
The SeaLion has Landed:
An IDE for Answer-Set

Programming—Preliminary Report

Johannes Oetsch, Jörg Pührer1(B), and Hans Tompits

Institut für Informationssysteme 184/3,
Technische Universität Wien,

Favoritenstraße 9-11, 1040 Vienna, Austria
{oetsch, puehrer, tompits}@kr.tuwien.ac.at

Abstract. We report about the current state and designated features of
the tool SeaLion, aimed to serve as an integrated development environ-
ment (IDE) for answer-set programming (ASP). A main goal of SeaLion
is to provide a user-friendly environment for supporting a developer to
write, evaluate, debug, and test answer-set programs. To this end, new
support techniques have to be developed that suit the requirements of
the answer-set semantics and meet the constraints of practical applica-
bility. In this respect, SeaLion benefits from the research results of a
project on methods and methodologies for answer-set program develop-
ment in whose context SeaLion is realised. Currently, the tool provides
source-code editors for the languages of Gringo and DLV that offer syn-
tax highlighting, syntax checking, refactoring functionality, and a visual
program outline. Further implemented features are a documentation gen-
erator, support for external solvers, and visualisation as well as visual
editing of answer sets. SeaLion comes as a plugin of the popular Eclipse
platform and provides itself interfaces for future extensions of the IDE.

1 Introduction

Answer-set programming (ASP) is a well-known and fully declarative problem-
solving paradigm based on the idea that solutions to computational problems
are represented in terms of logic programs such that the models of the latter,
referred to as their answer sets, provide the solutions of a problem instance (for
an overview about ASP, we refer to a survey article by Gelfond and Leone [1]
or to the well-known textbook by Baral [2]). In recent years, the expressibility
of languages supported by answer-set solvers increased significantly [3]. As well,
ASP solvers have become much more efficient; e.g., the solver Clasp proved to
be competitive with state-of-the-art SAT solvers [4].

Despite these improvements in solver technology, a lack of suitable engi-
neering tools for developing programs is still a handicap for ASP towards gain-
ing widespread popularity as a problem-solving paradigm. This issue is clearly

This work was partially supported by the Austrian Science Fund (FWF) under
project P21698.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 305–324, 2013.
DOI: 10.1007/978-3-642-41524-1 19, c© Springer-Verlag Berlin Heidelberg 2013

306 J. Oetsch et al.

recognised in the ASP community, and work to fill this gap has started recently,
addressing issues like debugging, testing, and the modularity of programs
[5–13]. Additionally, in order to facilitate tool support as known for other pro-
gramming languages, attempts to provide integrated development environments
(IDEs) have been put forth. Work in this direction includes the systems APE [14],
ASPIDE [15], and iGROM [16].

Following this endeavour, in this paper, we describe the current status and
designated features of a further IDE, SeaLion, developed as part of an ongo-
ing research project on methods and methodologies for developing answer-set
programs [17].

SeaLion is designed as an Eclipse plugin, providing useful and intuitive
features for ASP. Besides experts, the target audience for SeaLion are soft-
ware developers new to ASP yet who are familiar with support tools as used
in procedural and object-oriented programming. Our goal is to fully support
the languages of the current state-of-the-art solvers Clasp (in conjunction with
Gringo) [3,18] and DLV [19], which distinguishes SeaLion from the other IDEs
mentioned above which support only a single solver. Indeed, APE [14], which is
also an Eclipse plugin, supports only the language of Lparse [20] that is a subset
of the language of Gringo, whilst ASPIDE [15], a recently developed standalone
IDE, offers support for DLV programs only. Although iGROM provides basic func-
tionality for the languages of both Lparse and DLV [16], it currently does not
support the latest version of DLV or the full syntax of Gringo.

At present, SeaLion is in a beta version that implements important core
functionality and some advanced features. In particular, the languages of DLV
and Gringo are supported to a large extent. The individual parsers translate
programs and answer sets to data structures that are part of a rich and flex-
ible framework for internally representing program elements. Based on these
structures, the editor provides syntax highlighting, syntax checks, error report-
ing, error highlighting, and automatic generation of a program outline. A handy
implemented refactoring feature allows for uniform and safe renaming of predi-
cates and terms throughout a program and even across multiple files. There is
functionality to manage external tools such as answer-set solvers and to define
arbitrary pipes between them (as needed when using separate grounders and
solvers). Moreover, in order to run an answer-set solver on the created programs,
launch configurations can be created in which the user can choose input files, a
solver configuration, command line arguments for the solver, as well as output-
processing strategies. Answer sets resulting from a launch can either be parsed
and stored in a view for interpretations, or the solver output can be displayed
unmodified in Eclipse’s built-in console view.

Another key feature of SeaLion is the capability for the visualisation and
visual editing of interpretations. This follows ideas from the visualisation tools
ASPVIZ [21] and IDPDraw [22], where a visualisation program ΠV (itself being an
answer-set program) is joined with an interpretation I that shall be visualised.
Subsequently, the overall program is evaluated using an answer-set solver, and
the visualisation is generated from a resulting answer set. However, the editing

The SeaLion has Landed: An IDE for Answer-Set Programming 307

feature of SeaLion allows also to graphically manipulate the interpretations
under consideration which is neither supported by ASPVIZ nor by IDPDraw. The
visualisation functionality of SeaLion is itself represented as an Eclipse plugin,
called Kara.1 In this paper, however, we describe only the basic functionality of
Kara; a full description is given in a companion paper [23].

SeaLion integrates the documentation generator ASPDoc for ASP that is
based on Lana (Language for ANnotating Answer-set programs), an annotation
language for structuring, documenting, and testing answer-set programs [24].

The remainder of the paper is outlined as follows. In the next section, we
shortly review the ASP solver languages supported by SeaLion. We discuss the
general structure of the IDE, design choices regarding the implementation, as
well as how to obtain SeaLion in Sect. 3. Section 4 gives an overview about
features that are already functional in SeaLion, whereas Sect. 5 provides an
outlook over functionality that is planned to be integrated in the future. In
Sect. 6, we discuss other systems related to SeaLion, and we conclude in Sect. 7.

2 Supported ASP Languages

As we focus on supporting ASP developers, we deal with concrete solver lan-
guages and refer the reader to the textbook by Baral [2] for a formal introduction
to ASP.

SeaLion offers support for the two major ASP solver language families, viz.
the input language of the grounding tool Gringo that extends the one of the
Lparse grounder and the language of the DLV solver. Both share a common
basic Prolog-style rule syntax. In brief, an answer-set program consists of rules
of the form

a1 | · · · | al :− al+1, . . . , am, not am+1, . . . , not an,

where n ≥ m ≥ l ≥ 0, “not” denotes default negation, all ai are first-order
literals (i.e., atoms possibly preceded by the strong negation symbol “−”), and
“|” is the disjunction symbol (DLV additionally allows for denoting disjunction
by the letter “v”). For a rule r as above, the expression left to the symbol “:−”
is the head of r and the expression to the right of “:−” is the body of r. If n = l,
r is a fact ; if r contains no disjunction, r is normal ; and if l = 0 and n > 0, r is
a constraint. For facts, the symbol “:− ” is usually omitted.

Despite the common basic rule syntax, the languages of Gringo and DLV differ
substantially when it comes to extended features. For one thing, aggregation in
Gringo is realised by weight constraint literals that assign weights to literals
such that the sum of the weights of true literals must lie between given bounds.
For example, consider the weight literal

2 [a=1, b=1, c=3] 4,

1 The name derives, with all due respect, from “Kara Zor-El”, the native Kryptonian
name of Supergirl, given that Kryptonians have visual superpowers on Earth.

308 J. Oetsch et al.

assigning atoms a and b weight 1 and atom c weight 3. The weight literal is true
when the sum of the weights of true atoms is between 2 and 4, i.e., when a and
b are true but c is not, or if c and at most one of a and b are true. Aggregates
in DLV, on the other side, are based on functions over so-called symbolic sets
that are pairs of (a list of) variables and a conjunction of literals in which these
variables appear. For example, the aggregate

2 <= #sum {X : a(X) } <= 4

is true if the sum of all (integer) constants c such that a(c) is true is between
2 and 4. Hence, the aggregate is, e.g., true if a(1) and a(3) but no other
atom of predicate a is true. As can be seen from the example, DLV aggre-
gates require the use of variables but Gringo weight constraint literals assign
weights to ground literals. Variables in weight constraints are handled using
so-called conditions that can also be used for ordinary literals in Gringo but
are not available in DLV. For example, during grounding, the literal
redEdge(X,Y):edge(X,Y):red(X):red(Y) in the body of a rule is replaced
by the list of all literals redEdge(n1,n2), where edge(n1,n2), red(n1), and
red(n2) can be derived.

Further syntactic differences between the languages of Gringo and DLV are
related to finding optimal answer sets. DLV uses special rules, called weak con-
straints, for optimisation, while Gringo uses minimise and maximise statements.
While filtering atoms in the output can be done by hide and show statements in
the case of Gringo, command-line arguments are needed in the case of DLV. For
a more detailed description of the solver languages, we refer to the respective
user manuals [25,26].

3 Implementation Principles, Architecture,
and Availability

A key aspect in the design of SeaLion is extensibility. That is, on the one hand,
we want to have enough flexibility to handle further ASP languages such that
previous features can deal with them with no or only little adaption. On the
other hand, we want to provide a powerful API framework that can be used by
future features. To this end, we defined a hierarchy of classes and interfaces that
represent program elements, i.e., fragments of ASP languages. This is done in
a way such that we can use common interfaces and base classes for represent-
ing similar program elements of different ASP languages. For instance, we have
different classes for representing literals of the Gringo language and literals of
the DLV language in order to be able to handle subtle differences. For example,
as DLV is unaware of conditions, an object of class DLVStandardLiteral has
no support for them, whereas a GringoStandardLiteral object keeps a list of
condition literals. Substantial differences in other language features, like aggre-
gates, optimisation, and filtering support, are also reflected by different classes
for Gringo and DLV, respectively. However, whenever possible, these classes are

The SeaLion has Landed: An IDE for Answer-Set Programming 309

Fig. 1. Technology stack of SeaLion. An arrow indicates that a module is required by
another.

derived from a common base class or share common interfaces. Therefore, plu-
gins can, for example, use a general interface for aggregate literals to refer to
aggregates of both languages. Hence, current and future feature implementations
can make use of high-level interfaces and stay independent of the concrete ASP
language to a large extent.

Also, within the SeaLion implementation, the aim is to have independent
modules for different features, in form of Eclipse plugins, that ensure a well-
structured code. Currently, there are the following plugins: the main plugin, a
plugin that adapts the ANTLR parsing framework [27] to our needs, two solver
plugins, one for supporting Gringo/Clasp and one for DLV, and the Kara plugin
for answer-set visualisation and visual editing. Figure 1 depicts the technology
stack of SeaLion, illustrating the embedding in Eclipse and the Java Runtime
Environment (JRE), the aforementioned plugins, as well as the use of answer-set
solvers as external applications.

It is a key aim to smoothly integrate SeaLion in the Eclipse platform and to
make use of functionality the latter provides wherever suitable. The motivation
is to exploit the rich platform as well as to ensure compatibility with upcoming
versions of Eclipse.

The decision to build on Eclipse, rather than writing a stand-alone applica-
tion from scratch, has many benefits. For one, we profit from software reuse as we
can make use of the general GUI of Eclipse and just have to adapt existing func-
tionality to our needs. Examples include the text editor framework, source-code
annotations, problem reporting and quick fixes, project management, the undo-
redo mechanism, the console view, the refactoring and the navigation framework
(Outline, Project Explorer), and launch configurations. Moreover, much func-
tionality of Eclipse can be used without any adaptions, e.g., workspace man-
agement, the possibility to define working sets, i.e., grouping arbitrary files and
resources together, software versioning and revision control (e.g., based on SVN
or CVS), and task management. Another clear benefit is the popularity of Eclipse
among software developers, as it is a widely used standard tool for developing
Java applications. Arguably, people who are familiar with Eclipse and basic ASP
skills will easily adapt to SeaLion. Finally, choosing Eclipse for an IDE for ASP
offers a chance for integration of development tools for hybrid languages, i.e.,
combinations of ASP and procedural languages. For instance, Gringo supports

310 J. Oetsch et al.

the use of functions written in the LUA scripting language [28]. As there is a LUA
plugin for Eclipse available, one can at least use that in parallel with SeaLion.
However, there is also potential for a tighter integration of the two plugins.

SeaLion is free software published under the GNU General Public License
version 3. For more information on SeaLion and installation instructions we
refer to the project web site

http://www.sealion.at.

4 Current Features

In this section, we describe the features that are already operational in SeaLion,
including technical details on the implementation.

4.1 Source-Code Editor

The central element in SeaLion is the source-code editor for logic programs. For
now, it comes in two variations, one for DLV and one for Gringo. A screenshot
of a Gringo source file in SeaLion’s editor is given in Fig. 2. By default, files

Fig. 2. A screenshot of SeaLion’s editor, the program outline, and the interpretation
view.

http://www.sealion.at

The SeaLion has Landed: An IDE for Answer-Set Programming 311

with names ending in “.lp”, “.lparse”, “.gr”, or “.gringo” are opened in the
Gringo editor, whereas files with extensions “.dlv” or “.dl” are opened in the
DLV editor. Nevertheless, any file can be opened in either editor if required.

The editors provide syntax highlighting, which is computed in two phases.
Initially, a fast syntactic check provides initial colouring and styling for comments
and common tokens like dots concluding rules and the rule implication symbol.
While editing the source code, after a few moments of user inactivity, the source
code is parsed and data structures representing the program are computed and
stored for various purposes. The second phase of syntax highlighting is already
based on this program representation and allows for fine-grained highlighting
depending not only on the type of the program element but also on its role. For
instance, a literal that is used in the condition of another literal is highlighted
in a different way than stand-alone literals.

The parsers used are based on the ANTLR framework [27] and are in some
respect more lenient than the respective solver parsers. For one thing, they are
more tolerant towards syntax errors. For instance, in many cases they accept
terms of various types (constants, variables, aggregate terms) where a solver
requires a particular type, like a variable. The errors will still be noticed, during
building the program representation or afterwards, by means of explicit checks.
This tolerance allows for more specific warning and error reporting than provided
by the solvers. For example, the system can warn a user that a constant was used
on the left-hand side of an assignment where only a variable is allowed. Another
parsing difference is the handling of comments. The parser does not throw them
away but collects them and associates them to the program elements in their
immediate neighbourhood. One benefit is that the information contained in com-
ments can be kept when performing automatic transformations on the program,
like rule reorderings or translations to other logic programming dialects. Another
advantage is that we can make use of comments for enriching the language with
our own meta statements that do not interfere with the solver when running the
file. We reserved the token “\%!” for initiating single-line meta commands and
“\%*!” and “*\%” for the start and end of block meta commands in the Gringo
editor, respectively. Currently, meta commands are used for assigning properties
to program elements.

Example 1. In the following source code, a meta statement assigns the name
“r1” to the rule it precedes.

%! name = r1;
a(X) :- c(X).

These names are currently used in an ancillary application of SeaLion for reifying
disjunctive non-ground programs as used in a previous debugging approach [10].
Moreover, names assigned to program elements as above can be seen in Eclipse’s
Outline View. SeaLion uses this view to give an overview of the edited program in
a tree-shaped graphical representation. The rules of the programs are represented
by nodes of this tree. By expanding the descendant nodes of an individual rule
node, one can see its elements, i.e., head, body, literals, predicates, terms, etc.

312 J. Oetsch et al.

(cf. Fig. 2). Clicking on such an element selects the corresponding program code
in the editor, and the programmer can proceed editing there. A similar outline
is also available in Eclipse’s “Project Explorer” as subtree under the program’s
source file.

Another feature of the editor is the support for Eclipse annotations. These are
means to temporarily highlight parts of the source code. For instance, SeaLion
annotates occurrences of the program element under the text cursor. If the cursor
is positioned over a literal, all literals of the same predicate are highlighted in the
text and in a bar next to the vertical scrollbar that indicates the positions of all
occurrences in the overall document. Likewise, when a constant or a variable in
a rule is on the cursor position, their occurrences are detected within the whole
source code or within the rule, respectively.

A particular application of Eclipse annotations is problem reporting. Syn-
tax errors and warnings are displayed in two ways. First, they are marked in
the source code with a zig-zag styled underline. Second, they are displayed in
Eclipse’s “Problem View” that collects various kinds of problems and allows for
directly jumping to the problematic source code region upon a mouse click.

SeaLion offers initial functionality for refactoring answer-set programs.
Refactoring is the process of improving the source code of a program, e.g., by
enhancing its structure, reusability, or readability, without changing its exter-
nal behaviour. In particular, we implemented functionality for uniform and safe
renaming of predicates, constants, function symbols, and variables throughout
a user-defined set of files containing answer-set programs. To initiate renaming,
the user can either select the targeted program element in the Outline View or
place the cursor on it within the editor and use the menu or a keyboard shortcut
to open the renaming dialog. On the dialog’s first page, the user can specify
the new name for the program element and select the files in which renaming
should take place. When renaming variables, however, the latter choice is not
available because variables are only renamed within a rule and therefore within
the same file in which the chosen variable appears. The motivation is that two
variables with the same identifier in different rules often have a different mean-
ing. The renaming dialog warns the user if the new name of the program element
is already in use anywhere else in the selected programs. As such a renaming still
could be intended, it is possible to perform renaming, nevertheless. Once the new
name is chosen, the user has the possibility to directly apply the changes implied
by renaming or revise them on a preview page. Here, one can inspect the effects
file by file where the original as well as the new source code are displayed next
to each other and all hypothetical changes are highlighted as depicted in Fig. 3.

4.2 Documentation Feature

SeaLion allows for automatically generating source code documentation for
answer-set programs, similar as tools like JavaDoc or Doxygen do for other
programming languages. For this purpose, the IDE incorporates the ASPDoc doc-
umentation generator, a recently developed tool that takes annotated ASP code
as input and produces HTML files as output, based on the Lana annotation

The SeaLion has Landed: An IDE for Answer-Set Programming 313

Fig. 3. Reviewing file changes implied by renaming predicate col/2 to column/2.

language [24]. Lana is designed to support the development of answer-set pro-
grams even beyond documentation, allowing to group rules into coherent blocks
and to specify language signatures, types, pre- and postconditions, as well as unit
tests for such blocks. Similar to meta commands in SeaLion, these annotations
are invisible to an ASP solver since they have the form of program comments,
but they can be interpreted by specialised support tools, e.g., for testing and
verification purposes or for eliminating sources of common programmer errors
by realising syntax checking or code-completion features. The following example
code demonstrates Lana annotations for grouping ASP code into blocks and
describing predicates and their arguments using @atom and @term tags of Lana:

%* @block maze {

%* This is the main block of the maze generation program.

%* @atom entrance(R,C) gives the position of the maze entrance

%* @term R is a row index

%* @with 0 < R, R < 20

%* @term C is a column index

%* @with 0 < R, R < 20

%* ...

empty(R,C) | wall(R,C) :- row(R),col(C).

...

%* }

ASP documentation generation can be accessed through Eclipse’s export
menu. After selecting the ASP programs that should be documented and a tar-
get directory, different HTML files are created with index.html as the entry
point as usual. The documentation contains descriptions of all blocks of the

314 J. Oetsch et al.

answer-set program, where sub-blocks are indented with respect to their parent
blocks. Also, a summary of the block structure of the entire answer-set program
is presented at the beginning of the documentation to provide an overview. For
each block, descriptions of the used atoms and types of involved terms, as well
as for pre- and postconditions are given. By default, hidden atoms, i.e., atoms
never mentioned in a blocks input nor in its output signature, are displayed if the
user does not decide otherwise. The documentation also includes HTML versions
of the programs’ source code, which can be particularly useful for sharing ASP
code online. There are links from the documentation to the source code and vice
versa. Likewise, rules for defining pre- and postconditions can be inspected by
using respective links.

SeaLion can already parse ASP code annotated by the full Lana language.
Besides the already implemented documentation functionality, it is planned to
integrate further features based on Lana annotations as described in Sect. 5.

4.3 Support for External Tools

In order to interact with solvers and grounders from SeaLion, we implemented
a mechanism for handling external tools. One can define external tool configu-
rations that specify the path to an executable as well as default command-line

Fig. 4. Selecting two source files for ASP solving in Eclipse’s launch configuration
dialog.

The SeaLion has Landed: An IDE for Answer-Set Programming 315

parameters. Arbitrary command-line tools are supported; however, there are spe-
cial configuration types for some programs such as Gringo, Clasp, and DLV. For
these, it is planned to have a specialised GUI that allows for a more convenient
modification of command-line parameters. In addition to external command-line
tools, one can also define tool configurations that represent pipes between exter-
nal tools. This is needed when grounding and solving are provided by separate
executables. For instance, one can define two separate tool configurations for
Gringo and Clasp and define a piped tool configuration for using the two tools
in a pipe. Pipes of arbitrary length are supported such that arbitrary pre- and
post-processing can be done when needed. Default solvers for different languages
can be set in the preference menu of SeaLion depending on file content types in
the “Content Type Preferences” section.

For executing answer-set solvers, we make use of Eclipse’s launch configura-
tion framework. In our setting, a launch configuration defines which programs
should be executed using which solver. Figure 4 shows the page of the launch
configuration editor on which input files for a solver invocation can be selected.

Besides using the standard command-line parameters from the tool configura-
tions, also customised parameters can be set for the individual program launches.
Moreover, a launch configuration contains information how the output of the
solver should be treated. One option is to print the solver output as it is in
Eclipse’s console view. The other option is to parse the resulting answer sets for
further use in SeaLion. In this case, the user can specify the format in which
the answer sets are expected from the solver (as there is no standardised form
for displaying answer sets). Here, default strategies are preselected, depending
on the chosen solver configuration.

Besides defining launch configurations, SeaLion also offers the possibility to
invoke a solver right away on a selection of files in the workspace using the
default settings of an external tool configuration. This is realised using the so-
called Launch Shortcuts mechanism of Eclipse. The user selects the files that
should be evaluated in the project explorer and select the SeaLion entry of
their “Run As” context menu. The entry is available as soon as an external tool
configuration is set as default solver for the selected file content type.

4.4 Interpretation Views

When the user decides to parse answer sets obtained from the solvers, they are
stored in SeaLion’s interpretation view as well as the interpretation compare
view that is depicted in Fig. 5. In both, interpretations are visualised as expand-
able trees of depth 3. The root node is the interpretation (marked by an “I”)
and its children are the predicates (marked by a “p”) appearing in the interpre-
tation. Finally, each of these predicates is the parent node of the literals over the
predicate that are contained in the interpretation (marked by an “L”). Com-
pared to a standard textual representation, this way of visualising answer sets
provides a well-arranged overview of the individual interpretations. We find it
also more appealing than a tabular representation where only entries for a single
predicate are visible at once. While the interpretation view lists interpretations

316 J. Oetsch et al.

Fig. 5. SeaLion’s interpretation compare view.

in rows, the interpretation compare view places them in columns. By horizon-
tally arranging trees for different interpretations next to each other, it is easy to
compare two or more interpretations.

The two interpretation views are not only meant to provide a good visu-
alisation of results but also serve as a starting point for ASP developing tools
that depend on interpretations. One convenient feature is dragging interpreta-
tions or individual literals from the interpretation views and dropping them on
the source-code editor. When released, these are transformed into facts of the
respective ASP language.

4.5 Visualisation and Visual Editing

The plugin Kara [23] is a tool for the graphical visualisation and editing of inter-
pretations. It is started from the interpretation view. One can select an inter-
pretation for visualisation by right-clicking it in the view and choosing between
a generic visualisation or a customised visualisation. The latter is specified by
the user by means of a visualisation answer-set program. The former represents
the interpretation as a labelled hypergraph.

In the generic visualisation, the nodes of the hypergraph are the individuals
appearing in the interpretation. Each edge represents a literal in the interpreta-
tion, connecting the individuals appearing in the respective literal. Integer labels
on the endings of an edge are used for expressing the argument position of the
individual. In order to distinguish between different predicates, each edge has an
additional label stating the predicate name. Moreover, edges of the same predi-
cate are of the same colour. An example of a generic visualisation of a spanning

The SeaLion has Landed: An IDE for Answer-Set Programming 317

Fig. 6. A screenshot of SeaLion’s visual interpretation editor.

tree interpretation is shown in Fig. 6 (the layout of the graph has been manually
optimised in the editor).

The customised visualisation feature allows for specifying how the interpre-
tation should be illustrated by means of an answer-set program that uses a
powerful pre-defined visualisation vocabulary. The approach follows the ideas
of ASPVIZ [21] and IDPDraw [22]: a visualisation program ΠV is joined with
the interpretation I to be visualised (technically, I is considered to be a set of
facts) and evaluated using an answer-set solver. One of the resulting answer sets
is then interpreted by SeaLion for building the graphical representation of I.
The vocabulary allows for using and positioning basic graphical elements such
as lines, rectangles, polygons, labels, and images, as well as graphs and grids
composed of such elements.

The resulting visual representation of an interpretation is shown in a graph-
ical editor that also allows for manipulating the visualisation in many ways.
Properties such as colours, IDs, and labels can be manipulated and graphical
elements can be repositioned, deleted, or even created. Such manipulations are
useful for two different purposes. First, for fine-tuning the visualisation before
saving it as a scalable vector graphic (SVG) by means of our SVG export

318 J. Oetsch et al.

Fig. 7. A customised visualisation of an 8-queens instance.

functionality. Second, modifying the visualisation can be used to obtain a modi-
fied version I ′ of the visualised interpretation I by abductive reasoning. In fact,
we implemented a feature that allows for abducing an interpretation that would
result in the modified visualisation. Modifications in the visual editor are auto-
matically reflected in an adapted version I ′

V of the answer set IV representing
the visualisation. We then construct an answer-set program λ(I ′

V ,ΠV), depend-
ing on the modified visualisation answer set I ′

V and the visualisation program
ΠV , for obtaining the modified interpretation I ′ as a projected answer set of
λ(I ′

V ,ΠV). For more details, we refer to a companion paper [23]. An example
for a customised visualisation for a solution to the 8-queens problem is given in
Fig. 7.

5 Projected Features

In the following, we give an overview of further functionality that we plan to
incorporate into SeaLion in the near future.

One core feature that is already under development is the support for
stepping-based debugging of answer-set programs as introduced in recent work

The SeaLion has Landed: An IDE for Answer-Set Programming 319

[29]. Here, we aim for an intuitive and easy-to-handle user interface, which is
clearly a challenge to achieve for reasons intrinsic to ASP. In particular, the dis-
crepancy between developing programs at the non-ground level and obtaining
solutions based on their groundings makes the realisation of practical debugging
tools for ASP non-trivial.

As mentioned earlier, our goal is to develop more SeaLion features, besides
the already implemented documentation generator, exploiting Lana annotations
in answer-set programs. Here, one point is that we want to enrich SeaLion with
support for typed predicates which can be specified using Lana. That is, the
user can define the domain for a predicate. For instance, consider the predicate
age/2 stating the age of a person. Then, with typing, we can express that for
every atom age(p,a), the term p represents an element from a set of persons,
whereas a represents an integer value. Two types of domain specifications will be
supported, viz. direct ones, which explicitly state the names of the individuals
of the domain, and indirect ones that allow for specifications in terms of the
domain of other predicates. We expect multiple benefits from having this kind
of information available. First, it is useful as a documentation of the source code.
A programmer can clearly specify the intended meaning of a predicate and look
it up in the type specifications. Moreover, type violations in the source code
of the program can be automatically detected as illustrated by the following
example.

Example 2. Assume we want to define a rule deriving atoms with predicate sym-
bol serves/3, where serves(R,D,P) expresses that restaurant R serves dish D at
price P. Furthermore, the two predicates dishAvailable/2 and price/3 state
which dishes are currently available in which restaurants and the price of a dish
in a restaurant, respectively. Moreover, assume we have type specifications stat-
ing that for serves(R,D,P) and dishAvailable(D,R), R is of type restaurant
and D is of type dish. Then, a potential type violation in the rule

serves(R,D,P) :- dishAvailable(R,D),price(R,D,P)

could be detected. This way, the programmer would notice that the order of
variables in dishAvailable(R,D) was mixed up.

In order to avoid problems like in the above example in the first place, auto-
completion functionality could be implemented such that variables and constants
of correct types are suggested when writing the arguments of a literal in a rule.

The annotation language Lana allows for combining the typing system with
functionality that allows for defining program signatures. One application of such
signatures is for specifying the predicates and terms used for abducing a modified
interpretation I ′ in our plugin for graphically editing interpretations. Moreover,
input and output signatures can be defined for uniform problem encodings, i.e.,
answer-set programs that expect a set of facts representing a problem instance
as input such that its answer sets correspond to the solutions for this instance.
Then, such signatures can be used in our planned support for assertions that will
allow for automatically checking pre- and postconditions of answer-set programs

320 J. Oetsch et al.

that are defined in Lana. Having a full specification for the input of a program,
i.e., a typed signature and input constraints in the form of preconditions, one can
automatically generate input instances for the program and use them, e.g., for
random testing [12,30]. Also, more advanced testing and verification functional-
ity can be realised, like the automatic generation of valid input (with respect to
the preconditions) that violates a postcondition.

In order to reduce the amount of time a programmer has to spend for writ-
ing type and signature definitions, we want to explore methods for partially
extracting them from the source code or from interpretations.

Besides assertions, it is also planned to offer further testing techniques. In
particular, we aim at a unit testing system by integrating the recently developed
command-line testing tool ASPUnit [24]. The idea is to formulate test cases in the
form of ASP programs with Lana annotations that contain information about
the expected results under a given reasoning mode when the test-case program
is joined with the units under test. Here, units are understood as blocks of ASP
rules that are defined using Lana. Multiple test cases can be combined to test
suites according to the user’s needs. When a test suite is evaluated, SeaLion
shall give information about what conditions in which test cases failed and, if
possible, provide information why.

Other projected features include typical amenities of Eclipse editors like auto-
completion, pretty-printing, further means for refactoring, and providing quick-
fixes for typical problems in the source code. Also, checks for errors and warnings
that are not already done by the parser, e.g., detection of unsafe variables, need
still to be implemented.

We also want to provide different kinds of program translations in SeaLion.
To this end, we already implemented a flexible framework for transforming pro-
gram elements to string representations following different strategies. In particu-
lar, we aim at translations between different solver languages at the non-ground
level. Here, we first have to investigate strategies when and how transformations
of, e.g., aggregates, can be applied such that a corresponding overall semantics
can be achieved. Other specific program translations that we consider for imple-
mentation would be necessary for realising the import and export of rules in
the Rule Interchange Format (RIF) [31], which is a W3C recommendation for
exchanging rules in the context of the Semantic Web. Notably, a RIF dialect for
ASP, called RIF-CASPD, has been proposed [32].

Further convenience improvements for using external tools in SeaLion include
a specialised GUI for choosing the command-line parameters. For launch con-
figurations, we want to add the possibility to directly write the output of a
tool invocation into a file and to allow for exporting the launch configuration as
native stand-alone scripts.

Finally, there are many possible ways to enhance the GUI of SeaLion. We
want to extend the support for drag-and-drop operations such that, e.g., pro-
gram elements in the outline can be dragged into the editor. Moreover, we plan
to realise sorting and filtering features for the outline and interpretation view.

The SeaLion has Landed: An IDE for Answer-Set Programming 321

Regarding interpretations, we aim for supporting textual editing of interpreta-
tions directly in the view, besides visual editing, and a feature for comparing
multiple interpretations by highlighting their differences.

6 Related Work

We next give a short overview of existing IDEs for core ASP languages. To
begin with, the tool APE [14], developed at the University of Bath, is also based
on Eclipse. It supports the language of Lparse and provides syntax highlighting,
syntax checking, program outline, and launch configuration. Additionally, APE
has a feature to display the predicate dependency graph of a program.

ASPIDE, a recent IDE for DLV programs [15], is a standalone tool that already
offers many features as it builds on previous tools [33–35]. Some functionality we
want to incorporate in SeaLion is already supported by ASPIDE, e.g., code com-
pletion, unit tests [36], and quick fixes. Further features of ASPIDE are support
for code templates and a visual program editor. We do not aim for comprehen-
sive visual source-code editing in SeaLion but consider the use of program tem-
plates that allow for expressing common programming patterns. In their current
releases, neither APE nor ASPIDE support graphical visualisation or visual editing
of answer sets as available in SeaLion. ASPIDE allows for displaying answer sets
in a tabular form. This is an improvement compared to the standard textual rep-
resentation but comes with the drawback that only entries for a single predicate
are visible at once. Besides the graphical representation, SeaLion can display
interpretations in a dedicated view that gives a good overview of the individual
interpretations and allows also to compare different interpretations.

Concerning supported ASP languages, SeaLion is the first IDE to support
the language of Gringo rather than its Lparse subset. Moreover, other proposed
IDEs for ASP do only consider the language of either DLV or Lparse, with
the exception of iGROM [16] that provides basic syntax highlighting and syntax
checking for the languages of both, Lparse and DLV. Note that iGROM has been
developed at our department independently from SeaLion as a student project.
A speciality of iGROM is the support for the front-end languages for planning and
diagnosis of DLV. There also exist proprietary IDEs for ASP related languages
with support for object-oriented features, OntoStudio and OntoDLV [37,38].

Compared to the other visualisation tools, ASPVIZ [21] and IDPDraw [22], our
plugin Kara [23] allows not only for visualisation of an interpretation but also for
visually editing the graphical representation such that changes are reflected in
the visualised interpretation. Moreover, Kara offers support for generic visuali-
sations, special support for grids, and automatic layout of graph structures. The
latter is also the goal of Lonsdaleite, a recent tool for visualising graph struc-
tures encoded in answer-sets [39]. It is realised as a lightweight Python script
that maps the atoms in an answer set to the input format of the Graphviz
utilities [40].

322 J. Oetsch et al.

7 Conclusion

In this paper, we presented the current status of SeaLion, an IDE for ASP
languages that is currently under development. We discussed general principles
that we follow in our implementation and gave an overview of current features.
SeaLion is an Eclipse plugin and is designed to be the first comprehensive IDE
that supports the languages of both Gringo and DLV, which can currently be
considered as the two most prominent implemented ASP languages.

As this is an intermediate report, we also discussed which features we plan
to incorporate in future work. The most important step in the advancement of
the IDE is the integration of an easy-to-use debugging system that is currently
under development. Moreover, we want to implement features for defining types,
signatures, pre- and postconditions, and unit tests based on the Lana annotation
language into SeaLion. One advantage of using Lana is that, in addition to
the graphical tools of the IDE, development support can also be provided by
respective command-line tools supporting Lana.

References

1. Gelfond, M., Leone, N.: Logic programming and knowledge representation - The
A-Prolog perspective. Artif. Intell. 138(1–2), 3–38 (2002)

2. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003)

3. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp:
Progress report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

4. SAT 2011 competition. http://www.satcompetition.org
5. Brain, M., De Vos, M.: Debugging logic programs under the answer-set semantics.

In: Proceedings of ASP 2005. http://CEUR-WS.org (2005)
6. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under

answer set semantics. Theor. Pract. Logic Program. 9(1), 1–56 (2009)
7. Syrjänen, T.: Debugging inconsistent answer-set programs. In: Proceedings of NMR

2006, pp. 77–83. Technische Universität Clausthal (2006)
8. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging

ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

9. Wittocx, J., Vlaeminck, H., Denecker, M.: Debugging for model expansion. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 296–311. Springer,
Heidelberg (2009)

10. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: on debugging non-
ground answer-set programs. Theor. Pract. Logic Program. 10(4–5), 513–529
(2010)

11. Niemelä, I., Janhunen, T., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-
set programs. In: Proceedings of ECAI 2010, pp. 951–956. IOS Press (2010)

12. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: Random vs.
structure-based testing of answer-set programs: An experimental comparison. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 242–247.
Springer, Heidelberg (2011)

http://www.satcompetition.org
http://CEUR-WS.org

The SeaLion has Landed: An IDE for Answer-Set Programming 323

13. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

14. Sureshkumar, A., De Vos, M., Brain, M., Fitch, J.: APE: An AnsProlog* environ-
ment. In: Proceedings of SEA 2007, pp. 71–85 (2007)

15. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS, vol. 6645, pp. 317–330. Springer, Heidelberg (2011)

16. iGROM. http://igrom.sourceforge.net/
17. Oetsch, J., Pührer, J., Tompits, H.: Methods and methodologies for developing

answer-set Programs—Project description. In: Technical Communications of ICLP
2010, pp. 154–161. Leibniz-Zentrum für Informatik (2010)

18. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set program-
ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

20. Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/
lparse.ps.gz

21. Cliffe, O., De Vos, M., Brain, M., Padget, J.: ASPVIZ: Declarative visualisation
and animation using answer set programming. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 724–728. Springer, Heidelberg (2008)

22. Wittocx, J.: KRR Software: IDPDraw. https://dtai.cs.kuleuven.be/krr/software/
visualisation

23. Kloimüllner, C., Oetsch, J., Pührer, J., Tompits, H.: Kara: A system for visu-
alising and visual editing of interpretations for answer-set programs. In: Tom-
pits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP 2011. LNCS, vol. 7773, pp. 325–344. Springer, Heidelberg (2013)

24. De Vos, M., Kısa, D.G., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set
programs in LANA. Theor. Pract. Logic Program. 12(4–5), 619–637 (2012)

25. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A
user’s guide to gringo, clasp, clingo, and iclingo. http://sourceforge.net/projects/
potassco/files/potassco guide

26. Bihlmeyer, R., Faber, W., Ielpa, G., Lio, V., Pfeifer, G.: DLV user manual. http://
www.dlvsystem.com/dlvsystem/html/DLV User Manual.html

27. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, Frisco (2007)

28. Ierusalimschy, R.: Programming in Lua, 2nd edn. Lua.Org (2006)
29. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In:

Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 134–147.
Springer, Heidelberg (2011)

30. Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., Tompits, H.: On the small-
scope hypothesis for testing answer-set programs. In: Proceedings of KR 2012, pp.
43–53. AAAI Press (2012)

31. Boley, H., Kifer, M. (eds.): RIF framework for logic dialects. W3C (2010) W3C
Recommendation 22 June 2010

32. Kifer, M., Heymans, S.: RIF core answer set programming dialect. http://ruleml.
org/rif/RIF-CASPD.html (2009)

33. Febbraro, O., Reale, K., Ricca, F.: A visual interface for drawing ASP programs.
In: Proceedings of CILC 2010 (2010)

http://igrom.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
https://dtai.cs.kuleuven.be/krr/software/visualisation
https://dtai.cs.kuleuven.be/krr/software/visualisation
http://sourceforge.net/projects/potassco/files/potassco_guide
http://sourceforge.net/projects/potassco/files/potassco_guide
http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html
http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html
http://ruleml.org/rif/RIF-CASPD.html
http://ruleml.org/rif/RIF-CASPD.html

324 J. Oetsch et al.

34. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Proceed-
ings of SEA 2009 (2009)

35. Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: spock: A debugging
support tool for logic programs under the answer-set semantics. In: Seipel, D.,
Hanus, M., Wolf, A. (eds.) INAP 2007. LNCS, vol. 5437, pp. 247–252. Springer,
Heidelberg (2009)

36. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in ASPIDE. In: Tom-
pits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP 2011. LNCS, vol. 7773, pp. 345–364. Springer, Heidelberg (2013)

37. ontoprise GmbH: OntoStudio 3.0. http://help.ontoprise.de/ (2010)
38. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.:

OntoDLV: An ASP-based system for enterprise ontologies. J. Logic Comput. 19(4),
643–670 (2008)

39. Smith, A.: Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite (2011)
40. AT&T Labs Research and Contributors: Graphviz. http://www.graphviz.org/

http://help.ontoprise.de/
https://github.com/rndmcnlly/Lonsdaleite
http://www.graphviz.org/

	The SeaLion has Landed: An IDE for Answer-Set Programming---Preliminary Report
	1 Introduction
	2 Supported ASP Languages
	3 Implementation Principles, Architecture, and Availability
	4 Current Features
	4.1 Source-Code Editor
	4.2 Documentation Feature
	4.3 Support for External Tools
	4.4 Interpretation Views
	4.5 Visualisation and Visual Editing

	5 Projected Features
	6 Related Work
	7 Conclusion

