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Abstract. The aim of this paper is to announce the release of a novel
system for abstract argumentation which is based on decomposition
and dynamic programming. We provide first experimental evaluations
to show the feasibility of this approach.

1 Introduction

Argumentation has evolved as an important field in AI, with abstract argumen-
tation frameworks (AFs, for short) as introduced by Dung [5] being its most
popular formalization. Several semantics for AFs have been proposed (see e.g.
[2] for an overview), but here we shall focus on the so-called preferred semantics.
Reasoning under this semantics is known to be intractable [6]. An interesting
approach to dealing with intractable problems comes from parameterized com-
plexity theory which suggests to focus on parameters that allow for fast eval-
uations as long as these parameters are kept small. One important parameter
for graphs (and thus for argumentation frameworks) is tree-width, which mea-
sures the “tree-likeness” of a graph. To be more specific, tree-width is defined
via a certain decomposition of graphs, the so-called tree decomposition. Recent
work [7] describes novel algorithms for reasoning in the preferred semantics, such
that the performance mainly depends on the tree-width of the given AF, rather
than on the size of the AF. To put this approach to practice, we shall use the
SHARP framework,1 a C++ environment which includes heuristic methods to
obtain tree decompositions [4], provides an interface to run algorithms on these
decompositions, and offers further useful features, for instance for parsing the
input. For a description of the SHARP framework, see [9].

The main purpose of our work here is to support the theoretical results
from [7] with experimental ones. Therefore we use different classes of AFs and
analyze the performance of our approach compared to an implementation based
on answer-set programming (see [8]). Our prototype system together with the
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used benchmark instances is available as a ready-to-use tool from http://www.
dbai.tuwien.ac.at/research/project/argumentation/dynpartix/.

2 Background

Argumentation Frameworks

An argumentation framework (AF ) is a pair F = (A,R) where A is a set of
arguments and R ⊆ A × A is the attack relation. If (a, b) ∈ R we say a attacks
b. For S ⊆ A and a ∈ A, we write S � a (resp. a � S) iff there exists b ∈ S,
such that b � a (resp. a � b). An a ∈ A is defended by a set S ⊆ A iff for each
(b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R. An AF can naturally be
represented as a digraph.

Example 1. Consider the AF F = (A,R), with A = {a, b, c, d, e, f, g} and R =
{(a, b), (c, b), (c, d), (d, c), (d, e), (e, g), (f, e), (g, f)}. The graph representation
of F is given as follows:

a b c d e f g

We require the following semantical concepts: Let F = (A,R) be an AF. A
set S ⊆ A is (i) conflict-free in F , if there are no a, b ∈ S, such that (a, b) ∈ R;
(ii) admissible in F , if S is conflict-free in F and each a ∈ S is defended by S; (iii)
a preferred extension of F , if S is a ⊆-maximal admissible set in F . in Example
1, we get the admissible sets {}, {a}, {c}, {d}, {d, g}, {a, c}, {a, d}, and {a, d, g}.
Consequently, the preferred extensions of this framework are {a, c}, {a, d, g}.

The typical reasoning problems associated with AFs are the following: (1)
Credulous acceptance asks whether a given argument is contained in at least
one preferred extension of a given AF; (2) skeptical acceptance asks whether a
given argument is contained in all preferred extensions of a given AF. Credulous
acceptance is NP-complete, while skeptical acceptance is even harder, namely
ΠP

2 -complete [6].

Tree Decompositions and Tree-Width

As already outlined, tree decompositions will underlie our implemented algo-
rithms. We briefly recall this concept (which is easily adapted to AFs). A tree
decomposition of an undirected graph G = (V,E) is a pair (T ,X ) where T =
(VT , ET ) is a tree and X = (Xt)t∈VT is a set of so-called bags, which has to
satisfy the following conditions:

(a)
⋃

t∈VT
Xt = V , i.e. X is a cover of V ;

(b) for each v ∈ V , the subgraph of T induced by {t | v ∈ Xt} is connected;
(c) for each {vi, vj} ∈ E, {vi, vj} ⊆ Xt for some t ∈ VT .

http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/
http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/
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Fig. 1. Illustration of the algorithm for admissible sets.

The width of a tree decomposition is given by max{|Xt| | t ∈ VT } − 1. The
tree-width of G is the minimum width over all tree decompositions of G.
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It can be shown that our example AF has tree-width 2 and we illustrate a
tree decomposition of width 2 in Fig. 1(a).

However for our purposes we shall use so-called normalized decompositions,
that is the tree-decomposition has a root node r with Xr = ∅ and consists only
of nodes of one of the following types. A node t ∈ VT is a:

– Leaf-node if t has no children nodes in T ;
– Branch-node if t has two successors t′, t′′ in T and Xt = Xt′ = Xt′′

– Insert-node if t has only one successor t′ and Xt = Xt′ ∪ v for some v ∈ V ;
– Removal-node if t has only one successor t′ and Xt = Xt′ \v for some v ∈ V .

A normalized version of the first tree-decomposition is presented in Fig. 1(b).
Dynamic programming algorithms traverse such tree decompositions and

compute local solutions for each node in the decomposition. Thus the combi-
natorial explosion is now limited to the size of the bags, that is, to the width of
the given tree decomposition.

3 Dynamic Programming Algorithm

In this section we sketch the dynamic programming algorithm for credulous
acceptance. For more detailed explanations as well as for the dynamic program-
ming algorithm for skeptical acceptance, the interested reader is referred to [7].
In the following we tacitly assume an AF F = (A,R) and a corresponding nor-
malized tree-decomposition (T ,X ).

Towards an algorithm for admissible sets we need the following concept: A
set of arguments E is a B-restricted admissible set for F , if E is conflict-free in F
and E defends itself against all a ∈ A∩B. Clearly we have that the A-restricted
admissible sets coincide with the admissible sets. Now the main idea behind the
dynamic programming algorithm is to consider for each node t ∈ T , the AF
F≥t induced by the union of the bags X≥t of the sub-tree of T rooted at t and
computing the X≥t\Xt-restricted admissible sets. As for the root note r, Xr = ∅
and X≥t = A we then have a handle on the admissible sets.

Next we consider how we represent (X≥t\Xt)-restricted admissible sets in a
node t. First let us mention that by the definition of tree-decompositions we have
that the AF F≥t already contains all attacks incident with arguments in X≥t\Xt

and thus we do not need the status of these arguments for the computation in
the ancestor nodes of t. Hence for each node t it suffices to store the status of the
arguments Xt for each X≥t\Xt-restricted admissible set E. This is implemented
by so called vcolorings Ct : Xt �→ {in, def , att , out} for t with the following
intuition: Ct(a) = in iff a ∈ E; Ct(a) = def iff E � a; Ct(a) = att iff E 	� a
and a � E; Ct(a) = out iff E 	� a and a 	� E. We have that each (X≥t\Xt)-
restricted admissible set corresponds to exactly one vcoloring, but one vcoloring
in general corresponds to several X≥t\Xt-restricted admissible sets.

In the following we discuss how to compute the vcolorings for each node-type.
Starting with leaf-nodes t we are interested in ∅-restricted admissible sets of F≥t,
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which coincide with the conflict-free sets. So we simply compute the conflict-free
sets of F≥t and map them to the corresponding vcolorings.

In a removal-node t with successor t′ and Xt = Xt′ \ {a} we consider the
successor’s vcolorings Ct′ with Ct′(a) 	= att and project them to Xt. We have
that Ct′(a) = att corresponds to a violation of admissibility, i.e. a attacks an
argument in E and is not attacked by E, and as a ∈ X≥t \Xt the sets E
corresponding to Ct′ are not X≥t\Xt-restricted admissible.

Now let us focus on Insert node t with successor t′ and Xt = Xt′ ∪ {a}.
Again we consider vcolorings Ct′ of t′. Given a X≥t\Xt restricted admissible set
E and adding a new argument a to the AF there are two ways to update E,
either adding the new argument to E or not. This observation is mirrored by
the following two operations. First we construct the vcoloring C1

t extending Ct′

to a such that a is labeled by one of the labels def , att , out , depending on the
attacks between a and the arguments {a ∈ Xt′ | Ct′(a) = in} =: [Ct′ ]. Moreover
if [Ct′ ] ∪ {a} is conflict-free in F we also generate a vcoloring C2

t extending Ct′

such that C2
t (a) = in and faithfully update labels att , out according to attacks

incident with a.
In a branch node t with successors t′, t′′ we union two sub-frameworks

F≥t′ , F≥t′′ that intersect on Xt. Consequently to obtain an (X≥t \Xt)-restricted
admissible set of F≥t we can combine each (X≥t′ \Xt′)-restricted admissible set
of F≥t′ with each (X≥t′′ \ Xt′′)-restricted admissible set of F≥t′ as long they
coincide on Xt. Thus the vcolorings C of t are computed by combining vcol-
orings C ′ of t′ and vcolorings C ′′ of t′′ such that [C ′] = [C ′′]. The coloring C
computed from C ′,C ′′ is defined as follows. For b ∈ Xt we have: C(b) = in iff
C ′(b) = C ′′(b) = in; C(b) = def iff C ′(b) = def or C ′′(b) = def ; C(b) = out iff
C ′(b) = out and C ′′(b) = out ; and C(b) = att in the remaining cases.

Proposition 1. For node t and a ∈ Xt. There is a vcoloring Ct for t with
Ct(a) = in iff a is contained in an X≥t\Xt-restricted admissible sets of F≥t.

Finally we discuss how credulous acceptance can be decided via vcolorings.
We just mark each vcoloring which assigns the value in to the argument we are
interested in and accordingly pass this mark up to the root. That is we mark
a coloring if it is constructed by using at least one marked coloring. Finally at
the (empty) root node we have that the argument is credulously accepted iff the
vcoloring of the root is marked.

Example 2. Recall our running example, the computation of vcolorings is illus-
trated in Fig. 1(c). For deciding the credulous acceptance of argument d we mark
vcolorings corresponding to at least one set containing d with a �, according to
the above rules. The argument d is introduced two times, in the node n3 and
in the node n11. Thus, we mark their vcolorings C satisfying C(d) = in. Now
consider n8 with the colorings C1(c) = in, C1(d) = def , C2(c) = def , C2(d) = in
and C3(c) = out , C3(d) = out . The child node n9 has colorings C ′

1(d) = in and
C ′

2(d) = out , the first marked. As C2 is constructed via C ′
1 it is also marked and

as C1 and C3 are both constructed via C ′
2 they are not marked. ♦
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Fig. 2. Architecture of the SHARP framework.

4 Implementation and the SHARP Framework

dynPARTIX implements these dynamic programming algorithms based on tree
decompositions using the SHARP framework [9], which is a purpose-built frame-
work for implementing algorithms that are based on tree decompositions.
Figure 2 shows the typical architecture, that systems working with the SHARP
framework follow. In fact, SHARP provides interfaces and helper methods for
the preprocessing and dynamic algorithm steps as well as ready-to-use implemen-
tations of various tree decomposition heuristics, i.e. Minimum-Fill, Maximum-
Cardinality-Search and Minimum-Degree heuristics (cf. [4]), as well as different
normalization algorithms.

As mentioned before, dynPARTIX builds on normalized tree decompositions
provided by SHARP, which contain the four mentioned types of nodes. To imple-
ment our algorithms we just have to provide data structures storing the vcolor-
ings of a node and the methods for each of these node types.

SHARP handles data-flow management and provides data structures where
the calculated (partial) solutions to the problem under consideration can be
stored. The amount of dedicated code for dynPARTIX comes to around 2700
lines in C++. Together with the SHARP framework (and the used libraries for
the tree-decomposition heuristics), our system roughly comprises of 13000 lines
of C++ code.

5 System Specifics

Currently the implementation is able to calculate the admissible and preferred
extensions of a given argumentation framework and to check if credulous or skep-
tical acceptance holds for a specified argument. The basic usage of dynPARTIX
is as follows:

> ./dynpartix [-f <file>] [-s <semantics>]
[--enum | --count | --cred <arg> | --skept <arg>]

The argument -f <file> specifies the input file, the argument -s <semantics>
selects the semantics to reason with, i.e. either admissible or preferred, and the
remaining arguments choose one of the reasoning modes.

Input file conventions: We borrow the input format from the ASPARTIX sys-
tem [8]. dynPARTIX thus handles text files where an argument a is encoded as
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arg(a) and an attack (a, b) is encoded as att(a,b). For instance, consider the
following encoding of our running example and let us assume that it is stored in
a file inputAF.

arg(a). arg(b). arg(c). arg(d). arg(e). arg(f). arg(g).
att(a,b). att(c,b). att(c,d). att(d,c).
att(d,e). att(e,g). att(f,e). att(g,f).

Enumerating extensions: First of all, dynPARTIX can be used to compute exten-
sions, i.e. admissible sets and preferred extensions. For instance to compute the
admissible sets of our running example one can use the following command:

> ./dynpartix -f inputAF -s admissible

Credulous Reasoning : dynPARTIX decides credulous acceptance using proof
procedures for admissible sets (even if one reasons with preferred semantics)
to avoid unnecessary computational costs. The following statement decides if
the argument d is credulously accepted in our running example.

> ./dynpartix -f inputAF -s preferred --cred d

Indeed the answer would be YES as {a, d, g} is a preferred extension.

Skeptical Reasoning : To decide skeptical acceptance, dynPARTIX uses proof
procedures for preferred extensions which usually results in higher computational
costs (but is unavoidable due to complexity results). To decide if the argument
d is skeptically accepted, the following command is used:

> ./dynpartix -f inputAF -s preferred --skept d

Here the answer would be NO as {a, c} is a preferred extension not containing
d.

Counting Extensions : Recently the problem of counting extensions has gained
some interest [1]. We note that our algorithms allow counting without an explicit
enumeration of all extensions (thanks to the particular nature of dynamic pro-
gramming; see also [10]). Counting preferred extensions with dynPARTIX is
done by

> ./dynpartix -f inputAF -s preferred --count

6 Benchmark Tests

In this section we compare dynPARTIX with ASPARTIX [8], one of the most
efficient reasoning tools for abstract argumentation (for an overview of existing
argumentation systems see [8]). For our benchmarks we used randomly generated
AFs of low tree-width. To ensure that AFs are of a certain tree-width we consid-
ered random grid-structured AFs. In such a grid-structured AF each argument
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is arranged in an n × m grid and attacks are only allowed between neighbours
in the grid (we used an 8-neighborhood here to allow odd-length cycles, which
are crucial for the full complexity of preferred semantics). When generating the
benchmark instances we varied the following parameters: the number of argu-
ments from 25 to 500; the tree-width; and the probability that a possible attack
is actually in the AF.

The benchmark tests were executed on an Intel R©CoreTM2 CPU
6300@1.86GHz machine running SUSE Linux version 2.6.27.48. We generated
a total of 4800 argumentation frameworks with varying parameters as men-
tioned above. The two graphs on the left-hand side compare the running times
of dynPARTIX and ASPARTIX (using dlv) on instances of small treewidth
(viz. 3 and 5). For the graphs on the right-hand side, we have used instances
of higher width. Results for credulous acceptance are given in the upper graphs
and those for skeptical acceptance in the lower graphs. The y-axis gives the run-
times in logarithmic scale; the x-axis shows the number of arguments. Note that
the upper-left picture has different ranges on the axes compared to the three
other graphs. We remark that the test script stopped a calculation if it was not
finished after 300 s. For these cases we stored the value of 300 s in the database.

Interpretation of the Benchmark Results: We observe that, independent of the
reasoning mode, the runtime of ASPARTIX is only minorly affected by the tree-
width while dynPARTIX strongly benefits from a low tree-width, as expected
by theoretical results [7].

For the credulous acceptance problem we have that our current implementa-
tion is competitive only up to tree-width 5. Considering Fig. 3(a) and (b), there
is to note that for credulous acceptance ASPARTIX decided every instance in
less than 300 s, while dynPARTIX exceeded this value in 4 % of the cases.

Now let us consider the skeptical acceptance problem. As mentioned before,
skeptical acceptance is computationally much harder than credulous acceptance,
which is reflected by the bad runtime behaviour of ASPARTIX. Indeed we have
that for tree-width ≤ 5, dynPARTIX has a significantly better runtime behav-
iour, and that it is competitive on the whole set of test instances. As an additional
comment to Fig. 3(c) and (d), we note that for skeptical acceptance, dynPAR-
TIX was able to decide about 71 % of the test cases within the time limit, while
ASPARTIX only finished 41 %.

Finally let us briefly mention the problem of Counting preferred extensions.
On the one side we have that ASPARTIX has no option for explicitly counting
extensions, so the best thing one can do is enumerating extensions and then
counting them. It can easily be seen that this can be quite inefficient, which is
reflected by the fact that ASPARTIX only finished 21 % of the test instances
in time. On the other hand we have that the dynamic algorithms for counting
preferred extensions and deciding skeptical acceptance are essentially the same
and thus have the same runtime behaviour.
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Fig. 3. Runtime of dynPARTIX for graphs of different tree-width compared to
ASPARTIX.

7 Discussion

In this paper, we have presented a novel system for abstract argumentation which
is based on decomposition and dynamic programming. Experimental evaluations
show that such an approach is able to outperform systems relying on answer-set
programming, at least on certain instances. This indicates that despite the high
sophistication answer-set programming systems have reached nowadays, struc-
tural features of the problem instance are not sufficiently recognized yet by these
systems. As ongoing work we thus focus on a combination of the both paradigms,
i.e. decomposition and making use of declarative programming languages,
see http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/ for further
details.

For future work, we need a more comprehensive empirical evaluation, in par-
ticular on real world instances. To this end, we need more knowledge about the
tree-width typical argumentation instances comprise, i.e. whether it is the case
that such instances have low tree-width. Due to the unavailability of benchmark
libraries for argumentation, so far we had to omit such considerations. we plan to
extend dynPARTIX by additional argumentation semantics mentioned in [2] and
by further reasoning modes, which can be efficiently computed on tree decompo-
sitions. Finally, we plan to further develop dynPARTIX for non-normalized tree
decompositions [3].

http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/
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