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Abstract. In order to give appropriate semantics to qualitative condi-
tionals of the form if A then normally B, ordinal conditional functions
(OCFs) ranking the possible worlds according to their degree of plau-
sibility can be used. An OCF accepting all conditionals of a knowledge
base R can be characterized as the solution of a constraint satisfaction
problem. We present a high-level, declarative approach using constraint
logic programming (CLP) techniques for solving this constraint satisfac-
tion problem. In particular, the approach developed here supports the
generation of all minimal solutions; this also holds for different notions of
minimality which we discuss and implement in CLP. Minimal solutions
are of special interest as they provide a basis for model-based inference
from R.

1 Introduction

In knowledge representation, rules play a prominent role. Default rules of the
form If A then normally B are being investigated in nonmonotonic reasoning,
and various semantical approaches have been proposed for such rules. Since it
is not possible to assign a simple Boolean truth value to such default rules, a
semantical approach is to define when a rational agent accepts such a rule. We
could say that an agent accepts the rule Birds normally fly if she considers a
world with a flying bird to be less surprising than a world with a nonflying bird.
At the same time, the agent can also accept the rule Penguin birds normally do
not fly ; this is the case if she considers a world with a nonflying penguin bird to
be less surprising than a world with a flying penguin bird.

The informal notions just used can be made precise by formalizing the under-
lying concepts like default rules, epistemic state of an agent, and the acceptance
relation between epistemic states and default rules. In the following, we deal with
qualitative default rules and a corresponding semantics modelling the epistemic
state of an agent. While a full epistemic state could compare possible worlds
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according to their possibility, their probability, their degree of plausibility, etc.
(cf. [9,10,18]), we will use ordinal conditional functions (OCFs), which are also
called ranking functions [18]. To each possible world ω, an OCF κ assigns a nat-
ural number κ(ω) indicating its degree of surprise: The higher κ(ω), the greater
is the surprise for observing ω.

In [12,13] a criterion when a ranking function respects the conditional struc-
ture of a set R of conditionals is defined, leading to the notion of c-representation
for R, and it is argued that ranking functions defined by c-representations are
of particular interest for model-based inference. In [3] a system that computes
a c-representation for any such R that is consistent is described, but this c-
representation may not be minimal. An algorithm for computing a minimal
ranking function is given in [5], but this algorithm fails to find all minimal
ranking functions if there is more than one minimal one. In [15] an extension
of that algorithm being able to compute all minimal c-representations for R
is presented. The algorithm developed in [15] uses a non-declarative approach
and is implemented in an imperative programming language. While the problem
of specifying all c-representations for R is formalized as an abstract, problem-
oriented constraint satisfaction problem CR(R) in [2], no solving method is given
there.

In this paper, we present a high-level, declarative approach using constraint
logic programming techniques for solving the constraint satisfaction problem
CR(R) for any consistent R. In particular, the approach developed here supports
the generation of all minimal solutions; these minimal solutions are of special
interest as they provide a preferred basis for model-based inference from R.
Moreover, we investigate different notions of minimality and demonstrate the
flexibility of our approach by showing how alternative minimality concepts can
be taken into account by slight modifications of the CLP implementation.

The rest of this paper is organized as follows: After recalling the formal back-
ground of conditional logics as it is given in [1] and as far as it is needed here
(Sect. 2), we elaborate the birds-penguins scenario sketched above as an illustra-
tion for a conditional knowledge base and its semantics in Sect. 3. The definition
of the constraint satisfaction problem CR(R) and its solution set denoting all c-
representations for R is given in Sect. 4. In Sect. 5, a declarative, high-level CLP
program GenOCF solving CR(R) is developed, observing the objective of being
as close as possible to CR(R). Its realization in Prolog is described in detail, as
well as the modifications needed for alternative notions of minimality. In Sect. 6,
GenOCF is evaluated with respect to a series of some first example applications.
Section 7 concludes the paper and points out further work.

2 Background

We start with a propositional language L, generated by a finite set Σ of
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase Roman letters
A,B,C, . . .. For conciseness of notation, we will omit the logical and -connective,
writing AB instead of A ∧ B, and overlining formulas will indicate negation, i.e.
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A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A
means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) |
A,B ∈ L} of conditionals over L. (B|A) formalizes “if A then (normally) B” and
establishes a plausible, probable, possible etc. connection between the antecedent
A and the consequence B. Here, conditionals are supposed not to be nested, that
is, antecedent and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the
set of worlds Ω in three parts: those worlds satisfying AB, thus verifying the
conditional, those worlds satisfying AB, thus falsifying the conditional, and those
worlds not fulfilling the premise A and so which the conditional may not be
applied to at all. This allows us to represent (B|A) as a generalized indicator
function going back to [7] (where u stands for unknown or indeterminate):

(B|A)(ω) =

⎧
⎨

⎩

1 if ω |= AB
0 if ω |= AB
u if ω |= A

(1)

To give appropriate semantics to conditionals, they are usually considered within
richer structures such as epistemic states. Besides certain (logical) knowledge,
epistemic states also allow the representation of preferences, beliefs, assumptions
of an intelligent agent. Basically, an epistemic state allows one to compare for-
mulas or worlds with respect to plausibility, possibility, necessity, probability,
etc.

Well-known qualitative, ordinal approaches to represent epistemic states are
Spohn’s ordinal conditional functions, OCFs, (also called ranking functions) [18],
and possibility distributions [4], assigning degrees of plausibility, or of possibility,
respectively, to formulas and possible worlds. In such qualitative frameworks, a
conditional (B|A) is valid (or accepted), if its confirmation, AB, is more plausible,
possible, etc. than its refutation, AB; a suitable degree of acceptance is calculated
from the degrees associated with AB and AB.

In this paper, we consider Spohn’s OCFs [18]. An OCF is a function

κ : Ω → N

expressing degrees of plausibility of propositional formulas where a higher degree
denotes “less plausible” or “more suprising”. At least one world must be regarded
as being normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω. Each such rank-
ing function can be taken as the representation of a full epistemic state of an
agent. Each such κ uniquely extends to a function (also denoted by κ) mapping
sentences and rules to N ∪ {∞} and being defined by

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

(2)
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for sentences A ∈ L and by

κ((B|A)) =

{
κ(AB) − κ(A) if κ(A) �= ∞
∞ otherwise

(3)

for conditionals (B|A) ∈ (L | L). Note that κ((B|A)) � 0 since any ω satisfying
AB also satisfies A and therefore κ(AB) � κ(A).

The belief of an agent being in epistemic state κ with respect to a default
rule (B|A) is determined by the satisfaction relation |=O defined by:

κ |=O (B|A) iff κ(AB) < κ(AB) (4)

Thus, (B|A) is believed in κ iff the rank of AB (verifying the conditional) is
strictly smaller than the rank of AB (falsifying the conditional). We say that κ
accepts the conditional (B|A) iff κ |=O (B|A).

3 Example

In order to illustrate the concepts presented in the previous section, we will
use a scenario involving a set of some default rules representing common-sense
knowledge.

Example 1. Suppose we have the propositional atoms
f - flying, b - birds, p - penguins, w - winged animals, k - kiwis.
Let the set R consist of the following conditionals:

R r1: (f |b) birds fly
r2: (b|p) penguins are birds
r3: (f |p) penguins do not fly
r4: (w|b) birds have wings
r5: (b|k) kiwis are birds

Figure 1 shows a ranking function κ that accepts all conditionals given in R.
Thus, for any i ∈ {1, 2, 3, 4, 5} it holds that κ |=O Ri.

For the conditional (f |p) (“Do penguins fly?”) that is not contained in R,
we get κ(pf) = 2and κ(pf) = 1 and therefore

κ /|=O (f |p)

so that the conditional (f |p) is not accepted by κ. This is in accordance with
the behaviour of a rational agent believing R since the knowledge base R used
for building up κ explicitly contains the opposite rule (f |p).

On the other hand, for the conditional (w|k) (“Do kiwis have wings?”) that
is also not contained in R, we get κ(kw) = 0 and κ(kw) = 1 and therefore

κ |=O (w|k)

i.e., the conditional (w|k) is accepted by κ. Thus, from their superclass birds,
kiwis inherit the property of having wings.
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pbfwk 2 pbfwk 5 pbfwk 0 pbfwk 1
pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0
pbf wk 3 pbf wk 5 pbf wk 1 pbf wk 1
pbf wk 3 pbf wk 4 pbf wk 1 pbf wk 0

pbfwk 1 pbfwk 3 pbfwk 1 pbfwk 1
pbfwk 1 pbfwk 2 pbfwk 1 pbfwk 0
pbf wk 2 pbf wk 3 pbf wk 2 pbf wk 1
pbf wk 2 pbf wk 2 pbf wk 2 pbf wk 0

Fig. 1. Ranking function κ accepting the rule set R given in Example 1.

4 Specification of Ranking Functions as Solutions
of a Constraint Satisfaction Problem

Given a set R = {R1, . . . , Rn} of conditionals, a ranking function κ that accepts
every Ri represents an epistemic state of an agent accepting R. If there is no
κ that accepts every Ri then R is inconsistent. For the rest of this paper, we
assume that R is consistent.

For any consistent R there may be many different κ accepting R, each rep-
resenting a complete set of beliefs with respect to every possible formula A
and every conditional (B|A). Thus, every such κ inductively completes the
knowledge given by R, and it is a vital question whether some κ′ is to be
preferred to some other κ′′, or whether there is a unique “best” κ. Differ-
ent ways of determining a ranking function are given by system Z [9,10] or
its more sophisticated extension system Z∗ [9], see also [6]; for an approach
using rational world rankings see [19]. For quantitative knowledge bases of the
form Rx = {(B1|A1)[x1], . . . , (Bn|An)[xn]} with probability values xi and with
models being probability distributions P satisfying a probabilistic conditional
(Bi|Ai)[xi] iff P (Bi|Ai) = xi, a unique model can be choosen by employing the
principle of maximum entropy [11,16,17]; the maximum entropy model is a best
model in the sense that it is the most unbiased one among all models satisfying
Rx.

Using the maximum entropy idea, in [13] a generalization of system Z∗ is
suggested. Based on an algebraic treatment of conditionals, the notion of condi-
tional indifference of κ with respect to R is defined and the following criterion
for conditional indifference is given: An OCF κ is indifferent with respect to
R = {(B1|A1), . . . , (Bn|An)} iff κ(Ai) < ∞ for all i ∈ {1, . . . , n} and there are
rational numbers κ0, κ

+
i , κ−

i ∈ Q, 1 � i � n, such that for all ω ∈ Ω,

κ(ω) = κ0 +
∑

1�i�n
ω|=AiBi

κ+
i +

∑

1�i�n

ω|=AiBi

κ−
i . (5)

When starting with an epistemic state of complete ignorance (i.e., each world
ω has rank 0), for each rule (Bi|Ai) the values κ+

i , κ−
i determine how the rank
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of each satisfying world and of each falsifying world, respectively, should be
changed:

– If the world ω verifies the conditional (Bi|Ai), – i.e., ω |= AiBi –, then
κ+

i is used in the summation to obtain the value κ(ω).
– Likewise, if ω falsifies the conditional (Bi|Ai), – i.e., ω |= AiBi –, then

κ−
i is used in the summation instead.

– If the conditional (Bi|Ai) is not applicable in ω, – i.e., ω |= Ai –, then
this conditional does not influence the value κ(ω).

κ0 is a normalization constant ensuring that there is a smallest world rank
0. Employing the postulate that the ranks of a satisfying world should not be
changed and requiring that changing the rank of a falsifying world may not result
in an increase of the world’s plausibility leads to the concept of a c-representation
[12,13]:

Definition 1. Let R = {(B1|A1), . . . , (Bn|An)}. Any ranking function κ satis-
fying the conditional indifference condition (5) and κ+

i = 0, κ−
i � 0 (and thus

also κ0 = 0 since R is assumed to be consistent) as well as

κ(AiBi) < κ(AiBi) (6)

for all i ∈ {1, . . . , n} is called a (special) c-representation of R.

Note that for i ∈ {1, . . . , n}, condition (6) expresses that κ accepts the condi-
tional Ri = (Bi|Ai) ∈ R (cf. the definition of the satisfaction relation in (4))
and that this also implies κ(Ai) < ∞.

Thus, finding a c-representation for R amounts to choosing appropriate val-
ues κ−

1 , . . . , κ−
n . In [2] this situation is formulated as a constraint satisfaction

problem CR(R) whose solutions are vectors of the form (κ−
1 , . . . , κ−

n ) determin-
ing c-representations of R. The development of CR(R) exploits (2) and (5) to
reformulate (6) and requires that the κ−

i are natural numbers (and not just
rational numbers). In the following, we set min(∅) = ∞.

Definition 2. [CR(R)] Let R = {(B1|A1), . . . , (Bn|An)}. The constraint satis-
faction problem for c-representations of R, denoted by CR(R), is given by the
conjunction of the constraints

κ−
i � 0 (7)

κ−
i > min

ω|=AiBi

∑

j �=i

ω|=AjBj

κ−
j − min

ω|=AiBi

∑

j �=i

ω|=AjBj

κ−
j (8)

for all i ∈ {1, . . . , n}.
A solution of CR(R) is an n-tuple (κ−

1 , . . . , κ−
n ) of natural numbers, and with

SolCR(R) we denote the set of all solutions of CR(R).
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Proposition 1. For R = {(B1|A1), . . . , (Bn|An)} let �κ = (κ−
1 , . . . , κ−

n ) ∈
SolCR(R). Then the function κ defined by

κ(ω) =
∑

1�i�n

ω|=AiBi

κ−
i (9)

in the following denoted by κ�κ, is an OCF that accepts R.

All c-representations built from (7), (8), and (9) provide an excellent basis
for model-based inference [12,13]. However, from the point of view of minimal
specificity (see e.g. [4]), those c-representations with minimal κ−

i yielding mini-
mal degrees of implausibility are most interesting.

While different orderings on SolCR(R) can be defined, leading to differ-
ent minimality notions, in the following we will first focus on the ordering on
SolCR(R) induced by taking the sum of the κ−

i , i.e.

(κ−
1 , . . . , κ−

n ) �+ (κ′−
1 , . . . , κ′−

n ) iff
∑

1�i�n

κ−
i �

∑

1�i�n

κ′−
i . (10)

A vector �κ is sum-minimal (just called minimal in the following) iff there is no
vector �κ′ such that �κ′ ≺+ �κ where ≺+ is the irreflexive subrelation of �+. As
we are interested in minimal κ−

i -vectors, an important question is whether there
is always a unique minimal solution. This is not the case; the following example
that is also discussed in [15] illustrates that SolCR(R) may have more than one
minimal element.

Example 2. Let Rbirds = {R1, R2, R3} be the following set of conditionals:

R1 : (f |b) birds fly
R2 : (a|b) birds are animals
R3 : (a|fb) flying birds are animals

From (8) we get
κ−
1 > 0

κ−
2 > 0 − min{κ−

1 , κ−
3 }

κ−
3 > 0 − κ−

2

and since κ−
i � 0 according to (7), the two vectors

sol1 = (κ−
1 , κ−

2 , κ−
3 ) = (1, 1, 0)

sol2 = (κ−
1 , κ−

2 , κ−
3 ) = (1, 0, 1)

are two different solutions of CR(Rbirds) with
∑

1�i�n κ−
i = 2 that are both

minimal in SolCR(Rbirds) with respect to �+.
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5 A Declarative CLP Program for CR(R)

In this section, we will develop a CLP program GenOCF solving CR(R). Our
main objective is to obtain a declarative program that is as close as possible to
the abstract formulation of CR(R) while exploiting the concepts of constraint
logic programming. We will employ finite domain constraints, and from (7) we
immediately get a lower bound for κ−

i . Considering that we are interested mainly
in minimal solutions, due to (8) we can safely restrict ourselves to n as an upper
bound for κ−

i , yielding
0 � κ−

i � n (11)

for all i ∈ {1, . . . , n} with n being the number of conditionals in R.

5.1 Input Format and Preliminaries

Since we want to focus on the constraint solving part, we do not consider reading
and parsing a knowledge base R = {(B1|A1), . . . , (Bn|An)}. Instead, we assume
that R is already given as a Prolog code file providing the following predicates
variables/1, conditional/3 and indices/1:

variables([a1, . . . , am]) % list of atoms in Σ
conditional(i, 〈Ai〉, 〈Bi〉) % representation of ith conditional (Bi|Ai)
indices([1, ...,n]) % list of indices {1, . . . , n}

If Σ = {a1, . . . , am} is the set of atoms, we assume a fixed ordering a1 < a2 <
. . . < am on Σ given by the predicate variables([a1,. . . ,am]). The fixed index
ordering gven by indices([1,...,n]) ensures that the conditionals are ordered con-
secutively from 1 to n. Thus, the i-th conditional can be accessed by
conditional(i, A,B), and in a solution vector [K1,...,Kn], the i-th component
Ki is the κ−-value for the i-th conditional.

In the representation of a conditional, a propositional formula A, constituting
the antecedent or the consequence of the conditional, is represented by 〈A〉 where
〈A〉 is a Prolog list [〈D1〉,. . . ,〈Dl〉]. Each 〈Di〉 represents a conjunction of literals
such that D1 ∨ . . . ∨ Dl is a disjunctive normal form of A.

Each 〈D〉, representing a conjunction of literals, is a Prolog list [b1,. . . ,bm]
of fixed length m where m is the number of atoms in Σ and with bk ∈ {0, 1, }.
Such a list [b1,. . . ,bm] represents the conjunctions of atoms obtained from ȧ1 ∧
ȧ2 ∧ . . . ∧ ȧm by eliminating all occurrences of 
, where

ȧk =

⎧
⎪⎨

⎪⎩

ak if bk = 1
ak if bk = 0

 if bk =

Example 3. The internal representation of the knowledge base presented in
Example 1. is shown in Fig. 2.
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Fig. 2. Internal representation of the knowledge base from Example 1.

As further preliminaries, using conditional/3 and indices/1, we have imple-
mented the predicates worlds/1, verifying worlds/2, falsifying worlds/2,
and falsify/2, realising the evaluation of the indicator function (1) given in
Sect. 2:

worlds(Ws) % Ws list of possible worlds
verifying worlds(i,Ws) % Ws list of worlds verifying ith conditional
falsifying worlds(i,Ws) % Ws list of worlds falsifying ith conditional
falsify(i,W ) % world W falsifies ith conditional

where worlds are represented as complete conjunctions of literals over Σ, using
the representation described above.

Using these predicates, in the following subsections we will present the com-
plete source code of the constraint logic program GenOCF solving CR(R).

5.2 Generation of Constraints

The particular program code given here uses the SICStus Prolog system1 and its
clp(fd) library implementing constraint logic programming over finite domains
[14].

The main predicate kappa/2 expecting a knowledge base KB of conditionals
and yielding a vector K of κ−

i values as specified by (8) is presented in Fig. 3.
After reading in the knowledge base, the constraints for K are generated. In

constraints/1, after getting the list of indices, a list K of free constraint vari-
ables, one for each conditional, is generated; in the two subsequent subgoals,
the constraints corresponding to the formulas (11) and (8) are generated, con-
straining the elements of K accordingly. Finally, labeling([], K) yields a list
of κ−

i values. Upon backtracking, this will enumerate all possible solutions with
an upper bound of n as in (11) for each κ−

i . Later on, we will demonstrate how
to modify kappa/2 in order to take minimality into account (Sect. 5.3).

How the subgoal constrain K(Is, K) in kappa/2 generates a constraint for
each index i ∈ {1, . . . , n} according to (8) is defined in Fig. 4.

1 http://www.sics.se/isl/sicstuswww/site/index.html

http://www.sics.se/isl/sicstuswww/site/index.html
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Fig. 3. Main predicate kappa/2

Fig. 4. Constraining the vector K representing κ−
1 , . . . , κ−

n as in (8)

Given an index I, constrain Ki(I,K) (cf. Fig. 4) determines all worlds ver-
ifying and falsifying the I-th conditional; over these two sets of worlds the two
min expressions in (8) are defined. Two lists VS and FS of sums corresponding
exactly to the first and the second sum, repectively, in (8) are generated (how
this is done is defined in Fig. 5 and will be explained below). With the constraint
variables Vmin and Fmin denoting the minimum of these two lists, the constraint

Ki #> Vmin − Fmin

given in the last line of Fig. 4 reflects precisely the restriction on κ−
i given by (8).

For an index I, a kappa vector K, and a list of worlds Ws, the goal
list of sums(I, K, Ws, Ss) (cf. Fig. 5) yields a list Ss of sums such that for
each world W in Ws, there is a sum S in Ss that is generated by sum kappa j(Js,
I, K, W, S) where Js is the list of indices {1, . . . , n}. In the goal sum kappa j
(Js, I, K, W, S), S corresponds exactly to the respective sum expression in
(8), i.e., it is the sum of all Kj such that J �= I and W falsifies the j-th conditional.
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Fig. 5. Generating list of sums of κ−
i as in (8)

Example 4. Suppose that kb birds.pl is a file containing the conditionals of
the knowledge base Rbirds given in Example 2.. Then the first five solutions
generated by the program given in Figs. 3, 4, 5 are:

| ?- kappa(’kb_birds.pl’, K).
K = [0,1,1] ? ;
K = [1,0,2] ? ;
K = [1,0,3] ? ;
K = [1,1,0] ? ;
K = [1,1,1] ?

Note that the first and the fourth solution are the minimal solutions.

Example 5. If kb penguins.pl is a file containing the conditionals of the knowl-
edge base R given in Example 1., the first six solutions generated by kappa/2
are:

| ?- kappa(’kb_penguins.pl’, K).
K = [1,2,2,1,1] ? ;
K = [1,2,2,1,2] ? ;
K = [1,2,2,1,3] ? ;
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Fig. 6. Predicate kappa min sum/2 generating a minimal solution

Fig. 7. Predicate kappa min all/2 generating exactly all minimal solutions

K = [1,2,2,1,4] ? ;
K = [1,2,2,1,5] ? ;
K = [1,2,2,2,1] ?

5.3 Generation of Minimal Solutions

The enumeration predicate labeling/2 of SICStus Prolog allows for an option
that minimizes the value of a cost variable. Since we are aiming at minimizing the
sum of all κ−

i , the constraint sum(K, #=, S) introduces such a cost variable S.
Thus, exploiting the SICStus Prolog minimization feature, we can easily modify
kappa/2 to generate a minimal solution: We just have to replace the last subgoal
labeling([], K) in Fig. 3 by the two subgoals given in Fig. 6.

With this modification, the obtained predicate kappa min sum/2 returns
a single minimal solution (and fails on backtracking). Hence calling
?- kappa min sum(’kb birds.pl’, K). similar as in Example 4. yields the
minimal solution K = [0,1,1].

However, as pointed out in Sect. 4, there are good reasons for considering
not just a single minimal solution, but all minimal solutions. We can achieve the
computation of all minimal solutions by another slight modification of kappa/2.
This time, the enumeration subgoal labeling([], K) in Fig. 3 is preceded by
two new subgoals as in kappa min sum all/2 in Fig. 7.

The first new subgoal sum(K, #=, S) introduces a constraint variable S
just as in kappa min sum/2. In the subgoal min sum kappas(K, S), this vari-
able S is constrained to the sum of a minimal solution as determined by
min sum kappas(K, Min). These two new subgoals ensure that in the generation
caused by the final subgoal labeling([], K), exactly all minimal solutions are
enumerated.
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Fig. 8. Predicate rank/3 determining the rank of a world for given

Example 6. Continuing Example 4., calling

| ?- kappa_min_sum_all(’kb_birds.pl’, K).
K = [0,1,1] ? ;
K = [1,1,0] ? ;
no

yields the two minimal solutions for Rbirds .

Example 7. For the situation in Example 5., kappa min sum all/2 reveals that
there is a unique minimal solution:

| ?- kappa_min_sum_all(’kb_penguins.pl’, K).
K = [1,2,2,1,1] ? ;
no

The predicate rank/3 given in Fig. 8 can be used for determining the OCF κ�κ

induced by the vector �κ = (κ−
1 , κ−

2 , κ−
3 , κ−

4 , κ−
5 ) = (1, 2, 2, 1, 1) according to (9),

yielding the ranking function given in Fig. 1.

5.4 Alternative Notions of Minimality

In general, it is still an open problem how to strengthen the requirements defining
a c-representation so that a unique minimal solution is guaranteed to exist. Such
a strengthening could use alternative minimality criteria. In this subsection, we
illustrate the realization of an alternative minimality criterion in our constraint
logic programming approach.

Instead of ordering the vectors �κ by the sum of their components as done by
�+ in (10), we could consider a componentwise ordering �cw

(κ−
1 , . . . , κ−

n ) �cw (κ′−
1 , . . . , κ′−

n ) iff κ−
i � κ′−

i for all i ∈ {1, . . . , n} (12)

yielding a partial order �cw on SolCR(R).
Let ≺cw denote the irreflexive subrelations of �cw , respectively. A vector �κ is

componentwise minimal (or cw-minimal) iff there is no vector �κ′ with �κ′ ≺cw �κ.
In order to demonstrate the flexibility of the high-level CLP implementation
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Fig. 9. Predicate kappa min cw all computing all componentwise minimal solutions

realized in GenOCF, we will show how slight modifications of the program realize
these alternative notions of minimality.

The predicate kappa min cw all/2 as given in Fig. 9 computes all compo-
nentwise minimal solution for a knowledge base. After consulting the knowl-
edge base KB, the subgoal kappa(KB, K) says that K is a solution for KB, while
minimal cw(K) ensures that K is cw-minimal. The predicate minimal cw/1
enforces that there is no solution vector K2 for the given knowledge base that is
strictly less than K: If constraints(K2) succeeds where constraints/1 is given
as in Fig. 3, then there is no labeling for K2 under the constraint lt cw(K2,K).
The predicate lt cw/2 takes two vectors of the same length and succeeds if there
is at least one position where the component at that position in the first vector is
strictly less than the corresponding component in the second vector (ensured by
the constraint with #< in lt cw/2 in Fig. 9), and all other corresponding vector
components are less or equal (ensured by the constraints with #= in lt cw/2 and
with #=< in leq cw/2).

Example 8. Continuing Example 6., calling

| ?- kappa_min_cw_all(’kb_birds.pl’, K).
K = [1,0,1] ? ;
K = [1,1,0] ? ;
no

reveals that in this simple example the set of sum-minimal solutions coincides
with the set of cw-minimal solutions.

In our further invstigations, we will extend GenOCF to be able to take into
account more alternative minimality criteria. For instance, as illustrated in the
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previous example, GenOCF determines that both κ1 = [1, 0, 1] and κ2 = [1, 1, 0]
are minimal with respect to �+ and also with respect to �cw for Rbirds . However,
we could also compare the full OCFs induced by κ1 and κ2 according to (9).
These induced OCFs are given by the following table:

Note that under κ1, the world fba has a smaller rank than under κ2, while
all other worlds have the same rank under both OCFs. Further theoretical and
experimental studies are needed for this and still other minimality criteria.

6 Example Applications and First Evaluation

Although the objective in developing GenOCF was on being as close as possible to
the abstract formulation of the constraint satisfaction problem CR(R), we will
present the results of some first example applications we have carried out.

For n � 1, we generated synthetic knowledge bases kb synth<n> c<2n −
1>.pl according to the following schema: Using the variables {f} ∪ {a1, . . . , an},
kb synth<n> c<2n − 1>.pl contains the 2 ∗ n − 1 conditionals given by::

(f |ai) if i is odd, i ∈ {1, . . . , n}
(f |ai) if i is even, i ∈ {1, . . . , n}
(ai|ai+1) if i ∈ {1, . . . , n − 1}

For instance, kb synth4 c7.pl uses the five variables {f, a1, a2, a3, a4} and con-
tains the seven conditionals:

(f |a1)
(f |a2)
(f |a3)
(f |a4)
(a1|a2)
(a2|a3)
(a3|a4)

The basic idea underlying the construction of these synthetic knowledge bases
kb synth<n> c<2n−1>.pl is to establish a kind of subclass relationship between
ai+1 and ai for each i ∈ {1, . . . , n − 1} on the one hand, and to state that every
ai+1 is exceptional to ai with respect to its behaviour regarding f , again for
each i ∈ {1, . . . , n−1}. This sequence of pairwise exceptional elements will force
any minimal solution of CR(kb synth<n> c<2n−1>.pl) to have at least one κ−

i

value of size greater or equal to n.
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Fig. 10. Execution times (given in seconds) of GenOCF under SICStus Prolog for com-
puting all sum-minimal solutions for various synthesized knowledge bases

From kb synth<n> c<m>.pl, the knowledge bases kb synth<n> c<m−j>.pl
are generated for j ∈ {1, . . . , m − 1} by removing the last j conditionals. For
instance, kb synth4 c5.pl is obtained from kb synth4 c7.pl by removing the
two conditionals {(a2|a3), (a3|a4)}.

Figure 10 shows the time needed by GenOCF for computing all sum-minimal
solutions for some of these synthesized knowledge bases with different numbers
of variables and conditionals. Execution times are given in seconds for measure-
ments taken in the following environment: SICStus 4.0.8 (x86-linux-glibc2.3),
Intel Core 2 Duo E6850 3.00GHz.

Of course, these knowledge bases are by no means representative, and further
evaluation is needed. In particular, investigating the complexity depending on the
number of variables and conditionals and determining an upper bound for worst-
case complexity has still to be done; the graphical illustration in Fig. 10 clearly
indicates an exponential increase. However, it should be noted that the high-
level, declarative approach taken here provides many opportunities for improving
run-time efficiency. For instance, it suffices to compute the verifying and the
falsifying worlds for each conditional only once instead of multiple times when
generating the constraints for a solution vector K as done in Fig. 4. Furthermore,
while the code for GenOCF given above uses SICStus Prolog, we also have a variant
of GenOCF for the SWI Prolog system2 [20]. In our further investigations, we want
to evaluate GenOCF also using SWI Prolog, to elaborate the changes required
and the options provided when moving between SICStus and SWI Prolog, and
to study whether there are any significant differences in execution that might
depend on the two different Prolog systems and their options.

2 http://www.swi-prolog.org/index.html

http://www.swi-prolog.org/index.html
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7 Conclusions and Further Work

While for a set of probabilistic conditionals (Bi|Ai)[xi] the principle of maximum
entropy yields a unique model, for a set R of qualitative default rules (Bi|Ai)
there may be several minimal ranking functions. In this paper, we developed a
CLP approach for solving CR(R), realized in the Prolog program GenOCF. The
solutions of the constraint satisfaction problem CR(R) are vectors of natural
numbers �κ = (κ−

1 , . . . , κ−
n ) that uniquely determine an OCF κ�κ accepting all

conditionals in R. GenOCF is also able to generate exactly all minimal solutions
of CR(R) for different notions of minimality. Minimal solutions of CR(R) are of
special interest for model-based inference.

In general, it is an open problem how to strengthen the requirements defining
a c-representation so that a unique solution is guaranteed to exist. The declara-
tive nature of constraint logic programming supports easy constraint modifica-
tion, enabling the experimentation and practical evaluation of different notions of
minimality for SolCR(R) and of additional requirements that might be imposed
on a ranking function. Furthermore, in [8] the framework of default rules con-
cidered here is extended by allowing not only default rules in the knowledge
base R, but also strict knowledge, rendering some worlds completely impossibe.
This can yield a reduction of the problem’s complexity, and it will be interesting
to see which effects the incorporation of strict knowledge will have on the CLP
approach presented here.
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