; we do
not want information from one commitment protocol to be used in another one. We as-
sume for ease of exposition that Naor’s scheme is concurrently pseudo-non-malleable;
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not only can no agent guess other agents’ bit with probability significantly greater than
1/2, they also cannot make a choice dependent on other agents’ choices with probabil-
ity significantly greater than 1/2, even running many instances of the protocol concur-
rently. (Note that concurrent non-malleable commitment schemes are known; see [26]
for the current state of the art.)

Theorem 7. For all ε, if agents are polynomially bounded and pseudorandom number
generators exists, then A-LEADps,uni (with appropriately chosen security parameters)
is a fair, ε–k-resilient ex post equilibrium in an asynchronous unidirectional ring, for
all k < n.

The same result holds in the case of a bidirectional ring and completely connected
network; we can simply embed a unidirectional ring into the network, and run
A-LEADps,uni .

4 Discussion and Open Questions

The paper illustrates some issues that might arise when trying to apply game-theoretic
approaches to distributed computing problems. Perhaps what comes out most clearly
in the case study is the role of ex post Nash equilibrium, both in the upper bounds and
lower bounds. To us, the most important question is to consider, when applying game-
theoretic ideas to distributed computing, whether this is the most appropriate solution
concept. While it is the one perhaps closest to standard assumptions made in the dis-
tributed computing literature, it is a very strong requirement, since it essentially means
that players have no incentive to deviate even if they know nature’s protocol. Are there
reasonable distributions we can place on adversary strategies? Do we have to consider
them all?

Besides this more conceptual question, there are a number of interesting technical
open problems that remain. We list a few here:

– We have focused on the case that agents are rational. In [1,2], we also considered
agents who were faulty. Our protocols break down in the presence of even one
faulty agent. It is well known that Byzantine agreement is not achievable in a graph
of connectivity≤ 2f , where f is the number of failures. This suggests that we will
not be able to deal with one faulty agent in a ring. But it may be possible to handle
some faulty agents in a completely connected network.

– We have focused on leader election. It would be interesting to consider a game-
theoretic version of other canonical distributed computing problems. We believe
that the techniques that we have developed here should apply broadly, since many
problems can be reduced to leader election.

– In [2], it is shown that, in general, if we can attain an equilibrium with a mediator,
then we can attain the same equilibrium using cheap talk only if n > 3k. Here we
can use cheap talk to do leader election in the completely connected asynchronous
case (which is implicitly what was assumed in [2]) as long as n > k. Thus, we
beat the lower bound of [2]. There is no contradiction here. The lower bound of
[2] shows only that there exists a game for which there is an equilibrium with a
mediator that cannot be implemented using cheap talk if n ≤ 3k. It would be
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interesting to understand what it is about leader election that makes it easier to
implement. More generally, can we refine the results of [1,2] to get tighter bounds
on different classes of problems?

– We have focused on “one-shot” leader election here. If we consider a situation
where leader election is done repeatedly, an agent may be willing to disrupt an
election repeatedly until he becomes leader. It would be of interest to consider
appropriate protocols in a repeated setting.

– We made one important technical assumption to get these results in rings: we as-
sumed that the ring size is known. As we argued earlier, this assumption is critical,
since otherwise an agent can create sybils and increase his chances of becoming
leader. However, this deviation comes at a cost. The agent must keep simulating
the sybils for all future interactions. This may not be worth it. Moreover, ids must
also be created for these sybils. If the name space is not large, there may be an id
clash with the id of some other agent in the ring. This will cause problems in the
protocols, so if the probability of a name clash is sufficiently high, then sybils will
not be created. It would be interesting to do a more formal game-theoretic analysis
of the role of sybils.
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Abstract. This paper focuses on compact deterministic self-stabilizing
solutions for the leader election problem. When the protocol is required to
be silent (i.e., when communication content remains fixed from some point
in time during any execution), there exists a lower bound of Ω(log n) bits
of memory per node participating to the leader election (where n denotes
the number of nodes in the system). This lower bound holds even in rings.
We present a new deterministic (non-silent) self-stabilizing protocol for
n-node rings that uses only O(log log n) memory bits per node, and stabi-
lizes in O(n log2 n) time. Our protocol has several attractive features that
make it suitable for practical purposes. First, the communication model
matches the one that is expected by existing compilers for real networks.
Second, the size of the ring (or any upper bound for this size) needs not
to be known by any node. Third, the node identifiers can be of various
sizes. Finally, no synchrony assumption besides a weak fair scheduler is
assumed. Therefore, our result shows that, perhaps surprisingly, trading
silence for exponential improvement in term of memory space does not
come at a high cost regarding stabilization time, neither it does regarding
minimal assumptions about the framework for our algorithm.

1 Introduction

This paper is targeting the issue of designing efficient self-stabilization algorithm
for the leader election problem. Self-stabilization [13,14,29] is a general paradigm
to provide forward recovery capabilities to distributed systems and networks. In-
tuitively, a protocol is self-stabilizing if it is able to recover from any transient
failure, without external intervention. Leader election is one of the fundamental
building blocks of distributed computing, as it permits to distinguish a single
node in the system, and thus to perform specific actions using that node. Leader
election is especially important in the context of self-stabilization as many pro-
tocols for various problems assume that a single leader exists in the system, even
when faults occur. Hence, a self-stabilizing leader election mechanism permits to
run such protocols in networks where no leader is a priori given, by using simple
composition techniques [14].
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Most of the literature in self-stabilization is dedicated to improving efficiency
after failures occur, including minimizing the stabilization time, i.e., the max-
imum amount of time one has to wait before recovering from a failure. While
stabilization time is meaningful to evaluate the efficiency of an algorithm in
the presence of failures, it does not necessarily capture the overhead of self-
stabilization when there are no faults [1], or after stabilization. Another impor-
tant criterium to evaluate this overhead is the memory space used by each node.
This criterium is motivated by two practical reasons. First, self-stabilizing pro-
tocols require that some communications carry on forever (in order to be able
to detect distributed inconsistencies due to transient failures [7,12]). So, min-
imizing the memory space used by each node enable to minimize the amount
of information that is exchanged between nodes. Indeed, protocols are typically
written in the state model, where the state of each node is available for reading
to every neighbor, and all existing stabilization-preserving compilers [28,10,4,9]
expect this communication model. Second, minimizing memory space enables to
significantly reduce the cost of redundancy when mixing self-stabilization and
replication, in order to increase the probability of masking or containing tran-
sient faults [21,20]. For instance, duplicating every bit three times at each node
permits to withstand one randomly flipped bit. More generally, decreasing the
memory space allows the designer to duplicate this memory many times, in order
to tolerate many random bit-flips.

A foundational result regarding memory space in the context of self-stabi-
lization is due to Dolevet al. [15]. It states that, n-node networks, Ω(log n)
bits of memory are required for solving global tasks such as leader election.
Importantly, this bound holds even for the ring. A key component of this lower
bound is that it holds only whenever the protocol is assumed to be silent. (Recall
that a protocol is silent if each of its executions reaches a point in time beyond
which the registers containing the information available at each node do not
change). The lower bound can be extended to non-silent protocols, but only
for specific cases. For instance, it holds in anonymous (uniform) unidirectional
rings of prime size [19,8]. As a matter of fact, most deterministic self-stabilizing
leader election protocols [3,16,2,5,11] use at least Ω(log n) bits of memory per
node. Indeed, either these protocols directly compare node identifiers (and thus
communicate node identifiers to neighbors), or they compute some variant of
a hop-count distance to the elected node (and this distance can be as large as
Ω(n) to be accurate).

A few previous work [27,24,6,25] managed to break the Ω(logn) bits lower
bound for the memory space of self-stabilizing leader election algorithms. Never-
theless, the corresponding algorithms exhibit shortcomings that hinder their rele-
vance to practical applications. For instance, the algorithm by Mayer et al. [27],
by Itkis and Levin [24], and by Awerbuch and Ostrovstky [6] use a constant
number of bits per node only. However, these algorithms guarantee probabilistic
self-stabilization only (in the Las Vegas sense). In particular, the stabilization
time is only expected to be polynomial in the size of the network, and all three
algorithms make use of a source of random bits at each node. Moreover, these
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algorithms are designed for a communication model that is more powerful than
the classical state model used in this paper. (The state model is the model used in
most available compilers for actual networks [28,10,4,9]). More specifically, Mayer
et al. [27] use the message passing model, and Awerbuch and Ostrovsky [6] use
the link-register model, where communications between neighboring nodes are
carried out through dedicated registers. Finally, Itkis and Levin [24] use the state
model augmented with reciprocal pointer to neighbors. In this model, not only
a node u is able to distinguish a particular neighbor v (which can be done using
local labeling), but also this distinguished neighbor v is aware that it has been
selected by u. Implementing this mutual interaction between neighbors typically
requires distance-two coloring, link coloring, or two-hops communication. All
these techniques are impacting the memory space requirement significantly [26].
It is also important to note that, the communication models in [6,24,27] allow
nodes to send different information to different neighbors, while this capability
is beyond the power of the classical state model. The ability to send different
messages to different neighbors is a strong assumption in the context of self-
stabilization. It allows to construct a “path of information” that is consistent
between nodes. This path is typically used to distribute the storage of infor-
mation along a path, in order to reduce the information stored at each node.
However, this assumption prevents the user from taking advantage of the ex-
isting compilers. So implementing the protocols in [6,24,27] to actual networks
requires to rewrite all the codes from scratch.

To our knowledge, the only deterministic self-stabilizing leader election pro-
tocol using sub-logarithmic memory space in the classical model is due to Itkis
et al. [25]. Their elegant algorithm uses only a constant number of bits per node,
and stabilizes in O(n2) time in n-node rings. However, the algorithm relies on
several restricting assumptions. First, the algorithm works properly only if the
size of the ring is prime. Second, it assumes that, at any time, a single node is
scheduled for execution, that is, it assumes a central scheduler [18]. Such a sched-
uler is far less practical than the classical distributed scheduler, which allows any
set of processes to be scheduled concurrently for execution. Third, the algorithm
in [25] assumes that the ring is oriented. That is, every node is supposed to
possess a consistent notion of left and right. This orientation permits to mimic
the behavior of reciprocal pointer to neighbors mentioned above. Extending the
algorithm by Itkis et al. [25] to more practical settings, i.e., to non-oriented rings
of arbitrary size, to the use of a distributed scheduler, etc, is not trivial if one
wants to preserve a sub-logarithmic memory space at each node. For example,
the existing transformers enabling to enhance protocols designed for the central
scheduler in order to operate under the distributed scheduler require Θ(log n)
memory at each node [18]. Similarly, self-stabilizing ring-orientation protocols
exist, but those which preserve sub-logarithmic memory space either works only
in rings of odd size for deterministic guarantees [22], or just provide probabilistic
guarantees [23]. Moreover, in both cases, the stabilization time is O(n2), which
is pretty big.
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To summarize, all existing self-stabilizing leader election algorithm designed
in a practical communication model, and for rings of arbitrary size, without a
priori orientation, use Ω(logn) bits of memory per node. Breaking this bound,
without introducing any kind of restriction on the settings, requires, beside being
non-silent, a completely new approach.

Our results. In this paper, we present a deterministic (non-silent) self-stabilizing
leader election algorithm that operates under the distributed scheduler in non-
anonymous undirected rings of arbitrary size. Our algorithm is non-silent to
circumvent the lower bound Ω(log n) bits of memory per node in [15]. It uses
only O(log logn) bits of memory per node, and stabilizes in O(n log2 n) time.

Unlike the algorithms in [27,24,6], our algorithm is deterministic, and designed
to run under the classical state-sharing communication model, which allows it
to be implemented by using actual compilers [28,10,4,9]. Unlike [25], the size of
the ring is arbitrary, the ring is not assumed to be oriented, and the scheduler is
distributed. Moreover the stabilization time of our algorithm is smaller than the
one in [25]. Similarly to [27,24,6], our algorithm uses a technique to distribute
the information among nearby nodes along a sub-path of the ring. However, our
algorithm does not rely on powerful communication models such as the ones used
in [27,24,6]. Those powerful communication models make easy the construction
and management of such sub-paths. The use of the classical state-sharing model
makes the construction and management of the sub-paths much more difficult. It
is achieved by the use of novel information distribution and gathering techniques.

Besides the use of a sub-logarithmic memory space, and beside a quasi-linear
stabilization time, our algorithm possesses several attractive features. First, the
size (or any value upper bound for this size) need not to be known to any node.
Second, the node identifiers (or identities) can be of various sizes (to model,
e.g., Internet networks running different versions of IP). Third, no synchrony
assumption besides weak fairness is assumed (a node that is continuously enabled
for execution is eventually scheduled for execution).

At a high level, our algorithm is essentially based on two techniques. One
consists in electing the leader by comparing the identities of the nodes, bitwise,
which requires special care, especially when the node identities can be of various
sizes. The second technique consists in maintaining and merging trees based on
a parenthood relation, and verifying the absence of cycles in the 1-factor induced
by this parenthood relation. This verification is performed using small memory
space by grouping the nodes in hyper-nodes of appropriate size. Each hyper-node
handles an integer encoding a distance to a root. The bits of this distance are
distributed among the nodes of the hyper-nodes to preserve a small memory per
node. Difficulties arise when one needs to perform arithmetic operations on these
distributed bits, especially in the context in which nodes are unaware of the size
of the ring. The precise design of our algorithm requires overcoming many other
difficulties due to the need of maintaining correct information in an environment
subject to arbitrary faults.
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To sum up, our result shows that, perhaps surprisingly, trading silence for
exponential improvement in term of memory space does not come at a high
cost regarding stabilization time, neither it does regarding minimal assumptions
about the communication framework.

2 Model and Definitions

Program syntax and semantics. A distributed system consists of n processors
that form a communication graph. The processors are represented by the nodes
of this graph, and the edges represent pairs of processors that can communicate
directly with each other. Such processors are said to be neighbors. This classical
model is called state-sharing communication model. The distance between two
processors is the length (i.e., number of edges) of the shortest path between
them in the communication graph. Each processor contains variables, and rules.
A variable ranges over a fixed domain of values. A rule is of the form

〈label〉 : 〈guard〉 −→ 〈command〉.

A guard is a boolean predicate over processor variables. A command is a sequence
of assignment statements. A command of processor p can only update its own
variables. On the other hand, p can read the variables of its neighbors. An
assignment of values to all variables in the system is called a configuration. A
rule whose guard is true in some system configuration is said to be enabled
in this configuration. The rule is disabled otherwise. An atomic execution of a
subset of enabled rules results in a transition of the system from one configuration
to another. This transition is called a step. A run of a distributed system is a
sequence of transitions.

Schedulers. A scheduler, also called daemon, is a restriction on the runs to be
considered. The schedulers differ among them by different execution semantics,
and by different fairness in the activation of the processors [18]. With respect
to execution semantics, we consider the least restrictive scheduler, called the
distributed scheduler. In the run of a distributed scheduler, a step can contain
the execution of an arbitrary subset of enabled rules of correct processors. With
respect to fairness, we use the least restrictive scheduler, called weakly fair sched-
uler. In every run of the weakly fair scheduler, a rule of a correct processor is
executed infinitely often if it is enabled in all but finitely many configurations of
the run. That is, the rule has to be executed only if it is continuously enabled.
A round is the smallest portion of an execution where every process has the
opportunity to execute at least one action.

Predicates and specifications. A predicate is a boolean function over network
configurations. A configuration conforms to some predicate R, if R evaluates to
true in this configuration. The configuration violates the predicate otherwise.
Predicate R is closed in a certain protocol P , if every configuration of a run of P
conforms to R, provided that the protocol starts from a configuration conforming
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to R. Note that if a protocol configuration conforms to R, and the configuration
resulting from the execution of any step of P also conforms to R, then R is
closed in P .

A specification for a processor p defines a set of configuration sequences. These
sequences are formed by variables of some subset of processors in the system.
This subset always includes p itself. A problem specification, or problem for short,
defines specifications for each processor of the system. A problem specification in
the presence of faults defines specifications for correct processors only. Program
P solves problem S under a certain scheduler if every run of P satisfies the
specifications defined by S. A closed predicate I is an invariant of program P
with respect to problem S if every run of P that starts in a state conforming to I
satisfies S. Given two predicates l1 and l2 for program P with respect to problem
S, l2 is an attractor for l1 if every run that starts from a configuration that
conforms to l1 contains a configuration that conforms to l2. Such a relationship
is denoted by l1 � l2. A program P is self-stabilizing [13] to specification S if
every run of P that starts in an arbitrary configuration contains a configuration
conforming to an invariant of P with respect to problem S. That is, this invariant
is an attractor of predicate true.

Leader election specification. Consider a system of processors where each pro-
cessor has a boolean variable leader. We use the classical definition of leader
election, which specifies that, in every protocol run, there is a suffix where a
single processor p has leaderp = true, and every other processor q 	= p satisfies
leaderq = false.

3 A Compact Leader-Election Protocol for Rings

In this section, we describe our self-stabilizing algorithm for leader election in
arbitrary n-node rings. The algorithm will be later proved to use O(log logn)
bits of memory per node, and to stabilize in quasi-linear time, whenever the
identities of the nodes are between 1 and nc, for some c ≥ 1. For the sake
of simplicity, we will assume that the identifiers are in [1, n]. Nevertheless, the
algorithm works without assuming any particular range for the identifiers. We
first provide a general overview of the algorithm, followed by a more detailed
description in Section 3.2.

3.1 Overview of the Algorithm

As many existing deterministic self-stabilizing leader election algorithms, our al-
gorithm aims at electing the node with maximum identity among all nodes, and,
simultaneously, at constructing a spanning tree rooted at the elected node. The
main constraint imposed by our wish to use sub-logarithmic memory is that we
cannot exchange or even locally use complete identifiers, as their size Ω(log n)
bits does not fit in a sub-logarithmic size memory. As a matter of fact, we assume
that individual bits of its identifier can be accessed by every node, but only a
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constant number of them can be simultaneously stored and/or communicated
to neighbors at a given time. Our algorithm will make sure that every node
stores the current position of a particular bit of the identifier, referred to as a
bit-position in the sequel.

Selection of the leader. Our algorithm operates in phases. At each phase, each
node that is a candidate leader v reveals some bit-position, different from the ones
at the previous phases, to its neighbors. More precisely, let Idv be the identity
of node v, and assume that Idv =

∑k
i=0 bi2

i. Let I =
{
i ∈ {0, ..., k}, bi 	= 0

}
be

the set of all non-zero bit-positions in the binary representation of Idv. Let us
rewrite I = {p1, ..., pj} with 0 ≤ p1 < p2 < ... < pj ≤ k. Then, during Phase i,
i = 1, . . . , j, node v reveals pj−i+1 to its neighbors, which potentially propagate
it to their neighbors, and possibly to the whole network in subsequent phases.
During Phase i, for j + 1 ≤ i ≤ �logn� + 1, node v either becomes passive
(that is, stops acting as a candidate leader) or remains a candidate leader. If, at
the beginning of the execution of the algorithm, all nodes are candidate leaders,
then during each phase, some candidate leaders are eliminated, until exactly
one candidate leader remains, which becomes the actual leader. More precisely,
let pmax(i) be the most significant bit-position revealed at Phase i among all
nodes. Then, among all candidate leaders still competing for becoming leader,
only those whose bit-position revealed at Phase i is equal to pmax(i) carry on
the electing process. The other ones become passive.

If all identities are in [1, n], then the communicated bit-positions are less than
�logn�, and thus can be represented with O(log logn) bits. The difficulty is to
implement this simple “compact” leader election mechanism in a self-stabilizing
manner. In particular, the nodes may not have same number of bits encoding
their identifiers, the ring may not start from a configuration in which every node
is a candidate leader, and the distributed scheduler may lead nodes to operate
at various paces.

An additional problem in self-stabilizing leader election is the potential pres-
ence of impostor leaders. If one can store the identity of the leader at each
node, then detecting an impostor is easy. Under our memory constraints, nodes
cannot store the identity of the leader, nor read entirely their own identifier.
So, detecting impostor leaders becomes non trivial, notably when an impostor
has an identity whose most significant bit is equal to the most significant bit
of the leader. To overcome this problem, the selection of the leader must run
perpetually, leading our algorithm to be non-silent.

Spanning tree construction. Our approach to make the above scheme self-stabi-
lizing is to merge the leader election process with a tree construction process.
Every candidate leader is the root of a tree. Whenever a candidate leader be-
comes passive, its tree is merged to another tree, until there remains only one
tree. The main obstacle in self-stabilizing tree-construction is to handle an arbi-
trary initial configuration. This is particularly difficult if the initial configuration
yields a cycle rather than a spanning forest. In this case, when the leader election
subroutine and the tree construction subroutine are conjointly used, the presence
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of the cycle implies that, while every node is expecting to point to a neighbor
leading to a leader, there are no leaders in the network. Such a configuration is
called fake leader. In order to break cycles that can be present in the initial con-
figuration, we use an improved variant of the classical distance calculation [17].
In the classical approach, every node u maintains an integer variable du that
stores the distance from u to the root of its tree. If v denotes the parent of u,
then typically dv = du − 1, and if dv ≥ du, then u deletes its pointer to v. If
the topology of the network is a ring, then detecting the presence of an initial
spanning cycle, instead of a spanning forest, may involve distance variables as
large as n, inducing Ω(log n) bits of memory.

In order to use exponentially less memory, our algorithm uses the distance
technique but modulo logn. More specifically, each node v maintains three vari-
ables. The first variable is an integer denoted by dv ∈ {0, ..., �logn�}, called the
“distance” of node v. Only candidate leaders v can have dv = 0. Each node v
maintains dv = 1+(min{du, du′} mod �logn�) where u and u′ are the neighbors
of v in the ring. Note that nodes are not aware of n. Thus they do not actually
use the value �logn� as above, but a potentially erroneous estimation of it.

The second variable is pv, denoting the parent of node v. This parent is its
neighbor w such that dv = 1 + (dw mod �logn�). By itself, this technique is
not sufficient to detect the presence of a cycle. Therefore, we also introduce the
notion of hyper-node, defined as follows:

Definition 1. A hyper-node X is a set {x1, x2, · · · , x�log n} of consecutive
nodes in the ring, such that dx1 = 1, dx2 = 2,..., dx�logn� = �logn�, px2 = x1,
px3 = x2, ..., px�log n� = x�log n−1 and px1 	= x2.

The parent of a hyper-node X = {x1, x2, · · · , x�log n} is a hyper-node Y =
{y1, y2, · · · , y�logn} such that px1 = y�logn. By definition, there are at most
�n/�logn�� hyper-nodes. If n is not divisible by �logn�, then some nodes can be
elements of an incomplete hyper-node. There can be several incomplete hyper-
nodes, but if the parent of a (complete) hyper-node is an incomplete hyper-node,
then an error is detected. Incomplete hyper-nodes must be leaves: there cannot
be incomplete hyper-nodes in a cycle.

The key to our protocol is that hyper-nodes can maintain larger distance in-
formation than simple nodes, by distributing the information among the nodes
of an hyper-node. More precisely, we assume that each node v maintains a
bit of information, stored in variable dBv. Let X = {x1, x2, · · · , x�log n} be
an hyper-node, the set BX = {dBx1 , dBx2 , ..., dBx�logn�} can be considered as
the binary representation of an integer on �logn� bits, i.e., between 0 and
2�logn − 1. Now, it is possible to use the same distance approach as usual,
but at the hyper-node level. Part of our protocol consists in comparing, for two
hyper-nodes X and Y , the distance BX and the distance BY . If Y is the par-
ent of X , then the difference between BX and BY must be one. Otherwise an
inconsistency is detected regarding the current spanning forest. The fact that
hyper-nodes include �logn� nodes implies that dealing with distances between
hyper-nodes is sufficient to detect the presence of a cycle spanning the n-node
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ring.
This is because 2�logn ≥ n/ logn. (Note that hyper-nodes with k nodes such
that 2k ≥ n/k would do the same).

In essence, the part of our algorithm dedicated to checking the absence of a
spanning cycle generated by the parenthood relation boils down to comparing
distances between hyper-nodes. Note that comparing distances between hyper-
node involves communication at distance Ω(log n). This is another reason why
our algorithm is non-silent.

3.2 Detailed Description

Notations and Preliminaries. Let Cn = (V,E) be the n-node ring, where V
is the set of nodes, and E the set of edges. A node v has access to an unique
identifier, but can only access to this identifier one bit at a time, using the
Bit(x, v) function, that returns the position of the xth most significant bit equal
to 1 in Idv. This position can be encoded with O(log logn) bits when identifiers
are encoded using O(log n) bits, as we assume they are. A node v has access to
local port number associated to its adjacent edges. The variable parent of node
v, denoted by pv, is actually the port number of the edge connecting v to its
parent. In case of n-node rings, pv ∈ {0, 1} for every v. (We do not assume any
consistency between the port numbers). In a correct configuration, the structure
induced by the parenthood relation must be a tree. The presence of more than
one tree, or of a cycle, correspond to illegal configurations. We denote by Nv the
set of the neighbors of v in Cn, for any node v ∈ V .

The variable distance, denoted by dv at node v, takes values in {−1, 0, 1, ...,
�logn�}. We have dv = −1 if all the variables of v are reset. We have dv = 0
if the node v is a root of some tree induced by the parenthood relation. Such a
root is also called candidate leader. Finally, dv ∈ {1, ..., �logn�} if v is a node
of some tree induced by the parenthood relation, different from the root. Such
a node is also called passive. Note that we only assume that variable d can
hold at least (and not exactly) �logn� + 1 different values, since nodes are not
aware of how many they are in the ring, and just use an estimation of n.The
children of a node v are returned by the macro Ch(v), which returns the port
number(s) of the edges leading to the child(ren) of v.

To detect cycles, we use four variables. First, each node maintains the variable
dB introduced in the previous section, for constructing a distributed integer
stored on an hyper-node. The second variable, Addv ∈ {+, ok, ∅}, is used for
performing additions involving values stored distributively on hyper-nodes. The
third variable, MCv, is used to send the result of an addition to the hyper-node
children of the hyper-node containing v. Finally, the fourth variable, MVv, is
dedicated to checking the hyper-node bits. Variables MCv and MVv are either
empty, or each composed of a pair of variables (x, y) ∈ {1, ..., �logn�} × {0, 1}.

For constructing the tree rooted at the node with highest identity, we use three
additional variables. After convergence, we expect the leader to be the unique
node with distance zero, and to be the root of an inward directed spanning tree
of the ring, where the arc of the tree is defined by the parenthood relation.
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RError : TEr(v) → Reset(v);
RStart : ¬TEr(v) ∧ (dv = -1) ∧ ¬TReset(v) ∧ TStart(v) → Start(v);
RPassive : ¬TEr(v) ∧ (dv > -1) ∧ ¬TReset(v) ∧ TPass(v) → Passive(v);
RRoot : ¬TEr(v) ∧ (dv = 0) ∧ ¬TPass(v) ∧ TStartdB(v) → StartdB(v);

¬TEr(v) ∧ (dv = 0) ∧ ¬TPass(v) ∧ TInc(v) → Inc(v);
RUpdate : ¬TEr(v) ∧ (dv > 0) ∧ ¬TPass(v) ∧ (MEv 
= MEp(v)) ∧ TUpdate(v) → Update(v);
RHyperNd : ¬TEr(v) ∧ (dv > 0) ∧ ¬TPass(v) ∧ (MEv = MEp(v))∧

(Addv = ∅) ∧ TAdd(v) → BinAdd(v);
(Addv 
= ∅) ∧ TBroad(v) → Broad(v);
TVerif(v) → Verif(v);
TCleanM(v) → CleanM(v);

Fig. 1. Formal description of algorithm CLE

To satisfy the leader election specifications, we introduce the variable leaderv ∈
{0, 1} whose value is 1 if v is the leader and 0 otherwise. Since we do not assume
that the identifiers of every node are encoded on the same number of bits, simply
comparing the i-th most significant bit of two nodes is irrelevant. So, we use
variable B, which represents the most significant bit-position of all the identities
present in the ring. This variable will also be locally used at each node v as an
estimate of �logn�. Only the nodes v whose variable Bv is equal to the most
significant bit of the Idv carry on participating to the election. Finally, variable
ME is the core of the election process. Let r be the root of the tree including
node v. Then, the variable MEv is a 4-tuple which stores the position of the most
significant bit of Idr, the current phase number i, the bit-position of Idr at phase
i, and one additional bit dedicated to the control of the updating of the variable
(we call “bit-control” this latter variable).

The Compact Leader Election Algorithm CLE. Algorithm CLE is pre-
sented in Figure 1. In this figure, a rule of the form

label : guard0 ∧ (guard1 ∨ guard2) −→ (command1; command2)

where commandi is performed when guard0 ∧ guardi is true, is presented in
several lines, one for the common guard, and one for each alternative guards,
with their respective command. Figure 1 describes the rules of the algorithm.
CLE is composed of six rules:

• The rule RError, detects at node v the presence of inconsistencies between
the content of its variables and the content of its neighboring variables. If v
has not reset its variables, or has not restarted, the command Reset(v) is
activated, i.e all the content of all the variables at node v are reset, and the
variable dv is set to −1.

• The rule RStart, makes sure that, if an inconsistency is detected at some
node, then all the nodes of the network reset their variables, and restart.
Before restarting, every node v waits until all its neighbors are reset or have
restarted. A node v that restarts sets dv = 0, and its election variables MEv
appropriately, with current phase 1.
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• The rule RPassive, is dedicated to the election process. A node v uses com-
mand Passive(v) when one of its neighbors has a bit-position larger than
the bit-position of v, at the same phase.

• The rule RRoot, concerns the candidate leaders, i.e., every node v with dv = 0.
Such a node can only execute the rule RRoot, resulting in that node perform-
ing one of the following two commands. Command StartdB(v) results in
v distributing the bit dB to its neighboring hyper-nodes. Command Inc(v)
results in node v increasing its phase by 1. This happens when all the nodes
between v and others candidate leaders in the current tree are in the same
phase, with the same election value MEv.

• The rule RUpdate, is dedicated to updating the election variables.
• The rule RHyperNd, is dedicated to the hyper-nodes distance verification.

Hyper-nodes Distance Verification. Let us consider two hyper-nodes X
and Y with X the parent of Y . Our technique for verifying the distance between
the two hyper-nodes X and Y , is the following (see an example on Figure 2).
X initiates the verification. For this purpose, X dedicates two local variables at
each of its nodes: Add (to perform the addition) and MC (to broadcast the result
of this addition inside X). Similarly, Y uses the variable MV for receiving the
result of the addition.

The binary addition starts at the node holding the last bit of X , that is
node xk with k = Bv. Node xk sets Addxk := +. Then, every node in X , but
xk, proceeds as follows. For k′ < k, if the child xk′′ of xk′ has Addxk′′ = +
and dBxk′′ = 1, then x′k assigns + to Addxk′′ . Otherwise, if Addxk′′ = + and
dBxk′′ = 0, the binary addition at this point does not generate a carry, and thus
xk′ assigns “ok” to Addxk′ . Since Addxk′ = ok, the binary addition is considered
finished, and xk′ ’s ancestors (parent, grand-parent, etc.) in the hyper-node assign
“ok” to their variable Add. However, if the first bit of X (that is, dBx1) is equal
to one, then the algorithm detects an error because the addition would yield to
an overflow. The result of the hyper-node binary addition is the following: if a
node xk has Addxk = ok, then it means that node yk holds the appropriate bit
corresponding to the correct result of the addition if and only if dByk = dBxk .
Otherwise, if Addxk = +, then the bit at yk is correct if and only if dByk = dBxk

1.
The binary addition in X is completed when node x1 satisfies Addx1 = + or

Addx1 = ok. In that case, x1 starts broadcasting the result of the addition. For
this purpose, it sets MCx1 = (1, dBy1) where dBy1 is obtained from Addx1 and
dBx1 . Each node xi in X , i > 1, then successively perform the same operation as
x1. While doing so, node xi deletes Addxi , in order to enable the next verification.
When the child of a node xi publishes (dxi , dBxi), node xi deletes MCxi , in order
to, again, enable the next verification. From i = 1, . . . , k, all variables MCxi in
X are deleted. When yi sets MVyi [0] = dyi, node yi can check whether the bit in
MVyi [1] corresponds to dByi . If yes, then the verification carries on. Otherwise
yi detects a fault.

1 If dBx = 0 then dBx = 1, and if dBx = 1 then dBx = 0.
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(a) 1 1 2 0 3 0 4 1 + 1 1 2 0 3 1 4 1

(b) 1 1 ok 2 0 ok 3 0 + 4 1 + 1 1 2 0 3 1 4 1

(c) 1 1 ok 1,1 2 0 ok 1,1 3 0 + 1,1 4 1 + 1,1 1 1 1,1 2 0 3 1 4 1

(d) 1 1 2 0 ok 2,0 3 0 + 2,0 4 1 + 2,0 1 1 2,0 2 0 2,0 3 1 4 1

(e) 1 1 2 0 3 0 + 3,1 4 1 + 3,1 1 1 3,1 2 0 3,1 3 1 3,1 4 1

(f)

Fig. 2. An example of distance verification between the hyper-node X and its child Y .
Hyper-nodes are here composed of four nodes. The memory of each node is represented
by four boxes storing, respectively, the distance of the node, the bit distance of the
hyper-node, the binary addition information, and the information for the bit verifica-
tion. (a) The last node of X starts the addition. (b) The addition in X is completed.
(c) The first node of X starts the verification. (d) The second node v of Y checks dBv.
(e) The third node v of Y checks dBv . (f) The last node of Y detects an error.

Leader Election and Tree Construction. As previously mentioned, our
leader election protocol simultaneously performs, together with the election of
a leader, the construction a tree rooted at the leader. The leader should be the
node whose identifier is maximal among all nodes in the ring. Our assumptions
regarding identifiers are very weak. In particular, identifiers may be of vari-
ous sizes, and the total number n of different identifiers is not known to the
nodes. In our algorithm, we use the variable B to estimate (to some extent) the
network size, and the variable ME[0] to propagate this estimation in the ring.
More precisely, B represents the most significant bit-position among all identi-
ties present in the ring, and we consider that all variables ME that do not carry
the right value of B are not valid. During the execution of the algorithm, only
nodes whose identifiers match the most significant bit-position remain candidate
leaders. Moreover, only candidate leaders broadcast bit-position during subse-
quent phases.

Let us detail now the usage of the variable MEv. Again, this variable is es-
sentially meant to represent the current bit-position of the candidate leaders.
The first element of MEv represents the most significant bit-position among all
identifiers, which must be in agreement with variable Bv to assess the validity
of MEv. The second and third elements of MEv are the current phase i, and the
corresponding bit-position revealed by a candidate leader during phase i, respec-
tively. The comparison of bits-positions is relevant only if these bits-positions are
revealed at the same phase. Hence, we force the system to proceed in phases.

If, at phase i, the bit-position ρv of node v is smaller than the bit-position
ρu of a neighboring node u, then node v becomes passive, and v takes u as
parent. It is simple to compare two candidate leaders when these candidate
leaders are neighbors. Yet, along with the execution of the algorithm, some nodes
become passive, and therefore the remaining candidate leaders can be far away,
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separated by passive nodes. Each passive node is with a positive distance variable
d, and is in a subtree rooted at some candidate leader. Let us consider now each
such subtree Tv rooted at a candidate leader v. Whenever v increases its phase
from i to i + 1, and sets the bit-position related to phase i + 1, all nodes u in
Tv must update their variable MEu in order to have the same value as MEv.
At each phase, trees are merged into larger trees. At the end of phase i, all
the nodes in a given tree have the same bit-position, and the leaves of the tree
inform their parent that the phase is finished. The last element of variable ME
(i.e., the bit-control variable) is dedicated to this purpose. Each leaf assigns
1 to its bit-control variable, and a bottom-up propagation of this bit-control
eventually reaches the root. In this way, the root learns that the current phase is
finished. If the largest identifiers are encoded using logn bits, each phase results
in halving the number of trees, and therefore of candidate leaders. So within at
most logn phases, a single leader remains. To avoid electing an impostor leader,
the (unique) leader restarts the election at the first phase. This is repeated
forever. If an arbitrary initial configuration induces an impostor leader l, either
l has not the most significant bit-position in its identifier or this impostor leader
has its most significant bit-position equal to the most significant bit-position of
the (real) leader. In the former case, the error is detected by a node with the
most significant bit-position. In the latter case, then error is detected by at least
one node (the true leader), because there exists at least one phase i where the
bit-position of the leader is superior to the bit-position of the impostor.

The process of leader election and spanning tree construction is slowed down
by the hyper-node construction and management. When a node v changes its
parents, it also changes its variable dBv, in order not to do impact the current
construction of the tree. The point is that variable dBv should be handled with
extra care to remain coherent with the tree resulting from merging different
trees. To handle this, every candidate leader assigns bits for its children into its
variable MC. More precisely, if a root v has not children, then v publishes the bit
for its future children with variable distance equal to one. If root v has children
with distance variable equal to one, then v publishes the bit for the children u
with du = 2, and so on, until the distance variable of v becomes Bv. On the
other hand, a node cannot change its parent if its future new parent does not
publish the bit corresponding to its future distance variable. When the hyper-
node adjacent to the root is constructed, the hyper-node verification process
takes care of the assignment of the bits to the node inside the hyper-node.

4 Correctness

In this section, we briefly sketch the proof of correctness of our Algorithm.

Theorem 1. Algorithm CLE solves the leader election problem in a self-stabi-
lizing manner for the n-node ring, in the state-sharing model, with a distributed
weakly-fair scheduler. Moreover, if the n node identities are in the range [1, nc]
for some c ≥ 1, then Algorithm CLE uses O(log log n) bits of memory per node,
and stabilizes in O(n log2 n) rounds.
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The main difficulty for proving this theorem is to prove detection and complete
removing of a possibly initial cycle generated by the parenthood relation. Let
Γ be the set of all possible configurations of the ring, under the set of variables
described before in the paper. First, we prove that Algorithm CLE detects the
presence of “level-one” errors, that is, inconsistencies between neighbors. Second,
we prove that, after removing all these level-one errors (possibly using a reset),
the system converges and maintains configurations without level-one errors. The
set of such configurations is denoted by ΓTEF where TEF stands for “Trivial Error
Free”. From now on, we assume only configurations from ΓTEF.

The core of the proof regarding correct cycle detection is based on proving
the correctness of the hyper-node distance verification process. This verification
process is the most technical part of the algorithm, and proving its correctness
is actually the main challenge in the way of establishing Theorem 1. This is
achieved by using proofs based on invariance arguments.

Once the correctness of the hyper-node distance verification process has been
proved, we establish the convergence of Algorithm CLE from an arbitrary con-
figuration in ΓTEF to a configuration where there exist no spanning cycles, and all
hyper-node distances are correct. Configurations with no spanning cycles form
the set ΓCF (where CF stands for “Cycle Free”), and configurations in which
all hyper-node distances are correct form the set ΓHVEF (where HVEF stands for
“Hyper-node Verification Error Free”). Whenever we restrict ourselves to con-
figuration in ΓHVEF, we prove the correctness of our mechanisms to detect and
remove impostor leaders. We denote by ΓIEF (where IEF stands for “Impostor
leader Error Free”) the set of configurations with no impostors. Finally, assum-
ing a configuration in ΓIEF, we prove that the system reaches and maintains a
configuration with exactly one leader, which is in addition the node with max-
imum identifier. Moreover, we prove that the structure induced by parenthood
relation is a tree rooted at the leader, and spanning all nodes. We denote by
ΓL the set of configurations where the unique leader is the node with maximum
identity. In other words, we prove that CLE is self-stabilizing for ΓL.
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Abstract. In this research, we present the first time-optimal self sta-
bilizing algorithm for synchronous distributed spanning tree construc-
tion, assuming the standard shared registers size (O(logn) bits, where n
stands for the number of processes in the system), or, similarly, standard
message size. Previous algorithms with O(diameter) stabilization time
complexity assumed that a larger message can be sent through each link
in one time unit. Hence, when assuming the standard message size, the
time complexity of previous algorithms was not O(diameter). The cur-
rent algorithm stabilizes in O(diameter) time without having previous
knowledge of the network size or diameter. The only assumption we make
is that we have some polynomial (possibly very large) given upper bound
on the network size. However, the time complexity of the algorithm does
not depend on that upper bound. Using our results, most known dis-
tributed global tasks, such as distributed reset, can be performed in a
relatively easy way and in optimal time. As a building block, we present
a new self stabilizing silent phase clock algorithm for synchronous net-
works (based on a known non-silent algorithm). It is optimal in time too.
We believe it may be an interesting contribution by itself.

1 Introduction

The construction of a spanning tree is a basic task in communication networks.
In this task, it is required to mark at each node, one edge as the route to the
parent node. The marked edges must form a spanning tree - a tree composed
of all the nodes and some (or perhaps all) of the edges, when every vertex lies
in the tree. Most known distributed global tasks, such as reset, leader election,
broadcast, etc. become much easier using a spanning tree. This makes spanning
tree construction an important task.

A strong property one would like a distributed spanning tree algorithm to
possess is self-stabilization. First introduced by Dijkstra in [18], this property
implies the ability of a system to stabilize from any initial state. It is desirable
that such an algorithm will be efficient in terms of time - meaning, able to
stabilize in a short time after the occurrence of failures or topological changes
in the system.

� Supported in part by the Israel Science Foundation and the Technion TASP fund.

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 91–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



92 A. Kravchik and S. Kutten

There has been a considerable amount of research in the area of self stabilizing
spanning trees. In [2, 3], the authors present two self stabilizing spanning tree
protocols for asynchronous systems. The protocol of [3] is randomized. Their
protocols have O(n2) time complexity and O(logn) space complexity, where
n is the size of the network. In [31], a randomized spanning tree protocol for
anonymous systems is given. Its expected time complexity is O(diameter×logn).
In [5], the authors present a self stabilizing spanning tree algorithm for ID-based
network. The time complexity in [5] is O(N 2), where N is a known upper bound
on the size of the network. In [10], a self stabilizing spanning protocol and a reset
protocol (which utilizes the spanning tree) are presented. The time complexity
of the spanning tree protocol is O(n), the space complexity is O(logn) A fault
containing self stabilizing spanning tree algorithm was presented in [23]. Its time
complexity is affected by the number and type of faults. In [1], the algorithm
uses verification messages (”power supply”) from the root for the purpose of the
algorithm stabilization. In [16], a self stabilizing leader election algorithm that
constructs a spanning tree is presented. Using unbounded space, it stabilizes in
O(diameter) time units.

Several papers deal with the semi-uniform model, meaning there is a distin-
guished root. In [20], an algorithm that uses fine-grained atomic operations is
proposed. In [14], a time optimal algorithm in a semi-uniform model is presented.
This algorithm also requires the knowledge of the network size n for constructing
BFS spanning tree.

Some algorithms require previous knowledge of an upper bound on the net-
work diameter - D. For example, in [9, 12], the authors present self stabilizing
algorithms with O(diameter) time complexity, but the messages of those pro-
tocols are O(lognlogD) bits long. In the current study, we assume the most
common assumption that sending a message of O(logn) bits takes 1 unit of time
(using the Congest model as defined in [29]). Hence, sending an O(lognlogD)
bits message takes logD time, and O(diameter) time in the model of [9, 12]
translates into O(diameter×logD) time. If D is very large (much larger than the
diameter), the time complexity of the algorithm grows significantly.

In [4], the authors present an algorithm which does not require any informa-
tion about the network topology and stabilizes in O(diameter) rounds. However,
the message size in this protocol is strongly influenced by the faults and is not
bounded, so the messages can grow unbounded above the traditional O(logn)
size. If we assume that sending a message of O(logn) bits takes 1 unit of time,
the time complexity of [4] is not bounded. The algorithm of [4] uses an approach
that is different than the one used for the other distributed spanning tree algo-
rithms. Instead of ”dismantling” existing trees that contain fake roots, it tries
to preserve them, as will be explained later. This approach is referred as ”path
preservation”. We use the same approach in our algorithm.

In [15], the author present a new stabilizing solution for the construction of
an arbitrary spanning tree. This algorithm runs in Θ(n) rounds and Θ(n2) steps.

Distributed spanning tree algorithms are important even without self sta-
bilization. In the seminal paper of [22], the authors present a spanning tree
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algorithm for a static case. Their algorithm constructs a minimum spanning tree
in a network with unique weighted edges. In [28], the authors present a time opti-
mal spanning tree algorithm for anonymous networks. In [7], there is a spanning
tree algorithm for a dynamic case, which is optimal in terms of the amortized
message complexity. In [27], the presented protocol iteratively rebuilds a span-
ning tree of a maximal connected component, when an edge fails. The time
complexity of that protocol is O(d∗), when d∗ stands for the diameter of the
maximal connected component, adding an extra poly-logarithmic term.

In the independent research of [21], the authors present a speculative global
mutual exclusion algorithm. It is optimal in time (though under different as-
sumptions) in a synchronous system. We mention this work since the task of
global mutual exclusion is related to the leader election task, and hence, to the
distributed spanning tree construction task. In addition, the algorithm of [21]
is based on the synchronizer algorithm of [13]. We also use the results of that
research.

Another leader election algorithm is presented in [17].
We present a time-optimal self stabilizing spanning tree algorithm, which

requires no prior knowledge about the system’s topology, except for the not
necessarily tight upper bound on the network size; this upper bound does not
affect the time complexity of the algorithm. The algorithm uses shared registers
of size O(logn) bits.

Paper Organization. In Section 2, we formalize the model and present some
notations. In Section 3, we present a new self-stabilizing synchronous phase clock
algorithm, later used in the spanning tree algorithm. In Section 4, we describe
the spanning tree algorithm informally, outlining the ideas adopted from [4] and
presenting the new ones. In Section 5, we formalize the algorithm. In Section 6,
we present the proof of correctness and performance analysis. In Section 7, we
conclude and present some questions and ideas for future research.

2 Model and Notations

The system topology is represented by an undirected graph G = (V, E ), where
nodes represent the system’s processes and edges represent communication links
between them. We denote the number of nodes by n = |V |. The actual diameter
of the network is denoted by d. Both n and d are unknown to the processes. We
assume that each node v∈V has a unique identity value, denoted by UID, which
cannot be corrupted by the adversary. For each v∈V, every node u such that
(v, u)∈E is called a neighbor of v. The collection of v ’s neighbors is denoted by
N (v)={u:(v, u)∈E}, N (v) = N (v)

⋃
{v}. We denote the distance in hops (the

number of edges on the shortest path) between two nodes u, v as d(u, v).
Each node has a constant set of registers and constants, each of size O(logn)

bits. Each register or constant x of node v is denoted by xv. We shall omit the
subscript when the subject node’s identity is clear from the context.

We do make the rather common assumption that we have some given upper
bound on n, denoted by N. Without this knowledge, it is impossible to use
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bounded registers, since every chosen register size x will become insufficient for
representing a node’s ID, if the number of nodes grows larger than 2x. It is
enough that this upper bound is polynomial in n, so the size of the registers is
O(logn) bits. It is important to notice that the time complexity of the current
algorithm does not depend on that upper bound on n.

We assume that there might be faults during the execution. We abstract those
faults as a result of an adversary action. The adversary might change the values
of registers and destroy edges or nodes (causing topology changes).

We use the shared registers model. For each v∈ V, its registers are visible to
every u∈ N (v). All registers are of O(logn) size. Note that in terms of message
passing (not used here), their values can be sent over an edge in one time unit.
In synchronous systems, when assuming that a communication line can contain
one message at a time, the message passing model is equivalent to the shared
registers model.

The system is a synchronous network. All the processes perform their actions
synchronously in grained periods of time called rounds. Every process receives a
”pulse” which marks the beginning of a new round of execution. All the pulses
in the system are generated simultaneously. We denote the round k = 0 as
the first round of execution after the adversary actions. At every round k, each
process v can read the values of all v’s neighbors registers, perform computations,
and update its own registers. The results of those updates are visible to all v’s
neighbors at round k+1.

Each protocol is presented as an infinite loop, performed repeatedly by all the
processes. It is infinite, since the protocols are supposed to overcome new failures
and maintain the system in a legal global state forever. At each round, the loop
is performed exactly once. The number of rounds that is required for the system
to reach the desired state marks the time complexity of the algorithm.

The local state of node v consists of the values of all v’s registers. A Global
state γt is the set of all local states at round t of the execution. We denote the
local state of a node v at global state γ as γ.v, and the value of any register x
of a node v at global state γ as γ.xv.

We use the notation x[y] for ”x modulo y”.

3 Self-Stabilizing Silent Synchronizer - SS-Sync

A synchronous algorithm is an algorithm that is designed to work correctly in
a synchronous system. When executed in an asynchronous system, its result is
unpredicted. A synchronizer is originally defined in [6] as a distributed algorithm
that enables synchronous algorithms to be executed correctly in an asynchronous
system, simulating the ”pulse” property. Pulse i + 1 (i ≥ 0) is generated on
process p after all neighbors executed all actions at pulse i. We say that the
synchronizer maintains a strict pulse counter, if each pulse has its own unique
index. However, a synchronizer may not maintain a strict pulse counter. For
example, [6] uses a pulse number modulo 3.
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In a broader sense, a synchronizer is a distributed algorithm which synchro-
nizes the execution of some action on different processes. In this sense, synchro-
nizer may be useful even in synchronous systems [13].

A phase clock in a distributed system is an algorithm that maintains synchro-
nized clock (or pulse) counters on each process. Those clocks are said to move in
unison ([24]), and the task of maintaining phase clocks is also called unison task.
There are two possible unison definitions. The clocks are said to be in strong
unison, if all the clocks in the system are supposed to have strictly the same
value. This can be only achieved in a synchronous system. The clocks are said
to be in weak unison, if the clock value of neighboring processes are allowed to
differ one from another by at most ±1.

The task of maintaining phase clocks was shown to be non trivial even in
synchronous systems ([25]).

In [8], the authors present a time optimal self stabilizing synchronizer for
asynchronous model, that also supplies a phase clock. However, that algorithm
uses unbounded registers. A related example of maintaining distributed clocks
using bounded registers is [19]. In [11] and [13], the authors present a group
of synchronous and asynchronous synchronizers with phase clocks, which use
bounded registers. In addition, the authors present a detailed study of optimality
in terms of space for any algorithm that uses bounded registers for the unison
task, and provide space-optimal algorithms for various topologies and models.

We propose a new self stabilizing synchronization and unison algorithm for
synchronous systems - SS-Sync. It is based on the algorithms of [11] and [13]. It
stabilizes in O(d) rounds, and provides both a synchronization mechanism and
a phase clock. The clocks in the system are maintained in weak unison.

This is the first unison algorithm that both stabilizes in O(diameter) time and
is silent. A silent unison algorithm [11] that does not receive any outside input
stabilizes such that (1) the phase clocks in all the processes contain the same
number x for some x and (2) the value of the phase clocks never changes after
the stabilization. Of course, the value may change because of faults. However,
a silent unison algorithm may receive as an input requests from some other
algorithm (at one or more processes). If a request is made, the value grows by
one (eventually, at all the processes).

A silent unison algorithm in general, and SS-Sync in particular can be used
as a tool for some upper layer algorithm. Intuitively, the upper layer algorithm
may use SS-Sync in order to synchronize some action among different processes.
The semantics is given more formally below. Again, intuitively, if no synchronized
action is issued, then the silent unison algorithm assigns some value to the phase
clocks at all the processes, and stops. It increases this value only if a request for
a synchronized action is issued. In such a case, the phase clocks are advanced,
and then the silent algorithm stops again (and the phase clocks cease advancing
until yet another synchronized action is issued).

Somewhat more formally, SS-Sync provides the following interface to the up-
per layer algorithm:
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1. An externally visible clock read-only register, which indicates the current
phase clock value.

2. A writeable pointer to a procedure SynchronizedAction - the action which
execution is synchronized by SS-Sync.

3. Boolean writeable flag act. When the upper layer assigns act ← true, SS-
Sync is committed to advance the clock and to execute SynchronizedAction.

4. Boolean function IsSynchronized, indicating whether clock is in weak uni-
son with all neighbor’s clocks.

Every process u advances its clock, if the following conditions hold:

1. The advancing of the clock does not break the weak unison with u’s neigh-
bors.

2. There exists v ∈ N (u) with a higher clock value, or actu = true.

As mention above for silent algorithms, if there is no process where the upper
layer algorithm asks for SynchronizedAction execution (by setting act = true),
then all the clocks in the system gradually (in O(d) rounds) synchronize with
the maximum one and stop advancing. Hence, the algorithm is silent.

In order to implement the clock with bounded registers, SS-Sync uses a con-
struct called Finite Incrementing System [11]. FIS allows the maintaining of a
self stabilizing and infinitely advancing phase clock, using bounded registers. FIS
is detailed below.

Finite Incremented System - FIS. Let K be a strictly positive integer,
K ≥ 3. Two integers a and b are said to be congruent modulo K, denoted
by a ≡ b[K] if and only if ∃λ ∈ N, b = (a + λ)K. The distance dK(a, b) =
min(x ≥ 0, (a− b) ≡ x[K]∨ (b− a) ≡ x[K]). Two integers a and b are said to be
locally comparable, denoted as a � b, if and only if dK(a, b) ≤ 1. The local order
relation for locally comparable integers, denoted by ≤l, is defined as follows:
a ≤l b⇐⇒ 0 ≤ (b− a)[K] ≤ 1.

A Finite Incrementing System is defined by the pair (χ, ϕ). The set χ is the
range of all possible register values, defined as follows: χ = {−α , ..., 0 , ...,K−1},
where α is some positive integer, defined later. The function ϕ is an increment-
ing function, defined as follows:

ϕ(x) =

{
x+ 1, if x < 0

(x+ 1)[K], if x ≥ 0

We define tail = {−α, ..., 0}, tail− = {−α, ...,−1} and ring = {0, ...,K − 1}.
A reset on a node’s clock consists of enforcing any value of χ to −α.

In [11], the authors prove that a self stabilizing FIS implementation on network
G is only possible if K ≥ CG, when CG is the size of the longest cycle in the
graph, and α ≥ TG, when TG is the size of the longest chordless cycle (hole) in
the graph. Since TG and CG are unknown, but we do have an upper bound on
the size of the network (N), we define K = α = N + 1.

The main procedure of SS-Sync for process i is presented in figure 1. Reg-
ister clock is defined within the range of χ. Lines 2-9 are executed if ∀v ∈
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N (i), clockv � clocki, so the system appears to be stabilized for node i. This
code section is called NormalAction. If ∃v ∈ N (i) : clockv 	� clocki (so the
system is not stabilized), either ResetAction (lines 12-14) or StabilizationAction
(lines 16-20) is executed. Boolean function IsStabilized on node v returns true
iff ∀u ∈ N (v), clocku � clockv.

SS-Sync is self-stabilizing, hence, after O(d) rounds, all neighbouring pro-
cesses’ clock values are locally comparable. Moreover, after SS-Sync stabilizes,
every process is guaranteed to be able to execute the SynchronizedAction in
O(d) round after it was asked to do so by the upper layer algorithm.

SS-Sync Formal Description. Each process i carries a constant UID, unique
in the system. Each process i maintains the following registers:

– clock - The value of the clock at process i.
– act - A boolean flag, accessible (writeable) by external (upper layer) proto-

cols at i, which uses SS-Sync.
– SynchronizedAction - A pointer to an external procedure, executed by SS-

Sync during NormalAction, if acti = true. This register is assigned by an
external (upper layer) protocols, which uses SS-Sync.

1: if ∀v ∈ N (i), clockv � clocki then
2: if (∃v ∈ N(i) | clockv = ϕ(clocki) or act = true) and ¬∃u ∈ N(i) | clocki =

ϕ(clocku) then
3: /* NormalAction */
4: clocki ← ϕ(clocki);
5: if act = true then
6: SynchronizedAction;
7: end if
8: act ← false;
9: end if
10: else
11: if ∀v ∈ N (i), clockv ∈ ring then
12: /* ResetAction */
13: clocki ← −α;
14: act ← false;
15: else
16: /* StabilizationAction */
17: /* there must be a neighbor with clock in tail */
18: let m = MIN(clockv : v ∈ N (i));
19: clocki ← ϕ(m);
20: act ← false;
21: end if
22: end if

Fig 1. SS-Sync procedure - executed in every round for node i

SS-Sync correctness and complexity analysis is very similar to those of the
algorithms of [11] and [13]. The detailed analysis is deferred to the full paper.
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4 The Main Ideas behind the Spanning Tree Construction
Algorithm

Like most distributed spanning tree algorithms, our algorithm relies on the
paradigm of ID adoption from the distributed Bellman-Ford algorithm [1, 10, 31].
Let us first describe the main ideas behind the Bellman-Ford approach: each tree
gets an ID which is the UID of the tree root. Such an adopted identity is called
TID. A process v that detects a neighbour u who belongs to a tree T with a
higher TID than its own, joins that tree as a leaf by adopting the TID of T and
adopting u as a parent. There might be more than one process with equal TID
and distance from root; in this case, assuming a process’s edges are numbered,
the neighbor with the maximum edge connecting to it is chosen. Ideally (without
state faults), the system will eventually reach the state where the process with
the maximum ID is the root of the tree that spans the entire network. Every
process maintains, in addition to the TID register, also two other registers: a
pointer to the parent in the spanning tree (parent), and the estimated distance
to the root in hops (distance). The value of the parent registers of the roots is
null. In a legal state, the graph induced by the parent pointers of all the system
processes is supposed to form a spanning tree.

However, it is well known [30], that by itself, this ”pure” approach of the
basic Distributed Bellman Ford is not self-stabilizing, unless some additional
measures are taken. Due to faults, the TID registers of some processes might
contain faulty data, saying that those processes belong to a tree with some high
TID α. Since TID is the UID of the root, this implies that those processes
belong to a tree rooted at a process whose UID is α. However, such a process
may not exist. We term α a fake root. This could cause the count to infinity
problem ([26, p.315]).

There are several approaches for solving the problem of fake roots. For exam-
ple, in [5, 20] a known upper bound on the tree’s height is assumed, which is
based on the assumed upper bound on the diameter of the network. The use of
this approach in previous works caused the time complexity of the algorithm to
depend on that bound. Since the tightness of that bound can’t be assured, time
complexity of the algorithms could grow very large. Another approach, utilized
in [1–3], is to send verifications from the root to it’s children.

In [4], a different approach is presented. The TID of the tree doesn’t have to
be equal to the tree root UID. When a process detects that it belongs to a tree
whose root might be missing, it declares itself the root, adopting the existing
TID. This way, there is no need to ”dismantle” a tree that may already have
been built, just because root’s ID is a fake root. This was shown in [4] to save
time.

This approach raised another problem: since the TID may be different from
the UID of the root, there may be multiple trees with an equal TID - ID colli-
sion. Had no additional action been taken in such a situation in [4], no tree would
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have overrun the other, and the algorithm would have failed to achieve the goal
of constructing a spanning tree.

To overcome this, [4] proposes the DETECT-OTHER-TREES mechanism, so
that every root finds whether there is another tree with the same TID. If such
a tree exists, both roots perform an Extend-ID operation. During the Extend-
ID operation in the anonymous model, a random value is concatenated to the
TID of the root, and in the deterministic version, the UID of the root itself is
concatenated to the TID. This way, the algorithm breaks the symmetry and,
eventually, one of the trees will overrun all other trees and will become the
spanning tree.

We use an approach inspired by [4] rather than by the others due to its
time efficiency. The other approaches first dismantle the ”fake” trees (those that
contain fake roots), before building the new one. The dismantling may take
more time than the diameter, because these fake trees may be deeper than the
diameter (since the adversary composed those trees). In the current study, a new
tree can be constructed while overcoming the old trees, instead of waiting for
their dismantling.

A disadvantage of the algorithm described in [4] lies in the mechanism of
Extend-ID. Since this action concatenates a value to the TID each time there
is an ID Collision, the TID of such a tree becomes a sequence of values of an
unbounded length. In other words, the adversary might initialize the TID of one
of the trees to be very long, much longer than O(logn). In this case, the actual
time complexity of the algorithm won’t be O(d), since the messages won’t be
of O(logn) bits length. Just bounding the length of TID would not solve the
problem. Had we just bounded it, the adversary might have initialized multiple
roots to have the maximum ID, causing an ID collision, and the size bounding
would make it impossible to overcome such a collision.

To overcome this problem, we propose a different approach for solving the ID
Collision in the deterministic model. The TID is a fixed size register. In addition,
we use the SS-Sync mechanism for synchronizing and stabilizing the algorithm.
We use the clock value of SS-Sync as an indicator of priority over neighbors
when constructing the spanning tree.

Unlike the algorithm in [4], there is no mechanism for ID collision detec-
tion. Every root v with TIDv 	= UIDv performs an Increment-ID operation
by initiating a synchronized action of SS-Sync (that is, v sets actv ← true).
During the execution of SynchronizedAction of SS-Sync, clockv is advanced and
TIDv ← UIDv. This way, v increases its priority (detailed later) and makes the
tree TID unique, since the UID of v is unique.

Priority Relation. Let u and v be two processes in the system. A mutual neigh-
bour w prefers to join as a child of the process with the higher priority, defined
as follows. When we compare two processes’ priority, we use the ≺ notation. The
meaning of v ≺ u is:
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clockv <l clocku
or

clockv = clocku and T IDv < TIDu
or

clockv = clocku and T IDv = TIDu and distancev > distanceu

Since clock implements a Finite Incrementing System, priority relation on
clock values <l is defined for locally comparable values only. If there are more
than one neighboring processes with equal priority, then, assuming a process’s
edges are numbered, the neighbor with the maximum edge connecting to it is
chosen.

5 The Algorithm Formal Description

Each process i carries a constant UID, unique in the system. Each process i
maintains the following variables:

– TID - The TID of the tree.
– parent - A pointer to the process which is supposed to be the parent of i in

the tree.
– distance - This is supposed to represent the distance over the tree to the

root r. It is measured by the number of hops between i and r.

Each process i maintains SS-Sync mechanism. SS-Sync main procedure is ex-
ecuted explicitly by the spanning tree algorithm main procedure. Each process
i executes the procedure Main (figure 2) on each round of execution. The pro-
cedure Main calls the procedure Maximize-Priority (figure 3) and the SS-Sync
main procedure (figure 1). In figure 4, the SynchronizedAction of SS-Sync is
presented.

1: /* Read all neighbors’ variables */
2: LOOK − AT −NEIGHBORS;
3: if SS − Sync.IsStabilized then
4: /* The code of Maximize− Priority appears in figure 3 */
5: Maximize− Priority;
6: SS − Sync.acti ← false;
7: /*If p is root and has to increment its TID */
8: if distancei

.
= 0 and TIDi 
= UIDi then

9: /* Increment− ID */
10: SS − Sync.acti ← true;
11: end if
12: end if
13: SS − Sync Main Procedure;

Fig. 2. Main - Executed in every round for process i
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1: /* Join the tree with highest TID and address the fake roots problem */
2: /* l - pointer to the neighbor with maximum priority */
3: let l ← MAX(u ∈ N (i));
4:
5: /* If there is a neighbor with higher priority than i, join it as a child. Otherwise,

become root */
6: if i ≺ l then
7: TIDi ← TIDl;
8: distancei ← distancel + 1;
9: parenti ← l;
10: else
11: distancei ← 0;
12: parenti ← null;
13: end if

Fig. 3. Maximize-Priority for process i

1: TIDi ← UIDi;

Fig. 4. SynchronizedAction - executed by SS-Sync during NormalAction if acti = true

6 Correctness and Complexity Proofs

We prove that after O(d) rounds, the graph induced by the parent pointers forms
a spanning forest. Then we prove that from this state on, the number of roots
can only reduce, and that no new roots appear. We prove that eventually, after
O(d) rounds there remains only one root and that the graph induced by the
parent pointers forms a shortest path spanning tree. Moreover, from this round
on that graph will not change.

By the properties of SS-Sync, there exists a round t ≥ 0, where all processes’
clock values are locally comparable, and remain locally comparable from this
round on as long as no new failures occur. We analyse the behavior of spanning
tree algorithm starting from t1 ≡ t+ 1.

Lemma 1. After round t1, for any process v, v’s priority at any round t cannot
decrease with the respect to v’s priority at round t− 1.

Proof. During Maximize-Priority, a process can became a child of a higher pri-
ority process (causing increase of priority), or a root (also causing increase of
priority). During SS-Sync action (following Maximize-Priority), the only enabled
action is NormalAction, increasing priority also. Note, that by the definition of
the <l operator, this holds also if clock value overlaps. �

Lemma 2. After round t1, for any processes v, u:
parent(u) = v ⇒ u ≺ v
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Proof. After executing Maximize-Priority, every process becomes a child of a
higher priority process, or becomes a root. Hence, if at round t, a process p
becomes a child of q, then γt.p ≺ γt−1.q. By lemma 1, γt−1.q ≺ γt.q. Hence,
γt.p ≺ γt.q. �

Theorem 3. After round t1, the graph induced by the parent pointers forms a
spanning forest.

Proof. Let us assume there is a cycle p1, p2, ..., pn in the graph induced by the
parent pointers. In this case, by transitivity of priority relation and lemma
1 there must be two processs pk, pk+1, where pk+1 ≺ pk. This contradicts
lemma 2. �

Lemma 4. After round t1, a non-root process cannot become a root.

Proof. After t1, every non-root v has a parent u with higher priority by lemma
2. Let us assume by contradiction that v becomes a root at round t > t1. The
only way for v to become a root is to become the highest priority process among
N (v). Since no neighbor of v decrease its priority (by lemma 1), v had to increase
its priority. The only way for a non-root to increase priority is by executing
NormalAction of SS-Sync. Let us assume that at round t − 1, the process v
executed NormalAction, which caused v to become a root at round t. Thus, at
round t − 1, v has at least one neighbor u, such that clocku = ϕ(clockv) (see
line 3 in figure 1). Let us assume that u has the maximal priority among such
neighbors. Thus, at round t−1, v had to become u’s child (see lines 3-6 in figure
3). After executing NormalAction, v ≺ u (since distancev = distanceu + 1),
hence v can’t become a root at round t. �

Lemma 5. After round t1, a root r performs Increment-ID at most once.

Proof. After performing Increment-ID, TIDr ≡ UIDr. Hence, another
Increment-ID will not be executed (see line 8 in figure 2). The value of TIDr
might change after performing Increment-ID only if r joins a higher priority tree
as a child. In this case, Increment-ID will not be performed either, since only
roots can perform it. �

Lemma 6. If at round t1 there is a root r, such that TIDr 	= UIDr, then in at
most O(d) rounds, TIDr becomes equal to UIDr (unless r becomes a non-root).

Proof. In this case, r performs actr ← true, asking SS-Sync to execute the
synchronized action. By the properties of SS-Sync, it will be executed in at most
O(d) rounds, performing TIDr ← UIDr. �

Lemma 7. Let t2 be the round when all roots executed their Increment-ID ac-
tion. Then, after t2, in at most O(d) rounds, all clock values in the system become
equal. Moreover, from this round on, clock values are not changed any more.

Proof. Since no root needs to perform an additional Increment-ID action (by
lemmas 5 and 6), and there are no new roots by lemma 4, no process performs
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act ← true. Hence, by the properties of SS-Sync, in O(d) rounds all the clocks
in the system become equal. After this, no action of SS-Sync is enabled on any
process. Hence, the clock values don’t change any more. �

Let t3 be the round when all the clocks in the system become equal, as described
in lemma 7.

Theorem 8. In O(d) rounds after t3, only one root remains, and the graph
induced by parent pointers forms a spanning tree.

Proof. After round t3, the graph induced by parent pointers is a spanning forest
(by theorem 3), and every root (and tree) has a unique TID (by lemma 6). From
this point on, the algorithm acts similar to the basic Distributed Bellman-Ford
algorithm, and the graph induced by parent pointers forms a spanning tree in
O(d) rounds. �

7 Conclusion and Future Research

In this research, we propose the first time-optimal spanning tree algorithm for
synchronous systems in the common model with a standard register size (or,
similarly, message size) of O(logn) bits. It is efficient in terms of time, stabilizing
in O(d) rounds.

In addition, we present a self stabilizing time optimal silent synchronous syn-
chronizer with a phase clock - SS-Sync, and show an application of a synchronizer
with a phase clock for spanning tree construction. SS-Sync is a multi-purpose
tool, which can be used for a variety of tasks, like mutual exclusion and synchro-
nization.

It may seem that SS-Sync implements a self-stabilizing reset algorithm. Un-
fortunately, this is not the case, since the the ResetAction of SS-Sync may not
affect all the processes in the system (since it affects only those processes whose
clock values are in stab).

However, using the spanning tree, the task of distributed reset becomes quite
easy, as shown in [10]. The reset operation can be controlled by the root, making
it time optimal.

Note, that the spanning tree algorithm itself can be executed successfully in
an asynchronous system, given a silent asynchronous self stabilizing phase clock
algorithm replacing SS-Sync. For example, replacing SS-Sync with the silent
algorithm of [11], would give us an asynchronous self-stabilizing spanning tree
algorithm with standard message size, which stabilizes in O(d + α) time units,
where α stands for the upper bound on the size of the largest hole in the system.
Hence, finding a time-optimal silent asynchronous self stabilizing phase clock
algorithm may be the main point of interest in the future work.

Another interesting task might be adjusting the current algorithm for anony-
mous systems, where the nodes do not possess unique IDs. Since [4] deals with
such systems, this goal seems to be achievable using the same method suggested
there.
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Abstract. Guerraoui and Kapalka defined opacity as a safety criterion
for transactional memory algorithms in 2008. Researchers have shown
how to prove opacity, while little is known about pitfalls that can lead
to non-opacity. In this paper, we identify two problems that lead to non-
opacity, we present automatic tool support for finding such problems,
and we prove an impossibility result. We first show that the well-known
TM algorithms DSTM and McRT don’t satisfy opacity. DSTM suffers
from a write-skew anomaly, while McRT suffers from a write-exposure
anomaly. We then prove that for direct-update TM algorithms, opacity
is incompatible with a liveness criterion called local progress, even for
fault-free systems. Our result implies that if TM algorithm designers
want both opacity and local progress, they should avoid direct-update
algorithms.

1 Introduction

Transactional Memory. Atomic statements can simplify concurrent program-
ming that involves shared memory. Transactional memory (TM) [24, 35] inter-
leaves the bodies of atomic statements as much as possible, while guaranteeing
noninterleaving semantics. Thus, the noninterleaving in the semantics can coexist
with a high degree of parallelism in the implementation. TM aborts an operation
that cannot complete without violating the semantics. The use of TM provides
atomicity, deadlock freedom, and composability [21], and increases programmer
productivity compared to use of locks [30,32]. Researchers have developed formal
semantics [1, 26, 29] and a wide variety of implementations of the TM interface
in both software [9, 10, 22, 23, 33] and hardware [2, 18]. IBM supports TM in its
Blue Gene/Q processor [19], and Intel supports transactional synchronization
primitives in its new processor microarchitecture Haswell [7].

Safety. A TM interface consists of the operations read, write, and commit. The
task of a TM algorithm is to implement those three operations. What is a correct
TM algorithm? The traditional safety criterion for database transactions is strict
serializability [31]. For TM algorithms, strict serializability [34] requires that
committed transactions together have an equivalent sequential execution, that is,
an execution that could also happen if the transactions execute noninterleaved.
However, to ensure semantic correctness, active and aborted transactions should
execute correctly too. This observation has led researchers to define the stronger
safety criteria opacity [13], VWC [25], and TMS1 [11]. We will focus on opacity,
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which is the strongest safety criterion and requires that all transactions together
have an equivalent sequential execution.

Verification. Researchers have shown how to verify the safety of TM algo-
rithms. In pioneering work, Tasiran [36] proved serializability for a class of TM
algorithms. Cohen et al. [5,6] were the first to use a model checker to verify strict
serializability of TM algorithms for a bounded number of threads and memory
locations. Later, Guerraoui and Kapalka [17] proved opacity of two-phase locking
with a graph-based approach that is related to an earlier approach to serializ-
ability. Guerraoui et al. [14–16] used a model checker to verify opacity of TM
algorithms that use an unbounded number of threads and memory locations.
Their approach relies on four assumptions about TM algorithms. In follow-up
work, Emmi et al. [12] used a theorem prover to generate invariants that are
sufficient to prove strict serializability. Their proofs work for TM algorithms
that use an unbounded number of threads and memory locations. Later, Lesani
et al. [27] presented a TM verification framework based on IO automata and
simulation. We identify specific pitfalls that lead to non-opacity and show how
a tool can automatically find such pitfalls.

The Problem: Which pitfalls lead to non-opacity?

Our Results: We identify two problems that lead to non-opacity, we present a
tool that automatically finds such problems, we find problems with DSTM and
McRT, and we prove an impossibility result.

We show that the well-known TM algorithms DSTM and McRT don’t satisfy
opacity. These results may be surprising because previous work has proved that
DSTM and McRT satisfy opacity [15, 16]. However, there is no conflict and no
mystery: the previous work focused on abstractions of DSTM and McRT, while
we work with specifications that are much closer to original formulations of
DSTM and McRT. Thus, we experience a common phenomenon: once we refine
a specification, we may lose some properties.

Let us recall common terminology. A TM algorithm is a deferred-update algo-
rithm if every transaction that writes a value must commit before other transac-
tions can read that value. All other TM algorithms are direct-update algorithms.
DSTM is a deferred-update algorithm while McRT is a direct-update algorithm.

DSTM suffers from a write-skew anomaly, while McRT suffers from a write-
exposure anomaly. The write-skew anomaly is an incorrectness pattern that is
known in the setting of databases [3]. The write-exposure anomaly happens when
a direct-update TM algorithm exposes written values to other transactions before
the transaction commits.

We present fixes to both DSTM and McRT that we conjecture make the
fixed algorithms satisfy opacity. Interestingly, we note that writers can limit the
progress of readers in the fixed McRT algorithm. This is an instance of a general
pattern: we prove that for direct-update TM algorithms, opacity is incompatible
with a liveness criterion called local progress [4], even for fault-free systems.
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Our result implies that if TM algorithm designers want both opacity and local
progress, they should avoid direct-update algorithms.

We hope that our observations and tool can help TM algorithm designers to
avoid the write-skew and write-exposure pitfalls, and to be aware that if local
progress is a goal, then deferred-update algorithms may be the only option.

The Rest of the Paper. In Section 2 we recall the definition of transaction his-
tories, and in Section 3 we introduce bug patterns that violate opacity. In Section
4, we introduce our tool and in Section 5, we show how our tool automatically
finds that DSTM and McRT don’t satisfy opacity. In Section 6, we prove that
for direct-update TM algorithms, opacity and local progress are incompatible.
The full version of the paper has appendices in which we give a formal definition
of opacity, prove our theorems, and give details of DSTM, McRT, base objects,
and our tool.

2 Histories

Guerraoui and Kapalka [13] defined opacity in terms of transaction histories. A
transaction history is a record of what happened at the interface of a TM. For
example, HWS , HWE , HWE2, H1, H2 are all transaction histories:

HWS = Init · readT1 (1):v0 · readT2(1):v0 · readT1 (2):v0 · readT2(2):v0 ·
writeT1 (1,−v0) · writeT2 (2,−v0) ·
invT1(commitT1) · invT2(commitT2) · retT1(C) · retT2(C)

HWE = Init · invT1(readT1 (2)) · writeT2(2, v1) · retT1(v1) ·
invT2(readT2(1)) · writeT1 (1, v1) · retT2(v1) ·
invT1(commitT1) · invT2(commitT2) · retT1(A) · retT2(A)

HWE2 = Init · invT1((writeT1 (1, v1)) · readT2(1):v1 · retT1(ok) ·
writeT1 (1, v2) · commitT1():C · commitT2():A

H1 = Init · H0 · writeT2 (2, j) · readT1 (2):j · writeT1 (1, j) · readT2 (1):A
H2 = Init · H0 · writeT2 (2, j) · readT1 (2):j · writeT1 (1, j) · readT2 (1):j

where Init is described below and H0 is a transaction history that does not
contain a write operation that writes value j.

The invocation event invT (o.nT (v)) denotes the invocation of method n on
object o in thread T with the argument v. The response event retT (v) denotes
a response that returns v in the thread T . We will use the term completed
method call to denote a sequence of an invocation event followed by the matching
response event (with the same thread identifier). We use o.nT (v):v

′ to denote
the completed method call invT (o.nT (v)) · retT (v′). We use o.writeT (i, v) as an
abbreviation for o.writeT (i, v):ok. Let i range over the set of memory locations, v
range over the set of values, and t range over the set of transactions. The interface
of a transactional memory object has three methods readt(i), writet(i, v) and
committ and we write calls to those methods without a receiver object. The
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current object this is the implicit receiver of these calls and thus they are called
this method calls. The method call readt(i) returns the value of location i or
A (if the transaction is aborted). The method writet(i, v) writes v to location i
and returns ok or returns A. The method committ tries to commit transaction t
and returns C (if the transaction is successfully committed) or returns A (if it is
aborted). In general, a transaction history H is of the form Init ·H ′, where Init
is the transaction writeT0 (1, v0), . . . , writeT0 (m, v0), commitT0 :C that initializes
every location to v0, and for all T ∈ H ′ : H ′|T is a prefix of O.F where O is a
sequence of reads readT (i):v and writes writeT (i, v) (for some T , i, and v) and
F is one of the following sequences: (1) invT (readT (i)), retT (A) (for some T and
i), (2) invT (writeT (i, v)), retT (A) (for some T i, and v), (3) invT (commitT ),
retT (C), or (4) invT (commitT ), retT (A) (for some T ). For a history H , we use
H |T to denote the subsequence of all events of T in H . Note that H ′ is an
interleaving of the invocation and response events of different transactions.

3 Opacity and Bug Patterns

Guerraoui and Kapalka [17] defined final-state opaque transaction histories. In
their earlier, seminal paper on opacity [13], they used the shorter term opaque
for such histories; we will use opaque and final-state opaque interchangeably. In
Appendix A, we formalize opacity as a set of histories called F inalStateOpaque
and we prove that none of the transaction histories HWS , HWE , HWE2, H1, H2

are opaque.

Theorem 1. {HWS , HWE , HWE2, H1, H2} ∩ F inalStateOpaque = ∅.

We say that HWS , HWE , H1, H2 are bug patterns, because if a TM can produce
any of them, then the TM violates opacity. Let us now focus on HWS , HWE and
later turn to HWE2, H1, H2.

Write-skew Anomaly. The transaction history HWS is evidence of the write-
skew anomaly. Let us illustrate the write-skew anomaly with the following nar-
rative.

Assume that a person has two bank accounts that are stored at locations
i1 and i2 and that have the initial balances v0 and v0, where v0 > 0. Assume
also that the regulations of the bank require the sum of a person’s accounts to
be positive or zero. Thus, the bank will authorize a transaction that updates
the value of one of the accounts with the previous value of the account minus
the sum of the two accounts because the transaction makes the sum of the two
accounts zero.

Now we interpret the narrative in the context of HWS , which is a record of
the execution of two “bank-authorized” transactions. In HWS the transaction
T1 reads the values of both accounts and updates i1 with v0 − (v0 + v0) = −v0.
Similarly, the transaction T2 reads the values of both accounts and updates i2
with −v0. But in HWS both transactions commit, which results in a state that
violates the regulations of the bank: −v0 is the balance of both accounts.
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The problem with HWS stems from that the TM that produced HWS doesn’t
guarantee noninterleaving semantics of the transactions. In a noninterleaving
semantics, either T1 executes before T2, or T2 executes before T1. However, if
we order T1 before T2, then the values read by T2 violate correctness; and if we
order T2 before T1, then the values read by T1 violate correctness.

Experts may notice that since HWS is not opaque and all the transactions in
HWS are committed, HWS is not even serializable. However, HWS does satisfy
snapshot isolation, which is a necessary, though not a sufficient, condition for se-
rializability. A history satisfies snapshot isolation if its reads observe a consistent
snapshot. Snapshot isolation prevents observing some of the updates of a com-
mitting transaction before the commit and some of the rest of the updates after
the commit. Algorithms that support only snapshot isolation but not serializ-
ability are known to be prone to the write-skew anomaly, as shown by Berenson
et al. [3]. Note that HWS satisfies snapshot isolation but suffers from the write-
skew anomaly. A TM algorithm that satisfies serializability (and opacity) must
both provide snapshot isolation and prevent the write-skew anomaly.

Write-Exposure Anomaly. The transaction history HWE is evidence of the
write-exposure anomaly. The two locations i1 and i2 each has initial value v0 and
no committed transaction writes a different value to them, and yet the two read
operations return the value v1. Write-exposure happens when a transaction that
eventually fails to commit writes to a location i and exposes the written value
to other transactions that read from i. Thus, active or aborting transactions
can read inconsistent values. This violates opacity even if these transactions are
eventually prevented from committing.

4 Automatic Bug Finding

We present a language called Samand in which a program consists of a TM algo-
rithm, a user program, and an assertion. A Samand program is correct if every
execution of the user program satisfies the assertion. Our tool solves constraints
to decide whether a Samand program is correct. Our approach is reminiscent
of bounded model checking: we use concurrency constraints instead of Boolean
constraints, and we use an SMT solver instead of a SAT solver.

Our Language. We present Samand via two examples. We will use a sugared
notation, for simplicity, while in an appendix of the full paper, we list the actual
Samand code for both examples. The first example is

(Core DSTM, PWS ,¬WS)

where Core DSTM (see Figure 1) is a core version of the TM algorithm DSTM,
and the user program and assertion are:

PWS = {readT1(1):r11 readT1(2):r12 writeT1(0, v1) commitT1():c1} ||
{readT2(1):r21 readT2(2):r22 writeT2(1, v1) commitT2():c2}

WS = (r11 = v0 ∧ r12 = v0 ∧ r21 = v0 ∧ r22 = v0 ∧ c1 = C ∧ c2 = C)
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Note that the assertionWS specifies a set of buggy histories of the user program;
the history HWS is a member of that set. The second example is

(Core McRT, PWE ,¬WE)

where Core McRT (see Figure 2) is a core version of the TM algorithm McRT,
and the user program and assertion are:

PWE = {readT1(2):r1 writeT1(1, v1) commitT1():c1} ||
{writeT2(2, v1) readT2 (1):r2 commitT2():c2}

WE = (r1 = v1 ∧ r2 = v1 ∧ c1 = A ∧ c2 = A)

Like above, the assertion WE specifies a set of buggy histories of the user pro-
gram; the history HWE is a member of that set.

Samand enables specification of loop-free user programs. Every user program
has a finite number of possible executions and those executions all terminate.

Each of Core DSTM and Core McRT has three parts: declarations, method
definitions, and a program order. Let us take a closer look at these algorithms.

Core DSTM has two shared objects state and start, and one thread-local
object rset. Samand supports five types of objects namely AtomicRegister,
AtomicCASRegister, Lock, TryLock, and BasicRegister, as well as arrays and
records of such objects. Atomic registers, atomic compare-and-swap (cas) reg-
isters, locks, and try-locks are linearizable objects, while basic registers behave
as registers only if they are not accessed concurrently. Core DSTM declares one
record type Loc that has three fields.

Core DSTM has five methods read, write, commit, stableV alue, and validate.
Among those, a user program can call the first three, while the read method calls
the last two, and the commit method calls validate. Each method is a list of
labeled statements that can be method calls on objects, simple arithmetic state-
ments, dynamic memory allocation statements, and if and return statements.
The new operator dynamically allocates an instance of a record type and returns
a reference to it.

Core McRT has three shared objects, two thread-local objects, four methods,
and a specification of the program order.

Core McRT specifies the program order R03 ≺p R04, C03 ≺p C04. The
idea is to enable out-of-order execution yet maintain fine-grained control of the
execution. The execution of the algorithm in a Samand program can be any out-
of-order execution that respects the following: the program control dependencies,
data dependencies, lock happens-before orders, the declared program orders, that
each linearizable object satisfies the linearizability conditions, and that each
basic register behaves as a register if it is not accessed concurrently. A method
call m1 is data-dependent on a method call m2 if an argument of m1 is the
return variable of m2. If a method call m2 is data-dependent on a method call
m1 then m1 must precede m2 in any execution. For example, in Core McRT,
the statement R03 must precede R04 in any execution. Each statement of the
if and else blocks of an if statement is control-dependent on the if statement.
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Intuitively, a program execution must respect both the wishes of the programmer
and the guarantees of the objects. We can use fences to implement the declared
orders.

Constraints.Our tool uses the following notion of constraints to decide whether
a Samand program is correct. Let l, x, v range over finite sets of labels, vari-
ables, and values, respectively. Let the execution condition of a statement be the
conjunction of all enclosing if (or else) conditions. A constraint is an assertion
about transaction histories and is generated by the following grammar:

a ::= obj(l) = o | name(l) = n | thread(l) = T | Assertion
arg1(l) = u | arg2(l) = u | retv(l) = x |
cond(l) = c | exec(l) | l ≺ l | ¬a | a ∧ a

u := v | x Variable or Value
c := u = u | u < u | ¬c | c ∧ c Condition

The assertions obj(l) = o, name(l) = n, thread(l) = T , arg1(l) = u, arg2(l) = u,
retv(l) = x and cond(l) = c respectively assert that the receiver object of l is o,
the method name of l is n, the calling thread of l is T , the first argument of l
is u, the second argument of l is u, the return value of l is x, and the execution
condition of l is c. The assertion exec(l) asserts that l is executed. The assertion
l ≺ l′ asserts that l is executed before l′.

The satisfiability problem is to decide, for a given constraint, whether there
exists a transaction history that satisfies the constraint. One can show easily
that the satisfiability problem is NP-complete.

From Programs to Constraints. We map a Samand program to a set of
constraints such that the Samand program is correct if and only if the constraints
are unsatisfiable.

Let us first define the run-time labels for a program. A run-time label denotes
a run-time program point and is either a program label (if the program point is
at the top level) or a concatenation of two program labels (if the program point
is in a procedure). In the latter case, the additional label is the program label
of the caller.

Let us now define the labels and variables that we use in the constraints for
a Samand program. For each call we define two labels: the run-time label of
the call concatenated with Inv and with Ret, respectively. For other statements
we have a single label, namely the run-time label. For each local variable, we
define a family of constraint variables, namely one for each caller: each constraint
variable is the concatenation of the program label of the caller and the name of
the local variable.

Next, we define two auxiliary concepts that are helpful during constraint gen-
eration. The program order is a total order on program labels. We define the
program order to be the transitive closure of the following orders: the control
and data dependencies, the declared program order, the orders imposed by locks,
that each invocation event is before its matching response event and that each
method call inside a this method call is before the invocation and after the
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response event of the this method call. The execution order is the ordering of
labels in a particular history.

We have five sources of constraints: the method calls, the execution conditions,
the program order, the base objects, and the assertion.

First, for each run-time label of a method call, we generate constraints that
assert the receiver object, the method name, the calling thread, the arguments,
the return variable, and the execution condition. For each this method call,
we generate constraints that assert that the actual parameters and the formal
parameters are equal, that the response event of the this method call is executed
if and only if one (and only one) of its return statements are executed, and that
if a return statement is executed, the argument of the return statement is equal
to the returned variable of the this method call.

Second, we generate constraints that assert that a statement is executed if and
only if its execution condition is valid and no prior return statement is executed.

Third, we generate constraints that assert that if l1 is before l2 in the program
order and the statements with labels l1, l2 are both executed, then l1 is before
l2 in the execution order.

Fourth, we generate constraints that assert the safety properties of the base
objects. For each linearizable object, there should be a linearization order of the
executed method calls on the object. For example, consider an atomic register.
The write method call that is linearized last in the set of write method calls that
are linearized before a read method call R is called the writer method call for R.
The return value of each read method call is equal to the argument of its writer
method call. For a second example, consider an atomic cas register. A successful
write is either a write method call or a successful cas method call. The written
value of a successful write is its first argument, if it is a write method call or is its
second argument, if it is a cas method call. For a method call m, the successful
write method call that is linearized last in the set of successful write method calls
that are linearized before m is called the writer method call for m. The return
value of each read method call is equal to the written value of its writer method
call. A casmethod succeeds if and only if its first argument is equal to the written
value of its writer method call. For a third example, consider a lock object. The
last method call linearized before a lock method call is an unlock method call.
Similarly, the last method call linearized before an unlock method call is a lock
method call. For a fourth example, consider a try-lock object. We call a lock
method call or successful tryLock method call, a successful lock method call.
We call a lock method call, successful tryLock method call or unlock method
call, a mutating method call. The last mutating method call linearized before a
successful lock method call is an unlock method call. Similarly, the last mutating
method call linearized before an unlock method call is a successful lock method
all. A tryLock succeeds if the last mutating method before it in the linearization
order is an unlock. It fails otherwise (if the last mutating method before it in the
linearization order is a successful lock). The rules for the return value of read
method calls are similar to the rule for tryLock method calls.
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Fifth, we map the assertion in the Samand program to the negation of that
assertion. As a result, we can use a constraint solver to search for a transaction
history that violates the assertion in the Samand program.

Our Tool. Our tool maps a Samand program to constraints in SMT2 format
and then uses the Z3 SMT solver [8] to solve the constraints. If the constraints
are unsatisfiable, then the Samand program is correct. If the constraints are
satisfiable, then the Samand program is incorrect and the constraint solver will
find a transaction history that violates the assertion in the Samand program.
Our tool proceeds to display that transaction history as a program trace in a
graphical user interface. Our tool and some examples are available at [28].

5 Experiments

We will now report on running our tool on the two example Samand programs.
Our first example concerns Core DSTM.

The Context. We believe that Core DSTM matches the paper on DSTM [23].
While we prove that Core DSTM doesn’t satisfy opacity, we have learned from
personal communication with Victor Luchangco, one of the DSTM authors, that
the implementation of DSTM implements more than what was said in the paper
and most likely satisfies opacity.

The Bug. DSTM provides snapshot isolation by validating the read set (at R10)
before the read method returns but fails to prevent write skew anomaly. When
we run our tool on (CoreDSTM,PWS ,¬WS), we get an execution trace that
matchesHWS . Figure 3(a) presents an illustration of the set of DSTM executions
that exhibit the bug. Note that this set is a subset of the set of executions that
the bug pattern describes. In Figure 3(a), each transaction executes from top
to bottom and the horizontal lines denote “barriers”, that is, the operations
above the line are finished before the operations below the line are started and
otherwise the operations may arbitrarily interleave. For example, readT1(2):v0
should finish execution before writeT2(2,−v0) but readT1(1):v0 and readT2(1):v0
can arbitrarily interleave. In Figure 3(a), T1 writes to location 1 after T2 reads
from it so T2 does not abort T1. T1 invokes commit and finishes the validation
phase (C01− C04) before T2 effectively commits (executes the cas method call
at C05). The situation is symmetric for transaction T2. During the validation,
the two transactions still see v0 as the stable value of the two locations; thus,
both of them can pass the validation phase. Finally, both of them succeed at
cas. Note that the counterexample happens when the two commit method calls
interleave between C04 and C05.

The Fix. We learned from Victor Luchangco that the implementation of DSTM
aborts the writer transactions of the locations in the read set rsetT during
validation of the commit method call. We model this fix by adding the following
lines between C01 and C02 in Core DSTM:

foreach (i ∈ dom(rsett)) {
st := start[i].read(); t′ := st.writer.read(); if (t 	= t′) state[t′].cas(R,A) }
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state : AtomicCASRegister[LocCount] init R
start : AtomicCASRegister[TransCount] init new Loc(T0, 0, 0)
rset : ThreadLocal Set init ∅
Loc {writer, oldV al, newV al : BasicRegister}
R01 : def readt(i) W 01 : def writeT (i, v)
R02 : s := state[t].read() W 02 : s := state[t].read()
R03 : if (s = A) W 03 : if (s = A)
R04 : return A W 04 : return A

R05 : st := start[i].read() W 05 : st := start[i].read()
R06 : v := stableValuet(st) W 06 : wr := st.writer.read()
R07 : wr := st.writer.read() W 07 : if (wr = t)
R08 : if (wr 
= t) W 08 : st.newVal.write(v)
R09 : rsett.add((i, v)) W 09 : return ok
R10 : valid := validatet() W 10 : v′ := stableValuet(st)
R11 : if (¬valid) W 12 : st′ := new Loc(T, v′, v)
R12 : return A W 13 : b := start[i].cas(st, st′)
R13 : return v W 14 : if (b)
C01 : def committ W 15 : return ok
C02 : valid := validatet() W 16 : else
C03 : if (¬valid) W 17 : return A

C04 : return A V 01 : def validatet()
C05 : b := statet.cas(R,C) V 02 : foreach ((i, v) ∈ rsett)
C06 : if (b) V 03 : st := start[i].read()
C07 : return C V 04 : t′ := st.writer.read()
C08 : else V 05 : s′ := state[t′].read()
C09 : return A V 06 : if (s′ = C)
CV 01 : def stableValuet(st) V 07 : v′ := loc.newVal.read()
CV 02 : t′ := st.writer.read() V 08 : else
CV 03 : s′ := state[t′].read() V 09 : v′ := loc.oldVal.read()
CV 04 : if (t′ 
= t ∧ s′ = R) V 10 : if (v 
= v′)
CV 05 : state[t′].cas(R,A) V 11 : return false
CV 06 : s′′ := state[t′].read() V 12 : s := state[t].read()
CV 07 : if (s′′ = A) V 13 : return (s = R)
CV 08 : v := loc.oldVal.read()
CV 09 : else
CV 10 : v := loc.newVal.read()
CV 11 : return v

R05 ≺p R10, C02 ≺p C05

Fig. 1. Core DSTM

Those lines prevent HWS because each transaction will abort the other transac-
tion and thus both of them abort.

Our second example concerns Core McRT.

The Context. McRT [33] predates the definition of opacity [13] and wasn’t in-
tended to satisfy such a property, as far as we know. Rather, McRT is serializable
by design. Still, we prove that Core McRT doesn’t satisfy opacity.
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r : BasicRegister[LocCount]
ver : AtomicRegister[LocCount] init 0
l : TryLock[LocCount] init R
rset : ThreadLocal Map init ∅
uset : ThreadLocal Map init ∅
R01 : def readt(i) C01 : def committ()
R02 : if (i 
∈ dom(usett)) C02 : foreach ((i �→ rver) ∈ rsett)
R03 : rver := ver[i].read() C03 : locked := l[i].read()
R04 : locked := l[i].read() C04 : cver := ver[i].read()
R05 : if (locked) C05 : if (locked ∨ rver 
= cver)
R06 : return abortt() C06 : return abortt()
R07 : if (i 
∈ dom(rsett)) C07 : foreach (i ∈ dom(usett))
R08 : rsett.put(i, rver) C08 : cver := ver[i].read()
R09 : v := r[i].read() C09 : ver[i].write(cver + 1)
R10 : return v C10 : l[i].unlock()
W 01 : def writet(i, v) C11 : return C

W 02 : if (i 
∈ dom(usett)) A01 : def abortt()
W 03 : locked := l[i].tryLock() A02 : foreach ((i �→ v) ∈ usett)
W 04 : if (¬locked) A03 : r[i].write(v)
W 05 : return abortt() A04 : l[i].unlock()
W 06 : v′ := r[i].read() A05 : return A

W 07 : usett.put(i, v
′)

W 08 : r[i].write(v)
W 09 : return ok

R03 ≺p R04, C03 ≺p C04

Fig. 2. Core McRT

The Bug. When we run our tool on (CoreMcRT, PWE ,¬WE), we get an ex-
ecution trace that matches HWE in about 20 minutes. Figure 3(b) presents an
illustration of the set of executions that exhibit the bug. Like above, this set is a
subset of the set of executions that the bug pattern describes. Figure 3(b) uses
the same conventions as Figure 3(a). The execution interleaves writeT2(2, v1)
between statements readT1(2).R01 − R04 and readT1(2).R05 − R10 such that
the old value of l[2] (unlocked) and the new value of r[2] (the value v1) are read.
Also, commitT2 .C01−C04 are executed before commitT1 .C05−C06 such that
T2 finds l[1] locked and aborts. The situation is symmetric for transaction T1.

The Fix. The validation in the commit method ensures that only transactions
that have read consistent values can commit; this is the key to why Core McRT
is serializable. Our fix to Core McRT is to let the read method do validation,
that is, to insert a copy of lines C03 − C06 between line R09 and line R10 in
Core McRT.

Let us use Fixed Core MrRT to denote Core McRT with the above fix. When
we run our tool on (FixedCoreMcRT, PWE ,¬WE), our tool determines that
the algorithm satisfies the assertion, that is, Fixed Core McRT doesn’t have the
write-exposure anomaly. The run takes about 10 minutes.
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T1 T2

readT1(1):v0 readT2(1):v0
readT1(2):v0 readT2(2):v0
writeT1(1,−v0) writeT2(2,−v0)
commitT1 .C01–C04 commitT2 .C01–C04

commitT1 .C05–C09 commitT2 .C05–C09

(a) DSTM counterexamples

T1 T2

readT1(2).R01–R04

writeT2(2, v1)

readT1(2).R05–R10
readT2(1).R01–R04

writeT1(1, v1)

readT2(1).R05–R10

commitT1 .C01–C04 commitT2 .C01–C04

commitT1 .C05–C06 commitT2 .C05–C06

(b) McRT counterexamples

Fig. 3. Counterexamples

Note though that in the fixed algorithm, a sequence of writer transactions can
make a reader transaction abort an arbitrary number of times. This observation
motivated the next section’s study of progress for direct-update TM algorithms
such as McRT.

6 Local Progress and Opacity

We will prove that for direct-update TM algorithms, opacity and local progress
are incompatible, even for fault-free systems.

Local Progress. We first recall the notion of local progress [4]. Intuitively, a
TM algorithm ensures local progress if every transaction that repeatedly tries
to commit eventually commits successfully. A process is a sequential thread that
executes transactions with the same identifier. A process T is crashing in an
infinite historyH ifH |T is a finite sequence of operations (not ending in an abort
retT (A) or commit retT (C) response event). A crashing process may acquire a
resource and never relinquish it. A process T is pending in infinite history H if
H has only a finite number of commit response retT (C) events. A process makes
progress in an infinite history, if it is not pending in it. A process T is parasitic
in the infinite history H if H |T is infinite and in history H |T , there are only a
finite number of commit invocation invT (commitT ()) or abort response retT (A)
events. In other words, a parasitic process is a process that from some point in
time keeps executing operations without being aborted and without attempting
to commit. A process is correct in an infinite history if it is not parasitic and not
crashing in the history. A process that is not correct is faulty. An infinite history
satisfies local progress, if every infinite correct process in it makes progress. A
TM algorithm ensures local progress, if every infinite history of it satisfies local
progress and every finite history of it can be extended to an infinite history of it
that satisfies local progress. A system is fault-prone if at least one process can
be crashing or parasitic.

The Seminal Result. Theorem 2 is the seminal result on the incompatibility
of opacity and local progress.
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Theorem 2. (Bushkov, Guerraoui, and Kapalka [4]) For a fault-prone
system, no TM algorithm ensures both opacity and local progress.

Considering a fault-prone system, the proof uses strategies that result in either
a crashing or parasitic process.

Fault-Prone Versus Fault-Free. The large class of fault-prone systems presents
a formidable challenge for designers of TM algorithms who want some form of
progress. A crashing or parasitic process may never relinquish the ownership of a
resource that another process must acquire before it can make progress. Bushkov,
Guerraoui, and Kapalka [4] consider a liveness property called solo progress that
guarantees that a process that eventually runs alone will make progress. They
conjecture that obstruction-free TM algorithms (as defined in [23]) ensure solo
progress in parasitic-free systems, and that lock-based TM algorithms ensure
solo progress in systems that are both parasitic-free and crash-free. Those con-
jectures embody the following idea and practical advice.

Bushkov, Guerraoui, and Kapalka’s advice [4, paraphrased]:
If designers of TM algorithms want opacity and progress, they must
consider either weaker progress properties or fault-free systems.

TM algorithms for fault-free systems can rely on that no processes are crashing
or parasitic.

Local Progress for Fault-Free Systems. Following the advice embodied in
the paper by Bushkov, Guerraoui, and Kapalka [4], we study liveness in the
setting of fault-free systems. Our main result is that an entire class of TM algo-
rithms cannot ensure both opacity and local progress for fault-free systems.

We need two definitions before we can state our result formally. A TM al-
gorithm is a deferred-update algorithm if every transaction that writes a value
must commit before other transactions can read that value. All other TM algo-
rithms are direct-update algorithms. For example, DSTM is a deferred-update
algorithm while McRT is a direct-update algorithm.

Our main result is Theorem 3 which says that direct-update TM algorithms
cannot ensure both opacity and local progress for fault-free systems.

Theorem 3. For a fault-free system, no direct-update TM algorithm ensures
both opacity and local progress.

The proof of Theorem 3 is different from the proof of Theorem 2 because the
proof of Theorem 3 cannot use crashing or parasitic processes. The proof of
Theorem 3 considers a arbitrary direct-update TM algorithm for a fault-free
system and exhibits a particular program that uses the TM. The program leads
to transaction histories that are either H1, H2, or easily seen to violate local
progress. In Theorem 1 we showed that H1 and H2 violate opacity.

We can now refine Bushkov, Guerraoui, and Kapalka’s advice.

Our advice: If designers of TM algorithms want opacity and local
progress, they might have success with deferred-update TM algorithms
that work for fault-free systems.
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7 Conclusion

We have identified two problems that lead to non-opacity and we have proved an
impossibility result. Our proofs of non-opacity for Core DSTM and Core McRT
show that even if an algorithm satisfies opacity at a high level of abstraction,
it may fail to satisfy opacity at a lower level of abstraction. Our impossibility
result implies that if local progress is a goal, then deferred-update algorithms
may be the only option.

Our tool is flexible and can accommodate a variety bug patterns such as
HWE2 that was suggested by a DISC reviewer (thank you!). Our tool outputs
an execution trace of Core McRT that matches HWE2 in about 7 minutes. Our
tool handles small bug patterns efficiently; scalability is left for future work.

We hope that our observations and tool can help TM algorithm designers to
avoid the write-skew, write-exposure, and other pitfalls. We envision a method-
ology in which TM algorithm designers first use our tool to avoid pitfalls and
then use a proof framework such as the one by Lesani et al. [27] to prove cor-
rectness. Our tool can be used also during maintenance of TM algorithms. For
example, a set of bug patterns can serve as a regression test suite. Additionally,
our tool can be used to avoid pitfalls in other synchronization algorithms.
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Abstract. We present Lilac-TM, the first locality-aware Distributed
Software Transactional Memory (DSTM) implementation. Lilac-TM is
a fully decentralized lease-based replicated DSTM. It employs a novel
self-optimizing lease circulation scheme based on the idea of dynamically
determining whether to migrate transactions to the nodes that own the
leases required for their validation, or to demand the acquisition of these
leases by the node that originated the transaction. Our experimental
evaluation establishes that Lilac-TM provides significant performance
gains for distributed workloads exhibiting data locality, while typically
incurring little or no overhead for non-data local workloads.

1 Introduction

Transactional Memory (TM) has emerged as a promising programming paradigm
for concurrent applications, which provides a programmer-friendly alternative to
traditional lock-based synchronization. Intense researchworkonboth software and
hardwareTMapproaches [16,22], and the inclusion ofTMsupport inworld-leading
multiprocessor hardware and open source compilers [17,21] extended the traction
it had gained in the research community to the mainstream software industry.

Distributed Software TM (DSTM) systems extend the reach of the TM model
to distributed applications. An important lesson learnt by the deployment of
the first enterprise-class TM-based applications [6,19] is that, in order to per-
mit scalability and meet the reliability requirements of real-world applications,
DSTMs must support data replication. As a result, several replication techniques
for distributed TM have been proposed, deployed over a set of shared-nothing
multi-core systems [1,2,11,20], as typical of cloud computing environments.

A key challenge faced by replicated DSTMs, when compared with more con-
ventional transactional systems (such as relational databases), is the large in-
crease of the communication-to-computation ratio [19]: unlike classical DBMSs,
DSTMs avoid disk-based logging and rely on in-memory data replication to
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achieve durability and fault-tolerance; further, the nature of the programming
interfaces exposed by DSTMs drastically reduces the latencies of accessing data,
significantly reducing the duration of typical TM transactions, when compared
to typical on-line transaction processing (OLTP). Overall, the reduction of the
transaction processing time results in the growth of the relative cost of the dis-
tributed (consensus-based [14]) coordination activities required by conventional
replication protocols, and in a corresponding increase of their relative overhead.

Model and Background: We consider a classical asynchronous distributed
system model [14] consisting of a set of processes Π = {p1, . . . , pn} that commu-
nicate via message passing and can fail according to the fail-stop (crash) model.
We assume that a majority of processes is correct and that the system ensures
sufficient synchrony for implementing a View Synchronous Group Communica-
tion Service (GCS) [10].

GCS provides two complementary services: group membership and multicast
communication. Informally, the role of the group membership service is to pro-
vide each participant in a distributed computation with information about which
process is active (or reachable) and which is failed (or unreachable). Such infor-
mation is called a view of the group of participants. We assume that the GCS
provides a view-synchronous primary-component group membership service [5],
which maintains a single agreed view of the group at any given time and provides
processes with information on whether they belong to the primary component.

We assume that the multicast communication layer offers two communica-
tion services, which disseminate messages with different reliability and order-
ing properties: Optimistic Atomic Broadcast (OAB) [12] and Uniform Reliable
Broadcast (URB) [14]. URB is defined by the primitives UR-broadcast(m) and
UR-deliver(m), and guarantees causal order and uniform message delivery. Three
primitives define OAB: OA-broadcast(m), which is used to broadcast messagem;
Opt-deliver(m), which delivers messagem with no ordering or reliability guaran-
tees; TO-deliver(m), which delivers message m ensuring uniform and total order
guarantees.

The ALC (Asynchronous Lease Certification) protocol [8] is based on the lease
concept. A lease is an ownership token that grants a node temporary privileges
on the management of a subset of the replicated data-set. ALC associates leases
with data items indirectly through conflict classes, each of which may represent
a set of data items. This allows flexible control of the granularity of the leases ab-
straction, trading off accuracy (i.e., avoidance of aliasing problems) for efficiency
(amount of information exchanged among nodes and maintained in-memory) [3].

With ALC, a transaction is executed based on local data, avoiding any inter-
replica synchronization until it enters its commit phase. At this stage, ALC
acquires a lease for the transaction’s accessed data items, before proceeding
to validate the transaction. In case a transaction T is found to have accessed
stale data, T is re-executed without releasing the acquired leases. This ensures
that, during T ’s re-execution, no other replica can update any of the data items
accessed during T ’s first execution, which guarantees the absence of remote
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conflicts on the subsequent re-execution of T , provided that the same set of
conflict classes accessed during T ’s first execution is accessed again.

To establish lease ownership, ALC employs the OAB communication service.
Disseminating data items of committed transactions and lease-release messages
is done using the URB service. The ownership of a lease ensures that no other
replica will be allowed to successfully validate any conflicting transaction, mak-
ing it unnecessary to enforce distributed agreement on the global serialization
order of transactions. ALC takes advantage of this by limiting the use of atomic
broadcast exclusively for establishing the lease ownership. Subsequently, as long
as the lease is owned by the replica, transactions can be locally validated and
their updates can be disseminated using URB, which can be implemented in a
much more efficient manner than OAB.

Our Contributions: In this paper, we present an innovative, fully decentral-
ized, LocalIty-aware LeAse-based repliCated TM (Lilac-TM). Lilac-TM aims
to maximize system throughput via a distributed self-optimizing lease circula-
tion scheme based on the idea of dynamically determining whether to migrate
transactions to the nodes that own the leases required for their validation, or to
demand the acquisition of these leases by the transaction’s originating node.

Lilac-TM’s flexibility in deciding whether to migrate data or transactions al-
lows it not only to take advantage of the data locality present in many application
workloads, but also to further enhance it by turning a node N that frequently ac-
cesses a set of data items D into an attractor for transactions that access subsets
of D (and that could be committed by N avoiding any lease circulation). This
allows Lilac-TM to provide two key benefits: (1) limiting the frequency of lease
circulation, and (2) enhancing contention management efficiency. In fact, with
Lilac-TM, conflicting concurrent transactions have a significantly higher prob-
ability of being executed on the same node, which prevents them from incurring
the high costs of distributed conflicts.

We conducted a comprehensive comparative performance analysis, establish-
ing that Lilac-TM outperforms ALC by a wide margin on workloads possessing
data locality, while incurring little or no overhead for non-data local workloads.

2 LILAC-TM

Figure 1 provides an overview of the software architecture of each replica of
Lilac-TM, highlighting in gray the modules that were either re-designed or
that were not originally present in ALC.

The top layer is a wrapper that intercepts application level calls for trans-
action demarcation without interfering with application accesses (read/write)
to the transactional data items, which are managed directly by the underlying
local STM layer. This approach allows transparent extension of the classic STM
programming model to a distributed setting.

The prototype of Lilac-TM has been built by extending the ALC implemen-
tation shipped in the GenRSTM framework [7]. GenRSTM has been designed
to support, in a modular fashion, a range of heterogeneous algorithms across the
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various layers of the software stack of a replicated STM platform. Lilac-TM

inherits this flexibility from GenRSTM. In this work, we use TL2 [13] as the
local STM layer.

Distributed STM API Wrapper

Local STM

Distributed
Transaction
Dispatcher

Lease Manager

Group Communication Service

Application

Replication 
Manager

Transaction 
Forwarder

Fig. 1. Middleware architecture of a
LILAC-TM replica

The Replication Manager (RM) is
the component in charge of interfac-
ing the local STM layer with its repli-
cas deployed on other system nodes.
The RM is responsible of coordinating
the commit phase of both remote and
local transactions by: (i) intercepting
commit-request events generated by lo-
cal transactions and triggering a dis-
tributed coordination phase aimed at
determining transactions’ global serial-
ization order and detecting the presence
of conflicts with concurrently execut-
ing remote transactions; and (ii) vali-
dating remote transactions and, upon
successful validation, committing them
by atomically applying their write-sets
in the local STM.

At the bottom layer we find a GCS (Appia [18] in our prototype), which, as
mentioned in Section 1, provides the view synchronous membership, OAB and
URB services.

The role of the Lease Manager (LM) is to ensure that no two replicas simul-
taneously disseminate updates for conflicting transactions. To this end, the LM
exposes an interface consisting of two methods, getLease() and finishedX-

act(), which are used by the RM to acquire/release leases on a set of data items.
This component was originally introduced in ALC and has been re-designed in
this work to support fine-grained leases. As we explain in more detail in Section
2.1, fine-grained leases facilitate the exploitation of locality and consequently
reduce lease circulation.

The Transaction Forwarder (TF) is responsible for managing the forwarding of
a transaction to a different node in the system. The transaction forwarding mech-
anism represents an alternative mechanism to the lease-based certification scheme
introduced in ALC. Essentially, both transaction forwarding and lease-based repli-
cation strive to achieve the same goal: minimizing the execution rate of expensive
Atomic Broadcast-based consensus protocols to determine the outcome of com-
mit requests. ALC’s lease mechanism pursues this objective by allowing a node
that owns sufficient leases to validate transactions and disseminate their writesets
without executing consensus protocols. Still, acquiring a lease remains an expen-
sive operation, as it requires the execution of a consensus protocol.

The transaction forwarding scheme introduced in this work aims at reducing
the frequency of lease requests triggered in the system, by migrating the exe-
cution of transactions to remote nodes that may process them more efficiently.
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This is the case, for instance, if some node n owns the set of leases required to
certify and commit a transaction T originated on some remote node n′. In this
scenario, in fact, n could validate T locally, and simply disseminate its writeset
in case of success. Transaction migration may be beneficial also in subtler sce-
narios in which, even though no node already owns the leases required to certify
a transaction T , if T ’s originating node were to issue a lease request for T , it
would revoke leases that are being utilized with high frequency by some other
node, say n′′. In this case, it is preferable to forward the transaction to n′′ and
have n′′ acquire the lease on behalf of T , as this would reduce the frequency of
lease circulation and increase throughput in the long term.

The decision whether to migrate a transaction’s execution to another node
or to issue a lease request and process it locally is far from being a trivial one.
The transaction scheduling policy should take load balancing considerations into
account and ensure that the transaction migration logic avoids excessively over-
loading any subset of nodes in the system. In Lilac-TM, the logic for deter-
mining how to manage the commit phase of transactions is encapsulated by the
Distributed Transaction Dispatching (DTD) module. In this paper, we propose
two decision policies based on an efficiently solvable formulation in terms of an
Integer Linear Programming optimization problem.

In the following we describe the key contributions of this paper, i.e. the fine-
grained lease management scheme, the TF and the DTD.

2.1 Fine-Grained Leases

In ALC, a transaction requires a single lease object, associated with its data set
in its entirety. A transaction T , attempting to commit on a node, may reuse a
lease owned by the node only if T ’s data set is a subset of the lease’s items set.
Thus, each transaction is tightly coupled with a single lease ownership record.
This approach has two disadvantages: i) upon the delivery of a lease request by
a remote node that requires even a single data item from a lease owned by the
local node, the lease must be released, causing subsequent transactions accessing
other items in that lease to issue new lease requests; ii) if a transaction’s data
set is a subset of a union of leases owned by the local replica but is not a subset
of any of them, a new lease request must be issued. This forces the creation of
new lease requests, causing extensive use of OA-broadcast and TO-deliver.

To exploit data-locality, we introduce a new lease manager module that de-
couples lease requests from the requesting transaction’s data set. Rather than
having a transaction acquire a single lease encompassing its entire data set, each
transaction acquires a set of fine-grained Lease Ownership Records (LORs), one
per accessed conflict class.

Implementation Details: ALC’s Replication Manager (RM) was not changed.
It interfaces with the LM via the getLease() and finishedXact() meth-
ods for acquiring and releasing leases, respectively. As in ALC, Lilac-TM

maintains the indirection level between leases and data items through conflict
classes. This allows flexible control of the leases abstraction granularity. We ab-
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Algorithm 1. Lease Manager at process pi

1 FIFOQueue<LOR> CQ[NumOfCCs]={⊥, . . . ,⊥}
2 Set<LOR> GetLease(Set DataSet)

3 ConflictClass[] CC = getCCs(DataSet)

4 if (∃(Set<LOR>)S⊆CQ s.t. ∀cc∈CC(∃lor∈S :

(lor.cc=cc ∧ lor.proc=pi ∧ ¬lor.blocked)))

then

5 foreach lor∈S do

6 lor.activeXacts++

7 else

8 Set<LOR> S = createLorsForCCs(CC)

9 LeaseRequest req = new LeaseRequest(pi,S)

10 OA-broadcast([LeaseRequest,req])

11 wait until isEnabled(S)

12 return S

13 void FinishedXact(Set<LOR> S)

14 Set<LOR> lorsToFree

15 foreach lor∈S do

16 lor.activeXacts−−
17 if (lor.blocked ∧ lor.activeXacts=0) then

lorsToFree=lorsToFree ∪ lor
18 if (lorsToFree �= ∅) then

UR-broadcast([LeaseFreed,lorsToFree])

19 upon Opt-deliver([LeaseRequest, req])

from pk do

20 freeLocalLeases(req.cc)

21 upon TO-deliver([LeaseRequest, req])

from pk do

22 Set<LOR> S = createLorsForCCs(req.cc)

23 foreach lor∈S do CQ[lor.cc].enqueue(lor)

24 upon UR-deliver([LeaseFreed, Set<LOR>

S]) from pk do

25 foreach lor∈S do CQ[lor.cc].dequeue(lor)

26 void freeLocalLeases(ConflictClass[]

CC)

27 Set<LOR> lorsToFree

28 foreach cc ∈ CC do

29 if ∃lor in CQ[cc] s.t. lor.proc=pi then

30 lor.blocked=true

31 if (CQ[lor.cc].isFirst(lor) ∧
lor.activeXacts=0) then

32 lorsToFree=lorsToFree ∪ lor

33 if (lorsToFree �= ∅) then

UR-broadcast([LeaseFreed,lorsToFree])

34 boolean isEnabled(Set<LOR> S)

35 return ∀lor∈S : CQ[lor.cc].isFirst(lor)

36

stract away the mapping between a data item and a conflict class through the
getConflictClasses() primitive, taking a set of data items as input parameter
and returning a set of conflict classes.

As in ALC, each replica maintains one main data structure for managing
the establishment/release of leases: CQ (Conflict-Queues), an array of FIFO
queues, one per conflict class. The CQ keeps track of conflict relations among
lease requests of different replicas. Each queue contains LORs, each storing the
following data: (i) proc: the address of the requesting replica; (ii) cc: the conflict
class this LOR is associated with; (iii) activeXacts: a counter keeping track of
the number of active local transactions associated with this LOR, initialized to 1
when the LOR is created; and (iv) blocked: a flag indicating whether new local
transactions can be associated with this LOR - this flag is initialized to false
when the LOR is created (in the createLorsForConflictClasses primitive),
and set to true as soon as a remote lease request is received.

Algorithm 1 presents the pseudo-code of Lilac-TM’s LM. The method
getLease() is invoked by the RM once a transaction reaches its commit phase.
The LM then attempts to acquire leases for all items in the committing trans-
action’s data set. It first determines, using the getCCs() method, the set CC of
conflict classes associated with the transaction’s data set (line 3). It then checks
(in line 4) whether CQ contains a set S of LORs, associated with all the conflict
classes in CC, such that i) the LORs were issued by pi, and ii) additional trans-
actions of pi may still be associated with these LORs (this is the case if none of
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these LORs is blocked). If the conditions of line 4 are satisfied, the current trans-
action can be associated with all LORs in S (lines 5–6). Otherwise, a new lease
request, containing the set of LORs, is created and is disseminated using OAB
(lines 7–10). In either case, pi waits in line 11 until S is enabled, that is, until
all the LORs in S reach the front of their corresponding FIFO queues (see the
isEnabled() method). Finally, the method returns S and the RM may proceed
validating the transaction.

When a transaction terminates, the RM invokes the finishedXact() method.
This method receives a set of LORs and decrements the number of active trans-
actions within each record (line 16). All blocked LORs that are not used by local
transactions are then released by sending a single message via the UR-broadcast
primitive (lines 17–18).

Upon an Opt-deliver event of a remote lease request req, pi invokes the free-
LocalLeases() method, which blocks all LORs owned by pi that are part of req
by setting their blocked field (line 30). Then, all LORs that are blocked and are no
longer in use by local transactions are released by sending a single UR-broadcast
message (lines 31–33). Other LORs required by req that have local transactions
associated with them (if any) will be freed when the local transactions terminate.
Blocking LORs is required to ensure the fairness of the lease circulation scheme.
In order to prevent a remote process pj from waiting indefinitely for process
pi to relinquish a lease, pi is prevented from associating new transactions with
existing LORs as soon as a conflicting lease request from pj is Opt-delivered at
pi.

Upon a TO-deliver of a lease request req (line 21), pi creates the corresponding
set of LORs, and enqueues these records in their conflict class queues. The logic
associated with a UR-deliver event (line 24) removes each LOR specified in the
message from its conflict class queue.

2.2 Transaction Forwarder

The TF is the module in charge of managing the process of migrating transac-
tions between nodes. If at commit time the set S of conflict classes accessed by
a transaction T is not already owned by its origin node, say n, the DTD may
decide to avoid requesting leases for T , and forward its execution to a different
node n′. In this case node n′ becomes responsible for finalizing the commit phase
of the transaction. This includes establishing leases on S on behalf of transac-
tion T , which can be achieved avoiding any distributed coordination, in case n′

already owns all the leases required by T ′. Else, if some of the leases requested
by T ′ are not owned by n′, n′ has to issue a lease request on behalf of T via the
OAB service.

Next we can use a remote validation optimization and let n′ perform T ’s final
validation upon arrival (without re-executing T ) in order to detect whether T
has conflicts with concurrently committed transactions.1 In case of successful

1 In order to use this remote validation optimization, the TF module must be aug-
mented with a TM-specific validation procedure and append the appropriate meta-
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validation, T can be simply committed, as in ALC, by disseminating a Commit
message via the UR-Broadcast. Additionally, in Lilac-TM, this has the effect
of unblocking the thread that requested the commit of T on node n. On the
other hand, if T fails its final validation, it is re-executed on node n′ until it
can be successfully committed, or until it fails for a pre-determined number of
attempts. In this latter case, the origin node is notified of the abort of T , and the
user application is notified via an explicit exception type. Note that, in order to
commit the transaction associated with the re-execution of T , which we denote
as T ′, n′ must own the set of conflict classes accessed by T ′. This may not be
necessarily true, as T ′ and T may access different sets of conflict classes. In
this case, Lilac-TM prevents a transaction from being forwarded an arbitrary
number of times, by forcing n′ to issue a lease request and acquire ownership of
the leases requested by T ′.

It must be noted that, in order to support the transaction forwarding pro-
cess, the programming model exposed by Lilac-TM has to undergo some minor
adaptations compared, e.g., with the one typically provided by non-replicated
TM systems. Specifically, Lilac-TM requires that the transactional code is
replicated and encapsulated by an interface that allows to seamlessly re-execute
transactions originating at different nodes.

2.3 Distributed Transaction Dispatching

The DTD module allows encapsulating arbitrary policies to determine whether
to process the commit of a transaction locally, by issuing lease requests if re-
quired, or to migrate its execution to a remote node. In the following we refer
to this problem as the transaction migration problem. This problem can be for-
mulated as an Integer Linear Programming (ILP) problem as follows:

(1) min
∑
i∈Π Ni · C(i, S)

subject to: (2)
∑
i∈Π Ni = 1, (3) CPUi ·Ni < maxCPU

The above problem formulation aims at determining an assignment of the
binary vector N (whose entries are all equal to 0 except for one, whose index
specifies the selected node) minimizing a generic cost function C(i, S) that ex-
presses the cost for node i to be selected for managing the commit phase of a
transaction accessing the conflict classes in the set S. The optimization problem
specifies two constraints. Constraint (2) expresses the requirement that a trans-
action can be certified by exactly a single node in Π . Constraint (3) is used to
avoid load imbalance between nodes. It states that a node i should be considered
eligible for re-scheduling only if its CPU utilization (CPUi) is below a maximum
threshold (maxCPU).

We now derive two different policies for instantiating the above ILP formula-
tion, which are designed to minimize the long-term and the short-term impact
of the decision on how to handle a transaction. We start by defining the cost

data to forwarding messages. TM-specific adaptation and overhead can be avoided
by simply always re-executing the forwarded transaction once it is migrated to n′.
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function LC(i, S), which models the long-term cost of selecting node i as the
node that will execute the transaction as the sum of the frequency of accesses
to the conflict classes in S by every other node j 	= i ∈ Π :

LC(i, S) =
∑
x∈S

∑
j∈Π∨j �=i

F(j, x)

where F(j, x) is defined as the per time-unit number of transactions originated
on node j that have object x in their dataset.

In order to derive the short-term policy, we first define the function SC(i, S),
which expresses the immediate costs induced at the GCS level by different choices
of where to execute a transaction:

SC(i, S) =

⎧⎪⎪⎨⎪⎪⎩
cURB if i = O ∧ ∀x ∈ S : L(i, x) = 1

cAB + 2cURB if i = O ∧ ∃x ∈ S : L(i, x) = 0
cp2p + cAB + 2cURB if i 	= O ∧ ∃x ∈ S : L(i, x) = 0

cp2p + cURB if i 	= O ∧ ∀x ∈ S : L(i, x) = 1

where we denote by O the node that originated the transaction, and by cURB ,
cAB and cp2p the costs of performing a URB, an AB, and a point-to-point com-
munication, respectively. The above equations express the cost of the following
scenarios (from top to bottom): i) the originating node already owns all the leases
required by it; ii) the originating node does not own all the necessary leases and
issues a lease request; iii) the originating node forwards the transaction to a node
that does not own all the necessary leases; iv) the transaction is forwarded to
a node that owns the leases for all required conflict classes. The DTD can be
configured to use the long-term or the short-term policy simply by setting the
generic cost function C(i, S) in (1) to, respectively, LC(i, S) or SC(i, S).

It is easily seen that the ILP of Equation 1 can be solved in O(|Π |) time regard-
less of whether the long-term or the short-term policy is used. The statistics re-
quired for the computation of the long-term policy are computed by gathering the
access frequencies of nodes to conflict classes. This information is piggybacked on
the messages exchanged to commit transactions/request leases. A similar mecha-
nism is used for exchanging information on the CPU utilization of each node. For
the short-term policy, we quantify the cost of the P2P, URB and OAB protocols in
terms of their communication-steps latencies (which equal 1, 2, and 3, resp.).

3 Experimental Evaluation

In this section, we compare the performance of Lilac-TM with that of the base-
lineALCprotocol. Performance is evaluatedusing twobenchmarks: a variant of the
Bank benchmark [15] and the TPC-C benchmark [23]. We compare the following
algorithms:ALC (using the implementation evaluated in [7]), FGL (ALCusing the
fine-grained leasesmechanism),MG-ALC(ALCextendedwith the transactionmi-
grationmechanism), and two variants of Lilac-TM (transactionmigration on top
of ALC using fine-grained leases), using the short-term (Lilac-TM-ST) and the
long-term (Lilac-TM-LT) policies, respectively. The source code of ALC,Lilac-
TM and the benchmarks used in this study is publicly available [4].
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All benchmarks were executed running 2 threads per node, and using a cluster
of 4 replicas, each comprising an Intel Xeon E5506 CPU at 2.13 GHz and 32 GB
of RAM, running Linux and interconnected via a private Gigabit Ethernet.2

Bank. The Bank benchmark [9,15] is a well-known transactional benchmark
that emulates a bank system comprising a number of accounts.

We extended this benchmark with various types of read-write and read-only
transactions, for generating more realistic transactional workloads. A read-write
transaction performs transfers between randomly selected pairs of accounts. A
read-only transaction reads the balance of a set of randomly-selected client ac-
counts. Workloads consist of 50% read-write transactions and 50% read-only
transactions of varying lengths.

We introduce data locality in the benchmark as follows. Accounts are split
into partitions such that each partition is logically associated with a distinct
replica and partitions are evenly distributed between replicas. A transaction
originated on replica r accesses accounts of a single (randomly selected) partition
associated with r with probability P , and accounts from another (randomly
selected) remote (associated with another replica) partition with probability
1−P . Larger values of P generate workloads characterized by higher data-locality
and smaller inter-replica contention. Hence, the optimal migration policy is to
forward a transaction T to the replica with which the partition accessed by T is
associated. We therefore implement and evaluate a third variant of Lilac-TM

(called Lilac-TM-OPT) using this optimal policy.3

Figure 2(a) shows the throughput (committed transactions per second) of the
algorithms we evaluate on workloads generated by the Bank application with P
varying between 0% and 100%.

Comparing ALC and FGL, Figure 2(a) shows that, while ALC’s throughput
remains almost constant for all locality levels, FGL’s performance dramatically
increases when locality rises above 80%. This is explained by Figure 2(b), that
shows the Lease Reuse Rate, defined as the ratio between the number of read-
write transactions which are piggy-backed on existing leases and the total num-
ber of read-write transactions.4 A higher lease reuse rate results in fewer lease
requests, which reduces in turn the communication overhead and the latency
caused by waiting for leases. FGL’s lease reuse rate approaches 1 for high local-
ity levels, which enables FGL and FGL-based migration policies to achieve up
to 3.2 times higher throughput as compared with ALC and MG-ALC.

When locality is lower than 80%, the FGL approach yields throughput that
is comparable to ALC. Under highly-contended low-locality workloads, FGL’s
throughput is even approximately 10%-20% lower than that of ALC. This is
because these workloads produce a growing demand for leases from all nodes.
FGL releases the leases in fine-grained chunks, which results in a higher load on
URB-communication as compared with ALC.

2 Evaluation using 4 threads per node shows similar trends. For lack of space, we report
on this evaluation in our technical report: http://arxiv.org/abs/1308.2147.

3 Our MG-ALC implementation also uses this optimal migration policy.
4 Read-only transactions never request leases.

http://arxiv.org/abs/1308.2147.
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Fig. 2. Bank Benchmark

The adverse impact of low-locality workloads on transaction migration poli-
cies, however, is much lower. Migrating transactions to replicas where leases
might already be present (or will benefit from acquiring it), increases the lease
reuse rate, which increases throughput in turn. Indeed, as shown by Figure
2(a), Lilac-TM achieves speed-up of 40%-100% even for low-locality workloads
(0%-60%) in comparison with ALC. For high-locality workloads, both FGL and
Lilac-TM converge to similar performance, outperforming ALC by a factor of
3.2.

Comparing the performance of ALC and MG-ALC shows that using transac-
tion migration on top of ALC does not improve the lease reuse rate as compared
with ALC. This is because migration only helps when used on top of the fine-
grained leases mechanism. The slightly lower throughput of MG-ALC vs. ALC
is due to the overhead of the TF mechanism.

Next, we evaluate the ability of Lilac-TM to cope with load imbalance. To
this end, we set the benchmark to access with 20% probability a single partition,
p, from all the nodes, except for the single node, say n, associated with p, which
accesses only p. In these settings, with all the considered policies, n tends to
attract all the transactions that access p. At second 40 of the test, we overload
node n by injecting external, CPU-intensive jobs. The plots in Fig. 2(c) com-
pare the throughput achieved by Lilac-TM with and without the mechanism
for overload control (implementing Inequality (3)), and with both the long-term
and the short-term policies. The data highlights the effectiveness of the proposed
overload control mechanism, which significantly increases system throughput. In
fact, the schemes that exploit statistics on CPU utilization (LILAC-TM-ST and
LILAC-TM-LT) react in a timely manner to the overload of n by avoiding fur-
ther migrating their transactions towards it, and consequently achieve a through-
put that is about twice that of uninformed policies (LILAC-TM-ST-NoCtrl and
LILAC-TM-LT-NoCtrl).

TPC-C. We also ported the TPC-C benchmark and evaluated Lilac-TM using
it. The TPC-C benchmark is representative of OLTP workloads and is useful to
assess the benefits of our proposal even in the context of complex workloads that
simulate real world applications. It includes a wider variety of transactions that
simulate a whole-sale supplying items from a set of warehouses to customers
within sales districts. We ported two of the five transactional profiles offered by
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TPC-C, namely the Payment and the New Order transactional profiles, that
exhibit high conflict rate scenarios and long running transactional workloads,
respectively. For this benchmark, we inject transactions to the system by emu-
lating a load balancer operating according to a geographically-based policy that
forwards requests on the basis of the requests’ geographic origin. In particular,
requests sent from a certain geographic region are dispatched to the node that is
responsible for the warehouses associated with the users of that region. To gen-
erate more realistic scenarios we also assume that the load balancer can make
mistakes by imposing that with probability 0.2 a request sent from a certain
region is issued by users associated with warehouses that do not belong to that
region.
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Fig. 3. TPC-C

In Figure 3, we present the throughput
obtained by running a workload with 95%
Payment transactions and 5% New Order
transactions. We show the throughput vary-
ing over time in order to better assess the
convergence of the reschedule policies. We
first notice that even in this complex sce-
nario FGL performs better than ALC due to
better exploitation of the application, and a
higher leases reuse rate. In addition, using the migration mechanism, driven by
either the short-term (ST) or the long-term (LT) policy, over FGL, achieves
speedups of between 1.2 and 1.5 when compared to ALC. However, unlike the
Bank Benchmark, in this case the ST policy achieves only minor gains compared
to the LT policy, due to TPC-C’s transactional profiles that generate more com-
plex access patterns. In fact, even when the data set is partitioned by identifying
each partition as a warehouse and all the objects associated with that ware-
house, TPC-C’s transactions may access more than one partition. This reduces
the probability that the ST policy can actually trigger a reschedule for a trans-
action on a node that already owns all the leases necessary to validate/commit
that transaction. On the other hand, the LT policy can exploit application local-
ity thus noticeably reducing lease requests circulation, i.e. the number of lease
requests issued per second.

4 Conclusions

In this paper we introduced Lilac-TM, a fully decentralized, LocalIty-aware
LeAse-based repliCatedTM.Lilac-TM exploits a novel, self-optimizing lease cir-
culation scheme that provides two key benefits: (1) limiting the frequency of lease
circulation, and (2) enhancing the contentionmanagement efficiency, by increasing
the probability that conflicting transactions are executed on the same node.

By means of an experimental evaluation based on both synthetic and realistic
benchmarks we have shown that Lilac-TM can yield significant speed-ups,
reaching peak gains of up to 3.2 times with respect to the previous state of the
art lease-based replication protocol.
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Abstract. Multiversion software transactional memory (STM) allows a
transaction to read old values of a recently updated object, after which
the transaction may serialize before transactions that committed earlier
in physical time. This ability to “commit in the past” is particularly ap-
pealing for long-running read-only transactions, which may otherwise
starve in many STM systems, because short-running peers modify data
out from under them before they have a chance to finish.

Most previous approaches to multiversioning have been designed as an
integral part of some larger STM system, and have assumed an
object-oriented, garbage-collected language. We describe, instead, how
multiversioning may be implemented on top of an almost arbitrary “word-
based” STM system. To the best of our knowledge, ours is the first work
(for any kind of STM) to combine bounded space consumption with guar-
anteed wait freedom for read-only transactions (in the form presented
here, it may require writers to be blocking). We make no assumptions
about data or metadata layout, though we do require that the base system
provide a hash function with certain ordering properties. We neither re-
quire nor interfere with automatic garbage collection. Privatization safety
can be ensured—without compromising wait freedom for readers—either
by forcing privatizing writers to wait for all extant readers or by requiring
that programmers explicitly identify the data being privatized.

1 Introduction

Transactional memory (TM) raises the level of abstraction for synchronization, allow-
ing programmers to specify what should be made atomic without specifying how it
should be made atomic. The underlying system then attempts to execute nonconflicting
transactions in parallel, typically by means of speculation. Hardware support for TM
has begun to reach the market, but software implementations (STM) can be expected to
remain important for many years.

In both hardware and software TM, strategies for detecting and recovering from
conflicts differ greatly from one implementation to another. Most systems, however,
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have particular trouble accommodating long-running transactions. When writer trans-
actions (those that update shared data) conflict with one another (or appear to conflict
due to limitations in the detection mechanism) users will presumably not be surprised
by a lack of concurrency: in the general case, conflicting updates must execute one at
a time. When writers conflict with readers, however (i.e., with transactions that make
no changes to shared data), one might in principle hope to do better, since there is a
moment in time (the point at which it starts) when a reader could execute to completion
without interfering with the writer(s).

The problem, of course, is that changes made by writers after a reader has already
started may prevent the reader from completing. Specifically, if transaction R reads
location x early in its execution, it will typically be able to commit only if no other
thread commits a change to x while R is still active. Since readers are “invisible” in
most STM systems (they refrain from modifying metadata, to avoid exclusive-mode
cache misses), writers cannot defer to them, and a long-running reader may starve. To
avoid this problem, most systems arrange for a long-running reader to give up after a
certain number of retries and re-run under the protection of a global lock, excluding all
other transactions and making the reader’s completion inevitable.

A potentially attractive alternative, explored by several groups, is to keep old versions
of objects, and allow long-running readers to “commit in the past.” Suppose transaction
R reads x, transaction W subsequently commits changes to x and y, and then R at-
tempts to read y. Because the current value of y was never valid at the same time as R’s
previously read value of x, R cannot proceed, nor can it switch to the newer value of
x, since it may have performed arbitrary computations with the old value. If, however,
the older version of y is still available, R can safely use that instead. Assuming that the
STM system is otherwise correct, R’s behavior will be the same as it would have been
if it completed all its work before transactionW, and then took a long time to return.

Multiversioning is commonplace in database systems. In the STM context, it was pi-
oneered by Riegel et al. in their SI-STM [21] and LSA [20] systems, and, concurrently,
by Cachopo et al. in their JVSTM [3, 4]. SI-STM and LSA maintain a fixed number
of old versions of any given object. JVSTM, by contrast, maintains all old versions
that might potentially be needed by some still-running transaction. Specifically, if the
oldest-running transaction began at time t, JVSTM will keep the newest version that is
older than t, plus all versions newer than that.

In all three systems, the runtime deletes no-longer-wanted versions explicitly, by
breaking the last pointer to them, after which the standard garbage collector will even-
tually reclaim them. More recently, Perelman et al. demonstrated, in their SMV sys-
tem [17], how to eliminate explicit deletion: they distinguish between hard and weak
references to an object version v, and arrange for the last hard reference to become un-
reachable once no running transaction has a start time earlier than that of the transaction
that overwrote v.

Several additional systems [1, 2, 11, 16, 18] allow not only readers but also writers
to commit in the past. Unfortunately, because such systems require visible readers and
complex dependence tracking, they can be expected to have significantly higher con-
stant overheads. We do not consider them further here.
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SI-STM, LSA, JVSTM, and SMV were all implemented in Java. While only SMV
really leverages automatic garbage collection, all four are “object-based”: their meta-
data, including lists of old versions, are kept in object headers. One might naturally
wonder whether this organization is a coincidence or a necessity: can we create an effi-
cient, multiversion STM system suitable for unmanaged languages like C and C++, in
which data need not be organized as objects, and in which unwanted data must always
be explicitly reclaimed?

Our GMV (Generic MultiVersioning) system answers this question in the affirma-
tive. It is designed to interoperate with any existing “word-based” (i.e., hash-table–
based) STM system that provides certain basic functionality. It is also, to the best of
our knowledge, the first mechanism to simultaneously (a) guarantee wait-free progress
for all read-only transactions, and (b) bound total space consumption—specifically, to
O(nm), where n is the number of threads and m is the space consumed by an equiv-
alent nontransactional, global-lock-based program (this assumes reasonable space con-
sumption in the underlying STM system). Finally, GMV can preserve both privatization
safety (for writers) and wait freedom for readers if we are willing either to force pri-
vatizing writers to wait for extant readers, or to require programmers to explicitly label
the data being privatized.

As a proof of concept, we have implemented GMV on top of the TL2-like [6]
“LLT” back end of the RSTM suite [19]. Experiments with microbenchmarks confirm
that GMV eliminates starvation for long-running readers, yielding dramatically higher
throughput than single-version systems for workloads that depend on such transactions.

We focus in this paper on the formal properties of GMV. We describe the algorithm,
including its interface to the underlying STM system and its impact on privatization, in
Section 2. In Section 3 we outline proofs of strict serializability, bounded space con-
sumption, and wait-free readers. We also consider the impact of GMV on the liveness
of writers. Section 4 summarizes the performance of our prototype implementation. We
conclude in Section 5.

2 GMV Design

We refer to a transaction as a “reader” if it is known in advance to perform no updates
to shared locations. Otherwise it is a “writer.” On behalf of readers, and with limited
cooperation from writers, GMV maintains four key data structures: a global timestamp
variable, gt, that tracks the serialization order of writer transactions; an array ts of lo-
cal timestamps, indexed by thread id; a history table that holds values that have been
overwritten by writers but may still be needed by active readers; and an array, hp, of
“helping structures,” also indexed by thread id. Variable gt can be shared with the un-
derlying STM system (the host), if that system is timestamp-based. The history table,
likewise, can be merged with the table of ownership records (Orecs) in the host, if it
has such a table. Array hp is used to let the garbage collection process (invoked by
writer threads) cooperate with reader transactions. Each reader records its history table
inquiries in hp. If a writer needs to perform a potentially conflicting collection on a his-
tory list, it first completes the reader’s request and stores the result in hp. GMV uses a
type-preserving memory allocator for history nodes; this convention, together with the
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monotonicity of timestamps, allows a reader to notice if its search has conflicted with a
writer, and to retrieve the answer it was looking for from the helping array.

ro_readget_ts

get_and_set_gt

save_val
curr_val

hash

(other routines)

GMV Host STM

readers writers

Fig. 1. GMV interface routines

We characterize both GMV and the
host as linearizable concurrent objects.
The host provides methods for use by
writers; GMV is oblivious to these. The
host must also provide two methods to
be called by GMV. GMV, for its part,
exports four methods: two to be called
by readers, the other two by the host.
Readers make no direct calls to the host
(Fig. 1). Our pseudocode assumes that memory is sequentially consistent, but it can
easily be adapted to more relaxed machines.

GMV tracks overwritten values at word granularity, in a hash table keyed by memory
address. Each bucket of the hash table is a dummy head node for a list of history nodes
whose locations share a hash value. Each (real) node n in turn has three fields: a location
loc, an old value formerly contained in loc, and the global time (gt value) overwrite time
when this value was overwritten. A special-purpose, built-in garbage collector reclaims
nodes that are no longer needed.

2.1 GMV–Host Interface

GMV provides two methods to be called by the host STM:

get and set gt(): This method atomically increments gt and returns the new value. The
host must guarantee that the serialization order of writers is consistent with the val-
ues returned. These values provide a well-defined meaning for “writerW serializes
at time t,” and “value v was written to location l at time t.” Note that spurious
calls to get and set gt() are harmless: every committed writer must obtain a unique
timestamp, but not every timestamp must correspond to a unique committed writer.

save val(loc, old value, overwrite time): After calling get and set gt(), and before al-
lowing its thread to proceed with post-transaction execution, a writer must call this
method for every location it has modified, passing the value returned by get and
set gt() as its overwrite time. A call with a given location must not be made until
all calls with a smaller overwrite time and a location with the same hash value have
already returned.

Code for these routines is trivial: get and set gt performs a fetch and increment on
gt and returns the result plus one; save val writes its arguments into a newly allocated
history node, which it then pushes, in the manner of a Treiber stack [24], onto the
beginning of history list hash(l). We assume that the memory allocator employed by
save val tracks the total number of extant history nodes. Each writer checks this number
at commit time. If it exceeds some predetermined threshold (we used 100K in our ex-
periments), the writer invokes a garbage collection algorithm, described in Section 2.3.



138 L. Lu and M.L. Scott

GMV in turn requires two methods from the host:

hash(loc): Values returned by this function are used as indices into the history table. As
noted above, the host must ensure that if two locations have the same hash value,
calls to save val will happen in timestamp order, even if they are made by different
transactions.

curr val(loc): GMV calls this method to obtain values not found in a history list. Its im-
plementation must be wait-free. The host must guarantee that (1) if save val(l, v, t)
has been called (something that GMV of course can see), then the value v′ returned
by a subsequent call to curr val(l) must have been written at some time t′ ≥ t, and
(2) if curr val(l) has returned v′ and save val(l, v′′, t′′) is subsequently called, then
v′ must have been written at some time t′ < t′′.

The implementation of curr val depends on the nature of the host STM, but will often
be straightforward. In a redo-log based STM, curr val(l) can simply return the value at
location l in main memory. In an undo-log based STM, it may need to access the log
of some active writer W : it cannot require the reader to abort, nor can it wait for W
to complete. It may also need to access the log of an active writer in a nonblocking
STM [9, 12], where locations may be “stolen” without every having been written back
to main memory. (The ordering requirements on calls to save val are a bigger concern
than save val in nonblocking systems; we return to this subject in Section 3.3.)

2.2 Read-only Transactions Algorithm 1. ro read

Require: location l, thread id i
1: h := history table[hash(l)]
2: v := reader history list search(h, l, i)
3: if v 
= ⊥ then
4: return v
5: c := curr val(l)
6: if h = history table[hash(l)] then
7: return c
8: v := reader history list search(h, l, i)
9: if v 
= ⊥ then

10: return v
11: else
12: return c

Aside from calls to curr val, GMV han-
dles reader transactions. At the beginning
of reader R, executed by thread i, GMV
stores the current global timestamp gt into
local timestamp ts[i]. To read location l,R
then calls ro read(l) (Algorithm 1). When
R commits, ts[i] is set to infinity.

At line 2 of ro read, reader history list
search(h, l, i) looks for the last (oldest)
node in history list h whose location field
is l and whose overwrite time is greater
(newer) than ts[i]. It returns ⊥ if such a
node does not exist. Code for this helper
method appears in Algorithm 2. (The similar code in Algorithm 3 will be needed in
Algorithm 4.) To enable helping by a garbage-collecting writer, ro read maintains its
current request—the location and time it’s looking for—in hp[i]. During list traversal,
if the reader sees a node with a larger than expected timestamp, it knows that a writer
has interfered with its search, and that the answer it is looking for can be found in hp[i].

Like other multiversion STM systems, GMV avoids reader transaction aborts by al-
lowing them to “commit in the past.” Where a writer transaction obtains its serialization
time by calling get and set gt when it is ready to commit, a reader obtains its serializa-
tion time by reading gt when it first begins execution. If readerR is long-running, it may
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Algorithm 2. reader history list search

Require: history list h, location l, thread id i

1: v := ⊥; n := h.next
2: hp[i] := 〈l, ts[i]〉
3: pt := ∞ {previous node timestamp}
4: while n 
= null do
5: if n→overwrite time > pt then
6: {GC has interfered}
7: v := hp[i]
8: break
9: if n→overwrite time ≤ ts[i] then

10: {no further nodes will be useful}
11: break
12: if n→loc = l then
13: v := n→old value
14: pt := n→overwrite time
15: n := n→next
16: hp[i] := ⊥
17: return v

Algorithm 3. GC history list search

Require: hash value k, location l, time t
1: while true do
2: v := ⊥; n := history table[k].next
3: pt := ∞ {previous node timestamp}
4: while n 
= null do
5: nl := n→loc; nv := n→old value
6: nn := n→next
7: nt := n→overwrite time
8: {read overwrite time last}
9: if nt > pt then

10: {another GC thread has interfered}

11: continue while loop at line 1
12: if nt ≤ t then
13: {no further nodes will be useful}
14: break
15: if nl = l then
16: v := nv
17: pt := nt; n := nn
18: return v

serialize before a host of writer transactions whose implementations commit before it
does. This “early serialization” resembles that of mainstream systems like TL2 [6], but
multiversioning avoids the need to abort and restart read-only transactions that attempt
to read a location that has changed since the transaction’s start time. Early serialization
stands in contrast to systems like RingSTM [23] and NOrec [5], which serialize readers
at commit time, and to systems like TinySTM [22] and SwissTM [7], which dynam-
ically update their “start time” in response to commits in other transactions, and may
therefore serialize at some internal transactional read.

2.3 Garbage Collection

To avoid unbounded memory growth, history lists must periodically be pruned. If read-
ers are never to abort, this pruning must identify and reclaim only those list nodes that
will never again be needed. In GMV, a node may still be needed by reader i if it is
the earliest node for its location that is later than ts[i]. Nodes that do not satisfy this
property for some thread i are reclaimed by the GC.

The core of the garbage collection algorithm appears in Algorithm 5. It is invoked
from save val, and can be executed concurrently by multiple writers. It has been de-
signed to be lock free, and to preserve the wait freedom of readers. Writers synchronize
with each other using a simplified version of the Harris [10] and Michael [14] lock-free
list algorithm (simplified in the sense that insertions occur only at the head of the list).
To support this algorithm, next pointers in history lists contain both a count and a mark.
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The count, which is incremented whenever the pointer is modified, avoids the ABA
problem. The mark indicates that a node is garbage and can be unlinked from the list;
when set, it inhibits updating the pointer to link out the successor node.

As noted in Section 2.2, thread i begins a reader transaction by copying the global
timestamp gt into ts[i]. It ends by resetting ts[i] to infinity (maxint). To identify garbage
nodes (Algorithm 6), we collect the entries in ts, sort them into descending order (with
an end-of-list sentinel value), and then compare them to the timestamps of nodes in each
history list via simultaneous traversal. The collect need not be atomic: nodes that tran-
sitioned from useful to garbage after the beginning of the scan may not necessarily be
reclaimed, but the monotonicity of timestamps implies that anything that was garbage
at the beginning of the scan is guaranteed to be recognized as such. If another writer
finds that memory is getting low, it will call GC, discover nodes that can be freed, and
keep the space bound by freeing them.

Algorithm 4. help readers

Require: hash value k
1: for each thread id i do
2: x := hp[i]
3: if x 
= ⊥ then
4: 〈l, t〉 := x
5: if hash(l) = k then
6: (void) CAS(&hp[i], x,
7: GC history list search(k, l, t))

To delete node n from a history list
(having already read its predecessor’s
next pointer), we first mark n’s next
pointer. We then update the predeces-
sor’s next pointer to link n out of the
list. We add n to a thread-local set of to-
be-reclaimed nodes. Traversing the his-
tory list from head to tail, we effectively
convert it to a tree. Any reader that is
actively perusing the list will continue
to see all useful successor nodes beyond
(“above”) it in the tree. Before we can actually reclaim the garbage nodes, however, we
must ensure, via help readers and GC history list search (Algorithms 4 and 3) that no
reader is still using them. We peruse the global helping array, hp. If we discover that
reader R is searching for location l, and l hashes to the current history list, we com-
plete R’s search on its behalf, and attempt to CAS the result back into the helping array
(in our pseudocode, this changes the type of hp[i], which is effectively a union). If the
CAS fails, then either R has moved on or some other writer has already helped it. We
can then safely reclaim our to-be-deleted nodes (moving them to a lock-free global free
list), provided that we first update the timestamp in each so that a reader will recognize
(line 5 of Algorithm 2) that it no longer belongs in the previous list.

2.4 Privatization Safety

It is generally recognized that any STM system for an unmanaged language must be pri-
vatization safe [13]. That is, if a transaction renders datum x accessible only to thread
T , the STM system must ensure that (1) subsequent nontransactional writes of x by
T cannot compromise the integrity of “doomed” transactions that may access x before
aborting, and (2) delayed cleanup in logically committed transactions cannot compro-
mise the integrity of nontransactional post-privatization reads of x by T .

We may safely assume that problem (2) is addressed by the host STM; the addi-
tion of GMV introduces no new complexity. Problem (1), however, is a challenge: if a
privatizer writes to formerly shared data, and doesn’t update the history table, an active
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Algorithm 5. Garbage collection

1: array st := sort(ts ∪{−1}, descending)
2: for k in hash range do
3: node set G := find garbage nodes(k, st)
4: node set U := ∅ {unlinked nodes}
5: while true do
6: p := &history table[k]
7: n := p→next
8: pt := ∞ {previous node timestamp}
9: while n 
= null do

10: nn := n→next
11: nt := n→overwrite time
12: if nt > pt then
13: {another GC thread has interfered}
14: continue while loop at line 5
15: if n ∈ G and ¬is marked(nn) then
16: if ¬CAS(&n→next, nn, mark(nn))

then
17: {another GC has interfered}
18: continue while loop at line 5
19: flag := false
20: if is marked(nn) then
21: if CAS(&p→next, n, nn) then
22: U += n
23: flag := true
24: if |U | ≥ UMAX then
25: help readers(k)
26: for n in U do
27: n→overwrite time := ∞
28: reclaim all nodes in U
29: U := ∅

30: else
31: {another GC has interfered}
32: continue while loop at line 5
33: if not flag then
34: p := n; pt := nt
35: n := nn
36: break
37: help readers(k)
38: for n in U do
39: n→overwrite time := ∞
40: reclaim all nodes in U

Algorithm 6. find garbage nodes

Require: hash val k, sorted time array st
1: start time := gt {global timestamp}
2: while true do
3: node set G := ∅ {garbage nodes}
4: mapping[location⇒node] M := ∅

5: i := 0; n := history table[k]
6: pt := ∞ {prev. node timestamp}
7: while n 
= null and

n→overwrite time > start time do
8: {never reclaim nodes newer than

start time}
9: n := n→next

10: while st[i] 
= −1 and n 
= null do
11: nl := n→loc; nn := n→next

12: nt := n→overwrite time
13: {read overwrite time last}
14: if nt > pt then
15: {another GC has interfered}
16: continue while loop at line 2
17: if nt > st[i] then
18: m := M [nl]
19: if m 
= null then
20: G+= m
21: M [nl] := n; n := nn
22: pt := nt
23: else
24: i++; M := ∅

25: while n 
= null do
26: nn := n→next
27: nt := n→overwrite time
28: {read overwrite time last}
29: if nt > pt then
30: {another GC has interfered}
31: continue while loop at line 2
32: G+= n; n := nn
33: break
34: return G
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reader that needs to commit at some past time tmay see the wrong value if calls curr val.
One possible solution is to require a privatizing writer to wait for all active readers to
commit before it continues execution. This, of course, sacrifices nonblocking progress
for writers (a subject to which we will return in Section 3.3). Even in a blocking sys-
tem, it may induce an uncomfortably long wait. Alternatively, if the source program
explicitly identifies the data being privatized, GMV could push the current values into
the history table, where they would be seen by active readers. This option sacrifices the
transparency of privatization. In a similar vein, if the compiler can identify data that
might be sharable, it can instrument nontransactional writes to update the history list.
This option compromises the performance benefit of privatization.

3 GMV Properties

In this section we sketch proofs of our claims of GMV safety, bounded space, and
wait-free progress for read-only transactions (“readers”). We also consider the impact
of GMV on the liveness of writers.

3.1 Safety

Theorem 1. When GMV is correctly integrated into a strictly serializable host STM,
the resulting STM remains strictly serializable.

Proof. As described in Section 2.1, GMV requires the host STM, H , to ensure that (1)
the serialization order of writer transactions is consistent with the values returned by
get and set gt, (2) a writer calls save val(l, v, t) for every location it modifies, and (3)
the calls for all locations with the same hash value occur in timestamp order. These rules
ensure that history list nodes are ordered by timestamp, and that if n2 = 〈l, v2, t2〉 and
n1 = 〈l, v1, t1〉 are consecutive nodes for location l (t2 > t1), then a reader transaction
that sees v2 at location l can correctly serialize at any time t such that t2 > t ≥ t1.

Since nodes are removed from history lists only when there is no longer any reader
transaction that can use them, the only remaining concern is for readers that call curr val.
In this case, as again described in Section 2.1, GMV requiresH to ensure that any call to
curr val linearizes within H (1) after any method of H that calls save val for the same
location and a same or earlier timestamp, and (2) before any method of H that calls
save val for the same location and a later timestamp. These rules ensure that curr val
is called only when there is no appropriate history node, and that any writer that would
cause curr val to return a “too new” value calls save val to create an appropriate history
node first.

Taken together, the requirements on H ensure that a GMV reader sees exactly the
same values it would have seen if executed as a writer in timestamp order within H .
This in turn implies that the combined system remains strictly serializable. �

3.2 Space Consumption

Lemma 1. In the wake of a call to Algorithm 5, started at time t, the total space con-
sumed in history lists by nodes with timestamp less than t (denoted TSt) is in O(nm),
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where n is the total number of threads in the system, andm is the space consumed by a
nontransactional, global lock-based program.

Proof. Algorithm 5 retains nodes that may be used by a concurrent reader. Therefore,
for each location l, the GC retains a constant number of history list nodes for each
currently active reader. We assume that the size of history table (and hence of the extra
head nodes) is bounded by O(m). Since the total number of distinct locations is also in
O(m), and the total number of active readers is in O(n), the total space for all nodes on
all lists is clearly in O(nm). �

Lemma 2. Algorithm 5 is lock free

Proof. We assume that the routines to allocate and reclaim list nodes are lock free.
Given that history lists are noncircular, the traversal loops at Algorithm 3 line 4, Algo-
rithm 5 line 9, and Algorithm 6 lines 7, 10, and 25 must all complete within a bounded
number of steps. The remaining potential loops are the various continue statements:
Algorithm 3 line 11; Algorithm 5 lines 14, 18, and 32; and Algorithm 6 lines 16 and 31.
In most of these cases, execution of the while true loop continues when a GC thread
encounters a node that has been reclaimed by some other thread (one whose timestamp
appears larger than that of its predecessor); in these cases the system as a whole has
made forward progress, and lock freedom is not endangered. The only tricky cases oc-
cur at Algorithm 5 lines 18 and 32, in the wake of a failed CAS. Here again the system
as a whole has made progress: failure to mark or unlink a node indicates that some other
thread has done so, and a marked node can be unlinked by any GC writer. �

Theorem 2. The total space TS consumed by history lists is in O(nm).

Proof. Garbage collection will be started by any writer that discovers, at commit time,
that the number of extant history nodes exceeds some predetermined threshold. Progress
of the collection cannot be delayed or otherwise compromised by readers. Moreover
any writer that attempts to commit before a GC pass has updated its statistics will also
execute GC. By Lemma 2, so long as some thread continues to execute, some GC thread
will make progress. By Lemma 1, a GC pass that starts at time t guarantees that TSt is
bounded by O(nm). The only remaining question is then: what is the maximum value
of TS−TSt, the space that may be consumed, at the end of the GC pass, by history nodes
that are unlinked but not reclaimed, or that have timestamp ≥ t? This value is clearly
the number of history nodes that may be generated by writers that are already in their
commit protocol when the GC pass begins (TSadded), plus the number of nodes held
by non-progressing GC threads (TShold, privatized at Algorithm 5 line 22). Since the
number of writers is in O(n), and the number of history nodes generated by any given
writer is in O(m), we know that TSadded is in O(nm). For TShold, since each blocked
GC may hold at most UMAX nodes at a time (Algorithm 5 line 24), the total number
of nodes held by non-progressing GC threads is in O(n). It follows that TS − TSt is in
O(nm), and therefore so is TS. �

3.3 Liveness

Theorem 3. GMV readers are wait free.
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Proof. Straightforward: by Theorem 2, the number of history nodes is bounded, and
therefore so is the time spent traversing any given list in ro read. We also require
curr val to be wait free. There are no other waits, loops, or aborts in the reader code. So
all readers in GMV are wait free. �

By way of comparison, both SI-STM [21] and LSA [20] require readers to abort if
the historical version they need has been reclaimed, so readers may in principle starve.
JVSTM [3, 4] and SMV [17] never reclaim versions that may still be needed, but an
active writer may create an unbounded number of history nodes for a reader to traverse.
Systems that revert to inevitability for long-running readers are of course fundamentally
blocking: a reader cannot start until active writers get out of the way.

Nonblocking writers. Ideally, we should like to be able to guarantee that if GMV were
added to a lock-free (or obstruction-free) STM system, writers in the combined sys-
tem would remain lock free (obstruction free). The GMV API functions are all lock
free, which is certainly a good start: get and set gt() is trivially lock free: its internal
fetch and increment fails only if some other caller’s succeeds. In a similar vein, calls to
save val() loop only when the Treiber-stack push fails because another thread’s push
succeeded. By Lemma 2, the garbage collection process called by save val() is also lock
free. Therefore save val() is lock free.

Unfortunately, we must also consider the constraints we have placed on calls to these
API functions. In particular, we have insisted that if t1<t2 and hash(l1) = hash(l2),
then any call of the form save val(l1, v1, t1) must occur before any call of the form
save val(l2, v2, t2). This requirement is similar to asking transactions that modify lo-
cations with the same hash value to write their updates back to main memory in serial-
ization order. It is not at all clear how a nonblocking system might do so. In particular,
WSTM [8,9] and MM-STM [12] (to our knowledge the only extant nonblocking word-
based systems) both allow a transaction to “steal” an ownership record (Orec); values
of locations that hash to that Orec may then be written back to memory out of order, up
until the next time that the Orec is quiescent (if it ever is).

We believe we could obtain a (nonblocking) multiversion variant of WSTM or MM-
STM by requiring the thread that steals an Orec to maintain the prefix of the history
list corresponding to that Orec’s locations. Method ro read would begin by consulting
the Orec: if quiescent, it would consult the usual history list; otherwise, it would first
consult the stealer’s list prefix. This solution would require that GMV be integrated into
the underlying system in a way that no longer merits the term “generic.” We leave the
details to future work.

4 Performance of a Proof-of-Concept Implementation

We implemented a proof of concept system, GMV+, for GMV. This implementation is
based on the LLT back end, a TL2 [6]-like STM, in the RSTM suite [19].

GMV+ differs from GMV only in the addition of a “fast path” for garbage collection.
This path reclaims only the tails of history lists, in a region known to be ignored by all
still-running readers, thereby eliminating the need for helping. If memory consumption
is still beyond the preset threshold after execution of the fast path, GMV+ returns to
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execute the normal “slow path” GC algorithm, with helping. In our experiments, the
slow path was very rarely needed.

We tested GMV+ on a two-processor Intel Xeon E5649 machine. Each processor
has 6 cores running at 2.53 GHz, and 2 hardware threads per core. Each core has 32 KB
of L1 D-cache and 256 KB of L2 cache; the cores of a given processor share 12 MB
of on-chip L3 cache. Microbenchmark results indicate that the maintenance of history
lists increases the overhead of writers by approximately 50%. In return, multiversioning
reaps significant benefits when the workload has long-running readers. We modified a
hash table microbenchmark that performs lookup, insert, and remove operations, to also
include long-running “sum” operations, which traverse the entire table and add up all
its elements. Unlike lookup operations, which are small and fast, sum operations take
long enough that they almost always conflict with concurrent writers, and will starve
unless something special is done.

Figure 2 (top) present results for a read-heavy test with sum, lookup, and update
(insert and delete) operations in a ratio of 1:79:20. We compare the throughput (trans-
actions/second) of LLT, GMV+, and two variants of the simpler NOrec algorithm [5].
Because NOrec serializes transaction write-back using a global lock, it supports a trivial
implementation of inevitability (irrevocability). In the “NOrec inevitable” experiments
we use inevitable mode to run the sum transactions. We also test a (non-general) exten-
sion of LLT (labeled “LLT inevitable”) in which the checker thread acquires a global
lock. Other threads read this lock; if it is held they abort, and wait to retry.

When running our microbenchmark, GMV+ outperforms the other tested algorithms,
with speedup out to the full count of hardware threads. While inevitability avoids star-
vation of readers, it also limits scalability: neither algorithm with inevitability speeds
up with additional threads.

We also evaluate GMV+’s performance on a modified version of the “Vacation”
benchmark from the STAMP suite [15]. Vacation simulates a concurrent travel in-
quiry / reservation system. Most threads, as in the original version, repeatedly perform
read / write / update operations on price tables (for cars, flights and rooms), and read /
write operations on the reservation table. At the same time, we add a dedicated “checker”
thread that periodically runs a transaction to checksum the reservation table. Note that
in contrast to the hash table microbenchmark, here long-running read-only transactions
are confined to a single thread. Overall system throughput is displayed in the bottom
half of Figure 2.

We run this benchmark with 4 queries per normal transaction and 65536 initial rela-
tions in each price table. 98% of normal transactions are for reservations; the other 2%
update price tables. The benchmark’s “query range” parameter is set to 60% for normal
transactions, which the application’s authors consider “high contention.” We run the
checker every 100 ms in this test. Without inevitability, checker transactions routinely
starve in both LLT and NOrec. We omitted results for these configurations in the figure.
With inevitability, the checker can almost always complete within 100 ms. It usually
completes within this interval for GMV+ as well, at least at low thread counts.

Overall transaction throughput for GMV+ is roughly 20% higher than for LLT with
inevitability, presumably because the checker thread, when running, does not exclude
concurrent writers. Throughput peaks at 12 threads (the number of cores) on the
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Fig. 2. Throughput of GMV+ for hash table (top) and augmented Vacation (bottom)

testing machine. The default scheduling discipline places successive threads on alter-
nating processors, so inter-chip communication is occurring even at low thread counts.
In this situation NOrec’s scalability is limited by contention on the lock that serializes
writer commits.

Performance results for GMV+ confirm that multiversioning is an attractive alterna-
tive to inevitability for applications with long-running read-only transactions. Multiver-
sioning allows long-running readers to complete without aborting, and to co-exist with
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short transactions that continue to scale to the limits otherwise imposed by the STM
runtime and hardware coherence fabric.

5 Conclusions

We have proposed a generic multiversion STM system, GMV. Unlike previous inte-
grated systems, it can be layered on top of most existing word-based STM. To the
best of our knowledge, GMV is the first STM system to combine bounded space con-
sumption with guaranteed wait freedom for read-only transactions. It neither requires
nor interferes with automatic garbage collection. Privatization can be ensured—without
compromising wait freedom for readers—either by blocking writers or by requiring that
programmers explicitly identify the data being privatized.

We also described a proof-of-concept implementation of GMV. With roughly 50%
overhead to maintain history lists, our implementation eliminates reader starvation, and
generates up to 2× speedup on workloads with long-running readers. With further im-
plementation effort, the instrumentation overhead could probably be reduced, but for
small transactions it will always be higher than the baseline. Topics for future work in-
clude (1) integration with nonblocking word-based STM; (2) automatic mechanisms to
choose when a read-only transaction should use the history lists (as opposed to acting
as a writer); and (3) a mechanism to choose (on a global basis), when writers should
maintain the history lists.

Acknowledgment. We are grateful to the anonymous referees for identifying several
bugs in the pseudocode, and for prodding us to clarify our thinking on the issue of
nonblocking writers.
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Abstract. Transactional Memory (TM) provides a strong abstraction to tackle
the challenge of synchronizing concurrent tasks that access shared state. Yet, most
TMs do not allow a single transaction to contain parallel code. We propose an
efficient parallel nesting algorithm to explore existing latent parallelism within a
transaction. If this intra-transaction parallelism has reduced conflict probability
(compared to the inter-transaction parallelism), then it may be worthy to execute
less transactions at a given time, but have each one parallelized and using several
available cores.

We provide practical support for parallel nesting in the first lock-free parallel
nesting algorithm with support for multi-versions. Our prototype builds over an
available multi-version TM, which we outperform on standard benchmarks by up
to 2.8×. We show improvements over parallel nesting alternatives of up to 3.6×.

Keywords: Transactional memory, Parallel Nesting, Abort reduction,
Lock-freedom.

1 Introduction

Transactional Memory (TM), originally proposed in hardware [12], promises to tackle
a major challenge in the development of concurrent programs: How to synchronize con-
current tasks accessing shared mutable state. Years of research led the microprocessor
industry to adopt Hardware Transactional Memory (HTM) [5,20], bringing TM to the
forefront of concurrent programming due to its accessibility in commodity processors.

But TM only solves part of the challenges, namely, that of synchronizing concurrent
accesses. Identifying concurrent tasks and boundaries of transactions is still left to the
programmer. Devising applications in a way that allows small, uncontended, and correct
transactions, can be a challenging task rivalling that of using fine-grained locks. It is
thus tempting for programmers to use long transactions bundling many actions.

The problem is that this predictable usage of TM is directly in contradiction with the
reality of HTMs available in the market. Hardware vendors have opted for a paradigm
of best-effort semantics, in which no guarantee is given that a transaction will ever make
progress. One of the main reasons for such weak semantics is the difficulty in dealing
with arbitrarily large transactions, while preserving a simple hardware design [14]. The
adopted alternative is to use software fallback paths, namely to a Software Transactional
Memory (STM) implementation.

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 149–163, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Therefore, it is crucial to ensure that large, possibly contending transactions can
be dealt with efficiently in STMs. The extent to which this challenge can be over-
come is highly dependent on the given workload and concurrency patterns. There is
a limit to which a TM can avoid spurious aborts and remain correct. It is in this context
that we propose a radically different approach: To diminish abort rates by reducing the
inter-transaction parallelism (i.e., executing fewer transactions at a time), and instead
explore additional levels of intra-transaction parallelism (by parallelizing each trans-
action). Clearly, this can be beneficial under two assumptions: (1) there is a level of
intra-transaction parallelism that has reduced conflict probability; and (2) it must be
possible to exploit such arbitrary levels of parallelism without inducing excessive over-
heads in the concurrency control mechanism. In this paper we show that parallel nesting
can be used effectively to tackle these problems.

Example. To illustrate the problem, consider a graph of transactional objects as rep-
resented in Fig. 1b: There are root objects that provide access to one or more other
objects, such that an object accessible from a root may also be accessible from another
root. This arbitrary structure is representative of the state of transactional programs.

In Listing 1a, we show a simple transactional program manipulating that state. The
methodupdateGraph traverses all the objects in the graph and updates some of them,
whereas the methodchangeStatus traverses only a few objects and modifies at most
one of them. Both methods should execute atomically. This means that updateGraph
is very likely to cause a conflict with any other transaction manipulating the graph (such
as changeStatus). In some sense, this kind of workload challenges the optimistic
concurrency model used by most TMs: As updateGraph calls continuously conflict
and restart, they will accumulate and get delayed; any attempt to enforce their successful
execution will hinder concurrency and the throughput of the application.

But this is no longer true if we reduce the top-level parallelism and simultaneously
parallelize each of the fewer transactions with the model of parallel nesting. This is
done in this example by parallelizing the transaction in updateGraph (shown in List-
ing 1c), namely by traversing the graph in parallel. Note that there is no guarantee of
conflict-freedom, as we may find conflicts even in intra-transaction parallelism. For this
reason, the parallel nesting model fits perfectly given its focus on concurrency control
even within each single transaction. As a result of this technique, we are able to exploit
to the same extent the underlying available hardware parallelism, albeit with much more
efficiency in terms of reducing transactional aborts.

Contributions. In this paper, we explore this novel approach for long, conflict-prone
transactions. Very few TMs support parallel nesting and, as we shall see, they cannot be
used efficiently to solve this problem: A key requirement for profitable parallel nesting
is that its overhead does not cancel out the gains of finer-grained parallelism.

The main contribution of this paper is a practical parallel nesting algorithm that in-
tegrates with a full-fledged STM [9]. It exploits common cases and fast paths to be
efficient, and is the first proposal with support for multi-versions. In addition, it also
preserves the lock-freedom progress guarantee of the underlying STM.

Our implementation of parallel nesting allows us to get significant performance
gains in a variety of highly-conflicting workloads, and it achieves that by adding low
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@Atomic void updateGraph() {
for (Root r: getRoots())

updateIfNeeded(r);
}

void updateIfNeeded(Node source) {
if (source.needsUpdate())

source.update();

for (Node n : source.children())
updateIfNeeded(n);

}

@Atomic void changeStatus(int id) {
for (Root r : getClosestRoots(id)) {

Node n = r.find(id);
if (n != null)

return n.changeStatus();
}

}

(a) Program that manipulates the graph rep-
resented in Fig. 1b and that is synchronized
with TM

rootroot root ...

...

...

(b) Graph of transactional objects
in an application

@Atomic void updateGraph() {
@Parallel
for (Root r: getRoots())
updateIfNeeded(r);

}

(c) Parallelizing the transaction in
updateGraph method

Fig. 1. Example of transactional application where both inter- and intra-transaction parallelism is
explored

overhead when exploring intra-transaction parallelism and no overhead when only inter-
transaction parallelism is explored.

In the following section, we overview our solution and its strengths. In Section 3,
we formalize the properties of our proposal. In Section 4, we present an experimental
evaluation of an implementation of our proposal. Then, we discuss the related work and
conclude with some remarks in Sections 5 and 6, respectively.

2 A New Design for Parallel Nesting

We consider a lazy write-back STM underlying our algorithm. In particular, we used
the Java Versioned STM (JVSTM) [9], a multi-version STM. JVSTM uses Versioned
Boxes (VBox) to represent transactional locations. Each VBox holds a history of values
corresponding to some of its past versions. Fig. 2 shows this scheme (for now, only
the permanent versions). Its garbage collection algorithm guarantees that a version is
preserved as long as an active transaction may require it. The access to VBoxes is
always mediated by transactions, which record the accesses in their local read- and
write-sets. If the read-set is still valid at commit time, the tentative writes logged in the
write-set are written back, producing a new version for each of the boxes written and
publicizing the new values in a lock-free manner [9].

The original design of the JVSTM follows a linear nesting model, in which a thread
that is executing a transaction may start, execute, and commit a nested transaction
(which itself may do the same), effectively forming a nesting tree with only one active
branch at a time. The leaf of that active branch represents an active nested transaction
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Vbox X
permanent

tentative
orec: 

value: 

O2

4

previous: 

version: 15

previous: 

value: 2

version: 3

previous: 

value: 1

orec: 

value: 

O1

3

previous: 
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Fig. 3. Part of the state maintained in a nesting tree.
C and D were spawned concurrently by A after
the commit of B.

that is guaranteed to be the only one accessing and modifying the read- and write-sets
of that nesting tree. Yet, this simple model does not allow the decomposition of long
transactions into concurrent parts.

In our proposal, we build on the model of closed nesting as described by Moss [16],
in which two nested transactions are said to be siblings if they have the same parent.
Thus, in parallel nesting, we allow siblings to run concurrently. We consider that each
top-level transaction may unfold a nesting tree in which a transaction performs trans-
actional accesses only when all its children are no longer active.1 Conceptually, in this
model, a nested transaction maintains its own read- and write-sets, much in the same
way of a top-level transaction. Yet, given the compositional nature of transactions, the
read of a transactional location within a nested transaction T must obtain the value most
recently written to that location in the sequence of operations performed by T and by
all of its ancestors (but not by any of its siblings). This means that a read operation may
encounter a globally uncommitted value that resulted from the commit of a sibling (or
the execution of its ancestors). Therefore siblings must synchronize and validate their
commits to respect the correctness criterion (herein assumed to be opacity [10]).

The parallel nesting algorithm that we propose in this paper extends VBoxes so
that transactions may now write directly to the VBoxes rather than having to main-
tain a private write-set mapping each location written to its new value. But we need
to distinguish between globally committed values and the tentative values of ongoing
transactions. Thus, a VBox now contains both permanent and tentative versions, as
shown in Fig. 2: A permanent value has been consolidated via a commit of some top-
level transaction, whereas a tentative value belongs to an active top-level transaction (or
any of its children nested transactions) and is thus part of its write-set.

Additionally, each tentative write points to an ownership record (orec) that encapsu-
lates the owner (a transaction), the version of the write (referred to as nestedVer), and
the status of the owner. Each writing transaction creates one such orec and propagates
it to the transaction’s parent when it commits. Fig. 3 also shows two other important
metadata kept in each transaction T : The nClock (incremented by the commit of each

1 This restriction simplifies the model and does not impose any significant limitation to its ex-
pressive power, because a transaction that needs to execute concurrently with its children may
spawn a nested transaction to execute its own code.
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direct nested child of T ) and the ancVer (a map computed when T starts, by adding its
parent’s current nClock to the parent’s ancVer). Using the example of Fig. 3, this means
that transaction E can read tentative writes owned by A with nestedVer up to (and in-
cluding) 1, but not writes owned by C. This is dictated by the ancVer map computed
at each nested transaction T , which defines the versions of the ancestors of T that are
available for it to read safely.

The algorithm that we propose in this work2 has three major features that make it
efficient: (1) a fast path in the read operation that is performed in constant time (inde-
pendently of the nesting depth); (2) a fast mode for writing, backed up by a slow mode
for fallbacks; and (3) a commit operation that is independent of the write-set size. The
next subsections address each of the previous points, but, for space constraints, we omit
some of the details of our solution, which can be found in an extended version of this
paper serving as a companion technical report [6].

2.1 Reading a VBox

When reading a VBox, we have to take into account a possible read-after-write. For this
reason, the pseudo-code presented in Algorithm 1 either returns a tentative value written
by some transaction in this nesting tree, or a global value, represented by a consolidated
version in a VBox.

Lines 5-8 correspond to the fast path that we have mentioned: When the last tentative
write was made by a transaction that finished before this one started, then we can be sure
that this is not a read-after-write. In that case, a permanent value is returned (committed
by a top-level transaction), in a lightweight operation with constant time. Note that
this is the typical case, in which we manage to bypass the costly check of writes from
ancestors. If this fast path is not used, then the algorithm iterates over the tentative
writes of the VBox until one of the following conditions is verified:

1. The owner of the tentative write is the transaction attempting the read (T ), in which
case no further checks are needed to read that entry (lines 12-14).

2. The owner of the tentative write is an ancestor of T . When this happens, T may read
that entry only if the entry was made visible by its owner before T started (lines 16-
20). This is enforced by looking up in the ancVer of T what is the maximum version
readable from that ancestor. If the write has a more recent version than T can read,
T causes a chain abort up to that ancestor such that those nested transactions restart
with the most recent versions on their ancVer map.

The algorithm presented here stops iterating when a nested transaction finds a tenta-
tive write that it may read, returning that value. This is correct because our algorithms
were designed to ensure the following invariant: Given a read operation of a VBox,
as soon as the nested transaction reaches a tentative write that it may read, then it is
guaranteed that no other write further down the list has to be read instead of that one
to maintain correctness. Because of this invariant, we are able to shorten traversals as
most transactions will read only the first tentative write.

2 The source code for the integration with the full-fledged JVSTM is publicly available at:
https://github.com/inesc-id-esw/JVSTM.

https://github.com/inesc-id-esw/JVSTM
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Algorithm 1. Read procedure in a parallel nested transaction.

1: GETBOXVALUE(T , vbox):
2: wInplace ← vbox.tentative
3: status ← wInplace.orec.status
4: � fast path if this cannot be a read-after-write; positive status means the owner is COMMIT
5: if status > 0 ∧ status ≤ T .startVersion then
6: T .globalReads.add(vbox)
7: return readFromPermanent(vbox) � fast path confirmed that is not a read-after-write
8: end if
9: � it is possible to be a read-after-write

10: while wInplace 
= null do
11: owner ← wInplace.orec.owner
12: if owner = T then
13: return wInplace.value � T is the owner, confirms a read-after-write
14: end if
15: if T .ancVer.contains(owner) then
16: if wInplace.orec.nestedVer > T .ancVer.get(owner) then
17: abortUpTo(T , owner) � confirms a read-after-write: vbox is owned by ancestor

of T but is not visible to the snapshot of T
18: end if
19: T .nestedReadSet.put(vbox, wInplace)
20: return wInplace.value � read-after-write, visible with safety to the snapshot of T
21: end if
22: wInplace ← wInplace.previous � try an older version, as this is owned by a different

branch of the nesting tree (not an ancestor of T )
23: end while
24: value ← rootWriteSet.get(vbox) � no in-place write to be read, check fallback set
25: if value 
= NONE then
26: return value � do not need to register the read in this case
27: end if
28: T .globalReads.add(vbox)
29: return readFromPermanent(vbox) � not a read-after-write, but had to go through the

slow path to confirm it

2.2 Writing to a VBox

Algorithm 2 presents the pseudocode of the write operation of a parallel nested transac-
tion. When writing to a VBox, it fetches the tentative write at the head and reads its orec
(lines 2-3) to tell whether that VBox is currently owned by the transaction. In that case
it simply overwrites the previous write. Otherwise, after line 7, the algorithm running
for a transaction T follows one of these cases:

– The VBox owner finished before transaction T started, in which case T attempts to
acquire ownership of the tentative write at the head of the list of that VBox (lines
9-14). To do so, T attempts a compare-and-swap (CAS) to change the ownership
of the first tentative write. If the CAS fails, the algorithm proceeds to the fallback
in line 21 (because some other transaction acquired the ownership of the box). If,
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on the other hand, the previous owner finished after T started, then no transaction
in this nesting tree (and particularly T ) will ever be able to write to that VBox in-
place. In that case the algorithm also proceeds to the fallback mechanism. This is
what allows us to maintain the fast path in the read operation.

– The VBox is owned by an ancestor of T (line 15). In this case, T attempts to
enqueue a new in-place tentative write by performing a CAS on the head of the
tentative list of that VBox. If this CAS fails, then some other transaction in this
nesting tree succeeded, in which case the algorithm proceeds to the fallback.

– We are left with the fallback (line 21). If we get to this case, there must exist a
concurrent transaction owning the VBox, and, therefore, this transaction must write
in an alternative way, which we describe at the end of this section.

Much of the complexity of this operation arises from the fact that we are maintain-
ing multi-versions in the nesting tree. But this is required due to partial aborts (as we
explain in our technical report [6]), in which a parallel nested transaction aborts due to
concurrency internal to the nesting tree. Therefore, this choice is largely independent of
the fact that the baseline TM algorithm uses multi-versions.

Note that the algorithm that we provide detects write-write conflicts. To better un-
derstand this design choice, consider an example where transactions B and C are con-
current siblings that write to x. Assume that B writes first, but then C commits before
B into their parent (A). At this point in such execution, the first tentative write of VBox
x would be the one written by C, because C performed the most recent write. Yet,

Algorithm 2. Write procedure in a parallel nested transaction.

1: SETBOXVALUE(T , vbox, value):
2: wInplace ← vbox.tentative
3: orec ← wInplace.orec
4: if orec.owner = T then
5: wInplace.value ← value � write-after-write by T , no synchronization needed
6: return
7: end if
8: if orec.status 
= ALIVE then
9: � attempt to acquire ownership of the tentative slot

10: if orec.status ≤ T .startVersion ∧ wInplace.CASorec(orec, T .orec) then
11: wInplace.value ← value � T was successful, so it may write in the tentative slot
12: T .boxesWritten.add(vbox)
13: return
14: end if
15: else if T .ancVer.contains(orec.owner) then
16: � belongs to an ancestor of T , so the tentative slot is owned by this nesting tree
17: if vbox.CAStentative(wInplace, new Tentative(value, T .orec, wInplace) then
18: return � successfully enqueued a new tentative write in the slot owned by this tree
19: end if
20: end if
21: executeAsTopLevel(T ) � cannot write in-place, fallback mechanism
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the most recent commit was B’s, which consequently should make its writes the most
recently publicized to the parent A.

Therefore, the underlying problem is one of lag between the write-time and the
commit-time. To maintain the invariant mentioned in Section 2.1 for faster reads, the
solution is to perform work proportional to the size of the write-set at commit-time [8].
We avoid such expensive strategy by precluding nested write-write concurrency. This is
a beneficial trade-off because, as we show in our companion report, this design decision
does not hinder concurrency in real workloads [6]. The main reason is that transactions
typically write a datum after reading it. Therefore, if concurrent transactions B and C
both write to x, then they must have both read it (non-serializably), for which reason
pure write-write concurrency is rare.

The fallback path (line 21) takes care of the case in which there is write-write con-
tention. Due to space constraints we refer to our technical report [6] for details. Briefly,
it aborts the nested transaction up to the root ancestor. Then it re-executes the affected
nested transactions (in the chain) in the context of the root top-level transaction (after
all its other children are finished). That re-execution flattens those transactions such
that the code re-executed is encapsulated in the top-level transaction of the nesting tree.
The key difference is that top-level transactions maintain a traditional write-set, which
we call rootWriteSet, to use when the in-place slots are controlled by another nesting
tree. Therefore, the write that triggered the fallback, if repeated, will be performed by
the top-level transaction in that fallback write-set. This explains why the read operation
checks the rootWriteSet in lines 24-27 of Algorithm 1.

2.3 Commit of a Parallel Nested Transaction

At commit-time we are left with two tasks: To ensure that all the reads are still up-to-
date, and to make the read-set and the write-set of the transaction visible to its parent.
The key idea is that a parallel nested transaction propagates to its parent only the orecs
that it owns. This means that, after validating its read-set (and its children’s), it changes
the ownership of each orec it controls. This also entails updating the nestedVer of those
orecs to the version acquired from the nClock of the parent during that commit. As a
result, the commit procedure performs independently of the write-set size and is very
lightweight in practice.

Space prevents us from delving into details, but in [6] we present a lock-free de-
sign that implements the idea above. Briefly, the idea is to use a lock-free queue where
transactions obtain the commit order. We use such a queue for each nesting tree, con-
ceptually associated with the root top-level transaction. As a result, a nested transaction
attempting to commit either succeeds, or helps one of its siblings that managed to win
the race to the queue.

3 Formal Guarantees

We now address the consequences of supporting parallel nesting in a TM. Namely,
we look into which correctness and progress guarantees of TMs our parallel nesting
algorithm allows.
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Theorem 1. The proposed parallel nesting algorithm ensures opacity [10].

Proof. Our parallel nesting algorithm performs concurrency control using a known
strategy, present in JVSTM: A write transaction commits successfully if the versions
read have not been overwritten by the time it (atomically) commits. Moreover, any
transaction always reads the most recent version available in a stable prefix of versions
(called a snapshot), which is determined by using the global clock available at the start
of the transaction. This value defines the versions that belong to the snapshot, as it is
also the value used to version new data items. We can see this strategy in our algorithm:
There is a clock in each transaction (nClock) to regulate the commits of its direct chil-
dren; each transaction maintains a multi-dimensional snapshot, one per level of nesting,
by using the map ancVer (to always read consistently); and nested transactions fail
validation if they read a data item that has been overwritten within the nesting tree (to
always commit consistently). �
Theorem 2. The proposed parallel nesting algorithm ensures lock-freedom.

We omit this proof due to space constraints (it is available in [6], where we describe
the commit procedure in more detail). This property is of practical relevance, given that
STMs are likely to remain as the fallback of best-effort HTMs.

Theorem 3. The proposed parallel nesting algorithm ensures mv-permissiveness [17].

Proof. Considering an mv-permissive TM, as our underlying JVSTM, a read-only trans-
action T must always commit. Suppose that T uses parallel nesting to speed its execu-
tion, and that Tc is one of its children. Alg. 1 only aborts a nested transaction Tc in the
read operation if some VBox is owned by some ancestor T ′. But we said that T is read-
only, so no children T ′ of T will ever own a VBox. Thus, read-only transactions never
abort, even if parallelized. Moreover, a write transaction T may only abort if faced with
a conflict. A nested transaction Tc, child of T , aborts only when it attempts to read
or write a VBox concurrently written by another transaction. Together, these two facts
show that we preserve mv-permissiveness. �
We designed the support for parallel nesting with specific care to preserve the strong
properties of JVSTM, namely opacity for safety, lock-freedom for progress and mv-
permissiveness. As we can see from the previous analysis, our support for parallel nest-
ing does not preclude any such property. An important consequence is that we can adapt
this algorithm in TMs with weaker properties without suffering performance penalties.

4 Experimental Evaluation

The results presented in this section were obtained on a machine with four AMD
Opteron 6168 processors (48 cores total) with 128GB of RAM and Oracle’s JVM
1.6.0 24. Every experiment reports the average of five runs of each benchmark.

Our evaluation is split in two parts. First, in Section 4.1, we present results for several
benchmarks that we modified to parallelize their transactions and, therefore, explore
finer-grained parallelism through parallel nesting; the goal is to show that we may get
performance gains when using parallel nesting, thereby validating that our algorithm is
practical. Then, in Section 4.2, we compare our implementation with the implementa-
tion of two other state-of-the-art STMs that support parallel nesting.
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(a) STMBench7 read-dominated. (b) STMBench7 read-write workload. (c) STMBench7 write-dominated.

(d) Lee-TM main board. (e) Lee-TM mem board. (f) Lee-TM sparselong board.

(g) Lee-TM sparseshort board. (h) Vacation high contention. (i) Vacation low contention.

Fig. 4. Speedups relative to a sequential transaction. nest uses t× n as the configuration: t top-
level transactions with each one parallelized into n children. top uses the product of t and n as
top-level transactions.

4.1 Parallel Nesting versus Top-Level Only

To understand how effective our parallel nesting algorithm is, we compare the per-
formance obtained with JVSTM when using only top-level transactions against fewer
top-level transactions, with each one using parallel nesting. Fig. 4 shows the speedup of
both approaches relatively to a sequential transaction in three standard benchmarks.

STMBench7 [11]: In Figs. 4a, 4b, and 4c, we show the results for the three existing
workloads with long traversals enabled. The long traversals access most of the object
graph of the benchmark, both with read and write accesses. This precludes much of
the possible concurrency, as TMs have to detect conflicts in most concurrent accesses
with these traversals. For this reason, we can see that adding more top-level transac-
tions scales very poorly. We exploited the inner parallelism in each of those traversals
(identified in the benchmark as T 2a, T 2b, T 2c, T 3a, T3b, T3c, T 5). For this, we iden-
tified the parts of those traversals to be ran in parallel, similarly to the example provided
in the beginning of this paper. At 48 threads, this yielded an increase of 102% in the
read-dominated workload; 129% in the read-write workload; and 131% in the write-
dominated workload.
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Lee-TM [2]: In Figs. 4d, 4e, 4f, and 4g, we perform the same experiment as above,
using different boards available in Lee-TM. We used parallel nesting by parallelizing the
expansion phase in the boards, and this approach also yielded improvements, namely
119% and 170% for mainboard and memboard, respectively. In the case of the
sparseshort board, the transactions are very small, which makes the time spent
managing nested transactions an overhead that supplants the gains obtained from less
conflicts. Therefore, parallel nesting only obtained 4% improvement in that board. This
example stresses the requirement of efficiently supporting parallel nesting, which we
achieved in our algorithm.

Vacation [15]: In this benchmark we explored the parallelism in the transactions by par-
allelizing the cycle that repeats the operations for (potentially) different objects in the
vacation manager. Fig. 4h uses the high contention workload where it becomes increas-
ingly hard to obtain improvements in terms of performance by adding more threads
(and correspondingly top-level transactions). Therefore, parallel nesting yielded 173%
increase in performance. With a low contention workload, shown in Fig. 4i, the top-
level transactions scale properly as the thread count increases. Thus, applying the paral-
lel nested transactions does not yield any extra performance. In this case we measured a
slight overhead from executing the transactions with some nesting: The overhead ranges
from 3% to 8% and is on average 5%. This also strengthens our claim that this algorithm
adds very little overhead when no additional parallelism is being explored.

Across these experiments we can see that added benefit is obtained by exploiting
both the inter- and the intra-parallelism of transactions. This supports the idea of using
TM at both levels of parallelism to ease the synchronization effort.

4.2 Comparison with Other Parallel Nesting Algorithms

We compare our algorithm with both NesTM [3] and PNSTM [4], which represent
different design spaces in the state of the art. NesTM is not opaque, but our benchmarks
have invariant checks to ensure correct executions (aborting a transaction if inconsistent
reads are observed). Other existing proposals are either theoretical [1,13] or captured
by the designs of these two [19,18]. Fig. 5a presents the throughput of each STM in a
scenario with high-contention in Vacation. Looking at the dashed lines we may see
that the JVSTM is considerably faster than the alternatives when using only top-level
transactions. In particular, it obtains 1.58 speedup over NesTM and 5.41 speedup over
PNSTM with a single top-level transaction. Note that our JVSTM already has support
for parallel nesting, albeit it does not introduce any noticeable overhead for top-level
transactions. Given that the baseline JVSTM is already faster than NesTM and PNSTM,
it is expected that using parallel nesting is also faster in JVSTM. We can see that in the
full lines. Still, the actual improvement (for 48 threads) is greater for JVSTM (2.8×)
than for NesTM (2.2×) and PNSTM (no improvements).

We also show a comparison between the three STMs in a write-dominated workload
of the STMBench7 benchmark, with long-traversals enabled. The results are shown in
Fig. 5b, where we may see that JVSTM is again faster already with only one thread: It
obtains a speedup of 3.6 and 4.4 over NesTM and PNSTM, respectively, when using
only top-level transactions. Moreover, even though we do not show them, the results
are very similar across the other workloads of the STMBench7. Yet, unlike the results
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Fig. 5. Comparison between three STMs, both using only top-level transactions (tl)
or exploiting intra-transaction parallelism (pn) in a high contention workload in
Vacation and in the write-dominated workload of the STMBench7 benchmark with
long-traversals enabled
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Fig. 6. Throughput obtained with a single nested transaction at an increasing depth

obtained in Vacation, in this case the parallel nesting algorithm of NesTM is un-
able (together with PNSTM) to obtain improvements over top-level transactions alone,
whereas our solution more than doubles its throughput when using parallel nesting.

Finally, we modified both benchmarks so that they execute all of their transactions
entirely within a single nested transaction at a certain depth. This yields a nesting
tree with a single branch that is increasingly deeper. We present this experiment for
STMBench7 and Vacation in Fig. 6, where we may see how each STM performs
when the nesting depth increases. We also obtained similar results in this experience
when using 16 threads.

These results are consistent with the theoretical complexity bounds of each STM [7].
Namely, PNSTM performs independently of the nesting depth, whereas the others de-
grade their performance. However, JVSTM not only performs significantly better, but it
also degrades at a much slower rate than NesTM. So, just as PNSTM gets better results
than NesTM for a sufficiently high depth, we expect the same to happen also, at some
depth, with regard to JVSTM. Yet, given the slow decay of the JVSTM, it requires a
much higher nesting depth (note the horizontal axis growing exponentially). In fact, we
argue that such depth would seldom, if at all, exist in real applications.
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5 Related Work

Some TM implementations provide support for linear nesting, which limits a transaction
to have only one nested transaction active at a given time. In this case, nested transac-
tions are used only for their compositional properties, as transactions cannot parallelize
their contents by running concurrent children. Thus, in the following, we consider only
TMs with support for parallel nesting.

The CWSTM [1], which builds on the Cilk language, introduced the combination of
the parallel and spawn constructs to create new threads with assigned nested trans-
actions. It was the first work to show a depth-independent nesting algorithm, but did not
provide any implementation or evaluation. In a different setting, the Sibling STM [18]
considered that sibling nested transactions may have relationships and be dependent
among each other under the notion of coordinated sibling transactions. Yet, they do not
provide the underlying algorithm, which prevents more detailed comparisons.

Another approach is NePalTM [19], which was built on top of OpenMP and Intel’s
STM to integrate parallel and atomic blocks. The authors propose to have direct chil-
dren of top root atomic blocks (shallow nested transactions) proceeding optimistically
(using transactions) while deep nested parallel transactions run sequentially in mutual
exclusion. As a result, its model is not too powerful, but still allows unveiling some
concurrency in transactions as long as they only compose within one level of depth.

Conversely, in the Nested STM [3] the authors extended their earlier work to allow
parallel nested transactions. Yet, their algorithm synchronizes commits with mutual ex-
clusion on the parent, which may cause performance penalties when many transactions
attempt to commit and the owner of the lock is delayed. The authors also identified
that it is possible for their nested transactions to livelock, which they attempt to solve
with heuristics. Moreover, their property of invisible reads incurs in an effort that is
proportional to the depth of the nesting tree because they need to revalidate the read-set
for each access. HParSTM [13] allows a parent to execute concurrently with its nested
transactions, but failed to present any evaluation. Finally, PNSTM [4] was based on the
ideas that CWSTM pioneered. It provided an efficient depth-independent algorithm, but
all accesses are assumed to be writes, which precludes read-only concurrency.

A common trait of all this previous work is that it uses single-version, whereas the
implementation that we describe in this paper has support for multi-versions. Moreover,
our solution also yields better results than the state-of-the-art alternatives with support
for parallel nesting while providing a stronger progress guarantee (lock-freedom). This
is a key factor to make parallel nesting useful.

6 Conclusions

In this paper we proposed a novel algorithm for parallel nesting. This algorithm is lock-
free and was designed to add minimal overhead to the underlying STM. This was ac-
complished by designing the operations of parallel nested transactions with fast paths
that correspond to the common cases of a transactional application using parallel nest-
ing. Moreover, these operations do not affect the operations for top-level transactions.

Our experiments with various benchmarks show that, on one hand, we can get signif-
icant performance gains with parallel nesting, and, on the other hand, parallel nesting
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does not add significant overhead into an application that does not benefit from it. A
key observation of our evaluation is that the best results are attained when two condi-
tions are met: (1) top-level transactions fail to deliver significant improvements with the
increase of parallel threads, because of contention among the transactions that inhibits
the optimistic concurrency severely; and (2) top-level transactions contain substantial
computation that is efficiently parallelizable.

Finally, we showed that our algorithm yields considerable improvements over alter-
native TMs with support for parallel nesting while providing a stronger progress guar-
antee. As a result, this parallel nesting algorithm can be used effectively to improve the
performance of applications with long transactions. This approach answers the main
concern of the lack of progress guarantees given by HTMs available in the market. In
the near future, we look forward to integrate these techniques in the software fallback
path of the HTMs soon to be available.
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Abstract. We address the problem of implementing a distributed data-structure
that can tolerate process crash failures in an asynchronous message passing sys-
tem, while guaranteeing correctness (linearizability with respect to a given se-
quential specification) and resiliency (the operations are guaranteed to terminate,
as long as a majority of the processes do not fail). We consider a class of data-
structures whose operations can be classified into two kinds: update operations
that can modify the data-structure but do not return a value and read operations
that return a value, but do not modify the data-structure. We show that if every
pair of update operations commute or nullify each other, then resilient linearizable
replication is possible. We propose an algorithm for this class of data-structures
with a message complexity of two message round trips for read operations and
O(n) round trips for update operations. We also show that if there exists some
reachable state where a pair of idempotent update operations neither commute
nor nullify each other, resilient linearizable replication is not possible.

1 Introduction

In this paper, we focus on a standard asynchronous message-passing distributed com-
puting setting with n processes, in the presence of non-byzantine (stopping) process
failures. The standard correctness criterion in this setting is linearizability [8] with re-
spect to a sequential specification. A desirable progress guarantee in this setting is t-
resiliency, which guarantees that all operations terminate as long as no more than t
processes fail. We consider the case where t is �n/2� − 1: i.e., a majority of the n pro-
cesses do not fail. We address the question of when (i.e., for which data-structures or
sequential specifications) a resilient linearizable algorithm is possible in this setting.

We consider a class of data-structures whose operations can be classified into two
kinds: update operations that may modify the data-structure but do not return a value
and read operations that return a value, but do not modify the data-structure. We show
that if every pair of update operations commute or nullify each other, then resilient lin-
earizable replication is possible. We propose a algorithm for this class of data-structures
with a message complexity of two message round trips for read operations and O(n)
round trips for update operations. The algorithm is based on the insight that if all op-
erations commute, the order in which operations are applied is irrelevant for the final
state produced by a given set of update operations. This reduces the problem to that of
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ensuring that reads observe monotonically increasing sets of operations and respecting
the real time ordering between non-concurrent operations. The extension for nullifying
operations is more complex, but is based on the intuition that when an earlier operation
is nullified by a later operation, the execution of the earlier operation is optional.

We also show that if there exists some reachable state where a pair of idempotent
update operations neither commute nor nullify each other, resilient linearizable repli-
cation is not possible. This result is based on a reduction from consensus to resilient
linearizable state machine replication.

These results show that resilient linearizability is possible for some interesting data-
structures. We also show how these results help design certain data-structure specifica-
tions so that a resilient linearizable implementation is possible, by addressing the design
of a simple graph data-structure. We present two closely related graph specifications,
where resilient linearizability is possible for one specification but not the other.

2 The Problem

We assume a standard asynchronous computation setting with non-byzantine (stopping)
process failures. We have n processes that communicate via messages. All messages are
assumed to be eventually delivered, but no bound is assumed on the time taken for a
message to be delivered and no assumptions are made about the order in which mes-
sages are delivered. We are interested in (�n/2� − 1)-resilient algorithms: algorithms
that guarantee progress as long as a majority of the n processes do not fail. In the sequel,
we will use the term resilient as short-hand for (�n/2� − 1)-resilient.

State machine replication is a general approach for implementing data-structures that
tolerate process failures by replicating state across multiple processes. The key chal-
lenge in state machine replication is to execute data-structure operations on all replicas
such that linearizability is guaranteed.

A state machine models a system that implements an interface consisting of a set of
procedures. Every procedure has a set of parameters and we assume that the parameters
are of primitive type. In the sequel, we will use the term operation to refer to a tuple of
the form (p, a1, · · · , an) consisting of the name p of the procedure invoked as well as
the actual values a1, · · · , an of the parameters. A state machine m consists of a set of
statesΣm. The semantics of an operation is given by a function that maps an input state
to an output state as well as a return value.

UQ State Machines. In this paper, we consider a special class of state machines we
refer to as Update-Query (UQ) state machines. We assume that operations of the state
machine can be classified into two kinds: updates (operations that modify the state) and
queries (also called reads) (operations that do not modify the state, but return a value).
Furthermore, the operations on the data-structure are assumed to be deterministic. The
semantics of an update operation op is given by a function [[op]] : Σm → Σm.

Note that a UQ state machine does not allow for any operation that modifies the
state and returns a value. While this is a convenient simplification, it does not restrict
expressiveness, as long as we are able to associate every update operation invocation
with an unique identifier. We can then use a separate query operation, with the unique
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identifier as a parameter, to obtain the return-value associated with the corresponding
update operation.

NC State Machines. We say that two update operations op1 and op2 commute iff
op1(op2(σ)) = op2(op1(σ)) for every state σ. We say that an operation op1 nullifies
an operation op2 iff op1(op2(σ)) = op1(σ) for every state σ: in other words, op1 nul-
lifies op2 iff op1 ◦ op2 = op1. We write op1 � op2 to denote that op1 nullifies op2. We
say that two operations op1 and op2 nullify if op1 � op2 or op2 � op1.

A UQ state machine is said to be a NC state machine if for any pair of operations f
and g, f and g commute or f nullifies g or g nullifies f .

Lemma 1. � is a transitive relation: if f � g and g � h, then f � h.

Proof. We omit proofs due to space constraints. Please refer to [5] for all proofs.

We say that a partial-ordering ≤s on a set of update operations (of the given state ma-
chine) is an NC-ordering if it satisfies the following conditions, where we write x <s y
as shorthand for x ≤s y and x 	= y:

1. if op1 <s op2, then op2 nullifies op1.
2. if op1 	<s op2 and op2 	<s op1, then op1 and op2 commute.

Lemma 2. Every NC State Machine has a NC-ordering on the set of all its update
operations.

Many well known data-structures like read-write registers, read-write memory, coun-
ters, maps, sets are NC state machines. Details of these and other such data-structures
can be found in [5].

3 Replication for NC State Machines

We now describe our replication algorithm for an NC state machine. Assume that we
have n replicas (processes). External clients may submit operations (either updates or
reads) to any replica. Note that the same operation (e.g., an increment operation on
a counter) may be invoked multiple times in an execution. We refer to each distinct
invocation of an update operation as a command.

Our algorithm makes use of a resilient linearizable add-only set that provides an
operation add(v) to add an element v to the set and an operation read() that returns the
current value of the set. We describe an implementation of this data-type in Section 4.

The basic idea behind our algorithm, presented in Algorithm 1, is as follows. We
utilize the add-only set to maintain the set of all commands executed so far, referred to as
cset below. Executing an update operation involves adding an element, representing this
operation invocation, to cset. Read operations are realized by getting the current value
S of cset, and then materializing the state σS corresponding to this set S of commands.

The key challenge is in defining σS so that the desired consistency criterion (lin-
earizability) is satisfied.
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Algorithm 1. NC State Machine Replication Algorithm (Process k)

DistributedSet cset = {}

procedure ExecuteUpdate(op)
let ts = get-time-stamp() in
cset.add ( (ts ,op) )

procedure State LinearizableRead()
let S = cset.read() in
return Apply(S)

procedure int get-time-stamp()
let S = cset.read() in
return (S, k) // k is this process’ id

procedure State Apply(S)
let cmd1, · · · , cmdk

= topological-sort(S, ≺tn) in
let (ts i, opi) = cmd i in
let s0 = initial-state in
let si = opi(si−1) in
return sk

Capturing Ordering Constraints between Non-overlapping Operations

Linearizability requires that any execution π of a set of commands be equivalent to
some sequential executionπs of the same set of commands. Furthermore, this sequential
execution πs must preserve the order of non-overlapping commands in π.

We associate a timestamp with each command. This timestamp serves two purposes.
First, it lets us conservatively identify non-overlapping commands, as explained soon.
Second, it ensures that different invocations of the same operation are represented by
different command instances. This is important since cset is a set and not a multi-set.

Specifically, a replica k that receives an update operation o augments it with a times-
tamp t and represents the command as a pair (t, o). The timestamp is a pair consisting
of the current value of cset, obtained by replica k via a read operation, paired with the
unique-id k of the replica. The replica-id distinguishes between different concurrent
invocations of the same operation at different replicas. (Each replica processes its re-
quests sequentially.) We refer to the ordered pair (t, o) as an update command. Given
any update command c = (t, o), we define op(c) to be o. The set cset is used to track
the set of all executed update commands.

We define a relation ≺t on commands, as follows: c1 = ((cset1, id1), o1) ≺t c2 =
((cset2, id2), o2) iff cset1 ∈ cset2. We say that c1 ‖ c2 iff (c2 	≺t c1) ∧ (c1 	≺t
c2). These relations help determine whether two update commands are concurrent and
the ordering relation between non-concurrent update commands, as follows. Thus, the
representation lets us determine the order in which non-overlapping operations must be
executed.

Lemma 3. For any two commands c1 and c2 in an execution, if c1 completes before c2
starts, then c1 ≺t c2. Hence, if c1 ‖ c2, then the execution of c1 and c2 overlap.

Lemma 4. Let X denote the value of cset at some point during an execution and let Y
denote the value of cset at a later point in the same execution. Then, (a) X ⊆ Y , and
(b) there exists no x ∈ X, y ∈ (Y \X) such that y ≺t x.

Consistently Ordering Concurrent Operations

Linearizability permits concurrent operations to be executed in any order. The chal-
lenge, however, lies in ensuring that all replicas execute these operations in the same
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order. In other words, we need a scheme for ordering operations which satisfies the fol-
lowing constraints. Let Y1 ⊆ Y2 · · ·Yk denote some sequence of values of cset during
an execution. Then the ordering scheme must ensure that (a) different processes that
evaluate the same set Yi produce the same state, and (b) states obtained by evaluating
each of the sets Y1, · · ·Yk must correspond to states produced by the execution of in-
creasing prefixes of a single sequential execution of the update commands in Yk. We
now describe a way to order concurrent operations in a cset that satisfies the above
requirements.

Concurrent Commuting Operations. It is not necessary to determine the order in which
two commuting update operations in a cset must be executed, as the resulting state is
independent of the order in which commuting updates are applied.

Concurrent Non-Commuting Operations. However, we must determine a unique or-
dering among non-commuting concurrent update operations so that we have a well-
defined notion of the state σS corresponding to a set S of commands (i.e., to ensure
requirement (a) above). We utilize the NC-ordering relation on the update operations
for this purpose. Let ≺s be a NC partial-order on the set of all update operations.

Given a cset value Y , we define the relation ≺Yn on elements of Y recursively as
follows:

c1 ≺Yn c2 iff c1 ‖ c2 ∧ (op(c1) ≺s op(c2)) ∧ (	 ∃c3.c2 ≺Yn c3 ≺∗
t c1).

More precisely, we define the relation≺Yn inductively, by considering pairs of elements
(c1, c2) in topological sort order, with respect to ≺t, so as to satisfy the above con-
straint. Intuitively, we consider any pair of commands c1 and c2 that are concurrent
(i.e., c1 ‖ c2). If these commands do not commute, then we utilize the static nullifica-
tion ordering relation between the operations of c1 and c2 to determine the≺Yn ordering
between them. However, we do not add this extra ordering constraint if we have already
established an ordering constraint c2 ≺Yn c3 that transitively (in combination with ≺t
establishes an ordering between c1 and c2.

We further define a “combined” ordering relation≺Ytn to be the union of≺t and≺Yn :

c1 ≺Ytn c2 iff c1 ≺t c2 ∨ c1 ≺Yn c2.

If no confusion is likely, we will abbreviate ≺Yn to ≺n and ≺Ytn to ≺tn.
The following example illustrates the use of this recursive constraint, which is meant

to ensure that the combined relation ≺tn does not have cycles. Consider an execution
history consisting of three commands c1, c2, and c3 such that c1 ‖ c2, c2 ‖ c3, while
c1 ≺t c3. Further assume that op(c3) ≺s op(c2) ≺s op(c1). In this case, we add the
constraint c2 ≺n c1, since c2 and c1 are concurrent and c2 is nullified by c1. However,
we do not add the constraint c3 ≺n c2 even though c3 and c2 are concurrent and c3 is
nullified by c2 because we already have: c2 ≺n c1 ≺t c3.

Lemma 5. If a ≺Yn b ≺Yn c, then we must have a ≺Ytn c.

Lemma 6. ≺Ytn is an acyclic relation (i.e., the transitive closure of ≺Ytn is irreflexive.)

Let ≺∗
tn denote the transitive closure of ≺tn. We will write a ‖tn b to denote that

(a 	≺∗
tn b) ∧ (b 	≺∗

tn a).
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Lemma 7. If a ‖tn b, then op(a) and op(b) commute.

Given a sequence π of update commands, let state[π] denote the state produced by the
execution of the updates in π in order.

Lemma 8. Let S denote the value of cset at some point in an execution. Let π1 and π2
denote any two topological sort ordering of S with respect to the acyclic relation ≺tn.
Then, state[π1] = state[π2].

Given a set of update commands S, let
−→
S denote any sequence obtained by topologi-

cally sorting S with respect to the partial ordering≺tn. We define the state σS to be the
state state[

−→
S ] obtained by executing the update commands in

−→
S in order. It follows

from the previous lemma that σS is well-defined.

Consistency Across Csets. We now have a precise definition of the state σS produced
by a set of commands S. This ensures that different replicas will produce the same state
for the same set of commands. However, this is not sufficient for correctness. We need
to establish that this way of constructing the state of a cset also ensures that the values
produced by different sets of commands are consistent with each other. Note that as
the cset is linearizable if two reads return different csets then one must necessarily be
a subset of the other and all commands in the smaller cset will necessarily be ≺t or ‖
with respect to commands in the larger cset.

Lemma 9. Let X ⊆ Y be two values of cset in an execution. Then, ≺Xtn=≺Ytn ∩(X ×
X). (Thus, the ordering between elements of X does not change over time.)

Let A ⊂ B denote two different values of cset. We need to show that the values σA and
σB are consistent with each other: i.e., that σA and σB are states produced by executing
some sequential executions πA and πB , respectively, where πA is a prefix of πB . We
now show how we can construct these witness sequences πA and πB .

The simple case is when there is no pair of operations op1 ∈ A and op2 ∈ (B \ A)
such that op2 ≺s op1. In this case, we can let πA be

−→
A (a topological-sort ordering of

A) and πB be a topological-sort ordering of B that is also consistent with πA.
The case where op2 ≺s op1 for some op1 ∈ A and op2 ∈ (B \ A) requires more

careful consideration. Note that the value σA is produced by executing op1 but not op2.
However, our scheme above requires executing op2 before op1 when computing σB .
We exploit the nullification property to deal with this issue. Note that the definition of
a NC-ordering requires that op1 nullify op2 if op2 ≺s op1. Hence, even though σA was
computed without executing op2, the nullification property guarantees that σA = σA′

where A′ = A ∪ {op2}. Hence, we simply let πB be
−→
B and we let πA be the smallest

prefix of πB that includes all elements of A. We can show that the state produced by
executing πA is the same as the state σA produced by executing

−→
A . Hence σA and σB

are still consistent with each other. Based on the above discussion the following lemma
can be proved.

Lemma 10. Let X ⊆ Y be two values of cset in an execution. Then, state[
−→
Y ↓ X] =

state[
−→
X ], where

−→
Y ↓ X is the smallest prefix of

−→
Y that includes all elements of X .

Theorem 1. The NC state machine replication algorithm (Algorithm 1) is both lin-
earizable and resilient.
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4 A Resilient Linearizable Add-Only Set

Our algorithm in Section 3 makes use of a resilient linearizable add-only set. Such a
set can be realized as sketched in Faleiro et al. [6], which presents a resilient algorithm
for solving the generalized lattice agreement problem and shows how that can be used
to implement a UQ state machine in which all update operations commute. The Faleiro
et al. algorithm has a complexity of O(n) message delays for both reads and updates.
We now present a modified algorithm (Figure 1) that realizes reads with four message
delays (two round trips) while retaining the O(n) complexity for updates.

4.1 Notation

We use the following language constructs to keep the algorithm description simple and
readable. We introduce a Majority Vote construct “QVote [f ] g” where f is a “remote
delegate”, denoting code to be executed at other processes and g is a “callback” that
represents the code to be executed locally to process the return values of f . On invoca-
tion of the QVote construct at process P a message containing sufficient information
to execute the remote delegate is broadcast to all other processes. Every process that
receives this message executes the delegate and sends back the result of evaluating this
delegate to p. Process p evaluates every received value x by applying the function g to x.
The execution of the QVote construct terminates when a majority (at least �n+ 1�/2)
of the responses from other processes have been received and processed by p. Finally,
every execution of f and g executes atomically.

The remote delegate may access/modify the state variables of the remote process
where it is executed. The references to the variables of the remote process are denoted
“r!var”. The remote-delegate may also contain read-only references to the variables
of the local process (the process executing the QVote construct), which are denoted
“l!var”. The values of these local variables are evaluated when the QVote construct
starts executing. The callback is only allowed read the return value of f and read/modify
local state. As for the other code, any code that needs to execute atomically is explicitly
wrapped in an “atomic” construct.

The construct asyncmap f executes the remote-delegate f in every process. It is
asynchronous: the construct completes execution once it sends the necessary messages
and does not wait for the completion of the remote delegate execution. The construct
when cond stmt is a conditional atomic statement that executes when cond is true.
It is equivalent to atomic { if (cond) then stmt else retry } .

4.2 The Algorithm

Read. The local variable current of every process represents the latest value of the
set that it is aware of. A process p processes a request for the current value of the set
as follows (as shown in procedure read). It sends a request to every (other) process
to get their own copy of current. It computes the union of the values returned by a
majority of the processes. Once the responses of a majority of the processes have been
received and processed, p has a correct (linearizable) value to be returned. However,
before returning this value, it broadcasts this value to all other processes. Every recipient
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updates its own value of current (to be the union of its current value and the new
value) and sends an ack back. Once p receives an ack back from a majority of the
processes, it can complete the read operation.

Add. Every process tracks elements to be added to the set using a variable buffer. A
process p processes a request to add an element e to the set by first adding it to its own
buffer and broadcasting a request to all other processes to add e to their own buffers.
Elements to be added to the set are processed in batches by each process sequentially. If
p is in the middle of processing the previous batch of elements (as indicated by the status
variable passive being false), it then waits until the previous batch is processed.

Every process uses a local variable proposed to store its proposed (i.e., candidate)
next value for the set and a local variable accepted that represents the join of all the
proposed values it has seen so far. Process p begins by adding all elements in its buffer
to the proposed new value. It then sends the proposed value to all other processes. Every
recipient compares the proposed value with its accepted value. If the proposed value is a
superset of its accepted value, it sends back an ACK. Otherwise, it sends back a NACK.
In either case, it updates its accepted value to include the newly proposed value.

If process p gets back responses from a majority of the processes, and these are all
ACKs, then p has succeeded. It updates its current value to be the last value it proposed.
If p receives any NACKs, then it updates its proposed value to include the accepted
value indicated by the NACK.

Process p exits the loop when the element e to be added is contained in its current
value. Then, p broadcasts its current value and waits until a majority of the processes
update their own current value appropriately. Then, the add operation is complete.

4.3 Correctness and Complexity

Consider any history (i.e., execution) of the algorithm. The following terminology is
relative to a given history. We refer to the execution of the QVote in line [18] as a pro-
posal round and the value of l!proposed as the proposed value of the round. We say
that the proposal round is successful if it terminates without receiving any NACK and
we say that the proposal round failed otherwise. We identify any successful proposal
round by a pair (P,Q), where P is the proposed value andQ is the set of processes that
accepted the proposal with an ACK. Note that Q constitutes a quorum: i.e., it consists
of a majority of the processes. We say that a set value P has been chosen if it is the
proposed value of a successful proposal.

The following key property of the algorithm is the basis for correctness. If (P1, Q1)
and (P2, Q2) are two successful proposals in a single execution, then P1 and P2 must
be comparable: that is, either P1 ⊆ P2 or P2 ⊆ P1. (This follows since Q1 ∩ Q2 must
be non-empty, as both Q1 and Q2 consist of a majority of the processes. Since every
process ensures that the values it ACKs form an increasing chain, the result follows.) It
follows that all chosen values form a chain in the powerset lattice.

We say that a set value P has been learnt iff P is a chosen value and the value of
current⊇ P for a majority of the processes. It follows that the set of all learnt values
also form a chain. The maximal learnt value, at any point in time, represents the latest
learnt value: it represents the current state/value of the distributed set.
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1 Set current = {}, proposed = {}, accepted = {};
2 boolean passive = true;
3

4 Set read() {
5 Set result = {};
6 QVote [r!current] (λx. result := result ∪ x);
7 QVote [r!current := r!current ∪ l!result](λack. ())
8 return result;
9 }

10

11 void add(e) {
12 atomic {buffer := buffer ∪ {e}};
13 asyncmap [r!buffer := r!buffer ∪ {l!e}];
14 when (passive} { passive := false; }
15 atomic {proposed := proposed ∪ buffer};
16 while (e 
∈ current) {
17 NACKrecvd = false;
18 QVote [let x = r!accepted ⊆ l!proposed in
19 r!accepted := r!accepted ∪ l!proposed;
20 if (x) then (ACK,r!accepted) else (NACK,r!accepted)]
21 (λ(x,s). if (x = NACK) then NACKrecvd := true;
22 proposed := proposed ∪ s);
23 if (!NACKrecvd) then current = current ∪ proposed;
24 }
25 QVote [r!current := r!current ∪ l!current](λack. ())
26 passive := true;
27 }

Fig. 1. The Add-Only Set

It can be shown that the following properties hold:

1. Any chosen value consists only of elements e for which an add operation has been
invoked.

2. The value of the variable current, of any process, is always a chosen value.
3. When an invocation of add(e) completes, e belongs to the maximal learnt value

(as ensured by line [24]).
4. The value R returned by a read operation is a learnt value.
5. The value R returned by an invocation of read contains the maximal learnt value

at the point of the invocation of the read operation.
6. The value R returned by an invocation of read is contained in the maximal learnt

value at the point of completion of the read operation. (as ensured by line [7]).

Linearizability We can show that the given history is linearizable by constructing an
equivalent sequential history as follows.

1. For any two operations add(x) and add(y), we order add(x) before add(y)
if there exists a chosen value that contains x but not y.



Asynchronous Resilient Linearizability 173

2. For any two read operations op1 and op2, we order op1 before op2 if the value
returned by op1 is properly contained in the value returned by op2.

3. For any two operations add(x) and read(), we order the add operation before
the read operation iff the read operation returns a value containing x and the add
operation was initiated before the read operation completed.

Resiliency and Complexity Every invocation of QVote is guaranteed to terminate as
long as a majority of the processes are correct and all messages between correct pro-
cesses are eventually delivered (and every correct process eventually processes all re-
ceived messages). It follows that every read operation requires four message delays (two
round-trips). The proof of termination of the while loop in the add operation is more
involved.

A proposal round in this loop may fail if multiple incomparable values are being con-
currently proposed (by different processes). In the worst case, all of these concurrent
proposals may fail. However, whenever a proposal by a process fails, a strictly greater
value will be proposed by the same process in the next proposal round. As a result, it
can be shown that we can have at most n successive proposal rounds before at least one
of the processes succeeds in its proposal. Since every add operation begins by broad-
casting the value to be added to all other processes, and any process that successfully
completes a proposal round is guaranteed to include all values it has received in its next
proposal, every add operation is guaranteed to terminate. A careful analysis shows that
the complexity of the add operation is O(n) message delays.

5 Impossibility Results

Suppose we have a state machine with two operations op1 and op2 such that they do
not commute with each other and neither operation nullifies the other operation. Our
algorithm from Section 3 does not apply in this case. We now show that if we make
somewhat stronger assumptions about op1 and op2 no resilient linearizable algorithm is
possible for such a state machine.

Consider a state machine with an initial state σ0. Let op1 and op2 be two op-
erations on the state machine. Let σi denote the state opi(σ0) and let σi,j denote
the state opj(opi(σ0)). We say that op1 and op2 are 2-distinguishable in state σ0 iff
{σ1, σ1,1, σ1,2} ∩ {σ2, σ2,1, σ2,2} = φ. This essentially means that the state produced
by execution of op1, optionally followed by the operation op1 or op2, is distinguishable
from the state produced by the execution of op2, optionally followed by the operation
op1 or op2.

Theorem 2. A state machine with 2-distinguishable operations op1 and op2 in its ini-
tial state can be used to solve consensus for 2 processes. Thus, it has a consensus
number of at least 2.

Proof. Assume that we have a resilient linearizable implementation of the given state
machine. Reduction 1 shows how we can solve binary consensus for two processes us-
ing the state machine implementation. Consider the execution of Reduction 1 by two
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Reduction 1. 2-distinguishable opera-
tions

procedure Consensus (Boolean b)
if (b) then op1() else op2() endif
s = read()
return(s ∈ {σ1, σ1,1, σ1,2})

Reduction 2. k-distinguishable opera-
tions

procedure Consensus (Boolean b)
if (b) then op1() else op2() endif
s = read()
return(s ∈ Σ1)

processes p and q. Since the state machine implementation is resilient, the above algo-
rithm will clearly terminate (unless the executing process fails).

We first show that when neither process fails, both processes will decide on the same
value (agreement) and that this value must be one of the proposed values (validity). Let
sx denote the value read by process x (in line [3]). To establish agreement, we must
show that sp ∈ {σ1, σ1,1, σ1,2} iff sq ∈ {σ1, σ1,1, σ1,2}.

Let fx denote the update operation performed by process x ∈ {p, q} (in line [2]).
Without loss of generality assume that the update operation fp executes before fq (in the
linearization order). If fq executes before the read operation by p, then both processes
will read the same value and agreement follows.

Thus, the only non-trivial case (for agreement) is the one where p executes its read
operation before q executes its update operation (fq). Thus, sp = fp(σ0) while sq =
fq(fp(σ0)). Without loss of generality, we can assume that the operation fp is op1 (since
the other case is symmetric). Operation fq can, however, be either op1 or op2. Thus, sp
= σ1, while sq is either σ1,1 or σ1,2. Hence, agreement holds even in this case.

Validity follows since the algorithm decides on the value proposed by the process
that first executes its update operation. Specifically: the value read by either process
will belong to {σ1, σ1,1, σ1,2} iff the first update executed is op1.

Hence, both validity and agreement holds when both processes are correct. If either
process fails, then agreement is trivially satisfied. Validity holds as explained above.

We can extend the above result to n processes as follows. Let γ = [e1, · · · , ek] be a se-
quence where each element ei is either op1 or op2. Define γ(σ) to be ek(· · · (e1(σ)) · · · ).
Define first(γ) to be e1. Let Γk denote the set of all non-empty sequences, of length at
most k, where each element is either op1 or op2.

We say that op1 and op2 are k-distinguishable in state σ0 if for all γ1, γ2 ∈ Γk,
γ1(σ0) = γ2(σ0) implies first(γ1) = first(γ2). In other words, if γ1 and γ2 are two
sequences in Γk such that first(γ1) 	= first(γ2), then, the final states produced by
executing γ1 and γ2 should be different. Loosely speaking, the first operation executed
has a “memory effect” that lasts for at least k − 1 more operations.

Define Σi to be {γ(σ0) | γ ∈ Γk, first(γ) = opi}, where i ∈ {1, 2}. Note that op1
and op2 are k-distinguishable in state σ0 iff Σ1 and Σ2 are disjoint.

Theorem 3. A state machine with k-distinguishable operations op1 and op2 in its ini-
tial state can be used to solve consensus for k processes. Thus, it has a consensus
number of at least k.

Proof. We use Reduction 2 a generalization of our previous reduction scheme. The
proof follows as before.
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We now show that the k-distinguishability condition reduces to a simpler non-
commutativity property for idempotent operations. We say that an operation op is idem-
potent if repeated executions of the operation op have no further effect. We formalize
this property as follows. Let γ be a sequence of operations. Define γ!op to be the se-
quence obtained from γ by omitting all occurrences of op except the first one. We say
that op is idempotent if: for all sequences γ, γ(σ0) = (γ!op)(σ0).

Let op1 and op2 be two idempotent operations. Then, for any k ≥ 2, op1 and op2 are
k-distinguishable in σ0 iff op1 and op2 are 2-distinguishable in σ0. This condition can
be further simplified to: {σ1, σ1,2} ∩ {σ2, σ2,1} = φ.

Note that the above condition can be equivalently viewed as follows:

1. op1 and op2 behave differently in σ0: op1(σ0) 	= op2(σ0).
2. op1 and op2 do not commute in σ0: op1(op2(σ0)) 	= op1(op2(σ0)).
3. op1 does not nullify op2 in σ0: op1(op2(σ0)) 	= op1(σ0).
4. op2 does not nullify op1 in σ0: op2(op1(σ0)) 	= op2(σ0).

Note that the notions of commutativity and nullification used above are with respect to
a single initial state.

State machines in a distributed setting are often designed to be idempotent (i.e., all its
operations are designed to be idempotent) since a client may issue the same operation
multiple times in the presence of message failures. This may simply require clients to
associate a unique identifier to each request they make so that the system can easily
identify duplicates of the same request. (Recall that an operation, as defined earlier,
includes all the parameters passed to a procedure.)

Theorem 4. A state machine with 2-distinguishable idempotent operations op1 and op2
in its initial state can be used to solve consensus for any number of processes. Thus, it
has a consensus number of∞.

Extension. The above theorems immediately tell us that resilient linearizable imple-
mentations of certain data-structures or state-machines are not possible in an asyn-
chronous model of computation (in the presence of process failures). The above theorem
requires 2-distinguishable idempotent operations in the initial state. We can generalize
this to state-machines where such operations exist in states other than the initial states.

We say that a state σ is a reachable state iff there exists a sequence of operations γ
such that σ = γ(σ0). We say that a state σ is an idempotently reachable state iff there
exists a sequence of idempotent operations γ such that σ = γ(σ0).

Theorem 5. Consider a state machine that has an idempotently reachable state σ and
two idempotent operations op1 and op2 such that op1 and op2 are 2-distinguishable
in σ. Then, the given state machine can be used to solve consensus for any number of
processes. Thus, it has a consensus number of∞.

Proof. Since state σ is reachable, there exists a sequence γ0 of idempotent operations
[f1, · · · , fm] such that [f1, · · · , fm](σ0) = σ. We use the following reduction: The
proof follows as before. Let γ1 denote the sequence of update operations γ0 followed
by op1. Let γ2 denote the sequence of update operations γ0 followed by op2. Note that
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Reduction 3. 2-distinguishable operations in idempotently reachable state
1: procedure Consensus (Boolean b)
2: f1(); · · · ; fm();
3: if (b) then op1() else op2() endif
4: s = read()
5: return(s ∈ {op1(σ), op2(op1(σ))})

every process executes either the sequence γ1 or γ2 followed by a read. The idempo-
tence property lets us ignore repeated execution of the same operation. Consider the
first process p that executes statement 3. We can show that at this point, the state must
be σ (the state produced by the sequence γ0). Execution of statement 3 by p will pro-
duce either state op1(σ) or op2(σ). Suppose p executes op1 producing state op1(σ).
The only subsequent operation that can change the state is op2, which will produce the
state op2(op1(σ)). Thus, the state read in line 4 by any process will belong to the set
{op1(σ), op2(op1(σ))}. Dually, if p executes op2, then the state read in line 4 by any
process will belong to the set {op2(σ), op1(op2(σ))}. It follows that all processes will
decide on the same value, depending on the operation p executes.

Idempotent stacks, certain forms of multi-writer registers and many other examples
are impossible to realize in a linearizable and resilient manner. Please refer to the tech-
nical report [5] for details.

Generalization. Our preceding results assume that the state machine includes a read
operation that returns the entire state. It is possible to generalize the definitions and
proofs to deal with state machines that provide restricted read operations. In particular,
the notion of 2-distinguishability requires that resulting states must be distinguishable
by some read operation.

6 Applications

Both our positive result (Theorem 1) and negative result (Theorem 5) may help in craft-
ing data-structure APIs so as to enable a resilient linearizable implementation. We il-
lustrate this by considering the design of a graph data-structure API.

Graph-1. Let U denote any countable set of vertex identifiers (such as the natural num-
bers or integers). The graph data-structure provides the following update operations:

U = { removeVertex(u) | u ∈ U } ∪
{ addEdge(u, v), removeEdge(u, v) | u, v ∈ U }

The state consists of only a set of edges. The formal specification of the operations
is shown in Specification 1. Most of the graph operations commute with each other.
The only non-commuting operations are discussed below. Operations addEdge(u, v)
and removeEdge(u, v) nullify each other. Operation removeVertex(u) nullifies the
operations addEdge(u, x) and addEdge(x, u) (for any x).
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Specification 1. Graph-1

Set 〈U × U〉 E;
addEdge(u, v) { E = E ∪ {(u, v)} }
removeEdge(u, v) { E = E \ {(u, v)} }
removeVertex(u)

{ E = {(x, y) ∈ E | x 
= u, y 
= u} }

Specification 2. Graph-2
Set 〈U〉 V; Set 〈U × U〉 E;
addEdge(u, v) { V = V ∪ {u, v};

E = E ∪ {(u, v)} }
removeEdge(u, v) { E = E \ {(u, v)} }
removeVertex(u) {V = V \ {u};

E = {(x, y) ∈ E | x 
= u, y 
= u} }

It follows that Graph-1 is a NC state machine and that a resilient linearizable imple-
mentation of Graph-1 is possible. However, we now present a very similar specification
for a Graph for which no resilient linearizable algorithm is possible.

Graph-2. This specification provides the same set of operations as Graph-1. However,
the semantics of the operations are slightly different. The state in this case consists of
both a set of vertices V and a set of edges E. The operations maintain the invariant
that for any edge (u, v) ∈ E, the vertices u and v are in V (a sort of referential in-
tegrity constraint). The formal specification is shown in Specification 2. It turns out
that Graph-2 is not a NC state machine. The operations op1 = addEdge(u, v) and
op2 = removeVertex(u) neither commute nor nullify in state G = ({u,w}, {(u,w)})
consisting of two vertices u and w and the edge (u,w). It can be verified that the op-
erations op1 and op2 are 2-distinguishable in state G. It follows from Theorem 5 that a
idempotent version of Graph-2 cannot be realized resiliently.

Discussion. At first glance, it might appear that the key difference between Graph-1 and
Graph-2 is that Graph-2 maintains a set of vertices in addition to a set of edges. Even
though Graph-1 does not provide for an explicit representation of the vertex set, the
edge set implicitly encodes a vertex set as well (namely the endpoints of the edges in
the edge-set). Graph-1 even permits encoding of graphs with isolated vertices (as a self-
loop of the form (u, u)). Thus, Graph-1 is, in some sense, as expressive as Graph-2. The
key difference between Graph-1 and Graph-2 that leads to the possibility/impossibility
distinction above is the subtle change in the semantics of the operations.

7 Related Work

State machine replication is a general approach for implementing data-structures that
can tolerate process failures. One common way to implement state machine replication
is by using consensus to order all commands If the state machine is deterministic, each
correct process is guaranteed to generate the same responses and reach the same state.
As consensus is impossible in the presence of process failures [7] this approach does
not guarantee progress.

Shapiro et al. [10] exploit properties of data structures like commutativity to build
efficient replicated data structures. However, they do not seek to achieve linearizability.
Many of the implementations they propose are not linearizable.

Faleiro et al. [6] show that a weaker form of agreement namely lattice agreement
and a generalized version of it (GLA) can be solved in asynchronous message passing
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systems. They also show that GLA can be used to implement linearizable and resilient
UQ state machines as long as all updates commute. This paper shows that even data
structures in which not all updates commute can be implemented in a linearizable and
resilient manner. In addition we show that certain UQ state machines are impossible to
implement in a linearizable and resilient manner.

Wait free implementations of other specific data structures like atomic snapshot ob-
jects have been studied in literature [4,9]. Attiya et al. [2] show how a wait free lineariz-
able atomic register for a shared memory system can be emulated in a message passing
system so long as only a minority of processes fail.

Our feasibility result is closely related to the result of [1] that wait-free linearizable
algorithms are possible in a shared-memory setting for a similar class of problems.
The key differences are that we address the problem in a message-passing model. Our
approach distinguishes updates from reads, unlike [1]. This also allows us to achieve
a more efficient algorithm for read-operations. We also present impossibility results,
which are new. In the context of shared memory systems, Vechev et al [3] show that it is
impossible to build a linearizable implementation of an object with a non-commutative
method without using strong synchronization (barrier, fence or locks).
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Abstract. Most published concurrent data structures which avoid locking do not
provide any fairness guarantees. That is, they allow processes to access a data
structure and complete their operations arbitrarily many times before some other
trying process can complete a single operation. Such a behavior can be prevented
by enforcing fairness. However, fairness requires waiting or helping. Helping
techniques are often complex and memory consuming. Does it mean that for en-
forcing fairness it is best to use locks? The answer is negative. We show that it
is possible to automatically transfer any non-blocking or wait-free data structure
into a similar data structure which satisfies a strong fairness requirement, without
using locks and with limited waiting. The fairness we require is that no begin-
ning process can complete two operations on a given resource while some other
process is kept waiting on the same resource. Our approach allows as many pro-
cesses as possible to access a shared resource at the same time as long as fairness
is preserved. To achieve this goal, we introduce and solve a new synchronization
problem, called fair synchronization. Solving the new problem enables us to add
fairness to existing implementations of concurrent data structures, and to trans-
form any solution to the mutual exclusion problem into a fair solution.

Keywords: Synchronization, fairness, concurrent data structures, non-blocking,
wait-freedom, locks, mutual exclusion.

1 Introduction

Motivation

Concurrent access to a data structure shared among several processes must be synchro-
nized in order to avoid interference between conflicting operations. Mutual exclusion
locks are the de facto mechanism for concurrency control on concurrent data structures:
a process accesses the data structure only inside a critical section code, within which
the process is guaranteed exclusive access. However, using locks may degrade the per-
formance of synchronized concurrent applications, as it enforces processes to wait for
a lock to be released.

A promising approach is the design of data structures which avoid locking. Sev-
eral progress conditions have been proposed for such data structures. Two of the most
extensively studied conditions, in order of decreasing strength, are wait-freedom [17]
and non-blocking [19]. Wait-freedom guarantees that every process will always be able
to complete its pending operations in a finite number of its own steps. Non-blocking
(which is sometimes also called lock-freedom) guarantees that some process will al-
ways be able to complete its pending operations in a finite number of its own steps.

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 179–193, 2013.
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Wait-free and non-blocking data structures are not required to provide fairness guar-
antees. That is, such data structures may allow processes to complete their operations
arbitrarily many times before some other trying process can complete a single opera-
tion. Such a behavior may be prevented when fairness is required. However, fairness
requires waiting or helping. Using helping techniques (without waiting) may impose
too much overhead upon the implementation, and are often complex and memory con-
suming. Does it mean that for enforcing fairness it is best to use locks? The answer
is negative. We show how any wait-free and any non-blocking implementation can be
automatically transformed into an implementation which satisfies a very strong fairness
requirement without using locks and with limited waiting.

We require that no beginning process can complete two operations on a given re-
source while some other process is kept waiting on the same resource. Our approach,
allows as many processes as possible to access a shared resource at the same time
as long as fairness is preserved. To achieve this goal, we introduce and solve a new
synchronization problem, called fair synchronization. Solving the fair synchronization
problem enables us to add fairness to existing implementations of concurrent data struc-
tures, and to transform any solution to the mutual exclusion problem into a fair solution.

Fair Synchronization

The fair synchronization problem is to design an algorithm that guarantees fair access
to a shared resource among a number of participating processes. Fair access means that
no process can access a resource twice while some other process is kept waiting. There
is no limit on the number of processes that can access a resource simultaneously. In
fact, a desired property is that as many processes as possible will be able to access a
resource at the same time as long as fairness is preserved.

It is assumed that each process is executing a sequence of instructions in an infinite
loop. The instructions are divided into four continuous sections: the remainder, entry,
critical and exit. Furthermore, it is assumed that the entry section consists of two parts.
The first part, which is called the doorway, is fast wait-free: its execution requires only
a (very small) constant number of steps and hence always terminates; the second part
is a waiting statement: a loop that includes one or more statements. Like in the case of
the doorway, the exit section is also required to be fast wait-free. A waiting process is
a process that has finished its doorway code and reached the waiting part of its entry
section. A beginning process is a process that is about to start executing its entry section.

A process is enabled to enter its critical section at some point in time, if sufficiently
many steps of that process will carry it into the critical section, independently of the
actions of the other processes. That is, an enabled process does not need to wait for an
action by any other process in order to complete its entry section and to enter its critical
section, nor can an action by any other process prevent it from doing so.

The fair synchronization problem is to write the code for the entry and the exit
sections in such a way that the following three basic requirements are satisfied.

– Progress: In the absence of process failures and assuming that a process always
leaves its critical section, if a process is trying to enter its critical section, then
some process, not necessarily the same one, eventually enters its critical section.
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The terms deadlock-freedom and livelock-freedom are used in the literature for the
above progress condition, in the context of the mutual exclusion problem.

– Fairness: A beginning process cannot execute its critical section twice before a
waiting process completes executing its critical and exit sections once. Further-
more, no beginning process can become enabled before an already waiting process
becomes enabled.

It is possible that a beginning process and a waiting process will become enabled
at the same time. However, no beginning process can execute its critical section
twice while some other process is kept waiting. The second part of the fairness
requirement is called first-in-first-enabled. The term first-in-first-out (FIFO) fair-
ness is used in the literature for a slightly stronger condition which guarantees that:
no beginning process can pass an already waiting process. That is, no beginning
process can enter its critical section before an already waiting process does so.

– Concurrency: All the waiting processes which are not enabled become enabled at
the same time.

It follows from the progress and fairness requirements that all the waiting processes
which are not enabled will eventually become enabled. The concurrency require-
ment guarantees that becoming enabled happens simultaneously, for all the waiting
processes, and thus it guarantees that many processes will be able to access their
critical sections at the same time as long as fairness is preserved. We notice that no
lock implementation may satisfy the concurrency requirement.

The processes that have already passed through their doorway can be divided into two
groups. The enabled processes and those that are not enabled. It is not possible to al-
ways have all the processes enabled due to the fairness requirement. All the enabled
processes can immediately proceed to execute their critical sections. The waiting pro-
cesses which are not enabled will eventually simultaneously become enabled, before
or once the currently enabled processes exit their critical and exit sections. We observe
that the stronger FIFO fairness requirement, the progress requirement and concurrency
requirement cannot be mutually satisfied (see [36] for a proof).

Fair Synchronization is a deceptive problem, and at first glance it seems very simple
to solve. The only way to understand its tricky nature is by trying to solve it. We suggest
the readers to to try themselves to solve the problem, assuming that there are only three
processes which communicate by reading and writing shared registers.

Contributions

Our model of computation consists of an asynchronous collection of n processes that
(in most cases) communicate by reading and writing atomic registers. In few cases, we
will also define and consider stronger synchronization primitives. With an atomic reg-
ister, it is assumed that operations on the register occur in some definite order. That is,
reading or writing an atomic register is an indivisible action. Our contributions are:

Fair synchronization. We define a new synchronization problem – called fair synchro-
nization – for concurrent programming, show how it can be solved and demonstrate
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its importance. The problem is to design a highly concurrent algorithm that guarantees
that no beginning process can access a resource twice while some other process is kept
waiting on the same resource.

Algorithms. We present the first fair synchronization algorithm for n processes. The
algorithm uses n+ 1 atomic registers: n 4-valued atomic registers plus one atomic bit.
We also explained how to construct a fast and adaptive versions of the algorithm.

Fair data structures. We define the notion of a fair data structure and prove that by com-
posing a fair synchronization algorithm and a non-blocking or a wait-free data structure,
it is possible to construct the corresponding fair data structure.

Fair mutual exclusion algorithms. A fair mutual algorithm, in addition to satisfying the
mutual exclusion and deadlock freedom requirements (Section 4), guarantees that no
beginning process can access its critical section twice while some other process is kept
waiting. We prove that by composing a fair synchronization algorithm and a deadlock-
free mutual exclusion algorithm, it is possible to construct a fair mutual algorithm.

A space lower bound. We show that n − 1 registers and conditional objects are neces-
sary for solving the fair synchronization problem for n processes. Compare-and-swap
and test-and-set are examples of conditional objects.

Related Work

Mutual exclusion locks were first introduced by Edsger W. Dijkstra in [8]. Since than,
numerous implementations of locks have been proposed [30,32]. Various other types
of locks, like 
-exclusion locks [13,12] and read/write locks [7], were considered in
the literature. For each type of a lock it is a priori defined how many processes and/or
which processes (i.e., a reader process or a writer process) cannot be in their critical
sections at the same time. In the case of the fair synchronization problem no such a
priori requirement exists. The fair synchronization algorithm, presented in Section 2,
uses some ideas from the mutual exclusion algorithm presented in [33].

Implementations of data structures which avoid locking have appeared in many pa-
pers, a few examples are [9,14,15,27,31,37]. Several progress conditions have been
proposed for data structures which avoid locking. The most extensively studied con-
ditions are wait-freedom [17] and non-blocking [19]. Strategies that avoid locks are
called lockless [16] or lock-free [26]. (In some papers, lock-free means non-blocking.)
Consistency conditions for concurrent objects are linearizability [19] and sequential
consistency [22]. A tutorial on memory consistency models can be found in [1].

In order to improve wait-free object implementations, in [3,4], it is suggested to first
protect a shared object by an 
-exclusion lock; processes that passed the 
-exclusion
lock, rename themselves before accessing the object. This enables the usage of an object
that was designed only for up to 
 processes, rather than a less efficient object designed
for n processes. The implementation uses strong synchronization primitives.

An algorithm is obstruction-free if it guarantees that a process will be able to com-
plete its pending operations in a finite number of its own steps, if all the other processes
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hold still long enough (that is, in the absence of interference from other processes)
[18]. Transformations that automatically convert any obstruction-free algorithm into a
non-blocking or a wait-free algorithm are presented in [10,34], for a model where it is
assumed that there is a (possibly unknown) upper bound on memory access time.

Contention-sensitive data structures in which the overhead introduced by locking
is eliminated in the common cases, when there is no contention, or when processes
with non-interfering operations access it concurrently, are introduced in [35]. Hybrid
implementations of concurrent objects in which lock-based code and lock-free code are
merged in the same implementation of a concurrent object, are discussed in [29].

2 The Fair Synchronization Algorithm

We use one (multi-writer multi-reader) atomic bit, called queue. The first thing that
process i does in its entry section is to read the value of the queue bit, and to determine
to which of the two queues (0 or 1) it should belong. This is done by setting i’s single-
writer register statei to the value read.

Once i chooses a queue, it waits until its queue has priority over the other queue and
then it enters its critical section. The order in which processes can enter their critical
sections is defined as follows: If two processes belong to different queues, the process
whose queue, as recorded in its state register, is different from the value of the bit queue
is enabled and can enter its critical section, and the other process has to wait. If all the
active processes belong to the same queue then they can all enter their critical sections.

Next, we explain when the shared queue bit is updated. The first thing that process i
does when it leaves its critical section (i.e., its first step in its exit section) is to set the
queue bit to a value which is different from the value of its statei register. This way, i
gives priority to waiting processes with belong to the same queue that it belongs to.

Until the value of the queue bit is first changed, all the active processes belong to the
same queue, say queue 0. The first process to finish its critical section flips the value
of the queue bit and sets it to 1. Thereafter, the value read by all the new beginning
processes is 1, until the queue bit is modified again. Next, all the processes which
belong to queue 0 enter and then exit their critical sections possibly at the same time
until there are no active processes which belong to queue 0. Then all the processes from
queue 1 become enabled and are allowed to enter their critical sections, and when each
one of them exits it sets to 0 the value of the queue bit, which gives priority to the
processes in queue 1, and so on.

The following registers are used: (1) a single multi-writer atomic bit named queue,
(2) an array of single-writer atomic registers state[1..n] which range over {0, 1, 2, 3}.
To improve readability, we use below subscripts to index entries in an array. At any
given time, process i can be in one of four possible states, as recorded in it single-writer
register statei. When statei = 3, process i is not active, that is, it is in its remainder
section. When statei = 2, process i is active and (by reading queue) tries to decide to
which of the two queues, 0 or 1, it should belong. When statei = 1, process i is active
and belongs to queue 1. When statei = 0, process i is active and belongs to queue 0.

The statement await condition is used as an abbreviation for while ¬condition do
skip. The break statement, like in C, breaks out of the smallest enclosing for or while
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loop. Finally, whenever two atomic registers appear in the same statement, two separate
steps are required to execute this statement. The algorithm is given below.1

Algorithm 1. A FAIR SYNCHRONIZATION ALGORITHM: process i’s code
(1 ≤ i ≤ n)

Shared variables:
queue: atomic bit; the initial value of the queue bit is immaterial.
state[1..n]: array of atomic registers, which range over {0, 1, 2, 3}
Initially ∀i : 1 ≤ i ≤ n : statei = 3 /* processes are inactive */

1 statei := 2 /* begin doorway */
2 statei := queue /* choose queue and end doorway */
3 for j = 1 to n do /* begin waiting */
4 if (statei 	= queue) then break fi /* process is enabled */
5 await statej 	= 2
6 if statej = 1− statei /* different queues */
7 then await (statej 	= 1− statei) ∨ (statei 	= queue) fi
8 od /* end waiting */
9 critical section
10 queue := 1− statei /* begin exit */
11 statei := 3 /* end exit */

In line 1, process i indicates that it has started executing its doorway code. Then, in two
atomic steps, it reads the value of queue and assigns the value read to statei (line 2).

After passing its doorway, process i waits in the for loop (lines 3–8), until all the
processes in the queue to which it belongs are simultaneously enabled and then it enters
its critical section. This happens when either, (statei 	= queue), i.e. the value the queue
bit points to the queue which i does not belong to (line 4), or when all the waiting
processes (including i) belong to the same queue (line 7). Each one of the terms of
the await statement (line 7) is evaluated separately. In case processes i and j belong to
different queues (line 6), i waits until either (1) j is not competing any more or j has
reentered its entry section, or (2) i has priority over j because statei is different than
the value of the queue bit.

In the exit code, i sets the queue bit to a value which is different than the queue to
which it belongs (line 10), and changes its state to not active (line 11). We notice that the
algorithm is also correct when we replace the order of lines 9 and 10, allowing process i
to write the queue bit immediately before it enters its critical section. The order of lines
10 and 11 is crucial for correctness.

We observe that a non beginning process, say p, may enter its critical section ahead
of another waiting process, say q, twice: the first time if p is enabled on the other queue,
and the second time if p just happened to pass q which is waiting on the same queue
and enters its critical section first. We point out that omitting lines 1 and 5 will result

1 To simplify the presentation, when the code for a fair synchronization algorithm is presented,
only the entry and exit codes are described, and the remainder code and the infinite loop within
which these codes reside are omitted.
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an incorrect solution. It is possible to replace each one of the 4-valued single-writer
atomic registers, by three separate atomic bits. In the full version [36], we present this
variant of the algorithm which uses 3n + 1 separate bits. Below we discuss two other
interesting variants of Algorithm 1.

A Fast Fair Synchronization Algorithm. A fast algorithm is an algorithm which its
time complexity, in the absence of contention, is a constant [24]. Thus, a fair synchro-
nization algorithm is fast if, in the absence of contention, the maximum number of times
(i.e., steps) a process may need to access the shared memory in its entry and exit codes.
It is not difficult to make the fair synchronization algorithm (Algorithm 1) fast, using
an additional atomic counter. The value of the counter is initially 0. The first step of a
process is to atomically increment the counter by 1. After the process finishes executing
its doorway (i.e., lines 1 and 2), it reads its value. If the returned value is 1, the processes
can safely enter its critical section, otherwise, the process continues to the waiting code
(line 3). In the last step of its exit code the process decrements the counter by 1.

An Adaptive Fair Synchronization Algorithm. An adaptive algorithm is an algorithm
which its time complexity is a function of the actual number of participating processes
rather than a function of the total number of processes. In [2], a new object, called an
active set was introduced, together with an implementation which is wait-free, adaptive
and uses only atomic registers. The authors have shown how to transform the Bakery
algorithm [21] into its corresponding adaptive version using the active set object. In
[33], it was shown how to transform the Black White Bakery algorithm into its corre-
sponding adaptive version using the same technique. It is rather simple to use the same
transformation to make also the fair synchronization algorithm (Algorithm 1) adaptive.

Correctness Proof

We prove below the correctness of the fair synchronization algorithm.

Theorem 1. The fair synchronization algorithm for n processes (Algorithm 1) satisfies
the progress, fairness and concurrency requirements, and uses n + 1 atomic registers:
n 4-valued single-writer atomic registers plus one multi-writer atomic bit. The total
number of bits used is 2n+ 1.

The following lemma captures the effect of the queue a process belongs to, on the order
in which processes enter their critical sections.

Lemma 1. For any two waiting processes i and j, if statei 	= queue and statej =
queue, then i must enter its critical section and complete its exit section before j can
enter its critical section.

Proof. A waiting process, say i, is enabled to enter its critical section only when one
of the following two condition holds: (1) the value of statei 	= queue. In such a case,
i will break out of the for loop after executing line 4; or (2) for all processes j 	= i,
statej 	= 1 − statei. That is, no process belongs to a different queue than the queue i
belongs to. In such a case, i will execute the loop n times and will exit. If non of these
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two conditions holds, iwill eventually have to wait in line 7, until either the value of the
queue bit changes of the processes which belong to the other queue change the values
of their state registers.

Until the value of the queue bit is first changed, all the active processes belong to
the same queue v ∈ {0, 1}. Hence, as explained above, they are all enabled. The first
process to finish its critical section flips the value of the queue bit and sets it 1 − v.
Thereafter, the value of the queue bit read by all the new beginning processes is 1−v. As
explained in the previous paragraph, non of these new beginning processes can become
enabled until either, the value of the queue bit changes again, or all the processes which
belong to the queue v complete their exit sections. Since all the processes which belong
to the queue v set the queue bit to 1 − v on their exit, the disabled processes will have
to wait until all the enabled processes with state registers equal v exit.

Only then all the active processes belong to the same queue 1− v, and hence will all
become enabled. When they exit they change back to v the value of the queue bit, and
so on. As we can see in the above explanation, for any two waiting processes i and j, if
statei 	= queue and statej = queue, then i is enabled and j is disabled, and i and all
the processes which belong to the same queue as i will enter their critical sections and
complete their critical and exit sections before j can enter its critical section. �

Proof of Theorem 1. The correctness of the claims about the number and size of the
registers are obvious. Assume a beginning process i overtakes a waiting process j in
entering its critical section. It follows from Lemma 1, that this can happen only if both i
and j belong to the same queue (i.e., statei = statej) at the time when i has completed
executing line 2. On exit i (and possibly other processes) will set the value of the queue
bit to 1 − statei. Thereafter, by Lemma 1, the value of the queue bit will not change
(at least) until j completes its exit section. If i will try to enter its critical section again
while j has not completed its exit section yet, then after passing through its doorway i
will belong to a different queue than j (i.e., statei 	= statej) and the value of the queue
bit will be the same as the value of statei. Thus, by Lemma 1, i will not again become
enabled until j - the process it has overtaken - completes its exit section and changes
the value of its statej register. Thus, the algorithm satisfies fairness.

Next we assume to the contrary that the algorithm does not satisfy progress and
show how this assumption leads to a contradiction. Assuming that the algorithm does
not satisfy progress means that all the active processes are forced to remain in their
entry sections forever. There are two possible cases: (1) the values of the state registers
of all the active processes are the same, and (2) it is not the case that the values of the
state registers of all the active processes are the same. In the first case, all the active
processes are enabled and they all can proceed to their critical sections. In the later
case, all the processes which their state register is different from the value of the queue
bit can proceed to their critical sections. In either case, some process can proceed. A
contradiction. Thus, the algorithm satisfies progress.

We prove that the algorithm satisfies the concurrency requirement. As we have al-
ready explained in the proof of Lemma 1, a waiting process, say i, is enabled to enter
its critical section only when one of the following two condition holds: (1) the value
of statei 	= queue; in such a case, i will break out of the for loop after executing line
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4; or (2) for all processes j 	= i, statej 	= 1 − statei. That is, no process belongs to
a different queue than the queue i belongs to. In such a case, i will execute the loop
n times and will exit. Thus, it follows that if two waiting processes, say i and j, are
disabled then it must be the case that statei = statej . Lets assume that i becomes en-
abled. If i becomes enabled because the value of the queue bit has changed then also j
must become enabled for that reason. If i becomes enabled because no process belongs
to a different queue than the queue i belongs to, then also j must become enabled for
that reason. Thus, the algorithm satisfies concurrency. �

3 Fair Data Structures

In order to impose fairness on a concurrent date structure, concurrent accesses to a data
structure can be synchronized using a fair synchronization algorithm: a process accesses
the data structure only inside a critical section code. Any data structure can be easily
made fair using such an approach, without using locks and with limited waiting.

We name a solution to the fair synchronization problem a (finger) ring.2 Using a
single ring to enforce fairness on a concurrent data structure, is an example of coarse-
grained fair synchronization. In contrast, fine-grained fair synchronization enables to
protect “small pieces” of a data structure, allowing several processes with different op-
erations to access it completely independently. For example, in the case of adding fair-
ness to an existing wait-free queue, it makes sense to use two rings: one for the enqueue
operations and the other for the dequeue operations.

Coarse-grained fair synchronization is easier to program but might be less
efficient compared to fine-grained fair synchronization. When using coarse-grained fair
synchronization, operations that do not conflict may have to wait one for another, pre-
cluding disjoint-access parallelism. This can be resolved when using fine-grained fair
synchronization.

3.1 Definitions

An implementation of each operation of a concurrent data structure is divided into two
continuous sections of code: the doorway code and the body code. When a process
invokes an operation it first executes the doorway code and then executes the body
code. The doorway is fast wait-free: its execution requires executing only a constant
number of instructions and hence always terminates.

A beginning process is a process that is about to start executing the doorway code of
some operation. A process has passed its doorway, if it has finished the doorway code
and reached the body code. A process is enabled while executing an operation on a
given data structure, if by executing sufficiently many steps it will be able to complete
its operation, independently of the actions of the other processes. That is, an enabled
process does not need to wait for an action by any other process in order to complete its
operation, nor can an action by any other process prevent it from doing so.

2 Many processes can simultaneously pass through the ring’s hole, but the size of the ring may
limit their number.
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The problem of implementing a fair data structure is to write the doorway code
and the body code in such a way that the following four requirements are satisfied,

– Starvation-freedom (progress): In the absence of process failures, if a process is
executing the doorway code or the body code, then this process, must eventually
complete its operation.

– Fairness: No beginning process can complete an operation twice while some other
process which has already passed the doorway has not completed its operation yet.
Furthermore, no beginning process can become enabled before a process that has
already passed its doorway becomes enabled.

– Concurrency: All the processes that have passed their doorway and are not en-
abled, become enabled at the same time.

To keep things simple, we have not separated between the different types of operations
a data structure may support. It is possible to refine the definition and, for example,
require fairness only among operations of the same type.

3.2 A Composition Theorem

By composing a fair synchronization algorithm and a non-blocking or a wait-free
linearizable data structure, it is possible to construct a fair linearizable data structure.
Linearizability is a consistency condition which means that although operations of con-
current processes may overlap, each operation should appear to take effect instanta-
neously, and operations that do not overlap should take effect in their “real-time” order
[19]. The doorway code of the composed fair data structure is the doorway of the fair
synchronization algorithm. The body is the waiting code of the fair synchronization
algorithm followed by the code of the data structure, followed by the exit section.

Theorem 2. Let A be a fair synchronization algorithm and let B be a non-blocking or
a wait-free data structure. Assume that the registers ofA are different from the registers
of B. Let C be a data structure obtained by replacing the critical section of A with the
data structure B. Then, C is a fair data structure. Furthermore, if B is linearizable,
then also C is linearizable.

The correctness proof appears in [36]. Using Theorem 2, it is now possible to construct
new fair data structures from existing non-blocking or wait-free data structures.

4 Fair Mutual Exclusion

The mutual exclusion problem is to design an algorithm that guarantees mutually ex-
clusive access to a critical section among a number of competing processes [Dij65].
As before, it is assumed that each process is executing a sequence of instructions in an
infinite loop. The instructions are divided into four continuous sections: the remainder,
entry, critical and exit. The entry section consists of two parts: the doorway which is
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wait-free, and the waiting part which includes one or more loops. Recall that a waiting
process is a process that has finished its doorway code and reached the waiting part, and
a beginning process is a process that is about to start executing its entry section. Like in
the case of the doorway, the exit section is also required to be wait-free. It is assumed
that processes do not fail, and that a process always leaves its critical section.

4.1 Definitions

The mutual exclusion problem is to write the code for the entry and the exit sections in
such a way that the following two basic requirements are satisfied.

Deadlock-freedom: If a process is trying to enter its critical section, then some process,
not necessarily the same one, eventually enters its critical section.

Mutual exclusion: No two processes are in their critical sections at the same time.

Satisfaction of the above two properties is the minimum required for a mutual exclusion
algorithm. For an algorithm to be fair, satisfaction of an additional condition is required.

k-fairness: A beginning process cannot execute its critical section k+1 times before a
waiting process completes executing its critical and exit sections once.

We notice that 1-fairness implies that no beginning process can execute its critical sec-
tion twice while some other process is kept waiting. The terms first-in-first-out (FIFO) is
used for 0-bounded-waiting: no beginning process can pass an already waiting process.
The term linear-waiting is used in the literature for the requirement that no (beginning
or not) process can execute its critical section twice while some other process is kept
waiting.

The fair mutual exclusion problem is to write the code for the entry and exit sec-
tions in such a way that the deadlock-freedom, mutual exclusion and 1-fairness require-
ments are satisfied. Solving the fair synchronization problem enables to transform any
solution for the mutual exclusion problem into a fair solution.

4.2 A Composition Theorem

By composing a fair synchronization algorithm (FS) and a deadlock-free mutual ex-
clusion algorithm (ME), it is possible to construct a fair mutual exclusion algorithm
(FME). The entry section of the composed FME algorithm consists of the entry section
of the FS algorithm followed by the entry section of the ME algorithm. The exit section
of the FME algorithm consists of the exit section of the ME algorithm followed by the
exit section of the FS algorithm. The doorway of the FME algorithm is the doorway of
the FS algorithm.

Theorem 3. Let A be a fair synchronization algorithm and let B be a deadlock-free
mutual exclusion algorithm. Assume that the registers of A are different from the regis-
ters of B. Let C be the algorithm obtained by replacing the critical section of A with
the algorithm B. That is, the code of C is: loop forever remainder code (of C); entry
code of A; entry code of B; critical section; exit code of B; exit code of A end loop.
Then, C is a fair mutual exclusion algorithm.
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The correctness proof appears in [36]. Using Theorem 3, it is now possible to construct
new interesting fair mutual exclusion algorithms. For example, the One-bit algorithm
that was devised independently in [5,6] and [23], is a deadlock-free mutual exclusion
algorithm for n processes which uses n shared bits. By Theorem 3, using the fair syn-
chronization algorithm from Section 2 which uses 2n+1 bits together with the One-bit
algorithm which uses n bits, we can construct an elegant and simple fair mutual exclu-
sion algorithm which uses a 3n+ 1 bits.

Several techniques for designing FIFO mutual exclusion algorithms have been used
in [20,23,25]. It is interesting to note that while the doorway of the above new fair
mutual exclusion algorithm includes only three steps (accessing statei twice and queue
once), the doorway of the various FIFO mutual exclusion algorithms [20,23,25] is not
fast wait-free as it takes at least n steps, where n is the number of processes. Next we
use Theorem 3 for proving a space lower bound for the fair synchronization problem.

5 A Space Lower Bound for Fair Synchronization

In Section 2, we have shown that n + 1 atomic registers are sufficient for solving the
fair synchronization problem for n processes. In this section we show that n− 1 regis-
ters and conditional objects are necessary for solving the fair synchronization problem
for n processes. A conditional operation is an operation that changes the value of an
object only if the object has a particular value. A conditional object is an object that
supports only conditional operations. Compare-and-swap and test-and-set are examples
of conditional objects.

A compare-and-swap operation takes a register r, and two values: new and old. If
the current value of the register r is equal to old, then the value of r is set to new and
the value true is returned; otherwise r is left unchanged and the value false is returned.
A compare-and-swap object is a register that supports a compare-and-swap operation.
A test-and-set operation takes a registers r and a value val. The value val is assigned
to r, and the old value of r is returned. A test-and-set bit is an object that supports a
reset operation (i.e., write 0) and a restricted test-and-set operation where the value of
val can only be 1.

Theorem 4. Any fair synchronization algorithm for n processes using only atomic reg-
isters and conditional objects must use at least n− 1 atomic registers and conditional
objects.

Proof. A deadlock-free mutual exclusion algorithm using a single test-and-set bit is
defined as follows. It uses a test-and-set bit called x. In its entry section, a process
keeps on accessing x until, in one atomic step, it succeeds to change x from 0 to 1.
Then, the process can safely enter its critical section. The exit section is simply to reset
x to 0. By Theorem 3, it is possible to construct a fair mutual exclusion algorithm
(FMX) by composing any fair synchronization algorithm and the above deadlock-free
mutual exclusion algorithm.

A starvation-free mutual exclusion is an algorithm that satisfy the mutual exclusion
requirement and guarantees that, in the absence of process failures, any process that
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tries to enter its critical section eventually enters its critical section. Clearly, any FMX
algorithm is also a starvation-free mutual exclusion algorithm.

In [28], it is proven that any starvation-free mutual exclusion algorithm for n pro-
cesses using only atomic registers and test-and-set bits must use at least n atomic regis-
ters and test-and-set bits. In [11] it is proven that any starvation-free mutual exclusion
algorithm for n processes using only atomic registers and conditional objects must use
at least n atomic registers and conditional objects. Since, a FMX algorithm is also a
starvation-free mutual exclusion algorithm, the above lower bound holds also for FMX
algorithms.

It follows from the two facts that (1) we can construct a FMX algorithm using any fair
synchronization algorithm plus a single test-and-set bit, and that (2) any FMX algorithm
for n processes using only atomic registers and conditional objects must use at least n
atomic registers and conditional objects, that any fair synchronization algorithm for n
processes using only atomic registers and conditional objects must use at least n − 1
atomic registers and conditional objects. �

6 Discussion

We have considered the problem of enforcing fairness in a shared-memory algorithm,
by preventing a process from accessing a shared resource twice while another process is
waiting to get the resource. We have proposed to enforce fairness as a wrapper around
any concurrent algorithm, and studied the consequences. We have formalized the fair
synchronization problem, presented a solution, and then showed that existing concur-
rent data structures and mutual exclusion algorithms can be encapsulated into a fair
synchronization construct to yield algorithms that are inherently fair. A linear space
lower bound has been obtained for the problem.

Wait-free algorithms are frequently criticized for sacrificing performance compared
to non-blocking algorithms. When enforce fairness as a wrapper around a concurrent
algorithm, it is better that the concurrent algorithm be an efficient non-blocking algo-
rithms rather than a wait-free algorithm. Since many processes may enter their critical
sections simultaneously, it is expected that using fair synchronization algorithms will
not degrade the performance of concurrent applications as much as locks. However, as
in the case of using locks, slow or stopped processes may prevent other processes from
ever accessing their critical sections.

There are several interesting variants of the fair synchronization problem which can
be defined by strengthening or weakening the various requirements. For example, it is
possible to require that a solution be able to withstand the slow-down or even the crash
(fail by stopping) of up to 
 − 1 of processes. In that variant, the (stronger) progress
condition is: If strictly fewer than 
 processes fail (are delayed forever) then if a process
is trying to enter its critical section, then some process, not necessarily the same one,
eventually enters its critical section. Solving the problem with such a strong progress
requirement, should be possible only by weakening the fairness requirement.

According to our definition of fairness, there is no overtaking. It seems that allowing
limited amounts of overtaking (e.g., a process accessing a shared resource for a constant
number of times while another is spinning on it) would not be detrimental. Some version



192 G. Taubenfeld

of the two composition theorems would still hold for such weaker versions, and this
might be closer to what happens in real life. Put another way, it is possible to replace
the fairness requirement by k-fairness (as defined in Section 4) for some k > 1.

Like in the case of mutual exclusion, it would be interesting to solve the fair
synchronization problem using synchronization primitives other than atomic registers,
prove time complexity bounds, and find local spinning, symmetric, self stabilizing and
fault-tolerant solutions.
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Abstract. Wedevise efficient gossip-based protocols for some fundamen-
tal distributed tasks. The protocols assume an n-node network supporting
point-to-point communication, and in every round, each node exchanges
information of size O(log n) bits with (at most) one other node.

We first consider the renaming problem, that is, to assign distinct IDs
from a small ID space to all nodes of the network. We propose a renaming
protocol that divides the ID space among nodes using a natural push or
pull approach, achieving logarithmic round complexity with ID space
{1, . . . , (1 + ε)n}, for any fixed ε > 0. A variant of this protocol solves
the tight renaming problem, where each node obtains a unique ID in
{1, . . . , n}, in O(log2 n) rounds.

Next we study the following sorting problem. Nodes have consecutive
IDs 1 up to n, and they receive numerical values as inputs. They then
have to exchange those inputs so that in the end the input of rank k
is located at the node with ID k. Jelasity and Kermarrec [20] suggested
a simple and natural protocol, where nodes exchange values with peers
chosen uniformly at random, but it is not hard to see that this pro-
tocol requires Ω(n) rounds. We prove that the same protocol works in
O(log2 n) rounds if peers are chosen according to a non-uniform power
law distribution.

Keywords: renaming, sorting, gossip protocols, epidemic protocols,
distributed algorithms, randomized algorithms, network algorithms.

1 Introduction

Today’s highly distributed systems are based on networks of massive scale. Such
networks often suffer from link and node failures, and from limited computa-
tional capabilities of their nodes. For example, peer-to-peer and mobile ad-hoc
networks are inherently highly dynamic, with nodes joining and leaving the sys-
tem frequently; or sensor networks are often used in harsh environments leading
to communication disruptions, and their nodes have little computational power.

� This work was funded in part by INRIA Associate Team RADCON and ERC
Starting Grant GOSSPLE 204742.

�� This research was supported in part by a Discovery Grant and the Canada Research
Chair Program of the Natural Sciences and Engineering Research Council of Canada
(NSERC), and in part by the HP Innovation Research Program.

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 194–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Gossip Protocols for Renaming and Sorting 195

Gossip (or epidemic) protocols have emerged as an important communica-
tion paradigm for these networks. In gossip protocols nodes repeatedly contact
random neighbors and exchange small amounts of information in order to dis-
tribute and gather information. Such protocols are usually simple, scalable, and
fault-tolerant. They generally offer small communication overhead and modest
demands on the nodes’ storage space and computational power. Even though
they only provide probabilistic guarantees, the probability of failure typically
converges quickly to 0 with the time the protocol is run.

The classical problem solved with gossip protocols is rumor spreading [10] in
the random phone-call model [22]. In this model, nodes exchange information in
synchronous parallel communication rounds, using either push, pull, or push-pull
communication with peers chosen uniformly at random among all nodes (or just
among the node’s neighbors, if the network topology is not a complete graph).
Such rumor spreading protocols have been shown to be very efficient, requiring
only a logarithmic number of rounds for the complete graph and various other
topologies [22,19,14,18,7,12,13].

Later, gossip protocols have been used to solve node aggregation problems
[6,23,28,8]. Here, the goal is to compute the value f(x1, . . . , xn) of some ag-
gregation function f (e.g., sum, average, or extrema), where xi is an input to
the i-th node. Most gossip protocols for aggregation need only poly-logarithmic
many rounds in the complete graph before nodes know the value of the aggre-
gation function (with sufficient accuracy) with high probability. In the design
of gossip protocols it is often assumed that any given node can in each round
exchange information with a peer selected uniformly at random from all nodes,
independently of the network topology. In practice [17], this is usually realized
by a peer-sampling service [21], which can be singled out from the application.

In the present paper, we study practical and fundamental problems that can-
not be expressed by aggregation functions. First, we study the problem of re-
naming. Here, every node must obtain a unique ID from an ID space {1, . . . ,m}
of size m ≥ n. The renaming problem has been studied extensively in the dis-
tributed computing literature, especially in the areas of shared memory and
message passing (see, e.g., [2] and references therein). Many distributed tasks
can only be solved if the participants have unique IDs, and often the complex-
ity of algorithms depends on the size of the domain from which those IDs are
chosen. For example, an algorithm to construct overlay networks in peer-to-
peer networks proposed by Angluin et al. [3] has expected round complexity
O(W logn), where W is the bit-length of node IDs. Another application is the
unique assignment of a small number of resources (e.g., servers or printers) to
processors (nodes). Nodes can also use their IDs as “tags” to mark their presence
in some data structure (e.g., a priority queue), so that a node can distinguish
whether itself or some other node has placed the tag [4]. We solve both, the loose
renaming problem, where m = (1 + ε)n for some constant ε > 0, and the tight
renaming problem, where m = n, with simple protocols that have respectively
O(log n) and O(log2 n) round complexity with high probability, and logarithmic
message-size complexity. Both protocols assume that each node can contact a
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uniform random node in a round. The tight renaming protocol assumes further
that a node can contact an arbitrary node directly, if it knows its network address
(see Section 1.1). Note that non-gossip based algorithms, e.g., algorithms based
on leader election protocols, can be used to solve tight renaming in O(log n)
time. But contrary to our gossip based solution, such algorithms require “exact”
communication, and tolerate no or almost no transmission faults.

Then we consider the problem of sorting n input values x1, . . . , xn, each one
given to a distinct node. Here we assume that the n nodes have consecutive IDs
in {1, . . . , n}. Nodes must exchange their input values in multiple communication
rounds, such that in the end the value of rank k is located at the node with ID
k. Jelasity and Kermarrec [20] proposed the following simple gossip protocol for
this problem: In each round, a node contacts a peer chosen uniformly at random,
and both nodes exchange their values, if they are out of order with respect to
their IDs. However, this protocol may need in expectation Ω(n) rounds until all
input values are sorted. For example, suppose node 1 holds value 2 and node 2
holds value 1, and each node i ≥ 3 holds value i. Then it takes Ω(n) rounds in
expectation before nodes 1 and 2 contact each other and resolve their inversion.
(There are other input instances for which it takes up to Ω(n logn) rounds with
high probability before all input values are sorted.) We show that the round
complexity drops to O(log2 n), if peers are not chosen uniformly at random, but
rather from a power law distribution: A node with ID x chooses a peer with ID
y with a probability inversely proportional to |x− y|. (A similar distribution for
sampling peers is used in Kleinberg’s small-world graph routing scheme [26,25],
and also in the spatial gossip algorithms proposed by Kempe et al. [24].)

Our protocols for renaming and sorting are very simple and natural, how-
ever, their analysis is non-trivial and is based on potential function arguments.
Further, the protocols can tolerate random transmission faults, similar to the
standard rumor spreading protocols [15]. I.e., if communication channels fail to
be established between parties independently with a probability of q, then the
round complexity increases only by a factor of at most 1/(1 − q), which is the
expected number of trials before a connection is established.

1.1 Model and Practical Considerations

We assume that the network supports the abstraction of point-to-point commu-
nication. That is, each node has a unique network address from some arbitrary
domain, and node u can contact any other node v, if u knows v’s address. Nodes
do not know the addresses of other nodes in advance, but they can find out during
the course of the protocol. When two nodes have established a communication
channel, both can reliably exchange information for one round.

We assume further that the abstraction of a random peer-sampling service is
supported. Each time this service is invoked it returns a node chosen independently
and uniformly at randomamong all nodes. In a large-scale dynamic system it is un-
realistic that nodes maintain complete tables of network addresses of peers, from
which they can sample at random. To overcome this obstacle, various distributed
designs of peer-sampling services have been proposed and studied experimentally
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by the systems community (see, e.g., [21]). The use of such services has become a
standard practice in the implementation of gossip-based systems [17]. This service
is often implemented by building and maintaining a random overlay network, that
changes over time by having nodes exchange random fractions of their list of neigh-
bors with other (randomly selected) neighbors. For related theoretical results on
this problem see, e.g., [16,9].

Our loose renaming algorithm relies only on the assumption that in each round
a node can contact some uniformly random node. The tight renaming algorithm
has the additional requirement that a node can contact a node by its address.
Initially, nodes do not know the address of any other node, but a node can add
its own address to a message (or the address of another node it knows of), thus
allowing the recipients of that message to contact the node directly in future
rounds. We stress that addresses may come from an arbitrary large space that
may be much larger than n, thus they cannot be used themselves as IDs.

For the sorting algorithm we assume that nodes already have IDs 1 up to
n. Similar to the loose renaming algorithm, the sorting algorithm does not use
network addresses directly. However, it requires a non-uniform peer-sampling
service, which allows each node with ID i to choose a random node with ID
j according to a probability distribution that depends on |i − j|. Precisely, the
probability of choosing j needs to be inversely proportional to |i−j|. A DHT-like
overlay network can be used to provide this service: By overlaying the network
with a Chord topology [29], peer-sampling with the required power-law distribu-
tion can be achieved in such a way that it does not increase the overall asymptotic
round complexity of our sorting protocol.1 If the non-uniform peer-sampling ab-
straction is provided by other means, then no overlay network is required for the
sorting protocol.

In order to solve the sorting problem, one could also follow a different ap-
proach that is not gossip-based: One can construct a (perfect) Chord overlay
on top of the network, and then implement a sorting network, where each com-
parator is replaced with a link between two peers in the network. If one uses
a Bitonic sorter [5], the comparators correspond to Chord links, and thus no
lookups in Chord are necessary. This would yield a sorting algorithm with the
same round complexity as ours. (One could even use an AKS [1] sorting network
to obtain, with some additional tricks, a round complexity of O(log n), but AKS
networks are considered impractical due to the extremely large constant fac-
tors [27].2) Most sorting networks, however, provide no inherent fault-tolerance
(with the exception of the AKS sorting network). Our gossip-based algorithm is
naturally fault-tolerant in the sense that it still works without an increase in the
asymptotic round complexity, if any two peers fail to establish a communication

1 This requires nodes to sample multiple peers at the beginning of the protocol and
leads to a poly-logarithmic increase in the message size complexity.

2 In our analysis of the sorting algorithm we have not tried to optimize the constant
multiplicative factor in front of log2 n. This analysis gives an upper bound of roughly
100 on this constant, and a more careful analysis yields a bound of roughly 25. We
believe, however, that the actual value is much smaller.
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with constant probability. By repeating comparators (cf. [30]) one can also make
sorting networks fault-tolerant, but the repetition of comparators increases the
depth of the sorting network (and thus the round complexity in our application)
by a factor of Ω(log n) in order to allow for a constant failure probability for
each communication/comparator. Note also that we only need to use an overlay
network to provide the non-uniform peer sampling service, while such an overlay
seems inherent for a sorting network based approach.

To bound the message-size complexity of our protocols, we assume that each
network address is aW -bit string, whereW = O(log n). IfW is super-logarithmic,
then the complexity increases by an additive term of O(W ).

We present our protocols in terms of synchronous rounds. The synchrony as-
sumption is not really necessary for the definition of the protocols. Instead, nodes
may simply follow their own clocks in deciding when to initiate connections. We
expect that the running time of our protocols should not be affected, as long as
(most) nodes take steps at roughly the same rate, e.g., in the standard asyn-
chronous model where each node takes steps at times determined by a poisson
process with a fixed rate for all nodes.

2 Renaming Protocols

2.1 Loose Renaming

We present an algorithm that assigns IDs to n nodes from the integer interval
[1..(1 + ε)n], for some ε > 0; ε can be a function of n, but the running time
increases linearly with 1/ε. At any time, each node stores zero or more IDs,
and each ID is stored at exactly one node. If node u has one or more IDs at a
given time, then one of them is permanently stored by u, and is the ID assigned
to u by the algorithm, while the remaining IDs, if any, are u’s free IDs. The
free IDs of a node are consecutive, and thus they can be stored using at most
2 logn bits. We present two versions on the algorithm: a pull algorithm, and a
push algorithm.

In round 0, a starting node sends the ID interval [1..(1+ε)n] to itself.3 If node
u receives interval [a..b] in round t ≥ 0, and it has not received any IDs prior to
that, then ID a is assigned to u. Further, if a 	= b then the interval [a + 1..b] of
remaining IDs will be the free IDs of u for the next round.

In the pull version of the algorithm, in every round t ≥ 1, each node u that
has no free IDs (u may or may not have been assigned an ID yet) sends a request
to a random node v. If v has an interval [a..b] of free IDs, then it chooses an
arbitrary node u′ among the nodes from which it received requests in round t,
and sends to u′ half of [a..b], precisely, the interval [�(a+ b)/2�..b]. If a 	= b then
v is left with the interval [a..�(a + b)/2� − 1] of free IDs, while if a = b (i.e., u
had only one free ID) then v has no free IDs in the next round.

3 The starting node can be chosen randomly via a gossip-based sampling procedure
and the network size n can also be estimated via gossip (see, e.g., [23]).
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The push algorithm is symmetric: In round t ≥ 1, each node u that has at
least one free ID sends half of its interval [a..b] of free IDs, i.e., [�(a+b)/2�..b], to
a randomly chosen node v. If v has no free IDs at the time, then it accepts (an
arbitrary) one of the ID intervals it receives in round t, and rejects the remaining
ones; if v already has some free IDs then it rejects any ID intervals it receives. If
the interval that u sent is rejected, then u keeps the whole interval [a..b] of free
IDs, thus no IDs are ‘lost’.

From the analysis of the pull protocol presented below, it follows that a node
which has been assigned an ID but has no free IDs may as well stop sending
requests after the first t1 rounds, for some t1 = Θ(log n), without affecting
the performance guarantees of the protocol. Then, only nodes with no assigned
IDs continue to send requests. This offers a natural stopping condition for the
protocol. The push algorithm, on the other hand, does not have a natural way
to determine when nodes that have free IDs should stop trying to push those
IDs. A drawback of pull is that nodes must be notified when the protocol starts
so that they can begin to send pull request.

Theorem 1. The loose renaming protocol described above for distributing a set of

(1+ε)n IDs ton nodes guarantees that all nodes acquire IDs after at mostO
( (1+ε)n
εn+1 ·

logn
)
rounds with probability 1− n−β for any ε ≥ 0 and any fixed β > 0.

Proof. We prove the theorem for the pull algorithm. The proof for push is almost
the same and is omitted. We start with an overview of the proof. We define a
potential function Φt, which measures the unbalance in the distribution of free
IDs among nodes, and we show that Φt drops by a constant factor per round
on average, as long as most nodes have 0 or 1 IDs. On the other hand, when
most nodes have 2 or more IDs, we observe that the number of nodes with 0
IDs decreases by a constant factor on average per round. We combine these two
results to show that w.h.p. in O(log n) rounds either all nodes have acquired IDs
or the free IDs are fairly balanced among nodes. In the latter case we bound
the additional number of steps until all nodes obtain IDs, by looking at a single
node and bounding the steps until it contacts some node that has free IDs.

Next we give the detailed proof. Let Xu,t denote the number of IDs that node
u has after round t (including its assigned ID). Let Xt = {Xu,t}u be the vector
of all Xu,t for a given round t. Let Nkt = |{u : Xu,t = k}| be the number of

nodes that have exactly k IDs after round t, and let N≥k
t = |{u : Xu,t ≥ k}| and

N≤k
t = |{u : Xu,t ≤ k}|.
We define the potential Φu,t of node u after round t, as Φu,t = (Xu,t − 2)2 if

Xu,t ≥ 3, and Φu,t = 0 if Xu,t ≤ 2. The (total) potential after round t is then

Φt =
∑
u

Φu,t =
∑

u : Xu,t≥3

(Xu,t − 2)2.

The next lemma bounds the expected potential difference in a single round.

Lemma 1. E[Φt+1 | Xt] ≤ Φt
(
1− N

≤1
t

4n

)
.
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Proof. Fix Xt, and let u be a node with Xu,t ≥ 3. Suppose that u receives a
request in round t+1 to share its Xu,t−1 free IDs, and thus sends �(Xu,t−1)/2�
of them to some node v with Xv,t ∈ {0, 1}. We show that

Φu,t+1 + Φv,t+1 ≤ Φu,t/2. (1)

We have

Xu,t+1 = Xu,t − �(Xu,t − 1)/2� =
{
Xu,t/2 + 1/2, if Xu,t is odd;

Xu,t/2, if Xu,t is even; and

Xv,t+1 = Xv,t + �(Xu,t − 1)/2� ≤ 1 + �(Xu,t − 1)/2� =

{
Xu,t/2 + 1/2, if Xu,t odd;

Xu,t/2 + 1, if Xu,t even.

It follows that if Xu,t is odd (recall also that Xu,t ≥ 3), then

Φu,t+1 + Φv,t+1 ≤ (Xu,t/2 + 1/2− 2)2 + (Xu,t/2 + 1/2− 2)2

= (Xu,t − 3)2/2 ≤ (Xu,t − 2)2/2 = Φu,t/2;

and, similarly, if Xu,t is even (and thus Xu,t ≥ 4) then

Φu,t+1 + Φv,t+1 ≤ (Xu,t/2− 2)2 + (Xu,t/2 + 1− 2)2

= (Xu,t − 4)2/4 + (Xu,t − 2)2/4 ≤ (Xu,t − 2)2/2 = Φu,t/2.

Thus, in both cases, Eq. (1) holds. We can now bound the total potential, Φt+1.
From (1), if a node u with Xu,t ≥ 3 shares its free IDs with some node v then
Φu,t+1+Φv,t+1 ≤ Φu,t/2, while if u does not share its free IDs then Φu,t+1 = Φu,t.
Further, all other nodes have zero potential. Therefore, if Yu is a 0/1 random
variable with Yu = 1 iff u shares its free IDs in round t+ 1, we have

Φt+1 ≤
∑

u : Xu,t≥3

(
YuΦu,t/2 + (1− Yu)Φu,t

)
=

∑
u : Xu,t≥3

(1− Yu/2)Φu,t.

Taking the expectation (recall that we have fixed Xt), yields

E[Φt+1] ≤
∑

u : Xu,t≥3

(1−E[Yu]/2)Φu,t. (2)

Since E[Yu] is the probability that u receives a request in round t + 1 from at

least one of the N≤1
t nodes v with Xv,t ≤ 1, we have

1−E[Yu] = (1− 1/n)N
≤1
t ≤ e−N

≤1
t /n ≤ 1−N≤1

t /n+(N≤1
t /n)2/2 ≤ 1−N≤1

t /(2n).

Thus, E[Yu] ≥ N≤1
t /(2n). Applying this to (2) completes the proof of Lemma 1.

�

Next we bound the expected drop in a round of the number N0
t of nodes that

have no IDs.
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Lemma 2. E[N0
t+1 | Xt] ≤ N0

t

(
1− N≥2

t

en

)
.

Proof. Fix Xt, and suppose that Xv,t = 0 for some node v. In order to have
Xv,t+1 > 0 it suffices that v sends its request in round t + 1 to some node u
with Xu,t+1 ≥ 2, and u does not receive a request from any other node. The

probability that v sends its request to some u with Xu,t+1 ≥ 2 is N≥2
t /n; and

the probability that no node sends a request to the same node as v is

(1− 1/n)N
≤1
t −1 ≥ (1− 1/n)n−1 ≥ 1/e.

Thus, the probability of Xv,t+1 > 0 is at least N≥2
t /(en). From the linearity of

expectation then we get E[N0
t −N0

t+1] ≥ N0
t N

≥2
t /(en), which proves Lemma 2.

�

Consider now the product Zt := ΦtN
0
t . From Lemma 1 and the fact that N0

t+1 ≤
N0
t , it follows

E[Zt+1 | Xt] ≤ N0
t · E[Φt+1 | Xt] ≤ N0

t Φt

(
1− N≤1

t

4n

)
,

and similarly, from Lemma 2 and the fact that Φt+1 ≤ Φt,

E[Zt+1 | Xt] ≤ Φt · E[N0
t+1 | Xt] ≤ ΦtN0

t

(
1− N≥2

t

en

)
.

Thus,

E[Zt+1 | Xt] ≤ Zt
(
1−max

{
N≤1

t

4n ,
N≥2

t

en

})
,

and since N≤1
t + N≥2

t = n, we can easily compute that max
{
N≤1

t

4n ,
N≥2

t

en

}
≥

1
e+4 ≥

1
7 . Therefore, we have that E[Zt+1 | Xt] ≤ (6/7)Zt. It follows E[Zt] ≤

(6/7)tZ0 ≤ (6/7)tn3. For

t1 = (β + 3) log7/6 n+ log7/6 2 = O(log n), (3)

we obtain then that E[Zt1 ] ≤ n−β/2. And by Markov’s Inequality, Pr(Zt1 > 0) =
Pr(Zt1 ≥ 1) ≤ n−β/2. Thus, we have that N0

t1 = 0 or Φt1 = 0, with probability
at least 1− n−β/2.

Suppose first that ε > 1. Then Φt1 > 0, for otherwise, no node has more than
two IDs after round t1, which is not possible as there are (1 + ε)n > 2n IDs in
total. It follows that N0

t1 = 0 with probability 1 − n−β/2, and thus all nodes

obtain IDs in t1 = O(log n) = O
(

(1+ε)n
εn+1 · logn

)
rounds; this proves the theorem.

For the remainder of the proof we assume that ε ≤ 1. Suppose that Φt1 = 0.
We will compute a t2 such that N0

t1+t2 = 0 with probability 1 − n−β/2. Since
Φt1 = 0, no node has more that 2 IDs after round t1. It follows thatN

2
t = εn+N0

t ,
for all t ≥ t1. If Xv,t = 0 for some node v and round t ≥ t1, then the probability
of Xv,t+1 > 0 is bounded from below by the probability of the event that in
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round t + 1, v sends a request to one of the N2
t ≥ εn + 1 nodes with free IDs,

and this node does not receive any other request. This probability is at least

εn+1
n ·

(
1− 1

n

)N≤1
t −1 ≥ εn+1

n ·
(
1− 1

n

)n−1 ≥ εn+1
en .

It follows that for any node v, the probability of Xv,t1+k = 0 is at most
(
1 −

εn+1
en

)k ≤ e−k(εn+1)/(en). For

t2 = ((β + 1) lnn+ 1)en/(εn+ 1) = O(n log n/(εn+ 1)),

we obtain then that Xv,t1+t2 = 0 with probability at most n−β/(2n). Hence,
by the union bound, we have that Xv,t1+t2 	= 0 for some v (i.e., N0

t1+t2 	= 0)
with probability at most n−β/2. This probability is conditional on Φt1 = 0, i.e.,
formally, Pr(N0

v,t1+t2 	= 0 | Φt1 = 0) ≤ n−β/2. It follows

Pr(N0
v,t1+t2 	= 0 ∧ Φt1 = 0) = Pr(N0

v,t1+t2 	= 0 | Φt1 = 0) · Pr(Φt1 = 0) ≤ n−β/2.

And since we showed earlier that Pr(Φt1N
0
t1 	= 0) ≤ n−β/2, we get

Pr(N0
v,t1+t2 	= 0) = Pr(N0

v,t1+t2 	= 0∧Φt1 = 0)+Pr(N0
v,t1+t2Φt1 	= 0) ≤ n−β. (4)

Finally, observing that t1 + t2 = O
(
logn+ n log n

εn+1

)
= O

(
(1+ε)n
εn+1 · logn

)
, com-

pletes the proof of Theorem 1. �

2.2 Tight Renaming

The previous protocol cannot be used to solve efficiently tight renaming, in which
the size of the ID space is exactly n: If there are just n IDs, then once there are
only few nodes left that have not received an ID, there are also only few nodes
that still have a non-empty interval of free IDs. Then it takes a long time, until a
node that needs an ID contacts one with a free ID. We solve the tight renaming
problem by adding a second phase to the loose renaming algorithm. In this phase,
any node that has not been assigned an ID yet, periodically broadcasts (via
rumor spreading) “requests” for an ID to the network; the requests contain the
network address of the node. When requests of different nodes “meet” at some
node, only one of them (the most recent one) survives. Thus, not all requests
reach all nodes, but each node receives at least some requests. This approach
ensures that message sizes and the information that each node stores is just
O(log n) bits. Nodes that receive requests in this second phase and have free IDs
respond by sending to the requesting node some of their free IDs. (They can do
so, as the request message contains the address of the requesting node.)

More precisely, in the first phase, nodes run the algorithm described in the
previous section for t1 = Θ(log n) rounds.4 In the second phase, a node u that has
not acquired an ID yet, generates a request every O(log n) rounds and sends this

4 This is the same t1 as that defined in Eq. (3).
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request to itself. The request contains u’s network address and an age counter
(which increases in each round). Each node keeps only the most recently gener-
ated request it has received, choosing arbitrarily among requests with the same
age. In every round, each node holding a request sends a copy of it to a randomly
chosen node. When a node v that has free IDs receives a request generated by
node u, it responds by sending to u directly half of its interval of free IDs (sim-
ilar to the loose renaming algorithm). Node u accepts the interval if it has not
already acquired an ID from some other node that also responded to its requests,
or rejects the offer otherwise.

We stress that is not required for different nodes to generate their requests in
the same round, or with the same frequency. The only requirement is that each
node generates a new request every O(log n) rounds for as long as it has no IDs.

Theorem 2. The tight renaming protocol described above for distributing IDs
to n nodes guarantees that all nodes acquire IDs after at most O(log2 n) rounds
with probability 1− n−β for any fixed β > 0.

Proof. We will use the same notation as in the proof of Theorem 1, namely, Xu,t,
Xt, N

k
t , and Φt. Recall that for tight renaming the ID space has size exactly n.

We have shown in the proof of Theorem 1 that with probability at least
1− n−β/2, we have N0

t1 = 0 or Φt1 = 0.
Suppose that Φt1 = 0, and thus no node has more than 2 IDs after round t1.

We will lift this assumption only at the end of the proof. Suppose that node u
has no ID yet after round t ≥ t1, and it sends a request in round t+1. We show
that with some constant probability, either u acquires an ID by round t+ logn,
or the number of nodes with no IDs drops by a constant factor by that time.

Lemma 3. Let t ≥ t1. If a node u with Xu,t = 0 sends a request in round t+1,
then with some probability p = Ω(1) we have Xu,t′ 	= 0 or N0

t′ ≤ N0
t /2, for

t′ = t+ log(n/N0
t ) + 1.

Proof. Fix Xt. Let Ai, for i ≥ 0, denote the set of nodes that have received u’s
request and still have it at the end of round t+i. Recall that nodes keep only the
most recently generated request they have received. Let Bi be the set of nodes
which, at the end of round t + i, have a request generated after round t by a
node other than u. Further, let ai = |Ai| and bi = |Bi|. Then,

ai ≤ 2i−1 and bi ≤ (N0
t − 1)2i−1.

Next we show for i = log(n/N0
t ) that ai = Ω(2i) = Ω(n/N0

t ) with constant
probability. Further, we show that if ai = Ω(n/N0

t ) and N
0
t+i ≥ N0

t /2 and also
u has still no ID after round t+ i, then in the next round u acquires an ID with
probability Ω(1). The claim then follows.

To show the lower bound on ai, we first bound E[ai]. Given ai and bi, we
bound the conditional expectation of ai+1 as follows: The expected number of
nodes v /∈ Ai∪Bi that receive u’s request (and possibly other requests) in round
t+ i+ 1 is at least ai(n− 2ai − bi)/n (we subtract 2ai instead of ai to account
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for collisions). The probability that a given one of these node does not receive
a request pushed by a node in Bi in this round is (1 − 1/n)bi ≥ (1 − bi/n).
Combining these yields

E[ai+1 | ai, bi] ≥ (ai + ai(n− 2ai − bi)/n) · (1− bi/n)
= 2ai(1− ai/n− bi/2n) · (1− bi/n)
≥ 2ai(1− ai/n− 3bi/2n)

≥ 2ai(1− 3N0
t 2
i−2/n),

where for the last relation we used the upper bounds for ai and bi we mentioned
earlier. Applying the above inequality repeatedly and using that a1 = 1 gives

E[ai] ≥ 2i−1

(
1− 3N0

t

i−1∑
j=1

2j−2/n

)
≥ 2i−1

(
1− 3N0

t 2
i−2/n

)
.

For i∗ = log(n/N0
t ) we get E[ai∗ ] ≥ 2i

∗−1 (1− 3/4) = 2i
∗−3, and by Markov’s

Inequality,

Pr(ai∗ ≤ 2i
∗−4) = Pr(2i

∗−1 − ai∗ ≥ 2i
∗−1 − 2i

∗−4) ≤ 2i
∗−1 − 2i

∗−3

2i∗−1 − 2i∗−4
= 6/7.

Next suppose that ai∗ ≥ 2i
∗−4 = n/(24N0

t ) and N0
t+i∗ ≥ N0

t /2. The condi-
tional probability of Xt+i∗+1 	= 0 is lower-bounded by the probability that some
node from Ai∗ chooses some node v with free IDs (there are N2

t+i∗ = N0
t+i∗ ≥

N0
t /2 such nodes) and at the same time no other node chooses v. Thus, this

probability is at least(
1−

(
1− (N0

t /2)/n
)n/(24N0

t )
)
(1− 1/n)n−1 ≥

(
1− e1/25

)
(1/e) ≥ (1/26)(1/e).

We can now use the above bounds to prove the lemma. Define the events:
X = (Xu,t′ 	= 0), N = (N0

t+i∗ < N0
t /2), and A = (ai∗ ≥ 2i

∗−4). We have shown
that Pr(A) ≥ 1 − 6/7, and Pr(X | ¬N ∧ A) ≥ (1/26)(1/e). The probability we
want to lower-bound is

Pr(X ∨N ) = Pr(N ) + Pr(X ∧ ¬N )

≥ Pr(N ∧A) + Pr(X ∧ ¬N ∧A)
= 1 · Pr(N ∧A) + Pr(X | ¬N ∧A) · Pr(¬N ∧A)
≥ Pr(X | ¬N ∧ A) ·

(
Pr(N ∧A) + Pr(¬N ∧A)

)
= Pr(X | ¬N ∧ A) · Pr(A)
≥ (1/26)(1/e)(1− 6/7).

This completes the proof of Lemma 3. �

We can now finish the proof of the theorem as follows. Assume that Xu,t1 = 0,
and let r0 < r1 < . . . be the rounds after which u is supposed to send re-
quests (if it has not yet an ID by that round, i.e., Xu,ri = 0). W.l.o.g. we assume
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ri+1−ri ≥ logn, otherwise we can achieve that by omitting some of these times.
Further, from the algorithm we have ri+1 − ri = O(log n).

Define the random variables Yi, i ≥ 0, such that Yi = N0
ri if Xu,ri = 0, and

Yi = 0 if Xu,ri 	= 0. Note that Yi 	= 0 iff Xu,ri = 0. From Lemma 3 it follows

E[Yi+1 | Yi] ≤ pYi/2 + (1− p)Yi = (1 − p/2)Yi;

and thus E[Yi] ≤ (1 − p/2)iN0
r0 . Choosing i

∗ = (2/p)
(
(β + 1) lnn + 1

)
gives

E[Yi∗ ] ≤ n−β−1/2, and from Markov’s Inequality, Pr(Yi∗ 	= 0) = Pr(Yi∗ ≥ 1) ≤
n−β−1/2. It follows that for

t∗ = ri∗ = t1 +O(i∗ logn) = t1 +O(log2 n) = O(log2 n)

we have Pr(Xu,t∗ = 0) ≤ n−β−1/2, as we observed earlier that Yi 	= 0 iff Xu,ri =
0. From this and the union bound over all u, it follows that Pr(N0

t∗ 	= 0) ≤
n−β/2. Recall that we have assumed Φt1 = 0. But since Pr(Φt1N

0
t1 	= 0) ≤

n−β/2 as we saw at the beginning, we can obtain similar to Eq. (4) that the
unconditional probability that N0

t∗ 	= 0 is bounded by n−β . This completes the
proof of Theorem 2. �

3 Sorting Protocol

For the sorting problem we assume that nodes have consecutive IDs, 1, . . . , n,
and each node has an input value from some totally ordered domain. W.l.o.g. we
assume that the input values are numbers, and nodes have distinct inputs. We
will say ‘node i’ to refer to the node with ID i. The goal is to redistribute the
values to nodes (one value per node) so that for each i, node i stores the value
of rank i, that is, the i-th smallest one among the input values.

In every round of the protocol, each node chooses to be active independently
with probability 1/2. Each active node i picks a node at random, choosing node
j with probability proportional to 1/|i−j|. If a non-active node j is contacted by
one or more active nodes, then it chooses one of them, say node i, and the two
nodes compare their values. Let Xi and Xj be the values of i and j respectively,
at the time. If (i − j)(Xi − Xj) < 0 then the two nodes swap their values;
otherwise, the do nothing. If an active node is contacted by another active node,
it does not respond to it.

Theorem 3. The sorting protocol described above sorts the inputs of all n nodes
in O(log2 n) rounds with probability 1− n−β for any fixed β > 0.

Proof. The proof uses a potential function argument. For each node i, we con-
sider the distance between i and the node that should have the value stored by
node i. We claim that the sum of the squares of these distances drops by a factor
of 1 − Ω(1/ logn) in expectation in each round; and thus it becomes zero after
O(log2 n) rounds.

For each node i, let Xi,t be the value that node i has after round t, and let
Ri,t = rank(Xi,t) be the rank of that value. Hence, Ri,t is equal to the ID of the
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node at which value Xi,t should be stored eventually. Further, let di,t = |Ri,t− i|
be the distance between nodes Ri,t and i. We define the potential Ψi,t of node i
after round t to be Ψi,t = d2i,t. The (total) potential after round t is then

Ψt =
∑
i

Ψi,t =
∑
i

d2i,t.

Lemma 4. E[Ψt+1 | Ψt] ≤ (1− c/lnn)Ψt, for some constant c > 0

Proof. The drop in the potential when two nodes i and j swap their values in
round t+ 1 is

Ψi,t + Ψj,t − Ψi,t+1 − Ψj,t+1 = (Ri,t − i)2 + (Rj,t − j)2 − (Ri,t − j)2 − (Rj,t − i)2

= 2(i− j)(Rj,t −Ri,t)
= 2|i− j| · |Rj,t −Ri,t|,

where the last equality holds because 2(i− j)(Rj,t −Ri,t) > 0, as nodes i and j
swap values only if (i − j)(Xi,t −Xj,t) < 0, and the differences Rj,t − Ri,t and
Xj,t −Xi,t have the same sign.

Below we assume w.l.o.g. that i ≤ Ri,t. Consider the two sets of nodes U =
[(i + di,t/3)..n] and W = [1..(Ri,t − di,t/3)]. The intersection of the two sets
has size |U ∩W | = di,t/3. It follows that there are at least di,t/3 nodes j ∈ U
for which Rj,t ∈ W . Fix one of these nodes j. If node i is active in round
t + 1, which happens with probability 1/2, then the probability that i chooses
j is 1/(|i − j| · νi), where νi is the normalizing factor

∑
1≤k≤n, k �=i(1/|i − k|),

which is in the range lnn < νi < 2 lnn. Thus, i chooses j with probability
1/(|i − j| · 2νi) ≥ 1/(|i− j| · 4 lnn). Further, the probability that node j is not
active and not chosen by any other node k 	= i in the round is

1

2

∏
1≤k≤n, k �=i,j

(
1− 1/(|i− k| · 2νj)

)
≥ 1

2

(
1−

∑
1≤k≤n, k �=i,j

1/(|i− k| · 2νj)
)
≥ 1/4.

From all the above it follows that the expected drop in the potential as a result
of the likelihood of i choosing j and swapping values with it is at least

2|i− j| · |Rj,t −Ri,t| ·
(
1/(|i− j| · 4 lnn)

)
(1/4) = |Rj,t −Ri,t|/(8 lnn).

We saw earlier that there are at least |U ∩W | = di,t/3 such nodes j, and for each
we have Ri,t−Rj,t ≥ di,t/3 since Rj,t ∈ W . It follows that the expected decrease
in the potential as a result of i choosing and swapping values with some inactive
node in round t+1 it at least (di,t/3)(di,t/3)/(8 lnn) = Ψi,t/(72 lnn). Therefore,
the total expected potential difference is E[Ψt − Ψt+1 | Ψt] ≥

∑
i Ψi,t/(72 lnn) =

Ψt/(72 lnn). This completes the proof of Lemma 4. �

Applying Lemma 4 repeatedly and using that Ψ0 < n3, we obtain for t∗ =
(β + 3)(lnn)2/c,

E[Ψt∗ ] ≤ (1− c/ lnn)t
∗
Ψ0 ≤ e−ct

∗/ lnnΨ0 ≤ e−(β+3) lnnn3 = n−β.
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Markov’s Inequality then yields Pr(Ψt∗ > 0) = Pr(Ψt∗ ≥ 1) ≤ n−β/1, and thus
Pr(Ψt∗ = 0) ≥ 1 − n−β . Since Ψt∗ = 0 implies that sorting is completed in at
most t∗ rounds, Theorem 3 follows. �

4 Conclusion

We presented and analyzed gossip-based protocols for two fundamental tasks,
renaming and sorting. The protocols are simple and natural, and they are fault-
tolerant in the sense that they still succeed even if a (random) constant fraction
of the communication channels fail to get established. For our sorting protocol it
is necessary to use non-uniform peer-sampling in order to achieve polylogarith-
mic round complexity. A DHT-like overlay network can be used to implement
this service, but we suggest that further research on non-uniform peer-sampling
should be pursued.

The probability distribution that we chose for the peer-sampling in our
sorting algorithm is the same power law distribution as the one used in Klein-
berg’s small world graph model [26,25]. There, the distribution determines ad-
ditional edges (long range contacts) to augment the ring network, in order to
achieve decentralized greedy routing in O(log2 n) expected time. It is known
that no other distance-based probability distribution for those augmentations
can achieve faster greedy routing time [11]. Since sorting is intuitively harder
than routing, it seems unlikely that a faster sorting algorithm can be obtained
by a change in the probability distribution of the peer-sampling mechanism.
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1 Communication Systems Engineering, Ben Gurion University of the Negev, Israel
avin@cse.bgu.ac.il

2 Department of Computer Sciences, University of Salzburg, Austria
elsa@cosy.sbg.ac.at

Abstract. O(log n) rounds has been a well known upper bound for ru-
mor spreading using push&pull in the random phone call model (i.e., uni-
form gossip in the complete graph). A matching lower bound of Ω(logn)
is also known for this special case. Under the assumptions of this model
and with a natural addition that nodes can call a partner once they learn
its address (e.g., its IP address) we present a new distributed, address-
oblivious and robust algorithm that uses push&pull with pointer jumping
to spread a rumor to all nodes in only O(

√
log n) rounds, w.h.p. This al-

gorithm can also cope with F = o(n/2
√

log n) node failures, in which case
all but O(F ) nodes become informed within O(

√
log n) rounds, w.h.p.

1 Introduction

Gossiping, or rumor-spreading, is a simple stochastic process for dissemination
of information across a network. In a round of gossip, each node chooses a
single, usually random, neighbor as its communication partner according to a
gossip algorithm (e.g., selecting a random neighbor). Once a partner is chosen
the node calls its partner and a limited amount of data is transferred between
the partners, as defined by the gossip protocol. Three basic actions are considered
in the literature: either the caller pushes information to its partner (push), pulls
information from the partner (pull), or does both (push&pull). In the most
basic information dissemination task, a token or a rumor in placed arbitrary
in the network and we are interested in the number of rounds and message
transmissions until all nodes in the networks receive the rumor. The selection
of the protocol can lead to significant differences in the performance. Take for
example the star graph, let nodes call a neighbor selected uniformly at random
and assume the rumor is placed at one of the leafs. It is easy to see that both
push and pull will require ω(n) rounds to complete the spreading of a single
rumor while push&pull will take only two rounds.
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Somewhat surpassingly, but by now well understood, randomized rumor-
spreading turned out to be very efficient in terms of time and message complexity
while keeping robustness to failures. In addition, this type of algorithms are very
simple and distributed in nature so it is clear why gossip protocols have gained
popularity in recent years and have found many applications both in communica-
tion networks and social networks. To name a few examples: updating a database
replicated at many sites [6,16], resource discovery [15], computation of aggregate
information [17], multicast via network coding [5], membership services [13], or
the spread of influence and gossip in social networks [18,3].

In this paper we consider the most basic scenario, the random phone call
model [16], where the underlying network is the complete graph and nodes can
call a random neighbor according to some given distribution. In addition, the
model requires the algorithm to be distributed and address-oblivious : it cannot
use the address of the current communication partners to determine its state
(for an exact definition see Section 2). For example this setting fits well to
applications which require communication over the internet such as peer-to-peer
protocols and database synchronization. A node can pick and call any (random or
given) neighbor via its IP address, but it is desired to keep the algorithm address-
oblivious otherwise it may have critical points of failure. For example agreeing
before hand on a leader to contact (by its IP address) is not an address-oblivious
algorithm. Furthermore, such a protocol is also highly fragile, although it leads
to efficient information spreading (as pointed out in the star graph example
above).

The random phone call model was thoroughly studied in the literature starting
with the work of Frieze and Gimmet [11] and following by Pittel [22] who proved
an upper bound of O(log n) rounds for push in the complete graph. Demers
et al. [6] considered both push and pull as a simple and decentralized way to
disseminate information in a network and studied their rate of progress. Finally,
Karp et al. [16] gave a detailed analysis for this model. They used push&pull to
optimize the message complexity and showed the robustness of the scheme. They
proved that while using only push the communication overhead is Ω(n log n),
their algorithm only requires O(n log log n) message transmissions by having a
running time of O(log n), even under arbitrary oblivious failures. Moreover they
proved that any address-oblivious algorithm (that selects neighbors uniformly
at random) will require Ω(n log logn) message transmissions.

1.1 Our Contribution

We consider the same assumptions as in the random phone call model: the
algorithm needs to be distributed, address-oblivious and it can select neighbors
at random. In addition we use the fact that given an address of a node (e.g.,
its IP address) the caller can call directly on that address. This slight addition
leads to a significant improvement in the number of rounds from O(log n) to
O(
√
logn), but still keeps the algorithm robust. The main result of the paper is

the following theorem:
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Theorem 1. At the end of the algorithm Jumping-Push-Pull (JPP), all but
O(F ) nodes are informed w.h.p.1, where F is the number of failed nodes (as
described in the text). The algorithm has running time O(

√
logn) and produces

a bit communication complexity of O(n(log3/2 n+ b · log logn)), w.h.p., where b
is the bit length of the message.

Clearly, if there are no failures (i.e., F = 0), then all nodes become informed in
the number of rounds given in Theorem 1. As mentioned, we inform all nodes
in O(

√
logn) rounds vs. O(logn) rounds achieved by the algorithm of Karp et

al. Our message complexity is O(n
√
logn) compared to O(n log logn) and if the

rumor is of bit length b = Ω( log
3/2 n

log logn ) both of the algorithms bit complexity is

Ω(b · n log logn). Moreover, if there are Ω(n) messages to be distributed in the
network, then the first term in the expression describing the bit communication
complexity is amortized over the total number of message transmissions (cf. [16]),
and we obtain the same communication overhead as in [16].

Few words on the basic idea of the algorithm are in place. In a nutshell
our approach has two phases: first we try to build an infrastructure, a virtual
topology, that is efficient for push&pull. Second, we perform a simple push&pull
on the virtual topology. The running time is the combination of both these tasks.
For example, constructing a random star would be preferable since the second
phase will then take only a constant number of rounds, but as it turns out
the cost of the first phase, in this case, is too high. Interestingly, our algorithm
results in balancing these two phases where each task requires O(

√
logn) rounds.

Instead of a star with a single leader, our algorithm builds a virtual topology
with about random n/2

√
logn leaders and each leader is connected to about

2
√
logn nodes we call connectors (a node is either a leader or a connector). Each

connector is then linked to two leaders after a process of pointer jumping [19].
This simple 2-level hierarchy results in a very efficient information spreading.
Leaders are a source of fast pull mechanism and connectors are essential for
fast spreading among leaders using push. Our approach was motivated from
similar phenomena in social networks [10,1] (see the related work section for a
more detailed description of these results).

2 Model and Preliminaries - Rumor Spreading

Let G(V,E) be an undirected graph, with V the set of nodes and E the set of
edges. Let n = |V | and m = |E|. For v ∈ V , let N(v) = {u ∈ V | (vu) ∈ E}
the set of neighbors of v and d(v) = |N(v)| the degree of v. Initially a single
arbitrary node holds a rumor (i.e., a token) of size b bits; then the process of
rumor-spreading (or gossiping) progresses in synchronous rounds. At each round,
each node v selects a single communication partner, u ∈ N(v) from its neighbors
and v calls u. The method by which v choses u is called the goosip algorithm. The
algorithm is called address-oblivious if v’s state in round t does not depend on the

1 In this paper with high probably or w.h.p. is with probability at least 1−n−1−Ω(1).
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addresses of its communication partners at time t. Meaning, any decision about
if, how and what to send in the current round is made before the current round.
Nevertheless, v’s state can still depend on the addresses of its communication
partners from previous rounds [16].

Randomized gossip is maybe the most basic address-oblivious algorithm, in
particular, when the communication partners are selected uniformly at random
the process is known as uniform gossip. A well studied such case is the random
phone call model [16] where G is the complete graph and u is selected u.a.r from
V \ v. Upon selecting a communication partner the gossip protocol defines the
way and which information is transferred between v and u. Three basic options
are considered to deliver information between communication partners: push,
pull and push&pull. In push the calling node, v, sends a message to the called
node u, in pull a message is only transferred the other way (if the called node, u,
has what to send) and in push&pull each of the communication partners sends
a message to the node at the other end of the edge. The content of the messages
is defined by the protocol and can contain only the rumor (in the simplest case)
or additional information like counters or state information (e.g., like in [16]).

After selecting the graph (or graph model), the gossip algorithm and protocol,
the main metrics of interest are the dissemination time and the message com-
plexity. Namely how many rounds and messages are needed until all vertices are
informed2 (on average or with high probability), even under node failures. The
bit complexity is also a metric of interest and counts the total number of bits
sent during the dissemination time. This quantity is a bit more involved since
it depends also on b (the size of the rumor) and messages at different phases of
the algorithms may have different sizes.

A pointer jumping is a classical operation from parallel algorithm design [19]
where the destination of your next round pointer is the pointer at which your
current pointer points to. Our algorithm uses pointer jumping by sending the
addresses (i.e., pointers) of previous communication partners to current partners
(see Section 4 for a detailed description).

3 Related Work

Beside the basic random phone call model, gossip algorithms and rumor spread-
ing were generalized in several different ways. The basic extension was to study
uniform gossip (i.e., the called partner is selected uniformly at random from the
neighbors lists) on graphs other than the clique. Feige et. al. [9] studied random-
ized broadcast in networks and extended the result of O(log n) rounds for push
to different types of graphs like hypercubes and random graphs models. Follow-
ing the work of Karp et al. [16], and in particular in recent years the push&pull
protocol was studied intensively, both to give tight bounds for general graphs
and to understand its performance advantages on specific families of graphs. A
lower bound of Ω(log n) for uniform gossip on the clique can be conclude from

2 A call, in which no data is sent (e.g., the rumor, or a pointer), is not considered as
a message.
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[24] that studies the sequential case. We are not aware of a lower bound for
general, address-oblivious push&pull.

Recently Giakkoupis [12] proved an upper bound for general graphs as a func-
tion of the conductance, φ, of the graph, which is O(φ−1 logn) rounds. Since the
conductance is at most a constant this bound cannot lead to a value of o(log n),
but is tight for many graphs. Doerr et al. [7] studied information spreading on
a known model of social networks and showed for the first time an upper bound
which is o(log n) for a large family of natural graphs. They proved that while
uniform gossip with push&pull results in O(log n) rounds in these social net-
works, a slightly improved version where nodes are not allowed to repeat their
last call results in a spreading time of O( logn

log logn ). Following this, Fountoulakis

et al. [10], considered a spreading to all but a small ε-fraction of the population.
For random power law graphs [4] they proved that push&pull informs all but
an ε-fraction of the nodes in O(log logn) rounds. Their proof relies on the exis-
tence of many connectors (i.e., nodes with low degree connected to high degree
nodes) which amplify the spread of the rumor between high degree nodes, and
this influenced our approach; in some sense our algorithm tries to imitate the
structure of the social network they studied.

Another line of research was to study push&pull (as well as push and pull

separately) but not under the uniform gossip model. Censor-Hillel et al. [2], gave
an algorithm for all-to-all dissemination in arbitrary graphs which eliminates the
dependency on the conductance. For unlimited message sizes (essentially you
can send everything you know), their randomized algorithm informs all nodes in
O(D+polylog(n)) rounds where D is the graph diameter; clearly this is tight for
many graphs. Quasi-random rumor spreading was first offered by Doerr et al.
in [8] and showed to outperform the randomize algorithms in some cases. Most
recently Haeupler [14] proposed a completely deterministic algorithm that spread
a rumor with 2(D+logn) logn rounds (but also requires unlimited message size).

In a somewhat different model (but similar to ours), where nodes can contact
any address as soon as they learn about it, Harchol-Balter et. al. [15] considered
the problem of resource discovery (i.e., learning about all nodes in the graph)
starting from an arbitrary graph. They used a form of one hop pointer jumping
with push&pull and gave an upper bound of O(log2 n)rounds for their algorithm.
It will be interesting to extend our result to this case (starting from an arbitrary
graph and not the complete graph).

Another source of influence to our work was the work on pointer jumping with
push&pull in the context of efficient construction of peer-to-peer networks [20].

4 Jumping-Push-Pull in O(
√
logn)-time

First, we present the algorithm, which disseminates a rumor by push&pull in
O(
√
logn) time, w.h.p. Then, we analyze our algorithm, show its corectness, and

prove the runtime bound.
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4.1 Algorithm - Rumor Spreading with Pointer Jumping

First, we provide a high-level overview of our algorithm. At the beginning, a
message resides on one of the nodes, and the goal is to distribute this message
(or rumor) to every node in the network. We assume that each node has a
unique address (which can be for example its IP-address), and every node can
select a vertex uniformly at random from the set of all nodes (i.e., like in the
random phone call model). Additionally, a node can store a constant number
of addresses, out of which it can call one of them in a future round. However,
a node must decide in each round whether it chooses an address uniformly at
random or from the pool of the addresses stored before the current round.

In our analysis, we assume for simplicity that every node knows n exactly.
However, a slightly modified version of our algorithm also works if the nodes
have an estimate of logn, which is correct up to some constant factor. We discuss
this case in Section 5.

The algorithm consists of five main phases and these phases may contain
several rounds of communication. Basically there are two type of nodes in the
algorithm, which we call leaders and connectors, and the algorithm is:

Phase 0 - each informed node performs push in every step of this phase.
The phase consists of c log logn steps, where c is some suitable constant.
According to e.g. [16], the message is contained in log2 n many nodes at the
end of this phase.
Phase 1 - each node flips a coin to decide whether it will be a leader, with
probability 1/2

√
logn, or a connector, with probability 1− 1/2

√
logn.

Phase 2 - each connector chooses leaders by preforming five pointer jumping
sub-phases, each for c

√
logn rounds. At the end, all but o(n) connectors will

have at least 2 leader addresses stored with high probability. Every such
connector keeps exactly 2 leader addresses (chosen uniformly at random)
and forgets all the others. A detailed description of this phase is given below.
Phase 3 - each connector opens in each round of this phase a communication
channel to a randomly chosen node from the list of leaders received in the
previous phase. However, once a connector receives the message, it only
transmits once in the next round using push communication to its other
leader. The leaders send the message in each round over all incoming channels
during the whole phase (i.e., the leaders send the message by pull). The
length of this phase is c

√
logn rounds.

Phase 4 - every node performs the usual push&pull (median counter algo-
rithm according to [16]) for c

√
logn rounds. All informed nodes are consid-

ered to be in state B1 at the beginning of this phase (cf. [16]).

The second phase needs some clarification: it consists of 5 sub-phases in which
connectors chose leaders. In each sub-phase, every connector performs so called
pointer-jumping [19] for c

√
logn rounds, where c is some large constant. The

leaders do not participate in pointer jumping, and when contacted by a connec-
tor, they let it know that it has reached a leader. The pointer jumping sub-phase
works as follow: in the first round every connector chooses a node uniformly at



Faster Rumor Spreading: Breaking the log n Barrier 215

random, and opens a communication channel to it. Then, each (connector or
leader) node, which has incoming communication channels, sends its address
by pull to the nodes at the other end of these channels. In each round i > 1
of this sub-phase, every connector calls on the address obtained in step i − 1,
and opens a channel to it. Every node, which is incident to an incoming chan-
nel, transmits the address obtained in step i − 1. Clearly, at some time t each
node stores only the address received in the previous step t − 1 of the current
sub-phase, and the addresses stored at the end of the previous sub-phases. If in
some sub-phase a connector v does not receive a leader address at all, then it
forgets the address stored in the last step of this sub-phase. In this case we say
that v is “black” in this sub-phase. The idea of using connectors to amplify the
information propagation in graphs has already been used in e.g. [10].

From the description of the algorithm it follows that its running time is
O(
√
logn). In the next section we show that every node becomes informed with

probability 1− n−1−Ω(1).

4.2 Analysis of the Algorithm

For our analysis we assume the following failure model. Each node may fail (be-

fore or during the execution of the algorithm) with some probability o(1/(2
√
logn ·

logn)). This implies that e.g. n1−ε nodes may fail in total, where ε > 0 can be
any small constant. If a node fails, then it does not participate in any pointer- or
message-forwarding process. Moreover, we assume that the other nodes do not
realize that a node has failed, even if they contact him directly. That is, all nodes
which contact (directly or by pointer-jumping) a failed node in some sub-phase
are also considered to be failed.

First, we give a high-level overview of our proofs. Basically, we do not consider
phases 0 and 1 in the analysis; the resulting properties on the set of informed
nodes are straight-forward, and have already been discussed in e.g. [16]. Thus,
we know that at the end of phase 0, the rumor is contained in at least log2 n
nodes, and at the end of phase 1 there are n/2

√
log n · (1 ± o(1)) leaders, w.h.p.

Lemma 1 analyzes phase 2. We show that most of the connectors will point to a
leader after a sub-phase, w.h.p. To show this, we bound the probability that for a
node v, the choices of the nodes in the first step of this sub-phase lead to a cycle
of connectors, such that after performing pointer jumping for c

√
logn steps, v

will point to a node in this cycle. Since we have in total 5 sub-phases, which are
run independetly, we conclude that each connector will point to a leader, after
at least 2 sub-phases. At this point we do not consider node failures.

In Lemma 2, we basically bound the number of nodes pointing to the same
leader. For this, we consider the layers of nodes, which are at distance 1, 2, etc...
from an arbitrary but fixed leader u after the first step of a sub-phase. Since
we know how many layers we have in total, and bound the growth of a layer i
compared to the previous layer i− 1 by standard balls into bins techniques, we
obtain an upper bound, which is polynomial in 2

√
logn.

In Lemma 3 we show that most of the connectors share a leader address at the
end of a sub-phase with Ω(2

√
logn/ logn) many connectors, w.h.p. Here, we start
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to consider node failures too. To show this, we compute the expected length of the
path from a connector to a leader after the first step of a sub-phase. However,
since these distances are not independent, we apply Martingale techniques to
show that for most nodes these distances occur with high probability.

Lemma 4 analyzes then the growth in the number of informed nodes within
two steps of phase 3. What we basically show is that after any two steps, the
number of informed nodes is increased by a factor of 2

√
logn/2, w.h.p., and most

of the newly informed nodes are connected to a (second) leader, which is not
informed yet. Thus, most connectors which point to these leaders are also not
informed. These will become informed two steps later.

The main theorem then uses the fact that at the end of phase 3 a 27
√
log n

fraction of the nodes is informed, w.h.p. Then, we can apply the algorithm of
[16] to inform all nodes within additional O(

√
logn) steps, w.h.p.

Now we start with the details. In the first lemma we do not consider node
failures. For this case, we show that, w.h.p., there is no connector which is
“black” in more than two sub-phases of the second phase. Let r(v) be the choice
of an arbitrary but fixed connector node v in the first round of a sub-phase.
Furthermore, let R(v) be the set of nodes which can be reached by node v
using (directed) edges of the form (u, r(u)) only. That is, a node u is in R(v)
iff there exist some nodes u1, . . . , uk such that u1 = r(v), ui+1 = r(ui) for any
i ∈ {1, . . . , k − 1}, and u = r(uk).

Clearly, if there are no node failures, then only one of the following cases may
occur: either a leader u exists with u ∈ R(v), or R(v) has a cycle. We prove the
following lemma.

Lemma 1. For an arbitrary but fixed connector v, the set R(v) has a cycle

with probability O
(

22
√

log n log2 n
n

)
. Furthermore, the size of R(v) is |R(v)| =

O(2
√
logn logn), w.h.p.

Proof. Let P (v) be a directed path (v, u1, . . . , uk), where u1 = r(v), ui+1 = r(ui)
for any i ∈ {1, . . . , k − 1}, and ui 	= uj, v for any i, j ∈ {1, . . . , k}, i 	= j. Then,
r(uk) ∈ {v, u1, . . . , uk−1} with probability k/(n− 1). Let this event be denoted
by Ak. Furthermore, let Bk be the event that r(uk) is not a leader (B1 is the
event that neither r(v) nor r(u1) is a leader). If L is the set of leaders, then since
communication partners are selected independently we have

Pr[Ak ∧Bk | A1 ∧B1 ∧ · · · ∧ Ak−1 ∧Bk−1] =
n− |L| − k
n− 1

and

Pr[A1 ∧B1] =
n− |L|
n− 1

· n− |L| − 1

n− 1
.

Simple application of Chernoff bounds imply that |L| = n(1 ± o(1))/2
√
log n,

w.h.p. We condition on the event that this bound holds on |L|, and obtain for

some k > c · 2
√
log n logn that
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Pr[A1 ∧B1] · Pr[A2 ∧B2 | A1 ∧B1] · · · · ·
·Pr[Ak ∧Bk | A1 ∧B1 ∧ · · · ∧ Ak−1 ∧Bk−1]

≤
(
1− 1

2
√
logn

)c·2√log n logn

≤ n−3−Ω(1),

whenever c is large enough. The first inequality follows from |L| = ω(k). This

implies that the size of R(v) is at most c · 2
√
logn logn, w.h.p.

Now we prove that

Pr[R(v) contains a cycle] = O

(
22

√
logn log2 n

n

)
.

We know that

Pr[Ai | A0 ∧B0 ∧ · · · ∧Ai−1 ∧Bi−1] =
i

n− 1
,

where B0 is the event that r(v) 	∈ L and A0 = ∅. Then, |R(v)| has a cycle, with
probability less than

n−|L|−1∑
i=1

Pr[Ai | A0 ∧B0 ∧ · · · ∧Ai−1 ∧Bi−1] · Pr[A0 ∧B0 ∧ · · · ∧ Ai−1 ∧Bi−1]

≤ (c2
√
logn log n)2

n
+O(n−2−Ω(1)).

�

From the previous lemma we obtain the following corollary.

Corollary 1. Assume there are no node failures. After phase 2, every connector
stores the address of at least 2 leaders, with probability at least 1− n−2.

We can also show the following upper bound on the number of connectors sharing
the same leader address. This bound also holds in the case of node failures, since
failed nodes can only decrease the number of connectors sharing the same leader
address.

Lemma 2. Each connector shares the same leader address with O(23
√
logn)

other connectors, w.h.p.

Proof. Let S be a set of nodes, and let r(S) = {v ∈ V | r(v) ∈ S}. We model the
parallel process of choosing nodes in the first round of a fixed sub-phase by the
following sequential process (that is, the first round of the sub-phase is modeled
by the whole sequence of steps of the sequential process). In the first step of
the sequential process, all connectors choose a random node. We keep all edges
between (u, r(u)) with r(u) ∈ L, and release all other edges. Let L1 denote the
set of nodes u with r(u) ∈ L. In the ith step, we let each node of V \ ∪i−1

j=0Lj
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choose a node from the set V \ ∪i−2
j=0Lj uniformly at random, where L0 = L.

Clearly, the nodes are not allowed to choose themselves. Then, Li is the set of
nodes u with r(u) ∈ Li−1, and all edges (u, r(u)) (generated in this step) with
r(u) 	∈ Li−1 are released.

Obviously, the sequential process produces the same edge distribution on the
nodes of the graph as the parallel process. If now S ⊂ Li−1, then the probability
for a node v ∈ V \ ∪i−1

j=0Lj to choose a node in S is |S|/|V \ ∪i−2
j=0Lj|. Then,

according to [23] the number of nodes v with r(v) ∈ S is at most |S|+O(log n+√
|S| logn), w.h.p.
Similar to the definition of Li, for a leader u the nodes v with r(v) = u are in

set L1(u), the nodes v with r(r(v)) = u are in set L2(u), and generally, the nodes
v with r(v) ∈ Li−1(u) define the set Li(u). Then, according to the arguments
above |Li+1(u)| = |Li(u)| + O(log n +

√
|Li(u)| logn), w.h.p. We assume now

that |L1(u)| = Θ(log n) (from [23] we may conclude that |L1(u)| = O(log n),

w.h.p.). Then, for any i ≤ c · 2
√
logn logn, we assume the highest growth for

|Li+1(u)|, i.e., |Li+1(u)| = |Li(u)|+O(
√
|Li(u)| logn), where c is some constant.

This leads to |Lc·2√log n logn(u)| < 22
√
logn/ logn. Since |R(v)| = O(2

√
log n logn)

for any v (cf. Lemma 1), we obtain the claim. �

Let us fix a sub-phase. We allow now node failures (i.e., each node may fail with

some probability o(1/(2
√
log n logn))), and prove the following lemma.

Lemma 3. There are n(1− o(1)) connectors, which store the address of at least

two leaders, and each of these leader addresses is shared by at least Ω
(

2
√

log n

log n

)
connectors, w.h.p.

Proof. First, we consider the case in which no node failures are allowed. Then,
we extend the proof. Now let us assume that no failures occur. We have shown in
Lemma 1 that the length of a path (v, u1, . . . , uk, u) from a node v to a leader u

is O(2
√
log n logn), w.h.p., where u1 = r(v), ui = r(ui−1) for any i ∈ {2, . . . , k},

and u = r(uk). Let u be a leader, and let Li(u) be the set of connectors which
have distance i from u after a certain (arbitrary but fixed) sub-phase of the
second phase. Furthermore, let Li(L) = ∪u∈LLi(u). For our analysis, we model
the process of choosing nodes in the first step of this sub-phase by a sequential
process (similar to the proof of the previous lemma), in which first v chooses a
node, then r(v) chooses a node, then r(r(v)) chooses a node, etc... In step i of
this sequential process the i node ui−1 on the path P (v) chooses a node. For

some i = O(2
√
logn/ logn) we have

Pr[v 	∈ ∪ij=1Lj(L) | A1 ∧ · · · ∧Ai−1] ≥
(
1− |L|

n− i − 1

)i
,

Since Pr[v ∈ ∪n−1
j=1Lj(L)] = 1 − O(22

√
logn log2 n/n) (cf. Lemma 1), we obtain

that, given R(v) ∩ L 	= ∅, a node has a path of length Ω(2
√
logn/ logn) to a

leader with probability 1− o(1), and thus the expected number of such nodes is
n(1-o(1)).
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Now we consider node failures. A node v is considered failed, if it fails as
described at the beginning with probability o(1/(2

√
logn logn)), or there is a

node in R(v), which fails with this probability. Since |R(v)| = O(2
√
logn logn),

a node of R(v) fails with probability o(1). However, these probabilities are not
independent. Nevertheless, the expected number of nodes, which will not be
considered failed and have a path of length Ω(2

√
logn/ logn) to a leader, is

n(1− o(1)).
Now, consider the following Martingale sequence. Let v1, . . . , vn−|L| denote

the connectors. In step j, we reveal the directed edges and nodes from node
vj to all nodes in all R(vj) obtained from the different sub-phases. Given that

|R(vj)| = O(2
√
log n logn), we apply the Azuma-Hoeffding inequality [21], and

obtain that a 1 − o(1) fraction of the nodes is connected to a leader by a path

of length Ω(2
√
logn/ logn) and will not be considered failed, w.h.p.

Summarizing, a 1 − o(1) fraction of the nodes store at the end of the first
phase the address of at least two leaders, and such a connector shares each of
these addresses with Ω(2

√
logn/ logn) other connectors, w.h.p. �

Applying pointer jumping on all connectors as described in the algorithm, we
obtain the following result.

Observation 1. If in an arbitrary but fixed sub-phase of the second phase R(v)∩
L 	= ∅ for some connector v, then v stores the address of a leader u at the end
of this phase, w.h.p.

This observation is a simple application of the pointer jumping algorithm [19] on

a directed path of length |R(v)|. According to Lemma 1, |R(v)| = O(2
√
log n logn),

w.h.p.
Nowwe concentrate on the third phase.We condition on the event that each con-

nector has stored at least two andatmost 5different leader addresses. Furthermore,
an address storedby a connector is sharedwith at leastΩ(2

√
logn/ logn) other con-

nectors, with probability 1−o(1). Out of these connectors, letC be the set of nodes
v with the following property. The first time a leader of v receives the message, v
will contact this leader in the next step, pulls the message, and in the next step it
will push the message to the other leader. Clearly, for a node v this event occurs
with constant probability, independently of the other nodes. Therefore, the total
number of nodes in C with at least two different leader addresses, where each of
these addresses is shared by at least Ω(2

√
logn/ logn) other connectors, is Θ(n),

w.h.p. We call the set of these nodes C̃. Now we have the following observation.

Observation 2. Let Ci be the set of nodes which store the same (arbitrary
but fixed) leader address after a certain subsphase, and assume that |Ci| =

Ω(2
√
log n/ logn). Then, |Ci ∩ C̃| = Θ(|Ci|), w.h.p.

The proof of this observation follows from the fact that if two nodes share the
same address after a certain subphase, then each of these nodes will share with
probability 1−o(1) a leader address obtained in some other subphase with at least

Ω(2
√
log n/ logn) other connectors. However, these events are not independent.
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Let now Cj be some other set, which contains a node v ∈ Ci. Since |Ci|, |Cj | =
O(23

√
logn) (see Lemma 2), there will be with probability at least 1−n−2 at most

4 nodes in Ci ∩ Cj . Conditioning on this, we apply for the nodes of Ci ∩ C the
same Martingale sequence as in the proof of Lemma 3. By taking into account
that in this case the Martingale sequence satisfies the 4-Lipschitz condition (the
nodes of Ci are part of the Martingale only), we obtain the statement of the
observation.

Now we are ready to show the following lemma.

Lemma 4. After the third phase the number of informed nodes is at least n
27

√
log n

,
w.h.p.

Proof. For a node v ∈ C̃, let C(1)
v and C

(2)
v represent two sets of nodes, which

store the same leader address as v (obtained in the same sub-phases of the second

phase), and for which we have |C(1)
v |, |C(2)

v | = Ω(2
√
logn/ logn). We know that

each node has exactly 2 leader addresses. Since after phase 0 at least log2 n
nodes are informed, we may assume that at the beginning of this phase a node
w ∈ C̃ is informed, and w pushes the message exactly once. That is, after two
steps all nodes of Cjw ∩ C̃ are informed, where j is either 1 or 2 (we may assume
w.l.o.g. that j = 1). Furthermore, we assume that these are the only nodes which
are informed after the second step.

Now, we show by induction that the following holds. After 2i steps, the number
of informed nodes I(i) in C̃ is at least min{2

√
log n·i/2, n/27

√
log n}, w.h.p. Fur-

thermore, there is a partition of the set {C(j)
v ∩ C̃ | v ∈ I(i), j ∈ {1, 2}}, into the

sets E(j)(i) and F (j)(i), where E(j)(i) are the sets C
(j)
v ∩C̃ with |C(j)

v ∩C̃∩I(i)| =
O(log n), and F (j)(i) are the sets C

(j)
v ∩C̃ with C

(j)
v ∩C̃∩I(i) = C

(j)
v ∩C̃. Roughly

speaking, the sets belonging to E(j)(i) contain some nodes, which have just been
informed in the last time step, and most of the nodes from these sets are still
uninformed. If now these nodes perform push, and in the next step the nodes
of the sets in E(j)(i) a pull, then these nodes become informed as well. Our

assumption is that the number of sets E
(j)
v (i) is Ω(|I(i)|/ log n), w.h.p. This

obviously holds before the first or after the second step.
Assume that the induction hypothesis holds after step 2i and we are going to

show that it also holds after step 2(i+1). Clearly, if U is some set of nodes which
have the same leader address after an arbitrary but fixed subphase of the second
phase, where |U | = Ω(2

√
logn/ logn), then we have |U ∩ C̃| = Θ(|U |), w.h.p.

(see Observation 2). On the other hand, there are at least Ω(n/23
√
logn) such

sets U with U 	∈ ∪j=1,2F
(j)(i), w.h.p., since the largest set we can obtain has

size O(23
√
logn), w.h.p. (cf. Lemma 2). According to our induction hypothesis, at

least Ω(|I(i)|/ logn) and at most O(|I(i)|) of these sets are elements of E(j)(i),
where v ∈ I(i).

Clearly, a node v ∈ C̃ \ I(i) will be in at most one of these sets, w.h.p. Since

any of these sets accomodates at least Θ(2
√
logn/ logn) nodes from C̃, w.h.p.,

the number of informed nodes increases within two steps by at least a factor of
Θ(2

√
logn/ log2 n) ' 2

√
log n/2, which leads to |I(i + 1)| ≥ 2

√
logn·(i+1)/2, w.h.p.
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The induction step can be performed as long as |I(i)| ≤ n/27
√
logn. Now we

concentrate on the distribution of these nodes among the sets U 	∈ {E(j)
v (i) | v ∈

I(i), j ∈ {1, 2}}. Note that each such node belongs to two sets; one of these

sets is an element of E
(j)
v (i) for some v ∈ I(i), while the other one is not. Since

the total number of nodes in some set of E(j)(i) is O(23
√
logn), w.h.p., we have

|I(i + 1)| = O(23
√
logn · |I(i)|) = O(n/24

√
logn). As argued above, there are at

least Ω(n/23
√
logn) sets U with U 	∈ {F (j)

v (i + 1) | v ∈ I(i + 1), j ∈ {1, 2}},
w.h.p., where U is some set of nodes which have the same leader address after
an arbitrary but fixed subphase of the second phase, and |U | = Ω(2

√
logn/ logn).

Thus, a node v ∈ (I(i+1)\I(i))∩C̃ is assigned to a fixed such U with probability

O(1/|I(i+1)|). Therefore, none of the sets E(j)
v (i+1) will accomodate more than

O(log n) nodes from (I(i+ 1) \ I(i)) ∩ C̃, w.h.p. [23], and the claim follows. �
Now we are ready to prove our main theorem, which also compares the communi-
cation overhead of the usual push&pull algorithm of [16] to our algorithm. Note
that the bit communication complexity of [16] w.r.t. one rumor isO(nb·log logn),
w.h.p., where b is the bit length of that rumor. We should also mention here that
in [16] the authors assumed that messages (so called updates in replicated data-
bases) are frequently generated, and thus the cost of opening communication
channels amortizes over the cost of sending messages through these channels.
If in our scenario messages are frequently generated, then we may also assume
that the cost of the pointer jumping phase is negligable compared to the cost of
sending messages, and thus the communication overhead in our case would also
be O(nb log logn). In our theorem, however, we assume that one message has to
be distributed, and sending the IP-address of a node through a communication
channel is O(log n). Also, opening a channel without sending messages generates
an O(log n) communication cost.

Theorem 1. At the end of the JPP algorithm, all but O(F) nodes are informed
w.h.p., where F is the number of failed nodes as described above. The algorithm
has running time O(

√
logn) and produces a bit communication complexity of

O(n(log3/2 n+ b · log logn)), w.h.p., where b is the bit length of the message.

Proof. At the end of the third phase, there are at least n/27
√
logn informed nodes,

w.h.p. (cf. Lemma 4). Clearly, the communication overhead w.r.t. the rumor is
O(n · b) in the third phase. Then, the median counter algorithm informs all
nodes within O(

√
logn) steps, w.h.p., and the number of message transmissions

is O(n log log n) [16], leading to a bit complexity of O(nb · log logn) in the fourth
phase. The communication overhead w.r.t. the addresses sent by the nodes in
the pointer jumping phase is upper bounded by O(n

√
logn · logn), where

√
logn

stands for the number of steps in the second phase, while the logn term describes
the bit size of a message (an address is some polynomial in n). �

5 Discussion - Non-exact Case

As mentioned in Section 4.1, a modified version of our algorithm also works if
the nodes only have an estimate of logn, which is accurate up to some constant
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factor. In this case, we introduce some dummy sub-phases between any two
phases and any sub-phases of phase 2. Now, for a node v the length of sub-phase
i of phase 2 will be ρ2ic

√
lognv, and between sub-phase i and i+1, there will be

a dummy sub-phase of length ρ2i+1c
√
lognv. Here nv is the estimate of n at node

v. Accordingly, the dummy sub-phase between phase 1 and 2 will have length
ρc
√
lognv, between phases 2 and 3 length ρ11c

√
lognv, and between 3 and 4

length ρ13c
√
lognv. The length of phase 3 will be ρ12c

√
lognv, and that of phase

4 will be ρ14c
√
lognv. Here ρ will be a large constant, such that ρi '

∑i−1
j=0 ρ

j

for any i < 15. Furthermore,

i∑
j=0

ρjcmin
v∈V

√
lognv '

i−1∑
j=0

ρjcmax
v∈V

√
lognv + cmax

v∈V

√
lognv,

where i ∈ {1, . . . , 15}.
The role of the dummy sub-phases is to synchronize the actions of the nodes.

That is, no node will enter a phase or sub-phase before the last node leaves
the previous phase or sub-phase. Accordingly, no node will leave a phase or a
sub-phase, before the last node enters this phase or sub-phase. Moreover, the
whole set of nodes will be together for at least c

√
logn steps in every phase or

sub-phase. This ensures that all the phases and sub-phases of the algorithm will
work correctly, and lead to the results we have derived in the previous section.
Note that, however, the communication overhead might increase to some value
O(n(log3/2 n+ b

√
n).
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Lock-Free Data-Structure Iterators�
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Abstract. Concurrent data structures are often used with large concurrent soft-
ware. An iterator that traverses the data structure items is a highly desirable in-
terface that often exists for sequential data structures but is missing from (almost
all) concurrent data-structure implementations. In this paper we introduce a tech-
nique for adding a linearizable wait-free iterator to a wait-free or a lock-free data
structure that implements a set. We use this technique to implement an iterator
for the wait-free and lock-free linked-lists and for the lock-free skip-list.

Keywords: concurrent data structures, lock-freedom, wait-freedom, linked-list,
skiplist, iterator, snapshot.

1 Introduction

The rapid deployment of highly parallel machines resulted in the design and imple-
mentation of a variety of lock-free and wait-free linearizable data structures in the last
fifteen years. However, almost none of these designs support operations that require
global information on the data structure, such as counting the number of elements in
the structure or iterating over its nodes. In general, operations such as these will be triv-
ially enabled if snapshot operations are supported because snapshot operations enable a
thread to obtain an atomic view of the structure. But creating a “consistent” or lineariz-
able snapshot without blocking simultaneous updates to the data structure is a difficult
task. The main focus of this study is to obtain such a view in a wait-free manner.

A common interface in many lock-free and wait-free data structures consists of the
INSERT, DELETE and CONTAINS operations. An INSERT operation inserts an integer
key (possibly associated with a value) into the data structure, if it is not already present
(otherwise it just returns false). A DELETE operation removes a key from the structure,
or fails (returning false) if there is no such key, and a CONTAINS operation returns
true (and possibly a value associated with this key) if the key is in the list, and false
otherwise. Examples of data structures implementing this interface are the lock-free
linked-lists [9,8], the wait-free linked-lists [15], the lock-free skiplist [10], and search
trees [6,4]. None of these structures implements an iterator.

In this work we present a design which allows the construction of wait-free, highly
efficient iterators for concurrent data structures that implement sets. We use this design
to implement iterators for the linked-list and skiplist. The iterator is implemented by
first obtaining a consistent snapshot of the data structure, i.e., an atomic view of all the
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c© Springer-Verlag Berlin Heidelberg 2013



Lock-Free Data-Structure Iterators 225

nodes currently in it. Given this snapshot, it is easy to provide an iterator, or to count
the number of nodes in the structure.

A well-known related problem is the simpler atomic snapshot object of shared mem-
ory [1], which has been extensively studied in the literature. An atomic snapshot object
supports only two types of operations: UPDATE and SCAN. An UPDATE writes a new
value to a register in the shared memory, and a SCAN returns an atomic view of all the
registers.

Unfortunately, existing snapshot algorithms cannot support a (practical) data struc-
ture iterator. Three problems hinder such use. First, atomic snapshot objects are de-
signed for pre-allocated and well-defined memory registers. Therefore, they are not
applicable to concurrent data structures that tend to grow and shrink when nodes are
added or removed. Second, the UPDATE operation in the classic snapshot object algo-
rithms [1,3] requires O(n) steps (n is the number of threads), which is too high an over-
head to impose on all operations that modify the data structure. Finally, many atomic
snapshot objects do not support an efficient READ operation of the shared memory. This
lack of support allows linearization arguments that would fail in the presence of a read.
But it is hard to imagine a practical data structure that does not employ a read operation,
and instead relies on obtaining a full snapshot just to read a single field in the structure.

The first problem is the least bothersome, because one could imagine borrowing
ideas from snapshot objects, generalizing them, and building a snapshot algorithm for
a memory space that grows and shrinks. But the other two problems are harder to elim-
inate. The classic algorithms for an atomic snapshot can be easily extended to support
a READ operation, but they require O(n) steps for each UPDATE operation, which is
too high. Later snapshot algorithms support UPDATE in O(1) steps. Examples are the
coordinated collect algorithm of Riany et al. [14], later improved to the interrupting
snapshots algorithm [2], and the time optimal snapshot algorithms of Fatourou and
Kallimanis [7]. However, these algorithms do not support a READ operation. This lack
of support seems inherent as the algorithms employ unusual linearization properties,
which sometimes allow the linearization point of an UPDATE to occur before the new
value has actually been written to any register in the memory. Thus, it is not clear how
to add a READ operation that does not require a substantial overhead.

Another wait-free algorithm that supports UPDATE operations in O(1) is the algo-
rithm of Jayanti [11]. Jayanti’s algorithm does not support a read operation, and it is not
trivial to add an efficient read to it, but our work builds on ideas from this algorithm.
An UPDATE operation of Jayanti’s algorithm first updates the memory as usual, and
then checks whether a SCAN is currently being taken. If so, the update operation regis-
ters the update in a designated memory register. In this work we extend this basic idea
to provide a snapshot that supports an efficient read as well as the INSERT, DELETE,
and CONTAINS operations, which are more complex than the simple UPDATE opera-
tion. This facilitates the desirable iterator operation for the data structure. The simplest
algorithm of Jayanti, from which we start, is described in Section 2.

Although most lock-free data structures do not provide iterators, one notable ex-
ception is the recent CTrie of Prokopec et al. [13]. This lock-free CTrie efficiently
implements the creation of a snapshot, but the performance of updates deteriorates
when concurrent snapshots are being taken, because each updated node must be copied,
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together with the path from the root to it. Another recent work presenting a concurrent
data structure supporting snapshot operations is the practical concurrent binary search
tree of Bronson et al. [5]. But their work uses locks, and does not provide a progress
guarantee.

In this paper, we present a wait-free snapshot mechanism that implements an O(1)
update and read operations. We have implemented a linked-list and skiplist that employ
the snapshot and iterator and measured the performance overheads. In our implemen-
tation we made an effort to make updates as fast as possible, even if iterations take a
bit more time. The rational for this design is that iterations are a lot less frequent than
updates in typical data structures use. It turns out that the iterator imposes an overhead
of roughly 15% on the INSERT, DELETE, and CONTAINS operations when iterators are
active concurrently, and roughly 5% otherwise. When compared to the ad-hoc CTrie
iterator of [13], our (general) iterator demonstrates lower overhead on modifications
and read operations, whereas the iteration of the data structure is faster with the ad-hoc
CTrie iterator.

2 Jayanti’s Single Scanner Snapshot

Let us now review Jayanti’s snapshot algorithm [11] whose basic idea serves the (more
complicated) construction in this paper. This basic algorithm is limited in the sense that
each thread has an atomic read/write register associated with it (this variant is some-
times referred to as a single-writer snapshot, in contrast to a snapshot object that allows
any thread to write to any of the shared registers). Also, it is a single scanner algorithm,
meaning that it assumes only one single scanner acting at any point in time, possibly
in parallel to many updaters. In [11], Jayanti extends this basic algorithm into more
evolved versions of snapshot objects that support multiple writers and scanners. But it
does not deal with the issue of a READ operation, which imposes the greatest difficulty
for us. In this section we review the basic algorithm, and later present a snapshot al-
gorithm that implements a read operation (as well as eliminating the single-writer and
single-scanner limitations), and combines it with the INSERT, DELETE, and CONTAINS

operations.
Jayanti’s snapshot object supports two operations: UPDATE and SCAN. An UPDATE

operation modifies the value of the specific register associated with the updater, and a
SCAN operation returns an atomic view (snapshot) of all the registers. Jayanti uses two
arrays of read/write registers, A[n], B[n], initialized to null, and an additional read/write
binary field, which we denote ongoingScan. This field is initialized to false. The first
array may be intuitively considered the main array with all the registers. The second
array is used by threads that write during a scan to report the new values they wrote.
A third array of n registers, C[n], is never read in the algorithm; it is used to store
the snapshot the scanner collects. The algorithm is depicted in figure 1. When thread
number k executes an UPDATE, it acts as follows. First, it writes the new value to A[k].
Second, it reads the ongoingScan boolean. If it is set to false, then the thread simply
exits. If it is set to true, then the threads reports the new value by also writing it to B[k],
and then it exits.

When the scanner wants to collect a snapshot, it first sets the ongoingScan binary
field to true. Then, in the second step, it sets the value of each register in the array B to
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A[n], B[n], C[n]:  arrays of read/write 
registers initiated to Null 
ongoingScan: a binary read/write register 
initiated to 0. 
 
Update(tid, newValue) 

1. A[tid] = newValue 
2. If (ongoingScan==1) 
3.       B[tid]=newValue 

Scan() 
1. ongoingScan = 1 
2. For i in 1..n 
3.       B[i] = NULL 
4. For i in 1..n 
5.       C[i] = A[i] 
6. ongoingScan = 0 
7. For i in 1..n 
8.       If (B[i] != NULL) 
9.             C[i] = B[i] 
10. Array C now holds the Snapshot 

Fig. 1. Jayanti’s single scanner snapshot algorithm

null (in order to avoid leftovers from previous snapshots). Third, it reads the A registers
one by one and copies them into the C array. Fourth, it sets the ongoingScan to false.
This (fourth) step is the linearization point for the SCAN. At this point array C might
not hold a proper snapshot yet, since the scanner might have missed some updates that
happened concurrently with the reading of the A registers. To rectify this, the scanner
uses the reports in array B; thus in the final step, it reads the B registers one by one, and
copies any non-null value into C. After that, C holds a proper snapshot.

The linearizability correctness argument is relatively simple [11]. The main point is
that any UPDATE which completes before the linearization point of the SCAN (line 6)
is reflected in the snapshot (either it was read in lines 4-5 or will be read in lines 7-9),
while any UPDATE that begins after the linearization point of the SCAN is not reflected
in the snapshot. The remaining updates are concurrent with each other and with the
scan since they were all active during the linearization point of the SCAN (line 6). This
gives full flexibility to reorder them to comply with the semantics of the snapshot object
ADT.

3 From Single Scanner Snapshot to Multiple Iterators

Our goal is to add an iterator to existing lock-free or wait-free data structures. We are in-
terested in data structures that support three standard operations: INSERT, DELETE, and
CONTAINS. Similarly to the scanner object, threads executing the INSERT, the DELETE,
or the CONTAINS operations cooperate with a potential scanner in the following way.

– Execute the operation as usual.
– Check whether there exists a parallel ongoing scan that has not yet been linearized.
– If the check is answered positively, report the operation.

Two major complications that do not arise with a single scanner snapshot algorithm
arise here: the need to report operations of other threads, and the need to support multi-
ple concurrent iterators.

3.1 Reporting the Operations of Other Threads

The first problem stems from dependency of operations. Suppose, for example, that
two INSERT operations of the same value (not currently exist in the data structure) are
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executed concurrently. One of these operations should succeed and the other should fail.
This creates an implicit order between the two INSERTs. The successful INSERT must
be linearized before the unsuccessful INSERT. In particular, we cannot let the second
operation return before the linearization of the snapshot and still allow the first operation
not to be visible in the snapshot. Therefore, we do not have the complete flexibility of
linearizing operations according to the time they were reported, as in Section 2.

To solve this problem, we add a mechanism that allows threads, when necessary, to
report operations executed by other threads. Namely, in this case, the failing INSERT

operation will first report the previous successful INSERT of T2, and only then exit.
This will ensure that the required order dependence is satisfied by the order of reports.
In general, threads need to report operations of other threads if: (1) the semantics of
the ADT requires that the operation of the other thread be linearized before their own
operation, and (2) there is a danger that the iterator will not reflect the operation of the
other thread.

3.2 Supporting Multiple Iterators

In the basic snapshot algorithm described in Section 2, only a single simultaneous scan-
ning is allowed. To construct a useful iterator, we need to support multiple simultaneous
iterators. A similar extension was also presented in [11], but our extension is more com-
plicated because the construction in [11] does not need to even support a read, whereas
we support INSERT, DELETE, and CONTAINS.

In order to support multiple iterators, we can no longer use the same memory for all
the snapshots. Instead, the data structure will hold a pointer to a special object denoted
the snap-collector. The snap-collector object holds the analogue of both arrays B and
C in the single scanner snapshot, meaning it will hold the “copied” data structure, and
the reports required to “fix” it. The snap-collector will also hold a Boolean equivalent
to ongoingScan, indicating whether the iteration has already been linearized.

4 The Iterator Algorithm

The pseudo-code for the iterator is depicted in Figure 2. This algorithm applies as is
to the wait-free linked-list [15], the lock-free linked-list [9], and the lock-free skiplist
[10].

When a thread wishes to execute an iteration over the data structure elements, it
will first obtain a snapshot of the data structure. To optimize performance, we allow
several concurrent threads executing an iteration to cooperate in constructing the same
snapshot. For this purpose, these threads need to communicate with each other. Other
threads, which might execute other concurrent operations, also need to communicate
with the iterating threads and forward to them reports regarding operations which the
iterating threads might have missed. This communication will be coordinated using a
snap-collector object.

The snap-collector object is thus a crucial building block of the iterator algorithm.
During the presentation of the iterator algorithm, we will gradually present the interface
the snap-collector should support. The implementation of the snap-collector object that
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supports the required interface is deferred to Section 5. All snap-collector operations
are implemented in a wait-free manner so that it can work with wait-free and lock-free
iterator algorithms.

To integrate an iterator, the data structure holds a pointer, denoted PSC, to a snap-
collector object. The PSC is initialized during the initialization of the structure to point
to a dummy snap-collector object. When a thread begins to take a (new) snapshot of the
data structure, it allocates and initializes a new snap-collector object. Then, it attempts
to change the PSC to point to this object using a compare-and-swap (CAS) operation.

4.1 The Reporting Mechanism

A thread executing INSERT, DELETE or CONTAINS operation might need to report its
operation to maintain linearizability, if a snapshot is being concurrently taken. It firsts
executes the operation as usual. Then it checks the snap-collector object, using the
later’s IsActive method, to see whether a concurrent snapshot is afoot. If so, and
in case forwarding a report is needed, it will use the snap-collector Report method.
The initial dummy snap-collector object should always return false when the IsActive
method is invoked.

There are two types of report. An insert-report is used to report a node has been
inserted into the data structure, and a delete-report used to report a removal. A report
consists of a pointer to a node, and an indication which type of report it is. Using a
pointer to a node, instead of a copy of it, is essential for correctness (and is also space
efficient). It allows an iterating thread to tell the difference between a relevant delete-
report to a node it observed, and a belated delete-report to a node with the same key
which was removed long ago.

Reporting a Delete Operation. It would have been both simple and elegant to allow
a thread to completely execute its operation, and only then make a report if necessary.
Such is the case in all of Jayanti’s snapshot algorithms presented in [11]. Unfortunately,
in the case of a DELETE operation, such a complete separation between the ”normal”
operation and the submission of the report is impossible because of operation depen-
dence. The following example illustrates this point.

Suppose a thread S starts taking a snapshot while a certain key x, is in the data
structure. Now, another thread T1 starts the operation DELETE(x) and a third thread T2
concurrently starts the operation CONTAINS(x). Suppose T1 completes the operation
and removes x, but the scanner missed this development because it already traversed
x, and suppose that now T1 is stalled and does not get to reporting the deletion. Now
T2 sees that there is no x in the list, and is about to return false and complete the
CONTAINS(x) operation. Note that the CONTAINS operation must linearize before it
completes, whereas the snapshot has not yet linearized, so the snapshot must reflect
the fact that x is not in the data structure anymore. Therefore, to make the algorithm
linearizable, we must let T2 first report the deletion of x (this is similarly to the scenario
discussed in Section 3.1.). However, it cannot do so: to report that a node has been
deleted, a pointer to that node is required, but such a pointer is no longer available,
since x has been removed.
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We solve this problem by exploiting the delete mechanism of the linked-list and skiplist
(and other lock-free data structures as well). As first suggested by Harris in [9], a node is
deleted in two steps. First, the node is marked. A marked node is physically in the data
structure, and still enables traversing threads to use it in order to traverse the list, but it is
considered logically deleted. Second, the node is physically removed from the list. The
linearization of the DELETE operation is in the first step. We will exploit this mechanism
by reporting the deletion between these two steps (lines 11-13 in Figure 2).

Any thread that is about to physically remove a marked node will first report a dele-
tion of that node (given a snapshot is concurrently being taken). This way, the report is
appropriately executed after the linearization of the DELETE operation. Yet, if a node
is no longer physically in the list, it is guaranteed to have been reported as deleted (if
necessary). Turning back to the previous scenario, if T2 sees the marked node of x, it
will be able to report it. If it doesn’t, then it can safely return. The deletion of x has
already been reported.

Reporting an Insert Operation. After inserting a node, the thread that inserted it
will report it. To deal with operation dependence, a CONTAINS method that finds a
node will report it as inserted before returning, to make sure it did not return prior to
the linearization of the corresponding insertion. Furthermore, an INSERT operation that
fails because there is already a nodeN with the same key in the list will also report the
insertion of nodeN before returning, for similar reasons.

However, there is one additional potential problem: an unnecessary report might
cause the iterator to see a node that has already been deleted. Consider the following
scenario. Thread T1 starts INSERT(3). It successfully inserts the node, but get stalled
before checking whether it should report it (between lines 22 and 23). Now thread
T2 starts a DELETE(3) operation. It marks the node, checks to see whether there is
an ongoing iteration, and since there isn’t, continues without reporting and physically
removes the node. Now thread S starts an ITERATION, announces it is scanning the
structure, and starts scanning it. T1 regains control, checks to see whether a report is
necessary, and reports the insertion of the 3. The report is of course unnecessary, since
the node was inserted before S started scanning the structure, but T1 does not know
that. T2 did see in time that no report is necessary, and that is why it did not report the
deletion. The trouble is that, since the deletion is not reported, reporting the insertion is
not only unnecessary, but also harmful.

We solve this problem by exploiting again the fact that a node is marked prior to its
deletion. An insertion will be reported in the following manner (lines 31-35).

– Read PSC, and record a private pointer to the snap-collector object, SC.
– Check whether there is an ongoing iteration, by calling SC.IsActive().
– If not, return. If there is, check whether the node you are about to report is marked.
– If it is, return without reporting. If it is not marked, then report it.

The above scheme solves the problem of harmfully reporting an insertion. If the
node was unmarked after the relevant ITERATION has already started, then a later delete
operation that still takes place before the linearization of the iteration will see that it
must report the node as deleted. There is, however, no danger of omitting a necessary
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report; if a node has been deleted, there is no need to report its insertion. If the delete
occurred before the linearization of the iteration, then the iteration does not include the
node. If the delete occurred after the linearization of the iteration, then the insert must
be present after the linearization of the iteration as well (since it had a chance to see the
node is marked), and therefore it is possible to set the linearization of the insertion after
the iteration as well.

4.2 Performing an Iteration

A thread that desires to perform an ITERATION first reads the PSC pointer and checks
whether the previous iteration has already been linearized by calling the IsActive method
(line 53). If the previous iteration has already been linearized, then it cannot use the
same snapshot, and it will allocate a new snap-collector. After allocating it, it will at-
tempt to make the global PSC pointer point to it using a CAS (line 56). Even if the
CAS fails, the thread can continue by taking the new value pointed by the PSC pointer,
because the linearization point of the new snap-collector is known not to have occurred
before the thread started its ITERATION operation. Therefore, this CAS doesn’t interfere
with wait-freedom, because the thread can continue even if the CAS fails.

A snapshot of the data structure is essentially the set of nodes present in it. The
iterating thread scans the data structure, and uses the snap-collector to add a pointer to
each node it sees along the way (lines 62-68), as long as this node is not marked as
logically deleted. The iterating thread calls the AddNode method of the snap-collector
for this purpose.

When the iterating thread finishes going over all the nodes, it is time to linearize
the snapshot (and iteration). It calls the Deactivate method in the snap-collector
for this purpose (this is similar to setting ongoingScan to zero in Jayanti’s algorithm).
Afterwards, further calls to the IsActive method will return false. An INSERT, DELETE,
or CONTAINS operation that will start after the deactivation will not report to this snap-
collector object. If a new ITERATION starts, it is no longer able to use this snap-collector,
and so it allocates a new one.

To ensure proper linearization in the presence of multiple iterating threads, some
further synchronization is required between them. A subtle implied constraint is that
all threads that iterate concurrently and use the same snap collector object must decide
on the same snapshot view. This is needed, because the linearization point of opera-
tions that occur concurrently with the closure of the snapshot picture is determined by
whether they appear in the snapshot or not. So if an operation appears in the snapshot
view of one thread but not in a snapshot view of another, then the linearization argument
fails.

To assure the snapshot is consistent for all threads we enforce the following. First,
before a thread calls the Deactivate method, it calls the BlockFurtherNodes (line
66). The snap-collector ensures that after a call of BlockFurtherNodes returns, further
invocations of AddNode cannot install a new pointer, or have any other effect. Second,
before the first iterating thread starts putting together the snapshot according to the
collected nodes and reports, it blocks any further reports from being added to the snap-
collector. This is achieved by invoking the BlockFurtherReports method (line
69). From this point on, the snap-collector is in a read-only mode.
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Next, the iterating thread assembles the snapshot from the nodes and reports stored in
the snap-collector. It reads them using the ReadPointers and ReadReportsmeth-
ods. A node is in the snapshot iff: 1) it is among the nodes added to the snap-collector
OR there is a report indicating its insertion AND 2) there is no report indicating its
deletion.

Calculating the snapshot according to these rules can be done efficiently if the nodes
and reports in the snap-collector are sorted first. As explained in Section 5.1, the snap-
collector is optimized so that it holds the nodes sorted throughout the execution, and
thus sorting them requires no additional cost. The reports, however, still need to be
sorted. Finally, once the iterating thread assembled the snapshot, it can trivially perform
an iteration, by simply going over the nodes present in the snapshot one after the other.
Thus, the overall complexity of an ITERATION is O(#nodes + #reports*log(#reports)).

5 The Snap-Collector Object

One can think of the snap-collector object as holding a list of node pointers and a list of
reports. The term install refers to the act of adding something to these lists. Thus, the
snap-collector enables the iterating threads to install pointers, and the modifying threads
to install reports. It supports concurrent operations, and it must be wait-free since it is
designed as a building block for wait-free and lock-free algorithms. The semantics and
interface of the snapshot object follow. To relate the new algorithm to the basic one, we
also mention for each method (in italics), its analogue in the single scanner snapshot.
Tid is short for Thread Identifier.

– NewSnapCollector(). No equivalent. Allocates a new snap-collector object.
– AddNode(Node* node, int tid). Analogue to copying a register into array C. In-

stalls a pointer to the given node. May fail to install the pointer if the BlockFurther-
Pointers() method (see below) has previously been invoked.

– Report(Report* report, int tid). Analogue to reporting a new value in array B.
Installs the given report. May fail to install the report if the BlockFurtherReports()
method (see below) has previously been invoked.

– IsActive(). Analogue to reading the ongoingScan binary field. Returns true if the
Deactivate() method has not yet been called, and false otherwise. (True means the
iteration is still ongoing and further pointers might still be installed in the snapshot
object.)

– BlockFurtherPointers(). No analogue. Required to synchronize between multiple
iterators. After this method is completed, any further calls to AddNode will do
nothing. Calls to AddNode concurrent with BlockFurtherPointers may fail or suc-
ceed arbitrarily.

– Deactivate(). Analogue to setting ongoingScan to false. After this method is com-
plete, any call to IsActive returns false, whereas before this method is invoked for
the first time, IsActive returns true.

– BlockFurtherReports(). No analogue. Required to synchronize between multiple
iterators. After this method is completed, any further calls to Report will do noth-
ing. Calls to Report concurrent with BlockFurtherReports may succeed or fail ar-
bitrarily.
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37. Contains(int key) 
38.    search for a node n with the key 
39.    if not found  then return false 
41.    else if n is marked 
42.       ReportDelete(pointer to n) 
43.       return false 
44.    else   ReportInsert(pointer to n)  
45.              return true                  
 
46. TakeSnapshot() 
47.    SC = AcquireSnapCollector() 
48.    CollectSnapshot(SC) 
49.    ReconstructUsingReports(SC) 
50. 
51. AcquireSnapCollector() 
52.    SC = (dereference) PSC 
53.    if (SC.IsActive()) 
54.       return SC 
55.    newSC = NewSnapCollector() 
56.    CAS(PSC, SC, newSC) 
57.    newSC = (dereference) PSC 
58.    return newSC 
59. 
60. CollectSnapshot(SC) 
61.    Node curr = head of structure 
62.    While (SC.IsActive()) 
63.       if (curr is not marked) 
64.          SC.AddNode(pointer to curr) 
65.       if (curr.next is null) // curr is the last 
66.          SC.BlockFurtherNodes() 
67.          SC.Deactivate() 
68.       curr = curr.next 
69.    SC.BlockFurtherReports() 
70. 
71. ReconstructUsingReports(SC) 
72.   nodes = SC.ReadPointers() 
73.   reports = SC.ReadReports() 
74.   a node N belong to the snapshot iff: 
75.     ((N has a reference in nodes 
             OR  N has an INSERTED report) 
           AND  
           (N does not have a DELETED report)         

General:  The data structure will hold an 
additional field, PSC, which is a pointer to a 
snap-collector object. 
1.  Initialize() 
2.     Initialize the data structure as usual 
3.     PSC = (address of) NewSnapCollector() 
4.     PSC->Deactivate() 
5. 
6.  Delete(int key) 
7.    search for a node with required key 
8.    if not found  
9.       return false 
10.  else   // found a victim node with the key 
11.     mark the victim node 
12.     ReportDelete(pointer to victim) 
13.     physically remove the victim node 
14.     return true 
15. 
16. Insert(Node n) 
17.    search for the place to insert the node  
          n as usual, but before removing  
          a marked node, first call ReportDelete() 
18.    If n.key is already present in the data  
             data structure on a different node h 
19.       ReportInsert(pointer to h) 
20.       return false 
21.    else 
22.       Insert n into the data structure 
23.       ReportInsert(pointer to n) 
24.       return true 
25. 
26. ReportDelete(Node *victim) 
27.   SC = (dereference) PSC 
28.   If (SC.IsActive()) 
29.      SC.Report(victim, DELETED) 
30. 
31. ReportInsert(Node* newNode) 
32.    SC = (dereference) PSC 
33.    if (SC.IsActive()) 
34.       if (newNode is not marked) 
35.          Report(newNode, INSERTED) 
36. 

Fig. 2. The Iterator
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– ReadPointers(). No analogue. Returns a list of all the pointers installed in the
snapshot object. Should be called only after BlockFurtherPointers is completed by
some thread.

– ReadReports(). No analogue. Returns a list of all the reports installed in the snap-
shot object. Should be called only after BlockFurtherReports is called by some
thread.

5.1 The Snap-Collector Implementation

The implementation of the snap-collector object is orthogonal to the iterator algorithm,
but different implementations can affect its performance dramatically. This section
briefly explains the particulars of the implementation used in this work.

The proposed implementation of the snap-collector object maintains a separate linked-
list of reports for each thread. It also maintains a single linked-list of pointers to the nodes
of the data structure, and one boolean field indicating whether it is currently active (not
yet linearized).

IsActive, Deactivate. The IsActive method is implemented simply by reading the bool-
ean field. The Deactivate method simply writes false to this field.

AddReport. When a thread needs to add a report using the AddReport method, it adds
it to the end of its local linked-list dedicated to this thread’s reports. Due to the locality
of this list its implementation is fast, which is important since it is used also by threads
that are not attempting to iterate over the data structure. Thus, it facilitates low overhead
for threads that only update the data structure.

Although no other thread may add a report to the thread local linked- list, a report is
still added via a CAS, and not a simple write. This is to allow the iterating threads to
block further reports in the BlockFurtherReports method. However, when a thread adds
a report, it does not need to check whether the CAS succeeded. Each thread might only
fail once in adding a report for every new iteration. After failing such a CAS, it will
hold that the IsActive method will already return false for this iteration and therefore
the thread will not even try to add another report.

BlockFurtherReports. This method goes over all the threads local linked-lists of re-
ports, and attempts by a CAS to add a special dummy report at the end of each to block
further addition of reports. This method should only be invoked after the execution of
the Deactivate method is completed. The success of this CAS need not be checked. If
the CAS succeeds, no further reports can be added to this list, because a thread will
never add a report after a dummy. If the CAS fails, then either another iterating thread
has added a dummy, or a report has just been added. The first case guarantees blocking
further repots, but even in the latter case, no further reports can now be added to this list,
because the thread that just added this report will see that the snap-collector is inactive
and will not attempt to add another report.

AddNode. The basic idea in the implementation of AddNode is to use the lock-free
queue of Michael and Scott [12]. To install a pointer to a node, a thread reads the tail
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pointer. If the tail node is last, it attempts to add its node after the last node and then
fix the tail to point to the newly added node. If the tail node is not the last node, i.e., its
next field hold to a non-null node, then the thread tries by a CAS to change the tail to
point to the next node (similarly to [12]), and retries adding its node again.

Clearly, this implementation is not wait-free as the thread may repeatedly fail to
add its node and make progress. We therefore use a simple optimization that slightly
alters the semantics of the AddNode method. To this end, we note that nodes should
be added to the snapshot view in an ascending order of keys. The AddNode method
will (intentionally) fail to add any node whose key is smaller than or equal to the key
of the last node added to the snap-collector. When such a failure happens, AddNode
returns a pointer to the data structure node that was last added to the snap-collector
view of the snapshot. This way, an iterating thread that joins in after a lot of pointers
have already been installed, simply jumps to the current location. This also reduces
the number of pointers in the snap-collector object to reflect only the view of a single
sequential traverse, avoiding unnecessary duplications. But most importantly, it allows
wait-freedom.

The snap-collector object still holds a tail pointer to the queue (which might at times
point to the node before last). To enqueue a pointer to a node that holds the key k, a
thread reads the tail pointer. If the tail node holds a key greater than or equal to k, it
doesn’t add the node and simply returns the tail node. If the tail node is not the last
node, i.e., its next field hold to a non-null node, then this means that there is another
thread that has just inserted a new node to the snapshot view. In this case, this new node
is either the same node we are trying to add or a larger one. So in this case the thread
tries by a CAS to change the tail to point to the next node (similarly to [12]), and then
it returns the new tail, again without adding the new node.

This optimization serves three purposes: it allows new iterating threads to jumps to
the current location; It makes the AddNode method fast and wait-free; and it keeps the
list of pointers to nodes sorted by their keys, which then allows a simple iteration over
the keys in the snapshot.

BlockFurtherNodes. This method sets the tail pointer of the nodes list to point to a
special dummy with a key set to the maximum value and the node set to null. Combined
with our special implementation of AddNode, further calls to AddNode will then read
the tail’s special maximum value and will not be able to add additional nodes.

ReadPointers, ReadReports. These methods simply return a list with the pointers /
reports stored in the snap-collector. They are normally called only after the BlockFurth-
erNodes, Deactivate, and BlockFurtherReports methods have all been completed, thus
the lists of pointers and reports in the snap-collector are immutable at this point.

5.2 Some Simple Optimizations

The implementation used for the performance measurements also includes the follow-
ing two simple optimizations.
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Elimination of many of the reports. An additional binary field was added to each node,
initialized to zero. When a thread successfully inserts a node, and after reporting it
if necessary, this binary field is set to 1. Future INSERT operations that fail due to this
node, and future CONTAINS operations that successfully find this node, first check to see
if this bit is set. If so, then they know that this node has been reported, and therefore,
there is no need to report the node’s insertion.

If a large portion of the operations are CONTAINS operations, as is the case in typical
data structure usage, this optimization avoids a significant portion of the reports. This
is because in such cases most of the reports are the result of successful CONTAINS

operations. However, note that this optimization is not always recommended, as it adds
overhead to the INSERT operations even if ITERATION is never actually called.

Avoidance of repeated sorting. After a single thread has finished sorting the reports,
it posts a pointer to a sorted list of the reports, and saves the time it would take other
threads to sort them as well, if they haven’t yet started to do so.

6 Performance

In this section we report the performance of the proposed iterator, integrated with the
lock-free linked-list and skiplist in Java. We used the linked-list implementation as in-
cluded in the book “The Art of Multiprocessor Programming” by Herlihy and Shavit
[10], and added to it the iterator mechanism described in this paper. For the skiplist,
we used the Java code of ConcurrentSkipListMap by Doug Lea, and added our mecha-
nism. We also measured the performance of the CTrie, which is the only other lock-free
data structure with comparable semantics that supports ITERATION. The CTrie is in-
cluded in the Scala 2.10.0 distribution, and we used this implementation to measure its
performance.

All the tests were run on SUN’s Java SE Runtime, version 1.6.0, on a system that
features 4 AMD Opteron(TM) 6272 2.1GHz processors. Each processor has 8 cores (32
cores overall), and each core runs 2 hyper-threads (i.e., 64 concurrent threads overall).
The system employs a memory of 128GB and an L2 cache of 2MB per processor.

The algorithms were tested on a micro-benchmark in which one thread repeatedly
executes ITERATION operations, going over the nodes one by one continually. For the
other threads, 50% of the operations are CONTAINS, 25% are INSERT, and 25% are
DELETE, with the number of threads varying between 1-31. In each test the keys for
each operation were randomly and uniformly chosen in the ranges [1, 32], [1, 128], or
[1, 1024]. In each test, all the threads were run concurrently for 2 seconds. All the tests
were run in one long execution. The different data structures were run alternately: for
a specific test-case parameters (i.e., the number of threads and the key range) first the
linked-list was run for a 2 seconds interval, then the CTrie, and then the skiplist. After
a single 2 seconds interval run of each data structure, the next test-case was run for all
the three. After all the test-cases were completed once, a second iteration of the tests
was initiated. The execution consisted of overall 16 such iterations; however, the first
iteration was omitted from the results, and only served to allow the JVM the time to
warm up. The averages of the other 15 iterations are reported in the figures.
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Fig. 3. Results for 32 possible keys (left) 128 possible keys (middle) 1024 possible keys (right)

For each key range, we present three different graphs. In the first graph, we measure
the number of operations executed as a fraction of the number of operations executed
without the additional iterating thread. For example, for a range of keys [1, 32], for 16
threads, the number of operations executed while an additional thread is continually
iterating the nodes is 86% of the number of operations executed by 16 threads in the
skiplist data structure that does not support iteration at all. Thus, this graph presents
the cost of adding the support for an iterator, and having a single thread continually
iterate over the structure. For the CTrie, there is no available lock-free implementation
that does not support iteration at all, so we simply report the number of operations as
a fraction of the number of operations executed when there is no additional concurrent
thread iterating over the structure. In the second graph, we report the absolute number
of INSERT, DELETE, and CONTAINS operations executed in the different data structures
while a single thread was iterating, and in the third graph we report the number of
ITERATION operations that the single thread completed. This last measure stands for
the efficiency of the iterator itself.

The results appear in Figure 3. In general, the results show that the iterator proposed
in this paper has a small overhead on the other threads (which execute INSERT, DELETE

and CONTAINS), and in particular, much smaller than the overhead imposed by the



238 E. Petrank and S. Timnat

CTrie iterator. The overhead of the proposed iterator for other threads is usually lower
than 20%, except when the overall number of threads is very small. This means that the
proposed iterator does relatively little damage to the scalability of the data structure.
As for overall performance, we believe it is less indicative of the contribution of our
work, as it reflects mainly the performance of the original data structures regardless of
the iterator. Having said that, the linked-list performs best for 32 keys, the skiplist for
128 keys, and the CTrie and skiplist performs roughly the same for 1024 keys.
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Abstract. This paper introduces new lock-free and wait-free unordered linked
list algorithms. The composition of these algorithms according to the fast-path-
slow-path methodology, a recently devised approach to creating fast wait-free
data structures, is nontrivial, suggesting limitations to the applicability of the
fast-path-slow-path methodology. The list algorithms introduced in this paper
are shown to scale well across a variety of benchmarks, making them suitable
for use both as standalone lists, and as the foundation for wait-free stacks and
non-resizable hash tables.

1 Introduction

Linked lists are fundamental data structures that are widely used both on their own
and as building blocks for other data structures. While a sequential linked list is easy
to implement, concurrent linked lists that achieve both strong progress guarantees and
good performance are challenging to design [3,7–9,16,19,22,24]. Herlihy [10] demon-
strated the existence of universal constructions for wait-free concurrent objects, yet it
remains an open problem whether all such objects can be made practical: wait-free data
structures implemented from universal constructions [4, 6, 11] tend to incur significant
overhead, increased time and space complexity, and/or static bounds on the size of the
data structure. Although many lock-free concurrent implementations [5,12,20,21] have
been proposed for sequential data structures, practical wait-free versions are relatively
rare [14, 23].

We introduce the first practical implementation of an unordered linked list that
supports wait-free insert, remove, and lookup operations. The implementation is lin-
earizable [13] and uses only a single-word compare-and-swap (CAS) primitive. Fur-
thermore, the implementation does not require marking the lower bits of pointers [8].
Our implementation is built from a novel lock-free unordered list algorithm, where
each insert and remove operation first linearizes by appending an intermediate “re-
quest” node at the head of the list, followed by a lazy search phase that computes the
return value of the operation (which depends on whether the key value is already in the
set); lookup operations have no side-effects on the shared memory. The implementation
achieves scalable wait-freedom by adapting a technique originally designed for wait-
free queues [14], and to further improve performance, we applied a recently-devised
fast-path-slow-path methodology [15] to construct adaptive variants of our algorithm.

In this paper, we introduce the first practical wait-free unordered linked list, which
is immediately usable in applications as-is, and can be employed in the creation of

Y. Afek (Ed.): DISC 2013, LNCS 8205, pp. 239–253, 2013.
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wait-free non-resizable hash tables and stacks. 1 We discuss our experience and find-
ings in applying the fast-path-slow-path methodology, identifying both strengths and
limitations of the approach. In Section 2, we present background and related work. In
Section 3 we present a lock-free unordered list algorithm that serves as the basis for
the wait-free algorithm discussed in Section 4. We evaluate performance in Section 5.
Section 6 concludes with guidelines for using the fast-path-slow-path methodology.

2 Related Work

The first lock-free list to require only atomic compare-and-swap (CAS) operations was
developed by Valois [24], who employed a technique in which auxiliary nodes en-
coded in-progress operations. Harris [8] implemented a lock-free ordered list by using
a pointer marking technique, in which a node is logically deleted by marking the least
significant bit of its next pointer; the node is then physically removed from the list in a
separate phase. Michael [16] improved memory reclamation in the Harris algorithm us-
ing hazard pointers [17]. Heller et al. [9] designed a lock-based linked list with wait-free
lookup operations. Their wait-free technique can also be incorporated into the Harris-
Michael algorithm to improve performance. Kogan and Petrank [14] proposed a wait-
free queue implementation and a more efficient variant based on the fast-path-slow-path
methodology [15] which composes the slower wait-free algorithm with a faster lock-
free implementation [18]. Timnat et al. [23] designed a wait-free ordered linked list
based on the fast-path-slow-path methodology, using the Harris-Michael algorithm as
its fast path.

Subsequent efforts have contributed to our general understanding of lock-free list
implementations, but have neither improved progress guarantees nor delivered supe-
rior performance to that attainable by combining the Harris, Michael, and Heller tech-
niques. Fomitchev and Ruppert [7] presented a lock-free list with worst-case linear
amortized cost. Attiya and Hillel [1] presented a lock-free doubly-linked list that relies
on a double-compare-and-swap (DCAS) operation. Sundell and Tsigas [22] presented
a lock-free doubly-linked list using only CAS. Braginsky and Petrank [2] presented the
first lock-free unrolled linked list.

Herlihy [10, 11] presented the first universal construction to convert sequential ob-
jects to wait-free concurrent implementations. Fatourou and Kallimanis [6] provided a
universal construction that can be used to implement highly efficient stacks and queues.

3 A Lock-Free Unordered List

We now present a lock-free unordered list algorithm, which serves as the basis for our
wait-free implementation. The algorithm implements a set object, where the elements
can be compared using an equality operator (=), even if they can not be totally ordered.

The list supports three operations: INSERT(k) attempts to insert value k into the set
and returns true (success) if k was not present in the set, and returns false otherwise.
REMOVE(k) returns true if it successfully removes value k from the set and returns
false if k does not exist in the set. CONTAINS(k) indicates whether k is contained by
the set.

1 Presentation of these algorithms is included in a companion technical report [25].
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datatype NODE

key : N // integer data field

state : N // INS, REM, DAT, or INV
next : NODE // pointer to the successor

prev : NODE // pointer to the predecessor

tid : N // thread id of the creater

global variables
head : NODE // initially nil

1 function INSERT(k : N) : B
2 h ← new NODE〈k, INS, nil, nil, threadid〉
3 ENLIST(h)

4 b ← HELPINSERT(h, k)
5 if ¬CAS(&h.state, INS, (b? DAT : INV)) then
6 HELPREMOVE(h, k)
7 h.state ← INV

8 return b

9 function REMOVE(k : N) : B
10 h ← new NODE〈k,REM, nil, nil, threadid〉
11 ENLIST(h)

12 b ← HELPREMOVE(h, k)
13 h.state ← INV
14 return b

15 function CONTAINS(k : N) : B
16 curr ← head
17 while curr 
= nil do
18 if curr.key = k then
19 s ← curr.state
20 if s 
= INV then
21 return (s = INS)∨(s = DAT)

22 curr ← curr.next

23 return false

24 procedure ENLIST(h : NODE)
25 while true do
26 old ← head
27 h.next ← old
28 if CAS(&head, old, h) then
29 return

30 function HELPINSERT(h : NODE, k : N) : B
31 pred ← h
32 curr ← pred.next

33 while curr 
= nil do
34 s ← curr.state
35 if s = INV then
36 succ ← curr.next
37 pred.next ← succ
38 curr ← succ

39 else if curr.key 
= k then
40 pred ← curr
41 curr ← curr.next

42 else if s = REM then
43 return true

44 else if (s = INS)∨(s = DAT) then
45 return false

46 return true

47 function HELPREMOVE(h : NODE, k : N) : B
48 pred ← h
49 curr ← pred.next

50 while curr 
= nil do
51 s ← curr.state
52 if s = INV then
53 succ ← curr.next
54 pred.next ← succ
55 curr ← succ

56 else if curr.key 
= k then
57 pred ← curr
58 curr ← curr.next

59 else if s = REM then
60 return false

61 else if s = INS then
62 if CAS(&curr.state, INS,REM) then
63 return true

64 else if s = DAT then
65 curr.state ← INV
66 return true

67 return false

Fig. 1. A Lock-free Unordered List

3.1 Overview

Figure 1 presents the basic algorithm. The list is comprised of NODE objects, where
each NODE stores a key value, a next pointer to the successor node, and a state field
for coordinating concurrent operations. The prev and tid fields are reserved for the
wait-free algorithm (Section 4). We maintain a global pointer head that points to the
first element of the list. Elements are always inserted at the head position.

The key insight of the algorithm is to maintain a refinement mapping function that
maps a linked list object (starting from node h) to an abstract set object AbsSet(h):
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AbsSet(h) ≡

⎧⎪⎪⎨⎪⎪⎩
∅ if h = nil
AbsSet(h.next) if h.state = INV
AbsSet(h.next) ∪ {h.key} if h.state = INS∨h.state = DAT
AbsSet(h.next) \ {h.key} if h.state = REM

To maintain this property, an INSERT or REMOVE operation first places a node with
an intermediate state (INS or REM) at the head of the list. Then it searches the list for
the value being inserted or removed, removing logically deleted nodes along the way.
Finally, it sets the intermediate node to a final state (DAT or INV).

In more detail, an INSERT operation allocates an INS node (h) and links it to the
head of the list by invoking ENLIST (lines 2 - 3). It then invokes HELPINSERT (line 4)
to determine whether the insertion is effective, that is, to check whether the key is
already present in the set. The return value of HELPINSERT dictates the return value
of the INSERT operation, as well as the final state of h (line 5): if the key was absent
from the set, h.state is set to DAT, and the insertion becomes effective; otherwise,
h.state is set to INV, indicating that the insertion failed due to the key already being
present in the set, and h becomes a garbage node that will be physically removed by
some subsequent operation. The update of h.state must use a CAS instruction (line 5),
since a concurrent REMOVE that deletes the same key may attempt to change h.state
concurrently. If the CAS fails, it means the key was deleted concurrently and the thread
will invoke HELPREMOVE (lines 6 - 7) to help the deleting thread to clean up the list.

Similarly, a REMOVE operation starts by inserting a REM node at the head position
(lines 10 - 11). The real work of removal is delegated to the HELPREMOVE operation
(line 12), which traverses the list to delete the specified key and returns a boolean value
indicating whether the key was found (and deleted). Then node h is set to the INV state
(line 13), allowing some subsequent operation to remove it from the list.

The CONTAINS operation has no side effect on shared memory (it is read-only). The
operation traverses the list to find the specified key and skips any INV nodes (lines 18 -
20). If a non-INV node with the specified key is encountered, the operation returns true
(found) if the node is in state DAT or INS (line 21). Otherwise, the node is in REM state,
which represents a REMOVE operation that can be thought of as having already deleted
the key from the suffix of the list, and hence, the CONTAINS operation immediately
returns false.

3.2 ENLIST Operation

Both INSERT and REMOVE use the ENLIST operation to insert a node at the head posi-
tion. In the lock-free algorithm, ENLIST repeatedly performs a CAS operation (line 28),
attempting to change head to point to h, until the CAS succeeds. However, this ap-
proach fails to provide wait-freedom: since the CAS operation at line 28 of a specific
thread may fail repeatedly, for an unbounded number of times (due to contention), the
thread may starve in the ENLIST operation and make no progress. In Section 4, we
introduce a wait-free ENLIST implementation, and show the algorithm can be made
wait-free without any change to the other parts.
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3.3 Coordination Protocol

The core protocol of coordinating concurrency is encapsulated by the HELPINSERT

and HELPREMOVE operations. The two operations share a similar code structure: each
takes a pointer parameter h, which points to the node inserted by the prior ENLIST

operation. In both operations, the thread traverses the list starting from h, and reacts to
the different types of nodes it encounters.

As a common obligation of both operations, logically deleted nodes are purged dur-
ing the traversal (lines 35 - 38 and lines 52 - 55). That is, once an INV node is encoun-
tered (pointed to by curr), the node is physically removed from the list by setting the
predecessor’s next pointer to the successor of curr. Note that since new nodes cannot
be added to the list at any point other than the head, the problems that plague node re-
moval in sorted lists do not apply. In particular, it is not possible that removing one node
can inadvertently lead to a new arrival disappearing from the list. While it is possible
for a removed node to re-appear in the list on account of conflicting writes to the next
pointer, such a node will necessarily already be marked INV, and thus there will be no
impact on the correctness of the list.

During the traversal, the curr node is skipped if curr.key 	= h.key (lines 39 - 41
and 56 - 58). Otherwise, we say the curr node is a “related node” with respect to the
current operation. There are three possibilities if curr is a related node: curr is a DAT
node, an INS node, or a REM node. In the latter two cases, the related node was created
by some concurrent INSERT or REMOVE operation. We call such operations “related
operations”.

In HELPINSERT, if a related REM node is encountered, there is a concurrent REMOVE

operation finalizing a removal of the same key. Hence, the HELPINSERT returns true
(success) immediately (lines 42 - 43), since the concurrent REMOVE operation ensures
that the key is absent in the set. Otherwise (lines 44 - 45), if the related node is an INS
node, then the related INSERT operation inserted the same key earlier (or is determin-
ing that the key already exists in the list) and the HELPINSERT operation must return
false. Finally, if the related node is a DAT node, HELPINSERT returns false since the
key already exists in the set.

In HELPREMOVE, if a related REM node is found (lines 59 - 60), the operation
returns false immediately since the key was already deleted by a concurrent REMOVE

operation. If the related node is an INS node (lines 61 - 63), then the key was inserted
by a concurrent INSERT operation. In this case, the thread attempts to change the node
from INS to REM (line 62); a CAS instruction is needed to prevent data races on the
state field (i.e., line 5). In the last case, the related node is a DAT node, meaning that
the key is in the set, and the node is deleted by setting its state to INV (line 65).

3.4 Lock-Freedom

To show that the algorithm is lock-free, we show that some operation completes when
any thread executes a bounded number of local steps. We first notice that the ENLIST

operation is lock-free: a thread’s CAS at line 28 may fail only due to another thread
performing a CAS and completing its ENLIST operation. Since ENLIST is invoked ex-
actly once in each INSERT and REMOVE, for n threads, at least one list operation will
complete if some thread fails the CAS for n times in its ENLIST operation.
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To show that every HELPINSERT and HELPREMOVE operation terminates, it is suf-
ficient to show the list is acyclic. There are three places where the next pointer of a
node is changed: executing line 27 cannot form a cycle, since the node h is newly al-
located and is not reachable from any other node; when a thread executes line 37 or
line 54, pred is clearly always a predecessor of succ in some total order R, which can
be defined as the order in which nodes are inserted to the list (by the CAS at line 28).

Since the size of the list is bounded by E, the total number of completed ENLIST

operations, every HELPINSERT and HELPREMOVE operation finishes in O(E) steps.
Note that in HELPREMOVE, a thread never executes the CAS at line 62 twice on the
same node: if the CAS failed, the curr node is turned into a final state (DAT or INV)
and will cause the loop to exit or skip the node in the next iteration. Thus, for n threads,
either a thread completes its own list operation in O(n + E) local steps, or some other
thread completes a list operation during this period of time.

3.5 Linearizability

Due to space constraints, a complete proof of linearizability is provided in a com-
panion technical report [25]. We define the linearization point for each operation: An
INSERT(k) or REMOVE(k) operation linearizes at the successful CAS at line 28 in
ENLIST. A CONTAINS(k) linearizes at line 16 if k /∈ AbsSet(head) when p executes
this line. In cases where k ∈ AbsSet(head) when p executes this line, the CONTAINS(k)
linearizes at line 16 if the operation returns true. If the operation returns false, we show
that there exists a concurrent REMOVE(k) that linearizes after p executes line 16 and
before p’s CONTAINS(k) returns. We let p’s CONTAINS(k) linearize immediately after
the linearization point of this REMOVE(k). Note that multiple CONTAINS(k) operations
may be required to linearize after the same REMOVE(k) operation, and any two of these
CONTAINS(k) operations can be ordered arbitrarily.

4 Achieving Wait-Freedom

The major challenge of the wait-free list algorithm lies in the implementation of a wait-
free ENLIST operation. In this section, we present a wait-free ENLIST implementation
adapted from a wait-free enqueue technique introduced by Kogan and Petrank [14]. We
also introduce an adaptive wait-free algorithm which allows applications to trade off
between average latency and worst-case latency of operations.

4.1 Wait-Free ENLIST Implementation

The enqueue technique introduced by Kogan and Petrank [14] provides a wait-free
approach to append nodes at the tail of a list, but it is not immediately available as a
solution to the ENLIST problem where nodes are appended at the head position. We
employ prev fields to solve this problem. The additional code for implementing a wait-
free ENLIST is presented in Figure 2.
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datatype DESC

phase : N // integer phase number

pending : B // whether operation is pending

node : NODE // pointer to the enqueueing node

global variables
head : NODE

dummy : NODE

counter : N
status : DESC[THREADS]

initially
head ← new NODE〈−1,REM, nil, nil,−1〉
dummy ← new NODE〈−,−,−,−,−〉
counter ← 0
foreach d in status do

d ← new DESC〈−1, false, nil〉

68 procedure ENLIST(h : NODE)
69 phase ← F&I(&counter)
70 status[threadid] ← new DESC〈phase, true, h〉
71 for tid ← 0 ... (THREADS − 1) do
72 HELPENLIST(tid, phase)

73 HELPFINISH()

74 function ISPENDING(tid : N, phase : N) : B
75 d ← status[tid]
76 return d.pending ∧(d.phase ≤ phase)

77 procedure HELPENLIST(tid : N, phase : N)
78 while ISPENDING(tid, phase) do
79 curr ← head
80 pred ← curr.prev
81 if curr = head then
82 if pred = nil then
83 if ISPENDING(tid, phase) then
84 n ← status[tid].node
85 if CAS(&curr.prev, nil, n) then
86 HELPFINISH()
87 return

88 else
89 HELPFINISH()

90 procedure HELPFINISH()
91 curr ← head
92 pred ← curr.prev
93 if (pred 
= nil)∧(pred 
= dummy) then
94 tid ← pred.tid
95 d ← status[tid]
96 if (curr = head)∧(pred = d.node) then
97 d′ ← new DESC〈d.phase, false, d.node〉
98 CAS(&status[tid], d, d′)
99 pred.next ← curr

100 CAS(&head, curr, pred)
101 curr.prev ← dummy

Fig. 2. A Wait-free ENLIST Implementation

The basic idea of the wait-free ENLIST algorithm is to let different ENLIST op-
erations help each other to complete. The helping mechanism must ensure that ev-
ery ENLIST operation reaches the response point in bounded number of steps (wait-
freedom). This requires every thread to announce its intention by creating a descriptor
entry in a status array before starting an operation. During its operation, the thread
must visit each entry in the status array, helping other threads to make progress. To pre-
vent starvation, each operation is assigned a phase number from a strictly increasing
counter, and an operation only helps those with smaller phase numbers.

The wait-free ENLIST operation goes through six steps, as depicted in Figure 3:

(a) The thread first announces its operation by creating a descriptor entry in its slot
(indexed by its thread id) in the status array (line 70). The descriptor contains the
phase number of the operation, a boolean pending field that indicates whether the
operation is incomplete, and a pointer to the enlisting node. Once the descriptor is
announced, the subsequent steps can be performed by the thread itself or by some
helper thread.

(b) The thread finds the node pointed to by head, and attempts to change its prev field
to the enlisting node h by a CAS instruction (line 85).

(c) The thread sets the pending flag of the operation descriptor to false by installing
a new descriptor (line 98); this prevents concurrent helpers from retrying after the
node is enlisted.
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Fig. 3. Wait-free ENLIST Implementation Extended from the Kogan-Petrank Algorithm

(d) The thread sets h.next to point to the original head node (line 99), which is the
linearization point of the ENLIST operation. The ordering of this step is important
with respect to steps (b) and (e). That is, the update of h.next must be ordered
after head.prev is set to h, since the correct successor of h is “unknown” until
then. On the other hand, h.next must be updated before head is changed to h,
since otherwise a concurrent CONTAINS operation may start traversing from h and
erroneously end by discovering h.next is nil.

(e) The thread fixes head by changing it to h using a CAS (line 100).
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(f) Finally, the thread clears the prev field of the original head by setting it to a dummy
state (line 101). This is necessary for allowing the garbage collector to recycle
deleted nodes. Since the prev pointers are installed by the wait-free ENLIST im-
plementation, and the lock-free algorithm is unaware of their existence, keeping
the prev pointers prevents the garbage collector from reclaiming a node even if the
node is considered “unreachable” by the lock-free algorithm. It is worth noting that
we must invalidate the prev pointer by setting it to a dummy state instead of nil,
since the latter would admit ABA problems for the CAS instruction (line 85). Once
the prev field of a node is set to dummy, it never changes.

4.2 An Adaptive Algorithm

Although the wait-free algorithm provides an upper bound on the steps required to
complete an operation in the worst case, it imposes overhead in the common cases
when contention is low. We employed the “fast-path-slow-path” methodology [15] to
construct an adaptive algorithm that performs competitively in the common case while
retaining the wait-free guarantee.

In the adaptive algorithm, a thread starts by executing a fast path version of the
ENLIST operation, and falls back to the wait-free slow path if the fast path fails too
many times (bounded by constant F ). To prevent a thread from repeatedly taking the
fast path while another thread starves, every thread checks the global status array after
completing D operations, and performs helping if necessary. As shown in [15], for
n threads, the adaptive algorithm ensures that every ENLIST operation completes in
O(F +D ·n2) local steps. The F andD parameters can be adjusted to balance between
the worst-case and common-case latency of operations.

It is worth noting that the fast path ENLIST of the adaptive algorithm is not equivalent
to the lock-free ENLIST implementation in Figure 1. Instead, the fast path algorithm
resembles the wait-free protocol, but excluding the announcing and helping steps.

5 Performance Evaluation

We evaluate performance of the lock-free and wait-free list algorithms via a set of mi-
crobenchmarks. These experiments allow us to vary the ratio of INSERT, REMOVE and
CONTAINS operations, the range of key values, and the initial size of the list. We com-
pare the following list-based set algorithms:

HarrisAMR: Implementation of the Harris-Michael algorithm [16] which also incor-
porates the wait-free CONTAINS technique introduced in [9]. The implementation uses
Java AtomicMarkableReference objects to atomically mark deleted nodes.

HarrisRTTI: Optimized implementation of HarrisAMR in which Java run-time type
information (RTTI) is used in place of AtomicMarkableReference. This is the
best-known lock-free list implementation.

LazyList: Lock-based optimistic list implementation proposed by Heller et al [9].

LFList: The lock-free unordered list algorithm discussed in Section 3.
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Harris LazyList LFList WFList Adaptive

INSERT Cost 1 CAS 2 CAS 2 CAS 4 CAS + 1 F&I 3 CAS

REMOVE Cost 2 CAS 2 CAS 1 CAS 3 CAS + 1 F&I 2 CAS

Traverse Distance 1
2
k (1− α

2
)k

Fig. 4. Update Cost and Average Traversal Distance (in uncontended cases)

WFList: The basic wait-free unordered list algorithm discussed in Section 4.

Adaptive: The adaptive wait-free unordered list algorithm discussed in Section 4.2.

FastPath: The fast-path portion of the Adaptive algorithm from Section 4.2.

In all implementations (except “HarrisAMR”), we use Java “FieldUpdaters” to per-
form CAS instructions on object fields. This approach provides better performance than
simply using atomic fields (i.e. AtomicInteger and AtomicReference), which
require expensive heap allocation cost and extra indirection overhead.

Experiments were conducted on an HP z600 machine with 6GB RAM and a 2.66GHz
Intel Xeon X5650 processor with 6 cores (12 total threads) running Linux kernel 2.6.37
and OpenJDK 1.6.0. Each data point is the median of five 5-second trials. Variance was
always below 5%.

5.1 Expected Overheads

Figure 4 enumerates the expected overheads of each of the algorithms. The cost of
a successful list operation is affected by the update cost and the traversal cost. We
measure the cost of an update operation (INSERT or REMOVE) by the number of atomic
instructions required in the uncontended case. Compared to the Harris algorithm, LFList
uses an extra CAS instruction in INSERT and one less in the REMOVE operation. The
WFList requires 2 more CAS instructions to provide wait-freedom, though this cost is
reduced in the Adaptive algorithm by leveraging the lock-free fast path.

The traversal cost is the average number of nodes that must be accessed. Suppose the
list contains k elements uniformly selected from range [0...M) and let k = αM (0 ≤
α ≤ 1). The average traversal distance for searching a random key value in an ordered
list is: Do = 1

2k. In unordered lists, the average traversal distance is averaged among
successful and unsuccessful search operations:Du = α · 1

2k + (1 − α)k = (1 − α
2 )k.

This suggests that ordered lists have an increasing advantage over unordered lists when
the set is sparse. For instance, when α = 1

2 (half of key space is in the set), the average
traversal distance in an unordered list is 50% longer than its ordered permutation. Note
too that in the ordered lists, an unsuccessful insert/remove does not perform a CAS,
whereas every insert/remove in the unordered list performs a CAS.

5.2 x86 Performance

In Figures 5–7, we assess the performance of the lists for a variety of workloads.
The “L” parameter indicates the percentage of operations that are lookups, with the
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Fig. 5. Microbenchmark - Short Lists (L: Lookup Ratio, R: Key Range, S: List Size)

remainder evenly split between inserts and removals. “R” indicates the key range, and
“S” indicates the average size of the list. In every case, the list is pre-populated with a
random selection of S unique elements in the range [0, R). These elements are chosen
at random, without replacement. Thus in the unordered lists, they will not be ordered.

The x86 processor features an aggressive pipeline, a deep cache hierarchy, and low-
latency CAS operations. On this platform, the cost of write-write sharing is high, and
thus both the wait-free enlistment mechanism and conflicting CAS operations on the
head of the list are potential scalability bottlenecks. Nonetheless, our lock-free and
wait-free algorithms scale well in all but a few cases. Indeed, the difference in perfor-
mance appears to be much more a consequence of the increased traversal distance in
the unordered algorithm than a consequence of increased cache misses due to frequent
updates to the head of the list.

The most immediate and consistent finding is that the Harris list without RTTI op-
timizations has substantially higher latency and worse scalability than all other algo-
rithms. We include this result as a reminder that concurrent data structures must be
implemented using state-of-the-art techniques. Merely showing improved performance
relative to the canonical Harris list presented in [12] does not give any indication of
real-world performance. In particular, we caution that a direct comparison between our
list and the wait-free ordered list [23] is not possible until that list is redesigned to use
these modern optimizations.

We also see that long-running and read-only operations significantly reduce the cost
of wait-free enlistment. When lists are small and updates are frequent, the enlistment
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Fig. 6. Microbenchmark - Medium Lists (L: Lookup Ratio, R: Key Range, S: List Size)
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table and counter themselves become a bottleneck. Otherwise, the adaptive algorithm
and its FastPath component are nearly identical.

The FastPath lock-free list is always a constant factor slower than the lock-free
unordered list, but the Adaptive algorithm remains close to FastPath. This finding con-
firms Kogan and Petrank’s claim [15] that the fast-path-slow-path technique can provide
worst-case wait-freedom with lock-free performance. Furthermore, since the average
operation in our list accesses many locations, contention on the head node of the list,
while significant, does not dominate. Thus we observed that even for small thresholds,
the adaptive algorithm rarely fell back to wait-free mode. However, it is important to
observe that the lock-free FastPath algorithm itself is slower than our best lock-free
unordered list. We shall return to this point in Section 6.

6 Discussion and Future Work

In their paper introducing the fast-path-slow-path methodology, Kogan and Petrank
state that “. . . each operation is built from a fast path and a slow path, where the former
is a version of a lock-free implementation of that operation, and the latter is a version
of a wait-free implementation. Both implementations are customized to cooperate with
each other [15, Sec. 3].”

Given a lock-free algorithm L, the question then is how to apply the methodology
to produce a wait-free algorithm that does not sacrifice performance. We will consider
L as consisting of three phases: a prefix (instructions that occur before the lineariza-
tion point), a CAS operation (the linearization point), and a suffix (clean-up operations
that follow the linearization point). Considering the three existing fast-path-slow-path
algorithms (this work, ordered lists [23], and queues [15]), we see a pattern emerge.

First, a correct wait-free algorithm W must be constructed. This entails adding an
announcement operation and operation descriptors to L. However, this step introduces
the possibility of helping in the prefix, and thus makes it possible for helping operations
to race (particularly if there are stores to memory that would not be shared in L). To
correct these races, extra fields must be added to nodes of the data structure, stores
must be upgraded to CAS instructions, and these CAS instructions must be sequenced
by performing intermediate updates (via CAS) to a descriptor after each prefix step.
It appears that changes to the suffix of the operation are not required, since the suffix
is either clean-up operations that already support helping (e.g., the second CAS in the
M&S queue [18]), or else operations that do not affect data structure invariants (e.g.,
the list traversal in HELPINSERT).

The second step is to perform a reduction that yields a lock-free algorithm L’ that
remains compatible with W. The first step of the reduction is to elide the announce
operation and descriptor updates in L’. Then W must be analyzed, step-by-step, and
simplified in an ad-hoc manner. In the ideal case, the result is the original lock-free
algorithm L. Currently, it appears that the ideal case only occurs when the prefix is
empty and the linearization point is the first CAS. Otherwise (as is the case in our list
and the ordered list [23]), L’ will need additional CAS instructions (relative to L) to
keep its prefix compatible with the prefix of W.

Nonetheless, the ability to create low-latency wait-free data structures is valuable,
particularly data structures as fundamental as linked lists. To emphasize the
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significance of our wait-free unordered list, note that our list can be extended to support
a REMOVEHEAD operation. Such an operation would resemble our REMOVE opera-
tion, but using a wildcard as its key value, and would immediately yield a wait-free
stack. In contrast to stacks, constructing wait-free resizable hash tables based on our
lists will be nontrivial. One challenge is that the shared descriptor array may become
a bottleneck; were it not for resizing, each bucket could have its own descriptor array.
However, the unordered nature may simplify other aspects of the design, for example,
easing the implementation of list merging/splitting since the resulting lists need not be
sorted.

Acknowledgements. We would like to thank Tim Harris, Alex Kogan, Victor Luchangco
and our anonymous reviewers for their helpful suggestions during the preparation of our
final manuscript.
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Abstract. A randomized construction of unbounded snapshots objects
from atomic registers is given. The cost of each snapshot operation is
O(log3 n) atomic register steps with high probability, where n is the
number of processes, even against an adaptive adversary. This is an ex-
ponential improvement on the linear cost of the previous best known
unrestricted snapshot construction [7,8] and on the linear lower bound
for deterministic constructions [9], and does not require limiting the num-
ber of updates as in previous sublinear constructions [4]. One of the main
ingredients in the construction is a novel randomized helping technique
that allows out-of-date processes to obtain up-to-date information with-
out running into covering lower bounds.

1 Introduction

An atomic snapshot object allows processes to obtain the entire contents of a
shared array as an atomic operation. The first known wait-free implementations
of snapshot from atomic registers [1,2,6] required Θ(n2) steps to carry out a
snapshot with n processes; subsequent work [7,8] reduced this cost to O(n),
which was shown to be optimal in the worst case for non-blocking deterministic
algorithms by Jayanti et al. [9].

Limitations of the Jayanti et al. lower bound became apparent with the de-
velopment of wait-free sublinear-complexity limited-use variants of objects to
which the lower bound applied. These included deterministic implementations of
max registers (which, when read, return the largest value written to them) and
counters [3], and even snapshot objects [4], all with individual step complexity
polylogarithmic in the number of operations applied to them.1 These objects
still have linear cost in the worst case, but the worst case is reached only after
exponentially many operations.

1 In the case of snapshot, this requires both registers large enough to hold a complete
snapshot and the cooperation of updaters. The assumption of large registers may
be avoidable for some applications of snapshot where only summary information is
needed.
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The dependence on the number of operations was shown to be necessary
initially for max registers [3], and later for a variety of objects satisfying a per-
turbability condition similar to that used in the Jayanti et al. lower bound [5].
Curiously, for randomized implementations these lower bounds were not larger
than O(log n) for any number of processes. This appeared to be a weakness of
the particular proof technique used to obtain the randomized lower bounds.

We show that it is not the case that other techniques may produce larger
lower bounds. Using a new randomized helping procedure along with a simple
approximate max register implementation, it is possible to accelerate the max
register implementation of [3] so that every operation finishes in O(log n) steps
with high probability, regardless of the number of previous operations, provided
the max register value does not change too quickly. Applying the same tech-
niques to the max array of [4] (a pair of max registers supporting an atomic
snapshot operation) yields a max array with O(log2 n) step complexity with high
probability, under the same restriction. This can be used in the snapshot im-
plementation of [4] to obtain atomic snapshots with O(log3 n) step complexity
with high probability. Because the use of the max array within the atomic snap-
shot satisfies the restriction on changes in value, the complexity of the snapshot
implementation holds without restrictions. The end result is a polylogarithmic
snapshot implementation in which the cost of each operation does not depend
on the number of operations but only on the number of processes.

1.1 Previous Constructions

Before giving more detail on our construction, we give a quick review of the
previous work on which it is based. The basic building block of the bounded
snapshot construction in [4] is a 2-component max array. This object supports a
write operation, which specifes a value and a component, and a read operation,
which returns a pair of the maximal values written to the two components in all
write operation linearized before it. To directly build an unbounded snapshot
object we need an unbounded version of a max register, and an unbounded
version of a 2-component max array.

The max register construction of [3] is based on a tree of switches, which are
one-bit registers that initially hold the value 0 and can only be set to 1. Each
leaf represents a value for the register. A write operation sets the switches on the
path toward the respective leaf, while a read operation follows the rightmost path
of set switches to get the largest value written. The problem with an unbounded
max register according to this construction is that the length of an operation
reading the rightmost path in the infinite tree construction is unbounded. This
is because this operation is searching for the first node on the rightmost path
whose switch is 0, and the depth of this node depends on the values that have
been written, which are now unbounded. Even worse, such an operation is not
guaranteed to be wait-free, as it might not terminate if new writes keep coming
in with greater values, forcing it to continue moving down the tree to the right.
To handle this, the tree is backstopped with a linear snapshot object that is
used for larger values in order to bound the number of steps. Formally, this
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means that at some threshold level, the node on the rightmost path of switches
no longer points to an infinite subtree of switches but rather to a single linear-
time snapshot object, and all write operations set the switch at this node after
writing their value to the snapshot object, and all read operations accessing this
node continue by reading the snapshot object. In total, this gives a complexity
of O(min (log v, n)) steps per operation that reads or writes the value v.

The max array construction of [4] builds upon the above max register con-
struction by combining the trees of the two components in a subtle manner.
The data structure consists of a main tree, corresponding to the tree of the first
component. The tree of the second component is embedded in the main tree at
every node. That is, each switch of the main tree is associated with a separate
copy of the tree of the second component. Writing to the first component is
done by writing to the main tree, ignoring the copies of the second component
at the switches. Writing to the second component is done by writing to the copy
associated with the root of the main tree. The coordination between the pairs of
values is left for the read operations. Such an operation travels the main tree in
order to read the value of the first component, while dragging along the maximal
value it reads for the second component along its path. It is proven in [4] that
this implementation gives a linearizable 2-component max array.

1.2 Our Contributions

Our first contribution is an O(log n) construction of an unbounded max register,
which overcomes the obstacle of the construction of [3] by combining a new
approximate max-register with a novel technique of randomized helping.
In essence, this technique allows an operation that is traveling down the tree to
the right (we refer to the rightmost path of the tree as the spine of the tree) for
too long to jump farther ahead to a point on the spine that is the correct one,
that is, the first point on the spine for which the switch is unset. This is done by
adopting a location in the spine used by another operation, with the challenge
of making sure that this value is fresh—recent enough that the first operation
can use it without violating linearizability. The only condition we place on the
usage of the max register in order for this to work is that operations write values
that are not increasing too fast. We need this condition in order to argue that
once the operation found the correct node on the spine, it can safely continue to
the left subtree without the worry that a new write operation is now writing a
much larger value that is placed farther down the spine. While at first glance this
might seem as a strong restriction, this is actually a very reasonable condition
in applications that use max registers, and in particular it is satisfied by our
implementation of an unbounded snapshot object.

Our second contribution is a 2-component max array that is unbounded, and
whose cost per operation does not depend on the number of operations. The
natural thing to try is embedding the unbounded max register construction in
the 2-component max array construction of [4]. However, this does not work
directly, since the main insight there is that values of the second component
need to be propagated down while traveling the tree of the first component
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in order to guarantee that returned pairs are comparable. This cannot be done
within our randomized helping technique because operations may jump down the
spine without accessing each node along the way. We address this problem by
restructuring the 2-component max array implementation such that operations
that go right on the spine re-read the value of the second component that is
located at the root. The main observation here is that a single re-reading of the
root is inexpensive, and that we do not care that this information skips the nodes
between the root and the target node since the second component of these nodes
will never be accessed again (because their switches are either set or skipped).

Plugging these two contributions into the snapshot implementation of [4] gives
an implementation of an unbounded snapshot object with an O(log3 n) step
complexity (with high probability) for updating or scanning the object.

2 Unbounded Max Registers with Bounded Increments

A max register [3] supports operations WriteMax(v) and ReadMax(), where
WriteMax(v) writes the value v to the max register and ReadMax() returns the
largest value previously written. The purpose of a max register is typically to
avoid lost updates, by ensuring that old values (tagged with smaller timestamps)
cannot obscure newer values, regardless of the order in which they are written.
In this section, we show how to construct an unbounded max register that is
linearizable in all executions and wait-free with O(log n) step complexity with
high probability in executions with bounded increments.

2.1 Bounded Max Registers

We begin by reviewing the max register implementation of Aspnes et al. [3]. The
idea is to implement the register as a fixed binary tree of one-bit atomic registers,
referred to as switch bits. Initially these bits are all 0, which is interpreted as
pointing to the left child of the register, while a 1 points to the right child. Each
value of the max register corresponds to a leaf of the tree (which does not get a
register). A ReadMax operation follows the path determined by the values of the
switch bits until it reaches a leaf; the number of leaves to the left of this leaf (its
rank) gives the return value. (See Algorithm 1.)

An unbalanced tree backed by a linear-time snapshot implementation gives a
cost of O(min(log v, n)) for an operation that read or writes the value v. Aspnes et
al. [3] show that O(min(log v, n)) is optimal for deterministic obstruction-free max
register implementations from atomic registers. For randomized implementations,
they show a weaker lower bound of O(log n/ log log n) steps for n-bounded max
registers. This lower bound is obtained as a trade-off between the complexities of
ReadMax and WriteMax operations.

We will show that with randomization, the dependence on v can be eliminated.
It is possible to build a snapshot object (and thus a max register), whose cost
is polylogarithmic in n with high probability for all operations, regardless of the
size of the values it contains.
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1 Shared data:
2 switch: a single bit multi-writer register, initially 0
3 left: a MaxRegisterm object, where m = �k/2�, initially 0,
4 right: a MaxRegisterk−m object, initially 0
5
6 procedure WriteMax(r, v)
7 if v < m then
8 if r.switch = 0 then
9 WriteMax(r.left, v)

10 else
11 WriteMax(r.right, v − m)
12 r.switch ← 1

13
14 procedure ReadMax(r)
15 if r.switch = 0 then
16 return ReadMax(r.left)
17 else
18 return ReadMax(r.right) + m

Algorithm 1. Implementation of WriteMax(r, v) and ReadMax(r) for a
MaxRegisterk object called r

2.2 An Unbounded Max Register Implementation

We now show how to extend the results of [3] to allow an unbounded max
register that nonetheless has fixed cost per operation with high probability. The
first step is to bound the cost of WriteMax operations. We will do this under the
assumption of k-bounded increments, which we will define by the rule that
each new WriteMax operation writes a value v that is at most k more than the
largest input to any previously initiated WriteMax operation.2 This assumption
will be justified later by the details of our unbounded snapshot construction.

As in a standard max register, the core of our unbounded max register is a
binary tree of switch bits. But now the tree is infinite, consisting of an infinite
spine forming the rightmost path through the tree, each node of which has an
m-valued max register (implemented as a balanced �log m�-depth tree), where
m is an integer that will be chosen later, rooted at its left child (see Figure 1 ).
Using this tree with the original algorithm, a WriteMax(v) operation must walk
all the way from the root of the tree to the corresponding leaf, which will be
found in the �v/m�-th m-valued max register. It must then walk back up to the
root, setting switch bits as needed, giving a cost of O(v/m + log m).

In our algorithm, we assume that the tree is packed in memory so that a
WriteMax(v) operation can access the root of the �v/m�-th max register directly.
Within this subtree, it executes the standard algorithm; but along the spine, it
sets only as many switch bits as are needed to guarantee that all ancestors are set;
2 Note that we do not require that this previous WriteMax operation finished.
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this is checked by performing an embedded ReadMax operation. This optimization
does not affect correctness, because setting switches that are already set farther
up the spine has no effect. What it does give is an improvement to the step
complexity under the assumption of k-bounded increments, since between the n
processes v can have increased by at most kn above the value of the last complete
WriteMax, meaning that only kn/m steps up the spine are needed.

Setting aside for the moment the cost of the ReadMax, this gives a cost for the
WriteMax of O(log m) for updating the m-valued max register plus O(kn/m) for
updating the segment of the spine. We will later choose k and m in a way for
which the above results in O(log n) steps per WriteMax operation. Note that as-
suming bounded increments, this procedure gives this complexity for WriteMax
operations without dependence on the value being written and that this imple-
mentation is deterministic. However, the ReadMax operations still suffer from the
problem mentioned earlier: they are not wait-free in the presence of concurrent
WriteMax operations with increasing values. For this we add an additional mech-
anism of randomized helping. Algorithm 2 is a pseudo-code of our implementa-
tion, where WrapWriteMaxi and WrapReadMaxi are the operations for process i,
which invoke WriteMax and ReadMax operations as in [3] on the m-values max
registers (in which the process id does not matter).

We now provide a high-level description of the helping mechanism. Each
WriteMax operation is wrapped with a WrapWriteMaxi procedure, as follows.
WrapWriteMaxi operations by process i cycle over the PIDs, helping one process
at a time. The operation then reads the timestamp, TS[s], associated with the
current helped process, s, written to TS[s] by a WrapReadMaxs operation. It then
reads the value v′ of the max register, and if the value v it needs to write is
larger than v′ it goes ahead and writes it into the max register. It then records
the maximum between v and v′ into a helping array, along with the timestamp
it saw for s, and updates a random location in a pointer array with its pid. A
WrapReadMaxi operation first increments its timestamp and then takes a certain
amount of steps reading the max register. If it does not finish within that num-
ber of steps, it tries to get help from a random process chosen from a random
location in the pointer array. Getting help is done by checking whether the cho-
sen helping process, j, holds the current timestamp of process i, performing the
WrapReadMaxi operation, and if so, taking its value from its helping array.

The idea behind the proof is that if a ReadMax operation takes too many
steps trying to read the max register without finishing, it must be that there are
many concurrent WriteMax operations that keep sending it down the spine. But
in such a case, the WrapReadMaxi operation finds a value in one of the helping
arrays that it may use, in the sense that it was updated by one of these concur-
rent WrapWriteMaxj operations – specifically, after the WrapReadMaxi operation
started.

Next, we proceed with the formal proof. Let spine be the array induced by
the switch bits on the spine of the tree. Let Mi be the m-valued max register
whose root is spine[i].
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spine

m-valued 
max registers

Fig. 1. An unbounded max register

1 Shared Data:
2 array TS[1..n] where T S[i] = timestamp for process i
3 array pointer[1..n3]; each entry is a pid
4 array help[i]; each entry consists of
5 value = integer, most recent value seen by a WrapWriteMaxi operation
6 TS[j] = integer, most recent timestamp of pj seen by a WrapWriteMaxi

operation
7 procedure WrapWriteMaxi(v)
8 s ← s + 1 mod n // initialized to 0
9 t ← TS[s]

10 v′ ← WrapReadMaxi()
11 if v > v’ then
12 WriteMax(M�v/m�, v mod m) // Write to the corresponding m-valued

max register
13 for j = �v/m� to �v′/m� do
14 spine[j] ← 1

15 help[i].value ← max(v, v′)
16 help[i].TS[s] ← t
17 pointer[random()] ← i

18 procedure WrapReadMaxi()
19 TS[i] ← TS[i] + 1
20 while true do
21 for t = 1 to c′ log m // For a constant c′, to be fixed in the step

complexity proof do
22 Take a step of ReadMax()
23 if finished (initially false) then
24 return value
25 else
26 j ← pointer[random(1, . . . , n3)]
27 if help[j].TS[i] = TS[i] then
28 return help[j].value

Algorithm 2. Max register with randomized helping; code for process i
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We linearize a WrapWriteMaxi operation writing a value v at the first time in
which all the relevant switches on the path from the root to the leaf corresponding
to v are set. We linearize a WrapReadMaxi operation that returns in Line 24
at the time the corresponding original ReadMax is linearized. We linearize a
WrapReadMaxi operation that returns in Line 28 at the linearization point of the
WrapReadMaxj operation by pj that is part of the WrapWriteMaxj operation that
wrote to help[j].T S[i] the value read by WrapReadMaxi in Line 27.

It is worth mentioning that, as the proof below shows, we do not need the
assumption of k-bounded increments for linearizability of the construction. This
assumption is used only for bounding the step complexity.

Lemma 1. Algorithm 2 is a linearizable implementation of an unbounded max
register.

Proof. We base our proof on the correctness proof of the max register construc-
tion in [3]. We need to address two issues that differ in our implementation.
First, we need to address WrapWriteMaxi operations and show that the switches
leading to a written value are indeed set by the time it terminates, showing that
our linearization is well defined. The second issue is that we need to address
WrapReadMaxi operations that return in Line 28.

We use an induction on the order of linearization points to prove the correct-
ness of the linearization. We add to the inductive claim the invariant that all
switches on the path from the root to a leaf corresponding to a value v written
by a WriteMax operation op are set if the path descends to their right child on
the tree, by the time op finishes. This clearly holds for the base case, when no
operation has yet been performed.

Assume that the linearization is correct up to some operation t−1 in the total
order it induces. Let op be the t-th operation, and assume it is a WrapWriteMaxi

operation. By construction, all appropriate switches inside M(�v/m�) are set in
Line 12. By the induction hypothesis, all spine switches from the root down to
location �v′/m�, where v′ is the value read by op in Line 10, are set. The loop
in Line 13 then shows that the invariant still holds.

Next, since correctness for WrapReadMaxi operations that return in Line 24
now follows from the proof in [3], let op be a WrapReadMaxi operation that
returns in Line 28. Let op′ be a WrapWriteMaxj operation by pj that writes to
help[j].TS[i] the timestamp read by op in Line 27. Let op′′ be the WrapReadMaxj

operation performed by op′ in Line 10. Since op′′ is performed after op writes to
TS[i] and before op′ writes to help[j].TS[i], the linearization point of op′′ is within
the execution interval of op. By the correctness of the linearization points of the
construction in [3], the value returned by op, which is the maximum between the
value returned by op′′ and the value written by op′, is the largest value written
by operations that are linearized before op.

Having shown that this implementation is linearizable, we turn to prove its
logarithmic step complexity. Here we choose m = 3cn3 log n ≤ O(n4) and k =
O(n2 log2 n) for some fixed constant c that is required by the proof.
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Lemma 2. The step complexity of operations in Algorithm 2 is O(log n) with
high probability, when taking m = O(n3 log n) and assuming k-bounded incre-
ments for k = O(n2 log2 n).

Proof. Let opi be a WrapReadMaxi operation by pi. We say that a process pj is
current for operation opi if help[j].TS[i] = TS[i], where TS[i] is the timestamp
written by op. Every process pj can perform at most n WrapWriteMaxj operations
before it becomes current for opi, since j iterates over the processes to help.

By a coupon collector argument (see, e.g., [10, Chapter 2]), there is a constant
c such that after cn3 log (n3) executions of Line 26, opi covers all elements of the
array pointer. Suppose that 3cn3 log n wrapped WriteMax operations begin after
TS[i] is incremented. Then, at most n2 of these operations are by processes that
are not current for opi. There can be at most n2 different locations in the pointer
array written by such process, plus at most n − 1 locations that have operations
by current processes pending to write them, but still contain previous values.
The rest of the Θ(n3) locations hold values written by processes that are current
for opi. This implies that the probability of opi choosing a random location in
pointer that holds a value written by a process that is current for it is at least
1 − (n + n2)/n3 = 1 − O(1/n).

Assume now that opi does not complete its ReadMax operation in Line 21
within c′ log m steps, where the constant is such that the number of steps is
enough to read a spine segment and an m-valued max register covering km
values. For this to happen, opi takes at least O((c′ − 1) log m) steps down the
spine (otherwise, it goes down some m-valued max register and terminates within
another O(log m) steps). By the k-bounded increments assumption, there are at
least m values being written for this to happen. Taking m to be 3cn3 log n ≤
O(n4) now gives that the probability of opi choosing a random location in pointer
written by a process current for it is at least 1 − O(1/n). Therefore, with high
probability, opi finishes within O(log m) = O(log n) steps.

A WrapWriteMaxi operation opi takes O(log m + kn/m) steps in addition to
calling WrapReadMaxi. We choose k = O(n2 log2 n) such that kn/m = O(log n)
and therefore the number of steps required for this operation is also O(log n),
completing the proof.

3 Unbounded Max Arrays with Bounded Increments

To present our unbounded 2-component max array, we first describe the im-
plementation in [4] and then show how to overcome the obstacles that arise
when embedding our unbounded max register in that construction. The [4] 2-
component max array roughly works as follows. It has a main tree for the max
register of the first component, where each of the switches is associated with a
MaxRegister variable tail, that holds copy of the max register of the second com-
ponent. A write operation to the first component simply ignores these copies,
and travels up the main tree from the relevant leaf to the root, setting the re-
quired switches along the way. A write operation to the second component writes
only to the tail copy associated with the root of the main tree. A read operation
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travels down the main tree reading the first component, while reading the tail
copy of the second component at every switch and updating it if it saw a greater
value earlier up the tree.

Propagating the values of the second component down the main tree is the
key ingredient in guaranteeing that returned pairs are comparable. The main
invariant that needs to be maintained is that a reader does not go right at
a switch of the main tree returning a value for the second component that is
smaller than that returned by a reader who goes left at that switch. In [4], this
is guaranteed by having the reader re-read the tail copy of a switch that is set,
and propagating this fresher value down to the right subtree.

However, embedding our max register in this construction does not work: in
our max register implementation, a read operation does not travel all the way
down from the root to the leaf, therefore it cannot drag the value of the second
component with it. This causes gaps in the values of the tail copies of the second
component along the tree, violating the required invariant.

To solve this, our observation is that we can re-read the tail copy of the second
component associated with the root of the main tree, instead of reading the tail
component of the current spine node, which may not have been updated. This guar-
antees that the value returned for the second component is always updated to the
largest one written. Notice that we can only do this with read operations that go
down the rightmost path of the main tree, that is, the spine. Otherwise, an oper-
ation that started early and goes left at some switch of the main tree might read
a value for the second component that is too large: larger than the one read by a
quicker operation that goes right. But the fact that we can do this only for the spine
fits our goals, and our approach to handle the above issue is to re-read the tail vari-
able at the root only when traveling the spine. At other switches the reader copies
the values down the tree as in the original construction, which is unaffected by our
max register implementation since gaps in switches can only occur on the spine, as
a process going down some m-valued max register travels an entire path from its
root to a leaf. Algorithms 3 and 4 show the pseudo-code.

Instead of repeating the linearizability proof of the 2-component max array
in [4] (denoted by Alg hereafter), we reduce the algorithm in Algorithms 3 and 4
to Alg. In particular, we show that any execution of the algorithm can be trans-
lated to an execution of Alg in a way which preserves returned values, implying
that the linearization of Alg also applies to the algorithm in Algorithms 3 and 4.
The intuition is that whenever a ReadMaxArray operation goes down the spine
of the main tree, just before it is about to read the copy of the second component
again before going right, we imagine that a very quick ReadMaxArray operation
in Alg starts and runs solo, going down the spine of the main tree, propagating
the value of the second component that is at the copy of the second component
associated with the root. If we then let the first ReadMaxArray operation do
its read then it gets exactly the value associated with the root at that time.
Hence, it cannot distinguish between these two executions, and we can take its
linearization point as that of its corresponding operation in Alg. Following is the
formal proof of the above argument.
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1 Shared Data:
2 switch: a 1-bit multi-writer register, initially 0
3 left, right: two MaxArray objects with an unbounded second component, initially

(0,0); at the spine, left has an m-bounded first component and right has an
unbounded first component; at a MaxArray with a b-bounded first component
for any integer b, the first component of both left and right is b/2-bounded

4 tail: an unbounded MaxRegister object, initially 0
5 array TS[1..n] where TS[i] = timestamp for process i
6 array pointer[1..n3]; each entry is a pid
7 array help[i]; each entry consists of
8 value = most recent value seen by pi

9 TS[j] = most recent timestamp seen by pi for pj

10 procedure WriteMaxArray0(r, v) // Write to the first component
11 s ← s + 1 mod n // initialized to 0
12 t ← TS[s]
13 (v′, v′′) ← ReadMaxArray(r)
14 if v > v’ then
15 WriteMax(M�v/m�, v mod m)
16 for j = �v/m� to �v′/m� do
17 spine[j] ← 1

18 help[i].value ← max(v, v′)
19 help[i].TS[s] ← t
20 pointer[random(1, . . . , n3)] ← i

21
22 procedure WriteMaxArray1(r, v) // Write to the second component
23 WrapWriteMaxi(r.tail, v)

Algorithm 3. Writing to the 2-component max array; code for process i

Theorem 1. The algorithm in Algorithms 3 and 4 is a linearizable implemen-
tation of a 2-component max array. It has a step complexity of O(log2 n) per
operation with high probability, when taking m = O(n3 log n) and assuming k-
bounded increments for k = O(n2 log2 n).

Proof. Let α be an execution of the algorithm in Algorithms 3 and 4 with
processes {p0, . . . , pn−1}. We construct a sequence of executions α0, α1, . . . , α′,
which ends in an execution α′ of Alg, for which the return values of all operations
are the same as in α.

Every execution αj in the sequence is an execution with n + 1 processes, such
that every process pi ∈ {p0, . . . , pn−1} invokes the same operations as in α, and
process pn is an extra process that performs only ReadMaxArray operations. If in
α the process pi reads the copy of the second component associated with the root
in Line 8, then starting from some αj it reads the copy associated with the current
switch (notice that this difference only occurs when reading locations on spine).

Even though pi reads different locations in α and αj , steps by pn are used to
make it obtain the same values. We define the behavior of pn by induction. In α0
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1 procedure ReadMaxArrayDirect(r)
2 x ← WrapReadMaxi(r.tail)
3 if r.switch = 0 then
4 WrapWriteMaxi(r.left.tail, x)
5 return ReadMaxArrayDirect(r.left)
6 else
7 if on spine then
8 x ← WrapReadMaxi(root.tail)
9 else

10 x ← WrapReadMaxi(r.tail)
11 WrapWriteMaxi(r.right.tail, x)
12 return ReadMaxArrayDirect(r.right) + (m, 0)

13
14 procedure ReadMaxArray(r)
15 TS[i] ← TS[i] + 1
16 while true do
17 for t = 1 to c′ log m // For a constant c′ as in Algorithm 2 do
18 Take a step of ReadMaxArrayDirect(r)
19 if finished then
20 return pair
21 else
22 j ← pointer[random(1, . . . , n3)]
23 if help[j].TS[i] = TS[i] then
24 firstComponent ← help[j].value
25 return ReadMaxArrayDirect(spine[firstComponent/m])
26

Algorithm 4. Reading the 2-component max array; code for process i

the process pn is not used, therefore it is the execution described above. Assume
executions α0, . . . , αj are defined and define execution αj+1 as follows. Let pi be
the first process in αj that reads root.tail in Line 8 corresponding to some location
x on the spine. Denote αj = α′

jsiα
′′
j such that si is that step of pi (note that we can

assume an operation on a max register is an atomic operation). We define αj+1 =
α′

jσs′
iα

′′
j , where in σ process pn performs a read operation and s′

i is a step by pi

reading the copy of the second component associated with location x.
Our claim is that all operations return the same values in αj and in αj+1.

The reason is that pn reads the copy of the second component associated with
the root of the main tree and copies it down the spine at least until location
x since it starts after pi reaches x and hence all switches toward it are set.
Therefore, when pi reads the copy in x in s′

i in αj+1 it gets the same value
it reads from the root in si in αj . Finally, for some j we reach an execu-
tion α′ = αj of Alg, for which all returned values of processes {p0, . . . , pn−1}
are the same as in α. This execution α′ is linearizable by the proof of [4].
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Because pn performs only ReadMaxArray operations, removing these operations
from the linearization of α′ does not affect the return values of any other oper-
ations; this reduced linearization is thus a linearization of α.

4 Unbounded Snapshots
Given our unbounded 2-component max array implementation, we can now ob-
tain an unbounded snapshot object.

We use the construction from [4], which for convenience we restate here in
Algorithm 5 The shared data is:

– leafj , for j ∈ {0, . . . , n − 1}: the leaf node corresponding to process j, with
fields:

• parent: the parent of this leaf in the tree
• view[0, 1, . . .]: an infinite array, each of whose entries contains a partial

snapshot, view[0] contains the initial value of component j and view[�]
contains the �-th value of component j

• root: the root of the tree
– Each internal node has the fields:

• left: the left child of the node in the tree
• right: the right child of the node in the tree
• view[0, 1, . . .]: an infinite array, each of whose entries contains a partial

snapshot, view[0] contains the concatenation of leafj .view[0] for all leaves
leafj in the subtree rooted at this node, and view[�] contains the con-
catenation of views of the leaves after � updates

• ma: an infinite MaxArray object, initially (0,0)
– The root also has the field mr: an infinite MaxRegister object, initially 0
– Each non-root internal node also has the field parent: the parent of the node

in the tree

We use this algorithm with our implementations of unbounded max registers
and unbounded max arrays from the previous sections. Loosely speaking, the
construction is based on a balanced binary tree with n leaves, one for each
process. Each intermediate node holds a 2-component max array object for its
two children, that counts the number of update operations performed on each.
It also stores the (unique) view corresponding to this number. A process that
updates its location does so by updating the nodes from its leaf to the root, and
a process scans the object by reading the view held by the root. We emphasize
that correctness is always guaranteed in the above implementation, therefore the
proof from [4] shows that this gives an unbounded snapshot object. It remains to
show the step complexity of our construction. For this, we only need to show that
the k-bounded increment assumption holds, and use the complexity analysis of
the previous sections. Intuitively, this is because every MaxRegister is used only
to store the number of operations observed in the subtree of processes that it
represents. If the difference between two values written to a MaxRegister is more
than n, then some processes completed a WriteMax operation between these two
WriteMax operations, implying that the maximal difference was smaller to begin
with. Formally, we prove this claim in the following lemma.
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1 procedure Update(s, i, v)
2 counti ← counti + 1
3 u ← leafi

4 ptr ← counti

5 u.view[ptr] ← v
6 while u �= root do
7 if u = u.parent.left then
8 WriteMaxArray0(u.parent.ma, ptr)
9 if u = u.parent.right then

10 WriteMaxArray1(u.parent.ma, ptr)
11 u ← u.parent
12 (lptr, rptr) ← ReadMaxArray(u.ma)
13 lview ← u.left.view[lptr]
14 rview ← u.right.view[rptr]
15 ptr ← lptr + rptr
16 u.view[ptr] ← lview · rview
17 WriteMax(root.mr, ptr)
18 procedure Scan(s)
19 ptr ← ReadMax(root.mr)
20 return root.view[ptr]

Algorithm 5. Unbounded snapshot object; code for process i

Lemma 3. In Algorithm 5, all MaxRegister and MaxArray objects are accessed
according to the n-bounded increments assumption.

Proof. A process that performs WriteMaxArray on u.ma for some node u writes
the value of its ptr variable. We show that ptr holds a value which is at most
the number of Update operations invoked by processes corresponding to this
subtree, hence a value being written to u.ma is larger by at most n than the
largest value previously written to it. The claim follows by a simple induction
on the height of the node that holds the object. When accessing a leaf, ptr holds
the value of counti, which is the number of operations performed by process pi.
For an intermediate node u, ptr holds the sum of the values of its two children,
which, by the induction hypothesis are the number of Update operations invoked
by processes corresponding to these subtrees, which proves the claim. Finally,
the same holds for the value of ptr when the root is accessed, implying the claim
also for the MaxRegister object there.

Combining Lemma 3 with Theorem 1 gives our main theorem.

Theorem 2. Algorithm 5 is an implementation of an unbounded snapshot ob-
ject, with a step complexity of O(log3 n) per operation with high probability.
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5 Discussion

This paper gives the first sub-linear unbounded snapshot implementation from
atomic read/write registers. It is a randomized algorithm, with a step complexity
of O(log3 n) with high probability for each operation, where n is the number of
processes. The main component of the construction is a new randomized imple-
mentation of an unbounded max register with a complexity of O(log n) steps per
operation with high probability. The novelty of the construction is a randomized
helping technique, which allows slow processes to obtain fresh information from
other processes. The use of randomization avoids in most cases the linear worst-
case lower bound based on covering of Jayanti et al. [9], because the adversary
cannot predict what locations a process will read from the helper array and thus
cannot guarantee to cover those locations with old values. Conversely, the lower
bound shows that some use of randomization is necessary.
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Abstract. We give an adaptive algorithm in which processes use multi-
writer multi-reader registers to acquire exclusive write access to their own
single-writer, multi-reader registers. It is the first such algorithm that
uses a number of registers linear in the number of participating processes.
Previous adaptive algorithms require at least Θ(n3/2) registers.

Keywords: shared memory, read/write registers, distributed algorithms,
wait-free, space complexity, renaming.

1 Introduction

One way to implement multiprocess synchronization is by providing each process
with a single-writer, multi-reader atomic register (SWMR) that it can write and
other processes can read. We present an adaptive algorithm to implement such a
system of registers with an array of multi-writer multi-reader atomic (MWMR)
registers whose length is linear in the number of participating processes. The
algorithm is non-blocking unless an unbounded number of processes initiate
operations.

An adaptive algorithm, also called a uniform algorithm [13], is one that does
not know the number of potentially participating processes. Equivalently, it is
an algorithm whose cost is a function not of the total number of processes but
of the number of processes that actually participate in the algorithm. For the
SWMR registers, this is the number of processes that actually perform a read or
write operation. Our goal is to minimize the number of MWMR registers, and
our algorithm uses a number that is linear in the number of participants. No a
priori bound on this number is assumed.

Why do we find this algorithm interesting? There are simpler algorithms that
assume stronger communication primitives—for example, test and set registers—
but MWMR registers are the weakest ones for which we know that an adaptive
algorithm is possible. More efficient randomized algorithms are possible, but
our algorithm is always correct, not just correct with high probability. There is
a trivial way to implement a collection of SWMR registers with an array C of
MWMR registers. The ith process simply uses C [i ] as its register. Of course,
this algorithm uses an unbounded number of registers. The obvious way to
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make the number of registers linear in the number of participating processes is
by having the processes first execute an adaptive renaming algorithm [7,10] in
which each participating process is assigned a unique number from 0 to M for
some M that depends linearly on the number of participants. A process assigned
the number j then uses C [j ] as its register. However, we know of few renaming
algorithms that do not assume a collection of SWMR registers already allocated
to processes [6,8,19]. Those algorithms are all based on the grid-network of
“splitters” proposed by Anderson and Moir [19]. Of these, the more space-
efficient is an improvement of Aspnes [6] that requires Θ(k3/2) MWMR registers
for k participating processes. Even though the renaming algorithm is used only
to determine the assignment of processes to elements of the arrayC , the values in
those Θ(k3/2) registers must be maintained forever because additional processes
may enter the system at any time. (Reclaiming the space requires knowing an
a priori bound on the number of processes that might participate.) Thus, our
algorithm is the first that implements a collection of SWMR registers with O(k)
MWMR registers.

Almost all previous methods for making an algorithm adaptive start by using
one of several renaming algorithms [2,3,4,7,10]. It has generally been assumed
that this is the only way to implement an adaptive algorithm [9]. Based on
an idea in [11], our implementation avoids the use of a renaming algorithm to
begin reliable communication. Instead, participating processes first announce
their presence by using a non-blocking one-shot limited-snapshot algorithm that
we call the GFX (Generalized Fast eXclusion) protocol, which can be viewed as
generalizing [16] from 1-concurrency to k -concurrency. The snapshot is limited
to having the property that two snapshots of the same size coincide. It need not
ensure that snapshots of different sizes are related by containment. To perform
a read or write operation to a register, a process first reads the posted snapshots
to find the number n of participants that have announced their presence, and
it executes an algorithm [11] that assumes at most n processes. It then reads
the number of participants again, finishing the operation if that number still
equals n. Otherwise, the process repeats the n-process algorithm for the new
value of n. While we use this approach to implement renaming, it can be used
to provide an adaptive implementation of any task.

By using our adaptive algorithm for implementing a collection of SWMR
registers, we can solve any task under the assumption of finite arrival [14]. In
particular, using existing algorithms, we can implement adaptive renaming with
a linear range [7,10]. This in turn allows us to allocate unique registers to
processes with a number of registers linear in the number of participants. With
register allocation, we can implement a collection of SWMR registers with wait-
free read and write operations rather than just non-blocking ones. For many
tasks of high read-write complexity, doing renaming first may reduce the step
complexity of an adaptive algorithm.

We ignore time complexity—the number of steps taken by the algorithm.
Our algorithm is executed just once, to assign SWMR registers to processes;
it adds nothing to the cost of using those registers. Since space used by an
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adaptive algorithm cannot be reclaimed, it is perhaps more important than time
complexity. Still, optimal time complexity is an interesting problem that remains
unsolved.

In the non-adaptive case, it has been shown that at least n registers are
required to implement n SWMR registers [11], so the linear number of registers
used by our algorithms is optimal up to a constant factor. We originally believed
that adaptive algorithms required more than a linear number of registers, and
we tried to derive such a lower bound on the number of registers, independent
of their size. When the difficulty is caused by processes stepping on each other
because of the lack of a priori coordination, size of the registers is not a factor.
(See the lower bound for consensus [12].) We were therefore surprised to discover
our algorithm.

Section 2 describes our implementation and sketches an informal proof of its
correctness. (Some might call this sketch a proof.) In Section 3, the two key
algorithms used in the implementation are precisely described in the PlusCal
algorithm language [18]. The section also describes formal TLA+ correctness
proofs of the safety properties of these algorithms. The complete mechanically-
checked proofs are available on the Web [15].

2 An Informal Proof of the Algorithm

A sequence of SWMR registers is easily implemented using an algorithm we call
SnapShot . We obtain this algorithm via two intermediate algorithms: the Leaky
Repository Protocol and Algorithm GFX. We give here informal proofs of these
algorithms; formal proofs of algorithms GFX and SnapShot are described in
Section 3.

2.1 Preliminaries

Our algorithms assumes a small constant number of infinite arrays of MRMW
registers, indexed by natural numbers, all registers containing the same initial
value that we take to be { } (the empty set). The algorithms write into only
the first k elements of the arrays, where k is a linear function of the number of
participating processes. Hence, they can be implemented by finite arrays, given
a bound on the number of possible participants.

Since we are interested only in space complexity, for simplicity we never read
a single array entry; we always atomically read the entire array, using the double
scan method of [2]. To allow scanning an infinite array A, we use an auxiliary
infinite array A, where a process writes A[i ] by first writing some value other
than { } into A[0], . . . ,A[i ]. A scan of A can assume A[i ] = { } for all i ≥ j if
A[j ] = { }.

2.2 The Leaky Repository

The Leaky Repository Protocol maintains a repository of facts using an infinite
array A of MWMR registers, where the value of a register can be any finite set
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of facts. At any time, the contents of the repository is the set A[0]∪A[1]∪ . . . of
facts, which can be obtained by atomically reading the array A. The repository
is leaky because facts stored in it may be lost. We would like a process to be
able to add facts to the repository and have them remain there forever, but that
is hard to do. Instead, we describe a protocol that tries to do this. It doesn’t
succeed, but it does provide a property that makes it a useful building block for
the GFX and SnapShot algorithms.

Here is how process p tries to add a set F of facts to the repository. To try to
avoid destroying previously added facts, p writes to a register only by performing
a read-then-write operation that first atomically reads the entire array A and
then writes the facts in F together with all the other facts it has ever read or
written. To try to keep the facts in F from being overwritten by other processes,
p performs such read-then-write operations to put the facts in F into multiple
registers. To use as little of the array A as possible, p writes into the first n
registers of A, for some n that it hopes is large enough.

Process p hopes that, if an atomic read of A shows the facts in F in each of
the first n registers of A, then that ensures they will remain in the repository
forever. Of course, it doesn’t—the repository is leaky. Here’s what can go wrong.
Suppose that there are n processes other than p, each of which has performed the
read of a read-then-write operation to a different one of the first n registers and
is about to do the write. Process p can then perform read-then-write operations
to the first n registers and read A to find that those registers all contain the facts
in F . The n other processes can then perform their writes, destroying all traces
of the facts in F . Before the nth process writes, the contents of the repository
satisfies:

R1. It contains all the facts in F .

This property is falsified by the nth process’s write. Each register i then contains
a set Fi of facts written by a different process pi . Moreover, each of those n
read-then-write operations was begun before p’s final read of A. Therefore, the
contents of the repository at that moment satisfies the following property, where
R is the read of A by p that found the facts of F in all those n registers.

R2. It contains all the facts in F0 ∪ . . . ∪ Fn−1, for sets Fi such that there are
n distinct processes p0, . . . , pn−1 different from p, where each pi wrote Fi

with a read-then-write operation that began before R.

We now generalize from this scenario. Note that R1 and R2 assert properties
(that may be true or false) of an arbitrary read R of the repository by a process
p that obtains a set F of facts. R2 asserts the existence of some sets Fi and
processes pi , not the ones from any particular scenario. Note also that if a set
S of facts satisfies R1 or R2, then any superset of S also satisfies R1 or R2. We
will prove the following:

Property R If a read R of A by process p finds F ⊆ A[i ] for i =
0, . . . ,n − 1, then at all times after that read, the contents of the array
A satisfies R1 or R2.
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Property R allows R2 to be satisfied with different sets Fi and processes pi at
different times, and it allows R1 to become true again after it has become false.
If there are at most n participants when p performs R, then R2 can never be
true, so the facts in F must remain in the repository forever.

Property R is true of any protocol in which a process writes to a register of
A using only a read-then-write operation that first reads A and then writes all
the facts it has ever read from or written to A (perhaps writing additional facts
too). We say that any such algorithm obeys the Leaky Repository Protocol for
repository A.

We could use the Leaky Repository Protocol in an obvious way to implement
an add F operation that always satisfies R1 or R2 after it has completed. How-
ever, we instead implement an add & read f operation that adds a single fact f
to the repository and returns a set F such that F is the contents of the reposi-
tory when the operation completes and thereafter always satisfies R1 or R2, for
some “suitable” n. What n is suitable varies with the application, and it may
depends on the add & read operation and on F . To perform an add & read f
operation, process p executes the Leaky Repository Protocol to keep writing f
in registers. The operation completes and returns the set F of facts when a read
of A finds that F is the contents of the repository and A[0] = · · · = A[n−1] = F
for some suitable n.

The add & read operation is used by Algorithm SnapShot with the “suitable”
value of n being the number of participants. In that case, R2 cannot be true, so
the set of facts returned by the add & read remain in the repository forever. To
determine the number of participants, SnapShot uses Algorithm GFX , which
uses add & read operations in which the “suitable” value of n is one plus the
number of facts in the repository. Property R then implies that if the facts that
a process read from the repository are no longer all there, then facts added by
n + 1 other processes are.

A process p’s add & read operation need never complete. It can forever keep
doing read-then-write operations if other processes keep performing add & read
operations that add new facts. However, with a bounded number of participating
processes and a bound on the number of registers that each operation writes, the
entire collection of add & read operations is non-blocking—meaning that if some
process is performing an add & read operation then some add & read operation
will eventually complete. To prove this, we suppose that some set of processes
is forever trying to perform add & read operations, none of which complete, and
we obtain a contradiction. Since each process writes non-decreasing sets of facts
and there are only a finite number of facts being added, eventually each process
p forever reads only a fixed set Fp of facts and keeps writing Fp . If all the sets
Fp are the same, every process will write only that set. Since there is a bound
on the number of registers that an operation writes, this implies that all the
operations will finish. If all the Fp are not the same, choose a minimal set Fq .
Since q’s operation doesn’t finish, it must eventually read a set Fr different from
Fq . Minimality of Fq implies that Fr contains a fact not in Fq , contradicting the
assumption that q reads only facts in Fq . Hence, the algorithm is non-blocking.
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We now prove Property R. We must show that R1 or R2 holds forever after
the read R of p finds F ⊆ A[i ] for all i < n. Define W (i) to be the set (whose
elements are sets of facts) that contains every set of facts that some process is
about to write into A[i ], having completed the read of A in a read-then-write
operation. Let W 0(i) be the value of W (i) when p performs R. We show that
the following invariant is true upon completion of p’s read R and is left true by
every further step of the algorithm:

For all i < n, the value of A[i ] and every element of W (i) contains (as
a subset) either F or an element of W 0(i).

The invariant is true upon completion of R because then W 0(i) = W (i) and
F ⊆ A[i ] for all i < n. A step that writes a value from W (i) into A[i ] obviously
cannot falsify the invariant. A step that adds a value to W (i) cannot falsify the
invariant because the value being added to W (i) contains all the facts obtained
by reading the repository after read R, which includes the value of A[i ]. This
completes the proof of invariance. The invariant implies that the contents of
the repository satisfies R1 or R2, since either (i) some A[i ] contains F , so R1
holds, or else (ii) each A[i ] with i < n contains an element of W 0(i), which by
definition of W 0(i) implies that the union of the A[i ] satisfies R2. This proves
Property R.

2.3 Algorithm GFX

AlgorithmGFX is a one-shot algorithm, meaning that it is executed at most once
by any process. It solves the following weaker version of the snapshot task [2]:
A process p that executes the algorithm must return a set Fp of participants
such that

– p ∈ Fp for any p.

– |Fp | = |Fq | implies Fp = Fq for any p and q, where |F | is the cardinality of
the set F .

To implement the algorithm, we use the Leaky Repository Protocol with a single
infinite arrayA1, where the repository’s facts are (names of) processes. A process
p executes the GFX algorithm by executing an add & read p operation that
completes and returns a set of facts/processes F until it reads A1[0] = · · · =
A1[|F |] = F . Thus, the suitable n for this add & read operation is 1 + |F |,
where F is the set of facts being returned.

Now suppose a process p’s execution of the GFX algorithm completes and
returns the value F . Every write by a process q writes the fact/process q.
Property R therefore implies that after the read by p that completes its execution
of the GFX algorithm, the repository A1 forever contains either (by R1) all the
processes in F or (by R2) |F |+1 distinct processes. Any execution of the GFX
algorithm that then completes cannot return a set G 	= F of facts with |G| = |F |.
This proves that the GFX algorithm satisfies its required properties.

Each execution of the GFX algorithm is an execution of an add & read op-
eration for the leaky repository that writes a number of registers at most one
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greater than the total number of participants. The algorithm is therefore non-
blocking if there is a bounded set of participants. In a non-blocking one-shot
algorithm with a finite set of participants, every execution of the algorithm by
a participant completes.

2.4 Algorithm SnapShot

Algorithm SnapShot implements a non-leaky repository that provides an add-
and-read operation we call snap f that atomically adds the single fact f and
returns the new contents of the repository. More precisely, in addition to the
obvious properties that snap f adds fact f and returns only facts that have
been added, the algorithm satisfies the property that if a snap operation opp
by process p returns set Fp and a snap operation opq by process q returns Fq ,
then:

– Fp ⊆ Fq or Fq ⊆ Fp .

– If opp finishes before opq starts, then Fp ⊆ Fq .

The idea of the SnapShot algorithm is to use the Leaky Repository Protocol on
an array A3, and to implement a snap f operation by an add & read f operation
to the repository, where the “sufficient” number n of registers is greater than the
total number of participants. Property R then implies that if the add & read f
operation succeeds, the value returned remains forever in the repository (because
R2 cannot hold).

Let’s suppose that there is a count operation that a process p can call to learn
the number of participants that can be executing a snap operation. To perform
a snap f operation, a process p first executes count to obtain a bound n on
the number of participants. It then executes the Leaky Repository Protocol to
add f to the repository, writing in the first n registers of A3. If a read of the
repository obtains a value F such that A[0] = · · · = A[n − 1] = F , process p
executes the count operation again. If that execution returns the same number
n of participants, then the snap f operation completes and returns the value F .
Otherwise, the process continues the procedure, replacing n with the new value
returned by count.

If a snap f operation by process p completes and returns the set F of facts,
Property R holds for the final read of the repository that obtains F . Since F
was in n registers and the read occurred when there were at most n participants,
R2 cannot hold. Hence R1 holds forever, so F remains forever in the repository.
Every snap operation that completes after p’s snap f operation sees the facts in
F and therefore returns a set G with F ⊆ G. This implies that the SnapShot
algorithm satisfies its requirement.

We still have to implement the count operation. We do that by using algo-
rithm GFX and a second array A2 of registers. When a participant p arrives,
before performing any snap operation it (i) executes GFX to obtain a set S
of participants, which includes itself, and (ii) writes (the processes in) S in
A2[|S | − 1]. The correctness property of GFX implies that no other value can
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ever be written in A2[|S | − 1]. Since the processes written in A2 are all par-
ticipants and every participant is written in A2, the set of all processes in A2
includes all participants that can write to A3. The count operation is then
performed by reading A2 and counting the number of (distinct) processes read.

A snap operation executes a leaky repository’s add & read operations that
write a number of registers at most equal to the number of participating pro-
cesses. Therefore, if there are a bounded number of participants, then the
SnapShot algorithm is non-blocking.

2.5 Implementing the SWMR Registers

Using algorithm SnapShot , the collection of SWMR registers is implemented as
follows. To write x as the ith write to its (simulated) SWMR register, a process
p performs the operation snap 〈p, i , x 〉, ignoring the value returned by the snap
operation. To atomically read all processes’ SWMR registers, a process executes
a snap ⊥ operation for a special fact ⊥. (Algorithm SnapShot allows multiple
snap f operations with the same fact f .) The current value of process q’s register
is the value x in the triple 〈q, i , x 〉 with the largest value of i in the set returned
by the snap operation. If no such triple exists, then q has not yet written to its
SWMR register. It follows easily from the properties of the SnapShot algorithm
that this implements a collection of SWMR registers with an atomic operation
that reads all the registers.

3 The Formal Safety Proofs

We believe that our implementation of SWMR registers from algorithm Snap-
Shot is obvious enough that a precise description of it and a formal proof of
its correctness are not necessary. However, algorithms GFX and SnapShot are
subtle. In this section, we precisely describe these algorithms in the PlusCal al-
gorithm language [18]. PlusCal constructs whose meanings may not be obvious
are briefly explained as they are introduced. A PlusCal expression can be any
TLA+ formula [17], and a PlusCal algorithm is automatically translated to a
TLA+ specification that defines the algorithm’s formal meaning.

We have written formal, mechanically-checked TLA+ correctness proofs of
the safety properties of the GFX and SnapShot algorithms. Those proofs are
sketched here; the complete proofs are available on the Web [15]. Unlike the
informal proofs of Section 2, which use behavioral reasoning, the formal proofs
use purely assertional reasoning. They are therefore not a direct formalization
of the informal proofs. Since we have given informal proofs of liveness and space
complexity in Section 2, we discuss only safety here.

Algorithms GFX and SnapShot are written in terms of the set Proc of all
processes that eventually participate. We assume that this set is finite (otherwise
the algorithms would not be non-blocking). Processes that perform no actions
are not represented in our specifications. Since processes do not use the value of
Proc, our algorithm does not assume any a priori knowledge of the number of
participating processes.
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3.1 Algorithm GFX

The Specification

The specification of what algorithmGFX is supposed to do is given by algorithm
GFXSpec of Figure 1. The variable statement declares the global variable result

--algorithm GFXSpec
{ variable result = [p ∈ Proc �→ {}]

process(Pr ∈ Proc)
{ A: with (P ∈ {Q ∈ subset Proc :

∧ self ∈ Q
∧ ∀p ∈ Proc \ {self } :

∨ Cardinality(result [p]) 
= Cardinality(Q)
∨ Q = result [p]

} )
{result [self ] := P}

}
}

Fig. 1. Specification of Algorithm GFX

and initializes it to be an array indexed by the set Proc of processes, with result [p]
initially the empty set {} for each process p. The process statement declares
there to be one process for each element of Proc, the statement’s body giving
the code for process self . The statement with (x ∈ S ){Σ} executes Σ with an
arbitrary element of S substituted for x . The expression subset Proc denotes
the set of all subsets of Proc. TLA+ allows conjunctions and disjunctions to
be represented as lists of formulas bulleted with ∧ or ∨, using indentation to
eliminate parentheses. (This notation makes large formulas easier to read.)

In PlusCal, an atomic action is the execution of code from one label to the
next, where there is an implicit label Done at the end. Thus, the entire body of
the process is executed as a single atomic action A (named by the label). The
with statement sets result [self ] to P , which is an arbitrarily chosen element Q
in the set of subsets of Proc such that (i) self is in Q and (ii) for each other
process p, either the cardinality of Q is unequal to the cardinality of result [p], or
else Q equals result [p]. Thus, a process p that does not execute its A action has
result [p] always equal to the empty set. A process p that executes its A action
terminates with result [p] equal to a set of processes containing p such that for
any other process q, either result [p] and result [q] have different cardinalities,
or result [p] = result [q]. The TLA+ translation of the algorithm introduces a
variable pc, where pc[p] equals the label at which control is in process p, so pc[p]
equals either the string “A” or the string “Done”.

The Algorithm

Algorithm GFX is described in Figure 2. The variables known and notKnown
are local to self (the current process) and cannot be read or written by other
processes. Variable known stores the set of processes known to process self ,
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--algorithm GFX
{ variables A1 = [i ∈ Nat �→ {}], result = [p ∈ Proc �→ {}] ;

process (Pr ∈ Proc)
variables known = {self }, notKnown = {} ;
{ a: known := known ∪ NUnion(A1) ;

notKnown := {i ∈ 0 . . (Cardinality(known)) : known 
= A1[i ]} ;
if (notKnown 
= {})

{ b : with (i ∈ notKnown) {A1[i ] := known} ;
goto a

}
else {result [self ] := known} ;

}
}

Fig. 2. Algorithm GFX

and unKnown stores a set of array indices (natural numbers). In the TLA+

translation, the values of these process-local variables are arrays indexed by the
set Proc. The other new notation used in this algorithm is: Nat is the set of
natural numbers, i . . j is the set of integers k with i ≤ k ≤ j , and the operator
NUnion is defined (in the TLA+ module containing the algorithm) by

NUnion(A)
Δ
= union{A[i ] : i ∈ Nat}

where the union expression is commonly written by mathematicians as⋃
i ∈ Nat A[i ]. Evaluation of that expression is implemented by atomically read-

ing the array A. Observe that although result is a global variable, result [p] is
accessed only by process p.

There are two atomic actions that a process p can execute. Action a sets
known[p] and notKnown[p], executes the if test, and then either goes to label
b or else executes the else clause, setting result [p], and terminates. Action b
writes to one element of A1 and goes to label a.

The safety property satisfied by the GFX algorithm is that it implements al-
gorithm GFXSpec under the refinement mapping [1] that substitutes expressions
of GFX ’s variables for the variables of GFXSpec as follows:

result ← result
pc ← [p ∈ Proc (→ if pc[p] = “Done” then “Done” else “A”]

Implementation under this refinement mapping means that in any execution of
algorithm GFX , the sequence of values assumed by the substituting expressions
is one that algorithm GFXSpec allows for its variables.

This safety property is a fairly direct consequence of the invariance of the
assertion GFXCorrect defined as follows. Let two sets of processes be compatible
iff they are either equal or have different cardinality. We define GFXCorrect to
assert that, for any processes p and q of Proc, if p and q have terminated then
result [p] and result [q] are compatible.

To understand why GFXCorrect is an invariant of algorithm GFX , observe
that process p terminates and sets result [p] to known[p] after using the GFX
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protocol to write known[p] into registers A1[0], . . . , A1[Cardinality(known[p])].
Any process q that reads known[p] will set known[q] to be a superset of that
value, so known[p] and known[q] are compatible because the definition of com-
patibility implies that two sets are compatible if one is a superset of the other.
If no process reads the value known[p], then Cardinality(known[p])+1 processes
must have written their known values into A1. Since known[r ] contains r , for
each process r , the union of all A1[i ] therefore has cardinality greater than that
of known[p], and any process q that then terminates will do so with result [q]
having cardinality greater than known[p].

To make this reasoning completely rigorous requires an inductive invariance
proof [5]. Define PA1 to be the set of potential values of the array A1, meaning
the values that A1 could have after some subset of the processes at control
location b execute their b action. The key part of the inductive invariant is:

∀p ∈ Proc, P ∈ PA1 :
∨ Cardinality(known[p]) < Cardinality(NUnion(P))
∨ known[p] ⊆ NUnion(P)

A machine-checked formal proof of safety is available on the Web [15].

3.2 Algorithm SnapShot

The Specification

The SnapShot algorithm maintains a set S of values that is initially empty. It
provides a snap operation whose argument is a value v . Executing snap(v)
atomically adds v to S and returns the current value of S . Algorithm SnapSpec
is specified in Figure 3. The only additional PlusCal construct it introduces is ei-
ther, where the statement either Σ1 or Σ2 is executed by nondeterministically
choosing either Σ1 or Σ2 and executing it.

--algorithm SnapSpec
{ variables myVals = [i ∈ Proc �→ {}], nextout = [i ∈ Proc �→ {}] ;
process (Pr ∈ Proc)

variable out = {} ;
{ A: while (true)

{ with (v ∈ Val) { myVals[self ] := myVals[self ] ∪ {v} } ;
B : with (V ∈ {W ∈ subset PUnion(myVals) :

∧ myVals[self ] ⊆ W
∧ PUnion(nextout) ⊆ W } )

{ nextout [self ] := V } ;
C : either out := nextout [self ]

or goto B ;
}

}
}

Fig. 3. Algorithm SnapSpec, the specification of SnapShot
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The algorithm appears in a TLA+ module that declares Proc as for the GFX
algorithm, declares the set Val , which represents the set of all possible values
that can be added to S , and defines the operator PUnion by

PUnion(A)
Δ
= union {A[p] : p ∈ Proc}

The body of the while loop describes the snap(v) operation, where the value v
is chosen by executing the with (v ∈ Val) statement. The result returned by
the operation is written to the process-local variable out . The set S of values
maintained by the algorithm equals PUnion(nextout). Thus, action A represents
choosing the value v ; action B represents adding v to S and reading the current
value of S (into nextout [self ]); and action C represents returning the value read.

The Algorithm

Algorithm SnapShot appears in Figure 4. It uses two infinite arrays A2 and A3
of MWMR registers. The code contains no notation that hasn’t appeared in
previous algorithms. The single atomic action c atomically reads both A2 and
A3 in evaluating NUnion(A2) and NUnion(A3). However, the value of A2 that
it reads is used only in the statement that writes to nextout , a “history” variable
that is never read. This variable is used only to reason about the algorithm. The
else clause in which nextout is set is not meant to be implemented.

A process p begins the algorithm by executing the GFX algorithm and writing
the value result [p] it obtains into A2[Cardinality(result [p]) − 1]. Since GFX
ensures that two processes cannot obtain different values of result having the
same cardinality, a value written in any register A2[i ] remains there forever.
Since result [p] contains p and is a subset of the participating processes, this
implies that NUnion(A2) is a subset of the participating processes containing
all processes that have finished executing the GFX algorithm.

The execution of algorithm GFX and writing into A2 is represented by ac-
tion a of SnapShot . Action a consists of action A of algorithm GFXSpec plus
the assignment to A2. Having proved that GFX implements GFXSpec, we can
represent the code of GFX by the corresponding code of GFXSpec. More pre-
cisely, we proved that algorithm GFX implements GFXSpec under a refinement
mapping in which result is implemented by variable result of GFX . From this,
it follows that proving the correctness of algorithm SnapShot proves the correct-
ness of an algorithm in which the code from GFXSpec in step a is replaced by
the corresponding code of GFX .

The while loop at label b implements the while loop of SnapSpec. Ac-
tion b, the first action of the loop, first chooses the value v for which the pro-
cess is performing the snap operation and adds it to known. It then writes
Cardinality(NUnion(A2)), which is an upper bound on the number of processes
executing the while loop, into nbpart . The loop body then executes the Leaky
Repository Protocol to write known into registers A3[0], . . . , A3[nbpart−1]. The
properties of the protocol ensure that if the write succeeds, then the value that
was written will remain forever a subset of NUnion(A3) if there are still at most
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--algorithm SnapShot

{ variables result = [p ∈ Proc �→ {}],
A2 = [i ∈ Nat �→ {}], A3 = [i ∈ Nat �→ {}];

process (Pr ∈ Proc)
variables myVals = {}, known = {}, notKnown = {},

lnbpart = 0, nbpart = 0, nextout = {}, out = {} ;

{ a: with (P ∈ {Q ∈ subsetProc :
∧ self ∈ Q
∧ ∀p ∈ Proc \ {self } :

∨ Cardinality(result [p]) 
= Cardinality(Q)
∨ Q = result [p]

} )
{ result [self ] := P } ;

A2[Cardinality(result [self ]) − 1] := result [self ] ;

b: while ( true )
{ with (v ∈ Val) { myVals := myVals ∪ {v} } ;

known := myVals ∪ known ;
nbpart := Cardinality(NUnion(A2)) ;

c: lnbpart := nbpart ;
known := known ∪NUnion(A3) ;
notKnown := {i ∈ 0 . . (nbpart − 1) : known 
= A3[i ]} ;
if (notKnown 
= {}) { d : with (i ∈ notKnown)

{ A3[i ] := known };
goto c }

else if (nbpart = Cardinality(NUnion(A2)))
{ nextout := known } ;

e: nbpart := Cardinality(NUnion(A2)) ;
if (lnbpart = nbpart) {out := known}
else {goto c}

}
}

}

Fig. 4. Algorithm SnapShot

nbpart processes executing the while loop. If so, the snap operation finishes
and returns that value (by writing out); otherwise, the process tries again.

Observe the similarity of actions c and d of algorithm SnapShot and the
process code (actions a and b) of algorithm GFX . If you understand why algo-
rithm GFX is correct, you will see why algorithm SnapShot is. In fact, algorithm
SnapShot is less subtle because it makes use of a possibly incorrect upper bound
on the number of participants, trying again if the bound was not correct.

The safety property satisfied by algorithm SnapShot is that it implements
SnapSpec under a suitable refinement mapping. However, a single process of
SnapShot executing its a action can implement the simultaneous execution of
action C by multiple processes of SnapSpec, each executing the action’s or
clause. To define the refinement mapping, we would have to add a special kind
of auxiliary variable that adds “stuttering steps” to algorithm SnapShot [1].
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Instead of doing that, we modify our specification to allow such simultaneous
steps. The necessary specification cannot be expressed in PlusCal, but it is
easily written in TLA+ starting with the translation of the PlusCal algorithm
in Figure 3.

The modified specification is implemented under the refinement mapping that
substitutes the variables myVals , nextout , and out of SnapShot for the corre-
sponding variables of SnapSpec, and that substitutes the following expression
for variable pc of SnapSpec:

[p ∈ Proc (→ case pc[p] ∈ {“a”, “b”} → “A”
� pc[p] ∈ {“c”, “d”} → “B”
� pc[p] = “e”→ if lnbpart [p] = Cardinality(NUnion(A2))

then “C” else “B” ]

As usual, the proof of this implementation rests on an invariance proof. The key
part of the inductive invariant is:

∀p ∈ Proc : ∀P ∈ PA3 : nextout [p] ⊆ NUnion(P)

where PA3 is the set of potential values of A3, defined the same way as the set
PA1 of potential values of A1 for algorithm GFX . A rigorous proof is available
on the Web [15].

4 Conclusion

We have built on earlier work of Delporte-Gallet et al. (DFGR) [11]. Unlike
previous implementations of SWMR registers using arrays of MWMR registers,
DFGR provided a non-blocking implementation that did not first solve the re-
naming problem to allocate registers to processes. However, their implementa-
tion required a known bound n on the number of participating processes. It
used the Leaky Repository Protocol with n registers, so there were not enough
different processes to destroy all traces of a write. To eliminate this requirement,
we take full advantage of the protocol in algorithm GFX , which allows all traces
of a write to be destroyed if each register’s value is overwritten by a different
process. Using algorithm GFX , processes can determine the current number n
of participants. We then use a variant of the DFGR algorithm that assumes
there are at most n participants, but that aborts and retries if n changes while
performing an operation.

We have tried to make our algorithm easier to understand by breaking it into
the GFX algorithm and the SnapShot algorithm that uses GFX as a “subrou-
tine”. The proof that the two algorithms are non-blocking is straightforward.
The safety properties of both algorithms depend on their use of the Leaky Repos-
itory Protocol. Here, we have given informal correctness proofs. We have writ-
ten short, completely formal PlusCal descriptions of the algorithms. Formal
machine-checked proofs of their safety properties are available [15].

We have considered only complexity in the number of registers. DFGR showed
that at least n registers are required to implement n SWMR registers, so the
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linear number of registers used by our algorithms is optimal up to a constant
factor. The question of step complexity is still completely open. We conjecture
that there is an adaptive snapshot algorithm with a linear number of registers
with cubic step complexity.
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Abstract. We present a new wait-free implementation of a Fetch&Inc

object shared by n processes from read-write registers and load-
linked/store-conditional (LL/SC) objects. The step complexity of each
FI operation is O(log n), which is optimal. Our implementation uses
O(max{m, n}) objects, each of which stores O(logm) bits, where m is
the number of FI operations that are performed. For large m, the num-
ber of objects can be reduced to O(n2). Similar implementations of other
objects, such as Fetch&Add and Swap, are also obtained.

Our implementation uses a new object, called an Aggregator. It
supports an operation which, if successful, puts a value into its in-buffer
that can depend on the value that is currently there, an operation that
copies the value in its in-buffer to its out-buffer, provided its out-buffer
is empty, and an operation that empties its out-buffer. We show how to
implement an Aggregator from a small constant number of LL/SC

objects so that all three operations have constant step complexity.

1 Introduction

The Fetch&Inc object is fundamental in distributed computing. It stores an
arbitrary non-negative integer. Processes can perform one operation, FI(), that
returns the value of the object and increments it. Implementing Fetch&Inc

is closely related to the mutual exclusion problem. Using FI(), processes can
determine an order in which they enter the critical section. Conversely, a solution
to mutual exclusion can be used as a lock for accessing a Fetch&Inc object
implemented using a shared register.

In strong renaming, processes that have names in a large universe want to
acquire new distinct names from a range of minimum size, without knowing the
number of processes. This is equivalent to implementing single-shotFetch&Inc,
where each process is restricted to performing at most one FI().

The consensus number of Fetch&Inc is two [7], so it has no determinis-
tic, wait-free, linearizable implementation using only shared registers and coun-
ters, both of which have consensus number one. Like Fetch&Inc, the counter
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stores an arbitrary non-negative integer. However, it supports two operations:
incrementing the value of the object and reading it. Allowing a process to do
both in one atomic operation makes the Fetch&Inc object more powerful than
the counter.

A wait-free implementation of a Fetch&Inc object shared by n processes can
be implemented from any object with consensus number at least two [2]. How-
ever, the complexity of such implementations are less well understood. Jayanti
[8] proved that the expected step complexity of any randomized wait-free lin-
earizable implementation of an n-process, single-shot Fetch&Inc object from
LL/SC objects is in Ω(log n) against the strong adaptive adversary.

Jayanti [8] also mentioned how a universal construction (for implementing
any object given its sequential specifications) by Afek, Dauber, and Touitou [1]
that uses only LL/SC objects could be modified to have O(log n) worst case
step complexity. However, he pointed out that this modification requires atomic
access to words containing Ω(n log n) bits, making the construction impractical,
even for the special case of implementing a Fetch&Inc object.

Recently, Ellen, Ramachandran, and Woelfel [6] gave an implementation of
a Fetch&Inc object from O(logm)-bit registers and LL/SC objects with
O(log2 n) worst case step complexity, where m is the number of FI() opera-
tions that are performed. Efficient randomized implementations of Fetch&Inc

also exist [4], but it is not known how to derandomize them.
Jayanti left open the problem of obtaining an asymptotic improvement to his

lower bound when the word size of the LL/SC objects is restricted to O(log n)
bits. In this paper, we show that this is impossible by presenting a wait-free, lin-
earizable implementation of a Fetch&Inc object with O(log n) worst case step
complexity from O(logm)-bit registers and LL/SC objects. Our implementation
uses O(max{n,m}) objects. Using a new memory reclamation scheme [3], we can
reduce the number of LL/SC objects to O(n2). For a single-shot Fetch&Inc

object, our implementation uses O(n) registers and LL/SC objects each storing
O(log n) bits.

More generally, if f is an arbitrary binary associative function, we can im-
plement a Fetch&f object that supports one operation, which, on input x,
returns the value v of the object and updates its value to f(v, x). For exam-
ple, Fetch&Add is a Fetch&f object, where f(v, x) = v + x, and Swap is a
Fetch&f object, where f(v, x) = x.

Our implementation of Fetch&Inc is built using Aggregator objects,
which we define in Section 2. We also give a linearizable wait-free implementation
of an Aggregator object from three LL/SC objects so that each operation
it supports has constant worst case step complexity. In Section 3, we describe
our implementation of a Fetch&Inc object using Aggregator objects. The
extension to Fetch&f objects is briefly described at the end of the paper.

2 The Aggregator Object

An Aggregator object stores data in two areas, the in-buffer and the out-
buffer, and maintains a bit, flag. The object allows a value to be put into its
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in-buffer, the value in its in-buffer to be copied to its out-buffer, and the out-
buffer to be emptied. The flag is used to indicate whether the contents of the
in-buffer has been successfully copied to the out-buffer.

The in-buffer is accessed using the operation pair LLIn() and SCIn() which
are similar to LL() and SC() in that an LLIn() returns the value of the in-
buffer and the flag, and SCIn(v) stores the value v in the in-buffer and resets
flag, provided that neither the in-buffer nor the flag were changed since its
preceding LLIn() operation. A successful Copy() operation copies the value of
the in-buffer to the out-buffer and sets the flag, provided that the in-buffer is
non-empty, flag is not set, and the out-buffer is empty. Otherwise, it fails and
does not change the Aggregator object. The out-buffer can be read using
the operation LLOut(). The operation RCOut() resets the out-buffer to empty
(indicated by ⊥), provided the out-buffer has not changed since the preceding
LLOut() operation by the process that called RCOut().

The name Aggregator comes from the fact that the in-buffer can be used
to aggregate information. More precisely, processes can use LLIn() and SCIn()

operations to read information from the in-buffer and to modify or add to the
information that is already there. Since writes are conditional, they don’t in-
advertently destroy data that is in the in-buffer. After aggregating information
in the in-buffer, processes can try to copy the data from the in-buffer to the
out-buffer. They do this using the Copy() operation, which guarantees that any
data in the out-buffer does not get overwritten. If successful, this operation sets
the flag to indicate that the in-buffer has been copied. (However, the next suc-
cessful SCIn() operation will reset the flag.) Once there is information in the
out-buffer, processes can read it, process the data, store the result somewhere
else (for example, in the in-buffer of a different Aggregator object), and reset
the out-buffer to ⊥ using the RCOut() operation. If LLOut() and RCOut() are
used properly, their semantics ensure that the data in the out-buffer has been
processed by some process before the out-buffer gets reset.

2.1 Formal Specification

Formally, an Aggregator object O with domain D stores a triple of values
(in, f lag, out) ∈ (D∪{⊥})×{True, False}× (D∪{⊥}), where ⊥ 	∈ D. Initially,
in = ⊥, flag = False, and out = ⊥. The objects supports five operations:

LLIn() returns the values of in and flag, and LLOut() returns the value
of out.

SCIn(v) changes the value of in to v 	= ⊥ and sets the value of flag to False,
provided no successful SCIn() or successful Copy() (on O) by any process has
been performed since the calling process last performed LLIn(). This operation
can only be performed by a process if it has previously performed LLIn(), when
it last did so, it received a value other than v for in, and it has not performed
Copy() since its last LLIn() operation. If the value of in changes as a result of
this operation, we say the operation is successful. If not, we say it is unsuccessful.
In either case, SCIn() does not return anything.
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RCOut() resets the value of out to ⊥, provided no successful RCOut() or
Copy() (on O) by any process has been performed since the calling process
last performed LLOut(). This operation can only be performed by a process if
it has previously performed LLOut(), when it last did so, it received a value
other than ⊥, and it has not performed Copy() since its last LLOut() operation.
If the value of out changes as a result of this operation, we say the operation
is successful. If not, we say it is unsuccessful. In either case, RCOut() does not
return anything.

Copy() sets the value of out to in and the value of flag to True, provided
out = ⊥, in 	= ⊥, and flag = False. In this case, we say the operation is
successful. If not, we say it is unsuccessful. In either case, Copy() does not return
anything.

Note that, if a process performs two SCIn() operations without performing
LLIn() between them, the second SCIn() operation is always unsuccessful. Sim-
ilarly, if a process performs two RCOut() operations without performing LLOut()
between them, the second RCOut() operation is always unsuccessful.

2.2 Implementation

Our implementation of an Aggregator object is presented in Figure 1. For
clarity, it uses three LL/SC objects that also support an invalidate link operation,
IL(). If a process calls LL() followed by IL() and then SC(), all on the same
object, then the SC() operation will fail. Note that an IL() operation by process
p only affects SC() operations of p, not those of other processes. A process can
implement IL() locally using a persistent local variable for each LL/SC object
it accesses to record whether it has performed IL() on the object since it last
performed LL() on it.

One of the LL/SC objects, which we denote by the pair (X,F ), is responsible
for storing the pair (in, f lag) of the Aggregator. Both X and F are stored
in the same LL/SC object because an SCIn(v) operation may have to reset
F when it writes v to X . Another LL/SC object, Y , is used to keep track
of the contents of the out-buffer. The naive approach would be to implement
LLIn() and SCIn() using LL()/SC() operations on (X,F ) and to implement
LLOut()/RCOut() using LL()/SC() operations on Y . However, the problem is
the Copy() operation, which has to succeed as long as the out-buffer is empty,
the in-buffer is non-empty, and the flag is not set. For example, to set the flag
during a Copy() operation, a process would have to perform a successful SC()
on (X,F ), but this may never happen if other processes repeatedly write data
into (X,F ) using SCIn() operations.

Therefore, we use a third LL/SC object, B, which stores one bit that is
initially False. A process that wants to perform a Copy() operation sets the
bit B to True to indicate that other processes should not continue executing
SC() operations on (X,F ) or Y until the Copy() operation has completed. To
ensure linearizability, processes instead help to finish the tasks that have to be
performed during a Copy() operation. This helping mechanism is realized by
a method Helper(), which processes call only when they see that B = True.
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Function LLIn

1 (x, f) := (X,F ).LL();
2 if B.LL() then Helper();
3 (x′, f ′) := (X,F ).LL();
4 if B.LL() then
5 Helper();
6 return (x, f);

7 return (x′, f ′);

Function LLOut

8 y := Y .LL();
9 if B.LL() then

10 Helper();
11 return ⊥;

12 return y;

Procedure Copy

13 b := B.LL();
14 y := Y .LL();
15 (x, f) := (X,F ).LL();
16 if y = ⊥ 
= x ∧ b = f = False

then
17 B.SC(True);

18 if B.LL() then Helper();
19 Y .IL(); (X,F ).IL();

Procedure SCIn(v)

20 Precondition: v 
= ⊥;
21 Precondition: The process previously

performed LLIn(), when it did so last the
value of in was not v, and the process
has not performed Copy() since then.;

22 if ¬B.LL() then (X,F ).SC(v,False);
23 if B.LL() then Helper();

Procedure RCOut

24 Precondition: The process previously
performed LLOut(), when it did so last
the value returned was not ⊥, and the
process has not performed Copy() since
then.;

25 if ¬B.LL() then Y .SC(⊥);
26 if B.LL() then Helper();

Procedure Helper

27 repeat three times
28 y := Y .LL();
29 (x, f) := (X,F ).LL();
30 b := B.LL();
31 if b then
32 if ¬ f then (X,F ).SC(x,True);
33 (x, f) := (X,F ).LL();
34 if f then
35 if y = ⊥ then Y .SC(x);
36 y := Y.LL();
37 if y 
= ⊥ then B.SC(False)

38 Y .IL(); (X,F ).IL();

Fig. 1. Implementation of an Aggregator object

The implementation guarantees that each Helper() call finishes only after a
Copy() operation completes and B is reset to False. The interval that starts
when a process setsB to True and which ends when some process (not necessarily
the same one) resets B to False is called a helper interval.

We now explain the implementation in more detail. Consider the Copy() op-
eration. First, a process reads B, Y , and (X,F ) using LL() operations (lines 13-
15). If the values of X , F , and Y are such that the Copy() should succeed
and B = False, the process tries to write True to B using an SC() operation
(lines 16-17). Thus, while a helper interval is in progress, no other process writes
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True to B. The Copy() operation of the process that successfully changes the
value of B from False to True succeeds and will be linearized at the end of
the helper interval that this process started. A Copy() operation which does not
change B to True fails and can be linearized immediately after the successful
Copy(), since flag is then True. To ensure an unsuccessful Copy() doesn’t finish
too early, it calls Helper() on line 18 if it sees that B is still True. At the end of
Copy(), each process needs to invalidate its links to Y and (X,F ) (line 19), so
that SC()s performed in its subsequent RCOut() or SCIn() operations are not
linked to the LL()s it performed on Y and (X,F ) during Copy().

Now consider LLOut(). First, a process uses LL() to read Y (line 8), which
usually stores the contents of the out-buffer. Then it checks B to see whether a
Copy() operation is in progress (line 9). If not, then the process simply returns
the value it read from Y (line 12). Otherwise, it helps the ongoing Copy() oper-
ation finish by calling Helper(), and then returns ⊥ (lines 10–11). In this case,
the LLOut() is linearized immediately before this successful Copy() operation is
linearized, at which point the out-buffer is empty.

Similarly, during LLIn() a process first reads (X,F ) into the local variables
(x, f) using LL() (line 1). Then, it checks B and calls Helper() if a Copy()

operation is in progress (line 2). But now the process cannot simply return the
pair (x, f). For example, suppose the process read F = True and B = True

near the end of a helper interval. Then the LLIn() has to be linearized after the
successful Copy() that is linearized at the end of this interval. At the point that
it is linearized, the LLIn()must have a valid link to (X,F ). However, for reasons
explained later, the process invalidates the link it has to (X,F ) at the end of
Helper() (line 38). Therefore, the process performs another LL() operation on
(X,F ) (line 3). Then it checks B one more time (line 4). If B is not set, then, in
line 7, the process simply returns the pair it read from its second LL() operation,
which is its linearization point. If B is set, the process calls Helper() (line 5)
and, in line 6, returns the pair (x, f) it received from its first LL() operation. In
this case, the LLIn() can be linearized immediately following the first successful
Copy() after it began. This is because at least one more Copy() operation will
be linearized at or before the LLIn() completes its second call to Helper().
Hence, it is correct that the process does not have a valid link to (X,F ) when
it returns from LLIn().

Operations SCIn() and RCOut() are rather simple: The calling process checks
whether B is set and, if not, it executes the corresponding SC() operation on
(X,F ) or Y , respectively. Then the process checks B one more time and calls
Helper() if B is set. If the SC() operation succeeds, the SCIn() or RCOut() is
successful and is linearized at the SC() operation. Otherwise, the operation fails.
If its operation interval includes the end of a helper interval, the failed operation
can be linearized there, immediately after a successful Copy() operation. If not,
B = False when the process performed the first of these LLs and the operation
can be linearized at its unsuccessful SC().

The task of Helper() is to change the in-buffer, the out-buffer, and flag as
required by a Copy() operation. The idea is to first set F to True while Y = ⊥
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t1

X = v �= ⊥
F = False
Y = ⊥

B :
False → True

t3

F :
False → True

t2

X :
v → v′ �= ⊥

t4

Y :
⊥ → v′

t5

B :
True → False

(v = v′)

(v �= v′)
transition interval

helper interval

Fig. 2. Illustration of state changes during a helper interval. No changes to the shared
objects occur, other than the ones depicted.

and then copy X to Y . The interval while F = True and Y = ⊥ is called a tran-
sition interval. This is the only interval during which the state (X,F, Y ) does
not correspond to a valid state of the Aggregator object. Instead, for our
proof of linearizability (in the full version of the paper), we consider the inter-
preted state of the object, which is (X, False,⊥) during the transition interval,
corresponding to the state of an Aggregator object just before a successful
Copy() operation.

The SC() operations required to update (X,F ) and Y may fail, so a process
has to repeat the sequence of steps in lines 28–37 three times. First, the process
reads Y , (X,F ), and B with LL() operations and then checks whether B = True

(lines 28–31). If B = False, the helper interval has already ended, and the
process no longer needs to update (X,F ) or Y . Now suppose B = True. In
this case, the process first checks whether F was already True when it read it
and, if not, it sets it to True using an SC() operation (line 32). Then, it reads
(X,F ) again using a LL() operation and verifies that F is now True (lines 33–
34). If so, then, in line 35, the process tries to store the value of X it read
on line 33 into Y , provided Y = ⊥. Then, the process reads Y again and, if
Y 	= ⊥, indicating that its or some other process performed a successful SC()
on Y , it tries to reset B (line 37). The proper nesting of LL and SC operations
ensures that once F = True, X no longer changes. Moreover, Y is only changed
once during a helper interval and the value to which it is changed is the value
X had when F changed to True. Finally, B is only reset after all of this has
happened.

Figure 2 illustrates how the values of the LL/SC objects (X,F ), Y , and B
may change during a helper interval. The full proof of linearizability is omitted
due to space constraints and will be provided in the full version of the paper.
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3 Fetch-and-Increment

There is a simple non-blocking implementation of a Fetch&Inc object shared
by n processes using one LL/SC object with initial value 0: Each process per-
forms FI() by repeatedly applying LL() and then trying to increment the
value of the object by applying SC(), until it is successful. Its result is the
value returned by its last LL(). If each process is not allowed to perform more
than one FI(), this construction gives a wait-free implementation of single-shot
Fetch&Inc, where FI() has worst case step complexity Θ(n).

Another approach, which we use here, is to represent a Fetch&Inc object
by a list of process identifiers. To perform FI(), a process appends its identifier
to the end of the list and returns the number of elements in the list that precede
the last occurrence of its identifier. We represent this list by an ordered in-tree,
with one node per element. The list is the sequence of elements in the nodes,
listed according to a preorder traversal of the in-tree. Each subtree represents a
sublist beginning with the element stored at the root of the subtree. The element
stored at the root of the tree is the head of the list. It is followed by the sublists
represented by each child of the root, in order from oldest to youngest (i.e. left
to right).

7 1 2 20 1

6 1 6 3 3 4

2 0

� ��� ���

���� � 			


Fig. 3. An in-tree representing the list 2,6,7,6,3,0,2

Each node contains a process identifier, id, a pointer to its parent, ptr, and
an integer, offset. The parent pointer of the root is NIL and its offset is 0. The
offset of any other node is the number of elements that precede it in the list
represented by the subtree rooted at its parent. The number of elements in the
list preceding the element in a given node can be obtained by summing all the
offsets of all the nodes on the path from the node to the root. The time to do
this is proportional to the depth of its node. Therefore, we want the height of
the in-tree to be small. The in-tree in Figure 3 represents the list 2,6,7,6,3,0,2.
The first component of each node of the in-tree is the process identifier and the
second component is the offset.

If h is a pointer to the root of an in-tree of size at least 
, then the pair (h, 
)
denotes the prefix of length 
 of the list represented by this in-tree. For example,
in Figure 3, if h is a pointer to the root of the in-tree and h′ is a pointer to the
node with identifier 3, then (h, 7) denotes the entire list, (h, 4) denotes the list
2,6,7,6, and (h′, 3) denotes the list 3,0,2. The pair (NIL, 0) denotes an empty list.
If (h1, 
1) and (h2, 
2) denote nonempty lists and the trees rooted at h1 and h2
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have no nodes in common, they can be concatenated by atomically setting h2’s
parent pointer and offset to h1 and 
1, respectively. The resulting list is denoted
by the pair (h1, 
1 + 
2).

As an introduction to our wait-free implementation, we present a non-blocking
implementation of Fetch&Inc based on this representation. Figure 4 gives the
code for process pi. Each node of the list is stored in a pair of registers, one
containing its id and the other containing its ptr and offset. There is also a
single LL/SC object,Q, that stores a quadruple, (h1, 
1, h2, 
2), which is initially
(NIL, 0,NIL, 0). If (h1, 
1) and (h2, 
2) both denote empty lists, we say that the
quadruple denotes the empty list. If exactly one of them denotes a nonempty
list, we say that the quadruple denotes that list. If they both denote nonempty
lists then the quadruple denotes their concatenation.

To perform FI(), a process pi creates a node containing its identifier i, a NIL
parent pointer, and offset 0 (lines 40–42). Then it tries to store the pair denoting
this list into Q’s second pair, provided Q’s second pair denotes an empty list (line
47). If it is successful, the FI() can be linearized at this point. Next, pi tries to
concatenate the list denoted by Q’s second pair to the the list denoted by its
first pair. There are two cases: When Q’s first pair denotes an empty list, then
the two lists are simply interchanged (line 51). When both pairs in Q denote
nonempty lists (and Q denotes their concatenation), the root of the second list
is made a child of the root of the first list, its offset is set to be the length of the
first list, Q’s first pair is set to denote the concatenation, and Q’s second pair is
set to denote an empty list (lines 53–54). This ensures that only one element is
appended to the list at a time and its offset is computed correctly.

If pi does not successfully store the pair denoting its one node list into Q’s
second pair on line 47, then it tries again. If pi is successful, its node is concate-
nated onto the list denoted by Q’s first pair before pi completes the rest of the
iteration of the loop and pi returns the offset stored at its node. Although many
processes may try to do this concatenation, each writing to the ptr and offset
fields of pi’s node on line 53, they all write the same values and, thereafter, no
other values are written to pi’s node.

To obtain a wait-free implementation of FI(), the approach in [1,8] and [6] is
to use a fixed, balanced binary tree T with n leaves, one per process. A process
pi that wants to perform FI() begins by putting information in the list at its
leaf. Then it tries to propagate this information up the tree to the root. It tries
to propagate information from a child to its parent using a constant number
of steps. Specifically, a process pi gets the new information from a vertex and
its sibling after performing an LL() at their parent. Then it tries to add that
information to their parent using an SC(). If the SC() is not successful because
another process did a successful SC() between pi’s LL() and SC(), pi repeats
this a second time. If its second SC() is also unsuccessful, then the information
it wanted to propagate is guaranteed to have been propagated to the parent by
another process. To see why, suppose the first SC() by process pi was unsuccessful
because of a successful SC() by process pj and the second SC() by process pi
was unsuccessful because of a successful SC() by process pk. Then the LL() by
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Function FI

39 s := False

40 h := new Node
41 h.id := i
42 h.(ptr,offset) := (NIL, 0)
43 repeat
44 (h1, �1, h2, �2) := Q.LL()
45 if h2 = NIL then
46 if Q.SC (h1, �1, h, 1) is

successful then
47 s := True

48 (h1, �1, h2, �2) := Q.LL()

49 if h2 
= NIL then
50 if h1 = NIL then
51 Q.SC (h2, �2,NIL, 0)
52 else
53 h2.(ptr, offset) := (h1, �1)
54 Q.SC (h1, �1 + �2,NIL, 0)

55 until s = True

56 return h.offset

Fig. 4. A non-blocking implementation

Function FI

57 v := T.leaf[i]
58 h := new Node
59 h.id := i
60 h.(ptr, offset) := (NIL, 0)
61 v.LLIn()
62 v.SCIn(h, 1,NIL, 0, left)
63 v.Copy()
64 while v 
= T.root do
65 v := v.parent
66 for 5 times do
67 CopyUpInto(v)

68 (h1, �1, h2, �2, c, f) := v.LLIn()
69 if h2 
= NIL then
70 h2.(ptr,offset) := (h1, �1)

71 result := h.offset
72 while h.ptr 
= NIL do
73 h := h.ptr
74 result := result+ h.offset

75 return result

Fig. 5. A wait-free implementation

process pk occurred after the SC() by process pj , so process pk gets at least all
the information that was in the children immediately prior to the first of the two
LL()s by process pi.

We do something similar in our wait-free implementation. The code for process
pi is presented in Figure 5. Each vertex of T contains two pairs denoting lists.
To perform FI(), a process pi creates a node containing its identifier i, a NIL
parent pointer, and offset 0 (lines 58–60) and puts a pair denoting this one
element list into its leaf (lines 61–63). Then it progresses up the tree T , one
vertex at a time. At each vertex v, it performs CopyUpInto(v) five times (lines
66–67). CopyUpInto(v), which is presented in Figure 6, tries to copy a pair into
v from one of its children and change which child should be considered next.

When a process pi performs CopyUpInto(v) five times, it ensures that the pair
denoting the list containing its node has been moved to vertex v. Thus, when pro-
cess pi reaches the root of T , its node is in a list denoted by a pair in the root of
T . If both the first pair (h1, 
1) and second pair (h2, 
2) denote non-empty lists,
process pi concatenates them (line 70). At this point, its node is in the list denoted
by the first pair in the root of T . Then it computes its result by adding the offsets
of all nodes on the path from its node to the root of the in-tree representing this
list (lines 71–74). The FI() is linearized when its node becomes part of the in-tree
representing the list at the root of T . If multiple operations are linearized at the
same time, they are linearized in the same order as they appear in the list.



294 F. Ellen and P. Woelfel

Procedure CopyUpInto(v)

76 Precondition: v is not a leaf
77 (h1, �1, h2, �2, c, f) := v.LLIn()
78 if f = True then
79 h1 := NIL
80 �1 := 0

81 else if h2 
= NIL then
82 if h1 = NIL then
83 h1 := h2

84 �1 := �2
85 else
86 h2.(ptr,offset) := (h1, �1)
87 �1 := �1 + �2

88 Let w be the child of v on side c and let c̄ be the other side
89 w.Copy()
90 wout := w.LLOut()
91 if wout = ⊥ then
92 v.SCIn (h1, �1, h2, �2, c̄)
93 else if wout.h1 = NIL then
94 v.SCIn (h1, �1, wout.h2, wout.�2, c̄)
95 else
96 wout.h2.(ptr,offset) := (wout.h1, wout.�1)
97 v.SCIn (h1, �1, wout.h1, wout.�1 + wout.�2, c̄)

98 (h1, �1, h2, �2, c, f) := v.LLIn()
99 Let w be the child of v on side c̄ 
= c

100 wout := w.LLOut()
101 if wout 
= ⊥ then
102 h := wout.h1

103 if h = NIL then h := wout.h2

104 if h ∈ {NIL, h1, h2} then w.RCOut()

105 return

Fig. 6. A procedure used in the wait-free implementation of FI

To ensure that the same pair doesn’t get copied up from a child to its parent
more than once, we use an Aggregator at each vertex of the tree T . The
domain D of each Aggregator consists of quintuples containing two pairs,
(h1, 
1) and (h2, 
2), that denote lists and a bit, c ∈ {left, right}, that indicates
which child of v should be considered next. Initially, v.in = (NIL, 0,NIL, 0, left),
v.f lag = False and v.out = ⊥ for all vertices v. Since v.in 	= ⊥ initially, it
follows from the specifications of Aggregator that v.in is never ⊥. After a
list has been copied from the out-buffer of a child to the in-buffer of its parent,
the out-buffer of that child is reset to ⊥, before any further lists are copied to
the in-buffer of the parent. The semantics of an Aggregator ensure that the
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out-buffer has been reset before another list can be copied into it. We maintain
the following invariants for all non-leaf vertices v:

1. If w is the child of v on side v.in.c and w.out 	= ⊥, then the list denoted by
w.out has not been copied to v.in.

2. If w is the sibling of the child of v on side v.in.c, w.out 	= ⊥, and w.out
denotes a nonempty list with head h that has been copied to v.in, then
h = v.in.h1 or h = v.in.h2.

A process pi begins CopyUpInto(v) by performing v.LLIn() (line 77). If
v.f lag = True, then v.in has already been moved to the out-buffer, so v.in
is treated as if it denotes an empty list. Otherwise, it concatenates the lists
denoted by the first and second pairs of v (lines 81–87), to make room for a
list from w, the child of v on the c side. This is similar to lines 49–54 in the
non-blocking implementation of FI().

Next, process pi considers w, the child of v from the side that was not most
recently considered. First pi tries to copy the quintuple from w.in to w.out (line
89). If w.out 	= ⊥ immediately beforehand, the copy is unsuccessful. In this case,
by Invariant 1, the list denoted by w.out has not been copied to v.in. Second, pi
reads the value of w’s out-buffer (line 90). If it is ⊥, then pi only tries to change
the value of v.in.c (line 92). In this case, one possibility is that, in the meantime,
some other process has copied a quintuple from w to v and w.out has been reset.
The other possibility is that, immediately prior to the Copy(), w.out = ⊥ and
w.flag = True, which indicates that nothing has been copied into w.in since
the last time w.Copy() was performed. If wout 	= ⊥, pi concatenates the lists
denoted by the first and second pairs of w. Then it tries to atomically copy the
pair denoting this list into the second pair in v and change v.in.c (lines 93–97).

Finally, pi checks whether the out-buffer of the child w that was most recently
considered contains an empty list or a nonempty list that has already been copied
to v (lines 100–104). If so, it tries to reset w.out to ⊥ using RCOut() (line 104).
Either the RCOut() will be successful or some RCOut() or Copy() performed on
w by another process was successful since pi last performed w.LLOut() on line
100. In either case, w.out = ⊥ at some point after pi last performed w.LLOut().
This ensures that the information in w.out won’t be copied up a second time
and makes room for new information to be copied into w.out by a later call to
CopyUpInto(v). It also ensures that when v.in.c is next changed, Invariant 1
will be true.

After a process pi performs CopyUpInto(v) five times consecutively, its cur-
rent node is in an up-tree that has reached node v. To see why, consider an
execution and suppose that, at the point, t0, immediately before pi performs
the first of these instances, its node is in an in-tree denoted by a pair in w.in,
for some child w of v. Let t′ be the point immediately after the next successful
v.SCIn() (on line 92, 94, or 97) by any process, and, for j = 1, . . . , 5, let tj be
the point immediately after the v.SCIn() by process pi during the j’th of these
instances. If it is unsuccessful, then there is a successful v.SCIn() or v.Copy()
performed by some other process between tj−1 and tj . Between two successful
instances of v.Copy(), there must be a successful instance of v.SCIn(), to reset
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v.f lag from True to False. Thus, there are at least two successful instances of
v.SCIn() that occur before t5 and whose matching instances of v.LLIn() oc-
curred after t′. Since the successful instances of v.SCIn() alternate between the
children from which they try to take a pair, at least one of them will try to copy
a pair from w. This instance will perform w.Copy() between its v.LLIn() and
its v.LLOut(), so it will move the list containing pi’s node from w.in to w.out,
if it has not already been moved. Although more elements may be added to the
list at w.in before it is moved to w.out, it is not deleted from w.out until after
it has been copied to v.in.

3.1 Complexity

CopyUpInto contain no loops or recursive calls, so it has constant step complex-
ity. In the wait-free implementation of FI(), the first while loop is performed
height(T ) ∈ O(log n) times and the number of times the second while loop is
performed is equal to the depth of the node pointed to by h. By the following
lemma, the in-tree representing the list at the root of T has height bounded
above by height(T ). Thus, every node has O(log n) depth and the worst case
step complexity of the wait-free implementation of FI() is in O(log n).

Lemma 1. If (v.in.h1, v.in.
1) denotes a nonempty list that has not been copied
to its parent, then height(v.in.h1) ≤ height(v). If (v.in.h2, v.in.
2) denotes a
nonempty list, then height(v.in.h2) ≤ height(v)− 1.

The final in-tree, namely, the in-tree representing the list at the root of T has size
at most m, where m is the number of FI() operations that have been linearized.
A process doesn’t complete an instance of FI() until the new node it created
at the beginning of the instance is part of the final in-tree. Hence, the sum of
the sizes of all other in-trees is at most n. As in the two simple, non-blocking
implementations, each offset field must store Θ(logm) bits, to be large enough
to store the result of an operation. There are m nodes in the data structure,
so each ptr field stores Θ(logm) bits. If m ∈ nO(1), then each node contains
O(log n) bits.

Since T contains Θ(n) vertices, the total number of objects used by our im-
plementation is Θ(max{n,m}). Using a new memory reclamation scheme by
Aghazadeh, Golab, and Woelfel [3], the number of nodes in use can be bounded
by O(n2), even as m grows large. In their scheme, each process has a pool of
2n+ O(1) nodes from which it allocates a node for each FI() operation it per-
forms. These are all initially in its local free list. There is a local reference counter
associated with each of its nodes (which only it can access). Each process has
two local n-element queues, RECENTi and ANNOUNCEDi, containing NIL
pointers and pointers to its nodes. Initially, they each contain n NIL pointers.
In addition, each process has a local modulo n counter di.

When a process pi performs FI(), it allocates a node j from its free list. If it
makes node j a child of another node (excluding the root of the final in-tree), it
first stores a pointer to that node in the i’th component of an array REF[0..n−1]
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to announce that it is being referenced by a node owned by process i. After pi
computes the result of this operation, it atomically changes j.offset to be that
result and j.ptr to point directly to the root of the final in-tree. Then it removes
the pointer from REF[i].

Process pi’s free list can contain every node in its pool that is not pointed
to by any element of REF[0..n − 1]. However, scanning through this entire ar-
ray each time it needs to allocate a node is too expensive. Instead, process pi
spends a constant amount of time after each FI() it performs looking for nodes
from its pool to add to its free list. First it dequeues a pointer from RECENTi.
If it is not NIL, it decrements the local counter associated with the node to
which it points and, if it becomes 0, it adds the node to its free list. Then, it
does the same thing to ANNOUNCEDi. Next, it increments the counter asso-
ciated with the node it most recently allocated and enqueues a pointer to it in
RECENTi. If REF [di] contains a pointer to a node from its pool, process pi
increments the counter associated with this node and enqueues a pointer to it
in ANNOUNCEDi. Otherwise, it enqueues a NIL pointer in ANNOUNCEDi.
Finally, it increments di modulo n. Essentially, process pi amortizes the work of
scanning the announcement array REF over n FI() operations.

3.2 Fetch&f

Our implementation of FI can easily be extended to compute Fetch&f(x)
for any binary associative function f . Such a function f can be extended to
sequences x1, . . . , xk over its domain by defining f(x1) = x1 and f(x1, . . . , xk) =
f(f(x1, . . . , xk−1), xk) for k ≥ 3. For the empty sequence, f can be assigned a
default value such as 0 or ⊥.

The idea of this extension is to use the second component of a pair de-
noting a list of nodes to store f applied to the sequence of inputs to the in-
stances represented by the nodes in the list. Likewise, the offset of any non-root
node can be used to store f applied to the sequence of input arguments of all
nodes that precede it in the list represented by the in-tree rooted at its parent.
To concatenate two lists denoted by the pairs (h1, 
1) and (h2, 
2), it suffices
to set h2.(ptr, offset) := (h1, 
1) and the resulting list is denoted by the pair
(h1, f(
1, 
2)).

4 Conclusions

In the full version of the paper, we show that our implementation of FI() can
be made adaptive, with step complexity O(min{k, logn}), where k denotes the
contention. This is optimal, even for randomized algorithms against a strong
adaptive adversary [5]. It is not known whether there are faster randomized
algorithms against an oblivious adversary.

Jayanti and Petrovic [9] have a wait-free implementation of M different
LL/SC objects shared by n processes from O(M+n2) CAS objects and registers
so that each LL and SC operation has O(1) worst-case step complexity. Combined
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with our implementation, this gives a wait-free implementation of a Fetch&Inc

object with O(log n) worst-case step complexity from O(n2) CAS objects and
registers, each of which stores O(logm) bits. However, a direct implementation
would be nice.
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Abstract. Active replication is commonly built on top of the atomic broad-
cast primitive. Passive replication, which has been recently used in the popular
ZooKeeper coordination system, can be naturally built on top of the primary-
order atomic broadcast primitive. Passive replication differs from active replica-
tion in that it requires processes to cross a barrier before they become primaries
and start broadcasting messages. In this paper, we propose a barrier function τ
that explains and encapsulates the differences between existing primary-order
atomic broadcast algorithms. We also show that implementing primary-order
atomic broadcast on top of a generic consensus primitive and τ inherently results
in higher time complexity than atomic broadcast, as witnessed by existing algo-
rithms. We overcome this problem by presenting an alternative, primary-order
atomic broadcast implementation that builds on top of a generic consensus prim-
itive and uses consensus itself to form a barrier. This algorithm is modular and
matches the time complexity of existing τ -based algorithms.

1 Introduction

Passive replication is a popular approach to achieve fault tolerance in practical sys-
tems [3]. Systems like ZooKeeper [8] or Megastore [1] use primary replicas to produce
state updates or state mutations. Passive replication uses two types of replicas: primaries
and backups. A primary replica executes client operations, without assuming that the
execution is deterministic, and produces state updates. Backups apply state updates in
the order generated by the primary. With active replication, by contrast, all replicas exe-
cute all client operations, assuming that the execution is deterministic. Replicas execute
a sequence of consensus instances on client operations to agree on a single execution se-
quence using atomic broadcast (abcast). Passive replication has a few advantages such
as simplifying the design of replicated systems with non-deterministic operations, e.g.,
those depending on timeouts or interrupts.

It has been observed by Junqueira et al. [9] and Birman et al. [2] that using atomic
broadcast for passive, instead of active, replication requires taking care of specific con-
straints. State updates must be applied in the exact sequence in which they have been
generated: if a primary is in state A and executes an operation making it transition to
state update B, the resulting state update δAB must be applied to state A. Applying it
to a different state C 	= A is not safe because it might lead to an incorrect state, which
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is inconsistent with the history observed by the primary and potentially the clients.
Because a state update is the difference between a new state and the previous, there
is a causal dependency between state updates. Unfortunately, passive replication algo-
rithms on top of atomic broadcast (abcast) do not necessarily preserve this dependency:
if multiple primaries are concurrently present in the system, they may generate con-
flicting state updates that followers end up applying in the wrong order. Primary-order
atomic broadcast (POabcast) algorithms, like Zab [9], have additional safety properties
that solve this problem. In particular, it implements a barrier, the isPrimary predicate,
which must be crossed by processes that want to broadcast messages.

Interestingly, the only existing passive replication algorithm using consensus as a
communication primitive, the semi-passive replication algorithm of Defago et al. [7],
has linear time complexity in the number of concurrently submitted requests. Recent
algorithms for passive replication have constant complexity but they directly implement
POabcast without building on top of consensus [2,9].

During our work on the ZooKeeper coordination system [8] we have realized that it
is still not clear how these algorithms relate, and whether this trade-off between modu-
larity and time complexity is inherent. This paper shows that existing implementations
of passive replication can be seen as instances of the same unified consensus-based
POabcast algorithm, which is basically an atomic broadcast algorithm with a barrier
predicate implemented through a barrier function τ we define in this work. The τ func-
tion outputs the identifier of the consensus instance a leader process must decide on
before becoming a primary.

Existing algorithms constitute alternative implementations of τ ; the discriminant is
whether they consider the underlying consensus algorithm as a black-box whose in-
ternal state cannot be observed. Our τ -based algorithm exposes an inherent trade off.
We show that if one implements τ while considering the consensus implementation as
a black box, it is necessary to execute consensus instances sequentially, resulting in
higher time complexity. This algorithm corresponds to semi-passive replication.

If the τ implementation can observe the internal state of the consensus primitive, we
can avoid the impossibility and execute parallel instances. For example, Zab is similar
to the instance of our unified algorithm that uses Paxos as the underlying consensus
algorithm and implements the barrier by reading the internal state of the Paxos proto-
col. We experimentally evaluate that using parallel instances almost doubles the maxi-
mum throughput of passive replication in stable periods, even considering optimizations
such as batching. Abstracting away these two alternatives and their inherent limita-
tions regarding time complexity and modularity is one of the main observations of this
paper.

Finally, we devise a τ -free POabcast algorithm that makes this trade off unnecessary,
since it enables running parallel consensus instances using an unmodified consensus
primitive as a black box. Unlike barrier-based algorithms, a process becomes a primary
by proposing a special value in the next available consensus instances; this value marks
the end of the sequence of accepted messages from old primaries. Table 1 compares the
different PO abcast algorithms we discuss in our paper.
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Table 1. Time complexity of POabcast algorithms presented in this paper - see Sect. 5.4 and 6 for
detail. We consider the use of Paxos as the underlying consensus algorithm since it has optimal
latency [12]. However, only the third solution requires the use of Paxos; the other algorithms
can use any implementation of consensus. For the latency analysis only, we assume that message
delays are equal to Δ. The Stable periods column reports the time, in a passive replication system,
between the receipt of a client request and its delivery by a single broadcasting primary/leader (c
is the number of clients). The Leader change column reports idle time after a new single leader
is elected by Ω and before it can broadcast new messages.

Stable periods Leader change
Atomic broadcast [11] 2Δ 2Δ

τ -based POabcast (Sect. 5.1) 2Δ · c 4Δ
τ -based POabcast with white-box Paxos (Sect. 5.3) 2Δ 4Δ

τ -free POabcast (Sect. 6) 2Δ 4Δ

Our barrier-free algorithm shows that both active and passive replication can be im-
plemented on top of a black-box consensus primitive with small and well understood
changes and without compromising performance.

2 Related Work

Traditional work on passive replication and the primary-backup approach assumes syn-
chronous links [3]. Group communication has been used to support primary-backup
systems; it assumes a ♦P failure detector for liveness [6]. Both atomic broadcast and
POabcast can be implemented in a weaker system model, i.e., an asynchronous system
equipped with an Ω leader oracle [5]. For example, our algorithms do not need to agree
on a new view every time a non-primary process crashes.

Some papers have addressed the problem of reconfiguration: dynamically chang-
ing the set of processes participating to the state machine replication group. Vertical
Paxos supports reconfiguration by using an external master, which can be a replicated
state machine [13]. This supports primary-backup systems, defined as replicated sys-
tems where write quorums consist of all processes and each single process is a read
quorum. Vertical Paxos does not address the issues of passive replication and consid-
ers systems where commands, not state updates, are agreed upon by replicas. Virtually
Synchronous Paxos (VS Paxos) aims at combining virtual synchrony and Paxos for
reconfiguration [2]. Our work assumes a fixed set of processes and does not consider
the problem of reconfiguring the set of processes participating to consensus. Shraer et
al. have recently shown that reconfiguration can be implemented on top of a POabcast
construction as the ones we present in this paper, making it an orthogonal topic [15].

While there has been a large body of work on group communication, only few algo-
rithms implement passive replication in asynchronous systems withΩ failure detectors:
semi-passive replication [7], Zab [9] and Virtually synchronous Paxos [2]. We relate
these algorithms with our barrier-based algorithms in Sect. 5.5.

Pronto is an algorithm for database replication that shares several design choices
with our τ -free algorithm and has the same time complexity in stable periods [14]. Both
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algorithms elect a primary using an unreliable failure detector and have a similar notion
of epochs, which are associated to a single primary. Epoch changes are determined
using an agreement protocol, and values from old epochs that are agreed upon after a
new epoch has been agreed upon are ignored. Pronto, however, is an active replication
protocol: all replicas execute transactions, and non-determinism is handled by agreeing
on a per-transaction log of non-deterministic choices that are application specific. Our
work focuses on passive replication algorithms, their difference with active replication
protocols, and on the notion of barriers in their implementation.

3 System Model and Primitives

Throughout the paper, we consider an asynchronous system composed of a set Π =
{p1, . . . , pn} of processes that can fail by crashing. They implement a passive repli-
cation algorithm, executing requests obtained by an unbounded number of client pro-
cesses, which can also fail by crashing. Correct processes are those that never crash.
Processes are equipped with an Ω failure detector oracle.

Definition 1 (Leader election oracle). A leader election oracleΩ operating on a set
of processes Π outputs the identifier of some process p ∈ Π . Instances of the oracle
running on different processes can return different outputs. Eventually, all instances of
correct processes permanently output the same correct process.

Our algorithms build on top of (uniform) consensus, which has the following prop-
erties.

Definition 2 (Consensus). A consensus primitive consists of two operations:
propose(v) and decide(v) of a value v. It satisfies the following properties:

Termination. If some correct process proposes a value, every correct process eventu-
ally decides some value.

Validity. If a processes decides a value, this value was proposed by some process.
Integrity. Every correct process decides at most one value.
Agreement. No two processes decide differently.

Since our algorithms use multiple instances of consensus, propose and decide have
an additional parameter denoting the identifier of the consensus instance.

Primary order atomic broadcast (POabcast) is an intermediate abstraction used by
our unified passive replication algorithm. POabcast provides a broadcast primitive
POabcast and a delivery primitive POdeliver. POabcast satisfies all safety properties
of atomic broadcast.

Definition 3 (Atomic broadcast). An atomic broadcast primitive consists of two op-
erations: broadcast and deliver of a value. It satisfies the following properties:

Integrity. If some process delivers v then some process has broadcast v.
Total Order. If some process delivers v before v′ then any process that delivers v′ must

deliver v before v′.
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Agreement. If some process pi delivers v and some other process pj delivers v′, then
either pi delivers v′ or pj delivers v.1

POabcast extends atomic broadcast by introducing the concept of primary and a
barrier: the additional isPrimary() primitive, which POabcast uses to signal when a
process is ready to broadcast state updates. This predicate resembles Prmys in the
specification of Budhiraja et al. [3]. However, as failure detectors are unreliable in our
model, primary election is also unreliable: there might be multiple concurrent primaries
at any given time, unlike in [3].

A primary epoch for a process p is a continuous period of time during which isPri-
mary() is true at p and therefore p is a primary. Multiple primaries can be present at any
given time: the isPrimary() predicate is local to a single process and multiple primary
epochs can overlap in time. Let P be the set of primaries such that at least one value
they propose is ever delivered by some process. A primary mapping Λ is a function
that maps each primary epoch in P to a unique primary identifier λ, which we also
use to denote the process executing the primary role. We consider primaries as logical
processes: saying that event ε occurs at primary λ is equivalent to saying that ε occurs
at some process p during a primary epoch for p having primary identifier λ.

Definition 4 (Primary order atomic broadcast). A primary order atomic broadcast
primitive consists of two operations broadcast(v) and deliver(v), and of a binary
isPrimary() predicate, which indicates whether a process is a primary and is allowed
to broadcast a value. Let Λ be a primary mapping and≺Λ a total order relation among
primary identifiers. Primary order broadcast satisfies the Integrity, Total order, and
Agreement properties of atomic broadcast; furthermore, it also satisfies the following
additional properties:

Local Primary Order. If λ broadcasts v before v′, then a process that delivers v′ de-
livers v before v′.

Global Primary Order. If λ broadcasts v, λ′ broadcasts v′, λ ≺Λ λ′, and some pro-
cess p delivers v and v′, then p delivers v before v′.

Primary Integrity. If λ broadcasts v, λ′ broadcasts v′, λ ≺Λ λ′, and some process
delivers v, then λ′ delivers v before it broadcasts v′.

These properties are partially overlapping, as we show in the full version of the
paper [10]. For example, Global primary order is very useful in reasoning about the
behaviour of POabcast, but it can be implied from the other POabcast properties. It
is also worth noting that Local primary order is weaker than the single-sender FIFO
property, since it only holds within a single primary epoch.

The above properties focus on safety. For liveness, it is sufficient to require the fol-
lowing:

Definition 5 (Eventual Single Primary). There exists a correct process such that even-
tually it is elected primary infinitely often and all messages it broadcasts are delivered
by some process.

Definition 6 (Delivery Liveness). If a process delivers v then eventually every correct
process delivers v.

1 We modified the traditional formulation of agreement to state it as a safety property only.
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initially
dec ← 0;
prop← 0;

upon POabcast(v) ∧ isPrimary()
prop←max(prop+ 1, dec+ 1);
propose(v, prop);

upon decide(v, dec+ 1)
dec ← dec+ 1;
POdeliver(v);

function isPrimary()
return (dec ≥ τ ) ∧ (Ω = p);

Algorithm 1. POabcast based on the barrier function and consensus - process p

4 Unified POabcast Algorithm Using the Barrier Function

In passive replication, a primary replica is responsible for executing client operations
and for broadcasting state updates. All replicas apply the state updates they deliver to
their local state. As we argued in the introduction, atomic broadcast is not sufficient to
preserve a correct ordering of state updates. In the full version of this paper, we give
an example of incorrect ordering with atomic broadcast and show that using POabcast
is sufficient to guarantee correctness [10]. In addition to the POabcast and POdeliver
primitives, replicas use the isPrimary() predicate to determine whether they should take
the primary role.

We now introduce our unified τ -based POabcast algorithm (Algorithm 1). It uses
three underlying primitives: consensus, theΩ leader oracle, and a new barrier function
τ we will define shortly.

Like typical atomic broadcast algorithms, our POabcast algorithm runs a sequence of
consensus instances, each associated with an instance identifier [4]. Broadcast values
are proposed using increasing consensus instance identifiers, tracked using the prop
counter. Values are decided and delivered following the consensus instance order: if
the last decided instance was dec, only the event decide(v, dec + 1) can be activated,
resulting in an invocation of POdeliver. This abstracts the buffering of out-of-order
decisions between the consensus primitive and our algorithm.

The most important difference between our algorithm and an implementation of
atomic broadcast is that it imposes an additional barrier condition for broadcasting mes-
sages: it must hold isPrimary. In particular, it is necessary for safety that dec ≥ τ . The
barrier function τ returns an integer and is defined as follows.

Definition 7 (Barrier function). Let σ be an infinite execution, Λ a primary mapping
in σ,≺Λ a total order among the primary identifiers, and λ a primary such that at least
one value it proposes is delivered in σ. A barrier function τ for λ returns:2

τ = max{i : ∃v, p, λ′ s.t. decidep(v, i) ∈ σ ∧ proposeλ′ (v, i) ∈ σ ∧ λ′ ≺Λ λ}
2 Subscripts denote the process that executes the propose or decide steps.



On Barriers and the Gap between Active and Passive Replication 305

An actual implementation of the τ function can only observe the finite prefix of σ
preceding its invocation; however, it must make sure that its outputs are valid in any
infinite extension of the current execution. If none of the values proposed by a primary
during a primary epoch are ever delivered, τ can return arbitrary values.

We show in the full paper [10] that this definition of τ is sufficient to guarantee the
additional properties of POabcast compared to atomic broadcast. In particular, it is key
to guarantee that the primary integrity property is respected. Local primary order is
obtained by delivering elements in the order in which they are proposed and decided.

The key to defining a barrier function is identifying a primary mapping Λ and a total
order of primary identifiers ≺Λ that satisfy the barrier property, as we will show in the
following section. There are some important observations to do here. First, we use the
same primary mappingΛ and total order≺Λ for the barrier function and for POabcast.
Note also that a primary might not know its identifier λ: this is only needed for the
correctness argument.

5 Implementations of the Barrier Function τ

5.1 Barriers with Black-Box Consensus

We first show how to implement τ using the consensus primitive as a black box. This
solution is modular but imposes the use of sequential consensus instances: a primary is
allowed to have at most one outstanding broadcast at a time. This corresponds to the
semi-passive replication algorithm [7].

Let prop and dec be the variables used in Algorithm 1, and let τseq be equal to
max(prop, dec). We have the following result:

Theorem 1. The function τseq is a barrier function.

Proof. We define Λ as follows: if a leader process p proposes a value vi,p for consensus
instance i and vi,p is decided, p has primary identifier λ = i. A primary has only one
identifier: after vi,p is broadcast, it holds prop > dec and dec < τseq , so isPrimary()
stops evaluating to true at p. The order≺Λ is defined by ordering primary identifiers as
regular integers.

If a process p proposes a value v for instance i = max(prop + 1, dec+ 1) in Algo-
rithm 1, it observes τseq = max(prop, dec) = i− 1 when it becomes a primary. If v is
decided, p has primary identifier λ = i. All primaries preceding λ in ≺Λhave proposed
values for instances preceding i, so τseq meets the requirements of barrier functions. �

5.2 Impossibility

One might wonder if this limitation of sequential instances is inherent or not. Indeed,
this is the case as we show in the following.

Theorem 2. Let Π be a set of two or more processes executing the τ -based POabcast
algorithm with an underlying consensus implementation C that can only be accessed
through its propose and decide calls. There is no local implementation of τ for C al-
lowing a primary p to propose a value for instance i before p reaches a decision for
instance i− 1.
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Proof. The proof is by contradiction: we assume that a barrier function τc allowing
primaries to propose values for multiple concurrent consensus instances exists.

Run σ1: The oracle Ω outputs some process p as the only leader in the system from
the beginning of the run. Assume that p broadcasts two values v1 and v2 at the beginning
of the run. For liveness of POabcast, p must eventually propose values for consensus
instances 1 and 2. By assumption, τc allows p to start consensus instance 2 before a
decision for instance 1 is reached. Therefore p observes τc = 0 when it proposes v1
and v2. The output of τc must be independent from the internal events of the underlying
consensus implementation C, since τc cannot observe them. We can therefore assume
that no process receives any message before p proposes v2.

Run σ′1: The prefix of σ1 that finishes immediately after p proposes v2. No process
receives any message.

Run σ2: Similar to σ1, but the only leader is p′ 	= p and the proposed values are v′1
and v′2. Process p′ observes τc = 0 when it proposes v′1 and v′2.

Run σ′2: The prefix of σ2 that finishes immediately after p′ proposes v′2. No process
receives any message.

Run σ3: The beginning of this run is the union of all events in the runs σ′1 and σ′2.
No process receives any message until the end of the union of σ′1 and σ′2. The Ω oracle
is allowed to elect two distinct leaders for a finite time. Process p (resp. p′) cannot
distinguish between run σ′1 (resp. σ′2) and the corresponding local prefix of σ3 based
on the outputs of the consensus primitive and of the leader oracle. After the events of
σ′1 and σ′2 have occurred, some process decides v′1 for consensus instance 1 and v2 for
consensus instance 2.

Regardless of the definition of Λ and ≺Λ, the output of τc in σ3 is incorrect. Let p
and p′ have primary identifiers λ and λ′ when they proposed v2 and v′1, respectively. If
λ ≺Λ λ′, τc should have returned 2 instead of 0 when p′ became primary. If λ′ ≺Λ λ,
τc should have returned 1 instead of 0 when p became primary. �

5.3 Barriers with White-Box Paxos

An alternative, corresponding to Zab [9], to avoid the aforementioned impossibility is
to consider the internal states of the underlying consensus algorithm. We exemplify this
approach considering the popular Paxos algorithm [11]. A detailed discussion of Paxos
is out of the scope of this work and we only present a summary for completeness.

Overview of Paxos. In Paxos, each process keeps, for every consensus instance, an
accepted value, which is the most current value it is aware of that might have been
decided. A process p elected leader must first read, for each instance, the value that
may have been decided upon for this instance, if any. To obtain this value, the leader
selects a unique ballot number b and executes a read phase by sending a read message
to all other processes. Processes that have not yet received messages from a leader with
a higher ballot number b reply by sending their current accepted value for the instance.
Each accepted value is sent attached to the ballot number of the previous leader that
proposed that value. The other processes also promise not to accept any message from
leaders with ballots lower than b. When p receives accepted values from a majority of
processes, it picks for each instance the accepted value with the highest attached ballot.
Gaps in the sequence instance with picked values are filled with empty no op values.
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After completing the read phase, the new leader proposes the values it picked as
well as its own values for the instances for which no value was decided. The leader
proposes values in a write phase: it sends them to all processes together with the current
ballot number b. Processes accept proposed values only if they have not already received
messages from a leader with a ballot number b′ > b. After they accept a proposed value,
they send an acknowledgement to the leader proposing it. When a value has been written
with the same ballot at a majority of processes, it is decided.

In a nutshell, the correctness argument of Paxos boils down to the following argu-
ment. If a value v has been decided, a majority of processes have accepted it with a
given ballot number b; we say that the proposal 〈v, b〉 is chosen. If the proposal is cho-
sen, no process in the majority will accept a value from a leader with a ballot number
lower than b. At the same time, every leader with a ballot number higher than b will
read the chosen proposal in the read phase, and will also propose the v.

Integrating the Barrier Function. We modify Paxos to incorporate the barrier func-
tion. If a process is not a leader, there is no reason for evaluating τ . Whenever a process
is elected leader, it executes the read phase. Given a process p such that Ω = p, let
read(p) be the maximum consensus instance for which any value is picked in the last
read phase executed by p. The barrier function is implemented as follows:

τPaxos =

{
) iff Ω 	= p ∨ p is in read phase
read(p) iff Ω = p ∧ p is in write phase

The output value) is such that dec ≥ τPaxos never holds for any value of dec. This
prevents leaders from becoming primaries until a correct output for τPaxos is determined.

We now show that this τ implementation is correct. The proof relies on the correct-
ness argument of Paxos.

Theorem 3. The function τPaxos is a barrier function.

Proof. By the definition of τPaxos, a process becomes a primary if it is a leader and has
completed the read phase. Let Λ associate a primary with the unique ballot number it
uses in the Paxos read phase and let ≺Λ be the ballot number order.

Paxos guarantees that if any process ever decides a value v proposed by a leader with
ballot number smaller than the one of λ, then v is picked by λ in the read phase [11].
This is sufficient to meet the requirements of τ . �

5.4 Time Complexity of τ -Based POabcast with Different Barrier Functions

We now explain the second and third row of Table 1. Just for the analysis, we assume
that there are c clients in the system, the communication delay is Δ, and Paxos is used
as underlying consensus protocol since it is optimal [12].

We first consider the barrier function of Sect. 5.1. If a primary receives requests from
all clients at the same time, it will broadcast and deliver the corresponding state updates
sequentially. Delivering a message requires 2Δ, the latency of the write phase of Paxos.
Since each message will take 2Δ time to be delivered, the last message will be delivered
in 2Δ · c time. During leader change, Paxos takes 2Δ time to execute the read phase
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and 2Δ to execute the write phase if a proposal by the old primary has been chosen and
potentially decided in the last consensus instance.

With the barrier function of Sect. 5.3, consensus instances are executed in parallel
with a latency of 2Δ. The complexity for leader changes is the same, since the write
phase is executed in parallel for all instances up to τ .

Note that the longer leader change time of POabcast algorithms compared to atomic
broadcast (see Table 1) is due to the barrier: before it becomes a primary, a process must
decide on all values that have been proposed by the previous primaries and potentially
decided (chosen). This is equivalent to executing read and write phases that require 4Δ
time. In atomic broadcast, it is sufficient that a new leader proposes chosen values from
previous leaders.

5.5 Relationship between τ Functions and Existing POabcast Algorithms

The POabcast algorithm with the barrier function of Sect. 5.1 is similar to semi-passive
replication [7] since both enforce the same constraint: primaries only keep one out-
standing consensus instance at a time. The time complexity of the two protocols using
Paxos as the underlying consensus protocol is the same (Table 1, second row).

If the barrier function implementation selects a specific consensus protocol and as-
sumes that it can access its internal state, as discussed in Sect. 5.1, our barrier-based
POabcast algorithm can broadcast state updates in the presence of multiple outstand-
ing consensus instances. This is the same approach as Zab, and indeed there are many
parallelisms with this algorithm. The time complexity in stable periods is the same (see
Table 1, third row). A closer look shows that also the leader change complexity is equal,
apart from specific optimizations of the Zab protocol. In Zab, the read phase of Paxos
corresponds to the discovery phase; the CEPOCH message is used to implement leader
election and to speed up the selection of a unique ballot (or epoch, in Zab terms) number
that is higher than any previous epoch numbers [9]. After the read phase is completed,
the leader decides on all consensus instances until the instance identifier returned by
τPaxos - this is the synchronization phase, which corresponds to a write phase in Paxos;
in our implementation, the barrier function returns and the leader waits until enough
consensus instances are decided. At this point, the necessary condition dec ≥ τPaxos
of our generic POabcast construction is fulfilled, so the leader crosses the barrier, be-
comes a primary, and can proceed with proposing values for new instances. In Zab, this
corresponds to the broadcast phase.

Virtually-synchronous Paxos is also a modified version of Paxos that implements
POabcast and the τPaxos barrier function, but it has the additional property of making
the set of participating processes dynamic [2]. It has the same time complexity during
stable periods and leader changes as in Table 1.

6 POabcast Using Consensus Instead of τ for the Barrier

The previous section shows an inherent tradeoff in τ implementations between modular-
ity, which can be achieved by using sequential consensus instances and using consensus
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as a black box, and performance, which can be increased by integrating the implemen-
tation of the barrier function in a specific consensus protocol. In this section, we show
that this tradeoff can be avoided through the use of an alternative POabcast algorithm.

Algorithm. Our τ -free algorithm (see Algorithm 2) implements POabcast, so it is an
alternative to Algorithm 1. The algorithm is built upon a leader election oracle Ω and
consensus. The main difference with Algorithm 1 is that the barrier predicate isPrimary
is implemented using consensus instead of τ : consensus instances are used to agree
not only on values, but also on primary election information. Another difference is that
some decided value may not be delivered. This requires the use of additional buffering,
which slightly increases the complexity of the implementation.

When a process p becomes leader, it picks a unique epoch number tent-epoch and
proposes a 〈NEW-EPOCH, tent-epoch〉 value in the smallest consensus instance dec
where p has not yet reached a decision (lines 5-9). Like in Algorithm 1, we use multi-
ple consensus instances. All replicas keep a decision counter dec, which indicates the
current instance where a consensus decision is awaited, and a proposal counter prop,
which indicates the next available instance for proposing a value. Another similarity
with Algorithm 1 is that decision events are processed following the order of consensus
instances, tracked using the variable dec (see lines 10 and 29). Out-of-order decision
events are buffered, although this is omitted in the pseudocode.

Every time a NEW-EPOCH tuple is decided, the sender of the message is elected
primary and its epoch tent-epoch is established (lines 10-23). When a new epoch is
established, processes set their current epoch counter epoch to tent-epoch. If the process
delivering the NEW-EPOCH tuple is a leader, it checks whether the epoch that has been
just established is its own tentative epoch. If this is the case, the process considers itself
as a primary and sets primary to true; else, it tries to become a primary again.

When p becomes a primary, it can start to broadcast values by proposing VAL tuples
in the next consensus instances, in parallel (lines 24-28). Ensuring that followers are in
a state consistent with the new primary does not require using barriers: all processes
establishing tent-epoch in consensus instance i have decided and delivered the same se-
quence of values in the instances preceding i. This guarantees that the primary integrity
property of POabcast is respected.

Processes only POdeliver VAL tuples of the last established epoch until a different
epoch is established (lines 29-33, see in particular condition epochm = epoch). The
algorithm establishes the following total order ≺Λ of primary identifiers: given two
different primaries λ and λ′ which picked epoch numbers e and e′ respectively, we say
that λ ≺Λ λ′ if and only if a tuple 〈NEW-EPOCH, e〉 is decided for a consensus instance
n, a tuple 〈NEW-EPOCH, e′〉 is decided for a consensus instance m, and n < m.
Suppose that p is the primary λ with epoch number eλ elected in consensus instance
decλ. All processes set their current epoch variable e to eλ after deciding in instance
decλ. From consensus instance number decλ + 1 to the next consensus instance where
a NEW-EPOCH tuple is decided, processes decide and deliver only values that are sent
from λ and included in VAL tuples with epochm = eλ. Replicas thus deliver messages
following the order ≺Λ of the primaries that sent them, fulfilling the global primary
order property of POabcast.
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1 initially
2 tent-epoch, dec, decseq, prop,

seqno ← 0;
3 epoch ← ⊥;
4 primary ← false;
5 upon Ω changes from q 
= p to p
6 try-primary();
7 procedure try-primary()
8 tent-epoch ← new unique epoch

number;
9 propose(〈NEW-EPOCH,

tent-epoch〉, dec);
10 upon decide(〈NEW-EPOCH,

tent-epochm〉, dec)
11 dec ← dec+1;
12 epoch ← tent-epochm;
13 da ← empty array;
14 pa ← empty array;
15 decseq ← dec;
16 if Ω = p then
17 if tent-epoch = tent-epochm

then
18 prop ← dec;
19 seqno ← dec;
20 primary ← true;
21 else
22 primary ← false;
23 try-primary();

24 upon POabcast( v)
25 propose(〈VAL, v, epoch,

seqno〉, prop);
26 pa[prop] ← 〈 v, seqno〉;
27 prop← prop+1;
28 seqno ← seqno+1;
29 upon decide(〈VAL, v, epochm,

seqnom〉, dec)
30 if epochm = epoch then
31 da[seqnom] ← v;
32 while da[decseq] 
= ⊥ do
33 POdeliver(da[decseq]);
34 decseq← decseq+1;
35 if primary ∧ epochm 
= epoch
36 ∧ prop ≥ dec then
37 〈 v′, seqno′〉 ← pa[dec];
38 pa[prop] ← pa[dec];
39 propose(〈VAL, v′, epoch,

seqno′〉, prop);
40 prop← prop+1;
41 if ¬ primary ∧Ω = p then
42 try-primary();
43 dec← dec+1;
44 upon Ω changes from p to q 
= p
45 primary← false;
46 function isPrimary()
47 return primary;

Algorithm 2. Barrier-free POabcast using black-box consensus - process p

The additional complexity in handling VAL tuples is necessary to guarantee the lo-
cal primary order property of POabcast. VAL tuples of an epoch are not necessarily
decided in the same order as they are proposed. This is why primaries include a se-
quence number seqno in VAL tuples. In some consensus instance, the tuples proposed
by the current primary might not be the ones decided. This can happen in the presence
of concurrent primaries, since primaries send proposals for multiple overlapping con-
sensus instances without waiting for decisions. If a primary is demoted, values from old
and new primaries could be interleaved in the sequence of decided values for a finite
number of instances. All processes agree on the current epoch of every instance, so they
do not deliver messages from other primaries with different epoch numbers. However,
it is necessary to buffer out-of-order values from the current primary to deliver them
later. That is why processes store decided values from the current primary in the da
array (line 31), and deliver them only if a continuous sequence of sequence numbers,
tracked by decseq, can be delivered (lines 32-34).
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Fig. 1. Latency and throughput with micro benchmarks. Request and state update sizes were set
to 1kb, which is the typical size observed in ZooKeeper. Both protocols use batching.

Primaries also need to resend VAL tuples that could not be decided in the correct
order. When values are proposed, they are stored in the pa following the sequence num-
ber order; this buffer is reset to the next ongoing consensus instance every time a new
primary is elected. Primaries resend VAL tuples in lines 35-40. Primaries keep a pro-
posal instance counter prop, indicating the next consensus instance where values can
be proposed. If an established primary has outstanding proposals for the currently de-
cided instance dec, it holds prop ≥ dec. In this case, if the decided VAL tuple is not
one such outstanding proposal but has instead been sent by a previous primary, it holds
that epochm 	= epoch. If all the previous conditions hold, the established primary must
resend the value that has been skipped, pa[dec].v′, using the same original sequence
number pa[dec].seqno’ in the next available consensus instance, which is prop.

The arrays da and pa do not need to grow indefinitely. Elements of da (resp. pa) with
position smaller than decseq (resp. dec) can be garbage-collected.

For liveness, a leader which is not a primary keeps trying to become a primary by
sending a NEW-EPOCH tuple for every consensus instance (lines 22-23). The primary
variable is true if a leader is an established primary. It stops being true if the primary is
not a leader any longer (lines 44-45).

Algorithm 2 correctly implements POabcast, as shown in our full paper [10].

Time Complexity. As before, we use Paxos for the consensus algorithm and assume
a communication delay of Δ. During stable periods, the time to deliver a value is 2Δ,
which is the time needed to execute a Paxos write phase. When a new leader is elected,
it first executes the read phase, which takes 2Δ. Next, it executes the write phase for
all instances in which values have been read but not yet decided, and for one additional
instance for its NEW-EPOCH tuple. All these instances are executed in parallel, so they
finish within 2Δ time. After this time, the new leader crosses the barrier, becomes a
primary, and starts broadcasting new values.

7 Experimental Evaluation

Our τ -free algorithm combines modularity with constant time complexity. Since our
work was motivated by our work on systems like ZooKeeper, one might wonder whether
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this improvement has a practical impact. Current implementations of replicated sys-
tems can reach some degree of parallelism even if they execute consensus instances
sequentially. This is achieved through an optimization called batching: multiple clients
requests are aggregated in a batch and agreed upon together using a single instance.
Even in presence of batching, we found that there is a substantial advantage of running
multiple consensus instances in parallel.

We implemented two variants of the Paxos algorithm, one with sequential consen-
sus instances and one with parallel ones, and measured the performance of running our
POabcast algorithms on top of it. We consider fault-free runs where the leader election
oracle outputs the same leader to all processes from the beginning. We used three repli-
cas and additional dedicated machines for the clients; all servers are quad-core 2.5 GHz
CPU servers with 16 GB of RAM connected through a Gigabit network.

The experiments consist of micro-benchmarks where the replicated object does noth-
ing. These benchmarks are commonly used in the evaluation of replication algorithms
because they reproduce a scenario in which the replication protocol, rather than execu-
tion, is the bottleneck of the system so its performance is critical.

We used batching in all our experiments. With sequential consensus instances, we
batch all requests received while a previous instance is ongoing. In the pipelined ver-
sion, we start a new consensus instance when either the previous instance is completed
or b requests have been batched. We found b = 50 to be optimal. Every measurement
was repeated five times at steady state, and variances were negligible.

Figure 1 reports the performance of the two variants with a growing number of
clients. Messages (requests and state updates) have size 1 kB, which is a common state
update size for ZooKeeper and Zab [9].

The peak throughput with the parallel consensus instances is almost two times the
one with sequential instances. The same holds with messages of size 4 kB. The differ-
ence decreases with smaller updates than the ones we observe in practical systems like
ZooKeeper. In the extreme case of empty requests and state updates, the two approaches
have virtually the same request latency and throughput: they both achieve a maximum
throughput of more than 110 kops/sec and a minimum latency of less than 0.5 ms.

These results show that low time complexity (see Table 1) is very important for high-
performance passive replication. When there is little load in the system, the difference
in latency between the two variants is negligible. In fact, due to the use of batching,
running parallel consensus instances is not needed. As the number of clients (c in Ta-
ble 1) increases, latency grows faster in the sequential case, as predicted by our analysis.
With sequential consensus instances, a larger latency also results in significantly worse
throughput compared to the parallel variant due to lower network and CPU utilization.

8 Conclusions

Some popular systems such as ZooKeeper have used passive replication to mask crash
faults. We extracted a unified algorithm for implementing POabcast using the barrier
function that abstracts existing passive replication approaches. The barrier function is
a simple way to understand the difference between passive and active replication, as
well as the characteristics of existing POabcast algorithms, but it imposes a tradeoff
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between parallelism and modularity. We have proposed an algorithm that avoids such
a limitation by not relying upon a barrier function. This algorithm is different from
existing ones in its use of consensus, instead of barrier functions, for primary election.

Acknowledgement. We would like to express our gratitude to Alex Shraer and Ben-
jamin Reed for the insightful feedback on previous versions of the paper, and to Daniel
Gómez Ferro for helping out with the experiments.
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Abstract. Consider a group of nodes connected through multiple-access
channels and the only observable feedback on the channel is a binary
value: either one or more nodes have transmitted (busy), or no node has
transmitted (idle). The channel model thus described is called Beeping
Model and captures computation in hardware using a group of sequential
circuit modules connected by a logic-OR gate. It has also been used to
study chemical signaling mechanisms between biological cells and carrier-
sensing based wireless communication.

In this paper, we study the distributed complexity of two fundamental
problems in the Beeping Model. In both problems, there is a set of nodes
each with a unique identifier i ∈ {1, 2, . . . , n}. A subset of the nodes
A ⊆ {1, 2, . . . , n} is called active nodes. In the Membership Problem,
every node needs to find out the identifiers of all active nodes. In the
Conflict Resolution Problem, the goal is to let every active node use the
channel alone (without collision) at least once.

We derive two results that characterize the distributed complexity
of these problems. First, we prove that in the Beeping Model the two
above problems are equally hard. This is in stark contrast to traditional
channel models with ternary feedback in which the membership problem
is strictly harder than conflict resolution. The equivalence result also
leads to a randomized lower bound for conflict resolution, which shows a
relative powerlessness of randomization in the beeping model. Secondly,
we give a new deterministic algorithm for the problems that achieves the
best known parallelization among all practical algorithms.

Keywords: circuit algorithms, multiple access channel, beeping model,
confict resolution, membership detection, lower bounds.

1 Introduction

Consider a logical-OR gate in hardware circuit with n inputs N = {1, 2, . . . , n},
in which each of the input i ∈ N is controlled by a sequential logic module that
listens to the output of the OR gate, as illustrated in Figure 1(a). Now, assume
that there is a subset A ⊆ N of the inputs; let us call them the active inputs.
Only active inputs can transmit. Our goal is to determine which of the inputs
are active, by repeatedly using the logical-OR gate. The problem thus described
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occurs as a core component in many circuit-based algorithm implementations1.
It is also an archetypical problem that arises in a variety of settings and systems
where entities or nodes communicate using a shared communication channel, and
the only observable feedback on the channel is a binary value: either “someone
has transmitted” or “none has transmitted”.

This channel model has been called Beeping Model. In this model a group
of nodes communicate through beeping channels. Communication is in discrete
synchronous time slots and all nodes have access to a global clock (common in
hardware applications). In each time slot, a node first does some local compu-
tation, then decides to either keep sending a “beep” signal or be quiet in the
rest of that time slot. At the end of the time slot, the node receives a binary
feedback from the channel: “busy” if at least one node is beeping on the channel;
and “idle” otherwise. All nodes see the same channel feedback, and the channel
feedbacks in all time slots are collectively called the channel feedback history.

The Beeping Model has recently found a lot of attention in the distributed
computing community. It is one of the fundamental models for multiple access
channels. Such models can be distinguished by the feedback the participants
(nodes) can sense from the channel. In the traditional channel model (also called
the model with Collision Detection) [15] [9] [3] [14] [8] [16] [10] [11], nodes re-
ceive ternary feedback about the channel state: no one is sending (idle), exactly
one node is sending (success), or two or more nodes are sending (collision). In
contrast, the Beeping Model has only binary feedback: no one is sending (idle)
or, one or more nodes are sending (busy). This binary model captures the com-
putation with circuit modules connected by a logic-OR gate, and it has also
been used to study chemical signaling mechanisms between biological cells [2]
and carrier-sensing based wireless communication [5]; several distributed graph
problems (e.g., MIS [1], coloring [5]) have been studied in this model.

Membership Problem and Conflict Resolution. In this paper, we study
the distributed complexity of two fundamental problems in the Beeping Model.
Let N = {1, 2, . . . , n}. In both problems, there is a group of nodes each with a
unique identifier (ID) i ∈ N . A subset of the nodes A ⊆ N of size |A| ≤ k is
called active nodes. Only active nodes can send out beep signals. Initially, each
node knows whether itself is active, as well as its ID i, the size of the name space
n, and the upper bound k. 2

• The Conflict Resolution Problem (CR), also called k-Selection Problem, asks
to coordinate the nodes’ accesses to the channel such that for any A ⊆ N ,
each active node i ∈ A obtains exclusive access to the channel in at least one
time slot if |A| ≤ k. A node i ∈ N obtains exclusive access to the channel in

1 Our specific motivation has been our work on building customized hardware ma-
chines to play the game of GO, one of the few classic boardgames in which computers
are still unable to compete with the best human players [7].

2 In case either i or n is unknown, we can apply standard tricks of letting node choose
random IDs (when i is unknown) or exponentially estimating n based on the IDs in
the system (when n is unknown). If such a k is unknown, we just iteratively run an
algorithm with k = 2r in round r, until k is large enough to be an upper bound.
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time slot t” if and only if i is the only node allowed to beep in time slot t. A
time slot t is exclusively-used if and only if any i ∈ N obtains exclusive access
to the channel in time slot t. In the Beeping Model, the CR problem further
asks every node i ∈ N to correctly recognize all such exclusively-used time
slots (since otherwise they cannot distinguish the real message from noise).

• The Membership Problem (MP), also called Node Identification or Station
Identification, asks to learn the set A if |A| ≤ k, i.e., to let every node i ∈ N
know the IDs of all the (at most k) active nodes.

We derive two results that characterize the distributed complexity of these
problems. First, we prove that in the Beeping Model the two problems are equally
hard, which is unlike in traditional access channel models in which the member-
ship problem is strictly harder than conflict resolution. And secondly, we design
a new deterministic parallel algorithm that takes significantly less time than
previous solutions. We now discuss these contributions in detail.

Equivalence of MP and CR. Intuitively, one may think that the Membership
Problem requires more time than Conflict Resolution for at least two reasons:
First, in CR, an active node that has managed to successfully transmit can stop
sending out any additional beeps; while this is not the case in MP. In other
words, while the CR problem merely asks to arrange k “successful” time slots,
the MP further asks to identify who is beeping in each successful time slot.
Secondly, reducing CR to MP is trivial (by simply letting the active nodes beep
successfully one-by-one in the order of their IDs), but the reversed reduction
from MP to CR comes at an extra cost: A node can only transmit a single beep
during one iteration of a CR protocol, which is not sufficient to transmit an
entire identifier of length O(log n) bits, as required in MP.

Interestingly, the intuition that MP is strictly harder than CR is known to
be true in the traditional ternary-feedback (idle, success, collision) model of
access channels. Specifically, there is a known separation of the two problems for
randomized algorithms. With ternary feedback, the expected running time of
any Las Vegas membership algorithm is Ω(k log nk ) (by the entropy argument),
while there are Las Vegas collision resolution algorithms with expected running
time of ≤ 2.89k [15] [14].

In this paper, we show that the above intuition does not hold in the beeping
model, i.e., that the membership problem is not harder than conflict resolution.
This reveals two fundamental differences between the two basic models for multi-
ple access channels: the binary Beeping Model and the ternary traditional model.
(i) First, whereas MP is strictly harder than CR in the ternary model, the two
problems are equally hard in the binary Beeping Model, which means the only
way to achieve reliable (or collision-free) communication in the Beeping Model is
to identify all the nodes competing for the channel. (ii) And secondly, we prove
that there is a difference between the two models in the power of randomization
for reliable communication. Specifically, Greenberg and Winograd proved in [8]
a lower bound of Ω(k logk n) for any deterministic conflict resolution algorithm
in the ternary model, which established the separation between deterministic al-
gorithms and randomized algorithms in this problem (recall that there are Θ(k)
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Table 1. Known Bounds on the (Sequential) Time Complexity for CR and MP

Ternary Feedback – {0, 1, 2+} Beeping Model – {0, 1+}
Membership Problem (rand.) Θ(k log n

k
) Θ(k log n

k
)

Collision Resolution (rand.) Θ(k) Θ(k log n
k
) (*)

Membership Problem (det.) Θ(k log n
k
) Θ(k log n

k
)

Collision Resolution (det.) Ω(k logk n), O(k log n
k
) Θ(k log n

k
) (*)

randomized algorithms in the ternary model [15] [14]). In this paper we show
that this gap disappears in the Beeping Model. We prove that in the Beeping
Model any deterministic conflict resolution algorithm is also an algorithm that
solves MP. This result yields the lower bound Ω(k log nk ) for CR with respect to
both deterministic and randomized algorithms in the beeping model, which is
tight since there exist deterministic algorithms that run in O(k log nk ) time [6].
Table 1 summarizes the performance bounds in the two models. Results marked
with asterisks are new. Finally, our proof techniques are nontrivial. As a by-
product, we prove that in the Beeping Model, one cannot count the number of
active nodes without identifying them (i.e. solving MP).

Efficient Parallel Algorithm. So far, we have assumed that there is a single
channel connecting the nodes. In many applications, however, nodes can access
more than one beeping channel in parallel. For example, hardware circuits are
typically 32-bit or 64-bit wide (i.e., there are 32 or 64 beeping channels in parallel,
see Fig. 1(a)); chemical interactions between biological cells may be activated
by multiple types of proteins; and a wireless communication channel may be
partitioned into multiple sub-bands (e.g., OFDM used in Wi-Fi partitions each
channel into so-called sub-carriers that are all accessed simultaneously). In each
time-slot, a node can decide to beep or not independently in each of the beeping
channels, and listen to the feedbacks of all channels at the same time.

Clearly, the number of channels plays an important role in how much time is
required to solve the problems. For example, with n parallel channels, both prob-
lems can be solved in O(1) time with a simple round robin algorithm. However,
this is unrealistic as in many applications n is the size of the name space, which
may grow exponentially with the length of node identifiers (e.g., n = 264 for
64-bit identifiers). For this reason, we seek efficient parallel algorithms that use
polylog(n) number of channels and have polylog(n) computational complexity
(e.g. avoiding full scans of the whole name space). Seems the fastest such solu-
tions in the literature is by Chou Hsiung Li [12], in which an efficient algorithm
was proposed in the context of experimental variables screening. Li’s algorithm
turns out to be essentially a parallel algorithm which, when used in beeping
model, terminates in O(log nk ) time with O(k) channels, and has computational
complexity of O(k2 log nk ).

The second main contribution of this paper is a novel and practical deter-
ministic algorithm for both CR and MP. The basic idea of the algorithm is
to iteratively reduce the problem size n by renaming each node to a smaller
name space in each iteration. We show that when the algorithm terminates, each
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Table 2. Algorithms for CR and MP in Beeping Model with Multiple Channels

# Time Slots # Channels Computation

Round-robin O(1) O(n) O(n)

Adaptive GT [9] [3] [16] [6] O(k log n
k
) O(1) O(k log n

k
)

Li’s Algorithm [12] O(log n
k
) O(k) O(k2 log n

k
)

Our Algorithm (*) O(log k log logk n) O(k logk n+ k2) O(k2 log n
k
+ k3)

active node has an ID i′ ∈ {1, . . . , k}, and that each of them can locally recover
the original IDs of all active nodes from the channel feedback history. The al-
gorithm terminates in O(log k log logk n) time slots in the worst case, which is
exponentially better than Li’s algorithm [12] for k ∈ polylog(n). The algorithm
uses O(k logk n+k

2) parallel channels, and the computational complexity of the
algorithm is O(k2 log nk + k3) – both are logarithmic in n and polynomial in k.
Table 2 summarizes our results relative to previous work.

In addition to its efficiency, our algorithm is also tolerant to arbitrary crash-
failures in the parallel model, and always correctly returns the set of nodes that
remain active when the algorithm terminates. Finally, the core component of
the algorithm is a strong renaming/coloring process, which may be of interest
in its own right. The strong renaming problem asks to assign each active node a
unique ID i′ ∈ {1, ..., d}, where d is the number of active nodes. Our algorithm,
when used as a strong renaming algorithm, is invertible and order-preserving
(i.e. for any two original ID’s i < j, we have i′ < j′).
Notations: Let γ ∈ {0, 1}∗ be a bit vector, we denote |γ| as the length of γ,
‖γ‖ as the number of bit “1” in γ, and γ[i] for i ∈ {1, . . . , |γ|} as the i-th bit
of γ. For a set of bit vectors γ1, γ2, ..., γn, (γ1, · · · , γn) is the concatenation of
these n vectors; γi ∨ γj is the bitwise Boolean Sum (i.e. logical-OR) of γi and
γj ; ε denotes the empty vector. For a natural number n, [n]q denotes the q-nary
representation of n.

2 The Equivalence of Membership and Conflict
Resolution

In this section we show the equivalence between MP and CR in the Beeping
Model. The equivalence leads to a tight lower bound for both problems, and for
both deterministic and randomized algorithms (Las Vegas and Monte Carlo). As
discussed, both the equivalence of the problems and the relative powerlessness
of randomization are in contrast to the traditional ternary channel access model.
Without loss of generality, we assume the model has single channel in this section.
We denote a problem instance (of any problem considered here) by a bit vector
π ∈ {0, 1}n, where π[i] = 1 means node i is active, and π[i] = 0 otherwise. For
any deterministic algorithm A, we denote by the bit vector rA(π) the channel
feedback history of algorithm A under problem instance π, where rA(π)[t] = 1
means the node hear a beep signal (“busy”) from the channel in time-slot t.
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The reduction from conflict resolution to membership is straightforward –
once every node knows who is active, active nodes can send messages one by
one without any conflict in k time-slots. However, an efficient reduction in the
opposite way is non-trivial because through a single successful transmission a
node can only convey 1 bit of information. A conflict resolution algorithm en-
ables each node to transmit once, which seems insufficient to communicate a full
O(log n)-bit node ID, as required in the membership problem. We nevertheless
show that the two problems are equivalent by resorting to reduce the member-
ship problem to an intermediary problem, the counting problem, in which each
node has to learn the exact number of active nodes. We prove that a conflict
resolution algorithm can be used to solve the counting problem, and that–in
the beeping model–every counting algorithm effectively solves the membership
problem. This implies that instead of letting every active node explicitly report
its O(log n)-bit ID, in the beeping model we can infer every active node’s ID as
long as each of them can transmit one single bit successfully.

The following arguments are based on a general property of the beeping model,
presented by Lemma 1. It asserts that, if any deterministic algorithmA generates
the same channel feedback for two instances π and π′, it must also generate
exactly the same channel feedback for the instance π ∨ π′. In other words, the
equivalent class of π with respect to rA(π) must be a closure under the logical-OR
operation. The key insight behind Lemma 1 is that active nodes act according to
the channel feedback history. Given the same feedback history before time-slot
t, each active node in π ∨ π′ is also either active in π or in π′ (or in both), so
none of them can lead to a different channel feedback at time t.

Lemma 1. In the beeping model, for any deterministic algorithm A, let π and
π′ be two instances of the problem to be solved, if rA(π) = rA(π

′), then rA(π) =
rA(π ∨ π′).
Proof. The proof is by induction. Given algorithm A, let γt(π) =< rA(π)[1],
rA(π)[2], ..., rA(π)[t] > be the channel feedback history of A under π until time-
slot t. So γt(π) is a prefix of rA(π) if A is still running in time-slot t and γt(π) =
rA(π) if A has terminated before time-slot t. To prove rA(π) = rA(π ∨ π′), it is
sufficient to prove γt(π) = γt(π ∨ π′) for any t ≥ 1.

If node i is inactive, it keeps quiet all the time; if node i is active, its decision
to beep or not at time t + 1 fully depends on γt. By the indicator function
Gi(γt) we denote the decision of node i at time t+1, where Gi(γt) = 1 if node i
chooses to beep and Gi(γt) = 0 if it keeps quiet. Note that Gi is determined once
the deterministic algorithm A is given. By the definition of the Beeping Model
we have

γt+1(π) =
(
γt(π),

∨
i π[i] ·Gi(γt(π))

)
, (1)

which also holds for π′ and π ∨ π′.
Clearly we have γ1(π) = γ1(π ∨ π′) = ε, since there is no feedback history at

the first time slot. By induction, suppose at time t we have γt(π) = γt(π∨π′), we
only need to prove γt+1(π) = γt+1(π ∨ π′), or equivalently, by Eq.(1), to prove∨

i π[i] ·Gi(γt(π)) =
∨
i(π ∨ π′)[i] ·Gi(γt(π ∨ π′)). (2)
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Since rA(π) = rA(π
′), we have γt+1(π) = γt+1(π

′) for any t ≥ 1, which means,
again by Eq.(1), ∨

i π[i] ·Gi(γt(π)) =
∨
i π

′[i] ·Gi(γt(π′)). (3)

Combining Eq.(3) and the condition that γt(π) = γt(π
′) = γt(π ∨ π′), we arrive

at Eq. (2) after the following transformations:∨
i π[i] ·Gi(γt(π)) =

(∨
i π[i] ·Gi(γt(π))

)
∨
(∨

i π
′[i] ·Gi(γt(π′))

)
=

∨
i

(
π[i] ·Gi(γt(π))

)
∨
(
π′[i] ·Gi(γt(π′))

)
=

∨
i

(
π[i] ·Gi(γt(π))

)
∨
(
π′[i] ·Gi(γt(π))

)
=

∨
i (π[i] ∨ π′[i]) ·Gi(γt(π))

=
∨
i(π ∨ π′)[i] ·Gi(γt(π ∨ π′)).

�

Some problems can be defined by a function of π, denoted by λ(π) here, so that
the goal of the problem is to let every node learn the value of λ(π). For example,
λ(π) = π for the membership problem, and λ(π) = ‖π‖ for the counting problem.
For any algorithm solving these kind of problems, the information available for
a node to infer λ(π) includes the channel feedback history r(π) and the local
initial state π[i]. Lemma 2 asserts that the inference of λ(π) in any deterministic
algorithm A must solely rely on analyzing the channel feedback rA(π), and the
knowledge of π[i] cannot be effectively utilized by any node in the inference. The
proof of Lemma 2 is based on Lemma 1.

Lemma 2. In the beeping model, for any deterministic algorithm A that lets
every node learn λ(π), let π and π′ be two instances of the problem to be solved,
if rA(π) = rA(π

′), then λ(π) = λ(π′).

Proof. For contradiction, suppose λ(π) 	= λ(π ∨ π′) and rA(π) = rA(π
′). We

know rA(π) = rA(π ∨ π′) by Lemma 1. In addition, there exists i∗ for which
π[i∗] = (π∨π′)[i∗]. So, all information for node i∗ to distinguish the two different
values of λ(π) and λ(π∨π′) is the same, which means it cannot distinguish them.
Thus, the algorithm A fails to let every node learn λ(π). This contradiction
implies that any algorithm must have λ(π) = λ(π ∨ π′) when rA(π) = rA(π

′).
In the same way we also get λ(π′) = λ(π ∨ π′), so λ(π) = λ(π′). �

Lemma 2 implies that the number of different channel feedback histories gener-
ated by a deterministic algorithm computing λ(π) is no less than the number

of possible values of λ(π). For the membership problem, there are
∑k
i=0

(
n
i

)
dif-

ferent values of λ(π), so we have a lower bound of Ω(log
(
n
k

)
) = Ω(k log nk ) for

any algorithm that correctly solves it. For the counting problem, however, two
different instances may have the same number of “1” (i.e., λ(π) = λ(π′) for some
π 	= π′), so one might expect an efficient algorithm that beats the lower bound
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of Ω(k log nk ) by “sharing” the same channel feedback history between different
instances. Theorem 1 proves that this is impossible: In the beeping model, it is
not easier to count the number of active nodes than to identify them all.

Theorem 1. For any deterministic algorithm A and any problem instance π
with ‖π‖ > 1 (i.e. k > 1), if A lets every node learn ‖π‖ with channel feedback
history rA(π), then we can construct an algorithm A′ that lets every node learn
π with exactly the same channel feedback history rA(π).

Proof. We prove that the mapping from π to rA(π) for any deterministic count-
ing algorithm A must be injective, i.e., if rA(π) = rA(π

′) then π = π′. Since
every instance π has a different channel feedback history rA(π) when A termi-
nates, A′ simply remembers the entire table of the one-to-one mapping from
rA(π) to π, thus solving the membership problem once rA(π) is given.

The proof of injectivity is by contradiction. Since rA(π) = rA(π
′), by Lemma

2 we have ‖π‖ = ‖π′‖. Suppose π 	= π′, then there must be some i∗ with
π[i∗] = 0 and π′[i∗] = 1, so we have ‖π ∨ π′‖ > ‖π‖. On the other hand, since
rA(π) = rA(π

′), by Lemma 1 we have rA(π ∨ π′) = rA(π), and then by Lemma
2 we have ‖π ∨ π′‖ = ‖π‖, a contradiction. �

We remark that Theorem 1 can be naturally generalized to prove the equivalence
with the membership problem for more problems defined by λ(π) in the beeping
model. Actually, any deterministic algorithm solving a problem defined by λ(π)
can be used to solve the membership problem with the same channel feedback
history, as long as the function λ(·) has the property that, for any two different
instances π and π′, λ(π) = λ(π ∨ π′)⇒ λ(π) 	= λ(π′).

Moreover, for problems that cannot be directly represented by a function of
π, we may still prove their equivalence with MP by proving that an algorithm
for this problem can solve the counting problem. This allows us to prove the
main theorem of this section.

Theorem 2. For any problem instance π with ‖π‖ > 1 (i.e. k > 1) and any
positive integer T , if any deterministic algorithm A solves conflict resolution
under π in T time slots, then we can construct an algorithm A′ that lets every
node learn π in exactly T time slots.

Proof. The idea is to construct a counting algorithm Ã from the conflict resolu-
tion algorithm A. Recall that a time slot is “exclusively-used” if only one single
node is allowed to beep in that time slot. Given a deterministic conflict resolution
algorithm A, the algorithm Ã runs A, and lets each active node beep in the first
exclusively-used time slot it has and keep quiet since then. When A terminates,
Ã lets each node count the number of beep signals in all the exclusively-used
time slots, which is also the number of active nodes. So Ã is a valid counting
algorithm ( and |rÃ(π)| = T ). By Theorem 1 we know that the information of
rÃ(π) is already enough to solve the membership problem. �

Theorem 2 shows that MP can be reduced to CR at no additional cost in time-
slots. Reversely, the reduction from CR to MP requires k additional time-slots.
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Since any CR algorithm needs at least k time-slots to let every node transmit
successfully once, the reduction to the MP does not change the performance
bound for any deterministic CR algorithm. Thus, the two problems share the
same upper and lower bounds in beeping model. As mentioned before, a simple
counting argument gives the lower bound Ω(k log nk ) for the membership prob-
lem, which therefore also applies to conflict resolution. Furthermore, Theorem 3
shows that the same lower bound also applies to any randomized algorithm that
solves either problem of CR and MP with constant probability.

Theorem 3. In the Beeping Model with single channel, for any constant 0 ≤
λ < 1, every randomized algorithm requires at least Ω(k log nk ) time slots to solve
Conflict Resolution or the Membership Problem with success probability λ under
the worst-case distribution of problem instances.

Proof. By the so-called entropy argument, we prove that any randomized algo-
rithm that always correctly solves the Membership Problem when terminating
(i.e. Las Vegas algorithms) has the expected run time of Ω(k log nk ). Specifically,
due to Yao’s principle, a distributed Las Vegas algorithm A is a stochastic distri-
bution over a set of correct deterministic algorithms, where each deterministic
algorithm A′ in this set owns a different table RA′ : [n] → {0, 1}∗ and simu-
lates A by using the fixed sequence RA′(i) to replace the random numbers used
in node i. On the other hand, due to Shannon’s encoding theorem, no deter-
ministic membership algorithm can have an expected performance better than
log2

(
n
k

)
= Ω(k log nk ) under the uniform distribution over the

(
n
k

)
different prob-

lem instances, thus any stochastic distribution over any subset of deterministic
membership algorithms, i.e., any Las Vegas membership algorithm, must need
Ω(k log nk ) time slots under the uniform distribution over problem instances.

Due to Theorem 2, every deterministic conflict resolution algorithm must have
an average performance of Ω(k log nk ) (for otherwise we will find a deterministic
membership algorithm beating this bound), and thus every Las Vegas conflict
resolution algorithm also has a worst-case performance of Ω(k log nk ).

Finally, for any randomized algorithm A that solves either the membership
problem or conflict resolution with constant success probability 0 < λ < 1 in T
time slots (under the worst-case distribution of problem instances), we can verify
its correctness in one single time slot by letting active nodes to report whether
anyone is missing, and thus can construct a Las Vegas algorithm by repeatedly
running A until it is correct. The Las Vegas algorithm thus constructed has the
expected running time of

∑∞
i=1(1 − λ)i−1λ · i · T = T/λ. As proved above,any

Las Vegas algorithm for either problem has expected running time of Ω(k log nk )
under the uniform distribution of problem instances, so T = Ω(k log nk ). �

3 Efficient Algorithm in Beeping Model with Parallel
Channels

In last section we proved a lower bound of Ω(k log nk ) for both MP and CR
when only one single beeping channel is available. In this section we give an
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C2,3(2) =    0 0 1    1 0 0
C2,3(3) =    0 1 0    0 0 1

    rt      =  0 1 1    1 0 1

C2,3(0) =    0 0 1    0 0 1
C2,3(2) =    0 0 1    1 0 0
C2,3(3) =    0 1 0    0 0 1
C2,3(5) =    0 1 0    1 0 0

0
1
2
3

C2,3(0) =    001  001
C2,3(1) =    001  010
C2,3(2) =    001  100
C2,3(3) =    010  001
C2,3(4) =    010  010
C2,3(5) =    010  100
C2,3(6) =    100  001
C2,3(7) =    100  010
C2,3(8) =    100  100
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Fig. 1. (a) The hardware circuit correspondence of the Beeping Model (b) Illustration
of the encoding-beeping-renaming procedure when nt = 9, dt = 2, qt = 3. The left
side is the codebook of the (2, 3)-identity code. The right side illustrates how the
encoding/beeping/renaming subroutines work in the case that nodes 2 and 3 are active.

efficient algorithm for the parallel case. We call our algorithm the Funnel Algo-
rithm. The algorithm has a time complexity of O(log k log logk n), yet only uses
O(max{k logk n, k2}) parallel channels. As we have already shown that MP and
CR are equally hard problems, we describe our algorithms in the context of the
Membership Problem.

3.1 The Funnel Algorithm

The algorithm runs in a sequence of iterations, and the idea is to gradually
reduce the problem size n by renaming the active nodes to the name space
{0, ..., kdt − 1} in iteration t. The values d1, d2, . . . decrease gradually during the
iteration and the algorithm terminates when dt = 1, at that time each active
node has an ID i′ ∈ {0, ..., k−1}, and then each node locally recovers the original
ID’s of all active nodes based on the channel feedback history. The sequence
D = {d1, d2, ...} is called an iteration policy, which has significant impact on the
algorithm’s performance. We now present the general iteration framework first,
and then define the concrete iteration policy we use to achieve our results.

Iteration Framework. Given an iteration policyD = {d1, d2, ...}, in each itera-
tion t, the algorithm works by running the following encoding-beeping-renaming
procedure at each active node (see Fig. 1(b) for an illustration):

• Encoding. Suppose the name space is {0, ..., nt − 1} in iteration t. Let qt =

�n
1
dt
t �, each node locally encodes its current ID ut with the so-called (dt, qt)-

identity code. The (d, q)-identity code encodes an integer u ∈ {0, . . . , qd − 1}
into a bit vector Cd,q(u) by first transforming u into the q-nary format [u]q =
(μ1, ..., μd), then encoding each μj with a q-bit vector that is 1 in the μj ’th
position and “0” everywhere else. For example, C2,3(2) = C2,3

(
(0, 2)

)
=

001 100, and C2,3(3) = C2,3

(
(1, 0)

)
= 010 001. The code length of Cdt,qt(ut)

is denoted by L(nt, dt), where

L(nt, dt) = dt · qt = dt�n1/dtt � < dtn
1/dt
t + dt. (4)
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• Beeping. Each active node “beeps out” all bits of its codeword Cdt,qt(ut)
in parallel, using L(nt, dt) single-channel accesses. This takes one time slot.
Since all active nodes beep simultaneously, the resulting channel feedback
rt = (γ1, ..., γdt) is the bitwise OR of all these codewords. Note that each
segment γj in rt is a qt−bit vector that may have multiple “1”s in it.

• Renaming. Given channel feedback rt, the “possible” codewords of any active
node ut can only be a combination of the “1”s in different segments of rt. For
example (see Fig. 1), for the (2, 3)-code, the channel feedback rt = 011 101
can only be generated by a subset of the nodes {0, 2, 3, 5}. The number of
these “possible” codewords is

∏
j‖γj‖ = kdt in the worst case. So each active

node can locally rename itself with a new unique ID ut+1 ∈ {0, ..., kdt − 1},
where ut+1 is the order of its original ID ut among all the (at most kdt)
possible ID’s. For example, for the node with ut = 3, there is two possible
ID’s smaller than ut (i.e., 0 and 2), so ut+1 = 2.

Note that a node can locally recoverCdt,qt(ut) for any given ut+1 (ut+1 doesn’t
necessarily belong to the node itself) as long as dt, qt, and rt are known. With
Cdt,qt(ut), the node can further recover ut locally. Therefore, when the algorithm
terminates with dT = 1, every node can locally recover the original identifier of
each active node by sequentially recover uT , uT−1, . . . , down to until u1.

Iteration Policy. Any iteration policy ending with dT = 1 and having dt+1 ≤ dt
for any t < T returns the correct answer to the problem. Among them, we choose
the iteration policy D∗ for performance consideration.

Definition 1. Let T be the maximal integer satisfying (1 + 1
ln k )

T ≤ logk n.

Define d̃t = (1+ 1
ln k )

T−t for t ≥ 0. The iteration policy D∗ = {d1, ..., dT }, where

dt =

{
�d̃t� when d̃t ≥ ln k

dt−1 − 1 when d̃t < ln k
. (5)

3.2 Performance Analysis

In the Funnel Algorithm, each node makes L(nt, dt) single-channel accesses in
each iteration t, which takes one single time slot when L(nt, dt) number of chan-
nels are available. Therefore, the algorithm’s time complexity corresponds to the
number of iterations, and the number of channels it requires corresponds to the
maximal number of single-channel accesses in all iterations, i.e., maxt L(nt, dt).
In the following, we first prove bounds for the time slots the Funnel Algorithm
needs (Theorem 4), then characterizes its efficiency in channel usage and com-
putational complexity (Theorem 5).

Theorem 4. The Funnel Algorithm takes O(log k log logk n) time slots to ter-
minate in the worst case.

Proof. Clearly the algorithm terminates in one time slo twhen k = 1 (i.e. at
most one node is active). For k ≥ 2, by Definition 1, the Funnel Algorithm



Conflict Resolution and Membership Problem in Beeping Channels 325

terminates in no more than T + ln k + 1 time slots in any case, and we have
((1 + 1

ln k )
ln k)T/ ln k ≤ logk n, which means

T ≤ ln k · ln logk n/ ln
(
(1 +

1

ln k
)ln k

)
. (6)

Since 1.85 < (1 + 1
ln k )

ln k < e for k ≥ 2, we have T ≤ 1.63 · ln k · ln logk n. �
Lemma 3. The Funnel Algorithm makes O(k log nk+k

2) single-channel accesses

in the worst case, that is,
∑T
t=1 L(nt, dt) = O(k log nk + k2).

Proof. To prove the bound on the total number of channel accesses, we show
that the iterations with d̃t ≥ ln k collectively have O(k log nk ) channel-accesses,

and the remaining iterations (i.e. with d̃t < ln k) collectively have Θ(k2) channel-
accesses, thus the sum of channel accesses over all iterations is O(k log nk + k2).

When d̃t ≥ ln k: Since dt = �d̃t�, we have d̃t ≤ dt ≤ d̃t+1 and 1 ≤ d̃t
ln k ≤

dt
ln k .

By Definition 1 we also have (1+ 1
ln k )d̃t = d̃t−1. Combining these results together

yields a chain of inequalities

d̃t ≤ dt ≤ (1 +
1

ln k
)d̃t = d̃t−1 ≤ dt−1 ≤ (1 +

2

ln k
)d̃t. (7)

We know by Eq.(4) that the number of single-channel accesses made in iteration

t is less than dt(k
dt−1
dt + 1). Then, by (7), we have

dt(k
dt−1
dt +1)≤(1+

1

lnk
)d̃t(k

(1+ 2
ln k

)d̃t

d̃t +1) ≤ (1+
1

ln 2
)d̃t(e

2k+1) ≤ 2.45(e2k+1)d̃t.

Let t∗ be the last iteration with d̃t ≥ ln k. We know that the total number of
single-channel accesses made from iteration 1 through iteration t∗ is less than

t∗∑
1

dt(k
dt−1
dt + 1) ≤

T∑
1

dt(k
dt−1
dt + 1) ≤

T∑
1

2.45(e2k + 1)d̃t

= 2.45(e2k + 1)

T−1∑
0

(1 +
1

ln k
)t = 2.45(e2k + 1) lnk((1 +

1

ln k
)T − 1)

≤ 2.45(e2k + 1) ln k(logk n− 1) = 2.45(e2k + 1) ln
n

k
= O(k log

n

k
).

When d̃t < ln k: Let t∗ be the first iteration with d̃t < ln k, we have dt∗ =
dt∗−1 − 1 and dt∗−1 = �d̃t∗−1� = �d̃t∗(1 + 1

ln k )� < �ln k(1 + 1
ln k )�, and thus

dt∗ < �ln k + 1� − 1 ≤ �ln k� + 1. Then we know that the number of single-
channel accesses used in all iterations with d̃t < ln k is

∑
{t:d̃t<ln k}

L(nt, dt) =

�ln k+1∑
d=1

d(k
d+1
d + 1) =

�ln k∑
d=1

dk
d+1
d +O(k log k) +O(log2 k)

= k2 + 2k
3
2 + k

�ln k∑
d=3

dk
1
d +O(k log k) +O(log2 k)
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Now it is sufficient to prove that
∑�ln k
d=3 dk

1
d = o(k). By using Euler’s Approxi-

mation,

�ln k∑
d=3

dk
1
d <

∫ ln k

2

xk
1
x dx =

1

2
xk

1
x (ln k + x)− 1

2
(ln k)2Ei(

ln k

x
)

∣∣∣∣ln k
2

=
1

2
(ln k)2Ei(

ln k

2
)−

√
k(ln k + 2) + (e − Ei(1)

2
)(ln k)2, (8)

where Ei(x) is the Exponential Integral function defined as Ei(x) =
∫ x
−∞

et

t dt,

which is known to have no closed form expression. However, by noticing that e
t

t
is monotonically increasing for t > 1, we can derive an upper bound of Ei(x):

Ei(x) =

∫ x

−∞

et

t
dt = Ei(1) +

∫ x

1

et

t
dt < Ei(1) +

ex

x
(x − 1). (9)

Substituting Eq.(9) back to Eq.(8), we get

�ln k∑
d=3

dk
1
d <

1

2
(ln k)2

2e
lnk
2

ln k
(
ln k

2
−1)−

√
k(ln k+2)+e(ln k)2 = Θ

(√
k(ln k)2

)
.

�

Theorem 5. The Funnel Algorithm uses O(k logk n+ k
2) parallel channels and

has computational complexity of O(k2 log nk + k3).

Proof. We first prove upper bound about channel usage, i.e., maxt∈[T ] L(nt, dt) =
O(k logk n+ k

2). Recall that we already proved in Lemma 3 that
∑
t L(nt, dt) =

Θ(k2) for the iterations with d̃t < ln k, which means L(nt, dt) = O(k2) for any t
with d̃t < ln k. For iterations with d̃t ≥ ln k, we have

max
t
L(nt, dt) ≤ max

t
dt(n

1
dt
t + 1) = max

t
dt(k

dt−1
dt + 1) (10)

From Inequality (7) we know dt−1

dt
≤ 1+ 2

lnk . Substituting this to Eq. (10) yields

max
t
L(nt, dt) ≤ dt(k1+

2
ln k + 1) = dt(k · e2 + 1).

By Definition 1 we have dt ≤ logk n for any t, which concludes with L(nt, dt) =
O(k logk n) for any t with d̃t ≥ ln k.

Finally, since the local computation of every subroutine (encoding/ beep-
ing/ renaming/ decoding) in the Funnel Algorithm is linear to the code length
L(nt, dt), the computational complexity for the Funnel Algorithm to recover k
identifiers is O(k · S), where S =

∑
t L(nt, dt) is the total number of single-

channel accesses. Then by Lemma 3, the Funnel Algorithm has computational
complexity of O(k · S) = O(k2 log nk + k3). �
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3.3 Crash Tolerance

In addition to its efficiency, the Funnel Algorithm is also resilient to crash failures
(fail-stops), in the sense that the algorithm guarantees to identify all active nodes
that remain alive (not crashed) when the algorithm terminates, assuming an
adversary crashes an arbitrary subset of nodes in any time slot. This is because
the Funnel Algorithm maintains a candidate list until the last iteration, without
making any irreversible decisions regarding the activeness of any node in the
list (=no false positives). Also, the crash of an active node never leads to the
removal of any other active node from the candidate list (=no false negatives).

Theorem 6. Let N = {1, ..., n}, and let At ⊆ N be the active set at the end of
time slot t for any t > 0 and A0 be the active set when the Funnel Algorithm
starts. For any infinite sequence A0, A1, A2, ... satisfying At ⊆ At−1 for any t >
0, the Funnel Algorithm terminates no later than in the case of given sequence
{At = A0 for any t > 0}, and returns AT if it terminates at time slot T .

4 Discussion

We have proved two new results on the distributed complexity of computation
in Beeping Channels. We present a new algorithm that improves upon the best-
known existing solutions; and we show that two key problems in this model are
equally hard. The latter result, in particular, sheds new light not only on the
Beeping Model itself, but also on its relationship to the most well-studied model
for medium access channels: the collision-detection model with ternary feedback.
Our results prove that even for such basic problems such as conflict resolution
and the membership problem, the two models behave fundamentally differently.

Moreover, there is another well-known binary-feedback model, called the ra-
dio network model without collision detection, where nodes are unable to dis-
tinguish collisions (the conflict state) from the random background noise (the
idle state). Although also assuming binary feedbacks, the radio-network model
returns whether a time slot is a success (in contrast, the beeping model returns
whether a time slot is idle). Interestingly, we can also observe in the radio-
network model the separation in hardness between the problems of CR and MP,
as well as the separation in efficiency between deterministic and randomized CR
algorithms 3 – both disappear in the beeping model.

It seems that the inability to detect successful communications (partially due
to the lack of sophisticated modulation and coding schemes) has made the beep-
ing model quite different from traditional models. As future works, it may be
interesting to further investigate the relationship between these (and other) chan-
nel access models.

3 In the radio-network model, there exist O(k+logn) randomized CR algorithms [13],
while there is the entropy lower bound of Ω(k log n

k
) for randomized MP algorithms

and a lower bound of Ω(k log n
k
) for deterministic CR algorithms [4].
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Abstract. Frequency hopping is a centralmethod inwireless communica-
tion, offering improved resistance to adversarial interference and intercep-
tion attempts, and easy non-coordinated control in dynamic environments.
In this paper, we introduce a new model that supports a rigorous study of
frequency hopping in adversarial settings. We then propose new frequency
hopping protocols that allow a sender-receiver pair to essentially use the
full communication capacity, despite a powerful adversary that can scan
and jam a significant amount of the ongoing transmissions.

1 Introduction

The term frequency hopping (FH) in wireless communication refers to a century
old method [31–33] of rapidly switching the carrier of a transmitted radio sig-
nal among many frequency channels. This method offers various advantages in
comparison to traditional fixed frequency transmissions: it is highly resistant to
narrow-band interference, it is much more difficult to intercept, and it allows
for easy non-coordinated control in dynamic environments. Because of these ad-
vantages, FH is omnipresent in modern wireless communication standards such
as GSM. Nevertheless, state-of-the-art FH schemes typically use “cryptographic
heuristics” whose security is not mathematically established and sometimes turns
out to be compromised. For example, using an off-the-shelf device that costs less
than 100 EUR [27], the FH scheme that lies at the heart of Bluetooth can be
breached within less than a second [17].

In this paper, we hope to bring the state of analysis of FH to the next level.
In particular, we ask ourselves what kind of interference a FH protocol can
withstand on an information theoretic level (without making any cryptographic
assumptions). It turns out that the right tools enable us to design a FH pro-
tocol that can cope with adversarial interference, where the adversary can not
only jam a constant fraction φ of the bandwidth, but also intercept the proto-
col’s transmissions with a small delay. The price to pay for implementing this
protocol is a constant additive overhead on the size of each transmitted mes-
sage. Surprisingly, our protocol manages to utilize the bandwidth up to that
φ fraction.
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1.1 Model

The Cast. Consider the setting of a uni-directional wireless communication
from Alice (the transmitter) to Bob (the receiver) in an adversarial environment.
There are n available channels and in each round t ∈ Z>0, Alice chooses a single
channel a(t) ∈ [n] over which she transmits her message and Bob chooses a
single channel b(t) on which he listens; b(t) = a(t) is a necessary condition for
Bob to receive Alice’s message in round t.

Eve (the adversary) wishes to disturb the communication from Alice to Bob.
In each round t ∈ Z>0, Eve chooses to jam a channel subset E (t) ⊂ [n] of size
at most φn, 0 < φ < 1: if b(t) ∈ E (t), then Bob does not receive Alice’s message
even if b(t) = a(t). We distinguish between two types of jamming, differing in the
exact effect that b(t) ∈ E (t) has on Bob’s input in round t: overwriting means
that Bob receives a message that was tailored by Eve which may be confused
with Alice’s messages; blocking means that Bob receives static noise which in
particular, indicates to Bob that he did not receive Alice’s message. Eve is called
an overwriting (respectively, blocking) adversary if her jamming capabilities are
suited for overwriting (resp., blocking) Alice’s transmissions. For completeness
of the model, we assume that if Bob listens on a wrong channel which is not
jammed by Eve, i.e., b(t) /∈ E (t) ∪ {a(t)}, then he also receives static noise.
Note that Alice does not get any feedback regarding the channel on which Bob
listened or the actual message he received (if any).

In attempt to avoid Eve’s channel jamming, Alice and Bob must use random-
ness in their channel choices.1 This should be done in a coordinated fashion to
ensure, above everything else, that they both choose the same channel. For that
purpose, they both have access to a total of s shared random bits generated
(once) prior to round 1. Alice can also generate as many private random bits as
she needs in each round; these cannot be (directly) accessed by Bob, however,
Alice may append to each message she transmits up to k additional bits that
can be used to communicate some information regarding her (private) random
choices. In fact, since the actual content of Alice’s messages is irrelevant to the
current paper, we shall subsequently consider these k bits as Alice’s (whole)
message, so in what follows we assume that all messages are of size k.

The setting described so far is trivial to cope with if Eve is an oblivious
adversary: Alice and Bob can simply follow a random permutation of the chan-
nels (assuming that s is sufficiently large to support this random choice, i.e.,
s = Ω(n logn)). However, in our model Eve also enjoys the benefit of some
sort of delayed adaptiveness. It is assumed that Eve can scan the spectrum and
extract the channel a(t) over which Alice transmitted in round t, but this infor-
mation is revealed to Eve with a certain lag λ, that is, in round t+ λ.

Notice that according to our basic model, Eve’s scanning reveals the channel
a(t) over which Alice transmitted in round t, but it does not reveal the content of
the transmitted message. (Although this issue is abstracted away in our model,
note that it is a valid assumption in settings with encrypted messages.) A variant

1 As usual, we assume that Eve knows Alice and Bob’s protocol, but not their
random bits.
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of the model in which Eve’s scanning reveals both the channel and the message
content, referred to as enhanced scanning, is discussed in Sec. 4.

Grouping the Parameters. We refer to Alice and Bob’s channel choosing
strategy as an (n, s, k)-FH protocol, where n denotes the number of channels,
s denotes the number of shared random bits, and k denotes the size (in bits)
of the messages. Eve is referred to as a (λ, φ)-adversary, where λ denotes the
delayed adaptiveness lag and φ denotes the fraction of channels she jams. It is
important to point out that these five parameters may exhibit inter-dependencies
(in particular, we shall express s and λ as functions of n), however, unless stated
otherwise, they do not grow as a function of the execution length.

Round t is said to be successful if b(t) = a(t) /∈ E (t), namely, if Bob listens on
the channel over which Alice transmits and this channel is not jammed by Eve.
The quality of a FH protocol is measured in terms of the fraction of successful
rounds captured by the probability that an arbitrary round is successful. Clearly,
no FH protocol can guarantee a success probability larger than 1 − φ; this is
demonstrated already by an (oblivious) adversary that in every round t, chooses
E (t) uniformly at random out of all channel subsets of size φn.2 Therefore, at
best, we can hope for FH protocols that guarantee success probability close
to 1− φ.

Resilience. Formally, an (n, s, k)-FH protocol is said to be ε-resilient to block-
ing/overwriting (λ, φ)-adversaries if round t is successful with probability at least
1−φ− ε for every t ∈ Z>0 against any blocking/overwriting (λ, φ)-adversary, re-
spectively. Note that the requirement on the success probability should hold, in
particular, as t goes to infinity (fixing all other parameters). This can be thought
of as requiring that the guarantees of the FH protocol hold for infinitely long
executions, even though all other parameters (including the number s of shared
random bits) are finite.

Motivation. The role of the shared random bits is similar to that of a secret key
in cryptographic systems, generated and exchanged between the collaborating
parties before the execution commences. Under our model, the situation is clearly
hopeless without shared random bits: if s = 0, then Eve knows everything Bob
knows already in round 1 and can easily jam the communication. On the other
hand, if Alice and Bob have access to infinitely many shared random bits and
in particular, can use fresh �lg n� shared random bits per round,3 then they can
trivially choose a(t) = b(t) ∈ [n] uniformly at random in every round t, thus
ensuring an optimal success probability of 1−φ. To a large extent, the challenge
in this paper is to to deal with the case of a finite, yet positive, number s of
shared random bits, while trying to keep s small (as a function of n).

2 By Yao’s principle, the existence of an oblivious probabilistic adversary that guar-
antees a success probability of at most 1−φ against all FH protocols implies that for
every FH protocol, there exists an oblivious deterministic adversary with the same
guarantee.

3 We use lg x to denote log2 x.
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One may wonder whether the delayed adaptiveness feature of our model can
be justified in practical applications. To that end, note that with dedicated hard-
ware, Eve can scan all n channels, however, extracting the information regarding
the channels over which Alice transmitted from the perceived signals is a dif-
ficult challenge, likely to incur a significant delay. Moreover, in practical FH
scenarios, the spectrum is usually shared between many concurrently communi-
cating Alice-Bob pairs (e.g., secondary users in cognitive radio networks [24]),
thus adding another level of complexity to the challenge of obtaining the FH
channels used by one specific pair.

1.2 Related Work

Several people are credited with inventing FH. In 1903 Nikola Tesla was granted
two U.S. patents [31, 32], where in the second patent, he states: “To overcome
[several drawbacks such as electrical disturbance] and to enable a great number of
transmitting and receiving stations to be operated selectively and exclusively and
without any danger of the signals or messages being disturbed, intercepted, or
interfered with in any way is the object of my present invention.” Jonathan Zen-
neck [33] claimed in his textbook on wireless telegraphy that the newly founded
company Telefunken tested FH around the same time.

The first applications of FH were probably for military purposes. It is re-
ported that the German Reichswehr used FH during World War I to prevent
eavesdropping by British forces. During World War II, FH was already pretty
common, e.g. in a system called SIGSALY that provided a secure communication
infrastructure between Roosevelt and Churchill. Perhaps the most well known
FH related martial invention was that of star actress Hedy Lamarr (Markey) and
composer George Antheil for preventing the detection of radio guided torpedoes
[21]. Nowadays, FH is used by essentially all military radio systems.

FH is well studied in the context of information and coding theory, e.g.
[15, 22, 5]. These studies typically aim to provide algebraic hopping sequences
with various properties, such as good Hamming correlation or near linear span.
However, to the best of our knowledge, this body of work does not deal with
adversarial interference.

In contrast, the wireless algorithms community has recently developed an
increasing interest in adversarial jamming. Often, the jammer must live on a
limited energy budget, which may [16] or may not [13] be known. Dolev et al.
[9] studied jamming in the context of multi-channel gossip and presented tight
bounds for the ε-gossip problem, where the adversary may jam 1 frequency per
round. They also study a setting allowing the nodes to exchange authenticated
messages despite a malicious adversary that can cause collisions and spoof mes-
sages [10], and present new bounds on broadcasting [11]. Another line of work
focuses on the bootstrap problem where nodes have to find each other despite
adversarial jammers [23, 8, 4]. Awerbuch et al. [3] present a MAC protocol for
single-hop networks that is provably robust to an adaptive adversary that can
jam (in a blocking style) a (1 − ε)-fraction of the rounds. This work was later
extended to self-stabilization [29, 30]. In [2], the adversary controls both packet
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injections and jamming, according to a leaky bucket process. Richa et al. [28]
recently introduced a reactive jammer that can in addition learn from the proto-
col history. Hopping sequences with cryptographic guarantees on the resilience
to adversarial jamming is studied, e.g., in [19].

Due to their asymptotic approach, theoretical works are typically deemed
successful once they manage to exploit a constant fraction of the available com-
munication capacity. In contrast, wireless protocol designers are rarely willing
to sacrifice a constant fraction of the precious capacity for protocol overhead.
In that regard, we would like to emphasize that our protocols use the available
communication capacity up to an ε-fraction that can be made arbitrarily small.

1.3 Our Results

Our main technical contribution is a FH protocol that guarantees success prob-
ability near 1 − φ with constant size messages, logarithmically many shared
random bits, and a logarithmic lag. This protocol is suitable for any constant
0 < φ < 1 if Eve is a blocking adversary; and for any constant 0 < φ < 1/16 if
Eve is an overwriting adversary.

We then turn to study the enhanced scanning variant of the model, where
the content of Alice’s messages is revealed to Eve together with the channel over
which these messages were transmitted. In this variant we prove that resilience
cannot be achieved as long as the adaptiveness lag is bounded. On the other
hand, we show that if the lag grows logarithmically with time, then our FH
protocol works even when Eve enjoys the benefit of enhanced scanning.

1.4 Techniques

Our FH protocols are inspired by pseudo-random generators à la Impagliazzo
and Zuckerman [14]. The sequence of channels over which Alice transmits corre-
sponds to a random walk on an n-vertex constant degree expander. On the one
hand, this sequence seems sufficiently random to fool Eve; on the other hand,
Bob only needs a constant number of bits per round in order to follow Alice’s
choices. Since a φ-fraction of Alice’s messages are doomed to be lost, she encodes
her transmissions using a family of error-correcting codes with suitably chosen
parameters.

In contrast to the method of Impagliazzo and Zuckerman, where the subset of
bad vertices is fixed, we have to deal with an adaptive adversary that dynamically
changes the bad vertex subset. This issue is handled in our analysis through a
careful examination of the spectral properties of the underlying expander.

2 Preliminaries

In this section, we describe the main ingredients used in the design of our FH
protocols, namely, expander graphs and error-correcting codes.
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Ramanujan Graphs. Consider some n-vertex d-regular connected non-
bipartite graph G. Let A ∈ {0, 1}n×n be G’s adjacency matrix and let W = 1

dA
be the corresponding walk matrix. Since W is symmetric, it has n real eigenval-
ues ω1 ≥ · · · ≥ ωn, and since G is d-regular, connected, and non-bipartite, we
know that 1 = ω1 > ω2 ≥ · · · ≥ ωn > −1. Moreover, the all 1s vector 1 is an
eigenvector of W of eigenvalue ω1 = 1, thus the stationary distribution of the
random walk w is uniform in [n].

Let ω(G) = max2≤i≤n{|ωi|} = max{ω2, |ωn|}. The parameter ω(G) cap-
tures some important properties of the graph G, and in particular, the speed
of convergence of a random walk to the stationary distribution. This is cast
in the following lemma which is a well known fact in spectral graph theory
(see, e.g., [7]).

Lemma 1. Let w be a random walk in an n-vertex regular connected non-
bipartite graph G and let wt be the distribution vector of w after t steps. Then
for every i ∈ [n] and t ∈ Z>0, we have

∣∣wt(i)− 1
n

∣∣ ≤ ω(G)t. Note that this
inequality holds regardless of the initial distribution w0.

The graphs in an infinite family G of d-regular connected non-bipartite graphs
are called expanders if they all have a small ω(G), that is, if there exists some
constant 0 < c < 1 such that ω(G) ≤ c for all graphs G ∈ G. In particular, the
graphs in G are said to be Ramanujan graphs (a.k.a. Ramanujan expanders) if
they all satisfy ω(G) ≤ 2

√
d− 1/d [18]. The Alon-Boppana theorem (cf. [26])

essentially states that Ramanujan graphs are the best possible expanders in
terms of their small ω(G).

Theorem 2 ([18, 20, 25]). For every prime power q and integer n0 > 0, there
exist an integer n = Θ(n0) and an explicitly constructable n-vertex Ramanujan
graph of degree d = q + 1.

Error-Correcting Codes. An error-correcting code C over an alphabet Σ is
an injective mapping C : Σm → Σn, where m and n, m < n, are called the
dimension and the length of the code, respectively. We refer to the |Σ|m strings
in the image of C as codewords. The minimum distance of C is the minimum
Hamming distance between any two codewords. The ratio of the minimum dis-
tance to the length, referred to as the relative distance δ of the code, indicates
the quality of the code in terms of the number of errors that can be corrected:
any number smaller than δn/2. The ratio of the dimension to the length, referred
to as the rate r = m/n of the code, indicates the quality of the code in terms of
the number of different messages that can be encoded, also known as the size of
the code: |Σ|rn.

Fixing some alphabet Σ of size |Σ| = q, one typically seeks an infinite family
Cq of codes such that both the relative distance and the rate of every code
C ∈ Cq are bounded below by some constant. Our construction requires an
explicit such family in which the relative distance can be made arbitrarily close
to 1 by increasing q (and decreasing the rate). Such a family Cq is designed,
e.g., in [1].
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Theorem 3 ([1]). For every real ξ > 0, prime power q, and sufficiently large
integer n, there exist a real 0 < r = r(ξ) < 1 and an explicitly constructable
error-correcting code over GF (q) of length n, rate at least r, and relative distance
at least 1− 1

q − ξ.

3 Resilient FH Protocols

Our goal in this section is to establish the following theorem.

Theorem 4. Consider some constant real 0 < φ < 1 (respectively, 0 < φ <
1/16). There exist constant integers k = k(φ) > 0 and n0 = n0(φ) > 0 such that
for every real ε > 0 and integer n ≥ n0, there exist an integer λ = O(log(n/ε)),
an integer s = O(log(n/ε)), and an (n, s, k)-FH protocol with ε-resilience to
blocking (resp., overwriting) (λ, φ)-adversaries.

The basic protocol, presented in Sec. 3.1 and analyzed in Sec. 3.2, is resilient to
overwriting (and hence also blocking) adversaries with 0 < φ < 1/16. Section 3.3
is dedicated to tuning up our protocol so that it can cope with the whole range
of parameter 0 < φ < 1 when restricted to blocking adversaries only.

3.1 The Basic Protocol

In a preprocessing stage, Alice and Bob deterministically construct an n-vertex
d-regular Ramanujan graph G as promised by Theorem 2, where d = d(φ) is
a constant integer whose value will be determined later on, and identify the
vertices of G with the n channels. Note that Theorem 2 does not promise that
such a graph exists for every choice of n, however, by taking a graph G of size
n′ > n, and identifying each channel with either �n′/n� or �n′/n� vertices, we do
not lose more than an (n/n′)-term in the guaranteed success probability, and this
can be made arbitrarily small. For the sake of simplicity, we shall subsequently
assume that the graph G has exactly n vertices. Since the construction of G is
deterministic, we are forced to assume that Eve knows G; this will not affect our
analysis.

The Phases. Our protocol relies on two parameters: a constant real ρ = ρ(φ),
0 < ρ < 1, and an integer L = O(log(n/ε)); the exact values of these two param-
eters will be determined later on. The rounds of the execution are partitioned
into phases indexed by the non-negative integers, where phase j ∈ Z≥0 consists
of the first


(j) = L+
⌈
2 log1/ρ (j + 1)

⌉
rounds not belonging to any phase j′ < j. Note that this fully determines the
phase to which round t belongs for every t ∈ Z>0.

Alice’s channel choices follow a random walk w in G: The channels used in
phase 0, namely, the initial vertex a(1) (chosen uniformly at random) and the
first L− 1 steps of w, are dictated by the s = �lgn+(L− 1) lg d� = O(log(n/ε))
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shared random bits. The steps of w in phase j + 1, j ∈ Z≥0, are dictated by
Alice’s private random bits and communicated to Bob via the 
(j) messages sent
in phase j. Recall that some of the messages received by Bob in phase j may
be transmitted over channels jammed by Eve; to compensate for that, Alice’s
messages in phase j are encoded by a carefully designed error-correcting code.

Communicating w’s Steps. Using the terminology of Theorem 3, we take
ξ = ξ(φ) and q = q(φ) to be a constant real, 0 < ξ < 1/4, and a constant
(integer) prime power, respectively, whose exact values will be determined later
on. Employing Theorem 3, let Cj be the error-correcting code over GF (q) with
length 
(j), relative distance δ ≥ 1− 1

q −ξ, and rate r ≥ r(ξ), where 0 < r(ξ) < 1
is the real promised by the theorem.

Let μ denote the 
(j + 1) ≤ 
(j) + 1 ≤ 2
(j) steps of the random walk w in
phase j + 1. We set the size of Alice’s messages to k = k(φ) = �lg q�; this allows
Alice to encode μ using the error-correcting code Cj and to transmit the resulting
codeword in phase j, a single letter of the alphabet GF (q) in each round. For
that to work, we must make sure that the size of Cj is sufficiently large to encode
μ, i.e., that qr�(j) ≥ d�(j+1), which is guaranteed by requiring that the parameter
q = q(φ) satisfies q ≥ d2/r(ξ) ≥ d2/r, and hence qr�(j) ≥ d2�(j) ≥ d�(j+1). This
completes the description of our FH protocol.

3.2 Analysis of the Basic Protocol

For the sake of simplicity, we will prove that our FH protocol is O(ε)-resilient
(rather than ε-resilient). Our analysis relies on the fact that with probability at
least 1 − O(ε), all phases admit many successful rounds. To formally state this
fact (and establish it), we first need some more definitions.

Successful Phases. We say that phase j ∈ Z≥0 is successful — an event
denoted by Aj — if less than a (δ/2)-fraction of the rounds in the phase are
unsuccessful. Note that this implies that if Bob listened on the right channels,
then he can successfully decode the codeword transmitted by Alice in phase j.
By induction on j, we conclude that the event A0 ∧ · · · ∧ Aj−1 implies that
b(t) = a(t) for every round t in phase j. We are now ready to state the two main
lemmas of our analysis.

Lemma 5. Consider some round t ∈ Z>0 and let j ∈ Z≥0 be the phase to which
this round belongs. Conditioned on the event A0∧· · ·∧Aj−1, round t is successful
with probability at least 1− φ− ε.

Lemma 6. The event A0 ∧ · · · ∧ Aj holds with probability at least 1 −O(ε) for
every j ∈ Z≥0.

The remainder of Sec. 3.2 is dedicated to establishing Lemmas 5 and 6, but first,
we should convince ourselves that the correctness of our protocol indeed follows
from these two lemmas. To that end, consider some round t ∈ Z>0 in phase
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j and let B denote the event that round t is successful. By Lemmas 5 and 6,
we have

P(B) ≥P (B | A0 ∧ · · · ∧ Aj−1) · P (A0 ∧ · · · ∧ Aj−1)

≥(1 − φ− ε) · (1−O(ε)) ≥ 1− φ−O(ε)

as required.
Our first step towards establishing Lemmas 5 and 6 is to observe that

P (A0 ∧ · · · ∧ Am) = P (Am | A0 ∧ · · · ∧ Am−1) · P (A0 ∧ · · · ∧ Am−1)

= P (Am | A0 ∧ · · · ∧ Am−1) · P (Am−1 | A0 ∧ · · · ∧ Am−2) · · ·
· · ·P (A1 | A0) · P (A0) .

Fixing Fj = P(¬Aj | A0 ∧ · · · ∧ Aj−1), we have

P (A0 ∧ · · · ∧ Am) = (1− F0) · · · (1− Fm) ≥ 4−F0 · · · 4−Fm = 4−
∑m

j=0 Fj ,

where the inequality holds by ensuring that Fj ≤ 1/2 for every j ∈ Z≥0.

Bounding
∑
Fj. Lemma 6 will be established by showing that

exp4(−
∑m
j=0 Fj) ≥ 1 − O(ε), or alternatively, that exp4(

∑m
j=0 Fj) ≤ 1 +

O(ε) ⇐⇒
∑m
j=0 Fj ≤ log4(1 + O(ε)). Since log4(1 + x) > x/2 for all 0 < x < 1,

it suffices to show that
m∑
j=0

Fj ≤ O(ε) (1)

Take d = d(φ) to be sufficiently large to ensure that 2√
d
≤ 1/4−

√
φ

2 , which

is possible as φ is a constant strictly smaller than 1/16. The following three
auxiliary constants play a major role in setting the parameters introduced in
Sec. 3.1:

α = α(φ) =
1/2− 2

√
φ

4
√
φ+ 1

, β = β(φ) = (1 + α)

(√
φ+

2√
d

)
,

γ = γ(φ) =
1

log4

(
1
β

) .
Since

√
φ < 1/4, it follows that 0 < α < 1/2. Moreover, we have 0 < β ≤(

1 + 1/2−2
√
φ

4
√
φ+1

)(√
φ+ 1/4−

√
φ

2

)
= 2

√
φ+3/2
8 < 1

4 , and hence 0 < γ < 1.

Recall the parameters ρ = ρ(φ) and ξ = ξ(φ) introduced in Sec. 3.1 and fix

ρ = 2βδ/2 and ξ =
1− γ
4

.

Note that since 0 < γ < 1, it follows that 0 < ξ < 1/4 as promised. Moreover,
by requiring that q ≥ 4

1−γ , we ensure that δ ≥ 1 − 1
q − ξ ≥

1+γ
2 > γ = 1

log4( 1
β )

.
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This implies that 41/δ < 1
β , hence 0 < ρ = 2βδ/2 < 1 as promised. Fix the

integer parameter L introduced in Sec. 3.1 to be

L = max

{⌈
log1/ρ

(
1

ε

)⌉
,

⌈
log√d/2

(
φn

ε

)⌉
,
⌈
log√d/2

(n
α

)⌉}
,

which yields L = O(log(n/ε)) as promised.
We shall establish (1) by showing that

Fj ≤ ρ�(j) ; (2)

indeed, this suffices since it implies that

m∑
j=0

Fj ≤
m∑
j=0

ρL+�2 log1/ρ(j+1)� ≤ ρL ·
∞∑
j=1

j−2 ≤ ε ·O(1) ,

where the last inequality follows from the requirement that L ≥ log1/ρ
(
1
ε

)
.

The Adaptiveness Lag. Recalling that L = O(log(n/ε)), we require that the
lag λ = O(log(n/ε)) satisfies λ ≥ L. For the sake of the analysis, we think of
Eve’s scanning as the ability to know in round t, the vertices visited by w in all
rounds up to t − L. In fact, since the random walk w is memoryless, we may
think of Eve as a function that maps the current round index t and the vertex
visited by w in round t− L to E (t).

Recall that ω(G) ≤ 2
√
d−1
d < 2√

d
. Since L ≥ log√d/2

(
φn
ε

)
, we can employ

Lemma 1 to conclude that Eve’s delayed adaptiveness does not allow her to boost
the probability of hitting a(t) by more than an additive term of ε

φn per channel,
which sums up to an additive term of at most ε for all channels jammed by Eve,
thus yielding Lemma 5. So, it remains to establish Lemma 6 which is executed by
proving that (2) holds. Since L ≥ log√d/2

(
n
α

)
as well, we can employ Lemma 1

once more to establish the following observation.

Observation 7. Conditioned on Eve’s knowledge of the vertex visited by w in
round t − L, the probability that w visits vertex i ∈ [n] in round t is at most
1
n + α

n = 1
n (1 + α).

Consider some phase j ∈ Z≥0 and let t1 ≤ · · · ≤ t� denote the indices of the

 = 
(j) rounds in this phase. Assume that all previous phases were successful,
i.e., event A0 ∧ · · · ∧Aj−1 occurs, so, in particular, Bob knows the random walk
w up to the end of phase j, that is, b(th) = a(th) for every h ∈ [
]. Inequality (2)
can be established by letting E = {h ∈ [
] | E (th) * a(th)} and showing that

P (|E| ≥ δ
/2) ≤ ρ� (3)

subject to the assumption that Eve knows a(t − L) at round t.
Given some subset S ⊆ [
], let pS = P(E = S). We can express P(|E| ≥ δ
/2)

as

P (|E| ≥ δ
/2) = P

⎛⎝ ∨
S⊆[�],|S|≥δ�/2

E = S

⎞⎠ ≤
∑

S⊆[�],|S|≥δ�/2
pS .



Frequency Hopping against a Powerful Adversary 339

Inequality (3) can now be established by showing that

pS ≤ βδ�/2 (4)

for every S ⊆ [
], |S| ≥ δ
/2; indeed, (4) implies that P (|E| ≥ δ
/2) ≤ 2� ·βδ�/2 =(
2βδ/2

)�
= ρ� as required.

A Linear Algebraic View. Fix some subset S ⊆ [
], |S| ≥ δ
/2. For every
h ∈ [
], let Dh be a diagonal n× n real matrix defined by setting

Dh(i, i) =

⎧⎨⎩
1 if h /∈ S
1 + α if h ∈ S and i ∈ E (th)
0 if h ∈ S and i /∈ E (th)

for every i ∈ [n]. In other words, Dh is the identity matrix if h /∈ S; and a matrix
having 1 + α on the diagonal entries corresponding to E (th) and 0 elsewhere if
h ∈ S. Observe that in the latter case, multiplying a vector by Dh increases all
entries corresponding to E (th) by a factor of 1+α and zeros out all other entries.

Lemma 8. Denoting the uniform distribution vector on [n] by u = 1
n1, we have

pS ≤ 1TD�WD�−1W · · ·D2WD1u .

Proof. Let Nh denote the vertex subset E (th) if h ∈ S; and the vertex subset
[n]−E (th) otherwise. Taking Bh to be the event that the random walk w visited
(a vertex of) Nh in round th, we can express the event S = E (whose probability
we would like to bound) as B1∧· · ·∧B�. By Observation 7, the ith entry D1u(i)
of the vector D1u bounds from above the probability that event B1 occurred
and w visits vertex i in round t1, given that w is in its stationary distribution
u in the beginning of the phase. Employing Observation 7 again, we notice by
induction on h that

DhWDh−1 · · ·WD1u(i)

serves as an upper bound on the probability that event B1 ∧ · · · ∧ Bh occurred
and w visits vertex i in round th, given that w is in its stationary distribution u
in the beginning of the phase. The assertion follows as multiplying by 1T simply
sums up the entries.

Lemma 8 allows us to complete the proof of Lemma 6 by linear algebraic argu-
ments; indeed, we shall establish (4) by showing that

1TD�WD�−1W · · ·D2WD1u ≤ βδ�/2 . (5)

based solely on the definition of the matrices D1, . . . , D� and on the assumption
that W is the walk matrix of a Ramanujan graph. To that end, observe that

1TD�WD�−1W · · ·D2WD1u = 1TD�WD�−1W · · ·D2WD1Wu

≤ ‖1‖ · ‖D�W‖ · · · ‖D1W‖ · ‖u‖
= ‖D�W‖ · · · ‖D1W‖ ,
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where ‖v‖ =
√∑n

i=1 v(i)
2 denotes the 
2 norm of vector v, ‖M‖ =

maxv∈Rn−{0}
‖Mv‖
‖v‖ denotes the induced norm of matrix M , and the inequal-

ity follows from Cauchy-Schwarz and from some well known properties of the
induced matrix norm (see, e.g., [6]).

Bounding ‖DhW‖. Since W is symmetric, we know that ‖W‖ =
maxi∈[n] |ωi| = 1, and since Dh is the identity matrix for every h /∈ S, it follows
that

‖D�W‖ · · · ‖D1W‖ =
∏
h∈S

‖DhW‖ .

Recalling that |S| ≥ δ
/2, inequality (5), and hence, also Lemma 6, are estab-
lished due to Lemma 9, whose proof is deferred to the full version.

Lemma 9. The walk matrix W satisfies ‖DhW‖ ≤ β for every h ∈ S.

3.3 Extending the Range of Parameter φ

Our goal in this section is to adapt the FH protocol presented in Sec. 3.1 and
the analysis presented in Sec. 3.2 to blocking adversaries while allowing for any
constant 0 < φ < 1. The main observation en route to this adaptation is that
an error-correcting code that can recover from up to k errors, can alternatively
recover from wiping-off up to 2k letters.

More formally, given some alphabet Σ and a word u ∈ Σn, let Bd(u) be the
set of all words that can be obtained from u by replacing less than d letters with
the designated letter " /∈ Σ. In other words, v ∈ Bd(u) ⊆ (Σ ∪ {"})n if and only
if v disagrees with u on less than d entries in which v has the designated letter
". The proof of the following observation is deferred to the full version.

Observation 10. If C is an error-correcting code of length n and minimum
distance d, then Bd(u) ∩ Bd(v) = ∅ for every two codewords u, v of C.

The application of Observation 10 is rather straightforward: We can use the
error-correcting code C to recover from any number smaller than d of wiped-off
letters. In the context of our FH protocol, Alice and Bob can recover from any
number smaller than d of blocked rounds. So, except from adjusting some of
the parameters, we use here the same protocol that we used against overwriting
adversaries, only that this time, Bob can reconstruct the codeword that Alice
transmitted in phase j as long as the fraction of unsuccessful rounds is smaller
than the relative distance of the code (rather than half the relative distance).

Adjusting the Parameters. The FH protocol presented in Sec. 3.1 and ana-
lyzed in Sec. 3.2 relies on the parameters d, ρ, L, ξ, q, δ, and r, and on the three
auxiliary constants α, β, and γ. We will use the primed versions d′, ρ′, L′, ξ′,
q′, δ′, r′ and α′, β′, γ′ to describe the adaptation of this protocol to blocking
adversaries. The reader is encouraged to read the remainder of this section in
conjunction with Sec. 3.1 and 3.2.
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Recall that in the context of overwriting adversaries, we assumed that φ is
a constant satisfying 0 < φ < 1/16 and chose d and 0 < α < 1/2 so that

0 < β = (1 + α)
(√

φ+ 2√
d

)
< 1/4. In the context of blocking adversaries, we

assume that φ is a constant satisfying 0 < φ < 1 and choose the parameter
d′ = d′(φ) and the auxiliary constant 0 < α′ = α′(φ) < 1 so that

0 < β′ = β′(φ) = (1 + α′)

(√
φ+

2√
d′

)
< 1 .

Let H(x) = −x lg(x) − (1 − x) lg(1 − x) = H(1 − x) be the binary entropy
function defined for every 0 < x < 1. Observe that limx→1− 2H(x)β′x = β′ and

take γ′ = γ′(φ) to be the smallest real 1/2 ≤ γ′ < 1 such that 2H(γ′)β′γ′ ≤ β′+1
2 .

Let ξ′ = ξ′(φ) = 1−γ′
2 and let q′ = q′(φ) be the smallest prime power that

satisfies

q′ ≥ max

{
2

1− γ′ , d
′2/r(ξ′)

}
,

where 0 < r(ξ′) < 1 is the real promised by Theorem 3. The error-correcting
codes C′

j over GF (q′) we use have rate r′ ≥ r(ξ′) and relative distance δ′ ≥
1− 1

q′ − ξ′. Finally, let ρ′ = ρ′(φ) = 2H(γ′)β′γ′ and

L′ = max

{⌈
log1/ρ′

(
1

ε

)⌉
,

⌈
log√d′/2

(
φn

ε

)⌉
,
⌈
log√d′/2

( n
α′

)⌉}
.

Modified Analysis. Using the adapted parameters, the analysis presented in
Sec. 3.2 carries over quite smoothly. The one part that does require some changes
is that involving inequalities (3) and (4) and the transition between them. Re-
calling that a phase is now considered to be successful if less than a δ′-fraction
of its rounds are unsuccessful, we rewrite (3) as

P (|E| ≥ δ′
) ≤ ρ′� , (6)

(again, subject to the assumption that Eve knows a(t−L′) at round t). So, our
goal is to prove that (6) follows from pS ≤ β′δ′� (the equivalent of (4)) for every
S ⊆ [
], |S| ≥ δ′
.

As in Sec. 3.2, we express P(|E| ≥ δ′
) as

P (|E| ≥ δ′
) = P

⎛⎝ ∨
S⊆[�],|S|≥δ′�

E = S

⎞⎠ ≤
∑

S⊆[�],|S|≥δ′�
pS ,

only that this time, we use the fact that
∑n
k=	xn


(
n
k

)
≤ 2H(x)·n for every n ≥ 1

and 1/2 ≤ x < 1 (see, e.g., [12]) to bound the number of subsets S that should
be accounted for. Specifically, we get

P (|E| ≥ δ′
) ≤ 2H(δ′)·�β′δ′� =
(
2H(δ′)β′δ′

)�
.

This concludes our proof as δ′ ≥ 1 − 1
q′ − ξ′ ≥ γ′, and hence 2H(δ′)β′δ′ ≤

2H(γ′)β′γ′ = ρ′.
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4 Enhanced Scanning

The FH protocols developed in Sec. 3 are ε-resilient to (blocking and overwrit-
ing) (λ, φ)-adversaries that have access in round t + λ to the channel a(t) over
which Alice transmitted in round t, but not to the actual content m(t) of Al-
ice’s message. We now turn our attention to adversaries with enhanced scanning,
namely, both a(t) and m(t) are revealed to Eve in round t+ λ. On the negative
side, we prove that no FH protocol can be resilient to such adversaries as long
as we stick to the model introduced in Sec. 1.1, requiring that the lag λ is fixed
with respect to the time t. On the positive side, we show that a FH protocol
with resilience to enhanced scanning adversaries does exist if the lag λ grows
logarithmically with t. Due to space limitations, these proofs are deferred to the
full version.
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Abstract. We consider capacity maximization algorithms for wireless
networks with changing availabilities of spectrum. There are n sender-
receiver pairs (called links) and k channels. We consider an iterative
round-based scenario, where in each round the set of channels available
to each link changes. Each link independently decides about access to
one available channel in order to implement a successful transmission.
Transmissions are subject to interference and noise, and we use a general
approach based on affectance to define which attempts are successful.
This includes recently popular interference models based on SINR.

Our main result is that efficient distributed algorithms from sleeping-
expert regret learning can be used to obtain constant-factor approxima-
tions if channel availability is stochastic and independently distributed
among links. In general, sublinear approximation factors cannot be ob-
tained without the assumption of stochastic independence among links.
A direct application of the no-external regret property is not sufficient
to guarantee small approximation factors.

1 Introduction

One of the most important problems in the development of wireless networks
is to overcome spectrum scarcity resulting from the static allocation schemes
currently used by national regulators. This poses a variety of important regula-
tory and, in particular, algorithmic challenges. The idea is that licensed primary
users open up their spectrum bands temporarily in local areas where it is un-
used. This creates spectrum opportunities for secondary users and results in
much more efficient usage. A prominent approach that is currently discussed in
industry is based on a database that records which channels are currently avail-
able for secondary usage in which areas. Primary users announce whether the
channel is available to secondary users via this database organized by regulatory
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authorities. In this case, secondary users obtain information about the channels
available to them querying the database and then decide independently about
channel access.

In this paper, we study an underlying algorithmic problem in this scenario
and analyze the performance of distributed regret-based learning algorithms. In
our model, there are k channels and n secondary users represented by links, i.e.,
by sender-receiver pairs located in a metric space. We consider a round-based
approach, where in each round the set of channels available to each link can
change, e.g., due to changing usage of the licensed primary users. Each link gets
informed about the channels available to him and then decides about making a
transmission attempt on an available channel. Transmissions are subject to inter-
ference and noise, and the success of a transmission attempt depends on conflicts
defined using an interference model. Instead of relying on a particular model,
we use a general approach to define conflicts based on a notion of affectance.
This approach encompasses a variety of graph-based interference models, like
disk graphs or the protocol model, as well as more realistic models based on the
signal-to-interference-plus-noise-ratio (SINR).

We consider distributed learning algorithms that are executed for each link
independently. The algorithms receive as input in each round the set of avail-
able channels and, in case they decide to transmit, a binary feedback if the
transmission was successful or not. In particular, they do not need to know
the exact SINR or whether and which other links made a (successful) trans-
mission attempt. The decision for transmission follows an evaluation based on
a natural utility function, which rewards previous successful transmissions and
punishes failed attempts. Each no-regret algorithm aims at optimizing these util-
ities in a unilateral fashion, and therefore this scenario also has connections to
game-theory.

While each link uses a no-regret algorithm to optimize his own successful
transmissions, the obvious overall goal is capacity maximization, i.e., to maximize
the total number of successful transmissions in the system. Our main result is
that if all links use algorithms that satisfy a no-regret property resulting from
a sleeping expert learning model [3], the number of successful transmissions
converges to a constant-factor approximation for capacity maximization. For
example, the surprisingly simple protocol of [12] can be used to obtain this
result with high probability after a polynomial number of rounds. The analysis
is based on a novel formulation of distributed capacity maximization using linear
programming duality.

All our algorithms require channel availabilities to be stochastic and indepen-
dently distributed for each link. This includes as a special case also the natural
deterministic variant, where each link has a subset of available channels that
does not change over time. We show that independence of the availability distri-
butions among links is necessary, because the no-regret properties do not suffice
to guarantee similar bounds when distributions are correlated. In addition, we
show that a direct application of no-external regret as in previous work [6] does
not provide similar results.
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1.1 Contribution and Related Work

Capacity maximization, i.e., the task of maximizing the number of simultaneous
transmissions, has been a prominent algorithmic problem over the last decade,
e.g., in graph-based interference models [7, 16, 18]. With the seminal work of
Moscibroda and Wattenhofer [15] attention has shifted to more realistic settings
based on signal-to-interference-plus-noise-ratio (SINR).

We consider no-regret learning algorithms to solve capacity maximization with
stochastic channel availabilities. As our main result, we show in Section 3 that
no-ordering-regret algorithms converge to a constant-factor approximation for
capacity maximization if availabilities are drawn independently at random for
each link. Our analysis is based on a conflict graph representation of the interfer-
ence model and, in particular, on a notion of a C-independence. C-independence
turns out to be a key parameter for the performance of no-ordering-regret al-
gorithms in this setting. If channel availabilities are stochastically independent
for each link, the Sleeping-follow-the-perturbed-leader algorithm of [12] guaran-
tees polynomial convergence time. This also holds when for each single link the
availabilities of the different channels are arbitrarily correlated.

In contrast to this result for no-ordering-regret, we observe in Section 4 that
for a direct application of the simpler no-external-regret condition, the successful
transmissions can on average still be a factor of Ω(k) or Ω(n) smaller than in
the optimum, where k is the number of channels and n the number of links. In
addition, we highlight that without independence of channel availabilities among
different links, there exist examples where even the no-ordering-regret property
guarantees only a Ω(n)-factor, as well.

Our main result is shown using a novel technique to analyze the performance
of regret learning algorithms based on linear programming. This approach ex-
tends related works on capacity maximization on a single channel with uniform
powers in SINR [1, 9] and Rayleigh-fading models [5], for which no-external re-
gret algorithms are known to converge to constant-factor approximations [2,5,6].
Closest to our approach is our companion paper [4], in which we introduce a gen-
eral framework based on the LP technique to study no-external regret learning
with adversarial jamming on a single channel. The jammer yields more restrictive
feedback, as availability of the channel remains unknown. Instead, an unavail-
able channel yields the same feedback to the link as being unsuccessful because
of interference.

In this paper, we make a first step towards capacity maximization with mul-
tiple channels. For static availability, it is easy to see that previous results on
no-external regret learning in [2, 5] directly extend to multiple channels. When
we consider varying availabilities, however, multiple channels represent a sig-
nificant complication. For a single channel and availabilities, our LP technique
can be applied using no-external regret algorithms and the more challenging
jammer feedback [4]. The main idea is to repeat a chosen action sufficiently
long in order to obtain a “representative” feedback. For multiple channels, a
similar approach is unlikely to work as we must learn on some channels while
others are unavailable. This changes the regret and feedback conditions, and the
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connection between regret, feedback, and optimal solution value becomes more
intricate to establish. In this paper, we resort to a stronger notion of no-ordering
regret and use stochastic independence assumptions among links to obtain a
constant-factor approximation. Omitting the independence assumptions consti-
tutes a major open problem. Still, our work is a strong indication that efficient
capacity maximization with availabilities and multiple channels is achievable
in practice.

Action availabilities are the subject of a recent line of literature in online
learning [12–14]. The actions of a game (or the experts in the learning setting) are
not always available, and availability is based on adversarial decisions or random
coin flips. The stochastic availabilities in our setting are similarly defined, and
we use no-regret learning algorithms from the sleeping-experts setting to design
a protocol for capacity maximization. Designing learning algorithms for sleeping
expert settings started with Blum [3] and Freund et al. [8]. For definition of
regret many works in this area do not use the best single strategy in hindsight.
Instead, they resort to the best ordering of actions in hindsight [12–14], where
unavailable actions can be accounted for. This has led to the design of multiple
no-ordering-regret learning algorithms for the sleeping-experts setting. We will
use ordering regret in our analysis as well.

2 Formal Description

2.1 General Problem Statement

We assume our network to consist of a set V of n wireless links �v = (sv, rv) for
v ∈ V , each consisting of a sender and a respective receiver. We denote the set
of channels by K and the number of channels by k. In each step, the availability
of a channel κ ∈ K to a link �v is the result of a random trial. We will assume
throughout that the distributions for the random availabilities are independent
among the links. However, among the channels of a link the availabilities can
be arbitrarily correlated in our model. We justify this assumption by giving a
lower bound, where we assume channel availabilities correlated among the links,
in Section 4.

In a specific time step t and a specific link �v, some subset of channels is avail-
able. For any subset of channels M we define pv,M to be the probability that at
least one channel out of M is available to �v. Then the random variable P

(t)
v,M

is defined to be 1 if and only if at least one channel out of the set M is avail-
able to link �v in time slot t. Let pmin = min {pv,M | v ∈ V, M �= ∅, pv,M > 0}
be the minimal probability of a channel to be available. We can define pmin
such that pmin > 0 as channels which are never available to �v can be re-
moved from consideration because they are neither available to the optimum nor
the algorithm.

In each step t, each link first gets to know the outcome of the random trial and
his set of available channels. It then has to decide whether and on which channel
to send. Thus, a link can either not attempt transmission or transmit on one
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chosen channel. Success of transmissions can be defined in various ways, e.g., us-
ing the SINR model. In fact, our proofs rely on a more general condition which is
also fulfilled by other interference models, e.g., based on bounded-independence
graphs like unit-disk graphs [17].

In particular, we formally rely on conflict graphs to model interference (see,
e.g., [11]). A conflict graph is a directed graph G = (V, E) consisting of the
links as vertices and weights bv(w) for any edge (v, w) ∈ E. We assume the
weights to be defined such that a link �w can transmit successfully if and only if∑

v∈L bv(w) ≤ 1, where L is the set of other links transmitting. We consider the
conflict graph to be the same for all channels. Actually, this is only to simplify
notation. It is easy to observe that our proofs also hold when the conflict graph
is different in different channels. A subset of links is called feasible (on a channel)
if all links in this set can transmit simultaneously (i.e., fullfil the condition above
on that channel). The overall goal in this setting is to do capacity maximization
in every single time step. That is to select for every time step depending on the
availabilities a maximal cardinality subset of links and one available channel for
those link such the sets of links are feasible on their respective channel.

We define the following notion of C-independence inspired by [2] as a key
parameter to identify the connection between the specific interference model
and the performance of our algorithm.
Definition 1 (cf. [2]). A conflict graph is called C-independent if for any fea-
sible set L there exists a subset L′ ⊂ L with |L′| = Ω (|L|) and

∑
v∈L′ bu(v) ≤ C

for all u ∈ V .
C-independence generalizes the bounded-independence property popular in the
distributed computing literature. To embed the SINR model into this frame-
work, let us outline how we can construct such a conflict graph. Let φv be the
transmission power of link �v. Success of transmissions is defined in the SINR
model as follows. Each sending link w emits a signal from sender sw. This signal
is received by receiver rv at a strength of φw

dα
w,v

, where dw,v is the distance from
sender sw to receiver rv and α > 0 the path-loss exponent. The receiver rv can
successfully decode the signal transmitted by its sender sv, if the SINR is above
a certain threshold β. Using a constant ν ≥ 0 to denote ambient noise, the SINR
condition formally reads

φv

dα
v,v

∑
w �=v

φw

dα
w,v

+ ν
≥ β .

To turn this condition into appropriate edge weights of a conflict graph, we can
use the notion of affectance as a measure of interference. It was defined for the
SINR model in [10] as follows.

Definition 2. The affectance a(w, v) of link �v caused by another link �w is

a(w, v) = min

⎧
⎨

⎩
1, β

φw

dα
w,v

φv

dα
v,v

− βν

⎫
⎬

⎭
.
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If all links use the same uniform power for transmission, this results in C-
independence with a constant C. This was proven by Ásgeirsson and Mitra [2].
Using affectance it is straightforward to construct the corresponding conflict
graph by simply setting weights bu(v) = a(u, v).

For simplicity we will assume that the conflict graphs satisfy C-independence
for constant C throughout the paper. Nevertheless, losing a factor of C in the
approximation guarantee our main theorem on the performance of regret learning
can be directly generalized to arbitrary conflict graphs.

2.2 No-Regret Learning

We apply no-regret learning algorithms to solve capacity maximization. The
links independently decide in every time slot whether and on which channel
to transmit using appropriate learning algorithms. Every algorithm adjusts its
decisions based on the outcome of its previous decisions. To measure the quality
of an outcome every link i uses an utility function ui(ai, a−i) depending on
action ai chosen by player i and a−i, the vector of actions of all other players.
Throughout this paper we define the utility of a link i as follows. This utility
function was already used for a single channel case where the channel is always
available by Andrews and Dinitz [1] and later by Ásgeirsson and Mitra [2].

ui(ai, a−i) =

⎧
⎪⎨

⎪⎩

1 if i transmits successfully,
−1 if i attempts and the transmission fails,
0 otherwise.

This utility reflects that the best a link can achieve in one time slot is successful
transmission, for which is rewarded with a utility of 1. The worst that can happen
is an unsuccessful attempt, which is penalized by a utility of −1. This strikes a
balance between reducing interference on other links (when not being successful)
and increasing the number of transmissions (when being successful).

For our utility functions we can consider different notions of regret. The easiest
notion is external regret given as follows.
Definition 3. Let a(1), . . . , a(T ) be a sequence of action vectors. The external
regret of this sequence for link i is defined by

max
a′

i
∈A

T∑

t=1
ui(a′

i, a
(t)
−i) −

T∑

t=1
ui(a(t)

i , a
(t)
−i) ,

where A denotes the set of actions.
This notion of regret can only be used if the utilities are defined also for actions
that are not available in a time slot. We assume that choosing an unavailable
channel is equivalent to choosing not to send at all, which is an action that we
assume to be always available. This allows to directly apply no-external-regret
algorithms in our scenario.

In addition, let us also consider a different notion of regret from sleeping
experts learning. This notion of regret is introduced by Kanade et al. [12].
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Definition 4 (Kanade et al. [12]). Let a(1), . . . , a(T ) be a sequence of action
vectors. The ordering regret of this sequence for link i in the sleeping experts
setting is defined as

max
σ∈SA

E

[
T∑

t=1
ui(σ(A(t)), a

(t)
−i)

]

−
T∑

t=1
ui(a(t)

i , a
(t)
−i) ,

where the expectation is over the random availabilities. Here, A denotes the set
of actions, SA the set of all permutations on A, and σ(A(t)) the action ordered
topmost in σ of the actions available in time slot t.

In contrast to external regret, ordering regret does not measure the utility dif-
ference to the best action in hindsight but to the utility resulting from the best
ordering in hindsight. The utility for an ordering is computed by assuming that
in every step the topmost available action in the ordering is played. Additionally,
the expectation over the availabilities is considered for comparison. Note that we
do not consider the expectation in this definition to be taken over the random
choices of the algorithm as, e.g., in [14]. Considering the expectation this way
is possible due to the stochastic independence assumption. Thus, we can keep
the choices of other players and also their availabilities fixed and just take the
expectation over the availabilities of one player i.

An infinite sequence of actions or an algorithm has the no-external regret
property if external regret grows in o(T ). We analogously define the no-ordering-
regret property. Throughout this paper we will, whenever it is clear from context,
use regret as a synonym for either ordering regret or external regret.

3 Convergence with No-Ordering-Regret Learning

In this section we show our main result that using no-ordering-regret algorithms
the number of successful transmissions converges to a constant-factor approxi-
mation of the optimal capacity. As discussed before, the optimum is different in
different time slots depending on available channels. Let us denote by OP T

(t)
κ the

set of links transmitting on channel κ in time slot t in the optimal solution. Thus,
we compare the number of successful transmissions of the no-regret algorithms to
the empirical average capacity of all optima, i.e., |OP T | = 1

T

∑
t

∑
κ∈K |OP T

(t)
κ |.

For simplicity we assume that conflict graphs are O(1)-independent and high-
light the places at which the factor C comes into play if this assumption does
not hold. Note that, in particular, conflict graphs resulting from the SINR model
under uniform power yield constant C [2].

Theorem 1. If all links use no-ordering-regret algorithms, the average number
of successful transmissions becomes a constant-factor approximation for capacity
maximization after a number of time steps polynomial in n and linear in k with
high probability, i.e., with probability at least 1 − 1

nc for any constant c. More
generally, in C-independent conflict graphs the same result holds for convergence
to an O(C)-approximation.
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While the overall approach is in the spirit of previous work, our setting is quite
different and the notion of regret also differs. Similar to [2,6], our analysis starts
with the observation that a constant fraction of all transmission attempts are
successful. Afterwards, we combine this with the result that the number of trans-
mission attempts is in Ω

(
|OP T |

)
. Especially the proof of this latter statement

in Lemma 2 below needs more advanced techniques. Together both statements
prove our theorem.

In the remainder of this section, we denote the fraction of time slots in which
link �v transmits on channel κ by qv,κ. The sum over the channels is denoted by
qv =

∑
κ qv,κ. The fraction of time slots in which link �v transmits successfully

is denoted by wv,κ, and the sum over channels by wv. In the following, we will
denote the fraction of all time steps in which link �v (no matter whether it
attempted to transmit) would not be able to be successful on channel κ by fv,κ

no matter if κ was actually available to link �v. Throughout this section, we
assume that for each link the ordering regret after T time slots is at most ε · T .

First of all, let us bound the number of successful transmissions by the number
of transmission attemps.
Lemma 1 (cf. [2, 5]). It holds wv ≤ qv ≤ 2 · wv + ε and

∑
v wv ≤ ∑

v qv ≤
2 · ∑

v wv + εn.

Proof. The first inequality follows by definition. For the second inequality, we
use the fact that for each link v the average regret is at most ε. Therefore, not
to send at all can increase the average utility per step by at most ε. Formally
this means (qv − wv) − wv = qv − 2wv ≤ ε. Taking the sum over all v we get∑

v qv − 2 · ∑
v wv ≤ εn. This yields the claim. �

Lemma 1 shows that the number of successful transmissions and the number
of transmission attempts only differ by a constant factor. Together with the
following lemma this proves Theorem 1.

Lemma 2. Every sequence of length T ∈ Ω
(

1
pmin

(ln n + k)
)

with ordering re-

gret at most ε · T < 1
4n · T yields

∑
v qv = Ω

(
|OP T |

)
with high probability.

To prove Lemma 2, we use a primal-dual approach using an appropriately defined
linear program. Recall that pmin = min {pv,M | v ∈ V, M �= ∅, pv,M > 0} is the
minimal availability probability of all the channels.

Let us start by showing in Lemma 3 that for a number of time slots T ∈
Ω

(
1

pmin
(ln n + k)

)
with high probability the empirical fraction of slots P̄v,M in

which at least one channel out of M was available to link �v is close to the
probability pv,M , for every set of channels M and every link �v. Afterwards,
we will use this result to draw a connection between transmission attempts,
availabilities, and experienced affectances in Lemma 4 finally proving Lemma 2.

Lemma 3. After a number of time steps T ∈ Ω
(

1
pmin

· (ln n + k)
)

it holds
|P̄v,M − pv,M | ≤ 1

2 P̄v,M for all sets of channels M and all links �v with high
probability.
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Proof. Consider the random variable P
(t)
v,M ∈ {0, 1} indicating whether any chan-

nel of the set M is available for link �v in time slot t. Let Y =
∑

t P
(t)
v,M . Thus, we

need |E(Y )−Y | < 1
2 Y to hold, because this directly yields |P̄v,M −pv,M | ≤ 1

2 P̄v,M

by division with T . Equivalently we need 1
2 Y < E(Y ) < 3

2 Y to hold.
As the channel availabilities are drawn independently in every time slot, we

can apply a Chernoff bound. This yields Pr [Y ≥ (1 + δ)E(Y )] ≤ exp
(

−δ2

3 E(Y )
)

and Pr [Y ≤ (1 − δ)E(Y )] ≤ exp
(

−δ2

2 E(Y )
)

for every δ ∈ [0, 1].
Using this we get Pr [Y ≥ 2E(Y )] ≤ exp

(− 1
3E(Y )

)
and Pr

[
Y ≤ 2

3E(Y )
] ≤

exp
(− 1

18E(Y )
)
. With a union bound, the probability that |P̄v,M −pv,M | ≤ 1

2 P̄v,M

does not hold for a particular set M is

Pr
[

|P̄v,M − pv,M | >
1
2

P̄v,M

]

≤ exp
(

−pv,MT

3

)

+ exp
(

−pv,MT

18

)

.

This is at most 2 · exp
(− 1

18 pv,MT
)
. Applying another union bound yields

∑

v∈V

∑

M⊆K

Pr
[

|P̄v,M − pv,M | >
1
2

P̄v,M

]

≤ 2kn · 2 · exp
(

− 1
18

pmin · T

)

.

Setting T ≥ 18
pmin

((c + 1) ln n + (k + 1) · ln 2) shows that the probability that for
any arbitrary set of channels M the property |P̄v,M − pv,M | ≤ 1

2 P̄v,M does not
hold is at most n−c. �
Consider the set of channels with a low congestion where a link will be unsuc-
cessful in a small fraction of time slots. For these channels we will show that the
number of transmission attempts yields an upper bound on the availabilities.
This fact will be used in the proof of Lemma 2.

Lemma 4. Let M be any set of channels such that for every channel κ ∈ M it
holds fv,κ ≤ 1

4 . If regret is at most ε and |P̄v,M − pv,M | ≤ 1
2 P̄v,M , then it follows

4
∑

κ∈K

qv,κ + 4ε ≥ P̄v,M .

Proof. The expected utility of the best ordering in hindsight is obviously at least
as high as the expected utility of the ordering in which all κ ∈ M are ordered
above the action ’not sending’ followed by all other channels.

First, we consider just one channel. On any channel κ ∈ M link �v is not
successful in an fv,κ-fraction of all time steps. That leaves T · (1 − fv,κ) time
steps possibly successful each yielding a utility of +1 for choosing κ if it was
available. Choosing κ in contrast also yields −1 as a utility in T · fv,κ time steps
if κ was available. Thus ordering only κ before not sending yields a total expected
utility of pv,κ (T · (1 − fv,κ) − T · fv,κ). We extend this argument to the set M
such that it depends on pv,M instead of pv,κ in the following way.

For any ordering with all κ ∈ M ordered above not sending (and all other
channels below), we get in expectation at least the utility of the worst channel
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κ ∈ M if any channel of M is available. This only holds due to the independence
of the availabilities between different links as we can fix the actions of other links.
This way, considering the expectation over �v’s own availabilities we yield at least
minκ ((1 − fv,κ) − fv,κ) for time steps where any channel in M is available. For
the expected utility of the best ordering in hindsight this yields

max
σ∈SA

E

[
T∑

t=1
uv(σ(A(t)), a

(t)
−v)

]

≥ min
κ

((1 − fv,κ) − fv,κ) pv,M · T .

Note that as discussed above we can only bound the expected utility by that of
one channel due to the availabilities of channels between links being stochasti-
cally independent. Otherwise those could be correlated in such a way that the
expected unsuccessful time steps are not at most T · maxκ fv,κpv,M but could be
worse. This is due to correlation, for example, being able to force all interference
of other links on a channel (even if it occurs in few time steps in total) occur in
available time steps only.

This yields 1
T maxσ∈MA E

[∑T
t=1 uv(σ(A(t)), a−v)

]
≥ ( 3

4 − 1
4
)

pv,M = 1
2 pv,M .

Using |P̄v,M − pv,M | ≤ 1
2 P̄v,M we can easily bound this from below by 1

4 P̄v,M .
With the fact that the regret is at most ε and that the utility is at most qv we
get 1

4 P̄v,M ≤ qv + ε. �

This connection between the availability of a set, its interference, and the actions
played now allows us to prove Lemma 2.

Proof (Proof of Lemma 2). Recall the definition of C-independence. Note that
the conditions given in Definition 1 can be transfered for each channel κ from
the single time steps to all time steps by averaging as follows. Let OP T

′(t)
κ be L′

out of Definition 1 when setting L = OP T
(t)
κ yielding |OP T

′(t)
κ | ≥ Ω

(
|OP T

(t)
κ |

)

and
∑

v∈OP T
′(t)
κ

bu(v) ≤ C for every time step t. By averaging over all time steps
this is

1
T

∑

t

|OP T ′(t)
κ | ≥ Ω

(
1
T

∑

t

|OP T (t)
κ |

)

and 1
T

∑

t

∑

v∈OP T
′(t)
κ

bu(v) ≤ C .

As C-independence holds in the given network for any feasible set on each chan-
nel, it also holds in this averaged variant for the optimum on each channel.

We will prove our lemma with the following primal-dual approach. For the
following primal LP we will essentially consider the optimum averaged over all
time steps and utilize C-independence. The above result is this way useful to
show feasibility of the primal solution.
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Max.
∑

v∈V

∑

κ∈K

xv,κ

s.t.
∑

v∈V

bu(v)xv,κ ≤ C ∀u ∈ V, κ ∈ K
∑

κ∈M

xv,κ ≤ P̄v,M ∀v ∈ V, M ⊆ K

xv ≥ 0 ∀v ∈ V

Observe that xv,κ = |{t|v∈OP T ′(t)
κ }|

T represents a feasible solution to this LP.
The first constraint is fulfilled as C-independence is fulfilled for every single time
slot. The second constraint is fulfilled due to the fact that at most one channel is
used at a time. Thus, we get

∑
v∈V

∑
κ∈K xv,k ≥ Ω

(
|OP T |

)
by the definition

of C-independence for the single-slot optima.
Constructing the dual to this primal LP yields

Min.
∑

v∈V

∑

κ∈K

C · yv,k +
∑

v∈V

∑

M⊆K

P̄v,M · zv,M

s.t.
∑

u∈V

bu(v)yu,κ +
∑

M :κ∈M

zv,M ≥ 1 ∀v ∈ V, κ ∈ K

yv,κ, zv,M ≥ 0 ∀v ∈ V, κ ∈ K, M ⊆ K

We construct the following dual solution that gives an upper bound to the so-
lution of the primal LP. Let Mv =

{
κ ∈ K

∣
∣ fv,κ ≤ 1

4
}

, where fv,κ again denotes
the fraction of all time steps in which link �v would not be able to transmit suc-
cessfully on channel κ. So Mv represents the set of channels with low congestion.
We set yv,κ = 4 · qv,κ, zv,Mv = 1, and zv,S = 0 for all S �= Mv.

First, let us observe that this is a feasible solution and the constraints are
fulfilled. Recall the definition of fv,κ being the fraction of time steps �v would
have been unsuccessful on channel κ no matter whether the channel was available
to �v. Thus, for any channel κ in which fv,κ ≥ 1

4 , it holds
∑

u∈V bu(v)qu,κ ≥ 1
4 .

So
∑

u bu(v) · yu,κ ≥ 1 with the chosen yu,κ. For the other case with fv,κ < 1
4 we

set zv,Mv = 1 and by definition κ ∈ Mv. Therefore, the constraint is fulfilled.
Using Lemma 4 leads to an upper bound on the objective function of the dual

LP of ∑

v

(
4Cqv + P̄v,Mv

) ≤
∑

v

(4Cqv + 4qv) + 4εn .

Combined with the primal LP this yields
∑

v qv = Ω
(

|OP T |
)

for ε < 1
4n .

In particular, for arbitrary C-independence the last derivation obviously implies
C ·∑v qv = Ω

(
|OP T |

)
and directly yields an approximation factor in O(C). �

We have seen that after a number of time slots linear in k and logarithmic in n a
sequence with low regret converges to a constant-factor approximation with high
probability. Additionally, this time bound depends on the minimal probability
of the availabilities pmin. It is clear that a similar parameter must occur in the
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convergence time as links may not learn in time slots in which they have no
channel available at all.

Theorem 1 and Lemma 2 show that the no-ordering-regret property allows
to converge to constant-factor approximations. The algorithms in [12] have this
property, which allows to directly use them for capacity maximization in our
scenario. The sleeping-follow-the-perturbed-leader algorithm of [12] yields an
ordering regret of at most

√
T log k in expectation after T time slots. While this

algorithm runs in the full-information model getting feedback also for actions
not chosen, Kanade et al. also propose an algorithm yielding low regret roughly
the size (k · T · log T )4/5 in the partial-information model, where only feedback
for chosen actions is given. To reach ε < 1

4n we therefore need only an additional
factor polynomial in n for the number of time slots.

4 Lower Bounds

In this section, we show that a direct application of no-external-regret algorithms
does not necessarily yield a constant-factor approximation. In fact, we will give
an example that shows approximation factors in Ω(k) and Ω(n). Note that these
factors can already be reached by algorithms where just one channel is utilized or
just one link transmits, respectively. Additionally, we show that our assumption
of stochastic independence in the availabilities among links is necessary. All
our lower bound constructions can trivially be embedded into 1-independent
conflict graphs. Thus, they establish linear lower bounds even in cases, where
no-ordering-regret obtains constant-factor approximations.

Theorem 2. For every number of channels k there is an instance such that for
a sequence yielding 0 external regret the number of successful transmissions is at
least a factor of k smaller than in an optimal schedule.

Proof. Let us assume that all n links can be successful simultaneously on every
channel. This allows us to consider only a single link. We first consider a sequence
of deterministic availabilities in which channel κ is available in time slots t with (t
mod k + 1) = κ. Here there is a 0-external-regret sequence in which exactly one
channel is chosen. The link will transmit only in every k-th time step, choosing
exactly one channel. In contrast, in the optimum the link can simply choose
another channel in every single time step. This yields the factor of k.

To reproduce the same arguments with stochastic availability, we set the prob-
abilities for each channel availability to 1

k . This yields the same structure. Again,
if the link chooses only a single channel for transmission, it will encounter van-
ishing external regret as in the long run all channels have the same availability
and success. However, it will only transmit in an 1

k -fraction of all time slots. In
contrast, in expectation in every time slot there is at least one channel available.
This implies that in the long run a factor of k. �
This result also implies an Ω(n) bound by setting k = n. Therefore, using no-
external regret in this direct way does not imply a constant-factor approximation.
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Corollary 1. For every number of links n there is a network such that for a
sequence yielding 0 external regret the number of successful transmissions is at
least a factor of n smaller than in an optimal schedule.

In contrast to directly applying the no-external-regret property, one might con-
sider using multiple such no-external-regret algorithms. It is an interesting open
problem if this allows to establish similar properties as for the sleeping-follow-
the-perturbed-leader algorithm leading to a constant-factor approximation.

In the previous sections, we have assumed that the channel availabilities of dif-
ferent links are independent. We will use a similar example as in the proof above
to see that this assumption is necessary to achieve convergence to a constant-
factor approximation, even for no-ordering-regret algorithms.

Theorem 3. For every number of links n there exists a network with correlated
availabilities such that for a sequence yielding 0 ordering regret the number of
successful transmissions is at least a factor of n smaller than in an optimal
schedule.

Proof. Suppose there is only one channel. We construct the network as follows.
No pair of links can transmit simultaneously on the channel. This can easily
be achieved be placing links (almost) in the same location and constructing the
interference appropriately.

The channel is either available for all n links simultaneously or for only one
single link �v with v ∈ {2, . . . , n}. The probability for each of these n cases is 1

n .
We construct a 0-ordering-regret sequence by scheduling link �1 to send when-

ever the channel is available to him. All other links choose not to send at all.
The dependence of the availabilities implies that the expected utility of the best
response in hindsight for all links �2, . . . , �n becomes 0 because, in the long run,
for each of these links every second available slot is occupied by �1.

In contrast, in the optimum letting every link �2, . . . , �n transmit when the
channel is available to him alone yields a successful transmission in every time
slot. This proves the theorem. �

The one-or-all structure of availabilities used in the proof of Theorem 3 can still
occur with a very low probability if we do not assume correlation and instead let
the channel be available to each link independently with probability 1

n . In this
case, however, the transmission choices in the proof of Theorem 3 do not yield
0 ordering regret.

With a slight adjustment of the one-or-all structure, it is possible to show
even slightly stronger lower bounds close to 3n/2. We proved our positive results
under the assumption that availabilities of links are independent and encounter
no correlation at all. In contrast, the lower bound in Theorem 3 heavily relies
on correlation. It is an interesting open problem to characterize influence of
correlation of availability distributions on the performance of no-regret learning
algorithms (e.g., when correlation results from a locality structure of primary
and secondary users).
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Abstract. An increasing amount of attention is being turned toward the study of
distributed algorithms in wireless network models based on calculations of the
signal to noise and interference ratio (SINR). In this paper we introduce the ad
hoc SINR model, which, we argue, reduces the gap between theory results and
real world deployment. We then use it to study upper and lower bounds for the
canonical problem of broadcast on the graph induced by both strong and weak
links. For strong connectivity broadcast, we present a new randomized algorithm
that solves the problem in O(D log (n)polylog(R)) rounds in networks of size
n, with link graph diameter D, and a ratio between longest and shortest links
bounded by R. We then show that for back-off style algorithms (a common type
of algorithm where nodes do not explicitly coordinate with each other) and com-
pact networks (a practice-motivated model variant that treats the distance from
very close nodes as equivalent), there exist networks in which centralized algo-
rithms can solve broadcast in O(1) rounds, but distributed solutions require Ω(n)
rounds. We then turn our attention to weak connectivity broadcast, where we
show a similar Ω(n) lower bound for all types of algorithms, which we (nearly)
match with a back-off style O(n log2 n)-round upper bound. Our broadcast algo-
rithms are the first known for SINR-style models that do not assume synchronous
starts, as well as the first known not to depend on power control, tunable carrier
sensing, geographic information and/or exact knowledge of network parameters.

1 Introduction

In this paper, we study distributed broadcast in wireless networks. We model this setting
using an SINR-style model; i.e., communication behavior is determined by the ratio of
signal to noise and interference [6, 8–11, 15, 17, 19, 21]. While we are not the first to
study broadcast in an SINR-style model (see related work below), we are the first to do
so under a specific set of assumptions which we call the ad hoc SINR model. It gener-
alizes the SINR-style models previously used to study broadcast by eliminating or re-
ducing assumptions that might conflict with real networks, including, notably, idealized
uniform signal propagation and knowledge of exact network parameters or geographic
information. In this setting, we produce new efficient broadcast upper bounds as well as
new lower bounds that prove key limitations. In the remainder of this section, we detail
and motivate our model, then describe our results and compare them to existing work.
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The Ad Hoc SINR Model. In recent years, increasing attention has been turned to-
ward studying distributed wireless algorithms in SINR-style models which determine
receive behavior with an SINR formula (see Section 2) that calculates, for a given
sender/receiver pair, the ratio of signal to interference and noise at the receiver. These
models differ in the assumptions they make about aspects including the definition of
distance, knowledge of network parameters, and power control constraints. In this pa-
per we study an SINR-style model with a collection of assumptions that we collectively
call the ad hoc SINR model, previously studied (however not named yet) e.g. in [7].
Our goal with this model is to capture the key characteristic of wireless communication
while avoiding assumptions that might impede the translation of theoretical results into
practical algorithms. The ad hoc SINR model is formally defined in Section 2, but we
begin by summarizing and motivating it below.

We start by noting that a key parameter in the SINR formula is the distance between
nodes. Distance provides the independent variable in determining signal degradation
between a transmitter and receiver. In the ad hoc SINR model, we do not assume that
distance is necessarily determined by Euclidean geometry. We instead assume only that
the distances form a metric in a “growth-bounded metric space"—describing, in some
sense, an effective distance between nodes that captures both path loss and attenuation.
Crucially, we assume this distance function is a priori unknown—preventing algorithms
that depend on advance exact knowledge of how signals will propagate.

Another key assumption in the definition of an SINR-style model is the nodes’
knowledge of network parameters. In the ad hoc SINR model, we assume nodes do
not know the precise value of the parameters associated with the SINR formula (i.e.,
α, β,N ), but instead know only reasonable upper and lower bounds for the parame-
ters (i.e., αmin

αmax
, βmin

βmax
, Nmin

Nmax
). This assumption is motivated by practice where ranges

for these parameters are well-established, but specific values change from network to
network and are non-trivial to measure.1 We also assume that nodes only know a poly-
nomial upper bound on the relevant deployment parameters—namely, network size and
density disparity (ratio between longest and shortest links).

Finally, we assume that all nodes use the same fixed constant power. This assumption
is motivated by the reality that power control varies widely from device to device, with
some chipsets not allowing it all, while others use significantly different granularities.
To produce algorithms that are widely deployable it is easiest to simply assume that
nodes are provided some unknown uniform power.

Results. The global broadcast problem provides a source with a broadcast messageM ,
which it must propagate to all reachable nodes in the network. We study this problem
under the two standard definitions of reachable for an SINR-style setting: weak and
strong. In more detail, let dmax be the largest possible distance such that two nodes
u and v can communicate (i.e., the largest distance such that if u broadcasts alone in
the entire network, v receives its message). A link between u and v is considered weak
if their distance is no more than dmax, and strong if their distance is no more than
dmax

1+ρ , where ρ = O(1) is a constant parameter of the problem. Weak (resp. strong)

1 In addition to keeping the specific values unknown, it might be interesting to allow them to
vary over time in the range; e.g., an idea first proposed and investigated in [10]. The difficulty
of defining such dynamic models lies in introducing the dynamic behavior without subverting
tractability. This is undoubtedly an intriguing direction for future exploration.
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connectivity broadcast requires the source to propagate the message to all nodes in its
connected component in the graph induced by weak (resp. strong) links.

Existing work on broadcast in SINR-style models focuses on strong connectivity.
With this in mind, we begin, in Section 4, with our main result: a new strong connec-
tivity broadcast algorithm that terminates in O(D logn logαmax+1(Rs)) rounds, with
probability at least 1 − 1/nc, for some c ≥ 1 (w.h.p.), where D is the diameter of
the strong link graph, αmax = α + O(1) is an SINR model parameter, and Rs is the
maximum ratio between strong link lengths. Notice, in most practical networks, Rs is
polynomial in n,2 leading to a result that is inO(D polylog(n)). This is also, to the best
of our knowledge, the first broadcast algorithm for an SINR-style model that does not
assume synchronous starts. It instead requires nodes to receive the broadcast message
first before transmitting—a practical and common assumption, that prevents nodes from
needing advance knowledge of exactly when broadcast messages will enter the system.

We then continue with lower bounds for strong connectivity broadcast. In the graph-
based models of wireless networks, the best known broadcast solutions are back-off
style algorithms [2, 4, 12], in which a node’s decision to broadcast depends only on the
current round and the round in which it first received the broadcast message. These al-
gorithms are appealing due to their simplicity and ease of implementation. In this paper,
we prove that back-off style algorithms are inherently inefficient for solving strong con-
nectivity broadcast. In more detail, we prove that there exist networks in which a cen-
tralized algorithm can solve broadcast in a constant number of rounds, but any back-off
style algorithm requires Ω(n) rounds. This result opens a clear separation between the
graph and SINR-style models with respect to this problem.

We also prove an Ω(n) bound on a compact version of our model that allows arbi-
trarily large groups of nodes to occupy the same position. We introduce this assumption
to explore a reality of many real networks: when you pack devices close enough, the
differences between received signal strength fall below the detection granularity of the
radio hardware, which experiences the signal strength of these nearby devices as if they
were all traveling the same distance. This bound emphasizes an intriguing negative re-
ality: efficient broadcast in SINR-style models depends strongly, in some sense, on the
theoretical conceit that the ratio between distances is all that matters, regardless of how
small the actual magnitude of these distance values is.

We conclude by turning our attention to weak connectivity broadcast. To the best
of our knowledge, we are the first to concretely consider this version of broadcast. We
formalize the intuitive difficulty of this setting by proving the existence of networks
where centralized algorithms can solve broadcast in O(1) rounds, while any distributed
algorithm requires Ω(n) rounds. We then match this bound (within log2 n factors) by
showing that the back-off style upper bound we first presented in our study of the dual
graph model [13] not only solves weak connectivity broadcast in O(n log2 n) rounds
in the ad hoc SINR model, but also does so in essentially every reasonable model of a
wireless network.

2 There are theoretically possible networks, like the exponential line, in which Rs is exponen-
tial in n, but as n grows beyond a small value, those networks become impossible to realize
in practice. E.g., to deploy an exponential line consisting of ∼ 45 nodes, with a maximum
transmission range of 100m, the network would have to include pairs of devices separated by
a distance less than the width of a single atom.
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Related Work. The theoretical study of SINR-style models began by focusing on cen-
tralized algorithms meant to bound the fundamental capabilities of the setting; e.g., [6,
8,11,15,17]. More recently, attention has turned toward studying distributed algorithms,
which we discuss here. In the following, n is the network size, D is the diameter of the
strong link graph, and Δ is the maximum degree in the weak link graph. Randomized
results are assumed to hold with high probability.

We begin by summarizing existing work on distributed strong connectivity broadcast
in SINR-style models. There exist several interesting strategies for efficiently perform-
ing strong connectivity broadcast. In more detail, in the randomized setting, Scheideler
et al. [19] show how to solve strong connectivity broadcast in O(D + logn) rounds,
while Yu et al. [21] present aO(D+log2 n) round solution. In the deterministic setting,
Jurdzinski et al. [9] describe a O(Δ polylog(n) +D) solution, which they recently im-
proved to O(D log2 n) (under different assumptions) [10]. However, all of these above
solutions make strong assumptions on the knowledge and capability of devices, which
are forbidden by the ad hoc SINR model. In particular, all four results leverage knowl-
edge of the exact network parameters (though in [19] it is noted that estimates are likely
sufficient), and assume that all nodes begin during round 1 (allowing them to build an
overlay structure on which the message is then propagated). In addition, [19] makes
use of tunable collision detection, [21] allows the algorithm to specify the transmission
power level as a function of the network parameters, [9] adds an additional model re-
striction that forbids communication over weak links,3 and [10] heavily leverages the
assumption that nodes know their positions in Euclidean space and the exact network
parameters, and can therefore place themselves and their neighbors in a precomputed
overlay grid with nice properties.

A problem closely related to (global) broadcast is local broadcast, which requires
a set of senders to deliver a message to all neighbors in the strong link graph. This
problem is well-studied in SINR-style models and the best known results are of the
form O(Δ log n) [7, 22]. Of these results, the algorithm in [7] is the most relevant to
our work as it deploys an elegant randomized strategy that can be easily adapted to the
ad hoc SINR model. Using this local broadcast algorithm as a building block yields a
solution for (global) broadcast that runs in O(ΔD logn) time. In our work, we avoid
dependency on the degree of the underlying link graph as we only need to propagate a
single message.

In the classical graph-based wireless network model, for distributed broadcast there
is a tight bound of Θ((D + logn) log (n/D)) rounds, if nodes start asynchronously
(like in this paper) [1, 2, 4, 12, 14, 18]. For the easier case where all nodes start at the
same time, it is currently unknown whether or not better bounds are possible in general
graphs, but in unit disk graphs a solution of the formO(D+ log2 n) is likely possible.4

3 In slightly more detail, their model forbids v from receiving a message from u if u is too far
away, even if the SINR of the transmission is above β. This restriction makes it easier to build
a useful dominating set because it eliminates the chance that you are dominated by a weakly
connected neighbor.

4 The result of [16] can build a maximal independent set in the UDG graph model in O(log2 n)
rounds. Once this set is established under these constraints, an additional O(log2 n) rounds
should be enough to build a constant-degree overlay—e.g., as in [3]—on which broadcast can
be solved in an additional O(D + log n) rounds.
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2 Model

We study the ad hoc SINR model, which describes a network consisting of a set of
nodes V deployed in a metric space and communicating via radios. We assume time is
divided into synchronous rounds and in each round a node can decide to either transmit
or listen. We determine the outcome of these communication decisions by the standard
SINR formula, which dictates that v ∈ V receives a message transmitted by u ∈ V , in a
round where the nodes in I ⊆ V \ {u, v} also transmit, if and only if v is listening and

SINR(u, v, I) =

Pu

d(u,v)α

N +
∑
w∈I

Pw

d(w,v)α

≥ β,

where Px is the transmission power of node x, d is the distance formula for the under-
lying metric space, and α ∈ [αmin, αmax], β ∈ [1, βmax], and N ∈ [0, Nmax], where
αmax, βmax andNmax are constants.

In this paper, we assume that: (1) Algorithms are distributed. (2) All nodes use the
same constant power P . (3) Nodes do not have advance knowledge of their locations,
distances to other nodes, or the specific values of the network parameters α, N , and
β, though they do know the range of values from which α, N , and β are chosen.
In addition, nodes only know a polynomial upper bound on the standard deployment
parameters: the network size (|V | = n) and the density (ratio of longest to short-
est link distance). (4) Nodes are embedded in a general metric space with a distance
function d that satisfies the following property: for every v ∈ S ⊆ V and constant
c ≥ 1, the number of nodes in S within distance c · dmin(S) of v is in O(cδ), where
dmin(S) := minu,u′∈V {d(u, u′)} is the minimum distance between two nodes in S
and δ < αmin is a fixed constant roughly characterizing a dimension of the metric
space. Notice, for δ = 2 the model strictly generalizes the Euclidean plane. We prefer
this general notion of distance over standard Euclidean distance as it can capture power
degradation due to both path loss and attenuation (a link-specific loss of power due to
the materials through which the signal travels). In this paper, to achieve the strongest
possible results, we prove our upper bounds with respect to this general metric, and our
lower bounds with respect to the restricted (i.e., easier for algorithms) two-dimensional
Euclidean instantiation.

Compact Networks. The SINR equation is undefined if it includes the distance 0. As
motivated in the introduction, a natural question is to ask what happens as distances
become effectively 0 (e.g., when nodes become too close for the difference in their
signal strength to be detectable). To study this case, we define the compact ad hoc
SINR model, which allows zero-distances and specifies that whenever SINR(u, v, I) is
therefore undefined, we determine receive behavior with the following rule: v receive
u’s message if and only if u is the only node in I ∪ {u} such that d(u, v) = 0. We
formalize the impact of this assumption in our lower bound in Section 5.1.

3 Problem and Preliminaries

In this section we define the problems we study in this paper and then introduce some
preliminary results that will aid our bounds in the sections that follow.
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The Broadcast Problem. In the broadcast problem, a designated source must propa-

gate a message M to every reachable node in the network. Let rw :=
(
P
βN

)1/α
be

the maximum distance at which any two nodes can communicate. Let rs := rw
1+ρ ,

for some known constant ρ > 0. Fix a set of nodes and a distance metric. We de-
fine E[
], for some distance 
 ≥ 0, to be the set of all pairs {u, v} ⊆ V such that
d(u, v) ≤ 
. When defining broadcast, we consider both the weak connectivity graph
Gw = (V,E[rw]) and the strong connectivity graph Gs = (V,E[rs]). The values
Rw = max{u,v},{x,y}∈E[rw]

{d(u,v)
d(x,y)

}
and Rs = max{u,v},{x,y}∈E[rs]

{d(u,v)
d(x,y)

}
cap-

ture the diversity of link lengths in the connectivity graphs. For most networks, you can
assume this value to be polynomial in n, though there are certain malformed cases, such
as an exponential line, where the value can be larger. A subset S ⊆ V of the nodes is
called a maximal independent set (MIS), if any two nodes u, v ∈ S are independent,
i.e., {u, v} /∈ E, and if all nodes v ∈ V are covered by some node in s ∈ S, i.e.,
∀v ∈ V : ∃s ∈ S : v ∈ N(s).

In weak connectivity broadcast the source is required to propagate its message to all
nodes in its connected component in Gw, while in strong connectivity broadcast the
source is required only to propagate the message to all nodes in its component in Gs.
In this paper, we are interested in randomized solutions to both broadcast problems. In
particular, we say algorithm A solves weak or strong connectivity broadcast in a given
number of rounds if it solves the problem in this time w.h.p.; i.e., with probability at
least 1− 1/nc, for an arbitrary constant c > 0.

We assume nodes remain inactive (i.e., they do not transmit) until they receive the
broadcast message for the first time, at which point they become active. We say a given
network is T -broadcastable with respect to strong or weak connectivity, if there ex-
ists a T -round schedule of transmissions that solves the relevant broadcast problem.
And finally, we say a broadcast algorithm is a back-off style algorithm if nodes base
their broadcast decisions entirely on the current round and the round in which they first
received the broadcast message (which, for the source, we say is round 0).

The (x, y)-Hitting Game. Our lower bound arguments in this paper deploy the high-
level strategy of proving that solving the relevant type of broadcast is at least as hard
as solving an easily bounded combinatorial game we call (x, y)-hitting. This game is
defined for two integers, 0 < x ≤ y. The game begins with an adversary choosing some
arbitrary target set T ⊆ [y] where |T | = x. The game then proceeds in rounds. In each
round the player, modeled as a probabilistic automaton P , guesses a value w ∈ [y]. If
w ∈ T the player wins. Otherwise it moves on to the next round. It is easy to see that
for small x the game takes a long time to solve with reasonable probability:

Theorem 1. Let P be a player that solves the (x, y)-hitting game in f(x, y) rounds, in
expectation. It follows that f(x, y) = Ω(y/x).

4 Strong Connectivity Broadcast

In this section, we present STRONGCAST, an algorithm that solves strong connectivity
broadcast in the ad hoc SINR model. We prove the following:

Theorem 2. The STRONGCAST algorithm solves strong connectivity broadcast in the
ad hoc SINR model in O(D(logαmax+1Rs)(log n)) rounds.
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For most practical networks, Rs is polynomial in n, reducing the above result to
O(D polylog(n)). In some malformed networks, however, Rs can be as large as expo-
nential in n. Because we assume the ad hoc SINR model, our algorithm leverages no
advanced knowledge of the distance metric and uses only the provided constant upper
bounds on α and β, and the polynomial upper bounds on n and Rs. To avoid the intro-
duction of extra notation, we use the exact values of n and Rs in our analysis as those
terms show up only within log factors in big-O notation; for simplicity of presenting
the protocol, we also assume that Rs grows at least logarithmic in n.5 To keep the anal-
ysis of the STRONGCAST algorithm concise, in the following we only present proof
sketches. Full proofs for all claims of the section appear in [5].

Algorithm Overview. The STRONGCAST algorithm consists of at most D epochs. In
each epoch, the broadcast message is propagated at least one hop further along all short-
est paths from the source. In more detail, at the beginning of each epoch, we say a node
is active with respect to that epoch if it has previously received the message and it
has not yet terminated. During each epoch, the active nodes for the epoch execute a
sub-protocol we call neighborhood dissemination. Let S be the set of active nodes for
a given epoch. The goal of neighborhood dissemination is to propagate the broadcast
message to every node in N(S), whereN is the neighbor function over the strong con-
nectivity graph Gs. (Notice that the high-level structure of our algorithm is the same
as seen in the classical results from the graph-based setting; e.g., our neighborhood
dissemination sub-protocol takes the place of the decay sub-protocol in the canonical
broadcast algorithm of Bar-Yehuda et al. [2].)

The neighborhood dissemination sub-protocol divides time into phases. As it pro-
gresses from phase to phase, the number of nodes still competing to broadcast the mes-
sage decreases. The key technical difficulty is reducing contention fast enough that
heavily contended neighbors of S receive the message efficiently, but not so fast that
some neighbors fail to receive the message before all nearby nodes in S have termi-
nated. We achieve this balance with a novel strategy in which nodes in S approximate
a subgraph of their “reliable" neighbors, then build an MIS over this subgraph to de-
termine who remains active and who terminates. We will prove that if a node u ∈ S
neighbors a node v ∈ N(S), and u is covered by an MIS node (and therefore termi-
nates), the MIS node that covered u must be sufficiently close to v to still help the
message progress.

In Section 4.1 we detail a process for constructing a reliable subgraph and analyze
its properties. Then, in Section 4.2 we detail the neighborhood dissemination sub-
protocol (which uses the subgraph process) and analyze the properties it guarantees.
We conclude, in Section 4.3, by pulling together these pieces to prove the main theorem
from above.

4.1 SINR-Induced Graphs

The neighborhood dissemination sub-protocol requires active nodes to construct, in a
distributed manner, a subgraph that maintains certain properties. For clarity, we describe
and analyze this process here before continuing in the next section with the description
of the full neighborhood dissemination sub-protocol.

5 In fact, it is sufficient to assume logαmax Rs = Ω(log� n).
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We start by defining graphsHμp [S] which are induced by a node set S, a transmission
probability p and a reliability parameter μ ∈ (0, p) ∩ Ω(1). Given a set of nodes S,
assume that each node in S independently transmits with probability p. Further, assume
that there is no interference from any node outside the set S. We defineHμp [S] to be the
undirected graph with node set S and edge set Eμp [S] such that for any u, v ∈ S, edge
{u, v} is in Eμp [S] if and only if both: (i) u receives a message from v with probability
at least μ and (ii) v receives a message from u with probability at least μ.

Computing SINR-Induced Graphs. It is difficult to compute the graphs Hμp [S] exactly
and efficiently with a distributed algorithm. However, for given S, p, and μ, there is a
simple protocol to compute a good approximation H̃μp [S] forHμp [S] (assuming that the
reception probabilities for nodes in S do not change over time). Formally, we say that
an undirected graph H̃μp [S] with node set S is an ε-close approximation of Hμp [S] if
and only if:

E
[
Hμp [S]

]
⊆ E

[
H̃μp [S]

]
⊆ E

[
H(1−ε)μ
p [S]

]
.

An ε-close approximation H̃μp [S] of Hμp [S] can be computed in time O
(
logn
ε2μ

)
as fol-

lows. First, all nodes in S independently transmit their IDs with probability p for
T := c logn

ε2μ rounds (where the constant c is chosen to be sufficiently large). Each
node u creates a list of potential neighbors containing all nodes from which u receives
a message in at least (1−ε/2)μT of those T rounds. For a second iteration of T rounds,
each node transmits its list of potential neighbors (as before, by independently transmit-
ting with probability p). At the end, node u adds node v as a neighbor in H̃μp [S] if and
only if v is in u’s list of potential neighbors and u receives a message from v indicating
that u is in v’s list of potential neighbors as well.

The following lemma results from a basic Chernoff bound, observing that: (i) if u and
v are neighbors in Hμp [S], then u receives at least μT messages from v, in expectation,

and (ii) if u and v are not neighbors in H(1−ε)μ
p [S] then u receives at most (1 − ε)μT

messages from v, in expectation.

Lemma 3. W.h.p., the SINR-Induced Graph Computation protocol runs in O
(
log n
ε2μ

)
rounds and returns a graph H̃μp [S] that is an ε-close approximation of Hμp [S].

Properties of SINR-Induced Graphs. In addition to the fact that nodes in an SINR-
induced graph can communicate reliably with each other, we point out two other prop-
erties. First, we remark that the maximum degree ofHμp [S] is bounded by 1/μ = O(1),
because in a single time slot, a node u can receive a message from only one other node
v. consequently the second iteration requires messages of size O

(
logn
μ

)
= O(log n).

Further, as shown by the next lemma, for suitable μ, the graphHμp [S] contains (at least)
all the edges that are very short.

Lemma 4. ∀p ∈ (0, 1/2], ∃μ ∈ (0, p) such that: Let dmin ≤ rs be the shortest dis-
tance between any two nodes in S. Then the graph Hμp [S] contains all edges between
pairs u, v ∈ S for which d(u, v) ≤ min {2dmin, rs}.

Proof Sketch. We restrict our attention to the case dmin ≤ rs/2. If the minimum dis-
tance is between rs/2 and rs, the claim can be shown by a similar, simpler argument.
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Consider some node u ∈ S. Due to the underlying metric space in our model, there
are at most O(kδ) nodes in S within distance kdmin of node u. Let v be a node at dis-
tance at most 2dmin from u. For any constant k0, with probability Ω(1), node v is the
only node transmitting among all the nodes within distance k0dmin from node u. Fur-
ther, assuming that all nodes at distance greater than k0dmin transmit, the interference
I(u) at u can be bounded from above by κ(k0) · P/dαmin, where κ(k0) > 0 goes to 0
polynomially with k0. We therefore get

P
d(u,v)α

N+ κ(ko)
P
dαmin

≥
P

(2dmin)α

N+ κ(k0)
P
dαmin

≥
P
rαs

P
βrαw

+ κ(k0)
2αP
rαs

=
β

1
(1+ρ)α + κ(k0)β2α

≥ β.

The second inequality follows fromN = P
βrαw

and from dmin ≤ rs/2. The last inequal-
ity holds for sufficiently large k0. If we choose μ to be the probability that no more
than one node in a ball of radius k0dmin transmits, then node v can transmit to u with
probability μ. �

In the above proof, μ depends on the unknown parameter β, so we use βmax as the base
for computing μ. Note also that since Hμp [S] ⊆ H̃μp [S], the lemma induces the same

properties on H̃μp [S] with high probability.

4.2 Neighborhood Dissemination Sub-protocol

We can now describe the full operation of our neighborhood dissemination sub-protocol
(depicted in Algorithm 1). We assume the sub-protocol is called by a set S ⊂ V of
nodes that have a message M that they are trying to disseminate to all nodes in N(S),
where N is the neighbor function over Gs. Since every node in S has already received
the messageM , which originated at the source node s, we can assume that all the nodes
in S have been synchronized by s and therefore align their epoch boundaries and call
the sub-protocol during the same round.

The protocol proceeds in phases φ = 1, 2, . . . , Φ, with Φ = O(logRs). Each phase
φ, the protocol computes a set Sφ, such that S1 = S and for all φ ≥ 2, Sφ ⊂ Sφ−1.
The nodes in Sφ attempt to send M to nodes in N(S), while the remaining “inactive”
nodes remain silent. Each phase is divided into three blocks. In block 1 of phase φ,
the nodes compute an ε-close approximation H̃μp [Sφ] of the graph Hμp [Sφ] using the
SINR-inducted graph computation process described in Section 4.1. We choose μ > 0
appropriately as described in Lemma 4, while ε, p ∈ (0, 1/2) can be chosen freely.6

In block 2, nodes in S attempt to propagate the message to neighbors in N(S). In
more detail, during this block, each node in Sφ transmits M with probability p/Q for
Tphase = O(Q log n) rounds, where Q = Θ(logαmax Rs) has an appropriately large
hidden constant.

In block 3, the nodes in Sφ compute the set Sφ+1 by finding a maximal independent
set (MIS) of H̃μp [Sφ]. Only the nodes in this set remain in Sφ+1. Notice that build-
ing this MIS is straightforward. This can be accomplished by simulating the reliable
message-passing model on our subgraph and then executing the O(log� n) MIS algo-
rithm from [20] on this simulated network. (This algorithm requires a growth-bounded

6 By Lemma 4, μ depends on p; thus p could be chosen to maximize μ.
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Algorithm 1. High-level pseudo-code for one epoch of STRONGCAST

Input: n,Rs, αmax, βmax, ε, p
Initialization: Q = Q(p,Rs, αmax) = Θ(logαmax Rs), μ = μ(p, βmax) = Ω(1), Φ = O(logRs), S1 = S

for φ = 1 to Φ do
Compute SINR-induced graph H̃μ

p [Sφ] withinO
( log n

ε2μ

)
rounds � Block 1

forO(Q log n) rounds do � Block 2
Each round transmitM with probability p

Q

Compute MIS Sφ+1 on H̃μ
p [Sφ] withinO

( log n

ε2μ
log� n

)
rounds � Block 3

property which is, by definition, satisfied by any sub-graph ofGs.) Turning our attention
to the simulation, we note that by the definition of H̃μp [Sφ], a single round of reliable

communication on H̃μp [Sφ] can be easily simulated by having each node in Sφ transmits
with probability p for O(log n) consecutive ((1 − ε)μ-reliable) rounds. Therefore, the
MIS construction takes O(log n log∗ n) rounds.

We now turn our attention to analyzing this protocol. The most technically demand-
ing chore we face in this analysis is proving the following: If a node u ∈ Sφ has an
uninformed neighbor v ∈ N(S), then either u gets the message to v in block 2, or u
remains in Sφ+1, or there is some w ∈ Sφ+1 that is sufficiently close to v to take u’s
place in attempting to get the message to v.

Neighborhood Dissemination Analysis. In the following, we show that for appropriate
parameters μ, Q, and Tphase, the described algorithm solves the neighborhood dissem-
ination problem for S, w.h.p. We first analyze how the sets Sφ evolve. In the following,
let dφ be the minimum distance between any two nodes in Sφ.

Lemma 5. If the constant μ is chosen to be sufficiently small, w.h.p., the minimum
distance between any two nodes in Sφ is at least dφ ≥ 2φ−1 · dmin.

Proof. We prove the claim by induction on φ. First, by the definition of dmin, we clearly
have d1 ≥ 20dmin = dmin. Also, by the definition of an ε-close approximation of
Hμp [Sφ] and by Lemma 4, for a sufficiently small constant μ, w.h.p., H̃μp [Sφ] contains
edges between all pairs of nodes u, v ∈ Sφ at distance d(u, v) ≤ 2dφ. Because Sφ+1

is a maximal independent set of H̃μp [Sφ], nodes in Sφ+1 are at distance more than 2dφ
and therefore using the induction hypothesis, we get dφ+1 > 2dφ ≥ 2φdmin. �

Next we consider node v that needs the message, and its closest neighbor u in Sφ. We
show that if u and v are sufficiently close, and if the farthest neighbor of u in Sφ is also
“sufficiently far” away, then u can successfully transmit the message to v.

Lemma 6. ∀p ∈ (0, 1/2], ∃Q̂, γ = Θ(1), such that for allQ ≥ Q̂ the following holds.
Consider a round r in phase φ where each node in Sφ transmits the broadcast message
M with probability p/Q. Let v ∈ N(S) be some node that needs to receive M , and let
u ∈ Sφ be the closest node to v in Sφ. Further, let du be the distance between u and
its farthest neighbor in H̃μp [Sφ]. If d(u, v) ≤ (1 + ρ/2)rs and du ≥ γQ−1/α · d(u, v),
node v receives M in round r with probability 1/Θ(Q).

Proof Sketch. The lemma states under what conditions in round r of block 2 in phase
φ a node v ∈ N(S) \ S can receive the message. The roadmap for this proof is to show



368 S. Daum et al.

that if u is able to communicate with probability (1−ε)μwith its farthest neighbor u′ in
some round r′ of block 1 in phase φ, using the broadcast probability p, then umust also
be able to reach v with probability 1/Θ(Q) in round r of block 2, in which it transmits
with probability p/Q. We start with some definitions and notation, and continue with a
connection between the interference at u and at v. We then analyze the interference at
u created in a ball of radius 2du around u, as well as the remaining interference coming
from outside that ball. Finally, we transfer all the knowledge we gained for round r′ to
round r to conclude the proof.

For a node w ∈ V , let I(w) =
∑
x∈Sφ

P
d(x,w)α , i.e., the amount of interference at

node w if all nodes of Sφ transmit. For round r′, the random variable Xpx(w) denotes
the actual interference at node w coming from a node x ∈ S. The total interference at
node w is thus Xp(w) :=

∑
x∈Sφ

Xpx(w). If we only want to look at the interference
stemming from nodes within a subsetA ⊆ Sφ, we use IA(w) andXpA(w), respectively.
Further for a set A ⊆ Sφ, we define Ā := Sφ \A.

The triangle inequality implies that d(u,w) ≤ d(u, v) + d(v, w) ≤ 2d(v, w) for any
w ∈ Sφ. By comparing IS′(u) and IS′(v) for an arbitrary set S′ ⊆ Sφ we obtain the
following observation:

IS′(u) ≥ 2−αIS′(v). (1)

Let u′ be the farthest neighbor of node u in H̃μp [Sφ]. Because H̃μp [Sφ] is an ε-close

approximation of Hμp [Sφ], we know that H̃μp [Sφ] is a subgraph of H(1−ε)μ
p [Sφ] and

therefore in round r′, u receives a message from u′ with probability at least (1− ε)μ.
Let A ⊆ Sφ be the set of nodes at distance at most 2du from u. Note that both u

and u′ are in A, because d(u, u′) = du. In round r′, if more than 2α/β = O(1) nodes
u′′ ∈ A transmit, then node u cannot receive a message from u′. Since node u receives
a message from u′ with probability at least (1 − ε)μ in round r′, we can conclude that
fewer than 2α/β nodes transmit with at least the same probability.

We now bound the interference from nodes outside of A. Using the fact that node
u receives a message from node u′ with constant probability at least (1 − ε)μ allows
us to upper bound IĀ(u) and by (1) also IĀ(v). For node u to be able to receive a
message from u′, two things must hold: (I) u′ transmits and u listens (event Ru

′,u) and
(II) P

dαu(N+Xp

Ā
(u))

≥ P
dαu(N+Xp(u)) ≥ β. Thus we have

(1−ε)μ ≤ P(Ru
′,u)·P

(
Xp
Ā
(u) ≤ P

βdαu
−N

)
≤ p(1−p)·P

(
Xp
Ā
(u) ≤ P

βdαu

)
. (2)

Using a Chernoff result (see [5]), we can boundXp
Ā
(u) as

P

(
Xp
Ā
(u) ≤

E[Xp
Ā
(u)]

2

)
= P

(
Xp
Ā
(u) ≤ pIĀ(u)

2

)
≤ e−

p2αdαu
8P ·IĀ(u). (3)

Together, (2) and (3) imply that IĀ(u) = O(P/dαu). Hence if each node transmits with
probability p/Q, by (1), with constant probability, the interference from nodes inA at v
is bounded by O(p/Q · P2α/dαu). Since in addition, with probability 1/Θ(Q), u is the
only node inA transmitting, by choosingQ = Ω(2α) sufficiently large, node v receives
M with probability 1/Θ(Q).
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4.3 Proof Sketch of Theorem 2

Proof Sketch. First note that by construction, every phase of the neighborhood dissem-
ination protocol has a time complexity of O((log� n + Q) logn) = O(logαRs logn)
(recall that we assumed that Rs is at least logarithmic in n). The claim of the theorem
immediately follows if we show that assuming that all algorithm parameters are chosen
appropriately, (I) the number of phases Φ of the neighborhood protocol is O(logRs),
and (II) the neighborhood dissemination protocol is correct, i.e., when carried out by a
set S of nodes, w.h.p., each node v ∈ N(S) receives the broadcast message M .

We prove statements (I) and (II) together. Let v be any node in N(S) and let uφ
be the closest node to v in Sφ. Since v ∈ N(S), we have d(u1, v) ≤ rs. Recall that
in block 2 of a phase φ of the neighborhood dissemination protocol, Sφ broadcasts M
with probability p/Q for sufficiently large interval of O(Q logn) rounds. Therefore,
by choosing Q = O(logαRs) sufficiently large, by Lemma 6, for all φ ∈ {1, . . . , Φ},
either d(uφ, v) ≤ d(u1, v)(1 + φγQ−1/α) ≤ (1 + ρ/2)d(u1, v) or v has already
received the message at the start of phase φ. As we also know by Lemma 5 that the
minimum distance between nodes in Sφ grows exponentially with φ, it follows that for
some φ ≤ Φ, the minimum distance between nodes in Sφ exceeds rs at which point a
node within distance (1+ρ/2)d(u1, v) ≤ (1+ρ/2)rs of v trivially reaches node v. �

5 Lower Bounds for Strong Connectivity Broadcast

In this section, we present lower bounds for strong connectivity broadcast. For complete
proofs we refer to [5].

5.1 Lower Bound for Compact Networks

In the compact variant of the ad hoc SINR model (defined in Section 2 and motivated
in Section 1) nodes can formally occupy the same position (have mutual distance of 0),
which informally captures the real world scenario where the difference in strength of
signals coming from a group of nodes packed close enough together are too small to
detect, making it seem as if they are all traveling the same distance. Here we prove this
assumption makes efficient broadcast impossible.

Theorem 7. Let A be a strong connectivity broadcast algorithm for the compact ad
hoc SINR model. There exists an O(1 + ρ)-broadcastable network in whichA requires
Ω(n) rounds to solve broadcast.

Proof Sketch. We reduce the (�(1+ρ)�, n)-hitting game broadcast in a specific difficult
compact network. We construct a network with k + 2 = �ρ + 1� + 2 nodes located
uniformly along a line of length rw + ε, for some ε > 0, and n − (k + 2) additional
nodes placed at one end of the line in the same position. Broadcast to the lone node at
the opposite end of the line can only succeed when exactly one node in the middle of the
line decides to broadcast by itself. Until that happens, interference prevents all nodes
from learning anything. Hence solving broadcast requires solving the hitting game (i.e.,
choosing one of the k internal nodes on the line). �



370 S. Daum et al.

5.2 Lower Bound for Back-Off Style Algorithms

In the study of broadcast in graph-based models, the best known algorithms are often
back-off style algorithms (e.g., the canonical solution of Bar-Yehuda et. al. [2]). We
prove below that such algorithms are too simple to solve strong connectivity broadcast
efficiently in the SINR setting.

Theorem 8. Let A be a back-off style strong connectivity broadcast algorithm for the
ad hoc SINR model. There exists an O(1 + ρ)-broadcastable network in which A re-
quires Ω(n) rounds to solve broadcast.

Proof Sketch. The proof is similar to that of Theorem 7 where we reduce an (x, n)-
hitting game to broadcast. As before, we begin with k + 2 = �1 + ρ� + 2 nodes
distributed along a vertical line of length rw + ε for some ε > 0. Since we are no
longer in a compact network, we cannot place the remaining n − k + 2 nodes in the
same position at one end of the line. Instead, we spread the remaining nodes uniformly
on a horizontal line perpendicular to one end of the existing vertical line. The spacing
is small enough that the nodes remain within distance rw of every other node, except
for the one lone node at the far end of the line. Since the network is no longer compact,
nodes can now succeed in communicating amongst themselves before the hitting game
is won. However, since the algorithm is assumed to be back-off style, this additional
communication is ignored and cannot affect their behavior. As before, the nodes are
reduced to guessing which k nodes among n total with the message are among those
able to solve broadcast. �

6 Weak Connectivity Broadcast

Weak connectivity broadcast is more difficult than strong connectivity broadcast be-
cause it might require messages to move across weak links (links at distance near rw).
When communicating over such a long distance, it is possible for most other nodes in
the network to be interferers—capable of disrupting the message, but not capable of
communicating with the receiver themselves—reducing possible concurrency.

In this section we formalize this intuition by proving that there is a 2-broadcastable
network in which all algorithms requireΩ(n) rounds to solve weak connectivity broad-
cast. We then turn our attention to upper bounds by reanalyzing an algorithm we orig-
inally presented in [13], in the context of the dual graph model, to show that it solves
weak connectivity broadcast in the ad hoc SINR model in O(n log2 n) rounds. To the
best of our knowledge, this is the first known non-trivial weak connectivity broadcast
algorithm for an SINR-style model (all previous broadcast algorithms make stronger
assumptions on connectivity). To help underscore the surprising universality of this al-
gorithm, we prove that not only does it solve broadcast in this time in this model, but
that it works in this time essentially in every standard wireless model (a notion we
formalize below).

6.1 Lower Bound

Theorem 9. Let A be weak connectivity broadcast algorithm for the ad hoc SINR
model. There exists a 2-broadcastable network in which A requires Ω(n) rounds to
solve broadcast.
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Proof Sketch. We leverage the same general approach as the lower bounds in Section 5:
We reduce (x, y)-hitting to the relevant broadcast problem, and then apply the bound on
hitting from Theorem 1. In our reduction, we use a rotating lollipop network, consisting
of a circle of n − 1 nodes with the message and a receiver at distance rw from some
unknown bridge node in the circle (and strictly more distant from all others). To get the
message from the circle to the receiver requires that this bridge node broadcast alone.
We prove that identifying this bridge node is at least as hard as solving the (1, n− 1)-
hitting game, which we know requiresΩ(n) rounds. (See [5] for a detailed proof.) �

6.2 Upper Bound

In [13], we described a simple back-off style algorithm that solves broadcast in the dual
graph model—a variant of the classical graph-based wireless model that includes un-
reliable links controlled by an adversary. In this section, we show that this algorithm
solves the basic definition of broadcast in O(n log2 n) rounds in every “standard" wire-
less network model. The fact that it does so in the ad hoc SINR model is an immediate
corollary.

First, we consider a broadcast algorithm universal, if it distributes the message to
every node in the isolation graph, defined as the directed graph G = (V,E), where
(u, v) ∈ E if and only if v can receive a message M if u broadcasts M alone in the
network. (See [5] for a more formal definition.)

We next describe the broadcast algorithm HARMONICCAST, first presented in [13],
and show that it solves broadcast in most standard wireless network models. The algo-
rithm works as follows: Let tv be the round in which node v first receives the broadcast
message (if v is the source, tv = 0). LetH be the harmonic series on n, then each round
t ∈ [tv + 1, tv + T ], for T = n�24 lnn�H(n), v broadcasts with probability:

pv(t) =
1

1 + � t−tv−1
24 lnn �

.

After these T rounds, the node can terminate. We now establish the (perhaps surprising)
universality of this algorithm.

Theorem 10. Let N be a wireless network. The HARMONICCAST algorithm solves
broadcast inN in O(n log2 n) rounds.

The about results follows immediately from the proof in [13], which assumes pes-
simistically (due to the difficulties of the dual graph model) that the message only
makes progress in the network when it is broadcast alone in the entire network. Since
the isolation graph for a wireless network defined with respect to the SINR equation
is equivalent to G(V,E[rw]), an immediate corollary of the above is that HARMONIC-
CAST algorithm solves weak connectivity broadcast in the ad hoc SINR model.
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LNCS, vol. 8070, pp. 195–209. Springer, Heidelberg (2013)

11. Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maximization with
Power Control in the SINR Model. In: Proc. ACM-SIAM Symp. on Discrete Algorithms,
SODA (2011)

12. Kowalski, D.R., Pelc, A.: Broadcasting in Undirected Ad Hoc Radio Networks. Distributed
Computing 18(1), 43–57 (2005)

13. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in Radio Networks
with Unreliable Communication. In: Proc. ACM Symp. on Principles of Distributed Com-
puting, PODC (2010)

14. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) Lower Bound for Broadcast in Radio
Networks. SIAM Journal on Computing 27(3), 702–712 (1998)

15. Moscibroda, T.: The Worst-Case Capacity of Wireless Sensor Networks. In: Proc.
ACM/IEEE Int. Conf. on Information Processing in Sensor Networks, IPSN (2007)

16. Moscibroda, T., Wattenhofer, R.: Maximal Independent Sets In Radio Networks. In: Proc.
ACM Symp. on Principles of Distributed Computing (PODC), pp. 148–157 (2005)

17. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Networks.
In: Proc. IEEE Int. Conf. on Computer Communications (2006)

18. Newport, C.: Brief Announcement: A Shorter and Stronger Proof of an Ω(D log(n/D))
Lower Bound on Broadcast in Radio Networks. In: Proc. ACM Symp. on Principles of Dis-
tributed Computing, PODC (2013)

19. Scheideler, C., Richa, A., Santi, P.: An O(log n) Dominating Set Protocol for Wireless Ad-
Hoc Networks under the Physical Interference Model. In: Proc. ACM Int. Symp. on Mobile
Ad Hoc Networking and Computing (2008)

20. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set Algorithm
for Growth-Bounded Graphs. In: Proc. ACM Symp. on Principles of Distributed Computing
(PODC), pp. 35–44 (2008)

21. Yu, D., Hua, Q.-S., Wang, Y., Tan, H., Lau, F.C.M.: Distributed multiple-message broadcast
in wireless ad-hoc networks under the SINR model. In: Even, G., Halldórsson, M.M. (eds.)
SIROCCO 2012. LNCS, vol. 7355, pp. 111–122. Springer, Heidelberg (2012)

22. Yu, D., Hua, Q.-S., Wang, Y., Lau, F.C.M.: An O(log n) Distributed Approximation Algo-
rithm for Local Broadcasting in Unstructured Wireless Networks. In: Proc. IEEE Int. Conf.
on Distributed Computing in Sensor Systems (DCOSS), pp. 132–139 (2012)



Distributed Randomized Broadcasting

in Wireless Networks under the SINR Model�

Tomasz Jurdzinski1, Dariusz R. Kowalski2, Michal Rozanski1,
and Grzegorz Stachowiak1

1 Institute of Computer Science, University of Wroc�law, Poland
2 Department of Computer Science, University of Liverpool, United Kingdom

Abstract. In the advent of large-scale multi-hop wireless technologies,
such as MANET, VANET, iThings, it is of utmost importance to devise
efficient distributed protocols to maintain network architecture and pro-
vide basic communication tools. One of such fundamental communication
tasks is broadcast, also known as a 1-to-all communication. We present
a randomized algorithm that accomplishes broadcast in O(D+log(1/δ))
rounds with probability at least 1 − δ on any uniform-power network
of n nodes and diameter D, when each station is equipped with its co-
ordinates and local estimate of network density. Next, we develop al-
gorithms for the model where no estimate of local density is available,
except of the value n of the size of a given network. First, we provide a
simple and almost oblivious algorithm which accomplishes broadcast in
O(D log n(log n + log(1/δ))) rounds with probability at least 1 − δ. We
further enhance this algorithm with more adaptive leader election routine
and show that the resulting protocol achieves better time performance
O((D + log(1/δ)) log n) with probability at least 1 − δ. Our algorithms
are the first provably efficient and well-scalable randomized distributed
solutions for the (global) broadcast task in the ad hoc setting with coor-
dinates. This could be also contrasted with the complexity of broadcast
by weak devices, for which such scalable algorithms (with respect to D
and log n) cannot be obtained [11].

Keywords: Ad hoc wireless networks, Signal-to-Interference-and-Noise-
Ratio (SINR) model, Broadcast, Distributed algorithms.

1 Introduction

1.1 The Model

We consider the model of a wireless network consisting of n stations, also called
nodes, deployed into an Euclidean plane and communicating by a wireless
medium. Euclidean metric on the plane is denoted dist(·, ·). Each station v has
its transmission power Pv, which is a positive real number.
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There are three fixed model parameters: path loss α > 2, threshold β ≥ 1,
ambient noise N > 0. We also have connectivity graph parameter ε ∈ (0, 1). The
SINR(v, u, T ) ratio, for given stations u, v and a set of (transmitting) stations
T , is defined as follows:

SINR(v, u, T ) = Pvdist(v, u)
−α

N +
∑
w∈T \{v} Pwdist(w, u)

−α (1)

In the Signal-to-Interference-and-Noise-Ratio (SINR) model a station u success-
fully receives a message from a station v in a round if v ∈ T , u /∈ T , and

SINR(v, u, T ) ≥ β ,
where T is the set of stations transmitting at that round.

In order to specify the details of broadcasting task and performance analysis,
we first introduce the notion of transmission ranges and communication graphs.

Ranges and Uniformity. The communication range rv of a station v is the ra-
dius of the ball in which a message transmitted by the station is heard, provided
no other station transmits at the same time. A network is uniform, when trans-
mission powers Pv and thus ranges of all stations rv are equal, or nonuniform
otherwise. In this paper, only uniform networks are considered and without loss
of generality we assume that rv = r = 1 for any v, i.e., (P/(Nβ))1/α = 1, where
P is the transmission power of a station.

Communication Graph and Graph Notation. The communication graph
G(V,E) of a given network consists of all network nodes and edges (v, u) such
that dist(v, u) ≤ (1 − ε)r = 1 − ε, where 0 < ε < 1 is a fixed model param-
eter. The meaning of the communication graph is as follows: even though the
idealistic communication range is r, it may be reached only in a very unrealistic
case of single transmission in the whole network. In practice, however, many
nodes located in different parts of the network often transmit simultaneously,
and therefore it is reasonable to assume that we may only hope for a slightly
smaller range to be achieved. The communication graph envisions the network of
such“reasonable reachability”. Note that the communication graph is symmetric
for uniform power networks. By a neighborhood of a node u we mean the set of
all neighbors of u in G, i.e., the set {w | (w, u) ∈ E(G)}. The graph distance from
v to w is equal to the length of a shortest path from v to w in the communi-
cation graph, where the length of a path is equal to the number of its edges.
The eccentricity of a node is the maximum graph distance from this node to any
other node (note that the eccentricity is of order of the diameter D).

Synchronization. It is assumed that algorithms work synchronously in rounds,
each station can either act as a sender or as a receiver during a round. We do
not assume global clock ticking.

Carrier Sensing. We consider the model without carrier sensing, that is, a
station u has no other feedback from the wireless channel than receiving or not
receiving a message in a round t.

Knowledge of Stations. Each station has its unique ID, which is only needed
for distinguishing various stations. Each station also knows its location and the
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number of stations in the network, n. Our algorithms also work when stations
share, instead of n, an estimate ν ≥ n of this value which is O(n). We assume
that each sender can enclose its ID and location to each transmitted message.1

Broadcast Problem and Complexity Parameters. In the broadcast prob-
lem, there is one distinguished node, called the source, which initially holds a
piece of information (also called a source message or a broadcast message). The
goal is to disseminate this message to all other nodes. We are interested in min-
imizing the time complexity of this task being the minimum number of rounds
after which, for all communication networks defined by some set of parameters,
the broadcast occurs with the probability at least 1 − δ for a given 0 < δ < 1.
This time is counted since the source is activated. For the sake of complexity
formulas, we consider the following parameters: n, D and δ.

Messages and Initialization of Stations Other Than Source. We assume
that a single message sent in an execution of any algorithm can carry the broad-
cast message and at most logarithmic, in the size of the network, number of
control bits. A station other than the source starts executing the broadcast pro-
tocol after the first successful receipt of the source message; it is often called a
non-spontaneous wake-up model. We say that a station which receives the source
message for the first time is waken up at this moment and it is awake after-
wards. Our algorithms are described from a “global” perspective, i.e., we count
rounds starting from the moment when the source sends its first message. In or-
der to synchronize stations, we assume that each message contains the number
of rounds elapsed from the beginning of the execution of the algorithm.

1.2 Our Results

We present randomized distributed algorithms for broadcasting in wireless con-
nected networks deployed in two dimensional Euclidean space under the SINR
model, with uniform power assignment and any ε ∈ (0, 1). We distinguish two
settings: one with local knowledge of density, in which each station knows the
upper bound on the number of other stations in its close proximity (dependent
on parameter ε) and the other when no extra knowledge is assumed.

In the former model, we develop a randomized broadcasting algorithm with
time complexity O(D+log(1/δ)), where D is the eccentricity of the communica-
tion graph, and δ is the maximum error probability. In the latter model, we first
provide a simple and almost oblivious algorithm that accomplishes broadcast in
O(D(log n + log(1/δ)) logn) rounds with probability at least 1 − δ. Finally, we
give a solution with time complexity O((D+log(1/δ)) logn), with probability at
least 1− δ, which is only slightly worse than the complexity of the algorithm re-
lying on the density estimates. All these results hold for model parameter α > 2
(for α = 2 all the solutions are slower by a factor logn).

Our algorithms are the first provably efficient and well-scalable randomized
distributed solutions for the (global) broadcast task, which work in the model

1 For the purpose of algorithms presented in this paper, it is sufficient that each station
knows only some good approximation of its coordinates.
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with coordinates, without spontaneous wake-up (i.e., no preprocessing is allowed)
and for arbitrary value of the parameter ε defining the communication graph.
This could be also contrasted with the complexity of broadcast by weak devices,
for which such scalable algorithms (with respect to D and logn) cannot be
obtained [11]. Due to the space limit, some proofs are deferred to the full version.

1.3 Previous and Related Results

We discuss most relevant results in the SINR-based models and in the older
Radio Network model.

SINR Models. One of the first communication problems studied from algo-
rithmic point in distributed ad hoc setting under the SINR model was local
broadcasting, in which each node has to transmit a message only to its neigh-
bors in the corresponding communication graph. This problem was addressed
in [8,10,19] for ε > 1/2. Randomized solutions for contention resolution [14]
and packet scheduling (with power control) [13] were also obtained. Usually, the
considered setting allowed power control in which, in order to avoid collisions,
stations could transmit with any power smaller than the maximal one. Recently,
a distributed randomized algorithm for multi-broadcast has been presented [18]
for uniform networks. Although the problem solved in that paper is a generaliza-
tion of a broadcast, the presented solution needs the power control mechanism
and it is restricted to networks having the communication graph connected for
ε = 2

3r, where r is the largest possible range. Moreover, spontaneous wake-up
of stations is necessary in their algorithm. In contrast, our solutions are efficient
and scalable for any networks with communication graph connected for any value
of ε < 1

2 .
2 Moreover, we do not use the power control mechanism. On the other

hand, unlike ours, the algorithm from [18] works even if stations do not know
their coordinates (or their estimates).

As shown recently [12], there exists an efficient deterministic broadcasting al-
gorithm in the model considered in this paper. More precisely, it is worse than the
best algorithm in this work by only a logarithmic factor. Independently, Daum
et al. [4] proposed another randomized broadcasting algorithm. Their solution
works for a broader family of metrics (not only the Euclidean) and does not
rely on the knowledge of coordinates by stations. However, the time complexity
of this solution is poly-logarithmic with respect to the ratio R between longest
and shortest distance between stations, and R might be even exponential with
respect to the size n of a given network.

There is a vast amount of work on centralized algorithms under the classical
SINR models. The most studied problems include connectivity, capacity maxi-
mization, and link scheduling types of problems; for recent results and references
we refer the reader to the survey [9].

Radio Network Model.There are several papers analyzing broadcasting in the
radio model of wireless networks, under which a message is successfully heard if

2 In case of ε ∈ [1/2, 1), one could take our algorithm for ε′ = 1/3, which guarantees
at least as good asymptotic performance.
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there are no other simultaneous transmissions from the neighbors of the receiver
in the communication graph. This model does not take into account the real
strength of the received signals, and also the signals from outside of some close
proximity.

The problem of broadcasting is well-studied in the setting of graph radio model,
in which stations are not necessarily deployed in a metric space. The first effi-
cient randomized solution was developed by Bar-Yehuda et al. [1], while the
close lower bound was proved in [17]. The algorithms closing the gap between
the upper and the lower bound appeared in [3,16]. Since the solutions for a graph
model are quite efficient, there are only few studies of the problem restricted to
the geometric setting. However, solutions for some other communication prob-
lems can be significantly faster in geometric (uniform) radio networks than in
general ones [7]. There is also a vast literature on deterministic algorithms for
broadcasting in graph and geometric radio models, c.f., [2,15,16,5,6].

1.4 Technical Preliminaries

In this section we formulate some properties and notation that simplify the
specification and analysis of algorithms.

Message Content and Global Clock. In the broadcast problem, a round
counter could be easily maintained by already informed nodes by passing it
along the network with the source message, thus in all algorithms we may in
fact assume having a global clock. For simplicity of analysis, we also assume that
every message sent during the execution of our broadcast protocols contains the
broadcast message; in practice, further optimization of a message content could
be done in order to reduce the total number of transmitted bits in real executions.

Successful Transmissions. We say that a station v transmits c-successfully
in a round t if v transmits a message in round t and this message is heard by
each station u in the Euclidean distance at most c from v. A station v transmits
successfully to u in round t if v transmits a message and u receives this message in
round t. We say that a station that received the broadcast message is informed.

Grids. Given a parameter c > 0, we define a partition of the 2-dimensional
space into square boxes of size c × c by the grid Gc, in such a way that: all
boxes are aligned with the coordinate axes, point (0, 0) is a grid point, each box
includes its left side without the top endpoint and its bottom side without the
right endpoint and does not include its right and top sides. We say that (i, j)
are the coordinates of the box with its bottom left corner located at (c · i, c · j),
for i, j ∈ Z. A box with coordinates (i, j) ∈ Z2 is denoted Cc(i, j) or C(i, j)
when the side of a grid is clear from the context. In the following sections we
will always refer to boxes of the grid Gγ , where γ is a parameter specific for a
considered algorithm. For a station v, boxc(v) (or simply box(v)) denotes the
box of Gc containing v.

Dilution. For the tuples (i1, i2), (j1, j2) the relation (i1, i2) ≡ (j1, j2) mod d
for d ∈ N denotes that (|i1 − i2| mod d) = 0 and (|j1 − j2| mod d) = 0. A set
of stations A on the plane is d-diluted wrt Gc, for d ∈ N \ {0}, if for any two



378 T. Jurdzinski et al.

stations v1, v2 ∈ A with grid coordinates Gc(v1) = (i1, j1) and Gc(v2) = (i2, j2),
respectively, the relationship (i1, i2) ≡ (j1, j2) mod d holds.

2 An Algorithm for Known Local Density

In this section we describe our broadcasting algorithm for networks of known lo-
cal density, which makes use of some properties exploited e.g., in local broadcast-
ing [8,10]. That is, every station v knows the total number of stations Δ = Δ(v)
in its box of the grid Gγ . In this section we assume γ = ε

2
√
2
. Without loss of

generality we can assume, that for some k ∈ N the equality (2k+1)γ = 2 holds.
This means that each box B from the grid Gγ lies in the center of some square
2 × 2 consisting of (2k + 1)2 = (2/γ)2 boxes of Gγ . We call this square the su-
perbox S(B) of B. Note that all stations in the distance at most 1− ε/2 from B
are in S(B).

Algorithm 1. RandBroadcast(Δ, d, T ) � code for node v

1: the source s transmits
2: for counter = 1, 2, 3, . . . , T do
3: for each a, b : 0 ≤ a, b < d do
4: if v ∈ C(i, j) : (i, j) ≡ (a, b) mod d then
5: v transmits with probability 1/Δ

Analysis of Time Performance of RandBroadcast. We define interfer-
ence at a station u with respect to the set of transmitters T as

∑
w∈T \{v}

Pdist(w, u)−α, see Eq. (1). The boxes C(i1, j1) and C(i2, j2) are connected if
there exist stations v1 ∈ C(i1, j1) and v2 ∈ C(i2, j2) such that (v1, v2) is an
edge of the communication graph. We start with stating three general properties
regarding interference in the SINR model.

Fact 1. If the interference at the receiver is at most Nαx, then it can hear the
transmitter from the distance 1− x.

Proof. By the Bernoulli inequality we get (1 + x)α ≥ 1 + αx. Thus

SINR ≥ P

(N +Nαx)(1 − x)α ≥
P

N (1 + x)α(1− x)α

=
P

N (1− x2)α ≥
P

N = β .

where the last equality follows from the assumption that the range of stations is

equal to 1 which implies
(
P
Nβ

)1/α

= 1. �
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We say that a function dα,Q : N→ N is flat for α ≥ 2 and a (possibly empty)
sequence of constant parameters Q if

dα,Q(n) =

{
O(1) for α > 2

O((log n)1/2) for α = 2
(2)

Let C(a, b) be a box of Gγ . Assume that, in a given round of a random-
ized algorithm, only stations in superboxes S(C(i, j)) such that (i, j) ≡ (a, b)
mod d transmit. In each box the expected number of transmitting stations is at
most 1. We denote by Id the average maximum of the interference over superbox
S(C(a, b)) from transmitting stations located outside S(C(a, b)):

Id = E

⎛⎝ max
u∈S(C(a,b))

∑
v∈T ,v �∈S(C(a,b))

Pdist(u, v)−α

⎞⎠ ,

provided the algorithm uses the dilution parameter d.

Fact 2. If in the above described process, the expected number of transmitting
stations in a superbox does not exceed x instead of 1, then for any d we have the
maximum expected interference in superbox S(C(a, b)) equal to x · Id.

Let sα(n) = min
{

lnn
2 + ln 2, 1

2α−2(α−2)

}
+ 1

2α(α−1) and

dα,I,γ(n) =

⌈
1
γ

(
8Psα(n)
I

)1/α
⌉
.

Lemma 1. For any I > 0 there exists a flat function d such that Id ≤ I.
Moreover, for I ≤ 8Psα

2α we have Id ≤ I when d = dα,I,γ(n).

We proceed with the analysis of algorithm RandBroadcast.

Fact 3. Consider a round of algorithm RandBroadcast, different from the first
one. The probability that in a box (i, j) ≡ (a, b) exactly one station transmits is
bigger than 1/e.

Fact 4. Consider a round of algorithm RandBroadcast(Δ, d, T ) for
d = dα,Nαε/4,γ , different from the first one. The probability that exactly one
station in box C(i, j), where (i, j) ≡ (a, b), transmits and the interference from
other stations measured in all boxes connected with box C(i, j) is smaller or equal
to Nαε/2 is bigger than 1

2e .

Lemma 2. Consider a Bernoulli scheme with success probability p < 1 − ln 2.
The probability of obtaining at most D successes in 2D/p+ 2 ln(1/δ)/p trials is
smaller than (D + 1)δ.

We say that a subset of nodes W of a graph G is an l-net if any other node in
G is in distance at most l from the closest node in W .

Fact 5. If G is of eccentricity D, then there exists a (1−ε)-netW of cardinality
at most 4(D + 1)2.
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Proof. Let q = 1 − ε. Ranges q of all the stations must be all inside the circle
of radius (D + 1)q. The area of this circle is π(D + 1)2q2. Let us greedily pick
a maximal set of nodes such that any two nodes are in distance at least q. This
set is a q-net W . Let us estimate the cardinality of W . All the circles of radius
q/2 and center belonging to W are disjoint and have areas πq2. They have total
area at most π(D + 1)2q2, so |W | ≤ 4(D + 1)2. �

Using the above results we conclude the analysis.

Theorem 1. Algorithm RandBroadcast(Δ, d, T ) completes broadcast in any net-
work in time O(d2(D + log(1/δ))) with probability 1 − δ, for d = dα,Nαε/4,γ(n)
and some T = O(D + log(1/δ)).

Proof. To complete broadcasting it is enough that all the boxes containing sta-
tions of the (1−ε)-netW transmit the message (1−ε/2)-successfully at least once.
This is done for box containing v ∈ W if the message is (1 − ε/2)-successfully
transmitted at most D times on the shortest path from the source s to v in G,
and finally is successfully transmitted by the box(v). The sufficient condition for
this to happen is that a chain of altogether at most D + 1 (1 − ε/2)-successful
transmissions heard by all potential receivers occurs. In each round the proba-
bility of a successful transmission within this chain is bigger than p = 1

2e , by
Fact 4 (recall that Fact 4 uses our assumption d = dα,Nαε/4,γ).

Now we estimate the probability that algorithm RandBroadcast completes
the broadcast. Let the number of trials be T = 2D/p + 2 ln(1/δ′)/p, for some
δ′ ∈ R. By Lemma 2, Fact 1 and Fact 5, the probability that box(v) transmits
(1− ε/2)-successfully for each v ∈ W

P ≥ 1−
∑
v∈W

Pr(box(v) doesn’t transmit successfully) ≥ 1− 4(D + 1)3δ′ .

This is bigger than 1−δ for our choice of T . Note also that T = O(D+log(1/δ)).
Because we have a trial every d2 rounds, we need altogether O(d2(D+log(1/δ)))
rounds, for d = dα,Nαε/4,γ . �

We would like also to point out that the knowledge of the density with respect to
the grid Gγ (and not just with respect to some small neighborhood of a station)
is essential for efficiency of Algorithm 1.

3 Algorithms for Unknown Local Density

In this section we describe our broadcasting algorithms for networks of unknown
local density. First, we describe a simple almost oblivious algorithm, where the
probability of transmitting a message by a station depends merely on the time
when it receives the broadcast message for the first time, the current time slot
and the fact whether it received a message from a station in its own box. Then,
a more involved algorithm is presented which is slower than the (asymptotically
optimal) solution for known density only by the multiplicative factor O(log n).
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3.1 A Simple and Almost Oblivious Algorithm

In this section we present an almost oblivious algorithm based only on the size of
a network and nodes positions up to a box in the grid Gγ , where here γ is set to
ε/(2

√
2) and α > 2. A computation of the algorithm is split into phases. A phase

consists of T logn+R rounds, where T and R are some parameters which will be
determined later. A station awakes when it receives a message for the first time
and after that it is waiting by the end of the current phase. It becomes active in
the following phase, when it executes Algorithm 2. However, if the station from
a box B receives a message from another station in B in any round, it switches
off and does not transmit any message in the remaining part of the algorithm.
We call our algorithm Antibackoff, as each stations starts transmitting using
small probabilities and then increases them gradually. This contrasts to classical
backoff protocols, where stations are trying to transmit with large probabilities
first and then decrease them gradually.

Algorithm 2. Antibackoff-Phase(n, T,R, d) � code for node v ∈ C(i, j) = B

1: if at any time v receives a message from a station in B then switch off

2: for i = 1, 2, 3, . . . , �log n� − 1 do
3: for k = 1, 2, 3, . . . , T do

4: transmit with probability 2i

n

5: for j = 1, 2, 3, . . . , R do
6: transmit with probability 1

8(d+1)2

We refer to iterations of the first loop in Algorithm 2 as to stages. The idea
behind the algorithm Antibackoff is that the i-th stage deals with boxes contain-
ing around n/2i−1 active stations by reducing the number of active stations in
such boxes to no more than n/2i. Thus, after the last stage, we expect that there
is (exactly) one active station in each box containing an active station (at least
one) at the beginning of a phase. Then, such a station is supposed to transmit
(1−ε/2)-successfully in the“for j” loop, thus transmitting the broadcast message
on behalf of all stations from its box. Indeed, if a station v transmits (1 − ε/2)-
successfully, then the message is received by all neighbors in the communication
graph of all stations from the box containing v.

Now, we formulate some properties of Algorithm 2 which will conclude in
Theorem 2 establishing its time complexity.

The following lemma limits the expected interference at a station caused by
stations from distant boxes, provided there is an upper bound on the expected
number of transmitters in the same box of Gγ . We define the max-distance
between the boxes C(i1, i2) and C(j1, j2) as max{|i1 − j1|, |i2 − j2|}.
Lemma 3. Let IB,k be the maximal interference in a box B = C(i, j) caused by
boxes in max-distance at least k+1 from B under condition that expected number
of transmitting station in every box is at most t and let κ(t, x) = �(8tP (α −
1)/x(α− 2)γα)1/(α−2)�+ 1 for x > 0. Then E[IB,k] ≤ x for k ≥ κ(t, x).
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Now, we evaluate the probability that the number of active stations in each
box is at most n/2i after the ith stage of a phase.

Fact 6. The probability that at any phase, the number of active stations in
any box after the i-th iteration of the first loop is at most n/2i is at least
1− n logn/ exp(T/216c(c+1)+5), where c = κ(2,Nα(1 −

√
2γ)/2).

The proof of the above fact is obtained by bounding the probability that, for a
given box B, the following events appear simultaneously in a round of the ith
stage:

– exactly one station from B is transmitting a message;
– no station from boxes within max-distance at most c from B is transmitting;
– maximal interference caused by stations from boxes at max-distance greater

than c from B is at most Nα(1 −
√
2γ));

provided at least n/2i stations are active in B and at most n/2i−1 stations are
active in any other box.

While the previous fact deals with the progress in the process of eliminating
stations from dense boxes, now we concentrate on the chance that a (station
from a) box containing active stations transmits (1 − ε/2)-successfully in the
“for j” loop, provided there are no boxes with more than two active stations.

Fact 7. Consider any phase K. Assume that, after the first loop of phase K,
every box has at most two active stations. Let r be the probability that, for every
box B with active stations in phase K, every station connected by an edge with
a station v ∈ B in G will receive a message from some station in B. Then, r is
at least 1− n/ exp(R/64(d+ 1)2) with d = κ(2,Nαε/4).

By combining the above facts, we obtain a time bound of the algorithm.

Theorem 2. Algorithm Antibackoff(n, d, T,R) completes broadcast in any n-
node network in time O(D logn (logn+log(1/δ))) with probability at least 1−δ,
for some T,R ∈ O(log n+ log(1/δ)) and d = κ(2,Nαε/4).

Proof. If events from Fact 6 and Fact 7 occur during an execution of the algo-
rithm, then the maximal number of phases needed for the message to be heard
by every station is at most D, since after the K-th phase every node within
distance K from the source (in the communication graph) receives the message.
Let c = κ(2,Nα(1 −

√
2γ)/2). One can easily verify that choosing R ≥ 64(d +

1)2(lnn + ln(1/δ1)) and T ≥ 216c(c+1)+5(lnn + ln(1/δ2)), the probability that
one of the events did not occur is smaller than δ1 + δ2. With δ1 = δ2 = δ/2, the
probability of successful transmission in time O(D logn(logn + log(1/δ))) is at
least 1− δ. �

3.2 A Fast Algorithm with Local Leader Election

In this section we describe our broadcasting algorithm for networks of unknown
local density. To construct this algorithm we consider the grid Gγ , where γ =
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ε
6
√
2
. For further references observe that this choice of γ satisfies the following

property. Let B and U = C(i, j) be boxes of Gγ and let v ∈ B, u ∈ U , (u, v) ∈
E(G) for some nodes u and v. In such a case, if any node v′ ∈ B transmits
(1 − ε/2)-successfully, then its message is received by all stations in all boxes
C(i+ a, j + b), where a, b ∈ [−2, 2].

We say that two boxes B and U are adjacent if the Euclidean distance between
any two of their points is at most 1− ε/2. But with one exception – boxes that
are very close to each other are not adjacent. More precisely the box C(i, j)
is not adjacent to any box C(i + a, j + b), where a, b ∈ [−2, 2]. Note that if
(u, v) ∈ E(G) and v ∈ B, u ∈ U = C(i, j), then any two points x ∈ B and
y ∈ C(i + a, j + b), a, b ∈ [−2, 2] are in the Euclidean distance at most 1− ε/2;
that is, B is adjacent to all boxes C(i + a, j + b), unless these boxes are also
very close to B. The neighborhood of a box B is the set of all boxes U adjacent
to B. This definition guarantees that each station v ∈ B is connected by an
edge with each station u ∈ U if U is in the neighborhood of B. However, the
Euclidean distance dist(v, u) for such u, v is larger than the distance between
v and any other station from B. This property is essential for our method of
electing leaders in boxes of Gγ .

To formulate the algorithm we define an octant of the neighborhood of the box
B = C(i, j). Let us place on the plane a Cartesian coordinate system with the
origin in the center of the box B. This coordinate system is naturally subdivided
into four quadrants i.e. the plane areas bounded by two reference axes forming
the 90o angle. The quadrant can be divided by the bisector of this angle into
two octants corresponding to the angle of 45o. We attribute one of the rays
forming the boundaries of the octants to each octant, so that they are disjoint
(and connected) as the subsets of the plane. An octant of the neighborhood of B
is the set of all boxes U in the neighborhood of B that have centers in a given
octant of the coordinate system.

Fact 8. Each two stations in an octant of the neighborhood of a box B are in
the distance at most (1− ε/2).

Now we give an intuition how Algorithm 3 works. A station v joins the execution
of the algorithm after obtaining the broadcast message (waking up); it can learn
the number of executed rounds of the algorithm from the value of the clock
attached to each message. The algorithm consists of T iterations of the most
external loop. Each of these iterations consists of two parts. The first part is a
deterministic broadcast from the leaders of the boxes to all nodes in the distance
at most 1− ε/2 from these leaders. It is assumed that new nodes are woken up
only in the very beginning and in this first part. The second part is a probabilistic
algorithm attempting to elect the leaders in all the boxes in which the message
was heard in the first part and which currently do not have leaders.

Now, let us fix the values of parameters for which the algorithm will by ana-
lyzed. Let d = dα,Nαε/2,γ which assures that, in the first“for each a, b”, loop each
leader is heard in the distance 1− ε/2. Moreover, we take d̄ = dα,Nαε/28,γ . This
choice guarantees that, if there are on average less than 7 transmitting stations
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Algorithm 3. RandUnknownBroadcast(d, T )

1: the source s transmits and becomes the leader of its box of Gγ

2: for counter ← 1, 2, . . . , T do
3: for each a, b : 0 ≤ a, b < d do
4: if v is the leader of C(i, j) such that (i, j) ≡ (a, b) mod d then v transmits

5: for each a, b : 0 ≤ a, b < d̄ do
6: for each octant of neighborhood of each B = C(i, j) fulfilling
7: (i, j) ≡ (a, b) mod d̄ do
8: u ← the leader of the box with lexicographically smallest
9: coordinates in the octant
10: for each v ∈ B: conflict(v) ← false
11: for k = 0, 1, 2, 3, ..., log n do
12: if B has no leader, u exists and not conflict(v) then
13: K1: Each vertex v ∈ B transmits with the probability (1/n)2k

14: K2: if u hears v in K1 then
15: u transmits “v” and v becomes the leader
16: if v transmitted in K1 and hears nothing in K2 then
17: conflict(v) ← true
18: K3: nodes v transmitting in K1 and u transmit
19: if v not transmitting in K1 does not hear u then
20: conflict(v) ← true

attributed to each box C(i′, j′) in the second loop “for each a, b”, then we have
the probability at least 1/2 that the only station transmitting for C(i, j) does
it (1− ε/2)-successfully. We prove that, during the second part, the probability
of electing a leader is bigger than some constant. This is done for each octant
in the “for k” loop and the result is either selecting the leader of B or silencing
all stations in B till the end of this loop (in order to decrease interference in
other boxes). To make such an attempt some help from the leader u of a box
U adjacent to B is needed. Within an octant the leaders hear each other in
the first part, so they all can determine without any additional communication
which of them has lexicographically smallest coordinates. Also any node in B
knows whether any leader in the octant exists. Let us emphasize here that the
second loop lasts 8 · 3 · d̄2(1 + logn) rounds, since we try to elect a leader in
each B = C(i, j) with help of leaders from various octants of its neighborhood
separately.

In the loop“for k”the transmission probability in K1 grows twice per iteration
starting from 1/n. In rounds K2 and K3 stations from B are “switched off” till
the end of the loop “for k”. It is done in three cases. The first case is when the
external noise causes this “switching off” (v cannot hear u in K3). We show that
the probability that any stations in B is switched off this way in the whole“for k”
loop is smaller than 1/2. In the second case the leader is chosen, because u hears
some station transmitting in K1. The station u then notifies deterministically
all the stations in B who the leader is. In the third case many stations of B
transmit in K1 which causes “switching off” all stations in B.
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We now show, that if in some step K1 at least one station of B transmits,
then after K3 all stations in B are“switched off”. We already considered the case
when u hears some of them and the leader is elected. So now assume, that u
does not hear anything in K1. Note, that in K2 all stations v transmitting in K1
get the value conflict equal true. In K3 any station v not transmitting in K1 is
closer to any of the transmitting stations in B than to u (this fact follows from
the properties of neighborhood). So v does not hear u and gets the value conflict
equal true.

The above discussion gives the following conclusion.

Fact 9. Let l be the first round K1 of loop “for k” in which some station from
a box B transmits a message. Then in the next rounds K2 and K3 either the
leader is elected or all stations v ∈ B set conflict(v) =true.

Now we formulate an analog of Fact 5 for our algorithm.

Lemma 4. Let G be of eccentricity D. There exists a set of boxes W of the grid
Gγ of cardinality at most 4(D + 1)2 having the two following properties

(i) if we choose one station from each box of W then these stations form a
(1− ε/2)-net in the set of all the stations,

(ii) for each box B of W there exists a sequence of at most D+1 nonempty (i.e.,
containing stations) boxes, starting from box(s) and ending in B, in which
each two consecutive boxes are adjacent.

In what follows, we estimate what is the average maximal number of stations
transmitting in the box C(i, j), then we bound the probability of successful leader
election in a single call of the loop “for k”, and finally we conclude the analysis
of algorithm RandUnknownBroadcast.

Fact 10. The expected value of the maximum number of stations transmitting
in the box C(i, j) in round K1 during one call of the loop “ for k” is at most 6.

Fact 11. Assume that at least one station from a box C(i, j) is awaken in the
first “for each (a, b)” loop. Then, the probability, that in one call of the loop “for
k” the leader of the box C(i, j) is elected is at least 1/18.

Theorem 3. Algorithm RandUnknownBroadcast(d, T ) accomplishes broadcast
in O(d̄2(D + log(1/δ)) logn) rounds, with probability 1 − δ, when run for d =
dα,Nαε/2,γ , d̄ = dα,Nαε/28,γ and for some T = O(D + log(1/δ)).

Proof. LetW be a set of boxes satisfying the properties (i) and (ii) from Lemma 4.
A sufficient condition for the broadcast is that each box of B ∈ W obtains the
message and broadcasts it at least once to all stations in the range 1− ε/2. (We
say that a box obtains a message when at least one station in that box receives
it, and a box broadcasts a message in a particular range r0 when at least one
of its stations transmits the message r0-successfully.) This happens, when the
message is successfully transmitted at most D times on the shortest sequence of
boxes from the source to B and finally is successfully transmitted by the box B.
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The sufficient condition for this is that a chain of altogether at most D successful
leader elections happen. The probability of such a successful leader election is,
by Fact 11, at least p = 1/18.

Now we estimate the probability that our algorithm completes the broad-
cast. Let the number of repetitions of the most external loop be t = 2D/p +
2 ln(1/δ′)/p, for some δ′ ∈ R. By Lemma 2,

Pr(some B ∈W does not transmit successfully) ≤
≤

∑
B∈W

Pr(box B does not transmit successfully) ≤ 4(D + 1)2δ′ .

To get this probability smaller than δ we need the number of repetitions of the
most external loop

T =
2D

p
+

2 ln(1/δ)

p
+

2 ln(4(D + 1))

p
= O(D + log(1/δ)) .

Each run of the most external loop takes O(d̄2 logn) rounds, which yields
O(d̄2(D + log(1/δ)) logn) rounds in total. �

4 Conclusions and Future Work

In this work we showed provably well-scalable randomized distributed solutions
for the broadcast problem in any wireless networks under the SINR physical
model without spontaneous wake-up and without strong assumptions about the
connectivity of a given network. Our algorithms rely on the knowledge of its own
coordinates by each station; some results without such knowledge were obtained
in [4]. We develop a new technique for fast election of local leaders in any network,
which may be adopted for the purpose of other communication problems.

Our solutions could be extended to more generalized model settings. In par-
ticular, nodes do not have to know their exact coordinates, but only with some
O(ε) accuracy. Parameters α ≥ 2 and β ≥ 1 can be set up individually for every
link, which would only change constants hidden in the big-Oh formulas (these
constants would depend on the upper and lower bounds on the range of indi-
vidual parameters α, β). The knowledge of exact number of stations n is also
not necessary — an upper bound O(n) is enough to obtain asymptotically the
same results.

There are several interesting directions arising from or related with our work.
The main one is to extend the proposed approach to other communication prob-
lems, such as multi-broadcast, gathering, group communication and routing.
The second interesting direction is to study the impact of model setting, such as
knowledge of coordinates (or other parameters), or the quality parameter 1−ε of
the communication graph on the complexity of a communication task. Finally,
analyzing algorithms in more advanced models, e.g., with failures, mobility, or
other forms of uncertainty, is another perspective research direction.
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Abstract. Secure multiparty computation (MPC) allows a set of n
parties to securely compute a function of their private inputs against
an adversary corrupting up to t parties. Over the previous decade, the
communication complexity of synchronous MPC protocols could be im-
proved to O(n) per multiplication, for various settings. However, design-
ing an asynchronous MPC (AMPC) protocol with linear communication
complexity was not achieved so far. We solve this open problem by pre-
senting two AMPC protocols with the corruption threshold t < n/4.
Our first protocol is statistically secure (i.e. involves a negligible error)
in a completely asynchronous setting and improves the communication
complexity of the previous best AMPC protocol in the same setting by a
factor of Θ(n). Our second protocol is perfectly secure (i.e. error free) in a
hybrid setting, where one round of communication is assumed to be syn-
chronous, and improves the communication complexity of the previous
best AMPC protocol in the hybrid setting by a factor of Θ(n2).

Like other efficient MPC protocols, we employ Beaver’s circuit ran-
domization approach (Crypto ’91) and prepare shared random multipli-
cation triples. However, in contrast to previous protocols where triples
are prepared by first generating two random shared values which are
then multiplied distributively, in our approach each party prepares its
own multiplication triples. Given enough such shared triples (potentially
partially known to the adversary), we develop a method to extract shared
triples unknown to the adversary, avoiding communication-intensive mul-
tiplication protocols. This leads to a framework of independent interest.

1 Introduction

Threshold unconditionally secure multiparty computation (MPC) is a powerful
concept in secure distributed computing. It enables a set of nmutually distrusting
parties to jointly and securely compute a publicly known function f of their private
inputs over some finite field F, even in the presence of a computationally unbounded
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active adversary Adv, capable of corrupting any t out of the n parties. In a general
MPCprotocol [7,12,20,2], f is usually expressed as an arithmetic circuit (consisting
of addition and multiplication gates) over F and then the protocol evaluates each
gate in the circuit in a shared/distributed fashion. More specifically, each party se-
cret share its private inputs among the parties using a linear secret-sharing scheme
(LSS), say Shamir [21], with threshold t; informally such a scheme ensures that
the shared value remains information-theoretically secure even if upto t shares are
revealed. The parties then maintain the following invariant for each gate in the cir-
cuit: given that the input values of the gate are secret-shared among the parties, the
corresponding output value of the gate also remains secret-shared among the parties.
Finally the circuit output is publicly reconstructed. Intuitively, the privacy follows
since each intermediate value during the circuit evaluation remains secret-shared.
Due to the linearity of the LSS, the addition gates are evaluated locally by the par-
ties. However, maintaining the above invariant for the multiplication (non-linear)
gates requires the parties to interact. The focus therefore is rightfully placed on
measuring the communication complexity (i.e. the total number of elements from
F communicated) to evaluate the multiplication gates in the circuit.

In the recent past, several efficient unconditionally secure MPC protocols have
been proposed [17,3,14,5,9]. The state of the art unconditionally secure MPC
protocols have linear (i.e. O(n) field elements) amortized communication com-
plexity per multiplication gate for both the perfect setting [5] as well as for the
statistical setting [9]. The amortized communication complexity is derived under
the assumption that the circuit is large enough so that the terms that are inde-
pendent of the circuit size can be ignored [9]. Moreover, these protocols have the
optimal resilience of t < n/3 and t < n/2 respectively. The significance of linear
communication complexity roots from the fact that the amortized communica-
tion done by each party for the evaluation of a multiplication gate is independent
of n. This makes the protocol “scalable” in the sense that the communication
done by an individual party does not grow with the number of parties in the
system. We note that if one is willing to reduce the resilience t from the opti-
mal resilience by a constant fraction of t, then by using techniques like packed
secret-sharing [16], one can break the O(n) barrier as shown in [13]. However,
the resultant protocols are quiet involved. An alternate approach to break the
O(n) barrier was presented in [15], where instead of involving all the n parties,
only a designated set of Θ(log n) parties are involved for shared evaluation of
each gate. However the protocol involves a negligible error in the privacy; on
contrary we are interested in protocols with no error in the privacy.

Our Motivation. The above results are obtained in the synchronous network
setting, where the delay of every message in the network is bounded by a known
constant. However, it is well-known that such networks do not appropriatelymodel
the real-life networks like the Internet. On contrary, in the asynchronous network
model [6], there are no timing assumptions and the messages can be arbitrarily
delayed. The protocols in the asynchronous model are much more involved due
to the following phenomenon, which is impossible to avoid in a completely asyn-
chronous setting: if a party does not receive an expected message, then it does
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not know whether the sender is corrupted (and did not send the message at all)
or the message is just delayed in the network. Thus, at any “stage” of an asyn-
chronous protocol, no party can afford to listen the communication from all the
n parties, as the wait may turn out to be endless and so the communication from
t (potentially honest) parties has to be ignored. It is well known that perfectly-
secure asynchronous MPC (AMPC) is possible if and only if t < n/4 [6], while
statistically secure AMPC is possible if and only if t < n/3 [8]. The best known
unconditional AMPC protocol is reported in [19]. The protocol is perfectly secure
with resilience t < n/4 and communication complexity of O(n2) per multiplica-
tion gate. Designing AMPC protocols with linear communication complexity per
multiplication gate is the focus of this paper.

Our Results. We present two AMPC protocols with (amortized) communica-
tion complexity of O(n) field elements per multiplication gate and with resilience
t < n/4. The first protocol is statistically secure and works in a completely
asynchronous setting. Though non-optimally resilient, the protocol is the first
AMPC protocol with linear communication complexity per multiplication gate.
Our second protocol trades the network model to gain perfect security with opti-
mal resilience of t < n/4. The protocol is designed in a hybrid setting, that allows
a single synchronous round at the beginning, followed by a fully asynchronous
setting. The hybrid setting was exploited earlier in [4] to enforce “input provi-
sion”, i.e. to consider the inputs of all the n parties for the computation, which
is otherwise impossible in a completely asynchronous setting. The best known
AMPC protocol in the hybrid setting [4] has perfect security, resilience t < n/4
and communication complexity of O(n3) field elements per multiplication gate.
Thus, our protocol significantly improves over the hybrid model protocol of [4].

2 Overview of Our Protocols

Without loss of generality, we assume n = 4t+ 1; thus t = Θ(n). We follow the
well-known “offline-online” paradigm used in most of the recent MPC protocols
[3,4,14,5,9]: the offline phase produces t-sharing1 of cM random multiplication
triples {(a(i), b(i), c(i))}i∈[cM ] unknown to Adv, where c(i) = a(i)b(i) and cM de-
notes the number of multiplication gates in the circuit. The multiplication triples
are independent of f ; so this phase can be executed well ahead of the actual cir-
cuit evaluation. Later, during the online phase the shared triples are used for the
shared evaluation of the multiplication gates in the circuit, using the standard
Beaver’s circuit randomization technique [2] (see Sec. 4). The efficiency of the
MPC protocol is thus reduced to the efficiency of generating shared random mul-
tiplication triples. Our new proposed approach for the task of generating random
triples outperforms the existing ones in terms of the efficiency and simplicity.

The traditional way of generating the shared multiplication triples is the fol-
lowing: first the individual parties are asked to t-share random pairs of values

1 A value v is d-shared (see Definition 1) if there exists a polynomial p(·) of degree at
most d with p(0) = v and every party holds a distinct point on p(·).
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on which a “randomness extraction” algorithm (such as the one based on Van-
dermonde matrix [14]) is applied to generate t-sharing of “truly” random pairs
{a(i), b(i)}i∈[cM ]. Then known multiplication protocols are invoked to compute

t-sharing of {c(i)}i∈[cM ]. Instead, we find it a more natural approach to ask in-
dividual parties to “directly” share random multiplication triples and then “ex-
tract” random multiplication triples unknown to Adv from the triples shared by
the individual parties. This leads to a communication efficient, simple and more
natural “framework” to generate the triples, built with the following modules:

– Multiplication Triple Sharing (Section 7.1). The first module allows
a party Pi to “verifiably” t-share Θ(n) random multiplication triples with
O(n2) communication complexity and thus requires O(n) “overhead”. The
verifiability ensures that the shared triples are indeed multiplication triples.
If Pi is honest, the shared triples remain private from Adv. Such triples,
shared by the individual parties are called local triples.

– Multiplication Triple Extraction (Section 7.2). The second module
allows the parties to securely extract Θ(n) t-shared random multiplication
triples unknown to Adv from a set of 3t+1 local t-shared multiplication triples
with O(n2) communication complexity (and thus with O(n) “overhead”),
provided that at least 2t+ 1 out of the 3t+1 local triples are shared by the
honest parties (and hence are random and private). We stress that known
techniques for extracting shared random values from a set of shared random
and non-random values fail to extract shared random multiplication triples
from a set of shared random and non-random multiplication triples.

For our first module, we present two protocols: the first one probabilistically
verifies the correctness of the shared multiplication triples, leading to our sta-
tistical AMPC protocol. The second protocol verifies the shared multiplication
triples in an error-free fashion in a hybrid setting, leading to our perfectly-
secure hybrid AMPC protocol. For the second module, we present an error-free
triple-extraction protocol. We do not employ (somewhat complex) techniques
like player elimination [17,5] and dispute control [3,14,9] in our protocols. These
techniques have been used in the most recent synchronous unconditional MPC
protocols to obtain linear complexity. Briefly, these techniques suggest to carry
out a computation optimistically first assuming no corruption will take place and
in case corruption occurs, fault/dispute is detected and memorized so that the
same fault/dispute does not cause failure in the subsequent computation. How-
ever, their applicability is yet to be known in the asynchronous setting. Central
to our protocols lie the following two building blocks.

Verifiable Secret Sharing with Linear Overhead (Section 5): We pro-
pose a robust asynchronous verifiable secret sharing (AVSS) protocol that allows
a dealer D to “verifiably” t-share (t+ 1) = Θ(n) secret values with O(n2) com-
munication complexity (i.e. O(n) overhead). The protocol is obtained by modi-
fying the perfectly-secure AVSS protocol of [19] that allows D to 2t-share a single
value. To the best of our knowledge, we are unaware of any robust secret-sharing
protocol (with t < n/4) having linear overhead, even in the synchronous setting.



392 A. Choudhury, M. Hirt, and A. Patra

Transforming Independent Triples to Co-related Triples with Linear
Overhead (Section 6): Taking 3t + 1 = Θ(n) t-shared input triples (which
may not be multiplication triples), say {(x(i), y(i), z(i))}i∈[3t+1], the protocol

outputs 3t+1 t-shared triples, say {(x(i),y(i), z(i))}i∈[3t+1], lying on three poly-
nomials of degree 3t/2, 3t/2 and 3t respectively. Namely, there exist polyno-
mials X(·),Y(·) and Z(·) of degree at most 3t

2 ,
3t
2 and 3t respectively, where

X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds for 3t + 1 distinct αi values.
The protocol has communication complexity O(n2) (i.e. O(n) overhead). The
protocol further ensures the following one-to-one correspondence between the
input and the output triples: (1). the ith output triple is a multiplication triple
if and only if the ith input triple is a multiplication triple; (2). the ith output
triple is known to Adv if and only if the ith input triple is known to Adv. The
former guarantees that the relation Z(·) = X(·)Y(·) is true if and only if all the
3t+ 1 input triples are multiplication triples, while the later guarantees that if
Adv knows t′ input triples, then it implies 3t

2 + 1 − t′ “degree of freedom” in
the polynomials X(·),Y(·) and Z(·), provided t′ ≤ 3t

2 . The protocol is borrowed
from the batch verification protocol of [9], where the goal was to probabilistically
check whether a set of input triples are multiplication triples.

Given the above two building blocks, our first module (of the framework) is re-
alized by asking each party Pi to invoke the AVSS protocol to generate t-sharing
of 3t+1 random multiplication triples {(x(i), y(i), z(i))}i∈[3t+1]. All that is left is
to verify if the shared triples are indeed multiplication triples. This is achieved by
transforming the shared triples to {(x(i),y(i), z(i))}i∈[3t+1] using the triple trans-

formation protocol and then verifying if Z(·) ?
= X(·)Y(·) where X(·),Y(·) and

Z(·) are the underlying polynomials, associated with {(x(i),y(i), z(i))}i∈[3t+1].
Two different methods are then proposed for the verification; one leads to our
statistical AMPC and the other leads to our perfect AMPC in hybrid model.

The second module takes the set of 3t+1 local t-shared multiplication triples
(verifiably shared by individual parties), say {(x(i), y(i), z(i))}i∈[3t+1] such that
at least 2t+1 of them are shared by the honest parties. Using our triple transfor-
mation protocol, shared multiplication triples {(x(i),y(i), z(i))}i∈[3t+1] are then
computed. Since all the input triples are guaranteed to be multiplication triples,
the relation Z(·) = X(·)Y(·) holds. Moreover, as Adv may know at most t input
local triples, t output triples are leaked, leaving t

2 “degree of freedom” in the
polynomials, which is used to extract t2 = Θ(n) random multiplication triples.

3 Model, Definitions and Notations

We assume a set P = {P1, . . . , Pn} of n = 4t+ 1 parties, connected by pairwise
private and authentic channels; here t is the number of parties which can be un-
der the control of a computationally unbounded Byzantine adversary Adv. The
adversary can force the corrupted parties to deviate in any arbitrary manner dur-
ing the execution of a protocol. The communication channels are asynchronous
allowing arbitrary, but finite delay (i.e. the messages will reach to their destina-
tion eventually). The order of the message delivery is decided by a scheduler; to
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model the worst case scenario, we assume that the scheduler is under the control
of Adv. The scheduler can schedule the messages exchanged between the honest
parties, without having access to the “contents” of these messages.

The function f to be computed is specified as an arithmetic circuit C over a
finite field F, where |F| > 2n and α1, . . . , αn, β1, . . . , βn are publicly known dis-
tinct elements from F. For our statistical AMPC protocol, we additionally require
that |F| ≥ n2 · 2κ, for a given error parameter κ, to bound the error probability
by 2−κ. The circuit C consists of input, addition (linear), multiplication, random
and output gates. We denote by cM and cR the number of multiplication and
random gates in C respectively. Similar to [14,5], for the sake of efficiency, we
evaluate t+1 multiplication gates at once in our AMPC protocol by applying the
Beaver’s method, assuming that the circuit is well-spread, with sufficiently many
“independent” multiplication gates to evaluate in parallel. By [X ] we denote the
set {1, . . . , X}, while [X,Y ] with Y ≥ X denote the set {X,X + 1, . . . , Y }.
Definition 1 (d-sharing [3,4,14,5]). A value s ∈ F is said to be d-shared
among a set of parties P ⊆ P if every (honest) party Pi ∈ P holds a share si of
s, such that there exists a polynomial p(·) of degree at most d, where p(0) = s and
p(αi) = si holds for every (honest) Pi ∈ P. The vector of shares corresponding

to the (honest) parties in P is called a d-sharing of s and denoted by [s]Pd . A
vector S = (s(1), . . . , s(�)) of 
 values is said to be d-shared among a set of parties
P if each s(l) ∈ S is d-shared among the parties in P.
We write [s]d (ignoring the superscript) to mean that s is d-shared among all
the n parties. A standard property of d-sharings is its linearity: given sharings
[x(1)]d, . . . , [x

(�)]d and a publicly known linear function g : F� → Fm w g(x(1),
. . . , x(�)) = (y(1), . . . , y(m)), then g([x(1)]d, . . . , [x

(�)]d) = ([y(1)]d, . . . , [y
(m)]d).

By saying that the parties compute (locally) ([y(1)]d, . . . , [y
(m)]d) = g([x(1)]d, . . . ,

[x(�)]d), we mean that every party Pi (locally) computes (y
(1)
i , . . . , y

(m)
i ) = g(x

(1)
i ,

. . . , x
(�)
i ), where y

(l)
i and x

(l)
i denotes the ith share of y(l) and x(l) respectively.

4 Existing Building Blocks

Private and Public Reconstruction of d-shared Values: Let [v]Pd be a
d-sharing of v, shared through a polynomial p(·), where d < |P|− 2t. The online
error correction (OEC) algorithm [6], based on the Reed-Solomon (RS) error-
correction allows any designated party PR to reconstruct p(·) and thus v = p(0).

We call the protocol as OEC(PR, d, [v]
P
d ), which has communication complexity

O(n). Moreover if PR is honest then no additional information about v is leaked.

Let {[u(i)]Pd }i∈[t+1] be a set of d-shared values where d < |P|− 2t. The goal is

to make every party in P reconstruct {u(i)}i∈[t+1]. This is achieved by protocol
BatRecPubl with communication complexity O(n2) by using the idea of “data
expansion”, based on RS codes, as used in [14,5].

Batch Multiplication of 
 Pairs of t-shared Values Using Beaver’s Tech-
nique: Beaver’s circuit randomization method [2] is a well known method for
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securely computing [x · y]t from [x]t and [y]t, at the expense of two public re-
constructions, using a pre-computed t-shared random multiplication triple (from
the offline phase), say ([a]t, [b]t, [c]t). For this, the parties first (locally) compute
[e]t and [d]t, where [e]t = [x]t − [a]t = [x − a]t and [d]t = [y]t − [b]t = [y − b]t,
followed by the public reconstruction of e = (x − a) and d = (y − b). Since the
relation xy = ((x− a) + a)((y − b) + b) = de+ eb+ da+ c holds, the parties can
locally compute [xy]t = de+ e[b]t+ d[a]t+ [c]t, once d and e are publicly known.
The above computation leaks no information about x and y if a and b are ran-
dom and unknown to Adv. For the sake of efficiency, we will apply the Beaver’s
trick on a batch of 
 pairs of t-shared values simultaneously, where 
 ≥ t + 1.
BatRecPubl is then used to efficiently perform the public reconstruction of the 2

(e and d) values with a communication of O(� 2�

t+1� · n2) = O(n
) field elements.

We call the protocol as BatchBeaver({([x(i)]t, [y(i)]t, [a(i)]t, [b(i)]t, [c(i)]t)}i∈[�]).

Agreement on a Common Subset (ACS) and Asynchronous Broadcast:
Protocol ACS [6,8] allows the (honest) parties to agree on a common subset
Com of (n − t) parties, who have correctly shared “values”; the values may be
the inputs of the individual parties or a multiplication triple or a random value.
The protocol has communication complexity O(poly(n)).

Bracha’s asynchronous broadcast protocol (called A-Cast) [10] allows a sender
Sen ∈ P to send some message m identically to all the n parties. If Sen is
honest then all the honest parties eventually terminate with output m. If Sen is
corrupted and some honest party terminates with output m′, then every other
honest party eventually does the same. The protocol needs a communication of
O(n2|m|) for a message of size |m|. We say that Pi receives m from the broadcast
of Pj if Pi outputs m in the instance of A-Cast where Pj is acting as Sen.

Generating a Random Value: Protocol Rand is a standard protocol to gen-
erate a uniformly random value and has communication complexity O(poly(n)).

5 Verifiably Generating Batch of t-shared Values

We design a protocol called Sh, which allows a dealer D ∈ P to “verifiably”
t-share 
 values S = (s(1), . . . , s(�)), where 
 ≥ t+ 1. The “verifiability” ensures
that if the honest parties terminate the protocol then the output sharings are
t-sharing. Moreover the shared secrets are private if D is honest. The protocol
communicates O(n
) field elements and broadcastsO(n2) field elements. We first
explain the protocol assuming that S contains t+ 1 secrets.

The starting point of Sh is the sharing protocol of the perfectly-secure AVSS
scheme of [19]. The AVSS protocol of [19] enables D to 2t-share (note the de-
gree of sharing) a single secret s. The 2t-sharing is achieved via a univariate
polynomial F (x, 0) of degree at most 2t, where F (x, y) is a random bi-variate
polynomial of degree at most 2t in x and at most t in y (note the difference in
degrees), such that F (0, 0) = s. Initially, D is asked to pick F (x, y) and hand over
the ith row polynomial fi(x) of degree at most 2t and the ith column polynomial
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gi(y) of degree at most t to the party Pi, where fi(x)
def
= F (x, αi) and gi(y)

def
=

F (αi, y). If the sharing protocol terminates, then it is ensured that there exists a
bi-variate polynomial F ′(x, y) of degree at most 2t in x and at most t in y, such
that every honest party Pj holds a column polynomial g′j(y) of degree at most

t, where g′j(y) = F ′(αj , y). This makes the secret s′
def
= F ′(0, 0) to be 2t-shared

through the polynomial f ′0(x) of degree at most 2t where f ′0(x)
def
= F ′(x, 0) and

every honest party Pj holds its share s′j of the secret s′, with s′j = f ′0(αj) =
F ′(αj , 0) = g′j(0). For an honest D, F ′(x, y) = F (x, y) will hold and thus s will

be 2t-shared though the polynomial f0(x)
def
= F (x, 0).

g1(y) · · · gj(y) · · · gn(y) gβ1(y) · · · gβt+1(y)

f1(x) F (α1, α1) · · · F (αj , α1) · · · F (αn, α1) ⇒ s
(1)
1 = f1(β1) · · · s(t+1)

1 = f1(βt+1)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fi(x) F (α1, αi) · · · F (αj , αi) · · · F (αn, αi) ⇒ s

(1)
i = fi(β1) · · · s(t+1)

i = fi(βt+1)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

fn(x) F (α1, αn) · · · F (αj , αn) · · · F (αn, αn) ⇒ s
(1)
n = fn(β1) · · · s(t+1)

n = fn(βt+1)
⇓ · · · ⇓ · · · ⇓ ︸ ︷︷ ︸ · · · ︸ ︷︷ ︸

f0(x) s1 = g1(0) · · · sj = gj(0) · · · sn = gn(0) [s(1)]t · · · [s(t+1)]t︸ ︷︷ ︸ s(1) = gβ1(0) · · · s(t+1) = gβt+1(0)

[s]2t, s = f0(0)

Fig. 1. Pictorial representation of the values distributed in the AVSS of [19] and proto-
col Sh. The polynomials f1(x), . . . , fn(x), g1(y), . . . , gn(y) computed from the bi-variate
polynomial F (x, y) of degree at most 2t and t in x and y are distributed in both the pro-
tocols. In the AVSS protocol, s is 2t-shared through the row polynomial f0(x) (shown
in red color) of degree 2t, while in Sh, t+1 values s(1), . . . , s(t+1) are t-shared through
the column polynomials gβ1(y), . . . , gβt+1(y) (shown in blue color) of degree t.

In the above sharing protocol of [19], we note that Adv’s view leaves (t+1)(2t+
1)− t(2t+1)− t= (t+1) “degree of freedom” in F (x, y) when D is honest. This
is because Adv receives t(2t+1)+ t distinct points on F (x, y) through the t row
and column polynomials of the corrupted parties while (t + 1)(2t + 1) distinct
points are required to completely define F (x, y). While [19] used the t+1 degree
of freedom for a single 2t-sharing by embedding a single secret in F (x, y), we
use it to create t-sharing of t+ 1 different secrets by embedding t+ 1 secrets in
F (x, y). Namely, given t + 1 secrets S = (s(1), . . . , s(t+1)), the dealer D in our
protocol fixes F (βl, 0) = s(l) for l ∈ [t+ 1], where F (x, y) is otherwise a random
polynomial of degree at most 2t in x and at most t in y. At the end, the goal is
that the secret s(l) is t-shared among the parties through the polynomial F (βl, y)
of degree at most t, which we denote by gβl(y). As depicted in Fig. 1 (in blue
color), an honest party Pi can compute its shares of the secrets in S by local
computation on the polynomial fi(x) = F (x, αi). This follows from the fact that

for l ∈ [t+ 1] the ith share s
(l)
i of the secret s(l) satisfies s

(l)
i = gβl(αi) = fi(βl).
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So all that is left is to ensure that every honest Pi gets fi(x) in Sh protocol.
For this recall that the sharing protocol of [19] ensures that every honest Pj holds
g′j(y) such that there exists a bi-variate polynomial F ′(x, y) of degree at most 2t
in x and at most t in y where F ′(αj , y) = g′j(y) holds; furthermore for an honest
D, F ′(x, y) = F (x, y) holds. Now note that g′j(αi) is the same as f ′i(αj) and thus
every Pj holds a point on every f ′i(x). Now Pi can reconstruct f ′i(x) by asking
every party Pj to send its point on f ′i(x) to Pi. Since f

′
i(x) has degree at most 2t

and there are 4t+1 parties, OEC enables Pi to compute f ′i(x) from the received
points. Finally, we note that for a corrupted D, S′ = (F ′(β1, 0), . . . , F

′(βt+1, 0))
will be t-shared and for an honest D, S′ = S will hold.

Our idea of embedding several secrets in a single bi-variate polynomial is dif-
ferent from the notion of packed secret-sharing [16] where k secrets are embedded
in a single univariate polynomial of degree t and each party receives a single share
(a distinct point on the polynomial). In the latter, a single share is the share for
k secrets and the robust reconstruction of the secrets is possible only if at most
t−k+1 parties are corrupted. Protocol Sh, on the other hand, ensures that each
secret in S is independently t-shared and thus the robust reconstruction of each
secret is possible even when the adversary corrupts t parties.

Sharing More Than t + 1 Values Together: On having 
 secrets for 
 >
t+ 1, D can divide them into groups of t+ 1 and execute an instance of Sh for
each group. This will require communication of O(� �

(t+1)� · n2) = O(n
) field

elements, since (t+1) = Θ(n). The broadcast communication can be kept O(n2)
(independent of 
) by executing all instances of Sh (each handling t+ 1 secrets)
in parallel and by asking each party to broadcast only once for all the instances,
after confirming the veracity of the “pre-condition” for the broadcast for all the
instances of Sh. The sharing protocol of the AVSS scheme of [19] describes the
same idea to keep the broadcast communication independent of 
 when D 2t-
shares 
 secrets. In the rest of the paper, we will say that a party t-shares 

values, where 
 ≥ t+ 1 using an instance of Sh to mean the above.

6 Transforming Independent Triples to Co-related Triples

Protocol TripTrans takes as input a set of (3t+ 1) “independent” shared triples,
say {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[3t+1], and outputs a set of (3t + 1) “co-related”

shared triples, say {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1], such that: (a) There exist

polynomials X(·),Y(·) and Z(·) of degree at most 3t
2 ,

3t
2 and 3t respectively, such

that X(αi) = x(i),Y(αi) = y(i) and Z(αi) = z(i) holds, for i ∈ [3t+ 1]. (b) The
ith output triple (x(i),y(i), z(i)) is a multiplication triple if and only if the ith
input triple (x(i), y(i), z(i)) is a multiplication triple. This further implies that
Z(·) = X(·)Y(·) is true iff all the 3t + 1 input triples are multiplication triples.
(c) If Adv knows t′ input triples and if t′ ≤ 3t

2 , then Adv learns t′ distinct values
of X(·),Y(·) and Z(·), implying 3t

2 + 1− t′ “degree of freedom” on X(·),Y(·) and
Z(·). If t′ > 3t

2 , then Adv will completely know X(·),Y(·) and Z(·).
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The protocol (see Fig. 2) is inherited from the protocol for the batch veri-
fication of the multiplication triples proposed in [9]. The idea is as follows: we
assume X(·) and Y(·) to be “defined” by the first and second component of
the first 3t

2 + 1 input triples, compute 3t
2 “new” points on the X(·) and Y(·)

polynomials and compute the product of the 3t
2 new points using Beaver’s tech-

nique making use of the remaining 3t
2 input triples. The Z(·) is then defined by

the 3t
2 computed products and the third component of the first 3t

2 + 1 input
triples. In a more detail, we define the polynomial X(·) of degree at most 3t

2

by setting X(αi) = x(i) for i ∈ [ 3t2 + 1] and get [x(i)]t = [X(αi)]t = [x(i)]t for

i ∈ [ 3t2 + 1]. Following the same logic, we define Y(αi) = y(i) for i ∈ [ 3t2 + 1] and

get [y(i)]t = [Y(αi)]t = [y(i)]t for i ∈ [ 3t2 + 1]. Moreover, we set Z(αi) = z(i) for

i ∈ [ 3t2 + 1] and get [z(i)]t = [Z(αi)]t = [z(i)]t for i ∈ [ 3t2 + 1].

Protocol TripTrans({([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1])

1. The parties set [x(i)]t = [x(i)]t, [y
(i)]t = [y(i)]t and [z(i)]t = [z(i)]t for i ∈ [ 3t

2
+ 1].

2. Let the points {(αi,x
(i))}i∈[ 3t

2
+1] and {(αi,y

(i))}i∈[ 3t
2

+1] define the polynomial

X(·) and Y(·) respectively of degree at most 3t
2
. The parties locally compute

[x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t, for each
a i ∈ [ 3t

2
+ 2, 3t+ 1].

3. The parties compute 3t
2

sharings {[z(i)]t}i∈[ 3t
2
+2,3t+1] by executing

BatchBeaver({([x(i)]t, [y
(i)]t, [x

(i)]t, [y
(i)]t, [z

(i)]t)}i∈[ 3t
2

+2,3t+1]). Let the points

{(αi, z
(i))}i∈[3t+1] define the polynomial Z(·) of degree at most 3t. The parties

output {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1] and terminate.

a This is a linear function.

Fig. 2. Transforming independent shared triples to co-related shared triples

Now for i ∈ [ 3t2 +2, 3t+1], we compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y(αi)]t
which requires only local computation on the t-sharings

{
([x(i)]t, [y

(i)]t)
}
i∈[ 3t2 +1]

.

For i ∈ [ 3t2 + 2, 3t + 1], fixing z(i) to be the same as z(i) will, however, violate
the requirement that Z(·) = X(·)Y(·) holds when all the input triples are mul-
tiplication triples; this is because for i ∈ [ 3t2 + 2, 3t + 1], x(i) = X(αi) 	= x(i)

and Y(αi) = y(i) 	= y(i) and thus z(i) = x(i)y(i) 	= x(i)y(i). Here we resort
to the Beaver’s technique to find [z(i)]t = [x(i)y(i)]t from [x(i)]t and [y(i)]t,
using the t-shared triples {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[ 3t2 +2,3t+1]. We note that the

triples {([x(i)]t, [y(i)]t, [z(i)]t)}i∈[ 3t2 +2,3t+1] used for the Beaver’s technique are
never touched before for any computation.

It is easy to see that (x(i),y(i), z(i)) is a multiplication triple if and only if
(x(i), y(i), z(i)) is a multiplication triple. For i ∈ [ 3t2 + 1], this is trivially true, as

for such an i, ([x(i)]t, [y
(i)]t, [z

(i)]t) = ([x(i)]t, [y
(i)]t, [z

(i)]t). For i ∈ [ 3t2 + 2, 3t+
1], it follows from the correctness of the Beaver’s technique and the fact that
([x(i)]t, [y

(i)]t, [z
(i)]t) is used to compute [z(i)]t from [x(i)]t and [y(i)]t and so

z(i) = x(i)y(i) if and only if z(i) = x(i)y(i). For privacy, we see that if Adv knows
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the ith input triple then the ith output triple will be known to Adv: for i ∈
[ 3t2 +1] the statement is trivially true, while for i ∈ [ 3t2 +2, 3t+1], the statement

follows because Adv will know the ith input triple (x(i), y(i), z(i)), which is used
to compute [z(i)]t from [x(i)]t and [y(i)]t. Since (x(i) − x(i)) and (y(i) − y(i)) are
disclosed during the computation of [z(i)]t, Adv will learn x(i), y(i) and z(i). Thus
if Adv knows t′ input triples where t′ ≤ 3t

2 then Adv will learn t′ output triples
and hence t′ values of X(·),Y(·) and Z(·), leaving 3t

2 + 1 − t′ degree of freedom
in these polynomials. We note that all the honest parties eventually terminate
the protocol and the protocol incurs communication of O(n2) elements from F.

7 The Framework for Generating Multiplication Triples

We are now ready to present our new framework for generating t-sharing of cM+
cR randommultiplication triples unknown to Adv, which requires communication
of O((cM + cR)n) and broadcast of O(n3) field elements. As discussed earlier,
the framework consists of two modules, elaborated next.

7.1 Module I: Verifiably Sharing Multiplication Triples

A Probabilistic Solution in a Completely Asynchronous Setting: Our
protocol TripleSh allows a party D ∈ P to verifiably share multiplication triples
with linear “overhead”, where the verification resorts to a probabilistic ap-
proach. In the protocol, D is asked to t-share 3t + 1 random multiplication
triples {(x(i), y(i), z(i))}i∈[3t+1] using Sh. To check if the triples are multiplication

triples, the shared triples are first transformed to {([x(i)]t, [y
(i)]t, [z

(i)]t)}i∈[3t+1]

via TripTrans and then the relation Z(·) ?
= X(·) ·Y(·) is verified through a public

checking of Z(α)
?
= X(α)·Y(α) for a random α. To ensure that no corrupted D can

pass this test, α should be generated using Rand once D completes sharing of the
triples. It follows via the property of TripTrans that if some of the input triples
{(x(i), y(i), z(i))}i∈[3t+1] are not multiplication triples, then Z(α) 	= X(α) · Y(α)
except with probability at most 3t

|F| for a random α, since Z(α) is of degree

at most 3t. Moreover if D is honest then Adv will learn only one point on
X(·),Y(·) and Z(·) (namely at α) leaving 3t

2 “degree of freedom” in these poly-
nomials. So if the verification passes, then the parties output 3t

2 shared triples

{([a(i)]t, [b(i)]t, [c
(i)]t)} on the “behalf” of D, where a(i) = X(βi),b

(i) = Y(βi)
and c(i) = Z(βi) for

3t
2 βis distinct from the random α.

In TripleSh, the above idea is applied on 
 batches of 3t + 1 t-shared triples,
where 
 ≥ t + 1 and a single random α is used for all the 
 batches. Using
BatRecPubl, we then efficiently perform the public reconstruction of 3
 values,
namely the values of the polynomials at α. The protocol thus outputs 
 · 3t

2 =
Θ(n
) shared multiplication triples, with communication complexity O(n2
) and
requires broadcast of O(n2) elements from F.
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An Error-Free Solution in a Hybrid Setting: An inherent drawback of a
completely asynchronous setting is that the inputs of up to t potentially honest
parties may get ignored. To get rid of this, [4] introduced a “partial synchronous”
or hybrid setting wherein the very first communication round is a synchronous
round. It was shown in [4] how to enforce “input provision” from all the n parties
using the synchronous round (with some additional technicalities). We further
utilize the first synchronous round to present an error-free triple sharing protocol
called HybTripleSh for t-sharing multiplication triples.

HybTripleSh follows the footstep of TripleSh, except that it verifies the relation
Z(·) = X(·)Y(·) in an error-free fashion, by leaking at most t points on the
polynomials to Adv. Since this leaves at least t2 degree of freedom on each of the
polynomials for an honest D, the parties output t2 shared multiplication triples

{[a(i)]t, [b(i)]t, [c
(i)]t}i∈[ t2 ]

on the behalf of D after successful verification, where

a(i) = X(βi),b
(i) = Y(βi) and c(i) = Z(βi). The idea for the error-free verification

is the following: each party Pi is given “access” to the triple (X(αi),Y(αi),Z(αi))
and is given the responsibility of confirming if it is a multiplication triple. If
the confirmation comes from all the parties, then it can be concluded that the
relation Z(·) = X(·)Y(·) is true. This is because the confirmation comes from at
least (n− t) = 3t+1 honest parties and the degree of the polynomials X(·), Y(·)
is at most 3t

2 and the degree of Z(·) is at most 3t. Moreover, at most t values
on each polynomial are leaked to Adv through the t corrupted parties (for an
honest D). Unfortunately, in a completely asynchronous setting, we cannot wait
for the confirmation from all the parties in P , as the wait may turn out to be
endless2. The synchronous round in the hybrid setting comes to our rescue.

In the synchronous round, every party Pi is asked to “non-verifiably” t-share
a dummy multiplication triple, say (f (i), g(i), h(i)) which is used later to verify if
(X(αi),Y(αi),Z(αi)) is a multiplication triple on behalf of Pi, although without
further participation of Pi. By non-verifiably we mean that neither the correct-
ness of the t-sharing nor the fact that the shared triple is a multiplication triple
is guaranteed if Pi is corrupted. The synchronous round however ensures that a
dummy triple is non-verifiably shared on the behalf of every party Pi. Even if a
corrupted Pi does not send the shares of the dummy triples to some party by
the end of the round, the receiver can take some default value to complete the
sharing. By defining “good” dummy triples as the ones that are t-shared and
are multiplication triples, we now show how the verification is carried out using
these dummy triples. Note that the honest parties share good dummy triples.

Given a dummy triple (f (i), g(i), h(i)), we check if (X(αi),Y(αi),Z(αi)) is a
multiplication triple by computing the sharing of the product of X(αi) and Y(αi)
via the Beaver’s technique and using the shared dummy triple and then pub-
licly verifying if the resultant product is the same as Z(αi). The latter can
be verified by checking if the difference of the product and Z(αi) is 0 or not.
If Pi is honest then the dummy triple is random and thus no information is
leaked about (X(αi),Y(αi),Z(αi)). If the checking fails, then the sharing of

2 The confirmation is needed from all the n parties as we need 3t+1 “true” confirma-
tions and t corrupted parties may provide a “false” confirmation.
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(X(αi),Y(αi),Z(αi)) are publicly reconstructed for its public verification. Note
that in such a case, either Pi or D must be corrupted and thus the privacy of
the triple is lost already. However, if (X(αi),Y(αi),Z(αi)) is found to be a non-
multiplication triple then D is definitely corrupted in which case the protocol is
halted after outputting t

2 default sharing of multiplication triples.

When the shared triple (f (i), g(i), h(i)) is not a good dummy triple due to the
reason that it is a non-multiplication triple (but t-shared correctly), the checking
of the corresponding multiplication triple (X(αi),Y(αi),Z(αi)) might fail leading
to its public reconstruction and verification. But in this case Pi is surely cor-
rupted and thus losing the privacy of the triple does not matter. Furthermore,
the public verification of the multiplication triple will be successful for an honest
D, implying that an honest D can not be disqualified. The case when the shared
triple (f (i), g(i), h(i)) is not a good dummy triple due to the reason that it is not
t-shared correctly is more intricate to handle. The problem could be during the
reconstruction of the values that are not t-shared, while executing the Beaver’s
technique. We solve this problem via a “variant” of OEC that concludes the
reconstructed value upon receiving shares from any 3t + 1 parties without fur-
ther waiting. This however, might cause different parties to reconstruct different
values when the input sharing is not t-shared. So an asynchronous Byzantine
agreement (ABA) protocol [1] is run to agree on a unique value.

Finally we note that in the protocol HybTripleSh, the above idea is actually
applied on 
 batches of 3t+ 1 t-shared triples in parallel, where 
 ≥ t+ 1. This
allows the efficient public reconstruction of all the required sharings (correspond-
ing to the 
 batches) using BatRecPubl. The protocol thus outputs 
 · t2 = Θ(n
)
shared multiplication triples.

7.2 Module II: Extracting Random Multiplication Triples

Let Com ⊂ P be a publicly known set of 3t + 1 parties, such that every party
in Com has verifiably t-shared 
 multiplication triples among the parties in P ,
where the triples shared by the honest parties are random and unknown to Adv.
Protocol TripExt then “extracts” 
 · t2 = Θ(n
) random t-shared multiplication
triples unknown to Adv from these 
 · (3t + 1) “local” t-shared multiplication
triples with a communication of O(n2
). The idea is as follows: the input triples
from the parties in Com are perceived as 
 batches of 3t + 1 triples where the
lth batch contains the lth local triple from each party in Com. Then the trans-
formation protocol TripTrans is executed on the lth batch to obtain a new set
of 3t + 1 triples and the three associated polynomials of degree 3t

2 ,
3t
2 and 3t,

namely Xl(·),Yl(·) and Zl(·). Since each input triple is guaranteed to be a mul-
tiplication triple, the multiplicative relation holds among the polynomials, i.e.
Zl(·) = Xl(·)Yl(·). Since Adv gets to know at most t input triples in the lth
batch, the transformation ensures that Adv gets to know at most t points on
each of the three polynomials, leaving t

2 degree of freedom on each polynomial.
The random output multiplication triples for the lth batch, unknown to Adv,
are then extracted as

{
([Xl(βi)]t, [Y

l(βi)]t, [Z
l(βi)]t)

}
i∈[ t2 ]

.
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7.3 Module I + Module II ⇒ Preprocessing (Offline) Phase

Our preprocessing phase protocol now consists of the following steps: (1) Every

party in P acts as a dealer and t-share 
 = 2(cM+cR)
t random multiplication

triples, either using an instance TripleSh (if it is a completely asynchronous set-
ting) or an an instance of HybTripleSh (if it is a hybrid setting). (2) The parties
then execute an instance of ACS to decide on a common set Com of 3t+1 dealers
who have correctly shared multiplication triples in their respective instances of
TripleSh/HybTripleSh. (3) Finally the parties execute the triple-extraction proto-
col TripExt on the triples shared by the parties in Com to extract 
· t2 = (cM+cR)
random shared multiplication triples. Now depending upon whether we use the
protocol TripleSh or HybTripleSh above, we get either a completely asynchronous

preprocessing phase protocol PreProc involving an error of at most t · 3t
|F| =

3t2

|F|
in the output or an error-free preprocessing phase protocol HybPrePro for the
hybrid setting. The output triples will be private, as the multiplication triples
of the honest dealers in Com are random and private.

8 The New AMPC Protocols

Once we have a preprocessing phase protocol, the online phase protocol for the
shared circuit evaluation is straight forward (as discussed in the introduction);
we refer to the full version of the paper for complete details. We note that
in our hybrid AMPC protocol, during the offline phase, apart from t-sharing
of (cM + cR) random multiplication triples, the parties generate t-sharing of
n · (t + 1) additional multiplication triples. The additional triples are used to
enforce “input provision” from all the n parties during the online phase by using
the method of [4]; see the full version of the paper for details.

Theorem 1 (The AMPC Theorem). Let f : Fn → F be a function expressed
as an arithmetic circuit over a finite field F, consisting of cM and cR multipli-
cation and random gates. Then for every possible Adv, there exists a statistical
AMPC protocol with error probability at most 2−κ to securely compute f , pro-
vided |F| ≥ max{3t2 · 2κ, 2n} for a given error parameter κ. The protocol incurs
communication of O((cM+cR)n) elements and broadcast of O(n3) elements from
F and requires two invocations to ACS and n invocations to Rand.

If the first communication round is synchronous, then there exists a perfect
AMPC protocol to securely compute f , provided |F| ≥ 2n. In the protocol, the
inputs of all (the honest) parties are considered for the computation. The protocol
requires communication of O((cM + cR)n+n

3) and broadcast of O(n3) elements
from F. It also requires two invocations to ACS and n2 invocations to ABA.
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5. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

6. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC, pp. 52–61 (1993)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

8. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience. In: PODC, pp. 183–192 (1994)

9. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

10. Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol. In: PODC,
pp. 154–162 (1984)

11. Canetti, R.: Studies in secure multiparty computation and applications. PhD thesis,
Weizmann Institute, Israel (1995)
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Abstract. We demonstrate the feasibility of end-to-end communication
in highly unreliable networks. Modeling a network as a graph with ver-
tices representing nodes and edges representing the links between them,
we consider two forms of unreliability: unpredictable edge-failures, and
deliberate deviation from protocol specifications by corrupt and mali-
ciously controlled nodes.

We present a routing protocol for end-to-end communication that
is simultaneously resilient to both forms of unreliability. In particular, we
prove that our protocol is secure against arbitrary actions of the corrupt
nodes controlled by a polynomial-time adversary, achieves correctness
(Receiver gets all of the messages from Sender, in-order and without
modification), and enjoys provably optimal throughput performance, as
measured using competitive analysis. Competitive analysis is utilized to
provide protocol guarantees again malicious behavior without placing
limits on the number of the corrupted nodes in the network.

Furthermore, our protocol does not incur any asymptotic memory
overhead as compared to other protocols that are unable to handle ma-
licious interference of corrupt nodes. In particular, our protocol requires
O(n2) memory per processor, where n is the size of the network. This
represents an O(n2) improvement over all existing protocols that have
been designed for this network model.

Keywords: Network Routing, Asynchronous Protocols, Multi-Party
Computation with Dishonest Majority, Fault Localization, End-to-End
Communication, Competitive Analysis, Communication Complexity.

1 Introduction

With the immense range of applications and the multitude of networks encoun-
tered in practice, there has been an enormous effort to study routing in various
settings. In the present paper, we investigate the feasibility of routing in a net-
work in which neither the nodes nor the links are reliable.
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We adopt the same definition of unreliability (with respect to both links and
nodes) as [17]. Namely, for the network links, we do not assume any form of
stability: the topology of the network is dynamic (links may spontaneously fail
or come back to life at any time), transmission time across each link may vary
from link to link as well as across the same link from one transmission to the next
(i.e. asynchronous edges), and there is no guarantee enough links are available
(even over time) for communication to even be possible.

Meanwhile, unreliability of network nodes means that they may actively and
maliciously deviate from protocol specifications, attempting to disrupt commu-
nication as much as possible. In particular, a malicious adversary may corrupt
an arbitrary subset of nodes, taking complete control over them and coordinate
attacks to interfere with communication between the uncorrupt nodes.

Admittedly, few guarantees can be achieved by any protocol that is forced
to operate in networks with so few assumptions. Indeed, the absence of any as-
sumption on connectivity means that successful routing may be impossible, for
instance if all of the links remain forever inactive. Therefore, instead of measur-
ing the efficacy of a given protocol in terms of its absolute performance, we will
employ competitive analysis to evaluate protocols: the throughput-performance
of a given protocol with respect to the network conditions encountered will be
compared to the performance of an ideal protocol (one that has perfect infor-
mation regarding the schedule of active/inactive links and corrupt nodes, and
makes perfect routing decisions based on this information).

The combination of this strong notion of unreliability together with the use of
competitive analysis provides a meaningful mechanism to evaluate routing pro-
tocols in networks that demonstrate unreliability in unknown ways. For example,
we are able to compare protocols that route in networks that are susceptible to
all of the above forms of unreliability, but e.g. remain stable most of the time
with respect to the edges (or alternatively e.g. most of the nodes remain uncor-
rupted). Therefore, by allowing networks to exhibit all forms of unreliability, we
compromise absolute performance for robustness. That is, no protocol will route
packets quickly through a network that displays all forms of unreliability, but
protocols with high competitive-ratio are guaranteed to do as well as possible,
regardless of the actual network conditions.

In Section 2 we provide a formal model for unreliable networks and offer
definitions of throughput and security in this model. Section 3 describes a protocol
that is provably secure and optimal with respect to throughput-efficiency (as
measured via competitive-analysis), and requires reasonable memory of internal
nodes. We emphasize that the focus of this paper is on the theoretical feasibility
of routing in highly unreliable networks, and no attempt has been made to
minimize constants or prototype our protocol in live experiments.

1.1 Previous Work

Development and analysis of routing protocols relies heavily on the assumptions
made by the network model. In this section, we explore various combinations
of assumptions that have been made in recent work, highlighting positive and
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negative results with respect to each network model, emphasizing clearly which
assumptions are employed in each case. Since our work focuses on theoretical
results, we do not discuss the vast amount of work regarding routing issues for
specific network systems encountered in practice, e.g. TCP, BGP, OSPF, etc. In
the presence of adversarial conditions, these protocols often try to achieve “best
effort” results instead of guaranteeing eventual delivery of all messages.

The amount of research regarding network routing and analysis of routing
protocols is extensive, and as such we include only a sketch of the most related
work, indicating how their models differ from ours.

End-to-End Communication: While there is a multitude of problems that in-
volve end-to-end communication (e.g. End-to-End Congestion Control, Path-
Measurement, and Admission Control), we discuss here work that consider net-
works whose only task is to facilitate communication between the Sender and
Receiver. Some of these include a line of work developing the Slide protocol
(the starting point of our protocol): Afek and Gafni and Rosen [2], Awerbuch
et al. [11], Afek et al. [1], and Kushilevitz et al. [22]. The Slide protocol (and
its variants) have been studied in a variety of network settings, including multi-
commodity flow (Awerbuch and Leighton [10]), networks controlled by an online
bursty adversary (Aiello et al. [3]), synchronous networks that allow corruption of
nodes (Amir et al. [6]). Bunn and Ostrovsky consider in [17] an identical network
model to the one considered in the present paper, and prove a matching upper
and lower bound on optimal throughput performance for this model. However,
the mechanisms they employ to handle malicious activity is extremely expensive
(in terms of memory); indeed an open problem posed in [17] was whether a pro-
tocol can achieve security against malicious nodes at no extra (asymptotic) cost
with respect to memory. We answer this question affirmatively in this paper,
presenting a protocol that reduces memory requirements by a factor of n2 (from
Θ(n4) to Θ(n2), for networks with n nodes).

Fault Detection and Localization Protocols: There have been a number of papers
that explore the possibility of corrupt nodes that deliberately disobey protocol
specifications in order to disrupt communication. In particular, there is a recent
line of work that considers a network consisting of a single path from the sender to
the receiver, culminating in the recent work of Barak et al. [12] (for further back-
ground on fault localization see references therein). In this model, the adversary
can corrupt any node (except the sender and receiver) in an adaptive and malicious
manner. Since corrupting any node on the path will sever the honest connection
between sender and receiver, the goal of a protocol in this model is not to guarantee
that all messages sent are received. Instead, the goal is to detect faults when they
occur and to localize the fault to a single edge.

Goldberg et al. [20] show that a protocol’s ability to detect faults relies on the
assumption that One-Way Functions (OWF) exist, and Barak et al. [12] show
that the (constant factor) overhead (in terms of communication cost) incurred for
utilizing cryptographic tools (such as MACs or Signature Schemes) is mandatory
for any fault-localization protocol. Awerbuch et al. [9] also explore routing in the
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Byzantine setting, although they do not present a formal treatment of security,
and [12] gives a counter-example that challenges their protocol’s security.

Fault Detection and Localization protocols focus on very restrictive network
models (typically synchronous networks with fixed topology and some connectiv-
ity assumptions), and throughput-performance is usually not considered when
analyzing fault detection/localization protocols.

Competitive Analysis: Competitive Analysis was first introduced by Sleator and
Tarjan [26] as a mechanism for measuring the worst-case performance of a pro-
tocol, in terms of how badly the given protocol may be out-performed by an
off-line protocol that has access to perfect information. Recall that a given pro-
tocol has competitive ratio 1/λ (or is λ-competitive) if an ideal off-line protocol
has advantage over the given protocol by at most a factor of λ.

One place competitive analysis has been used to evaluate performance is the
setting of distributed algorithms in asynchronous shared memory computation,
including the work of Ajtai et al. [5]. This line of work has a different flavor than
the problem considered in the present paper due to the nature of the algorithm
being analyzed (computation algorithm versus network routing protocol). In
particular, network topology is not a consideration in this line of work (and
malicious deviation of processors is not considered).

Competitive analysis is a useful tool for evaluating protocols in unreliable
networks (e.g. asynchronous networks and/or networks with no connectivity
guarantees), as it provides best-possible standards (since absolute performance
guarantees may be impossible due to the lack of network assumptions). For a
thorough description of competitive analysis, see [14].

Max-Flow and Multi-Commodity Flow: The Max-Flow and Multi-Com- modity
Flow models assume synchronous networks with connectivity guarantees and
incorruptible nodes (max-flow networks also typically have fixed topology and
are global-control: routing protocols assume nodes can make decisions based on a
global-view of the network; as opposed to only knowing what is happening with
adjacent links/nodes). There has been a tremendous amount of work in these
areas, see e.g. Leighton et al. [23] for a discussion of the two models and a list
of results, as well as Awerbuch and Leighton [10] who show optimal throughput-
competitive ratio for the network model in question.

Admission Control and Route Selection: There are numerous models that are
concerned with questions of admission control and route selection: The Asyn-
chronous Transfer Model (see e.g. Awerbuch et al. [8]), Queuing Theory (see e.g.
Borodin and Kleinberg [15] and Andrews et al. [7]), Adversarial Queuing Theory
(see e.g. Broder et al. [16] and Aiello et al. [4]). For an extensive discussion about
these research areas, see [25] and references therein.

The admission control/route selection model assumes synchronous commu-
nication and incorruptible nodes and makes connectivity/liveness guarantees.
Among the other options (fixed or dynamic topology, global or local control),
each combination has been considered by various authors, see the above reference
for further details and results within each specific model.
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1.2 Our Results

We consider the feasibility of end-to-end routing in highly unreliable networks,
where unreliability is encountered with respect to both the network’s edges and
its nodes. In particular, we consider asynchronous networks with dynamic topol-
ogy and no connectivity guarantees; comprised of corruptible nodes that may
deviate from protocol specifications in a deliberately malicious manner.

We present a protocol that routes effectively in this network setting, utilizing
standard cryptographic tools to guarantee correctness with low memory burden
per node. We use competitive-analysis to evaluate the throughput-efficiency of
our protocol, and demonstrate that our protocol achieves optimal throughput.
Our protocol therefore represents a constructive proof of the following theorem
(see Section 2 for definitions of our network model and the above terms):

Theorem 1. Assuming Public-Key Infrastructure and the existence of a group-
homomorphic encryption scheme, there exists a routing protocol that achieves
correctness and optimal competitive-ratio 1/n in a distributed asynchronous net-
work with bounded memory Θ(n2) and dynamic topology (and no connectivity
assumptions), even if an arbitrary subset of malicious nodes deliberately disobey
the protocol specifications in order to disrupt communication as much as possible.

As mentioned in Section 1.1, our protocol solves an open problem from [17],
which was to provide provable security (while maintaining optimal throughput)
at no additional cost (in terms of processor memory) over protocols that do not
provide security against corrupt nodes. Our protocol utilizes novel techniques to
achieve exactly this: memory is reduced from1 Θ(n4) to Θ(n2), which matches
the memory requirements of a corresponding (insecure) protocol of [1]. We pro-
vide here a brief overview of the new insights that enabled us to achieve this.

We begin by describing why the Θ(n4) bits of memory per node was required
in [17] to ensure security. Consider the packet-replacement adversarial strategy,
where corrupt nodes replace new packets they receive with duplicate copies of old
packets that they have already transferred, thereby effectively deleting all new
packets the Sender inserts. The protocol of [17] protected against this strategy
by having each node maintain a signed transaction with each of its neighbors,
recording the number of times every packet was passed between them. While this
approach ensures that a node performing packet-replacement will be caught, it
is extremely costly in terms of required memory: Each node has to remember,
for every packet p it encountered, the number of times it sent/received p along
each of its adjacent edges. For networks with n nodes, since there were Θ(n3)
relevant packets2 and a node may have Θ(n) neighbors, the memory burden of
storing this transaction information was Θ(n4). Not only did this large memory
1 These bounds ignore the cost of security parameter k and bandwidth parameter P ,

which are treated as constants. Including them explicitly would yield memory costs
of Θ(kPn4) for the protocol of [17] versus Θ(kPn2) here.

2 The n3 appearing here is not a bound on the size of the input stream of packets
(which can be any arbitrarily large polynomial in n); it is an upper-bound on the
number of packets being stored by the internal nodes at any time.



408 P. Bunn and R. Ostrovsky

complexity mean the protocol of [17] was unlikely to be feasibly implemented
in practice, it was also the case that the cost of n4 for storing the transaction
history (for the purpose of identifying corrupt behavior) far out-weighed the per-
node memory costs of the data packets being transferred (n2), so the memory
resources were being consumed by network monitoring as opposed to routing.

The present paper overcomes both of these issues, reducing the overall mem-
ory burden to Θ(n2), as well as allocating the majority of resources to routing
instead of monitoring. In order to achieve this, we had to abandon the idea of
tracking each individual packet, and develop a novel technique to address packet-
replacement. We began by generalizing the per-packet tracking of [17] as follows:
We partition the D = Θ(n3) packets to be sent into K sets {S1, . . . ,SK} (we
will optimize for the value of K(k), which depends on the security-parameter
k, in Section 3), and then we have nodes record transaction information with
their neighbors on a per-set basis rather than a per-packet basis. Namely, nodes
maintain K counters of how many packets in each set they have transferred with
each neighbor, so that if a packet p ∈ S is transferred between two nodes, the
nodes increment a counter for set S. In this way, if a malicious node replaces
p ∈ S with p′ ∈ S ′, the per-set counters will help in detecting this if S 	= S ′.

With this generalization, observe that as K varies in [1, D], there is a trade-off
in the memory burden of storing the transactions versus the probability of pro-
tecting against packet-replacement: smaller values of K result in lower per-node
memory but a higher probability that a node performing packet-replacement
can get away with it. The primary technical achievement of this paper was in
developing a mechanism that guarantees that any packet-replacement strategy
performed by malicious node(s) will succeed only with negligible probability,
even for small values of K.

We achieve this by first using error-correction to ensure that our protocol is
robust enough to handle minor amounts of packet-replacement and still transmit
messages, so that in order to impede communication via the packet-replacement
strategy, a large number of packets must be replaced. Next, we observe that if
a malicious node replaces a packet p ∈ S with p′ ∈ S ′, then if the choices of p
and p′ are uniformly random (among the D total packets), then the probability
that S = S ′ is roughly 1/K. By using cryptography, we are able to obfuscate the
partitioning of packets into sets in a manner that is invisible to all nodes except
the Sender, and we demonstrate how this reduces any adversarial strategy of
packet-replacement to the uniform case of replacing one packet with a randomly
chosen second packet. With this reduction in hand, it becomes a straightforward
probabilistic analysis for choosing an appropriate value for the parameter K so
as to minimize memory burden and still guarantee (with negligible probability
of error) that packet-replacement will be detected. Details of the protocol and
this analysis can be found in Section 3.

2 The Model

In this section, we describe the model in which we will be analyzing routing
protocols. The network is viewed as a graph G with n vertices (or nodes), two
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of which are designated as the Sender and Receiver. The Sender has a stream of
messages {m1,m2, . . . } it wants to transmit through the network to the Receiver.

For ease of discussion, we assume all edges in the network have a fixed band-
width/capacity, and this quantity is the same for all edges. We emphasize that
this assumption does not restrict the validity of our claims in a more general
model allowing varying bandwidths, but is only made for ease of exposition. We
will use the following terminology throughout this paper (see Section 3.1 for the
protocol description and explanation of these terms an how they are used):

Definition 2. Let P denote the bandwidth (e.g. in bits) of each edge. A packet
(of size ≤ P ) will refer to any bundle of information sent across an edge. A
message refers to one of the Sender’s input mi, and we assume without loss
of generality that each message is comprised of Θ(kPn3) bits (k is the security
parameter; see below). A (message) codeword refers to an encoded message, which
will be partitioned into codeword parcels, whose size is small enough such that
one codeword parcel (plus some control information) fits in the bandwidth of an
edge P . More generally, we will refer to the various components of a packet as
parcels. A (message) transmission consists of the rounds required to send a single
codeword from Sender to Receiver.

We model asynchronicity via an edge-scheduling adversary A that controls edges
as follows. A round consists of a single edge E(u, v) (chosen by the adversary)
being activated:
1. If A has at least one packet from u to be sent to v, then A delivers exactly

one of them (of A’s choosing) to v; same is done for one packet from v to u
2. After seeing the delivered packet, u (respectively. v) chooses the next packet

to send v (respectively. u), and gives it to A, who will store it until the next
round that E(u, v) is activated

If u does not have a packet it wishes to send v in Step (2), then u can choose
to send nothing. Alternatively, u may send multiple packets to A in Step 2, but
only one of these packets (of A’s choosing) gets delivered in Step 2 of the next
round E(u, v) is activated. The Adversary does not send anything to v in Step
(1) if it is not storing a packet from u to v during round E(u, v).

Definition 3. A packet will be said to be in an outstanding request if u has sent
the packet to A as in Step (2) of some round, but that packet has not yet been
delivered by A.

Aside from obeying the above specified rules, we place no additional restriction
on the edge-scheduling adversary. In other words, it may activate whatever edges
it likes (this models the fact our network makes no connectivity assumptions),
wait indefinitely long between activating the same edge twice (modeling both
the dynamic and asynchronous features of our network), and do anything else it
likes (so long as it respects steps (1) and (2) above each time it activates an
edge) in attempt to hinder the performance of a routing protocol.

In addition to the edge-scheduling adversary, our network model also allows for
a polynomially bounded (in number of nodes n and a security parameter k) node-
controlling adversary to corrupt the nodes of the network. The node-controlling
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adversary is malicious, meaning that it can take complete control over the nodes
it corrupts and force them to deviate from any protocol in whatever manner it
likes. We further assume that the node-controlling adversary is adaptive, which
means it can corrupt nodes at any stage of the protocol, deciding which nodes to
corrupt based on what it has observed thus far. We do not impose any “access-
structure” limitations on the node-controlling adversary: it may corrupt any
nodes it likes (although if the Sender and/or Receiver is corrupt, secure routing
between them is impossible). We say a routing protocol is correct (or secure) if
the messages reach the Receiver in-order and unaltered.

The separation of the two adversaries (edge-scheduling and node-controlling)
into two distinct entities is solely for conceptual purposes to emphasize the nature
of unreliability in the edges versus the nodes. For ease of discussion, we will
often refer to a single adversary that represents the combined efforts of the
edge-scheduling and node-controlling adversaries.

Finally, our network model is on-line and distributed, in that we do not assume
that the nodes have access to any information (including future knowledge of
the adversary’s schedule of activated edges) aside from the packets they receive
during a round they are a part of. Also, we insist that nodes have bounded
memory3 which is at least Ω(n2).

Our mechanism for evaluating the throughput performance of protocols in this
network model will be as follows: Let fAP : N→ N be a function that measures,
for a given protocol P and adversaryA, the number of messages that the Receiver
has received as a function of the number of rounds that have passed. Note that
in this paper, we will consider only deterministic protocols, so fAP is well-defined.
The function fAP formalizes our notion of throughput.

We utilize competitive analysis to gauge the throughput-performance of a
given protocol against all possible competing protocols:

Definition 4. We say that a protocol P has competitive-ratio 1/λ (respectively
is λ-competitive) if there exists a constant c and function g(n, C) (where C is
the memory bound per node) such that for all possible adversaries A and for all
x ∈ N, the following holds for all protocols P ′:4

fAP′(x) ≤ (c · λ) · fAP (x) + g(n,C) (1)

Note that while g may depend on the network size n and the bounds placed on
processor memory C, both g and c are independent of the round x and the choice
of adversary A. Also, equation (1) is only required to hold for protocols P ′ that
never utilize a corrupt node once it has been corrupted.

We assume a Public-Key Infrastructure (PKI) that allows digital signatures.
In particular, before the protocol begins we choose a security parameter suffi-
ciently large and run a key generation algorithm for a digital signature scheme,

3 For simplicity, we assume all nodes have the same memory bound (which may be a
function of the number of nodes n and security parameter k), although our argument
can be readily extended to handle the more general case.

4 λ is taken as the infimum of all values satisfying (1), and is typically a function of n.
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producing n = |G| (secret key, verification key) pairs (sku, vku). As output to
key generation, each node u ∈ G is given its own private signing key sku and
signature verification keys vkv for each v ∈ G. In particular, this allows Sender
and Receiver to sign messages to each other that cannot be forged (except with
negligible probability in the security parameter) by any other node in the system.

We also assume the existence of a group-homomorphic encryption scheme E :

E : G → H, with E(g1 ◦G g2) = E(g1) ◦H E(g2),

where G and H are groups5 and ◦G (respectively ◦H) represents the group oper-
ation on G (respectively H). Note that such a scheme exists under most of the
commonly used cryptographic assumptions, including factoring [24], discrete log
[19], quadratic residuosity [21], and subgroup decision problem [13]. We extend
our encryption scheme to ZKN in the natural way:

E : ZN×· · ·×ZN → H×· · ·×H via E(g1, . . . , gK) := (E(g1), . . . , E(gK))

Finally, we assume that internal nodes have capacity C ∈ Ω(Pn2) (and in
particular C ≥ 24Pn2), and that P = Ω(k2 + logn).

3 Routing Protocol

We now present a routing protocol that enjoys competitive-ratio 1/n with respect
to throughput (which is optimal, see [17]) in networks modelled as in Section
2. We give an abbreviated description of the protocol in Section 3.1, and state
the lemmas leading to Theorem 1 in Section 3.2 (due to space constraints, we
present only the main features of our protocol; minor optimizations, technical
details, and proofs are omitted, but can be found in the extended version [18]).

3.1 Description of the Routing Protocol

The starting point of our protocol will be the Slide Protocol, introduced by
Afek et at. [2], and further developed in a series of works: [11], [1], [22], [6],
and [17]. The original Slide protocol assumes that nodes have buffers (viewed as
stacks) able to store C = Θ(n2) packets at any time, and simply put, it calls
for a node u to send a packet to node v across an activated edge E(u, v) if v is
storing fewer packets in its buffer than u.

The Slide protocol is robust in its ability to handle edge-failures (modelled
here via the edge-scheduling adversary). This robustness is achieved via the
use of error-correction to account for packets that get stuck in the buffer of a
node that became isolated from the rest of the network due to edge-failures. In
particular, each message is expanded into a codeword, which is then partitioned
5 |G| should be larger than the total number of codeword parcel transfers (during

any transmission) between two nodes, when at least one of the nodes is honest.
|G| ∈ Ω(kn4) is sufficient (see protocol description in Section 3.1).
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into D := knC/λ parcels {pi}, where λ is the tolerable error rate and k is
the security parameter. Recall from Definition 2 that without loss of generality,
messages have size O(kPn3), and more precisely, messages are small enough so
that a codeword parcel (plus some control information of Θ(k2 + logn) bits,
see below) can be transmitted in a single round; i.e. |pi| ≤ P − Θ(k2 + logn).
The Receiver can decode the codeword and obtain the original message block
provided he receives (1− λ)D codeword parcels.

Our protocol modifies the original Slide protocol to provide security against
a node-controlling adversary at no additional (asymptotic) cost: we achieve op-
timal throughput (competitive-ratio 1/n), and the memory per internal node is
within a factor of two of the memory requirement of the original Slide protocol.
We obtain security against malicious nodes by including extra control information
(described below) with each packet transfer, and by having nodes sign all com-
munications. As mentioned in Section 1.2, our protocol closely resembles that
of [17], except the nature of the control information we use to provide security
does not require any extra (asymptotic) memory costs.

In the following subsections, we present our protocol by describing the control
information, routing rules, and blacklist.

Control Information. There are four components of the control information;
every packet has room to store exactly one parcel of each type of control infor-
mation and one codeword parcel:

1. Sender/Receiver Alerts. The Sender’s alert consists of up to 2n parcels, all
time-stamped with the index of the present codeword transmission. The
first of these indicates the status (S1 or F2-F4, see below) of the previous
transmission; and the next n parcels give the time-stamp of the most recent
(up to) n transmissions that failed (F2-F4). The final n − 1 parcels are for
each of the nodes (excluding the Sender), indicating if that node is blacklisted
or eliminated (see below), and if so the transmission this happened.

The Receiver’s alert consists of a single parcel indicating either that the
Receiver successfully decoded the current codeword, or that it has received
inconsistent potential information (see below).

2. Potential Information. One parcel per node containing that node’s potential
drop Φu (see Definition 6).

3. Status Information. For each of its neighbors v, a node will maintain up-to-
date information regarding all codeword parcel transfers with that neighbor
for the current codeword transmission: the net potential drop Φu,v and ob-
fuscated count Ψu,v (see Definitions 6 and 7 below).

4. Testimonies. At the end of a transmission T, a node will have one final (current
as of the end of the transmission) status parcel (Φu,v, Φv,u, Ψu,v, Ψv,u) for each
neighbor. If the node later (in a future transmission) learns that T failed, then
these n − 1 status parcels become the node’s testimony for transmission T.
Since nodes do not participate in routing codeword parcels until the Sender
has its testimony (see blacklist below), each node will only ever have at most
one transmission T for which it needs to remember its own testimony; thus,
at any time, there are at most (n− 1)2 testimony parcels in the network.
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Each of these types of control information serve a separate function. The
Sender’s alert parcels mark the start of a new codeword transmission, while the
Receiver’s alert marks the end of one (see below). Potential parcels are used to
identify inconsistencies in potential differences, in which case the Receiver alerts
a failed transmission (see below). Testimony parcels are ultimately used by the
Sender to identify a corrupt node.

Unlike all other control information, status parcels are not transferred through
the network (ultimately to Sender or Receiver), but rather are only kept locally
and transferred between the two nodes for which the status parcel is keeping up-
to-date records for the current transmission. We now formalize these concepts.

Definition 5. The height Hu of an internal node u is the number of codeword
parcels u is currently storing in its buffer (including those in outstanding requests,
of which u is maintaining a copy). The Sender’s height is defined to be the
constant C (the capacity of an internal node’s buffer); and the Receiver’s height
is defined to be zero.

Definition 6. The potential difference φu,v of two nodes u and v is the differ-
ence in their heights (always measured as a positive quantity): φu,v := |Hu−Hv|.
The directional potential difference Φu,v over an edge E(u, v) will be the sum of
the potential differences for the rounds when u transferred v a codeword parcel
minus the sum of the potential differences for the rounds when v transferred u a
codeword parcel:6

Φu,v :=
∑
u→v

φu,v −
∑
v→u

φu,v (2)

The potential drop over an edge E(u, v) will be the absolute value of the differ-
ence of the directional potential differences across that edge: |Φu,v − Φv,u|. The
potential drop at a node u will be the sum of the potential drops over all its
adjacent edges:

Φu :=
∑
v∈G

|Φu,v − Φv,u| (3)

The condition that indicates inconsistency in potential difference (see Case
F3 below) is if:

∑
u∈G Φu > kCD.

Recall from Section 2 the existence of a homomorphic encryption scheme
E on ZKN . At the start of each codeword transmission, the Sender randomly
partitions the D codeword parcels into K := k sets, making a uniform random
choice for each parcel. Define the distribution χ

T
: D → ZKN (which depends

on the codeword transmission T) to represent these assignments; i.e. if parcel p
has been assigned to the ith set, then χ(p) is the unit vector in ZKN with a ‘1’
in the ith coordinate. Note that only the Sender knows χ, and it will remain
6 Formally, for a packet transferred during Step (1) of an edge activation, the heights

used to compute the potential difference are not the current heights of the nodes, but
rather the heights each of the nodes had the previous time the edge was activated.
See Figure 1, in which these heights are denoted as Hv and Hold.
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obfuscated from all internal nodes, as the only information they will ever see are
the encrypted values E(χ(p)) (which are computed by the Sender and bundled
in the same packet as the codeword parcel, so that (p, E(χ(p))) will travel in the
same packet as it is transferred through the network to the Receiver).
Definition 7. The directed obfuscated count Ψu,v between two nodes is an (en-
crypted) K-tuple, in which the ith coordinate represents the number of codeword
parcels p with χ(p) = i that have been transferred from u to v. Since p and
E(χ(p)) are always passed together in a single packet, it can be computed by any
internal node along any of its adjacent edges as:

Ψu,v :=
∑
p∈Pu,v

E(χ(p)), (4)

where Pu,v denotes the multiset of codeword parcels transferred from u to v. The
obfuscated count Ψu at u is:

Ψu :=
∑
p∈u

E(χ(p)), (5)

where the sum is taken over the (current codeword) parcels p that u is storing at
the end of the current transmission. Notice that the homomorphic properties of
E allow the nodes to compute the right-hand-side of (4) and (5).
Routing Rules. Figure 1 gives a succinct description of a node’s instructions
for when it is part of an activated edge.

Routing Rules for node u along E(u, v)
# Notation: (Hold, pold, E(χ(pold))) denotes prev. ht. and codeword parcel u sent v;
Input (Received via A):
Height Hv of v, codeword parcel p and E(χ(p)),
Control Information: alert parcel, status parcel, potential parcel, testimony parcel
DO:
Verify status parcel and all signatures are valid, if not, Skip to Send Next Packet
Store alert parcel, potential parcel, and testimony parcel
If u or v is blacklisted or eliminated, or u hasn’t rec’d all parcels from Sender’s alert:

Skip to Send Next Packet
If u is the Sender and Hv < C + 2n− C/2n:

Insert pold: Ignore p, Delete pold, Update Φu,v, Ψu,v, and Φu

If u is the Receiver and Hv > C/2n− 2n:
Receive p: Store p, Update Φv,u, Ψv,u, and Φu

If u is not Sender or Receiver and Hold > Hv − 2n+ C/2n:
Send pold: Ignore p, Delete pold, Update Φu,v, Ψu,v, and Φu

If u is not Sender or Receiver and Hold < Hv + 2n− C/2n:
Receive p: Store p (and keep pold), Update Φv,u, Ψv,u, and Φu

Send Next Packet

Fig. 1. Succinct Description of Packet Transfer Rules of Our Protocol

Recall that Step 2 of an activated edge calls for node u to send a packet to A
that it wishes to deliver to v next time E(u, v) is activated. The rules for how u
decides which data to include in the packet (see Send Next Packet in Figure 1):
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1. Current Height Hu: See Definition 5
2. Codeword Parcel7 (p,E(χ(p)): Randomly selected among those not in out-

standing request
3. Control Information: Send up to one parcel of each type of control in-

formation, selected as follows. Let N1, N2, . . . , Nn denote the nodes and
A = A(u, v) the number of times E(u, v) has been activated so far. Then u
includes the following parcels of control information:

- Alert Parcel: Receiver’s alert (if u has it); else next Sender alert parcel
- Status Information: (Φu,v, Φv,u, Ψu,v, Ψv,u)
- Potential Information: Let i ≡ A (mod n); select parcel ΦNi

- Testimony: Let i ≡ A (mod n); select next testimony parcel of Ni’s

The Blacklist. The end of each transmission is marked by one of the following:

S1 Sender gets Receiver alert indicating successful decoding of codeword
F2 Sender gets Receiver alert indicating inconsistency in potential differences
F3 Sender inserted all (current) codeword parcels (and S1 did not occur)
F4 Sender is able to identify a corrupt node

In the case of S1, the codeword was delivered successfully, and the Sender will
begin the next codeword transmission. In the case of F4, the Sender will re-start
the transmission with the same codeword and indicate (in the Sender alert) that
the corrupt node has been eliminated. All nodes are forbidden transferring code-
word parcels with eliminated nodes (a node always knows the list of eliminated
nodes before it has any codeword parcels to transfer; see Figure 1).

Cases F2 and F3 correspond to failed attempts to transfer the current code-
word due to corrupt nodes disobeying protocol rules. When a transmission T

fails as in cases F2 and F3, the nodes (excluding the Sender) that are not al-
ready on a blacklist or eliminated will be put on transmission T’s blacklist; more
generally, we will say a node is on the blacklist (or blacklisted) if there is some
transmission T for which the node is on T’s blacklist. Thus after a transmission
fails as in F2 or F3, every node (except for the Sender) is either eliminated or
blacklisted. As indicated in the Routing Rules of Figure 1, packets sent to/from
a blacklisted node will not contain a codeword parcel (just control information).
A node is removed from the blacklist either when the Sender has received its
complete testimony, or when a node is eliminated (whichever happens first). In
the former case, the Sender will add a new parcel to the Sender alert, simply
indicating the node has been removed from the blacklist. In the latter case, the
Sender will immediately end the transmission as in F4 (described above). We
will say a (non-eliminated) node participated in a transmission if that node was
not on the blacklist for at least one round of the transmission.
7 If at any time Φu > kCD, then u stops transferring codeword parcels (sending a

special indicator ⊥ for its height H). Since each codeword parcel transfer corresponds
in an increase of at least C/n - 2n = Θ(n) to Φu, this ensures honest nodes will
transfer at most O(k2n4) codeword parcels, and also bounds the number of distinct
signatures from u per transmission by O(k2n4)).
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If a node learns that it is on the blacklist for some transmission T (note that by
construction, T will necessarily be the previous transmission that the node partic-
ipated in), then the node constructs its testimony for T, which is the final values
of its status parcels along all its adjacent edges: {Φu,v, Φv,u, Ψu, Ψu,v, Ψv,u}v∈G.

3.2 Analysis of the Routing Protocol

We state here the main lemma that leads to Theorem 1 (due to space constraints,
the proof has been relegated to the extended version [18]). This lemma states
that if a corrupt node causes a transmission to fail as in F3 (e.g. by employing
packet replacement), then with overwhelming probability it can be identified due
to inconsistencies in the obfuscated counts.

Lemma 8. Suppose a transmission fails as in Case F3, and at some later point
the Sender has collected all of the testimonies from all nodes participating in that
transmission. The probability that the following is satisfied is negligible in k:∑

u∈G\{r,s}
Ψs,u =

∑
u∈G\{r,s}

(Ψu + Ψu,r) (6)

More precisely, (6) is satisfied with probability at most:
√
ek

(
√
2π)

k−1 .
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Abstract. We present a distributed asynchronous algorithm that, for
every undirected weighted n-node graph G, constructs name-independent
routing tables for G. The size of each table is Õ(

√
n ), whereas the

length of any route is stretched by a factor of at most 7 w.r.t. the
shortest path. At any step, the memory space of each node is Õ(

√
n ).

The algorithm terminates in time O(D), where D is the hop-diameter
of G. In synchronous scenarios and with uniform weights, it consumes
Õ(m

√
n + n3/2 min {D,

√
n }) messages, where m is the number of

edges of G.
In the realistic case of sparse networks of poly-logarithmic diameter,

the communication complexity of our scheme, that is Õ(n3/2), improves
by a factor of

√
n the communication complexity of any shortest-path

routing scheme on the same family of networks. This factor is provable
thanks to a new lower bound of independent interest.

Keywords: distributed routing algorithm, name-independent, compact
routing, bounded stretch.

1 Introduction

Message routing is a central activity in any interconnection network. Route effi-
ciency and memory requirements are two major central parameters in the design
of a routing scheme. Routing along short paths is clearly desirable, and the stor-
age of the routing information at each node must also be limited to allow quick
routing decision, fast update, and scalability. There is a trade-off between the
route efficiency (measured in terms of stretch) and the memory requirements
(measured by the size of the routing tables). The shorter the routes, the larger
the routing tables. It is also desirable that routing schemes are universal, i.e.,
they apply to any topology, as the model of large dynamic networks cannot be
guaranteed. An additional desirable property of a routing scheme is to use ar-
bitrary routing addresses (say based on processor IDs or MAC addresses), and
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thus addresses independent of the topology. Such routing schemes are called
name-independent.

This paper focuses on distributed algorithms that can construct universal and
name-independent routing schemes for static networks. For practical use, it is
essential that such distributed algorithms be as fast as possible (typically linear
in the diameter) since the objective is to quickly update routing tables after
topological changes in the network. Naturally, to optimize the network trought-
put, a distributed algorithm must consume as few messages as possible. We
are therefore interested in time and communication complexities of distributed
routing schemes. There are well-established trade-offs between the stretch and
the memory for centralized routing schemes (see the related works part in Sec-
tion 1.4). In this paper we show some different trade-offs between the stretch,
the memory, and the communication complexity of distributed routing schemes.
The fundamental question we address is to determine whether or not theoretical
optimal space-stretch trade-offs can be achieved when time and communication
complexities are restricted.

1.1 Terminology and Models

We consider undirected weighted graphs with positive edge-weights. The aspect
ratio of a weighted graph G is the maximum ratio between any two edge-weights
in G. A shortest path between u and v in G is a path of minimum cost (the weight
sum of the path edges) connecting u to v in G, and this cost is the distance
between u and v. The hop-distance between u and v is the minimum number
of edges in a shortest path between u and v. The hop-diameter is the largest
hop-distance in the graph.

In the case of uniform weights, the aspect ratio is 1 and the hop-diameter
corresponds to the classical notion of diameter in unweighted graphs. It is well-
known that the asynchronous distributed Bellman-Ford algorithm can construct
a shortest-path spanning tree rooted at a node u in time h + 1, where h is the
height of the tree and also the maximum hop-distance between u and its leaves
(see [13]). This time is thus at most the hop-diameter of G plus one. The hop-
diameter plays an important role, not only in the time for computing a shortest-
path tree, but in the running time of all subsequent distributed subroutines using
this tree (e.g. for broadcasting).

A routing scheme on a family of graphs is an algorithm that produces, for
every graph G of the family, a routing algorithm for G. A routing algorithm is
in charge of delivering any message from every source to every destination node
in G. A name-independent routing algorithm must deliver messages assuming
that the destination names given at the sources are the original names of the
input graph.

The stretch factor of a routing algorithm is the maximum, over all source-
destination pairs (u, v), of the ratio between the cost of the route from u to v,
and the distance from u to v in G. So, shortest-path routing algorithms have
stretch factor exactly one. The round-trip stretch factor is the maximum ratio
between the total cost of the route going from u to v and back to u, and the
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distance from u to v plus the distance from v to u. This notion is naturally used
in the context of directed graphs [23], where the distance from u to v may differ
from the one from v to u. In this paper, graphs are undirected though. Note
that if the round-trip stretch is bounded above by s, then the average stretch
(average over all the source-destination pairs) is at most s.

The routing tables are the local data structures used by the routing algorithm
to perform routing. The working memory space (a.k.a. per-node state or topo-
logical memory) is the maximum memory space a node of the graph needs when
running the distributed routing scheme. If the working memory space is S, then
the routing tables have size at most S as well. The challenge is to design routing
schemes with working memory space that is sub-linear in n and not significantly
greater than the size of the final routing tables.

We assume a reliable asynchronous network, where a message sent along an
edge is received after an unpredictable but finite time. The time complexity
of a distributed algorithm A is the worst-case difference of time units between
the first emission of a message and the last reception of a message during any
execution of A, assuming the slowest message uses one time unit to traverse an
edge. The bit-message complexity of A is the worst-case total number of bits
exchanged along the edges of the graph during any execution of A. As in the
standard asynchronous model, processors have no synchronous wake-up: they
can either spontaneously wake up, or be activated when receiving a message.
We make no assumptions on the number of messages that can be transmitted
over a link in one time unit, and so we ignore congestion problems.

As specified by the name-independent model, we do not make any assump-
tion on the distribution of node identifiers, which are chosen by an adversary.
However, using hashing technique as explained in [4,8], we will assume that node
identifiers can be represented on O(log n) bits.

Each message of our distributed algorithm has a poly-logarithmic size. More
precisely, messages have size at most B = O(logW +min {D, logn} · logn) bits,
where W is the aspect ratio and D is the hop-diameter of the graph. We also
assume that each entry of the routing tables is large enough to receive B bits.
The size of a routing table is the number of its entries. We assume that whenever
a node receives a message on some incident edge, it can determine the weight of
that edge.

1.2 Our Results

We design a new distributed routing scheme and two lower bounds.

– We propose an asynchronous distributed name-independent routing scheme
for weighted n-node graphs of hop-diameter D. The stretch is 7 and the
round-trip stretch is 5. The time complexity is O(D), with a small hidden
constant (< 10). Moreover, at each time of the algorithm, the working mem-
ory space of each node is1 Õ(

√
n ). In particular, the routing tables have size

1 The notation Õ(f(n)) stands for a complexity in O(f(n) · logO(1) f(n)).
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Õ(
√
n ). In a synchronous scenario, and in the case of uniform weights, the

message complexity is Õ(m
√
n+ n3/2 min {D,

√
n }).

– For the realistic case of weighted sparse networks of poly-logarithmic hop-
diameter, the message complexity is Õ(n3/2). A simple variant of our algo-
rithm shows that, for this same family of networks, we can achieve stretch 5
with sub-linear routing tables and sub-quadratic message complexity. See
Table 1 for a summary.

Table 1. Fast distributed name-independent routing schemes for realistic weighted
graphs, i.e., with Õ(n) edges and logO(1) n hop-diameter. The “Memory” column stands
for working memory space and routing table size. Note that lower bounds are given in
bits or bit-messages.

Schemes Stretch Memory #Messages Time Reference
Distance or Path Vector 1 Ω(n) O(n2) O(D)

DistRoute(n1/2) 7 Õ(n1/2) Õ(n3/2) O(D) Corollary 1
DistRoute′(n2/3) 5 Õ(n2/3) Õ(n5/3) O(D) Corollary 2

Memory lower bound < 2k + 1 Ω((n log n)1/k) any any [2]
#Messages lower bound 1 any Ω(n2) o(n) Theorem 2

Time lower bound � n/(3D) any any Ω(D) Theorem 1

Our lower bounds show that time Ω(D) is indeed required for any constant
stretch, and that shortest-path routing requires Ω(n2) bit-message complexity
even on sparse graphs of logarithmic diameter. More precisely, we prove that:

(1) Every synchronous constant-stretch name-independent distributed routing
scheme requires time Ω(D) on unweighted graphs of diameter D. This bound
is independent of the bit-message complexity and the routing table size of
the scheme.

(2) There are unweighted n-node graphs of diameter O(log n) and with maxi-
mum degree 3 for which every synchronous distributed shortest-path routing
scheme (name-independent or not) of o(n) time complexity requires Ω(n2)
bit-message complexity.

For these lower bounds, we assume a synchronous scenario which also implies
the results for asynchronous scenarios. We also point the fact that we do not
make any restriction on the message length.

1.3 Discussion

Our first lower bound may seem trivial at first glance. It is indeed immedi-
ate to show that a time Ω(D) is required for shortest-path routing schemes.
Just consider for instance a path of D nodes and a source in the middle of the
path. However, this folklore lower bound is less straightforward when arbitrary
stretched routing schemes are considered. Let us stress that, for paths, the cow-
path routing algorithm [12,18] achieves stretch 9 without any routing tables!
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One may also think that the second lower bound is again folklore since clearly
a shortest-path routing scheme must send at least one message on each edge.
Otherwise subsequent routing queries will not be able to use all the edges of the
graph (and so cannot be a shortest-path routing). This gives a communication
complexity of Ω(n2) for dense graphs. However, this quadratic bound cannot be
guaranteed using the same argument for sparse graphs as stated by our lower
bound. An option to prove a quadratic bound for sparse graphs might be to show
that Ω(n) bits of information must be transmitted along long paths in the graph,
say paths of Ω(n) edges. Again, this cannot be achieved for poly-logarithmic
diameter graphs. Finally, we stress that the arguments of any formal proof must
take into account the time complexity of the routing scheme. This is because a
1-bit message can carry more than one bit of information. For instance a 1-bit
message can be sent during odd or even clock pulse to carry more information.
Senders could also decide to send 1-bit or 2-bit messages, so encoding extra
information with the message length.

Our distributed routing scheme, although universal, achieves better perfor-
mance when realistic networks are considered. By realistic networks we mean
sparse and small-diameter graphs, typically graphs with Õ(n) edges and poly-
logarithmic diameter. The classical Distance Vector and Path Vector routing pro-
tocols both achieve message complexity ofΩ(mn) = Ω(n2) for realistic networks,
whereas our scheme consumes at most Õ(n3/2) messages. This good theoretical
behavior is confirmed by experiments. We have implemented our routing scheme
on a fully distributed routing scheme simulator2. For instance, on CAIDA-2004
map3, our scheme4 produces an average stretch of 1.75 for 534 entry routing ta-
bles on average (maximum size is 1002), and this after exchanging a total of 55M
messages (synchronous scenario). Running Distance Vector on the simulator on
the same graph generates routing tables of 16K entries after exchanging 1,617M
messages. Note that our scheme reduces both the number of messages and the
number of entries by a factor close to 30.

Our scheme is widely inspired from the universal name-independent routing
scheme [4] that achieves the smallest possible stretch for routing tables of size
Õ(
√
n ). Following the work of [4], stretch-3 can be achieved at the price of

an extra communication cost factor of roughly
√
n over our stretch-7 scheme.

The communication complexity becomes therefore Ω(mn), which is as high as
the complexity of a shortest-path routing scheme. To implement the stretch-3
scheme of [4], we need to consider the set of vicinity balls touching the vicinity
ball of a given node u. Unfortunately, there are small diameter graphs where each
node has Θ(n) different touching vicinity balls, which implies a total volume
of Ω(n2) routing information to manage in the graph. This translates into a
Ω(n2) communication complexity. Designing a distributed routing scheme with
stretch 3 and o(n2) message complexity on small diameter graphs, if it exists,
requires another approach.

2 Source code available on demand.
3 It has 16K nodes and 32K edges.
4 More precisely, we run DistRoute(k) for k = 78, see Section 3.
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To conclude the discussion, let us stress that bounding the working memory
space of each node considerably reduces the set of standard tricks to decrease
communication complexity. For instance, when o(n) working memory space is
forced, then a simple broadcast in a spanning tree may cost O(m) messages
instead of O(n) messages (since a node cannot store all its children in the tree).
More generally, the γ-synchronizer methodology [9] cannot be applied, and the
use of sparse spanners (like in [14]) on which subsequent routines consume less
messages is problematic.

1.4 Related Works

The theory of name-independent routing schemes has a long history, and started
early with Kleinroch’s work about routing in the ARPANET. The first provable
trade-off between the size of the routing tables and the stretch appeared in [11].
In the line of hierarchical routing schemes initiated by Kleinroch et al. [19], the
authors have proposed a name-independent routing scheme of stretch 2k−1 with
routing tables of size Õ(n1/k) on average, where k � 1 is an integral parameter.
In [8], better space-stretch trade-offs have been proposed. In particular, the size
of the routing tables is bounded by Õ(n2/k) for each node, and not only on
average, and the stretch is in O(k2). However, the schemes assume polynomial
aspect ratio. They achieve a stretch 3 with routing tables of size Õ(n2/3), and
a stretch 5 for routing tables of size Õ(

√
n ). Finally, [3] proposed a scheme

with linear stretch O(k) for routing tables of size Õ(n1/k), and this for arbitrary
weighted graphs. According to the best current lower bounds, a linear stretch5

Ω(k) is optimal for routing tables of size Õ(n1/k). More precisely, [2] showed
that there are weighted depth-1 trees with edge-weights in {1, k} such that every
name-independent routing scheme of stretch < 2k + 1 requires Ω((n log n)1/k)-
bit routing tables. According to this lower bound, routing schemes of stretch < 5
require routing tables of Ω(

√
n logn ) bits (k = 2), and the best possible stretch

for o(n log n)-bit routing tables is � 3 (k = 1). Note that these lower bounds
apply to realistic graphs. A scheme with stretch-3 and Õ(

√
n )-bit routing tables

has been proposed in [4], which is therefore optimal in space and stretch.
Better stretch-space trade-offs can be achieved for more specific classes of

networks. Bounded growth [6] and bounded doubling dimension [1,20] graphs,
trees [21], planar and more generally minor-free unweighted graphs [5], sup-
port name-independent routing schemes of constant stretch and poly-logarithmic
routing tables.

For practical usage, several distributed routing schemes have been proposed
and implemented, and first of all distributed shortest-path routing schemes
(stretch 1). Distance Vector and Path Vector protocols are such distributed rout-
ing schemes. Based on Bellman-Ford algorithm, they produce after a time O(D)
shortest-path routing tables of linear size using O(mn) messages, for small aspect
ratio graphs. A variant of Bellman-Ford supporting an aspect ratio W > 1 uses
O(mn log(nW )) messages while preserving the time complexity. However paths

5 This holds also for the average stretch.
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are no longer shortest paths and may have stretch up to 3. The message com-
plexity of shortest-path routing has been reduced to O(n2 logn) in [7], degrading
the time complexity to O(D logn). Actually, 2n2 messages are enough [17], but
messages can be as large as Ω(n log (nW )) bits, whereas in Bellman-Ford based
routing schemes and in [7], messages have size O(log(nW )) bits.

As proved by the theoretical lower bounds, shortest-path routing has to be
scrapped right away if sublinear working memory space and sublinear routing
tables are required. In this spirit, [11] proposed a synchronous distributed routing
scheme with stretch 2 · 3k − 1 and working memory space of Õ(d + n1/k) for a
degree-d node. For k = 2, the working memory space and routing tables are
Õ(d +

√
n ), and the stretch is 17. In [24], a distributed implementation of a

stretch-7 routing scheme is presented. Routing tables have size Õ(
√
n ) but the

message complexity is not analytically bounded. Moreover, each entry in the
tables can be as large as Ω(D), and the working memory space as large as
Ω(d

√
n ) for a degree-d node. [25] proposed a variant of the routing scheme

of [4], and show experiments on synthetic power-law graphs and real AS-graphs.
For these unweighted graphs, the stretch is asymptotically 2, but it is unbounded
for general graphs, even unweighted ones. Techniques using sparse spanners, like
in [14,15], can achieve almost shortest paths with message complexity Õ(mnε1 +
n2+ε2) where 0 < ε1, ε2 < 1 are constants that can be arbitrarily chosen and
influence the stretch of the paths. We observe that for unweighted sparse graphs
of small diameter, the scheme requires at leastΩ(n2) messages and Ω(n) working
memory space.

As far as we know, no distributed name-independent routing scheme is able
to guarantee a bounded stretch and a sublinear working memory space.

In the next section, we present our lower bounds on the time and message
complexities. In Section 3, we formally present the performance of our distributed
routing scheme and give an overview of the scheme. Due to lack of space, details
of the proofs and of the distributed algorithm are omitted.

2 Lower Bounds

2.1 Time Lower Bound

We give a formal proof that Ω(D) time is required for any distributed rout-
ing scheme of constant stretch (the result extends to stretch as large as n/D).
Our proof is independent of the message and routing table sizes used by the
distributed routing scheme. The lower bound holds for single-source routing
schemes, a sub-class of routing schemes. A single-source routing algorithm can
only deliver messages from a fixed source node of the graph. And, a routing
scheme is single-source if the routing algorithms it produces are single-source.

A (d, k)-star is a rooted tree with dk + 1 nodes obtained by replacing each
edge of a K1,d graph, a star of degree d, by a path of k edges. The root is the
degree-d node.
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Theorem 1. Every synchronous distributed name-independent routing scheme
on the family of unweighted (d, k)-stars, and running in time t < k, produces a
route of length at least (2d− 1)(k − t) + t between the root and some leaf.

In particular, every synchronous distributed single-source name-independent
routing scheme on unweighted n-node graphs of diameter at most D ∈
{2, . . . , n− 1}, and of stretch factor at most 1

3n/D, requires a time Ω(D).

Note that for t = 0 (no pre-processing), the problem stated by Theorem 1 is
equivalent to the d-lane cow-path problem in which the distance to the destina-
tion, here k, is known at the source. Our bound gives a stretch of 2d− 1 which
is known to be optimal if the distance is known and no pre-processing is allowed
(cf. [12,18]).

2.2 Communication Complexity Lower Bound

Next, we prove that the o(n2) bit-message complexity for sparse graphs, as in
Corollary 1, cannot be achieved without degrading the stretch factor. Impor-
tantly, the bound holds independently of the compactness of the routing tables,
and of the message length.

Theorem 2. There are a constant λ > 0, and some unweighted n-node graphs
of diameter O(log n) and maximum degree 3, for which every synchronous
distributed shortest-path routing scheme (name-independent or not) of time
complexity at most λn requires Ω(n2) bit-message complexity.

3 An Asynchronous Distributed Routing Scheme

Our distributed routing scheme, denoted by DistRoute(k), assumes that each
node initially receives a color6 in {1, . . . , k}, where k is an integral parameter of
our scheme. In practice, each node picks its color independently at random in
{1, . . . , k}. However our scheme is deterministic. As we will see in Theorem 3,
the correctness of our scheme is independent of the node coloring, which is not
the case of the routing scheme of [4].

Theorem 3. Let G be a connected weighted n-node graph of hop-diameter D.
For every k-coloring of G, DistRoute(k) is a deterministic asynchronous dis-
tributed routing scheme for G. It runs in time O(D). The message complexity is
no more than O(n) times the number of messages that a single-source distributed
Bellman-Ford consumes in G.

The routing algorithm it produces has stretch 7, round-trip stretch 5, and uses
headers of O(min {D, logn} · logn) = O(log2 n) bits. Each routing decision takes
constant time, and the header of each routing message, once created at the source,
is modified at most once along the path to the destination.

6 We do not impose that neighbors get different colors.
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Our scheme directly depends on the asynchronous distributed Bellman-Ford that
can generateΩ(2n) messages in worst-case asynchronous scenarios and for graphs
of large aspect ratio (see [10]). So, in some occasions, our scheme may generate
an exponential number of messages. However, in a synchronous scenario and
for graphs of low aspect ratio, the message complexity is polynomial. Note that
it is well-known that the message complexity of the distributed Bellman-Ford
algorithm is polynomial on average, and even O(n2Δ3) with overwhelming prob-
ability, where Δ is the maximum degree of the graph [26].

The next result (Theorem 4) specifies the size of the routing tables and the
message complexity. Both complexities depend on the node coloring, the aspect
ratioW of the graph, and on synchrony. The parameters involved in the analysis,
namely n,m,D,W , are not known by the nodes when the distributed scheme
starts. We will essentially make the two following assumptions:

Random Coloring. The node coloring is uniformly random in {1, . . . , k}, and
k = nα for some constant α ∈ (0, 1). The results claimed under this stochas-
tic hypothesis then hold in expectation or with high probability (w.h.p.)7,
where the probabilities are computed over all k-colorings of the graph.

Synchronous Scenario. The network is synchronous. In that case, the dis-
tributed Bellman-Ford algorithm uses a polynomial number of messages.

Hereafter, we define ξ = 1 + D(1 − 1/W ). This value appears in the mes-
sage complexity of our scheme in synchronous scenarios. It corresponds to the
maximum number of times a node u changes its state when computing the hop-
distance to a node v. At each change, u sends a message to its neighbors. Observe
that for uniform weighted graphs ξ = 1 as W = 1.

Theorem 4. Let G be a connected weighted n-node graph of hop-diameter D,
with m edges, and with aspect ratio W . Under the random coloring hypothesis,
DistRoute(k) on G produces w.h.p. a working memory space and routing tables
of size O(k log k + n/k). Furthermore if the scenario is also synchronous, the
message complexity is, in expectation,

O

(
ξm

(
k log k +

n

k

)
+
n2

k
·min {D, k}

)
.

So, for k =
√
n/ logn the routing tables have O(

√
n logn ) entries, and in the

case of uniform weights (W = ξ = 1), the message complexity in Theorem 4
even simplifies to

Õ(m
√
n+ n3/2 ·min

{
D,
√
n
}
) .

Another important particular corollary of our analysis is the following:

Corollary 1. Under random coloring and synchronous hypotheses, and for
weighted n-node graphs with Õ(n) edges and poly-logarithmic hop-diameter, the
distributed routing scheme DistRoute(

√
n ) has message complexity Õ(n3/2),

produces a stretch-7 routing algorithm, and w.h.p. a working memory space and
routing tables of size Õ(

√
n ).

7 It means that it holds with probability at least 1− 1/nc for some constant c � 1.
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A simple variant of our algorithm, denoted by DistRoute′(k), fulfills all the
statements of Theorem 3 except that it achieves stretch 5. This is done at a price
of an extra communication cost of O(n3/k2 · min {D, k}) messages (under the
hypothesis of Theorem 4). We obtain another trade-off which is:

Corollary 2. Under random coloring and synchronous hypotheses, and for
weighted n-node graphs with Õ(n) edges and poly-logarithmic hop-diameter, the
distributed routing scheme DistRoute′(n2/3) has message complexity Õ(n5/3),
produces a stretch-5 routing algorithm, and w.h.p. a working memory space and
routing tables of size Õ(n2/3).

The message complexity that can be achieved by DistRoute or DistRoute′

on realistic graphs without the synchronous hypothesis is significantly higher
than Ω(n2). Observe however that by a slight modification of the algorithms,
namely by adding an α-synchronizer (cf. [22]), we can still guarantee a message
complexity of respectively Õ(n3/2) and Õ(n5/3) in the asynchronous setting while
keeping a time complexity of O(D).

3.1 Overview of the Scheme

Consider an initial uniformly random k-coloring of the nodes of the graph, and
denote by c(u) ∈ {1, . . . , k} the color selected by node u. In parallel of the color-
ing, nodes are split into groups of size O(n/k) thanks to a fixed balanced hash
function h, as in [4], mapping in constant time and w.h.p. the node identifiers to
the set {1, . . . , k}. A node of color i will be responsible of the routing informa-
tion for all the nodes of hash value i. Nodes of color 1, called landmarks, have a
special use in the scheme.

Consider an arbitrary node u. Node u stores three types of routing informa-
tion. (1) The node u stores in a table Bu the information on how to route along
shortest paths to its vicinity ball, a set containing O(k log k) nodes closest to u.
More precisely, this ball contains the smallest number of nodes closest to u such
that each color has been chosen by at least one node of the ball. (2) For each
landmark l, the node u stores a shortest path between l and u. These pieces of
information are stored in a table Lu. (3) For each node v such that h(v) = c(u),
the node u stores in a table Cu the closest landmark to v, namely lv, and a
shortest path from lv to v.

All these paths stored in the second and third tables are not arbitrary but are
extracted from fixed shortest-path spanning trees Tl rooted at each landmark l.
Moreover, paths are stored in a compressed way into routing labels, using only
O(min {D, logn} · logn) bits, thanks to a distributed variant of the technique
of [16]. Overall, the routing table of u has size O(k log k + n/k) since there are
O(n/k) landmarks and nodes with the same hash value.

We now describe how the actual routing from a source s to a destination t is
performed using these tables. If t ∈ Bs, then the table Bs allows s to transmit
the packet along a shortest path to t. Otherwise, node s forwards the packet
to the closest node u ∈ Bs such that c(u) = h(t). This is done by putting u’s
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identifier in the header of the packet. Also, note that u may be the node s itself.
Once in u, the header is replaced by lt and the compressed path from lt to t
stored in the table Cu. Now, thanks to the header and to the tables Lv of all the
intermediate nodes v, the packet will follow the unique path from u to t in the
shortest-path spanning tree Tlt rooted in lt (see Fig. 1).

In practice, the routing algorithm can be improved when routing on the unique
path from u to t in Tlt . Each intermediate node v on this path first checks whether
node ti, the i-th nearest ancestor of t on the path from lt to t, belongs to Bv
and is not an ancestor of v in Tlt . In that case, v can route directly to ti along a
shortest path, producing a shortcut in the path from v to ti in Tlt . These nodes
ti are contained in the header available at v, and they are checked in the order
t0, t1, t2, . . . where t0 = t. Actually, due to the compressed representation of the
path, only min {D, logn} nodes ti are available at v.

u

s

lt

t

Bs

Bt

Fig. 1. Routing from s to t where c(u) = h(t)

The stretch analysis of the routing algorithm is as follows. If t ∈ Bs, the
stretch is 1. Otherwise, assume that s and t are at distance d. Then the cost of
the route s� u is at most d, since t /∈ Bs. The route lt � t is at most 2d since
the landmark of s (that is in Bs) is at distance at most 2d from t, and lt is the
closest landmark to t. It follows that the cost of the route u� lt is bounded by
the cost of the route u� s� t� lt which is at most 4d. Therefore, the cost of
the route s � u � lt � t is at most d + 4d + 2d = 7d. The round-trip stretch
analysis is similar and gives an upper bound of 5.

Note that stretch 5 can be achieved if the segment of the route u � t would
have been done in tree Tls instead of Tlt . Indeed, the route u� t would not be
longer that the route u� s � ls � s� t where each of the four segments is a
shortest path of length at most d, yielding to a total of 5d from s. In other words,
u could have store a better landmark tree path in Cu for v. We use this obser-
vation for the variant DistRoute′(k) and to prove Corollary 2. Unfortunately,
this consumes more messages to construct such enhanced tables Cu.

3.2 Overview of the Distributed Routing Scheme

The goal of the distributed routing scheme is to compute, for every node u, the
tables Bu, Lu and Cu. The computation of the table Cu is made after every node
v has computed its landmark table Lv. For that we use a weak synchronization
that allows to reduce the number of messages in asynchronous environments
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since no unreliable information about landmark tables are sent. Thereby our
algorithm can be described as two sub-algorithms that run in parallel. The first
one computes Bu, and the second one computes Lu, then Cu.

The algorithm to compute vicinity balls is similar to the distributed Bellman-
Ford algorithm. The main difference is that to construct Bu, the closest nodes
to u start a shortest-path tree spanning u. Importantly, to save messages, tie
break between candidates of the last layer for Bu is selected according to the
arrival order of their discovery message received at u. This also guarantees that
the monotony property of vicinity balls is respected: the next-hop w to reach any
v ∈ Bu from u verifies that v ∈ Bw. In the synchronous scenario, the construction
of all vicinity balls takes O(ξmk log k) messages.

The algorithm to construct Lu and Cu is subdivised into the following steps,
each one runing in time O(D).

Step 1. Each landmark l starts the construction of a shortest-path spanning
tree Tl. During this process, node u stores its parents in Tl for all the landmarks,
and learns the landmark of smallest identifier, the leader denoted by lmin. In a
synchronous scenario, Step 1 consumes O(ξmn/k) messages.

Step 2. After detecting termination of Step 1, the routing label of u in each
tree Tl, denoted by 
(u, Tl), is computed by a process we describe in Section 3.3.
After Step 2, Lu is computed, and u can determine its closest landmark denoted
by lu. The termination detection of Step 1 is done by lmin and takes O(m)
messages, and Step 2 consumes O(mn/k) messages in total. Note that our bound
on the working memory space prevents us from broadcasting in a tree in O(n)
messages, because a node cannot store all its children.

The goal of the last two steps is to construct Cu. For that, u needs to retrieve
the routing label 
(v, Tlv) for every node v such that h(v) = c(u). For that,
every node v of hash value h(v) sends its label to its closest node of color h(v),
say w. Node w is then in charge of broadcasting this message to all nodes u of
color h(v). It is important to note that we want a more efficient algorithm than
a simple broadcast for each node, which would require Ω(n2) messages.

Step 3. In this step, we construct an efficient broadcasting scheme composed of
k logical trees, one for each color. We will use them in Step 4. For every color
i ∈ {1, . . . , k}, we build a logical tree Ti whose node-set is composed only of
nodes of color i in G. An edge between w and w′ in Ti represents a path from w
to w′ in Tlmin without any intermediate node of color i.

To construct the edge {w,w′} in Ti, w sends to its parent in Tlmin a message
〈i, 
(w, Tlmin)〉 to find a potential parent in Ti. (There is a special treatment we
do not detail whenever w has no ancestor of color i in Tlmin.) Such a message
is forwarded to the parent of the current node until a node w′ of color i is en-
countered. Whenever node w′ learns the existence of w, it knows how to reach w
through the routing label 
(w, Tlmin). It acknowledges to w by indicating its own
routing label 
(w′, Tlmin).

We can prove that edges of Ti are composed on average of t � 2min {D, k}
edges of G. So, to construct Ti it takes O(nit) messages, where ni is the number
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of nodes of color i. For all the k logical trees, this sums to O(
∑
i nit) = O(nt) =

O(nmin {D, k}) messages.

Step 4. Node v sends the identifier lv and its routing label 
(v, Tlv ) to w, its
closest node of color i = h(v). Node w broadcasts this label to its neighbors
in Ti. Eventually, any node u of color i = c(u) = h(v) will receive all such labels
to construct its table Cu. Thus v contributes to O(min {D, k log k}) messages
for the construction of Cu, the hop-distance between v and w. Then, from w,
the cost of broadcasting this label is O(n/k · t) messages, since there are O(n/k)
nodes in Ti connected by paths of at most t edges. Therefore, to construct all the
tables Cu, and to complete Step 4, we need O(n · (min {D, k log k}+ n/k · t)) =
O(n2/k ·min {D, k}) messages since k � n.

The variant DistRoute′(k) is a slight change in Step 4 only. It consists in
broadcasting from v the whole collection of routing labels 
(v, Tl), for each land-
marks l, instead of only 
(v, Tlv). These labels are already stored by v in Lv. Then
node u, combining with its own routing labels in Lu can select the best landmark
tree for each v. This allows u to store an enhanced table Cu producing a stretch
at most 5, according to the remark in the stretch analysis of DistRoute(k).
The counterpart of this stretch improvement is that node v sends O(n/k) more
messages than initially. This is O(n3/k2 ·min {D, k}) messages in total for Step 4,
the previous steps being the same.

3.3 Routing Labels

We give in this part some details about routing label computation. Let us con-
sider a shortest-path tree T of G rooted at node r. Note that in T the path
between any two nodes contains O(D) edges. Every node can compute a routing
label of O(min {D, logn} · logn) bits such that routing can be achieved using
these labels and headers of the same size. Routing decisions take a constant
time. We adapt an algorithm described in [16] which allows to compute in a
centralized way routing labels with similar size. However, the solution proposed
in [16] would have, in a distributed setting, a time complexity of O(n) due to the
computation of a DFS number for every node, this DFS number is part of the
routing label. Since we aim at a time complexity O(D), we made some changes
to the routing scheme in order to avoid this DFS construction.

In order to compute its routing label 
(u, T ), every node u computes its weight
(its number of descendants in T ), together with its heaviest child. These two met-
rics can be computed by using a global function as described in [22]. Once every
node has computed these metrics, node r can initiate the computation of a com-
pact path from r to every other node. A compact path is a sequence of node
identifiers in which every identifier that corresponds to an heaviest child identi-
fier is replaced by a star ∗. This computation can be achieved by broadcasting
compact paths in T from r. Once a node u has calculated its compact path,
namely path∗u, it can compute locally 
(u, T ) with the following algorithm.

The routing label 
(u, T ) is composed of (1) the cpathu which is path∗u where
every star sequence is replaced by its own length; (2) and a bit-set bu that
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allows to determine whether an element of cpathu is a node identifier or a star
sequence’s length. An example of such a routing label is given in table 2.

Table 2. A simple example of �(u, T ) after computation, considering that u1 heaviest
child is u2, u2 heaviest child is u3 and u4 heaviest child is u5

path in T u0 = r u1 u2 u3 u4 u5 = u

path∗
u u0 u1 * * u4 *

cpathu u0 u1 2 u4 1
bu 1 1 0 1 0

The routing algorithm at node u with destination v is performed as follows.
Node u will use 
(u, T ) and 
(v, T ) to determine the next-hop to v. In short,
using these labels, node u can determine an approximate location of v in T .
To do so, u has to find the longest matching prefix of 
(u, T ) and 
(v, T ). This
actually requires two computations: node u has to find the longest matching
prefix of the two bit-sets bu and bv, and the longest matching prefix of cpathu
and cpathv. Once this is done, u can determine whether v is a descendant of u
or not (note that the common ancestor of u and v can be v itself). In the latter
case, u routes the packet to its parent in T . Conversely, if v is a descendant, then
using the first element of the bit-set bv, node u determines whether the next-hop
to v is u’s heaviest child or not:

– if it is, then node u knows its heaviest child identifier and can thus route the
packet to it;

– if it is not, then the next-hop is part of 
(v, T ), which is contained in the
header of the packet and thus, node u can route the packet.

Thus u can route to any node v in T using only 
(u, T ) and 
(v, T ).
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Abstract. We study the convergence of influence networks, where each node
changes its state according to the majority of its neighbors. Our main result is a
new Ω(n2/ log2 n) bound on the convergence time in the synchronous model,
solving the classic “Democrats and Republicans” problem. Furthermore, we give
a bound of Θ(n2) for the sequential model in which the sequence of steps is
given by an adversary and a bound of Θ(n) for the sequential model in which the
sequence of steps is given by a benevolent process.

Keywords: Social Networks, Stabilization, Democrats and Republicans, Major-
ity Function, Equilibrium.

1 Introduction

What do social networks, belief propagation, spring embedders, cellular automata, dis-
tributed message passing algorithms, traffic networks, the brain, biological cell systems,
or ant colonies have in common? They are all examples of “networks”, where the enti-
ties of the network are continuously influenced by the states of their respective neigh-
bors. All of these examples of influence networks (INs) are known to be difficult to
analyze. Some of the applications mentioned are notorious to have long-standing open
problems regarding convergence.

In this paper we deal with a generic version of such networks: The network is given
by an arbitrary graphG = (V,E), and all nodes of the graph switch simultaneously to
the state of the majority of their respective neighbors. We are interested in the stability
of such INs with a binary state. Specifically, we would like to determine whether an
IN converges to a stable situation or not. We are interested in how to specify such
a stable setting, and in the amount of time needed to reach such a stable situation. We
study several models how the nodes take turns, synchronous, asynchronous, adversarial,
benevolent.

Our main result is for synchronous INs: Each node is assigned an initial state from
the set {R,B}, and in every round, all nodes switch their state to the state of the ma-
jority of their neighbors simultaneously. This specific problem is commonly referred
to as “Democrats and Republicans”, see e.g. Peter Winkler’s CACM column [Win08].
It is well known that this problem stabilizes in a peculiar way, namely that each node
eventually is in the same state every second round [GO80]. This result can be shown
by using a potential bound argument, i.e., until stabilization, in each round at least one
more edge becomes “more stable”. This directly gives a O(n2) upper bound for the
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convergence time. On the other hand, using a slightly adapted linked list topology, one
can see that convergence takes at least Ω(n) rounds. But what is the correct bound for
this classic problem? Most people that worked on this problem seem to believe that the
linear lower bound should be tight, at least asymptotically. Surprisingly, in the course
of our research, we discovered that this is not true. In this paper we show that the upper
bound is in fact tight up to a polylogarithmic factor. Our new lower bound is based on
a novel graph family, which has interesting properties by itself. We hope that our new
graph family might be instrumental to research concerning other types of INs, and may
prove useful in obtaining a deeper understanding of some of the applications mentioned
above.

We complement our main result with a series of smaller results. In particular, we look
at asynchronous networks where nodes update their states sequentially. We show that
in such a sequential setting, convergence may take Θ(n2) time if given an adversarial
sequence of steps, and Θ(n) if given a benevolent sequence of steps.

2 Related Work

Influence networks have become a central field of study in many sciences. In biology,
to give three examples from different areas, [RT98] study networks in the context of
brain science, [AAB+11] study cellular systems and their relation to distributed algo-
rithms, and [AG92] study networks in the context of ant colonies. In optimization the-
ory, believe propagation [Pea82, BTZ+09] has become a popular tool to analyze large
systems, such as Bayesian networks and Markov random fields. Nodes are continuously
being influenced by their neighbors; repeated simulation (hopefully) quickly converges
to the correct solution. Belief propagation is commonly used in artificial intelligence
and information theory and has demonstrated empirical success in numerous applica-
tions such as coding theory. A prominent example in this context are the algorithms that
classify the importance of web pages [BP98, Kle99]. In physics and mechanical engi-
neering, force-based mechanical systems have been studied. A typical model is a graph
with springs between pairs of nodes. The entire graph is then simulated, as if it was
a physical system, i.e. forces are applied to the nodes, pulling them closer together or
pushing them further apart. This process is repeated iteratively until the system (hope-
fully) comes to a stable equilibrium, [KK89, Koh89, FR91, KW01]. Influence networks
are also used in traffic simulation, where nodes (cars) change their position and speed
according to their neighboring nodes [NS92]. Traffic networks often use cellular au-
tomata as a basic model. A cellular automaton [Neu66, Wol02] is a discrete model
studied in many fields, such as computability, complexity, mathematics, physics, and
theoretical biology. It consists of a regular grid of cells, each in one of a finite number
of states, for instance 0 and 1. Each cell changes its state according to the states of its
neighbors. In the popular game of life [Gar70], cells can be either dead or alive, and
change their states according to the number of alive neighbors.

Our synchronous model is related to cellular automata, on a general graph; however,
nodes change their opinion according to the majority of their neighbors. As majority
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functions play a central role in neural networks and biological applications this model
was already studied during the 1980s. Goles and Olivos [GO80] have shown that a
synchronous binary influence network with a generalized threshold function always
leads to a fixed point or to a cycle of length 2. This means that after a certain amount of
synchronous rounds, each participant has either a fixed opinion or changes its mind in
every round. Poljak and Sura [PS83] extended this result to a finite number of opinions.
In [GT83], Goles and Tchuente show that an iterative behavior of threshold functions
always leads to a fixed point. Sauerwald and Sudholt [SS10] study the evolution of cuts
in the binary influence network model. In particular, they investigate how cuts evolve
if unsatisfied nodes flip sides probabilistically. To some degree, one may argue that we
look at the deterministic case of that problem instead.

In sociology, understanding social influence (e.g. conformity, socialization, peer pres-
sure, obedience, leadership, persuasion, sales, and marketing) has always been a cor-
nerstone of research, e.g. [Kel58]. More recently, with the proliferation of online social
networks such as Facebook, the area has become en vogue, e.g. [MMG+07, AG10].
Leskovec et al. [LHK10] for instance verify the balance theory of Heider [Hei46] re-
garding conformity of opinions; they study how positive (and negative) influence links
affect the structure of the network. Closest to our paper is the research dealing with
influence, for instance in the form of sales and marketing. For example, [LSK06] in-
vestigate a large person-to-person recommendation network, consisting of four million
people who made sixteen million recommendations on half a million products, and
then analyze cascades in this data set. Cascades can also be studied in a purely theoret-
ical model, based on random graphs with a simple threshold model which is close to
our majority function [Wat02]. Rumor spreading has also been studied algorithmically,
using the random phone call model, [KSSV00, SS11, DFF11]. Using real data from
various sources, [ALP12] show that networks generally have a core of influential (elite)
users. In contrast to our model, nodes cannot change their state back and forth, once
infected, a node will stay infected. Plenty of work was done focusing on the prediction
of influential nodes. One wants to find subset of influential nodes for viral marketing,
e.g. [KKT05, CYZ10]. In contrast, [KOW08] studies the case of competitors, which is
closer to our model since nodes can have different opinions. However, also in [KOW08]
nodes only change their opinion once. However, in all these social networks the under-
lying graph is fixed and the dynamics of the stabilization process takes place on the
changing states of the nodes only. An interesting variant changes the state of the edges
instead. A good example for this is matching. A matching is (hopefully) converging
to a stable state, based on the preferences of the nodes, e.g. [GS62, KPS10, FKPS10].
Hoefer takes these edge dynamics one step further, as not only the state of the edge
changes, but the edge itself [Hoe11].

3 Model Definition

An influence network (IN) is modeled as a graph G = (V,E, o0). The set of nodes
V is connected by an arbitrary set of edges E. Each node has an initial opinion (or
state) o0(v) ∈ {R(ed), B(lue)}. A node only changes its opinion if a majority of its
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neighbors has a different opinion. One may consider several options to breaking ties,
e.g., using the node’s current opinion as a tie-breaker, or weighing the opinions of indi-
vidual neighbors differently. As it turns out, for many natural tie-breakers, graphs can
be reduced to equivalent graphs in which no tie breaker is needed. For instance, using
a node’s own opinion as a tie-breaker is equivalent to cloning the whole graph, and
connecting each node with its clone and the neighbors of its clone.

In this paper we study both synchronous and asynchronous INs. The state of a syn-
chronous IN evolves over a series of rounds. In each round every node changes its state
to the state of the majority of its neighbors simultaneously. The opinion of a node v in
round t is denoted as ot(v).

As will be explained in Section 5, the only interesting asynchronous model is the
sequential model. In this model, we call the change of opinion of one node a step. The
opinion of node v after t steps is defined as ot(v). In general, more than one node may
be ready to take a step. Depending on whether we want convergence to be fast or slow,
we may choose different nodes to take the next step. If we aim for fast convergence, we
call this the benevolent sequential model. Slow conversion on the other hand we call the
adversarial sequential model.

We say that an IN stabilizes if it reaches a state where no node will ever change its
opinion again, or if each node changes its opinion in a cyclic pattern with periodic-
ity q. In other words, a state can be stable even though some nodes still change their
opinion.

Definition 1. An IN G = (V,E, o0) is stable at time t with periodicity q, if for all
vertices v ∈ V : ot+q(v) = ot(v). A fixed state of an IN G is a stable state with
periodicity 1. The convergence time c of an IN G is the smallest t for whichG is stable.

Note that since INs are deterministic an IN which has reached a stable state will stay
stable.

In this paper we investigate the stability, the convergence time c and the periodicity
q of INs in the described models. Clearly, the convergence process depends not only on
the graph structure, but also on the initial opinions of the nodes. We investigated graphs
and initial opinions that maximize convergence time. In the benevolent sequential in
particular, we investigate graphs and sets of initial opinions leading to the worst possible
convergence time, given the respectively best sequence of steps.

4 Synchronous IN

A synchronous IN may stabilize in a state where some nodes change their opinion in
every round. For example, consider the graph K2 (two nodes, connected by an edge)
where the first node has opinionB and the second node has opinionR. After one round,
both vertices have changed their state, which leads to a symmetric situation. This IN
remains in this stable state forever with a period of length 2. As has already been shown
in [GO80, Win08], a synchronous IN always reaches a stable state with a periodicity of
at most 2 after O(n2) rounds.



Convergence in (Social) Influence Networks 437

Theorem 1 ([Win08]). A synchronous influence network reaches a stable state after at
most O(n2) rounds.

Theorem 2 ([GO80]). The periodicity of the stable state of a synchronous influence
network is at most 2.

We prove this bound to be almost tight.

Theorem 3. There exists a family of synchronous influence networks with convergence

time of Ω
(

n2

(log logn)2

)
.

Due to page limitations the technical proof of Theorem 3 does not fit here, but can be
found in the full version of this paper. In this section, we instead present a simpler IN
with convergence time Ω

(
n3/2

)
.

The basic idea is to construct a mechanism which forces vertices on a simple path
graph to change their opinion one after the other. Every time the complete path has
changed, the mechanism should force the vertices of the path to change their opinions
back again in the same order. To create this mechanism, we introduce an auxiliary
structure called transistor, which is depicted in Figure 1.

B2

B3

E3B1 E1

C1 C3

E0 E2

C2C0

Fig. 1. A transistor T (4). The dotted lines indicate how the transistor will be connected.

Definition 2. A transistor of size k, denoted as T (k), is an undirected graph consisting
of three base vertices B = {B1,B2,B3}, k collector vertices C = {Ci | 0 ≤ i ≤ k− 1}
and k emitter vertices E = {E i | 0 ≤ i ≤ k− 1}. All edges between collector and emit-
ter vertices, all edges between any two base vertices, and all edges between collector
vertices and the third base vertex exist. Formally:

T (s) =(V,E)

V =C ∪ E ∪ B
E ={{u, v} | u ∈ C, v ∈ E} ∪ {{u,B3} | u ∈ C}∪

{{u, v} | u, v ∈ B, u 	= v}
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All nodes in a transistor are initialized with the same opinionX ∈ {R = 1, B = −1}.
The 3 + k+ k2 collector edges (dotted edges pointing to the top of Figure 1, including
those originating fromB1,B2 andB3) are connected to vertices with the constant opinion
−X , while up to k2 − k emitter edges (dotted edges pointing to the bottom) and the 2
base edges (dotted edges pointing to the left) may be connected to any vertex. As soon
as both base edges advertise opinion −X , the transistor will flip to opinion −X in 4
rounds regardless of what is advertised over the emitter edges, i.e., the following sets of
vertices will all change their opinion to −X in the given order: {B1}, {B2,B3}, C, E .

TR
1

Fig. 2. Path with 4 vertices connected to one
transistor T (3)

TR
1

T0
B T2

B

Fig. 3. Path with 4 vertices connected to
3 transistors T (3). Note that transistors at
bottom of figures are always upside down.

TR
1

T1
B

TR
2 T0

R

T0
B T2

B

Fig. 4. Two copies of Figure 3 with inverse
opinions

TR
1

T1
B

TR
2 T0

R

T0
B T2

B

Fig. 5. In this graph, every time the path has
run through completely the next transistor
will flip, causing the path to run again

Note that T (k) contains onlyO(k) many vertices, yet its emitter vertices can poten-
tially be connected to Ω(k2) other vertices. Given a path graph of length O(k2) and
a transistor T (k), the emitter vertices of the transistor are connected to the path in the
following way: The first vertex in the path is connected to exactly two emitter vertices,
the last is connected to none and each of the remaining nodes of the path is connected
to exactly one emitter vertex. Furthermore, the collector edges of transistors of opinion
X are always connected to constant reservoirs of opinion−X . Such a reservoir can be
implemented as a clique. An illustration of this graph with k = 3 is given in Figure 2.
Without loss of generality, we set the initial state of the nodes of the path to B, and that
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TR
1

T1
B

TR
2 T0

R

T0
B T2

B

Fig. 6. Final graph in which the paths run 3 times. For an illustration with colors please refer to
the electronic version of this paper.

of the transistor to R. As long as the transistor remains red, the path will turn red one
vertex at a time. As soon as the transistor flips its opinion to blue (as a result of both
base edges having advertised blue) the path will turn blue again, one vertex at a time.
To force the path to change k times, k transistors are needed. Each of these transistors
(note that we make use of red as well as blue transistors) is connected with the path in
the same way as the first transistor. The resulting graph is given in Figure 3. A series of
k switches of the complete path can now be provoked by switching transistors of alter-
nating opinions in turns. For the example depicted in the Figures, the switching order
of the transistors is given by their respective indices.

Now, a way is needed to flip the next transistor every time the last vertex of the path
has changed its opinion. Assume the last vertex has changed to red. It is necessary to flip
a red transistor to blue in order to change the path to blue; however, the path changing
to red can only cause a blue transistor to turn red. To this end, the graph is extended by
a copy of itself with all opinions inverted. The resulting graph is given in Figure 4. As
in every round each vertex in the copy is of the opposite opinion than its original, the
copy of the last vertex in the path enables us to flip a red transistor to blue as desired.
The edges necessary to achieve this (highlighted in green in Figure 5) connect the end
of a path to B1 of each transistor in the other half of the graph. To ensure that the
transistors flip in the required order, additional edges (highlighted in magenta in Figure
5) are introduced, connecting an emitter node of each transistor TXi to the node B1 of
transistor TXi+1.

The green edges cause an unwanted influence on the last vertex of the paths. This
influence can be negated by introducing additional edges (highlighted in cyan in Fig-
ure 6). These edges connect the last vertex of each path with an emitter vertex of each
transistor not yet connected to that vertex.
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The resulting graph contains O(k2) vertices, yet has a convergence time of Ω(k3).
In terms of the number of vertices n, the convergence time is n3/2. The detailed proof
in the full version of this paper shows that this technique can be applied to run the entire
graph repeatedly, just as the graph in this section runs two paths repeatedly. This leads
to a convergence time of Ω(n7/4). In this new graph, the transistors change back and
fourth repeatedly, always taking on the opinion advertised over the collector edges, just
like real transistors. When applied recursively log logn times, an asymptotic conver-
gence time of Ω(n2/(log logn)2) is reached. Since the full proof is long and involved,
to complement our formal proof, we also simulated this recursively constructed net-
works for path lengths of up to 100. Table 1 and Figure 7 show the outcome of this
simulation.

Table 1. Table summarizing
the simulated results

path #nodes convergence
length time
1 10 1

2 12 2

3 96 22

10 494 310

20 1614 3331

30 2010 5701

100 5518 45985

Fig. 7. Shows how our simulation results compare to a
quadratic curve. The point clusters arise when for sev-
eral consecutive path lengths no new transistor is created.
Small jumps in the number of vertices indicate that a new
transistor was added; big jumps indicate that a new layer
of transistors was added.

5 Sequential IN

To complement our results for the synchronous model, we consider an asynchronous
setting in this section. In an asynchronous setting, nodes can take steps independently
of each other, i.e. subsets of nodes may reassess and change their opinion concurrently.
Unfortunately, in such a setting, convergence time is not well defined. To see this, con-
sider a star-graph where the center has a different initial opinion than the leaves. An
adversary may arbitrarily often chooses the set of all nodes to reassess their opinion.
After r such rounds the adversary chooses only the center node. Now this IN stabilizes,
after r rounds for an arbitrary r → ∞. In other words, asynchrony in its most general
form is not well defined, and we restrict ourselves to sequential steps only, whereas a
step is a single node changing its opinion. The sequence of steps is chosen by an ad-
versary which tries to maximize the convergence time. Note that the convergence upper
bound presented in Lemma 1 implies immediately that the IN stabilizes in a fixed state.
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Lemma 1. A sequential IN reaches a fixed state after at most O(n2) steps.

Proof. Divide the nodes into the following two sets according to their current opinion:
SR = {v | o(v) = R} and SB : {v | o(v) = B}. If a node changes its opinion, it
has more neighbors in the opposite set than in its current set. Therefore the number of
edges X = {{u, v} | u ∈ SR, v ∈ SB} between nodes in set SR and set SB is strictly
decreasing. Each change of opinion reduces the number of edges of X by at least one.
Therefore the number of steps is bounded by the number of edges in X . In a graph G
with n nodes |X | is at most n2/4, therefore at most O(n2) steps can take place until
the IN reaches a fixed state. �

It is more challenging to show that this simple upper bound is tight. We show a graph
and a sequence of steps in which way an adversary can provoke Ω(n2) convergence
time.

Lemma 2. There is a family of INs with n vertices such that a fixed state is reached
after Ω(n2) steps.

Algorithm 1. Adversarial Sequence

S ← ()
for i = 0 to n/3 do

S = reverse(S);
S ← (i, S);
for all x ∈ S do

take step x;
end for

end for

Proof. Consider the following graph G with n nodes. The nodes are numbered from 0
to n−1, whereas nodes with an even id are initially assigned opinionB and nodes with
an odd id are assigned opinion R. See also Figure 8. All even nodes with id ≤ n/3
are connected to all odd nodes. All odd nodes with id ≤ n/3 are connected to all
even nodes respectively. In addition an even node with id ≤ n/3 is connected to nodes
{0, 2, 4, . . . , n − 2 · id − 2}, respectively an odd node with id ≤ n/3 is connected to
nodes {1, 3, 5, . . . , n − 2 · id − 3}. For example, node 0 is a neighbor of all nodes,
whereas node 1 is neighbor of all nodes except the nodes n − 1 and n − 3. Note that
each node i with i ≤ n/3 is connected to all other nodes with id ≤ n/3. For each node
v the change potential P (v) is defined as:

P (v) = |{u | o(u) 	= o(v)}| − |{u | o(u) = o(v)}|

Put differently, if the change potential of a node is larger than 0, and it is requested to
reassess its opinion, it takes a step. A large change potential of a node v, means that
many neighbors of v have the opposite opinion from v. If a neighbor of v with the same
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Fig. 8. In this graph an adversary can provoke Ω(n2) changes of opinion

opinion takes a step, v′s change potential P (v) is increased by 2. On the other hand, if
a neighbor changes from the opposite opinion to the same opinion as node v, P (v) is
decreased by 2. If v itself changes its opinion, its change potential turns from p to −p.
The change potential of v is basically the number of edges by which the total number
of edges between set SB and set SR is reduced if v changes its opinion. As the total
amount of steps is bounded by the number of edges between set SB and SR, a node v
with P (v) = p reduces the remaining number of possible changes by p if it takes a step.
E.g. in the previously constructed graph G, the first nodes have the following change
potential: P (0) = 1, P (1) = 3, P (2) = 3, P (3) = 5 Generally, node i has a change
potential P (i) = n/2 − (n/2 − i − 1) = i + 1 if i is even respectively P (i) = i + 2
if i is odd. In order to provoke as many steps as possible, the adversary selects the
nodes which have to reassess their opinion according to the following rule: He chooses
the node with the smallest id for which P (v) = 1. Therefore each step reduces the
remaining number of possible steps by 1. G is constructed in such a way, that a step
from a node triggers a cascade of steps from nodes which have already changed their
opinion whereas each change reduces the overall potential by 1.

The adversary chooses the nodes in phases according to algorithm 1. Phase i starts
with the selection of node i followed by the selections of all nodes with id < i, where
the adversary chooses the nodes in the reverse order than it did in round i− 1. Phase 0
consists of node 0 changing its opinion, in phase 1 node 1 and then node 0 make steps,
and in phase 2 the nodes change in the sequence 2, 0, 1. As a node v can only change
its opinion if P (v) > 0, we need to show that this is the case for each node v which is
selected by the adversary. It is sufficient to show that each node which is selected has a
change potential of 1.
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We postulate:

(i) At the beginning of phase i, it holds that: P (i) = 1 and ∀v < i : o(v) = o(i).
(ii) Each node the adversary selects has change potential 1 and each node with id ≤ i

is selected eventually in phase i.
(iii) At the end of phase i, all nodes with id ≤ i have opinionR if i is even and opinion

B if i is odd.

We prove (i), (ii) and (iii) by induction. Initially, part (i) holds, as no node with id < 0
exists and as node 0 is connected to n/2 nodes with opinion R and to n/2 − 1 nodes
with opinionB and therefore has change potential 1. In phase 0 only node 0 is selected,
therefore part (ii) of holds as well. Node 0 changed its opinion and has therefore at the
end of phase 0 opinion R, therefore part (iii) holds as well.

Now the induction step: To simplify the proof of part (i) of we consider odd and even
phases separately. Consider an odd phase i. At the start of phase i, no node with id ≥ i
has changed its opinion yet. Therefore node i still has its initial opinion o(i) = R.
According to (iii), each node with id ≤ i − 1 has at the end of phase i − 1 opinion
R = o(i). So (i + 1)/2 neighbors of i have compared to the initial state, changed
their opinion from B to R. If a neighbor u of a node v with a different opinion than
v changes it, v′s change potential is decreased by 2. Therefore node i′s initial change
potential Pt0(i) = n/2− (n/2− i− 2) = i+ 2 is decreased by 2 · (i + 1)/2 = i + 1
and is therefore P (i) = i + 2 − (i + 1) = 1 at the beginning of phase i. Therefore (i)
holds before an odd phase.

Now consider an even phase i. At its start, all nodes with id ≥ i still have their
initial opinion. Therefore node i has opinion o(i) = B. According to (iii) each node
with id ≤ i − 1 has at the end of phase i − 1 opinion B = o(i). As node i′s initial
change potential was Pt0(i) = n/2 − (n/2 − i − 1) = i + 1 and i/2 neighbors of
i changed from opinion R to opinion B compared to the initial state, i′s new change
potential is calculated as P (i) = i+1− 2 · i/2 = 1. Therefore (i) holds before an even
phase, hence (i) holds.

To prove part (ii) let v be the last node which was selected in phase i − 1. As v was
selected, it had according to (ii) a change potential of 1. If a node changes its opinion,
its change potential gets inversed. Therefore node v had at the beginning of phase i
a change potential of −1. In addition, node v is by construction a neighbor of node i
and has according to (i) at the start of phase i the same opinion as node i. As node
i changes its opinion, node v′s change potential is increased by 2. Therefore v′s new
change potential is again −1 + 2 = 1, when it is selected by the adversary. The same
argument holds for the second last selected node u. After it was selected in phase i− 1
its change potential was −1. Then v has changed its opinion which led to P (u) = −3.
As node i and node v changed their opinions in phase i, P (u) was again 1. Hence if
the adversary selects the nodes in the inverse sequence as in phase i− 1, each selected
node has a change potential of 1 and is selected eventually. Therefore (ii) holds.

As node i and all nodes with id ≤ i − 1 had at the beginning of phase i the opinion
o(i) according to (iii) and all nodes have changed their opinion in phase i according to
(ii), all nodes with id ≤ i must have the opposite opinion at the end of phase i, namely
R if i is even or B otherwise. Therefore (iii) holds as well.
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We now have proven that in phase i, i nodes change their opinion. As the adversary
starts n/3 phases, the total number of steps is 1/2 · n/3 · (n/3− 1) ∈ Ω(n2). �

Directly from Lemma 1 and Lemma 2, we get the following theorem.

Theorem 4. A worst case sequential IN reaches a fixed state after Θ(n2) steps.

We have seen, that with an adapted graph and an adversary an IN takes up to Θ(n2)
steps until it stabilizes. But how bad can it get, if the process is benevolent instead?

Theorem 5. An IN with a benevolent sequential process reaches a fixed state after
Θ(n) steps.

Proof. A benevolent process needs Ω(n) steps to reach a stable state. This can be seen
by considering the complete graphKn with initially �n/2�−1 red nodes and �n/2�+1
blue nodes. Independently of the chosen sequence this IN needs exactly �n/2�−1 steps
to stabilize because the only achievable stable state is all nodes being blue. To proof that
the number of steps is bounded by O(n) we define the following two sets: The set of
all red nodes which want to change: CRi = {v | o(v) = R ∧ P (v) > 0} and the set of
all blue nodes which want to change: CB = {v | o(v) = B ∧P (v) > 0}. A benevolent
process chooses nodes in two phases. In the first phase it chooses nodes from CB until
the set is empty. During this phase, it may happen that additional nodes join CB (e.g.
a leaf of a node v ∈ CB , after v made a step). However, no node which left CB will
rejoin, as those nodes turned red and can not turn blue again in this phase. In the second
phase, the benevolent process chooses nodes from CR until this set is empty. The set
CB will stay empty during the second phase since nodes turning blue can only reinforce
blue nodes in their opinion. Both phases take at most n steps, therefore proving our
upper bound. �
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Abstract. Population protocols have been introduced by Angluin et al.
as a model in which passively mobile anonymous finite-state agents sta-
bly compute a predicate of the multiset of their inputs via interactions
by pairs. Stably computable predicates under this model have been char-
acterized as exactly semi-linear predicates, that is to say exactly those
definable in Presburger’s arithmetic.

We consider several variants of the models. In all these variants, the
agents are called trustful : agents with a similar opinion that meet do
not change their common opinion. We provide a characterization of the
computational power of the obtained models, considering both the case
when agents have finitely many states, and when agents can possibly
be arbitrary Turing machines. We also provide some time complexity
considerations.

1 Introduction

The model of population protocol has been introduced in [5] as a model of
anonymous agents, with finitely many states, that interact in pairs. One basic
assumption of the model is the absence of a control over the way pairwise inter-
actions happen: whereas the result of interactions is programmable, agents are
assumed to be passively mobile.

The model has been designed in [3,5] as computing predicates: Given some
input configuration, the agents have to decide whether this input satisfies the
predicate. In this case the population of agents has to eventually stabilize to a
configuration in which every agent is in accepting state. This must be happening
with the same program for all population size.

Predicates computable by population protocols have been characterized as
being precisely the semi-linear predicates; that is those predicates that are de-
finable in first-order Presburger arithmetic [5,3].

Many works on population protocols have concentrated latter on on charac-
terizing what predicates on the input configurations can be stably computed
in different variants of the models and under various assumptions. Variants of
the original model considered so far include restriction to one-way communica-
tions [3], restriction to particular interaction graphs [4], and random interac-
tions [5]. Various kinds of fault tolerance have been considered for population
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protocols [19], including the search for self-stabilizing solutions [7]. We refer
to [8,15] for a more comprehensive survey or introduction.

As far as we know, in all already considered restrictions, agents are not re-
stricted to be trustful : agents with similar opinion that meet can still change
their opinion. In many contexts, and in particular in models coming from social
networks [20] or natural algorithms [17], it makes sense to assume that people
agreeing still agree after meeting. Notice that this is often a very basic assump-
tion of models in all these contexts: see for example all the models in [13]. This
current paper is born from an attempt to understand the impact of such a re-
striction on the population protocol model.

We consider in this paper several variants of population protocols where agents
are trustful : The purpose of these restrictions is to add a notion of trust between
agents: if two agents having a similar opinion meet, they do not change it. For all
considered obtained variant, we provide an exact characterization of computable
predicates.

More precisely, to model the notion of opinion in population protocols, we
consider that the set of possible states is partitioned into finitely many sub-
sets corresponding to the possible opinions. Once an agent has an opinion, if it
meets an agent with the same opinion, then both necessarily remain with the
same opinion. We distinguish weakly from strongly trustful population proto-
cols. In the second, agents always have an opinion, and agreeing agents cannot
disagree after a meeting, and cannot even change of state when they meet. In
the first, agents can possibly have no-opinion before getting a opinion. We only
impose that agents with an opinion keep their opinion when meeting agents with
same opinion.

We characterize predicates computable by trustful population protocols in
both variants. We basically prove that both variants compute exactly the same
predicates that is to say boolean combination of threshold predicates with
null constant.

This can also be interpreted as follows: we get first that computable predicates
must be invariant by multiplication of populations: if a predicate is computed by
a trustful population protocol, then its value must be the same on input E and
on k times input E, where k is any integer constant. If one prefers, computable
predicates are necessarily frequency-based, i.e. a predicate on frequencies of letters
in the input. Then our results says basically that all such semi-linear predicates
are indeed computable using trustful population protocols, under both variants.

We then consider the case of agents that can be non-finite state: agents can
be arbitrary Turing machines. We still characterize computable predicates, as
basically all frequency based computable predicates. We then go to complexity
considerations, and we prove that all computable predicates can be computed
using O(n2 logn) expected interactions.

Related Work. The model of population protocols can be considered as modeling
any population of indistinguishable agents interacting in pairs in a Markovian
manner. This framework includes many models from nature, physics, and biology
(see, e.g., [22]). Several papers have already demonstrated the benefit of using an
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algorithmic approach for understanding such models (see, e.g., the recent papers
[10,17,18]). Conversely, models from nature, physics, and biology can be viewed
as alternative paradigms of computation (see, e.g., [1,9]).

Population protocols have been introduced in [5]. In the model, interactions
are not assumed to be Markovian, but a weaker (hence covering this case, if
reasoning with probability one) notion of interactions is considered, based on
fairness. The model was designed to decide logic predicates, and predicates com-
putable by classical population protocols have been characterized [5,6]. Vari-
ous restrictions on the initial model have been considered up to now [8,15].
As far as we know, the idea of restricting to trustful interactions has not be
considered yet.

We obtain in this paper at the end that trustful interactions yield to models
whose computable predicates must be frequency based. Similar results have been
obtained in another model in [21]. Consequently, our paper shares many simi-
larities with this paper. Notice that, whereas in [21] an exact characterization of
the computational power of the model is still to be fully understood, we obtain
here a precise characterization for trustful population protocols.

The idea of considering population protocols where agents are not finite state
is not new: [14] considers for example interacting Turing machines. In particular,
it is proved that if each agent is a Turing machine with a space f(n) for a
population of size n, then for f = Ω(log n), the computational power of the
model is exactly the class of all symmetric predicates recognizable by a non-
deterministic Turing machine in space nf(n). We consider here trustful versions
of such protocols.

More generally, the idea that interacting agents with a similar opinion do not
change their opinion is a very common assumption in all models from social
networks see e.g. [13,17]. Considering that the interactions are frequency based
and that the macroscopic dynamics of populations are given by laws of evolution
on frequencies of agents (in possible microscopic states) in the system, it is
something very natural. This is also a basic assumption in all models of nature,
physics, and biology (see, e.g., [22]). That is also true for all classical models
from evolutionary game theory [23]. Some connections between the dynamics of
games and population protocols have been studied in [11,16].

Somehow, our paper provides a rather simple and nice explanation of the
impact of assuming trustful interactions, or of why and when modeling dynamics
by frequency based dynamics is natural and legitimate.

2 Models

Trustful Population Protocols are obtained as a restriction over the rules of the
known model of Population Protocols.

Weakly and Strongly Trustful Population Protocols. We now introduce more
formally (trustful) population protocols [3,5]: basically, a computation is always
over a finite set of agents. Each agent starts with an input in Σ and has its state
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in Q where Σ is a finite alphabet, and Q a finite set of states. The population
evolves by pairwise interactions. Each such interaction has the effect of (possibly)
changing the state of the two agents according to some program, that is to say
a function δ that maps couple of states (previous states of involved agents) to
couple of states (next states of these agents).

A protocol computes a function (a predicate) from multisets over Σ to a
finite set Y : encoding and decoding is given by two functions ι and ω. Given
some input, that is to say a multiset over Σ, the initial state of the population is
given by applying function ι : Σ → Q element-wise. A computation can provide
several outputs, each possible one being in Y . To interpret the output of an
agent, it is sufficient to apply ω to its current state.

As we want to talk about trustful protocols, that is to say agents with opinions,
we add to the classical model [3,5] the fact that the set of states is partitioned
into a finite set of opinions.

More formally:

Definition 1 (Trustful Population Protocol). A Trustful Population Pro-
tocol is given by 7 elements (I,Q,Σ, ι, Y, ω, δ) where:

– Q is a finite set of states partitioned in |I| subsets: that is to say, Q =
⋃
i∈I

Qi

with Qi ∩Qj = ∅ if i 	= j.
– Σ is the finite set of entry symbols.
– ι is a function Σ → Q.
– Y is the finite set of possible outputs.
– ω is a function I → Y .
– δ is a function Q2 → Q2.

A Configuration is a multiset overQ. As agents are assumed to be anonymous,
a configuration can be described by only counting the number of agents in each
state. In other words, a configuration can be considered as an element of N|Q|.
An input is a multiset of Σ (i.e. an element of N|Σ|). The initial configuration
is computed by applying ι to each agent, i.e. apply ι to the input. A Step is the
passage between two configurations C1 → C2, where all the agents but two do
not change: we apply to the two other agents a1 and a2 the rule corresponding
to their respective state q1 and q2, i.e. if δ(q1, q2) = (q′1, q

′
2) (also written by rule

q1q2 → q′1q
′
2), then in C2 the respective states of a1 and a2 are q′1 and q′2.

Remark 1. Notice that unlike [3,5], and most following works, we do not restrict
to the case where Y = {True, False}. One motivation is to be able to talk about
the averaging problem: see below.

We add now two restrictions on how the interactions can happen when two
agents have the same opinion to get the notion of trustful interactions. In the
strong version, two agents do not change their state if they meet an agent with
a similar opinion. The weak version just gives the constraint that the new states
remain in the same subset of opinion and we add a subset for agents not having
yet any opinion. We will prove later that these two versions compute exactly the
same functions.
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Definition 2 (Strongly Trustful Population Protocol). A Strongly Trust-
ful Population Protocol is such as δ does not modify two agents with the same
opinion: ∀i ∈ I, ∀q1, q2 ∈ Qi, δ(q1, q2) = (q1, q2).

Definition 3 (Weakly Trustful Population Protocol). A Weakly Trustful
Population Protocol is such as δ remains stable under two agents with the same
opinion, if they have one (i.e. we add a no opinion set Q?, corresponding to
states from which agents can change their state regardless of the state met):

∀i ∈ I − {?}, ∀q1, q2 ∈ Qi, δ(q1, q2) = (q′1, q
′
2)⇒ q′1, q

′
2 ∈ Qi.

We will use the terminology Population Protocol for the original model from
[3,5]: that is to say, for the case when no restriction on δ is made, i.e. interactions
are not restricted to be trustful.

Computing with population protocols. We now recall the notion of computation
by a population protocol, and we recall known facts about the computational
power of the original model.

Definition 4 (Fair Sequence of Configurations). A Sequence of Configu-
rations is a sequence (Ci)i∈N such as for all i, Ci → Ci+1, C0 being an initial
configuration. We say that a sequence is Fair if, for each configuration C ap-
pearing infinitely often in the sequence and for each configuration C′ such as
C → C′, C′ also appears infinitely often in the sequence.

The notion of fairness is here to avoid worst adversaries: for example, an adver-
sary that would choose the same pair at each time to interact. It is also moti-
vated by giving a very weak constraint that covers the case of (non-degenerated)
Markovian random interactions: if pairs of agents are chosen randomly and if
C appears infinitely often and C → C′, then the probability for C′ to appears
infinitely often is 1, and hence sequence of configurations are fair almost surely.

We need to say explicitly how configurations are interpreted, in particular in
our settings. This is rather natural:

Definition 5 (Interpretation of a configuration). A configuration has an
Interpretation y ∈ Y if for every state q present in the configuration, the i ∈ I
such as q ∈ Qi has the property ω(i) = y. If there is no y ∈ Y such as the
configuration has interpretation y, the configuration is interpreted has having no
interpretation.

Definition 6 (Function computed by a population protocol). A popula-
tion protocol Computes y on some input S, if for every fair sequence (Ci)i∈N

starting from the initial configuration corresponding to S, there exists some in-
teger J such as, for all j > J , the configuration Cj has the interpretation y.

A Protocol computes a function f : N|Σ| → Y if for every input S ∈ N|Σ|, the
protocol computes f(S) on S.
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Computational power. We recall the main result from [3,5] on the computational
power of population protocols: There are two ways to describe what can be
computed by Population Protocols, one using Presburger’s Arithmetic, and the
other based on semi-linear spaces.

Definition 7 (Semi-linear set). A Linear set S of Nd is a set such that one can

find k + 1 vectors u, v1, . . . , vk ∈ Nd such as S = {u+
∑k
i=1 aivi|a1, . . . ak ∈ N}.

A Semi-Linear set is a finite union of linear-sets.

Theorem 1 ([3,5]). Let f be a function computed by a population protocols.
For every y ∈ Y , f−1(y), seen as a subset of N|Σ|, is a semi-linear sets of N|Σ|.

From the equivalence between semi-linear sets and subsets definable in Pres-
burger’s Arithmetic, this can also be seen as follows:

Definition 8 (Definability in Pressburger’s Arithmetic). A subset of N|Σ|

is definable in Presburger’s Arithmetic if it corresponds to a boolean combination
of formulas of the form: (Here formulas are interpreted as subsets corresponding
the set of elements satisfying the formula: ni is the number of elements i in the
population; the ai, b and c’s are integers. ≡ b [c] denotes congruence to b modulo
c. )

–
∑
s∈Σ

asns ≥ b

–
∑
i∈Σ

asns ≡ b [c]

Theorem 2 ([3,5]). Let f be a function computed by a population protocols.
For every y ∈ Y , f−1(y), seen as a subset of N|Σ|, is definable in Presburger’s
Arithmetic.

3 Some Particular Trustful Protocols

We describe now two protocols that are both strongly and weakly trustful. They
will be used later on in our proofs.

3.1 The Threshold Problem

Definition 9 (Threshold Problem). The Threshold problem is the following
problem: We have a function g : Σ → [a, b], an integer c, Y = {True, False},
and we want to compute the function f such as:

f(input) = True⇔
∑
s∈Σ

g(s)ns ≥ c.

Proposition 1. When c = 0, the Threshold problem can be computed by both
versions of trustful population protocols.
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Proof (Sketch). Here is the protocol:

– Q = Q+

⋃
Q−, with Q+ = [a, 0[ ∪ {0−} and Q+ = [0, b].

– Σ, ι = g, Y = {True, False}, ω(+) = True and ω(−) = False.
– δ is given by the following rules:

i j→0 (i + j) if i× j < 0 and i+ j ≥ 0
i j→0− (i+ j) if i× j < 0 and i+ j < 0

0− i→0 i i ≥ 0
0 i→0− i i < 0

First, it is clear that this protocol is both strongly and weakly trustful. Second,
if we introduce the function e : Q→ N such as e(i) = i, e(0−) = 0, we can notice
that the sum of the values of e applied to the state of the agents never changes.

The proof of the correctness is perfomed by showing that: 1- In each fair
sequence, there exists a time t such as, after it, either each agent keeps a positive
value, either they have all a negative value (considering 0 and 0− as both a
positive and a negative integer). 2- After that point, the sequence reaches a
configuration with the good interpretation which is also stable.

3.2 The Averaging Problem

Definition 10 (Averaging problem). The Averaging problem is the follow-
ing problem (see e.g. [21]): We have a function g : Σ → [a, b], with a, b ∈ N2,
Y = [a, b]

⋃
i∈[a,b[

{]i, i+ 1[} and we want to compute the function f such as:

f(I) =

{
s if s ∈ N

]�s�, �s�+ 1[ otherwise.
, with s =

∑
s∈Σ

g(s)×ns

∑
s∈Σ

ns
.

Proposition 2. The Averaging problem can be computed by both versions of
trustful population protocols.

Proof (Sketch). Here is the protocol:

– Q =
⋃

i∈[a,b]

{i, i+, i−}, with I = [a, b]
⋃

i∈[a,b[

{]i, i+ 1[} and Qx = ω−1(x).

– Σ, ι = g, Y = [a, b]
⋃

i∈[a,b[

{]i, i + 1[}, and ω(i+) = ω((i + 1)−) =]i, i + 1[,

ω(i) = i.
– δ is given by the following rules:

i∗ j∗→ i+j
2

i+j
2 if i+ j ≡ 0[2] and i 	= j

i i∗→ i i

i∗ j∗→k+ (k+1)− if i+ j ≡ 1[2], i < j, with k = i+j−1
2

With i∗ ∈ {i, i+, i−} and j∗ ∈ {j, j+, j−}.

First, it is clear that this protocol is both strongly and weakly trustful. Second,
if we introduce the function e : Q → N such as e(i+) = e(i−) = e(i) = i, we
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can notice that the sum of the values of e applied to the state of the agents
never changes.

The proof of the correctness can be perfomed by showing that: 1- In each
fair sequence, there exists a time t such as, after it, every agent keeps the same
integer in its state. 2- After that point, the sequence reaches a configuration with
the good interpretation which is also stable.

4 Computability

4.1 Partition of the Space

We will say that a subset X of N|Σ| can be Separated if there exists a function
f : N|Σ| → Y and y ∈ Y such as X = f−1(y).

Proposition 3. The two versions of trustful population protocols remain stable
under boolean combination: if A and B are subset of N|Σ| that can be separated
by a trustful population protocol, then A ∪ B and A ∩ B can be separated by a
trustful population protocol.

Let (Aj)j∈J be a partition of N|Σ| with J finite such as for each j, Aj can be
separated by some trustful population protocol. There exists a trustful population
protocol separating all the Aj.

Proof (Sketch). This proof is similar to the usual one for boolean combination
stability. The only difference is the partition of the new Q, which remains intu-
itive.

We get as a consequence:

Theorem 3. Any finite partition of N|Σ| where all subset can be defined as
a boolean combination of threshold with a zero constant can be separated by a
Trustful Population Protocol.

4.2 When Agents Trust on the Output

Now we consider the special case where Y = I and ω is the identity function
over I. Our goal is to prove that, for every y ∈ Y , f−1(y) is a set of elements
verifying a boolean combination of inequalities of the form

∑
s∈Σ

ai × si ≥ 0 and∑
s∈Σ

ai × si > 0.

Theorem 4. The partitions that can be computed by trustful population proto-
cols when Y = I is such as each partitionned set can be defined as a boolean
combination of threshold problems with a nul constant (i.e. c = 0), where some
of the inequalities can be strict.

To prove this theorem, we will do it by double inclusion. We first need some
lemmas.
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Lemma 1. Let (Ai)i∈I be the partition corresponding to a trustful population
protocol where Y = I and ω = IdentityI. Each Ai satisfies the two following
properties:

– C+: For each a, b ∈ Ai, a+ b ∈ Ai
– C∗: For each a ∈ N|Σ|, each λ ∈ N \ {0}(noted N+), λa ∈ Ai ⇔ a ∈ Ai

Proof. There exists a sequence that brings all agents from a into states in Qi.
Same thing happens from b. From a+ b, we just need to use the same sequences
to the two subsets, and then our configuration will be stable.

From the first point, we can deduce that a ∈ Ai ⇒ λa ∈ Ai. For the converse
implication, as there is a j such as a ∈ Aj , j must then be equal to i, as λa ∈ Aj
and the (Ai)i∈I form a partition of the space.

From now on, S ∈ Nd is a semi-linear set, i.e. a union of sets of the form
{ui +

∑
j∈Ji

ajvj |aj ∈ N} verifying the conditions (C+) and (C∗).

Lemma 2.

S = Nd ∩
⋃
i∈I
{(1 + a)ui +

∑
j∈Ji

ajvj |a, aj ∈ Q+}

Proof. Let x ∈ Nd ∩
⋃
i∈I{(1 + a)ui +

∑
j∈Ji

ajvj |aj ∈ Q+}. Then there is an i0,

an a and a aj ∈ Q+ for each j ∈ Ji0 such that x = (1 + a)ui0 +
∑
j∈Ji0

ajvj . For

each aj there exists pj and qj two non negative integers such as aj =
pj
qj
, as aj

is in Q+. We get:

x =

(
1 +

p

q

)
ui0 +Σj∈Ji0

pj
qj
vj .

Let y = (q.Πj∈Ji0 qj).x = (q.Πj∈Ji0 qj)(1 + a).ui0 + Σj∈Ji0
(
pj .(q.Πj′ �=jq

′
j)
)
vj .

We have:
y −

[
(q.Πj∈Ji0 qj)(1 + a)− 1

]
.ui0 = ui0 + Σj∈Ji0

(
pj .(q.Πj′ �=jq

′
j)
)
vj ∈ {ui0 +∑

j∈Ji
ajvj |aj ∈ N}.

ui0 ∈ S ⇒
[
(q.Πj∈Ji0 qj)(1 + a)− 1

]
.ui0 ∈ S (using C∗).

Hence, as y is a sum of two elements of S, by C+, y ∈ S.
Finally, we have from C∗ that x ∈ S.

The other inclusion is easy as N ⊂ Q+. The conclusion follows.

For the rest of the proof, we will consider that v0 = ui (i.e. if ui was not
in the initial set of vectors, we add it directly). From this we get that S =
Nd∩

⋃
i∈I
{ui+

∑
j∈Ji

ajvj |aj ∈ Q+}. To pursue the proof, we need a stronger version

of Caratheodory’s Theorem. The original version is the following:

Lemma 3 (Caratheodory’s Theorem[12]). If x ∈ Qd is a positive lin-
ear combinations of {vj}j∈Ji then there exists a linearly independent subset
{vl1 , . . . , vlk} ⊂ {vj}j∈Ji such that x is a positive linear combination of vl1 , . . . vlk .
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We need to perform our proof to be sure that the vector v0 = ui stays after the
simplification of the vectors:

Lemma 4 (Extended Caratheodory’s Theorem). If x ∈ Qd is a positive
linear combinations of {vj}j∈Ji , with v0 	= 0 and ∀j ∈ Ji vj ∈ Nd, then there
exists a linearly independent subset {vl1 , . . . , vlk} ⊂ {vj}j∈Ji such that x is a
positive linear combination of v0, vl1 , . . . vlk .

Proof. Let x be a positive of k linearly indepedent vectors {vl1 , . . . , vlk}. We
have x =

∑
amvlm .

We need to separate three cases here: if v0 is already in the subset, if the new
subset is still independant if we add v0 and if v0 can be generated by the subset:

– v0 = vlm : This case is easy, as we just need to permute the numeration of
the vectors.

– v0 is independant: This case is also easy. Adding v0 to the set is allowed,
as the linear independance is kept.

– v0 is not independant: We have v0 =
∑
bmvlm . Note that the bm are

not compulsorily positives. Let M be an integer such that bM is strictly
positive and such that aM

bM
is minimal (for each element where am

bm
has a

meaning and where bm > 0). M exists because if all bm are negative or nul,
v0’s coordinates would all be negative or nul. From v0 =

∑
bmvlm we get

vM = 1
bM
v0 −

∑
m �=M

bm
bM
vlm . We will now put this ”value” of vM in x:

x =
∑
amvlm=

∑
m �=M

amvlm + aM

(
1
bM
v0 −

∑
m �=M

bm
bM
vlm

)
=aMbM v0 +

∑
m �=M

(
am − aM bm

bM
vlm

)
We need now to prove that all the coefficients are positive. As M is chosen
such as bM is positive, aMbM is positive. Let prove that for each m 	= M ,(
am − aM bm

bM
vlm

)
≥ 0.

• If bm ≤ 0, then −aM bm
bM
≥ 0, we deduce

(
am − aM bm

bM
vlm

)
≥ 0.

• If bm > 0, then, as M was chosen to minimize aMbM ,

am
bm
≥ aM
bM
⇒

(
am − aM bm

bM
vlm

)
≥ 0.

This concludes the proof that v0 can be put in the set of the linearly inde-
pendant vectors. We now suppose that we always chose vl1 = v0.

With this lemma, we have :

{
∑
j∈J

ajvj |aj ∈ Q+} =
⋃

{vl1 ,...,vlk} l.i.

{
∑

j∈{l1,...,lk}
a′jvj |a′j ∈ Q+}

Hence we can rewrite

S = Nd ∩
⋃
i∈I|

⋃
{vl1 ,...,vlk}⊂Ji l.i.

{ui +
∑

1≤m≤k
amvlm |am ∈ Q+}.
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Let consider now the set V = {vl1 , . . . , vlk} ⊂ Ji of linearly independent
vectors and the set H = {ui+

∑
1≤m≤k

amvlm |am ∈ Q+}. We have k ≤ d. If k < d,

we can complete V with k − d linearly independent vectors wk+1, . . . wd such
that B = V ∪ {wk+1, . . . wd} is a base of Qd, if k = d then B = V .

Let swap the base to B using ui as the new origin. Let (x1, . . . , xd) the coor-
dinates of an element x in the new system. We have:

x ∈ H ⇔
{
xm ≥ 0 if m ≤ k
xm = 0 otherwise.

We can even add the existence of vectors y1, . . . , yd and constants c1, . . . cd
such as:

x ∈ H ⇔
{
ym.x ≥ cm if m ≤ k
ym.x = cm otherwise.

From this we can deduce that each set {ui +
∑

1≤m≤k
amvlm |am ∈ Q+} can be

caracterised as a conjunction of inequalities and equalities.
Hence we have that S can be caracterised by a disjunction (for each possible

Ji) of disjunction (for each linearly independent set of vectors) of conjunctions
of inequalities and equalities. We need to prove now that the right term of these
formulaes is 0 (or can be replaced by 0).

First here is a last lemma that is a weaker property than C∗ on our set:

Lemma 5. If x ∈ H then for every λ ∈ N+ we have λx ∈ H.

Proof. Let x be in H and λ ∈ N+.
We can write x = u+

∑
1≤m≤k

xmvlm .

Then λx = u+ (λ− 1)u+
∑

1≤m≤k
(λxm)vlm .

As either u is nul, either u = v0 = vl1 , we can conclude that λx ∈ H .

Let ym · x = cm be one of the equalities of H .As, from Lemma 5, 2x ∈ H , we
have ym · 2x = cm = 2(ym · x) = 2cm. We deduce from this that cm = 0.

Let ym · x ≥ cm be one of the inequalities verified by every element of H .

– If cm < 0: Let suppose there exists an x ∈ H such that ym · x ∈ [cm, 0[.
There exists some λ ∈ N+ such that λym · x < cm. We deduce from it that
λx 	∈ H , which is a contradiction of Lemma 5 (as x is in H).
We can deduce then that ym · x ≥ cm ⇔ ym · x ≥ 0.

– If cm > 0: Let suppose there exists an x ∈ H such that ym ·x ∈]0, cm[. There
exists some λ ∈ N+ such that λym ·x ≥ cm. We deduce from it that λx ∈ H ,
which is a contradiction of Lemma 5 (as x is not in H).
We can deduce then that ym · x ≥ cm ⇔ ym · x > 0.

From this study, we deduce the theorem :

Theorem 5. If S is a semi-linear set verifying (C+) and (C∗), then it can
be described by a boolean combination of formulae of the form y · x ∝ 0 with
∝∈ {≥, >,=}.
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4.3 Computational Power of Trustful Population Protocols

As we know to what corresponds each i ∈ I (in term of computability), we can
now have the characterization of what can be computed by our model:

Theorem 6. The partitions that can be computed by trustful population proto-
cols correspond exactly to partitions where each set can be defined as a boolean
combination of threshold problems with a nul constant (i.e. c = 0).

Proof. We have, for y ∈ Y , f−1(y) =
⋃
i∈ω−1(y)Ai.

With the previous result, we have a ∈ f−1(y) ⇔ a ∈
⋃
i∈ω−1(y)Ai ⇔ a verifies

the formula of an Ai. With this, f−1(y) is defined by the disjunction of boolean
combinations of threshold problems (with a nul constant), where the inequality
can be strict.

4.4 Interpretation in Terms of Frequencies

Proposition 4 (Stability under Multiplication and Division). Both ver-
sions of trustful population protocols are stable under multiplication and divi-
sion: For any function f computed by a trustful population protocol, for any
input E ∈ N|Σ|, for any k ∈ N+, f(E) = f(k × E), and if every coefficient is a
multiple of k, f(E) = f(E/k).

Proof. The principle of this proof is really simple: as every computation needs
to have the good interpretation, we can first separate the population of k × E
in k populations E. There is a sequence from E that reaches a configuration
where all agents have the same interpretation. We have all of the k populations
perform the same sequence. From that configuration, as every agent is in the
same set Qi for some i ∈ I, the interpretation cannot change anymore. Because
of that, f(E) = f(k × E).

The case E/k is exactly the same: we use the previous result with E/k and
k × E/k = E.

Remark 2. With this result, there are some functions computable by population
protocols that can be shown very easily not to be computable by our models:

– Is there more that two x in the input ? (it is equivalent to nx ≥ 2): with
E = (x, x, y, y), we have f(E) = True 	= False = f(E/2).

– nx ≡ 0[2]: With the same input E as above, f(E) = True 	= False =
f(E/2).

A way to interpret previous theorem, is then to observe that computable
predicates are always frequency based: i.e. a predicate on frequencies of letters
in the input.

Indeed, observe that a Threshold
∑
s∈Σ

g(s)ns ≥ c with c = 0 can always be

written
∑
s∈Σ

g(s)fs ≥ 0, where fs =
ns

n , with n =
∑
s ns. Here fs is the frequency

of agents in state s in the population.
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5 Non Finitely States Agents

Now we will consider the case where the agents do not have a constant memory,
and can be any arbitrary Turing machines. To understand more formally how
interactions and fairness work, we consider the principles used in [14].

In this section, we show a result when agents contains Ω(n logn) bits, where
n is the number of agents in the population.

Definition 11 (Trustful Population Protocol on Space f(n)). A Trustful
Population Protocol on Space f(n) is a protocol where all agents have their state
in Q = Σ

⋃
i∈I(n)

{i}×{0, 1}f(n), where n is the number of agents in the input and

|I(n)| ≤ 2f(n); I = Σ ∪ {0, 1}f(n); ω = IdentityΣ.

Proposition 5. If all agents have a space of at least Ω(n logn), where n is the
number of agents in the population, there exists a trustful population protocol
that computes the exact frequency of each possible input.

Proof (Sketch). The idea of this protocol is to run the averaging problem with
different parameters at the same time. I(n) will be all the possible proportions
(frequencies) for populations of size smaller or equal to n (it can be represented
on log(|Σ| × n) bits, as it suffises to have n and ns ≤ n for each s).

For each s ∈ Σ, each agent will run the averaging problem on k × ns for an
increasing number of k until the protocol provides an integer result. When the
protocols stops on an average ak for a given k, the population knows that the
proportion ns/n is equal to ak/k, as k × ns = ak × n.

For k = n, we can be sure that the protocols will finish. If we separate the
space in f(n)/|Σ| bits (one portion for each s ∈ Σ), each portion will need
log 1 + log 2 + . . . logn ≤ n logn bits to compute the corresponding proportion.

We get:

Theorem 7 (Computable iff Frequency Based). Let F : N|Σ| → Y be
a function stable by multiplication computable in space f(n), where f(n) =
Ω(n logn) with n corresponding to the size of the input.

There exists a Trustful Population Protocol that computes F if all agents have
f(n) bits.

Proof. The agents compute the same protocol than before, but with another
function ω: instead of having ω(n1, . . . , nk) = (n1/n, . . . , nk/n), ω(n1, . . . , nk) =
F (n1, . . . , nk). As all the agents have enough space to compute F , they can even
carry the right answer.

6 Complexity

For classic population protocols, [2] showed that computable predicates can be
computed in O(n log6 n) expected transitions if the population starts with a
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unique leader (and provides a protocol that seems to compute the leader election
in O(n log n) expected transitions). The problem is that these protocols cannot
be transposed to our model: These protocols use a probabilistic protocol which
has a low probability to fail, and this failure is catched by a regular protocol
computed in parallel. In our case, if the probabilistic protocol fails and give
a wrong answer, as all the agents will be in the same Qi, a regular protocol
computed in parallel will not be able to correct the error.

The following can however be proved:

Proposition 6. Any function computable by a trustful population protocol can
be computed by a weakly trustful population protocol with an expected number of
O(n2 logn) interactions.

Proof (Sketch). The idea of this protocol is to perform a leader election in parallel
of the protocol. Only the leader can change the opinion of an agent when the issue
is uncertain (i.e. when the agent has 0 in the memory and cannot know directly
if the population has a positive or negative sum). The proof of complexity is the
usual one for the classical population protocol.

Acknowledgments. We would like to thanks deeply Jérome Leroux and
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Abstract. In a cognitive radio network, a Primary User (PU) may va-
cate a channel for intermissions of an unknown length. A substantial
amount of research has been devoted to minimizing the disturbance a
Secondary User (SU) may cause the PU. We take another step and opti-
mize the throughput of an SU, even when assuming that the disturbance
to the PU is indeed avoided using those other methods.

We suggest new optimization parameters the lengths of SU packets.
That is, the SU fills up the intermission with consecutive packets. Each
packet is associated with some fixed overhead. Hence, using a larger num-
ber of smaller packets increases the overhead ratio for each SU packet.
On the other hand, it reduces the loss of throughput the SU suffers with
the loss of a packet in a collision at the end of the intermission.

As opposed to previous studies, we optimize also the case where the
distribution of the channel intermission is unknown. That is, we develop
optimal competitive protocols. Those seek to minimize the ratio of the
SU’s profit compared to a hypothetical optimal algorithm that knows the
intermission length in advance. We show how to compute the optimal
present packets’ sizes for the case that the distribution is known (for a
general distribution). Finally, we show several interesting properties of
the optimal solutions for several popular distributions.

1 Introduction

Cognitive Radio Networks (CRN) divide the users into Primary Users (PUs)
and Secondary Users (SUs) groups. PUs are the spectrum ”license holders”
and have the right to use their channel at will. Various techniques have been
devised to prevent SUs’ transmission from disturbing the PU’s transmission,
e.g. by having the SU sense the channel and avoid transmission whenever the
PU transmits.
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However, collisions between the user groups not only impact the ownership
rights of the PUs but also affect the performance of the SUs, reducing the ef-
fective channel usage of the SUs even during an intermission in the PU’s trans-
missions. To see that, consider the extreme (rather likely) case that the PUs are
allowed a much higher transmission power. Hence, an SU packet transmitted at
the end of the PU intermission is likely to be lost when the packet level checksum
or a CRN integrity test is conducted at the receiver. That is, even the part of
the packet that was transmitted during the intermission is lost. Please observe
that this SU loss may happen even if the PU’s transmission is not disturbed at
all (e.g. thanks to the much higher power of the PU’s transmissions)!

While our work revisits one of the most basic questions in CRN, we optimize it
from a different angle. To highlight that, we stress that our results are meaningful
even if a negative impact on the PU is avoided (for example, avoided by using
the previous methods). Our main problem is: devise optimal access algorithms
that maximize the efficient usage of the channel by the SU, given the possible
loss at the end of the intermission. While the above question (and our results)
concentrates on the SU’s throughput, our model (and some of the results) are
more general than that, and can also be used to minimize the negative impact
(also on the PU) caused by the collision at the end of the intermission.

Prudent Protocols. Our objective function includes a penalty for conflicts
between an SU and the PUs. This penalty is traded off against a loss of SU
throughput as follows. We allow an SU to break the transmission of its data
to smaller packets; each packet is transmitted in a transmission interval that is
followed by a sensing period of a a fixed length and (in case the intermission does
not end) by the next interval. The fixed periods between the intervals are viewed
as representing the fixed overhead, that may include, beside fixed length sensing,
a preamble, headers, checksums, etc., associated with a packet transmission.1

The main optimization parameters are the lengths of the transmission inter-
vals. Intuitively, a good sequence is not “too daring” (having too long sequences)
on one hand, since we want to avoid the case that the last packet, the one that
is lost, is long. On the other hand, a good sequence is not “too hesitant” (having
too short messages). This is because a sequence of short packets will suffer from
a relatively high overhead per packet (since the overhead per packet is fixed).
Hence, we term protocols that achieve a good tradeoff-Prudent Optimistic pro-
tocols and the problem of finding good sequences– the problem of Dynamic
Interval Cover (DIC). The problem is defined formally below. We develop such
protocols both for the case that the intermission length is unknown, and for the
case that it is taken from a general distribution. We also highlight interesting
results for several specific distributions that were not addressed before.

1 We comment that in earlier work [4], the periods between the intervals were not fixed.
This is because they had a different purpose- that of minimizing the probability of a
collision at the end of the intermission. Recall that here, we want to emphasize the
optimization that is still required for the SU’s transmission, even if the collision at
the end of the intermission does not harm the PU.
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The Model. The issues considered in this paper are manifested even in a
system with a single primary user and a single secondary user that share a
single channel. Note that assuming multiple PUs would not change our results
at all. (The case of multiple SUs is beyond the scope of this paper; however, we
hope in a future work to fit multiple SUs into our model as follows: multiple
SUs would coordinate transmissions among themselves using more traditional
methods; that way, they would present the face of a single SU to the PU). The
PU owns the channel and transmits over it intermittently. The SU cannot start
transmitting until the PU stops. It is easy to show that optimizing for a sequence
of multiple intermissions can be reduced to optimizing the SU transmission over
each intermission separately. Hence, our analysis is performed per intermission.

We assume that the SU always has data. The data is divided by the SU into
(variable length) packets. As opposed to some previous studies, we do not assume
that the packet sizes are given ahead of time. W.L.O.G., the transmission of x
bits takes x time units. When an intermission of the PU starts, the SU starts
transmitting its data in packets p0, p1, p2, ... such that p0 is transmitted using
time interval ψ0, p1 using time interval ψ1, etc. The sequences of time intervals
ψ0, ψ1, ψ2, ... is thus, the output of the SU access control algorithms addressed in
the current paper. Optimizing this sequence is the DIC problem defined below.
A prudent protocol is an opportunistic access protocol that transmits a sequence
of packets whose lengths are the result of this optimization problem.

If the PU resumes transmitting at the time that the SU is transmitting its
jth packets, then the SU ceases transmission, and the jth packet is lost (an
unsuccessful transmission). In the other case (a successful transmission), the
SU starts and completes a packet’s transmission during the intermission. The
SU’s benefit of such a single PU intermission is a profit for the j − 1 successful
transmissions of the first j−1 packets. There is also a penalty for the unsuccessful
transmission of the j’th packet. Different benefits and different penalties define
different profit models. In this paper, we use the following profit model.

The α-Cost Profit Model: Consider a constant α ≥ 0 (representing the above
mentioned fixed overhead per packet). The SU’s profit for a successful transmis-
sion of a single packet of time length ψ (a packet with ψ bits) is ψ − α, i.e., the
SU earns ψ and pays a fixed cost of α, for every time length ψ > 0. For sim-
plicity, we ignore the cost of the last transmission. That is, for an unsuccessful
transmission of a single packet, the SU earns nothing and pays nothing2.

Definition 1. Dynamic Interval Cover (DIC) is the optimization problem of
generating a sequence of intervals according to the profit model described above.

Our Results. A part of the novelty in this paper is the fact that we deal
with case that the intermission length may be unknown at all. That is, we

develop optimal
(
1 +

√
4α−3α2+α
2(1−α)

)
-competitive protocols (these protocols are

2 Note that alternative penalty assumptions, e.g., a double loss in the case of a collision,
to account also for the PU’s loss, can be analyzed using this framework but are left
for future research.
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2.62-competitive, since α ≤ 1/2). Protocols that seek to minimize the ratio of
the SU’s profit compared to an optimal hypothetical algorithm that does know
the intermission length in advance. We also show that the competitive ratio for
the bounded intermission model is better than the one for the unbounded case,
however, it is only slightly better.

For the case where the distribution of the intermission is known, we address
the case of a general distribution. Previous studies assumed some specific distri-
bution for the length of the intermission. Most assumed the exponential distribu-
tion, see e.g., [4, 10, 11]. Others [1, 5, 12], extend this assumption to distributions
derived from specific Markovian system models. For a general distribution, we
present (Section 3) an efficient (polynomial) algorithm to compute the optimal
length of each transmission interval for the realistic case that the interval length
must be discrete, and a fully polynomial-time approximation scheme (FPTAS)
for computing a sequence that approximates the optimal solution.

Interestingly, one difference resulting from the general distributions we ad-
dress, is that (unlike those known studies of memory-less distributions) we show
that the length of the optimal intervals in a sequence is not always constant.
(Our method can be used also in the case that a constant length is required.)
Finally, we also found some interesting properties of an optimal solution under
some popular specific distributions.

Some Related Work. A dual problem of DIC is the buffer management prob-
lem. In that problem, the packets arrive with different sizes. The online algorithm
needs to decide which packets to drop while the size of each packet is fixed. The
objective is to minimize the total value of lost packets, subject to the buffer space.
Lotker and Patt-Shamir [6] studies this problem and present a 1.3-competitive
algorithm.

The problem of cognitive access in a network of PUs and SUs was studied
intensively. We refer to two surveys [2] and [7]. The problem of designing of
sensing and transmission that maximized the throughput of the SU is studied
in [4, 5, 7, 8, 10–12] under a model with collision constraints. Recall that our
length optimization can be made after, and on top of, the optimizations per-
formed by previous papers, since we optimize different parameters. Hence, a
direct comparison of the the performance would not be meaningful.

Preliminaries. Consider an output Ψ : N+ → R of an SU access control al-
gorithm that defines a sequence of time intervals Ψ = 〈ψ0, ψ1, ψ2, ... 〉. That
is, ψ0 = Ψ(0), ψ1 = Ψ(1), ψ2 = Ψ(2), ... . Denote by Ψinf = {Ψ ∈ RN |
Ψ is an infinite sequence} the family of infinite sequences (of time intervals).
Ψfin = {Ψ ∈ RM | M ∈ N, Ψ is a finite sequence} is the family of finite se-
quences. Denote by ΨM = {Ψ ∈ Ψfin | |Ψ | =M} (for every M ∈ N+) the family

of M -size sequences. Let S(Ψ, k) =
∑k
i=0 ψi , and S(Ψ) = S(Ψ, |Ψ |), for every

Ψ ∈ Ψfin. Let K〈Ψ,t〉 be the number of packets that SU transmitted successfully.
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The profit of a sequence Ψ , with respect to an intermission of duration t, is the
sum of the profits of the SU for the time intervals in the sequence Ψ :

Pfit〈α〉(Ψ, t) =

K〈Ψ,t〉∑
i=0

(ψi − α). (1)

2 Unknown PU Intermission Length

We begin with a difficult case in which even the distribution of the intermission
length t′ ∈ R+ is unknown to the SU. As is common in analyzing competitive
algorithms [3], we measure the quality of the SU protocol by comparing the
profit it obtains to the profit obtained by a hypothetical optimal algorithm (the
”offline” algorithm) that knows the intermission length in advance. Moreover,
we make this comparison in the worst case. Informally, one may envision an
”adversary” who knows in advance the sequence Ψ of transmission intervals
chosen by the SU and chooses an intermission length for which the profit of the
SU from Ψ is minimized relatively to the profit of the optimal offline algorithm.
Formal definitions are given below, following standard notations.

It is easy to verify that if the intermission can be shorter than α, then no online
protocol can achieve a positive profit. We normalize the lengths and also α such
that the minimum intermission length is 1 and 0 < α < 1/2 (this implies that the
first packet is of length 1 in any optimal sequence and an optimal sequence has
a positive profit). Let Ψα = {Ψ ∈ Ψfin ∪ Ψinf | ψ0 = 1 and ψi ≥ α for every i ≥
1}. This family of sequences has a positive profit for any intermission time length.
Moreover, it has a nonnegative profit from each interval. It is easy to make the
following observation.

Observation 1. An optimal sequence must belong to Ψα.

For a sequence Ψ ∈ Ψα and an intermission length t ≥ 1, the competitive ratio is

c-ratio(Ψ, α, t) =
t− α

Pfit〈α〉(Ψ, t)
. (2)

The numerator in this ratio is the optimal (maximum) profit that could have
been made by the SU had it known the intermission time length t (that is, a
profit of t− α for the sequence 〈t〉). The denominator is the actual profit of the
SU who selected sequence Ψ . The competitive ratio of Ψ is the maximum (over
all t ≥ 1) of the competitive ratio of Ψ with respect to t. That is,

opt-ratio(Ψ, α) = max
t≥1

c-ratio(Ψ, α, t).

The goal of the online algorithm is to generate a sequence Ψ that minimizes the
competitive ratio. We consider both infinite and finite sequence models as well as
the bounded and unbounded intermission time models. Denote the optimal com-
petitive ratio for an infinite sequence model under the unbounded intermission
time model (for punishment α) by

opt-ratio(α) = min
Ψ∈Ψα

c-ratio(Ψ, α). (3)
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We present an optimal competitive ratio sequence and establish the following.

Theorem 1. opt-ratio(α) = 1 +
√
4α−3α2+α
2(1−α) ≤ 2.62.

For proving the theorem, it is convenient to define also the competitive ratio
under a certain strategy of the adversary. Specifically, f〈α,Ψ〉(k) is computed as
if the intermission ends just before the (k + 1)’th interval in Ψ ends. I.e., the

intermission length is t′ =
∑k+1
i=0 ψi − ε, where ε > 0 is negligible. Let

f〈α,Ψ〉(k) = lim
ε→0+

c-ratio(Ψ, α,S(Ψ, k + 1)− ε) =
∑k+1
i=0 ψi − α∑k

i=0 ψi − (k + 1)α
(4)

= 1 +
ψk+1 + kα

ψ0 + ...+ ψk − (k + 1)α
,

for every i ∈ N. The usefulness of f〈α,Ψ〉 becomes evident given the following.

Observation 2. The competitive ratio of Ψ ∈ Ψα is

c-ratio(α, Ψ) = sup{f〈α,Ψ〉(k) | k ∈ N}.

By Eq.(3), the observation implies that the optimal competitive ratio is

opt-ratio(α) = min
Ψ∈Ψα

sup{f〈α,Ψ〉(k) | k ∈ N}.

Claim 1. There exists an optimal sequence Ψ for DIC such that f〈α,Ψ〉(k) is
some constant for every k ∈ N.

Proof: Consider any optimal sequence Ψ∗. Let λ = sup{f〈α,Ψ∗〉(k) | k ∈ N}
and let Ψ ′ be a sequence obtained from Ψ∗ as follows: ψ′

0 = 1 and ψ′
i+1 =

(λ − 1)
(∑i

j=0 ψ
′
j − (i+ 1)α

)
− iα. By induction on i and by Eq. (4) we know

that ψ′
i ≥ ψi and f〈α,Ψ ′〉(k) = λ, for every k ∈ N. It remains to prove that

Ψ ′ ∈ Ψα, so that Observation 2 can be used. For that, we prove by induction,
that ψ′

k ≥ ψ∗
k. By Observation 1, ψ′

0 = ψ∗
0 = 1. Assume that ψ∗

i ≤ ψ′
i, for every

i = 0, ..., k. On the one hand, we have

λ ≥ f〈α,ψ∗〉(k + 1) = 1 +
ψ∗
k+1 + kα∑k

i=0 ψ
∗
i − (k + 1)α

≥ 1 +
ψ∗
k+1 + kα∑k

i=0 ψ
′
i − (k + 1)α

,

where the left hand equality holds since sup{f〈α,Ψ∗〉(k) | k ∈ N} = λ and right

hand inequality holds since
∑k
i=0 ψ

∗
i ≤

∑k
i=0 ψ

′
i, by the inductive assumption.

On the other hand, we established above
ψ′

k+1+kα∑
k
i=0 ψ

′
i−(k+1)α

= f〈α,ψ′〉(k + 1)− 1 =

λ− 1, By the above inequality, λ− 1 ≥ ψ∗
k+1+kα∑

k
i=0 ψ

′
i−(k+1)α

. Thus, ψ′
k+1 ≥ ψ∗

k+1, as

required. Since Ψ∗ ∈ Ψα, also Ψ ′ ∈ Ψα. The claim follows.
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By Eq. (4), Claim 1 implies that, for an optimal solution Ψ ,

ψk + (k − 1)α

ψ0 + ...+ ψk−1 − kα
=

ψk+1 + kα

ψ0 + ...+ ψk − (k + 1)α
,

hence, for every k = 1, 2, 3, ...

ψk+1 = ψk +
(ψk − α)(ψk + (k − 1)α)

ψ0 + ...+ ψk−1 − kα
− α. (5)

This means that for every Ψ for which f〈α,Ψ〉(k) is some constant, ψ1 determines
Ψ uniquely (since ψ0 = 1). In other words, every such Ψ can be characterized as
Ψ(x) = 〈ψ0(x), ψ1(x), ψ2(x), ...〉 such that ψ0(x) = 1, ψ1(x) = x and ψk+1(x) =
(ψk(x)−α)(ψk(x)+(k−1)α)
ψ0(x)+...+ψk−1(x)−kα + ψk(x) − α, for every k = 1, 2, ... .

The construction of Ψ(x) implies that, if ψi(x) ≥ α for every i ≤ k, then

f〈α,Ψ(x)〉(j) = 1 +
x

1− α, for every j = 0, ..., k. (6)

Thus, f〈α,Ψ(x)〉(k) is smaller for smaller values of x. Unfortunately, it might be
that Ψ(x) 	∈ Ψα. By Observation 1 and by Claim 1, the optimum is,

opt-ratio(α) = min
x∈[α,∞)

{c-ratio(α, Ψ(x)) | Ψ(x) ∈ Ψα}.

Moreover, the fact that f〈α,Ψ(x)〉 is monotonically increasing as a function of
x ∈ [α,∞), implies that, for x∗ = min{x | Ψ(x) ∈ Ψα},

opt-ratio(α) = f〈α,Ψ(x∗)〉(0). (7)

We found that the optimal competitive ratio is achieved for some x∗ ∈ [α,∞),
such that Ψ(x∗) ∈ Ψα and x∗ = ψ1(x

∗) = ψ2(x
∗) = ψ3(x

∗), ... . Let x∗ =
α+

√
4α−3α2

2 . We prove that Ψ(x∗) ∈ Ψα is optimal and ψi(x
∗) = x∗, for every

i = 1, 2, ... . (It is easy to verify that x∗ ≥ α for every choice of 0 < α < 1.) We
begin with the following claim.

Claim 2. ψi(x
∗) = x∗, for every i = 1, 2, 3, ... .

Proof: We prove by induction. For i = 1, by definition of Ψ(x), it follows
that ψ1(x

∗) = x∗, hence, the base of the induction holds. Now, assume that
the claim holds for every i ∈ {1, ..., k}. By Eq. (5), it suffices to prove that
(ψk(x

∗)−α)(ψk(x
∗)+(k−1)α)

ψ0(x∗)+...+ψk−1(x∗)−kα − α = 0. By assigning x∗ for ψi(x
∗) (for every i =

1, ..., k, using the induction hypothesis) and ψ0(x
∗) = 1, we get

(ψk(x
∗)−α)(ψk(x

∗)+(k−1)α)
ψ0(x∗)+...+ψk−1(x∗)−kα −α = (x∗−α)(x∗+(k−1)α)

1+(k−1)x∗−kα −α = (x∗)2+(k−2)αx∗−(k−1)α2

1+(k−1)x∗−kα −
α = 0, which implies that

(x∗)2 − αx∗ + α2 − α = 0.

This implies that x∗ = α+
√
4α−3α2

2 is the solution to the above quadratic
equation under the assumption that x∗ ≥ α. The claim follows.
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We now show that the sequence Ψ(x) is monotonically decreasing.

Claim 3. If ψi(x) ≥ α for every i ≤ k, then ψk+1(x) < ψk(x) for every x ∈
[α, x∗) and every k = 1, 2, 3, ... .

(Throughout, due to lack of space, some of the proofs are deferred to the full
version of this paper.)

Claim 4. Ψ(x) 	∈ Ψα, for every x < x∗.

Proof: If x < α, then ψ1(x) = x < α, and the claim holds. Consider α ≤ x < x∗,
and assume by the way of contradiction that Ψ(x) ∈ Ψα. By claim 3, it follows
that ψi+1(x) < ψi(x) < x, for every i > 1. Hence, limi→∞ ψi(x) = x′, for some
x′ ∈ [α, x). Therefore, by Eq. (2), we get that if x′ > α, then

lim
t→∞

c-ratio(Ψ(x), α, t) = lim
t→∞

t− α
Pfit〈α〉(Ψ(x), t)

=
x′

x′ − α,

but x′
x′−α > x∗

x∗−α = f〈α,Ψ(x∗)〉(0) > f〈α,Ψ(x)〉(0), since α ≤ x′ < x∗, (that
is the competitive ratio of Ψ(x) is not f〈α,Ψ(x)〉(0)), which is contradiction to
Observation 2. Hence Ψ(x) 	∈ Ψα. If x′ = α, then limt→∞ c-ratio(Ψ(x), α, t) =
∞, which leads to a contradiction as well.

We are ready to prove that Ψ(x∗) is an optimal sequence. It is easy to verify
that f〈α,Ψ(x∗)〉(0) > f〈α,Ψ(x)〉(0), for every x > x∗. Thus, by Observation 2,
c-ratio(α, Ψ(x)) > c-ratio(α, Ψ(x∗)), hence Ψ(x) is not optimal. On the other
hand, by Claim 4, Ψ(x) 	∈ Ψα for every x < x∗. Thus, by Eq. (7), we get
that Ψ(x∗) is an optimal sequence. Recall that c-ratio(α, Ψ(x∗)) = 1 + x∗

1−α =

1 +
√
4α−3α2+α
2(1−α) . This yields Theorem 1.

The Bounded Intermission Time Model. Above, we have shown that for
α < x < x∗, the sequence Ψ(x) is monotonically decreasing. (Actually, it can be
proven that the sequence is decreasing also for x ≤ α; recall, x∗ > α). Informally,
the intervals in the infinite suffix of a decreasing sequence that are ”short”, ”pull”
the competitive ratio down. Hence, intuitively, if we can stop the decrease, then
we can improve the competitive ratio of a sequences Ψ(x) for α < x < x∗. In
fact, the decrease of Ψ(x) does stop when the intermission length is bounded.
In other words, a bound on the length causes the above mentioned suffix of the
sequence Ψ(x) to become smaller (at least, it is finite). This allows us to choose
x smaller than x∗ and still not get a sequence Ψ(x) with a tail of intervals that
are ”too small”. As a result, we show that we can improve the competitive ratio
to 1+ x′

1−α for the bounded intermission model by choosing a sequence Ψ(x′), for
some α < x′ < x∗. (It should be said, though, that the value of x′ is, still, close
to x∗, since the sequence Ψ(x) decreases very fast when x is much smaller than
x∗). Still informally, the more we reduce x, the faster the intervals at the suffix
of Ψ(x) drop to a length that is not useful. Hence, the value of x (or “how much
can x be smaller than x∗”) depends on the bound we are given on the interval.
This is illustrated in Figure 1.
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Fig. 1. In both parts of the figure, α = 0.4. On the left, T = 15, and x ≈ x∗ − 0.110 , a
negligible improvement. On the right, T = 5 and x ≈ x∗ − 0.13, allowing a somewhat
larger improvement.

Formally, the competitive ratio of Ψ with respect to time bound T is

c-ratio〈α,T 〉(Ψ) = max
T≥t≥1

c-ratio〈α,T 〉(Ψ, t),

where c-ratio〈α,T 〉(Ψ, t) = c-ratio(Ψ, α, t). For a given sequence Ψ , such that
ψ0 = 1, and a real number x, denote by prex(Ψ) the longest prefix of Ψ such that
all intervals are of length at least x. That is, prex(Ψ) = 〈ψ0, ψ1, ..., ψk〉, where
ψi ≥ x, for every 0 ≤ i ≤ k and if the |Ψ | > k + 1, then ψk+1 < x. (Note that,
for x = α, preα(Ψ) ∈ Ψα.)

Similarly to Observation 2, the maximum competitive ratio of preα(Ψ) is ob-
tained even for a specific strategy of the adversary. In that strategy, the adversary
chooses the intermission t to end just before the k’th interval, (for some k), or,
alternatively, at t = T .

Observation 3. The competitive ratio of preα(Ψ) ∈ Ψα is,

max
(
c-ratio〈α,T 〉(Ψ, t = T ),max{limε→0+ c-ratio〈α,T 〉(Ψ,

∑k
i=0 ψi − ε) | k =

1, ..., |preα(Ψ)| − 1}
)
.

Now, we prove four claims that help us find an optimal solution.

Claim 5. Consider any x′ > x′′ and an index i ≥ 1. Assume that 〈ψ0(x
′′), ...,

ψi−1(x
′′)〉 ∈ Ψα and ψi(x

′′) ≥ 0. Then, ψj(x
′) > ψj(x

′′), for every 1 ≤ j ≤ i.

Claim 6. There exists a sequence x1, x2, x3, ... ∈ R , such that
(P1) |pre0(Ψ(x))| = i+ 2, for every x ∈ [xi, xi+1);
(P2) ψi(xi) = α, ψi+1(xi) = 0;

(P3) x1 = α < x2 < x3 < ... , and x1, x2, x3, ... ∈ [α, α+
√
4α−3α2

2 ); and
(P4) For every i ≤ k+1, ψi(x) is continuous and strictly increasing in the range

[xk,
α+

√
4α−3α2

2 ].

Proof: We prove properties (P2), (P3) and (P4) by induction on i. The base of

the induction holds, since ψ1(α) = α, and by Eq. (5), ψ2(x) = x+ (x−α)x)
1+x−α − α.

thus, ψ2(α) = 0. Hence, properties (P2) and (P3) hold. In addition, ψ2(x) is
continuous in [α,∞], since 1 + x − 2α > 0, for every x > α, and by Claim 5,

ψ2(x) is strictly increasing in [α, α+
√
4α−3α2

2 ], hence (P4) holds as well.
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Assume that (P2), (P3), and (P4) holds for every i ≤ k. For every i = 1, ..., k

and every x ∈ [xk,
α+

√
4α−3α2

2 ], Properties (P3) and (P4) of the induction as-

sumption imply that ψi(x) ≥ ψi(xk) ≥ α. Thus,
∑k
i=0 ψi(x)−(k+1)α ≥ 1−α >

0. Therefore, by Eq. (5), ψk+1(x) is continuous, and by Claim 5, ψk+1(x) is

strictly increasing in the range [xk,
α+

√
4α−3α2

2 ]. Hence, Property (P4) holds.
In addition, by (P2) of the induction assumption, ψk+1(xk) = 0, and by

Claim 2, ψk+1(
α+

√
4α−3α2

2 ) = α+
√
4α−3α2

2 > α. Hence, there exists a real number

xx+1 ∈ (xk,
α+

√
4α−3α2

2 ), such that ψk+1(xk+1)=α, and by Eq. (5), ψk+2(xk+1) =
0. Thus, (P2) and (P3) holds.

Finally, consider (P1). On one hand, by (P2), (P3) and (P4), ψi(x) ≥ α, for

every i = 0, 1, ..., k, and every x ∈ [xk,
α+

√
4α−3α2

2 ]. On the other hand, by (P2),
ψk+1(xk) = 0, ψk+1(xk+1) = α; by (P3) xk < xk+1; and by (P4) ψk+1(x) is

strictly increasing in the range [xk,
α+

√
4α−3α2

2 ]. Hence, 0 < ψk+1(x) < α, which
implies, together with Eq. (5), that ψk+2(x) < 0, for every x ∈ [xk, xk+1).

Claim 7. S(pre0(Ψ(x))) is continuous and is strictly increasing in the range

x ∈ [α, α+
√
4α−3α2

2 ).

Proof: Let xi be a real number such that ψi(xi) = α. (By property (P2)
of Claim 6, there exists such a number.) For every k ≥ 1, by property (P1)

of Claim 6, S(pre0(Ψ(x))) =
∑k+1
i=0 ψi(x) in the range [xk, xk+1). By prop-

erty (P4) of Claim 6,
∑k+1
i=0 ψi(x) is continuous and strictly increasing in the

range [xk,
α+

√
4α−3α2

2 ). Combining this together with property (P3) of Claim
6, we get that S(pre0(Ψ(x))) is continuous and strictly increasing in the ranges
[0, x1), [x1, x2), [x2, x3), ... .

It remains to prove that limε→0+ S(pre0(Ψ(xk − ε))) = S(pre0(Ψ(xk))). (This
also proves that S(pre0(Ψ(x))) is strictly increasing.) We have

lim
ε→0+

S(pre0(Ψ(xk − ε))) =
k∑
i=0

ψi(xk − ε) =
k+1∑
i=0

ψi(xk) = S(pre0(Ψ(xk))).

where the second equality holds, since ψk+1(xk) = 0 by property (P2) of Claim
6. The claim follows.

Claim 8. There exists an optimal sequence Ψ for DIC with a bound T on inter-
mission time, such that f〈α,Ψ〉(k) is some constant for every k = 0, ..., |Ψ | − 2.
(Similarly to Claim 1.)

Proof: Consider an optimal solution Ψ∗ for DIC with time bound T . Let λ =
max{f〈α,Ψ∗〉(k) | k ∈ {0, ..., |Ψ∗| − 1}} and let Ψ ′ be a sequence obtained from
Ψ∗ as follows: ψ′

0 = 1 and for every 1 ≤ i ≤ |Ψ∗| − 2,

ψ′
i+1 = (λ− 1)

⎛⎝ i∑
j=0

ψ′
j − (i+ 1)α

⎞⎠− iα.
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Note that, |Ψ∗| = |Ψ ′|, and by induction on i and by Eq. (4) we know that
ψ′
i ≥ ψ∗

i and f〈α,Ψ ′〉(k) = λ. Thus, S(Ψ ′) ≥ S(Ψ∗), with equality if and only
if Ψ∗ = Ψ ′. If Ψ∗ = Ψ ′, then the claim follows. Assume by the way of con-
tradiction that Ψ∗ 	= Ψ ′, thus S(Ψ ′) > S(Ψ∗). This implies that, if S(Ψ ′) ≤
T , then the profit of Ψ ′ is grater than the profit of Ψ∗ for time T , hence
c-ratio(Ψ ′, α, T ) ≤ c-ratio(Ψ∗, α, T ). Otherwise, S(Ψ ′) > T , and then it fol-
lows that c-ratio(Ψ ′, α, T ) ≤ λ.

In both cases, c-ratio(Ψ ′, α, T ) ≤ max{λ,c-ratio(Ψ∗, α, T )}. This implies
that

c-ratio〈α,T 〉(Ψ
′) ≤ max{λ,c-ratio〈α,T 〉(Ψ

∗, t = T )} = c-ratio〈α,T 〉(Ψ
∗).

Therefore, Ψ ′ is also optimal. In addition f〈α,Ψ ′〉(k) = λ, for every 0 ≤ k <
|Ψ ′| − 1.

Let x〈T,α〉 be real such that S(pre0(Ψ(x〈T,α〉))) = T . (There exists such real,
since by Claim 7 pre0(Ψ(x)) is continuous, S(pre0(Ψ(0))) = 1 and

limε→0+ S(pre0(Ψ(
α+

√
4α−3α2

2 − ε))) =∞.)

Theorem 2. Let Ψ 〈T,α〉 = preα(Ψ(x〈T,α〉)). The sequence Ψ 〈T,α〉 is optimal.

The competitive ratio of any access protocol using it is 1 +
x〈T,α〉
1−α .

Proof: First, we prove that

|Ψ 〈T,α〉| = |pre0(Ψ(x〈T,α〉))| − 1. (8)

Let last = |preα(Ψ(x〈T,α〉))| − 1. By Eq. (5),

if ψi(x) ≥ α, then ψi+1(x) ≥ 0, and

if ψi(x) ∈ [0, α), then ψi+1(x) < 0.

Hence, ψlast(x〈T,α〉) ∈ [0, α) and ψlast−1(x〈T,α〉) ≥ α, implying Eq. (8). It is easy
to verify that

c-ratioT (Ψ
〈T,α〉, α) = 1 +

x〈T,α〉
1− α . (9)

Let Ψ∗ be an optimal solution assuming the conditions of Claim 8. That is,
f〈α,Ψ∗〉(k) is a constant. Let x∗ = ψ∗

1 . It follows that ψi(x
∗) = ψ∗

i , for every
i = 0, 1, ..., |Ψ∗| − 1. If x∗ > x〈T,α〉, then limε→0+ c-ratioT (Ψ

∗, α, 1 + ψ∗
1 −

ε) = 1 + x∗
1−α . This implies that, c-ratioT (Ψ

∗, α) ≥ 1 + x∗
1−α , and 1 + x∗

1−α >

1 +
x〈T,α〉
1−α = c-ratioT (Ψ

〈T,α〉, α). This, is contradiction to the fact that Ψ∗ is
optimal. If x∗ < x〈T,α〉, then S(pre0(Ψ(x

∗))) < T and Ψ∗ = preα(Ψ(x
∗)). Hence,

c-ratio〈α,T 〉(Ψ(x
∗), t = T ) > f〈Ψ(x∗),α〉 and S(Ψ∗) < S(preα(Ψ(x〈T,α〉))). Thus,

c-ratio〈α,T 〉(Ψ
∗, t = T ) > c-ratio〈α,T 〉

(
preα(Ψ(x〈T,α〉)), t = T

)
= 1+

x〈T,α〉
1 − α ,

which is contradiction to the selection of Ψ∗ as the optimal. Therefore, x∗ =
x〈T,α〉. The theorem follows.
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3 Probabilistic Intermission Length

We now turn to the case that the intermission time length is taken from a gen-
eral probability distribution. To be able to deal with any probability distribution
P , we assume that P is given as a black box that gets a value x and returns
P (x). (It is easy to generate this black box when the distribution follows some
known function, e.g., poisson, uniform etc.). We present a polynomial algorithm
for DIC for the discrete case, that approximates (as good as we want) the op-
timal solution for the continuous case. As in the previous case, it is enough to
optimize the protocol for each intermission separately (because of the linearity
of expectations). Hence, we concentrate on one intermission.

3.1 General Probabilistic Distribution

Consider a probability distribution P : N → [0, 1] that represents the inter-
mission time length, i.e., Pr[intermission timelength ≥ t] = P (t). Sometimes,
we assume that a priori upper bound T is known for the intermission time
length. Denote by PT a bounded probability distribution with bound T ; That
is, P (t) = 0, for every t > T .

Consider a finite sequence Ψ = 〈ψ1, ψ2, ..., ψm〉 ∈ Ψfin and a probability
distribution PT . By Eq. (1), the expected profit of Ψ with respect to PT is

Epro〈PT ,α〉(Ψ) =
∑|Ψ |
k=1(ψk − α) · PT (S(Ψ, k)).

We want to compute the maximal (optimal) expected profit of a sequence with
respect to PT , denoted by- opt(PT ) = max{Epro〈PT ,α〉(Ψ) | Ψ is a sequence}.

Bounded Discrete Domain. First, consider the model where the intermission
length is discrete, (consists of t′ time slots) and is bounded from above by T .
Before addressing the whole intermission, let us consider just its part that starts
at T − 
 (for some 
) and ends no later than T (note that T − 
 may be empty
if t′ ≤ T − 
). Let MAXTAIL〈PT 〉 (
) (for every 0 ≤ 
 ≤ T ) be the expected maximal
profit that any sequence may have from this part. That is,

MAXTAIL〈PT 〉 (
) = max
Ψ∈Ψ

fin

{
|Ψ |∑
k=1

(ψk − α) · PT
(
T − 
+ S(Ψ, k)

)
}.

In particular, opt(PT ) = MAXTAIL〈PT 〉 (T ) = MAXTAIL〈PT 〉 (T − 0). The recur-

sive presentation of MAXTAIL〈PT 〉 is MAXTAIL〈PT 〉 (0) = 0 and MAXTAIL〈PT 〉 (
) =

maxi∈{0,1,...,�−1}{PT (T−i)·(
−i−α)+MAXTAIL〈PT 〉 (i)}. Using dynamic program-

ming, we can compute MAXTAIL〈PT 〉 (T ) = opt(PT ) and find an optimal sequence

with time complexity O(T 2). Thus, finding an optimal sequence is a polynomial
problem in the value of T .3

3 It is reasonable to assume that the time length T is polynomial in the size of the
input. Had we assumed that T was say, exponential in the size of the input, this
would have meant an intermission whose duration is so long, that in practice, it
seems as being infinity, making the whole problem mute.
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Bounded Continuous Domain. Let us now consider the case where the prob-
ability distribution PT is continuous. We present a fully polynomial-time approx-
imation scheme (FPTAS) [9] for the case that the optimal solution provides at
least some constant profit. We argue that in the other case, where the profit
is of a vanishing value, a solution to the problem is useless anyhow. (Still, for
completeness, we derived some result for that case: we have shown that if the
profit in the optimal case is ”too small”, then it cannot be approximated at all.)

Consider a real number δ > 0 such that μ ≡ T/δ is an integer. Let Ψδ = {Ψ |
ψi/δ is an integer, for every i}. Let MAXTAIL〈δ,PT 〉(
) (for every integer 0 ≤ 
 ≤ μ)
be the expected maximum profit over sequences Ψ ∈ Ψδ from the time period
[T − 
 · δ, T ]. That is,

MAXTAIL〈δ,PT 〉(
) = max
Ψ∈Ψδ

⎧⎨⎩
|Ψ |∑
k=1

(ψk − α) · PT (T − 
 · δ + S(Ψ, k))

⎫⎬⎭ .

We show that the function MAXTAIL〈δ,PT 〉 approximates the value of opt(PT ). In
particular, we show that for any optimization parameter ε > 0, there exists a
δ > 0 such that MAXTAIL〈δ,PT 〉(T ) ≥ (1 − ε)opt(PT ). Intuitively, we first show
that a large fraction of the expected profit of an optimal sequence Ψ∗ is made
from intervals whose lengths are ”sufficient greater” than α. (A long interval
can be approximated well by dividing it into smaller intervals, whose lengths are
multipliers of δ; dividing a short interval is not profitable because of α.)

Consider an optimal sequence Ψ∗ = 〈ψ∗
1 , ..., ψ

∗
|Ψ∗|〉. Let Pfit

TAIL
δ (i) =

∑|Ψ∗|
j=i[

(ψ∗
j − α) · PT (S(Ψ∗, j))

]
be the expected profit gained from the intervals ψ∗

i , ...,
ψ∗
|Ψ∗| under probability distribution PT , for every i ∈ {1, ..., |Ψ∗|}.

Claim 9. For any λ > 0, if PfitTAILδ (i) ≥ λ, then ψ∗
i ≥ α+min{ λ2T , λ/2}.

We are ready to show that MAXTAIL〈δ,PT 〉(T ) approximates opt(PT ). Assume
first that we know some constant λ such that opt(PT ) ≥ λ. (We do not need to
know how close is λ to opt(PT ) ≥ λ.)

Lemma 1. Consider 0 < λ ≤ opt(PT ) and an optimization parameter ε > 0.

Let μλ = max
{⌈

16T 2

λε2

⌉
,

⌈
16
λε2

⌉}
and δλ = min{T/μλ, 1/μλ}. Then,

MAXTAIL〈δλ,PT 〉(T ) ≥ (1 − ε) · opt(PT ). (For simplicity, we may omit λ from δλ
and μλ.)

Proof: Let fleft(i) be the leftmost point s.t. (1) fleft(i)/δ is an integer, and
(2) profit is at least, as large as the sum of all the elements ψ∗

1 , ..., ψ
∗
i−1. That is,

fleft(1) = 0 and fleft(i) = min{j · δ | j · δ ≥
∑i−1
j=1 ψ

∗
j }. Similarly, fright(i) is the

rightmost point such that (1) fright(i)/δ is an integer, and (2) is at most, the
sum of all element ψ∗

1 , ..., ψ
∗
i . It follows that fright(i)− fleft(i) > ψ∗

i − 2δ. Thus,

fright(i)− fleft(i)− α
ψ∗
i − α

>
ψ∗
i − 2δ − α
ψ∗
i − α

= 1− 2δ

ψ∗
i − α

.
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Let i∗ = max{i | PfitTAILδ (i) ≥ λε/2}. Combining the above inequality together

with Claim 9 and the fact that δ ≤ min{ λε216T ,
λε2

16 }, we get that

fright(i)− fleft(i)− α
ψ∗
i − α

> 1−max

{
8Tδ

λε
,
8δ

λε

}
≥ 1− ε/2,

for every i = 1, ..., i∗. In addition, it follows that, if i∗ = |Ψ∗|, then
∑i∗

i=1

(
(ψ∗
i −

α) · PT (S(Ψ∗, i))
)

= opt(PT ). Otherwise,
∑i∗

i=1

(
(ψ∗
i − α) · PT (S(Ψ∗, i))

)
=

opt(PT )− Pfit
TAIL
δ (i∗ + 1) > opt(PT )− λε/2. In both cases, we get that

i∗∑
i=1

(
(ψ∗
i − α)PT (S(Ψ∗, i))

)
> opt(PT )(1− ε/2). (10)

Therefore,

i∗∑
i=1

(
fright(i)− fleft(i)− α

)
· PT (S(Ψ, i)) ≥ (1− ε/2) ·

(
i∗∑
i=1

(ψ∗
i − α) · PT (S(Ψ, i))

)

≥ (1− ε/2) · opt(PT )(1− ε/2)

≥ (1− ε)opt(PT ).

For the first inequality see Ineq. (10); for the second one see Ineq. (10). Clearly,

MAXTAIL〈δ,PT 〉(T ) ≥
∑i∗

i=1 [(fright(i)− fleft(i)− α) · PT (S(Ψ, i))].

Let us compute MAXTAIL〈δ,PT 〉 (which, we have shown, approximates the optimal

sequence). The recursive presentation of MAXTAIL〈δ,PT 〉 is MAXTAIL〈δ,PT 〉(0) = 0 and

MAXTAIL〈δ,PT 〉(
) = maxi∈{0,1,...,�−1}{PT (T − i · δ) · ((
− i)δ−α)+MAXTAIL〈PT 〉 (i)}.
The MAXTAIL〈δ,PT 〉, as well as the sequence attaining it (observed in the lemma)
can now be computed using dynamic programming. The time complexity is

O((T/δ)2) and T/δ = O(T
2

ε2 ); thus, it is polynomial in 1/ε, 1/λ and T .
Now, let us get rid of the assumption that λ is known. Let λi = 2−i. We

compute MAXTAIL〈δλ0
,PT 〉, then MAXTAIL〈δλ1

,PT 〉,..., as long as MAXTAIL〈δλi
,PT 〉 < λi.

When MAXTAIL〈δλk
,PT 〉 ≥ λk, the algorithm stops and returns a sequence attain-

ing it. (Note that MAXTAIL〈δλk
,PT 〉 ≥ λk implies that opt(PT ) ≥ λk.) The time

complexity remains the same as 1/λ is a constant.

Theorem 3. There exists a FPTAS for DIC for continuous distribution (for
every instance of the problem for which the optimal solution obtains at least
some constant positive profit).

Theorem 4. If there is no assumption on the minimum value of opt(PT ), i.e.,
it can be negligible, then no approximation algorithm for the DIC problem exists.

Proof: Consider an algorithm ALG for the DIC problem. An adversary can
select PT after the execution of ALG, such that opt(P ) > 0 and A(PT ) = 0
(the expected profit of the sequence that made by ALG). Recall that algorithm
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ALG must produce a sequence ΨALG of intervals. While producing the sequence,
ALG may query the distribution. Let x1, x2, ..., xz be sequence of queries ALG
made while producing ΨALG, and let PT (x1), PT (x2), ..., PT (xz) be the answers.
Let X>α = {xi > α | i = 1, ..., z}. In the execution of ALG the black box
(representing the distribution) return 0, for every x > α and returns 1, for every
x ≤ α. That is, if xi > α, then PT (xi) = 0, otherwise PT (xi) = 0, for every
i = 1, ..., z.

At the end of the execution ALG returns a sequence 〈ψALG1 , ...〉. It is clear
that ψALG1 ≥ α (otherwise, it might have a negative profit). If ψALG1 > α, then
let x′ = min{ψALG1 , xi | xi ∈ X>α}. Chose ε = x′ − α and PT (x) = 1, for
every x ≤ α + ε/2. Otherwise, PT = 0. We get that opt(PT ) = ε/2 > 0 and
ALG(PT ) = 0 as required. If ψA1 = α, then chose x′ = min{1.5α, xi | xi ∈ X>α}.
Set PT = 1, for every x ≤ x′ and otherwise PT = 0. Thus clearly, A(PT ) ≤ 0
and opt(PT ) = x′ − α > 0. The Theorem follows.

Finally, we describe some interesting observations on specific distributions (due
to lack of space, this section is deferred to the full version).
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1 Introduction

Due to the increasing use of wireless technology in communication networks,
there has been a significant amount of research on methods of improving wireless
performance. While there are many ways of measuring wireless performance, a
good first step (which has been extensively studied) is the notion of capacity.
Given a collection of communication links, the capacity of a network is simply
the maximum number of simultaneously satisfiable links. This can obviously
depend on the exact model of wireless communication that we are using, but
is clearly an upper bound on the “usefulness” of the network. There has been
a large amount of research on analyzing the capacity of wireless networks (see
e.g. [16,15,2,20]), and it has become a standard way of measuring the quality of
a network. Because of this, when introducing a new technology it is interesting
to analyze its affect on the capacity. For example, we know that in certain cases
giving transmitters the ability to control their transmission power can increase
the capacity by Ω(logΔ) or Ω(logPmax)) [7], where Δ is the ratio of the longest
link length to the smallest transmitter-receiver distance, and can clearly never
decrease the capacity.

However, while the capacity might improve, it is not nearly as clear that
the achieved capacity will improve. After all, we do not expect our network to
actually have performance that achieves the maximum possible capacity. We
show that not only might these improved technologies not help, they might in
fact decrease the achieved network capacity. Following Andrews and Dinitz [2]
and Ásgeirsson and Mitra [3], we model each link as a self-interested agent and
analyze various types of game-theoretic behavior (Nash equilibria and no-regret
behavior in particular). We show that a version of Braess’s Paradox [9] holds:
adding new technology to the networks (such as the ability to control powers)
can actually decrease the average capacity at equilibrium.

1.1 Our Results

Our main results show that in the context of wireless networks, and particularly
in the context of the SINR model, there is a version of Braess’s Paradox [9]. In
his seminal paper, Braess studied congestion in road networks and showed that
adding additional roads to an existing network can actually make congestion
worse, since agents will behave selfishly and the additional options can result
in worse equilibria. This is completely analogous to our setting, since in road
networks adding extra roads cannot hurt the network in terms of the value of
the optimum solution, but can hurt the network since the achieved congestion
gets worse. In this work we consider the physical model (also called the SINR
model), pioneered by Moscibroda and Wattenhofer [24] and described more for-
mally in Section 2.1. Intuitively, this model works as follows: every sender chooses
a transmission power (which may be pre-determined, e.g. due to hardware limi-
tations), and the received power decreased polynomially with the distance from
the sender. A transmission is successful if the received power from the sender
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is large enough to overcome the interference caused by other senders plus the
background noise.

With our baseline being the SINR model, we then consider four ways of
“improving” a network: adding power control, adding interference cancellation,
adding both power control and interference cancellation, and decreasing the
SINR threshold. With all of these modifications it is easy to see that the opti-
mal capacity can only increase, but we will show that the equilibria can become
worse. Thus “improving” a network might actually result in worse performance.

The game-theoretic setup that we use is based on [2] and will be formally
described in Section 2.2, but we will give an overview here. We start with a game
in which the players are the links, and the strategies depend slightly on the model
but are essentially possible power settings at which to transmit. The utilities
depend on whether or not the link was successful, and whether or not it even
attempted to transmit. In a pure Nash equilibrium every player has a strategy
(i.e. power setting) and has no incentive to deviate: any other strategy would
result in smaller utility. In a mixed Nash equilibrium every link has a probability
distribution over the strategies, and no link has any incentive to deviate from
their distribution. Finally, no-regret behavior is the empirical distribution of
play when all players use no-regret algorithms, which are a widely used and
studied class of learning algorithms (see Section 2.2 for a formal definition). It
is reasonably easy to see that any pure Nash is a mixed Nash, and any mixed
Nash is a no-regret behavior. For all of these, the quality of the solution is the
achieved capacity, i.e. the average number of successful links.

Our first result is for interference cancellation (IC), which has been widely
proposed as a practical method of increasing network performance [1]. The basic
idea of interference cancellation is quite simple. First, the strongest interfering
signal is detected and decoded. Once decoded, this signal can then be subtracted
(“canceled”) from the original signal. Subsequently, the next strongest interfer-
ing signal can be detected and decoded from the now “cleaner” signal, and so
on. As long as the strongest remaining signal can be decoded in the presence of
the weaker signals, this process continues until we are left with the desired trans-
mitted signal, which can now be decoded. This clearly can increase the capacity
of the network, and even in the worst case cannot decrease it. And yet due to
bad game-theoretic interactions it might make the achieved capacity worse:

Theorem 1. There exists a set of links in which the best no-regret behavior
under interference cancellation achieves capacity at most c times the worst
no-regret behavior without interference cancellation, for some constant c < 1.
However, for every set of links the worst no-regret behavior under interference
cancellation achieves capacity that is at least a constant fraction of the best no-
regret behavior without interference cancellation.

Thus IC can make the achieved capacity worse, but only by a constant factor.
Note that since every Nash equilibrium (mixed or pure) is also no-regret, this
implies the equivalent statements for those type of equilibria as well. In this
result (as in most of our examples) we only show a small network (4 links)
with no background noise, but these are both only for simplicity – it is easy to
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incorporate constant noise, and the small network can be repeated at sufficient
distance to get examples with an arbitrarily large number of links.

We next consider power control (PC), where senders can choose not just
whether to transmit, but at what power to transmit. It turns out that any
equilibrium without power control is also an equilibrium with power control,
and thus we cannot hope to find an example where the best equilibrium with
power control is worse than the worst equilibrium without power control (as
we did with IC). Instead, we show that adding power control can create worse
equilibria:

Theorem 2. There exists a set of links in which there is a pure Nash equilibrium
with power control of value at most c times the value of the worst no-regret
behavior without power control, for some constant c < 1. However, for every
set of links the worst no-regret behavior with power control has value that is at
least a constant fraction of the value of the best no-regret behavior without power
control.

Note that the first part of the theorem implies that not only is there a pure Nash
with low-value (with power control), there are also mixed Nash and no-regret
behaviors with low value (since any pure Nash is also mixed and no-regret).
Similarly, the second part of the theorem gives a bound on the gap between the
worst and the best mixed Nashes, and the worst and the best pure Nashes.

Our third set of results is on the combination of power control and interference
cancellation. It turns out that the combination of the two can be quite harm-
ful. When compared to either the vanilla setting (no interference cancellation or
power control) or the presence of power control without interference cancella-
tion, the combination of IC and PC acts essentially as in Theorem 2: pure Nash
equilibria are created that are worse than the previous worst no-regret behavior,
but this can only be by a constant factor. On the other hand, this factor can
be super-constant when compared to equilibria that only use interference can-
cellation. Let Δ be the ratio of the length of the longest link to the minimum
distance between any sender and any receiver. 1

Theorem 3. There exists a set of links in which the worst pure Nash with both
PC and IC (and thus the worst mixed Nash or no-regret behavior) has value at
most O(1/ logΔ) times the value of the worst no-regret behavior with just IC.
However, for every set of links the worst no-regret behavior with both PC and IC
has value at least Ω(1/ logΔ) times the value of the best no-regret behavior with
just IC.

This theorem means that interference cancellation “changes the game”: if inter-
ference control were not an option then power control can only hurt the equi-
libria by a constant amount (from Theorem 2), but if we assume that interference

1 Note that this definition is slightly different than the one used by [18,3,17] and is a
bit more similar to the definition used by [2,12]. The interested reader can see that
this is in fact the appropriate definition in the IC setting, namely, in a setting where
a receiver can decode multiple (interfering) stations.
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cancellation is present then adding power control can hurt us by Ω(logΔ). Thus
when deciding whether to use both power control and interference cancellation,
one must be particularly careful to analyze how they act in combination.

Finally, we consider the effect of decreasing the SINR threshold β (this value
will be formally described in Section 2.1). We show that, as with IC, there are
networks in which a decrease in the SINR threshold can lead to every equilibrium
being worse than even the worst equilibrium at the higher threshold, despite the
capacity increasing or staying the same:

Theorem 4. There exists a set of links and constants 1 < β′ < β in which the
best no-regret behavior under threshold β′ has value at most c times the value
of the worst no-regret behavior under threshold β, for some constant c < 1.
However, for any set of links and any 1 < β′ < β the value of the worst no-
regret behavior under β′ is at least a constant fraction of the value of the best
no-regret behavior under β.

Our main network constructions illustrating Braess’s paradox in the studied
settings are summarized in Fig. 1.

1.2 Related Work

The capacity of random networks was examined in the seminal paper of Gupta
and Kumar [16], who proved tight bounds in a variety of models. But only re-
cently has there been a significant amount of work on algorithms for determining
the capacity of arbitrary networks, particularly in the SINR model. This line of
work began with Goussevskaia, Oswald, and Wattenhofer [14], who gave an
O(logΔ)-approximation for the uniform power setting (i.e. the vanilla model we
consider). Goussevskaia, Halldórson, Wattenhofer, and Welzl [15] then improved
this to an O(1)-approximation (still under uniform powers), while Andrews and
Dinitz [2] gave a similar O(logΔ)-approximation algorithm for the power control
setting. This line of research was essentially completed by anO(1)-approximation
for the power control setting due to Kesselheim [20].

In parallel to the work on approximation algorithms, there has been some work
on using game theory (and in particular the games used in this paper) to help
design distributed approximation algorithms. This was begun by Andrews and
Dinitz [2], who gave an upper bound of O(Δ2α) on the price of anarchy for the
basic game defined in Section 2.2. But since computing the Nash equilibrium of a
game is PPAD-complete [11], we do not expect games to necessarily converge to
a Nash equilibrium in polynomial time. Thus Dinitz [12] strengthened the result
by showing the same upper bound of O(Δ2α) for no-regret behavior. This gave
the first distributed algorithm with a nontrivial approximation ratio, simply by
having every player use a no-regret algorithm. The analysis of the same game
was then improved to O(logΔ) by Ásgeirsson and Mitra [3].

There is very little work on interference cancellation in arbitrary networks
from an algorithmic point of view, although it has been studied quite well from
an information-theoretic point of view (see e.g. [13,10]). Recently Avin et al. [5]
studied the topology of SINR diagrams under interference cancellation, which
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Fig. 1. Schematic illustration of the main lower bounds illustrating the Braess’s para-
dox with (a) IC: a network in which every no-regret behavior without IC is better than
any no-regret behavior solution with IC; (b) PC: a network in which there exists a
pure Nash equilibrium with PC which is worse than any no-regret behavior with IC;
(c) PIC: a network with a pure Nash equilibrium in the PIC setting which is Ω(logΔ)
worse than any no-regret behavior in the IC setting but without power control; and (d)
Decreased SINR threshold β′ < β: a network in which every no-regret behavior with β′

has a smaller value than any no-regret behavior with higher SINR threshold β. Edge
weights represent distances.

are a generalization of the SINR diagrams introduced by Avin et al. [6] and
further studied by Kantor et al. [19] for the SINR model without interference
cancellation. These diagrams specify the reception zones of transmitters in the
SINR model, which turn out to have several interesting topological and geomet-
ric properties but have not led to a better understanding of the fundamental
capacity question.

2 Preliminaries

2.1 The Communication Model

We model a wireless network as a set of links L = {
1, 
2, . . . , 
n} in the plane,
where each link 
v = (sv, rv) represents a communication request from a sender
sv to a receiver rv. The n senders and receivers are given as points in the Eu-
clidean plane. The Euclidean distance between two points p and q is denoted
d(p, q). The distance between sender si and receiver rj is denoted by di,j . We
adopt the physical model (sometime called the SINR model) where the received
signal strength of transmitter si at the receiver rj decays with the distance and
it is given by Pi,j = Pi/d

α
i,j , where Pi ∈ [0, Pmax] is the transmission power of
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sender si and α > 0 is the path-loss exponent. Receiver rj successfully receives

a message from sender sj iff SINRj(L) =
Pj,j∑

�i∈L Pi,j+η
≥ β, where η denotes

the amount of background noise and β > 1 denotes the minimum SINR required
for a message to be successfully received. The total interference that receiver rj
suffers from the set of links L is given by

∑
i�=j Pi,j . Throughout, we assume that

all distances di,j are normalized so that minsi,rj di,j = 1 hence the maximal link
length is Δ, i.e., Δ = maxi di,i and any received signal strength Pi,j is bounded
by Pi,j ≤ Pmax.

In the vanilla SINR model we require that Pi is either 0 or Pmax for every
transmitter. This is sometimes referred to as uniform powers. When we have
power control, we allow Pi to be any integer in [0, Pmax].

Interference cancellation allows receivers to cancel signals that they can de-
code. Consider link 
j . If rj can decode the signal with the largest received signal,
then it can decode it and remove it. It can repeat this process until it decodes its
desire message from sj , unless at some point it gets stuck and cannot decode the
strongest signal. Formally, rj can decode si if Pi,j/(

∑
�k:Pk,j<Pi,j

Pk,j + η) ≥ β

(i.e. it can decode si in the presence of weaker signals) and if it can decode sk
for all links 
k with Pk,j > Pi,j . Link 
j is successful if rj can decode sj .

The following key notion, which was introduced in [18] and extended to arbi-
trary powers by [21], plays an important role in our analysis. The affectance
aPw(v) of link 
v caused by another link 
w with a given power assignment
vector P is defined to be aPw(v) = min {1, cv(β)Pw,v/Pv,v}, where cv(β) =
β/(1−βηdαv,v/Pv). Informally, aPw(v) indicates the amount of (normalized) inter-
ference that link 
w causes at link 
v. It is easy to verify that link 
v is successful
if and only if

∑
w �=v a

P
w(v) ≤ 1.

For a set of links L and a link 
w, the total affectance caused by 
w is aPw(L) =∑
�v∈L a

P
w(v). In the same manner, the total affectance caused by L on the link


w is aPL(w) =
∑
�v∈L a

P
v (w). When the powers of P are the same Pu = Pmax for

every 
u, (i.e. uniform powers), we may omit it and simply write aw(v), aw(L)
and aL(w). We say that a set of links L is β-feasible if SINRv(L) ≥ β for all

v ∈ L, i.e. every link achieves SINR above the threshold (and is thus successful
even without interference cancellation). It is easy to verify that L is β-feasible if
and only if

∑
�w∈L a

P
w(v) ≤ 1 for every 
v ∈ L.

Following [17], for the uniform power setting, we say that a link set L is
amenable if the total affectance caused by any single link is bounded by some
constant, i.e., au(L) = O(1) for every u ∈ L. The following basic properties of
amenable sets play an important role in our analysis.

Fact 5. [3] (a) Every feasible set L with uniform powers contains a subset
L′ ⊆ L, such that L′ is amenable and |L′| ≥ |L|/2. (b) For every amenable
set L′ that is β-feasible with uniform powers, for every other link u, it holds that∑
v∈L′ au(v) = O(1).
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2.2 Basic Game Theory

We will use a game that is essentially the same as the game of Andrews and
Dinitz [2], modified only to account for the different models we consider. Each
link 
i is a player with Pmax + 1 possible strategies: broadcast at power 0, or at
integer power P ∈ {1, . . . , Pmax}. A link has utility 1 if it is successful, has utility
−1 if it uses nonzero power but is unsuccessful, and has utility 0 if it does not
transmit (i.e. chooses power 0). Note that if power control is not available, this
game only has two strategies: power 0 and power Pmax. Let S denote the set of
possible strategies. A strategy profile is a vector in Sn, where the i’th component
is the strategy played by link 
i. For each link 
i, let fi : S

n → {−1, 0, 1} be
the function mapping strategy profiles to utility for link i as described. Given
a strategy profile a, let a−i denote the profile without the i’th component, and
given some strategy s ∈ S let fi(s, a−i) denote the utility of 
i if it uses strategy
s and all other links use their strategies from a.

A pure Nash equilibrium is a strategy profile in which no player has any incen-
tive to deviate from their strategy. Formally, a ∈ Sn is a pure Nash equilibrium
if fi(a) ≥ fi(s, a−i) for all s ∈ S and players 
i ∈ L. In a mixed Nash equi-
librium [25], every player 
i has a probability distribution πi over S, and the
requirement is that no player has any incentive to change their distribution to
some π′. So E[fi(a)] ≥ E[fi(π

′, a−i)] for all i ∈ {1, . . . , n}, where the expecta-
tion is over the random strategy profile a drawn from the product distribution
defined by the πi’s, and π

′ is any distribution over S.
To define no-regret behavior, suppose that the game has been played for T

rounds and let at be the realized strategy profile in round t ∈ {1, . . . , T }. The
history H = {a1, . . . , aT } of the game is the sequence of the T strategy profiles.
The regret Ri of player i in an history H is defined to be

Ri(H) = maxs∈S
1
T

∑T
t=1 fi(s, a

t
−i)− 1

T

∑T
t=1 fi(a

t).

The regret of a player is intuitively the amount that it lost by not playing some
fixed strategy. An algorithm used by a player is known as a no-regret algorithm
if it guarantees that the regret of the player tends to 0 as T tends to infinity.
There is a large amount of work on no-regret algorithms, and it turns out that
many such algorithms exist (see e.g. [4,23]). Thus we will analyze situations
where every player has regret at most ε, and since this tends to 0 we will be free
to assume that ε is arbitrarily small, say at most 1/n. Clearly playing a pure or
mixed Nash is a no-regret algorithm (since the fact that no one has incentive
to switch to any other strategy guarantees that each player will have regret 0
in the long run), so analyzing the worst or best history with regret at most ε is
more general than analyzing the worst or best mixed or pure Nash. We will call
a history in which all players have regret at most ε an ε-regret history. Formally
an history H = {a1, . . . , aT } is an ε-regret history if Ri(H) ≤ ε for every player
i ∈ {1, . . . , n}.
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A simple but important lemma introduced in [12] and used again in [3] re-
lates the average number of attempted transmissions to the average number of
successful transmissions. Fix an ε-regret history, let su be the fraction of times
in which u successfully transmitted, and let pu be the fraction of times in which
u attempted to transmit. Note that the average number of successful transmis-
sions in a time slot is exactly

∑
u su, so it is this quantity which we will typically

attempt to bound. The following lemma lets us get away with bounding the
number of attempts instead.

Lemma 1 ([12]).
∑
u su ≤

∑
u pu ≤ 2

∑
u su + εn ≤ O(

∑
u su) .

Notation: Let L be a fixed set of n links embedded in R2. LetNmin(L) denote the
minimum number of successful links (averaged over time) in any ε-regret history,
and similarly let Nmax(L) denote the maximum number of successful links (av-
eraged over time) in any ε-regret history. Define N ICmax(L), and N ICmin(L) similarly
for the IC setting, NPCmax(L) and NPCmin(L) for the PC setting, and NPICmax (L) and

NPICmin (L) for the setting with both PC and IC. Finally, let N βmax(L), N
β
min(L)

be for the corresponding values for the vanilla model when the SINR threshold
is set to β (this is hidden in the previous models, but we pull it out in order to
compare the effect of modifying β).

While we will focus on comparing the equilibria of games utilizing different
wireless technologies, much of the previous work on these games instead focuses
on a single game and analyzes its equilibria with respect to OPT, the maximum
achievable capacity. The price of anarchy (PoA) is the ratio of OPT to the value
of the worst mixed Nash [22], and the price of total anarchy (PoTA) is the ratio
of OPT to the value of the worst ε-regret history [8]. Clearly PoA≤ PoTA. While
it is not our focus, we will prove some bounds on these values as corollaries of
our main results.

3 Interference Cancellation

We begin by analyzing the effect on the equilibria of adding interference cancel-
lation. We would expect that using IC would result equilibria with larger values,
since the capacity of the network might go up (and can certainly not go down).
We show that this is not always the case: there are sets of links for which even the
best ε-regret history using IC is a constant factor worse than the worst ε-regret
history without using IC.

Theorem 6. There exists a set of links L such that N ICmax(L) ≤ Nmin(L)/c for
some constant c > 1.

Proof. Let L′ be the four link network depicted in Figure 1(a), with b = 3/2
and a =

√
8.8− b. We will assume that the threshold β is equal to 1.1, the path-

loss exponent α is equal to 2, and the background noise η = 0 (none of these
are crucial, but make the analysis simpler). Let us first consider what happens
without using interference cancellation. Suppose each link has at most ε-regret,
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and for link 
i let pi denote the fraction of times at which si attempted to
transmit. It is easy to see that link 1 will always be successful, since the received
signal strength at r1 is 1 while the total interference is at most (1/4)+2(1/8.8) =
1/β. Since 
1 has at most ε-regret, this implies that p1 ≥ 1− ε.

On the other hand, whenever s1 transmits it is clear that link 
2 cannot be
successful, as its SINR is at most 1/4. So if s2 transmitted every time it would
have average utility at most −(1− ε) + ε = −1+ 2ε < 0 (since ε < 1/2), while if
it never transmitted it would have average utility 0. Thus its average utility is
at least −ε. Since it can succeed only an ε fraction of the time (when link 1 is
not transmitting), we have that ε − (p2 − ε) ≥ −ε and thus p2 ≤ 3ε. Since the
utility of s2 is at least −ε, it holds that the fraction of times at which both s1
and s2 are transmitting is at most 2ε.

Now consider link 
3. If links 
1 and 
2 both transmit, then 
3 will fail since

the received SINR will be at most 1/b2

(1/(1+a2))+(1/(4+a2)) ≈ 0.92 < 1.1. On the

other hand, as long as link 
2 does not transmit then 
3 will be successful, as it

will have SINR at least 1/b2

(1/(1+a2))+(1/(2a+b)2) ≥ 1.2 > 1.1. Thus by transmitting

at every time step 
3 would have average utility at least (1−2ε)−2ε = 1−4ε > 0
(since ε < 1/4), and thus we know that 
3 gets average utility of at least 1− 5ε,
and thus successfully transmits at least 1 − 5ε fraction of the times. 
4 is the
same by symmetry. Thus the total value of any history in which all links have
regret at most ε is at least Nmin(L) ≥ 1− ε+ 2(1− 5ε) = 3− 11ε.

Let us now analyze what happens when using interference cancellation and
bound N ICmax(L). Suppose each link has at most ε-regret, and for link 
i let qi
denote the fraction of times at which si attempted to transmit. As before, 
1 can
always successfully transmit and thus does so in at least 1− ε fraction of times.
But now, by using interference cancellation it turns out that 
2 can also always
succeed. This is because r2 can first decode the transmission from s1 and cancel
it, leaving a remaining SINR of at least 1/4

2/(a+b)2 = β. Thus 
2 will also transmit

in at least 1− ε fraction of times and hence so far 1− ε ≤ q1, q2 ≤ 1. Note that
since a2+1 < b2, it holds that r3 cannot cancel s1 or s2 before decoding s3 (i.e.,
P1,3, P2,3 < P3,3). Hence, cancellation is useless. But now at r3 the strength of s1
is 1/(1 + a2) > 0.317, the strength of s2 is 1/(4 + a2) > 0.162, and the strength
of s3 is 1/b2 = 4/9. Thus r3 cannot decode any messages when s1, s2, and s3 are
all transmitting since its SINR is at most 0.92 < β, which implies that 
3 can
only succeed on at most 2ε fraction of times. The link 
4 is the same as the link

3 by symmetry. Thus the total value of any history in which all links have an
ε-regret is at most N ICmax(L) ≤ 2 + 4ε. Thus Nmin(L)/N ICmax(L) ≥ 3/2− o(1) as
required.

It turns out that no-regret behavior with interference cancellation cannot be
much worse than no-regret behavior without interference cancellation – as in
Braess’s paradox, it can only be worse by a constant factor.

Theorem 7. N ICmin(L) ≥ Nmax(L)/c for any set of links L and some constant
c ≥ 1.
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Proof. Consider an ε-regret history without IC that maximizes the average
number of successful links, i.e. one that achieves Nmax(L) value. Let pi de-
note the fraction of times at which si attempted to transmit in this history,
so

∑
i∈L pi = Θ(Nmax(L)) by Lemma 1. Similarly, let qi denote that fraction

of times at which si attempted to transmit in an ε-regret history with IC that
achieves value of only N ICmin(L), and so

∑
i∈L qi = Θ(N ICmin(L)).

Note that since the best average number of successful connections in the non-
IC case is Nmax(L), there must exist some set of connections A ⊆ L such that
|A| ≥ Nmax(L) and A is feasible without IC. Let B = {i : qi ≥ 1/2} and let
A′ = A \B. If |B ∩ A| ≥ |A|/2 then we are done, since then

Nmax(L) ≤ |A| ≤ 2|B| ≤ 4
∑
�i∈L qi = 4 · N ICmin(L)

as required. So without loss of generality we will assume that |B ∩ A| < |A|/2,
and thus that |A′| > |A|/2. Note that A′ is a subset of A, and so it is feasible in
the non-IC setting.

Now let Â = {i ∈ A′ :
∑
j∈A′ ai(j) ≤ 2} be an amenable subset of A′. By

Fact 5(a), it holds that Â ≥ |A′|/2 ≥ |A|/4. Fact 5(b) then implies that for any
link i ∈ L, its total affectance on A is small:

∑
j∈A ai(j) ≤ c′ for some constant

c′ ≥ 0. Thus we have that∑
i∈L

∑
j∈Â qiai(j) ≤ c′ ·

(∑
i∈L qi

)
. (1)

On the other hand, we know that the qi values correspond to the worst history
in which every link has regret at most ε (in the IC setting). Let j ∈ A′. Then
qj < 1/2, which means the average utility of link 
j is at most 1/2. Let yj be
the fraction of time sj would have succeeded had it transmitted in every round.
Since the average utility of the best single action is at most 1/2 + ε it holds
that yj − (1 − yj) ≤ 1/2 + ε or the that yj ≤ 3

4 + ε
2 . In other words, in at least

1−yj = 1
4 −

ε
2 fraction of the rounds the affectance of the other links on the link


j must be at least 1 (or else j could succeed in those rounds even without using
IC). Thus the expected affectance (taken over a random choice of time slot) on


j is at least
∑
i∈L ai(j)qi ≥ 1

4 −
ε
2 . Summing over all j ∈ Â, we get that∑

j∈Â
∑
i∈L ai(j)qi ≥

∑
j∈A

1−2ε
4 ≥ Ω(|Â|). (2)

Combining equations (1) and (2) (and switching the order of summations)

implies that |Â| ≤ O(
∑
i∈L qi). Since |Â| ≥ |A|/4 ≥ Ω(Nmax(L)) ≥ Ω(

∑
i∈L pi),

we get that
∑
i pi ≤ O(

∑
i∈L qi) as desired.

As a simple corollary, we will show that this lets us bound the price of total
anarchy in the interference cancellation model (which, as far as we know, has
not previously been bounded). Let OPT ⊆ L denote some optimal solution
without IC, i.e., the set of transmitters forming a maximum β-feasible set, and
let OPT IC ⊆ L denote some optimal solution with IC. Due to lack of space,
missing proofs are deferred to full version.

Corollary 1. For every set of links L it holds that the price of total anarchy
with IC is O(logΔ), or |OPT IC |/N ICmin(L) = O(logΔ).
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4 Power Control

In the power control setting, each transmitter sv either broadcasts at power 0
or broadcasts at some arbitrary integral power level Pv ∈ [1, Pmax]. Our main
claim is that Braess’s paradox is once again possible: there are networks in
which adding power control can create worse equilibria. For illustration of such
a network, see Fig. 1(b). We first observe the following relation between no-regret
solutions with or without power control.

Observation 8. Every no-regret solution in the uniform setting, is also a no-
regret solution in the PC setting.

Hence, we cannot expect the best no-regret solution in the PC setting to be
smaller than the worst no-regret solution in the uniform setting. Yet, the paradox
still holds.

Theorem 9. There exists a configuration of links L satisfying NPCmin(L) ≤
Nmin(L)/c for some constant c > 1.

We now prove that (as with IC) that the paradox cannot be too bad: adding
power control cannot cost us more than a constant. The proof is very similar to
that of Thm. 7 up to some minor yet crucial modifications.

Theorem 10. NPCmin(L) ≥ Nmax(L)/c for any set of links L and some constant
c ≥ 1.

Corollary 2. The price of total anarchy under the power control setting with
maximum transmission energy Pmax is Θ(logΔ).

5 Power Control with Interference Cancellation (PIC)

In this section we consider games in the power control with IC setting where
transmitters can adopt their transmission energy in the range of [1, Pmax] and in
addition, receivers can employ interference cancelation. This setting is denote as
PIC (power control+IC). We now show that Braess’s paradox can once again
happen and begin by comparing the PIC setting to the setting of power control
without IC and to the most basic setting of uniform powers, as illustrated in
Fig. 2.

Lemma 2. There exists a set of links L and constant c > 1 such that
(a) NPICmin (L) ≤ NPCmin(L)/c.
(b) NPICmin (L) ≤ Nmin(L)/c.

Moreover, we proceed by showing that PIC can hurt the network by more than
a constant when comparing PIC equilibria to IC equilibria. For an illustration
of such a network, see Fig. 1(c).

Theorem 11. There exists a set of links L and constant c > 1 such that the
best pure Nash solution with PIC is worse by a factor of Ω(logΔ) than the worst
no-regret solution with IC.
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Fig. 2. Schematic illustration of a network in which playing IC with power control
might generate no-regret solutions that are worse by a factor of Ω(1) than no-regret
solution in a setting without interference cancellation, with or without power control.

Corollary 3. There exists a set of links L satisfying that NPICmin (L) ≤ (c/ logΔ)·
N ICmin(L).

As in the previous sections, we show that our examples are essentially tight.

Theorem 12. For every set of links L it holds that there exists a constant c ≥ 1
such that
(a) NPICmin (L) ≥ Nmax(L)/c.
(b) NPICmin (L) ≥ NPCmax(L)/c.
(c) NPICmin (L) ≥ N ICmax(L)/(c logΔ).

Finally, as a direct consequences of our result, we obtain a tight bound for the
price of total anarchy in the PIC setting.

Corollary 4. For every set of links L it holds that the price of total anarchy
with PIC is Θ(log(Δ · Pmax)).

6 Decreasing the SINR Threshold

We begin by showing that in certain cases the ability to successfully decode a
message at a lower SINR threshold results in every no-regret solution having
lower value than any no-regret solution at higher β. For an illustration of such
a network, see Fig. 1(d).

Theorem 13. There exists a set of links L and constants 1 < β′ < β such that
N β′

max(L) ≤ N
β
min(L)/c for some constant c > 1.

We now show that the gap between the values of no-regret solution for different
SINR threshold values is bounded by a constant.

Lemma 3. For every 1 ≤ β′ ≤ β and every set of links L satisfying that Pvv ≥
2β · η for every 
v ∈ L, it holds that N β

′
min(L) ≥ N βmax(L)/c for some constant

c ≥ 1.



490 M. Dinitz and M. Parter

7 Conclusion

In this paper we have shown that Braess’s paradox can strike in wireless networks
in the SINR model: improving technology can result in worse performance, where
we measured performance by the average number of successful connections. We
considered adding power control, interference cancellation, both power control
and interference cancellation, and decreasing the SINR threshold, and in all
of them showed that game-theoretic equilibria can get worse with improved
technology. However, in all cases we bounded the damage that could be done.

There are several remaining interesting open problems. First, what other ex-
amples of wireless technology exhibit the paradox? Second, even just considering
the technologies in this paper, it would be interesting to get a better under-
standing of when exactly the paradox occurs. Can we characterize the network
topologies that are susceptible? Is it most topologies, or is it rare? What about
random wireless networks? Finally, while our results are tight up to constants,
it would be interesting to actually find tight constants so we know precisely how
bad the paradox can be.
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21. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks.
Distributed Computing (2010)

22. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

23. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Com-
put. 108(2), 212–261 (1994)

24. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: Proc. 25th Conf. of IEEE Computer and Communications Societies,
INFOCOM (2006)

25. Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences 36(1), 48–49 (1950)



Fast Structuring of Radio Networks

Large for Multi-message Communications

Mohsen Ghaffari and Bernhard Haeupler

MIT
{ghaffari,haeupler}@mit.edu

Abstract. We introduce collision free layerings as a powerful way to
structure radio networks. These layerings can replace hard-to-compute
BFS-trees in many contexts while having an efficient randomized dis-
tributed construction. We demonstrate their versatility by using them
to provide near optimal distributed algorithms for several multi-message
communication primitives.

Designing efficient communication primitives for radio networks has a
rich history that began 25 years ago when Bar-Yehuda et al. introduced
fast randomized algorithms for broadcasting and for constructing BFS-
trees. Their BFS-tree construction time was O(D log2 n) rounds, where
D is the network diameter and n is the number of nodes. Since then, the
complexity of a broadcast has been resolved to be TBC = Θ(D log n

D
+

log2 n) rounds. On the other hand, BFS-trees have been used as a crucial
building block for many communication primitives and their construction
time remained a bottleneck for these primitives.

We introduce collision free layerings that can be used in place of BFS-
trees and we give a randomized construction of these layerings that runs
in nearly broadcast time, that is, w.h.p. in TLay = O(D log n

D
+log2+ε n)

rounds for any constant ε > 0. We then use these layerings to obtain:
(1) A randomized algorithm for gathering k messages running w.h.p. in
O(TLay + k) rounds. (2) A randomized k-message broadcast algorithm
running w.h.p. in O(TLay+k log n) rounds. These algorithms are optimal
up to the small difference in the additive poly-logarithmic term between
TBC and TLay. Moreover, they imply the first optimal O(n log n) round
randomized gossip algorithm.

1 Introduction

Designing efficient communication protocols for radio networks is an important
and active area of research. Radio networks have two key characteristics which
distinguish them from wired networks: For one, the communications in these
networks have an inherent broadcast-type nature as the transmissions of one
node can reach all nearby nodes. On the other hand, simultaneous transmissions
interfere and this interference makes the task of designing efficient communica-
tion protocols challenging. A standard model that captures these characteristics
is the radio networks model [4], in which the network is abstracted as a graph
G = (V,E) with n nodes and diameterD. Communication occurs in synchronous
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rounds, where in each round, each node either listens or transmits a message with
bounded size. A node receives a message if and only if it is listening and exactly
one of its neighbors is transmitting. Particularly, a node with two or more trans-
mitting neighbors cannot distinguish this collision from background noise. That
is, the model assumes no collision detection.

Communication problems in radio networks can be divided into two groups:
single-message problems like single-message broadcast, and multi-message prob-
lems such as k-message broadcast, gossiping, k-message gathering, etc. By now,
randomized single-message broadcast is well-understood, and is known to have
asymptotically tight time-complexity of TBC = Θ(D log nD + log2 n) rounds [1,
7, 16, 17]1. On the other hand, multi-message problems still remain challenging.
The key issue is that, when aiming for a time-efficient protocol, the transmis-
sions of different messages interfere with each other. Bar-Yehuda, Israeli and
Itai [3] presented an O(D log2 n) round construction of Breadth First Search
trees and used this structure to control the effects of different messages on one
another in multi-message problems. Since then, BFS trees have become a stan-
dard substrate for multi-message communication protocols (see, e.g., [5,6,9,15]).
However, the best known construction for BFS trees remains O(D log2 n) and
this time-complexity has become a bottleneck for many multi-message problems.

1.1 Our Results

As the main contribution of this paper we introduce collision-free layering which
are simple node numberings with certain properties (see Section 3 for definitions).
Layerings are structures that can be viewed as relaxed variants of BFS trees
and can replace them in many contexts while having an efficient randomized
construction. We present a randomized construction of these layerings that runs
in TLay = O(D log nD + log2+ε n) rounds for any constant ε > 0. This round

complexity is almost equal to the broadcast time, i.e., TBC = Θ(D log nD+log2 n)
rounds, and is thus near-optimal.

Using collision free layerings, and with the help of additional technical ideas,
we achieve the following near-optimal randomized algorithms for the aforemen-
tioned multi-message problems:

(A) A randomized algorithm for k-message single-destination gathering that
with high probability gathers k messages in O(TLay + k) rounds.

(B) A randomized algorithm for k-message single-source broadcast with com-
plexity O(TLay+k logn) rounds, w.h.p. This algorithm uses network coding.

(C) The above algorithms also lead to the first optimal randomized all-to-
all broadcast (gossiping) protocol, which has round complexity O(n log n)
rounds2.

1 We remark that, throughout the whole paper, when talking about randomized algo-
rithms, we speak of the related time-bound that holds with high probability (w.h.p),
where w.h.p. indicates a probability at least 1− 1

nβ for an arbitrary constant β ≥ 2.
2 We remark that an O(n log n) gossiping solution was attempted in [18], for the
scenario of known topology, but its correctness was disproved [19].
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Note that modulo the small difference between TLay and TBC , the time com-
plexity of the above algorithms are optimal, and that they are the first to achieve
the optimal dependency on k and D.

1.2 Related Work

Communication over radio networks has been studied extensively since the 70’s.
In the following, we present a brief overview of the known results that directly
relate to the setting studied in this paper. That is, randomized algorithms3,
with focus on with high probability (whp) time and under the standard and
least demanding assumptions: without collision detection, unknown topology,
and with messages of logarithmic size.

Single-Message Broadcast: Bar-Yehuda, Goldreich, and Itai (BGI) [2] gave a
simple and efficient algorithm, called Decay, which broadcasts a single message
in O(D logn+ log2 n) rounds. Alon et al. [1] proved an Ω(log2 n) lower bound,
which holds even for centralized algorithms and graphs with constant diameter.
Kushilevitz and Mansour [17] showed an Ω(D log nD ) lower bound. Finally, the
remaining gap was closed by the simultaneous and independent algorithms of [7]
and [16], settling the time complexity of single-message broadcast to TBC =
Θ(D log nD + log2 n).

k-Message Gathering and k-Unicasts: Bar-Yehuda, Israeli and Itai (BII) [3]
presented an algorithm to gather k messages in a given destination in whp time
O(k log2 n+D log2 n), using the key idea of routing messages along a BFS tree
via Decay protocol of [2]. The bound was improved to O(k logn+D log2 n) [5]
and then to O(k +D log2 n) [15], using the same BFS approach but with better
algorithms on top of the BFS. A deterministic O(k logn + n logn) algorithm
was presented in [6], which substitutes the BFS trees with a new concept of
Breadth-Then-Depth.

k-Message Broadcast: BII [3] also used the BFS-based approach to broadcast
k-message in whp time O(k log2 n+D log2 n+ log3 n). Khabbazian and Kowal-
ski [15] improve this to O(D log2 n + k logn + log3 n) using network coding.
Ghaffari et al. [12] showed a lower bound of Ω(k logn) for this problem, even
when network coding is allowed, which holds even for centralized algorithms.

Gossiping: Gasieniec [8] provides a good survey. The best known results are
O(n log2 n) algorithm of Czumaj and Rytter [7] and the Ω(n logn) lower bound
of Gasieniec and Potapov [10]. The lower bound holds for centralized algorithms
and also allows for network coding. Same can be inferred from [12] as well. An
O(n log n) algorithm was attempted in [18], for the scenario of known topology,
but its correctness was disproved [19].

3 We remark that typically the related deterministic algorithms have a different flavor
and incomparable time-complexities, with Ω(n) often being a lower bound.
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2 Preliminaries

2.1 The Model

We consider the standard radio network model [2,4]: The network is represented
by a connected graph G = (V,E) with n = |V | nodes and diameter D. Commu-
nication takes place in synchronous rounds. In each round, each node is either
listening or transmitting a packet. In each round, each listening node that has
exactly one transmitting neighbor receives the packet from that neighbor. Any
node that is transmitting itself or has zero or more than one transmitting neigh-
bor does not receive anything. In the case that two or more neighbors of a
listening node v ∈ V are transmitting, we say a collision has happened at node
v. We assume that each transmission (transmitted packet) can contain at most
one message as its payload plus an additive Θ(log n) bits as its header. Since we
only focus on randomized algorithms, we can assume that nodes do not have
original ids but each node picks a random id of length 4 logn bits. It is easy to
see that, with high probability, different nodes will have different ids.

2.2 The Problem Statements

We study the following problems:

– k-message Single-Destination Gathering: k messages are initially dis-
tributed arbitrarily in some nodes and the goal is to gather all these messages
at a given destination node.

– Single-Source k-Message Broadcast: A single given source node has k
messages and the goal is to deliver all messages to all nodes.

– Gossiping: Each node has a single message and the goal is for each node to
receive all messages.

In each problem, when stating a running time for a randomized algorithm, we
require that the algorithm terminates and produces the desired output within
the stated time with high probability (in contrast to merely in expectation).

We make the standard assumptions that nodes do not know the topology
except a constant-factor upper bound on logn. From this, given the algorithms
that we present, one can obtain a constant factor estimation of D and k using
standard double-and-test estimation techniques without more than a constant
factor loss in round-complexity. We skip these standard reductions and assume
that constant-factor approximations of D and k are known to the nodes. For
simplicity, we also assume that k is at most polynomial in n.

2.3 A Black-Box Tool: The CR-Braodcast Protocol

Throughout the paper, we make frequent use of the optimal broadcast protocol of
Czumaj and Rytter (CR) [7]. Here, we present a brief description of this protocol.
To describe this protocol, we first need to define a specific infinite sequence of
positive integers BC with the following properties:
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(1) Every consecutive subsequence of Ω(log nD ) elements in BC contains a sub-
sequence 1, 2, . . . , log nD .

(2) For every integer k ∈ [log nD , log
n
D + log logn], any consecutive subsequence

of Ω(log nD · 2k) elements in BC contains an element of value k.

(3) Every consecutive subsequence of Ω(logn) elements in BC contains a sub-
sequence 1, 2, . . . , logn.

These properties were defined in [7, Definition 7.6] under the name D-modified
strong deterministic density property4. Furthermore, it can be easily verified that
the following sequence, which is again taken from [7], satisfies these properties.

For any n and D, we define the sequence BC = BC0, BC1, . . . such that for each
j = 0, 1, . . . , we have:

BC3j = log nD + k, where k is such that (j mod logn)
mod 2k+1

≡ 2k

BC3j+1 = j mod log nD and
BC3j+2 = j mod logn.

We now present the pseudo-code of the broadcast protocol of [7], which will
be used throughout the rest of the paper. This protocol has 4 key parameters:
two disjoint sets A, R and two integer values δ and T . It is assumed that each
node v knows the values of δ and T and it also knows whether it is in A and R,
via Boolean predicates of the form (v ∈ A) and (v ∈ R). Each node v ∈ A has a
message μv (which is determined depending on the application of the protocol).
The protocol starts with nodes in A where each active node v ∈ A forwards its
message. The nodes in R become active (join A) at the end of the first phase in
which they receive a message, and retransmit this message in the next phases.
Algorithm 1 presents the pseduo-code for algorithm CR-Broadcast(A, R, δ, T ):

We will use the following lemma from [7] and [2]:

Lemma 1. For any connected network G = (V,E) with diameter D and for
any node v, an execution of μv CR-Broadcast({v}, V \ {v}, δ, T ) with T =
Θ(D(log nD + δ) + log2 n)/δ leads with high probability to S0 = V and μu = μv.
That is, broadcasting a message from v to all nodes takes with high probability
at most T rounds.

Lemma 2. In each execution of CR-Broadcast protocol, for any two neighboring
nodes u and v, if (u ∈ A) = true and (v ∈ A) = false at round r, then in round
r +Θ(log2 n), w.h.p., node v has received a message from some node.

4 We remark that the Property 3 stated here is slightly stronger than the property 3
of [7, Definition 7.6], but is satisfied by the sequence provided in [7]. This modification
is necessary to achieve the k log n dependence on number of messages k in the k-
message broadcast problemSection 5. Using the original definition would lead to a
time bound of Ω(k log n log n

D
)
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Algorithm 1. Algorithm CR-Broadcast(A, R, δ, T ) @ node v:

Syntax: each transmit or listen corresponds to one communication round

1: if (v ∈ A) = false then μv ← ∅
2: for phase i = 1 to T do
3: for j = 1 to δ do
4: if (v ∈ A) = true then
5: with probability 2−BCiδ+j do
6: transmit (v.id, μv)
7: otherwise
8: listen

9: else
10: listen

11: if received a message (u.id, μ) then μv ← μ

12: if μ 
= ∅ & (v ∈ R) then (v ∈ A) ← true

3 Layerings

Here, we introduce layerings and we provide a set of algorithms for constructing
layerings with desirable properties.

3.1 Definitions

In short, layerings are particular types of numbering of nodes; they organize
and locally group nodes in a way that is useful for multi-message gathering and
broadcasting tasks and for parallelzing and pipelining communications. In this
subsection, we present the formal definitions.

Definition 1. (layering) A layering 
 of graph G = (V,E) assigns to each
node u ∈ V an integer layer number 
(u) such that (a) there is only one node s
with 
(s) = 0, known as the source; and (b) every node u, except the source, is
connected to a node v such that 
(v) < 
(u). We define the depth of layering 
 to
be equal to maxu∈V 
(u). In the distributed setting, for a layering 
, we require
each node u to know its layer number 
(u), and also, for each node u other than
the source, we require u to know (the ID of) one node v such that 
(v) < 
(u)
and u is a neighbor of v. In this case, we call v the parent of u.

Definition 2. (C-collision-free layering) A layering 
 together with a C-
coloring of the nodes c : V → {0, . . . , C − 1} is C-collision-free if for any two
nodes u and v such that 
(u) 	= 
(v) and distG(u, v) ≤ 2, we have c(u) 	= c(v).
In the distributed setting, we require each node v to know the value of C and also
its own color c(v).

Definition 3. (d-stretch layering) A layering 
 is d-stretch if for any two
neighboring nodes u and v, we have |
(u)− 
(v)| ≤ d.
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Fig. 1. A 4-collision-free layering with depth 7 and stretch 3. The number in each node
indicates its layer number.

We remark that a BFS-layering in which each node is labeled by its distance
from the source is a simple example for a layering with stretch 1 and depth D.
We also remark that any d-stretch layering 
 can also be made (2d+1)-collision-
free by choosing C = 2d+1 and c(u) = 
(u) mod C. This makes BFS-layerings
3-collision free. In the next sections we show that pseudo-BFS layerings, that is,
layerings with similar collision freeness and depth, can be constructed efficiently
and can replace BFS layerings in many scenarios:

Definition 4. (pseudo-BFS layering) A layering (and a related coloring) is
a pseudo-BFS layering if it is O(1)-collision-free and has depth O(D + logn).

3.2 Layering Algorithms

Here, we show that pseudo-BFS layerings can be constructed in almost broadcast
time, that is, TBC = O(D log nD + log2 n) rounds. This is faster than the best

known construction time of BFS layerings, which remains O(D log2 n) rounds.

Theorem 1. There is a distributed randomized algorithm that for any constant
ε > 0, constructs a pseudo-BFS layering w.h.p., in O(D log nD+log2+ε n) rounds.

Starter: A construction with round-complexity O(D log n
D

+ log3 n)

Theorem 2. There is a distributed randomized algorithm that w.h.p. constructs
a pseudo-BFS layering from a given source node s in O(D log nD+log3 n) rounds.

The high-level outline of this construction is to start with a crude basic layering
obtained via a broadcast and then refining this layering to get a pseudo-BFS
layering. Given the broadcast protocol presented in Section 2.3, we easily get
the following basic layerings:

Lemma 3. For any δ ∈ [log nD , log
2 n] there is a layering algorithm that com-

putes, w.h.p., an O(D + log2 n
δ )-depth layering with a given source s and stretch

O( log
2 n
δ ) in O(Dδ + log2 n) rounds.
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Proof. We run the CR-Broadcast algorithm with parameter δ, T = Θ(D(log nD+

δ)+log2 n)/δ, A = s and R = V \s. For each non-source node v we then set 
(v) to
be the smallest phase number in which v receives a message, and the parent of v
to be the node w from which v receives this first message. Lemma 1 guarantees
that indeed after Tδ rounds all nodes are layered. The depth of the layering
can furthermore not exceed the number of iterations T = Θ(Dδ + log2 n)/δ.
The stretch part of the lemma follows from Lemma 2 which guarantees that two
neighboring nodes receive their messages at most O(log2 n) rounds and therefore

at most O( log
2 n
δ ) iterations apart.

Next we give the algorithm to refine the basic layerings of Lemma 3 to a pseudo-
BFS layering. We present the algorithm but defer the correctness proof to the
full version.

Lemma 4. Given a d-stretch layering l with depth D′, the Layer Refinement
Algorithm (LRA) computes a 5-collision-free O(d)-stretch layering l′ with depth
O(D′) in O(d log2 n) rounds.

Layer Refinement Algorithm (LRA): Throughout the presentation of the
algorithm, we refer to Figure 2 as a helper tool and also present some intuitive
explanations to help the exposition.

As the first step of the algorithm, we want to divide the problem into small
parts which can be solved in parallel. For this purpose, we first run the CR-
broadcast protocol with parameters T = 1, δ = Θ(log2 n), A equal to the set

of nodes u such that � l(u)d � ≡ 1 (mod 5), and R = ∅. Each node u ∈ A sets
message μu equal to l(u). In Figure 2, these nodes are indicated by the shaded
areas of width d layers. Since layering l has stretch at most d, each shaded area
cuts the graph into two non-adjacent sets, above and below the area (plus a
third part of the shaded area itself). After these transmissions, each node v
becomes a boundary node if during these transmissions, v was not transmitting
but it received a message from a node w such that l(w) > l(v). In Figure 2, the
boundary nodes are indicated via red contour lines. These boundaries divide the
problem of layering into strips each containing at most 5d layers, and such that
two nodes at different strips are not neighbors. For each boundary node v, we

set l′(v) = 2d(� l(v)d �+ 1) and color it with color 0, i.e., c(v) = 0.
Next, we indicate the direction starting from the boundary which moves in

the increasing direction of layer numbers l. For this, we run the CR-broadcast
protocol with parameters T = 1, δ = Θ(log2 n), A equal to the set of boundary
nodes, and R = ∅, where each boundary node u sets μu equal to (l(u), l′(u)).
A non-boundary node v that receives a message from a boundary node w such
that l(w) < l(v) is called a start-line node. In Figure 2, start-line nodes are
indicated via green contour lines. Every such node v sets it l′-layer number to
l′(v) = l′(w) + 1 and its color c(v) = 1, and records w.id as the id of its parent.

Next, we assign l′ layer numbers to nodes inside the strips, starting from
the start-line nodes and moving upwards in (l-layer numbers) till reaching the
next layer of boundary nodes. This is done for different strips in parallel, using
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Fig. 2. Layer Refinement

the CR-Broadcast protocol with parameter T = 5d, δ = Θ(log2 n), A equal
to the set of start-line nodes and R equal to the set of nodes that are neither
boundary nor start-line. As a result, in each phase of the CR-Broadcast, all
non-boundary nodes that have received an l′ layer number by the start of that
phase try transmitting their l′ layer number and their id. In every phase, a node
v that does not have an l′ layer number yet and receives a transmission from a
node w records w.id as the id of its parent and sets its l′-layer number l′(v) =
l′(w) + 1 and c(v) = 2 + ((c(w) + 1) mod 3). In other words, the color number
is incremented every time modulo 5, but skipping colors 0 and 1 (preserved
respectively for boundary and start-line nodes). In Figure 2, the numbers at the
top part indicate these color numbers. From Lemma 2, we get that the wave of
the layering proceeds exactly one hop in each phase. Since in each phase, only
nodes that do not have an l′ layer get layered, the waves of layering stop when
they reach boundary nodes. Finally, each boundary node v records the id of the
node w from which v hears the first message as the id of its parent.

Next, we present the proof of Theorem 2 which uses the Layer Refinement
Algorithm (LRA) on top of the basic layering provided by Lemma 3.

Proof (Proof of Theorem 2). If D < n0.1, we construct a basic layering with
stretch O(log n) and depth O(D + logn) in O(D logn + log2 n) rounds by us-
ing Lemma 3 with parameter δ = Θ(log n). Then, we use the LRA to get to
an O(1)-collision-free layering with depth O(D + logn) in additional O(log3 n)
rounds (Lemma 4). The total round complexity becomes O(D logn+ log3 n) =
O(D log nD + log3 n).

IfD ≥ n0.1, we construct a basic layering with stretchO(log2 n/δ) = O(log2 n)
and depth O(D + log2 n/δ) = O(D) in O(D log nD + log2 n) rounds by using
Lemma 3 with parameter δ = log nD . Then, we use the LRA to get to an O(1)-

collision-free layering with depth O(D), in additional O(log4 n) rounds. The total
round complexity becomes O(D log nD + log2 n+ log4 n) = O(D log nD ).

In both cases the round complexity is O(D log nD + log3 n) and the depth is
O(D + logn).
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Reducing the Round Complexity to O(D log n
D

+ log2+ε n): The con-
struction time in Theorem 2 is asymptotically equal to the broadcast time TBC ,
for all values of D = Ω(log2 n). Here we explain how to achieve an almost op-
timal round complexity for smaller D by reducing the pseudo-BFS construction
time to O(D log nD + log2+ε n) rounds, for any constant ε > 0.

Recursive Layering Refinement Algorithm: In the LRA algorithm, we used
the CR-Broadcast protocol with parameter δ = O(log2 n) to refine the layering
numbers inside each strip, in O(log3 n) rounds. The key change in RLRA is
that, we perform this part of refinement in a faster manner by using a recursive
refinement algorithm with O(1/ε) recursion levels. We remark that, this speed-
up comes at a cost of a 2O(1/ε) factor increase in the depth and O(1/ε) factor
increase in the round complexity, and also in using O(1/ε) colors (instead of just
5), for the final layering. However, since we assume ε to be constant, these costs
do not effect our asymptotic bounds.

Let r = �1/ε� and τ = α log
1
r n for a sufficiently large constant α. In the ith

level of recursion, we get an algorithm Ai that layers a graph with depth τ i using

2i+ 1 colors, in i · Θ(log2+ 1
r ) rounds.

For the base case of recursion, algorithm A1 is simply using the CR-Broadcast
algorithm with parameter δ = Θ(log2 n), and T = τ phases. Then, we assign
layer numbers 
1() based on the phase in which each node receives its first
message, and set c(v) = 
1(v) (mod 3).

We get algorithm Ai using algorithm Ai−1 as follows: First, use the CR-

Broadcast algorithm with parameter δ = Θ(log2−
i−1
r ) and T = τ i phases. From

this broadcast, we get a layering 
∗ that has stretch at most di = Θ(log
i−1
r n) ≤

δi−1/5. Then, using this layering, similar to the LRA, we break the graph into
Θ(δ) strips which each contain Θ(δi−1) layers. It is easy to see that, each strip
has depth at most Θ(δi−1). Next, we determine boundary and start-line nodes as
in the LRA and layer and color them. In particular, we assign color 2i+1 to the

boundaries of these strips and set their layer number 
i(v) = 2δi−1(� �
∗(v)
δi−1 �+ 1).

Moreover, we assign color 2i to the start-lines of these strips and layer each
start-line node v with li(v) = li(w)+ 1, where w is the first boundary node from
which v receives a message. Inside each strip, which is a graph with depth δi−1,
we use algorithm Ai−1 with colors 1 to 2(i− 1) + 1 = 2i− 1.

Following r recursion steps, we get algorithm Ar , which layers a graph with

depth τr = Θ(log n) using 2r+1 = O(r) colors, in r ·Θ(log2+ 1
r n) = Θ(log2+ε n)

rounds. In the LRA, if we substitute the part that layers each strip in Θ(log3 n)
rounds with Ar, we get the recursive layering refinement algorithm.

Proof (Proof of Theorem 1). For the case where D ≥ n0.1, we simply use the
LRA algorithm and calculations are as before. For the case where D < n0.1, the
proof is similar to that of Theorem 2 with the exception of using the Recursive
Layering Refinement Algorithm instead of the LRA.



502 M. Ghaffari and B. Haeupler

4 Gathering

In this section, we present a k-message gathering algorithm with round complex-
ity O(TLay + k). This round complexity is near optimal as k-message gathering
has a lower bound of TBC+k. The additive k term in this lower bound is trivial.
The TBC term is also a lower bound because the lower bounds of single-message
broadcast extend to single-message unicast from an adversarially chosen source
to an adversarially chosen destination, and single-message uni-cast is a special
case of k-message gathering where k=1.

Theorem 3. There is a distributed randomized algorithm that, w.h.p., gathers
k messages in a given destination node in O(TLay + k) rounds.

The result follows from using the pseudo-BFS layering from Theorem 1 with the
following lemma:

Lemma 5. Given a C-collision-free layering 
(.) with a C-coloring c(.), depth
D′, and source node s, Algorithm 2 gathers k messages in s with high probability,
in C · Θ(D′ + k + log2 n) rounds.

The full algorithm is presented in Algorithm 2. Here, we give an intuitive ex-
planation of our approach. The formal arguments are deferred to the proof of
Lemma 5 in the full version. Consider the hypothetical scenario where simulta-
neous transmissions are not lost (no collision) and packet sizes are not bounded,
i.e., a node can transmit arbitrary many messages in one round. Consider the
simple algorithm where (1) each node u transmits exactly once and in round
D′− 
(u), where it transmits all the messages that it has received by then, (2) a
node v accepts a received packet only if v is the parent of the sender. It is easy to
see that this is like a wave of transmissions which starts from nodes at layer D′

and proceeds exactly towards source, one hop in each round. This wave sweeps
the network in a decreasing order of the layer numbers and every messagem gets
picked up by the wave, when the wave reaches the node that holds m initially.
Then, messages are carried by the wave and they all arrive at the source when
the wave does, i.e., after exactly D′ rounds.

Things are not as easy in radio networks due to collisions and bounded size
messages; each node can only transmit one message at a time, and simultaneous
transmissions destined for a common parent collide. We say that “transmission
of message m at node u failed” if throughout the progress of a wave, message
m fails to reach from node u to the parent of u because either (i) a collision
happens at u’s parent, or (ii) u has other messages scheduled for transmission in
the same round as m. To overcome these, we use two ideas, namely C-collision-
free layering 
() with coloring c(), and random delays. We use a C-collision-free
layering by scheduling the transmissions based on colors. This takes care of
the possible collisions between nodes of different layer numbers (at the cost of
increasing round complexity to C ·D′).

Even with the help of a C-collision-free layering, we still need to do something
for collisions between the transmission of the nodes of the same layer, and packets
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Algorithm 2. Gathering Algorithm @ node u

Given: Layer �(u), color c(u), parent-ID parent(u), a set of initial messages M
Semantics: each packet is 4-tuple in form (message, destination, wave, delay)

1: P ← ∅
2: for each message m ∈ M do
3: Choose delay δ ∈U [8max{2−wavek, 4 log n}]
4: Create packet τ ← (m,parent(u), 0, δ) and add τ to P

5: for epoch = 0 to Θ(D′ + 16k + log2 n) do � Main Gathering Part
6: for cycle = 1 to C do
7: if c(u) = cycle then
8: if ∃ exactly one π ∈ P such that epoch = D′ − �(u) + π.delay then
9: transmit packet π
10: listen

11: if received acknowledgment then
12: remove π from P
13: else
14: listen

15: listen

16: for π ∈ P s.t. epoch = D′ − �(u) + π.delay do
17: Choose random delay δ′ ∈U [8max{k2−wave−1 , 4 log n}]
18: MaxPreviousDelay ←

∑
1≤i≤wave 8max{k2−i, 4 log n}

19: remove π from P
20: π′ ← (π.m, π.destination, π.wave+ 1,MaxPreviousDelay + δ′)
21: add packet π′ to P

22: else
23: listen

24: if received a packet σ such that σ.destination = ID(u) then
25: add packet σ′ = (σ.m, parent(u), σ.wave, σ.delay) to P
26: transmit acknowledgment packet
27: else
28: listen

scheduled for simultaneous transmission from the same node. The idea is to add
a random delay to the transmission time of each message. If there are k active
messages and we add a random delay chosen from [8k] to each message, then for
each messagem, with probability at least 7/8 no transmission of m fails, i.e., the
wave delivers m to the source with probability at least 7/8. A formal argument
for this claim would be presented in the proof. With this observation, one naive
idea would be to repeat the above algorithm on a C-collision-free layering 
(),
by having Θ(log n) non-overlapping waves, where each time each message starts
from the node that it got stuck in while being carried by the previous wave.
With this, we succeed with high probability in delivering all k messages to the
source and in time C ·O(D′ logn+ k logn).

Now there are two ideas to improve upon this. First, we can pipeline the
waves. That is, we do not need to space the waves D′ rounds apart; instead
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Algorithm 3. Network-Coded Multi-Message Broadcast @ node u

Given: Source node s with k messages

1: if u = source then
2: for all i ∈ [k] do
3: vi ← (ei,mi) � ei ∈ {0, 1}k is the ith basis vector
4: put vi in P

5: else
6: P ← ∅

7: for i = 1 to Θ(D′ log n
D′ + k log n+ log2 n) do

8: for cycle = 1 to C do
9: if cycle ≡ c(u) then
10: with probability 2−BCi mod L do � BC is the Broadcast sequence

from Section 2.3
11: choose a uniformly random subset S of P
12: transmit

⊕
v∈S v

13: otherwise
14: listen

15: else
16: listen

17: if received a packet v then add v to P

18: decode v1, . . . , vk from span(P ) by Gaussian Elimination

the spacing should be just large enough so that two waves do not collide. For
that, a spacing of 8k between the waves is enough. With this improvement, we
go down to time complexity of C · O(D′ + k logn). Second, note that in each
wave, each message succeeds with probability at least 7/8. Thus, using Chernoff
bound, we get that as long as the number of remaining messages is Ω(log n),
whp, in each wave, the number of remaining messages goes down by at least a 1

2
factor. Hence, in those times, we can decrease the size of the interval out of which
the random delays are chosen by a factor of two in each new wave. Because of
this, the spacing between the waves also goes down exponentially. This second
improvement, with some care for the case where number of remaining messages
goes below Θ(log n) (where we do not have the Chernoff-type high probability
concentration anymore) gives time complexity of C · O(D′ + k + log2 n).

5 Multi-message Broadcast, and Gossiping

In this section we show how to combine psuedo-BFS layerings, the broadcat
protocol of Section 2.3, and the idea of random linear network coding to obtain
a simple and optimal O(TLay+k logn) k-message broadcast algorithm. Note that
the Ω(k logn) lower bound of [12], along with the Ω(D log nD +log2 n) broadcast
lower bound of [17] and [1], show the near optimality of this algorithm.
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Theorem 4. Given k messages at a single source, there is a randomized dis-
tributed algorithm that broadcasts these k messages to all nodes, w.h.p, in
O(TLay + k logn) rounds.

The result follows from using the pseudo-BFS layering from Theorem 1 with the
following lemma:

Lemma 6. Given a C-collision free layering 
 with depth D′ and k messages
at source s, the Network-Coded Multi-Message Broadcast algorithm delivers all
messages to all nodes, w.h.p., in C ·O(D′ log n

D′ + k logn+ log2 n) rounds.

The algorithm is presented in Algorithm 3. The main ideas are as follows. To
schedule which node is sending at every time, we first restrict the nodes that
are sending simultaneously to have the same color. To resolve the remaining
collisions, we let nodes send independently at random with probabilities chosen
according to the CR-Broadcast protocol of [7] with parameter δ = log n

D′ . Lastly,
if a node is prompted to send a packet, we create this packet using the standard
distributed packetized implementation of random linear network coding as de-
scribed in [14]. Given such a random linear network code, decoding can simply
be performed by Gaussian elimination (see [14]).

The proof uses several ideas stemming from recent advances in analyzing
random linear network coding. The key part is the projection analysis of [14] and
its modification and adaption to radio networks [13], titled backwards projection
analysis. This allows us to reduce the multi-message problem to merely showing
that, for each particular node v, one can find a path of successful transmissions
from the source to v with exponentially high probability. The required tail-bound
follows from a slightly modified analysis of the CR-Broadcast protocol [7]. We
remark that the additive coefficient overhead in Algorithm 3, which is one-bit for
each of the k messages, can be reduced to O(log n) bits using standard techniques
explained in [13]. The proof of Lemma 6 appears in the appendix.

Lastly, we present our gossiping result.

Theorem 5. There is a randomized distributed algorithm that, with high prob-
ability, performs an performs all-to-all broadcast in O(n logn) rounds.

Proof. First, we elect a leader node in O(n) rounds using the algorithm of [11].
Then, we construct a pseudo-BFS layering around this leader in time O(n) using
Theorem 1. We then gather the n messages in the leader node in O(n) rounds
using Lemma 5. Finally, we broadcast the n messages from the leader to all the
other nodes in time O(n log n) using Lemma 6.

Remark: Similar to the approach of the proof of Theorem 5 one can combine the
leader election algorithm of [11] with the pseudo-BFS layering, gathering, and
single-source broadcast algorithms of this paper and obtain a near optimal ran-
domized distributed algorithm for the multi-source k-message broadcast problem
with round complexity O((D log nD + log3 n) ·min{log logn, log nD}+ k logn).
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Abstract. We address the problem of in-network analytics for data that
is generated by sensors at the edge of the network. Specifically, we con-
sider the problem of summarizing a continuous physical phenomenon,
such as temperature or pollution, over a geographic region like a road
network. Samples are collected by sensors placed alongside roads as well
as in cars driving along them. We divide the region into sectors and find
a summary for each sector, so that their union is a continuous function
that minimizes some global error function. We designate a node (either
virtual or physical) that is responsible for estimating the function in each
sector. Each node computes its estimate based on the samples taken in
its sector and information from adjacent nodes.

The algorithm works in networks with bounded, yet unknown, la-
tencies. It accommodates the addition and removal of samples and the
arrival and departure of nodes, and it converges to a globally optimal
solution using only pairwise message exchanges between neighbors. The
algorithm relies on a weakly-fair scheduler to implement these pairwise
exchanges, and we present an implementation of such a scheduler. Our
scheduler, which may be of independent interest, is locally quiescent,
meaning that it only sends messages when required by the algorithm. It
achieves quiescence on every link where the algorithm ceases to schedule
pairwise exchanges; in particular, if the algorithm converges, it globally
quiesces.

1 Introduction

As we enter the era of ubiquitous sensing, we have the opportunity to monitor the
world around us with unprecedented resolution and to leverage this vast wealth
of data to make our environment smarter. On-board sensors and computers in
new vehicles can sense road and traffic conditions and use this information in
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route planning, smart meters enable fine-grained power usage monitoring and
can assist in demand-response in the smart grid, and cheap wireless motes that
measure noise, light, and air pollution can be used as input into urban planning
and public health decisions.

To fully realize this vision, we must be able to process this massive amount of
data and generate meaningful summaries that can be used in planning and re-
sponse. The field of machine learning offers a range of tools for such data analyt-
ics, but these tools typically assume all data is present at a centralized location.
As this data is generated at the edge of the network at an ever-increasing rate,
transmitting the data over a long distance to a central facility is both expensive
and energy consuming, especially in wireless networks [1]. Moreover, the high
latency incurred by these long-distance transmissions may prove problematic
to time-sensitive applications. Finally, even after collecting all data, processing
it requires costly and time-consuming computation. Thus, we need distributed
solutions for in-network data analytics.

A few very recent works in the field of control theory and machine learning
have proposed distributed algorithms for data analytics, however, these works
use a näıve model of the distributed system and thus do not offer a realistic
solution for our setting. On the other hand, brute force distribution does not
work. To develop realistic distributed data-analytics tools requires both an un-
derstanding of machine learning and distributed computing.

In this extended abstract, we present a distributed data analytics technique
using a novel combined approach and illustrate it using a specific application
of in-network analytics, motivated by our work with a major automotive cor-
poration on vehicular sensor networks. The objective is to generate a compact
estimate of a continuous physical phenomenon from samples measured through-
out a region, for example, the road network in Western Europe. These samples
are collected by vehicles driving through the region as well as by fixed infras-
tructure (e.g., roadside units) with compute, storage, and local communication
capabilities. We leverage this fixed infrastructure as nodes in a distributed com-
puting platform. This infrastructure may be unreliable, and so our solution must
accommodate the arrival and departure of nodes. Moreover, the measured phe-
nomenon changes over time, hence the estimate is generated from a dynamic set
of samples. We detail our system model in Section 2.

From these requirements, we generate a formal problem definition for this ap-
plication setting. We describe how we architect this formal problem in Section 3.
Our approach is based on machine learning fundamentals, namely linear regres-
sion. Since the data is geographically distributed, care must be taken to ensure
that this formalization is amenable to a distributed solution. To achieve this, we
employ selective learning; each node learns an estimate for its local area, or sec-
tor, based on its samples and communication with its neighbors. (The division of
the region and assignment of nodes can be done with known techniques [2,3,4,5]
and is outside the scope of this paper.) We thus define an optimization problem
where each node’s estimate has to minimize some convex error function related to
collected samples, while requiring that the union of these estimates is continuous
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over the entire region. The continuity requirement stems from the fact the sam-
pled phenomenon is known to be continuous. Generating the global estimate is a
convex optimization problem whose objective is to minimize the sum of the local
error functions, with equality constraints that match the structure of the network.
The nodes’ estimates should converge to a global optimal estimate once changes
cease. Note that since nodes do not know when changes stop, they must make a
best effort to converge at all times. This problem structure opens the door to a
solution based on local communication. However, it still requires multi-way coor-
dination between all nodes sharing a sector boundary (for details see the technical
report [6]). To eliminate such costly coordination, we transform the problem to its
dual form to obtain a decomposable (unconstrained) problem that can be solved
using only pairwise coordination between neighbors. While transforming to the
dual is a common optimization technique, we have not seen it used for this pur-
pose before.

We then present, in Section 4, a novel, distributed optimization algorithm
for our formal problem based on the method of coordinate ascent. In general,
coordinate ascent is not amenable to distribution, and a näıve implementation
requires global synchronization and does not accommodate dynamic behavior
(see related work below). In contrast, our distributed coordinate ascent algo-
rithm deals with dynamic inputs and requires neither global information nor
synchronization.

The algorithm progresses in steps, and to schedule these steps in the dis-
tributed environment we implement a locally quiescent weakly-fair scheduler.
This scheduler executes pairwise message exchanges in a weakly-fair manner and
only when they are required by the algorithm. Unlike with standard synchronizer-
based approaches, if the algorithm ceases to schedule pairwise exchanges (i.e.,
it reaches the optimum), the scheduler achieves quiescence. This scheduler, de-
scribed in Section 5, may be important in and of itself where communication is
expensive and relaxed scheduling is sufficient.

We believe that our approach to distributed, in-network analytics without
global communication or synchronization can prove useful in many additional
settings. Section 6 concludes the paper and touches on some directions for future
research. Some formal details and more elaborate examples are given in the
technical report [6]. While, in the sequel, we consider estimation over a road
network, our approach can also be applied to estimation over a two-dimensional
region, as detailed in the technical report.

Related Work. Previouswork ondistributed convexoptimization canbe divided
into two categories: averaging-based algorithms (based on the framework of [7]),
and sequential algorithms. Averaging-based algorithms have been proposed for
unconstrained convex optimization problems [7,8,9], and for constrained convex
optimization problems where all constraints are known globally [10,11] or where
constraints are purely local [11]. To satisfy the continuity constraints in our prob-
lem formulation, these algorithmswould require that all nodes know the continuity
constraints for the entire network, which induces a prohibitive per node storage
cost and a need for global information. In sequential algorithms [12,13], there is
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(a) Roads and stations (b) Piecewise linear estima-
tion

Fig. 1. Piecewise linear estimation in a road system. We see a junction of three roads.
(a) The roads are divided into sectors (e.g., 1, 2 and 3), each with its node. The sectors
meet at vertices (triangles). (b) The samples are shown as dots, and a curtain above
the roads shows the continuous piecewise linear estimate f .

a single copy of the optimization variables, and every node has its own objective
function and constraints. Both approaches require storage for all variables at ev-
ery node, which is infeasible for large networks of the type we consider (e.g., a road
network of an entire country). Furthermore, none of these algorithms can tolerate
node arrivals and departures.

In this work, we present a distributed optimization algorithm based on the
method of coordinate ascent. Coordinate ascent is an iterative method where,
in each step, a single variable is updated. The algorithm converges to the opti-
mal solution only if the order in which the variables are updated obeys certain
properties. A few recent works have proposed parallel implementations of coor-
dinate descent for solving large optimization problems [14,15]. While the update
operations occur in parallel, these implementations still require that updates
are executed in globally specified order, thus requiring centralized coordination.
They also require that the set of participating nodes does not change during the
algorithm execution. In contrast, our distributed coordinate ascent algorithm
requires no global information or coordination, and it operates correctly even if
the set of participating nodes changes.

2 System Model

We consider a finite region, for example, a road network. Sensors collect samples
in the region, each comprised of a geographic location and a value. There is
also a computing network in the region consisting of a dynamic set of nodes.
Each node may be part of a physical infrastructure, for example, a base station,
or it may be a virtual node implemented by a dynamic set of mobile agents.
Neighboring nodes are connected with bidirectional, reliable FIFO links.

We take a hierarchical approach and divide the region into a fixed set of non-
overlapping sectors. In the road network, a sector is a segment of a road, and its
end points are two vertices, as shown in Figure 1(a); a single vertex may be shared
by several adjacent sectors. Each vertex has a unique ID. Each sector also has
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a unique ID, and these IDs are totally ordered. Each sector is assigned at most
one node at any given time, and this node maintains a dynamic set of samples
that have been taken in its sector. Each node has a unique ID and it knows the
ID of the sector for which it is responsible. We assume a fail-stop model, i.e., a
node that fails does not recover, and its neighbors are notified of the failure. A
new node may arrive and take responsibility for the failed node’s sector. When
a node becomes active, its sample set is initially empty. Following its activation,
a node is notified of all its neighbors, and they all receive notifications of its
arrival.
Notation. We employ the following notation throughout this work:

– The set of vertices for sector i is denoted Vi, and the set of vertices for all
sectors is denoted V .

– The dynamic set1 of active (non-failed) nodes is denoted N .

– The set of active nodes whose sectors share a vertex v is called the member set
of v, denotedM(v). We say that nodes i and j are neighbors if there exists a
vertex v such that both i and j are elements of M(v).

– Each sample is represented by a tuple (x, z) where x is the distance along the
segment from the vertex with the smaller ID, and z is the value of the sample
at that location.

– The set of samples at node i is denoted Si. The dynamic set of all samples,
denoted S , is the union of the sample sets belonging to the nodes in N .

Stabilization. For the sake of analysis, we assume that the system eventually
stabilizes.

Definition 1 (Global Stabilization Time). The global stabilization time
(GST) is the earliest time after which the following properties hold: (1) no nodes
are informed of neighbor changes, (2) samples are neither added nor deleted,
and (3) the message latency of all outstanding and future messages is bounded
between δ and Δ. Nodes do not know when GST has been reached, nor do they
know δ or Δ.

Before GST (if it exists), there are no time bounds on message latency or on
notifications of neighbor set changes or sample set changes.

3 Architecting the Problem

In this section, we develop a formal problem definition that is compatible with
the system model, generates a meaningful summary of the collected samples,
and is amenable to a distributed solution that scales to the size of an immense
road network. Each node generates an estimate for its sector that is optimal with
respect to its samples, while also ensuring that the union of these local estimates
is a piecewise continuous function over the region. The global estimation prob-
lem is defined by a convex optimization problem whose objective is to minimize

1 The dynamic sets N , M(v), Si, and S are all functions of time. Since the time can
always be deduced from the context, we omit the superscript t.
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the sum of the local error functions, with equality constraints that match the
structure of the network. This convex optimization problem is detailed in Sec-
tion 3.1. A distributed algorithm that addresses the problem directly requires
expensive coordination among all nodes that share a sector boundary (for ex-
ample, at an intersection). In Section 3.2 we transform the problem to its dual
form and obtain a decomposable problem that can be solved using only pairwise
communication between neighbors.

3.1 Formal Problem Definition

We define the estimate for sector i to be a real-valued function fi over the sector.
The global estimate f is the union of these individual estimates. We illustrate
our algorithm for the case where each fi is a linear function defined over a single-
dimensional road segment. Such a function is shown in Figure 1(b); the estimate
f is drawn as a curtain above the roads. It is straightforward to extend our
approach to estimation with higher order polynomials, as shown in the technical
report [6].

Let u and v be the IDs of the vertices of the sector belonging to node i, with
u < v. The function fi is parameterized by the values at its vertices, denoted
θi,u and θi,v, and is given by,

fi(x; θi,u, θi,v)
Δ
= (1− x/di) θu + (x/di) θv.

Here, di is the length of sector i. Define θi
Δ
= [θi,u θi,v]

T, and let θ denote the
vector of all θi,u variables, i ∈ N , u ∈ Vi. Each node must generate an optimal
estimate of its sector from its samples. Specifically, each node i must determine
the values θi that minimize a convex error function. As an example, we consider
the least squares error,

Ci(θi;Si)
Δ
=

∑
(x,z)∈Si

(fi(x; θi)− z)2 .

We also require that the estimates fi are continuous at the sector boundaries.
This requirement means that nodes must collaborate to perform the estimation
so that they agree on the values for shared vertices.

The problem of learning the function f after GST can be formulated as a
convex optimization problem with a global, separable objective function and
linear constraints that capture the continuity requirements,

minimize
θ

C(θ;S ) Δ=
∑
i∈N

Ci(θi;Si) (1)

subject to θi,v = θj,v, for v ∈ V , i, j ∈M(v), i 	= j. (2)

The constraints (2) state that every pair of nodes in M(v) has the same value
for vertex v, or equivalently, all nodes inM(v) learn the same value for vertex v.
These constraints ensure that the estimate is continuous within each connected
component of the network of nodes in N .
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Our goal is to design a distributed algorithm for finding the values of the
parameters θ that solve the optimization problem defined above. A node i knows
only its own sample set Si and communicates only with its neighbors. Each node
is responsible for obtaining an estimate of its sector by learning values for θi.
After GST, these estimates must converge to a globally optimal estimate.

In the problem (1)–(2), all members of a vertex must agree on the value of θ
for that vertex. An algorithm that addresses the problem directly would require
that all members coordinate to maintain this constraint. In the next section, we
show that by transforming to the dual, we obtain a problem formulation that
only requires coordination between pairs of neighboring nodes.

3.2 Problem Decomposition

We now show how to transform the constrained convex optimization into its
unconstrained dual form. We note that, typically, one transforms a problem
to its dual because the dual can be solved in a more computationally efficient
manner in a centralized setting. Our use of the dual is unconventional; we use the
dual problem because it opens the door to a distributed solution with reduced
communication costs.

Given a constrained optimization problem, the dual problem is formed by
defining the Lagrangian, where the constraints are incorporated into the objec-
tive function. The Lagrangian for (1)–(2) is,

L(θ, λ;S ) =
∑
i∈N

Ci(θi;Si) +
∑
v∈V

∑
i,j∈M(v),i�=j

λvi,j (θi,v − θj,v) . (3)

Here, each equality constraint θi,v = θj,v in (2) is assigned a Lagrange multiplier
λvi,j ∈ R. The dual function is then defined as follows,

q(λ;S ) Δ= inf
θ
L(θ, λ;S ), (4)

where λ denotes the vector of all Lagrange multipliers.
In our case, (4) can be decomposed as a sum over the nodes in N . Let λi

denote the vector of Lagrange multipliers associated with a constraint involving
a component of θi. We can rewrite q as q(λ;S ) =

∑
i∈N qi(λi;Si), where each

function qi is

qi(λi;Si)
Δ
= inf

θi
Ci(θi;Si) +

∑
v∈Vi

⎛⎝ ∑
j∈M(v),j �=i

sgn(j − i)λvi,j

⎞⎠ θi,v. (5)

The function sgn(j− i) returns 1 if i < j and returns -1 otherwise. The function
qi depends only on information local to node i, specifically, Si and the location
of of the vertices of sector i. Therefore, given λi, each node i can solve for
qi independently. For the least squares error cost function, (5) is a quadratic
minimization problem (over θi) and thus can be solved analytically. The full
expression for qi is given in the technical report [6].
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The dual problem is

maximize
λ

q(λ;S ) =
∑
i∈N qi(λi;Si). (6)

For a square error minimization of the form (1)–(2), strong duality holds (see
[16]). Therefore, the solution to (6) gives the solution to the primal problem,

θ̂ = argminθ L(θ, λ̂;S ).
We note that each Lagrange multiplier λvi,j appears in both λi and λj since

node i and node j share the vertex v. Therefore, the objective in (6) is not
separable over the nodes in N . While the nodes can solve (5) independently
for a given vector λi, the dual problem contains pairwise dependences between
neighbors, and so the nodes must collaborate to find the optimal λ̂.

4 Distributed Algorithm

We now present our distributed algorithm for generating the optimal estimate
defined in the previous section. Our algorithm is based on the coordinate ascent
method for nonlinear optimization [17,18]. We briefly review this method in
Section 4.1. We then describe the details of our algorithm in Section 4.2 and
sketch its correctness in Section 4.3. Formal proofs are given in the technical
report [6].

4.1 Preliminaries - The Method of Coordinate Ascent

Consider an unconstrained optimization problem

x̂ = argmax
x∈Rm

h(x1, x2, . . . , xm).

The method of coordinate ascent is an iterative optimization algorithm that
proceeds as follows. Let x(k) = [x1(k) . . . xm(k)] be the vector of the values in
iteration k. The algorithm begins with an initial x(1). In each step k, a coordinate
i is selected, and xi(k) is updated by finding its maximum while all other values
of x(k) are fixed. The update step is,

xi = argmax
ξ∈R

h(x1(k), . . . xi−1(k), ξ, xi+1(k), . . . , xm(k)) (7)

x(k + 1) = [x1(k) . . . xi−1(k) xi xi+1(k) . . . xm(k)]. (8)

We note that it is possible that the execution of an update step may not result
in any change to x (i.e., x(k + 1) = x(k)) if the selected coordinate is already
optimal with respect to the rest of x(k).

The convergence of the above algorithm depends on the properties of h and
the order in which the coordinates are evaluated: an arbitrary update order may
not converge. In this paper, we consider the essentially cyclic policy [19], which
states that there exists a constant integer T > 0, such that every coordinate i ∈
{1, . . . ,m} is chosen at least once between the rth iteration and the (r+T −1)th

iteration, for all r. The following theorem gives the relevant convergence result
for the method of coordinate ascent with an essentially cyclic policy (see [17,19]).
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Theorem 1. Let h(x1, . . . , xm) be a concave function that is strictly concave
in each xi when the other variables xj , j 	= i are held constant, and let h have
continuous first partial derivatives. If the coordinate update policy follows an
essentially cyclic order, then the algorithm (7)–(8) converges to an optimal so-
lution. Furthermore, if the algorithm executes a cycle of updates, where each
coordinate is evaluated at least once, and no evaluation results in a change to x,
then the algorithm has found an optimal solution.

The objective in (6) is concave, has continuous first partial derivatives, and
is strictly concave in each λvi,j when the other values of λ are fixed. So, we can
solve this problem using the method of coordinate ascent. We next present a dis-
tributed algorithm, based on coordinate ascent, that solves the dual problem (6).

4.2 Distributed Optimization Algorithm

In our distributed algorithm, each node i stores its set of samples Si, a list of
its current neighbors, and its Lagrange multipliers λi. Per the problem decom-
position, a coordinate λvi,j appears in two vectors, λi and λj . Here, each λ

v
i,j is a

shared variable, and in the distributed algorithm, and nodes i and j each store
a copy of λvi,j . The goal is for nodes to converge to the optimal values for their
shared variables, thus solving the dual problem (6).

To implement a distributed version of coordinate ascent for this dual problem,
every pair of nodes i and j that share a coordinate λvi,j must collaborate to update
their shared variables for λvi,j , and the distributed algorithm must execute these
pairwise updates in an order that guarantees convergence. We now show that a
coordinate update can be performed with a pairwise message exchange, where
each message contains two coefficients.

Distributed Coordinate Update. For an update of the shared variable λvi,j ,
its new value γ depends only on the dual functions for nodes i and j,

γ = argmax
λvi,j

q(λ;S ) = argmax
λvi,j

(
qi(λi;Si) + qj(λj ;Sj)

)
.

The value of γ is the root of the equation

∂
∂λvi,j

(qi + qj) =
∂

∂λvi,j
qi +

∂
∂λvi,j

qj = 0.

To find this value, each node sends information about its partial derivative to
the other. For the least square error cost function, this information can be encap-
sulated in two coefficients αvi and βvi . The values of these coefficients are given
in the technical report [6]. After exchanging these coefficients, each node then
independently computes γ = −(βvi +βvj )/(αvi +αvj ) and updates its copy of λvi,j .

The values of the αvi and βvi are determined by the node’s samples and the
values of its other shared variables. These shared variables, in turn, depend on
additional shared variables with other nodes. For the coordinate update step to
be performed correctly, both nodes involved in the update must compute their
coefficients using a consistent shared state.
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Scheduler. Each node determines which coordinates should be updated by de-
tecting which of its shared variables are not optimal with respect its current
state, and it schedules pairwise exchanges on the corresponding links. Our al-
gorithm relies on a weakly-fair scheduler (implemented in Section 5) as a black
box to implement the pairwise message exchange on scheduled links. We give the
specification for the scheduler below, followed by the details of our distributed
algorithm execution.

The scheduler provides a notify(j) function by which a node i schedules a
pairwise message exchange on a link (i, j) to update the shared variable λvi,j .
It provides functions addNeighbor(j) and delNeighbor(j) for indicating when a
neighbor has been added or removed, and it provides a getLink() function by
which a node requests a neighbor for a pairwise message exchange. The node
sends messages directly to its neighbor, and the scheduler receives incoming
messages. The scheduler provides the function deliver(j) by which a calling
node delivers a message from node j. If j fails, the scheduler delivers the token
fail.

We assume that the algorithm is notified on the addition or removal of a
neighbor and invokes the appropriate function on the scheduler, addNeighbor or
delNeighbor. We also assume that the algorithm executes the following infinite
loop, with only non-blocking operations interleaved (as in our algorithm):

while true do
j ← scheduler.getLink()
send(j,msg1)
msg2 ← scheduler.deliver(j)

In this loop, a node requests the ID of neighbor, and it then exchanges mes-
sages with that neighbor. The scheduler must execute this message exchange
atomically and provide some weak degree of “fairness” in executing scheduled
exchanges. We now make these requirements precise.

We define a step of the distributed algorithm to be the delivery of a message
at a single node. Without loss of generality, we assume that no two steps are
executed concurrently. An execution of the distributed algorithm is a sequence
of steps. We associate the invocation scheduler.notify(j) by a node i with the
most recent step s that resulted in a message delivery at node i. In this case we
say that the update of link (i, j) was scheduled in step s.

Definition 2 (Weakly-fair scheduler). A scheduler is a weakly-fair sched-
uler if it guarantees the following for an algorithm that respects the above as-
sumptions:

1. Every message is returned by scheduler.deliver at most once.

2. If scheduler.deliver(j) returns message m at time t then, if m is fail, j
is failed at time t. If m is not fail, then m was previously sent by j.

3. If node i invokes scheduler.notify(j), and neither i nor j fail,
then eventually i completes scheduler.deliver(j) and j completes
scheduler.deliver(i).
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4. Let s be the last step before GST. There exists a bound B such that, if a
node i invokes scheduler.notify(j) at step s, then if i does not fail, i com-
pletes scheduler.deliver(j) by step max(s, s) +B, and if j does not fail, j
completes scheduler.deliver(i) by step max(s, s) +B.

Algorithm Execution. Each node is responsible for detecting when one of
its shared variables is not optimal with respect to its sample set and other
shared variables. A shared variable requires an update whenever a sample is
added or deleted, a shared variable is added or removed, or any other shared
variable is updated by pairwise exchange with another node. When one of these
events occurs, the node schedules an update for that shared variable by invoking
scheduler.notify.

A separate thread at each node handles the scheduled updates of shared vari-
ables, one at a time. In an infinite loop, the process requests a node ID from
the scheduler by invoking scheduler.getLink, and it performs a pairwise mes-
sage exchange with that node, e.g., node j. It sends its coefficients (as specified
above) to j, and it delivers coefficients from j with scheduler.deliver. The
node then updates its shared variable with j using the coefficients contained in
the messages. If j fails before sending its coefficients, then the scheduler even-
tually delivers fail, and the node does not update the shared variable. The
pseudocode for the distributed algorithm is given in the the technical report [6].

4.3 Proof Sketch of Algorithm Convergence

We now sketch the convergence proof for our distributed algorithm with a
weakly-fair scheduler. The lemmas and theorem stated here are proven in the
technical report [6].

We first show that, after GST, the distributed algorithm with a weakly-fair
scheduler simulates the execution of the centralized coordinate ascent algorithm
on the dual problem in (6). We define a mapping F between the state of the
distributed algorithm and the state of the centralized algorithm; for a given state
of the distributed algorithm at step t, F returns a state where the value of each
coordinate λvi,j in λ is the value at the first node to update the shared variable
for λvi,j in the most recent (possibly incomplete) pairwise exchange.

Lemma 1. After GST, the algorithm simulates the centralized coordinate ascent
algorithm, under the mapping F .

Next we show that any execution C of the centralized algorithm that is generated
under the mapping F from an execution of the distributed algorithm is equivalent
to an essentially cyclic execution of the centralized coordinate ascent algorithm.
The key to this result is the observation that, at a step s in the distributed
execution, if a shared variable is not scheduled for update at any node, then its
value is optimal with respect to the values of the other shared variables at step
s. This means that in the mapped step of centralized execution, the value of
the corresponding value of λvi,j is also optimal with respect to the rest of λ. The
weakly-fair scheduler guarantees that, after GST, all shared variables that are
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scheduled for update in step s of the distributed algorithm will be updated by
in at most B steps after s (in both the distributed and the mapped centralized
executions). Therefore, we can create an equivalent, essentially cyclic centralized
execution (whose cycle length depends on B) by adding empty update steps for
unscheduled shared variables. This result is formally stated in the following
lemma.

Lemma 2. Let D be an execution of the distributed algorithm starting after

GST, consisting of the steps {d1, d2, d3, . . .}, and let C
Δ
= {c1 = F(d1), c2 =

F(d2), c3 = F(d3), . . .} be the corresponding execution of the centralized algo-
rithm. Then, there exists an essentially cyclic centralized execution C, that is
equivalent to C, i.e., C contains exactly the same non-empty updates as C, and
these updates are executed in the same order.

Lemmas 1 and 2 show that the shared variables mapped under F converge to
an optimal solution. What remains is to show that the other shared variables
converge to the same solution. This result follows directly from the definition of
a weakly-fair scheduler (Definition 2). We therefore conclude that the algorithm,
run with a weakly-fair scheduler, solves the dual problem.

Theorem 2. If the scheduler is weakly-fair, then, after GST, the algorithm con-
verges to an optimal solution of the dual problem in (6).

Since we have convergence in the dual, each node’s estimate of θi converges to
the optimal solution of the primal problem in (1)–(2). We note that, if at a time
t after GST, no shared variable is scheduled for update, then every coordinate
is optimal with respect to the values of the other coordinates, and thus, the
algorithm has found an optimal solution.

5 Locally Quiescent Scheduler

Our algorithm, described above, requires a weakly-fair scheduler to order com-
munication. A naturally appealing approach for such a scheduler is to use a self-
stabilizing edge-coloring [20] or other synchronizer-based methods. However, this
kind of approach would require the continuous exchange of messages to maintain
the synchronization pulses, and these control messages would be sent regardless
of whether the algorithm needed to exchange information over the links (unless
some external mechanism were used to terminate the synchronizer). Further-
more, before GST, when the network is changing, the resulting schedule might
lead to deadlock, which would also require an external mechanism to break.

To complement our novel optimization algorithm described above, we propose
here a weakly fair scheduler implementation that we call a locally quiescent
scheduler. This scheduler is deadlock-free, even before GST, and it only sends
messages on a link if the algorithm schedules an exchange for that link. After
the algorithm stops scheduling updates, no messages are sent on any link.

The scheduler assigns a master node and slave node to each link; the node
with the smaller ID is the master. Note that each node may act as a slave for
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Algorithm 1. Locally quiescent scheduler at node i.

1 state
2 requestQueue, initially empty
3 notificationQueue, initially empty
4 msgBuffer : N → msg ∪ {⊥, fail}
5 notified, initially ∅
6 function notify(j)
7 if min(i, j) /∈ notified then
8 notified ← notified∪ {min(i, j)}
9 if i < j then

10 push(notificationQueue, j)
11 else
12 send(j, notify)

13 function getLink()
14 while true do
15 if requestQueue not empty

then (slave)
16 return pop(requestQueue)
17 else if notificationQueue not

empty then
18 return

pop(notificationQueue)

19 function deliver(j)
20 wait until msgBuffer(j) 
= ⊥
21 msg ← msgBuffer(j)
22 msgBuffer(j) ← ⊥
23 return msg

24 function addNeighbori(j)
25 no op

26 function delNeighbori(j)
27 notified ← notified \ {j}
28 msgBuffer(j) ← fail

29 on recvi(j,msg)
30 msgBuffer(j) ← msg
31 if j < i then (j is the master)
32 notified ← notified \ {j}
33 push(requestQueue, j)

34 on recvi(j, 〈notify〉)
35 push(notificationQueue, j)

some links and as a master for others. Whenever the algorithm schedules an
exchange on a link, it calls the scheduler’s notify function, which either places
the link in the node’s notificationQueue (if it is the master), or sends a notify

message to the master of that link (if it is the slave). In this case, when the
master receives the notify message, it places the link in its notificationQueue.

We now explain how the scheduler executes a pairwise message exchange for
a scheduled link. Consider a link (i, j), where i is the master and j is the slave.
When the master asks for a link with getLink, its scheduler processes the next
entry in its notificationQueue and returns a neighbor j. The master proceeds
by sending a message to the slave, invoking deliver(j), and blocking until the
message from j is delivered. While the master is blocked, its scheduler queues
incoming notifications and requests from masters on other links. When the slave
receives the message from the master, its scheduler buffers the message in its
msgBuffer and registers it in its requestQueue. Once getLink returns the ID of
the master, the slave sends its message to the master and delivers the master’s
message to it. The slave’s call to deliver returns instantly since the message
from the master is already in its scheduler’s buffer. Once the slave’s message
arrives, the deliver call at the master returns the message, and the pairwise
exchange is complete. The scheduler is given in Algorithm 1.

The following theorem states that the scheduler is weakly-fair. The result fol-
lows from the fact that scheduled updates are handled in the order that the notifi-
cations arrive at the master and nodes only wait on their slaves. The master-slave



520 I. Eyal et al.

relationship assignments follow the total order of node IDs, prohibiting a deadlock
due to cycles. A formal proof is given in the technical report [6].

Theorem 3. The locally quiescent scheduler is a weakly-fair scheduler.

We note that our locally quiescent scheduler only sends messages on a link in
response to an invocation of notify for that link by the algorithm. After the
algorithm stops scheduling updates, no messages are sent on any link.

Observation 1. If a link is not scheduled by the algorithm, the scheduler sends
no messages on the link. Therefore, if the algorithm ceases to schedule links, the
scheduler achieves quiescence.

6 Conclusion

We have presented a distributed algorithm for estimating a continuous phe-
nomenon over a geographic region based on samples taken by sensors inside the
region. While a straightforward solution to this problem would require expen-
sive coordination among groups of nodes, we have shown how to decompose the
problem so that the algorithm requires only pairwise communication between
neighbors. We have then provided a novel, distributed implementation of coor-
dinate ascent optimization that solves this estimation problem. Our algorithm
accommodates the addition and removal of samples and the arrival and depar-
ture of nodes, and it converges to a globally optimal solution without any global
coordination or synchronization. The algorithm relies on a weakly-fair scheduler
to implement pairwise exchanges, and we have presented an implementation of
such a scheduler. Our scheduler only sends message when the algorithm indi-
cates that there are updates to perform, and if the algorithm finds the optimal
solution, the scheduler achieves quiescence.

This work demonstrates the benefits and power of distributed selective learn-
ing, where agents cooperate to calculate a global optimum, while each of them
learns only a part of the solution. These results call for future work, studying
the possibility of relaxing the communication patterns even further and extend-
ing the algorithm to other optimization problems with different objective func-
tions and constraints, for example, estimation of non-continuous phenomena and
tracking of phenomena that change over time.
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References

1. Chong, C., Kumar, S.: Sensor networks: Evolution, opportunities, and challenges.
Proceedings of the IEEE 91(8), 1247–1256 (2003)

2. Gilbert, S., Lynch, N., Mitra, S., Nolte, T.: Self-stabilizing mobile robot formations
with virtual nodes. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340,
pp. 188–202. Springer, Heidelberg (2008)



In-Network Analytics for Ubiquitous Sensing 521

3. Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing dis-
tributed algorithm. Theoretical Computer Science 410(6-7), 514–532 (2009)

4. Fernandess, Y., Malkhi, D.: K-clustering in wireless ad hoc networks. In: Proceed-
ings of the Second ACM International Workshop on Principles of Mobile Comput-
ing, pp. 31–37. ACM (2002)

5. Lee, D.Y., Lam, S.S.: Efficient and accurate protocols for distributed Delaunay tri-
angulation under churn. In: IEEE International Conference on Network Protocols,
pp. 124–136 (2008)

6. Eyal, I., Keidar, I., Patterson, S., Rom, R.: Global estimation with local communi-
cation. Technical Report CCIT 809, EE Pub. No. 1766, Technion, Israel Institute
of Technology (May 2012)

7. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic
and stochastic gradient optimization algorithms. IEEE Transactions on Automatic
Control 31(9), 803–812 (1986)

8. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent opti-
mization. IEEE Transactions on Automatic Control 54(1), 48–61 (2009)

9. Srivastava, K., Nedic, A.: Distributed asynchronous constrained stochastic opti-
mization. IEEE Journal of Selected Topics in Signal Processing 5(4), 772–790
(2011)

10. Ram, S., Nedic, A., Veeravalli, V.: A new class of distributed optimization algo-
rithms: Application to regression of distributed data. Optimization Methods and
Software 27(1), 71–88 (2012)

11. Nedic, A., Ozdaglar, A., Parrilo, P.: Constrained consensus and optimization in
multi-agent networks. IEEE Transactions on Automatic Control 55(4), 922–938
(2010)

12. Johansson, B., Rabi, M., Johansson, M.: A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on Op-
timization 20(3), 1157–1170 (2009)

13. Ram, S., Nedic, A., Veeravalli, V.: Asynchronous gossip algorithms for stochas-
tic optimization. In: Proceedings of the 48th IEEE Conference on Decision and
Control, pp. 3581–3586 (2009)

14. Elad, M., Matalon, B., Zibulevsky, M.: Coordinate and subspace optimization
methods for linear least squares with non-quadratic regularization. Applied and
Computational Harmonic Analysis 23, 346–367 (2007)

15. Bradley, J.K., Kyrola, A., Bickson, D., Guestrin, C.: Parallel coordinate descent
for l1-regularized loss minimization. In: Proceedings of the 28th International Con-
ference on Machine Learning, pp. 321–328 (2011)

16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

17. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Addison-Wesley
Publishing Company, Inc. (1984)

18. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)
19. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable

minimization. Journal of Optimization Theory and Applications 109(3), 475–494
(2001)

20. Tzeng, C., Jiang, J., Huang, S.: A self-stabilizing (δ+ 4)-edge-coloring algorithm
for planar graphs in anonymous uniform systems. Information Processing Let-
ters 101(4), 168–173 (2007)



A Super-Fast Distributed Algorithm

for Bipartite Metric Facility Location�

James Hegeman and Sriram V. Pemmaraju��

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA
{james-hegeman,sriram-pemmaraju}@uiowa.edu

Abstract. The facility location problem consists of a set of facilities
F , a set of clients C, an opening cost fi associated with each facility
xi, and a connection cost D(xi, yj) between each facility xi and client
yj . The goal is to find a subset of facilities to open, and to connect
each client to an open facility, so as to minimize the total facility open-
ing costs plus connection costs. This paper presents the first expected-
sub-logarithmic-round distributed O(1)-approximation algorithm in the
CONGEST model for the metric facility location problem on the com-
plete bipartite network with parts F and C. Our algorithm has an ex-
pected running time of O((log log n)3) rounds, where n = |F|+ |C|. This
result can be viewed as a continuation of our recent work (ICALP 2012)
in which we presented the first sub-logarithmic-round distributed O(1)-
approximation algorithm for metric facility location on a clique network.
The bipartite setting presents several new challenges not present in the
problem on a clique network. We present two new techniques to overcome
these challenges.

1 Introduction

This paper continues the recently-initiated exploration [2,1,7,9,16] of the de-
sign of sub-logarithmic, or “super-fast” distributed algorithms in low-diameter,
bandwidth-constrained settings. To understand the main themes of this explo-
ration, suppose that we want to design a distributed algorithm for a problem on
a low-diameter network (we have in mind a clique network or a diameter-2 net-
work). In one sense, this is a trivial task since the entire input could be shipped
off to a single node in a single round and that node can simply solve the problem
locally. On the other hand, the problem could be quite challenging if we were to
impose reasonable constraints on bandwidth that prevent the fast delivery of the
entire input to a small number of nodes. A natural example of this phenomenon
is provided by the minimum spanning tree (MST) problem. Consider a clique
network in which each edge (u, v) has an associated weight w(u, v) of which only
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the nodes u and v are aware. The problem is for the nodes to compute an MST
of the edge-weighted clique such that after the computation, each node knows all
MST edges. It is important to note that the problem is defined by Θ(n2) pieces of
input and it would take Ω

(
n
B

)
rounds of communication for all of this informa-

tion to reach a single node (where B is the number of bits that can travel across
an edge in each round). Typically, B = O(log n), and this approach is clearly too
slow given our goal of completing the computation in a sub-logarithmic number
of rounds. Lotker et al. [9] showed that the MST problem on a clique can in fact
be solved in O(log logn) rounds in the CONGEST model of distributed compu-
tation, which is a synchronous, message-passing model in which each node can
send a message of size O(log n) bits to each neighbor in each round. The algo-
rithm of Lotker et al. employs a clever merging procedure that, roughly speaking,
causes the sizes of the MST components to square with each iteration, leading
to an O(log logn)-round computation time. The overall challenge in this area is
to establish the round complexity of a variety of problems that make sense in
low-diameter settings. The area is largely open with few upper bounds and no
non-trivial lower bounds known. For example, it has been proved that computing

an MST requires Ω
(
( n
logn )

1/4
)
rounds in the CONGEST model for diameter-3

graphs [10], but no lower bounds are known for diameter-2 or diameter-1 (clique)
networks.

The focus of this paper is the distributed facility location problem, which has
been considered by a number of researchers [12,4,14,15,2,1] in low-diameter set-
tings. We first describe the sequential version of the problem. The input to the
facility location problem consists of a set of facilities F = {x1, x2, . . . , xnf

},
a set of clients C = {y1, y2, . . . , ync}, a (nonnegative) opening cost fi associ-
ated with each facility xi, and a (nonnegative) connection cost D(xi, yj) be-
tween each facility xi and client yj. The goal is to find a subset F ⊆ F of
facilities to open so as to minimize the total facility opening costs plus connec-
tion costs, i.e. FacLoc(F ) :=

∑
xi∈F fi +

∑
yj∈CD(F, yj), where D(F, yj) :=

minxi∈F D(xi, yj). Facility location is an old and well-studied problem in op-
erations research that arises in contexts such as locating hospitals in a city or
locating distribution centers in a region. The metric facility location problem
is an important special case of facility location in which the connection costs
satisfy the following “triangle inequality:” for any xi, xi′ ∈ F and yj , yj′ ∈ C,
D(xi, yj) + D(yj , xi′) + D(xi′ , yj′) ≥ D(xi, yj′). The facility location problem,
even in its metric version, is NP-complete and finding approximation algorithms
for the problem has been a fertile area of research. There are several constant-
factor approximation algorithms for metric facility location (see [8] for a recent
example). This approximation factor is known to be near-optimal [5].

More recently, the facility location problem has also been used as an abstrac-
tion for the problem of locating resources in wireless networks [3,13]. Motivated
by this application, several researchers have considered the facility location prob-
lem in a distributed setting. In [12,14,15], as well as in the present work, the
underlying communication network is a complete bipartite graph G = F + C,
with F and C forming the bipartition. At the beginning of the algorithm, each
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node, whether a facility or client, has knowledge of the connection costs (“dis-
tances”) between itself and all nodes in the other part. In addition, the facilities
know their opening costs. The problem is to design a distributed algorithm that
runs on G in the CONGEST model and produces a subset F ⊆ F of facilities
to open. To simplify exposition we assume that every cost in the problem input
can be represented in O(log n) bits, thus allowing each cost to be transmitted
in a single message. Each chosen facility will then open and provide services to
any and all clients that wish to connect to it (each client must be served by
some facility). The objective is to guarantee that FacLoc(F ) ≤ α ·OPT , where
OPT is the cost of an optimal solution to the given instance of facility location
and α is a constant. We call this the BipartiteFacLoc problem. In this paper
we present the first sub-logarithmic-round algorithm for the BipartiteFacLoc

problem; specifically, our algorithm runs in O((log lognf )
2 · log logmin{nf , nc})

rounds in expectation, where nf = |F| and nc = |C|. All previous distributed
approximation algorithms for BipartiteFacLoc require a logarithmic number
of rounds to achieve near-optimal approximation factors.

1.1 Overview of Technical Contributions

In a recent paper (ICALP 2012, [2]; full version available as [1]), we presented
an expected-O(log logn)-round algorithm in the CONGEST model for Cliq-

ueFacLoc, the “clique version” of BipartiteFacLoc. The underlying com-
munication network for this version of the problem is a clique with each edge
(u, v) having an associated (connection) cost c(u, v) of which only nodes u and v
are aware (initially). Each node u also has an opening cost fu, and may choose
to open as a facility; nodes that do not open must connect to an open facility.
The cost of the solution is defined as before – as the sum of the facility open-
ing costs and the costs of established connections. Under the assumption that
the connection costs form a metric, our algorithm for CliqueFacLoc yields
an O(1)-approximation. We had hoped that a “super-fast” algorithm for Bi-

partiteFacLoc would be obtained in a straightforward manner by extending
our CliqueFacLoc algorithm. However, it turns out that moving from a clique
communication network to a complete bipartite communication network raises
several new and significant challenges related to information dissemination and a
lack of adequate knowledge. Below we outline these challenges and our solutions
to them.

Overview of Solution to CliqueFacLoc. To solve CliqueFacLoc on an
edge-weighted clique G [2,1] we reduce it to the problem of computing a 2-ruling
set in an appropriately-defined spanning subgraph of G. A β-ruling set of a
graph is an independent set S such that every node in the graph is at most β
hops away from some node in S; a maximal independent set (MIS) is simply a
1-ruling set. The spanning subgraph H on which we compute a 2-ruling set is
induced by clique edges whose costs are no greater than a pre-computed quantity
which depends on the two endpoints of the edge in question.

We solve the 2-ruling set problem on the spanning subgraph H via a combi-
nation of deterministic and randomized sparsification. Briefly, each node selects
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itself with a uniform probability p chosen such that the subgraphH ′ ofH induced
by the selected nodes has Θ(n) edges in expectation. The probability p is a func-
tion of n and the number of edges in H . We next deliver all of H ′ to every node.
It can be shown that a graph with O(n) edges can be completely delivered to ev-
ery node in O(1) rounds on a clique and since H ′ has O(n) edges in expectation,
the delivery of H ′ takes expected-O(1) rounds. Once H ′ has been disseminated
in this manner, each node uses the same (deterministic) rule to locally compute
an MIS of H ′. Following the computation of an MIS of H ′, nodes in the MIS
and nodes in their 2-neighborhood are all deleted from H and H shrinks in size.
Since H is now smaller, a larger probability p can be used for the next iteration.
This increasing sequence of values for p results in a doubly-exponential rate of
progress, which leads to an expected-O(log logn)-round algorithm for computing
a 2-ruling set of H . See [1] for more details.

Challenges for BipartiteFacLoc. The same algorithmic framework can be
applied to BipartiteFacLoc; however, challenges arise in trying to implement
the ruling-set computation on a bipartite communication network. As in Cliq-

ueFacLoc [1], we define a particular graph H on the set of facilities with edges
connecting pairs of facilities whose connection cost is bounded above. Note that
there is no explicit notion of connection cost between facilities, but we use a nat-
ural extension of the facility-client connection costs D(·, ·) and define for each
xi, xj ∈ F , D(xi, xj) := miny∈CD(xi, y) +D(xj , y). The main algorithmic step
now is to compute a 2-ruling set on the graph H . However, difficulties arise
because H is not a subgraph of the communication network G, as it was in
the CliqueFacLoc setting. In fact, initially a facility xi does not even know
to which other facilities it is adjacent in H . This adjacency knowledge is col-
lectively available only to the clients. A client y witnesses edge {xi, xj} in H
if D(xi, y) +D(xj , y) is bounded above by a pre-computed quantity associated
with the facility-pair xi, xj . However, (initially) an individual client y cannot
certify the non-existence of any potential edge between two facilities in H ; as,
unbeknownst to y, some other client may be a witness to that edge. Furthermore,
the same edge {xi, xj} could have many client-witnesses. This “affirmative-only”
adjacency knowledge and the duplication of this knowledge turn out to be key
obstacles to overcome. For example, in this setting, it seems difficult to even
figure out how many edges H has.

Thus, an example of a problem we need to solve is this: without knowing
the number of edges in H , how do we correctly pick a probability p that will
induce a random subgraph H ′ with Θ(n) edges? Duplication of knowledge of H
leads to another problem as well. Suppose we did manage to pick a “correct”
value of p and have induced a subgraph H ′ having Θ(n) edges. In the solution
to CliqueFacLoc, we were able to deliver all of H ′ to a single node (in fact, to
every node). In the bipartite setting, how do we deliver H ′ to a single node given
that even though it has O(n) edges, information duplication can cause the sum
of the number of adjacencies witnessed by the clients to be as high as Ω(n2)?

We introduce new techniques to solve each of these problems. These techniques
are sketched below.
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– Message dissemination with duplicates. We model the problem of de-
livering all of H ′ to a single node as the following message-dissemination
problem on a complete bipartite graph.

Message Dissemination with Duplicates (MDD).
Given a bipartite graph G = F + C, with nf := |F| and nc := |C|,
suppose that there are nf messages that we wish to be known to all
client nodes in C. Initially, each client possesses some subset of the nf
messages, with each message being possessed by at least one client.
Suppose, though, that no client yj has any information about which
of its messages are also held by any other client. Disseminate all nf
messages to each client in the network in expected-sub-logarithmic
time.

We solve this problem by presenting an algorithm that utilizes probabilistic
hashing to iteratively reduce the number of duplicate copies of each mes-
sage. Note that if no message exists in duplicate, then the total number of
messages held is only nf , and each can be sent to a distinct facility which
can then broadcast it to every client. The challenge, then, lies in coordinat-
ing bandwidth usage so as to avoid “bottlenecks” that could be caused by
message duplication. Our algorithm for MDD runs in O(log logmin{nf , nc})
rounds in expectation.

– Random walk over a probability space. Given the difficulty of quickly
acquiring even basic information about H (e.g., how many edges does it
have?), we have no way of setting the value of p correctly. So we design an
algorithm that performs a random walk over a space of O(log lognf ) prob-
abilities. The algorithm picks a probability p, uses this to induce a random
subgraph H ′ of H , and attempts to disseminate H ′ to all clients within
O(log logmin{nf , nc}) rounds. If this dissemination succeeds, p is modified
in one way (increased appropriately), otherwise p is modified differently (de-
creased appropriately). This technique can be modeled as a random walk on a
probability space consisting ofO(log lognf ) elements, where the elements are
distinct values that p can take. We show that after a random walk of length
at most O(log lognf ), sufficiently many edges of H are removed, leading to
O(log lognf ) levels of progress. Thus we have a total of O((log lognf)

2) steps
and since in each step an instance of MDD is solved for disseminating ad-
jacencies, we obtain an expected-O((log lognf )

2 · log logmin{nf , nc})-round
algorithm for computing a 2-ruling set of H .

To summarize, our paper makes three main technical contributions. (i) We
show (in Section 2) that the framework developed in [1] to solve CliqueFa-

cLoc can be used, with appropriate modifications, to solve BipartiteFacLoc.
Via this algorithmic framework, we reduce BipartiteFacLoc to the problem of
computing a 2-ruling set of a graph induced by facilities in a certain way. (ii) In
order to compute a 2-ruling set of a graph, we need to disseminate graph adjacen-
cies whose knowledge is distributed among the clients with possible duplication.
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We model this as a message dissemination problem and show (in Section 3),
using a probabilistic hashing scheme, how to efficiently solve this problem on a
complete bipartite graph. (iii) Finally, we present (in Section 4) an algorithm
that performs a random walk over a probability space to efficiently compute a
2-ruling set of a graph, without even basic information about the graph. This al-
gorithm repeatedly utilizes the procedure for solving the message-dissemination
problem mentioned above.

Note: This paper does not contain any proofs, due to space restrictions. All
proofs appear in the archived full version of the paper [6].

2 Reduction to the Ruling Set Problem

In this section we reduce BipartiteFacLoc to the ruling set problem on a cer-
tain graph induced by facilities. The reduction is achieved via the distributed
facility location algorithm called LocateFacilities and shown as Algorithm 1.
This algorithm is complete except that it calls a subroutine, RulingSet(H, s)
(in Step 4), to compute an s-ruling set of a certain graph H induced by facili-
ties. In this section we first describe Algorithm 1 and then present its analysis.
It is easily observed that all the steps in Algorithm 1, except the one that calls
RulingSet(H, s) take a total of O(1) communication rounds. Thus the running
time of RulingSet(H, s) essentially determines the running time of Algorithm
1. Furthermore, we show that if F ∗ is the subset of facilities opened by Algo-
rithm 1, then FacLoc(F ∗) = O(s) ·OPT . In the remaining sections of the paper
we show how to implement RulingSet(H, 2) in expected O((log lognf )

2 · log log
min{nf , nc}) rounds. This yields an expected O((log lognf )

2 · log log
min{nf , nc})-round, O(1)-approximation algorithm for BipartiteFacLoc.

2.1 Algorithm

Given F , C, D(·, ·), and {fi}, define the characteristic radius ri of facility xi to
be the nonnegative real number satisfying

∑
y∈B(xi,ri)

(ri−D(xi, y)) = fi, where

B(x, r) (the ball of radius r) denotes the set of clients y such that D(x, y) ≤ r.
This notion of a characteristic radius was first introduced by Mettu and Plaxton
[11], who use it to drive their sequential, greedy algorithm. We extend the client-
facility distance function D(·, ·) to facility-facility distances; let D : F × F →
R+ ∪ {0} be defined by D(xi, xj) = minyk∈C{D(xi, yk) +D(xj , yk)}. With these
definitions in place we are ready to describe Algorithm 1. The algorithm consists
of three stages, which we now describe.

Stage 1. (Steps 1-2) Each facility knows its own opening cost and the distances
to all clients. So in Step 1 facility xi computes ri and broadcasts that value
to all clients. Once this broadcast is complete, each client knows all of the ri
values. This enables every client to compute the same partition of the facilities
into classes as follows (Step 2). Define the special value r0 := min1≤i≤nf

{ri}.
Define the class Vk, for k = 0, 1, . . ., to be the set of facilities xi such that
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Algorithm 1. LocateFacilities

Input: A complete bipartite graph G with partition (F , C); (bipartite) metric
D(·, ·); opening costs {fi}nf

i=1; a sparsity parameter s ∈ Z+

Assumption: Each facility knows its own opening cost and its distances to all
clients; each client knows its distances to all facilities
Output: A subset of facilities (a configuration) to be declared open.

1. Each facility xi computes and broadcasts its radius ri to all clients; r0 := mini ri.
2. Each client computes a partition of the facilities into classes {Vk} such that

3k · r0 ≤ ri < 3k+1 · r0 for xi ∈ Vk.
3. For k = 0, 1, . . ., define a graph Hk with vertex set Vk and edge set:

{{xi, xi′} | xi, xi′ ∈ Vk and D(xi, xi′) ≤ ri + ri′}
(Observe from the definition of facility distance that such edges may be known
to as few as one client, or as many as all of them.)

4. All nodes in the network use procedure RulingSet(∪kHk, s) to compute a
2-ruling set T of ∪kHk. T is known to every client. We use Tk to denote T ∩ Vk.

5. Each client yj sends an open message to each facility xi, if and only if both of
the following conditions hold:
(i) xi is a member of the set Tk ⊆ Vk, for some k.
(ii) yj is not a witness to the existence of a facility xi′ belonging to a class Vk′ ,

with k′ < k, such that D(xi, xi′) ≤ 2ri.
6. Each facility xi opens, and broadcasts its status as such, if and only if xi received

an open message from every client.
7. Each client connects to the nearest open facility.

3k · r0 ≤ ri < 3k+1 · r0. Every client computes the class into which each facility
in the network falls.

Stage 2. (Steps 3-4) Now that the facilities are divided into classes having com-
parable ri’s, and every client knows which facility is in each class, we focus our
attention on class Vk. Suppose xi, xi′ ∈ Vk. Then we define xi and xi′ to be
adjacent in class Vk if D(xi, xi′) ≤ ri + ri′ (Step 3). These adjacencies define
the graph Hk with vertex set Vk. Note that two facilities xi, xi′ in class Vk are
adjacent if and only if there is at least one client witness for this adjacency. Next,
the network computes an s-ruling set T of ∪kHk with procedure RulingSet()
(Step 4). We describe a super-fast implementation of RulingSet() in Section
4. After a ruling set T has been constructed, every client knows all the members
of T . Since the Hk’s are disjoint, Tk := T ∩ Vk is a 2-ruling set of Hk for each k.

Stage 3. (Steps 5-7) Finally, a client yj sends an open message to facility xi
in class Vk if (i) xi ∈ Tk, and (ii) there is no facility xi′ of class Vk′ such that
D(xi, yj) + D(xi′ , yj) ≤ 2ri, and for which k′ < k (Step 5). A facility opens if
it receives open messages from all clients (Step 6). Lastly, open facilities declare
themselves as such in a broadcast, and every client connects to the nearest open
facility (Step 7).
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2.2 Analysis

The approximation-factor analysis of Algorithm 1 is similar to the analysis of
our algorithm for CliqueFacLoc [1]. Here we present a brief summary.
First we show a lower bound on the cost any solution to BipartiteFacLoc.
For yj ∈ C, define rj as rj = min1≤i≤nf

{ri+D(xi, yj)}. See [1] for a motivation
for this definition.

Lemma 1. FacLoc(F ) ≥ (
∑nc

j=1 rj)/6 for any subset F ⊆ F .

To obtain an upper bound on the cost of the solution produced by Algorithm
1 we start by “charging” the cost of a facility location solution to clients in a
standard way [11]. For a client yj ∈ C and a facility subset F , define the charge of
yj with respect to F by charge(yj , F ) = D(F, yj) +

∑
xi∈F

max{0, ri −D(xi, yj)}.

Simple algebraic manipulation can be used to show that for any facility subset
F , FacLoc(F ) is equal to

∑nc

j=1 charge(yj , F ). Finally, if F
∗ is the subset of

facilities selected by Algorithm 1, we show the following upper bounds.

Lemma 2. D(F ∗, yj) ≤ (s+ 1) · 15 · rj.

Lemma 3.
∑
xi∈F∗ max{0, ri −D(xi, yj} ≤ 3 · rj.

Putting the lower bound, charging scheme, and upper bound together gives
FacLoc(F ∗) ≤ (15s+ 33) ·

∑nc

j=1 rj ≤ 6 · (15s+ 33) ·OPT . Also, noting that all
the steps in Algorithm 1, except the one that calls RulingSet(∪kHk, s) take a
total of O(1) communication rounds, we obtain the following theorem.

Theorem 1. Algorithm 1 (LocateFacilities) computes an O(s)-factor ap-
proximation to BipartiteFacLoc in O(T (n, s)) rounds, where T (n, s) is the
running time of procedure RulingSet(H, s), called an n-node graph H.

3 Dissemination on a Bipartite Network

In the previous section we reduced BipartiteFacLoc to the problem of com-
puting an s-ruling set on a graph H = ∪kHk defined on facilities. Our technique
for finding an s-ruling set involves selecting a set M of facilities at random,
disseminating the induced subgraph H [M ] to every client and then having each
client locally compute an MIS of H [M ] (details appear in Section 4). A key sub-
routine needed to implement this technique is one that can disseminate H [M ]
to every client efficiently, provided the number of edges in H [M ] is at most nf .
In Section 1 we abstracted this problem as the Message Dissemination with
Duplicates (MDD) problem. In this section, we present a randomized algorithm
for MDD that runs in expected O(log logmin{nf , nc}) communication rounds.

Recall that the difficulty in disseminatingH [M ] is the fact that the adjacencies
in this graph are witnessed only by clients, with each adjacency being witnessed
by at least one client. However, an adjacency can be witnessed by many clients
and a client is unaware of who else has knowledge of any particular edge. Thus,
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even if H [M ] has at most nf edges, the total number of adjacency observations
by the clients could be as large as n2f . Below we use iterative probabilistic hashing
to rapidly reduce the number of “duplicate” witnesses to adjacencies in H [M ].
Once the total number of distinct adjacency observations falls to 48nf , it takes
only a constant number of additional communication rounds for the algorithm to
finish disseminating H [M ]. The constant “48” falls out easily from our analysis
(Lemma 7, in particular) and we have made no attempt to optimize it in any
way.

3.1 Algorithm

The algorithm proceeds in iterations and in each iteration a hash function is
chosen at random for hashing messages held by clients onto facilities. Denote
the universe of possible adjacency messages by U . Since messages represent ad-
jacencies among facilities, |U| =

(
nf

2

)
. However, it is convenient for |U| to be

equal to n2f and so we extend U by dummy messages so that this is the case. We
now define a family HU of hash functions from U to {1, 2, . . . , nf} and show how
to pick a function from this family, uniformly at random. To define HU , fix an
ordering m1,m2,m3, . . . of the messages of U . Partition U into groups of size nf ,
with messages m1,m2, . . . ,mnf

as the first group, the next nf elements as the
second group, and so on. The family HU is obtained by independently mapping
each group of messages onto (1, 2, . . . , nf ) via a cyclic permutation. For each
group of nf messages in U , there are precisely nf such cyclic maps for it, and so
a map in HU can be selected uniformly at random by having each facility choose
a random integer in {1, 2, . . . , nf} and broadcast this choice to all clients (in the
first round of an iteration). Each client then interprets the integer received from
facility xi as the image of message m(i−1)·nf+1.

In round 2, each client chooses a destination facility for each adjacency mes-
sage in its possession (note that no client possesses more than nf messages),
based on the hash function chosen in round 1. For a messagem in the possession
of client yj , yj computes the hash h(m) and marks m for delivery to facility
xh(m). In the event that more than one of yj ’s messages are intended for the
same recipient, yj chooses one uniformly at random for correct delivery, and
marks the other such messages as “leftovers.” During the communication phase
of round 2, then, client yj delivers as many messages as possible to their correct
destinations; leftover messages are delivered uniformly at random over unused
communication links to other facilities.

In round 3, a facility has received a collection of up to nc messages, some of
which may be duplicates of each other. After throwing away all but one copy
of any duplicates received, each facility announces to client y1 the number of
(distinct) messages it has remaining. In round 4, client y1 has received from
each facility its number of distinct messages, and computes for each an index
(modulo nc) that allows facilities to coordinate their message transfers in the
next round. Client y1 transmits the indices back to the respective facilities in
round 5.
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In round 6, facilities transfer their messages back across the bipartition to
the clients, beginning at their determined index (received from client y1) and
working modulo nc. This guarantees that the numbers of messages received by
two clients yj, yj′ in this round can differ by no more than one. (Although it is
possible that some of these messages will “collapse” as duplicates.) Clients now
possess subsets of the original nf messages, and the next iteration can begin.

Algorithm 2. DisseminateAdjacencies

Input: A complete bipartite graph G, with partition (F , C); an overlay network H on F with
|E[H]| ≤ nf

Assumption: For each adjacency e′ in H, one or more clients has knowledge of e′

Output: Each client should know the entire contents of E[H]

1. while true do
Start of Iteration:

2. Each client yj sends the number of distinct messages currently held, nj , to facility x1.
3. if

∑nc
j=1 nj ≤ 48nf then

4. Facility x1 broadcasts a break message to each client.
5. Client y1, upon receiving a break message, broadcasts a break message to each facility.

end-if-then
6. Each facility xi broadcasts an integer in {1, . . . , nf} chosen uniformly at random;

this collection of broadcasts determines a map h ∈ HU .
7. For each adjacency message m′ currently held, client yj maps m′ to xh(m′).
8. For each i ∈ {1, . . . , nf}, if |{m′ held by yj : h(m′) = i}| > 1, client yj chooses

one message to send to xi at random from this set and marks the others as leftovers.
9. Each client yj sends the messages chosen in Lines 7-8 to their destinations; leftover

messages are delivered to other facilities (for whom yj has no intended message) in an
arbitrary manner (such that yj sends at most one message to each facility).

10. Each facility xi receives a collection of at most nc facility adjacency messages; if duplicate
messages are received, xi discards all but one of them so that the messages held
by xi are distinct.

11. Each facility xi sends its number of distinct messages currently held, bi, to client y1.

12. Client y1 responds to each facility xi with an index c(i) = (
∑i−1

k=1 bk mod nc).
13. Each facility xi distributes its current messages evenly to the clients in the set

{yc(i)+1, yc(i)+2, . . . , yc(i)+bi
} (where indexes are reduced modulo nc as necessary).

14. Each client yj receives at most nf messages; the numbers of messages received by
any two clients differ by at most one.

15. Each client discards any duplicate messages held.
End of Iteration:

16. At this point, at most 48nf total messages remain among the nc clients; these
messages may be distributed evenly to the facilities in O(1) communication rounds.

17. The nf facilities can now broadcast the (at most) 2nf messages to all clients in O(1) rounds.

3.2 Analysis

Algorithm 2 is proved correct by observing that (i) the algorithm terminates only
when dissemination has been completed; and (ii) for a particular message m′, in
any iteration, there is a nonzero probability that all clients holding a copy of m′

will deliver m′ correctly, after which there will never be more than one copy of
m′ (until all messages are broadcast to all clients at the end of the algorithm).
The running time analysis of Algorithm 2 starts with two lemmas that follow
from our choice of the probabilistic hash function.

Lemma 4. Suppose that, at the beginning of an iteration, client yj possesses a
collection Sj of messages, with |Sj | = nj. Let Ei,j be the event that at least one
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message in Sj hashes to facility xi. Then the probability of Ei,j (conditioned on
all previous iterations) is bounded below by 1− e−nj/nf .

Lemma 5. Suppose that, at the beginning of an iteration, client yj possesses a
collection Sj of messages, with |Sj | = nj. Let Mj ⊆ Sj be the subset of messages
that are correctly delivered by client yj in the present iteration. Then the expected

value of |Mj | (conditioned on previous iterations) is bounded below by nj −
n2
j

2nf
.

By Lemma 5, the number of incorrectly delivered messages in Sj is bounded

above (in expectation) by
n2
j

2nf
. Informally speaking, this implies that the se-

quence nf ,
nf

2 ,
nf

23 ,
nf

27 , . . . bounds from above the number of incorrectly deliv-
ered messages (in expectation) in each iteration. This doubly-exponential rate
of decrease in the number of undelivered messages leads to the expected-doubly-
logarithmic running time of the algorithm.

We now step out of the context of a single client and consider the progress of
the algorithm on the whole. Using Lemma 5, we derive the following recurrence
for the expected total number of messages held by all clients at the beginning of
each iteration.

Lemma 6. Suppose that the algorithm is at the beginning of iteration I, I ≥
2, and let TI be the total number of messages held by all clients (i.e. TI =∑nc

j=1 nj(I), where nj(I) is the number of messages held by client yj at the
beginning of iteration I). Then the conditional expectation of TI+1 given TI,
E(TI+1 | TI), satisfies

E(TI+1 | TI) ≤

⎧⎨⎩nf +
(TI+nc)

2

2nf ·nc
if TI > nc

nf +
TI
2nf

if TI ≤ nc

We now define a sequence of variables ti (via the recurrence below) that bounds
from above the expected behavior of the sequence of TI ’s established in the
previous lemma. Let t1 = nf · min{nf , nc}, ti = 1

2 ti−1 for 2 ≤ i ≤ 5, and for
i > 5, define ti by

ti =

⎧⎨⎩2nf +
(ti−1+nc)

2

nf ·nc
if ti−1 > nc

2nf +
ti−1

nf
if ti−1 ≤ nc

The following lemma establishes that the ti’s fall rapidly.

Lemma 7. The smallest index i for which ti ≤ 48nf is at most log log
min{nf , nc}+ 2.

Lemma 8. For i > 5, if TI ≤ ti, then the conditional probability (given iter-
ations 1 through I − 1) of the event that TI+1 ≤ ti+1 is bounded below by 1

2 .

Theorem 2. Algorithm 2 solves the dissemination problem in O(log logmin
{nf , nc}) rounds in expectation.
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4 Computing a 2-Ruling Set of Facilities

In this section, we show how to efficiently compute a 2-ruling set on the graph
H (with vertex set F) constructed in Algorithm 1 (LocateFacilities). Our al-
gorithm (called Facility2RulingSet and described as Algorithm 3) computes
a 2-ruling set in H by performing iterations of a procedure that combines ran-
domized and deterministic sparsification steps. In each iteration, each facility
chooses (independently) to join the candidate set M with probability p. Two
neighbors in H may both have chosen to join M , so M may not be independent
in H . We would therefore like to select an MIS of the graph induced by M ,
H [M ]. In order to do this, the algorithm attempts to communicate all known
adjacencies in H [M ] to every client in the network, so that each client may
(deterministically) compute the same MIS. The algorithm relies on Algorithm
DisseminateAdjacencies (Algorithm 2) developed in Section 3 to perform
this communication.

Algorithm 3. Facility2RulingSet

Input: Complete bipartite graph G with partition (F ,C) and H, an overlay network on F .
Output: A 2-ruling set T of H

1. i := 1; p := p1 = 1

8·n1/2
f

; T := ∅

2. while |E(H)| > 0 do
Start of Iteration:

3. M := ∅
4. Each facility x joins M with a probability p.
5. Run Algorithm DisseminateAdjacencies for 7 log logmin{nf , nc} iterations

to communicate the edges in H[M ] to all clients in the network.
6. if DisseminateAdjacencies completes in the allotted number of iterations then
7. Each client computes the same MIS L on M using a deterministic algorithm.
8. T := T ∪ L
9. Remove M ∪N(M) from H.
10. i := i+ 1; p := pi = 1

8·n2−i
f

11. else
12. i := i− 1; p := pi = 1

8·n2−i
f

13. if |E(H)| = 0 then break;
End of Iteration:

14. Output T .

For Algorithm DisseminateAdjacencies to terminate quickly, we require
that the number of edges in H [M ] be O(nf ). This requires the probability p
to be chosen carefully as a function of nf and the number of edges in H . Due
to the lack of aggregated information, nodes of the network do not generally
know the number of edges in H and thus the choice of p may be “incorrect” in
certain iterations. To deal with the possibility that pmay be too large (and hence
H [M ] may have too many edges), the dissemination procedure is not allowed
to run indefinitely – rather, it is cut off after 7 log logmin{nf , nc} iterations
of disseminating hashing. If dissemination was successful, i.e. the subroutine
completed prior to the cutoff, then each client receives complete information
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about the adjacencies in H [M ], and thus each is able to compute the same MIS
in H [M ]. Also, if dissemination was successful, then M and its neighborhood,
N(M), are removed fromH and the next iteration is run with a larger probability
p. On the other hand, if dissemination was unsuccessful, the current iteration of
Facility2RulingSet is terminated and the next iteration is run with a smaller
probability p (to make success more likely the next time).

To analyze the progress of the algorithm, we define two notions – states and
levels. For the remainder of this section, we use the term state (of the algorithm)
to refer to the current probability value p. The probability p can take on values(

1

8·n2−i

f

)
for i = 0, 1, . . . , Θ(log lognf ). We use the term level to refer to the

progress made up until the current iteration. Specifically, the jth level Lj , for
j = 0, 1, . . . , Θ(log lognf ), is defined as having been reached when the number
of facility adjacencies remaining in H becomes less than or equal to lj = 8 ·
n1+2−j

f . In addition, we define one special level L∗ as the level in which no
facility adjacencies remain. These values for the states and levels are chosen so
that, once level Li has been reached, one iteration run in state i+1 has at least
a probability- 12 chance of advancing progress to level Li+1.

4.1 Analysis

It is easy to verify that the setT computedbyAlgorithm3(Facility2RulingSet)
is a 2-ruling set and we now turn our attention to the expected running time of this
algorithm. The algorithm halts exactly when level L∗ is reached (this termination
condition is detected in Line 15), and so it suffices to bound the expected number
of rounds necessary for progress (removal of edges from H) to reach level L∗. The
following lemmas show that quick progress is madewhen the probability pmatches
the level of progress made thus far.

Lemma 9. Suppose |E(H)| ≤ li (progress has reached level Li) and in this
situation one iteration is run in state i+1 (with p = pi+1). Then in this iteration,
the probability that Algorithm DisseminateAdjacencies succeeds is at least 3

4 .

Lemma 10. Suppose |E(H)| ≤ li (progress has reached level Li). Then, after
one iteration run in state i + 1 (with p = pi+1), the probability that level Li+1

will be reached (where |E(H)| ≤ li+1) is at least 1
2 .

Thus, once level Li has been reached, we can expect that only a constant number
of iterations run in state i+ 1 would be required to reach level Li+1. Therefore,
the question is, “How many iterations of the algorithm are required to execute
state i+1 enough times?” To answer this question, we abstract the algorithm as
a stochastic process that can be modeled as a (non-Markov) simple random walk
on the integers 0, 1, 2, . . . , Θ(log lognf ) with the extra property that, whenever
the random walk arrives at state i+1, a (fair) coin is flipped. We place a bound
on the expected number of steps before this coin toss comes up heads.
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First, consider the return time to state i + 1. In order to prove that the
expected number of iterations (steps) necessary before either |E(H)| ≤ li+1 or
p = pi+1 is O(log lognf ), we consider two regimes – p > pi+1 and p < pi+1.
When p is large (in the regime consisting of probability states intended for fewer
edges than currently remain in H), it is likely that a single iteration of Algorithm
3 will generate a large number of adjacencies between candidate facilities. Thus,
dissemination will likely not complete before “timing out,” and it is likely that p
will be decreased prior to the next iteration. Conversely, when p is small (in the
regime consisting of probability states intended for more edges than currently
remain in H), a single iteration of Algorithm 3 will likely generate fewer than nf
adjacencies between candidate facilities, and thus it is likely that dissemination
will complete before “timing out.” In this case, p will advance prior to the next
iteration. This analysis is accomplished in the following lemmas and leads to the
subsequent theorem.

Lemma 11. Consider a simple random walk on the integers [0, i] with transition
probabilities {pj,k} satisfying pj,j+1 = 3

4 (j = 0, . . . , i − 1), pj,j−1 = 1
4 , (j =

1, . . . , i), pi,i =
3
4 , and p0,0 = 1

4 . For such a random walk beginning at 0, the
expected hitting time of i is O(i).

Lemma 12. When j ≤ i, the expected number of iterations required before re-
turning to state i+ 1 is O(log lognf ).

Lemma 13. When j > i, the expected number of iterations required before re-
turning to state i+ 1 or advancing to at least level Li+1 is O(log lognf ).

Lemma 14. Suppose that Algorithm 3 has reached level Li, and let Ti+1 be a
random variable representing the number of iterations necessary before reaching
level Li+1. Then E(Ti+1) = O(log lognf).

Theorem 3. Algorithm 3 has an expected running time of O((log lognf)
2 ·

log logmin{nf , nc}) rounds in the CONGEST model.
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Abstract. We consider the problem of managing a dynamic heterogeneous stor-
age system in a distributed way so that the amount of data assigned to a host
in that system is related to its capacity. Two central problems have to be solved
for this: (1) organizing the hosts in an overlay network with low degree and di-
ameter so that one can efficiently check the correct distribution of the data and
route between any two hosts, and (2) distributing the data among the hosts so that
the distribution respects the capacities of the hosts and can easily be adapted as
the set of hosts or their capacities change. We present distributed protocols for
these problems that are self-stabilizing and that do not need any global knowl-
edge about the system such as the number of nodes or the overall capacity of the
system. Prior to this work no solution was known satisfying these properties.

1 Introduction

In this paper we consider the problem of designing distributed protocols for a dynamic
heterogeneous storage system. Many solutions for distributed storage systems have al-
ready been proposed in the literature. In the peer-to-peer area, distributed hash tables
(DHTs) have been the most popular choice. In a DHT, data elements are mapped to
hosts with the help of a hash function, and the hosts are organized in an overlay net-
work that is often of hypercubic nature so that messages can be quickly exchanged
between any two hosts. To be able to react to dynamics in the set of hosts and their
capacities, a distributed storage system should support, on top of the usual data opera-
tions, operations to join the system, to leave the system, and to change the capacity of
a host in the desired way. We present self-stabilizing protocols that can handle all of
these operations in an efficient way.

1.1 Heterogeneous Storage Systems

Many data management strategies have already been proposed for distributed storage
systems. If all hosts have the same capacity, then a well-known approach called con-
sistent hashing can be used to manage the data [6]. In consistent hashing, the data
elements are hashed to points in [0, 1), and the hosts are mapped to disjoint intervals in
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[0, 1), and a host stores all data elements that are hashed to points in its interval. An al-
ternative strategy is to hash data elements and hosts to pseudo-random bit strings and to
store (indexing information about) a data element at the host with longest prefix match
[31]. These strategies have been realized in various DHTs including CAN [7], Pastry
[8] and Chord [9]. However, all of these approaches assume hosts of uniform capacity,
despite the fact that in P2P systems the peers can be highly heterogeneous.

In a heterogeneous setting, each host (or node) u has its specific capacity c(u) and
the goal considered in this paper is to distribute the data among the nodes so that node
u stores a fraction of c(u)∑

∀v c(v)
of the data. The simplest solution would be to reduce the

heterogeneous to the homogeneous case by splitting a host of k times the base capacity
(e.g., the minimum capacity of a host) into k many virtual hosts. Such a solution is
not useful in general because the number of virtual hosts would heavily depend on
the capacity distribution, which can create a large management overhead at the hosts.
Nevertheless, the concept of virtual hosts has been explored before (e.g., [20,19,21]).
In [20] the main idea is not to place the virtual hosts belonging to a real host randomly
in the identifier space but in a restricted range to achieve a low degree in the overlay
network. However, they need an estimation of the network size and a classification of
nodes with high, average, and low capacity. A similar approach is presented in [21]. In
[18] the authors organize the nodes into clusters, where a super node (i.e., a node with
large capacity) is supervising a cluster of nodes with small capacities. Giakkoupis et al.
[3] present an approach which focuses on homogeneous networks but also works for
heterogeneous one. However, updates can be costly.

Several solutions have been proposed in the literature that can manage heterogeneous
storage systems in a centralized way, i.e. they consider data placement strategies for
heterogeneous disks that are managed by a single server [22,23,27,26,24,25] or assume
a central server that handles the mapping of data elements to a set of hosts [2,5,4]. The
only solution proposed so far where this is not the case is the approach by Schindelhauer
and Schomaker [2], which we call cone hashing. Their basic idea is to assign a distance
function to each host that scales with the capacity of the host. A data element is then
assigned to the host of minimum distance with respect to these distance functions. We
will extend their construction into a self-stabilizing DHT with low degree and diameter
that does not need any global information and that can handle all operations in a stable
system efficiently with high probability (w.h.p.)1.

1.2 Self-stabilization

A central aspect of our self-stabilizing DHT is a self-stabilizing overlay network that
can be used to efficiently check the correct distribution of the data among the hosts
and that also allows efficient routing. There is a large body of literature on how to
efficiently maintain overlay networks, e.g., [28,29,8,30,7,9]. While many results are
already known on how to keep an overlay network in a legal state, far less is known
about self-stabilizing overlay networks. A self-stabilizing overlay network is a network
that can recover its topology from an arbitrary weakly connected state. The idea of
self-stabilization in distributed computing was introduced in a classical paper by E.W.

1 I.e., a probability of 1− n−c for any constant c > 0.
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Dijkstra in 1974 [1] in which he looked at the problem of self-stabilization in a to-
ken ring. In order to recover certain network topologies from any weakly connected
state, researchers have started with simple line and ring networks (e.g. [10,16]). Over
the years more and more network topologies were considered [13,12,11]. In [14] the
authors present a self-stabilizing algorithm for the Chord DHT [9], which solves the
uniform case, but the problem of managing heterogeneous hosts in a DHT was left
open, which is addressed in this paper. To the best of our knowledge this is the first
self-stabilizing approach for a distributed heterogeneous storage system.

1.3 Model

Network Model. We assume an asynchronous message passing model for the CONE-
DHT which is related to the model presented in [15] by Nor et al. The overlay net-
work consists of a static set V of n nodes or hosts. We further assume fixed identifiers
(ids) for each node. These identifiers are immutable in the computation, we only al-
low identifiers to be compared, stored and sent. In our model the identifiers are used
as addresses, such that by knowing the identifier of a node another node can send mes-
sages to this node. The identifiers form a unique order. The communication between
nodes is realized by passing messages through channels. A node v can send a message
to u through the channel Chv,u. We denote the channel Chu as the union of all chan-
nels Chv,u. We assume that the capacity of a channel is unbounded and no messages
are lost. Furthermore we assume that for a transmission pair (v, u) the messages sent
by v are received by u in the same order as they are sent, i.e. Chv,u is a FIFO chan-
nel. Note that this does not imply any order between messages from different sending
nodes. For the channel we assume eventual delivery meaning that if there is a state in
the computation where there is a message in the channel Chu there also is a later state
where the message is not in the channel, but was received by the process. We distin-
guish between the node state, that is given by the set of identifiers stored in the internal
variables u can communicate with, and the channel state, that is given by all identifiers
contained in messages in a channel Chu. We model the network by a directed graph
G = (V,E). The set of edges E describes the possible communication pairs. E con-
sists of two subsets: the explicit edges Ee = {(u, v) : v is in u’s node state} and the
implicit edgesEi = {(u, v) : v is in u’s channel state}, i.e. E = Ee ∪Ei. Moreover we
define Ge = (V,Ee).

Computational Model. An action has the form < guard >→< command >. guard
is a predicate that can be true or false. command is a sequence of statements that may
perform computations or send messages to other nodes. We introduce one special guard
predicate τ called the timer predicate, which is periodically true and allows the nodes to
perform periodical actions, i.e. τ is always true after a specific number of internal clock
cycles and false all the other times. A second predicate is true if a message is received
by a node. The program state is defined by the node states and the channel states of
all nodes, i.e. the assignment of values to every variable of each node and messages to
every channel. We call the combination of the node states of all nodes the node state of
the system and the combination of the channel states of all nodes is called the channel
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state of the system. An action is enabled in some state if its guard is true and disabled
otherwise. A computation is a sequence of states such that for each state si the next
state si+1 is reached by executing an enabled action in si. By this definition, actions
can not overlap and are executed atomically giving a sequential order of the executions
of actions. For the execution of actions we assume weak fairness meaning that if an
action is enabled in all but finitely many states of the computation then this action is
executed infinitely often.

We state the following requirements on our solution: Fair load balancing: every node
with x% of the available capacity gets x% of the data. Space efficiency: Each node stores
at most
O(|data assigned to the node|+ logn) information. Routing efficiency: There is a rout-
ing strategy that allows efficient routing in at most O(logn) hops. Low degree: The
degree of each node is limited by O(log n). Furthermore we require an algorithm that
builds the target network topology in a self-stabilizing manner, i.e., any weakly con-
nected network G = (V,E) is eventually transformed into a network so that a (speci-
fied) subset of the explicit edges forms the target network topology (convergence) and
remains stable as long as no node joins or leaves (closure).

1.4 Our Contribution

We present a self-stabilizing algorithm that organizes a set of heterogeneous nodes in
an overlay network such that each data element can be efficiently assigned to the node
responsible for it. We use the scheme described in [2] (which gives us good load balanc-
ing) as our data management scheme and present a distributed protocol for the overlay
network, which is efficient in terms of message complexity and information storage and
moreover works in a self-stabilizing manner. The overlay network efficiently supports
the basic operations of a heterogeneous storage system, such as the joining or leaving
of a node, changing the capacity of a node, as well as searching, deleting and inserting
a data element. In fact we show the following main result:

Theorem 1. There is a self-stabilizing algorithm for maintaining a heterogeneous stor-
age system that achieves fair load-balancing, space efficiency and routing efficiency,
while each node has a degree of O(logn) w.h.p. The data operations can be handled
in O(log n) time in a stable system, and if a node joins or leaves a stable system or
changes its capacity, it takes at most O(log2 n) structural changes, i.e., edges that are
created or deleted, until the system stabilizes again.

1.5 Structure of the Paper

The paper is structured as follows: In Section 2 we describe our target network and
its properties. In Section 3 we present our self-stabilizing protocol and prove that it
is correct. Finally, in Section 4 we describe the functionality of the basic network
operations.
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2 The CONE-DHT

2.1 The Original CONE-Hashing

Before we present our solution, we first give some more details on the original CONE-
Hashing [2] our approach is based on. In [2] the authors present a centralized solution
for a heterogeneous storage system in which the nodes are of different capacities. We
denote the capacity of a node u as c(u). We use a hash function h : V (→ [0, 1) that
assigns to each node a hash value. A data element of the data set D is also hashed
by a hash function g : D (→ [0, 1). W.l.o.g. we assume that all hash values and ca-
pacities are distinct. According to [2] each node has a capacity function c(u)(g(x)),
which determines which data is assigned to the node. A node is responsible for those
elements d with c(u)(g(d)) = minv∈V {c(v)(g(d))}, i.e. d is assigned to u. We denote
by R(u) = {x ∈ [0, 1) : c(u)(x) = minv∈V {c(v)(x)}} the responsibility range of u
(see Figure 1 in the full version [32]). Note that R(u) can consist of several intervals
in [0, 1). In the original paper [2], the authors considered two special cases of capac-
ity functions, one of linear form Clinu (x) = 1

c(u) |x − h(u)| and of logarithmic form

Clogu (x) = 1
c(u)(−log(|1 − (x − h(u))|). For these capacity functions the following

results were shown by the authors [2]:

Theorem 2. A data element d is assigned to a node u with probability
c(u)∑

v∈V c(v)−c(u)
for linear capacity functionsClinu (x) and with probability c(u)∑

v∈V c(v)

for logarithmic capacity functionsClogu (x). Thus in expectation fair load balancing can
be achieved by using a logarithmic capacity function Clogu (x).

The CONE-Hashing supports the basic operations of a heterogeneous storage system,
such as the joining or leaving of a node, changing the capacity of a node, as well as
searching, deleting and inserting a data element.

Moreover, the authors showed that the fragmentation is relatively small for the log-
arithmic capacity function, with each node having in expectation a logarithmic number
of intervals it is responsible for. In the case of the linear function, it can be shown that
this number is only constant in expectation.

In [2] the authors further present a data structure to efficiently support the described
operations in a centralized approach. For their data structure they showed that there
is an algorithm that determines for a data element d the corresponding node u with
g(d) ∈ R(u) in expected timeO(log n). The used data structure has a size ofO(n) and
the joining, leaving and the capacity change of a node can be handled efficiently.

In the following we show that CONE-Hashing can also be realized by using a dis-
tributed data structure. Further the following challenges have to be solved. We need
a suitable topology on the node set V that supports an efficient determination of the
responsibility ranges R(u) for each node u . The topology should also support an ef-
ficient Search(d) algorithm, i.e. for a Search(d) query inserted at an arbitrary node w,
the node v with g(d) ∈ R(v) should be found. Furthermore a Join(v), Leave(v), Ca-
pacityChange(v) operation should not lead to a high amount of data movements, (i.e.
not more than the data now assigned to v or no longer assigned to v should be moved,)
or a high amount of structural changes ( i.e. changes in the topology built on V ). All
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these challenges will be solved by our CONE-DHT. In the CONE-DHT, the same sets
of capacity functions can be used as discussed here, and thus our system can inherit the
same properties.

2.2 The CONE-DHT

In order to construct a heterogeneous storage network in the distributed case, we have
to deal with the challenges mentioned above. For that, we introduce the CONE-graph,
which is an overlay network that, as we show, can support efficiently a heterogeneous
storage system.

The Network Layer. We define the CONE graph as a graphGCONE = (V,ECONE),
with V being the hosts of our storage system.

For the determination of the edge set, we need following definitions, with respect to
a node u:

– succ+1 (u) = argmin{h(v) : h(v) > h(u) ∧ c(v) > c(u)} is the next node at the
right of u with larger capacity, and we call it the first larger successor of u. Building
upon this, we define recursively the i-th larger successor of u as: succ+i (u) =
succ+1 (succ

+
i−1(u)), ∀i > 1, and the union of all larger successors as S+(u) =⋃

i succ
+
i (u).

– The first larger predecessor of u is defined as: pred+1 (u) = argmax{h(v) : h(v) <
h(u)∧ c(v) > c(u)} i.e. the next node at the left of u with larger capacity. The i-th
larger predecessor of u is: pred+i (u) = pred+1 (pred

+
i−1(u)), ∀i > 1, and the union

of all larger predecessors as P+(u) =
⋃
i pred

+
i (u).

– We also define the set of the smaller successors of u, S−(u), as the set of all nodes
v, with u = pred+1 (v), and the set of the smaller predecessors of u, P−(u) as the
set of all nodes v, such that u = succ+1 (v).

Now we can define the edge-set of a node in GCONE .

Definition 1. (u, v) ∈ ECONE iff v ∈ S+(u) ∪ P+(u) ∪ S−(u) ∪ P−(u)

We define also the neighborhood set of u as Nu = S+(u)∪ P+(u)∪ S−(u)∪P−(u).
In other words, v maintains connections to each node u, if there does not exist another
node with larger capacity than u between v and u (see Figure 2 in the full version
[32]). We will prove that this graph is sufficient for maintaining a heterogeneous storage
network in a self-stabilizing manner and also that in this graph the degree is bounded
logarithmically w.h.p..

The Data Management Layer. We discussed above how the data is assigned to the
different nodes. That is the assignment strategy we use for data in the CONE-network.

In order to understand how the various data operations are realized in the network,
we have to describe how each node maintains the knowledge about the data it has, as
well as the intervals it is responsible for. It turns out that in order for a data item to be
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forwarded to the correct node, which is responsible for storing it, it suffices to contact
the closest node (in terms of hash value) from the left to the data item’s hash value. That
is because then, if the CONE graph has been established, this node (for example node u
in Figure 1 in the full version [32]) is aware of the responsible node for this data item.
We call the interval between h(u) and the hash value of u’s closest right node Iu. We
say that u is supervising Iu. We show the following theorem.

Theorem 3. In GCONE a node u knows all the nodes v with R(v) ∩ Iu 	= ∅.

The proof can be found in the full version of the paper [32].
So, the nodes store their data in the following way. If a node u has a data item that

falls into one of its responsible intervals, it stores in addition to this item a reference to
the node v that is the closest from the left to this interval. Moreover, the subinterval u
thinks it is responsible for (in which the data item falls) is also stored (as described in
the next section, when the node’s internal variables are presented). In case the data item
is not stored at the correct node, v can resolve the conflict when contacted by u.

Now we can discuss the functionality of the data operations. A node has operations
for inserting, deleting and searching a datum in the CONE-network.

Let us focus on searching a data item. As shown above, it suffices to search for
the left closest node to the data item’s hash value. We do this by using greedy routing.
Greedy routing in the CONE-network works as follows: If a search request wants to
reach some position pos in [0, 1), and the request is currently at node u, then u forwards
search(pos) to the node v in Nu that is closest to pos, until the closest node at the left
of pos is reached. Then this node will forward the request to the responsible node.

In that way we can route to the responsible node and then get an answer whether
the data item is found or not, and so the searching is realized. Note that the deletion
of a data item can be realized in the same way, only that when the item is found, it
is also deleted from the responsible node. Inserting an item follows a similar pro-
cedure, with the difference that when the responsible node is found, the data item is
stored by it.

Moreover, the network handles efficiently structural operations, such as the joining
and leaving of a node in the network, or the change of the capacity of a node. Since this
handling falls into the analysis of the self-stabilization algorithm, we will discuss the
network operations in Section 3, where we also formally analyze the algorithm.

It turns out that a single data or network operation (i.e greedy routing) can be realized
in a logarithmic number of hops in the CONE-network, and this happens due to the
structural properties of the network, which we discuss in the next section, where we
also show that the degree of the CONE-network is logarithmic.

2.3 Structural Properties of a Cone Network

In this section we show that the degree of a node in a stable CONE-network is
bounded by O(log n) w.h.p, and hence the information stored by each node (i.e the
number of nodes which it maintains contact to, |Ee(u)|) is bounded by O(log n +
|amount of data stored in a node|) w.h.p..

Theorem 4. The degree of a node in a stable CONE network is O(log n) w.h.p.
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The proof can be found in the full version of the paper [32].
Additionally to the nodes in S+(u), S−(u),P+(u) andP−(u) that lead to the degree

of O(logn) w.h.p. a node u only stores references about the closest nodes left to the
intervals it is responsible for, where it actually stores data. A node u stores at most one
reference and one interval for each data item. Thus the storage only has a logarithmic
overhead for the topology information and the following theorem follows immediately.

Theorem 5. In a stable CONE network each node stores at most O(logn +
|amount of data stored in a node|) information w.h.p.

Once the CONE networkGCONE is set up, it can be used as an heterogeneous storage
system supporting inserting, deleting and searching for data. The CONE Greedy routing
implies the following bound on the diameter:

Lemma 1. CONE Greedy routing takes on a stable CONE network w.h.p. no more than
a logarithmic number of steps, i.e. the diameter of a CONE network is O(log n) w.h.p..

The proof can be found in the full version of the paper [32].

3 Self-stabilization Process

3.1 Topological Self-stabilization

We now formally describe the problem of topological self-stabilization. In topological
self-stabilization the goal is to state a protocol P that solves an overlay problem OP start-
ing from an initial topology of the set IT. A protocol is unconditionally self-stabilizing if
IT contains every possible state. Analogously a protocol is conditionally self-stabilizing
if IT contains only states that fulfill some conditions. For topological self-stabilization
we assume that IT contains any state as long as GIT =

(
V,EIT

)
is weakly connected,

i.e. the combined knowledge of all nodes in this state covers the whole network, and
there are no identifiers that don’t belong to existing nodes in the network. The set of
target topologies defined in OP is given by OP =

{
GOPe =

(
V,EOPe

)}
, i.e. the goal

topologies of the overlay problem are only defined on explicit edges andEOPi can be an
arbitrary (even empty) set of edges. We also call the program states in OP legal states.
We say a protocol P that solves a problem OP is topologically self-stabilizing if for
P convergence and closure can be shown. Convergence means that P started with any
state in IT reaches a legal state in OP. Closure means that P started in a legal state in OP
maintains a legal state. For a protocol P we assume that there are no oracles available
for the computation.

3.2 Formal Problem Definition and Notation

Now we define the problem we solve in this paper in the previously introduced notation.
We provide a protocol P that solves the overlay problem CONE and is topologically
self-stabilizing.

In order to give a formal definition of the edges in Ee, Ei we first describe which
internal variables are stored in a node u, i.e. which edges are in Ee:
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– u.S+ = {v ∈ Nu : h(v) > h(u) ∧ c(v) > c(u) ∧ ∀w ∈ Nu : h(v) > h(w) >
h(u) =⇒ c(v) > c(w)}

– u.succ+1 = argmin {h(v) : v ∈ u.S+}: The first node to the right with a larger
capacity than u

– u.P+ = {v ∈ Nu : h(v) < h(u) ∧ c(v) > c(u) ∧ ∀w ∈ Nu : h(v) < h(w) <
h(u) =⇒ c(v) > c(w)}

– u.pred+1 = argmax{h(v) : v ∈ u.P+}: The first node to the left with a larger
capacity than u

– u.S− = {v ∈ Nu : h(v) > h(u) ∧ c(v) < c(u) ∧ ∀w ∈ Nu : h(v) > h(w) >
h(u) =⇒ c(v) > c(w)}

– u.P− = {v ∈ Nu : h(v) < h(u) ∧ c(v) < c(u) ∧ ∀w ∈ Nu : h(v) < h(w) <
h(u) =⇒ c(v) > c(w)}

– u.S∗ =
{
u.S− ∪

{
u.succ+1

}}
: the set of right neighbors that u communicates

with. We assume that the nodes are stored in ascending order so that h(u.S∗[i]) <
h(u.S∗[i+ 1]). If |u.S∗| = k, then u.S∗, u.S∗[k] = u.succ+1 .

– u.P ∗ =
{
u.P− ∪

{
u.pred+1

}}
: the set of left neighbors that u communicates with.

We assume that the nodes are stored in descending order so that h(u.P ∗[i]) >
h(u.P ∗[i+ 1]) If |u.P ∗| = k, then u.P ∗[k] = u.pred+1 .

– u.DS the data set, containing all intervals u.DS[i] = [a, b], for which u is respon-
sible and stores actual data u.DS[i].data. Additionally for each interval a reference
u.DS[i].ref to the supervising node is stored

Additionally each node stores the following variables :

– τ : the timer predicate that is periodically true
– u.Iu: the interval between u and the successor of u. u is supervising u.Iu.
– m: the message in Chu that now received by the node.

Definition 2. We define a valid state as an assignment of values to the internal vari-
ables of all nodes so that the definition of the variables is not violated, e.g. u.S+ con-
tains no nodes w with h(w) < h(u) or cw < c(u) or h(u) < h(v) < h(w) and
c(v) > cw for any v ∈ Nu.

Now we can describe the topologies in the initial states and in the legal stable state. Let
IT =

{
GIT = (V,EIT = EITe ∪ EITi ) : GIT is weakly connected

}
and letCONE ={

GC =
(
V,EC

)}
, such that for EC the following conditions hold: (1) EC = Ee −

{(u, v) : v ∈ u.DS}, (2) EC is in a valid state and (3) EC = ECONE .
Note that we assume Ee to be a multiset, i.e in EC an edge (u, v) might still ex-

ists, although v ∈ u.DS if e.g. v ∈ u.S+. Further note that, in case the network has
stabilized to a CONE-network, it holds for every node that u.S+ = S+(u), u.P+ =
P+(u), u.S− = S−(u) and u.P− = P−(u).

3.3 Algorithm

In this section we give a description of the the distributed algorithm. The algorithm is a
protocol that each node executes based on its own node and channel state. The protocol
contains periodic actions that are executed if the timer predicate τ is true and actions
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that are executed if the node receives a message m. In the periodic actions each node
performs a consistency check of its internal variables, i.e. are all variables valid ac-
cording to Definition 2. If some variables are invalid, the nodes causing this invalidity
are delegated. By delegation we mean that node u delegates a node v : h(v) > h(u)
(resp. h(v) < h(u)) to the node w′ = argmax{h(w) : w ∈ u.S∗ ∧ h(w) < h(v)}
(resp. w′ = argmin {h(w) : w ∈ u.P ∗ ∧ h(w) > h(v)}) by a message m = (build−
triangle, v) tow′. The idea behind the delegation is to forward nodes closer to their cor-
rect position, so that the sorted list (and the CONE-network) is formed. Furthermore in
the periodic actions each node introduces itself to its successor and predecessor u.S∗[1]
and u.P ∗[1] by a messagem = (build− triangle, u). Also each pair of nodes in u.P ∗

and u.S∗ with consecutive ids is introduced to each other. u also introduces the nodes
u.succ+1 and u.pred+1 to each other by messages of type build − triangle. By this a
triangulation is formed by edges (u, u.pred+1 ), (u, u.succ

+
1 ), (u.succ

+
1 , u.pred

+
1 ) (see

Figure 2 in the full version [32]). To establish correct P+ and S+ lists in each node, a
node u sends its u.P+ (resp. u.S+) list periodically to all nodes v in u.S− (resp. u.P−)
by a messagem = (list−update, u.S+∪{u}) (resp.m = (list−update, u.P+∪{u}))
to v. The last action a node periodically executes is to send a message to each reference
in u.DS to check whether u is responsible for the data in the corresponding interval
[a, b] by sending a message m = (check − interval, [a, b], u).

If the message predicate is true and u receives a message m, the action u performs
depends on the type of the message. If u receives a messagem = (build− triangle, v)
u checks whether v has to be included in it’s internal variables u.P+, u.S+, u.P−

or u.S−. If u doesn’t store v, v is delegated. If u receives a message m = (list −
update, list), u checks whether the ids in list have to be included in it’s internal vari-
ables u.P+, u.S+, u.P− or u.S−. If u doesn’t store a node v in list, v is delegated. If
u stores a node v in u.S+ (resp. u.P+) that is not in list, v is also delegated as it also
has to be in the list of u.pred+1 (resp. u.succ+1 ). The remaining messages are necessary
for the data management.

If u receives a message m = (check − interval, [a, b], v) it checks whether v
is in u.S+ or u.P+ or has to be included, or delegates v. Then u checks whether
[a, b] is in u.Iu and if v is responsible for [a, b]. If not, u sends a message m =
(update − interval, IntervalSet) to v containing a set of intervals in [a, b] that v
is not responsible for and references of the supervising nodes. If u receives a message
m = (update−interval, IntervalSet) it forwards all data in intervals in IntervalSet
to the corresponding references by a message m = (forward − data, data). If u re-
ceives such a message it checks whether the data is in its supervised interval u.Iu. If
not u forwards the data according to a greedy routing strategy, if u supervises the data
it sends a message m = (store − data, data, u) to the responsible node. If u receives
such a message it inserts the data, the interval and the corresponding reference in u.DS.
Note that no identifiers are ever deleted, but always stored or delegated. This ensures
the connectivity of the network.

In the full version we give the pseudocode for the protocol executed by each node.
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3.4 Correctness

In this section we show the correctness of the presented algorithm. We do this by show-
ing that by executing our algorithm any weakly connected network eventually converges
to a CONE network and once a CONE network is formed it is maintained in every later
state. We further show that in a CONE network the data is stored correctly.

Convergence. To show convergence we will divide the process of convergence into
several phases, such that once one phase is completed its conditions will hold in every
later program state. For our analysis we additionally define E(t) as the set of edges at
time t. AnalogousEe(t) and Ei(t) are defined. We show the following theorem.

Theorem 6. If G = (V,E) ∈ IT at time t then eventually at a time t′ > t GCONE ⊂
Ge(t

′).

The proof can be found in the full version of the paper. We divide the proof into 3
phases. First we show the preservation of the connectivity of the graph, then we show
the convergence to the sorted list and eventually the convergence to the CONE-network.

Closure and Correctness of the Data Structure. We showed that from any initial
state we eventually reach a state in which the network forms a correct CONE network.
We now need to show that in this state the explicit edges remain stable and also that
each node stores the data it is responsible for.

Theorem 7. If Ge = GCONE at time t then for t′ > t also Ge = GCONE .

Theorem 8. IfGe = GCONE eventually each node stores exactly the data it is respon-
sible for.

These proofs can be found in the full version of the paper.

4 External Dynamics

Concerning the network operations in the network, i.e. the joining of a new node, the
leaving of a node and the capacity change of a node, we show the following:

Theorem 9. In case a node u joins a stable CONE network, or a node u leaves a stable
CONE network or a node u in a stable CONE network changes its capacity, we show
that in any of these three casesO(log2 n) structural changes in the explicit edge set are
necessary to reach the new stable state.

The proof can be found in the full version of the paper.



548 S. Kniesburges, A. Koutsopoulos, and C. Scheideler

5 Conclusion and Future Work

We studied the problem of a self-stabilizing and heterogeneous overlay network and
gave an algorithm of solving that problem, and by doing this we used an efficient net-
work structure. We proved the correctness of our protocol, also concerning the function-
ality of the operations done in the network, data operations and node operations. This
is the first attempt to present a self-stabilizing method for a heterogeneous overlay net-
work and it works efficiently regarding the information stored in the hosts. Furthermore
our solution provides a low degree, fair load balancing and polylogarithmic updates
cost in case of joining or leaving nodes. In the future we will try to also examine het-
erogeneous networks in the two-dimensional space and consider heterogeneity in other
aspects than only the capacity, e.g. bandwidth, reliability or heterogeneity of the data
elements.
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Abstract. Motivated by the structure of social networks, this paper initiates a
study of distributed algorithms in networks that exhibit a core-periphery struc-
ture. Such networks contain two distinct groups of nodes: a large and sparse,
group identified as the periphery, which is loosely organized around a small, and
densely connected group identified as the core. We identify four basic properties
that are relevant to the interplay between core and periphery. For each of these
properties, we propose a corresponding axiom that captures the behavior expected
of a social network based on a core-periphery structure. We then address their
usefulness for distributed computation, by considering a nontrivial algorithmic
task of significance in both the distributed systems world and the social networks
world, namely, the distributed construction of a minimum-weight spanning tree.

1. Axiomatic Approach. Most existing approaches to modeling social networks are
based on creating a set of mathematical rules for gradually constructing a member of a
given class of social networks (e.g., the Preferential Attachment model). A complemen-
tary approach that we promote, and adopt in this paper, is to base our characterization
of social (and complex) networks in general, and their main structural components in
particular, on axiomatic grounds, where the axioms are chosen so as to capture funda-
mental structural and computational properties of the modeled network.
2. Notations and Axioms. Let G(V,E) denote our network, where V is the set of
nodes, |V | = n, and E is the set of edges, |E| = m. We consider a synchronous model
of communication with messages of bounded (logarithmic) size, such as CONGEST
model ([2]). Let N(v) denote the set of neighbors of node v ∈ V . For a set S ⊂ V
and a node v ∈ S, let Nin(v, S) = N(v) ∩ S denote its set of neighbors within S
and denote the number of neighbors of v in the set S by din(v, S) = |Nin(v, S)|.
Analogously, let Nout(v, S) = N(v) ∩ V \ S denote v’s set of neighbors outside of S
and let dout(v, S) = |Nout(v, S)|. For a set S ⊂ V , let ∂(S) be the edge boundary of S,
namely the set of edges with one endpoint in S and the other outside of S and |∂(S)| =∑
v∈S |Nout(v, S)|. We define the four properties of a core-periphery network.

α-Influence. A subset of nodes S is α-Influential if |∂(S)| ≥ α ·m.
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β-Balanced Boundary. A subset of nodes S is said to have a β-balanced boundary iff
for every node v ∈ S, dout(v,S)

din(v,S)+1 = O(β).
γ-Clique Emulation. The task of clique emulation on an n-node graphG involves de-
livering a distinct message Mv,w from v to w for every pair of nodes v, w in V (G). An
n-node graphG is an γ-clique-emulator if it is possible to perform the task in γ rounds.
δ-Convergecast. The task of 〈S, T 〉-convergecast on a graphG involves delivering |S|
distinct messages Mv, originated at the nodes v ∈ S, to some nodes in T . The sets
S, T ⊂ V form a δ-convergecaster if it is possible to perform the task in δ rounds.

We assume our network has two disjoint sets of nodes, the core C (|C| = nC) and the
periphery P (|P| = nP), with V = C ∪ P , and propose the following set of axioms.

A1. High Core Influence. The core C is Θ(1)-Influential.
A2. Core Boundary. The core C has a Θ(1)-balanced boundary.
A3. Clique emulation. The core C is a Θ(1)-clique emulator.
A4. Periphery-Core convergecast. P and C form a Θ(1)-convergecaster.

Axiom A1 was first proposed in [1] in the study on the elite of social networks. It
captures the idea that the core (or elite) has a strong influence on the network in the sense
that a constant fraction of the edges in the network are “controlled” by the core. Axiom
A2 talks about the boundary between the core and periphery. It states that while not all
nodes in the core must have many links to the periphery, i.e., serve as ambassadors of
the core, if a node is indeed an ambassador, then it must also have many links within the
core. Axiom A3 talks about the flow of information within the core, and postulates that
the core must be dense, and in a sense behave almost like a complete graph: “everyone
must know everyone else”. Axiom A4 also concerns the boundary between the core and
periphery, but in addition it refers also to the structure of the periphery. It postulates that
information can flow efficiently from the periphery to the core. The last three axioms
imply a number of simple properties of the network structure that we exploit in the
efficient MST algorithm (CP-MST) proposed here.

Theorem 1. If the core C satisfies Axioms A2, A3 and A4, then:

1. The size of the core satisfies Ω(
√
n) ≤ nC ≤ O(

√
m).

2. For every node v in the core: dout(v, C) = O(nC) and din(v, C) = Ω(nC).
3. The number of outgoing edges from the core is |∂(C)| = Θ(n2C).
4. The number of edges within the core is

∑
v∈C din(v, C) = Θ(n2C).

3. MST on Core-Periphery Network. We present a time-efficient randomized dis-
tributed algorithm for computing an MST on a core-periphery network. Our CP-MST
algorithm is based on Boruvka’s algorithm, and runs in O(log n) phases, each consist-
ing of several non-trivial steps that require extensive inter-node communication.

Theorem 2. In a network that satisfies Axioms A2-A4, Algorithm CP-MST terminates
in O(log2 n) rounds with high probability.
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Abstract. The notion of permissiveness in Transactional Memory (TM) trans-
lates to only aborting a transaction when it cannot be accepted in any history
that guarantees a target correctness criterion. Achieving permissiveness, however,
comes at a non-negligible cost. This desirable property is often neglected by state
of the art TMs, which, in order to maximize implementation’s efficiency, resort to
aborting transactions under overly conservative conditions. We identify a novel
sweet spot between permissiveness and efficiency by introducing the Time-Warp
Multi-version algorithm (TWM), which allows for drastically minimizing spuri-
ous aborts with respect to state of the art, highly efficient TMs, while introducing
minimal bookkeeping overheads. Further, read-only transactions are abort-free,
and both Virtual World Consistency and lock-freedom are ensured.

1 Overview of Time-Warping

Typical MVCC algorithms for TM allow read-only transactions to be serialized “in the
past”, i.e., before the commit event of any concurrent write transaction. Conversely, they
serialize a write transaction T committing at time t “in the present”, by: (1) attempting
to order the versions produced by T after all versions created by transactions committed
before time t; and (2) performing what we call a “classic validation”, which ensures that
the snapshot observed by T is still up-to-date considering the updates generated by all
transactions that committed before t. This results in aborting any write transaction T
that missed the writes of a concurrent, committed transaction T ′, also called an anti-
dependency in the literature. We note that this approach is a conservative one, as it
guarantees serializability by systematically rejecting serializable histories in which T
might have actually been safely serialized before T ′.

The key idea of TWM is to allow a write transaction, which missed the write com-
mitted by a concurrent transaction T ′, to be serialized “in the past”, namely before T ′.
This is in contrast with the approach taken by most practical TM algorithms (designed to
minimize overhead), which only allow the commit of transactions “in the present”. Un-
like TMs that ensure permissiveness [2], TWM tracks solely direct anti-dependencies
developed by a committing transaction, hence avoiding onerous validation of the en-
tire conflicts’ graph [3]. TWM’s novel validation is sufficiently lightweight to ensure
efficiency, while accepting far more histories than state of the art, practical TMs.

To efficiently implement the time-warp abstraction, TWM maintains two totally or-
dered time lines:N for the natural order of commit requests and T W for the time-warp
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Fig. 1. Comparison of throughput (left) and aborts (right) in a skip-list

commit order that results in the version order of data. In a conflict-free execution both
orders coincide. Otherwise, a transaction B is time-warped when it anti-depends on
a set of concurrent transactions A. In such case, B is serialized (along T W) before
the transaction in A with the least natural commit order. Note that if B has no anti-
dependencies, then the natural and time-warp commit order coincide (asB is serialized
in the present). To ensure only safe executions (virtual world consistent ones), the val-
idation scheme of TWM detects a specific pattern that we call a triad. A triad exists
whenever there is transaction T that is both the source and target of anti-dependency
edges from two concurrent transactions T ′ and T ′′ (where, possibly, T ′ = T ′′). We call
T a pivot, and define the TWM validation scheme as follows: A transaction fails its
validation if, by committing, it would create a triad whose pivot time-warp commits.

Results. We conducted an experimental study against four representative TMs. TL2
and JVSTM use the classic validation (the latter is also multi-version), and AVSTM is
probabilistic permissive. We provide a sample of the evaluation for a contended skip-list
in Fig. 1. Our overall results in typical TM benchmarks yielded an average improvement
of 81% in high concurrency scenarios, with gains extending up to 8×. Further, we
observed limited overheads, even in worst-case scenarios entailing no contention or
patterns that cannot be optimized using TWM. More details can be found in [1].

Acknowledgements. This work was supported by national funds through Fundação
para a Ciência e Tecnologia under project PEst-OE/EEI/LA0021/2013 and Cloud-TM
project (co-financed by the European Commission through the contract no. 257784).
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Abstract. This brief announcement provides a high level overview of
a parallel mark-split garbage collector. Our parallel design introduces
and makes use of an efficient concurrency control mechanism based on
a lock-free skip-list design for handling the list of free memory inter-
vals. We have implemented the parallel mark-split garbage collector in
OpenJDK HotSpot as a parallel and concurrent garbage collector for the
old generation. We experimentally evaluate the collector and compare it
with the default concurrent mark-sweep garbage collector in OpenJDK
HotSpot, using the DaCapo benchmarks.

1 Motivation

Garbage collection (GC) is an important component of many modern program-
ming languages and runtime systems. As parallelism has become a core issue
in the design and implementation of software systems, garbage collection al-
gorithms have been parallelized and evaluated for their potential a range of
scenarios. However, none of them can outperform the other in all use cases and
researchers are still trying to improve different aspects of garbage collection.

Mark-split is a new GC technique introduced by Sagonas and Wilhelmsson
[1] that combines advantages of mark-sweep and copying algorithms. Mark-split
evolves from mark-sweep but removes the sweep phase. Instead, it creates the list
of free memory while marking by using a special operation called split. Mark-
split does not move objects, uses little extra space and has time complexity
proportional to the size of the live data set. These advantages help it outperform
mark-sweep in certain scenarios in sequential environment [1]. Whether it can
maintain the advantages in a parallel environment remains an open question.

As mark-split repeatedly searches for and splits memory spaces, a high per-
formance concurrent data structure to store the spaces is essential to the parallel
design of mark-split. Lock-free data structures offer scalability and high through-
put, guarantee progress, immune to deadlocks and livelocks. Several lock-free
implementations of data structures have been introduced in the literature [2] [3],
and included in Intels Threading Building Blocks Framework, the PEPPHER
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framework [4], the Java concurrency package, and the Microsoft .NET Frame-
work. Skip-list is a search data structure which provides expected logarithmic
time search without the need to rebalance like balanced trees. The skip-list al-
gorithm by Sundell and Tsigas [5] [6] is the first lock-free skip-list introduced
in the literature. It is an efficient and practical lock-free implementation that
is suitable for both fully concurrent (large multi-processor) systems as well as
pre-emptive (multi-process) systems. We opt to extend it to store free memory
spaces in our parallel mark-split.

2 Our Results

We extend the lock-free skip-list so that it is capable to handle the free memory
intervals for mark-split. It is because the basic operations supported by the
original lock-free skip-list, e.g search, insert, remove, are not strong enough to
satisfy the functionality requirement of mark-split in concurrent environment.
Our extension including a sophisticated concurrency control allows the skip-list
to execute more complex operations such as split in mark-split algorithm.

Using the extended skip-list, we implement a parallel version of mark-split,
namely ParMarkSplit, as a garbage collector in the OpenJDK HotSpot virtual
machine. The collector performs marking and splitting in parallel to take ad-
vantage of multi-core architectures. In addition, a lazy-splitting mechanism is
designed to improve the performance of the parallel mark-split.

The ParMarkSplit was evaluated and compared against a naive parallelized
mark-split and the Concurrent Mark-Sweep collector bundled with the HotSpot.
The former was a parallel mark-split implementation using a balanced search
tree based on coarse-grained locking. The experiments were done on two con-
temporary multiprocessor systems, one has 12 Intel Nehalem cores with Hyper-
Threading and the other has 48 AMD Bulldozer cores. A detailed version of our
results will appear in a subsequent version of this brief announcement.
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1 Introduction

Tools adapted from combinatorial topology have been successful in character-
izing task solvability in synchronous and asynchronous crash-failure models [2].
We extend the approach to asynchronous Byzantine systems: we give the first
theorem with necessary and sufficient conditions to solve arbitrary colorless tasks
in such model, capturing the relation between the total number of processes, the
number of faulty processes, and the topological structure of the task’s simplicial
complexes.

Our focus on colorless tasks [1] encompasses well-studied problems such as
consensus, k-set agreement, and approximate agreement. Informally, a colorless
task is one that can be defined entirely in terms of sets of assigned input and
output values, with no need to specify which value is assigned to which process,
or how many times an assigned value appears. Therefore, the renaming task is
not colorless, as each process must choose a distinct name.

Our first contribution is to extend the application of the topological model
from [2], formerly used to characterize solvability in crash-failure systems, to
colorless tasks in asynchronous Byzantine systems. Our second contribution is
to give new protocols for k-set agreement and barycentric agreement in the
Byzantine-failure model. These protocols fundament a general procedure solving
arbitrary colorless tasks in Byzantine asynchronous systems, and underlie our
proof of the solvability characterization in the described scenario. In other words,
these protocols limn the boundary between the possible and impossible in light
of asynchronous communication and Byzantine failures. Finally, our principal
contribution is to give the first theorem with necessary and sufficient conditions
to solve arbitrary colorless tasks in the asynchronous Byzantine model, which is
described below.

2 Model

Informally, in our model for Byzantine colorless tasks, we require that outputs
of non-faulty processes depend solely on inputs of non-faulty processes. So, we
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only care about inputs and outputs of non-Byzantine processes, and Byzantine
inputs do not “influence” outputs of non-Byzantine processes.

The task itself is defined in terms of a pair of combinatorial structures called
simplicial complexes [2]. Whether a task is solvable is equivalent to the existence
of a certain structure-preserving map between the task’s simplicial complexes.
This equivalence captures the relation between n+ 1, the number of processes,
t, the number of failures, and the topological structure of the task’s simplicial
complexes.

A colorless task [1] is a triple (I,O, Δ), where I is the input complex, O is the
output complex, and Δ : I → 2O is a carrier map. Each simplex in I represents
possible initial configurations, i.e., possible sets of initial values taken by non-
faulty processes, with possible initial configurations closed under inclusion. The
output complex is analogous in regard to final configurations. Given an initial
configuration, the carrier map Δ specifies which final configurations are legal
given a particular initial configuration. For σI ∈ I and σO ∈ O, a Byzantine
colorless task requires σO ∈ Δ(σI), so the admissible non-faulty outputs depend
solely on the starting non-faulty inputs. This condition, sometimes called strong
validity in the literature, can be relaxed, requiring staightforward adaptations
in our necessary/sufficient conditions.

Note that the same task definition triple (I,O, Δ) is used both for crash and
Byzantine failure models, with the nature of the failures affecting only protocols
(algorithms), but not specifications (models) – failures only alter the specification
scope, but not its definition.

In our main theorem, a non-trivial task is one that requires communication
in order to be solved. The formal definitions and details are discussed in [4].

Theorem 1 (Solvability). A non-trivial colorless task (I,O, Δ) has a
t-resilient protocol in the asynchronous Byzantine model if and only if

1. n+ 1 > t(dim(I) + 2) and
2. there is a continuous map f : | skelt(I)| → |O| carried by Δ.

While an analogous characterization has long been known for crash failures [2],
our solvability theorem is the first such characterization for Byzantine failures.
Furthermore, our theorem applies to the core/survivor-set failure model dis-
cussed in [3]. We invite the reader for the details in [4], and warmly welcome
further comments and suggestions.

References

1. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3), 127–146 (2001)

2. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

3. Junqueira, F.P., Marzullo, K.: Designing Algorithms for Dependent Process Failures.
Technical report (2003)

4. Mendes, H., Tasson, C., Herlihy, M.: The topology of asynchronous byzantine col-
orless tasks. CoRR, abs/1302.6224 (2013)



Brief Announcement:
Revisiting Dynamic Distributed Systems &

Carlos Gómez-Calzado1, Alberto Lafuente1, Mikel Larrea1, and Michel Raynal2

1 University of the Basque Country UPV/EHU, Spain
{carlos.gomez,alberto.lafuente,mikel.larrea}@ehu.es

2 Institut Universitaire de France & IRISA, Université de Rennes, France
michel.raynal@irisa.fr

1 Introduction

Many of today’s distributed systems are highly dynamic, and processes execute in
different types of devices, some of them mobile and connected via wireless networks.
As a consequence, communication can fail, messages can get lost, and the system can
even partition. A number of agreement algorithms for such dynamic systems with
mobile processes have been proposed. However, each proposal is based on specific
system assumptions, which makes it difficult to compare them.

Clearly, system dynamicity and process mobility could be such that it prevents the
success of any attempt to reach agreement due to the lack of connectivity. Hence,
the system model considered should provide a sufficient degree of stability, reliability
and synchrony, while embracing the many faces of dynamicity. Specifically, in this
work we propose that the system alternates periods of “good” and “bad” behavior, in
the line of the timed asynchronous model of Cristian and Fetzer [4]. However, while
that work assumed good/bad periods for a known and non-mobile set of processes,
we extend the assumption to both system dynamicity and process mobility.

We model a dynamic distributed system by means of a Time-Varying Graph [2].
We characterize a period of good behavior as a connected interval, in which pro-
cesses are able to communicate (either directly or indirectly). Observe that during a
connected interval some graph stability and communication timeliness must be sat-
isfied. Nevertheless, we allow some link removal provided that graph connectivity is
maintained, as characterized by the Degradation Speed metric we define in [5].

2 Categorizing Mobile Dynamic Distributed Systems

In order to characterize (mobile) dynamic distributed systems more precisely, we pro-
pose to extend the formalism of Baldoni et al. [1] by introducing an additional level,
denoted by s, inspired by the good/bad period alternation of the timed asynchronous
model proposed by Cristian and Fetzer [4]:

& Research partially supported by the Spanish Research Council, under grant TIN2010-
17170, the Basque Government, under grants IT395-10 and S-PE12UN109, and the Univer-
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s : the system alternates good periods, where a bound exists but it is not known a
priori by processes, and bad periods, where there is no bound.

Level s combines levels n and ∞ of Baldoni et al. in good and bad periods, respec-
tively. Moreover, other dimensions than process concurrency and network diameter
characterize also mobile dynamic distributed systems, as summarized in Figure 1:

Dimension (L : {b,n,s,∞}) Bound corresponds to. . .

Timeliness (T L) . . . processing and message transmission time
Process Failures (PL

F ) . . . the number of failures a process can suffer
Channel Failures (CL

F ) . . . the number of message losses on any link
Graph Partitioning (GL

#) . . . the number of graphs in the system
Graph Membership (GL

Π ) . . . the number of processes in any graph
Graph Diameter (GL

D) . . . the diameter of any graph
Graph Stability (GL

S ) . . . the degradation speed of any graph

Fig. 1. Dimensions categorizing mobile dynamic distributed systems

As a case study of this categorization, we consider the eventual leader election
problem, also known as implementing the Omega failure detector class [3]. In [5], we
first adapt the definition of the Dynamic Omega class [6] to systems with process mo-
bility. We call to the resulting new failure detector class Mobile Dynamic Omega (de-
noted by Δ∗Ω ). Then, we propose a weak mobile dynamic distributed system model
M∗ where all dimensions have level s, i.e., M∗ =M(T s,P s

F ,Cs
F ,G

s
#,G

s
Π ,G

s
D,G

s
S),

and a leader election algorithm implementing Δ∗Ω in M∗.
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Distributed Computability. The computability power of a distributed model depends
on its communication, timing, and failure assumptions. A basic result is the impossibil-
ity to solve consensus in an asynchronous read/write or message-passing system even
if only one process may crash.

The power of a model has been studied in detail with respect to tasks, which are the
distributed equivalent of a function in sequential computing. Each process gets only one
part of the input, and after communicating with the others, decides on an output value,
such that collectively, the various local outputs produced by the processes respect the
task specification, which is defined from the local inputs of the processes. This paper
concentrates on the class of colorless tasks, where the specification is in terms of pos-
sible inputs and outputs, but without referring to which process gets which input or
produces which output. Among the previously studied notable tasks, many are color-
less, such as consensus, set agreement, approximate agreement and loop agreement,
while some are not, like renaming.

Wait-Freedom and Solo Execution. This paper considers wait-free distributed asyn-
chronous crash-prone computation models[1,3,6]. Wait-free has two (complementary)
meanings. First, it means the model allows up to n − 1 processes to crash, where n is
total number of processes. The term wait-freedom is also used to state a liveness condi-
tion, that requires every non-faulty process to progress in its computation and eventually
decide (i.e., compute a result) whatever the behavior of the other processes.

In a wait-free model where processes must satisfy the wait-freedom liveness condi-
tion, a process has to make progress in its computation even in the extreme case where
all other processes have crashed, or are too slow, and consequently be forced to decide
without knowing their input values. Hence, for each process, there are executions where
this process perceives itself as being the only process participating in the computation.

More generally, we say that a process executes solo if it computes its local output
without knowing the input values of the other processes.

Two Extreme Wait-Free Models: Shared Memory and Message Passing. In a model
where processes communicate by reading and writing to shared registers, at most one
process can run solo in the same execution. This is because, while a process is running
solo, its writes and reads from the shared memory, and once it finishes its computation
it writes to the memory its decision. Any other process that starts running, will be able
to read the history left by the solo process in the memory.
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When considering message-passing communication, all processes may have to run
solo concurrently in the extreme case, where messages are arbitrarily delayed, and each
process perceives the other processes as having crashed. Only tasks that can be solved
without communication can be computed in this model.

Investigating the Computability Power of Intermediary Models. The aim of the
paper is to study the computability power of asynchronous models in which several
processes may run solo in the same execution. More precisely, assuming that up to d
processes may run solo, the paper addresses the following questions:

– How to define a computation model in which up to d processes may run solo? (such
a model model is called d-solo model.)

– Which tasks can be computed in such a model?

The aim is to study these questions in a clean theoretical framework, and investigate for
the first time models weaker than the basic wait-free read/write model. However, we
hope that our results might be relevant to other intermediate models, such as distributed
models over fixed or wireless networks, and models where processes communicate via
multi-writer/multi-reader registers, when the number of registers is smaller than the
number of processes. The full paper, which can be found in [5], answers all the the
previous questions.

It is important to notice that our d-solo model addresses different issues than the d-
concurrency model of [2], where it is shown that with d-set agreement any number of
processes can emulate d state machines of which at least one remains highly available.
While d-concurrency is used to reduce the concurrency degree to at most d processes
that are always allowed to cooperate, d-solo allows up to d processes to run indepen-
dently (i.e., without any cooperation).
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We present a lock-free algorithm for a red-black tree that supports concurrent
search and modify (insert and delete) operations, using only single-word atomic
instructions. Our algorithm uses the atomic compare-and-swap (CAS) and set-
bit (SB) instructions, both of which are widely supported by modern processors.
To our knowledge, ours is the first lock-free red-black tree that can be directly
implemented on hardware, without assuming any underlying system support
such as transactional memory.

The lock-free algorithm described here builds upon our wait-free algorithm
presented in [1]. As in [1], search operations traverse the tree from the root till a
leaf node is reached, along a simple path referred to as the access path. If the key
in the leaf node matches the key being searched for, the operation returns true;
otherwise, it returns false. Search operations do not lock or copy any nodes.

Modify operations in our algorithm are top-down in nature, and utilize the
window based execution idea proposed by Tsay and Li [2]. A window is a rooted
sub-tree of the tree structure. The window of an operation slides down the tree
as the operation progresses. For each window, the process executing the opera-
tion first makes a local copy of the nodes within it. Next, Tarjan’s transforma-
tions [3] for a top-down sequential red-black tree are applied to the local copy.
This may result in nodes (a) being added to or removed from the window, and/or
(b) changing color. The root of a window maintains an invariant depending on
the type of operation (insert or delete), which ensures that the transformations
do not affect nodes outside the window. Finally, the original window is atom-
ically replaced by the copy. We refer to these steps as a window transaction.
An operation may comprise of multiple window transactions. After a window
transaction succeeds, nodes in the original window are no longer reachable from
the root of the tree, and are termed passive nodes.

Whether a node satisfies the operation invariant depends on its color, as well
as that of its children or grandchildren. For an insert operation, the invariant
maintained at the root of the window is that it is black and has a black child. The
invariant maintained by the root of a delete window is that either it is red, or
has a red child, or red grandchild. We refer to this path of nodes, that begins at
the root of the window and ends at its child, or grandchild as the invariant-path.

Modify operations are based on our observation that all window transactions
are self-contained. The invariant maintained by the window root ensures that
applying Tarjan’s transformations to the window never leaves the tree out of

� This work was supported in part by the NSF Grant CNS-1115733.
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balance. In other words, the tree is always a valid red-black tree. Therefore,
instead of always starting at the root of the tree as in [1], the transformations
can be applied starting at any internal node on the access path that satisfies the
operation invariant. In our algorithm, modify operations exploit this observation
and start from the deepest such node. We refer to this node as the injection
point, and it is determined by traversing the tree along the access path, while
checking if the invariant holds at each node. The operation starts at the root
of the tree only if no such internal node is found. However, our experiments
indicate that in most cases the injection point is close to the leaf, resulting in
(a) lesser contention, and (b) fewer window transactions being executed by a
modify operation. Consequently, modify operations are, on average, 15 times
faster than those in [1].

However, a process cannot directly start executing window transactions from
the injection point, once it has been determined, because the tree is modified con-
currently by other operations that may: (a) cause the injection point to become
passive, or (b) violate the operation invariant at the injection point by changing
the color of nodes. Therefore, before a modify operation can start executing its
window transaction, the entire invariant-path must be locked on its behalf. Fail-
ure to do so causes the operation to restart. Note that the term ‘lock’ is used
loosely here. Whenever a node is locked by an operation, enough information is
left behind that any process blocked by that operation can help move it out of
the way. Helping involves locking the invariant-path as well as the execution of
a window transaction. After helping, a process returns to its own operation.

To summarize, the execution of a modify operation in our algorithm can be
partitioned into four phases: (i) seek, (ii) validation, (iii) injection, and (iv) exe-
cution. In the seek phase, the tree is simply traversed along the access path to
determine the injection point and invariant-path. The validation phase consists
of examining the nodes on the invariant-path, determined in the seek phase. If a
node is locked by another operation, it is helped to ensure lock-freedom, following
which the seek phase is restarted. If all nodes are free, then the process moves to
the injection phase, where the invariant-path is locked on behalf of the operation.
Locks are obtained in a top-down manner, and failure to acquire a lock causes
the operation to restart after relinquishing all obtained locks. Finally, after the
invariant-path has been locked, the process moves to the execution phase where
it executes its window transaction(s), as described earlier.
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We introduce a template that can be used to implement a large class of non-
blocking tree data structures efficiently. Using this template is significantly easier
than designing the implementation from scratch. The template also drastically
simplifies correctness proofs. Thus, the template allows us to obtain provably
correct, non-blocking implementations of more complicated tree data structures
than those that were previously possible. For example, we use the template
to obtain the first non-blocking balanced binary search tree (BST) using fine-
grained synchronization.

Software transactional memory (STM) makes it easy to turn sequential im-
plementations into concurrent ones, but non-blocking implementations of STM
are currently inefficient. Tsay and Li [6] gave a general approach for imple-
menting wait-free trees using LL and SC primitives. However, their technique
severely limits concurrency, since it requires every process accessing the tree
(even for read-only operations) to copy an entire path of the tree starting from
the root. For library implementations of data structures, and applications where
performance is critical, it is worthwhile to expend effort to get more efficient
implementations than those that can be obtained using these techniques.

The Tree Update Template. We can implement any down-tree, which is a
directed acyclic graph with indegree one. Each update operation on the data-
structure replaces a contiguous part of the tree with a new tree of nodes (which
can point to nodes that were previously children of the replaced nodes). As with
all techniques for concurrent implementations, our method is more efficient if the
operations are smaller. For instance, an insertion into a (leaf-oriented) chromatic
tree is performed by one update operation to replace a leaf by a new internal
node and two new leaves, followed by a sequence of rotations, each of which is an
update operation. If an operation has to access several nodes, implementing it
in a non-blocking way requires synchronization among processes. Our template
takes care of all process coordination, so provably correct implementations can
be obtained fairly mechanically.

The template uses the recently introduced LLX and SCX primitives [2], which
are extended versions of LL and SC that can be efficiently implemented from
CAS. At a high level, an update operation built using the template consists
of a sequence of LLXs on a small set V of nodes, the creation of a (typically
small) tree of new, replacement nodes, and an SCX, which atomically swings
a pointer to do the replacement, only if no node in V has changed since the
aforementioned LLX on it. If the SCX successfully swings the pointer, it also
prevents any removed nodes from undergoing any further changes.
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The operations of a data structure built using the template are automatically
linearizable. Moreover, simply reading an individual field of a node always re-
turns the result of the most recently linearized operation that modified the field.
Some queries can be performed efficiently using only reads. For example, in a
BST where the keys of nodes are immutable, a search can follow the appropri-
ate path by simply reading keys and child pointers, and the value in the node
reached. Such a search is linearizable even if concurrent update operations occur
along the path. The implementation of LLX/SCX also provides an easy way to
take a snapshot of a set of nodes. This facilitates the implementation of more
complex queries, such as successor or range queries. The template allows some
update operations to fail, but guarantees that update operations will continue
to succeed as long as they continue to be performed. Moreover, if all update
operations in progress apply to disjoint parts of the tree, they will not prevent
one another from succeeding.

Implementing Non-blocking Balanced BSTs. Chromatic trees [4] are a
relaxation of red-black trees which decouple rebalancing operations from op-
erations that perform the inserts and deletes. Rebalancing operations can be
performed in any order, and can be postponed and interleaved freely with op-
erations that perform the inserts and deletes. Amortized O(1) rebalancing op-
erations per insert or delete are sufficient to rebalance the tree into a red-black
tree. Using the template, we implemented a non-blocking chromatic tree. The
height of a tree containing n keys is O(log n + c), where c is point contention.
Our implementation is easily described in 10 pages, and rigorously proved in five
pages. In contrast, a non-blocking implementation of a B+tree (a considerably
simpler sequential data structure) is described in 30 pages and proved correct in
33 pages [1].

We are presently working on relaxed versions of (a, b)-trees and
AVL trees. Performance experiments (available in the full paper, at
http://www.cs.utoronto.ca/∼tabrown) indicate that our Java implementations
rival, and often significantly outperform, highly tuned industrial-strength data
structures [3,5].
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Abstract. Many consensus protocols assume a synchronous system in
which all processes start executing the protocol at once and in the same
round. However, such a common start requires to establish consensus
among the correct processes in the first place, making this assumption
questionable in many circumstances. In this work, we show that it is
possible to consistently initiate consensus instances without a common
round counter. Every correct node can initiate consistent consensus in-
stances, without interfering with other nodes’ instances. Furthermore, by
bounding the frequency at which nodes may initiate instances, Byzantine
faulty nodes can be prevented from initiating too many instances.

Keywords: communication complexity, simulation framework.

Consensus is a fundamental fault-tolerance primitive in distributed systems,
which has been introduced several decades ago [3]. Both in asynchronous and
synchronous models, it is a very common assumption that all nodes start to
execute the algorithm at a given point in time.1

We provide a self-stabilizing solution to this problem. In this brief announce-
ment, we assume a synchronous model and a deterministic binary consensus
algorithm. Furthermore, output 0 is supposed to mean “take no action”, bear-
ing no effect on the system; it can thus be used as a save fallback value. All of
these restrictions are dropped in the full paper [2]. Moreover, our results can
be used to derive new algorithms for Byzantine-tolerant self-stabilizing pulse
synchronization (cf. [1]). This is subject to future publication.

Problem Statement. We assume that executions proceed in rounds, where in
each round, each node may perform local computations and send a message to
each other node, where all messages sent by correct nodes are received before
the end of the round. Up to f < n/3 faulty nodes are controlled by an adversary
that can disobey the algorithm in any fashion. In the following we assume that
a consensus protocol P is given. The goal of the initiation problem is to enable
correct nodes to initiate independent executions of P . More precisely:

1 If in an asynchronous setting nodes unconditionally wake up and join an instance
upon receiving the “first” message, this essentially means to always run any pos-
sible instance, concurrently, resulting in unbounded message complexity in case of
Byzantine faults.
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1. Each instance carries a label (r, v) ∈ N×V , where r is a round and v a node.
We say that the corresponding instance is initialized by node v in round r
(note that the nodes do not know r).

2. For each instance, each correct node decides whether it participates in the
instance at the beginning of round r + 2.

3. We assume that for each instance (r, v), each participating node w ∈ V can
compute some input iw(r, v) ∈ {0, 1}.

4. If correct node w participates in instance (r, v), it terminates this instance
at the latest in round r +R+ 4 and outputs some value ow(r, v) ∈ {0, 1}.

5. If correct nodes w,w′ participate in instance (r, v), then ow(r, v) = ow′(r, v).
6. If all correct nodes participate in an instance with input b, all output b.
7. If ow(r, v) 	= 0 for some correct node participating in instance (r, v), then all

correct nodes participate in this instance (and output ow(r, v)).
8. If a correct node v initializes instance (r, v), all correct nodes w participate

in this instance with input iw(r + 2, w).

Compared to “classical” consensus, property 4 corresponds to termination, prop-
erty 5 to agreement, and property 6 to validity. Note that validity is replaced by
a safety property in case not all correct nodes participate: property 7 states that
non-zero output is feasible only if no correct node is left out. Finally, property
8 makes sure that all nodes participate in case a non-faulty node initializes an
instance, therefore ensuring validity for such instances.

Theorem 1. Given a synchronous, deterministic R-round consensus protocol
resilient to f faults, we can construct an algorithm solving the initiation problem
that self-stabilizes within R+ 4 rounds.

Communication Complexity. In case of crash faults, our solution is efficient
in the sense that for each initiated instance, there is an overhead of 4 rounds
and 4 broadcasts per node. However, Byzantine faults may result in each faulty
node initiating an instance every round, even if correct nodes are known to do
so very infrequently.

If we decide that correct nodes may initialize an instance at most once within
T rounds, we can force faulty nodes to do so as well. The modified algorithm
can be implemented such that it self-stabilizes in min{T,R + 4} rounds. Note
that the choice of T = R is particularly attractive, enabling nodes to initiate
and complete an instance within 2R + 4 rounds, yet ensuring that never more
than one instance per node causes communication.
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1 Introduction
Cloud storage services are becoming increasingly popular due to their flexible deploy-
ment, convenient pay-per-use model, and little (if any) administrative overhead. Today,
they are being offered by a growing number of Internet companies, such as Amazon,
Google, Microsoft as well as numerous smaller providers, such as Rackspace, Nirvanix
and many others. Although cloud storage providers make tremendous investments into
ensuring reliability and security of the service they offer, most of them have suffered
from well-publicized outages where the integrity and/or availability of data have been
compromised for prolonged periods of time. In addition, even in the absence of out-
ages, the customers can still lose access to their data due to connectivity problems, or
unexpected alterations in the service contract (data lock-in).

To address these concerns, multi-cloud storage systems whereupon data is replicated
across multiple cloud storage services have become a hot topic in the systems com-
munity. Despite the significant progress in building practical multi-cloud storage sys-
tems [1], as of today, little is known about their fundamental capabilities and limita-
tions. The primary challenge lies in the variety of the storage interfaces and consistency
semantics offered by different cloud providers to their external users. For example,
whereas Amazon S3 supports a simple read/write interface, other storage services ex-
pose a selection of more advanced transactional primitives, such as conditional writes.

In this paper, we outline the results of our recent study [2] that explored the space
and time complexity of building reliable multi-cloud storage services.

2 Overview of the Results
Space Bound for Multi-Writer Register Emulations. Our first result establishes a lower
bound on the space overhead associated with reliably storing a single data item, such
as a single key/value pair in a key-value store, supporting basic put and get operations.
For this lower bound we assume underlying storage services exposing put, get, and
list primitives (such as those supported by Amazon S3), which we model as multi-
writer/multi-reader (MWMR) atomic snapshot objects. We formalize this setting using
the fault-prone shared memory model [4], and prove the following [2]:

Theorem 1. LetA be a t-tolerant emulation of a wait-free k-writer/1-reader safe regis-
ter, supporting a set of values V , |V | > k, out of a set of n > t wait-free atomic MWMR
snapshot objects which can store vectors of lengthm > 0. Then, k ≤ �(nm− t−1)/t�.
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Our proof constructs a failure and contention-free run α in which all k writers take
turns writing into the emulated register each leaving t low-level writes “hanging” on t
distinct snapshot objects. We then show that α cannot be extended with another writeW
as the hung writes may terminate at any time, and in particular, afterW returns, erasing
all traces of W . Thus, the emulation space overhead is not adaptive to contention. Our
result explains the space overheads incurred by recently published practical implemen-
tations of reliable multi-cloud stores (e.g., [1]). Their worst-case space complexity is
proportional to the total number of writers, which matches our lower bound.
Space-Efficient Emulations Using Conditional Writes. We next turn to emulating reli-
able registers over storage services supporting transactional update primitives. First, it is
well known that a constant number of read-modify-write (RMW) objects is indeed suf-
ficient to reliably emulate multi-writer atomic register [5]. However, the RMW objects
employed by the existing implementations are too specialized to be exposed by the com-
modity cloud storage interfaces. Instead, the cloud storage providers typically expose
general purpose read-modify-write primitives which are variants of conditional writes,
and therefore, essentially equivalent to compare-and-swap (CAS). In [2], we show that
there exist reliable constant space implementations of (i) multi-writer atomic register,
which requires the underlying clouds to only support a single CAS object per stored
value, is adaptive to point contention, and tolerates a minority of cloud failures and (ii)
Ranked Register [3] using a single fault-prone CAS object. A collection of such Ranked
Registers can be used to construct a reliable Ranked Register, from which agreement
is built [3]. Our construction thus can be leveraged to implement multi-cloud state ma-
chine replication capable of supporting infinitely many clients with constant space.

Our work opens several avenues for future research. For example, the step complex-
ity of our atomic register implementation is adaptive to point contention. Is this opti-
mal? Interestingly, if this question can be answered in the affirmative, this would imply
that there is a time complexity separation between CAS and generic read-modify-write
primitive, which have been previously thought to be equivalent (e.g., in terms of their
power to implement consensus).Furthermore, our space bound in [2] does not rule out
constant space algorithms in which all writers are correct. Since the writer reliability
can be enforced in many practical settings, it will be interesting to see whether a con-
stant memory algorithm can be constructed under the assumption of reliable writers, or
the space bound can be further strengthened to also apply in this case.
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Byzantine Fault Tolerant (BFT) protocols are notoriously costly to deploy. This
cost stems from the fact that, in many applications, tolerating Byzantine faults
requires more resources than tolerating less severe faults, such as crashes. For
example, in the asynchronous communication model, BFT read/write storage [2]
protocols are shown to require at least 3t+1 replicas in different storage servers
so that t Byzantine server faults can be tolerated [5]. This is to be contrasted
with the requirement for 2t + 1 replicas in the asynchronous crash model for
protocols used in production cloud-storage systems. This resource gap is one of
the main concerns for practical adoption of BFT systems.

In this paper we briefly state the results of our recent study [1] in which we
show that perhaps surprisingly, this gap may in fact be significantly smaller.
Namely, in [1] we show a fundamental separation of data from metadata for
BFT storage which we use to design MDStore, a novel protocol that reduces
the number of data replicas to as few as 2t + 1, maintaining 3tM + 1 meta-
data replicas at (possibly) different servers. Here, t and tM are thresholds on
the number of Byzantine data and metadata replicas, respectively. To achieve
lower replication cost, MDStore does not sacrifice other functionalities. Namely,
MDStore implements multi-writer multi-reader (MWMR) wait-free atomic [2]
storage that tolerates any number of Byzantine readers and crash-faulty writers.
MDStore is the first asynchronous BFT storage protocol that does not assume
any trusted components to reduce its resource cost. Moreover, being a fully
asynchronous read/write storage protocol, MDStore is fundamentally different
from the existing consensus and state-machine replication protocols that employ
similar separation of control and data planes [6], which are subject to the FLP
impossibility result and require partial synchrony.

The key technique that allows MDStore to achieve lower replication cost, is
separation of data from metadata, where metadata holds: (i) a hash of a value,
(ii) a timestamp, and (iii) pointers to data replicas that store a value. MDStore
has modular architecture: a client reads and writes metadata through an ab-
straction of a metadata service: an array of single-writer multi-reader (SWMR)
safe wait-free storage objects [2] and a novel MWMR atomic wait-free storage
object variant, we call timestamped storage. This object is very similar to classi-
cal atomic storage, except that it exposes a timestamp of stored values to clients
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as well. In an array of safe storage objects, indexed by timestamps, MDStore
stores hashes of data values, whereas in atomic timestamped storage, MDStore
stores pointers to t+1 (out of 2t+1) data replicas storing the most recent value.
On the other hand, data replicas simply store timestamp/value pairs. Finally,
we show in [1] that the MDStore metadata service can be implemented from
asynchronous BFT SWMR safe (e.g., [3]) and SWMR atomic (e.g., [4]) storage
protocols using 3t+1 replicas for tolerating t faults; in the context of MDStore,
these replicas are exactly the 3tM + 1 metadata replicas.

We further prove in [1] that at least 2t+1 data replicas are necessary for imple-
mentations that leverage a metadata service, even if data replicas can fail only by
crashing. This shows not only that MDStore is optimally resilient, but also that
it incurs no additional data replication cost compared to crash-tolerant storage.
Our 2t+1 lower bound has a very broad scope: it applies to any obstruction-free
single-writer single-reader safe storage [2]. Moreover, for the purpose of the lower
bound, we define in [1] a metadata service very loosely as a fault-free oracle, that
can implement arbitrary functionality with a single limitation: roughly speaking,
metadata service can not be used for storing and/or forwarding data. We believe
that this definition of a metadata service is of an independent interest.

Finally, we show in [1] that separating data from metadata for reducing the
cost of BFT storage is not possible without limiting the power of the Byzan-
tine adversary. Namely, for an unrestricted, unbounded Byzantine adversary, our
lower bound on the number of data replicas extends to 3t+1, despite the meta-
data service oracle. However, this 3t+ 1 lower bound does not apply to a prac-
tically relevant, bounded adversary that cannot subvert the collision-resistance
property of cryptographic hash functions. Intuitively, this explains why our MD-
Store protocol stores value hashes in its metadata service.

Our work opens multiple avenues for future work. We show in [1] that with
the design that separates data and metadata, the cost of BFT storage, tradi-
tionally a major impediment to its practical deployment, is on par with that of
crash tolerant storage. For BFT storage this is a paradigm shift since it requires
rethinking all the aspects of BFT storage including complexity, erasure coding
techniques and practical implications, all of which have been extensively studied
in the traditional “unified” model of data and metadata.
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Introduction. Communication complexity lower bounds have found many ap-
plications in distributed computing. For the most part, these applications have
involved lower bounds on two-player communication complexity. However, there
are limits to the usefulness of two-player lower bounds: reductions from the
two-player model cannot prove certain results (see, e.g., [4]). Multi-player com-
munication complexity has been studied extensively, but the models most com-
monly studied are not suitable for modeling distributed computation, because
the inputs are not private (e.g., the number-on-forehead model) or players com-
municate by shared blackboard. Recently, though, some lower bounds have been
obtained on multi-player communication complexity for several different models
with private channels and inputs [2, 5–7].

One hurdle in reasoning about private-channel models is that there is no
shared transcript that all players observe, which makes them tricky to define. In
this paper, we give formal definitions for private-channel models used in [2, 5–7],
taking into account such factors as the network topology (e.g., the message pass-
ing model vs. the coordinator model) and timing (synchrony vs. asynchrony).
Our first main contribution is to prove that these models are all equivalent up
to polylogarithmic factors, thus simplifying the diverse landscape of private-
channel models. Our second is the development of a randomized protocol, based
on a simulation of the AKS sorting network [1], that can exactly compute
the t-th frequency moment of n-bit inputs using O(tk polylog(n, k)) bits and
O(polylog(n, k)) rounds, with high probability.

Models. All our models have k players, each with private randomness and n bits
of input. We consider both synchronous models, in which computation proceeds
in rounds, and asynchronous models, in which the order of events is controlled
by a scheduler. In all cases, we are interested in the total number of bits sent by
all participants. We consider the following variants.

SYNC-MP [3]. In each round, each player sends a (possibly different) message of
any length (including 0) directly to each of the other players. All messages are
delivered simultaneously, and then the next round begins.

SYNC-COORD. There is a coordinator in addition to the k players. In each
round, each player sends a message of any length to the coordinator and the
coordinator sends a (possibly different) message of any length to each player.
The players cannot communicate directly with each other.

� This research was partially supported by NSERC Discovery Grants, a donation from
Sun Microsystems, DARPA Grant FA8750-11-2-0225, a Connaught New Researcher
Award, and an Alfred P. Sloan Fellowship.
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ASYNC-MP. There is a communication channel from every player to every other
player, which we model as a queue. Initially, each player selects a (possibly
empty) subset of the other players and sends/enqueues a (possibly different) non-
empty message to each. Then, at each step, the scheduler, which is adversarial,
selects a non-empty channel, dequeues a message, and and delivers it to its
recipient. The recipient may then send a (possibly different) non-empty message
to any number of the other players.

ASYNC-COORD. In addition to the k players, there is a coordinator, which also
acts as the scheduler. At each step, the coordinator sends a non-empty message
to one player of its choice, which must respond with a non-empty message.

The Simulations. The SYNC-MP and ASYNC-MP models can trivially simu-
late the SYNC-COORD and ASYNC-COORD models, respectively, with no over-
head. In the other direction, the models can easily simulate each other with
a factor of O(log k) more bits and we show that no better simulations exist.
Synchronous models are at least as powerful as the corresponding asynchronous
models, but they seem more powerful because players can convey information by
not sending any bits in a given round. Nevertheless, we show that with a multi-
plicative overhead logarithmic in the number of rounds, T , the number of players,
and 1/B, where B is the communication complexity, the ASYNC-COORD model
can simulate the SYNC-COORD model. We also show that communication by
push, where players send each other messages, is roughly equivalent to commu-
nication by pull, where, instead, players select a subset of players from which
they wish to receive information.

ASYNC-
MP

O(log k) ��
no overhead

ASYNC-
COORD

no overhead��
O(log(TkB ))

SYNC-
COORD

no overhead��
O(log k)

SYNC-
MP
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Negative results such as impossibility results are fundamental in Distributed Comput-
ing to establish what can and cannot be computed in a given setting, or permitting to
assess optimality results through lower bounds for given problems. Two notorious ex-
amples are the impossibility of reaching consensus in an asynchronous setting when a
single process may fail by stopping unexpectedly [5], and the impossibility of reliably
exchanging information when more than one third of the processes can exhibit arbitrary
behaviour [8]. As noted by Lamport, Shostak and Pease [7], correctly proving results in
the context of Byzantine (a.k.a. arbitrary behaviour capable) processes is a major chal-
lenge, as they knew of no area in computer science or mathematics in which informal
reasoning is more likely to lead to errors than in the study of this type of algorithm.

An attractive way to assess the validity of distributed algorithm is to use tool assisted
verification. Networks of static and/or mobile sensors (that is, robots) [6] received in-
creasing attention in the past few years from the Distributed Computing community.
Preliminary attempts for automatically proving impossibility results in robot networks
properties are due to Devismes et al. [4] and to Bonnet et al. [2]. The first paper uses the
LUSTRE formalism and model-checking to search exhaustively all possible 3-robots
protocols that explore every node of a 3 × 3 grid (and conclude that no such algorithm
exists). The second paper uses an ad hoc tool to generate all possible unambiguous pro-
tocols of k robots operating in an n-sized ring (k and n are given as parameters) and
check exhaustively the properties of the generated protocols (and in the paper conclude
that no protocol of 5 robots on a 10 sized ring can explore all nodes infinitely often with
every robot). Those two proposals exhibit shortcomings we wish to address: (i) they are
limited to a so called discrete space, where the robots may only occupy a finite number
of positions, (ii) they are restricted to a particular setting (e.g. 3 robots on a 3× 3 grid),
and (iii) they do not integrate the possibility of misbehaving robots (e.g. robots crashing
or exhibiting arbitrary and potentially malicious behaviour).

Our Contribution. We developed a general framework relying on the COQ proof as-
sistant to prove possibility and impossibility results about mobile robotic networks.
Proof assistants are environments in which a user can express programs, state
theorems and develop interactively proofs that will be mechanically checked (that is

� This work was supported in part by the Digiteo Île-de-France project PACTOLE 2009-38HD.
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machine-checked). The key property of our approach is that its underlying calculus is
of higher order: instead of providing the code of the distributed protocols executed by
the robots, we may quantify universally on those programs/algorithms, or just character-
ize them with an abstract property. This genericity makes this approach complementary
to the use of model-checking methods for verifying distributed algorithms [4,2] that are
highly automatic, but address mainly particular instances of algorithms. In particular,
quantifying over algorithms allows us to express in a natural way impossibility results.

We illustrate how our framework allows for such certification by providing COQ

proofs of two earlier impossibility and lower bound theorems by Bouzid et al. [3],
guaranteeing soundness of the first one, and of the SSYNC fair version of the second
one. More precisely, in the context of oblivious robots that are endowed with strong
global multiplicity detection and whose movements are constrained along a rational
line, and assuming that the demon (that is, the way robots are scheduled for execution)
is fair, the convergence problem cannot be solved if respectively at least one half and at
least one third of robots are Byzantine. To our knowledge, these are the first certified (in
the sense of formally proved) impossibility results for robot networks. The interestingly
short size of the COQ proofs we obtained using our framework not only makes it easily
human-readable, but is also very encouraging for future applications and extensions of
our framework.
Resources. A research report [1] describing our approach (LRI 1560) as well as the
actual development for COQ 8.4pl3 are both available from the project’s webpage:
http://pactole.lri.fr
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Distributed Compressed Sensing. Compressed sensing is a new and popu-
lar signal processing technique for efficient signal acquisition, or sampling, and
reconstruction from these samples [3]. The signal is an N -vector, with N typ-
ically very large, and it is assumed that the signal has a sparse representation
in some basis with only K << N non-zero components. The signal is simul-
taneously sampled and compressed into measurements, each of which is a linear
combination of the components of the signal. For a general (non-sparse) signal,
N measurements are needed to reconstruct the signal. The power of compressed
sensing lies in the fact that, if the measurements are taken appropriately, it is
possible to reconstruct the signal exactly from only O(K logN) measurements
and to do so in an efficient manner.

One application setting that is beginning to receive attention from the com-
pressed sensing community is estimation and monitoring in sensor networks.
Recent works have shown that compressed sensing is applicable to a variety
of sensor networks problems, including urban environment monitoring [5] and
traffic speed estimation [8]. In these works, sensors distributed throughout a re-
gion take measurements of the signal. The measurements are then collected at a
fusion center where signal recovery is performed using a centralized algorithm.

While the vast majority of recovery algorithms for compressed sensing con-
sider a centralized setting, a centralized approach is not always feasible, espe-
cially in sensor networks where no powerful computing center is available and
where bandwidth is limited. Since the measurements are already distributed
throughout a network, it is desirable to perform the reconstruction within the
network itself. This problem of in-network sparse signal recovery from distributed
measurements is known as distributed compressed sensing. Here, each node has
a set of measurements, known only to it. Nodes must recover the signal from
their collective measurements using only communication between neighbors.

Distributed Iterative Hard Thresholding. We propose an approach for
distributed compressed sensing in sensor networks that outperforms previously
proposed solutions in both message and time complexity [7]. To develop our
algorithm, we first looked inside the “black boxes” of the centralized recovery
algorithms to identify a good candidate for distribution. We selected a greedy
algorithm called Iterative Hard Thresholding (IHT) [2] as the basis for our dis-
tributed solution, which we call Distributed IHT (D-IHT).

We show how to decompose IHT into iterations that consist of a simple local
computation at each node to compute an intermediate vector, followed by a global
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computation over the intermediate vectors at all nodes Each global computation
requires finding the components of the sum of these intermediate vectors that
have the K largest magnitudes. This global computation is nearly identical to
the distributed top-K problem [4], and so we leverage a solution to this problem
to perform this global computation with minimized communication cost.

By decomposing IHT in this manner, D-IHT simulates centralized IHT ex-
actly. Furthermore, each local computation consists of a few matrix-vector mul-
tiplications, and thus the computational cost is low. This is in contrast with
competing works which all solve the problem using distributed convex optimiza-
tion (e.g., [1,6]). These algorithms do not optimize for metrics that are important
in a distributed setting, most notably, bandwidth consumption. In addition, they
introduce computational complexity on top of their centralized counterparts, as
they have each node solve an optimization problem in each iteration, and more-
over require more iterations than D-IHT to converge.

Results and Conclusion. We compared the performance of D-IHT with the
best-known convex optimization-based distributed compressed sensing algorithm
on several problems in various network topologies. For every recovery problem
and every topology, D-IHT required far fewer total messages (between one and
three orders of magnitude) to achieve the same recovery accuracy. D-IHT also
required less total time to perform the recovery, between one and two orders of
magnitude fewer time steps [7].

We are currently working to extend D-IHT to time-varying network topolo-
gies. We also plan to explore applications of distributed compressed sensing in
the Smart Grid.
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Software-defined networking (SDN) is a novel paradigm that out-sources the
control of packet-forwarding switches to a set of software controllers. The most
fundamental task of these controllers is the correct implementation of the net-
work policy, i.e., the intended network behavior. In essence, such a policy specifies
the rules by which packets must be forwarded across the network. This paper
initiates the study of the SDN control plane as a distributed system.

We consider a distributed SDN control plane which accepts policy updates
(e.g., routing or access control changes) issued concurrently by different con-
trollers and whose goal is to consistently compose these updates. One of our
contributions is precisely the notion of consistency of concurrent policy com-
position. We introduce a formal model for SDN under fault-prone concurrent
control. In particular, we seek to ensure per-packet consistency [3]. Informally,
this property ensures that every packet is processed at every switch it encounters
in the data plane according to just one and same policy, which is the composition
of policy updates installed by the time when the packet entered the network.

We present the abstraction of Consistent Policy Composition (CPC) which
offers a transactional interface. A policy-update request returns commit if the
update is successfully integrated in the current network policy or abort if the
update cannot be installed. Our correctness property informally requires that
the abstraction, regardless of the actual interleaving of concurrent policy updates
and data packets’ arrivals, appears sequential to every data packet, as though all
the committed requests (and possibly a subset of incomplete ones) are applied
atomically and no data packet is in flight while an update is being installed.

We show that it is generally impossible to implement the CPC abstraction
in the presence of a single controller’s crash failure. The requirement of per-
packet consistency allows us to introduce an interesting variant of the bivalency
argument [2], where the valency of an algorithm’s execution accounts for all pos-
sible paths a packet may take in all extensions of the execution. Since typically
the controllers do not have influence on the network traffic workload, our im-
possibility proof is able to exploit the intertwined combination of two kinds of
concurrency: overlapping policy updates arbitrarily interleaving with traffic.

Accordingly, we investigate stronger model abstractions which enable fault-
tolerant CPC implementations. We find that a slightly more powerful SDN
switch interface supporting an atomic read-modify-write allows for a wait-free
CPC solution, and we investigate the tag complexity of such a solution.

� A full version of this paper can be found at [1].
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Fig. 1. Example of a policy composition: (a) 3-process control plane and 3-switch data
plane, (b) a concurrent history H and its sequential equivalent HS.

Policy Composition in SDN: Example. Consider a network consisting of
three switches sw1, sw2 and sw3 (Figure 1(a)), and controlled by p1, p2, and
p3. The controllers’ function is to try to install policy-update requests on the
switches. An example of a concurrent history H is presented in Figure 1(b).
The three controllers try to concurrently install three different policies π1, π2,
and π3. Imagine that π1 and π2 are applied to disjoint fractions of traffic (e.g.,
π1 affects only http traffic and π2 only ssh traffic) and, thus, can be installed
independently of each other. In contrast, let us assume that π3 is conflicting with
both π1 and π2 (e.g., it applies to traffic from address 1.2.3.4). In this history,
π1 and π2 are committed (returned ack), while π3 is aborted (returned nack).

While the concurrent policy-update requests are processed, three packets are
injected to the network (at switches sw1, sw2, and sw3) leaving three traces de-
picted with dotted and dashed arrows. Each trace is in fact the sequence of ports
which the packet goes through while it traverses the network. For example, in one
of the traces (depicted with the dotted arrow), a packet arrives at sw1, then it is
forwarded to sw2, and then to sw1. Next to H we present its “sequential equiv-
alent” HS . The traffic on the data plane is processed as though the application
of policy updates is atomic and packets cross the network instantaneously.

The full paper [1] presents a formal specification of concurrent policy compo-
sition and explores its implementation costs. We believe that this work opens a
new and exciting problem area with a number of unexplored concurrency issues.
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Abstract. This paper considers the problem of a route or SDN con-
troller which manages a FIB table. The controller wants to aggregate
the FIB entries as much as possible while minimizing the interactions
with the FIB. We present a O(w)-competitive online algorithm for the
aggregation of FIB tables in presence of routing updates, where w is the
maximum length of an IP address. Our result is asymptotically optimal
within a natural class of algorithms.

Introduction and Model. This paper studies a new online problem arising
in the context of forwarding table aggregation in a router or Software Defined
Network (SDN) switch. The Forwarding Information Base (FIB) contains the
rules used by the router to decide, for each packet, to which port it should
be forwarded; a rule is simply an (IP prefix, port) pair. We will identify ports
with colors.

More specifically, any packet has a destination (IP) address which is a binary
string of length w (e.g., w = 32 for IPv4 and w = 128 for IPv6). For any packet
processed by the router, a decision is made on the basis of its destination IP
address x using the longest prefix match policy: among the FIB rules {(pi, ci)}i,
the router chooses the longest pi being a prefix of x, and forwards the packet
to the port of color ci. Unlike [1], we allow dependent prefixes, i.e., the address
ranges described by prefixes stored in the FIB may be contained in each other.

In order to save memory, we let the online algorithm aggregate this table,
i.e., replace the current set of rules by an equivalent but smaller set. In addition
to reducing the number of FIB rules, an online algorithm should minimize the
number of rule updates. Precisely speaking, the router consists of two parts:
the controller (e.g., implemented on the route processor) and the (compressed)
FIB (stored in a fast and expensive memory). The controller keeps a copy of
the uncompressed FIB (U-FIB) and receives dynamic routing updates to this
structure (that may change the color of an existing prefix). Right after such
an update occurs, the controller must ensure that the U-FIB and the FIB are
equivalent. To this end, the controller can insert, delete or update individual
rules in the FIB, cf Fig. 1a.
� A full version of this paper can be found at [2].
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Controller

FIB
(U-FIB)

uncompressed FIB

(compressed)

insert
delete
update

INPUT

(changes U-FIB)

p
ac
ke
ts

b) U-FIB triea) Controller and FIB

Fig. 1. On the left: Controller and FIB; the controller updates the rules in the FIB.
This paper focuses on online algorithms for the controller. On the right: Example U-FIB
trie. Stick boundaries are marked with dashed lines.

For presentation purposes, we represent both U-FIB and FIB as colored binary
tries. These tries may contain blank nodes that do not correspond to existing rules.
Costs. We associate a fixed cost α with a change of a single rule in FIB. This
paper focuses on the minimization of the sum of the total update cost and the
total memory cost, where the latter is defined as the size of the FIB integrated
over time.
Our Result. We present the online algorithm HiMs (Hide Invisible and
Merge Sibling). HiMs is based on the concept of sticks: roughly speaking, a
stick is a maximal part of the U-FIB trie that — if cut out of the trie — will
constitute a trie of its own, with all leaves colored and all internal nodes blank.
An example is given in Fig. 1b.

HiMs employs two time-delayed optimization rules: (1) If there are two sib-
lings in a stick that are of the same color for time α, then they are removed and
a rule corresponding to their parent is inserted. (2) If all colored nodes of a stick
are of the same color and of the same color as their least colored ancestor in
the trie (again for time α), then all these stick rules become removed from the
trie. These optimizations are rolled back only when necessary to assure that the
forwarding behavior of FIB is the same as that of U-FIB. A precise definition of
the algorithm and its analysis are given in [2].

Theorem 1. HiMs is O(w)-competitive. This is optimal in the class of all algo-
rithms (even offline ones) that do not create dependent prefixes within a single
stick. Furthermore, HiMs can be implemented using a data structure, whose
amortized complexity for a single operation is at most O(w) times the number
of updates Opt performs in its FIB.
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