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argumentation which significantly evolved within the last decade. Recent
work in the field has thus focused on implementations for these frame-
works, whereby one of the main approaches is to use Answer-Set Pro-
gramming (ASP). While some of the argumentation semantics can be
nicely expressed within the ASP language, others required rather cum-
bersome encoding techniques. Recent advances in ASP systems, in partic-
ular, the metasp optimization front-end for the ASP-package
gringo/claspD provide direct commands to filter answer sets satisfy-
ing certain subset-minimality (or -maximality) constraints. This allows
for much simpler encodings compared to the ones in standard ASP lan-
guage. In this paper, we experimentally compare the original encodings
(for the argumentation semantics based on preferred, semi-stable, and
respectively, stage extensions) with new metasp encodings. Moreover,
we provide novel encodings for the recently introduced resolution-based
grounded semantics. Our experimental results indicate that the metasp

approach works well in those cases where the complexity of the encoded
problem is adequately mirrored within the metasp approach.
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1 Introduction

In Artificial Intelligence (AI), the area of argumentation (the survey by Bench-
Capon and Dunne [3] gives an excellent overview) has become one of the central
issues during the last decade. Although there are now several branches within this
area, there is a certain agreement that Dung’s famous abstract argumentation
frameworks (AFs) [7] still represent the core formalism for many of the problems
and applications in the field. In a nutshell, AFs formalize statements together
with a relation denoting rebuttals between them, such that the semantics gives a
handle to solve the inherent conflicts between statements by selecting admissible
subsets of them, but without taking the concrete contents of the statements into
account. Several semantical principles how to select those subsets have already
been proposed by Dung [7] but numerous other proposals have been made over
the last years. In this paper we shall focus on the preferred [7], semi-stable
[4], stage [18], and the resolution-based grounded semantics [1]. Each of these
semantics is based on some kind of ⊆-maximality (resp. -minimality) and thus
is well amenable for the novel metasp concepts which we describe below.

Let us first talk about the general context of the paper, which is the realiza-
tion of abstract argumentation within the paradigm of Answer-Set Programming
(see [17] for an overview ). We follow here the ASPARTIX1approach [11], where
a single program is used to encode a particular argumentation semantics, while
the instance of an argumentation framework is given as an input database. For
problems located on the second level of the polynomial hierarchy (i.e. for pre-
ferred, stage, and semi-stable semantics) ASP encodings turned out to be quite
complicated and hardly accessible for non-experts in ASP (we will sketch here
the encoding for the stage semantics in some detail, since it has not been pre-
sented in [11]). This is due to the fact that tests for subset-maximality have to
be done “by hand” in ASP requiring a certain saturation technique. However,
recent advances in ASP solvers, in particular, the metasp optimization front-end
for the ASP-system gringo/claspD allows for much simpler encodings for such
tests. More precisely, metasp allows to use the traditional #minimize statement
(which in its standard variant minimizes wrt. cardinality or weights, but not
wrt. subset inclusion) also for selection among answer sets which are minimal
wrt. subset inclusion in certain predicates. Details about metasp can be found
in [13].

Our first main contribution will be the practical comparison between hand-
crafted encodings (i.e. encodings in the standard ASP language without the new
semantics for the #minimize statement) and the much simpler metasp encodings
for argumentation semantics. The experiments show that the metasp encodings
do not necessarily result in longer runtimes. In fact, the metasp encodings for
the semantics located on the second level of the polynomial hierarchy outper-
form the handcrafted saturation-based encodings. We thus can give additional

1 See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of
ASPARTIX.

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX
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evidence to the observations in [13], where such a speed-up was reported for
encodings in a completely different application area.

Our second contribution is the presentation of ASP encodings for the
resolution-based grounded semantics [1]. To the best of our knowledge, no imple-
mentation for this recently proposed semantics has been released so far. In this
paper, we present a rather involved handcrafted encoding (basically following
the NP-algorithm presented in [1]) but also two much simpler encodings (using
metasp) which rely on the original definition of the semantics.

Our results indicate that metasp is a very useful tool for problems known to
be hard for the second-level, but one might loose performance in case metasp is
used for “easier” problems just for the sake of comfortability. Nonetheless, we
believe that the concept of the advanced #minimize statement is vital for ASP,
since it allows for rapid prototyping of second-level encodings without being an
ASP guru.

The remainder of the paper is organized as follows: Section 2 provides the nec-
essary background. Section 3 then contains the ASP encodings for the argumen-
tation semantics we are interested in this work. We begin with the handcrafted
saturation-based encoding for stage semantics. Then, in Sect. 3.2 we provide the
novel metasp encodings for all considered semantics and afterwards, in Sect. 3.3,
we present an alternative encoding for the resolution-based grounded semantics
which better mirrors the complexity of this semantics. Section 4 then presents
our experimental evaluation. We conclude the paper with a brief summary and
discussion for future research directions.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [7] and recall
the semantics we study in this paper (see also [1,2]). Moreover, we highlight
complexity results for typical decision problems associated to such frameworks.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is a set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R
means that a attacks b.An argument a ∈ A is defended by a set S ⊆ A if, for
each b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Example 1. Consider the AF F = (A,R) with A = {a, b, c, d, e, f} and R =
{(a, b), (b, d), (c, b), (c, d), (c, e), (d, c), (d, e), (e, f)}, and the graph representa-
tion of F :

a b

c

d

e f

Semantics for argumentation frameworks are given via a function σ which assigns
to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We shall consider here
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for σ the functions stb, adm, com, prf , grd , grd∗, stg , and sem which stand for
stable, admissible, complete, preferred, grounded, resolution-based grounded,
stage, and semi-stable semantics respectively. Towards the definition of these
semantics we have to introduce two more formal concepts.

Definition 2. Given an AF F = (A,R). The characteristic function FF : 2A ⇒
2A of F is defined as FF (S) = {x ∈ A | x is defended by S}. Moreover, for a
set S ⊆ A, we denote the set of arguments attacked by S as S⊕

R = {x | ∃y ∈
S such that (y, x) ∈ R}, and define the range of S as S+

R = S ∪ S⊕
R .

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ),
if there are no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of
conflict-free sets of F . For a conflict-free set S ∈ cf (F ), it holds that

– S ∈ stb(F ), if S+
R = A;

– S ∈ adm(F ), if S ⊆ FF (S);
– S ∈ com(F ), if S = FF (S);
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T ⊃ S;
– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T+

R ⊃ S+
R ;

– S ∈ stg(F ), if there is no T ∈ cf (F ) in F , such that T+
R ⊃ S+

R .

We recall that for each AF F , the grounded semantics yields a unique exten-
sion, the grounded extension, which is the least fixed point of the characteristic
function FF .

Example 2. Consider the AF F from Example 1. We have {a, d, f} and {a, c, f}
as the stable extensions and thus stb(F ) = stg(F ) = sem(F ) = {{a, d, f},
{a, c, f}}. The admissible sets of F are {}, {a}, {c}, {a, c}, {a, d}, {c, f}, {a, c, f},
{a, d, f} and therefore prf (F ) = {{a, c, f}, {a, d, f}}. Finally we have com(F ) =
{{a}, {a, c, f}, {a, d, f}}, with {a} being the grounded extension.

On the base of these semantics one can define the family of resolution-based
semantics [1], with the resolution-based grounded semantics being the most pop-
ular instance.

Definition 4. A resolution β ⊂ R of an AF F = (A,R) contains exactly one
attack from each bidirectional attack in F , i.e. ∀a, b ∈ A, if (a, b), (b, a) ∈ R then
| {(a, b), (b, a)} ∩ β | = 1 and {(c, d) | (c, d) ∈ R, (d, c) �∈ R} ∩ β = ∅. A set
S ⊆ A is a resolution-based grounded extension of F , denoted by S ∈ grd∗(F ),
if (i) there exists a resolution β such that S = grd((A,R \ β)) 2; and (ii) there
is no resolution β′ such that grd((A,R \ β′)) ⊂ S.

Example 3. Recall the AF F = (A,F ) from Example 1. There is one mutual
attack and thus we have two resolutions β1 = {(c, d)} and β2 = {(d, c)}.
Definition 4 gives us two candidates, namely grd((A,R \ β1)) = {a, d, f} and
grd((A,R\β2)) = {a, c, f}; as they are not in ⊂-relation they are the resolution-
based grounded extensions of F .
2 Abusing notation slightly, we use grd(F ) for denoting the unique grounded extension

of F .



118 W. Dvořák et al.

Table 1. Complexity of abstract argumentation (C-c denotes completeness for
class C).

prf sem stg grd∗

Credσ NP-c ΣP
2 -c ΣP

2 -c NP-c
Skeptσ ΠP

2 -c ΠP
2 -c ΠP

2 -c coNP-c
Verσ coNP-c coNP-c coNP-c in P

We now turn to the complexity of reasoning in AFs. To this end, we define
the following decision problems for the semantics σ introduced in Definitions 3
and 4:

– Credulous Acceptance Credσ: Given AF F = (A,R) and an argument a ∈ A.
Is a contained in some S ∈ σ(F )?

– Skeptical Acceptance Skeptσ: Given AF F = (A,R) and an argument a ∈ A.
Is a contained in each S ∈ σ(F )?

– Verification of an extension Verσ: Given AF F = (A,R) and a set of arguments
S ⊆ A. Is S ∈ σ(F )?

We assume the reader has knowledge about standard complexity classes like
P and NP and recall that ΣP

2 is the class of decision problems that can be
decided in polynomial time using a nondeterministic Turing machine with access
to an NP-oracle. The class ΠP

2 is defined as the complementary class of ΣP
2 , i.e.

ΠP
2 = coΣP

2 .
In Table 1 we summarize complexity results relevant for our work [1,6,8–10].

2.2 Answer-Set Programming

We give a brief overview of the syntax and semantics of disjunctive logic programs
under the answer-sets semantics [15]; for further background, see [16].

We fix a countable set U of (domain) elements, also called constants; and
suppose a total order < over the domain elements. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable
or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U .

A (disjunctive)rule r with n ≥ 0, m ≥ k ≥ 0, n + m > 0 is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for default negation. An
atom a is a positive literal, while not a is a default negated literal. The head of r
is the set H(r) = {a1, . . . , an} and the body of r is B(r) = B+(r) ∪ B−(r) with
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule r is normal if n ≤ 1
and a constraint if n = 0. A rule r is safe if each variable in r occurs in B+(r).
A rule r is ground if no variable occurs in r. A fact is a ground rule without
disjunction and with an empty body. An (input) database is a set of facts. A
program is a finite set of disjunctive rules. For a program π and an input database
D, we often write π(D) instead of D ∪ π. If each rule in a program is normal
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Table 2. Data Complexity for logic programs (all results are completeness results).

e Normal programs Disjunctive program Optimization programs

|=c NP ΣP
2 ΣP

2

|=s coNP ΠP
2 ΠP

2

(resp. ground), we call the program normal (resp. ground). Besides disjunctive
and normal program, we consider here the class of optimization programs, i.e.
normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk] (1)

where li is a literal, wi an integer weight and Ji an integer priority level.
For any program π, let Uπ be the set of all constants appearing in π. Gr(π)

is the set of rules rτ obtained by applying, to each rule r ∈ π, all possible
substitutions τ from the variables in r to elements of Uπ. An interpretation
I ⊆ BU satisfies a ground rule r iff H(r) ∩ I �= ∅ whenever B+(r) ⊆ I and
B−(r) ∩ I = ∅. I satisfies a ground program π, if each r ∈ π is satisfied by I.
A non-ground rule r (resp., a program π) is satisfied by an interpretation I iff
I satisfies all groundings of r (resp., Gr(π)). I ⊆ BU is an answer set of π iff
it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct πI = {H(r) ←
B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. For a program π, we denote the set of its
answer sets by AS(π).

For semantics of optimization programs, we interpret the #minimize state-
ment wrt. subset-inclusion: For any sets X and Y of atoms, we have Y ⊆w

J X, if
for any weighted literal l = w@J occurring in (1), Y |= l implies X |= l. Then,
M is a collection of relations of the form ⊆w

J for priority levels J and weights
w. A standard answer set (i.e. not taking the minimize statements into account)
Y of π dominates a standard answer set X of π wrt. M if there are a priority
level J and a weight w such that X ⊆w

J Y does not hold for ⊆w
J ∈ M , while

Y ⊆w′
J ′ X holds for all ⊆w′

J ′ ∈ M where J ′ ≥ J . Finally a standard answer set X
is an answer set of an optimization program π wrt. M if there is no standard
answer set Y of π that dominates X wrt. M .

Credulous and skeptical reasoning in terms of programs is defined as follows.
Given a program π and a set of ground atoms A. Then, we write π |=c A
(credulous reasoning), if A is contained in some answer set of π; we write π |=s A
(skeptical reasoning), if A is contained in each answer set of π.

We briefly recall some complexity results for disjunctive logic programs. In
fact, since we will deal with fixed programs we focus on results for data complex-
ity. Depending on the concrete definition of |=, we give the complexity results
in Table 2 (cf. [5] and the references therein). We note here, that even normal
programs together with the optimization technique have a worst case complex-
ity of ΣP

2 (resp. ΠP
2 ). Inspecting Table 1 one can see which kind of encoding is

appropriate for an argumentation semantics.
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3 Encodings of AF Semantics

In this section we first show how to represent AFs in ASP and we discuss three
programs which we need later on in this section.3 Then, in Subsect. 3.1 we exem-
plify on the stage semantics the saturation technique for encodings that solve
associated problems which are on the second level of the polynomial hierarchy. In
Subsect. 3.2 we will make use of the newly developed metasp optimization tech-
nique. In Subsect. 3.3 we give an alternative encoding based on the algorithm
by Baroni et al. in [1], which respects the lower complexity of resolution-based
grounded semantics.

All our programs are fixed which means that the only translation required,
is to give an AF F as input database F̂ to the program πσ for a semantics σ. In
fact, for an AF F = (A,R), we define F̂ as

F̂ = { arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess
for a set S ⊆ A, where in(a) represents that a ∈ S. The following notion of
correspondence is relevant for our purposes.

Definition 5. Let S ⊆ 2U be a collection of sets of domain elements and let
I ⊆ 2BU be a collection of sets of ground atoms. We say that S and I correspond
to each other, in symbols S ∼= I, iff (i) for each S ∈ S, there exists an I ∈ I, such
that {a | in(a) ∈ I} = S; (ii) for each I ∈ I, it holds that {a | in(a) ∈ I} ∈ S;
and (iii) |S| = |I|.

Consider an AF F . The following program fragment guesses, when augmented
by F̂ , any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = { in(X) ← not out(X), arg(X);
out(X) ← not in(X), arg(X);
← in(X), in(Y ),defeat(X,Y ) }.

Proposition 1. For any AF F , cf (F ) ∼= AS(πcf (F̂ )).

Sometimes we have to avoid the use of negation. This might either be the case
for the saturation technique or if a simple program can be solved without a
Guess&Check approach. Then, encodings typically rely on a form of loops where
all domain elements are visited and it is checked whether a desired property
holds for all elements visited so far. We will use this technique in our saturation-
based encoding in the upcoming subsection, but also for computing the grounded
extension in Subsect. 3.2. For this purpose, an order < over the domain elements
(usually provided by common ASP solvers) is used together with a few helper

3 We make use of some program modules already defined in [11].
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predicates defined in the program π< below; in fact, predicates inf /1, succ/2 and
sup /1 denote infimum, successor and supremum of the order <.

π< = { lt(X,Y ) ← arg(X), arg(Y ),X < Y ;
nsucc(X,Z) ← lt(X,Y ), lt(Y,Z);
succ(X,Y ) ← lt(X,Y ),not nsucc(X,Y );
ninf(Y ) ← lt(X,Y );
inf(X) ← arg(X),not ninf(X);
nsup(X) ← lt(X,Y );
sup(X) ← arg(X),not nsup(X) }.

Finally, the following module computes for a guessed subset S ⊆ A the range
S+

R (see Def. 2) of S in an AF F = (A,R).

πrange = { in range(X) ← in(X);
in range(X) ← in(Y ),defeat(Y,X);
not in range(X) ← arg(X),not in range(X) }.

3.1 Saturation Encodings

In this subsection we make use of the saturation technique introduced by Eiter
and Gottlob in [12]. In [11], this technique was already used to encode the pre-
ferred and semi-stable semantics. Here we give the encodings for the stage seman-
tics, which is similar to the one of semi-stable semantics, to exemplify the use of
the saturation technique.

In fact, for an AF F = (A,R) and S ∈ cf (F ) we need to check whether
no T ∈ cf (F ) with S+

R ⊂ T+
R exists. Therefore we have to guess an arbitrary

set T and saturate in case (i) T is not conflict-free, or (ii) S+
R �⊂ T+

R . Together
with πcf this is done with the following module, where in/1 holds the current
guess for S and inN/1 holds the current guess for T . More specifically, rule
fail ← inN(X), inN(Y ),defeat(X,Y ) checks for (i) and the remaining two rules
with fail in the head fire in case S+

R = T+
R (indicated by predicate eqplus/0

described below), or there exists an a ∈ S+
R such that a /∈ T+

R (here we use
predicate in range/1 from above and predicate not in rangeN/1 which we also
present below). As is easily checked one of these two conditions holds exactly if
(ii) holds.

πsatstage = { inN(X) ∨ outN(X) ← arg(X);
fail ← inN(X), inN(Y ),defeat(X,Y );
fail ← eqplus;
fail ← in range(X),not in rangeN(X);
inN(X) ← fail, arg(X);
outN(X) ← fail, arg(X);
← not fail }.



122 W. Dvořák et al.

For the definition of predicates not in rangeN/1 and eqplus/0 we make use of
the aforementioned loop technique and predicates from program π<.

πrangeN = { undefeated upto(X,Y ) ← inf(Y ), outN(X), outN(Y );
undefeated upto(X,Y ) ← inf(Y ), outN(X),not defeat(Y,X);
undefeated upto(X,Y ) ← succ(Z, Y ),undefeated upto(X,Z),

outN(Y );
undefeated upto(X,Y ) ← succ(Z, Y ),undefeated upto(X,Z),

not defeat(Y,X);
not in rangeN(X) ← sup(Y ), outN(X),undefeated upto(X,Y );
in rangeN(X) ← inN(X);
in rangeN(X) ← outN(X), inN(Y ),defeat(Y,X) }.

π+
eq = { eqp upto(X) ← inf(X), in range(X), in rangeN(X);

eqp upto(X) ← inf(X),not in range(X),not in rangeN(X);
eqp upto(X) ← succ(Z,X), in range(X), in rangeN(X), eqp upto(Z);
eqp upto(X) ← succ(Y,X),not in range(X),not in rangeN(X),

eqp upto(Y );
eqplus ← sup(X), eqp upto(X) }.

Proposition 2. For any AF F , stg(F ) ∼= AS(πstg(F̂ )), where πstg = πcf ∪π< ∪
πrange ∪ πrangeN ∪ π+

eq ∪ πsatstage .

3.2 Meta ASP Encodings

The following encodings for preferred, semi-stable and stage semantics are
written using the #minimize statement when evaluated with the subset-
minimization semantics provided by metasp. For our encodings we do not need
prioritization and weights, therefore these are omitted (i.e. set to default) in the
minimization statements. The minimization technique is realized through meta
programming techniques, which themselves are answer-set programs. This works
as follows: The ASP encoding to solve is given to the grounder gringo which
reifies the program, i.e. outputs a ground program consisting of facts, which
represent the rules and facts of the original input encoding. The grounder is
then again executed on this output with the meta programs which encode the
optimization. Finally, claspD computes the answer sets. Note that here we use
the version of clasp which supports disjunctive rules. Therefore for a program
π and an AF F we have the following execution.

gringo --reify π(F̂ ) | \
gringo - {meta.lp,metaO.lp,metaD.lp} \
<(echo "optimize(1,1,incl).") | claspD 0
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Here, meta.lp, metaO.lp and metaD.lp are the encodings for the minimization
statement. The statement optimize(incl,1,1) indicates that we use subset
inclusion for the optimization technique using priority and weight 1.

We now look at the encodings for the preferred, semi-stable and stage seman-
tics using this minimization technique. First, we need one auxiliary module for
admissible extensions.

πadm = πcf ∪ {defeated(X) ← in(Y ),defeat(Y,X);
← in(X),defeat(Y,X),not defeated(Y )}.

Now the modules for preferred, semi-stable and stage semantics are easy to
encode using the minimization statement of metasp. For the preferred semantics
we take the module πadm and minimize the out/1 predicate. This in turn gives
us the subset-maximal admissible extensions which captures the definition of
preferred semantics. The encodings for the semi-stable and stage semantics are
similar. Here we minimize the predicate not in range/1 from the πrange module.

πprf metasp = πadm ∪ {#minimize[out]}.

πsem metasp = πadm ∪ πrange ∪ {#minimize[not in range]}.

πstg metasp = πcf ∪ πrange ∪ {#minimize[not in range]}.

The following results follow now directly.

Proposition 3. For any AF F , we have

1. prf (F ) ∼= AS(πprf metasp(F̂ )),
2. sem(F ) ∼= AS(πsem metasp(F̂ )), and
3. stg(F ) ∼= AS(πstg metasp(F̂ )).

Next we give two different encodings for computing resolution-based grounded
extensions. Both encodings use subset-minimization for the resolution part, i.e.
the resulting extension is subset-minimal with respect to all possible resolutions.
The difference between the two encodings is that the first one computes the
grounded extension for the guessed resolution explicitly (making use of loop-
ing concepts presented already in [11]). The second encoding uses the metasp
subset-minimization also to get the grounded extension from the complete exten-
sions of the current resolution (recall that the grounded extension is in fact the
unique subset-minimal complete extension).The module πgrd below for comput-
ing the grounded extension is taken from [11] with a small modification: instead
of the defeat predicate we use defeat minus beta, since we need the grounded
extensions of a restricted defeat relation. In fact, the πres module guesses this
restricted defeat relation {R \ β} for a resolution β.

πres = { defeat minus beta(X,Y ) ← defeat(X,Y ),not defeat minus beta(Y,X),
X �= Y ;

defeat minus beta(X,Y ) ← defeat(X,Y ),not defeat(Y,X);
defeat minus beta(X,X) ← defeat(X,X) }.
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We repeat the definition of πgrd here, which includes the module πdefended .

πdefended = {defended upto(X, Y ) ← inf(Y ), in(X),not defeat minus beta(Y, X);

defended upto(X, Y ) ← inf(Y ), in(Z), defeat minus beta(Z, Y ),

defeat minus beta(Y, X);

defended upto(X, Y ) ← succ(Z, Y ), defended upto(X, Z),

not defeat minus beta(Y, X);

defended upto(X, Y ) ← succ(Z, Y ), in(V ), defeat minus beta(V, Y ),

defeat minus beta(Y, X);

defended(X) ← sup(Y ), defended upto(X, Y )}.

πgrd = π< ∪ πdefended ∪ {in(X) ← defended(X)}.

Now we can give the first encoding for resolution-based grounded semantics.

πgrd∗ metasp = πgrd ∪ πres ∪ {#minimize[in]}.

The second encoding for resolution-based grounded semantics performs the
metasp subset-minimization from the complete extensions of the current res-
olution to compute the grounded extension. We again use the restricted defeat
relation.

πcom = πadm ∪ {undefended(X) ← defeat minus beta(Y,X),not defeated(Y );
← out(X),not undefended(X) }.

We obtain the following metasp encoding:

π′
grd∗ metasp = πcom ∪ πres ∪ {#minimize[in]}.

Proposition 4. For any AF F and π ∈ {πgrd∗ metasp , π′
grd∗ metasp}, grd∗(F )

corresponds to AS(π(F̂ )) in the sense of Definition 5, but without property (iii).

As the proposition suggests there is a caveat for these two encodings of the
resolution-based grounded semantics. In general we have that several answer sets
map to the same extension, i.e. there is no one-to-one correspondence between
answer sets and extensions. The reason for this behavior lies in the guessing of
a resolution. Whereas the other encodings guess basically the in/1 predicate,
these two metasp encodings guess the resolution. Therefore the result might
include the same extension with different resolutions guessed. While this does
not harm credulous or skeptical reasoning, some measures have to be taken to
remove these duplicates when enumerating or counting extensions. The solver
clasp already features such a technique which is presented in [14]. This feature
is not yet implemented in claspD. Furthermore the meta encodings for metasp
use disjunctive ASP, which increases the computational complexity to the sec-
ond level of the polynomial hierarchy, whereas the problem of resolution based
grounded semantics is situated on the first level.
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3.3 Alternative Encodings for Resolution-based Grounded
Semantics

So far, we have shown two encodings for the resolution-based grounded semantics
via optimization programs, i.e. we made use of the #minimize statement under
the subset-inclusion semantics. From the complexity point of view this is not
adequate, since we expressed a problem on the NP-layer (see Table 1) via an
encoding which implicitly makes use of disjunction (see Table 2 for the actual
complexity of optimization programs). Hence, we provide here an alternative
encoding for the resolution-based grounded semantics based on the verification
algorithm proposed by Baroni et al. in [1]. This encoding is just a normal program
and thus located at the right level of complexity.

We need some further notation. For an AF F = (A,R) and a set S ⊆ A we
define F |S = ((A∩S), R∩(S×S)) as the sub-framework of F wrt. S; furthermore
we also use F − S as a shorthand for F |A\S . By SCCs(F ), we denote the set of
strongly connected components of an AF F = (A,R) which identify the vertices
of a maximal strongly connected4 subgraph of F ; SCCs(F ) is thus a partition
of A. A partial order ≺F over SCCs(F ) = {C1, . . . , Cn}, denoted as (Ci ≺F Cj)
for i �= j, is defined, if ∃x ∈ Ci, y ∈ Cj such that there is a directed path from x
to y in F .

Definition 6. A C ∈ SCCs(F ) is minimal relevant (in an AF F ) iff C is a
minimal element of ≺F and F |C satisfies the following:

(a) the attack relation R(F |C) of F is irreflexive, i.e. (x, x) �∈ R(F |C) for all
arguments x;

(b) R(F |C) is symmetric, i.e. (x, y) ∈ R(F |C) ⇔ (y, x) ∈ R(F |C);
(c) the undirected graph obtained by replacing each (directed) pair {(x, y), (y, x)}

in F |C with a single undirected edge {x, y} is acyclic.

The set of minimal relevant SCCs in F is denoted by MR(F ).

Proposition 5. ([1]). Given an AF F = (A,R) such that (F −S+
R ) �= (∅, ∅) and

MR(F − S+
R ) �= ∅, where S = grd(F ), a set U ⊆ A of arguments is resolution-

based grounded in F , i.e. U ∈ grd∗(F ) iff the following conditions hold:

(i) U ∩ S+
R = S;

(ii) (T ∩ ΠF ) ∈ stb(F |ΠF
), where T = U \ S+

R , and ΠF =
⋃

V ∈MR(F−S+
R) V ;

(iii) (T ∩ ΠC
F ) ∈ grd∗(F |ΠC

F
− (S+

R ∪ (T ∩ ΠF )⊕
R)), where T and ΠF are as in

(ii) and ΠC
F = A \ ΠF .

To illustrate the conditions of Proposition 5, let us have a look at our example.

Example 4. Consider the AF F of Example 1. Let us check whether U = {a, d, f}
is resolution-based grounded in F , i.e. whether U ∈ grd∗(F ). S = {a} is the

4 A directed graph is called strongly connected if there is a directed path from each
vertex in the graph to every other vertex of the graph.
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grounded extension of F and S+
R = {a, b}, hence the Condition (i) is satisfied.

We obtain T = {d, f} and ΠF = {c, d}. We observe that T ∩ ΠF = {d} is
a stable extension of the AF F |ΠF

; that satisfies Condition (ii). Now we need
to check Condition (iii); we first identify the necessary sets: ΠC

F = {a, b, e, f},
T ∩ ΠC

F = {f} and (T ∩ ΠF )⊕
R = {c, e}. It remains to check {f} ∈ grd∗({f}, ∅)

which is easy to see. Hence, U ∈ grd∗(F ).

The following encoding is based on the Guess&Check procedure which was also
used for the encodings in [11]. After guessing all conflict-free sets with the pro-
gram πcf , we check whether the conditions of Definition 6 and Proposition 5 hold.
Therefore the program πarg set makes a copy of the actual arguments, defeats
and the guessed set to the predicates arg set/2,defeatN/3 and inU/2. The first
variable in these three predicates serves as an identifier for the iteration of the
algorithm (this is necessary to handle the recursive nature of Proposition 5). In
all following predicates we will use the first variable of each predicate like this.
As in some previous encodings in this paper, we use the program π< to obtain
an order over the arguments, and we start our computation with the infimum
represented by the predicate inf /1.

πarg set = { arg set(N,X) ← arg(X), inf(N);
inU(N,X) ← in(X), inf(N);
defeatN(N,Y,X) ← arg set(N,X), arg set(N,Y ),defeat(Y,X) }.

We use here the program πdefendedN (which is a slight variant of the program
πdefended ) together with the program πgroundN where we perform a fixed-point
computation of the predicate defendedN/2, as in the definition of the charac-
teristic function FF in Definition 2. The basic difference here is that now, we
use an additional argument N for the iteration step where predicates arg set/2,
defeatN/3 and inS/2 replace arg /1, defeat/2 and in/1.

πdefendedN = { def uN(N,X, Y ) ← inf(Y ), arg set(N,X),not defeatN(N,Y,X);
def uN(N,X, Y ) ← inf(Y ), inS(N,Z),defeatN(N,Z, Y ),

defeatN(N,Y,X);
def uN(N,X, Y ) ← succ(Z, Y ),not defeatN(N,Y,X),

def uN(N,X,Z);
def uN(N,X, Y ) ← succ(Z, Y ),def uN(N,X,Z), inS(N,V ),

defeatN(N,V, Y ),defeatN(N,Y,X)
defendedN(N,X) ← sup(Y ),def uN(N,X, Y ) }.

In πgroundN we then obtain the predicate inS(N,X) which identifies argument
X to be in the grounded extension of the iteration N .

πgroundN = πcf ∪π< ∪πarg set ∪πdefendedN ∪{ inS(N,X) ← defendedN(N,X) }.

The next module πF minus range computes the arguments in (F−S+
R ), represented

by the predicate notInSplusN/2, via predicates in SplusN/2 and u cap Splus/2



Making Use of Advances in Answer-Set Programming 127

(for S+
R and U ∩ S+

R ). The two constraints check condition (i) of Proposition 5.

πF minus range = { in SplusN(N,X) ← inS(N,X);
in SplusN(N,X) ← inS(N,Y ),defeatN(N,Y,X);
u cap Splus(N,X) ← inU(N,X), in SplusN(N,X);
← u cap Splus(N,X),not inS(N,X);
← not u cap Splus(N,X), inS(N,X);
notInSplusN(N,X) ← arg set(N,X),not in SplusN(N,X) }.

The module πMR computes ΠF =
⋃

V ∈MR(F−S+
R) V , where mr(N,X) denotes

that an argument is contained in a set V ∈ MR. Therefore we need to check
all three conditions of Definition 6. The first two rules compute the predicate
reach(N,X, Y ) if there is a path between the arguments X,Y ∈ (F −S+

R ). With
this predicate we will identify the SCCs. The third rule computes self defeat/2
for all arguments violating Condition (a). Next we need to check Condition (b).
With nsym/2 we obtain those arguments which do not have a symmetric attack
to any other argument from the same component. Condition (c) is a bit more
tricky. With predicate reachnotvia/4 we say that there is a path from X to Y
not going over argument V in the framework (F − S+

R ). With this predicate at
hand we can check for cycles with cyc/4. Then, to complete Condition (c) we
derive bad/2 for all arguments which are connected to a cycle (or a self-defeating
argument). In the predicate pos mr/2, we put all the three conditions together
and say that an argument x is possibly in a set V ∈ MR if (i) x ∈ (F − S+

R ),
(ii) x is neither connected to a cycle nor self-defeating, and (iii) for all y it holds
that (x, y) ∈ (F −S+

R ) ⇔ (y, x) ∈ (F −S+
R ). Finally we only need to check if the

SCC obtained with pos mr/2 is a minimal element of ≺F . Hence we get with
notminimal/2 all arguments not fulfilling this, and in the last rule we obtain
with mr/2 the arguments contained in a minimal relevant SCC.

πMR ={ reach(N, X, Y ) ← notInSplusN(N, X), notInSplusN(N, Y ), defeatN(N, X, Y );

reach(N, X, Y ) ← notInSplusN(N, X), defeatN(N, X, Z), reach(N, Z, Y ),

X! = Y ;

self defeat(N, X) ← notInSplusN(N, X), defeatN(N, X, X);

nsym(N, X) ← notInSplusN(N, X), notInSplusN(N, Y ), defeatN(N, X, Y ),

not defeatN(N, Y, X), reach(N, X, Y ), reach(N, Y, X), X! = Y ;

nsym(N, Y ) ← notInSplusN(N, X), notInSplusN(N, Y ), defeatN(N, X, Y ),

not defeatN(N, Y, X), reach(N, X, Y ), reach(N, Y, X), X! = Y ;

reachnotvia(N, X, V, Y ) ← defeatN(N, X, Y ), notInSplusN(N, V ),

reach(N, X, Y ), reach(N, Y, X), X! = V, Y ! = V ;

reachnotvia(N, X, V, Y ) ← reachnotvia(N, X, V, Z), reach(N, X, Y ),

reachnotvia(N, Z, V, Y ), reach(N, Y, X),

Z! = V, X! = V, Y ! = V ;

cyc(N, X, Y, Z) ← defeatN(N, X, Y ), defeatN(N, Y, X),

defeatN(N, Y, Z), defeatN(N, Z, Y ),
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reachnotvia(N, X, Y, Z), X! = Y, Y ! = Z, X! = Z;

bad(N, Y ) ← cyc(N, X, U, V ), reach(N, X, Y ), reach(N, Y, X);

bad(N, Y ) ← self defeat(N, X), reach(N, X, Y ), reach(N, Y, X);

bad(N, Y ) ← nsym(N, X), reach(N, X, Y ), reach(N, Y, X);

pos mr(N, X) ← notInSplusN(N, X),not bad(N, X),not self defeat(N, X),

not nsym(N, X);

notminimal(N, Z) ← reach(N, X, Y ), reach(N, Y, X),

reach(N, X, Z),not reach(N, Z, X);

mr(N, X) ← pos mr(N, X),not notminimal(N, X) }.

We now turn to Condition (ii) of Proposition 5, where the first rule in πstableN

computes the set T = U\S+
R . Then we check whether T = ∅ and MR(F−S+

R ) = ∅
via predicates emptyT/1 and not exists mr/1. If this is so, we terminate the
iteration in the last module πiterate . The first constraint eliminates those guesses
where MR(F − S+

R ) = ∅ but T �= ∅, because the algorithm is only defined for
AFs fulfilling this. Finally we derive the arguments which are defeated by the set
T in the MR denoted by defeated/2, and with the last constraint we eliminate
those guesses where there is an argument not contained in T and not defeated
by T in MR and hence (T ∩ ΠF ) �∈ stb(F |ΠF

).

πstableN = { t(N,X) ← inU(N,X),not inS(N,X);
nemptyT(N) ← t(N,X);
emptyT(N) ← not nemptyT(N), arg set(N,X);
existsMR(N) ← mr(N,X),notInSplusN(N,X);
not exists mr(N) ← not existsMR(N),notInSplusN(N,X);
true(N) ← emptyT(N),not existsMR(N);
← not exists mr(N),nemptyT(N);
defeated(N,X) ← mr(N,X),mr(N,Y ), t(N,Y ),defeatN(N,Y,X);
← not t(N,X),not defeated(N,X),mr(N,X) }.

With the last module πiterate we perform Step (iii) of Proposition 5. The predi-
cate t mrOplus/2 computes the set (T ∩ΠF )⊕

R and with the second rule we start
the next iteration for the AF (F |ΠC

F
− (S+

R ∪ (T ∩ΠF )⊕
R)) and the set (T ∩ΠC

F ).

πiterate = { t mrOplus(N,Y ) ← t(N,X),mr(N,X),defeatN(N,X, Y );
arg set(M,X) ← notInSplusN(N,X),not mr(N,X),

not t mrOplus(N,X), succ(N,M),not true(N);
inU(M,X) ← t(N,X),not mr(N,X), succ(N,M),not true(N) }.

Finally we put everything together and obtain the program πgrd∗ .

πgrd∗ = πgroundN ∪ πF minus range ∪ πMR ∪ πstableN ∪ πiterate .

Proposition 6. For any AF F , grd∗(F ) ∼= AS(πgrd∗(F̂ )).
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4 Experimental Evaluation

In this section we present our results of the performance evaluation. We com-
pared the time needed for computing all extensions for the semantics described
earlier, using both the handcraft saturation-based and the alternative metasp
encodings.

The tests were executed on an openSUSE based machine with eight Intel
Xeon processors (2.33 GHz) and 49 GB memory. For computing the answer
sets, we used gringo (version 3.0.3) for grounding and the solver claspD (version
1.1.1). The latter being the variant for disjunctive answer-set programs.

We randomly generated AFs (i.e. graphs) ranging from 20 to 110 arguments.
We used two parametrized methods for generating the attack relation. The first
generates arbitrary AFs and inserts for any pair (a, b) the attack from a to b
with a given probability p. The other method generates AFs with an n×m grid-
structure. We consider two different neighborhoods, one connecting arguments
vertically and horizontally and one that additionally connects the arguments
diagonally. Such a connection is a mutual attack with a given probability p
and in only one direction otherwise. The probability p was chosen between 0.1
and 0.4.

Overall 14388 tests were executed, with a timeout of five minutes for each
execution. Timed out instances are considered as solved in 300 seconds. The
time consumption was measured using the Linux time command. For all the
tests we let the solver generate all answer sets, but only outputting the number
of models. To minimize external influences on the test runs, we alternated the
different encodings during the tests.

Figures 1, 2 and 3 depict the results for the preferred, semi-stable and stage
semantics respectively. The figures show the average computation time for both
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Fig. 1. Average computation time for preferred semantics.
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Fig. 2. Average computation time for semi-stable semantics.
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Fig. 3. Average computation time for stage semantics.

the handcraft and the metasp encoding for a certain number of arguments. We
distinguish here between arbitrary, i.e. completely random AFs and grid struc-
tured ones. One can see that the metasp encodings have a better performance,
compared to the handcraft encodings. In particular, for the stage semantics the
performance difference is noticeable. Recall that the average computation time
includes the timeouts, which strongly influence the diagrams.
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For the resolution-based grounded semantics, Fig. 4 shows again the aver-
age computation time needed for a certain number of arguments. Let us first
consider the case of arbitrary AFs. The handcraft encoding struggled with AFs
of size 40 or larger. Many of those instances could not be solved due to mem-
ory faults. This is indicated by the missing data points. Both metasp encodings
performed better overall, but still many timeouts were encountered. If we look
more closely at the structured AFs then we see that π′

grd∗ metasp performs better
overall than the other metasp variant. Interestingly, computing the grounded
part with a handcraft encoding without a Guess&Check part did not result in
a lower computation time on average. The handcraft encoding performed better
than πgrd∗ metasp on grids.

One reason for the performance problems of the handcraft encoding lies in
the relatively high arity of some predicates. The encoding uses predicates with
up to four variables, in contrast to the encoding for e.g. the stage semantics
which needs only predicates with up to three variables. This can increase the
time needed for grounding drastically. On the other side, the metasp encodings,
as mentioned in Proposition 4, suffer from the fact that the answer sets are not
in a one-to-one correspondence to the solutions, i.e. several answer sets may
represent the same extension.

Overall the metasp encodings outperform the direct encodings. This is par-
tially due to the fact that the former utilize encodings tailored to the
gringo/claspD package.



132 W. Dvořák et al.

5 Conclusion

In this paper, we inspected various ASP encodings for four prominent semantics
in the area of abstract argumentation. (1) For the preferred and the semi-stable
semantics, we compared existing saturation-based encodings [11] (here we called
them handcrafted encodings) with novel alternative encodings which are based
on the recently developed metasp approach [13], where subset-minimization can
be directly specified and a front-end (i.e. a meta-interpreter) compiles such state-
ments back into the core ASP language. (2) For the stage semantics, we presented
here both a handcrafted and a metasp encoding. Finally, (3) for the resolution-
based grounded semantics we provided three novel encodings, two of them using
the metasp techniques.

While with some performance optimization techniques for ASP the readabil-
ity of the encodings change for the worse, the metasp encodings are shorter than
the handcrafted saturation encodings. Furthermore, they are much simpler to
design (since saturation techniques are delegated to the meta-interpreter), and
they perform surprisingly well when compared with the handcrafted encodings
which are directly given to the ASP solver. This shows the practical relevance of
the metasp technique also in the area of abstract argumentation. Future work
will be to investigate performance improvements of other optimization features
like aggregates, which are provided by most of the prominent ASP solvers.
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