
A Prototype of a Knowledge-Based
Programming Environment

Stef De Pooter(B), Johan Wittocx, and Marc Denecker

Department of Computer Science, K.U. Leuven, Leuven, Belgium
{stef.depooter, johan.wittocx, marc.denecker}@cs.kuleuven.be

Abstract. This paper presents a proposal for a knowledge-based progr-
amming environment. Within this environment, declarative background
knowledge, procedures, and concrete data are represented in suitable
languages and combined in a flexible manner, which leads to a highly
declarative programming style. We illustrate our approach with an ex-
ample application and report on our prototype implementation.

1 Context

An obvious requirement for a powerful and flexible programming paradigm seems
to be that within the paradigm different types of information can be expressed
in suitable languages. However, most traditional programming paradigms and
languages do not really have this property. In imperative languages, for example,
non-executable background knowledge cannot be described. The consequences
become clear when we try to solve a scheduling problem in an imperative lan-
guage: the background knowledge – the constraints that need to be satisfied
by the schedule – gets mixed up with the algorithms. This makes adding new
constraints and finding and modifying existing ones cumbersome.

On the other hand, most logic-based declarative programming paradigms
lack the capability to express procedures. Typically, they consist of a logic to-
gether with one specific type of inference. For example, Prolog uses Horn clause
logic and does querying, in Description Logic the studied task is deduction, and
Answer Set Programming and Constraint Programming make use of model gen-
eration. In such paradigms, whenever we try to perform a task that does not
fit the inference mechanism at hand, the declarative aspect of the paradigm is
lost. For example, when we try to solve a scheduling problem (which is a typical
model-generation problem) in Prolog, we need to represent the schedule as a
term, say a list (rather than as a logical structure), and as a result the con-
straints do not really reside in the logic program, but will have to be expressed
by clauses that iterate over a list [5]. Proving that a certain requirement is im-
plied by another, is possible (in theory) for a theorem prover, but not in ASP.
Etc.

To overcome these restrictions of existing paradigms, we propose a para-
digm in which each component can be expressed in an appropriate language. We
distinguish three components: procedures, (non-executable) background knowl-
edge, and concrete data. For the first we need an imperative language, for the

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 279–286, 2013.
DOI: 10.1007/978-3-642-41524-1 16, c© Springer-Verlag Berlin Heidelberg 2013

280 S. De Pooter et al.

second an (expressive) logic, for the third a logical structure (which corresponds
to a database). The connection between these components is realized by various
reasoning tasks, such as theorem proving, model generation, model checking,
model revision, belief revision, constraint propagation, querying, datamining,
visualization, etc.

The idea to support multiple forms of inference for the same logic or even
for the same theories, was argued in [7]. There it is argued that logic has a
more flexible, multifunctional and therefore also more declarative role for prob-
lem solving than provided by many declarative programming paradigms, where
typically one form of inference is central and theories are written to be used for
this form of inference, sometimes even for a specific algorithm implementing this
form of inference (such as Prolog resolution). The framework presented here is
based on this view and goes beyond it in the sense that it offers a programming
environment in which complex tasks can be programmed using multiple forms
of inference and processing tools.

2 Overview of the Language and System

To try out the above mentioned ideas in practice, we built a prototype inter-
preter that supports some basic reasoning tasks and a set of processing tools on
high-level data such as vocabularies, structures and theories. In this section we
will highlight various decisions in the design of our programming language and
interpreter. In the next section we will illustrate the usage of the language with
an example. In the remainder of this text we will call our language declimp,
which is an aggregation of “declarative” and “imperative”.

2.1 Program Structure

A declimp program typically contains several blocks of code. Each block is ei-
ther a procedure, a vocabulary (which is a list of sort, predicate and function
names), a logic theory over a vocabulary (which describes a piece of background
knowledge using the predicate and function names of its vocabulary), or a (pos-
sibly partial) structure over a vocabulary (which represents a database over its
vocabulary). To bring more structure into a program and to be able to work
with multiple files, namespaces and include statements are provided.

Because vocabularies, logic theories and databases are not executable, and a
program needs to be executed, control of a declimp program is always in the
hands of the procedures. Moreover, when a main procedure is available, the run
of the program will start with the execution of this procedure. When there is no
main procedure, the user can run commands in an interactive shell, after parsing
the program.

In the next sections, we will describe the languages for the respective com-
ponents in a declimp program.

A Prototype of a Knowledge-Based Programming Environment 281

2.2 Knowledge Representation Language

For representing background knowledge we use an extended version of classical
logic. A first advantage of using classical logic as the basis of our knowledge
representation language lies in the fact that it is the best-known and most-
studied logic. Also, classical logic has the important property that its informal
semantics corresponds to its formal semantics. In other words, in classical logic
the meaning of expressions1 is intuitively clear. This is an important requirement
in the design of a language that is accessible to a wider audience. Furthermore,
there are already numerous declarative systems that use a language based on
classical logic, or can easily be translated to it. Think of the languages of most
theorem provers [8], various Description logics [2], and the language of model
generators such as IDP [10,22] and Enfragmo [16].

On the other hand, research in the Knowledge Representation and Reasoning
community has clearly shown that pure classical logic is in many ways insuffi-
cient. Aggregates and (recursive) definitions are well-known concepts that are
common in the background knowledge of many applications, and which can gen-
erally not, or not in a concise and intuitively clear manner, be expressed in first-
order logic. Therefore, in declimp we use an order-sorted version of first-order
logic, extended with inductive definitions [6], aggregates [17], (partial) functions
and arithmetic. These extensions make representing knowledge much easier.

2.3 Structures

Structures in declimp are written in a simple language that allows to enumerate
all elements that belong to a sort and all tuples that belong to a relation or
function. As an alternative to enumerating a relation, it is also possible to specify
the relation in a procedural way, namely as all the tuples for which a given
procedure returns ‘true’. Furthermore, the interpretation of a function can be
specified by a procedure, somewhat similar to “external procedures” in DLV [3].

As mentioned before, structures in declimp do not necessarily contain com-
plete information, they are not necessarily two-valued. Three-valued structures
are useful for representing incomplete information (which might be completed
during the run of the program). To enumerate a three-valued relation (or func-
tion), two out of three of the following sets must be provided: tuples that cer-
tainly belong to the relation, tuples that certainly do not belong to the relation,
and tuples for which it is unknown whether they belong to the relation or not.
The third set can always be computed from the two given sets.

2.4 Procedures

The imperative programming language in our prototype system is Lua [11].
The main reason for this choice is the fact that Lua is a lightweight scripting
1 Expressions that occur in practice, not artificially constructed sentences that do not

really have meaning in real life.

282 S. De Pooter et al.

language and also because it has a good C++ API [12]. This facilitates on the
one hand the compilation of programs written in declimp and, on the other
hand, the integration with the components of our declimp interpreter, which
is written in C++. When we do not take those reasons into account, any other
imperative language is candidate.

In procedures, various reasoning methods on theories and structures can
be called. Currently, the most important tasks supported by the declimp-
interpreter are the following:

Finite model expansion: Given a three-valued structure S and a theory T ,
find a completion of S to a two-valued structure that satisfies T . This is
essentially a generalization of the reasoning task performed by ASP solvers,
constraint programming systems, Alloy analyzers, etc. It is suitable for prob-
lems such as scheduling, planning and diagnosis. In our declimp interpreter,
model expansion is implemented by calls to the IDP system [22], which con-
sists of the grounder GidL [23] and solver MinisatID [13].

Finite model checking: Check whether a given two-valued structure is
a model of a theory. This is an instance of model expansion and is im-
plemented as such.

Constraint propagation: Deduce facts that must hold in all models of a given
theory which complete a given three-valued structure. This is a useful mech-
anism in configuration systems [20] and for query answering in incomplete
databases [4]. The propagation algorithm we implemented is described in
[21].

Querying: Given an formula ϕ and a two-valued structure S, find all substitu-
tions for free variables of ϕ that make ϕ true in S. The implementation of
this mechanism makes use of Binary Decision Diagrams as described in [23].

Theorem proving: Given two theories T1 and T2, check whether T1 |= T2.
This is implemented by calling a theorem prover provided by the user. In
principle, any theorem prover that accepts TPTP [18] can be used.

Visualization: Show a visual representation of a given structure. We imple-
ment this by calling IDPDraw, a tool for visualizing finite structures in
which visual output is specified declaratively by definitions in our knowl-
edge representation language or in ASP.

The values returned by the reasoning methods can be used as input for other
reasoning methods and Lua-statements. We will illustrate this with an example
in the next section.

3 Programming in DECLIMP

Say we want to write an application that allows players to solve sudoku puzzles.
Such an application should be able to perform tasks such as generating puzzles,
showing puzzles on the screen, checking whether solutions (player’s choices)
satisfy the sudoku rules, giving hints to the player, etc. In this application
the different components we described before can clearly be distinguished: (1)

A Prototype of a Knowledge-Based Programming Environment 283

the background knowledge consists of a logic theory containing the well-known
sudoku constraints;

∀r∀n∃!c : Sudoku(r, c) = n
∀c∀n∃!r : Sudoku(r, c) = n
∀b∀n∃!r∃!c : InBlock(b, r, c) ∧ Sudoku(r, c) = n
∀b∀r∀c : InBlock(b, r, c) ⇔

b = ((r − 1) − ((r − 1)mod 3)) + ((c − 1) − ((c − 1)mod 3))/3 + 1

(2) the data is stored in logical structures representing puzzles, and (partial
and complete) solutions; and (3) the tasks we want it to perform, can be im-
plemented using well-known inference methods. For example, “given a partial
solution, complete the solution” is a typical model expansion task.

Below we show (a part of) a declimp program. The code shows the use
of an include statement and a namespace, and the declaration of a vocabulary
sudokuVoc and a theory sudokuTheory, where the latter is simply an ASCII
version of the theory shown above. Also note the main procedure at the bottom,
which will automatically be called when the program is passed to the interpreter.

#include "grid.idp"

namespace sudoku {

vocabulary sudokuVoc {

extern vocabulary grid:: simpleGridVoc

type Num isa nat

type Block isa nat

Sudoku(Row ,Col) : Num

InBlock(Block ,Row ,Col)

}

theory sudokuTheory : sudokuVoc {

! r n : ?1 c : Sudoku(r,c) = n.

! c n : ?1 r : Sudoku(r,c) = n.

! b n : ?1 r c : InBlock(b,r,c) & Sudoku(r,c) = n.

! r c b : InBlock(b,r,c) <=>

b = ((r-1)-((r -1)%3)) + ((c-1)-((c -1)%3))/3 + 1.

}

procedure solve(input) {

return modelExpand(sudokuTheory ,input)

}

procedure printSudoku(puzzle) {

-- code for visualizing a sudoku puzzle.

}

procedure createSudoku () {

math.randomseed(os.time ())

284 S. De Pooter et al.

local puzzle = grid:: makeEmptyGrid (9)

-- defined in grid.idp

stdoptions.nrmodels = 2

local currsols = modelExpand(sudokuTheory ,puzzle)

while #currsols > 1 do

repeat

col = math.random (1,9)

row = math.random (1,9)

num = currsols [1][sudokuVoc :: Sudoku](row ,col)

until num ~= currsols [2][sudokuVoc :: Sudoku]

(row ,col)

makeTrue(puzzle[sudokuVoc :: Sudoku].graph ,

{row ,col ,num})

currsols = modelExpand(sudokuTheory ,puzzle)

end

printSudoku(puzzle)

}

}

procedure main() {

sudoku :: createSudoku ()

}

Let us have a closer look at procedure createSudoku for creating sudoku puzzles.
First it initializes an empty puzzle by instantiating a new logical structure. This
is done by calling a procedure makeEmptyGrid which instantiates a structure
with data about a generic grid of a certain size, and then adding domains for
numbers and blocks particular for sudoku grids.

The second part of the procedure adds numbers to the grid until there is only
one solution left for the puzzle. This is realized by performing model expansion
(by calling modelExpand) to find two models of the theory that extend the given
partially filled in puzzle. When two models are found, the algorithm selects a
number that is unique for the first solution (that is, the number at the same
position in the second solution is different) and is not yet present in the puzzle.
When such an entry is found, it is added to the puzzle by making the tuple
{row, col, num} true in the interpretation of the function Sudoku(Row,Col):Num.
Next, the procedure asks for two new models, and the process starts over. When
only one model is found, the iteration stops, and procedure printSudoku is
called to show the result on the screen using the visualization tool mentioned in
the previous section.

4 Related Work

There have been many proposals in the literature to combine procedural and
declarative languages. A frequently occuring combination is that of a procedural
language in which a program can post constraints expressed in an (often ad-
hoc) declarative constraint language, while other primitives allow to call the

A Prototype of a Knowledge-Based Programming Environment 285

constraint-solving process on the constraint store, express heuristics or call other
processes, for example to edit or visualize output. Examples of systems with such
languages are CPLEX [1], Mozart [19] and Comet [15]. These systems differ
from declimp in the sense that they offer only one kind of inference, namely
constraint solving. A similar remark can be made about CLP and Prolog systems
with support for constraint propagation. There the “procedural language” is
the Prolog language under its procedural semantics. In our system high-level
concepts such as vocabularies, theories and structures are treated as first-class
citizens that can be operated upon by arbitrary inference and processing tools,
which offers more flexibility.

For another group of systems, control over execution of programs is in hands
of one inference mechanism – or at least that inference is the main mechanism –
and an integrated procedural language then allows users to stear some aspects
of the inference mechanism, or for example format input and output, but do
not allow to take over control. Examples of such systems are clingo [9] and
Zinc [14]. The procedural languages in these systems have a more limited task
then the one in declimp. In declimp the procedures are in control during
execution, not just one of the inference mechanisms.

5 Conclusion

We have presented a knowledge-based programming environment, providing a
declarative language for expressing background knowledge, an imperative pro-
gramming language for writing procedures, and logical structures for expressing
concrete data. The system also provides state-of-the-art inference tools for per-
forming various reasoning tasks.

We believe that a programming environment like the one proposed here
overcomes some of the limitations of “single-programming-style” paradigms, by
allowing a programmer to express the different types of information in soft-
ware applications in appropriate languages. Making this explicit distinction be-
tween different types of information will increase readability, maintainability and
reusability of programming code.

The prototype presented here has evolved into a new version of the IDP

system. It can be obtained from http://dtai.cs.kuleuven.be/krr/software.

References

1. IBM, ILOG CPLEX optimizer. http://www.ibm.com/software/integration/
optimization/cplex-optimizer

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

3. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory
and implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

http://dtai.cs.kuleuven.be/krr/software
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.ibm.com/software/integration/optimization/cplex-optimizer

286 S. De Pooter et al.

4. Denecker, M., Calabuig, Á.C., Bruynooghe, M., Arieli, O.: Towards a logical re-
construction of a theory for locally closed databases. ACM Trans. Database Syst.
35(3), 22:1–22:60 (2010)

5. Denecker, M., De Schreye, D., Willems, Y.: Terms in Logic programs: a problem
with their semantics and its effect on the programming methodology. CCAI: J.
Integr. Study Artif. Intell., Cogn. Sci. Appl. Epistemology 7(3–4), 363–383 (1990)

6. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Logic (TOCL) 9(2), 14:1–14:52 (2008)

7. Denecker, M., Vennekens, J.: Building a knowledge base system for an integration
of logic programming and classical logic. In: Pontelli, E., Garcia de la Banda, M.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008)

8. Fitting, M.: First-order logic and automated theorem proving, 2nd edn. Springer-
Verlag New York Inc., Secaucus, NJ, USA (1996)

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo. http://downloads.sourceforge.
net/potassco/guide.pdf (2010)

10. The IDP system. http://dtai.cs.kuleuven.be/krr/software (2012)
11. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua - an extensible extension

language. Softw.: Pract. Experience 26(6), 635–652 (1996)
12. Ierusalimschy, R., Henrique de Figueiredo, L., Celes, W.: Passing a language

through the eye of a needle. Queue 9, 20:20–20:29 (2011)
13. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability

of propositional logic extended with inductive definitions. In: Büning, H.K., Zhao,
X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)

14. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

15. Michel, L., Van Hentenryck, P.: The comet programming language and system. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 881–881. Springer, Heidelberg
(2005)

16. Mitchell, D.G., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a frame-
work for modelling and solving search problems. Technical Report TR 2006–24,
Simon Fraser University, Canada (2006)

17. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics
of logic programs with aggregates. Theory Pract. Logic Program. (TPLP) 7(3),
301–353 (2007)

18. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

19. Van Roy, P. (ed.): MOZ 2004. LNCS, vol. 3389. Springer, Heidelberg (2005)
20. Vlaeminck, H., Vennekens, J., Denecker, M.: A logical framework for configuration

software. In: Porto, A., Javier López-Fraguas, F. (eds.) PPDP, pp. 141–148. ACM,
New York (2009)

21. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for extended
first-order logic. In: CoRR, abs/1008.2121 (2010)

22. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system
for an extension of classical logic. In: Denecker, M. (ed.) LaSh, pp. 153–165 (2008)

23. Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res. 38, 223–269 (2010)

http://downloads.sourceforge.net/potassco/guide.pdf
http://downloads.sourceforge.net/potassco/guide.pdf
http://dtai.cs.kuleuven.be/krr/software

	A Prototype of a Knowledge-Based Programming Environment
	1 Context
	2 Overview of the Language and System
	2.1 Program Structure
	2.2 Knowledge Representation Language
	2.3 Structures
	2.4 Procedures

	3 Programming in DECLIMP
	4 Related Work
	5 Conclusion

