
HEX-Programs with Nested Program Calls

Thomas Eiter, Thomas Krennwallner, and Christoph Redl(B)

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, tkren, redl}@kr.tuwien.ac.at

Abstract. Answer-Set Programming (ASP) is an established declara-
tive programming paradigm. However, classical ASP lacks subprogram
calls as in procedural programming, and access to external computations
(akin to remote procedure calls) in general. This feature is desired for
increasing modularity and—assuming proper access in place—
(meta-)reasoning over subprogram results. While hex-programs extend
classical ASP with external source access, they do not support calls of
(sub-)programs upfront. We present nested hex-programs, which extend
hex-programs to serve the desired feature in a user-friendly manner.
Notably, the answer sets of called sub-programs can be individually
accessed. This is particularly useful for applications that need to reason
over answer sets like belief set merging, user-defined aggregate functions,
or preferences of answer sets. We will further present a novel method for
rapid prototyping of external sources by the use of nested programs.

1 Introduction

Answer-Set Programming, based on [8], has been established as an important
declarative programming formalism [3]. However, a shortcoming of classical ASP
is the lack of means for modularity, i.e., dividing programs into several interact-
ing components. Even though reasoners such as DLV, clasp, and dlvhex allow
to partition programs into several files, they are still viewed as a single mono-
lithic set of rules.On top of that, passing input to selected (sub-)programs is not
possible upfront.

In procedural programming, the idea of calling subprograms and processing
their output is in permanent use. Also in functional programming such mod-
ularity is popular. This helps reducing development time (e.g., by using third-
party libraries), the length of source code, and, last but not least, makes code
human-readable. Reading, understanding, and debugging a typical size applica-
tion written in a monolithic program is cumbersome. Modular extensions of ASP
have been considered [5,9] with the aim of building an overall answer set from
program modules; however, multiple results of subprograms (as typical for ASP)
are respected, and no reasoning about such results is supported. XASP [11] is an

This research has been supported by the Austrian Science Fund (FWF) project
P20840, P20841, and P24090, and by the Vienna Science and Technology Fund
(WWTF) project ICT 08-020.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 269–278, 2013.
DOI: 10.1007/978-3-642-41524-1 15, c© Springer-Verlag Berlin Heidelberg 2013



270 T. Eiter et al.

smodels interface for XSB-Prolog. This system is related to our work but less
expressive, as it is designed for host programs under well-founded semantics.
Moreover, our system allows the seamless integration of queries over subpro-
grams with other external sources. Both is important for some applications, e.g.,
for the MELD belief set merging system[10], which require on the one hand
choices, which is described in Sect. 4, and on the other hand access to arbitrary
external sources in order to query the data sources to be merged. Adding such
nesting to available approaches is not easy and requires to adapt systems similar
to our approach.

hex-programs [6] extend ASP with higher-order atoms, which allow the use
of predicate variables, and external atoms, through which a bidirectional com-
munication with external sources is enabled. But hex-programs do not sup-
port modularity and meta-reasoning directly. In this context, modularity means
the encapsulation of subprograms which interact through well-defined interfaces
only, and meta-reasoning requires reasoning over sets of answer sets. Moreover,
in hex-programs external sources are realized as procedural C++ functions.
Therefore, as soon as external sources are queried, we leave the declarative for-
malism. However, the generic notion of external atom, which facilitates a bidi-
rectional data flow between the logic program and an external source (viewed as
abstract Boolean function), can be utilized to provide these features.

To this end, we present nested hex-programs, which support (possibly para-
meterized) subprogram calls. It is the nature of nested hex-programs to have
multiple programs which reason over the answer sets of each individual sub-
program. This can be done in a user-friendly way and enables the user to
write purely declarative applications consisting of multiple interacting modules.
Notably, call results and answer sets are objects that can be accessed by identi-
fiers and processed in the calling program. Thus, different from [5,9] and related
formalisms, this enables (meta)-reasoning about the set of answer sets of a pro-
gram. In contrast to [11], both the calling and the called program are in the same
formalism. In particular, the calling program has also a declarative semantics.
As an important difference to [1], nested hex-programs do not require extend-
ing the syntax and semantics of the underlying formalism, which is the hex-
semantics. The integration is, instead, by defining some external atoms (which
is already possible in ordinary hex-programs), making the approach simple and
user-friendly for many applications. Furthermore, as nested hex-programs are
based on hex-programs, they additionally provide access to external sources
other than logic programs. This makes nested hex-programs a powerful formal-
ism, which has been implemented using the dlvhex reasoner for hex-programs;
applications like belief set merging [10] show its potential and usefulness. More-
over, we will show how nested programs can be used for external source simu-
lation. This allows for rapid prototyping without actually implementing plugins
for the reasoner, which is time-consuming.



HEX-Programs with Nested Program Calls 271

2 HEX-Programs

We briefly recall hex-programs, which have been introduced in [6] as a gener-
alization of (disjunctive) extended logic programs under the answer set seman-
tics [8]; for more details and background, we refer to [6]. A hex-program consists
of rules of the form

a1 ∨ · · · ∨ an ← b1, . . . , bm,not bm+1, . . . ,not bn , (m,n ≥ 0)

where each ai is a literal, i.e., an atom p(t1, . . . , t�) or a negated atom ¬p(t1, . . . , t�),
and each bj is either a classical literal or an external atom, and not is negation by
failure (under stable semantics). An external atom is of the form

&g[q1, . . . , qk](t1, . . . , t�) ,

where g is an external predicate name, the qi are predicate names or constants,
and the tj are terms. Informally, the semantics of an external g is given by a k+�+
1-ary Boolean oracle function f&g. The external atom is true relative to an inter-
pretation I and a grounding substitution θ iff f&g(I, q1, . . . , qk, t1θ, . . . , t�θ) = 1.
External atoms allow for including arbitrary (computable) functions. E.g., built-
in functions can be realized via external atoms, or library functions such as
string manipulations, sorting routines, etc. As external sources need not be on
the same machine, knowledge access across the Web is possible, e.g., belief set
import. Strictly, [6] omits classical negation ¬ but the extension is routine; fur-
thermore, [6] also allows terms for the qi and variables for predicate names, which
we do not consider.

Example 1. Suppose an external knowledge base consists of an RDF file located
on the web at http://.../data.rdf. Using an external atom &rdf [url](X, Y, Z), we
may access all RDF triples (s, p, o) at the URL specified with url. To form belief
sets of pairs that drop the third argument from RDF triples, we may use the
rule

bel(X,Y ) ← &rdf [http://.../data.rdf](X,Y,Z) .

The above program has a single answer set which consists of all literal
bel(c1, c2) such some RDF triple (c1, c2, c3) occurs at the respective URL.

We use the dlvhex system from http://www.kr.tuwien.ac.at/research/
systems/dlvhex/as abackend.dlvhex implements (a fragmentof)hex-programs.
It provides a plugin mechanism for external atoms. Besides library atoms, the user
can define her own atoms using C++ methods.

3 Nested HEX-Programs

Limitations of ASP. As a simple example demonstrating the limits of ordinary
ASP, assume a program computing the shortest paths between two (fixed) nodes
in a connected graph. The answer sets of this program then correspond to the
shortest paths. Suppose we are just interested in the number of such paths. In

http://.../data.rdf
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/


272 T. Eiter et al.

Main HEX-

program
DLVHEX

Answer

Sets

Subprograms
External

Atoms
Answer Set Cache

Fig. 1. System Architecture of Nested hex (data flow ���, control flow →)

a procedural setting, this is easily computed if the function returns all paths in
an suitable data structure (e.g., an array or a linked list).

In ASP, the solution is non-trivial if the given program must not be modified
(e.g., if it is provided by a third party); above, we must count the answer sets.
Thus, we need to reason on sets of answer sets, which is infeasible inside the
program. Means to call the program at hand and reason about the results of
this “callee” (subprogram) in the “calling program” (host program) would be
useful. Aiming at a logical counterpart to procedural function calls, we define a
framework which allows to input facts to the subprogram prior to its execution.
Host and subprograms are decoupled and interact merely by relational input and
output values. To realize this mechanism, we exploit external atoms, leading to
nested hex-programs.
Architecture. Nested hex-programs are realized as a plugin for the reasoner
dlvhex,1 which consists of a set of external atoms and an answer cache for the
results of subprograms (see Fig. 1). Technically, the implementation is part of
the belief set merging system MELD, which is an application on top of a nested
hex-programs core. This core can be used independently from the rest of the
system.

When a subprogram call (corresponding to the evaluation of a special external
atom) is encountered of the host program, the plugin creates another instance
of the reasoner to evaluate the subprogram. Its result is then stored in the
answer cache and identified with a unique handle, which can later be used to
reference the result and access its components (e.g., predicate names, literals,
arguments) via other special external atoms. For economic memory management,
the implementation may remove answer cache entries dynamically in the style
of a least frequently used heuristics, and reevaluate the corresponding program
again if it is later accessed again.

There are two possible sources for the called subprogram: (1) either it is
directly embedded in the host program, or (2) it is stored in a separate file. In
(1), the rules of the subprogram must be represented within the host program.
To this end, they are encoded as string constants. An embedded program must
not be confused with a subset of the rules of the host program. Even though it is
syntactically part of it, it is logically separated to allow independent evaluation.
In (2) merely the path to the location of the external program in the file system

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html


HEX-Programs with Nested Program Calls 273

is given. Compared to embedded subprograms, code can be reused without the
need to copy, which is clearly advantageous when the subprogram changes. We
now present concrete external atoms &callhexn,&callhexfilen,&answersets,
&predicates, and &arguments which are used to realize nested hex-programs.
External Atoms for Subprogram Handling. We start with two families of
external atoms

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

that allow to execute a subprogram given by a string P respectively in a file FN;
here n is an integer specifying the number of predicate names pi, 1 ≤ i ≤ n, used
to define the input facts. When evaluating such an external atom relative to an
interpretation I, the system adds all facts {pi(a1, . . . , ami

) ←| pi(a1, . . . , ami
) ∈

I} to the specified program, creates another instance of the reasoner to evaluate
it, and returns a symbolic handle H as result. For convenience, we do not write
n in &callhexn and &callhexfilen as it is understood from the usage.

Example 2. In the following program, we use two predicates p1 and p2 to define
the input to the subprogram sub.hex (n = 2), i.e., all atoms over these predicates
are added to the subprogram prior to evaluation. The call derives a handle H
as result.

p1(x, y) ← p2(a) ← p2(b) ←
handle(H) ← &callhexfile[sub.hex, p1, p2](H)

A handle is a unique integer representing a certain program answer cache
entry. In the implementation, handles are consecutive numbers starting with
0. Hence in the example the unique answer set of the program is {handle(0)}
(neglecting facts).

Formally, given an interpretation I, f&callhexfilen
(I,file, p1, . . . , pn, h) = 1 iff

h is the handle to the result of the program in file file, extended by the facts over
predicates p1, . . . , pn that are true in I. The formal notion and use of &callhexn

to call embedded subprograms is analogous to &callhexfilen.

Example 3. Consider the following program:

h1(H) ← &callhexfile[sub.hex](H)
h2(H) ← &callhexfile[sub.hex](H)
h3(H) ← &callhex[a ← . b ← .](H)

The rules execute the program sub.hex and the embedded program Pe = {a ←,
b ←}. No facts will be added in this example. The single answer set is {h1(0),
h2(0), h3(1)} resp. {h1(1), h2(1), h3(0)} depending on the order in which the sub-
programs are executed (which is irrelevant). While h1(X) and h2(X) will have
the same value for X,h3(Y ) will be such that Y �=X. Our implementation real-
izes that the result of the program in sub.hex is referred to twice but executes it
only once; Pe is (possibly) different from sub.hex and thus evaluated separately.



274 T. Eiter et al.

Now we want to determine how many (and subsequently which) answer sets
it has. For this purpose, we define external atom &answersets[PH ](AH ) which
maps handles PH to call results to sets of respective answer set handles. For-
mally, for an interpretation I, f&answersets(I, hP , hA) = 1 iff hA is a handle to an
answer set of the program with program handle hP .

Example 4. The single rule

ash(PH ,AH ) ← &callhex[a ∨ b ← .](PH ),&answersets[PH ](AH )

calls the embedded subprogram Pe = {a∨b ← .} and retrieves pairs (PH ,PA) of
handles to its answer sets. &callhex returns a handle PH = 0 to the result of Pe,
which is passed to &answersets. This atom returns a set of answer set handles
(0 and 1, as Pe has two answer sets, viz. {a} and {b}). The overall program has
thus the single answer set {ash(0, 0), ash(0, 1)}. As for each program the answer
set handles start with 0, only a pair of program and answer set handles uniquely
identifies an answer set.

We now are ready to solve our example of counting shortest paths from above.

Example 5. Suppose paths.hex is the search program and encodes each shortest
path in a separate answer set. Consider the following program:

as(AH) ← &callhexfile[paths.hex](PH ),&answersets[PH ](AH )
number(D) ← as(C),D = C + 1,not as(D)

The second rule computes the first free handle D; the latter coincides with the
number of answer sets of paths.hex (assuming that some path between the nodes
exists).

At this point we still treat answer sets of subprograms as black boxes. We
now define an external atom to investigate them.

Given an interpretation I, f&predicates(I, hP , hA, p, a) = 1 iff p occurs as an a-
ary predicate in the answer set identified by hP and hA. Intuitively, the external
atom maps pairs of program and answer set handles to the predicates names
with their associated arities occurring in the accourding answer set.

Example 6. We illustrate the usage of &predicates with the following program:

preds(P,A) ← &callhex[node(a). node(b). edge(a, b).](PH ),
&answersets[PH ](AH ),&predicates[PH ,AH ](P,A)

It extracts all predicates (and their arities) occurring in the answer of the embed-
ded program Pe, which specifies a graph. The answer set is {preds(node, 1),
preds(edge, 2)} as the answer set of Pe has atoms with predicate node (unary)
and edge (binary).

The final step to gather all information from the answer of a subprogram is
to extract the literals and their parameters occurring in a certain answer set.
This can be done with external atom &arguments, which is best demonstrated
with an example.



HEX-Programs with Nested Program Calls 275

Example 7. Consider the following program:

h(PH ,AH ) ← &callhex[node(a). node(b). node(c). edge(a, b).edge(c, a).](PH ),

&answersets[PH ](AH )

edge(W ,V ) ← h(PH ,AH ),&arguments[PH ,AH , edge](I , 0,V ),

&arguments[PH ,AH , edge](I , 1,W )

node(V ) ← h(PH ,AH ),&arguments[PH ,AH , node](I , 0,V )

It extracts the directed graph given by the embedded subprogram Pe and
reverses all edges; the answer set is {h(0, 0),node(a),node(b),node(c),
edge(b, a), edge(a, c)}. Indeed, Pe has a single answer set, identified by PH =
0, AH = 0; via &arguments we can access in the second resp. third rule the
facts over edge resp. node in it, which are identified by a unique literal id I; the
second output term of &arguments is the argument position, and the third the
actual value at this position. If the predicates of a subprogram were unknown,
we can determine them using &predicates.

To check the sign of a literal, the external atom &arguments[PH,AH,P ]
(I, s,S ) supports argument s. When s = 0,&arguments will match the sign of
the I-th positive literal over predicate P into S , and when s = 1 it will match
the corresponding classically negated atom.
External Atoms for External Source Prototyping. Our system provides
another family of external atoms for rapid prototyping of (simple) external
sources directly in ASP. This it, the input-output behavior of hypothetical exter-
nal sources is encoded by ASP rules. This is useful for quick experiments before
a new external source is actually implemented. It comes with less implementa-
tion overhead compared to a native implementation in C++. This gives the user
the possibility to see how the planned external atom will behave in a program
even before it is developed. However, it is clear the possibility of simulating
external sources cannot replace the plugin mechanism of dlvhex as it cannot
access real external sources. Moreover, simulation is less efficient than a native
implementation in C++.

For simulation our system supports the external atom:

&simulatorn,m[F, p1, . . . , pn](X1, . . . Xm)

The simulator atom takes as arguments a filename F , which refers to the
ASP program defining the input-output behavior of the prototypical external
source, and predicate inputs p1, . . . , pn. The output list X1, . . . , Xm is used to
retrieve the tuples from produced by the simulated external source.

When a simulator atom is encountered in the host program, it will evaluate
the ASP-program in F extended by the input parameters defined over p1, . . . , pn.
In particular, the system will add for each input atom pi(a1, . . . , ak) a fact of
form ini(a1, . . . , ak) to F. The renaming of the predicates is necessary in order
to make F independent of the input predicate names in the host program. The
result of F is expected to consist of exactly one answer set, where all atoms of
form out(o1, . . . , om) define the output of the simulated external source.



276 T. Eiter et al.

Example 8. Consider the following program P given by the rules:

dom(a) ← dom(b) ← dom(c) ←
sel(X) ← dom(X),&simulator2,1[Q, dom,nsel ](X)

nsel(X) ← dom(X),&simulator2,1[Q, dom, sel ](X)

Let further Q refer to the program:

out(X) ← in1 (X),not in2 (X).

Then Q simulates an external source which computes the set difference, where
the extension of the second predicate input in2 is subtracted from the extension
of the first predicate input in1 . The program P computes then the two sets sel
and nsel , corresponding to all partitionings of {a, b, c} into two subsets.

4 Applications

MELD. The MELD system [10] deals with merging multiple collections of belief
sets. Roughly, a belief set is a set of classical ground literals. Practical examples
of belief sets include explanations in abduction problems, encodings of decision
diagrams, and relational data. The merging strategy is defined by tree-shaped
merging plans, whose leaves are the collections of belief sets to be merged, and
whose inner nodes are merging operators (provided by the user). The structure
is akin to syntax trees of terms.

The automatic evaluation of tree-shaped merging plans is based on nested
hex-programs; it proceeds bottom-up, where every step requires inspection of
the subresults, i.e., accessing the answer sets of subprograms. The meta program
at the root node generates then one answer set for each integrated belief set.
For this purpose, guessing rules select an integrated belief set of the top-level
merging operator. The meta program then inherits the conclusions of the chosen
belief set in order to make it visible to the user. Note that XASP [11] is thus
not appropriate for such unstratified host programs, as it can only compute the
well-founded semantics.
Aggregate Functions. Nested programs can also emulate aggregate functions
[7] (e.g., #sum, #count, #max) where the (user-defined) host program computes
the function given the result of a subprogram. This can be generalized to aggre-
gates over multiple answer sets of the subprogram; e.g., to answer set counting,
or to find the minimum/maximum of some predicate over all answer sets (which
may be exploited for global optimization).
Generalized Quantifiers. Nested hex-programs make the implementation of
brave and cautious reasoning for query answering tasks very easy, even if the
backend reasoner only supports answer set enumeration. Furthermore, extended
and user-defined types of query answers (cf. [5]) are definable in a very user-
friendly way, e.g., majority decisions (at least half of the answer sets support a
query), or minimum and/or maximum number based decisions (qualified number
restrictions).



HEX-Programs with Nested Program Calls 277

Preferences. Answer sets as accessible objects can be easily compared wrt. user-
defined preference rules, and used for filtering as well as ranking results (cf. [4]):
a host program selects appropriate candidates produced by a subprogram, using
preference rules. The latter can be elegantly implemented as ordinary integrity
constraints (for filtering), or as rules (possibly involving further external calls) to
derive a rank. A popular application are online shops, where the past consumer
behavior is frequently used to filter or sort search results. Doing the search via
an ASP program which delivers the matches in answer sets, a host program can
reason about them and act as a filter or ranking algorithm.
Nested Programs as a Development Tool for DLVHEX. The further
development of our system dlvhex uses the idea of annotated external sources.
This is, known properties like monotonicity and functionality shall be exploited
for speeding up the reasoning process. Developing appropriate algorithms and
heuristics requires empirical experiments with a variety of external sources. As
it would be cumbersome to implement all of them as real plugins to dlvhex,
simulating them via our &simulatorn,m atom seems to be a good alternative.

5 Conclusion

To overcome limitations of classical ASP regarding subprograms and reasoning
about their possible outcomes, we briefly presented nested hex-programs, which
realize subprogram calls via special external atoms of hex-programs; besides
modularity, a plus for readability and program reusability, they allow for reason-
ing over multiple answer sets (of subprograms). Moreover, nested hex-programs
can also be used as a tool for rapid external source prototyping. An implementa-
tion on top of dlvhex is available. Related to this is the work on macros in [2],
which allow to call macros in logic programs.

The possibility to access answer sets in a host program, in combination with
access to other external computations, makes nested hex-programs a powerful
tool for a number of applications. In particular, libraries and user-defined func-
tions can be incorporated into programs easily. As an interesting aspect is that
dynamic program assembly (using a suitable string library) and execution are
possible, which other approaches to modular ASP programming do not offer.
Exploring this remains for future work.

References

1. Analyti, A., Antoniou, G., Damásio, C.V.: Mweb: a principled framework for mod-
ular web rule bases and its semantics. ACM Trans. Comput. Log. 12(2), 17:1–17:46
(2011)

2. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles
in modular answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP
2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)



278 T. Eiter et al.

4. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2),
308–334 (2004)

5. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quan-
tifiers. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265,
pp. 289–308. Springer, Heidelberg (1997)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer set programming. In: IJCAI’05,
pp. 90–96. Professional Book Center (2005)

7. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive data-
bases. New Generat. Comput. 9, 365–385 (1991)

9. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

10. Redl, C., Eiter, T., Krennwallner, T.: Declarative belief set merging using merging
plans. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 99–
114. Springer, Heidelberg (2011)

11. Swift, T., Warren, D.S.: XSB: Extending prolog with tabled logic programming.
Theor. Pract. Log. Program 12(1–2), 157–187 (2012)


	HEX-Programs with Nested Program Calls
	1 Introduction 
	2 HEX-Programs 
	3 Nested HEX-Programs 
	4 Applications
	5 Conclusion 


