Computing with Logic as Operator Elimination:
The ToyElim System

Christoph Wernhard®

Technische Universitat Dresden, Dresden, Germany
christoph.wernhard@tu-dresden.de

Abstract. A prototype system is described whose core functionality
is, based on propositional logic, the elimination of second-order opera-
tors, such as Boolean quantifiers and operators for projection, forgetting
and circumscription. This approach allows to express many representa-
tional and computational tasks in knowledge representation — for exam-
ple computation of abductive explanations and models with respect to
logic programming semantics — in a uniform operational system, backed
by a uniform classical semantic framework.

1 Computation with Logic as Operator Elimination

We pursue an approach to computation with logic emerging from three theses:

1. Classical first-order logic extended by some second-order
operators suffices to express many techniques of knowledge representation.

Like the standard logic operators, second-order operators can be defined seman-
tically, by specifying the requirements on an interpretation to be a model of
a formula whose principal functor is the operator, depending only on seman-
tic properties of the argument formulas. Neither control structure imposed over
formulas (e.g. Prolog), nor formula transformations depending on a particu-
lar syntactic shape (e.g. Clark’s completion) are involved. Compared to classical
first-order formulas, the second-order operators give additional expressive power.
Circumscription is a prominent knowledge representation technique that can be
expressed with second-order operators, in particular predicate quantifiers [1].

2. Many computational tasks can be expressed as elimination of
second-order operators.

Elimination is a way to computationally process second-order operators, for
example Boolean quantifiers with respect to propositional logic: The input is
a formula which may contain the operator, for example a quantified Boolean
formula such as 3¢ ((p < q¢)A(q < r)). The output is a formula that is equivalent
to the input, but in which the operator does not occur, such as, with respect
to the formula above, the propositional formula p <« r. Let us assume that the
method used to eliminate the Boolean quantifiers returns formulas in which not
just the quantifiers but also the quantified propositional variables do not occur.
This syntactic condition is usually met by elimination procedures. Our method

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 289-296, 2013.
DOI: 10.1007/978-3-642-41524-1_17, (© Springer-Verlag Berlin Heidelberg 2013



290 C. Wernhard

then subsumes a variety of tasks: Computation of uniform interpolants, QBF and
SAT solving, as well as computation of certain forms of abductive explanations,
of propositional circumscription, and of stable models, as will be outlined below.

3. Depending on the application, outputs of computation with logic are
conveniently represented by formulas meeting syntactic criteria.

If results of elimination are formulas characterized just up to semantics, they
may contain redundancies and be in a shape that is difficult to comprehend.
Thus, they should be subjected to simplification and canonization procedures
before passed to humans or to machine clients. The output format depends
on the application problem: What is a CNF of the formula? Are certain facts
consequences of the formula? What are the models of the formula? What are its
minimal models? What are its 3-valued models with respect to some encoding
into 2-valued logics? Corresponding answers can be computed on the basis of
normal form representations of the elimination outputs: CNFs, DNFs, full DNF's,
and prime implicant forms. Of course, transformation into such normal forms
might by itself be an expensive task. Second-order operators allow to counter this
by specifying a small set of application relevant symbols that should be included
in the output, e.g. by Boolean quantification upon the irrelevant atoms.

2 Features of the System

ToyElim' is a prototype system developed to investigate operator elimination
from a pragmatic point of view with small applications. For simplicity, it is
based on propositional logic, although its characteristic features should transfer
to first-order logic. It supports a set of second-order operators that have been
semantically defined in [11,13,15].

Formula Syntax. As the system is implemented in Prolog, formulas are rep-
resented by Prolog terms, the standard connectives corresponding to true/0,
false/0, ~/1, ,/2, ; /2, ->/2, <=/2, <=>/2. Propositional atoms are represented
by Prolog atoms or compound ground terms. The system supports proposi-
tional expansion with respect to finite domains of formulas containing first-order
quantifiers.

Forgetting. Existential Boolean quantification Ip F' can be expressed as for-
getting [4,11] in formula F' about atom p, written forget{p}(F), represented
by forg([pl, F’) in system syntax, where F’ is the system representation
of F. To get an intuition of forgetting, consider the equivalence forget {p}(F) =
F[p\true]V F[p\false], where F[p\true] (F[p\false]) denotes F with all occurrences
of p replaced by true (false). Rewriting with this equivalence constitutes a naive
method for eliminating the forgetting operator. The formula forget v (F) can be
said to express the same as F' about all other atoms than p, but nothing about p.

Elimination and Pretty Printing of Formulas. The central operation of
the ToyElim system, elimination of second-order operators, is performed by the

! http://cs.christophwernhard.com/toyelim/, under GNU Public License.


http://cs.christophwernhard.com/toyelim/

Computing with Logic as Operator Elimination 291

predicate elim(F,G), with input formula F' and output formula G. For example,
define as extension of kb1/1 a formula (after [3]) as follows:

kbl (((shoes_are wet <- grass_is wet),
(grass_is_wet <- rained last_night), (1)
(grass_is_wet <- sprinkler_was_on))).

After consulting this, we can execute the following query on the Prolog toplevel:
?7- kb1(F), elim(forg([grass_iswet]l, F), G), ppr(G). (2)

This results in binding G to the output of eliminating the forgetting about
grass_is_wet. The predicate ppr/1 is one of several provided predicates for
converting formulas into application adequate shapes. It prints its argument as
CNF with clauses written as reverse implications:

((shoes_are_wet <- rained_last_night), 3)
(shoes_are_wet <- sprinkler_was_on)).

Scopes. So far, the first argument of forgetting has been a singleton set. More
generally, it can be an arbitrary set of atoms, corresponding to nested exis-
tential quantification. Even more generally, also polarity can be considered:
Forgetting can, for example, be applied only to those occurrences of an atom
which have negative polarity in a NNF formula. This can be expressed by liter-
als with explicitly written sign in the first argument of the forgetting operator.
Forgetting about an atom is equivalent to nested forgetting about the positive
and the negative literal with that atom. In accord with this observation, we
technically consider the first argument of forgetting always as a set of liter-
als, and regard an unsigned atom there as a shorthand representing both of
its literals. For example, [+grass_is_wet, shoes_are_wet] is a shorthand for
[+grass_is_wet, +shoes_are_wet, -shoes_are_wet]. Not just forgetting, but,
as shown below, also other second-order operators have a set of literals as para-
meter. Hence, we refer to a set of literals in this context by a special name, as
scope.

Projection. In many applications it is useful to make explicit not the scope
that is “forgotten” about, but what is preserved. The projection [11] of for-
mula F' onto scope S, which can be defined for scopes S and formulas F' as
projectg(F') = forgety | _g(F'), where ALL denotes the set of all literals, serves
this purpose. Vice versa, forgetting could be defined in terms of projection:
forgetg(F') = projecty | _g(F). The call to elim/2 in the query (2) can equiva-
lently be expressed with projection instead of forgetting by

elim(proj([shoes_are wet, rained last night, sprinkler was_on|, F). (4)

User Defined Logic Operators — An Example of Abduction. ToyElim
allows the user to specify macros for use in the input formulas of elim/2. The



292 C. Wernhard

following example extends the system by a logic operator gwsc for a variant of
the weakest sufficient condition [8], characterized in terms of projection:

:— define_elim macro(gwsc(S, F, G), "proj(complements(S),(F, G))).
()
Here complements(S) specifies the set of the literal complements of the mem-
bers of the scope specified by S. The term gwsc(S, F, G) is the system syn-
tax for gwscg(F, G), the globally weakest sufficient condition [15] of formula G
on scope S within formula F, which satisfies the following: A formula H is
equivalent to gwscg(F,G) if and only if it holds that (1.) H = projectg(H);
(2.) F = H — G; (3.) For all formulas H’ such that H' = projectg(H’) and
F = H' — G it holds that H' = H. With the gwsc operator certain ab-
ductive tasks [3] can be expressed. The following query, for example, yields
abductive explanations for shoes_are wet in terms of {rained last night,
sprinkler_was_on} with respect to the knowledge base (1):

?7- kb1 (F),
elim(gwsc([rained last night, sprinkler was_on|, F, shoes_are wet),

).

ppp(G).
(6)
The predicate ppp/1 serves, like ppr/1, to convert formulas to application ade-
quate shape. It writes a prime implicate form of its input in list notation. In the
example the output has two clauses, each representing an alternate explanation:

[[rained_last night], [sprinkler_was_on]]. (7)

Scope-Determined Circumscription. A further second-order operator sup-
ported by ToyElim is scope-determined circumscription [15]. The correspond-
ing functor circ has, like proj and forg, a scope specifier and a formula as
arguments. It allows to express parallel predicate circumscription with varied
predicates [5] (only propositional, since the system is based on propositional
logic). The scope specifier controls the effect of circumscription: Atoms that oc-
cur just in a positive literal in the scope are minimized; symmetrically, atoms
that occur just negatively are maximized; atoms that occur in both polarities
are fixed; and atoms that do mot at all occur in the scope are allowed to
vary. For example, the scope specifier, [+abnormal, bird], a shorthand for
[+abnormal, +bird, -bird], expresses that abnormal is minimized, bird is
fixed, and all other predicates are varied.

Predicate Groups and Systematic Renaming. Semantics for knowledge
representation sometimes involve what might be described as handling different
occurrences of a predicate differently — for example depending on whether they
are subject to negation as failure. If such semantics are to be modeled with
classical logic, then these occurrences can be identified by using distinguished
predicates, which are equated with the original ones when required. To this
end, ToyElim supports the handling of predicate groups: The idea is that each



Computing with Logic as Operator Elimination 293

predicate actually is represented by several corresponding predicates p°,...,p",
where the superscripted index is called predicate group. In the system syntax,
the predicate group of an atom is represented within its main functor: If the
group is larger than 0, the main functor is suffixed by the group number; if it is
0, the main functor does not end in a number. For example p(a)® and p(a)! are
represented by p(a) and p1(a), respectively. In scope specifiers, a number is used
as shorthand for the set of all literals whose atom is from the indicated group,
and a number in a sign functor for the set of those literals which have that sign
and whose atom is from the indicated group. For example, [+(0), 1] denotes
the union of the set of all positive literals whose atom is from group 0 and of the
set of all literals whose atom is from group 1. Systematic renaming of all atoms
in a formula that have a specific group to their correspondents from another
group can be expressed in terms of forgetting [13]. The ToyElim system provides
the second-order operator rename for this. For example, rename ([1-0], F) is
equivalent to F' after eliminating second-order operators, followed by replacing
all atoms from group 1 with their correspondents from group 0.

An Example of Modeling a Logic Programming Semantics. Scope-
determined circumscription and predicate groups can be used to express the
characterization of the stable models semantics in terms of circumscription [7]
(described also in [6,13]). Consider the following knowledge base:

kb2(((shoes_are_wet <- grass_is wet),
(grass_is_wet <- sprinkler was_on, sprinkler_was_abnormall),
sprinkler_was_on)).
(8)

Group 1 is used here to indicate atoms that are subject to negation as failure:
All atoms in (8) are from group 0, except for sprinkler _was_abnormall, which
is from 1. The user defined operator stable renders the stable models semantics:

:— define_elim macro(stable(F), rename([1-0], circ([+(0),1], F))).

(9)

The following query then yields the stable models:
:- kb2(F), elim(stable((F)), G), ppp(G). (10)

The result is displayed with ppp/1, as in query (6). It shows here a DNF with
a single clause, representing a single model. The positive members of the clause
constitute the answer set

[[grass_is_wet, shoes_are wet, “sprinkler_was_abnormal,
sprinkler_was_on]|.

(11)

If it is only of interest whether shoes_are_wet is a consequence of the knowledge
base under stable models semantics, projection can be applied to obtain a smaller
result. The query

:= kb2(F), elim(proj([shoes_are wet], stable(F)), G), ppp(G).
(12)
will effect that the DNF [[shoes_are_wet]] is printed.



294 C. Wernhard

3 Implementation

The ToyElim system is implemented in SWI-Prolog and can invoke external
systems such as SAT and QBF solvers. It runs embedded in the Prolog environ-
ment, allowing for example to pass intermediate results between its components
through Prolog variables, as exemplified by the queries shown above.

The implementation of the core predicate elim/2 maintains a formula which
is gradually rewritten until it contains no more second-order operators. It is
initialized with the input formula, preprocessed such that only two primitively
supported second-order operators remain: forgetting and renaming. It then pro-
ceeds in a loop where alternately equivalence preserving simplifying rewritings
are applied, and a subformula is picked and handed over for elimination to a
specialized procedure. The simplifying rewritings include distribution of forget-
ting over subformulas and elimination steps that can be performed with low
cost [12]. Rewriting of subformulas with the Shannon expansion enables low-
cost elimination steps. It is performed at this stage if the expansion, combined
with low-cost elimination steps and simplifications, does not lead to an increase
of the formula size. The subformula for handing over to a specialized method is
picked with the following priority: First, an application of forgetting upon the
whole signature of a propositional argument, which can be reduced by a SAT
solver to either true or false, is searched. Second, a subformula that can be re-
duced analogously by a QBF solver, and finally a subformula which properly
requires elimination of forgetting. For the latter, ToyElim schedules a portfolio
of different methods, where currently two algorithmic approaches are supported:
Resolvent generation (SCAN, Davis-Putnam method) and rewriting of subfor-
mulas with the Shannon expansion [10,12]. Recent SAT preprocessors partially
perform variable elimination by resolvent generation. Coprocessor [9] is such a
preprocessor that is configurable such that it can be invoked by ToyElim for the
purpose of performing the elimination of forgetting.

4 Conclusion

We have seen a prototype system for computation with logic as elimination of
second-order operators. The system helped to concretize requirements on sys-
tems following this approach, concerning the user interface and the processing
methods. In the long run, such a system should be based on more expressive
logics than propositional logic. ToyElim is just a first pragmatic attempt, taking
advantage of recent advances in SAT solving. A major difference in a first-order
setting is that computations of elimination tasks then inherently do not termi-
nate for all inputs.

Research on the improvement of elimination methods includes further con-
sideration of techniques from SAT preprocessors, investigation of tableau and
DPLL-like techniques [2,12], and, in the context of first-order logic, the so called
direct methods [1]. In addition, it seems worth to investigate further types of out-
put: incremental construction, like enumeration of model representations, and
representations of proofs.



Computing with Logic as Operator Elimination 295

So far, the system has been applied in teaching and to investigate logic pro-
gramming semantics. Some application examples are provided on its Web page.
One of them shows generalizations of several logic programming semantics that
allow to exempt specified predicates from the closed world assumption [14], an-
other one shows how skeptical abduction with respect to the stable models se-
mantics and to the three-valued partial stable models semantics can be expressed
and implemented on the basis of the globally weakest sufficient condition. A third
example includes a small toy knowledge base about a touristic real-world scenario
to illustrate a range of further applications in a rudimentary way: Extraction of
knowledge concerning a given signature and of knowledge at a particular level of
abstraction, as well as certain forms of schema mapping, abduction, intensional
answers, knowledge base modularization and data protection.

The approach of computation with logic by elimination leads to a system
that provides a uniform user interface covering many tasks, like satisfiability
checking, computation of abductive explanations and computation of models for
various logic programming semantics. Variants of established concepts can be
easily expressed on a clean semantic basis and made operational. The approach
supports the co-existence of different knowledge representation techniques in a
single system, backed by a single classical semantic framework. This seems a nec-
essary precondition for logic libraries that accumulate knowledge independently
of some particular application.

References

1. Gabbay, D.M., Schmidt, R.A., Szalas, A.:. Second-Order Quantifier Elimina-
tion: Foundations, Computational Aspects and Applications. College Publications,
London (2008)

2. Huang, J., Darwiche, A.: DPLL with a trace: from SAT to knowledge compilation.
In: IJCAI-05, pp. 156-162. Morgan Kaufmann (2005)

3. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Logic
Comput. 2(6), 719-770 (1993)

4. Lang, J., Liberatore, P., Marquis, P.: Propositional independence - formula-variable
independence and forgetting. J. Artif. Intell. Res. 18, 391-443 (2003)

5. Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A.
(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming,
pp. 298-352. Oxford University Press, Oxford (1994)

6. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,
Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37-51. Springer, Heidelberg
(2008)

7. Lin, F.: A study of nonmonotonic reasoning. Ph.D. thesis, Stanford University
(1991)

8. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128,
143-159 (2001)

9. Manthey, N.: Coprocessor 2.0 — a flexible CNF simplifier. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436-441. Springer, Heidelberg
(2012)



296

10.

11.

12.

13.

14.

15.

C. Wernhard

Murray, N.V., Rosenthal, E.: Tableaux, path dissolution and decomposable nega-
tion normal form for knowledge compilation. In: Mayer, M.C., Pirri, F. (eds.)
TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 165-180. Springer, Heidelberg
(2003)

Wernhard, C.: Literal projection for first-order logic. In: Hélldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389-402. Springer,
Heidelberg (2008)

Wernhard, C.: Tableaux for projection computation and knowledge compilation.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 325-340.
Springer, Heidelberg (2009)

Wernhard, C.: Circumscription and projection as primitives of logic programming,.
In: Technical Communications of the ICLP 2010. LIPIcs, vol. 7, pp. 202—211 (2010)
Wernhard, C.: Forward human reasoning modeled by logic programming modeled
by classical logic with circumscription and projection. Technical Report Knowledge
Representation and Reasoning 11-07, Technische Universitat Dresden (2011)
Wernhard, C.: Projection and scope-determined circumscription. J. Symb. Com-
put. 47, 1089-1108 (2012)



	Computing with Logic as Operator Elimination: The ToyElim System
	1 Computation with Logic as Operator Elimination
	2 Features of the System
	3 Implementation
	4 Conclusion


