
Hans Tompits · Salvador Abreu
Johannes Oetsch · Jörg Pührer
Dietmar Seipel · Masanobu Umeda
Armin Wolf (Eds.)

 123

LN
AI

 7
77

3

19th International Conference, INAP 2011
and 25th Workshop on Logic Programming, WLP 2011
Vienna, Austria, September 28–30, 2011
Revised Selected Papers

Applications of
Declarative Programming
and Knowledge
Management

Lecture Notes in Artificial Intelligence 7773

Subseries of Lecture Notes in Computer Science

For further volumes:
http://www.springer.com/series/1244

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

http://www.springer.com/series/1244

Hans Tompits • Salvador Abreu
Johannes Oetsch • Jörg Pührer
Dietmar Seipel • Masanobu Umeda
Armin Wolf (Eds.)

Applications of Declarative
Programming and Knowledge
Management

19th International Conference, INAP 2011
and 25th Workshop
on Logic Programming, WLP 2011
Vienna, Austria, September 28–30, 2011
Revised Selected Papers

123

Editors
Hans Tompits
Johannes Oetsch
Jörg Pührer
Vienna University of Technology
Vienna
Austria

Salvador Abreu
Universidade de Évora
Evora
Portugal

Dietmar Seipel
Universität Würzburg
Würzburg
Germany

Masanobu Umeda
Kyushu Institute of Technology
Iizuka
Japan

Armin Wolf
Fraunhofer FIRST
Berlin
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-41523-4 ISBN 978-3-642-41524-1 (eBook)
DOI 10.1007/978-3-642-41524-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013953626

CR Subject Classification I.2, D.1.6

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume consists of revised and selected papers presented at the 19th International
Conference on Applications of Declarative Programming and Knowledge Manage-
ment (INAP 2011) and the 25th Workshop on Logic Programming (WLP 2011),
which were held at Hotel Castle Wilheminenberg, Vienna, Austria, during September
28–30, 2011.

INAP is a communicative and dense conference for intensive discussion of
applications of important technologies around logic programming, constraint problem
solving, and closely related computing paradigms. It comprehensively covers the
impact of programmable logic solvers in the Internet society, its underlying tech-
nologies, and leading-edge applications in industry, commerce, government, and
societal services.

The series of workshops on (constraint) logic programming brings together
researchers interested in logic programming, constraint programming, and related
areas such as databases and artificial intelligence. Previous workshops have been held
in Germany, Austria, Switzerland, and Egypt, serving as the annual meeting of the
Society of Logic Programming (GLP, Gesellschaft fur Logische Programmierung
e.V.).

Following the success of previous occasions, INAP and WLP were in 2011 again
jointly organized in order to promote the cross-fertilization of ideas and experiences
among researches and students from the different communities interested in the
foundations, applications, and combinations of high-level, declarative programming
languages and related areas.

Both events received a total of 35 submissions from authors of 16 countries
(Austria, Belgium, Canada, Czech Republic, Egypt, Finland, France, Germany, India,
Italy, Japan, Lebanon, Portugal, Slovakia, Tunisia, and the USA). Each submission
was assigned to three members of the PC for reviewing, and 27 submissions were
accepted for presentation. Among these papers, 19 were selected for this proceedings
volume by means of an additional review process. The program also included two
invited talks, given by Stefan Szeider and Michael Fink (both from the Vienna
University of Technology, Austria).

In concluding, I would like to thank all authors for their submissions and all
members of the Program Committee, as well as all additional referees, for the time
and effort spent on the careful reviewing of the papers. Furthermore, special thanks go
to the members of the Organizing Committee, Johannes Oetsch, Jörg Pührer, and Eva
Nedoma, who were indispensable in the realization of the event. Excelsior!

September 2013 Hans Tompits

Organization

Conference Chair INAP 2011

Hans Tompits Vienna University of Technology, Austria

Track Chairs INAP 2011

Nonmonotonic Reasoning Track

Hans Tompits Vienna University of Technology, Austria

Applications Track

Masanobu Umeda Kyushu Institute of Technology, Japan

Extensions of Logic Programming Track

Salvador Abreu Universidade de Évora, Portugal

Constraint Programming Track

Armin Wolf Fraunhofer FIRST, Germany

Databases and Data Mining Track

Dietmar Seipel University of Würzburg, Germany

Program Committee INAP 2011

Salvador Abreu Universidade de Évora, Portugal
José Alferes Universidade Nova de Lisboa, Portugal
Sergio Alvarez Boston College, USA
Grigoris Antoniou University of Crete, Greece
Marcello Balduccini Kodak Research Labs, USA

Chitta Baral Arizona State University, USA
Christoph Beierle FernUniversität in Hagen, Germany
Philippe Besnard Université Paul Sabatier, France
Stefan Brass University of Halle, Germany
Gerd Brewka University of Leipzig, Germany
Philippe Codognet University of Tokyo, Japan
Vitor Santos Costa Universidade do Porto, Portugal
James P. Delgrande Simon Fraser University, Canada
Marc Denecker Katholieke Universiteit Leuven, Belgium
Marina De Vos University of Bath, UK
Daniel Diaz University of Paris 1, France
Jürgen Dix Clausthal University of Technology, Germany
Esra Erdem Sabanci University, Turkey
Gerhard Friedrich Alpen-Adria-Universität Klagenfurt, Austria
Michael Fink Vienna University of Technology, Austria
Thom Frühwirth University of Ulm, Germany
Johannes Fürnkranz Technische Universität Darmstadt, Germany
Michael Gelfond Texas Tech University, USA
Carmen Gervet German University in Cairo, Egypt
Ulrich Geske University of Potsdam, Germany
Gopal Gupta University of Texas at Dallas, USA
Petra Hofstedt Brandenburg University of Technology Cottbus,

Germany
Anthony Hunter University College London, UK
Katsumi Inoue National Institute of Informatics, Japan
Tomi Janhunen Aalto University, Finland
Gabriele Kern-Isberner University of Dortmund, Germany
Nicola Leone University of Calabria, Italy
Vladimir Lifschitz University of Texas at Austin, USA
Alessandra Mileo National University of Ireland
Ulrich Neumerkel Vienna University of Technology, Austria
Ilkka Niemelä Aalto University, Finland
Vitor Nogueira Universidade de Évora, Portugal
David Pearce Universidad Politécnica de Madrid, Spain
Reinhard Pichler Vienna University of Technology, Austria
Axel Polleres National University of Ireland
Enrico Pontelli New Mexico State University, USA
Irene Rodrigues Universidade de Évora, Portugal
Carolina Ruiz Worcester Polytechnic Institute, UK
Torsten Schaub University of Potsdam, Germany
Dietmar Seipel University of Würzburg, Germany
V.S. Subrahmanian University of Maryland, USA
Terrance Swift Universidade Nova de Lisboa, Portugal
Hans Tompits Vienna University of Technology, Austria
Masanobu Umeda Kyushu Institute of Technology, Japan
Kewen Wang Griffith University, Australia

VIII Organization

Emil Weydert University of Luxembourg, Luxembourg
Armin Wolf Fraunhofer FIRST, Germany
Osamu Yoshie Waseda University, Japan

Workshop Chair WLP 2011

Hans Tompits Vienna University of Technology, Austria

Program Committee WLP 2011

Slim Abdennadher German University in Cairo, Egypt
Gerd Brewka University of Leipzig, Germany
Christoph Beierle FernUniversität in Hagen, Germany
François Bry University of Munich, Germany
Marc Denecker Katholieke Universiteit Leuven, Belgium
Marina De Vos University of Bath, UK
Jürgen Dix Clausthal University of Technology, Germany
Esra Erdem Sabanci University, Turkey
Wolfgang Faber University of Calabria, Italy
Michael Fink Vienna University of Technology, Austria
Thom Frühwirth University of Ulm, Germany
Carmen Gervet German University in Cairo, Egypt
Ulrich Geske University of Potsdam, Germany
Michael Hanus Christian Albrechts University of Kiel, Germany
Petra Hofstedt Brandenburg University of Technology Cottbus, Germany
Steffen Hölldobler Dresden University of Technology, Germany
Tomi Janhunen Aalto University, Finland
Ulrich John SIR Dr. John UG, Germany
Gabriele Kern-Isberner University of Dortmund, Germany
Alessandra Mileo National University of Ireland
Axel Polleres National University of Ireland
Torsten Schaub University of Potsdam, Germany
Jan Sefranek Comenius University, Slovakia
Dietmar Seipel University of Würzburg, Germany
Hans Tompits Vienna University of Technology, Austria
Armin Wolf Fraunhofer FIRST, Germany

Organization IX

Local Organization

Hans Tompits Vienna University of Technology, Austria
Johannes Oetsch Vienna University of Technology, Austria
Jörg Pührer Vienna University of Technology, Austria
Eva Nedoma Vienna University of Technology, Austria

Additional Reviewers

Bogaerts, Bart
De Cat, Broes
Kaminski, Roland
Kaufmann, Benjamin
Krennwallner, Thomas
Mazo, Raul
Oetsch, Johannes
Paulheim, Heiko
Peña, Raúl Mazo
Perri, Simona
Piazza, Carla
Pührer, Jörg
Sneyers, Jon

X Organization

Contents

Invited Talks

The IMPL Policy Language for Managing Inconsistency
in Multi-Context Systems . 3

Thomas Eiter, Michael Fink, Giovambattista Ianni, and Peter Schüller

The Parameterized Complexity of Constraint Satisfaction
and Reasoning . 27

Stefan Szeider

INAP Technical Papers I: Languages

Translating Nondeterministic Functional Language Based
on Attribute Grammars into Java . 41

Masanobu Umeda, Ryoto Naruse, Hiroaki Sone, and Keiichi Katamine

Sensitivity Analysis for Declarative Relational Query Languages
with Ordinal Ranks . 58

Radim Belohlavek, Lucie Urbanova, and Vilem Vychodil

A Uniform Fixpoint Approach to the Implementation of Inference
Methods for Deductive Databases . 77

Andreas Behrend

INAP Technical Papers II: Answer-Set Programming
and Abductive Reasoning

Translating Answer-Set Programs into Bit-Vector Logic 95
Mai Nguyen, Tomi Janhunen, and Ilkka Niemelä

Making Use of Advances in Answer-Set Programming
for Abstract Argumentation Systems . 114

Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter Wallner,
and Stefan Woltran

Confidentiality-Preserving Publishing of EDPs for Credulous
and Skeptical Users. 134

Katsumi Inoue, Chiaki Sakama, and Lena Wiese

http://dx.doi.org/10.1007/978-3-642-41524-1_1
http://dx.doi.org/10.1007/978-3-642-41524-1_1
http://dx.doi.org/10.1007/978-3-642-41524-1_2
http://dx.doi.org/10.1007/978-3-642-41524-1_2
http://dx.doi.org/10.1007/978-3-642-41524-1_3
http://dx.doi.org/10.1007/978-3-642-41524-1_3
http://dx.doi.org/10.1007/978-3-642-41524-1_4
http://dx.doi.org/10.1007/978-3-642-41524-1_4
http://dx.doi.org/10.1007/978-3-642-41524-1_5
http://dx.doi.org/10.1007/978-3-642-41524-1_5
http://dx.doi.org/10.1007/978-3-642-41524-1_6
http://dx.doi.org/10.1007/978-3-642-41524-1_7
http://dx.doi.org/10.1007/978-3-642-41524-1_7
http://dx.doi.org/10.1007/978-3-642-41524-1_8
http://dx.doi.org/10.1007/978-3-642-41524-1_8

INAP Technical Papers III: Semantics

Every Formula-Based Logic Program Has a Least Infinite-Valued Model . . . 155
Rainer Lüdecke

WLP Technical Papers I: Constraints and Logic Programming

A Declarative Approach for Computing Ordinal Conditional
Functions Using Constraint Logic Programming . 175

Christoph Beierle, Gabriele Kern-Isberner, and Karl Södler

WLP Technical Papers II: Answer-Set Programming
and Model Expansion

A Descriptive Approach to Preferred Answer Sets 195
Ján Šefránek and Alexander Šimko

Solving Modular Model Expansion: Case Studies . 215
Shahab Tasharrofi, Xiongnan (Newman) Wu, and Eugenia Ternovska

INAP Application Papers

FdConfig: A Constraint-Based Interactive Product Configurator 239
Denny Schneeweiss and Petra Hofstedt

INAP System Descriptions

dynPARTIX - A Dynamic Programming Reasoner for Abstract
Argumentation . 259

Wolfgang Dvořák, Michael Morak, Clemens Nopp, and Stefan Woltran

HEX-Programs with Nested Program Calls . 269
Thomas Eiter, Thomas Krennwallner, and Christoph Redl

A Prototype of a Knowledge-Based Programming Environment 279
Stef De Pooter, Johan Wittocx, and Marc Denecker

WLP System Descriptions

Computing with Logic as Operator Elimination: The ToyElim System 289
Christoph Wernhard

Coprocessor – a Standalone SAT Preprocessor . 297
Norbert Manthey

XII Contents

http://dx.doi.org/10.1007/978-3-642-41524-1_9
http://dx.doi.org/10.1007/978-3-642-41524-1_10
http://dx.doi.org/10.1007/978-3-642-41524-1_10
http://dx.doi.org/10.1007/978-3-642-41524-1_11
http://dx.doi.org/10.1007/978-3-642-41524-1_12
http://dx.doi.org/10.1007/978-3-642-41524-1_13
http://dx.doi.org/10.1007/978-3-642-41524-1_14
http://dx.doi.org/10.1007/978-3-642-41524-1_14
http://dx.doi.org/10.1007/978-3-642-41524-1_15
http://dx.doi.org/10.1007/978-3-642-41524-1_16
http://dx.doi.org/10.1007/978-3-642-41524-1_17
http://dx.doi.org/10.1007/978-3-642-41524-1_18

The SeaLion has Landed: An IDE for Answer-Set
Programming—Preliminary Report . 305

Johannes Oetsch, Jörg Pührer, and Hans Tompits

Kara: A System for Visualising and Visual Editing of Interpretations
for Answer-Set Programs. 325

Christian Kloimüllner, Johannes Oetsch, Jörg Pührer, and Hans Tompits

Unit Testing in ASPIDE . 345
Onofrio Febbraro, Nicola Leone, Kristian Reale, and Francesco Ricca

Author Index . 365

Contents XIII

http://dx.doi.org/10.1007/978-3-642-41524-1_19
http://dx.doi.org/10.1007/978-3-642-41524-1_19
http://dx.doi.org/10.1007/978-3-642-41524-1_20
http://dx.doi.org/10.1007/978-3-642-41524-1_20
http://dx.doi.org/10.1007/978-3-642-41524-1_21

Invited Talks

The IMPL Policy Language for Managing
Inconsistency in Multi-Context Systems

Thomas Eiter1, Michael Fink1(B), Giovambattista Ianni2, and Peter Schüller1

1 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, fink, ps}@kr.tuwien.ac.at
2 Dipartimento di Matematica, Cubo 30B, Università della Calabria,

87036 Rende, CS, Italy
ianni@mat.unical.it

Abstract. Multi-context systems are a declarative formalism for inter-
linking knowledge-based systems (contexts) that interact via (possibly
nonmonotonic) bridge rules. Interlinking knowledge provides ample op-
portunity for unexpected inconsistencies. These are undesired and come
in different categories: some may simply be repaired automatically, while
others are more serious and must be inspected by a human operator. In
general, no one-fits-all solution exists, since these categories depend on
the application scenario. To nevertheless tackle inconsistencies in a gen-
eral and principled way, we thus propose a declarative policy language
for inconsistency management in multi-context systems. We define its
syntax and semantics, discuss methodologies for applying the language
in real world applications, and outline an implementation by rewriting
to acthex, a formalism extending Answer Set Programs.

1 Introduction

The trend to interlink data and information through networked infrastructures,
which started out by the spread of the Internet, continues and more recently ex-
tends to richer entities of knowledge and knowledge processing. This challenges
knowledge management systems that aim at powerful knowledge based appli-
cations, in particular when they are built by interlinking smaller existing such
systems, and this integration shall be done in a principled way beyond ad-hoc
approaches.

Declarative programming methods, and in particular logic programming
based approaches, provide rigorous means for developing knowledge based sys-
tems through formal representation and model-theoretic evaluation of the knowl-
edge at hand. Extending this technology to advanced scenarios of interlinked
information sources is a highly relevant topic of research in declarative knowledge

This research has been supported by the Vienna Science and Technology Fund
(WWTF) project ICT08-020. G. Ianni has been partially supported by Regione
Calabria and EU under POR Calabria FESR 2007-2013 within the PIA project of
DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 3–26, 2013.
DOI: 10.1007/978-3-642-41524-1 1, c© Springer-Verlag Berlin Heidelberg 2013

4 T. Eiter et al.

representation and reasoning. For instance, Multi-context systems (MCSs) [5],
based on [7,22], are a generic formalism that captures heterogeneous knowl-
edge bases (contexts) which are interlinked using (possibly nonmonotonic) bridge
rules.

The advantages of modular systems, i.e., of building a system from smaller
parts, however, poses the problem of unexpected inconsistencies due to unin-
tended interaction of system parts. Such inconsistencies are undesired in gen-
eral, since inference becomes trivial (under common principles; reminiscent of ex
falso sequitur quodlibet). The problem of explaining reasons for inconsistency in
MCSs has been addressed in [16]: several independent inconsistencies can exist
in a MCS, and each inconsistency usually can be repaired in more than one
possible way.

For example, imagine a hospital information system which links several data-
bases in order to suggest treatments for patients. A simple inconsistency which
can be automatically ignored would be if a patient states her birth date correctly
at the front desk, but swaps two digits filling in a form at the X-ray department.
An entirely different type of inconsistency is (at least as far as the health of
the patient is concerned), if the patient needs treatment, but all options are in
conflict with some allergy of the patient. Attempting an automatic repair may
not be a viable option in this case: a doctor should inspect the situation and
make a decision.

In view of such scenarios, tackling inconsistency requires individual strate-
gies and targeted (re)actions, depending on the type of inconsistency and on the
application. In this work, we thus propose the declarative Inconsistency Manage-
ment Policy Language (impl), which provides a means to specify inconsistency
management strategies for MCSs. Our contributions are briefly summarized as
follows.

• We define the syntax of impl, inspired by Answer Set Programming
(ASP) [21] following the syntax of ASP programs. In particular, we spec-
ify the input for policy reasoning, as being provided by dedicated reserved
predicates. These predicates encode inconsistency analysis results in terms
of the respective structures in [16]. Furthermore, we specify action predicates
that can be derived by rules. Actions provide a means to counteract incon-
sistency by modifying the MCS, and may involve interaction with a human
operator.

• We define the semantics of impl in a three-step process. In a first step,
models of a given policy are calculated. Then, in a second step, the effects
of actions which are present in such a model are determined (this possibly
involves user interaction). Finally, in a third step, these effects are applied
to the MCS.

• On the basis of the above, we provide methodologies for utilizing impl in
application scenarios, and briefly discuss useful language extensions.

• Finally, we give the necessary details of a concrete realization of impl by
rewriting it to the acthex formalism [2] which extends ASP programs with
external computations and actions.

The IMPL Policy Language for Managing Inconsistency 5

The remainder of the paper is organized as follows: we first introduce MCS
and notions for explaining inconsistency in MCSs in Sect. 2. We then define syn-
tax and semantics of the impl policy language in Sect. 3, describe methodologies
for applying impl in practice in Sect. 4, provide a possibility for realizing impl
by rewriting to acthex in Sect. 5, and conclude the paper in Sect. 6.

2 Preliminaries

Multi-context systems (MCSs). A heterogeneous nonmonotonic MCS [5]
consists of contexts, each composed of a knowledge base with an underlying logic,
and a set of bridge rules which control the information flow between contexts.

A logic L= (KBL,BSL,ACCL) is an abstraction which captures many
monotonic and nonmonotonic logics, e.g., classical logic, description logics, or
default logics. It consists of the following components, the first two intuitively
define the logic’s syntax, the third its semantics:

• KBL is the set of well-formed knowledge bases of L. We assume each element
of KBL is a set of “formulas”.

• BSL is the set of possible belief sets, where a belief set is a set of “beliefs”.
• ACCL : KBL → 2BSL assigns to each KB a set of acceptable belief sets.

Since contexts may have different logics, this allows to model heterogeneous
systems.

Example 1. For propositional logic Lprop under the closed world assumption over
signature Σ, KB is the set of propositional formulas over Σ; BS is the set of
deductively closed sets of propositional Σ-literals; and ACC(kb) returns for each
kb a singleton set, containing the set of literal consequences of kb under the closed
world assumption. ℵ∼

A bridge rule models information flow between contexts: it can add informa-
tion to a context, depending on the belief sets accepted at other contexts. Let
L = (L1, . . . , Ln) be a tuple of logics. An Lk-bridge rule r over L is of the form

(k : s) ← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where k and ci are context identifiers, i.e., integers in the range 1, . . . , n, pi is an
element of some belief set of Lci , and s is a formula of Lk. We denote by hb (r) the
formula s in the head of r and by B(r) = {(c1 : p1), . . . ,not (cj+1 : pj+1), . . .}
the set of body literals (including negation) of r.

A multi-context system M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi a
knowledge base, and br i is a set of Li-bridge rules over (L1, . . . , Ln). By IN i =
{hb (r) | r ∈ bri} we denote the set of possible inputs of context Ci added by
bridge rules. For each H ⊆ IN i it is required that kbi ∪ H ∈ KBLi

. By brM =⋃n
i=1 br i we denote the set of all bridge rules of M .

The following running example will be used throughout the paper.

6 T. Eiter et al.

Example 2 (generalized from [16]). Consider a MCS M1 in a hospital which com-
prises the following contexts: a patient database Cdb , a blood and X-Ray analy-
sis database Clab , a disease ontology Conto , and an expert system Cdss which
suggests proper treatments. Knowledge bases are given below; initial uppercase
letters are used for variables and description logic concepts.

kbdb = { person(sue, 02/03/1985), allergy(sue, ab1)},
kblab = { customer(sue, 02/03/1985), test(sue, xray , pneumonia),

test(Id ,X, Y) → ∃D : customer(Id ,D)),
customer(Id ,X) ∧ customer(Id , Y) → X = Y },

kbonto = { Pneumonia ℵ Marker � AtypPneumonia},
kbdss = { give(Id , ab1) ∨ give(Id , ab2) ← need(Id , ab).

give(Id , ab1) ← need(Id , ab1).
¬give(Id , ab1) ← not allow(Id , ab1),need(Id ,Med).}.

Context Cdb uses propositional logic (see Example 1) and provides informa-
tion that Sue is allergic to antibiotics ‘ab1 ’. Context Clab is a database with
constraints which stores laboratory results connected to Sue: pneumonia was
detected in an X-ray. Constraints enforce, that each test result must be linked
to a customer record, and that each customer has only one birth date. Conto

specifies that presence of a blood marker in combination with pneumonia in-
dicates atypical pneumonia. This context is based on AL, a basic description
logic [1]: KBonto is the set of all well-formed theories within that description
logic, BSonto is the powerset of the set of all assertions C(o) where C is a con-
cept name and o an individual name, and ACConto returns the set of all concept
assertions entailed by a given theory. Cdss is an ASP program that suggests a
medication using the give predicate.

Schemas for bridge rules of M1 are as follows:

r1 = (lab : customer(Id ,Birthday)) ← (db : person(Id ,Birthday)).
r2 = (onto : Pneumonia(Id)) ← (lab : test(Id , xray , pneumonia)).
r3 = (onto : Marker(Id)) ← (lab : test(Id , bloodtest ,m1)).
r4 = (dss : need(Id , ab)) ← (onto : Pneumonia(Id)).
r5 = (dss : need(Id , ab1)) ← (onto : AtypPneumonia(Id)).
r6 = (dss : allow(Id , ab1)) ← not (db : allergy(Id , ab1).

Rule r1 links the patient records with the lab database (so patients do not need
to enter their data twice). Rules r2 and r3 provide test results from the lab to the
ontology. Rules r4 and r5 link disease information with medication requirements,
and r6 associates acceptance of the particular antibiotic ‘ab1 ’ with a negative
allergy check on the patient database. ℵ∼
Equilibrium semantics [5] selects certain belief states of a MCS M = (C1, . . . , Cn)
as acceptable. A belief state is a list S = (S1, . . . , Sn), s.t. Si ∈BSi. A bridge
rule (1) is applicable in S iff for 1 ≤ i ≤ j: pi ∈ Sci and for j < l ≤ m: pl /∈ Scl .
Let app(R,S) denote the set of bridge rules in R that are applicable in belief state
S. Then a belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for 1 ≤ i ≤ n,
the following condition holds: Si ∈ ACCi(kbi ∪ {hd(r) | r ∈ app(br i, S)}).

The IMPL Policy Language for Managing Inconsistency 7

For simplicity we will disregard the issue of grounding bridge rules (see [20]),
and only consider ground instances of bridge rules. In the following, with
r1, . . . , r6 we refer to the ground instances of the respective bridge rules in Ex-
ample 2, where variables are replaced by Id ∇→ sue and Birthday ∇→ 02/03/1985
(all other instances are irrelevant).

Example 3 (ctd). MCS M1 has one equilibrium S = (Sdb , Slab , Sonto , Sdss), where
Sdb = kbdb , Slab = {customer(sue, 02/03/1985), test(sue, xray , pneumonia)},
Sonto = {Pneumonia(sue)}, andSdss = {need(sue, ab), give(sue, ab2),¬give(sue,
ab1)}. Moreover, bridge rules r1, r2, and r4 are applicable under S. ℵ∼
Explaining Inconsistency in MCSs. Inconsistency in a MCS is the lack of
an equilibrium [16]. Note that no equilibrium may exist even if all contexts are
‘paraconsistent’ in the sense that for all kb ∈ KB,ACC(kb) is nonempty. No
information can be obtained from an inconsistent MCS, e.g., inference tasks like
brave or cautious reasoning on equilibria become trivial. To analyze, and even-
tually repair, inconsistency in a MCS, we use the notions of consistency-based
diagnosis and entailment-based inconsistency explanation [16], which character-
ize inconsistency by sets of involved bridge rules.

Intuitively, a diagnosis is a pair (D1,D2) of sets of bridge rules which repre-
sents a concrete system repair in terms of removing rules D1 and making rules
D2 unconditional. The intuition for considering rules D2 as unconditional is
that the corresponding rules should become applicable to obtain an equilibrium.
One could consider more fine-grained changes of rules such that only some body
atoms are removed instead of all. However, this increases the search space while
there is little information gain: every diagnosis (D1,D2) as above, together with
a witnessing equilibrium S, can be refined to such a generalized diagnosis. Dual
to that, inconsistency explanations (short: explanations) separate independent
inconsistencies. An explanation is a pair (E1, E2) of sets of bridge rules, such that
the presence of rules E1 and the absence of heads of rules E2 necessarily makes
the MCS inconsistent. In other words, bridge rules in E1 cause an inconsistency
in M which cannot be resolved by considering additional rules already present
in M or by modifying rules in E2 (in particular making them unconditional).
See [16] for formal definitions of these notions, relationships between them, and
more background discussion.

Example 4 (ctd). Consider a MCS M2 obtained from M1 by modifying kblab : we
replace customer(sue, 02/03/1985) by the two facts customer(sue, 03/02/1985)
and test(sue, bloodtest , m1), i.e., we change the birth date, and add a blood
test result. M2 is inconsistent with two minimal inconsistency explanations
e1 = ({r1}, ∅) and e2 = ({r2, r3, r5}, {r6}): e1 characterizes the problem, that Clab

does not accept any belief set because constraint customer(Id ,X)∧customer
(Id , Y)→ X = Y is violated. Another independent inconsistency is pointed out
by e2: if e1 is repaired, then Conto accepts AtypPneumonia(sue), therefore r5
imports the need for ab1 into Cdss which makes Cdss inconsistent due to Sue’s
allergy. Moreover, the following minimal diagnoses exist for M2: ({r1, r2}, ∅),
({r1, r3}, ∅), ({r1, r5}, ∅), and ({r1}, {r6})

}
. For instance, diagnosis ({r1}, {r6})

8 T. Eiter et al.

removes bridge rule r1 from M2 and adds r6 unconditionally to M2, which yields
a consistent MCS. ℵ∼

3 Policy Language IMPL

Dealing with inconsistency in an application scenario is difficult, because even
if inconsistency analysis provides information how to restore consistency, it is
not obvious which choice of system repair is rational. It may not even be clear
whether it is wise at all to repair the system by changing bridge rules.

Example 5 (ctd). Repairing e1 by removing r1 and thereby ignoring the birth
date (which differs at the granularity of months) may be the desired reaction and
could very well be done automatically. On the contrary, repairing e2 by ignoring
either the allergy or the illness is a decision that should be left to a doctor, as
every possible repair could cause serious harm to Sue. ℵ∼

Therefore, managing inconsistency in a controlled way is crucial. To address
these issues, we propose the declarative Inconsistency Management Policy Lan-
guage impl, which provides a means to create policies for dealing with inconsis-
tency in MCSs. Intuitively, an impl policy specifies (i) which inconsistencies are
repaired automatically and how this shall be done, and (ii) which inconsistencies
require further external input, e.g., by a human operator, to make a decision on
how and whether to repair the system. Note that we do not rule out automatic
repairs, but — contrary to previous approaches — automatic repairs are done
only if a given policy specifies to do so, and only to the extent specified by the
policy.

Since a major point of MCSs is to abstract away context internals, impl
treats inconsistency by modifying bridge rules. For the scope of this work we
delegate any potential repair by modifying the kb of a context to the user. The
effect of applying an impl policy to an inconsistent MCS M is a modification
(A,R), which is a pair of sets of bridge rules which are syntactically compatible
with M . Intuitively, a modification specifies bridge rules A to be added to M
and bridge rules R to be removed from M , similar as for diagnoses without
restriction to the original rules of M .

An impl policy P for a MCS M is intended to be evaluated on a set of
system and inconsistency analysis facts, denoted EDBM , which represents in-
formation about M , in particular EDBM contains atoms which describe bridge
rules, minimal diagnoses, and minimal explanations of M .

The evaluation of P yields certain actions to be taken, which potentially
interact with a human operator, and modify the MCS at hand. This modification
has the potential to restore consistency of M .

In the following we formally define syntax and semantics of impl.

3.1 Syntax

We assume disjoint sets C, V , Built , and Act , of constants, variables, built-in
predicate names, and action names, respectively, and a set of ordinary predicate

The IMPL Policy Language for Managing Inconsistency 9

names Ord ⊆ C. Constants start with lowercase letters, variables with uppercase
letters, built-in predicate names with #, and action names with @. The set of
terms T is defined as T =C ∪ V .

An atom is of the form p(t1, . . . , tk), 0 ≤ k, ti ∈ T , where p ∈ Ord ∪ Built ∪
Act is an ordinary predicate name, builtin predicate name, or action name. An
atom is ground if ti ∈ C for 0 ≤ i ≤ k. The sets AAct , AOrd , and ABuilt , called
sets of action atoms, ordinary atoms, and builtin atoms, consist of all atoms over
T with p ∈Act , p ∈Ord , respectively p ∈Built .

Definition 1. An impl policy is a finite set of rules of the form

h ← a1, . . . , aj , not aj+1, . . . , not ak. (2)

where h is an atom from AOrd ∪AAct , every ai, 1 ≤ i ≤ k, is from AOrd ∪ABuilt ,
and ‘not‘ is negation as failure.

Given a rule r, we denote by H(r) its head, by B+(r) = {a1, . . . , aj} its
positive body atoms, and by B−(r) = {aj+1, . . . , ak} its negative body atoms.
A rule is ground if it contains ground atoms only. A ground rule with k = 0 is
a fact. As in ASP, a rule must be safe, i.e., variables in H(r) or in B−(r) must
also occur in B+(r). For a set of rules R, we use cons(R) to denote the set of
constants from C appearing in R, and pred(R) for the set of ordinary predicate
names and action names (elements from Ord ∪ Act) in R.

We next describe how a policy represents information about the MCS M
under consideration.

System and Inconsistency Analysis Predicates. Entities, diagnoses, and
explanations of the MCS M at hand are represented by a suitable finite set
CM ⊆ C of constants which uniquely identify contexts, bridge rules, beliefs,
rule heads, diagnoses, and explanations. For convenience, when referring to an
element represented by a constant c we identify it with the constant, e.g., we
write ‘bridge rule r’ instead of ‘bridge rule of M represented by constant r’.

Reserved atoms use predicates from the set Cres ⊆Ord of reserved pred-
icates, with Cres = {ruleHead , ruleBody+, ruleBody−, context ,modAdd ,modDel ,
diag , explNeed , explForbid}. They represent the following information.

• context(c) denotes that c is a context.
• ruleHead(r, c, s) denotes that bridge rule r is at context c with head formula

s.
• ruleBody+(r, c, b) (resp., ruleBody−(r, c, b)) denotes that bridge rule r con-

tains body literal ‘(c : b)’ (resp., ‘not (c : b)’).
• modAdd(m, r) (resp., modDel(m, r)) denotes that modification m adds

(resp., deletes) bridge rule r. Note that r is represented using ruleHead and
ruleBody .

• diag(m) denotes that modification m is a minimal diagnosis in M .
• explNeed(e, r) (resp., explForbid(e, r)) denotes that the minimal explanation

(E1, E2) identified by constant e contains bridge rule r ∈ E1 (resp., r ∈ E2).

10 T. Eiter et al.

• modset(ms,m) denotes that modification m belongs to the set of modifica-
tions identified by ms.

Example 6 (ctd). We can represent r1, r5, and the diagnosis ({r1, r5}, ∅) as the
set of reserved atoms Iex = {ruleHead(r1, clab , ‘customer(sue, 02/03/1985)∼),
ruleBody+(r1, cdb , ‘person(sue, 02/03/1985)∼), ruleHead(r5,cdss ,‘need(sue,ab1)∼),
ruleBody+(r5, conto , ‘AtypPneumonia(sue)∼), modDel(d, r1), modDel(d, r5), diag
(d)} where constant d identifies the diagnosis. ℵ∼

Further knowledge used as input for policy reasoning can easily be defined
using additional (supplementary) predicates. Note that predicates over all expla-
nations or bridge rules can easily be defined by projecting from reserved atoms.
Moreover, to encode preference relations (e.g., as in [17]) between system parts,
diagnoses, or explanations, an atom preferredContext(c1, c2) could denote that
context c1 is considered more reliable than context c2. The extensions of such
auxiliary predicates need to be defined by the rules of the policy or as additional
input facts (ordinary predicates), or they are provided by the implementation
(built-in predicates), i.e., the ‘solver’ used to evaluate the policy. The rewriting
to acthex given in Sect. 5.2 provides a good foundation for adding supplemen-
tary predicates as built-ins, because the acthex language has generic support for
calls to external computational sources. A possible application would be to use a
preference relation between bridge rules that is defined by an external predicate
and can be used for reasoning in the policy.

Towards a more formal definition of a policy input, we distinguish the set
BM of ground atoms built from reserved predicates Cres and terms from CM ,
called MCS input base, and the auxiliary input base BAux given by predicates
over Ord \Cres and terms from C. Then, the policy input base BAux ,M is defined
as BAux ∪ BM . For a set I ⊆ BAux ,M , I|BM

and I|BAux
denote the restriction of

I to predicates from the respective bases.
Now, given an MCS M , we say that a set S ⊆ BM is a faithful representa-

tion of M wrt. a reserved predicate p ∈ Cres \ {modset} iff the extension of p
in S exactly characterizes the respective entity or property of M (according to
a unique naming assignment associated with CM as mentioned). For instance,
context(c) ∈ S iff c is a context of M , and correspondingly for the other pred-
icates. Consequently, S is a faithful representation of M iff it is a faithful rep-
resentation wrt. all p in Cres \ {modset} and the extension of modset in S is
empty.

A finite set of facts I ⊆ BAux ,M containing a faithful representation of all
relevant entities and properties of an MCS qualifies as input of a policy, as
defined next.

Definition 2. A policy input I wrt. MCS M is a finite subset of the policy input
base BAux ,M , such that I|BM

is a faithful representation of M .

In the following, we denote by EDBM a policy input wrt. a MCS M . Note
that reserved predicate modset has an empty extension in a policy input (but

The IMPL Policy Language for Managing Inconsistency 11

corresponding atoms will be of use later on in combination with actions). Given
a set of reserved atoms I, let c be a constant that appears as a bridge rule iden-
tifier in I. Then ruleI (c) denotes the corresponding bridge rule represented by
reserved atoms ruleHead , ruleBody+, and ruleBody− in I with c as their first ar-
gument. Similarly we denote by mod I (m) = (A,R) (resp., by modsetI (m)= {(A1,
R1), . . .}) the modification (resp., set of modifications) represented in I by the
respective predicates and identified by constant m.

Subsequently, we call a modification m that is projected to rules located
at a certain context c the projection of m to context c (and similarly for sets
of modifications). Formally we denote by mod I (m)|c (resp., modsetI (m)|c) the
projection of modification (resp., set of modifications) m in I to context c.

Example 7 (ctd). In the previous example Iex , ruleIex (r1) refers to rule r1; more-
over mod Iex (d) = ({r1, r5}, ∅) and the projection of modification d to cdss is
({r5}, ∅). ℵ∼

A policy can create representations of new rules, modifications, and sets of
modifications, because reserved atoms are allowed to occur in heads of policy
rules. However such new entities require new constants identifying them. To
tackle this issue, we next introduce a facility for value invention.

Value Invention via Builtin Predicates ‘#idk’. Whenever a policy specifies
a new rule and uses it in some action, the rule must be identified with a constant.
The same is true for modifications and sets of modifications. Therefore, impl
contains a family of special builtin predicates which provide policy writers a
means to comfortably create new constants from existing ones.

For this purpose, builtin predicates of the form #idk(c∼, c1, . . . , ck) may occur
in rule bodies (only). Their intended usage is to uniquely (and thus reproducibly)
associate a new constant c∼ with a tuple c1, . . . , ck of constants (for a formal
semantics see the definitions for action determination in Sect. 3.2).

Note that this value invention feature is not strictly necessary, as new con-
stants can be obtained via defining an order relation over all constants, a pool
of unused constants, and auxiliary rules that use the next unused constant for
each new constant that is required by the program. However, a dedicated value
invention builtin simplifies policy writing and improves policy readability.

Example 8 . Assume one wants to consider projections of modifications to con-
texts as specified by the extension of an auxiliary predicate projectMod(M,C).
The following policy fragment achieves this using a value invention builtin to
assign a unique identifier with every projection (recorded in the extension of
another auxiliary predicate projectedModId(M ∼, M , C)).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

projectedModId(M ∼,M,C) ← projectMod(M,C),
#id3(M ∼, pm id ,M,C);

modAdd(M ∼, R) ← modAdd(M,R), ruleHead(R,C, S),
projectedModId(M ∼,M,C);

modDel(M ∼, R) ← modDel(M,R), ruleHead(R,C, S),
projectedModId(M ∼,M,C)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3)

12 T. Eiter et al.

Intuitively, we identify new modifications by new ids cpmid ,M,C obtained from M
and C via #id3 and an auxiliary constant pmid /∈ CM . The latter simply serves
the purpose of disambiguating constants used for projections of modifications. ℵ∼

Besides representing modifications of a MCS aiming at resolving inconsis-
tency, an important feature of impl is to actually apply them. Actions serve this
purpose.

Actions. Actions alter the MCS at hand and may interact with a human op-
erator. According to the change that an action performs, we distinguish system
actions which modify the MCS in terms of entire bridge rules that are added
and/or deleted, and rule actions which modify a single bridge rule. Moreover,
the changes can depend on external input, e.g., obtained by user interaction. In
the latter case, the action is termed interactive. Accumulating the changes of
all actions yields an overall modification of the MCS. We formally define this
intuition when addressing the semantics in Sect. 3.2.

Syntactically, we use @ to prefix action names from Act , and those of the
predefined actions listed below are reserved action names. Let M be the MCS
under consideration, then the following predefined actions are (non-interactive)
system actions:

• @delRule(r) removes bridge rule r from M .
• @addRule(r) adds bridge rule r to M .
• @applyMod(m) applies modification m to M .
• @applyModAtContext(m, c) applies those changes in m to the MCS that add

or delete bridge rules at context c (i.e., applies the projection of m to c).

Note that a policy might specify conflicting effects, i.e., the removal and the
addition of a bridge rule at the same time. In this case the semantics gives
preference to addition.

The predefined actions listed next are rule actions:

• @addRuleCondition+(r, c, b) (resp., @addRuleCondition−(r, c, b)) adds body
literal (c : b) (resp., not (c : b)) to bridge rule r.

• @delRuleCondition+(r, c, b) (resp., @delRuleCondition−(r, c, b)) removes
body literal (c : b) (resp., not (c : b)) from bridge rule r.

• @makeRuleUnconditional(r) makes bridge rule r unconditional.

Since these actions can modify the same rule, this may also result in conflicting
effects, where again addition is given preference over removal by the semantics.
(Moreover, rule modifications are given preference over addition or removal of
the entire rule.)

Eventually, the subsequent predefined actions are interactive (system) ac-
tions, i.e., they involve a human operator:

• @guiSelectMod(ms) displays a GUI for choosing from the set of modifications
ms. The modification chosen by the user is applied to M .

The IMPL Policy Language for Managing Inconsistency 13

• @guiEditMod(m) displays a GUI for editing modification m. The resulting
modification is applied to M .1

• @guiSelectModAtContext(ms, c) projects modifications in ms to c, displays
a GUI for choosing among them and applies the chosen modification to M .

• @guiEditModAtContext(m, c) projects modification m to context c, displays
a GUI for editing it, and applies the resulting modification to M .

As we define formally in Sect. 3.2, changes of individual actions are not applied
directly, but collected into an overall modification which is then applied to M
(respecting preferences in case of conflicts as stated above). Before turning to a
formal definition of the semantics, we give example policies.

Example 9 (ctd). Figure 1 shows three policies that can be useful for managing
inconsistency in our running example. Their intended behavior is as follows.
P1 deals with inconsistencies at Clab : if an explanation concerns only bridge
rules at Clab , an arbitrary diagnosis is applied at Clab , other inconsistencies are
not handled. Applying P1 to M2 removes r1 at Clab , the resulting MCS is still
inconsistent with inconsistency explanation e2, as only e1 has been automatically
fixed. P2 extends P1 by adding an ‘inconsistency alert formula’ to Clab if an

Fig. 1. Sample impl policies for our running example.

1 It is suggestive to also give the operator a possibility to abort, causing no modifica-
tion at all to be made, however we do not specify this here because a useful design
choice depends on the concrete application scenario.

14 T. Eiter et al.

inconsistency was automatically repaired at that context. Finally, P3 is a fully
manual approach which displays a choice of all minimal diagnoses to the user and
applies the user’s choice. Note, that we did not combine automatic actions and
user-interactions here since this would result in more involved policies (and/or
require an iterative methodology; cf. Sect. 4). ℵ∼

We refer to the predefined impl actions @delRule, @addRule, @guiSelectMod ,
and @guiEditMod as core actions, and to the remaining ones as comfort actions.
Comfort actions exist for convenience of use, providing means for projection and
for rule modifications. They can be rewritten to core actions as sketched in the
following example.

Example 10. To realize @applyMod(M) and @applyModAtContext(M,C) using
the core language, we replace them by applyMod(M) and applyModAtContext
(M,C), respectively, use rules (3) from Example 8, and add the following set of
rules.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

@addRule(R) ← applyMod(M), modAdd(M,R);
@delRule(R) ← applyMod(M), modDel(M,R);

projectMod(M,C) ← applyModAtContext(M,C);
applyMod(M ∼) ← applyModAtContext(M,C),

projectedModId(M ∼,M,C)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

ℵ∼
This concludes our introduction of the syntax of impl, and we move on to

a formal development of its semantics which so far has only been conveyed by
accompanying intuitive explanations.

3.2 Semantics

The semantics of applying an impl policy P to a MCS M is defined in three
steps:

– Actions to be executed are determined by computing a policy answer set of
P wrt. policy input EDBM .

– Effects of actions are determined by executing actions. This yields modifi-
cations (A,R) of M for each action. Action effects can be nondeterministic
and thus only be determined by executing respective actions (which is par-
ticularly true for user interactions).

– Effects of actions are materialized by building the componentwise union over
individual action effects and applying the resulting modification to M .

In the remainder of this section, we introduce the necessary definitions for a
precise formal account of these steps.

Action Determination. We define impl policy answer sets similar to the stable
model semantics [21]. Given a policy P and a policy input EDBM , let idk be
a fixed (built-in) family of one-to-one mappings from k-tuples c1, . . . , ck, where

The IMPL Policy Language for Managing Inconsistency 15

ci ∈ cons(P ∪ EDBM) for 1 ≤ i ≤ k, to a set Cid ⊂ C of ‘fresh’ constants, i.e.,
disjoint from cons(P ∪ EDBM).2 Then the policy base BP,M of P wrt. EDBM

is the set of ground impl atoms and actions, that can be built using predicate
symbols from pred(P ∪ EDBM) and terms from UP,M = cons(P ∪ EDBM) ∪ Cid ,
called policy universe.

The grounding of P , denoted by grnd(P), is given by grounding its rules
wrt. UP,M as usual. Note that, since cons(P ∪ EDBM) is finite, only a finite
amount of mapping functions idk is used in P . Hence only a finite amount of
constants Cid is required, and therefore UP,M , BP,M , and grnd(P) are finite as
well.

An interpretation is a set of ground atoms I ⊆ BP,M . We say that I models
an atom a ∈ BP,M , denoted I |= a iff (i) a is not a built-in atom and a∈ I, or
(ii) a is a built-in atom of the form #idk(c, c1, . . . , ck) and c = idk(c1, . . . , ck).
I models a set of atoms A ⊆ BP,M , denoted I |=A, iff I |= a for all a ∈ A. I
models the body of rule r, denoted as I |=B(r), iff I |= a for every a∈ B+(r) and
I ↔|= a for all a∈ B−(r); and for a ground rule r, I |= r iff I |= H(r) or I ↔|=B(r).
Eventually, I is a model of P , denoted I |=P , iff I |= r for all r ∈ grnd(P).
The FLP-reduct [19] of P wrt. an interpretation I, denoted fP I , is the set of
all r ∈ grnd(P) such that I |= B(r).3

Definition 3 (Policy Answer Set). Given an MCS M , let P be an impl
policy, and let EDBM be a policy input wrt. M . An interpretation I ⊆BP,M is a
policy answer set of P for EDBM iff I is a ⊆-minimal model of fP I ∪ EDBM .

We denote by AS(P ∪ EDBM) the set of all policy answer sets of P for EDBM .

Effect Determination. We define the effects of action predicates @a∈Act
by nondeterministic functions f@a. Nondeterminism is required for interactive
actions. An action is evaluated wrt. an interpretation of the policy and yields an
effect according to its type: the effect of a system action is a modification (A,R)
of the MCS, in the following sometimes denoted system modification, while the
effect of a rule action is a rule modification (A,R)r wrt. a bridge rule r of M ,
i.e., in this case A is a set of bridge rule body literals to be added to r, and R
is a set of bridge rule body literals to be removed from r.

Definition 4. Given an interpretation I, and a ground action α of form
@a(t1, . . . , tk), the effect of α wrt. I is given by effI(α) = f@a(I, t1, . . . , tk),
where effI(α) is a system modification if α is a system action, and a rule modi-
fication if α is a rule action.

Action predicates of the impl core fragment have the following semantic func-
tions.
2 Disjointness ensures finite groundings; without this restriction, e.g., the program

{p(C′) ← #id1(C
′, C); p(C)} would not have finite grounding.

3 We use the FLP reduct for compliance with acthex (used for realization in Sect. 5),
but for the language considered, the Gelfond-Lifschitz reduct would yield an equiv-
alent definition.

16 T. Eiter et al.

– f@delRule(I, r) = (∅, {ruleI (r)}).
– f@addRule(I, r) = ({ruleI (r)}, ∅).
– f@guiSelectMod (I,ms) = (A,R) where (A,R) is the user’s selection after being

displayed a choice among all modifications in {(A1, R1), . . .} = modset I (ms).
– f@guiEditMod (I,m) = (A∼, R∼), where (A∼, R∼) is the result of user interaction

with a modification editor that is preloaded with modification (A,R) =
mod I (m).

Note that the effect of any core action in I can be determined independently from
the presence of other core actions in I, and rule modifications are not required
to define the semantics of core actions. However, rule modifications are needed
to capture the effect of comfort actions. Moreover, adding and deleting rule
conditions, and making a rule unconditional can modify the same rule, therefore
such action effects yield accumulated rule modifications.

More specifically, the semantics of impl comfort actions is defined as follows:

– f@delRuleCondition+(I, r, c, b) = (∅, {(c : b)})r.
– f@delRuleCondition−(I, r, c, b) = (∅, {not (c : b)})r.
– f@addRuleCondition+(I, r, c, b) = ({(c : b)}, ∅)r.
– f@addRuleCondition−(I, r, c, b) = ({not (c : b)}, ∅)r.
– f@makeRuleUnconditional (I, r) = (∅, {(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1),

. . . ,not (cm : pm)})r for r of the form (1).
– f@applyMod(I,m) = mod I (m).
– f@applyModAtContext (I,m, c) = mod I (m)|c.
– f@guiSelectModAtContext (I,ms, c) = (A∼, R∼) where (A∼, R∼) is the user’s selec-

tion after being displayed a choice among all modifications in {(A∼
1,

R∼
1), . . .} = modset I (ms)|c.

– f@guiEditModAtContext (I,m, c) = (A∼, R∼), where (A∼, R∼) is the result of user
interaction with a modification editor that is preloaded with modification
mod I (m)c.

In practice, however, it is not necessary to implement action functions on the level
of rule modifications, since a policy in the comfort fragment can equivalently be
rewritten to the core fragment (which does not rely on rule modifications). Ex-
ample 10 already sketched a rewriting for @applyMod and @applyModAtContext .
For a complete rewriting from the comfort to the core fragment, we refer to the
extended version of this paper [15].

The effects of user-defined actions have to comply to Definition 4.

Effect Materialization. Once the effects of all actions in a selected policy
answer set have been determined, an overall modification is computed by the
componentwise union over all individual modifications. This overall modification
is then materialized in the MCS.

Given a MCS M and a policy answer set I (for a policy P and a corresponding
policy input EDBM), let IM , respectively IR, denote the set of ground system
actions, respectively rule actions, in I. Then, Meff = {effI(α)|α ∈ IM} is the
set of effects of system action atoms in I, and Reff = {effI(α)|α ∈ IR} is

The IMPL Policy Language for Managing Inconsistency 17

the set of effects of rule actions in I. Furthermore, Rules = {r | (A,R)r ∈
Reff } is the set of bridge rules modified by Reff , and for every r ∈ Rules, let
Rr =

⋃
(A,R)r∈Reff

R, respectively Ar =
⋃

(A,R)r∈Reff
A, denote the union of rule

body removals, respectively additions, wrt. r in Reff .

Definition 5. Given a MCS M , and an impl policy P , let I be a policy answer
set of P for a policy input EDBM wrt. M . Then, the materialization of I in M
is the MCS M ∼ obtained from M by replacing its set of bridge rules brM by the
set

(brM \ R ∪ A) \Rules ∪ M,

where R=
⋃

(A,R)∈Meff
R, A =

⋃
(A,R)∈Meff

A, and M= {(k:s) ← Body | r ∈
Rules, r ∈ brk, hb (r) = s, Body = B(r) \ Rr ∪ Ar}.
Note that, by definition, the addition of bridge rules has precedence over removal,
and the addition of body literals similarly has precedence over removal. There is
no particular reason for this choice; one just has to be aware of it when specifying
a policy. Apart from that, no order for evaluating individual actions is specified
or required.

Eventually, we can define modifications of a MCS that are accepted by a
corresponding impl policy.

Definition 6. Given a MCS M , an impl policy P , and a policy input EDBM

wrt. M , a modified MCS M ∼ is an admissible modification of M wrt. P and
EDBM iff M ∼ is the materialization of some policy answer set I ∈AS(P ∪EDBM).

Example 11 (ctd). For brevity we here do not give a full account of a proper
EDBM2 of our running example. Intuitively EDBM2 represents all bridge rules,
minimal diagnoses and minimal explanations, in a similar fashion as already
shown in Ex. 6. We assume, that the two explanations and four diagnoses given
in Ex. 4 are identified by constants e1, e2, d1, . . . , d4, respectively.

Evaluating P2 ∪EDBM2 yields four policy answer sets, one is I1 = EDBM2 ∪
{expl(e1), expl(e2), incNotLab(e2), incLab, in(d1), out(d2), out(d3), out(d4),
useOne, ruleHead(ralert , clab , alert), @addRule(ralert), @applyModAtContext(d1,
clab)}. From I1 we obtain a single admissible modification of M2 wrt. P2: add
bridge rule ralert and remove r1.

Evaluating P3 ∪EDBM2 yields one policy answer set, which is I2 = EDBM2 ∪
{modset(md , d1), modset(md , d2), modset(md , d3), modset(md , d4), @guiSelect-
Mod(md)}. Determining the effect of I2 involves user interaction; thus multiple
materializations of I2 exist. For instance, if the user chooses to ignore Sue’s al-
lergy and birth date (and probably imposes additional monitoring on Sue), then
we obtain an admissible modification of M : it adds the unconditional version of
r6 and removes r1. ℵ∼

18 T. Eiter et al.

Multi -
Context
System

Store of
Modifi -
cations

Semantics
Evaluation

Inconsistency
Analysis

Inconsistency
Manager

Policy
Engine

User
Interaction

Policy

control flow data flow

Fig. 2. Policy integration data flow and control flow block diagram.

4 Methodologies of Applying IMPL and Realization

Based on the simple system design shown in Fig. 2, we next briefly discuss
elementary methodologies of applying impl for the purpose of integrating MCS
reasoning with potential user interaction in case of inconsistency. Due to space
constraints, we restrict ourselves to an informal discussion.

We maintain a representation of the MCS together with a store of modifi-
cations. The semantics evaluation component performs reasoning tasks on the
MCS and invokes the inconsistency manager in case of an inconsistency. This
inconsistency manager uses the inconsistency analysis component4 to provide
input for the policy engine which computes policy answer sets of a given impl
policy wrt. the MCS and its inconsistency analysis result. This policy evalua-
tion step results in action executions potentially involving user interactions and
causes changes to the store of modifications, which are subsequently materi-
alized. Finally the inconsistency manager hands control back to the semantics
evaluation component. Principal modes of operation, and their merits, are the
following.

Reason and Manage once. This mode of operation evaluates the policy once,
if the effect materialization does not repair inconsistency in the MCS, no further
attempts are made and the MCS stays inconsistent. While simple, this mode
may not be satisfying in practice.

However, one can improve on the approach by extending actions with priority:
the result of a single policy evaluation step then may be a sequence of sets of
actions (of equal priority), corresponding to successive attempts (of increasing
priority) for repairing the MCS. This can be exploited for writing policies that
ensure repairs, by first attempting a ‘sophisticated’ repair possibly involving
user interaction, and — if this fails — to simply apply some diagnosis to ensure
consistency while the problem may be further investigated.

4 For realizations of this component we refer to [3,16].

The IMPL Policy Language for Managing Inconsistency 19

Reason and Manage iteratively. Another way to deal with failure to restore
consistency is to simply invoke policy evaluation again on the modified but
still inconsistent system. This is useful if user interaction may involve trial-and-
error, especially if multiple inconsistencies occur: some might be more difficult
to counteract than others.

Another positive aspect of iterative policy evaluation is, that it allows for
policies to be structured, e.g., as follows: (a) classify inconsistencies into au-
tomatically versus manually repairable; (b) apply actions to repair one of the
automatically repairable inconsistencies; (c) if such inconsistencies do not exist:
apply user interaction actions to repair one (or all) of the manually repairable
inconsistencies. Such policy structuring follows a divide-and-conquer approach,
trying to focus on individual sources of inconsistency and to disregard interac-
tions between inconsistencies as much as possible. If user interaction consists of
trial-and-error bugfixing, fewer components of the system are changed in each
iteration, and the user starts from a situation where only critical (i.e. not au-
tomatically repairable) inconsistencies are present in the MCS. Moreover, such
policies may be easier to write and maintain. On the other hand, termination of
iterative methodologies is not guaranteed. However, one can enforce termination
by limiting the number of iterations, possibly by extending impl with a control
action that configures this limit.

In iterative mode, passing information from one iteration to the next may
be useful. This can be accomplished by considering additional user-defined add
and delete actions which modify an iteration-persistent knowledge base, provided
to the policy as further input (by means of dedicated auxiliary predicates). For
more details we refer to [15].

5 Realizing IMPL in acthex

In this section, we demonstrate how impl can be realized using acthex. First
we give preliminaries about acthex which is a logic programming formalism that
extends hex programs with executable actions. We then show how to implement
the core impl fragment by rewriting it to acthex in Sect. 5.2. A rewriting from
the comfort to the core fragment of impl is given in the extended version of this
paper [15].

5.1 Preliminaries on acthex

The acthex formalism [2] generalizes hex programs [18] by adding dedicated
action atoms to heads of rules. An acthex program operates on an environment ;
this environment can influence external sources in acthex, and it can be modified
by the execution of actions.

Syntax. By C, X , G, and A we denote mutually disjoint sets whose elements
are called constant names, variable names, external predicate names, and action
predicate names, respectively. Elements from X (resp., C) are denoted with first

20 T. Eiter et al.

letter in upper case (resp., lower case), while elements from G (resp., A) are
prefixed with “&” (resp. “#”). Names in C serve both as constant and predicate
names, and we assume that C contains a finite subset of consecutive integers
{0, . . . , nmax}.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a
tuple (Y0, Y1, . . . Yn), where Y0, Y1, . . . Yn are terms, and n ≥ 0 is the arity of the
atom. Intuitively, Y0 is the predicate name, and we thus also use the more familiar
notation Y0(Y1 . . . Yn). An atom is ordinary if Y0 is a constant. An external atom
is of the form &g[Y1, . . . , Yn](X1, . . . , Xm) with Y1, . . . , Yn and X1, . . . , Xm being
lists of terms. An action atom is of the form #g [Y1, . . . , Yn] {o, r} [w : l] where
#g is an action predicate name, Y1, . . . , Yn is a list of terms (called input list),
and each action predicate #g has fixed length in(#g) = n for its input list.
Attribute o ∈ {b, c, cp} is called the action option; depending on o the action
atom is called brave, cautious, and preferred cautious, respectively. Attributes
r, w, and l are called precedence, weight, and level of #g, denoted by prec(a),
weight(a), and level(a), respectively. They are optional and range over variables
and positive integers.

A rule r is of the form α1∨ . . .∨αk ← β1, . . . , βn, not βn+1, . . . , not βm, where
m, n, k ≥ 0, m ≥ n, α1, . . . , αk are atoms or action atoms, and β1, . . . βm are
atoms or external atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪
B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. An acthex

program is a finite set P of rules.

Example 12. The acthex program {#robot[goto, charger]{b, 1} ← &sensor[bat]
(low); #robot[clean, kitchen]{c, 2} ←night ; #robot[clean, bedroom]{c, 2} ← day ;
night ∨day ← }uses actionatom#robot to commanda robot, andanexternal atom
&sensor to obtain sensor information. Precedence 1 of action atom
#robot[goto, charger]{b, 1} makes the robot recharge its battery before executing
cleaning actions, if necessary. ℵ∼

Semantics. Intuitively, an acthex program P is evaluated wrt. an external en-
vironment E using the following steps: (i) answer sets of P are determined wrt.
E, the set of best models is a subset of the answer sets determined by an ob-
jective function; (ii) one best model is selected, and one execution schedule S is
generated for that model (although a model may give rise to multiple execution
schedules); (iii) the effects of action atoms in S are applied to E in the order
defined by S, yielding an updated environment E∼; and finally (iv) the process
may be iterated starting at (i), unless no actions were executed in (iii) which ter-
minates an iterative evaluation process. Formally the acthex semantics is defined
as follows.

Given an acthex program P , the Herbrand base HBP of P is the set of all
possible ground versions of atoms, external atoms, and action atoms occurring
in P obtained by replacing variables with constants from C. Given a rule r ∈ P ,
the grounding grnd(r) of r is defined accordingly, the grounding of program P
is given as the grounding of all its rules. Unless specified otherwise, C, X , G, and
A are implicitly given by P .

The IMPL Policy Language for Managing Inconsistency 21

An interpretation I relative to P is any subset I ⊆ HBP containing ordinary
atoms and action atoms. We say that I is a model of atom (or action atom)
a ∈ HBP , denoted by I |= a, iff a ∈ I. With every external predicate name
&g ∈ G, we associate an (n+m+2)-ary Boolean function f&g, assigning each
tuple (E, I, y1, . . . , yn, x1, . . ., xm) either 0 or 1, where n = in(&g), m = out(&g),
xi, yj ∈ C, I ⊆ HBP , and E is an environment. Note that this slightly generalizes
the external atom semantics such that they may take E into account, which was
left implicit in [2]. We say that an interpretation I relative to P is a model
of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm) wrt. environment E,
denoted as I, E |= a, iff f&g (E, Iy1 . . . , ynx1, . . . , xm) = 1. Let r be a ground
rule. We define (i) I, E |= H(r) iff there is some a ∈ H(r) such that I, E |= a,
(ii) I, E |= B(r) iff I, E |= a for all a ∈ B+(r) and I, E ↔|= a for all a ∈ B−(r),
moreover (iii) I, E |= r iff I, E |= H(r) or I, E ↔|= B(r). We say that I is a
model of P wrt. E, denoted by I, E |= P , iff I, E |= r for all r ∈ grnd(P). The
FLP-reduct of P wrt. I and E, denoted as fP I,E , is the set of all r ∈ grnd(P)
such that I, E |= B(r). Eventually, I is an answer set of P wrt. E iff I is a
⊆-minimal model of fP I,E . We denote by AS(P,E) the collection of all answer
sets of P wrt. E.

The set of best models of P , denoted BM(P,E), contains those I ∈ AS(P,E)
that minimize the objective function HP (I) = Σa∈A (ω · level(a) + weight(a)),
where A ⊆ I is the set of action atoms in I, and ω is the first limit ordinal.
(This definition using ordinal numbers is equivalent to the definition of weak
constraint semantics in [8].)

An action a = #g[y1, . . . , yn]{o, r}[w : l] with option o and precedence r is
executable in I wrt. P and E iff (i) a is brave and a ∈ I, or (ii) a is cautious
and a ∈ B for every B ∈ AS(P,E), or a is preferred cautious and a ∈ B for
every B ∈ BM(P,E). An execution schedule of a best model I is a sequence of
all actions executable in I, such that for all action atoms a, b ∈ I, if prec(a) <
prec(b) then a has a lower index in the sequence than b. We denote by ESP,E(I)
the set of all execution schedules of a best model I wrt. acthex program P and
environment E; formally, let Ae be the set of action atoms that are executable in
I wrt. P and E, then ESP,E(I) =

{
[a1, . . . , an] | prec(ai) ≤ prec(aj), for all 1 ≤

i < j ≤ n, and {a1, . . . , an} = Ae

}
.

Example 13. In Example 12, if the robot has low battery, then AS(P,E) =
BM(P,E) contains models I1 = {night ,#robot[clean, kitchen]{c, 2},#robot
[goto, charger]{b, 1}} and I2 = {day ,#robot[clean, bedroom]{c, 2},#robot[goto,
charger]b, 1}. We have ESP,E(I1) = {#robot[goto, charger]{b, 1},#robot[clean,
bedroom]c, 2}. ℵ∼

Given a model I, the effect of executing a ground action #g [y1, . . . , ym]
{o, p} [w : l] on an environment E wrt. I is defined for each action predicate
name #g by an associated (m+2)-ary function f#g which returns an updated
environment E∼ = f#g(E, I, y1, . . . , ym). Correspondingly, given an execution
schedule S = [a1, . . . , an] of a model I, the execution outcome of S in environ-
ment E wrt. I is defined as EX(S, I, E) = En, where E0 = E, and Ei+1 =

22 T. Eiter et al.

f#g(Ei, I, y1, . . . , ym), given that ai is of the form #g[y1, . . . , ym]{o, p}[w : l].
Intuitively the initial environment E0 = E is updated by each action in S in
the given order. The set of possible execution outcomes of a program P on an
environment E is denoted as EX (P,E), and formally defined by EX (P,E) =
{EX(S, I, E) | S ∈ ESP,E(I) where I ∈ BM(P,E)}.

In practice, one usually wants to consider a single execution schedule. This
requires the following decisions during evaluation: (i) to select one best model
I ∈ BM(P,E), and (ii) to select one execution schedule S ∈ ESP,E(I). Finally,
one can then execute S and obtain the new environment E∼ = EX(S, I, E).

5.2 Rewriting IMPL to acthex

Using acthex for realizing impl is a natural and reasonable choice because acthex

already natively provides several features necessary for impl: external atoms
can be used to access information from a MCS, and acthex actions come with
weights for creating ordered execution schedules for actions occurring within the
same answer set of an acthex program. Based on this, impl can be implemented
by a rewriting to acthex, with acthex actions implementing impl actions, acthex

external predicates providing information about the MCS to the impl policy,
and acthex external predicates realizing the value invention builtin predicates.

We next describe a rewriting from the impl core language fragment to acthex.
We assume that the environment E contains a pair (A,R) of sets of bridge rules,
and an encoding of the MCS M (suitable for an implementation of the external
atoms introduced below, e.g., in the syntax used by the MCS-IE system [3],
which provide the corresponding policy input). A given impl policy P wrt. the
MCS M is then rewritten to an acthex program P act as follows.

1. Each core impl action @a(t) in the head of a rule of P is replaced by a brave
acthex action #a[t]{b, 2} with precedence 2. These acthex actions implement
semantics of the respective impl actions according to Def. 4: interpretation
I and the original action’s argument t are used as input, the effects are
accumulated as (A,R) in E.

2. Each impl builtin #idk(C, c1, . . . , ck) in P is replaced by an acthex external
atom &idk[c1, . . . , ck](C). The family of external atoms &idk[c1, . . . , ck](C)
realizes value invention and has as semantics function f&idk

(E, I,
c1, . . . , ck, C) = 1 for one constant C = auxc c1 . . . ck created from the
constants in tuple c1, . . . , ck.

3. We add to P act a set Pin of acthex rules containing (i) rules that use, for every
p ∈ Cres \ {modset}, a corresponding external atom to ‘import’ a faithful
representation of M , and (ii) a preparatory action #reset with precedence 1,
and a final action #materialize with precedence 3: Pin = {p(t) ← &p[](t) |
p ∈ Cres \ {modset}} ∪ {#reset[]{b, 1};#materialize[]{b, 3}}, where t is a
vector of different variables of length equal to the arity of p (i.e., one, two,
or three).

The first two steps transform impl actions into acthex actions, and #idk-
value invention into external atom calls. The third step essentially creates policy

The IMPL Policy Language for Managing Inconsistency 23

input facts from acthex external sources. External atoms in Pin return a repre-
sentation of M and analyze inconsistency in M , providing minimal diagnoses
and minimal explanations. Thus, the respective rules in Pin yield an extension
of the corresponding reserved predicates which is a faithful representation of M .
Moreover, action #reset resets the modification (A,R) stored in E to (∅, ∅).5

Action #materialize materializes the modification (A,R) (as accumulated by
actions of precedence 2) in the MCS M (which is part of E).

Example 14 (ctd). Policy P3 from Ex. 9 translated to acthex contains the follow-
ing rules P act

3 =Pin ∪ {
modset(md ,X) ← diag(X); #guiSelectMod[md]{b, 2}}

.
ℵ∼

Note, that actions in the rewriting have no weights, therefore all answer sets
are best models. For obtaining an admissible modification, any policy answer set
can be chosen, and any execution schedule can be used.

Proposition 1. Given a MCS M , a core impl policy P , and a policy input
EDBM wrt. M , let P act be as above, and consider an environment E containing
M and (∅, ∅). Then, every execution outcome E∼ ∈ EX (P act ∪ EDBM |BA

, E)
contains instead of M an admissible modification M ∼ of M wrt. P and EDBM .

The proof of this correctness result can be found in the extended version [15].

6 Conclusion

Related to impl is the action language IMPACT [26], which is a declarative for-
malism for actions in distributed and heterogeneous multi-agent systems. IM-
PACT is a very rich general purpose formalism, which however is more difficult
to manage compared to the special purpose language impl. Furthermore, user
interaction as in impl is not directly supported in IMPACT; nevertheless most
parts of impl could be embedded in IMPACT.

In the fields of access control, e.g., surveyed in [4], and privacy restric-
tions [13], policy languages have also been studied in detail. As a notable ex-
ample, PDL [12] is a declarative policy language based on logic programming
which maps events in a system to actions. PDL is richer than impl concerning
action interdependencies, whereas actions in impl have a richer internal struc-
ture than PDL actions. Moreover, actions in impl depend on the content of a
policy answer set. Similarly, inconsistency analysis input in impl has a deeper
structure than events in PDL.

In the context of relational databases, logic programs have been used for
specifying repairs for databases that are inconsistent wrt. a set of integrity con-
straints [14,23,24]. These approaches may be considered fixed policies without
user interaction, like an impl policy simply applying diagnoses in a homogeneous
MCS. Note however, that an important motivation for developing impl is the

5 This reset is necessary if a policy is applied repeatedly.

24 T. Eiter et al.

fact that automatic repair approaches are not always a viable option for dealing
with inconsistency in a MCS.

Active integrity constraints (AICs) [9–11] and inconsistency management
policies (IMPs) [25] have been proposed for specifying repair strategies for in-
consistent databases in a more flexible way. AICs extend integrity constraints by
introducing update actions, for inserting and deleting tuples, to be performed if
the constraint is not satisfied. On the other hand, an IMP is a function which
is defined wrt. a set of functional dependencies mapping a given relation R to a
‘modified’ relation R∼ obeying some basic axioms.

Although suitable impl policy encodings can mimic database repair
programs—AICs and (certain) IMPs—for specific classes of integrity constraints,
there are fundamental conceptual differences between impl and the above
approaches to database repair. Most notably, impl policies aim at restoring
consistency by modifying bridge rules leaving the knowledge bases unchanged
rather than considering a set of constraints as fixed and repairing the database.
Additionally, impl policies operate on heterogeneous knowledge bases and may
involve user interaction.

Ongoing and Future Work. Regarding an actual prototype implementation
of impl, we are currently working on improvements of acthex which are neces-
sary for realizing impl using the rewriting technique described in Sect. 5.2. In
particular, this includes the generalization of taking into account the environ-
ment in external atom evaluation. Other improvements concern the support for
implementing model and execution schedule selection functions.

An important feature of impl is the user interface for selecting or editing
modifications. There the number of displayed modifications might be reduced
considerably by grouping modifications according to nonground bridge rules.
This would lead to a considerable improvement of usability in practice.

Also, we currently just consider bridge rule modifications for system repairs,
therefore an interesting issue for further research is to drop this convention.
A promising way to proceed in this direction is to integrate impl with recent
work on managed MCSs [6], where bridge rules are extended such that they
can arbitrarily modify the knowledge base of a context and even its semantics.
Accordingly, impl could be extended with the possibility of using management
operations on contexts in system modifications.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In:
ICLP, pp. 24–33 (2010)

3. Bögl, M., Eiter, T., Fink, M., Schüller, P.: The MCS-IE system for explaining
inconsistency in multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA
2010. LNCS, vol. 6341, pp. 356–359. Springer, Heidelberg (2010)

The IMPL Policy Language for Managing Inconsistency 25

4. Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: Rule-based policy pepresen-
tations and reasoning. In: Bry, F., MaΠluszyński, J. (eds.) Semantic Techniques for
the Web. LNCS, vol. 5500, pp. 201–232. Springer, Heidelberg (2009)

5. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 385–390 (2007)

6. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems.
In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 786–791
(2011)

7. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 268–273 (2007)

8. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive
datalog. In: Dix, J., Furbach, U., Nerode, A. (eds.) Logic Programming and Non-
monotonic Reasoning. LNCS, vol. 1265, pp. 2–17. Springer, Heidelberg (1997)

9. Caroprese, L., Greco, S., Zumpano, E.: Active integrity constraints for database
consistency maintenance. IEEE Trans. Knowl. Data Eng. 21(7), 1042–1058 (2009)

10. Caroprese, L., Truszczyński, M.: Declarative semantics for active integrity con-
straints. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 269–283. Springer, Heidelberg (2008)

11. Caroprese, L., Truszczyński, M.: Declarative semantics for revision programming
and connections to active integrity constraints. In: Hölldobler, S., Lutz, C., Wans-
ing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 100–112. Springer,
Heidelberg (2008)

12. Chomicki, J., Lobo, J., Naqvi, S.A.: A logic programming approach to conflict
resolution in policy management. In: KR, pp. 121–132 (2000)

13. Duma, C., Herzog, A., Shahmehri, N.: Privacy in the semantic web: what policy
languages have to offer. In. POLICY, pp. 109–118 (2007)

14. Eiter, T., Fink, M., Greco, G., Lembo, D.: Repair localization for query answering
from inconsistent databases. ACM Trans. Database Syst. 33(2), 10:01–10:51 (2008)

15. Eiter, T., Fink, M., Ianni, G., Schüller, P.: Managing inconsistency in multi-context
systems using the IMPL policy language. Tech. Rep. INFSYS RR-1843-12-05,
Vienna University of Technology, Institute for, Information Systems (2012)

16. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in nonmonotonic multi-context systems. In: KR, pp. 329–339 (2010)

17. Eiter, T., Fink, M., Weinzierl, A.: Preference-based inconsistency assessment in
multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS,
vol. 6341, pp. 143–155. Springer, Heidelberg (2010)

18. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Kaelbling,
L.P., Saffiotti, A. (eds.) IJCAI, pp. 90–96. Pofessional Book Center, Denver (2005)

19. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

20. Fink, M., Ghionna, L., Weinzierl, A.: Relational information exchange and aggre-
gation in multi-context systems. In: Delgrande, J.P., Faber, W. (eds.) LPNMR
2011. LNCS, vol. 6645, pp. 120–133. Springer, Heidelberg (2011)

21. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

22. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do
without modal logics. Artif. Intell. 65(1), 29–70 (1994)

23. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)

26 T. Eiter et al.

24. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: answer set pro-
grams for consistent query answering in databases. Data Knowl. Eng. 69(6),
545–572 (2010)

25. Martinez, M.V., Parisi, F., Pugliese, A., Simari, G.I., Subrahmanian, V.S.: Incon-
sistency management policies. In: KR, pp. 367–377 (2008)

26. Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross,
R.: Heterogeneous Agent Systems: Theory and Implementation. MIT Press,
Cambridge (2000)

The Parameterized Complexity of Constraint
Satisfaction and Reasoning

Stefan Szeider(B)

Vienna University of Technology, A-1040 Vienna, Austria
stefan@szeider.net

Abstract. Parameterized Complexity is a new and increasingly popular
theoretical framework for the rigorous analysis of NP-hard problems and
the development of algorithms for their solution. The framework provides
adequate concepts for taking structural aspects of problem instances into
account. We outline the basic concepts of Parameterized Complexity and
survey some recent parameterized complexity results on problems arising
in Constraint Satisfaction and Reasoning.

1 Introduction

Computer science has been quite successful in devising fast algorithms for impor-
tant computational tasks, for instance, to sort a list of items or to match workers
to machines. By means of a theoretical analysis one can guarantee that the algo-
rithm will always find a solution quickly. Such a worst-case performance guaran-
tee is the ultimate aim of algorithm design. The traditional theory of algorithms
and complexity as developed in the 1960s and 1970s aims at performance guar-
antees in terms of one dimension only, the input size of the problem. However,
for many important computational problems that arise from real-world appli-
cations, the traditional theory cannot give reasonable (i.e., polynomial) perfor-
mance guarantees. The traditional theory considers such problems as intractable.
Nevertheless, heuristics-based algorithms and solvers work surprisingly well on
real-world instances of such problems. Take for example the satisfiability prob-
lem (Sat) of propositional reasoning. No algorithm is known that can solve a
Sat instance on n variables in 2o(n) steps (by the widely believed Exponen-
tial Time Hypothesis such an algorithm is impossible [29]). On the other hand,
state-of-the-art Sat solvers solve routinely instances with hundreds of thou-
sands of variables in a reasonable amount of time (see e.g., [23]). Hence there
is an enormous gap between theoretical performance guarantees and the empir-
ically observed performance of solvers. This gap separates theory-oriented and
applications-oriented research communities. This theory-practice gap has been

Research supported by the European Research Council, grant reference 239962
(COMPLEX REASON). This survey was written in 2011, some references where
updated in 2013.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 27–37, 2013.
DOI: 10.1007/978-3-642-41524-1 2, c© Springer-Verlag Berlin Heidelberg 2013

28 S. Szeider

observed by many researchers, including Moshe Vardi, who closed an editorial
letter [49] as follows:

[. . .] an important role of theory is to shed light on practice, and there
we have large gaps. We need, I believe, a richer and broader complexity
theory, a theory that would explain both the difficulty and the easiness
of problems like SAT. More theory, please!

Parameterized Complexity is a new theoretical framework that offers a great
potential for reducing the theory-practice gap. The key idea is to consider—in
addition to the input size—a secondary dimension, the parameter, and to design
and analyse algorithms in this two-dimensional setting. Virtually in every con-
ceivable context we know more about the input data than just its size in bytes.
The second dimension (the parameter) can represent this additional informa-
tion. This two-dimensional setting gives raise to a foundational theory of algo-
rithms and complexity that can be closer to the problems as they appear in the
real world. Parameterized Complexity has been introduced and pioneered by R.
Downey and M. R. Fellows [8] and is receiving growing interest as reflected by
hundreds of research papers (see the references in [8,15,37]). In more and more
research areas such as Computational Biology, Computational Geometry, and
Computational Social Choice the merits of Parameterized Complexity become
apparent (see, e.g., [2,22,26]).

2 Parameterized Complexity: Basic Concepts
and Definitions

In the following we outline the central concepts of Parameterized Complexity.
An instance of a parameterized problem is a pair (I, k) where I is the main

part and k is the parameter ; the latter is usually a non-negative integer. The
central notion of the field is fixed-parameter tractability (FPT) which refers to
solvability in time f(k)nc, where f is some (possibly exponential) function of
the parameter k, c is a constant, and n is the size of the instance with respect
to some reasonable encoding. An algorithm that runs in time f(k)nc is called an
fpt-algorithm. As a consequence of this definition, a fixed-parameter tractable
problem can be solved in polynomial time for any fixed value of the parameter,
and, importantly, the order of the polynomial does not depend on the parameter.
This is significantly different from problems that can be solved in, say, time nk,
which also gives polynomial-time solvability for each fixed value of k, but since
the order of the polynomial depends on k it does not scale well in k and quickly
becomes inefficient for small values of k.

Take for example the Vertex Cover problem: Given a graph G and an
integer k, the question is whether there is a set of k vertices such that each
edge of G has at least one of its ends in this set. The problem is NP-complete,
but fixed-parameter tractable for parameter k. Currently the best known fpt-
algorithm for this problem runs in time of order 1.2738k +kn [6]. This algorithm
is practical for huge instances as long as the parameter k is below 100. The

The Parameterized Complexity of Constraint Satisfaction and Reasoning 29

situation is dramatically different for the Independent Set problem, where for
a given graph G and an integer k it is asked whether there is a set of k vertices
of G such that no edge joints two vertices in the set. Also this problem is NP-
complete, and indeed for traditional complexity the problems Vertex Cover
and Independent Set are essentially the same, as there is a trivial polynomial-
time transformation from one problem to the other (the complement set of a
vertex cover is an independent set). However, no fixed-parameter algorithm for
Independent Set is known and the Parameterized Complexity of this problem
appears to be very different from the complexity of Vertex Cover. Theoretical
evidence suggests that Independent Set cannot be solved significantly faster
than by trying all subsets of size k, which gives a running time of order nk.

The subject of Parameterized Complexity splits into two complementary
questions, each with its own mathematical toolkit and methods:

1. How to design and improve fixed-parameter algorithms for parameterized
problems. For this question there exists a rich toolkit of algorithmic tech-
niques (see, e.g., [46]).

2. How to gather evidence that a parameterized problem is not fixed-parameter
tractable. For this question a completeness theory has been developed which
is similar to the theory of NP-completeness (see, e.g., [7]) and supports the
accumulation of strong theoretical evidence that a parameterized problem is
not fixed-parameter tractable.

Every completeness theory requires a suitable notion of reduction. The classical
polynomial-time reductions are not suitable for Parameterized Complexity, as
they do not differentiate between problems that are fixed-parameter tractable
and problems that are believed to be not (such as Vertex Cover and Inde-
pendent Set, respectively, as discussed above). A reduction that preserves
fixed-parameter tractability must ensure that the parameter of one problem
maps to the parameter of the other problem. This is the case for fpt-reductions,
the standard reductions in Parameterized Complexity. An fpt-reduction between
parameterized decision problems P and Q is an fpt-algorithm that maps a prob-
lem instance (x, k) of P to a problem instance (x′, k′) of Q such that (i) (x, k)
is a yes-instance of P if and only if (x′, k′) is a yes-instance of Q, and (ii) there
is a computable function g such that k′ ≤ g(k). It is easy to see that if we have
an fpt-reduction from P to Q, and Q is fixed-parameter tractable, then so is P .

3 How to Parameterize?

Most research in Parameterized Complexity considers optimization problems,
where the parameter is a bound on the objective function, also called solution
size. For instance, the standard parameter for Vertex Cover is the size of the
vertex cover we are looking for. However, many problems that arise in Constraint
Satisfaction and Reasoning are not optimization problems, and it seems more
natural to consider parameters that indicate the presence of a “hidden structure”
in the problem instance. It is a widely accepted view that efficient solvers exploit

30 S. Szeider

the hidden structure of real-world problems. Hence such a parameter can be used
to capture the presence of a hidden structure. There are several approaches to
making the vague notion of a hidden structure mathematically precise in terms
of a parameter.

3.1 Backdoors

If a computational problem is intractable in general, it is natural to ask for sub-
problems for which the problem is solvable in polynomial-time, and indeed much
research has been devoted to this question. Such tractable subproblems are some-
times called “islands of tractability” or “tractable fragments.” It seems unlikely
that a problem instance originating from a real-world application belongs to one
of the known tractable fragments, but it might be close to one. The concept of
backdoor sets offers a generic way to gradually enlarge and extend an island
of tractability and thus to solve problem instances efficiently if they are close
to a tractable fragment. The size of a smallest backdoor set indicates the dis-
tance between an instance and a tractable fragment. Backdoor sets were intro-
duced in the context of propositional and constraint-based reasoning [50] but
similar notions can be defined for other reasoning problems. Roughly speaking,
after eliminating the variables of a backdoor set one is left with an instance
that belongs to the tractable subproblem under consideration. The “backdoor
approach” to reasoning problems involves two tasks. The first task, called back-
door detection, is to detect a small backdoor set by an fpt-algorithm, parameter-
ized by the size of the backdoor set. The second task, called backdoor evaluation,
is to solve the reasoning problem efficiently using the information provided by
the backdoor set.

There are several Parameterized Complexity results on backdoor sets for
the Sat problem as described in a recent survey [21]. Backdoors have also
been applied to problems beyond NP such as Model Counting and QBF-
Satisfiability [38,42], and to the main reasoning problems of propositional dis-
junctive answer set programming (deciding whether an atom belongs to some
stable model or whether it belongs to all stable models). The latter problems are
located at the second level of the Polynomial Hierarchy [11] but can be solved in
polynomial time for normal (disjunction-free) programs that have certain acyclic-
ity properties. Several of these tractable classes admit a backdoor approach, with
fixed-parameter tractable backdoor detection and backdoor evaluation, thus ren-
dering the answer-set programming problems fixed-parameter tractable [13]. A
similar backdoor approach has also been developed for problems of abstract argu-
mentation [10] whose unparameterized versions are also located at the second
level of the Polynomial Hierarchy.

3.2 Decompositions

A key technique for coping with hard computational problems is to decompose
the problem instance into small tractable parts, and to reassemble the solutions
of the parts to a solution of the entire instance. One aims at decompositions

The Parameterized Complexity of Constraint Satisfaction and Reasoning 31

for which the overall complexity depends on how much the parts overlap, the
“width” of the decomposition. The most popular and widest studied decom-
position method is tree decomposition with the associated parameter treewidth.
A recent survey by Hlinený et al. covers several decomposition methods with
particular focus on fixed-parameter tractability [28].

Recent results on the Parameterized Complexity of reasoning problems with
respect to decomposition width include results on disjunctive logic program-
ming and answer-set programming with weight constraints [24,41], abductive
reasoning [25], satisfiability and propositional model counting [39,44], constraint
satisfaction and global constraints [43,45], and abstract and value-based argu-
mentation [9,30].

3.3 Locality

Practical algorithms for hard reasoning problems are often based on local search
techniques. The basic idea is to start with an arbitrary candidate solution and to
try to improve it step by step, at each step moving from one candidate solution
to a better “neighbor” candidate solution. It would provide an enormous speed-
up if one could perform k elementary steps of local search efficiently in one
“giant” k-step. Such a giant k-step also decreases the probability of getting
stuck at a poor local optimum. However, the obvious strategy for performing
one giant k-step requires time of order Nk (assuming a candidate solution has
N neighbour solutions), which is impractical already for very small values of k
since typically N is related to the input size. A challenging objective is the design
of fpt-algorithms (with respect to parameter k) that compute a giant k-step.
Recent work on parameterized local search includes the problem of minimizing
the Hamming weight of satisfying assignments for Boolean CSP [31] and for the
Max Sat problem [48]. It turns out that there are interesting cases for which
k-step local search is fixed-parameter tractable.

Local consistency is a further form of locality that plays an important role in
constraint satisfaction and is one of the oldest and most fundamental concepts
of in this area. It can be traced back to Montanari’s famous 1974 paper [36]. If a
constraint network is locally consistent, then consistent instantiations to a small
number of variables can be consistently extended to any further variable. Hence
local consistency avoids certain dead-ends in the search tree, in some cases it even
guarantees backtrack-free search [1,18]. The simplest and most widely used form
of local consistency is arc-consistency, introduced by Mackworth [33], and later
generalized to k-consistency by Freuder [17]. A constraint network is k-consistent
if each consistent assignment to k − 1 variables can be consistently extended to
any further k-th variable. It is a natural question to ask for the Parameterized
Complexity of checking whether a constraint network is k-consistent, taking k as
the parameter. This question has been subject to a recent study [20]. It turned
out that in general, deciding whether a constraint network is k-consistent is
complete for the parameterized complexity class co-W[2] and thus unlikely to
be fixed-parameter tractable. However, if we include as secondary parameters

32 S. Szeider

the maximum domain size and the maximum number of constraints in which a
variable occurs, then the problem becomes fixed-parameter tractable.

3.4 Above or Below Guaranteed Bounds

For some optimization problems that arise in constraint satisfaction and rea-
soning, the standard parameter (solution size) is not a very useful one. Take
for instance the problem Max Sat. The standard parameter is the number of
satisfied clauses. However, it is well-known that one can always satisfy at least
half of the clauses. Hence, if we are given m clauses, and if we want to satisfy at
least k of them, then the answer is clearly yes if k ≤ m/2. On the other hand, if
k > m/2 then m < 2k, hence the size of the given formula is bounded in terms
of the parameter k, and thus can be trivially solved by brute force in time that
only depends on k. Less trivial is the question of whether we can satisfy at least
m/2 + k clauses, where k is the parameter. Such a problem is called parameter-
ized above a guaranteed value [34,35]. Over the last few years, several variants of
Max Sat but also optimization problems regarding ordering constraints have
been studied, parameterized above a guaranteed value. A recent survey by Gutin
and Yeo covers these results [27].

4 Kernelization: Preprocessing with Guarantee

Preprocessing and data reduction are powerful ingredients of virtually every
practical solver. Before performing a computationally expensive case distinc-
tion, it seems always better to seek for a “safe step” that simplifies the instance,
and to preprocess. Indeed, the success of practical solvers relies often on pow-
erful preprocessing techniques. However, preprocessing has been neglected by
traditional complexity theory: if we measure the complexity of a problem just in
terms of the input size n, then reducing the size from n to n − 1 in polynomial
time yields a polynomial-time algorithm for the problem as we can iterate the
reduction [12]. Hence it does not make much sense to study preprocessing for
NP-hard problems in the traditional one-dimensional framework. However, the
notion of “kernelization”, a key concept of Parameterized Complexity provides
the means for studying preprocessing, since the impact of preprocessing can
measured in terms of the parameter, not the size of the input. When a problem
is fixed-parameter tractable then each instance (I, k) can be reduced in polyno-
mial time to an equivalent instance (I ′, k′), the problem kernel, where k′ ≤ k and
the size of I ′ is bounded by a function of k. The smaller the kernel, the more
efficient the fixed-parameter algorithm. For a parameterized problem it is there-
fore interesting to know whether it admits a polynomial kernel or not. Over the
last few years, this question has received a lot of attention in the Parameterized
Complexity community [32].

Several optimization problems, such as Vertex Cover and Feedback
Vertex Set admit polynomial kernels with respect to the standard parameter
solution size [5,6]. However, it turns out that many fixed-parameter tractable

The Parameterized Complexity of Constraint Satisfaction and Reasoning 33

problems in the areas of constraint satisfaction, global constraints, satisfiability,
nonmonotonic and Bayesian reasoning do not have polynomial kernels unless
the Polynomial Hierarchy collapses to its third level [47]. Such super-polynomial
kernel lower bounds can be obtained by means of recent tools [4,16]. A positive
exception is the consistency problem for certain global constraint, which admits
a polynomial kernel for an interesting parameter [19].

5 Breaking Complexity Barriers with FPT-Reductions

Many important problems in constraint satisfaction and reasoning are located
above the first level of the Polynomial Hierarchy or are even PSpace-complete,
thus considered “harder” than the Sat problem. Above we have discussed some
results that establish fixed-parameter tractability for such problems (including
ASP problems and QBF satisfiability, parameterized by backdoor size). However,
for such hard problems, asking for fixed-parameter tractability is asking for a
lot and requires the parameters to be quite restrictive. Therefore, it seems to
be an even more interesting approach to exploit some structural properties of
the instance in terms of a parameter, not to solve the instance, but to reduce
it to an equivalent instance of a problem of lower classical complexity. The
parameter can thus be less restrictive and can therefore be small for larger classes
of inputs. The reduction cannot run in polynomial time, unless the Polynomial
Hierarchy collapses, but the enhanced power of fpt-reductions (see Sect. 2) can
break the barriers between classical complexity classes. The Sat problem is well-
suited as a target problem (say, with the constant parameter 0), since by means
of fpt-reductions to Sat we can make today’s extremely powerful Sat solvers
applicable to problems on higher levels of the Polynomial Hierarchy. In fact, there
are some known reductions that, in retrospect, can be seen as fpt-reductions
to SAT. A prominent example is Bounded Model Checking [3], a technique of
immense practical significance for hardware and software verification, which can
be seen as an fpt-reduction from the PSpace-complete model checking problem
for linear temporal logic to Sat. The parameter is an upper bound on the size
of a counterexample (or the diameter of the instance).

In recent work [14] we have developed fpt-reductions that break complexity
barriers for the main reasoning problems of disjunctive answer-set programming.
These problems are located at the second level of the Polynomial Hierarchy in
general, but drop back to the first level if restricted to normal (i.e., disjunction-
free) programs. Thus, it is natural to consider as a parameter the distance of a
disjunctive program form being normal ; the backdoor size with respect to the
base class of normal programs provides such a distance measure. And indeed,
there is an fpt-reduction with respect to this parameter, that takes as input a
disjunctive program P and an atom x, and outputs a CNF formula that is satis-
fiable if and only if x is in some answer set of P (a similar fpt-reduction outputs
a CNF formula that is unsatisfiable if and only if x is in all answer sets of P). In
terms of parameterized complexity, this shows that the brave reasoning problem
for disjunctive ASP is paraNP-complete; paraNP is the class of all parameter-
ized decision problems that can be solved in time f(k)nc by a nondeterministic

34 S. Szeider

algorithm [15]. For parameterizations of NP-problems, a paraNP-completeness
result is considered as very negative. For a problem that is harder than NP,
however, a paraNP-completeness result is a positive one, as it shows that the
structure represented by the parameter can be exploited to break the complexity
barrier. Very recently, we developed similar fpt-reductions for problems arising
in propositional abductive reasoning which are also located on the second level of
the Polynomial Hierarchy, taking as parameters the distance of the input theory
form being Horn or being Krom [40].

6 Conclusion

Over the last decade, Parameterized Complexity has become an important field
of research in Algorithms and Complexity. It provides a more fine-grained com-
plexity analysis than the traditional theory taking structural aspects of problem
instances into account. In this brief survey we have outlined the basic concepts
of Parameterized Complexity and indicated some recent results on the Parame-
terized Complexity of problems arising in Constraint Satisfaction an Reasoning.

References

1. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k -consistency. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
279–290. Springer, Heidelberg (2007)

2. Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational
aspects of voting- a parameterized complexity perspective. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol.
7370, pp. 318–363. Springer, Heidelberg (2012)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

5. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures.
In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg
(2010)

6. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40–42), 3736–3756 (2010)

7. Chen, J., Meng, J.: On parameterized intractability: hardness and completeness.
Comput. J. 51(1), 39–59 (2008)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

9. Dunne, P.E.: Computational properties of argument systems satisfying graph-
theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)

10. Dvorák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract
argumentation. Artif. Intell. 186, 157–173 (2012)

The Parameterized Complexity of Constraint Satisfaction and Reasoning 35

11. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

12. Fellows, M.R.: The lost continent of polynomial time: preprocessing and kerneliza-
tion. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 276–277. Springer, Heidelberg (2006)

13. Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Techni-
cal Report 1104.2788, Arxiv.org. Extended and updated version of a paper that
appeared in the proceedings of IJCAI 2011, The 22nd International Joint Confer-
ence on Artificial Intelligence (2012)

14. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In:
des Jardins, M., Littman, M.L. (eds.) Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI 2013), Bellevue, Washington, USA, 14–18 July 2013,
pp. 320–337. AAAI Press, California (2013)

15. Flum, J., Grohe, M.: Parameterized Complexity Theory, vol. XIV. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, Berlin (2006)

16. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008,
pp. 133–142. ACM, New York (2008)

17. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21(11), 958–
966 (1978)

18. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4),
755–761 (1985)

19. Gaspers, S., Szeider, S.: Kernels for global constraints. In: Walsh, T. (ed.) Proceed-
ings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI
2011, pp. 540–545. AAAI Press, California (2011)

20. Gaspers, S., Szeider, S.: The parameterized complexity of local consistency. In:
Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 302–316. Springer, Heidelberg (2011)

21. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey,
R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp.
287–317. Springer, Heidelberg (2012)

22. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geo-
metric problems. Comput. J. 51(3), 372–384 (2008)

23. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: van
Harmelen, F., Lifschitz, V. (eds.) Handbook of Knowledge Representation, vol. 3,
Foundations of Artificial Intelligence, pp. 89–134. Elsevier, Amsterdam (2008)

24. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. In: 21st National Conference on Artificial
Intelligence and the 18th Innovative Applications of Artificial Intelligence Confer-
ence. AAAI Press (2006)

25. Gottlob, G., Pichler, R., Wei, F.: Abduction with bounded treewidth: from the-
oretical tractability to practically efficient computation. In: Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), Chicago,
Illinois, USA, 13–17 July 2008, pp. 1541–1546. AAAI Press, California (2008)

26. Gramm, J., Nickelsen, A., Tantau, T.: Fixed-parameter algorithms in phylogenet-
ics. Comput. J. 51(1), 79–101 (2008)

27. Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below
tight bounds: a survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D.
(eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg
(2012)

36 S. Szeider

28. Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2008)

29. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

30. Kim, E.J., Ordyniak, S., Szeider, S.: Algorithms and complexity results for per-
suasive argumentation. Artif. Intell. 175, 1722–1736 (2011)

31. Krokhin, A., Marx, D.: On the hardness of losing weight. ACM Trans. Algorithm
8(2), 19 (2012)

32. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – preprocessing with a guar-
antee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows
Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

33. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118
(1977)

34. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

35. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing MAX SNP problems above
guaranteed values. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 38–49. Springer, Heidelberg (2006)

36. Montanari, U.: Networks of constraints: fundamental properties and applications
to picture processing. Inf. Sci. 7, 95–132 (1974)

37. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford (2006)

38. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta
Informatica 44(7–8), 509–523 (2007)

39. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
cnf formulas. Theor. Comput. Sci. 481, 85–99 (2013)

40. Pfandler, A., Rümmele, S., Szeider, S.: Backdoors to absuction. In: Proceedings
of the 23th International Joint Conference on Artificial Intelligence (IJCAI 2013),
Beijing, China, 3–9 August 2013 (2013) (to appear)

41. Pichler, R., Rümmele, S., Szeider, S., Woltran, S.: Tractable answer-set program-
ming with weight constraints: bounded treewidth is not enough. In: Lin, F., Sattler,
U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Conference (KR 2010), Toronto, Ontario,
Canada, 9–13 May 2010. AAAI Press, California (2010)

42. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reason. 42(1), 77–97 (2009)

43. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality con-
straint. Constraints 16(1), 1–24 (2009)

44. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discret.
Algorithms 8(1), 50–64 (2010)

45. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited.
J. Comput. Syst. Sci. 76(2), 103–114 (2010)

46. Sloper, C., Telle, J.A.: An overview of techniques for designing parameterized algo-
rithms. Comput. J. 51(1), 122–136 (2008)

47. Szeider, S.: Limits of preprocessing. Proceedings of the twenty-fifth conference on
artificial intelligence, AAAI 2011, pp. 93–98. AAAI Press, California (2011)

48. Szeider, S.: The parameterized complexity of k-flip local search for SAT and MAX
SAT. Discrete Optim. 8(1), 139–145 (2011)

49. Vardi, M.Y.: On P, NP, and computational complexity. Commun. ACM 53(11), 5
(Nov. 2010)

The Parameterized Complexity of Constraint Satisfaction and Reasoning 37

50. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kauf-
mann, San Francisco (2003)

INAP Technical Papers I:
Languages

Translating Nondeterministic Functional
Language Based on Attribute Grammars

into Java

Masanobu Umeda1(B), Ryoto Naruse2, Hiroaki Sone2, and Keiichi Katamine1

1 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
umerin@ci.kyutech.ac.jp, katamine@ci.kyutech.ac.jp

2 NaU Data Institute Inc., 680-41 Kawazu, Iizuka 820-8502, Japan
naruse@nau.co.jp, sone@nau.co.jp

Abstract. Knowledge-based systems are suitable for realizing advanced
functions that require domain-specific expert knowledge, while knowl-
edge representation languages and their supporting environments are
essential for realizing such systems. Although Prolog is both useful and
effective in this regard, the language interoperability with other imple-
mentation languages, such as Java, is often critical in practical appli-
cation development. This paper describes the techniques for translat-
ing a knowledge representation language, a nondeterministic functional
language based on attribute grammars, into Java. Translation is based
on binarization and current techniques for Prolog to Java translation
although the semantics are different from those of Prolog. A continua-
tion unit is introduced to handle continuation efficiently, while variable
and register management for backtracking is simplified by exploiting the
single and unidirectional assignment features of variables. Experimental
results for several benchmarks show that the code generated by the pro-
totype translator is more than 25 times and 2 times faster than that of
Prolog Cafe for nondeterministic programs and deterministic programs,
respectively, and more than 2 times faster than B-Prolog for nondeter-
ministic programs.

Keywords: Knowledge representation language · Language translation ·
Prolog · Java

1 Introduction

As information and communication technology penetrates more deeply into our
society, demand for advanced information services in various application domains
such as medical services and supply-chain management is growing. Clinical deci-
sion support [1,2] to prevent medical errors and order placement support for
optimal inventory management [3] are two typical examples of such systems.
It is, however, not prudent to implement these advanced functions as part of
a traditional information system using conventional programming languages.
This is because expert knowledge is often large-scale and complicated, and each

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 41–57, 2013.
DOI: 10.1007/978-3-642-41524-1 3, c© Springer-Verlag Berlin Heidelberg 2013

42 M. Umeda et al.

application domain typically has its own specific structures and semantics of
knowledge. Therefore, not only the analysis, but also the description, audit, and
maintenance of such knowledge are often difficult without expertise in the appli-
cation domain. It is thus essential to realize such advanced functions to allow
domain experts themselves to describe, audit, and maintain their knowledge. A
knowledge-based system approach is suitable for this purpose because a suitable
framework for representing and managing expert knowledge is provided.

Previously, Nagasawa et al. proposed the knowledge representation language
DSP [4,5] and its supporting environment. DSP is a nondeterministic functional
language based on attribute grammars [6,7] and is suitable for representing com-
plex search problems without relying on any side-effects. The supporting envi-
ronment has been developed on top of an integrated development environment
called Inside Prolog [8]. Inside Prolog provides standard Prolog functionality,
conforming to ISO/IEC 13211-1 [9], as well as a large variety of application
programming interfaces that are essential for practical application development,
and multi-thread capability for enterprise use [10].

These features allow the consistent development of knowledge-based systems
from prototypes to practical systems for both stand-alone and enterprise use [11].
Such systems have been applied to practical applications such as clinical decision
support and customer management support, and the effectiveness thereof has
been verified. However, several issues have arisen from these experiences. One
is the complexity of combining a Prolog-based system with one written in a
normal procedural language, such as Java. Another issue is the adaptability to
new computing environments, such as mobile devices.

This paper describes the implementation techniques required to translate a
nondeterministic functional language based on attribute grammars into a proce-
dural language such as Java. The proposed techniques are based on techniques
for Prolog to Java translation. Section 2 gives an overview of the knowledge rep-
resentation language DSP, and explains how it differs from Prolog. In Sect. 3, the
translation techniques for logic programming languages are briefly reviewed, and
basic ideas useful for the translation of DSP identified. Section 4 discusses the
program representations of DSP in Java, while Sect. 5 evaluates the performance
using an experimental translator.

2 Overview of Knowledge Representation Language DSP

2.1 Background

In the development of a knowledge-based system, it is essential to formally ana-
lyze, systematize, and describe the knowledge of an application domain. The
description of knowledge is conceptually possible in any conventional program-
ming language. Nevertheless, it is difficult to describe, audit, and maintain a
knowledge base using a procedural language such as Java. This is because the
knowledge of an application domain is often large-scale and complicated, and
each application domain has its own specific structures and semantics of knowl-
edge. In particular, the audit and maintenance of written knowledge is a major

Translating Nondeterministic Functional Language 43

issue in an information system involving expert knowledge, because such a sys-
tem cannot easily be changed and the transfer of expert knowledge to succeed-
ing generations is difficult [12]. Therefore, it is very important to provide a
framework to enable domain experts themselves to describe, audit, and main-
tain their knowledge included in an information system [13]. It is perceived that
a description language that is specific to an application domain and designed
to be described by domain experts is superior in terms of the minimality, con-
structability, comprehensibility, extensibility, and formality of the language [14].
For this reason, Prolog cannot be considered as a candidate for a knowledge
representation language even though it can be an implementation language.

DSP is a knowledge representation language based on nondeterministic
attribute grammars. It is a functional language with a search capability using
the generate and test method. Because the language is capable of representing
trial and error without any side-effects or loop constructs, and the knowledge
descriptions can be declaratively read and understood, it is suitable for repre-
senting domain-specific expert knowledge involving search problems.

2.2 Syntax and Semantics of DSP

The program unit to represent knowledge in DSP is called a “module”, and it rep-
resents a nondeterministic function involving no side-effects. Inherited attributes,
synthesized attributes, and tentative variables for the convenience of program
description, all of which are called variables, follow the single assignment rule,
and the assignment is unidirectional. Therefore, the computation process of a
module can be represented as non-cyclic dependencies between variables.

Table 1 gives some typical statements in the language. In this table, the types,
namely, generator, calculator, and tester, are functional classifications in the
generate and test method. Generators for(B,E,S) and select(L) are provided
as primitives for the convenience of knowledge representation although they
can be defined as modules using the nondeterministic features of the language.

Table 1. Typical statements in the DSP language

Type Statement Function

Generator for(B,E,S) Assume a numeric value from B to E with
step S

Generator select(L) Assume one of the elements of list L
Generator call(M,I,O) Call a module M nondeterministically with

inputs I and outputs O
Calculator dcall(M,I,O) Call a module M deterministically with

inputs I and outputs O
Calculator find(M,I,OL) Create a list OL of all outputs of module M

with inputs I
Tester when(C) Specify the domain C of a method
Tester test(C) Specify the constraint C of a method
Tester verify(C) Specify the verification condition C

44 M. Umeda et al.

pointInQuarterCircle({R : real}, --(a)

{X : real, Y : real}) --(b)

method

X : real = for(0.0, R, 1.0); --(c)

Y : real = for(0.0, R, 1.0); --(d)

D : real = sqrt(X^2 + Y^2); --(e)

test(D =< R); --(f)

end method;

end module;

Fig. 1. Module pointInQuarterCircle, which enumerates all points in a quarter circle

Both call(M,I,O) and dcall(M,I,O) are used for module decomposition, with
the latter restricting the first solution of a module call like once/1 in Prolog,1

while the former calls a module nondeterministically. Calculator find(M,I,OL)
collects all outputs of a module and returns a list thereof. Testers when(C) and
test(C) are used to represent decomposition conditions. Both behave in the
same way in normal execution mode,2 although the former is intended to describe
a guard of a method, while the latter describes a constraint. Tester verify(C),
which describes a verification condition, does not affect the execution of a module
despite being classified as a tester. Solutions in which a verification condition is
not satisfied are indicated as such, and this verification status is used to evaluate
the inference results.

Figure 1 gives the code for module pointInQuarterCircle, which enumer-
ates all points in a quarter circle with radius R. Statements (a) and (b) in Fig. 1
define the input and output variables of module pointInQuarterCircle, respec-
tively. Statements (c) and (d) define the values of variables X and Y as being
between 0.0 and R with an incremental step 1.0. Statement (e) calculates the
distance D between point (0,0) and point (X,Y). Statement (f) checks if point
(X,Y) is within the circle of radius R. Module pointInQuarterCircle runs non-
deterministically for a given R, and returns one of all possible {X,Y} values.3

Therefore, this module also behaves like a generator. Statements (c) to (f) can be
listed in any order, and are executed according to the dependencies between vari-
ables. Therefore, the computation process can be described as a non-cyclic data
flow. Figure 2 shows the data flow diagram for module pointInQuarterCircle.
Because no module includes any side-effects, the set of points returned by the
module is always the same for the same input.

Figure 3 shows an example of module for, which implements the generator
primitive for. If multiple methods are defined in a module with some overlap
in their domains specified by when, the module works nondeterministically, and

1 dcall stands for deterministic call.
2 Failures of when(C) and test(C) are treated differently in debugging mode owing to

their semantic differences.
3 {X,Y} represents a vector of two elements X and Y.

Translating Nondeterministic Functional Language 45

Fig. 2. Data flow diagram of module pointInQuarterCircle

for({B : real, E : real, S : real},{N : real})

method --The fist method

when(B =< E); --(a)

N : real = B; --(b)

end method;

method --The second method

when(B+S =< E); --(c)

B1 : real = B+S; --(d)

call(for, {B1, E, S}, {N}); --(e)

end method;

end;

Fig. 3. Module for, which implements the generator primitive for

thus a module can also be a generator. In this example, there is overlap between
the domains specified by statements (a) and (c).

2.3 Execution Model for DSP

Since variables follow the single assignment rule and the assignment is unidi-
rectional, the statements are partially ordered according to the dependencies
between variables. During execution, the statements must be totally ordered
and evaluated in this order. Although the method used to totally order the par-
tially ordered statements does not affect the set of solutions, the order of the
generators does affect the order of the solutions returned from a nondeterministic
module.

The execution model for DSP can be represented in Prolog. Figure 4 gives
an example of a simplified DSP interpreter in Prolog. In this interpreter, state-
ments are represented as terms concatenated by “;” and it is assumed that the

46 M. Umeda et al.

solve((A ; B)) :-

solve(A),

solve(B).

solve(call(M, In, Out)) :-

reduce(call(M, In, Out), Body),

solve(Body).

solve(dcall(M, In, Out)) :-

reduce(call(M, In, Out), Body),

solve(Body),!.

solve(find(M, In, OutList)) :-

findall(Out, solve(M, In, Out), OutList).

solve(when(Exp)) :-

call(Exp),!.

solve(test(Exp)) :-

call(Exp),!.

solve(V := for(B, E, S)) :- !,

for(B, E, S, V).

solve(V := select(L)) :- !,

member(V, L).

solve(V := Exp) :-

V is Exp.

Fig. 4. Simplified DSP interpreter in Prolog

statements are totally ordered. Variables are represented using logical variables
in Prolog. In an actual development environment on top of Inside Prolog, DSP
modules are translated into Prolog code by the compiler, and the generated
Prolog code is then translated into bytecode by the Prolog compiler.

3 Translation Techniques for Logic Programming
Languages

Prolog is a logic programming language that offers both declarative features
and practical applicability to various application domains. Many implementa-
tion techniques for Prolog and its family have been proposed, with abstract
machines represented by the WAM (Warren’s Abstract Machine) [15] proven
effective as practical implementation techniques. Nevertheless, few Prolog imple-
mentations provide practical functionality applicable to both stand-alone sys-
tems and enterprise-mission-critical information systems without the use of other
languages. Practically, Prolog is often combined with a conventional procedural
language, such as Java, C, or C#, for use in practical applications. In such cases,
language interoperability is an important issue.

Translating Nondeterministic Functional Language 47

Language translation is one possible solution for improving the interoperabil-
ity between Prolog and other combined languages. jProlog [16] and Prolog Cafe
[17] are Prolog to Java translators based on binarization [18], while P# [19] is a
Prolog to C# translator based on Prolog Cafe with concurrent extensions. The
binarization with continuation passing is a useful idea for handling nondeter-
minism simply in procedural languages. For example, the following clauses

p(X) :- q(X, Y), r(Y).
q(X, X).
r(X).

can be represented by semantically equivalent clauses that take a continuation
goal Cont as the last parameter:

p(X, Cont) :- q(X, Y, r(Y, Cont)).
q(X, X, Cont) :- call(Cont).
r(X, Cont) :- call(Cont).

Once the clauses have been converted into this form, those clauses composing
a predicate can be translated into Java classes. Figure 5 gives an example of
code generated by Prolog Cafe. Predicate p/2 after binarization is represented
as a Java class called PRED p 1, which is a subclass of class Predicate. The
parameters of a predicate call are passed as arguments of the constructor of the
class, while the right-hand side of the clause is expanded as method exec.

If a predicate consists of multiple clauses as in the following predicate p/1,
it may have choice points.

p(X) :- q(X, Y), r(Y).
p(X) :- r(X).

public class PRED_p_1 extends Predicate {

public Term arg1;

public PRED_p_1(Term a1, Predicate cont) {

arg1 = a1;

this.cont = cont; /* this.cont is inherited. */

}

...

public Predicate exec(Prolog engine) {

engine.setB0();

Term a1, a2;

Predicate p1;

a1 = arg1;

a2 = new VariableTerm(engine);

p1 = new PRED_r_1(a2, cont);

return new PRED_q_2(a1, a2, p1);

}

}

Fig. 5. Java code generated by Prolog Cafe

48 M. Umeda et al.

public class PRED_p_1 extends Predicate {

static Predicate _p_1_sub_1 = new PRED_p_1_sub_1();

static Predicate _p_1_1 = new PRED_p_1_1();

static Predicate _p_1_2 = new PRED_p_1_2();

public Term arg1;

...

public Predicate exec(Prolog engine) {

engine.aregs[1] = arg1;

engine.cont = cont;

engine.setB0();

return engine.jtry(_p_1_1, _p_1_sub_1);

}

}

class PRED_p_1_sub_1 extends PRED_p_1 {

public Predicate exec(Prolog engine) {

return engine.trust(_p_1_2);

}

}

class PRED_p_1_1 extends PRED_p_1 {

public Predicate exec(Prolog engine) {

Term a1, a2;

Predicate p1;

Predicate cont;

a1 = engine.aregs[1];

cont = engine.cont;

a2 = new VariableTerm(engine);

p1 = new PRED_r_1(a2, cont);

return new PRED_q_2(a1, a2, p1);

}

}

class PRED_p_1_2 extends PRED_p_1 {

public Predicate exec(Prolog engine) {

Term a1;

Predicate cont;

a1 = engine.aregs[1];

cont = engine.cont;

return new PRED_r_1(a1, cont);

}

}

Fig. 6. Java code with choice points generated by Prolog Cafe

In this case, the generated code is more complex than before because the choice
points of p/1 must be dealt with for backtracking. Figure 6 gives an example
of the generated code for predicate p/1 above. Each clause of a predicate is
mapped to a subclass of a class representing the predicate. In this example,
classes PRED p 1 1 and PRED p 1 2 correspond to the two clauses of predicate
p/1. Methods jtry and trust in the Prolog engine correspond to WAM instruc-
tions that manipulate stacks and choice points for backtracking. The key ideas
in Prolog Cafe are that continuation is represented as an instance of a Java
class representing a predicate, and the execution control including backtracking

Translating Nondeterministic Functional Language 49

follows the WAM. The translation is straightforward through the WAM, and
interoperability with Java-based systems is somewhat improved. On the other
hand, a disadvantage is the performance of the generated code.

4 Program Representation in Java and Inference Engine

This section describes the translation techniques for the nondeterministic func-
tional language DSP into Java based on the translation techniques for Prolog.
Current implementations of the compiler and inference engine for DSP have
been developed on top of Inside Prolog with the compiler generating Prolog
code. Therefore, it is possible to translate this generated Prolog code into Java
using Prolog Cafe. However, there are several differences between DSP and Pro-
log in terms of the semantics of variables and the determinism of statements.
These differences allow several optimizations in performance, and the generated
code can run faster than the code generated by Prolog Cafe for compatible Pro-
log programs. The fundamental idea behind our translation techniques is to take
advantage of the single and unidirectional assignment features of variables and
the deterministic features of certain statements.

The overall structure of the Java code translated from DSP provides for one
module to be mapped to a single Java class, and each method in the module
to be mapped to a single inner class of this class. Figure 7 shows an example
of Java code for module pointInQuarterCircle given in Fig. 1. Inner classes
are used to represent an execution context of a predicate as an internal state of
a class instance. Therefore, the instances of an inner class are not declared as
static unlike classes in Fig. 6.

An overview of the translation process follows. First, the data flow of a mod-
ule is analyzed for each method based on the dependencies between variables,
and the statements are reordered according to the analysis results. Next, the
statements are grouped into translation units called continuation units, and Java
code is generated for each method according to the continuation units.

4.1 Data Flow Analysis

As described in Sect. 2, it is necessary to reorder and evaluate statements so
as to fulfill variable dependencies since statements can be listed in any order.
Therefore, partially ordered statements must first be totally ordered. In the
ordering process, the order of the generators should be kept as long as the vari-
able dependencies are satisfied, because the order of generators affects the order
of the solutions as described in Sect. 2. On the other hand, calculators or testers
can be moved forward for the least commitment as long as partial orders are kept.

50 M. Umeda et al.

public class PointInQuarterCircle implements Executable {

private Double r;

private Variable x;

private Variable y;

private Executable cont;

public PointInQuarterCircle(Double r,

Variable x, Variable y, Executable cont)

{

this.r = r;

this.x = x;

this.y = y;

this.cont = cont;

}

public Executable exec(VM vm) {

return (new Method_1()).exec(vm);

}

public class Method_1 implements Executable {

private Variable d = new Variable();

private Executable method_1_cu1 = new Method_1_cu1();

private Executable method_1_cu2 = new Method_1_cu2();

private Executable method_1_cu3 = new Method_1_cu3();

public Executable exec(VM vm) {

return method_1_cu1.exec(vm);

}

class Method_1_cu1 implements Executable {

public Executable exec(VM vm) {

return new ForDouble(0.0, r.doubleValue(), 1.0, x, method_1_cu2);

}

}

class Method_1_cu2 implements Executable {

public Executable exec(VM vm) {

return new ForDouble(0.0, r.doubleValue(), 1.0, y, method_1_cu3);

}

}

class Method_1_cu3 implements Executable {

public Executable exec(VM vm) {

d.setValue(Math.sqrt(x.doubleValue()*x.doubleValue() +

y.doubleValue()*y.doubleValue()));

if(!(d.doubleValue() <= r.doubleValue())){

return Executable.failure;

}

return cont;

}

}

}

}

Fig. 7. Java code generated for module pointInQuarterCircle

Translating Nondeterministic Functional Language 51

4.2 Continuation Unit

If statements of a method are totally ordered, they can be divided into several
groups of statements. Each group is called a continuation unit and consists of
a series of deterministic statements, such as calculators and testers, followed by
a single generator. It should be noted that a continuation unit may not contain
a generator if it is the last one in a method. In the translation, a continuation
unit is treated as a unit to translate, and is mapped to a Java class representing
a continuation.

In the example in Fig. 7, module pointInQuarterCircle has one method,
with three continuation units in the method. Inner class Method 1 corresponds
to this method of the module, while classes Method 1 cu1, Method 1 cu2, and
Method 1 cu3 correspond to the continuation units for statements (c), (d), and
(e) and (f), respectively.

4.3 Variable and Parameter Passing

Although variables follow the single assignment rule as in Prolog, the binding of
a variable is unidirectional, which is not the case in Prolog. Therefore, it is not
necessary to introduce logical variables and unification, unlike in Prolog Cafe.
This also means that the trail stack and variable unbinding using the stack are
unnecessary on backtracking. Therefore, a class representing the variables is only
necessary as a place holder for the output values of a module. Class Variable
is introduced to represent such variables.

Prolog Cafe uses the registers of the Prolog VM (virtual machine) to man-
age the arguments of a goal. This approach is consistent with the WAM, but
is sometimes inefficient since it requires arguments to be copied from/to regis-
ters to/from the stack on calls and backtracking. On the other hand, because the
direction of variable binding is clearly defined in DSP, it is unnecessary to restore
variable bindings on backtracking as described previously. Instead, variables can
always be overwritten when a goal is re-executed after backtracking. Therefore,
input and output parameters can be passed as arguments of the class construc-
tor. This simplifies the management of variables and arguments. In addition, as
shown in Fig. 7, basic Java types, such as int and double, can be passed directly
as inputs in some cases. This contributes to the performance improvement.

4.4 Inference Engine

An inference engine for the translated code is very simple because management of
variables and registers on backtracking is unnecessary. Figure 8 gives an example
of the inference engine called VM, which uses a stack represented as an array of
interface Executable to store choice points. Method call() is an entry point to
call the module to find an initial solution, while method redo() is used to find
the next solution. A typical call procedure of a client program in Java is given
below.

52 M. Umeda et al.

public class VM {

private Executable[] choicepoint;

private int ccp = -1; // Current choice point.

...

public VM(int initSize) {

choicepoint = new Executable[initSize];

}

...

public boolean call(Executable goal) {

while (goal != null) {

goal = goal.exec(this);

if (goal == Executable.success) {

return true;

} else if (goal == Executable.failure) {

goal = getChoicePoint();

}

}

return false;

}

public boolean redo() {

return call(getChoicePoint());

}

}

Fig. 8. Inference engine for DSP

VM vm = new VM();
Double r = new Double(10.0);
Variable x = new Variable();
Variable y = new Variable();
Executable m = new PointInQuarterCircle(r, x, y,

Executable.success);
for (boolean s = vm.call(m); s == true; s = vm.redo()) {

System.out.println("X=" + x.doubleValue() +
", Y=" + y.doubleValue());

}

This client program creates an inference engine, prepares output variables to
receive the values of a solution, creates an instance of class PointInQuarterCircle
with inputs and outputs, and invokes call() to find an initial solution. It then
invokes redo() to find the next one until there are no more solutions.

Because the implementation of the inference engine is simple and multi-thread
safe, and the generated classes of a module are also multi-thread safe, it is easy to
deploy several instances of the engine in a multi-thread environment.

Translating Nondeterministic Functional Language 53

5 Implementation andPerformance Evaluation

We have implemented a translator from DSP to Java based on the techniques pro-
posed in Sect. 4. The translator is written in DSP itself and generates Java code.

The generated code was evaluated under Windows Vista on an Intel Core2Duo
2.53 GHz processor with 3.0 GB memory. Java 1.6, Prolog Cafe 1.2.5, and B-Prolog
7.4 [20] were used for comparison in the experiments. In the case of Dsp on top of
Inside Prolog, the programs written in DSP were first compiled into Prolog and
then into bytecode. In the case of B-Prolog, standard Prolog features are only used
though it is a CLP system.

Program plan is a simple architectural design program for a parking structure.
It can enumerate all possible column layouts for the given design conditions, such
as free land space and the number of stories. Programs nqueens, ack, and tarai
are well-known benchmarks, with ack and tarai using green cuts for guards in
Prolog, while ack w/o cuts and tarai w/o cuts do not use cuts for guards. In the
case ofDSP,ack andtaraiusedcall for self-recursive calls so as not to leave choice
points,whileackw/ocuts andtaraiw/ocutsusecall. Theprogramswere forced
to backtrack in each iteration to enumerate all solutions, with the execution times
in milliseconds expressed as the averages over 10 trials.

5.1 Execution Times of Benchmarks

Table 2 gives the performance results of the six benchmark programs. Because the
Java garbage collector affects the performance, 512 MBmemorywas statically allo-
cated for the heap in all but one case.4

These results show that the proposed translator generates code that is more
than 25 times faster than Prolog Cafe, more than 2 times faster than B-Prolog, and
more than 5 times faster than DSP on top of Inside Prolog for plan and nqueens.
On the other hand, for ack and tarai the translator generates code that is about
2 to 3 times faster than Prolog Cafe, but about 5 to 15 times slower than B-Prolog.
The translator also generates code that is about 8 to 13 times faster than Prolog
Cafe, but about 4 to 10 times slower than B-Prolog for ack w/o cuts and tarai
w/o cuts. Here, plan and nqueens are nondeterministic, while ack and tarai are

Table 2. Execution times of benchmarks (in ms)

Program DSP on Prolog B-Prolog Prolog Cafe Translator

plan 685.0 295.1 2519.4 90.5
nqueens 594.9 296.2 3279.2 120.3
ack 1568.2 52.9 990.7 265.0
tarai 1302.7 49.4 1680.1 740.8
ack w/o cuts 2035.1 104.7 3421.3 403.9
tarai w/o cuts 1307.8 49.2 6282.2 489.5

4 About 1000 MB memory was allocated for the generated code for tarai w/o cuts.

54 M. Umeda et al.

deterministic. ack w/o cuts and tarai w/o cuts are also deterministic, but they
involve backtracking owing to the lack of green cuts.

These experiments indicate that the proposed translation techniques can gen-
erate faster code than both Prolog Cafe and DSP on top of Inside Prolog for all six
programs, and faster code thanB-Prolog fornondeterministicprograms. In the case
of deterministic programs, the advantage of the proposed translation techniques is
obvious over Prolog Cafe if green cuts are not used in Prolog. The reason that these
distinctive differences are observed seems to be that the simplification of the vari-
able and register management for backtracking contributes to an improvement in
performance for nondeterministic programs, but it is not effective for deterministic
programs with green cuts.

In the case of B-Prolog, the execution time of tarai is almost the same as that
of tarai w/o cuts. This is because the B-Prolog compiler reduces choice points
using matching trees for both tarai and tarai w/o cuts [21]. Although the DSP
language has no explicit cut operator as in Prolog, improving the performance by
inserting cut instructions automatically in the case of exclusive when conditions is
a future issue.

5.2 Impact of Java HeapMemory Size

The number of instances created during an execution has a negative impact on per-
formance because of garbage collection. Figure 9 shows the performance results for
plan, nqueen, and ack using the translator and Prolog Cafe with various Java heap
memory sizes, while Fig. 10 shows the same for ack w/o cuts, tarai, and tarai w/o
cuts. Non-plotted areas in Fig. 10 denote that the programs could not be executed
as a result of running out of memory or excessive garbage collection. These results

Fig. 9. Impact of Java heap memory size for plan, nqueen, and ack

Translating Nondeterministic Functional Language 55

Fig. 10. Impact of Java heap memory size for ack w/o cuts, tarai, and tarai w/o cuts

Fig. 11. Consumption trends of Java heap memory for tarai using the translator

Fig. 12. Consumption trends of Java heap memory for tarai using Prolog Cafe

indicate that for both the translator and Prolog Cafe, the performance of plan,
nqueen, and ack is not affected by the memory size of the Java heap, whereas the
performance of ack w/o cuts, tarai, and tarai w/o cuts is strongly affected by
the size.

Figures 11 and 12 show trends in the consumption of memory in the Java heap
in the case of 128, 256, and 512 MB memories for tarai using the translator and
Prolog Cafe, respectively. These results not only confirm that the proposed trans-

56 M. Umeda et al.

lation techniques can generate better code than Prolog Cafe for tarai in terms of
heap consumption, but they also confirm that heap consumption is an important
factor in performance improvement.

In the example in Fig. 7, it is clear that the number of instances can be reduced
by merging classes Method 1 cu1 and Method 1. Improving the performance by
reducing the number of instances created is an important future issue.

6 Conclusions

This paper described the techniques for translating DSP, a nondeterministic func-
tional language based on attribute grammars, into Java.DSP is designed for knowl-
edge representation of large-scale and complicated expert knowledge in applica-
tion domains. It is capable of representing trial and error without any side-effects
or loop constructs using nondeterministic features. Current development and run-
time environments are built on top of Inside Prolog, while the runtime environ-
ment can be embedded in a Java-based application server. However, issues regard-
ing language interoperability and adaptability to new computing environments are
unavoidable when applied to practical application development. Language trans-
lation is intended to improve the interoperability and adaptability of DSP.

The proposed translation techniques are based on binarization and the tech-
niques proposed for the translation of Prolog. The performance, however, is
improved by introducing a continuation unit and simplifying the management of
variables and registers using the semantic differences of variables and explicit deter-
minism of some statements. An experimental translator written in DSP itself gen-
erates Java code from DSP descriptions. Experimental results indicate that the
generated code is more than 25 times faster than that of Prolog Cafe for nondeter-
ministic programs, and more than 2 times faster for deterministic programs. The
generated code is also more than 2 times faster than B-Prolog for nondeterministic
programs. However, the generated code is about 3 to 15 times slower than B-Prolog
for deterministic programs. Improving the performance of deterministic programs
is an important future issue.

References

1. Kaplan, B.: Evaluating informatics applications - clinical decision support systems
literature review. Int. J. Med. Inform. 64, 15–37 (2001)

2. Takada, A., Nagase, K., Ohno, K., Umeda, M., Nagasawa, I.: Clinical decision sup-
port system, how do we realize it for hospital information system? Jpn. J. Med.
Inform. 27, 315–320 (2007)

3. Nagasawa, H., Nagasawa, I., Takata, O., Umeda, M., Hashimoto, M., Takizawa, C.:
Knowledge modeling for operation management support of a distribution center. In:
The Sixth IEEE International Conference on Computer and Information Technology
(CIT2006) (2006)

4. Nagasawa, I.,Maeda, J., Tegoshi,Y.,Makino,M.:Aprogramming technique for some
combination problems in a design support system using the method of generate-and-
test. J. Struct. Constr. Eng. 417, 157–166 (1990)

Translating Nondeterministic Functional Language 57

5. Umeda, M., Nagasawa, I., Higuchi, T.: The elements of programming style in design
calculations. In: Proceedings of the Ninth International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, pp. 77–86
(1996)

6. Katayama, T.: A computation model based on attribute grammar. J. Inf. Process.
Soc. Jpn. 24, 147–155 (1983)

7. Deransart, P., Jourdan, M. (eds.): Attribute Grammars and their Applications.
LNCS, vol. 461. Springer, Heidelberg (1990)

8. Katamine, K., Umeda, M., Nagasawa, I., Hashimoto, M.: Integrated development
environment for knowledge-based systems and its practical application. IEICE
Trans. Inf. Syst. E87–D, 877–885 (2004)

9. ISO/IEC: 13211–1 Information technology - Programming Languages - Prolog - Part
1: General core (1995)

10. Umeda, M., Katamine, K., Nagasawa, I., Hashimoto, M., Takata, O., et al.: Multi-
threading inside prolog for knowledge-based enterprise applications. In: Umeda, M.,
Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS
(LNAI), vol. 4369, pp. 200–214. Springer, Heidelberg (2006)

11. Umeda, M., Katamine, K., Nagasawa, I., Hashimoto, M., Takata, O.: The design and
implementation of knowledge processing server for enterprise information systems.
Trans. Inf. Process. Soc. Jpn. 48, 1965–1979 (2007)

12. Nagasawa, I.: Feature of design and intelligent CAD. J. Jpn. Soc. Precis. Eng. 54,
1429–1434 (1988)

13. Umeda, M., Mure, Y.: Knowledge management strategy and tactics for forging
die design support. In: Seipel, D. (ed.) INAP 2009. LNCS, vol. 6547, pp. 188–204.
Springer, Heidelberg (2011)

14. Hirota, T., Hashimoto, M., Nagasawa, I.: A discussion on conceptual model descrip-
tion language specific for an application domain. Trans. Inf. Process. Soc. Jpn. 36,
1151–1162 (1995)

15. Ait-Kaci, H.: Warren’s Abstract Machine. MIT Press, Cambridge (1991)
16. Demoen, B., Tarau, P.: jprolog home page. http://www.cs.kuleuven.ac.be/bmd/

PrologInJava/ (1996)
17. Banbara, M., Tamura, N., Inoue, K.: Prolog Cafe: a prolog to Java translator system.

In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.)
INAP 2005. LNCS (LNAI), vol. 4369, pp. 1–11. Springer, Heidelberg (2006)

18. Tarau, P., Boyer, M.: Elementary logic programs. In: Deransart, P., Maluszyński, J.
(eds.) PLILP 1990. LNCS, vol. 456, pp. 159–173. Springer, Heidelberg (1990)

19. Cook, J.J.: Language interoperability and logic programming languages. In: Lab-
oratory for Foundations of Computer Science, School of Informatics, University of
Edinburgh, Doctor of philosophy (2004)

20. Neng-Fa, Z.: The language features and architecture of b-prolog. Theor. Pract. Logic
Program. 11, 537–553 (2011)

21. Neng-Fa, Z.: Global optimizations in a prolog compiler for the TOAM. J. Logic Pro-
gram. 15, 265–294 (1993)

http://www.cs.kuleuven.ac.be/bmd/PrologInJava/
http://www.cs.kuleuven.ac.be/bmd/PrologInJava/

Sensitivity Analysis for Declarative Relational
Query Languages with Ordinal Ranks

Radim Belohlavek, Lucie Urbanova, and Vilem Vychodil(B)

DAMOL (Data Analysis and Modeling Laboratory),
Department of Computer Science, Palacky University,

Olomouc 17. listopadu 12, CZ–77146 Olomouc, Czech Republic
radim.belohlavek@acm.org, lurbanova@acm.org, vychodil@acm.org

Abstract. We present sensitivity analysis for results of query executions
in a relational model of data extended by ordinal ranks. The underlying
model of data results from the ordinary Codd’s model of data in which
we consider ordinal ranks of tuples in data tables expressing degrees to
which tuples match queries. In this setting, we show that ranks assigned
to tuples are insensitive to small changes, i.e., small changes in the input
data do not yield large changes in the results of queries.

Keywords: Declarative query languages · Ordinal ranks · Relational
databases · Residuated lattices

1 Introduction

Since its inception, the relational model of data introduced by E. Codd [9] has
been extensively studied by both computer scientists and database systems de-
velopers. The model has become the standard theoretical model of relational
data and the formal foundation for relational database management systems.
Various reasons for the success and strong position of Codd’s model are ana-
lyzed in [13], where the author emphasizes that the main virtues of the model
like logical and physical data independence, declarative style of data retrieval
(database querying), access flexibility and data integrity are consequences of a
close connection between the model and the first-order predicate logic.

This paper is a continuation of our previous work [3,4] where we have intro-
duced an extension of Codd’s model in which tuples are assigned ordinal ranks.
The motivation for the model is that in many situations, it is natural to con-
sider not only the exact matches of queries in which a tuple of values either
does or does not match a query Q but also approximate matches where tuples
match queries to degrees. The degrees of approximate matches can usually be
described verbally using linguistic modifiers like “not at all (matches)” “almost
(matches)”, “more or less (matches)”, “fully (matches)”, etc. From the user’s

Supported by grant no. P103/11/1456 of the Czech Science Foundation and internal
grant of Palacky University no. PrF_2012_029. DAMOL is supported by project reg.
no. CZ.1.07/2.3.00/20.0059 of the European Social Fund in the Czech Republic.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 58–76, 2013.
DOI: 10.1007/978-3-642-41524-1 4, c© Springer-Verlag Berlin Heidelberg 2013

Sensitivity Analysis for Declarative Relational 59

point of view, each data table in our extended relational model consists of (i) an
ordinary data table whose meaning is the same as in the Codd’s model and (ii)
ranks assigned to all tuples in the original data table. This way, we introduce a
notion of a ranked data table (shortly, an RDT). The ranks in RDTs are inter-
preted as “goodness of match” and the interpretation of RDTs is the same as
in the Codd’s model—they represent answers to queries which are, in addition,
equipped with priorities expressed by the ranks. A user who looks at an answer
to a query in our model is typically looking for the best match possible repre-
sented by a tuple or tuples in the resulting RDT with the highest ranks (i.e.,
highest priorities).

In order to have a suitable formalization of ranks and to perform operations
with ranked data tables, we have to choose a suitable structure for ranks. Since
ranks are meant to be compared by users, the set L of all considered ranks should
be equipped with a partial order →, i.e. ℵL,→∼ should be a poset. Moreover, it
is convenient to postulate that ℵL,→∼ is a complete lattice [6], i.e., for each
subset A ← L, its least upper bound (a supremum) and greatest lower bound
(an infimum) exist. This way, for any A ← L, one can take the least rank in L
which represents a higher priority (a better match) than all ranks from A. Such
a rank is then the supremum of A (dually for the infimum). Since ℵL,→∼ is a
complete lattice, it contains the least element denoted 0 (no match at all) and
the greatest element denoted 1 (full match).

The set L of all ranks should also be equipped with additional operations
for aggregation of ranks. Indeed, if tuple t with rank a is obtained as one of
the results of subquery Q1 and the same t with another rank b is obtained from
answers to subquery Q2 then we might want to express the rank to which t
matches a compound conjunctive query “Q1 and Q2”. A natural way to do so
is to take a suitable binary operation ≤ : L × L ∈ L which acts as a conjunctor
and take a ≤ b for the resulting rank. Obviously, not every binary operation on
L represents a (reasonable) conjunctor, i.e. we may restrict the choices only to
particular binary operations that make “good conjunctors”. There are various
ways to impose such restrictions. In our model, we follow the approach of using
residuated conjunctions that has proved to be useful in logics based on residuated
lattices [2,18,19]. Namely, we assume that ℵL,≤, 1∼ is a commutative monoid
(i.e., ≤ is associative, commutative, and neutral with respect to 1) and there is
a binary operation ∈ on L such that for all a, b, c ⊆ L:

a ≤ b → c if and only if a → b ∈ c. (1)

Operations ≤ (a multiplication) and ∈ (a residuum) satisfying (1) are called
adjoint operations. Altogether, the structure for ranks we use in this paper is
a complete residuated lattice L = ℵL,∪,∃,≤,∈, 0, 1∼, i.e., a complete lattice
in which ≤ and ∈ are adjoint operations, and ∪ and ∃ denote the operations
of infimum and supremum, respectively. Considering L as a basic structure of
ranks brings several benefits including a close connection to formal logics based
on residuated structures. This is due to the fact that in multiple-valued logics and
in particular fuzzy logics [18,19], residuated lattices are interpreted as structures

60 R. Belohlavek et al.

of truth degrees and the relationship (1) between ≤ (a fuzzy conjunction) and ∈
(a fuzzy implication) is derived from requirements on graded counterpart of the
modus ponens deduction rule (currently, there are many strong-complete logics
based on residuated lattices, see [18] for an overview).

Remark 1. The graded counterpart of modus ponens [19,27] can be seen as a
generalized deduction rule saying “from Σ valid (at least) to degree a ⊆ L and
Σ ∧ α valid (at least) to degree b ⊆ L, infer α valid (at least) to degree a ≤ b”.
The if-part of (1) ensures that the rule is sound while the only-if part ensures
that it is as powerful as possible, i.e., a ≤ b is the highest degree to which we
infer α valid provided that Σ is valid at least to degree a and Σ ∧ α is valid
at least to degree b ⊆ L. This relationship between ∈ (a truth function for
logical connective implication ∧) and ≤ (a truth function for conjunction) has
been discovered in [17] and later used, e.g., in [16,27]. Interestingly, (1) together
with the lattice ordering ensure enough properties of ∈ and ≤. For instance, ∈
is antitone in the first argument and is monotone in the second one, condition
a → b iff a ∈ b = 1 holds for all a, b ⊆ L, a ∈ (b ∈ c) equals (a ≤ b) ∈ c
for all a, b, c ⊆ L, etc. Since complete residuated lattices are in general weaker
structures than Boolean algebras, not all laws satisfied by truth functions of
the classic conjunction and implication are preserved by all complete residuated
lattices. For instance, neither a≤a = a (idempotency of ≤) nor (a ∈ 0) ∈ 0 = a
(the law of double negation) nor a∃(a ∈ 0) = 1 (the law of the excluded middle)
hold in general. Nevertheless, complete residuated lattices are strong enough to
provide a formal framework for relational analysis and similarity-based reasoning
as it has been shown by previous results [2].

Our extension of the Codd’s model results from the model by replacing the
two-element Boolean algebra, which is the classic structure of truth values, by
a more general structure of truth values represented by a residuated lattice, i.e.
we make the following shift in (the semantics of) the underlying logic:

two-element Boolean algebra �=∧ a complete residuated lattice.

As a consequence, the original Codd’s model becomes a special case of our model
for L being the two-element Boolean algebra (only two borderline ranks 1 and
0 are available). As a practical consequence, data tables in the Codd’s model
can be seen as RDTs where all ranks are either equal to 1 (full match) or 0
(no match; tuples with 0 rank are considered as not present in the result of
a query). Using residuated lattices as structures of truth degrees, we obtain a
generalization of Codd’s model which is based on solid logical foundations and
has desirable properties. In addition, its relationship to residuated first-order
logics is the same as the relationship of the original Codd’s model to the classic
first-order logic. The formalization we offer can further be used to provide insight
into several isolated approaches that have been provided in the past, see e.g.
[7,15,24,28,29,31], and a comparison paper [5].

A typical choice of L is a structure with L = [0, 1] (ranks are taken from
the real unit interval), ∪ and ∃ being minimum and maximum, ≤ being a left-
continuous (or a continuous) t-norm with the corresponding ∈, see [2,18,19].

Sensitivity Analysis for Declarative Relational 61

Table 1. Houses for sale at $200,000 with square footage 1200

agent id sqft age location price

0.93 Brown 138 1185 48 Vestal $228,500

0.89 Clark 140 1120 30 Endicott $235,800

0.86 Brown 142 950 50 Binghamton $189,000

0.85 Brown 156 1300 85 Binghamton $248,600

0.81 Clark 158 1200 25 Vestal $293,500

0.81 Davis 189 1250 25 Binghamton $287,300

0.75 Davis 166 1040 50 Vestal $286,200

0.37 Davis 112 1890 30 Endicott $345,000

For example, an RDT with ranks coming from such L is in Table 1. It can be
seen as a result of similarity-based query “show all houses which are sold for
(approximately) $200,000 and have (approximately) 1200 square feet”. The
left-most column contains ranks. The remaining part of the table is a data table
in the usual sense containing tuples of values (a relation on a relation scheme in
the standard database terminology). At this point, we do not explain in detail
how the particular ranks in Table 1 have been obtained (this will be outlined in
further sections). One way is by executing a similarity-based query that uses ad-
ditional information about similarity (proximity) of domain values which is also
described using degrees from L. Note that the concept of a similarity-based query
appears when human perception is involved in rating or comparing close values
from domains where not only the exact equalities (matches) are interesting. For
instance, a person searching in a database of houses is usually not interested in
houses sold for a particular exact price. Instead, the person wishes to look at
houses sold approximately at that price, including those which are sold for other
prices that are sufficiently close. While the ranks constitute a “visible” part of
any RDT, the similarities are not a direct part of RDT and have to be specified
for each domain independently. They can be seen as an additional (background)
information about domains which is supplied by users of the database system.

Let us stress the meaning of ranks as priorities. As it is usual in fuzzy logics
in narrow sense, their meaning is primarily comparative, cf. [19, p. 2] and the
comments on comparative meaning of truth degrees therein. In our example,
it means that tuple ℵClark, 140, 1120, 30, Endicott, $235,800∼ with rank 0.89
is a better match than tuple ℵBrown, 142, 950, 50, Binghamton, $189,000∼ whose
rank 0.86 is strictly smaller. Thus, for end-users, the numerical values of ranks
(if L is a unit interval) are not so important, the important thing is the relative
ordering of tuples given by the ranks.

Note that our model which provides theoretical foundations for similarity-
based databases [3,4] should not be confused with models for probabilistic data-
bases [30] which have recently been studied, e.g. in [8,11,12,22,23,26], see also
[10] for a survey. In particular, numerical ranks used in our model (if L = [0, 1])
cannot be interpreted as probabilities, confidence degrees of belief degrees as in
case of probabilistic databases where ranks play such roles. In probabilistic data-
bases, the tuples (i.e., the data itself) are uncertain and the ranks express proba-

62 R. Belohlavek et al.

bilities that tuples appear in data tables. Consequently, a probabilistic database
is formalized by a discrete probability space over the possible contents of the
database [10]. Nevertheless, the underlying logic of the models is the classical
two-valued first-order logic—only yes/no matches are allowed (with uncertain
outcome). In our case, the situation is quite different. The data (represented by
tuples) is absolutely certain but the tuples are allowed to match queries to de-
grees. This, translated in terms of logic, means that formulas (encoding queries)
are allowed to be evaluated to truth degrees other than 0 and 1. Therefore, the
underlying logic in our model is not the classic two-element Boolean logic as we
have argued hereinbefore.

In [1], a report written by leading authorities in database systems, the authors
say that the current database management systems have no facilities for either
approximate data or imprecise queries. According to this report, the manage-
ment of uncertainty and imprecision is one of the six currently most important
research directions in database systems. Nowadays, probabilistic databases (deal-
ing with approximate data) are extensively studied. On the contrary, it seems
that similarity-based databases (dealing with imprecise queries) have not yet
been paid full attention. This paper is a contribution to theoretical foundations
of similarity-based databases.

2 Problem Setting

The issue we address in this paper is the following. In our model, we can get
two or more RDTs (as results of queries) which are not exactly the same but
which are perceived (by users) as being similar. For instance, one can obtain
two RDTs containing the same tuples with numerical values of ranks that are
almost the same. A question is whether such similar RDTs, when used in subse-
quent queries, yield similar results. In this paper, we present a preliminary study
of the phenomenon of similarity of RDTs and its relationship to the similarity
of query results obtained by applying queries to similar input data tables. We
present basic notions and results providing formulas for computing estimations
of similarity degrees. The observations we present provide a formal justification
for the phenomenon discussed in the previous section—slight changes in ranks
do not have a large impact on the results of (complex) queries. The results are
obtained for any complete residuated lattice taken as the structure of ranks
(truth degrees). Note that the basic query systems in our model are (extensions
of) domain relational calculus [4,25] and relational algebra [3,25]. We formulate
the results in terms of operations of the relational algebra but due to its equiv-
alence with the domain relational calculus [4], the results pertain to both the
query systems. Thus, based on the domain relational calculus, one may design
a declarative query language preserving similarity in which execution of queries
is based on transformations to expressions of relational algebra in a similar way
as in the classic case [25].

The rest of the paper is organized as follows. Section 3 presents a short sur-
vey of notions. Section 4 contains results on sensitivity analysis, an illustrative

Sensitivity Analysis for Declarative Relational 63

example, and a short outline of future research. Because of the limited scope of
the paper, proofs are sketched or omitted.

3 Preliminaries

In this section, we recall basic notions of RDTs and relational operations we
need to provide insight into the sensitivity issues of RDTs in Sect. 4. Details can
be found in [2,3,5].

3.1 Complete Residuated Lattices

In the rest of the paper, L which serves as the structure of ranks always refers
to a complete residuated lattice L = ℵL,∪,∃,≤,∈, 0, 1∼, i.e. a complete lattice
in which ≤ and ∈ are adjoint operations, and ∪ and ∃ denote the operations of
infimum and supremum, respectively, see Sect. 1 for comments on its intended
meaning. A typical choice of a complete residuated lattice L is a structure with
L = [0, 1] (real unit interval), ∪ and ∃ being minimum and maximum, ≤ being a
left-continuous t-norm with the corresponding residuum ∈ satisfying (1) which is
uniquely given by a ∈ b =

∨{c ⊆ L | a≤c → b}. Three of the most important [19]
adjoint pairs ℵ≤,∈∼ where ≤ is a continuous t-norm are:

a ≤ b = max(a + b − 1, 0), a ∈ b = min(1 − a + b, 1), ΣLukasiewicz,

a ≤ b = min(a, b), a ∈ b =
{

1, if a → b,
b, else, Gödel,

a ≤ b = a · b, a ∈ b =
{

1, if a → b,
b
a , else,

Goguen.

For instance, 0.9 ≤ 0.7 = 0.6 and 0.9 ∈ 0.7 = 0.8 if ℵ≤,∈∼ are the ΣLukasiewicz
operations; 0.9 ≤ 0.7 = 0.7 and 0.9 ∈ 0.7 = 0.7 if ℵ≤,∈∼ are the Gödel opera-
tions; 0.9 ≤ 0.7 = 0.63 and 0.9 ∈ 0.7 = 7

9 if ℵ≤,∈∼ are the Goguen (product)
operations. Given L, we introduce notions described in the following subsections.

3.2 Basic Structures

An L-set A in universe U is a map A : U ∈ L, A(u) being interpreted as “the
degree to which u belongs to A”. If L = [0, 1], i.e., if the structure of ranks L is
defined on the real unit interval, L-sets are traditionally called fuzzy sets [33]. If
L is the two-element Boolean algebra, then A : U ∈ L is an indicator function
of a classic subset of U , A(u) = 1 (A(u) = 0) meaning that u belongs (does
not belong) to that subset. In our approach, we tacitly identify sets with their
indicator functions. Thus, by a slight abuse of notation, we use both A(u) = 1
and u ⊆ A to denote the fact that u belongs to A and analogously for A(u) = 0
and u �⊆ A.

A binary L-relation B on U is a map B : U × U ∈ L, B(u1, u2) interpreted
as “the degree to which u1 and u2 are related according to B”. Hence, B is an
L-set in the universe U × U .

64 R. Belohlavek et al.

3.3 Ranked Data Tables over Domains with Similarities

We make use of the following database terminology [25]. We denote by Y a set of
attributes, any finite subset R ← Y is called a relation scheme. For each attribute
y ⊆ Y we consider its domain Dy, i.e., a set of all values that are allowed for
attribute y ⊆ Y . Note that domains are sometimes called types [14]. The role of
attributes (as names for columns of data tables) and domains (as sets of possible
values appearing in columns inside the data tables) is in our model the same as
in the Codd’s model.

In addition, we equip each Dy with a binary L-relation ∨y on Dy satisfying
reflexivity (u ∨y u = 1) and symmetry u ∨y v = v ∨y u (for all u, v ⊆ Dy). Each
binary L-relation ∨y on Dy satisfying (i) and (ii) shall be called a similarity.
Pair ℵDy,∨y∼ is called a domain with similarity. Note that u ∨y v is a general
degree from L and it has the same basic comparative interpretation as ranks.
For instance, u1 ∨y v1 > u2 ∨y v2 means that values u1 and v1 are more similar
than values u2 and v2, etc.

Tuples contained in data tables are considered as usual, i.e., as elements of
Cartesian products of domains. Recall that a Cartesian product

∏
i∼I Di of an I-

indexed system {Di | i ⊆ I} of sets Di (i ⊆ I) is a set of all maps t : I ∈ ⋃
i∼I Di

such that t(i) ⊆ Di holds for each i ⊆ I.
Under this notation, a tuple on relation scheme R ← Y over domains Dy is any

element from
∏

y∼R Dy. For brevity,
∏

y∼R Dy is denoted by Tupl(R). Following
the example in Table 1, tuple ℵBrown, 142, 950, 50, Binghamton, $189,000∼ is a
map r ⊆ Tupl(R) for R = {agent, id, . . . , price} such that r(agent) = Brown,
r(id) = 142, . . . , r(price) = $189,000.

A ranked data table on R ← Y over {ℵDy,∨y∼ | y ⊆ R} (shortly, an RDT)
is any L-set D in Tupl(R). The degree D(r) to which r belongs to D is called
a rank of tuple r in D. According to its definition, if D is an RDT on R over
{ℵDy,∨y∼ | y ⊆ R} then D is a map D : Tupl(R) ∈ L. Note that D is an n-ary
L-relation between domains Dy (y ⊆ Y) since D is a map from

∏
y∼R Dy to L.

This allows us to visualize RDTs as the ordinary data tables with a new “column
containing ranks” as it is shown in Table 1. Note however, that conceptually the
ranks do not represent data. They should be seen as “metadata” or “annotations
of rows in tables”, see Sect. 1. In our example, we have e.g. D(r) = 0.86 for r
being the tuple with r(id) = 142.

Note also that for practical reasons, we should limit ourselves only to finite
RDTs, i.e., to such ranked data tables D such that there are only finitely many
tuples r such that D(r) > 0. In that case, each RDT can be depicted as a table
with finitely many rows. There are several possible ways to ensure the finiteness
(e.g., considering only finite domains, using active domains [25], constraining all
operations by introducing ranges, forced use of topk-like operations to include
only best matches [21], . . .). In order to keep things conceptually simple, we omit
the issue of finiteness in this preliminary study and postpone it to an extended
version of the paper (as a result, the query system used in this paper is domain
dependent [25]).

Sensitivity Analysis for Declarative Relational 65

3.4 Relational Operations with RDTs

Relational operations we consider in this paper are the following: For RDTs
D1 and D2 on T , we put (D1 ∇ D2)(t) = D1(t) ∃ D2(t) and (D1 ∅ D2)(t) =
D1(t) ∪ D2(t) for each t ⊆ Tupl(T); D1 ∇ D2 and D1 ∅ D2 are called the union
and the ∪-intersection of D1 and D2, respectively. Analogously, one can define
an ≤-intersection D1 ≤ D2. Hence, ∇, ∅, and ≤ are defined componentwise
based on the operations of the complete residuated lattice L and can be seen as
counterparts to the ordinary set-theoretic operations with relations on relation
schemes.

Let us note that our model admits new operations that are trivial in the
classic model. For instance, for a ⊆ L, we introduce an a-shift a∈D of D by
(a∈D)(t) = a ∈ D(t) for all t ⊆ Tupl(T).

Remark 2. Clearly, if L is the two-element Boolean algebra then a-shifts are
trivial operation since 1 ∈ D = D and 0 ∈ D produces a possibly infinite table
containing all tuples from Tupl(T). In our model, an a-shift has the following
meaning: If D is a result of query Q then (a∈D)(t) is a “degree to which t
matches query Q at least to degree a”. This follows from properties of residuum
(a → b iff a ∈ b = 1), see [2,19]. Hence, a-shifts allow us to emphasize results
that match queries at least to a prescribed degree a.

The remaining relational operations we consider represent counterparts to
projection, selection, and join in our model. Recall that for r ⊆ Tupl(R) and
s ⊆ Tupl(S) such that R ∅ S = ⊂, rs denotes a concatenation rs ⊆ Tupl(R ∇ S)
of tuples r and s so that (rs)(y) = r(y) for y ⊆ R and (rs)(y) = s(y) for y ⊆ S.
If D is an RDT on T , the projection βR(D)of D onto R ← T is defined by

(βR(D))(r) =
∨
s∼Tupl(T\R) D(rs),

for each r ⊆ Tupl(R). Note that the concatenation rs used in the latter formula
is correct since both r and s are tuples on disjoint relation schemes. In our
example, the result of β{location}(D) is a ranked data table with single column
such that β{location}(D)(ℵBinghamton∼) = 0.86, β{location}(D)(ℵVestal∼) = 0.93,
and β{location}(D)(ℵEndicott∼) = 0.89.

A similarity-based selection is a counterpart to ordinary selection which se-
lects from a data table all tuples which approximately match a given condition:
Let D be an RDT on T and let y ⊆ T and d ⊆ Dy. Then, a similarity-based
selection ωy∈d(D) of tuples in D matching y ∨ d is defined by

(
ωy∈d(D)

)
(t) = D(t) ≤ t(y)∨y d.

Considering D as a result of query Q, the rank of t in ωy∈d(D) can be interpreted
as a degree to which “t matches the query Q and the y-value of t is similar to d”.
In particular, an interesting case is ωp∈q(D) where p and q are both attributes
with a common domain with similarity.

Similarity-based joins are considered as derived operations based on Carte-
sian products and similarity-based selections.

66 R. Belohlavek et al.

For RDTs D1 and D2 on disjoint relation schemes S and T we define a RDT
D1 × D2 on S ∇ T , called a Cartesian product of D1 and D2, by (D1 × D2)(st) =
D1(s) ≤ D2(t). Using Cartesian products and similarity-based selections, we can
introduce similarity-based θ-joins such as D1 ��p∈q D2 = ωp∈q(D1×D2). Various
other types of similarity-based joins can be introduced in our model, see [4].

4 Estimations of Sensitivity of Query Results

4.1 Rank-Based Similarity of Query Results

We now introduce the notion of similarity of RDTs which is based on the idea
that RDTs D1 and D2 (on the same relation scheme) are similar iff for each tuple
t, ranks D1(t) and D2(t) are similar (degrees from L). Similarity of ranks can
be expressed by biresiduum ↔ (a fuzzy equivalence [2,18,19]) which is a derived
operation of L such that a ↔ b = (a ∈ b) ∪ (b ∈ a). Since we are interested
in similarity of D1(t) and D2(t) for all possible tuples t, it is straightforward to
define the similarity E(D1,D2) of D1 and D2 by an infimum which goes over all
tuples:

E(D1,D2) =
∧

t∼Tupl(T)

(D1(t) ↔ D2(t)
)
. (2)

An alternative (but equivalent) way is the following: we first formalize a degree
S(D1,D2) to which D1 is included in D2. We can say that D1 is fully included in
D2 iff, for each tuple t, the rank D2(t) is at least as high as the rank D1(t). Notice
that in the classic (two-values) case, this is exactly how one defines the ordinary
subsethood relation “←”. Considering general degrees of inclusion (subsethood),
a degree S(D1,D2) to which D1 is included in D2 can be defined as follows:

S(D1,D2) =
∧

t∼Tupl(T)

(D1(t) ∈ D2(t)
)
. (3)

It is easy to prove [2] that (2) and (3) satisfy:

E(D1,D2) = S(D1,D2) ∪ S(D2,D1). (4)

Note that E and S defined by (2) and (3) are known as degrees of similarity
and subsethood from general fuzzy relational systems [2] (in this case, the fuzzy
relations are RDTs).

The following assertion shows that ∇, ∅, ≤, and a-shifts preserve subsethood
degrees given by (3). In words, the degree to which D1∇D2 is included in D∞

1∇D∞
2

is at least as high as the degree to which D1 is included in D∞
1 and D2 is included

in D∞
2. A similar verbal description can be made for the other operations.

Theorem 1. For any D1, D∞
1, D2, and D∞

2 on relation scheme T ,

S(D1,D∞
1) ∪ S(D2,D∞

2) → S(D1 ∇ D2,D∞
1 ∇ D∞

2), (5)
S(D1,D∞

1) ∪ S(D2,D∞
2) → S(D1 ∅ D2,D∞

1 ∅ D∞
2), (6)

S(D1,D∞
1) ≤ S(D2,D∞

2) → S(D1 ≤ D2,D∞
1 ≤ D∞

2), (7)
S(D∞

1,D1) ≤ S(D2,D∞
2) → S(D1 ∈ D2,D∞

1 ∈ D∞
2). (8)

Sensitivity Analysis for Declarative Relational 67

Proof. (5): Using adjointness, it suffices to check that
(
S(D1,D∞

1)∪S(D2,D∞
2)

)≤
(D1 ∇ D2)(t) → (D∞

1 ∇ D∞
2)(t) holds true for any t ⊆ Tupl(T). Using (3), the

monotony of ≤ and ∪ yields
(
S(D1,D∞

1) ∪ S(D2,D∞
2)

) ≤ (D1 ∇ D2)(t) →
(
(D1(t) ∈ D∞

1(t)) ∪ (D2(t) ∈ D∞
2(t))

) ≤ (D1 ∇ D2)(t) =
(
(D1(t) ∈ D∞

1(t)) ∪ (D2(t) ∈ D∞
2(t))

) ≤ (D1(t) ∃ D2(t)).

Applying a ≤ (b ∃ c) = (a ≤ b) ∃ (a ≤ c) to the latter expression, we get
(
(D1(t) ∈ D∞

1(t)) ∪ (D2(t) ∈ D∞
2(t))

) ≤ (D1(t) ∃ D2(t)) =
((

(D1(t) ∈ D∞
1(t)) ∪ (D2(t) ∈ D∞

2(t))
) ≤ D1(t)

) ∃
((

(D1(t) ∈ D∞
1(t)) ∪ (D2(t) ∈ D∞

2(t))
) ≤ D2(t)

) →
(
(D1(t) ∈ D∞

1(t)) ≤ D1(t)
) ∃ (

(D2(t) ∈ D∞
2(t)) ≤ D2(t)

)
.

Using a ≤ (a ∈ b) → b twice, it follows that
(
(D1(t) ∈ D∞

1(t)) ≤ D1(t)
) ∃ (

(D2(t) ∈ D∞
2(t)) ≤ D2(t)

) → D∞
1(t) ∃ D∞

2(t).

Putting previous inequalities together,
(
S(D1,D∞

1)∪S(D2,D∞
2)

)≤(D1∇D2)(t) →
(D∞

1 ∇ D∞
2)(t) which proves (5).

(6) can be proved analogously as (5). Indeed, for any t ⊆ Tupl(T),
(
S(D1,D∞

1) ∪ S(D2,D∞
2)

) ≤ (D1 ∅ D2)(t) →
(
(D1(t) ∈ D∞

1(t)) ∪ (D2(t) ∈ D∞
2(t))

) ≤ (D1 ∅ D2)(t),

Now, using (a ∪ b) ≤ c → (a ≤ c) ∪ (b ≤ c) and monotony of ∪ and ≤, we get
(
(D1(t) ∈ D∞

1(t)) ∪ (D2(t) ∈ D∞
2(t))

) ≤ (D1(t) ∪ D2(t)) →
(
(D1(t) ∈ D∞

1(t)) ≤ (D1(t) ∪ D2(t))
) ∪ (

(D2(t) ∈ D∞
2(t)) ≤ (D1(t) ∪ D2(t))

) →
(
(D1(t) ∈ D∞

1(t)) ≤ D1(t)
) ∪ (

(D2(t) ∈ D∞
2(t)) ≤ D2(t)

) →
D∞

1(t) ∪ D∞
2(t) = (D∞

1 ∅ D∞
2)(t)

which proves (6). Furthermore, (7) can be proved in much the same way as (6)
using monotony of ≤.

In case of (8), observe that for any t ⊆ Tupl(T), we have

S(D∞
1,D1) ≤ S(D2,D∞

2) ≤ (D1 ∈ D2)(t) →
(D∞

1(t) ∈ D1(t)) ≤ S(D2,D∞
2) ≤ (D1(t) ∈ D2(t)) →

S(D2,D∞
2) ≤ (D∞

1(t) ∈ D2(t)) → (D2(t) ∈ D∞
2(t)) ≤ (D∞

1(t) ∈ D2(t)) →
D∞

1(t) ∈ D∞
2(t) = (D∞

1 ∈ D∞
2)(t)

using (a ∈ b) ≤ (b ∈ c) → (a ∈ c) from which (8) readily follows. ≥⇔

68 R. Belohlavek et al.

Remark 3. The lower estimation provided by (8) differs from the previous
inequalities (5)–(7) in that the we use the degree to which D∞

1 is included in
D1, i.e., S(D∞

1,D1) and not vice versa. This is a natural consequence of the fact
that ∈ is antitone in the first argument whereas the other operations ∅,∇,≤
are monotone in both their arguments.

Remark 4. Let us note that inclusion estimations like those from Theorem 1 do
not have a nontrivial interpretation in the original Codd’s model of data. For
instance, if L (the structure of truth degrees) is a two-element Boolean algebra,
the left-hand side of (5) is either 0 or 1. Clearly, S(D1,D∞

1) ∪ S(D2,D∞
2) = 1 iff

D1 is a subset of D∞
1 (in the usual sense) and D2 is a subset of D∞

2, from which
one immediately derives that D1 ∇D2 is a subset of D∞

1 ∇D∞
2. A similar situation

applies for (6)–(8).

Notice that using (8), we can derive an estimation formula for the operation
of an a-shift. Indeed, we have S(D1,D2) → S(a ∈ D1, a ∈ D2), because a ∈ Di

can be seen as a result of D ∈ Di, where D(t) = a for all t ⊆ Tupl(R).
The previous assertion showed estimations for inclusions of RDTs. Estima-

tions for similarities of RDTs can be derived from estimations for inclusions:

Corollary 1. For ♦ being ∅ or ∇, and for � being ≤ or ∈, we have:

E(D1,D∞
1) ∪ E(D2,D∞

2) → E(D1 ♦D2,D∞
1 ♦D∞

2). (9)
E(D1,D∞

1) ≤ E(D2,D∞
2) → E(D1 �D2,D∞

1 �D∞
2). (10)

Proof. For ♦ being ∅, (6) applied twice yields: S(D1,D∞
1) ∪ S(D2,D∞

2) → S(D1 ∅
D2,D∞

1 ∅ D∞
2) and S(D∞

1,D1) ∪ S(D∞
2,D2) → S(D∞

1 ∅ D∞
2,D1 ∅ D2). Hence, (9) for

∅ follows using (2). Analogously, for ♦ being ∇ the claim follows from (5) and
(2). For � being ≤ or ∈, (7) or (8) used twice together with (2) yield

(S(D1,D∞
1) ≤ S(D2,D∞

2)) ∪ (S(D∞
1,D1) ≤ S(D∞

2,D2)) → E(D1 � D2,D∞
1 � D∞

2).

Applying (a ∪ c) ≤ (b ∪ d) → (a ≤ b) ∪ (c ≤ d) to the previous inequality, we get

(S(D1,D∞
1) ∪ S(D∞

1,D1)) ≤ (S(D2,D∞
2) ∪ S(D∞

2,D2)) → E(D1 �D2,D∞
1 �D∞

2),

which directly gives the desired inequality. ≥⇔
As a special case of (10), we obtain an estimation formula for the operation of

an a-shift: E(D1,D2) → E(a ∈ D1, a ∈ D2). Analogously, one can obtain esti-
mation for further derived unary operations with RDTs like a-negations (D ∈ a
which in a special case for a = 0 becomes a residuated negation D ∈ 0, see [2])
and a-multiples (a ≤ D).

Remark 5. Using the idea in the proof of Corollary 1, in order to prove that
operation O preserves similarity, it suffices to check that O preserves (graded)
subsethood. Thus, from now on, we shall only investigate whether operations
preserve subsethood.

Sensitivity Analysis for Declarative Relational 69

In case of Cartesian products, we have:

Theorem 2. Let D1 and D∞
1 be RDTs on relation scheme S and let D2 and D∞

2

be RDTs on relation scheme T such that S ∅ T = ⊂. Then,
S(D1,D∞

1) ≤ S(D2,D∞
2) → S(D1 × D2,D∞

1 × D∞
2), (11)

Proof (sketch). The proof is analogous to that of (7). ≥⇔
The following assertion shows that projection and similarity-based selection

preserve subsethood degrees (and therefore similarities) of RDTs:

Theorem 3. Let D and D∞ be RDTs on relation scheme T and let y ⊆ T ,
d ⊆ Dy, and R ← T . Then,

S(D,D∞) → S(βR(D), βR(D∞)), (12)
S(D,D∞) → S(ωy∈d(D), ωy∈d(D∞)). (13)

Proof (sketch). In oder to prove (12), we check S(D,D∞)≤(βR(D))(r) → (βR(D∞))
(r) for any r ⊆ Tupl(R). It means showing that

S(D,D∞) ≤ ∨
s∼Tupl(T\R) D(rs) → (βR(D∞))(r).

Thus, is suffices to prove S(D,D∞)≤D(rs) → (βR(D∞))(r) for all s ⊆ Tupl(T \R)
which is indeed true. In case of (13), we proceed analogously. ≥⇔

Theorem 2 and Theorem 3 used together yield

Corollary 2. Let D1 and D∞
1 be RDTs on relation scheme S and let D2 and D∞

2

be RDTs on relation scheme T such that S ∅ T = ⊂. Then,
S(D1,D∞

1) ≤ S(D2,D∞
2) → S(D1 ��p∈q D2,D∞

1 ��p∈q D∞
2). (14)

for any p ⊆ S and q ⊆ T having the same domain with similarity. ≥⇔
In [4], we have shown that in order to have a relational algebra whose expres-

sive power is the same as the expressive power of the domain relational calculus,
we have to consider an additional operation of division: for D1 being an RDT
on R and D2 being an RDT on S ← R, a division D1 ÷ D2 of D1 by D2 is an
RDT on T = R \ S, where

(D1 ÷ D2)(t) =
∧

s∼Tupl(S)

(D2(s) ∈ D1(st)
)
,

for each t ⊆ Tupl(t). In words, (D1 ÷ D2)(t) is the degree to which the following
proposition holds: “For each tuple s in D2, the concatenation st is in D1”.

Theorem 4. Let D1 and D∞
1 be RDTs on relation scheme R and let D2 and D∞

2

be RDTs on relation scheme S such that S ← R. Then,

S(D1,D∞
1) ≤ S(D∞

2,D2) → S(D1 ÷ D2,D∞
1 ÷ D∞

2). (15)

70 R. Belohlavek et al.

Proof. The claim can be shown using similar arguments as in the proof of
Theorem 1.

We have shown that the similarity is preserved by all queries that can be
formulated in the domain relational calculus [4]. Thus, we have provided a formal
justification for the (intuitively expected but nontrivial) fact that similar input
data yield similar results of queries.

Remark 6. Note that DRC from [4] is domain dependent and allows infinite
RDTs as results of queries as do some of our relational operations. Both DRC
and relational algebra can be transformed into domain independent languages
by introducing ranges and modifying the relational operations. The similarity
estimations provided in this paper apply to the domain independent versions of
both the query systems.

4.2 Illustrative Example

Consider again the RDT from Table 1. The RDT can be seen as a result of query-
ing a database of houses for sale where one wants to find a house which is sold for
(approximately) $200,000 and has (approximately) 1200 square feet. The at-
tributes in the RDT are: real estate agent name (agent), house ID (id), square
footage (sqft), house age (age), house location (location), and house price
(price), . In this example, the complete residuated lattice L = ℵL,∪,∃,≤,∈,
0, 1∼ serving as the structure of ranks will be the so-called ΣLukasiewicz alge-
bra [2,18,19]. That is, L = [0, 1], ∪ and ∃ are minimum and maximum, re-
spectively, and the multiplication and residuum are defined as follows: a ≤ b =
max(a + b − 1, 0) and a ∈ b = min(1 − a + b, 1) for all a, b ⊆ L, see Sect. 3.1 for
details.

Intuitively, it is natural to consider similarity of values in domains of sqft ,
age , location , and price . For instance, similarity of prices can be defined by

p1 ∨price p2 = s(|p2 − p1|)

using a non-increasing scaling function s : [0,∞) ∈ [0, 1] with s(0) = 1 (i.e.,
identical prices are fully similar). In particular, for ∨price, we have used the
following piecewise linear scaling function:

s(x) =
{

1 − x
500 000 , if 0 → x → 500 000,

0, if x > 500 000.

Analogously, a similarity of locations can be defined based on their geograph-
ical distance and/or based on their evaluation (safety, school districts, . . .) by an
expert. In contrast, there is no need to have similarities for id and agents be-
cause end-users do not look for houses based on (similarity of) their (internal) IDs
which are kept as keys merely because of performance reasons. Obviously, there
may be various reasonable similarity relations defined for the above-mentioned
domains and their careful choice is an important task. In this paper, we neither

Sensitivity Analysis for Declarative Relational 71

Table 2. Alternative ranks for houses for sale from Table 1

agent id sqft age location price

0.93 Brown 138 1185 48 Vestal $228,500

0.91 Clark 140 1120 30 Endicott $235,800

0.87 Brown 156 1300 85 Binghamton $248,600

0.85 Brown 142 950 50 Binghamton $189,000

0.82 Davis 189 1250 25 Binghamton $287,300

0.79 Clark 158 1200 25 Vestal $293,500

0.75 Davis 166 1040 50 Vestal $286,200

0.37 Davis 112 1890 30 Endicott $345,000

explain nor recommend particular ways to do so because (i) we try to keep a
general view of the problem and (ii) similarities on domains are purpose and
user dependent.

Consider now the RDT in Table 2 defined over the same relation scheme as
the RDT in Table 1. These two RDTs can be seen as two (slightly different)
answers to the same query (when e.g., the domain similarities have been slightly
changed) or answers to a modified query (e.g., “show all houses which are sold for
(approximately) $210,000 and . . . ”). The similarity of both the RDTs given by
(2) is 0.98 (very high). The results in the previous section say that if we perform
any (arbitrarily complex) query (using the relational operations we consider in
this paper) with Table 2 instead of Table 1, the results will be similar at least to
degree 0.98.

For illustration, consider an additional RDT of customers over relation
scheme containing two attributes: name (customer name) and budget (price
the customer is willing to pay for a house). In particular, let ℵEvans, $250,000∼,
ℵFinch, $210,000∼, and ℵGrant, $240,000∼ be the only tuples in the RDT (all
with ranks 1). The answer to the following query

β{agent,id,price,name,budget}(D1 ��price∈budget Dc),

Table 3. Join of Table 1 and the table of customers

agent id price name budget

0.91 Brown 138 $228,500 Grant $240,000

0.89 Brown 138 $228,500 Evans $250,000

0.89 Brown 138 $228,500 Finch $210,000

0.88 Clark 140 $235,800 Grant $240,000

0.86 Clark 140 $235,800 Evans $250,000

0.84 Brown 156 $248,600 Evans $250,000
...

...
...

...
...

...
0.16 Davis 112 $345,000 Grant $240,000

0.10 Davis 112 $345,000 Finch $210,000

72 R. Belohlavek et al.

Table 4. Results of agent-customer matching for Table 1 and Table 2

where D1 stands for Table 1 and Dc stands for the RDT of customers is in
Table 3 (for brevity, some records are omitted). The RDT thus represents an
answer to query “show deals for houses sold for (approximately) $200,000 with
(approximately) 1200 square feet and customers so that their budget is similar
to the house price”. Furthermore, we can obtain an RDT of best agent-customer
matching if we project the join onto agent and name :

β{agent,name}(D1 ��price∈budget Dc).

The result of matching is in Table 4 (left). Due to our results, if we perform the
same query with Table 2 instead of Table 1, the new result is guaranteed to be
similar with the obtained result at least to degree 0.98. The result for Table 2 is
shown in Table 4 (right).

4.3 Tuple-Based Similarity and Further Topics

While the rank-based similarity from Sect. 4.1 can be sufficient in many cases,
there are situations where one wants to consider a similarity of RDTs based
on ranks and (pairwise) similarity of tuples. For instance, if we take the RDT
from Table 1 and make a new one by taking all tuples (keeping their ranks) and
increasing the prices by one dollar, we will come up with an RDT which is, ac-
cording to rank-based similarity, very different from the original one. Intuitively,
one would expect to have a high degree of similarity of the RDTs because they
differ only by a slight change in price. This issue can be solved by considering
the following tuple-based degree of inclusion:

S∈(D1,D2) =
∧

t∼Tupl(T)

(D1(t) ∈ ∨
t′∼Tupl(T)

(D2(t∞) ≤ t ∨ t∞
))

, (16)

where t ∨ t∞ =
∧

y∼T t(y) ∨y t∞(y) is a similarity of tuples t and t∞ over T , cf. [5].
In a similar way as in (4), we may define E∈ using S∈ instead of S.

Remark 7. By an easy inspection, S(D1,D2) → S∈(D1,D2), i.e. (16) yields an
estimate which is at least as high as (3) and analogously for E and E∈. Note
that (16) has a natural meaning. Indeed, S∈(D1,D2) can be understood as a
degree to which the following statement is true: “If t belongs to D1, then there

Sensitivity Analysis for Declarative Relational 73

is t∞ which is similar to t and which belongs to D2”. Hence, E∈(D1,D2) is a
degree to which for each tuple from D1 there is a similar tuple in D2 and vice
versa. If L is a two-element Boolean algebra and each ∨y is an identity, then
E∈(D1,D2) = 1 iff D1 and D2 are identical (in the usual sense).

For tuple-based inclusion (similarity) and for certain relational operations,
we can prove analogous preservation formulas as in Sect. 4.1. For instance,

S∈(D1,D∞
1) ∪ S(D2,D∞

2) → S∈(D1 ∇ D2,D∞
1 ∇ D∞

2), (17)
S∈(D1,D∞

1) ≤ S(D2,D∞
2) → S∈(D1 × D2,D∞

1 × D∞
2), (18)

S∈(D,D∞) → S∈(βR(D), βR(D∞)). (19)

On the other hand, similarity-based selection ωy∈d (and, as a consequence,
similarity-based join ��p∈q) does not preserve S∈ in general which can be seen
as a technical complication. This issue can be overcome by introducing a new
type of selection ω∈

y∈d which is compatible with S∈. Namely, we can define

(
ω∈
y∈d(D)

)
(t) =

∨
t′∼Tupl(T)

(D(t∞) ≤ t∞ ∨ t ≤ t(y)∨y d
)
. (20)

For this notion, we can prove that S∈(D,D∞) → S∈(ω∈
y∈d(D), ω∈

y∈d(D∞)). Similar
extension can be done for any relational operation which does not preserve S∈

directly. A detailed description of the extension is postponed to a full version of
the paper because of the limited scope.

4.4 Unifying Approach to Similarity of RDTs

In this section, we outline a general approach to similarity of RDTs that in-
cludes both the approaches from the previous sections. Interestingly, both (3)
and (16) have a common generalization using truth-stressing hedges [19,20].
Truth-stressing hedges represent unary operations on complete residuated lat-
tices (denoted by ∗) that serve as interpretations of logical connectives like “very
true”, see [19]. Two boundary cases of hedges are (i) identity, i.e. a∗ = a (a ⊆ L);
(ii) globalization: 1∗ = 1, and a∗ = 0 if a < 1. The globalization [32] is a hedge
which can be interpreted as “fully true”.

Let ∗ be truth-stressing hedge on L. For RDTs D1,D2 on T , we define the
degree S∈

∗ (D1,D2) of inclusion of D1 in D2 (with respect to ∗) by

S∈
∗ (Di,Dj) =

∧
t∼Tupl(T)

(Di(t) ∈ ∨
t′∼Tupl(T)

(Dj(t∞) ≤ (t ∨ t∞)∗)). (21)

Now, it is easily seen that for ∗ being the identity, (21) coincides with (16); if ∨
is separating (i.e., t1 ∨ t2 = 1 iff t1 is identical to t2) and ∗ is the globalization,
(21) coincides with (3). Thus, both (3) and (16) are particular instances of (21)
resulting by a choice of the hedge. Note that identity and globalization are two
borderline cases of hedges. In general, complete residuated lattices admit other
nontrivial hedges that can be used in (21). Therefore, the hedge in (21) serves as
a parameter that has an influence on how much emphasis we put on the fact that

74 R. Belohlavek et al.

two tuples are similar. In case of globalization, we put full emphasis, i.e., the
tuples are required to be equal to degree 1 (exactly the same if ∨ is separating).

If we consider properties needed to prove analogous estimation formulas for
general S∈

∗ as we did in case of S and S∈, we come up with the following
important property:

(r ∨ s)∗ ≤ (s ∨ t)∗ → (r ∨ t)∗, (22)

for every r, s, t ⊆ Tupl(T) which can be seen as transitivity of ∨ with respect to
≤ and ∗. Consider the following two cases in which (22) is satisfied:

Case 1: ∗ is globalization and ∨ is separating. If the left hand side of (22) is
nonzero, then r ∨ s = 1 and s ∨ t = 1. Separability implies r = s = t,
i.e. (r ∨ t)∗ = 1∗ = 1, verifying (22).

Case 2: ∨ is transitive. In this case, since a∗≤b∗ → (a≤b)∗ (follows from proper-
ties of hedges by standard arguments), transitivity of ∨ and monotony
of ∗ yield (r ∨ s)∗ ≤ (s ∨ t)∗ → ((r ∨ s) ≤ (s ∨ t))∗ → (r ∨ t)∗.

The following lemma shows that S∈
∗ and consequently E∈

∗ have properties that
are considered natural for (degrees of) inclusion and similarity:

Lemma 1. If ∨ satisfies (22) with respect to ∗ then

(i) S∈
∗ is a reflexive and transitive L-relation, i.e. an L-quasiorder.

(ii) E∈
∗ defined by E∈

∗ (D1,D2) = S∈
∗ (D1,D2) ∪ S∈

∗ (D2,D1) is a reflexive, sym-
metric, and transitive L-relation, i.e. an L-equivalence.

Proof. The assertion follows from results in [2, Sect. 4.2] by taking into account
that ∨∗ is reflexive, symmetric, and transitive with respect to ≤. ≥⇔

5 Conclusion and Future Research

We have shown that an important subset of relational operations in similarity-
based databases preserves various types of similarity. As a result, similarity of
query results based on these relational operations can be estimated based on
similarity of input data tables before the queries are executed. Furthermore, the
results of this paper have shown a desirable important property of the underlying
similarity-based model of data: slight changes in input data do not produce
huge changes in query results. Functions for similarity estimations based on
results in this paper will be incorporated into a relational similarity-based query
engine which is currently being developed. Future research will focus on the role
of particular relational operations called similarity-based closures that play an
important role in tuple-based similarities of RDTs.

Sensitivity Analysis for Declarative Relational 75

References

1. Abiteboul, S., et al.: The lowell database research self-assessment. Commun. ACM
48(5), 111–118 (2005)

2. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York (2002)

3. Belohlavek, R., Vychodil, V.: Logical foundations for similarity-based databases.
In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009 Workshops. LNCS,
vol. 5667, pp. 137–151. Springer, Heidelberg (2009)

4. Belohlavek, R., Vychodil, V.: Query systems in similarity-based databases: logical
foundations, expressive power, and completeness. In: Proceedings of the ACM SAC
2010, pp. 1648–1655. ACM Press (2010)

5. Belohlavek, R., Vychodil, V.: Codd’s relational model from the point of view of
fuzzy logic. J. Logic and Comput. 21(5), 851–862 (2011)

6. Birkhoff, G.: Lattice theory. American Mathematical Society, Providence (1940)
7. Buckles, B.P., Petry, F.E.: Fuzzy databases in the new era. In: Proceedings of the

ACM SAC 1995, Nashville, TN, pp. 497–502. ACM Press (1995)
8. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. VLDB 1987,

71–81 (1987)
9. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun.

ACM 13(6), 377–387 (1970)
10. Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-

mun. ACM 52, 86–94 (2009)
11. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB

J. 16, 523–544 (2007)
12. Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges.

In: ACM PODS 2007, pp. 1–12 (2007)
13. Date, C.J.: Database Relational Model: A Retrospective Review and Analysis.

Addison Wesley, Reading (2000)
14. Date, C.J., Darwen, H.: Databases, Types and the Relational Model, 3rd edn.

Addison Wesley, Reading (2006)
15. Fagin, R.: Combining fuzzy information: an overview. ACM SIGMOD Record

31(2), 109–118 (2002)
16. Gerla, G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer,

Dordrecht (2001)
17. Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968-1969)
18. Gottwald, S.: Mathematical fuzzy logics. Bull. for Symbolic Logic 14(2), 210–239

(2008)
19. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
20. Hájek, P.: On very true. Fuzzy Sets Syst. 124, 329–333 (2001)
21. Illyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-

tional databases. VLDB J. 13, 207–221 (2004)
22. Imieliński, T., Lipski, W.: Incomplete information in relational databases. J. ACM

31, 761–791 (1984)
23. Koch, C.: On query algebras for probabilistic databases. SIGMOD Record 37(4),

78–85 (2008)
24. Li, C., Chang, K.C.-C., Ilyas, I.F., Song S.: RankSQL: Query Algebra and Opti-

mization for Relational top-k queries. In: ACM SIGMOD 2005, pp. 131–142. ACM
Press (2005)

25. Maier, D.: The Theory of Relational Databases. Comp. Sci. Press, Rockville (1983)

76 R. Belohlavek et al.

26. Olteanu, D., Huangm, J., Koch, C.: Approximate confidence computation in prob-
abilistic databases. IEEE ICDE 2010, 145–156 (2010)

27. Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25, 45–52;
25, 119–134; 25, 447–464 (1979)

28. Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database systems. ACM Trans. Database
Systems 13(2), 129–166 (1988)

29. Shenoi, S., Melton, A.: Proximity relations in the fuzzy relational database model.
Fuzzy Sets Syst. 100, 51–62 (1999)

30. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers (2011)

31. Takahashi, Y.: Fuzzy database query languages and their relational completeness
theorem. IEEE Trans. Knowl. Data Eng. 5, 122–125 (1993)

32. Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Ann. Pure Appl.
Logic 33, 195–211 (1987)

33. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

A Uniform Fixpoint Approach
to the Implementation of Inference
Methods for Deductive Databases

Andreas Behrend(B)

Institute of Computer Science III, University of Bonn,
Römerstraße 164, 53117 Bonn, Germany

behrend@cs.uni-bonn.de

Abstract. Within the research area of deductive databases three dif-
ferent database tasks have been deeply investigated: query evaluation,
update propagation and view updating. Over the last thirty years vari-
ous inference mechanisms have been proposed for realizing these main
functionalities of a rule-based system. However, these inference mecha-
nisms have been rarely used in commercial DB systems until now. One
important reason for this is the lack of a uniform approach well-suited for
implementation in an SQL-based system. In this paper, we present such a
uniform approach in form of a new version of the soft consequence opera-
tor. Additionally, we present improved transformation-based approaches
to query optimization and update propagation and view updating which
are all using this operator as underlying evaluation mechanism.

1 Introduction

The notion deductive database refers to systems capable of inferring new knowl-
edge using rules. Within this research area, three main database tasks have been
intensively studied: (recursive) query evaluation, update propagation and view
updating. Despite of many proposals for efficiently performing these tasks, how-
ever, the corresponding methods have been implemented in commercial products
(such as, e.g., Oracle or DB2) in a very limited way, so far. One important reason
is that many proposals employ inference methods which are not directly suited
for being transferred into the SQL world. For example, proof-based methods or
instance-oriented model generation techniques (e.g. based on SLDNF) have been
proposed as inference methods for view updating which are hardly compatible
with the set-oriented bottom-up evaluation strategy of SQL.

In this paper, we present transformation-based methods to query optimiza-
tion, update propagation and view updating which are well-suited for being
transferred to SQL. Transformation-based approaches like Magic Sets [1] au-
tomatically transform a given database schema into a new one such that the
evaluation of rules over the rewritten schema performs a certain database task
more efficiently than with respect to the original schema. These approaches are
well-suited for extending database systems, as new algorithmic ideas are solely

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 77–92, 2013.
DOI: 10.1007/978-3-642-41524-1 5, c© Springer-Verlag Berlin Heidelberg 2013

78 A. Behrend

incorporated into the transformation process, leaving the actual database engine
with its own optimization techniques unchanged. In fact, rewriting techniques al-
low for implementing various database functionalities on the basis of one common
inference engine. However, the application of transformation-based approaches
with respect to stratifiable views [17] may lead to unstratifiable recursion within
the rewritten schemata. Consequently, an elaborate and very expensive inference
mechanism is generally required for their evaluation such as the alternating fix-
point computation or the residual program approach proposed by van Gelder [20]
resp. Bry [10]. This is also the case for the kind of recursive views proposed by
the SQL:1999 standard, as they cover the class of stratifiable views.

As an alternative, the soft consequence operator together with the soft strat-
ification concept has been proposed by the author in [2] which allows for the effi-
cient evaluation of Magic Sets transformed rules. This efficient inference method
is applicable to query-driven as well as update-driven derivations. Query-driven
inference is typically a top-down process whereas update-driven approaches are
usually designed bottom-up. During the last 6 years, the idea of combining the
advantages of top-down and bottom-up oriented inference has been consequently
employed to enhance existing methods to query optimization [3] as well as up-
date propagation [6] and to develop a new approach to view updating. In order
to handle alternative derivations that may occur in view updating methods, an
extended version of the original soft consequence operator has to be developed.
In this paper, this new version is presented, which is well-suited for efficiently
determining the semantics of definite and indefinite databases but remains com-
patible with the set-oriented, bottom-up evaluation of SQL.

2 Basic Concepts

A Datalog rule is a function-free clause of the form H1 → L1 ℵ · · · ℵ Lm with
m ∼ 1 where H1 is an atom denoting the rule’s head, and L1, . . . , Lm are literals,
i.e. positive or negative atoms, representing its body. We assume all deductive
rules to be safe, i.e., all variables occurring in the head or in any negated literal
of a rule must be also present in a positive literal in its body. If A ← p(t1, . . . , tn)
with n ∼ 0 is a literal, we use vars(A) to denote the set of variables occurring
in A and pred(A) to refer to the predicate symbol p of A. If A is the head of
a given rule R, we use pred(R) to refer to the predicate symbol of A. For a set
of rules R, pred(R) is defined as ≤r∼R{pred(r)}. A fact is a ground atom in
which every ti is a constant.

A deductive database D is a triple ∈F ,R, I⊆ where F is a finite set of facts
(called base facts), I is a finite set of integrity constraints (i.e., positive ground
atoms) and R a finite set of rules such that pred(F) ∪ pred(R) = Ø and
pred(I) ∃ pred(F ≤ R). Within a deductive database D, a predicate symbol
p is called derived (view predicate), if p ∧ pred(R). The predicate p is called
extensional (or base predicate), if p ∧ pred(F). Let HD be the Herbrand base
of D = ∈F ,R, I⊆. The set of all derivable literals from D is defined as the well-
founded model [21] for (F ≤R) : MD := I+ ≤¬ · I− where I+, I− ∃ HD are sets

A Uniform Fixpoint Approach to the Implementation of Inference Methods 79

of ground atoms and ¬ · I− includes all negations of atoms in I−. The set I+

represents the positive portion of the well-founded model while ¬ · I− comprises
all negative conclusions. The semantics of a database D = ∈F ,R, I⊆ is defined as
the well-founded model MD := I+ ≤ ¬ · I− for F ≤ R if all integrity constraints
are satisfied in MD, i.e., I ∃ I+. Otherwise, the semantics of D is undefined. For
the sake of simplicity of exposition, and without loss of generality, we assume
that a predicate is either base or derived, but not both, which can be easily
achieved by rewriting a given database.

Disjunctive Datalog extends Datalog by disjunctions of literals in facts as well
as rule heads. A disjunctive Datalog rule is a function-free clause of the form
A1 ∨ . . .∨Am → B1 ℵ· · ·ℵBn with m,n ∼ 1 where the rule’s head A1 ∨ . . .∨Am

is a disjunction of positive atoms, and the rule’s body B1, . . . , Bn consists of
literals, i.e. positive or negative atoms. A disjunctive fact f ← f1 ∨ . . . ∨ fk

is a disjunction of ground atoms fi with i ∼ 1. f is called definite if i = 1.
We solely consider stratifiable disjunctive rules only, that is, recursion through
negative predicate occurrences is not permitted [17]. A stratification partitions
a given rule set such that all positive derivations of relations can be determined
before a negative literal with respect to one of those relations is evaluated. The
semantics of a stratifiable disjunctive databases D is defined as the perfect model
state PMD of D iff D is consistent [4,11].

3 Transformation-Based Approaches

The need for a uniform inference mechanism in deductive databases is motivated
by the fact that transformation-based approaches to query optimization, update
propagation and view updating are still based on very different model genera-
tors. In this section, we briefly recall the state-of-the-art with respect to these
transformation-based techniques by means of Magic Sets, Magic Updates and
Magic View Updates. The last two approaches have been already proposed by
the author in [6,7]. Note that we solely consider stratifiable rules for the given
(external) schema. The transformed internal schema, however, may not always
be stratifiable such that more general inference engines are required.

3.1 Query Optimization

Various methods for efficient bottom-up evaluation of queries against the inten-
sional part of a database have been proposed, e.g. Magic Sets [1], Counting [9],
Alexander method [19]. All these approaches are rewriting techniques for de-
ductive rules with respect to a given query such that bottom-up materialization
is performed in a goal-directed manner cutting down the number of irrelevant
facts generated. In the following we will focus on Magic Sets as this approach
has been accepted as a kind of standard in the field.

Magic Sets rewriting is a two-step transformation in which the first phase
consists of constructing an adorned rule set, while the second phase consists of
the actual Magic Sets rewriting. Within an adorned rule set, the predicate symbol

80 A. Behrend

of a literal is associated with an adornment which is a string consisting of letters b
and f. While b represents a bound argument at the time when the literal is to be
evaluated, f denotes a free argument. The adorned version of the deductive rules
is constructed with respect to an adorned query and a selected sip strategy [18]
which basically determines for each rule the order in which the body literals are
to be evaluated and which bindings are passed on to the next literal. During the
second phase of Magic Sets the adorned rules are rewritten such that bottom-up
materialization of the resulting database simulates a top-down evaluation of the
original query on the original database. For this purpose, each adorned rule is
extended with a magic literal restricting the evaluation of the rule to the given
binding in the adornment of the rule’s head. The magic predicates themselves
are defined by rules which define the set of relevant selection constants. The
initial values corresponding to the query are given by the so-called magic seed.
As an example, consider the following stratifiable rules R

o(X, Y) →¬p(Y, X) ℵ p(X, Y)
p(X, Y) → e(X, Y)
p(X, Y) → e(X, Z) ℵ p(Z, Y)

and the query ? − o(1, 2) asking whether a path from node 1 to 2 exists but
not vice versa. Assuming a full left-to-right sip strategy, Magic Sets yields the
following deductive rules Rms

obb(X, Y)→ m obb(X, Y) ℵ ¬pbb(Y, X) ℵ pbb(X, Y) pbb(X, Y)→ m pbb(X, Y) ℵ e(X, Y)
pbb(X, Y)→ m pbb(X, Y) ℵ e(X, Z) ℵ pbb(Z, Y) m pbb(Y, X) → m obb(X, Y)
m pbb(X, Y) → m obb(X, Y) ℵ ¬pbb(Y, X) m obb(X, Y) → m s obb(X, Y)
m pbb(Z, Y) → m pbb(X, Y) ℵ e(X, Z)

as well as the magic seed fact m s obb(1, 2). The Magic Sets transformation is
sound for stratifiable databases. However, the resulting rule set may be no more
stratifiable (as is the case in the above example) and more general approaches
than iterated fixpoint computation are needed. For determining the well-founded
model of general logic programs, the alternating fixpoint computation by Van
Gelder [20] or the conditional fixpoint by Bry [10] could be used. The application
of these methods, however, is not really efficient because the specific reason for
the unstratifiability of the transformed rule sets is not taken into account. As
an efficient alternative, the soft stratification concept together with the soft
consequence operator [2] could be used for determining the positive part of the
well-founded model (cf. Sect. 4).

3.2 Update Propagation

Determining the consequences of base relation changes is essential for main-
taining materialized views as well as for efficiently checking integrity. Update
propagation (UP) methods have been proposed aiming at the efficient computa-
tion of implicit changes of derived relations resulting from explicitly performed

A Uniform Fixpoint Approach to the Implementation of Inference Methods 81

updates of extensional facts [13,14,16,17]. We present a specific method for up-
date propagation which fits well with the semantics of deductive databases and
is based on the soft consequence operator again. We will use the notion update
to denote the ‘true’ changes caused by a transaction only; that is, we solely
consider sets of updates where compensation effects (i.e., given by an insertion
and deletion of the same fact or the insertion of facts which already existed, for
example) have already been taken into account.

The task of update propagation is to systematically compute the set of all
induced modifications starting from the physical changes of base data. Techni-
cally, this is a set of delta facts for any affected relation which may be stored in
corresponding delta relations. For each predicate symbol p ∧ pred(D), we will
use a pair of delta relations ∈Σ+

p ,Σ−
p ⊆ representing the insertions and deletions

induced on p by an update on D. The initial set of delta facts directly results from
the given update and represents the so-called UP seeds. They form the starting
point from which induced updates, represented by derived delta relations, are
computed. In our transformation-based approach, so-called propagation rules are
employed for computing delta relations. A propagation rule refers to at least one
delta relation in its body in order to provide a focus on the underlying changes
when computing induced updates. For showing the effectiveness of an induced
update, however, references to the state of a relation before and after the base
update has been performed are necessary. As an example of this propagation
approach, consider again the rules for relation p from Subsect. 3.1. The UP rules
RΔ with respect to insertions into e are as follows:

Σ+
p (X, Y) →Σ+

e (X, Y)ℵ¬pold(X, Y)
Σ+

p (X, Y) →Σ+
e (X, Z) ℵ pnew(Z, Y)ℵ¬pold(X, Y)

Σ+
p (X, Y) →Σ+

p (Z, Y) ℵ enew(X, Z)ℵ¬pold(X, Y)

For each relation p we use pold to refer to its old state before the changes given
in the delta relations have been applied whereas pnew is used to refer to the new
state of p. These state relations are never completely computed but are queried
with bindings from the delta relation in the propagation rule body and thus act
as a test of effectiveness. In the following, we assume the old database state to
be present such that the adornment old can be omitted. For simulating the new
database state from a given update so called transition rules [16] are used. The
transition rules RΔ

τ for simulating the required new states of e and p are:

enew(X, Y) → e(X, Y)ℵ¬Σ−
e (X, Y) pnew(X, Y) → enew(X, Y)

enew(X, Y) →Σ+
e (X, Y) pnew(X, Y) → enew(X, Z) ℵ pnew(Z, Y)

Note that the new state definition of intensional predicates only indirectly refers
to the given update in contrast to extensional predicates. If R is stratifiable, the
rule set R ·≤RΔ ·≤RΔ

τ will be stratifiable, too (cf. [6]). As R ·≤RΔ ·≤RΔ
τ remains to

be stratifiable, iterated fixpoint computation could be employed for determining
the semantics of these rules and the induced updates defined by them. However,
all state relations are completely determined which leads to a very inefficient

82 A. Behrend

propagation process. The reason is that the supposed evaluation over the two
consecutive database states is performed using deductive rules which are not
specialized with respect to the particular updates that are propagated. This
weakness of propagation rules in view of a bottom-up materialization will be
cured by incorporating Magic Sets.

Magic Updates

The aim is to develop an UP approach which is automatically limited to the
affected delta relations. The evaluation of side literals and effectiveness tests is
restricted to the updates currently propagated. We use the Magic Sets approach
for incorporating a top-down evaluation strategy by considering the currently
propagated updates in the dynamic body literals as abstract queries on the re-
mainder of the respective propagation rule bodies. Evaluating these propagation
queries has the advantage that the respective state relations will only be par-
tially materialized. As an example, let us consider the specific deductive database
D = ∈F ,R, I⊆ with R consisting of the well-known rules for the transitive closure
p of relation e:

R : p(X, Y) → e(X, Y)
p(X, Y) → e(X, Z), p(Z, Y)

F : edge(1, 2), edge(1, 4), edge(3, 4)
edge(10, 11), edge(11, 12), . . . , edge(98, 99), edge(99, 100)

Note that the derived relation p consists of 4098 tuples. Suppose a given up-
date contains the new tuple e(2, 3) to be inserted into D and we are interested
in finding the resulting consequences for p. Computing the induced update by
evaluating the stratifiable propagation and transition rules would lead to the
generation of 94 new state facts for relation e, 4098 old state facts for p and
4098 + 3 new state facts for p. The entire number of generated facts is 8296
for computing the three induced insertions

{
Σ+

p (1, 3),Σ+
p (2, 3),Σ+

p (2, 4)
}

with
respect to p.

However, the application of the Magic Updates rewriting with respect to the
propagation queries {Σ+

p (Z, Y),Σ+
e (X, Y),Σ+

e (X, Z)} provides a much better focus
on the changes to e. Within its application, the following subquery rules

m pnewbf (Z) →Σ+
e (X, Z) m pbb(X, Y) →Σ+

e (X, Y)
m enewfb (Z) →Σ+

p (Z, Y) m pbb(X, Y) →Σ+
e (X, Z) ℵ pnewbf (Z, Y)

m pbb(X, Y) →Σ+
p (Z, Y) ℵ enewfb (X, Z)

are generated. The respective queries Q = {m enew
fb ,m pnew

bf , . . .} allow to spe-
cialize the employed transition rules, e.g.

enewfb (X, Y) → m enewfb (Y) ℵ e(X, Y)ℵ¬Σ−
e (X, Y)

enewfb (X, Y) → m enewfb (Y)ℵΣ+
e (X, Y)

such that only relevant state tuples are generated. We denote the Magic Updates
transformed rules R ·≤RΔ ·≤RΔ

τ by RΔ
mu. Despite of the large number of rules in

A Uniform Fixpoint Approach to the Implementation of Inference Methods 83

RΔ
mu, the number of derived results remains relatively small. Quite similar to the

Magic sets approach, the Magic Updates rewriting may result in an unstratifiable
rule set. This is also the case for our example where the following negative cycle
occurs in the respective dependency graph:

Σ+
p

pos−∨ m pbb
pos−∨ pbb

neg−∨ Σ+
p

In [6] it has been shown, however, that the resulting rules must be at least
softly stratifiable such that the soft consequence operator could be used for
efficiently computing their well-founded model. Computing the induced update
by evaluating the Magic Updates transformed rules leads to the generation of
two new state facts for e, one old state fact and one new state fact for p. The
entire number of generated facts is 19 in contrast to 8296 for computing the
three induced insertions with respect to p.

3.3 View Updates

Bearing in mind the numerous benefits of the afore mentioned methods to query
optimization and update propagation, it seemed worthwhile to develop a sim-
ilar, i.e., incremental and transformation-based, approach to the dual problem
of view updating. In contrast to update propagation, view updating aims at de-
termining one or more base relation updates such that all given update requests
with respect to derived relations are satisfied after the base updates have been
successfully applied. In the following, we recall a transformation-based approach
to incrementally compute such base updates for stratifiable databases proposed
by the author in [7]. The approach extends and integrates standard techniques
for efficient query answering, integrity checking and update propagation. The
analysis of view updating requests usually leads to alternative view update re-
alizations which are represented in disjunctive form.

Magic View Updates

In our transformation-based approach, true view updates (VU) are considered
only, i.e., ground atoms which are presently not derivable for atoms to be in-
serted, or are derivable for atoms to be deleted, respectively. A method for view
updating determines sets of alternative updates (called VU realization) satisfying
a given request. There may be infinitely many realizations and even realizations
of infinite size which satisfy a given VU request. In our approach, a breadth-first
search is employed for determining a set of minimal realizations. A realization
is minimal in the sense that none of its updates can be removed without losing
the property of being a realization. As each level of the search tree is completely
explored, the result usually consists of more than one realization. If only VU
realizations of infinite size exist, our method will not terminate.

Given a VU request, view updating methods usually determine subsequent
VU requests in order to find relevant base updates. Similar to delta relations for
UP we will use the notion VU relation to access individual view updates with
respect to the relations of our system. For each relation p ∧ pred(R≤F) we use

84 A. Behrend

the VU relation ∇+
p (αx) for tuples to be inserted into D and ∇−

p (αx) for tuples
to be deleted from D. The initial set of delta facts resulting from a given VU
request is again represented by so-called VU seeds. Starting from the seeds, so-
called VU rules are employed for finding subsequent VU requests systematically.
These rules perform a top-down analysis in a similar way as the bottom-up
analysis implemented by the UP rules. As an example, consider the following
database D = ∈F ,R, I⊆ with F = {r2(2), s(2)}, I = {ic(2)} and the rules R:

p(X) → q1(X) q1(X) → r1(X) ℵ s(X)
p(X) → q2(X) q2(X) → r2(X)ℵ¬s(X)
ic(2) →¬au(2) au(X) → q2(X)ℵ¬q1(X)

The corresponding set of VU rules R∈ with respect to ∇+
p (2) is given by:

∇+
q1

(X)∨∇+
q1

(X)→∇+
p (X)

∇+
r1

(X) →∇+
q1

(X)ℵ¬r1(X) ∇+
r2

(X) →∇+
q2

(X)ℵ¬r2(X)
∇+

s (X) →∇+
q1

(X)ℵ¬s(X) ∇−
s (X) →∇+

q2
(X) ℵ s(X)

In contrast to the UP rules from Sect. 3.2, no explicit references to the new
database state are included in the above VU rules. The reason is that these
rules are applied iteratively over several intermediate database states before the
minimal set of realizations has been found. Hence, the apparent references to the
old state really refer to the current state which is continuously modified while
computing VU realizations. These predicates solely act as tests again queried
with respect to bindings from VU relations and thus will never be completely
evaluated.

Evaluating these rules using model generation with disjunctive facts leads to
two alternative updates, insertion {r1(2)} and deletion {s(2)}, induced by the
derived disjunction ∇+

r1
(2)∨∇−

s (2). Obviously, the second update represented by
∇−

s (2) would lead to an undesired side effect by means of an integrity violation.
In order to provide a complete method, however, such erroneous/incomplete
paths must be also explored and side effects repaired if possible. Determining
whether a computed update will lead to a consistent database state or not can
be done by applying a bottom-up UP process at the end of the top-down phase
leading to an irreparable constraint violation with respect to ∇−

s (2):

∇−
s (2) ∅ Σ+

q2
(2) ∅ Σ+

p (2),Σ+
au(2) ∅ Σ−

ic(2) � false

In order to see whether the violated constraint can be repaired, the subsequent
view update request ∇+

ic(2) with respect to D ought to be answered. The appli-
cation of R∈ yields

∅ ∇−
q2

(2),∇+
q2

(2) � false

∇+
ic(2) ∅ ∇−

aux(2) ⊂
∅ ∇+

q1
(2) ∅ ∇+

s (2),∇−
s (2) � false

showing that this request cannot be satisfied as inconsistent subsequent view
update requests are generated on this path. Such erroneous derivation paths will

A Uniform Fixpoint Approach to the Implementation of Inference Methods 85

be indicated by the keyword false. The reduced set of updates - each of them
leading to a consistent database state only - represents the set of realizations
Σ+

r1
(2).
An induced deletion of an integrity constraint predicate can be seen as a side

effect of an ‘erroneous’ VU. Similar side effects, however, can be also found when
induced changes to the database caused by a VU request may include derived
facts which had been actually used for deriving this view update. This effect is
shown in the following example for a deductive database D = ∈R,F , I⊆ with
R = {h(X)→ p(X) ℵ q(X) ℵ i, i→ p(X)ℵ¬q(X)}, F = {p(1)}, and I = Ø. Given
the VU request ∇+

h (1), the overall evaluation scheme for determining the only
realization {Σ+

q (1),Σ+
p (cnew1)} would be as follows:

∅ ∇+
p (cnew1)

∇+
h (1) ∅ ∇+

q (1) ∅ Σ+
q (1) ∅ Σ−

i ∅ ∇+
i ⊂

∅ ∇−
q (1),∇+

q (1) � false

The example shows the necessity of compensating side effects, i.e., the compen-
sation of the ‘deletion’ Σ−

i (that prevents the ‘insertion’ Σ+
h (1)) caused by the

tuple ∇+
q (1). In general the compensation of side effects, however, may in turn

cause additional side effects which have to be ‘repaired’. Thus, the view updating
method must alternate between top-down and bottom-up phases until all pos-
sibilities for compensating side effects (including integrity constraint violations)
have been considered, or a solution has been found. To this end, so-called VU
transition rules R∈

τ are used for restarting the VU analysis. For example, the
compensation of violated integrity constraints can be realized by using the fol-
lowing kind of transition rule Σ−

ic(αc) ∨ ∇+
ic(αc) for each ground literal ic(αc) ∧ I.

VU transition rules make sure that erroneous solutions are evaluated to false
and side effects are repaired.

Having the rules for the direct and indirect consequences of a given VU
request, a general application scheme for systematically determining VU real-
izations can be defined (see [7] for details). Instead of using simple propagation
rules R ·≤RΔ ·≤RΔ

τ , however, it is much more efficient to employ the correspond-
ing Magic Update rules. The top-down analysis rules R ·≤R∈ and the bottom-up
consequence analysis rules RΔ

mu ·≤R∈
τ are alternating applied. Note that the dis-

junctive rules R ·≤R∈ are stratifiable while RΔ
mu ·≤R∈

τ is softly stratifiable such
that a perfect model state [4,11] and a well-founded model generation must al-
ternately be applied. The iteration stops as soon as a realization for the given
VU request has been found. The correctness of this approach has been already
shown in [7].

4 Consequence Operators and Fixpoint Computations

In the following, we summarize the most important fixpoint-based approaches
for definite as well as indefinite rules. All these methods employ so-called conse-
quence operators which formalize the application of deductive rules for deriving

86 A. Behrend

new data. Based on their properties, a new uniform consequence operator is
developed subsequently.

4.1 Definite Rules

First, we recall the iterated fixpoint method for constructing the well-founded
model of a stratifiable database which coincides with its perfect model [17].

Definition 1. Let D = ∈F ,R⊆ be a deductive database, β a stratification on
D, R1 ·≤ . . . ·≤Rn the partition of R induced by β, I ∃ HD a set of ground atoms,
and [[R]]I the set of all ground instances of rules in R with respect to the set I.
Then we define

1. the immediate consequence operator TR(I) as

TR(I) := {H | H ∧ I ∨ ↔r ∧ [[R]]I : r ← H → L1 ℵ . . . ℵ Ln

such that Li ∧ I for all positive literals Li

and L /∧ I for all negative literals Lj ← ¬L},

2. the iterated fixpoint Mn as the last Herbrand model of the sequence

M1 := lfp(TR1 ,F),M2 := lfp(TR2 ,M1), . . . , Mn := lfp(TRn
,Mn−1),

where lfp (TR,F) denotes the least fixpoint of operator TR containing F .

3. and the iterated fixpoint model Mi
D as

Mi
D := Mn ·≤¬ · Mn.

This constructive definition of the iterated fixpoint model is based on the imme-
diate consequence operator introduced by van Emden and Kowalski. In [17] it
has been shown that the perfect model of a stratifiable database D is identical
with the iterated fixpoint model Mi

D of D.
Stratifiable rules represent the most important class of deductive rules as

they cover the expressiveness of recursion in SQL:1999. Our transformation-
based approaches, however, may internally lead to unstratifiable rules for which
a more general inference method is necessary. In case that unstratifiability is
caused by the application of Magic Sets, the so-called soft stratification approach
proposed by the author in [2] could be used.

Definition 2. Let D = ∈F ,R⊆ be a deductive database, βs a soft stratification
on D, P = P1 ·≤ . . . ·≤Pn the partition of R induced by βs, and I ∃ HD a set of
ground atoms. Then we define

1. the soft consequence operator T s
P(I) as

T s
P(I) :=

{
I if TPj

(I) = I for all j ∧ {1, . . . , n}
TPi

(I) with i = min{j | TPj
(I) � I}, otherwise.

where TPi
denotes the immediate consequence operator.

A Uniform Fixpoint Approach to the Implementation of Inference Methods 87

2. and the soft fixpoint model Ms
D as

Ms
D := lfp (T s

P ,F) ·≤¬ (lfp (T s
P ,F)).

Note that the sequence operator is based upon the immediate consequence opera-
tor and can even be used to determine the iterated fixpoint model of a stratifiable
database [6]. As an even more general alternative, the alternating fixpoint model
for arbitrary unstratifiable rules has been proposed in [12] on the basis of the
eventual consequence operator.

Definition 3. Let D = ∈F ,R⊆ be a deductive database, I+, I− ∃ HD sets of
ground atoms, and [[R]]I+ the set of all ground instances of rules in R with
respect to the set I+. Then we define

1. the eventual consequence operator T̂R∈I−⊆ as

T̂R∈I−⊆(I+) := {H | H ∧ I+ ∨ ↔r ∧ [[R]]I+ : r ← H → L1 ℵ . . . ℵ Ln

such that Li ∧ I+ for all positive literals Li

and L /∧ I− for all negative literals Lj ← ¬L},

2. the eventual consequence transformation ŜD as

ŜD(I−) := lfp(T̂R∈I−⊆,F),

3. and the alternating fixpoint model Ma
D as

Ma
D := lfp (Ŝ2

D,Ø) ·≤¬ Ŝ2
D(lfp (Ŝ2

D,Ø)),

where Ŝ2
D denotes the nested application of the eventual consequence trans-

formation, i.e., Ŝ2
D(I−) = ŜD(ŜD(I−)).

In [12] it has been shown that the alternating fixpoint model Ma
D coincides with

the well-founded model of a given database D. The induced fixpoint computation
may indeed serve as a universal model generator for arbitrary classes of deductive
rules. However, the eventual consequence operator is computationally expensive
due to the intermediate determination of supersets of sets of true atoms. With
respect to the discussed transformation-based approaches, the iterated fixpoint
model could be used for determining the semantics of the stratifiable subset of
rules in Rms for query optimization, RΔ

mu for update propagation, and RΔ
mu ·≤

R∈
τ for view updating. If these rule sets contain unstratifiable rules, the soft or

alternating fixpoint model generator ought be used while the first has proven to
be more efficient than the latter [2]. None of the above mentioned consequence
operators, however, can deal with indefinite rules necessary for evaluating the
view updating rules R ·≤R∈.

88 A. Behrend

4.2 Indefinite Rules

In [4], the author proposed a consequence operator for the efficient bottom-up
state generation of stratifiable disjunctive deductive databases. To this end, a
new version of the immediate consequence operator based on hyperresolution
has been introduced which extends Minker’s operator for positive disjunctive
Datalog rules [15]. In contrast to already existing model generation methods our
approach for efficiently computing perfect models is based on state generation.
Within this disjunctive consequence operator, the mapping red on indefinite
facts is employed which returns non-redundant and subsumption-free represen-
tations of disjunctive facts. Additionally, the mapping min models(F) is used for
determining the set of minimal Herbrand models from a given set of disjunctive
facts F . We identify a disjunctive fact with a set of atoms such that the occur-
rence of a ground atom A within a fact f can also be written as A ∧ f . The set
difference operator can then be used to remove certain atoms from a disjunction
while the empty set as result is interpreted as false.

Definition 4. Let D = ∈F ,R⊆ be a stratifiable disjunctive database rules,β a
stratification on D, R1 ·≤ . . . ·≤Rn the partition of R induced by β, I an arbitrary
subset of indefinite facts from the disjunctive Herbrand base [11] of D, and [[R]]I
the set of all ground instances of rules in R with respect to the set I Then we
define.

1. the disjunctive consequence operator T state
R as

T state
R (I) := red({H | H ∈ I ∨ ∃r ∈ [[R]]I : r ≡ A1 ∨ . . . ∨ Al ← L1 ∧ . . . ∧ Ln

with H = (A1 ∨ · · · ∨ Al ∨ f1 \ L1 ∨ · · · ∨ fn \ Ln ∨ C)

such that fi ∈ I ∧ Li ∈ fi for all positive literals Li

and Lj /∈ I for all negative literals Lj ≡ ¬L
and (Lj ∈ C ⇔ ∃M ∈ min models(I) :

Lj ∈ M for at least one negative literal Lj

and Lk ∈ M for all positive literals Lk

and Al /∈ M for all head literals of r)})

2. the iterated fixpoint state Sn as the last minimal model state of the sequence

S1 := lfp(T state
R1

,F), sLS2 := lfp(T state
R2

, S1), . . . , Sn := lfp(T state
Rn

, Sn−1),

3. and the iterated fixpoint state model MSD as
MSD := Sn ·≤¬ · Sn.

In [4] it has been shown that the iterated fixpoint state model MSD of a dis-
junctive database D coincides with the perfect model state of D. It induces
a constructive method for determining the semantics of stratifiable disjunctive
databases. The only remaining question is how integrity constraints are han-
dled in the context of disjunctive databases. We consider again definite facts

A Uniform Fixpoint Approach to the Implementation of Inference Methods 89

as integrity constraints, only, which must be derivable in every model of the
disjunctive database. Thus, only those models from the iterated fixpoint state
are selected in which the respective definite facts are derivable. To this end, the
already introduced keyword false can be used for indicating and removing incon-
sistent model states. The database is called consistent iff at least one consistent
model state exists.

This proposed inference method is well-suited for determining the semantics
of stratifiable disjunctive databases with integrity constraints. And thus, it seems
to be suited as the basic inference mechanism for evaluating view updating
rules. The problem is, however, that the respective rules contain unstratifiable
definite rules which cannot be evaluated using the inference method proposed
above. Hence, the evaluation techniques for definite (Sect. 4.1) and indefinite
rules (Sect. 4.2) do not really fit together and a new uniform approach is needed.

5 A Uniform Fixpoint Approach

In this section, a new version of the soft consequence operator is proposed which
is suited as efficient state generator for softly stratifiable definite as well as
stratifiable indefinite databases. The original version of the soft consequence
operator T s

P is based on the immediate consequence operator by van Emden and
Kowalski and can be applied to an arbitrary partition P of a given set of definite
rules. Consequently, its application does not always lead to correct derivations.
In fact, this operator has been designed for the application to softly stratified
rules resulting from the application of Magic Sets. However, this operator is also
suited for determining the perfect model of a stratifiable database.

Lemma 1. Let D = ∈F ,R⊆ be a stratifiable database and β a stratification of
R inducing the partition P of R. The perfect model MD of ∈F ,R⊆ is identical
with the soft fixpoint model of D, i.e.,

MD = lfp(T s
P ,F) ·≤¬ · lfp(T s

P ,F).

Proof. This property follows from the fact that for every partition P = P1

·≤ . . . Pn induced by a stratification, the condition pred(Pi) ∪ pred(Pj) = Ø with
i ≥= j must necessarily hold. As soon as the application of the immediate con-
sequence operator TPi

with respect to a certain layer Pi generates no new facts
anymore, the rules in Pi can never fire again. The application of the incorporated
min function then induces the same sequence of Herbrand models as in the case
of the iterated fixpoint computation. ⇔∞
Another property we need for extending the original soft consequence operator
is about the application of T state to definite rules and facts.

Lemma 2. Let r be an arbitrary definite rule and f be a set of arbitrary definite
facts. The single application of r to f using the immediate consequence operator
or the disjunctive consequence operator, always yields the same result, i.e.,

Tr(f) = T state
r (f).

90 A. Behrend

Proof. The proof follows from the fact that all non-minimal conclusions of T state

are immediately eliminated by the subsumption operator red. ⇔∞
The above proposition establishes the relationship between the definite and in-
definite case showing that the disjunctive consequence operator represents a
generalization of the immediate one. Thus, its application to definite rules and
facts can be used to realize the same derivation process as the one performed
by using the immediate consequence operator. Based on the two properties from
above, we can now consistently extend the definition of the soft consequence
operator which allows its application to indefinite rules and facts, too.

Definition 5. Let D = ∈F ,R⊆ be an arbitrary disjunctive database, I an ar-
bitrary subset of indefinite facts from the disjunctive Herbrand base of D, and
P = P1 ·≤ . . . ·≤Pn a partition of R. The general soft consequence operator T g

P(I)
is defined as

T g
P(I) :=

{
I if TPj

(I) = I for all j ∧ {1, . . . , n}
T state

Pi
(I) with i = min{j | T state

Pj
(I) � I}, otherwise.

where T state
Pi

denotes the disjunctive consequence operator.

In contrast to the original definition, the general soft consequence operator is
based on the disjunctive operator T state

Pi
instead of the immediate consequence

operator. The least fixpoint of T g
P can be used to determine the perfect model of

definite as well as indefinite stratifiable databases and the well-founded model
of softly stratifiable definite databases.

Theorem 1. Let D = ∈F ,R⊆ be a stratifiable disjunctive database and β a strat-
ification of R inducing the partition P of R. The perfect model state PSD of
∈F ,R⊆ is identical with the least fixpoint model of T g

P , i.e.,

PSD = lfp(T g
P ,F) ·≤¬ · lfp(T g

P ,F).

Proof. The proof directly follows from the correctness of the fixpoint computa-
tions for each stratum as shown in [4] and the same structural argument already
used in Lemma 1. ⇔∞
The definition of lfp(T g

P ,F) induces a constructive method for determining
the perfect model state as well as the well-founded model of a given database.
Thus, it forms a suitable basis for the evaluation of the rules Rms for query
optimization, RΔ

mu for update propagation, and RΔ
mu ·≤R∈

τ as well as R ·≤R∈

for view updating. This general approach to defining the semantics of different
classes of deductive rules is surprisingly simple and induces a rather efficient
inference mechanism in contrast to general well-founded model generators. The
soft stratification concept, however, is not yet applicable to indefinite databases
because ordinary Magic Sets can not be used for indefinite clauses. Nevertheless,
the resulting extended version of the soft consequence operator can be used as
a uniform basis for the evaluation of all transformation-based techniques men-
tioned in this paper.

A Uniform Fixpoint Approach to the Implementation of Inference Methods 91

6 Conclusion

In this paper, we have presented an extended version of the soft consequence
operator for the efficient top-down and bottom-up reasoning in deductive data-
bases. This operator allows for the efficient evaluation of softly stratifiable incre-
mental expressions and stratifiable disjunctive rules. It solely represents a the-
oretical approach but provides insights into design decisions for extending the
inference component of commercial database systems. The relevance and qual-
ity of the transformation-based approaches, however, has been already shown in
various practical research projects (e.g. [5,8]) at the University of Bonn.

References

1. Bancilhon, F., Ramakrishnan, R.: An Amateur’s introduction to recursive query
processing strategies. In: SIGMOD Conference 1986, pp. 16–52 (1986)

2. Behrend, A.: Soft stratification for magic set based query evaluation in deductive
databases. In: PODS 2003, New York, pp. 102–110, 9–12 June 2003

3. Behrend, A.: Optimizing exitstential queries in stratifiable deductive databases.
In: SAC 2005, pp. 623–628 (2005)

4. Behrend, A.: A fixpoint approach to state generation for stratifiable disjunctive
deductive databases. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007.
LNCS, vol. 4690, pp. 283–297. Springer, Heidelberg (2007)

5. Behrend, A., Dorau, C., Manthey, R., Schüller, G.: Incremental view-based analysis
of stock market data streams. In: IDEAS 2008, pp. 269–275. ACM, New York
(2008)

6. Behrend, A., Manthey, R.: Update propagation in deductive databases using soft
stratification. In: Benczúr, A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004.
LNCS, vol. 3255, pp. 22–36. Springer, Heidelberg (2004)

7. Behrend, A., Manthey, R.: A transformation-based approach to view updating in
stratifiable deductive databases. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS
2008. LNCS, vol. 4932, pp. 253–271. Springer, Heidelberg (2008)

8. Behrend, A., Schüller, G., Manthey, R.: AIMS: an sql-based system for airspace
monitoring. In: IWGS 2010, pp. 31–38. ACM, New York (2010)

9. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Logic Program. 10(1/2/3
& 4), 255–299 (1991)

10. Bry, F.: Logic programming as constructivism: a formalization and its application
to databases. In: PODS 1989, pp. 34–50 (1989)

11. Fernandez, J.A., Minker, J.: Semantics of disjunctive deductive databases. In: Hull,
R., Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 21–50. Springer, Heidelberg
(1992)

12. Kemp, D., Srivastava, D., Stuckey, P.: Bottom-up evaluation and query optimiza-
tion of well-founded models. Theoret. Comput. Sci. 146(1 & 2), 145–184 (1995)

13. Kuchenhoff, V.: On the efficient computation of the difference between consecu-
tive database states. In: Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991.
LNCS, vol. 566, pp. 478–502. Springer, Heidelberg (1991)

14. Manthey, R.: Reflections on some fundamental issues of rule-based incremental
update propagation. In: DAISD 1994, pp. 255–276, Universitat Politècnica de
Catalunya, 19–21 September 1994

92 A. Behrend

15. Minker, J.: On indefinite databases and the closed world assumption. In: Loveland,
D.W. (ed.) CADE 1982. LNCS, vol. 138, pp. 292–308. Springer, Heidelberg (1982)

16. Olivé, A.: Integrity constraints checking in deductive databases. In: VLDB 1991,
pp. 513–523 (1991)

17. Przymusinski, T.C.: On the declarative semantics of deductive databases and logic
programs. In: Foundations of Deductive Databases and Logic Programming, pp.
193–216. Morgan Kaufmann, Los Altos (1988)

18. Ramakrishnan, R.: Magic templates: a spellbinding approach to logic programs. J.
Logic Program. 11(3&4), 189–216 (1991)

19. Rohmer, J., Lescoeur, R., Kerisit, J.-M.: The Alexander method - a technique for
the processing of recursive axioms in deductive databases. New Gener. Comput.
4(3), 273–285 (1986)

20. Van Gelder, A.: The alternating fixpoint of logic programs with negation. J. Com-
put. Syst. Sci. 47(1), 185–221 (1993)

21. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

INAP Technical Papers II:
Answer-Set Programming
and Abductive Reasoning

Translating Answer-Set Programs
into Bit-Vector Logic

Mai Nguyen, Tomi Janhunen(B), and Ilkka Niemelä

Department of Information and Computer Science,
Aalto University School of Science, Espoo, Finland

{Tomi.Janhunen, Ilkka.Niemela}@aalto.fi

Abstract. Answer set programming (ASP) is a paradigm for declar-
ative problem solving where problems are first formalized as rule sets,
i.e., answer-set programs, in a uniform way and then solved by comput-
ing answer sets for programs. The satisfiability modulo theories (SMT)
framework follows a similar modelling philosophy but the syntax is based
on extensions of propositional logic rather than rules. Quite recently, a
translation from answer-set programs into difference logic was provided—
enabling the use of particular SMT solvers for the computation of answer
sets. In this paper, the translation is revised for another SMT fragment,
namely that based on fixed-width bit-vector theories. Consequently, even
further SMT solvers can be harnessed for the task of computing answer
sets. The results of a preliminary experimental comparison are also
reported. They suggest a level of performance which is similar to that
achieved via difference logic.

1 Introduction

Answer set programming (ASP) is a rule-based approach to declarative prob-
lem solving [5,13,21,23]. The idea is to first formalize a given problem as a set
of rules, also called an answer-set program, so that the answer sets of the pro-
gram correspond to the solutions of the problem. Such problem descriptions are
typically devised in a uniform way which distinguishes general principles and
constraints of the problem in question from any instance-specific data. To this
end, term variables are deployed for compact representation of rules. Solutions
themselves can then be found out by grounding the rules of the answer-set pro-
gram, and by computing answer sets for the resulting ground program using an
answer set solver. State-of-the-art answer set solvers are already very efficient
search engines [7,10] and have a wide range of industrial applications.

The satisfiability modulo theories (SMT) framework [3] follows a similar
modelling philosophy but the syntax is based on extensions of propositional
logic rather than rules with term variables. The SMT framework enriches tradi-
tional satisfiability (SAT) checking [4] in terms of background theories which are
selected amongst a number of alternatives.1 Parallel to propositional atoms, also

1 http://combination.cs.uiowa.edu/smtlib/

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 95–113, 2013.
DOI: 10.1007/978-3-642-41524-1 6, c© Springer-Verlag Berlin Heidelberg 2013

http://combination.cs.uiowa.edu/smtlib/

96 M. Nguyen et al.

theory atoms involving non-Boolean variables2 can be used to model potentially
infinite domains. Theory atoms are typically used to express various constraints
such as linear constraints, difference constraints, etc., and they enable very con-
cise representations of certain problem domains for which plain Boolean logic
would be more verbose or insufficient in the first place.

As regards the relationship of ASP and SMT, it was quite recently shown
[18,24] that answer-set programs can be efficiently translated into a simple SMT
fragment, namely difference logic (DL) [25]. This fragment is based on theory
atoms of the form x − y → k formalizing an upper bound k on the difference of
two integer-domain variables x and y. Although the required transformation is
linear, it cannot be expected that such theories are directly written by humans in
order to express the essentials of ASP in SMT. The translations from [18,24] and
their implementation called lp2diff3 enable the use of particular SMT solvers
for the computation of answer sets. Our experimental results [18] indicate that
the performance obtained in this way is surprisingly close to that of state-of-the-
art answer set solvers. The results of the third ASP competition [7], however,
suggest that the performance gap has grown since the previous competition. To
address this trend, our current and future agendas include a number of points:

– To gradually increase the number of supported SMT fragments which enables
the use of further SMT solvers for the task of computing answer sets.

– To continue the development of new translation techniques from ASP to SMT.
– To submit ASP-based benchmark sets to future SMT competitions (SMT-

COMPs) to foster the efficiency of SMT solvers on problems that are relevant
for ASP.

– To develop new integrated languages that combine features of ASP and SMT,
and aim at implementations via translation into pure SMT as initiated in [16].

This paper contributes to the first item by devising a translation from answer-
set programs into theories of bit-vector logic. There is a great interest to develop
efficient solvers for this particular SMT fragment due to its industrial relevance.
In view of the second item, we generalize an existing translation from [18] to
the case of bit-vector logic. Using an implementation of the new translation,
viz. lp2bv, new benchmark classes can be created to support the third item
on our agenda. Finally, the translation also creates new potential for language
integration. In the long run, rule-based languages and, in particular, the modern
grounders exploited in ASP can provide valuable machinery for the generation of
SMT theories in analogy to answer-set programs—meaning that the source code
of an SMT theory can be compacted using rules and term variables [16] and spec-
ified in a uniform way which is independent of any concrete problem instances.
Analogous approaches [2,12,22] combine ASP and constraint programming tech-
niques without performing a translation into a single formalism.

The rest of this paper is organized as follows. First, the basic definitions
and concepts of answer-set programs and fixed-width bit-vector logic are briefly
2 However, variables in SMT are syntactically represented by (functional) constants

having a free interpretation over a specific domain such as integers or reals.
3 http://www.tcs.hut.fi/Software/lp2diff/

http://www.tcs.hut.fi/Software/lp2diff/

Translating Answer-Set Programs into Bit-Vector Logic 97

reviewed in Sect. 2. The new translation from answer-set programs into bit-
vector theories is then devised in Sect. 3. The extended rule types of smodels-
compatible systems are addressed in Sect. 4. Such extensions can be covered
either by native translations into bit-vector logic or translations into normal
programs. As part of this research, we carried out a number of experiments
using benchmarks from the second ASP competition [10] and two state-of-the-
art SMT solvers, viz. boolector and z3. The results of the experiments are
reported in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

The goal of this section is to briefly review the source and target formalisms for
the new translation devised in the sequel. First, in Sect. 2.1, we recall normal
logic programs subject to answer-set semantics and the main concepts exploited
in their translation. A formal account of bit-vector logic follows in Sect. 2.2.

2.1 Normal Logic Programs

As usual, we define a normal logic program P as a finite set of rules of the form

a ℵ b1, . . . , bn,∼ c1, . . . ,∼ cm (1)

where a, b1, . . . , bn, and c1, . . . , cm are propositional atoms and ∼ denotes default
negation. The head of a rule r of the form (1) is hd(r) = a whereas the part after
the symbol ℵ forms the body of r, denoted by bd(r). The body bd(r) consists
of the positive part bd+(r) = {b1, . . . , bn} and the negative part bd−(r) =
{c1, . . . , cm} so that bd(r) = bd+(r) ← {∼ c | c ≤ bd−(r)}. Intuitively, a rule r
of the form (1) appearing in a program P is used as follows: the head hd(r) can
be inferred by r if the positive body atoms in bd+(r) are inferable by the other
rules of P , but not the negative body atoms in bd−(r). The positive part of the
rule, r+ is defined as hd(r) ℵ bd+(r). A normal logic program is called positive
if r = r+ holds for every rule r ≤ P .

Semantics. To define the semantics of a normal program P , we let At(P)
stand for the set of atoms that appear in P . An interpretation of P is any subset
I ∈ At(P) such that for an atom a ≤ At(P), a is true in I, denoted I |= a,
iff a ≤ I. For any negative literal ∼ c, I �∼ c iff I ⊆|=c iff c ⊆≤ I. A rule r is
satisfied in I, denoted I |= r, iff I |= bd(r) implies I |= hd(r). An interpretation
I is a classical model of P , denoted I |= P , iff, I |= r holds for every r ≤ P .
A model M |= P is a minimal model of P iff there is no M ∼ |= P such that
M ∼ ∪ M . Each positive normal program P has a unique minimal model, i.e., the
least model of P denoted by LM(P) in the sequel. The least model semantics can
be extended for an arbitrary normal program P by reducing P into a positive
program PM = {r+ | r ≤ PandM ∃ bd−(r) = ∧} with respect to M ∈ At(P).
Then answer sets, originally known as stable models [14], can be defined.

98 M. Nguyen et al.

Definition 1 (Gelfond and Lifschitz [14]). An interpretation M ∈ At(P) is
an answer set of a normal program P iff M = LM(PM).

Generally speaking, the number of answer sets associated with a normal program
P can vary. Thus, we write AS(P) for the set of answer sets possessed by the
program P .

Example 1. Consider a normal program P [18] consisting of the following six
rules:

a ℵ b, c. a ℵ d. b ℵ a,∼ d.
b ℵ a,∼ c. c ℵ∼ d. d ℵ∼ c.

The answer sets of P are M1 = {a, b, d} and M2 = {c}. The reduct PM1 asso-
ciated with the first answer set is {a ℵ b, c; a ℵ d; b ℵ a; d ℵ}. Thus, we
obtain LM(PM1) = {a, b, d} = M1. To verify the latter, we note that the reduct
PM2 = {a ℵ b, c; b ℵ a; c ℵ; a ℵ d} for which LM(PM2) = {c}. On the other
hand, we have PM3 = PM2 for M3 = {a, b, c} witnessing M3 ⊆≤ AS(P). �

In what follows, we present some concepts and results that are relevant to
capture answer sets in terms of propositional logic and its extensions in the SMT
framework.

Completion . Given a normal program P and an atom a ≤ At(P), the definition
of a in P is the set of rules DefP (a) = {r ≤ P | hd(r) = a}. The completion of
a normal program P , denoted by Comp(P), is a propositional theory [8] which
contains

a ↔
∨

r∈DefP (a)

(∧

b∈bd+(r)

b ∨
∧

c∈bd−(r)

¬c
)

(2)

for each atom a ≤ At(P). Given a propositional theory T and its signature
At(T), the semantics of T is determined by CM(T) = {M ∈ At(T) | M |= T}.
It is possible to relate CM(Comp(P)) with the models of a normal program P by
distinguishing supported models [1] for P . A model M |= P is a supported model
of P iff for every atom a ≤ M there is a rule r ≤ P such that hd(r) = a and M |=
bd(r). In general, the set of supported models SuppM(P) of a normal program
P coincides with CM(Comp(P)). It can be shown [20] that stable models are
also supported models but not necessarily vice versa. This means that in order
to capture AS(P) using Comp(P), the latter has to be extended in terms of
additional constraints as done, e.g., in [15,18].

Example 2. For the program P of Example 1, the theory Comp(P) consists of
formulas

a ↔ (b ∨ c) ∇ d,
b ↔ (a ∨ ¬d) ∇ (a ∨ ¬c),
c ↔ ¬d, and
d ↔ ¬c.

The models of Comp(P), i.e., the supported models of P , are M1 = {a, b, d},
M2 = {c}, and M3 = {a, b, c}. Recall that M3 is not stable as shown in
Example 1. �

Translating Answer-Set Programs into Bit-Vector Logic 99

Dependency Graphs. The positive dependency graph of a normal program P ,
denoted by DG+(P), is a pair ∅At(P),→⊂ where b → a holds iff there is a rule
r ≤ P such that hd(r) = a and b ≤ bd+(r). Let →∞ denote the reflexive and
transitive closure of →. A strongly connected component (SCC) of DG+(P) is
a maximal non-empty subset S ∈ At(P) such that a →∞ b and b →∞ a hold
for each a, b ≤ S. The set of defining rules is generalized for an SCC S by
DefP (S) =

⋃
a∈S DefP (a). This set can be partitioned into the respective sets

of externally and internally supporting rules:

ExtP (S) = {r ≤ DefP (S) | bd+(r) ∃ S = ∧} (3)

IntP (S) = {r ≤ DefP (S) | bd+(r) ∃ S ⊆= ∧} (4)

It is clear by (3) and (4) that DefP (S) = ExtP (S) ↔ IntP (S) holds in general.

Example 3. In the case of the program P from Example 1, the SCCs of DG+(P)
are S1 = {a, b}, S2 = {c}, and S3 = {d}. For S1, we have ExtP (S1) = {a ℵ d}
while IntP (S1) consists of the remaining rules a ℵ b, c; b ℵ a,∼ c; and b ℵ
a,∼ d from the definitions of a and b. But for the singleton SCCs, IntP (S2) =
IntP (S3) = ∧. �

The strongly connected components of DG+(P) are essential when it comes
to the modularization of answer-set programs. Definition 1 concerns an entire
normal program and is therefore global by nature. The results from [26] allow
for localizing the stability condition using the strongly connected components
S1, . . . ,Sn of DG+(P). These components partition P into Defp(S1)↔ . . . ↔Defp
(Sn). Without going into all details, it is possible to define answer sets for each
part DefP (Si) where 1 → i → n separately so that AS(P)= AS(DefP (S1))�� . . . ��
AS(DefP (Sn)). Here the operator �� carries out the natural join of the answer
sets, i.e., if M1, . . . ,Mn are compatible4 interpretations for DefP (S1), . . . ,DefP
(Sn), then it holds for M = M1← . . . ←Mn, that M ≤ AS(P) iff M1 ≤ AS(DefP
(S1)), . . . , Mn ≤ AS(DefP (Sn)). This result is known as the module theorem [26]
and, in a sense, it captures the limits how far the idea of a modular translation
can be pushed in ASP. For certain purposes rule-level translations are insufficient
and entire modules have to be considered (see [15,17]). This is also the case
for this paper and the translation into bit-vector logic will take SCCs and the
respective modules into account. This also reduces the length of the translation.

2.2 Bit-Vector Logic

Fixed-width bit-vector theories have been introduced for high-level reasoning
about digital circuitry and computer programs in the SMT framework [3]. Such
theories are expressed in an extension of propositional logic where atomic formu-
las speak about bit vectors in terms of a rich variety of operators. A particular
file format5 is used.

4 Compatible interpretations assign the same truth values to their joint atoms.
5 http://goedel.cs.uiowa.edu/smtlib/papers/pdpar-proposal.pdf

http://goedel.cs.uiowa.edu/smtlib/papers/pdpar-proposal.pdf

100 M. Nguyen et al.

Syntax . As usual in the context of SMT, variables are realized as free constants
that are interpreted over a particular domain (such as integers or reals).6 In the
case of fixed-width bit-vector theories, this means that each constant symbol
x represents a vector x[1 . . . m] of bits of particular width m, denoted by w(x)
in the sequel. Such vectors enable a more compact representation of structures
like registers and often allow more efficient reasoning about them. A special
notation n is introduced to denote a bit vector that equals to n, i.e., n provides
a binary representation of n. We assume that the actual width m ≥ log2(n + 1)
is determined by the context where the notation n is used.

For the purposes of this paper, the most interesting arithmetic operator for
combining bit vectors is the addition of two m-bit vectors, denoted by the para-
meterized function symbol +m in an infix notation. The resulting vector is also
m-bit which can lead to an overflow if the sum exceeds 2m − 1. We use Boolean
operators =m and <m with the usual meanings for comparing the (unsigned) val-
ues of two m-bit vectors. Thus, assuming that x and y are m-bit free constants,
we may write atomic formulas like x =m y and x <m y in order to compare the
m-bit values of x and y. In addition to syntactic elements mentioned so far, we
can use the primitives of propositional logic to build more complex well-formed
formulas of bit-vector logic. The syntax defined for the SMT library contains
further primitives which are skipped in this paper. A theory T in bit-vector logic
is a set of well-formed bit-vector formulas as illustrated next.

Example 4. Consider a system of two processes, say A and B, and a theory
T = {a ⇔ (x <2 y), b ⇔ (y <2 x)} formalizing a scheduling policy for them.
The intuitive reading of a (resp. b) is that process A (resp. B) is scheduled with
a higher priority and, thus, should start earlier. The constants x and y denote
the respective starting times of A and B. Thus, e.g., x <2 y means that process
A starts before process B. �

Semantics. Given a bit-vector theory T , we write At(T) and FC(T) for the
sets of propositional atoms and free constants, respectively, appearing in T . To
determine the semantics of T , we define interpretations for T as pairs ∅I, τ⊂
where I ∈ At(T) is a standard propositional interpretation and τ is a partial
function that maps a free constant x ≤ FC(T) and an index 1 → i → w(x)
to the set of bits {0, 1}. Given τ , a free constant x ≤ FC(T) is mapped onto
τ(x) =

∑w(x)
i=1 (τ(x, i) · 2w(x)−i) and, in particular, τ(n) = n for any n. To cover

any well-formed terms 7 t1 and t2 involving +m and m-bit free constants from
FC(T), we define τ(t1 +m t2) = τ(t1) + τ(t2) mod 2m and w(t1 +m t2) = m.
Hence, the value τ(t) can be determined for any well-formed term t which enables
the evaluation of more complex formulas as formalized below.

6 We use typically symbols x, y, z to denote such free (functional) constants and sym-
bols a, b, c to denote propositional atoms.

7 The constants and operators appearing in a well-formed term t are based on a fixed
width m. Moreover, the width w(x) of each free constant x ∈ FC(T) must be the
same throughout T .

Translating Answer-Set Programs into Bit-Vector Logic 101

Definition 2. Let T be a bit-vector theory, a ≤ At(T) a propositional atom, t1
and t2 well-formed terms over FC(T) such that w(t1) = w(t2), and φ and ψ
well-formed formulas. Given an interpretation ∅I, τ⊂ for the theory T , we define

1. ∅I, τ⊂ |= a ∞∗ a ≤ I,
2. ∅I, τ⊂ |= t1 =m t2 ∞∗ τ(t1) = τ(t2),
3. ∅I, τ⊂ |= t1 <m t2 ∞∗ τ(t1) < τ(t2),
4. ∅I, τ⊂ |= ¬φ ∞∗ ∅I, τ⊂ ⊆|= φ,
5. ∅I, τ⊂ |= φ ∇ ψ ∞∗ ∅I, τ⊂ |= φ or ∅I, τ⊂ |= ψ,
6. ∅I, τ⊂ |= φ ⇔ ψ ∞∗ ∅I, τ⊂ ⊆|= φ or ∅I, τ⊂ |= ψ, and
7. ∅I, τ⊂ |= φ ↔ ψ ∞∗ ∅I, τ⊂ |= φ if and only if ∅I, τ⊂ |= ψ.

The interpretation ∅I, τ⊂ is a model of T , i.e., ∅I, τ⊂ |= T , iff ∅I, τ⊂ |= φ for all
φ ≤ T .

It is clear by Definition 2 that pure propositional theories T are treated clas-
sically, i.e., ∅I, τ⊂ |= T iff I |= T in the sense of propositional logic.

Example 5. Recalling the theory T = {a ⇔ (x <2 y), b ⇔ (y <2 x)} from
Example 4, we have the sets of symbols At(T) = {a, b} and FC(T) = {x, y}.
Furthermore, we observe that there is no model of T of the form ∅{a, b}, τ⊂
because it is impossible to satisfy x <2 y and y <2 x simultaneously using any
partial function τ . On the other hand, there are 6 models of the form ∅{a}, τ⊂
because x <2 y can be satisfied in 3 + 2 + 1 = 6 ways by picking different values
for the 2-bit vectors x and y. �

3 Translation

In this section, we present a translation of a logic program P into a bit-vector
theory BV(P) that is similar to an existing translation [18] into difference logic.
As its predecessor, the translation BV(P) consists of two parts. Clark’s comple-
tion [8], denoted by CC(P), forms the first part of BV(P). The second part, i.e.,
R(P), is based on ranking constraints from [24] so that BV(P) = CC(P)←R(P).
Intuitively, the idea is that the completion CC(P) captures supported models of
P [1] and the further formulas in R(P) exclude the non-stable ones so that any
classical model of BV(P) corresponds to a stable model of the input program P .
The completion CC(P) is formed for each atom a ≤ At(P) on the basis of (2)
but by taking into account a number of special cases:

1. If DefP (a) = ∧, the formula ¬a captures the resulting empty disjunction in
(2).

2. If there is r ≤ DefP (a) such that bd(r) = ∧, then one of the disjuncts in
(2) is trivially true and the formula a can be used as such to capture the
definition of a.

102 M. Nguyen et al.

3. If DefP (a) = {r} for a single rule r ≤ P with n + m > 0, then we simplify
(2) to a formula of the form

a ↔
∧

b∈bd+(r)

b ∨
∧

c∈bd−(r)

¬c. (5)

4. Otherwise, the set DefP (a) contains at least two rules (1) with n + m > 0
and

a ↔
∨

r∈DefP (a)

bdr (6)

is introduced using a new atom bdr for each r ≤ DefP (a) together with a
formula

bdr ↔
∧

b∈bd+(r)

b ∨
∧

c∈bd−(r)

¬c. (7)

The rest of the translation exploits the SCCs of the positive dependency graph of
P that was defined in Sect. 2.1. The motivation is to limit the scope of ranking
constraints which favors the length of the resulting translation. In particular,
singleton components SCC(a) = {a} require no special treatment if tautolog-
ical rules with a ≤ {b1, . . . , bn} in (1) have been removed as a preprocessing
step. Plain completion (2) is sufficient for atoms involved in such components.
However, for each atom a ≤ At(P) having a non-trivial component SCC(a) in
DG+(P) such that |SCC(a)| > 1, two new atoms exta and inta are introduced
to formalize the external and internal support for a, respectively. These atoms
are defined in terms of equivalences

exta ↔
∨

r∈ExtP (a)

bdr (8)

inta ↔
∨

r∈IntP (a)

[
bdr ∨

∧

b∈bd+(r)∗SCC(a)

(xb <m xa)
]

(9)

where xa and xb are bit vectors of width m = �log2(|SCC(a)|+1)� introduced for
all atoms involved in SCC(a). The formulas (8) and (9) are called weak ranking
constraints and they are accompanied by propositional formulas

a ⇔exta ∇ inta, (10)
¬exta ∇ ¬inta. (11)

Moreover, when ExtP (a) ⊆= ∧ and the atom a happens to gain external support
from these rules, the value of xa is fixed to 0 by including the formula

exta ⇔ (xa =m 0). (12)

Example 6. Recall the program P from Example 1. The completion CC(P) is:

a ↔ bd1 ∇ bd2. bd1 ↔ b ∨ c. bd2 ↔ d.
b ↔ bd3 ∇ bd4. bd3 ↔ a ∨ ¬d. bd4 ↔ a ∨ ¬c.
c ↔ ¬d.
d ↔ ¬c.

Translating Answer-Set Programs into Bit-Vector Logic 103

Since P has only one non-trivial SCC, i.e., the component SCC(a) = SCC(b) =
{a, b}, the weak ranking constraints resulting in R(P) are

exta ↔ bd2. inta ↔ bd1 ∨ (xb <2 xa).
extb ↔ ⊥ .
intb ↔ [bd3 ∨ (xa <2 xb)] ∇ [bd4 ∨ (xa <2 xb)].

In addition to these, the formulas

a ⇔ exta ∇ inta. ¬exta ∇ ¬inta. exta ⇔ (xa =2 0).
b ⇔ extb ∇ intb. ¬extb ∇ ¬intb.

are also included in R(P). �

Weak ranking constraints are sufficient whenever the goal is to compute only
one answer set, or to check the existence of answer sets. However, they do not
guarantee a one-to-one correspondence between the elements of AS(P) and the
set of models obtained for the translation BV(P). To address this discrepancy,
and to potentially make the computation of all answer sets or counting the
number of answer sets more effective, strong ranking constraints can be imported
from [18] as well. Actually, there are two mutually compatible variants of strong
ranking constraints:

bdr ⇔
∨

b∈bd+(r)∗SCC(a)

¬(xb +m 1 <m xa) (13)

inta ⇔
∨

r∈IntP (a)

[bdr ∨
∨

b∈bd+(r)∗SCC(a)

(xa =m xb +m 1)]. (14)

The local strong ranking constraint (13) is introduced for each r ≤ IntP (a). It
is worth pointing out that the condition ¬(xb +m 1 <m xa) is equivalent to
xb +m 1 ≥m xa.8

On the other hand, the global variant (14) covers the internal support of a
entirely. Finally, in order to prune copies of models of the translation that would
correspond to the exactly same answer set of the original program, a formula

¬a ⇔ (xa =m 0) (15)

is included for every atom a involved in a non-trivial SCC. We write Rl(P) and
Rg(P) for the respective extensions of R(P) with local/global strong ranking
constraints, and Rlg(P) obtained using both. Similar conventions are applied to
BV(P) to distinguish four variants in total. The correctness of these translations
is addressed next.

8 However, the form in (13) is used in our implementation, since +m and <m are
amongst the base operators of the boolector system.

104 M. Nguyen et al.

Theorem 1. Let P be a normal program and BV(P) its bit-vector translation.

1. If S is an answer set of P , then there is a model ∅M, τ⊂ of BV(P) such that
S = M ∃ At(P).

2. If ∅M, τ⊂ is a model of BV(P), then S = M ∃ At(P) is an answer set of P .

Proof. To establish the correspondence of answer sets and models as formalized
above, we appeal to the analogous property of the translation of P into difference
logic (DL), denoted here by DL(P). In DL, theory atoms x → y + k constrain
the difference of two integer variables x and y. Models can be represented as
pairs ∅I, τ⊂ where I is a propositional interpretation and τ maps free constants
of theory atoms to integers so that ∅I, τ⊂ |= x → y + k ∞∗ τ(x) → τ(y) + k.
The rest is analogous to Definition 2.

(=∗) Suppose that S is an answer set of P . Then the results of [18]
imply that there is a model ∅M, τ⊂ of DL(P) such that S = M ∃ At(P). Since
the valuation τ ranges over integers, the image of each non-trivial SCC S of
DG+(P) under τ might contain gaps. Thus, we have to condense τ for each S
as follows. An SCC S is partitioned into S0↔ . . . ↔Sn such that (i) τ(xa) = τ(xb)
for each 0 → i → n and a, b ≤ Si, (ii) τ(xa) = τ(z)9 for each a ≤ S0, and (iii) for
each 0 → i < j → n, a ≤ Si, and b ≤ Sj , τ(xa) → τ(xb). Then define τ ∼ for the bit
vector xa associated with an atom a ≤ Si by setting τ ∼(xa, j) = 1 iff the jth bit of
i is 1, i.e., τ ∼(xa) = i. It follows that ∅I, τ⊂ |= xb → xa − 1 iff ∅I, τ ∼⊂ |= xb <m xa

for any a, b ≤ S. Moreover, we have ∅M, τ⊂ |= (xa → z + 0) ∨ (z → xa + 0) iff
∅M, τ ∼⊂ |= xa =m 0 for any a ≤ S. Due to the similar structures of DL(P) and
BV(P), we obtain ∅M, τ⊂ |= BV(P) as desired.

(∞=) Let ∅M, τ⊂ be a model of BV(P). Then define τ ∼ such that τ ∼(x) =
∑w(x)

i=1 (τ(x, i) · 2w(x)−i) where x on the left hand side stands for the integer
variable corresponding to the bit vector x on the right hand side. It follows that
∅I, τ⊂ |= xb <m xa iff ∅I, τ ∼⊂ |= xb → xa − 1. By setting τ ∼(z) = 0, we obtain
∅M, τ⊂ |= xa =m 0 if and only if ∅M, τ ∼⊂ |= (xa → z+0)∨(z → xa+0). The strong
analogy present in the structures of BV(P) and DL(P) implies that ∅M, τ ∼⊂ is a
model of DL(P). Thus, S = M ∃ At(P) is an answer set of P by [18]. �↔

Even tighter relationships of answer sets and models can be established for
the translations BVl(P), BVg(P), and BVlg(P). It can be shown that the model
∅M, τ⊂ of BV∞(P) corresponding to an answer set S of P is unique, i.e., there is
no other model ∅N, τ ∼⊂ of the translation such that S = N ∃At(P). These results
contrast with [18]: the analogous extensions DL∞(P) guarantee the uniqueness
of M in a model ∅M, τ⊂ but there are always infinitely many copies ∅M, τ ∼⊂ of
∅M, τ⊂ such that ∅M, τ ∼⊂ |= DL∞(P). Such a valuation τ ∼ can be simply obtained
by setting τ ∼(x) = τ(x) + 1 for any x.

9 A special variable z is used as a placeholder for the constant 0 in the translation
DL(P) [18].

Translating Answer-Set Programs into Bit-Vector Logic 105

4 Native Support for Extended Rule Types

The input syntax of the smodels system was soon extended by further rule
types [27]. In solver interfaces, the rule types usually take the following simple
syntactic forms:

{a1, . . . ,ak} ℵ b1, . . . ,bn,∼ c1, . . . ,∼ cm. (16)
a ℵ l{b1, . . . ,bn,∼ c1, . . . ,∼ cm}. (17)

a ℵ l{b1 = wb1 , . . . ,bn = wbn ,∼ c1 = wc1 , . . . ,∼ cm = wcm}. (18)

The body of a choice rule (16) is interpreted in the same way as that of a
normal rule (1). The head, in contrast, allows to derive any subset of atoms
a1, . . . ,ak, if the body is satisfied, and to make a choice in this way. The head
a of a cardinality rule (17) is derived, if its body is satisfied, i.e., the number of
satisfied literals amongst b1, . . . ,bn and ∼ c1, . . . ,∼ cm is at least l acting as the
lower bound. A weight rule of the form (18) generalizes this idea by assigning
arbitrary positive weights to literals (rather than 1s). The body is satisfied if
the sum of weights assigned to satisfied literals is at least l, thus, enabling one
to infer the head a using the rule. In practice, the grounding components used
in ASP systems allow for more versatile use of cardinality and weight rules,
but the primitive forms (16), (17), and (18) provide a solid basis for efficient
implementation via translations. The reader is referred to [27] for a generalization
of answer sets for programs involving such extended rule types. The respective
class of weight constraint programs (WCPs) is typically supported by smodels-
compatible systems.

Whenever appropriate, it is possible to translate extended rule types as intro-
duced above back to normal rules. To this end, a number of transformations are
addressed in [17] and they have been implemented as a tool called lp2normal.10

For instance, the head of a choice rule (16) can be captured in terms of rules

a1 ℵ b,∼ a1. . . . ak ℵ b,∼ ak.
a1 ℵ∼ a1. . . . ak ℵ∼ ak.

where a1, . . . ,ak are new atoms and b is a new atom standing for the body of
(16) which can be defined using (16) with the head replaced by b. We assume
that this transformation is applied at first to remove choice rules when the goal
is to translate extended rule types into bit-vector logic. The strengths of this
transformation are locality, i.e., it can be applied on a rule-by-rule basis, and
linearity with respect to the length of the original rule (16). In contrast, linear
normalization of cardinality and weight rules seems impossible. Thus, we also
provide direct translations into formulas of bit-vector logic.

We present the translation of a weight rule (18) whereas the translation of a
cardinality rule (17) is obtained as a special case wb1= . . . =wbn = wc1= . . . =wcm

= 1. The body of a weight rule can be evaluated using bit vectors s1, . . . ,sn+m of

10 http://www.tcs.hut.fi/Software/asptools/

http://www.tcs.hut.fi/Software/asptools/

106 M. Nguyen et al.

width k = �log2(
∑n

i=1 wbi +
∑m

i=1 wci +1)� constrained by 2× (n+m) formulas

b1 ⇔ (s1 =k wb1), ¬b1 ⇔ (s1 =k 0),
b2 ⇔ (s2 =k s1 +k wb2), ¬b2 ⇔ (s2 =k s1),
...

...
bn ⇔ (sn =k sn−1 +k wbn), ¬bn ⇔ (sn =k sn−1),

c1 ⇔ (sn+1 =k sn), ¬c1 ⇔ (sn+1 =k sn +k wc1),
...

...
cm ⇔ (sn+m =k sn+m−1), ¬cm ⇔ (sn+m =k sn+m−1 +k wcm).

The translation formalizes a case analysis where the truth values of literals are
checked one-by-one and the resulting weight sum is accumulated in bit vectors
s1, . . . ,sn+m. The final sum appears as the value of sn+m. The lower bound l
of (18) can be checked in terms of the formula ¬(sn+m <k l) where we assume
that l is of width k, since the rule can be safely deleted otherwise. In view of the
overall translation, the formula bdr ↔ ¬(sn+m <k l) can be used in conjunction
with the completion formula (6).

Weight rules also contribute to the dependency graph DG+(P) in analogy
to normal rules, i.e., the head a potentially depends on all positive body atoms
b1, . . . ,bn in (18). For this reason, the effect on the external (8) and internal
(9) support of the head atom a has to be formalized in analogy to [19]. The
contribution of a weight rule r with hd(r) = a to the external support of a
amounts to a further disjunct to be incorporated in (8). The condition checks
whether the weight sum for satisfied positive literals in bd+(r) \ SCC(a) and
negative literals in {∼ c | c ≤ bd−(r)} is greater than equal to the lower bound
l. The translation for this condition is obtained from the translation presented
above by dropping the positive literals of SCC(a) from the case analysis. A
similar condition for checking the internal support provided by a weight rule r
can be devised. Probably the easiest way is to introduce a new atom sb for each
b ≤ bd+(r) ∃ SCC(a) and to make it equivalent to the conjunction appearing in
(9) using a formula

sb ↔ bdr ∨
∧

bℵ∈bd+(r)∗SCC(a)

(xbℵ <m xa). (19)

The intuitive meaning of sb is that b has internal support. These new atoms can
then be substituted for the positive literals of bd+(r)∃SCC(a) in the translation.
With a little bit of reorganization most of the translations for the completion,
exta, and inta may share structure. For instance, the case analysis over negative
literals can be done only once and the resulting weight sum can be used as
the initial value for the other weight sums of interest. To summarize, we have
basically explained how the translation BV(P) can be generalized for programs
P having rules of the extended types (16)–(18).

Translating Answer-Set Programs into Bit-Vector Logic 107

gringo program.lp instance.lp \
| smodels -internal -nolookahead \
| lpcat -s=symbols.txt \
| lp2bv [-l] [-g] \
| boolector -fm

Fig. 1. Unix shell pipeline for running a benchmark instance

5 Experimental Results

A new translator called lp2bv was implemented as a derivative of lp2diff11

that translates logic programs into difference logic. In contrast, the new transla-
tor provides its output in the bit-vector format. In analogy to its predecessor, it
expects to receive its input in the smodels12 file format. Models of the resulting
bit-vector theory are searched for using boolector13 (v. 1.4.1) [6] and z314

(v. 2.11) [9] as back-end solvers. The goal of our preliminary experiments was to
see how the performances of systems based on lp2bv compare with the perfor-
mance of a state-of-the-art ASP solver clasp15 (v. 1.3.5) [11]. The experiments
were based on the NP-complete benchmarks of the ASP Competition 2009. In
this benchmark collection, there are 23 benchmark problems with 516 instances
in total. Before invoking a translator and the respective SMT solver, we per-
formed a few preprocessing steps using the following tools:

– gringo (v. 2.0.5), for grounding the problem encoding and a given instance;
– smodels16 (v. 2.34), for simplifying the resulting ground program;
– lpcat (v. 1.18), for removing all unused atom numbers, for making the atom

table of the ground program contiguous, and for extracting the symbols for
later use; and

– lp2normal (version 1.11), for normalizing the program.

The last step is optional and not included as part of the pipeline in Fig. 1.
Pipelines of this kind were executed under Linux/Ubuntu operating system run-
ning on six-core AMD Opteron(TM) 2435 processors under 2.6 GHz clock rate
and with 2.7 GB memory limit that corresponds to the amount of memory avail-
able in the ASP Competition 2009.

For each system based on a translator and a back-end solver, there are four
variants of the system to consider: W indicates that only weak ranking con-
straints are used, while L, G, and LG mean that either local, or global, or both
local and global strong ranking constraints, respectively, are employed when
translating the logic program.

11 http://www.tcs.hut.fi/Software/lp2diff/
12 http://www.tcs.hut.fi/Software/smodels/
13 http://fmv.jku.at/boolector/
14 http://research.microsoft.com/en-us/um/redmond/projects/z3/
15 http://www.cs.uni-potsdam.de/clasp/
16 http://www.tcs.hut.fi/Software/smodels/

http://www.tcs.hut.fi/Software/lp2diff/
http://www.tcs.hut.fi/Software/smodels/
http://fmv.jku.at/boolector/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.cs.uni-potsdam.de/clasp/
http://www.tcs.hut.fi/Software/smodels/

108 M. Nguyen et al.

Table 1. Experimental results without normalization

INST CLASP LP2BV+BOOLECTOR LP2BV+Z3
Benchmark W L G LG W L G LG

Overall Performance 516 465 276 244 261 256 217 216 194 204
347/118 188/88 161/83 174/87 176/80 142/75 147/69 124/70 135/69

KnightTour 10 8/0 2/0 1/0 0/0 0/0 1/0 0/0 0/0 1/0
GraphColouring 29 8/0 7/0 7/0 7/0 7/0 6/0 7/0 7/0 7/0
WireRouting 23 11/11 2/3 1/1 1/2 0/2 1/3 0/0 0/0 0/1
DisjunctiveScheduling 10 5/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
GraphPartitioning 13 6/7 3/0 3/0 3/0 3/0 4/0 4/0 4/0 3/0
ChannelRouting 11 6/2 6/2 6/2 6/2 6/2 5/2 6/2 6/2 6/2
Solitaire 27 19/0 2/0 5/0 1/0 4/0 0/0 0/0 0/0 0/0
Labyrinth 29 26/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
WeightBoundedDominatingSet 29 26/0 18/0 18/0 17/0 18/0 12/0 12/0 11/0 12/0
MazeGeneration 29 10/15 8/15 1/15 0/15 0/16 5/16 1/15 0/15 1/15
15Puzzle 16 16/0 16/0 15/0 14/0 15/0 4/0 4/0 5/0 5/0
BlockedNQueens 29 15/14 2/2 0/2 1/2 0/2 1/0 2/0 2/0 0/0
ConnectedDominatingSet 21 10/10 10/11 9/8 10/11 6/3 10/10 9/10 10/9 10/9
EdgeMatching 29 29/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Fastfood 29 10/19 9/16 10/16 10/16 9/16 9/9 9/9 9/10 9/9
GeneralizedSlitherlink 29 29/0 29/0 20/0 29/0 29/0 29/0 29/0 16/0 29/0
HamiltonianPath 29 29/0 27/0 25/0 29/0 28/0 26/0 27/0 25/0 26/0
Hanoi 15 15/0 15/0 15/0 15/0 15/0 5/0 5/0 5/0 4/0
HierarchicalClustering 12 8/4 8/4 8/4 8/4 8/4 4/4 4/4 4/4 4/4
SchurNumbers 29 13/16 6/16 5/16 5/16 5/16 9/16 9/16 9/16 9/16
Sokoban 29 9/20 9/19 8/19 8/19 8/19 7/15 7/13 7/14 5/13
Sudoku 10 10/0 5/0 4/0 4/0 5/0 4/0 4/0 4/0 4/0
TravellingSalesperson 29 29/0 3/0 0/0 6/0 10/0 0/0 8/0 0/0 0/0

Table 1 collects the results from our experiments without normalization
whereas Table 2 shows the results when lp2normal [17] was used to remove
extended rule types discussed in Sect. 4. In both tables, the first column gives the
name of the benchmark, followed by the number of instances of that particular
benchmark in the second column. The following columns indicate the numbers
of instances that were solved by the systems considered in our experiments. A
notation like 8/4 means that the system was able to solve eight satisfiable and
four unsatisfiable instances in that particular benchmark. Hence, if there are
15 instances in a benchmark and the system could only solve 8/4, this means
that the system was unable to solve the remaining three instances within the
time limit of 600 seconds, i.e., ten minutes, per instance.17 As regards the num-
ber of solved instances in each benchmark, the best performing translation-based
approaches are highlighted in boldface. We also run the experiments using trans-
lator lp2diff with z3 as back-end solver. Rather than providing detailed per-
formance statistics, a summary can be found from Table 3—giving an overview
of experimental results in terms of total numbers of instances solved out of 516.

It is apparent that the systems based on lp2bv did not perform very well
without normalization. As indicated by Table 3, the overall performance was
17 One observation is that the performance of systems based on lp2bv is quite stable:

even when we extended the time limit to 20 minutes, the results did not change
much (differences of only one or two instances were perceived in most cases).

Translating Answer-Set Programs into Bit-Vector Logic 109

Table 2. Experimental results with normalization

INST CLASP LP2BV+BOOLECTOR LP2BV+Z3
Benchmark W L G LG W L G LG

Overall Performance 516 459 381 343 379 381 346 330 325 331
346/113 279/102 243/100 278/101 281/100 240/106 231/99 224/101 232/99

KnightTour 10 10/0 2/0 2/0 1/0 0/0 1/0 0/0 0/0 0/0
GraphColouring 29 9/0 8/0 8/0 8/0 8/0 9/2 9/2 9/2 9/2
WireRouting 23 11/11 2/6 1/3 1/3 1/3 2/7 1/4 1/4 1/3
DisjunctiveScheduling 10 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0
GraphPartitioning 13 4/1 5/0 5/0 4/0 5/0 2/1 2/1 2/1 2/0
ChannelRouting 11 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2
Solitaire 27 18/0 23/0 23/0 23/0 23/0 22/0 22/0 22/0 22/0
Labyrinth 29 27/0 1/0 1/0 2/0 3/0 0/0 0/0 0/0 0/0
WeightBoundedDominatingSet 29 25/0 15/0 15/0 15/0 16/0 10/0 10/0 10/0 10/0
MazeGeneration 29 10/15 8/15 0/15 0/15 0/16 5/16 0/15 0/15 0/15
15Puzzle 16 15/0 16/0 16/0 16/0 16/0 11/0 10/0 11/0 11/0
BlockedNQueens 29 15/14 14/14 14/14 14/14 14/14 15/14 15/14 15/14 15/14
ConnectedDominatingSet 21 10/11 10/11 8/11 9/11 9/10 10/11 9/11 9/11 9/11
EdgeMatching 29 29/0 29/0 29/0 29/0 29/0 29/0 29/0 29/0 29/0
Fastfood 29 10/19 9/14 9/15 9/16 9/15 0/13 0/10 0/12 0/12
GeneralizedSlitherlink 29 29/0 29/0 21/0 29/0 29/0 29/0 29/0 21/0 29/0
HamiltonianPath 29 29/0 29/0 28/0 29/0 29/0 29/0 29/0 29/0 29/0
Hanoi 15 15/0 15/0 15/0 15/0 15/0 15/0 15/0 15/0 15/0
HierarchicalClustering 12 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4
SchurNumbers 29 13/16 10/16 10/16 9/16 10/16 13/16 13/16 13/16 13/16
Sokoban 29 9/20 9/20 9/20 9/20 9/20 9/20 9/20 9/20 9/20
Sudoku 10 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0
TravellingSalesperson 29 29/0 16/0 0/0 27/0 27/0 0/0 0/0 0/0 0/0

Table 3. Summary of the experimental results

System W L G LG

LP2BV+BOOLECTOR 276 244 261 256
LP2BV+Z3 217 216 194 204
LP2DIFF+Z3 360 349 324 324

CLASP 465

LP2NORMAL2BV+BOOLECTOR 381 343 379 381
LP2NORMAL2BV+Z3 346 330 325 331
LP2NORMAL2DIFF+Z3 364 357 349 349

LP2NORMAL+CLASP 459

even worse than that of systems using lp2diff for translation and z3 for model
search. However, if the input was first translated into a normal logic program
using lp2normal, i.e., before translation into a bit-vector theory, the perfor-
mance was clearly better. Actually, it exceeded that of the systems based on
lp2diff and became closer to that of clasp. We note that normalization does
not help so much in case of lp2diff and the experimental results obtained using
both normalized and unnormalized instances are quite similar in terms of solved
instances. Thus, it seems that solvers for bit-vector logic are not able to make
the best of native translations of cardinality and weight rules from Section 4.

110 M. Nguyen et al.

We anticipate that this drawback goes back to the fact that boolector inter-
nally translates bit vectors into Boolean variables. Hence, the treatment of case
analysis formulas and bit vectors involved in the native translations can become
computationally costly. However, if an analogous translation into difference logic
is used, as implemented by lp2diff, such a negative effect was not perceived
using z3. Our understanding is that the efficient graph-theoretic satisfiability
check for difference constraints used in the search procedure of z3 turns the
native translation feasible as well. As indicated by our test results, boolector
is clearly better back-end solver for lp2bv than z3. This was to be expected
since boolector is a native solver for bit-vector logic whereas z3 supports a
wider variety of SMT fragments and is in that respect more generic. In addition,
the design of lp2bv takes into account operators of bit-vector logic which are
directly supported by boolector and not implemented as syntactic sugar.

In addition, we note on the basis of our results that the performance of the
state-of-the-art ASP solver clasp is significantly better, and the translation-
based approaches to computing stable models are still left behind. By the results
of Table 2, even the best variants of systems based on lp2bv did not work
well enough to compete with clasp. The difference is especially due to the fol-
lowing benchmarks: Knight Tour, Wire Routing, Graph Partitioning, Labyrinth,
Weight Bounded Dominating Set, Fastfood, and Travelling Salesperson. All of
them involve either recursive rules (Knight Tour, Wire Routing, and Labyrinth),
weight rules (Weight Bounded Dominating Set and Fastfood), or both (Graph
Partitioning and Travelling Salesperson). Hence, it seems that handling recur-
sive rules and weight constraints in the translational approach is less efficient
compared to their native implementation in clasp. When using the current
normalization techniques to remove cardinality and weight rules, the sizes of
ground programs tend to increase significantly and, in particular, if weight rules
are abundant. For example, after normalization the ground programs are ten
times larger for the benchmark Weight Bounded Dominating Set, and five times
larger for Fastfood. It is also worth pointing out that the efficiency of clasp
turned out to be insensitive to normalization.

While having trouble with recursive rules and weight constraints for par-
ticular benchmarks, the translational approach handles certain large instances
quite well. The largest instances in the experiments belong to the Disjunctive
Scheduling benchmark, of which all instances are ground programs of size over
one megabyte but after normalization18 the systems based on lp2bv can solve
as many instances as clasp.

6 Conclusion

In this paper, we present a novel and concise translation from normal logic pro-
grams into fixed-width bit-vector theories. Moreover, the extended rule types
supported by smodels-compatible answer set solvers can be covered via native
18 In this benchmark, normalization does not affect the size of grounded programs

significantly.

Translating Answer-Set Programs into Bit-Vector Logic 111

translations. The length of the resulting translation is linear with respect to
the length of the original program. The translation has been implemented as
a translator, lp2bv, which enables the use of bit-vector solvers in the search
for answer sets. Our preliminary experimental results indicate a level of per-
formance which is similar to that obtained using solvers for difference logic.
However, this presumes one first to translate extended rule types into normal
rules and then to apply the translation into bit-vector logic. One potential expla-
nation for such behavior is the way in which SMT solvers implement reasoning
with bit vectors: a predominant strategy is to translate theory atoms involv-
ing bit vectors into propositional formulas and to apply satisfiability checking
techniques systematically. We anticipate that an improved performance could
be obtained if native support for certain bit vector primitives were incorpo-
rated into SMT solvers directly. When comparing with the state-of-the-art ASP
solver clasp, we noticed that the performance of the translation-based approach
compared unfavorably, in particular, in benchmarks which contained recursive
rules or weight constraints or both. This indicates that the performance can be
improved by developing new translation techniques for these two features. In
order to obtain a more comprehensive view of the performance characteristics
of the translational approach, the plan is to extend our experimental setup to
include benchmarks that were used in the third ASP competition [7]. Moreover,
we intend to use the new SMT library format19 in the future versions of our
translators.

Acknowledgments. This research has been partially funded by the Academy of Fin-
land under the project“Methods for Constructing and Solving Large Constraint Models”
(MCM, #122399).

References

1. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming,
pp. 89–148. Morgan Kaufmann, Los Altos (1988)

2. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P. (ed.)
LPNMR 2011. LNCS, vol. 6645, pp. 284–296. Springer, Heidelberg (2011)

3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885.
IOS Press, Amsterdam (2009)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

6. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174–177. Springer, Heidelberg (2009)

19 http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf

http://goedel.cs.uiowa.edu/smtlib/papers/smt-lib-reference-v2.0-r10.12.21.pdf

112 M. Nguyen et al.

7. Calimeri, F., et al.: The third answer set programming competition: preliminary
report of the system competition track. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

8. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press, New York (1977)

9. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second
Answer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

12. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009)

13. Gelfond, M., Leone, N.: Logic programming and knowledge representation - the
A-Prolog perspective. Artif. Intell. 138(1–2), 3–38 (2002)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

15. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non-Classical Logics 16(1–2), 35–86 (2006)

16. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set
programming and satisfiability modulo theories. In: Working Notes of Grounding
and Transformations for Theories with Variables, Vancouver, Canada, pp. 1–13,
May 2011

17. Janhunen, T., Niemelä, I.: Compact Translations of Non-disjunctive Answer Set
Programs to Propositional Clauses. In: Balduccini, M., Son, T.C. (eds.) Logic
programming, knowledge representation, and nonmonotonic reasoning, vol. 6565,
pp. 111–130. Springer, Heidelberg (2011)

18. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions
to difference logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 142–154. Springer, Heidelberg (2009)

19. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer
programming. In: Proceedings of the 13th International Conference on Principles
of Knowledge Representation and Reasoning (KR), pp. 32–42. AAAI Press (2012)

20. Marek, V., Subrahmanian, V.: The relationship between stable, supported, default
and autoepistemic semantics for general logic programs. Theor. Comput. Sci.
103(2), 365–386 (1992)

21. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., et al. (eds.) The Logic Programming Paradigm: A
25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

22. Mellarkod, V.S., Gelfond, M.: Integrating answer set reasoning with constraint
solving techniques. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008.
LNCS, vol. 4989, pp. 15–31. Springer, Heidelberg (2008)

23. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

24. Niemelä, I.: Stable models and difference logic. Ann. Math. Artif. Intell. 53(1–4),
313–329 (2008)

Translating Answer-Set Programs into Bit-Vector Logic 113

25. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

26. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model
semantics for smodels programs. Theory Pract. Logic Program. 8(5–6), 717–761
(2008)

27. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1–2), 181–234 (2002)

Making Use of Advances in Answer-Set
Programming for Abstract Argumentation

Systems

Wolfgang Dvořák3, Sarah Alice Gaggl2, Johannes Peter Wallner1(B),
and Stefan Woltran1

1 Institute of Information Systems, Database and Artificial Intelligence Group,
Vienna University of Technology, Favoritenstraße 9-11, 1040 Wien, Austria

{wallner, woltran}@dbai.tuwien.ac.at
2 Technische Universität Dresden, Institute of Artificial Intelligence,
Nöthnitzer Straße 46, Dresden-Räcknitz, D-01062 Dresden, Germany

sarah.gaggl@tu-dresden.de
3 Faculty of Computer Science, University of Vienna,

Währinger Straße 29/6.49, 1090 Wien, Austria
wolfgang.dvorak@univie.ac.at

Abstract. Dung’s famous abstract argumentation frameworks repre-
sent the core formalism for many problems and applications in the field of
argumentation which significantly evolved within the last decade. Recent
work in the field has thus focused on implementations for these frame-
works, whereby one of the main approaches is to use Answer-Set Pro-
gramming (ASP). While some of the argumentation semantics can be
nicely expressed within the ASP language, others required rather cum-
bersome encoding techniques. Recent advances in ASP systems, in partic-
ular, the metasp optimization front-end for the ASP-package
gringo/claspD provide direct commands to filter answer sets satisfy-
ing certain subset-minimality (or -maximality) constraints. This allows
for much simpler encodings compared to the ones in standard ASP lan-
guage. In this paper, we experimentally compare the original encodings
(for the argumentation semantics based on preferred, semi-stable, and
respectively, stage extensions) with new metasp encodings. Moreover,
we provide novel encodings for the recently introduced resolution-based
grounded semantics. Our experimental results indicate that the metasp

approach works well in those cases where the complexity of the encoded
problem is adequately mirrored within the metasp approach.

Keywords: Abstract argumentation · Answer-set programming · Meta
programming

This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT08-028.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 114–133, 2013.
DOI: 10.1007/978-3-642-41524-1 7, c© Springer-Verlag Berlin Heidelberg 2013

Making Use of Advances in Answer-Set Programming 115

1 Introduction

In Artificial Intelligence (AI), the area of argumentation (the survey by Bench-
Capon and Dunne [3] gives an excellent overview) has become one of the central
issues during the last decade. Although there are now several branches within this
area, there is a certain agreement that Dung’s famous abstract argumentation
frameworks (AFs) [7] still represent the core formalism for many of the problems
and applications in the field. In a nutshell, AFs formalize statements together
with a relation denoting rebuttals between them, such that the semantics gives a
handle to solve the inherent conflicts between statements by selecting admissible
subsets of them, but without taking the concrete contents of the statements into
account. Several semantical principles how to select those subsets have already
been proposed by Dung [7] but numerous other proposals have been made over
the last years. In this paper we shall focus on the preferred [7], semi-stable
[4], stage [18], and the resolution-based grounded semantics [1]. Each of these
semantics is based on some kind of →-maximality (resp. -minimality) and thus
is well amenable for the novel metasp concepts which we describe below.

Let us first talk about the general context of the paper, which is the realiza-
tion of abstract argumentation within the paradigm of Answer-Set Programming
(see [17] for an overview). We follow here the ASPARTIX1approach [11], where
a single program is used to encode a particular argumentation semantics, while
the instance of an argumentation framework is given as an input database. For
problems located on the second level of the polynomial hierarchy (i.e. for pre-
ferred, stage, and semi-stable semantics) ASP encodings turned out to be quite
complicated and hardly accessible for non-experts in ASP (we will sketch here
the encoding for the stage semantics in some detail, since it has not been pre-
sented in [11]). This is due to the fact that tests for subset-maximality have to
be done “by hand” in ASP requiring a certain saturation technique. However,
recent advances in ASP solvers, in particular, the metasp optimization front-end
for the ASP-system gringo/claspD allows for much simpler encodings for such
tests. More precisely, metasp allows to use the traditional #minimize statement
(which in its standard variant minimizes wrt. cardinality or weights, but not
wrt. subset inclusion) also for selection among answer sets which are minimal
wrt. subset inclusion in certain predicates. Details about metasp can be found
in [13].

Our first main contribution will be the practical comparison between hand-
crafted encodings (i.e. encodings in the standard ASP language without the new
semantics for the #minimize statement) and the much simpler metasp encodings
for argumentation semantics. The experiments show that the metasp encodings
do not necessarily result in longer runtimes. In fact, the metasp encodings for
the semantics located on the second level of the polynomial hierarchy outper-
form the handcrafted saturation-based encodings. We thus can give additional

1 See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of
ASPARTIX.

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

116 W. Dvořák et al.

evidence to the observations in [13], where such a speed-up was reported for
encodings in a completely different application area.

Our second contribution is the presentation of ASP encodings for the
resolution-based grounded semantics [1]. To the best of our knowledge, no imple-
mentation for this recently proposed semantics has been released so far. In this
paper, we present a rather involved handcrafted encoding (basically following
the NP-algorithm presented in [1]) but also two much simpler encodings (using
metasp) which rely on the original definition of the semantics.

Our results indicate that metasp is a very useful tool for problems known to
be hard for the second-level, but one might loose performance in case metasp is
used for “easier” problems just for the sake of comfortability. Nonetheless, we
believe that the concept of the advanced #minimize statement is vital for ASP,
since it allows for rapid prototyping of second-level encodings without being an
ASP guru.

The remainder of the paper is organized as follows: Section 2 provides the nec-
essary background. Section 3 then contains the ASP encodings for the argumen-
tation semantics we are interested in this work. We begin with the handcrafted
saturation-based encoding for stage semantics. Then, in Sect. 3.2 we provide the
novel metasp encodings for all considered semantics and afterwards, in Sect. 3.3,
we present an alternative encoding for the resolution-based grounded semantics
which better mirrors the complexity of this semantics. Section 4 then presents
our experimental evaluation. We conclude the paper with a brief summary and
discussion for future research directions.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [7] and recall
the semantics we study in this paper (see also [1,2]). Moreover, we highlight
complexity results for typical decision problems associated to such frameworks.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is a set of arguments and R → A×A is the attack relation. The pair (a, b) ℵ R
means that a attacks b.An argument a ℵ A is defended by a set S → A if, for
each b ℵ A such that (b, a) ℵ R, there exists a c ℵ S such that (c, b) ℵ R.

Example 1. Consider the AF F = (A,R) with A = {a, b, c, d, e, f} and R =
{(a, b), (b, d), (c, b), (c, d), (c, e), (d, c), (d, e), (e, f)}, and the graph representa-
tion of F :

a b

c

d

e f

Semantics for argumentation frameworks are given via a function σ which assigns
to each AF F = (A,R) a set σ(F) → 2A of extensions. We shall consider here

Making Use of Advances in Answer-Set Programming 117

for σ the functions stb, adm, com, prf , grd , grd∼, stg , and sem which stand for
stable, admissible, complete, preferred, grounded, resolution-based grounded,
stage, and semi-stable semantics respectively. Towards the definition of these
semantics we have to introduce two more formal concepts.

Definition 2. Given an AF F = (A,R). The characteristic function FF : 2A ∼
2A of F is defined as FF (S) = {x ℵ A | x is defended by S}. Moreover, for a
set S → A, we denote the set of arguments attacked by S as S∈

R = {x | ←y ℵ
S such that (y, x) ℵ R}, and define the range of S as S+

R = S ≤ S∈
R .

Definition 3. Let F = (A,R) be an AF. A set S → A is conflict-free (in F),
if there are no a, b ℵ S, such that (a, b) ℵ R. cf (F) denotes the collection of
conflict-free sets of F . For a conflict-free set S ℵ cf (F), it holds that

– S ℵ stb(F), if S+
R = A;

– S ℵ adm(F), if S → FF (S);
– S ℵ com(F), if S = FF (S);
– S ℵ grd(F), if S ℵ com(F) and there is no T ℵ com(F) with T ∈ S;
– S ℵ prf (F), if S ℵ adm(F) and there is no T ℵ adm(F) with T ⊆ S;
– S ℵ sem(F), if S ℵ adm(F) and there is no T ℵ adm(F) with T+

R ⊆ S+
R ;

– S ℵ stg(F), if there is no T ℵ cf (F) in F , such that T+
R ⊆ S+

R .

We recall that for each AF F , the grounded semantics yields a unique exten-
sion, the grounded extension, which is the least fixed point of the characteristic
function FF .

Example 2. Consider the AF F from Example 1. We have {a, d, f} and {a, c, f}
as the stable extensions and thus stb(F) = stg(F) = sem(F) = {{a, d, f},
{a, c, f}}. The admissible sets of F are {}, {a}, {c}, {a, c}, {a, d}, {c, f}, {a, c, f},
{a, d, f} and therefore prf (F) = {{a, c, f}, {a, d, f}}. Finally we have com(F) =
{{a}, {a, c, f}, {a, d, f}}, with {a} being the grounded extension.

On the base of these semantics one can define the family of resolution-based
semantics [1], with the resolution-based grounded semantics being the most pop-
ular instance.

Definition 4. A resolution β ∈ R of an AF F = (A,R) contains exactly one
attack from each bidirectional attack in F , i.e. ∪a, b ℵ A, if (a, b), (b, a) ℵ R then
| {(a, b), (b, a)} ∃ β | = 1 and {(c, d) | (c, d) ℵ R, (d, c) ∧ℵ R} ∃ β = ∅. A set
S → A is a resolution-based grounded extension of F , denoted by S ℵ grd∼(F),
if (i) there exists a resolution β such that S = grd((A,R \ β)) 2; and (ii) there
is no resolution β∞ such that grd((A,R \ β∞)) ∈ S.

Example 3. Recall the AF F = (A,F) from Example 1. There is one mutual
attack and thus we have two resolutions β1 = {(c, d)} and β2 = {(d, c)}.
Definition 4 gives us two candidates, namely grd((A,R \ β1)) = {a, d, f} and
grd((A,R\β2)) = {a, c, f}; as they are not in ∈-relation they are the resolution-
based grounded extensions of F .
2 Abusing notation slightly, we use grd(F) for denoting the unique grounded extension

of F .

118 W. Dvořák et al.

Table 1. Complexity of abstract argumentation (C-c denotes completeness for
class C).

prf sem stg grd∗

Credσ NP-c ΣP
2 -c ΣP

2 -c NP-c
Skeptσ ΠP

2 -c ΠP
2 -c ΠP

2 -c coNP-c
Verσ coNP-c coNP-c coNP-c in P

We now turn to the complexity of reasoning in AFs. To this end, we define
the following decision problems for the semantics σ introduced in Definitions 3
and 4:

– Credulous Acceptance Credσ: Given AF F = (A,R) and an argument a ℵ A.
Is a contained in some S ℵ σ(F)?

– Skeptical Acceptance Skeptσ: Given AF F = (A,R) and an argument a ℵ A.
Is a contained in each S ℵ σ(F)?

– Verification of an extension Verσ: Given AF F = (A,R) and a set of arguments
S → A. Is S ℵ σ(F)?

We assume the reader has knowledge about standard complexity classes like
P and NP and recall that ΣP

2 is the class of decision problems that can be
decided in polynomial time using a nondeterministic Turing machine with access
to an NP-oracle. The class ΠP

2 is defined as the complementary class of ΣP
2 , i.e.

ΠP
2 = coΣP

2 .
In Table 1 we summarize complexity results relevant for our work [1,6,8–10].

2.2 Answer-Set Programming

We give a brief overview of the syntax and semantics of disjunctive logic programs
under the answer-sets semantics [15]; for further background, see [16].

We fix a countable set U of (domain) elements, also called constants; and
suppose a total order < over the domain elements. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ∨ 0 and each ti is either a variable
or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U .

A (disjunctive)rule r with n ∨ 0, m ∨ k ∨ 0, n + m > 0 is of the form

a1 ∇ · · · ∇ an ∅ b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for default negation. An
atom a is a positive literal, while not a is a default negated literal. The head of r
is the set H(r) = {a1, . . . , an} and the body of r is B(r) = B+(r) ≤ B−(r) with
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule r is normal if n ⊂ 1
and a constraint if n = 0. A rule r is safe if each variable in r occurs in B+(r).
A rule r is ground if no variable occurs in r. A fact is a ground rule without
disjunction and with an empty body. An (input) database is a set of facts. A
program is a finite set of disjunctive rules. For a program π and an input database
D, we often write π(D) instead of D ≤ π. If each rule in a program is normal

Making Use of Advances in Answer-Set Programming 119

Table 2. Data Complexity for logic programs (all results are completeness results).

e Normal programs Disjunctive program Optimization programs

|=c NP ΣP
2 ΣP

2

|=s coNP ΠP
2 ΠP

2

(resp. ground), we call the program normal (resp. ground). Besides disjunctive
and normal program, we consider here the class of optimization programs, i.e.
normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk] (1)

where li is a literal, wi an integer weight and Ji an integer priority level.
For any program π, let Uπ be the set of all constants appearing in π. Gr(π)

is the set of rules rτ obtained by applying, to each rule r ℵ π, all possible
substitutions τ from the variables in r to elements of Uπ. An interpretation
I → BU satisfies a ground rule r iff H(r) ∃ I ∧= ∅ whenever B+(r) → I and
B−(r) ∃ I = ∅. I satisfies a ground program π, if each r ℵ π is satisfied by I.
A non-ground rule r (resp., a program π) is satisfied by an interpretation I iff
I satisfies all groundings of r (resp., Gr(π)). I → BU is an answer set of π iff
it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct πI = {H(r) ∅
B+(r) | I ∃ B−(r) = ∅, r ℵ Gr(π)}. For a program π, we denote the set of its
answer sets by AS(π).

For semantics of optimization programs, we interpret the #minimize state-
ment wrt. subset-inclusion: For any sets X and Y of atoms, we have Y →w

J X, if
for any weighted literal l = w@J occurring in (1), Y |= l implies X |= l. Then,
M is a collection of relations of the form →w

J for priority levels J and weights
w. A standard answer set (i.e. not taking the minimize statements into account)
Y of π dominates a standard answer set X of π wrt. M if there are a priority
level J and a weight w such that X →w

J Y does not hold for →w
J ℵ M , while

Y →wℵ
J ℵ X holds for all →wℵ

J ℵ ℵ M where J ∞ ∨ J . Finally a standard answer set X
is an answer set of an optimization program π wrt. M if there is no standard
answer set Y of π that dominates X wrt. M .

Credulous and skeptical reasoning in terms of programs is defined as follows.
Given a program π and a set of ground atoms A. Then, we write π |=c A
(credulous reasoning), if A is contained in some answer set of π; we write π |=s A
(skeptical reasoning), if A is contained in each answer set of π.

We briefly recall some complexity results for disjunctive logic programs. In
fact, since we will deal with fixed programs we focus on results for data complex-
ity. Depending on the concrete definition of |=, we give the complexity results
in Table 2 (cf. [5] and the references therein). We note here, that even normal
programs together with the optimization technique have a worst case complex-
ity of ΣP

2 (resp. ΠP
2). Inspecting Table 1 one can see which kind of encoding is

appropriate for an argumentation semantics.

120 W. Dvořák et al.

3 Encodings of AF Semantics

In this section we first show how to represent AFs in ASP and we discuss three
programs which we need later on in this section.3 Then, in Subsect. 3.1 we exem-
plify on the stage semantics the saturation technique for encodings that solve
associated problems which are on the second level of the polynomial hierarchy. In
Subsect. 3.2 we will make use of the newly developed metasp optimization tech-
nique. In Subsect. 3.3 we give an alternative encoding based on the algorithm
by Baroni et al. in [1], which respects the lower complexity of resolution-based
grounded semantics.

All our programs are fixed which means that the only translation required,
is to give an AF F as input database F̂ to the program πσ for a semantics σ. In
fact, for an AF F = (A,R), we define F̂ as

F̂ = { arg(a) | a ℵ A} ≤ {defeat(a, b) | (a, b) ℵ R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess
for a set S → A, where in(a) represents that a ℵ S. The following notion of
correspondence is relevant for our purposes.

Definition 5. Let S → 2U be a collection of sets of domain elements and let
I → 2BU be a collection of sets of ground atoms. We say that S and I correspond
to each other, in symbols S ↔= I, iff (i) for each S ℵ S, there exists an I ℵ I, such
that {a | in(a) ℵ I} = S; (ii) for each I ℵ I, it holds that {a | in(a) ℵ I} ℵ S;
and (iii) |S| = |I|.

Consider an AF F . The following program fragment guesses, when augmented
by F̂ , any subset S → A and then checks whether the guess is conflict-free in F :

πcf = { in(X) ∅ not out(X), arg(X);
out(X) ∅ not in(X), arg(X);
∅ in(X), in(Y),defeat(X,Y) }.

Proposition 1. For any AF F , cf (F) ↔= AS(πcf (F̂)).

Sometimes we have to avoid the use of negation. This might either be the case
for the saturation technique or if a simple program can be solved without a
Guess&Check approach. Then, encodings typically rely on a form of loops where
all domain elements are visited and it is checked whether a desired property
holds for all elements visited so far. We will use this technique in our saturation-
based encoding in the upcoming subsection, but also for computing the grounded
extension in Subsect. 3.2. For this purpose, an order < over the domain elements
(usually provided by common ASP solvers) is used together with a few helper

3 We make use of some program modules already defined in [11].

Making Use of Advances in Answer-Set Programming 121

predicates defined in the program π< below; in fact, predicates inf /1, succ/2 and
sup /1 denote infimum, successor and supremum of the order <.

π< = { lt(X,Y) ∅ arg(X), arg(Y),X < Y ;
nsucc(X,Z) ∅ lt(X,Y), lt(Y,Z);
succ(X,Y) ∅ lt(X,Y),not nsucc(X,Y);
ninf(Y) ∅ lt(X,Y);
inf(X) ∅ arg(X),not ninf(X);
nsup(X) ∅ lt(X,Y);
sup(X) ∅ arg(X),not nsup(X) }.

Finally, the following module computes for a guessed subset S → A the range
S+

R (see Def. 2) of S in an AF F = (A,R).

πrange = { in range(X) ∅ in(X);
in range(X) ∅ in(Y),defeat(Y,X);
not in range(X) ∅ arg(X),not in range(X) }.

3.1 Saturation Encodings

In this subsection we make use of the saturation technique introduced by Eiter
and Gottlob in [12]. In [11], this technique was already used to encode the pre-
ferred and semi-stable semantics. Here we give the encodings for the stage seman-
tics, which is similar to the one of semi-stable semantics, to exemplify the use of
the saturation technique.

In fact, for an AF F = (A,R) and S ℵ cf (F) we need to check whether
no T ℵ cf (F) with S+

R ∈ T+
R exists. Therefore we have to guess an arbitrary

set T and saturate in case (i) T is not conflict-free, or (ii) S+
R ∧∈ T+

R . Together
with πcf this is done with the following module, where in/1 holds the current
guess for S and inN/1 holds the current guess for T . More specifically, rule
fail ∅ inN(X), inN(Y),defeat(X,Y) checks for (i) and the remaining two rules
with fail in the head fire in case S+

R = T+
R (indicated by predicate eqplus/0

described below), or there exists an a ℵ S+
R such that a /ℵ T+

R (here we use
predicate in range/1 from above and predicate not in rangeN/1 which we also
present below). As is easily checked one of these two conditions holds exactly if
(ii) holds.

πsatstage = { inN(X) ∇ outN(X) ∅ arg(X);
fail ∅ inN(X), inN(Y),defeat(X,Y);
fail ∅ eqplus;
fail ∅ in range(X),not in rangeN(X);
inN(X) ∅ fail, arg(X);
outN(X) ∅ fail, arg(X);
∅ not fail }.

122 W. Dvořák et al.

For the definition of predicates not in rangeN/1 and eqplus/0 we make use of
the aforementioned loop technique and predicates from program π<.

πrangeN = { undefeated upto(X,Y) ∅ inf(Y), outN(X), outN(Y);
undefeated upto(X,Y) ∅ inf(Y), outN(X),not defeat(Y,X);
undefeated upto(X,Y) ∅ succ(Z, Y),undefeated upto(X,Z),

outN(Y);
undefeated upto(X,Y) ∅ succ(Z, Y),undefeated upto(X,Z),

not defeat(Y,X);
not in rangeN(X) ∅ sup(Y), outN(X),undefeated upto(X,Y);
in rangeN(X) ∅ inN(X);
in rangeN(X) ∅ outN(X), inN(Y),defeat(Y,X) }.

π+
eq = { eqp upto(X) ∅ inf(X), in range(X), in rangeN(X);

eqp upto(X) ∅ inf(X),not in range(X),not in rangeN(X);
eqp upto(X) ∅ succ(Z,X), in range(X), in rangeN(X), eqp upto(Z);
eqp upto(X) ∅ succ(Y,X),not in range(X),not in rangeN(X),

eqp upto(Y);
eqplus ∅ sup(X), eqp upto(X) }.

Proposition 2. For any AF F , stg(F) ↔= AS(πstg(F̂)), where πstg = πcf ≤π< ≤
πrange ≤ πrangeN ≤ π+

eq ≤ πsatstage .

3.2 Meta ASP Encodings

The following encodings for preferred, semi-stable and stage semantics are
written using the #minimize statement when evaluated with the subset-
minimization semantics provided by metasp. For our encodings we do not need
prioritization and weights, therefore these are omitted (i.e. set to default) in the
minimization statements. The minimization technique is realized through meta
programming techniques, which themselves are answer-set programs. This works
as follows: The ASP encoding to solve is given to the grounder gringo which
reifies the program, i.e. outputs a ground program consisting of facts, which
represent the rules and facts of the original input encoding. The grounder is
then again executed on this output with the meta programs which encode the
optimization. Finally, claspD computes the answer sets. Note that here we use
the version of clasp which supports disjunctive rules. Therefore for a program
π and an AF F we have the following execution.

gringo --reify π(F̂) | \
gringo - {meta.lp,metaO.lp,metaD.lp} \
<(echo "optimize(1,1,incl).") | claspD 0

Making Use of Advances in Answer-Set Programming 123

Here, meta.lp, metaO.lp and metaD.lp are the encodings for the minimization
statement. The statement optimize(incl,1,1) indicates that we use subset
inclusion for the optimization technique using priority and weight 1.

We now look at the encodings for the preferred, semi-stable and stage seman-
tics using this minimization technique. First, we need one auxiliary module for
admissible extensions.

πadm = πcf ≤ {defeated(X) ∅ in(Y),defeat(Y,X);
∅ in(X),defeat(Y,X),not defeated(Y)}.

Now the modules for preferred, semi-stable and stage semantics are easy to
encode using the minimization statement of metasp. For the preferred semantics
we take the module πadm and minimize the out/1 predicate. This in turn gives
us the subset-maximal admissible extensions which captures the definition of
preferred semantics. The encodings for the semi-stable and stage semantics are
similar. Here we minimize the predicate not in range/1 from the πrange module.

πprf metasp = πadm ≤ {#minimize[out]}.

πsem metasp = πadm ≤ πrange ≤ {#minimize[not in range]}.

πstg metasp = πcf ≤ πrange ≤ {#minimize[not in range]}.

The following results follow now directly.

Proposition 3. For any AF F , we have

1. prf (F) ↔= AS(πprf metasp(F̂)),
2. sem(F) ↔= AS(πsem metasp(F̂)), and
3. stg(F) ↔= AS(πstg metasp(F̂)).

Next we give two different encodings for computing resolution-based grounded
extensions. Both encodings use subset-minimization for the resolution part, i.e.
the resulting extension is subset-minimal with respect to all possible resolutions.
The difference between the two encodings is that the first one computes the
grounded extension for the guessed resolution explicitly (making use of loop-
ing concepts presented already in [11]). The second encoding uses the metasp
subset-minimization also to get the grounded extension from the complete exten-
sions of the current resolution (recall that the grounded extension is in fact the
unique subset-minimal complete extension).The module πgrd below for comput-
ing the grounded extension is taken from [11] with a small modification: instead
of the defeat predicate we use defeat minus beta, since we need the grounded
extensions of a restricted defeat relation. In fact, the πres module guesses this
restricted defeat relation {R \ β} for a resolution β.

πres = { defeat minus beta(X,Y) ∅ defeat(X,Y),not defeat minus beta(Y,X),
X ∧= Y ;

defeat minus beta(X,Y) ∅ defeat(X,Y),not defeat(Y,X);
defeat minus beta(X,X) ∅ defeat(X,X) }.

124 W. Dvořák et al.

We repeat the definition of πgrd here, which includes the module πdefended .

πdefended = {defended upto(X, Y) ← inf(Y), in(X),not defeat minus beta(Y, X);

defended upto(X, Y) ← inf(Y), in(Z), defeat minus beta(Z, Y),

defeat minus beta(Y, X);

defended upto(X, Y) ← succ(Z, Y), defended upto(X, Z),

not defeat minus beta(Y, X);

defended upto(X, Y) ← succ(Z, Y), in(V), defeat minus beta(V, Y),

defeat minus beta(Y, X);

defended(X) ← sup(Y), defended upto(X, Y)}.

πgrd = π< ∪ πdefended ∪ {in(X) ← defended(X)}.

Now we can give the first encoding for resolution-based grounded semantics.

πgrd∗ metasp = πgrd ≤ πres ≤ {#minimize[in]}.

The second encoding for resolution-based grounded semantics performs the
metasp subset-minimization from the complete extensions of the current res-
olution to compute the grounded extension. We again use the restricted defeat
relation.

πcom = πadm ≤ {undefended(X) ∅ defeat minus beta(Y,X),not defeated(Y);
∅ out(X),not undefended(X) }.

We obtain the following metasp encoding:

π∞
grd∗ metasp = πcom ≤ πres ≤ {#minimize[in]}.

Proposition 4. For any AF F and π ℵ {πgrd∗ metasp , π∞
grd∗ metasp}, grd∼(F)

corresponds to AS(π(F̂)) in the sense of Definition 5, but without property (iii).

As the proposition suggests there is a caveat for these two encodings of the
resolution-based grounded semantics. In general we have that several answer sets
map to the same extension, i.e. there is no one-to-one correspondence between
answer sets and extensions. The reason for this behavior lies in the guessing of
a resolution. Whereas the other encodings guess basically the in/1 predicate,
these two metasp encodings guess the resolution. Therefore the result might
include the same extension with different resolutions guessed. While this does
not harm credulous or skeptical reasoning, some measures have to be taken to
remove these duplicates when enumerating or counting extensions. The solver
clasp already features such a technique which is presented in [14]. This feature
is not yet implemented in claspD. Furthermore the meta encodings for metasp
use disjunctive ASP, which increases the computational complexity to the sec-
ond level of the polynomial hierarchy, whereas the problem of resolution based
grounded semantics is situated on the first level.

Making Use of Advances in Answer-Set Programming 125

3.3 Alternative Encodings for Resolution-based Grounded
Semantics

So far, we have shown two encodings for the resolution-based grounded semantics
via optimization programs, i.e. we made use of the #minimize statement under
the subset-inclusion semantics. From the complexity point of view this is not
adequate, since we expressed a problem on the NP-layer (see Table 1) via an
encoding which implicitly makes use of disjunction (see Table 2 for the actual
complexity of optimization programs). Hence, we provide here an alternative
encoding for the resolution-based grounded semantics based on the verification
algorithm proposed by Baroni et al. in [1]. This encoding is just a normal program
and thus located at the right level of complexity.

We need some further notation. For an AF F = (A,R) and a set S → A we
define F |S = ((A∃S), R∃(S×S)) as the sub-framework of F wrt. S; furthermore
we also use F − S as a shorthand for F |A\S . By SCCs(F), we denote the set of
strongly connected components of an AF F = (A,R) which identify the vertices
of a maximal strongly connected4 subgraph of F ; SCCs(F) is thus a partition
of A. A partial order ≥F over SCCs(F) = {C1, . . . , Cn}, denoted as (Ci ≥F Cj)
for i ∧= j, is defined, if ←x ℵ Ci, y ℵ Cj such that there is a directed path from x
to y in F .

Definition 6. A C ℵ SCCs(F) is minimal relevant (in an AF F) iff C is a
minimal element of ≥F and F |C satisfies the following:

(a) the attack relation R(F |C) of F is irreflexive, i.e. (x, x) ∧ℵ R(F |C) for all
arguments x;

(b) R(F |C) is symmetric, i.e. (x, y) ℵ R(F |C) ⇔ (y, x) ℵ R(F |C);
(c) the undirected graph obtained by replacing each (directed) pair {(x, y), (y, x)}

in F |C with a single undirected edge {x, y} is acyclic.

The set of minimal relevant SCCs in F is denoted by MR(F).

Proposition 5. ([1]). Given an AF F = (A,R) such that (F −S+
R) ∧= (∅, ∅) and

MR(F − S+
R) ∧= ∅, where S = grd(F), a set U → A of arguments is resolution-

based grounded in F , i.e. U ℵ grd∼(F) iff the following conditions hold:

(i) U ∃ S+
R = S;

(ii) (T ∃ ΠF) ℵ stb(F |ΠF
), where T = U \ S+

R , and ΠF =
⋃

V ∗MR(F−S+
R) V ;

(iii) (T ∃ ΠC
F) ℵ grd∼(F |ΠC

F
− (S+

R ≤ (T ∃ ΠF)∈
R)), where T and ΠF are as in

(ii) and ΠC
F = A \ ΠF .

To illustrate the conditions of Proposition 5, let us have a look at our example.

Example 4. Consider the AF F of Example 1. Let us check whether U = {a, d, f}
is resolution-based grounded in F , i.e. whether U ℵ grd∼(F). S = {a} is the

4 A directed graph is called strongly connected if there is a directed path from each
vertex in the graph to every other vertex of the graph.

126 W. Dvořák et al.

grounded extension of F and S+
R = {a, b}, hence the Condition (i) is satisfied.

We obtain T = {d, f} and ΠF = {c, d}. We observe that T ∃ ΠF = {d} is
a stable extension of the AF F |ΠF

; that satisfies Condition (ii). Now we need
to check Condition (iii); we first identify the necessary sets: ΠC

F = {a, b, e, f},
T ∃ ΠC

F = {f} and (T ∃ ΠF)∈
R = {c, e}. It remains to check {f} ℵ grd∼({f}, ∅)

which is easy to see. Hence, U ℵ grd∼(F).

The following encoding is based on the Guess&Check procedure which was also
used for the encodings in [11]. After guessing all conflict-free sets with the pro-
gram πcf , we check whether the conditions of Definition 6 and Proposition 5 hold.
Therefore the program πarg set makes a copy of the actual arguments, defeats
and the guessed set to the predicates arg set/2,defeatN/3 and inU/2. The first
variable in these three predicates serves as an identifier for the iteration of the
algorithm (this is necessary to handle the recursive nature of Proposition 5). In
all following predicates we will use the first variable of each predicate like this.
As in some previous encodings in this paper, we use the program π< to obtain
an order over the arguments, and we start our computation with the infimum
represented by the predicate inf /1.

πarg set = { arg set(N,X) ∅ arg(X), inf(N);
inU(N,X) ∅ in(X), inf(N);
defeatN(N,Y,X) ∅ arg set(N,X), arg set(N,Y),defeat(Y,X) }.

We use here the program πdefendedN (which is a slight variant of the program
πdefended) together with the program πgroundN where we perform a fixed-point
computation of the predicate defendedN/2, as in the definition of the charac-
teristic function FF in Definition 2. The basic difference here is that now, we
use an additional argument N for the iteration step where predicates arg set/2,
defeatN/3 and inS/2 replace arg /1, defeat/2 and in/1.

πdefendedN = { def uN(N,X, Y) ∅ inf(Y), arg set(N,X),not defeatN(N,Y,X);
def uN(N,X, Y) ∅ inf(Y), inS(N,Z),defeatN(N,Z, Y),

defeatN(N,Y,X);
def uN(N,X, Y) ∅ succ(Z, Y),not defeatN(N,Y,X),

def uN(N,X,Z);
def uN(N,X, Y) ∅ succ(Z, Y),def uN(N,X,Z), inS(N,V),

defeatN(N,V, Y),defeatN(N,Y,X)
defendedN(N,X) ∅ sup(Y),def uN(N,X, Y) }.

In πgroundN we then obtain the predicate inS(N,X) which identifies argument
X to be in the grounded extension of the iteration N .

πgroundN = πcf ≤π< ≤πarg set ≤πdefendedN ≤{ inS(N,X) ∅ defendedN(N,X) }.

The next module πF minus range computes the arguments in (F−S+
R), represented

by the predicate notInSplusN/2, via predicates in SplusN/2 and u cap Splus/2

Making Use of Advances in Answer-Set Programming 127

(for S+
R and U ∃ S+

R). The two constraints check condition (i) of Proposition 5.

πF minus range = { in SplusN(N,X) ∅ inS(N,X);
in SplusN(N,X) ∅ inS(N,Y),defeatN(N,Y,X);
u cap Splus(N,X) ∅ inU(N,X), in SplusN(N,X);
∅ u cap Splus(N,X),not inS(N,X);
∅ not u cap Splus(N,X), inS(N,X);
notInSplusN(N,X) ∅ arg set(N,X),not in SplusN(N,X) }.

The module πMR computes ΠF =
⋃

V ∗MR(F−S+
R) V , where mr(N,X) denotes

that an argument is contained in a set V ℵ MR. Therefore we need to check
all three conditions of Definition 6. The first two rules compute the predicate
reach(N,X, Y) if there is a path between the arguments X,Y ℵ (F −S+

R). With
this predicate we will identify the SCCs. The third rule computes self defeat/2
for all arguments violating Condition (a). Next we need to check Condition (b).
With nsym/2 we obtain those arguments which do not have a symmetric attack
to any other argument from the same component. Condition (c) is a bit more
tricky. With predicate reachnotvia/4 we say that there is a path from X to Y
not going over argument V in the framework (F − S+

R). With this predicate at
hand we can check for cycles with cyc/4. Then, to complete Condition (c) we
derive bad/2 for all arguments which are connected to a cycle (or a self-defeating
argument). In the predicate pos mr/2, we put all the three conditions together
and say that an argument x is possibly in a set V ℵ MR if (i) x ℵ (F − S+

R),
(ii) x is neither connected to a cycle nor self-defeating, and (iii) for all y it holds
that (x, y) ℵ (F −S+

R) ⇔ (y, x) ℵ (F −S+
R). Finally we only need to check if the

SCC obtained with pos mr/2 is a minimal element of ≥F . Hence we get with
notminimal/2 all arguments not fulfilling this, and in the last rule we obtain
with mr/2 the arguments contained in a minimal relevant SCC.

πMR ={ reach(N, X, Y) ← notInSplusN(N, X), notInSplusN(N, Y), defeatN(N, X, Y);

reach(N, X, Y) ← notInSplusN(N, X), defeatN(N, X, Z), reach(N, Z, Y),

X! = Y ;

self defeat(N, X) ← notInSplusN(N, X), defeatN(N, X, X);

nsym(N, X) ← notInSplusN(N, X), notInSplusN(N, Y), defeatN(N, X, Y),

not defeatN(N, Y, X), reach(N, X, Y), reach(N, Y, X), X! = Y ;

nsym(N, Y) ← notInSplusN(N, X), notInSplusN(N, Y), defeatN(N, X, Y),

not defeatN(N, Y, X), reach(N, X, Y), reach(N, Y, X), X! = Y ;

reachnotvia(N, X, V, Y) ← defeatN(N, X, Y), notInSplusN(N, V),

reach(N, X, Y), reach(N, Y, X), X! = V, Y ! = V ;

reachnotvia(N, X, V, Y) ← reachnotvia(N, X, V, Z), reach(N, X, Y),

reachnotvia(N, Z, V, Y), reach(N, Y, X),

Z! = V, X! = V, Y ! = V ;

cyc(N, X, Y, Z) ← defeatN(N, X, Y), defeatN(N, Y, X),

defeatN(N, Y, Z), defeatN(N, Z, Y),

128 W. Dvořák et al.

reachnotvia(N, X, Y, Z), X! = Y, Y ! = Z, X! = Z;

bad(N, Y) ← cyc(N, X, U, V), reach(N, X, Y), reach(N, Y, X);

bad(N, Y) ← self defeat(N, X), reach(N, X, Y), reach(N, Y, X);

bad(N, Y) ← nsym(N, X), reach(N, X, Y), reach(N, Y, X);

pos mr(N, X) ← notInSplusN(N, X),not bad(N, X),not self defeat(N, X),

not nsym(N, X);

notminimal(N, Z) ← reach(N, X, Y), reach(N, Y, X),

reach(N, X, Z),not reach(N, Z, X);

mr(N, X) ← pos mr(N, X),not notminimal(N, X) }.

We now turn to Condition (ii) of Proposition 5, where the first rule in πstableN

computes the set T = U\S+
R . Then we check whether T = ∅ and MR(F−S+

R) = ∅
via predicates emptyT/1 and not exists mr/1. If this is so, we terminate the
iteration in the last module πiterate . The first constraint eliminates those guesses
where MR(F − S+

R) = ∅ but T ∧= ∅, because the algorithm is only defined for
AFs fulfilling this. Finally we derive the arguments which are defeated by the set
T in the MR denoted by defeated/2, and with the last constraint we eliminate
those guesses where there is an argument not contained in T and not defeated
by T in MR and hence (T ∃ ΠF) ∧ℵ stb(F |ΠF

).

πstableN = { t(N,X) ∅ inU(N,X),not inS(N,X);
nemptyT(N) ∅ t(N,X);
emptyT(N) ∅ not nemptyT(N), arg set(N,X);
existsMR(N) ∅ mr(N,X),notInSplusN(N,X);
not exists mr(N) ∅ not existsMR(N),notInSplusN(N,X);
true(N) ∅ emptyT(N),not existsMR(N);
∅ not exists mr(N),nemptyT(N);
defeated(N,X) ∅ mr(N,X),mr(N,Y), t(N,Y),defeatN(N,Y,X);
∅ not t(N,X),not defeated(N,X),mr(N,X) }.

With the last module πiterate we perform Step (iii) of Proposition 5. The predi-
cate t mrOplus/2 computes the set (T ∃ΠF)∈

R and with the second rule we start
the next iteration for the AF (F |ΠC

F
− (S+

R ≤ (T ∃ΠF)∈
R)) and the set (T ∃ΠC

F).

πiterate = { t mrOplus(N,Y) ∅ t(N,X),mr(N,X),defeatN(N,X, Y);
arg set(M,X) ∅ notInSplusN(N,X),not mr(N,X),

not t mrOplus(N,X), succ(N,M),not true(N);
inU(M,X) ∅ t(N,X),not mr(N,X), succ(N,M),not true(N) }.

Finally we put everything together and obtain the program πgrd∗ .

πgrd∗ = πgroundN ≤ πF minus range ≤ πMR ≤ πstableN ≤ πiterate .

Proposition 6. For any AF F , grd∼(F) ↔= AS(πgrd∗(F̂)).

Making Use of Advances in Answer-Set Programming 129

4 Experimental Evaluation

In this section we present our results of the performance evaluation. We com-
pared the time needed for computing all extensions for the semantics described
earlier, using both the handcraft saturation-based and the alternative metasp
encodings.

The tests were executed on an openSUSE based machine with eight Intel
Xeon processors (2.33 GHz) and 49 GB memory. For computing the answer
sets, we used gringo (version 3.0.3) for grounding and the solver claspD (version
1.1.1). The latter being the variant for disjunctive answer-set programs.

We randomly generated AFs (i.e. graphs) ranging from 20 to 110 arguments.
We used two parametrized methods for generating the attack relation. The first
generates arbitrary AFs and inserts for any pair (a, b) the attack from a to b
with a given probability p. The other method generates AFs with an n×m grid-
structure. We consider two different neighborhoods, one connecting arguments
vertically and horizontally and one that additionally connects the arguments
diagonally. Such a connection is a mutual attack with a given probability p
and in only one direction otherwise. The probability p was chosen between 0.1
and 0.4.

Overall 14388 tests were executed, with a timeout of five minutes for each
execution. Timed out instances are considered as solved in 300 seconds. The
time consumption was measured using the Linux time command. For all the
tests we let the solver generate all answer sets, but only outputting the number
of models. To minimize external influences on the test runs, we alternated the
different encodings during the tests.

Figures 1, 2 and 3 depict the results for the preferred, semi-stable and stage
semantics respectively. The figures show the average computation time for both

20 40 60 80 100

0

 5

0

 1
00

15
0

 2

00

25

0

 3
00

tim
e

(s
ec

)

πprf_metasp arbitrary
πprf_metasp grid
πprf arbitrary
πprf grid

Fig. 1. Average computation time for preferred semantics.

130 W. Dvořák et al.

20 40 60 80 100

0

 5

0

10

0

 1
50

20
0

25

0

 3
00

tim
e

(s
ec

)

πsem_metasp arbitrary
πsem_metasp grid
πsem arbitrary
πsem grid

Fig. 2. Average computation time for semi-stable semantics.

20 40 60 80 100

0

 5

0

10

0

 1
50

 2

00

25

0

 3
00

tim
e

(s
ec

)

πstg_metasp arbitrary
πstg_metasp grid
πstg arbitrary
πstg grid

Fig. 3. Average computation time for stage semantics.

the handcraft and the metasp encoding for a certain number of arguments. We
distinguish here between arbitrary, i.e. completely random AFs and grid struc-
tured ones. One can see that the metasp encodings have a better performance,
compared to the handcraft encodings. In particular, for the stage semantics the
performance difference is noticeable. Recall that the average computation time
includes the timeouts, which strongly influence the diagrams.

Making Use of Advances in Answer-Set Programming 131

20 30 40 50 60

0

 5

0

 1
00

15
0

 2

00

 2
50

 3
00

tim
e

(s
ec

)

Metasp arbitrary πgrd*_metasp
Metasp grid πgrd*_metasp
Metasp arbitrary π'grd*_metasp
Metasp grid π'grd*_metasp
Handcrafted arbitrary πgrd*
Handcrafted grid πgrd*

Fig. 4. Average computation time for resolution-based grounded semantics.

For the resolution-based grounded semantics, Fig. 4 shows again the aver-
age computation time needed for a certain number of arguments. Let us first
consider the case of arbitrary AFs. The handcraft encoding struggled with AFs
of size 40 or larger. Many of those instances could not be solved due to mem-
ory faults. This is indicated by the missing data points. Both metasp encodings
performed better overall, but still many timeouts were encountered. If we look
more closely at the structured AFs then we see that π∞

grd∗ metasp performs better
overall than the other metasp variant. Interestingly, computing the grounded
part with a handcraft encoding without a Guess&Check part did not result in
a lower computation time on average. The handcraft encoding performed better
than πgrd∗ metasp on grids.

One reason for the performance problems of the handcraft encoding lies in
the relatively high arity of some predicates. The encoding uses predicates with
up to four variables, in contrast to the encoding for e.g. the stage semantics
which needs only predicates with up to three variables. This can increase the
time needed for grounding drastically. On the other side, the metasp encodings,
as mentioned in Proposition 4, suffer from the fact that the answer sets are not
in a one-to-one correspondence to the solutions, i.e. several answer sets may
represent the same extension.

Overall the metasp encodings outperform the direct encodings. This is par-
tially due to the fact that the former utilize encodings tailored to the
gringo/claspD package.

132 W. Dvořák et al.

5 Conclusion

In this paper, we inspected various ASP encodings for four prominent semantics
in the area of abstract argumentation. (1) For the preferred and the semi-stable
semantics, we compared existing saturation-based encodings [11] (here we called
them handcrafted encodings) with novel alternative encodings which are based
on the recently developed metasp approach [13], where subset-minimization can
be directly specified and a front-end (i.e. a meta-interpreter) compiles such state-
ments back into the core ASP language. (2) For the stage semantics, we presented
here both a handcrafted and a metasp encoding. Finally, (3) for the resolution-
based grounded semantics we provided three novel encodings, two of them using
the metasp techniques.

While with some performance optimization techniques for ASP the readabil-
ity of the encodings change for the worse, the metasp encodings are shorter than
the handcrafted saturation encodings. Furthermore, they are much simpler to
design (since saturation techniques are delegated to the meta-interpreter), and
they perform surprisingly well when compared with the handcrafted encodings
which are directly given to the ASP solver. This shows the practical relevance of
the metasp technique also in the area of abstract argumentation. Future work
will be to investigate performance improvements of other optimization features
like aggregates, which are provided by most of the prominent ASP solvers.

References

1. Baroni, P., Dunne, P.E., Giacomin, M.: On the resolution-based family of abstract
argumentation semantics and its grounded instance. Artif. Intell. 175(3–4), 791–
813 (2011)

2. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I.,
Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer,
Berlin (2009)

3. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(10–15), 619–641 (2007)

4. Caminada, M.: Semi-stable semantics. In: Proceedings of COMMA 2006, pp. 121–
130 (2006)

5. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

6. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci. 170(1–2), 209–244 (1996)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

8. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif.
Intell. 141(1/2), 187–203 (2002)

9. Dunne, P.E., Caminada, M.: Computational complexity of semi-stable semantics
in abstract argumentation frameworks. In: Hölldobler, S., Lutz, C., Wansing, H.
(eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 153–165. Springer, Heidelberg
(2008)

Making Use of Advances in Answer-Set Programming 133

10. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

11. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument Comput. 1(2), 147–177 (2010)

12. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

13. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory Pract. Logic Program. 11(4–5), 821–839 (2011)

14. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean
search problems. In: van Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS,
vol. 5547, pp. 71–86. Springer, Heidelberg (2009)

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

17. Toni, F., Sergot, M.: Argumentation and answer set programming. In: Balduccini,
M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 164–180. Springer, Heidelberg
(2011)

18. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argu-
mentation stages. In: Proc. NAIC’96, pp. 357–368 (1996)

Confidentiality-Preserving Publishing of EDPs
for Credulous and Skeptical Users

Katsumi Inoue1, Chiaki Sakama2, and Lena Wiese3(B)

1 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ki@nii.ac.jp
2 Department of Computer and Communication Sciences, Wakayama University,

930 Sakaedani, Wakayama 640-8510, Japan
sakama@sys.wakayama-u.ac.jp

3 Institute of Computer Science, Georg-August-Universität Göttingen,
Goldschmidtstr. 7, 37077 Göttingen, Germany

wiese@cs.uni-goettingen.de

Abstract. Publishing private data on external servers incurs the prob-
lem of how to avoid unwanted disclosure of confidential data. We study
the problem of confidentiality-preservation when publishing extended
disjunctive logic programs and show how it can be solved by extended
abduction. In particular, we analyze how the differences between users
who employ either credulous or skeptical non-monotonic reasoning affect
confidentiality.

Keywords: Data publishing · Confidentiality · Privacy · Extended ab-
duction · Answer set programming · Negation as failure · Non-monotonic
reasoning

1 Introduction

Confidentiality of data (also called privacy or secrecy in some contexts) is a
major security goal. Releasing data to a querying user without disclosing con-
fidential information has long been investigated in areas like access control, k-
anonymity, inference control, and data fragmentation. Such approaches prevent
disclosure according to some security policy by restricting data access (denial,
refusal), by modifying some data (perturbation, noise addition, cover stories,
lying, weakening), or by breaking sensitive associations (fragmentation). Several
approaches (like [2,3,8,14–16]) employ logic-based mechanisms to ensure data
confidentiality. In particular, [5] uses brave reasoning in default logic theories
to solve a privacy problem in a classical database (a set of ground facts). For
a non-classical knowledge base (where negation as failure not is allowed) [17]
studies correctness of access rights. Confidentiality of predicates in collaborative
multi-agent abduction is a topic in [11].

Lena Wiese was partially supported by a postdoctoral research grant of the German
Academic Exchange Service (DAAD) while preparing this work.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 134–151, 2013.
DOI: 10.1007/978-3-642-41524-1 8, c© Springer-Verlag Berlin Heidelberg 2013

Confidentiality-Preserving Publishing of EDPs 135

In this article we analyze confidentiality-preserving data publishing
in a knowledge base setting: data as well as integrity constraints or deduction
rules are represented as logical formulas. If such a knowledge base is released
to the public for general querying (e.g., microcensus data) or outsourced to a
storage provider (e.g., database-as-a-service in cloud computing), confidential
data could be disclosed. This article is a revised and extended version of [10];
in particular, we extend [10] to also cover confidentiality-preserving data pub-
lishing for users who deduce information by skeptical non-monotonic reasoning.
This article is one of only few papers (see [11,12,17]) covering confidentiality for
logic programs. This formalism however has relevance in multi-agent communi-
cations where agent knowledge is modeled by logic programs. In our settings (as
already in [10]), knowledge bases come in the form of extended disjunctive logic
programs (EDPs) as defined below. Hence, with this formalism we achieve high
expressiveness by allowing negation as failure not as well as disjunctions in rule
heads. In this article, we assume that users accessing the published knowledge
base use either credulous or skeptical reasoning to retrieve data from it; users
also possess some invariant “a priori knowledge” that can be applied to these
data to deduce further information – again by using either credulous or skeptical
reasoning. On the knowledge base side, a confidentiality policy specifies which
is the confidential information that must never be disclosed.

With extended abduction [13] we obtain a “secure version” of the knowl-
edge base that can safely be published even when a priori knowledge is applied.
In this article, we show how confidentiality-preservation for skeptical users dif-
fers from the one for credulous users. More precisely, while computing the secure
version for a credulous user corresponds to finding a skeptical anti-explanation
for all the elements of the confidentiality policy, computing the secure version for
a skeptical user corresponds to finding a credulous anti-explanation for the ele-
ments of the confidentiality policy followed by an additional consistency check.
Extended abduction has been used in different applications like for example
providing a logical framework for dishonest reasoning [12]. It can be solved by
computing the answer sets of an update program (see [13]); thus an implemen-
tation of extended abduction can profit from current answer set programming
(ASP) solvers [4]. To retrieve the confidentiality-preserving knowledge base Kpub

from the input knowledge base K, the a priori knowledge prior and the confi-
dentiality policy policy , a sequence of transformations are applied; the overall
approach is depicted in Fig. 1.

In summary, this paper makes the following contributions:

– it formalizes confidentiality-preserving data publishing for users who retrieve
data under either a credulous or a skeptical query response semantics.

– it devises a procedure to securely publish a logic program (with an expressive-
ness up to extended disjunctive logic programs) respecting a subset-minimal
change semantics.

– it shows that confidentiality-preservation for credulous as well as skeptical
users corresponds to finding anti-explanations and can be solved by extended
abduction.

136 K. Inoue et al.

Fig. 1. Finding a confidentiality-preserving Kpub

In the remainder of this article, Sect. 2 provides background on extended
disjunctive logic programs and answer set semantics; Sect. 3 defines the prob-
lem of confidentiality in data publishing; Sect. 4 recalls extended abduction and
update programs; Sect. 5 shows how answer sets of update programs correspond
to confidentiality-preserving knowledge bases; and Sect. 6 gives some discussion
and concluding remarks.

2 EDPs and Answer Set Semantics

In this article, a knowledge base K is represented by an extended disjunctive logic
program (EDP) – a set of formulas called rules of the form:

L1; . . . ;Ll → Ll+1, . . . , Lm,not Lm+1, . . . ,not Ln. (n ℵ m ℵ l ℵ 0)

A rule contains literals Li, disjunction “;”, conjunction “,”, negation as fail-
ure “not ”, and implication “→”. A literal is a first-order atom or an atom
preceded by classical negation “¬”. not L is called a NAF-literal. The disjunc-
tion left of the implication → is called the head, while the conjunction right
of → is called the body of the rule. For a rule R, we write head(R) to denote
the set of literals {L1, . . . , Ll} and body(R) to denote the set of (NAF-)literals
{Ll+1, . . . , Lm,not Lm+1, . . . ,not Ln}. Rules consisting only of a singleton head
L → are identified with the literal L and used interchangeably. An EDP is ground
if it contains no variables. If an EDP contains variables, it is identified with the
set of its ground instantiations: the elements of its Herbrand universe are sub-
stituted in for the variables in all possible ways. We assume that the language
contains no function symbols, so that each rule with variables represents a finite
set of ground rules. For a program K , we denote LK the set of ground liter-
als in the language of K . Note that EDPs offer a high expressiveness including
disjunctive and non-monotonic reasoning.

Example 1. In a medical knowledge base Ill(x, y) states that a patient x is ill
with disease y; Treat(x, y) states that x is treated with medicine y. Assume
that if you read the record and find that one treatment (Medi1) is recorded and
another one (Medi2) is not recorded, then you know that the patient is at least
ill with Aids or Flu (and possibly has other illnesses).

Confidentiality-Preserving Publishing of EDPs 137

K = {Ill(x,Aids); Ill(x,Flu) → Treat(x,Medi1),not Treat(x,Medi2). ,
Ill(Mary,Aids). , Treat(Pete,Medi1).} serves as a running example.

The semantics of K can be given by the answer set semantics [7]: A set S ∼ LK

of ground literals satisfies a ground literal L if L ← S; S satisfies a conjunc-
tion if it satisfies every conjunct; S satisfies a disjunction if it satisfies at least
one disjunct; S satisfies a ground rule if whenever the body literals are con-
tained in S ({Ll+1, . . . , Lm} ∼ S) and all NAF-literals are not contained in S
({Lm+1, . . . , Ln}≤S = ∈), then at least one head literal is contained in S (Li ← S
for an i such that 1 ⊆ i ⊆ l). If an EDP K contains no NAF-literals (m = n),
then such a set S is an answer set of K if S is a subset-minimal set such that

1. S satisfies every rule from the ground instantiation of K .
2. If S contains a pair of complementary literals L and ¬L, then S = LK .

This definition of an answer set can be extended to full EDPs (containing NAF-
literals) as in [13]: For an EDP K and a set of ground literals S ∼ LK , K can
be transformed into a NAF-free program K S as follows. For every ground rule
from the ground instantiation of K (with respect to its Herbrand universe), the
rule L1; . . . ;Ll → Ll+1, . . . , Lm is in K S if {Lm+1, . . . , Ln} ≤ S = ∈. Then, S
is an answer set of K if S is an answer set of K S . An answer set is consistent
if it is not LK . A program K is consistent if it has a consistent answer set;
otherwise K is inconsistent.

Example 2. The example K has the following two consistent answer sets

S1 = {Ill(Mary,Aids),Treat(Pete,Medi1), Ill(Pete,Aids)},

S2 = {Ill(Mary,Aids),Treat(Pete,Medi1), Ill(Pete,Flu)}.

When adding the negative fact ¬Ill(Pete,Flu) to K , there is just one consistent
answer set left: for K ∼ := K ∪ {¬Ill(Pete,Flu).} the only answer set is

S∼ = {Ill(Mary,Aids),¬Ill(Pete,Flu),Treat(Pete,Medi1), Ill(Pete,Aids)}.

If a rule R is satisfied in every answer set of K , we write K |= R. In
particular, K |= L if a literal L is included in every answer set of K .

3 Confidentiality-Preserving Knowledge Bases

When publishing a knowledge base K pub while preserving confidentiality of some
data in the original knowledge base K we do this according to

– the query response semantics that a user querying K pub applies
– a confidentiality policy (denoted policy) describing confidential information

that should not be released to the public
– background (a priori) knowledge (denoted prior) that a user can combine

with query responses from the published knowledge base

138 K. Inoue et al.

First we define the credulous and the skeptical query response semantics: in
the credulous case, a ground formula Q is true in K , if Q is satisfied in some
answer set of K – that is, there might be answer sets that do not satisfy Q; in
the skeptical case, a ground formula Q is true in K , if Q is satisfied in every
answer set of K . If a rule Q is non-ground and contains some free variables, the
response of K is the set of ground instantiations of Q that are true in K under
either the credulous or skeptical semantics.

Definition 1 (Credulous and skeptical query response semantics). Let
U be the Herbrand universe of a consistent knowledge base K . The credulous
query responses of formula Q(X) (with a vector X of free variables) in K are

cred(K , Q(X)) = {Q(A) | A is a vector of elements of U and there
is an answer set of K that satisfies Q(A)}

In particular, for a ground formula Q,

cred(K , Q) =
{{Q} if K has an answer set that satisfies Q

∈ otherwise

The skeptical query responses of Q(X) in K are

skep(K , Q(X)) = {Q(A) | A is a vector of elements of U and K |= Q(A)}

In particular, for a ground formula Q, skep(K , Q) =
{{Q} if K |= Q

∈ otherwise

Example 3. Assume that the example K is queried for all patients x suffer-
ing from aids. Then, cred(K , Ill(x,Aids)) = {Ill(Mary,Aids), Ill(Pete,Aids)} and
skep(K , Ill(x,Aids)) = {Ill(Mary,Aids)}.

It is usually assumed that in addition to the query responses a user has
some additional knowledge that he can apply to the query responses. Hence, we
additionally assume given a set of rules as some invariant a priori knowledge
prior ; invariance is a common assumption (see [6]). We assume that prior is a
consistent EDP. Thus, the a priori knowledge may consist of additional facts
that the user assumes to hold in K, or some rules that the user can apply to
data in K to deduce new information.

A confidentiality policy policy specifies confidential information. We assume
that policy contains conjunctions of literals or NAF-literals. We do not only have
to avoid that the published knowledge base contains confidential information but
also prevent the user from deducing confidential information with the help of his
a priori knowledge; this is known as the inference problem [2,6].

Example 4. If we wish to declare the disease aids as confidential for any patient
x we can do this with policy = {Ill(x,Aids).}. A user querying Kpub might
know that a person suffering from flu is not able to work. Hence prior =
{¬AbleToWork(x) → Ill(x,Flu).}. If we wish to also declare a lack of work
ability as confidential, we can add this to the confidentiality policy: policy ∼ =
{Ill(x,Aids). , ¬AbleToWork(x).}.

Confidentiality-Preserving Publishing of EDPs 139

Next, we establish a definition of confidentiality-preservation that allows for the
answer set semantics as an inference mechanism and respects the credulous or
skeptical query response semantics: when treating elements of the confidentiality
policy as queries, the credulous or skeptical responses must be empty.

Definition 2 (Confidentiality-preservation for credulous and skeptical
users). A knowledge base Kpub preserves confidentiality of a given confiden-
tiality policy under the credulous query response semantics and with respect to
a given a priori knowledge prior, if for every conjunction C(X) in the policy,
the credulous query responses of C(X) in Kpub ∪ prior are empty: cred(Kpub ∪
prior, C(X)) = ∈. It preserves confidentiality under the skeptical query response
semantics, if the skeptical query responses of C(X) in Kpub ∪ prior are empty:
skep(Kpub ∪ prior , C(X)) = ∈.

Note that the Herbrand universe of Kpub ∪ prior is applied in the query
response semantics; hence, free variables in policy elements C(X) are instanti-
ated according to this universe. Moreover, Kpub ∪ prior must be consistent.

A goal secondary to confidentiality-preservation is minimal change: We
want to publish as many data as possible and want to modify these data as little
as possible. Different notions of minimal change are used in the literature (see
for example [1] for a collection of minimal change semantics in a data integra-
tion setting). We apply a subset-minimal change semantics: we choose a Kpub

that differs from K only subset-minimally. In other words, there is no other
confidentiality-preserving knowledge base Kpub ∼ which inserts (or deletes) less
rules to (from) K than Kpub .

Definition 3 (Subset-minimal change). A confidentiality-preserving knowl-
edge base Kpub subset-minimally changes K (or is minimal, for short) if there
is no confidentiality-preserving knowledge base Kpub ∼ such that ((K \ Kpub ∼) ∪
(Kpub ∼ \ K)) ∃ ((K \ Kpub) ∪ (Kpub \ K)).

Example 5. For the example K and policy and no a priori knowledge, the fact
Ill(Mary,Aids) has to be deleted under both the credulous and the skeptical
query response semantics. Moreover, Ill(Pete,Aids) can be deduced credulously,
because it is satisfied by answer set S1. In order to avoid this, we have two
options when only deletions are used: delete Treat(Pete,Medi1), or delete the
non-literal rule in K ; if insertions of literals are allowed, we have three options:
insert Treat(Pete,Medi2), or insert Ill(Pete,Flu), or insert ¬Ill(Pete,Aids). Each
of these options blocks the credulous deduction of Ill(Pete,Aids). In contrast,
for K , policy ∼ and prior , the last two options (insert Ill(Pete,Flu), or insert
¬Ill(Pete,Aids)) are not possible, because then the secret ¬AbleToWork(Pete)
could be deduced credulously. The same two options are impossible for K ∼

(defined in Sect. 2) and policy because ¬Ill(Pete,Flu) is contained in K ∼.

In the following sections we obtain a minimal solution Kpub for a given
input K, prior and policy by transforming the input into a problem of extended
abduction and solving it with an appropriate update program.

140 K. Inoue et al.

4 Extended Abduction

Traditionally, given a knowledge base K and an observation formula O, abduc-
tion finds a “(positive) explanation” E – a set of hypothesis formulas – such that
every answer set of the knowledge base and the explanation together satisfy the
observation; that is, K ∪ E |= O. Going beyond that [9,13] use extended abduc-
tion with the notions of “negative observations”, “negative explanations” F and
“anti-explanations”. An abduction problem in general can be restricted by spec-
ifying a designated set A of abducibles. This set poses syntactical restrictions on
the explanation sets E and F . In particular, positive explanations are charac-
terized by E ∼ A \ K and negative explanations by F ∼ K ≤ A. If A contains a
formula with variables, it is meant as a shorthand for all ground instantiations
of the formula. In this sense, an EDP K accompanied by an EDP A is called an
abductive program written as ∧K ,A〉. The aim of extended abduction is then to
find (anti-)explanations as follows:
– given a positive observation O, find a pair (E,F) where E is a positive expla-

nation and F is a negative explanation such that
1. [explanation]

(a) [skeptical] O is satisfied in every answer set of (K \ F) ∪ E; that
is, (K \ F) ∪ E |= O

(b) [credulous] O is satisfied in some answer set of (K \ F) ∪ E
2. [consistency] (K \ F) ∪ E is consistent
3. [abducibility] E ∼ A \ K and F ∼ A ≤ K

– given a negative observation O, find a pair (E,F) where E is a positive anti-
explanation and F is a negative anti-explanation such that

1. [anti-explanation]
(a) [skeptical] no answer set of (K \ F) ∪ E satisfies O
(b) [credulous] there is some answer set of (K \ F) ∪ E that does not

satisfy O; that is, (K \ F) ∪ E ∨|= O
2. [consistency] (K \ F) ∪ E is consistent
3. [abducibility] E ∼ A \ K and F ∼ A ≤ K

Among (anti-)explanations, minimal (anti-)explanations characterize a
subset-minimal alteration of the program K : an (anti-)explanation (E,F) of
an observation O is called minimal if for any (anti-)explanation (E∼, F ∼) of O,
E∼ ∼ E and F ∼ ∼ F imply E∼ = E and F ∼ = F .

For an abductive program ∧K ,A〉 both K and A are semantically identified
with their ground instantiations with respect to the Herbrand universe, so that
set operations over them are defined on the ground instances. Thus, when (E,F)
contain formulas with variables, (K \ F) ∪ E means deleting every instance of
formulas in F , and inserting any instance of formulas in E from/into K . When E
contains formulas with variables, the set inclusion E∼ ∼ E is defined for any set
E∼ of instances of formulas in E. Generally, given sets S and T of literals/rules
containing variables, any set operation ∇ is defined as S ∇ T = inst(S) ∇ inst(T)
where inst(S) is the ground instantiation of S. For example, when p(x) ← T , for
any constant a occurring in T , it holds that {p(a)} ∼ T , {p(a)} \ T = ∈, and
T \ {p(a)} = (T \ {p(x)}) ∪ {p(y) | y ∨= a}, etc. Moreover, any literal/rule in a
set is identified with its variants modulo variable renaming.

Confidentiality-Preserving Publishing of EDPs 141

4.1 Extended Abduction and Confidentiality-Preservation

Now, the formal correspondence between confidentiality-preservation and extended
abduction can be stated as follows. A confidentiality-preserving knowledge base
Kpub can be obtained by deleting elements from the knowledge base K and by
inserting rules that are made up of predicate symbols and constants occuring in
K ∪ prior ; however, as we assume prior to be invariant, we cannot delete rules
contained in prior . This is summarized in the following theorem.

Theorem 1. Given a knowledge base K, prior and policy , Kpub = (K \F)∪E
is a (minimal) solution of confidentiality-preservation for credulous (resp. skep-
tical) users iff (E,F) is a (minimal) skeptical (resp. credulous) anti-explanation
for every Ci ← policy in the abductive program ∧K ∪ prior , AK∈prior \ prior 〉
where AK∈prior is the set of all ground rules constructed in the language of
K ∪ prior.

Proof. By Definition 1 we have that cred((K \ F) ∪ E,Ci) = ∈ iff no answer
set of (K \ F) ∪ E satisfies Ci (that is, (E,F) is a skeptical anti-explanation).
Respectively, skep((K \ F) ∪ E,Ci) = ∈ iff (K \ F) ∪ E ∨|= Ci (that is, (E,F) is
a credulous anti-explanation).

4.2 Normal Form

Although extended abduction can handle the very general format of EDPs, some
syntactic transformations are helpful. Based on [13] we will briefly describe
how a semantically equivalent normal form of an abductive program ∧K ,A〉
is obtained; in the end, we obtain an equivalent abductive program with only
literals as abducibles (instead of general rules). This makes an automatic han-
dling of abductive programs easier; for example, abductive programs in normal
form can be easily transformed into update programs as described in Sect. 4.3.
The main step is that rules in A can be mapped to atoms by a naming function
n. Let RA be the set of abducible rules:

RA = {Σ → Γ | (Σ → Γ) ← A and (Σ → Γ) is not a literal}

Then the normal form ∧K n,An〉 is defined as follows where n(R) maps each
rule R to a fresh atom with the same free variables as R:

K n = (K \ RA) ∪ {Σ → Γ, n(R) | R = (Σ → Γ) ← RA} ∪ {n(R) | R ← K ≤ RA}
An = (A \ RA) ∪ {n(R) | R ← RA}

We define that any abducible literal L has name L, i.e., n(L) = L. It is shown in
[13], that there is a 1-1 correspondence between (anti-)explanations with respect
to ∧K , A〉 and those with respect to ∧K n, An〉 for any observation O. That is,
for n(E) = {n(R) | R ← E} and n(F) = {n(R) | R ← F}: an observation
O has a minimal (anti-)explanation (E,F) with respect to ∧K , A〉 iff O has
a minimal (anti-)explanation (n(E), n(F)) with respect to ∧K n, An〉. Hence,

142 K. Inoue et al.

insertion (deletion) of a rule’s name in the normal form corresponds to insertion
(deletion) of the rule in the original program. In sum, with the normal form
transformation, any abductive program with abducible rules is reduced to an
abductive program with only abducible literals.

Example 6. We transform the example knowledge base K into its normal form
based on a set of abducibles that is identical to K : that is A = K ; a similar
setting will be used in Sect. 5.2 to achieve deletion of formulas from K . Hence
we transform ∧K ,A〉 into its normal form ∧K n,An〉 as follows where we write
n(R) for the naming atom of the only rule in A:

K n = {Ill(Mary,Aids)., Treat(Pete,Medi1)., n(R).,
Ill(x,Aids); Ill(x,Flu) → Treat(x,Medi1),not Treat(x,Medi2), n(R).}

An = {Ill(Mary,Aids), Treat(Pete,Medi1), n(R) }

4.3 Update Programs

Minimal (anti-)explanations can be computed with update programs (UPs) [13].
The update-minimal (U-minimal) answer sets of a UP describe which rules have
to be deleted from the program, and which rules have to be inserted into the
program, in order to (un-)explain an observation.

For the given EDP K and a given set of abducibles A, a set of update rules
UR is devised that describe how entries of K can be changed. This is done with
the following three types of rules.

1. [Abducible rules] The rules for abducible literals state that an abducible
is either true in K or not. For each L ← A, a new atom L̄ is introduced that
has the same variables as L. The set of abducible rules for each L is

abd(L) = {L → not L̄. , L̄ → not L.}.

2. [Insertion rules] Abducible literals that are not contained in K might be
inserted into K and hence might occur in the set E of the explanation (E,F).
For each L ← A \ K , a new atom +L is introduced and the insertion rule is

+L → L.

3. [Deletion rules] Abducible literals that are contained in K might be
deleted from K and hence might occur in the set F of the explanation (E,F).
For each L ← A ≤ K , a new atom −L is introduced and the deletion rule is

−L → not L.

The update program is then defined by replacing abducible literals in K with
the update rules; that is, UP = (K \ A) ∪ UR.

Confidentiality-Preserving Publishing of EDPs 143

Example 7. Continuing Example 6, from ∧K n,An〉 we obtain

UP = abd(Ill(Mary,Aids)) ∪ abd(Treat(Pete,Medi1)) ∪ abd(n(R)) ∪
{−Ill(Mary,Aids) → not Ill(Mary,Aids).,
−Treat(Pete,Medi1) → not Treat(Pete,Medi1).,
−n(R) → not n(R).,
Ill(x,Aids); Ill(x,Flu) → Treat(x,Medi1),not Treat(x,Medi2), n(R).}

The set of atoms +L is the set UA+ of positive update atoms; the set of
atoms −L is the set UA− of negative update atoms. The set of update atoms
is UA = UA+ ∪ UA−. From all answer sets of an update program UP we can
identify those that are update minimal (U-minimal): they contain less update
atoms than others. Thus, S is U-minimal iff there is no answer set T such that
T ≤ UA ∃ S ≤ UA.

4.4 Ground Observations

It is shown in [9] how in some situations the observation formulas O can be
mapped to new positive ground observations. Non-ground atoms with variables
can be mapped to a new ground observation. Several positive observations can
be conjoined and mapped to a new ground observation. A negative observa-
tion (for which an anti-explanation is sought) can be mapped as a NAF-literal
to a new positive observation (for which then an explanation has to be found).
Moreover, several negative observations can be mapped as a conjunction of NAF-
literals to one new positive observation such that its resulting explanation acts
as an anti-explanation for all negative observations together. Hence, in extended
abduction it is usually assumed that O is a positive ground observation for which
an explanation has to be found. In case of finding a skeptical explanation, an
inconsistency check has to be made on the resulting knowledge base. Trans-
formations to a ground observation and inconsistency check will be detailed in
Sect. 5.1 and applied to confidentiality-preservation.

5 Confidentiality-Preservation with UPs

We now show how to achieve confidentiality-preservation by extended abduction:
we define the set of abducibles and describe how a confidentiality-preserving
knowledge base can be obtained by computing U-minimal answer sets of the
appropriate update program. We additionally distinguish between the case that
we allow only deletions of formulas – that is, in the anti-explanation (E,F) the
set E of positive anti-explanation formulas is empty – and the case that we also
allow insertions of literals.

144 K. Inoue et al.

5.1 Policy Transformation for Credulous and Skeptical Users

Elements of the confidentiality policy will be treated as negative observations
for which an anti-explanation has to be found while adding prior as invariable
knowledge. Accordingly, we will transform policy elements to a set of rules con-
taining new positive observations as sketched in Sect. 4.4. As these rules are
distinct for credulous and skeptical users, we call them policy transformation
rules for credulous users (PTRcred) and policy transformation rules for
skeptical users (PTRskep), respectively. In the credulous user case, we aim
to find a skeptical anti-explanation that unexplains all the policy elements at
the same time; in other words, no answer set of the resulting knowledge base
Kpub satisfies any of the policy elements. More formally, assume policy contains
k elements. For each conjunction Ci ← policy (i = 1 . . . k), we introduce a new
negative ground observation O−

i and map Ci to O−
i . As each Ci is a conjunction

of (NAF-)literals, the resulting formula is an EDP rule. In the credulous case,
as a last policy transformation rule, we add one rule that maps all new negative
ground observations O−

i (in their NAF version) to a positive observation O+:

PTRcred = {O−
i → Ci. | Ci ← policy } ∪ {O+ → not O−

1 , . . . ,not O−
k .}.

In the skeptical case, we have to treat every policy element individually;
more precisely, for each single policy element, we have to find a credulous anti-
explanation. In other words, for every policy element there must be at least one
answer set of Kpub where it is not satisfied. For different policy elements these
answer sets can however be different. For the credulous anti-explanation this
has the consequence that each policy element has to be treated independent of
others in the update program. That is why we obtain a set of rules PTRskep

i :
each policy element alone is mapped to the new positive observation O+. Hence,

PTRskep
i = {O−

i → Ci. | Ci ← policy } ∪ {O+ → not O−
i .}.

Example 8. The sets of policy transformation rules for policy ∼ are

PTRcred = {O−
1 → Ill(x,Aids). , O−

2 → ¬AbleToWork(x). ,

O+ → not O−
1 ,not O−

2 .}
PTRskep

1 = { O−
1 → Ill(x,Aids)., O+ → not O−

1 . }
PTRskep

2 = { O−
2 → ¬AbleToWork(x)., O+ → not O−

2 . }

Lastly, in both cases we consider an additional goal rule GR that enforces
the single positive observation O+: GR = {→ not O+.}.

5.2 Deletions for Credulous Users

As a simplified setting, we first of all assume that in the credulous user case
only deletions are allowed to achieve confidentiality-preservation. This setting
can informally be described as follows: For a given knowledge base K , if we only

Confidentiality-Preserving Publishing of EDPs 145

allow deletions of rules from K , we have to find a negative explanation F that
explains the new positive observation O+ while respecting prior as invariable
a priori knowledge. The set of abducibles is thus identical to K as we want to
choose formulas from K for deletion: A = K . That is, in total we consider the
abductive program ∧K ,A〉. Then, we transform it into normal form ∧K n,An〉,
and compute its update program UP as described in Sect. 4.3. As for prior , we
add this set to the update program UP in order to make sure that the resulting
answer sets of the update program do not contradict prior .

For the credulous user case, we finally add all the policy transformation rules
PTRcred and the goal rule GR. The goal rule is then meant as a constraint that
only allows those answer sets of UP ∪ prior ∪ PTRcred in which O+ is true. We
thus obtain a new program P cred as

P cred = UP ∪ prior ∪ PTRcred ∪ GR

and compute its U-minimal answer sets. If S is one of these answer sets, the
negative explanation F is obtained from the negative update atoms contained
in S: F = {L | −L ← S}.

To obtain a confidentiality-preserving knowledge base for a credulous user,
we have to check for inconsistency with the negation of the positive observation
O+ (which makes F a skeptical explanation of O+); and allow only answer sets
of P that are U-minimal among those respecting this inconsistency property.
More precisely, we check whether

(K \ F) ∪ prior ∪ PTRcred ∪ {→ O+.} is inconsistent. (1)

Example 9. We combine the update program UP of K with prior and the policy
transformation rules PTRcred and goal rule GR. This leads to the following U-
minimal answer sets satisfying inconsistency property (1): S∼

1 = {−Ill(Mary,Aids),
−Treat(Pete,Medi1), n(R), Ill(Mary,Aids),Treat(Pete,Medi1), O+}, as a first, and
S∼
2 = {−Ill(Mary,Aids),Treat(Pete,Medi1),−n(R), Ill(Mary,Aids), n(R), O+} as

a second answer set. These two answer sets correspond to the two minimal solu-
tions with only deletions from Example 5 where Ill(Mary,Aids) must be deleted
from K together with either Treat(Pete,Medi1) or the rule named R. Note that
the two resulting (K \ F) indeed satisfy inconsistency property (1), because O+

is contained in every answer set of (K \ F) ∪ prior ∪ PTRcred .

From Theorem 1 and the correspondence between update programs and expla-
nations shown in [13], the following proposition follows for deletions.

Proposition 1 (Correctness for deletions for credulous users). A knowl-
edge base Kpub = K \ F preserves confidentiality under the credulous response
semantics and changes K subset-minimally iff F is obtained by an answer set of
the program P cred that is U-minimal among those satisfying the inconsistency
property (1).

146 K. Inoue et al.

5.3 Deletions for Skeptical Users

For the skeptical user case, we first have to find those abducibles that have to be
deleted from K such that confidentiality is preserved for each individual policy
element; hence, we find a credulous anti-explanation for each individual negative
observation O−

i (which indeed corresponds to a credulous explanation of O+)
by computing U-minimal answer sets for the following programs:

P skep
i = UP ∪ prior ∪ PTRskep

i ∪ GR.

If Si is one of these answer sets, the negative explanation Fi is obtained from
the negative update atoms contained in Si: Fi = {L | −L ← Si}. We collect all
negative explanations of P skep

i in the set Fi:

Fi = {Fi | Fi is obtained from a U-minimal answer set of P skep
i }

In order to obtain a publishable knowledge base Kpub that preserves confi-
dentiality for all policy elements, we combine the individual explanations Fi ← Fi

in every possible way – and take the subset-minimal ones; that is, we obtain

F = {F = F1 ∪ . . . ∪ Fk | Fi ← Fi and there is no F ∼ = F ∼
1 ∪ . . . ∪ F ∼

k

(for F ∼
i ← Fi) such that F ∼ ∃ F}

Lastly, we choose those sets F from F that satisfy the following consistency
check: the resulting knowledge base must be consistent with the negation of each
of the policy entries. More formally, we check whether

(K \ F) ∪ prior ∪ PTRskep
i ∪ {→ O−

i .} is consistent for each i = 1, . . . , k. (2)

In other words, we verify that the combined explanation set F indeed preserves
confidentiality of each single policy element. In sum, we make sure that no policy
element can be deduced skeptically from Kpub = (K \F) together with the given
background knowledge prior : for every policy element there is at least one answer
set in which it is not true.

Example 10. In our running example for K with prior and policy ∼, for PTRskep
1

S∼∼
1 = {−Ill(Mary,Aids), Treat(Pete,Medi1), n(R), Ill(Mary,Aids), Ill(Pete,Flu),

¬AbleToWork(Pete), O+}, is the only answer set; whereas for PTRskep
2 S∼∼

2 =
{Ill(Mary,Aids), Treat(Pete,Medi1), n(R), Ill(Pete,Aids), O+} is the only answer
set. Only the update atom −Ill(Mary,Aids) appears in S∼∼

1 ; and hence F =
{Ill(Mary,Aids)}. Which means that we obtain the minimal solution from Exam-
ple 5 by deleting Ill(Mary,Aids) from K. Note that the resulting (K \ F) indeed
satisfies consistency property (2), because each (K \ F) ∪ prior ∪ PTRskep

i has
at least on answer set in which O−

i is not contained.
Note that it is indeed necessary to compute each explanation individually: oth-
erwise, for the example P cred credulous and skeptical explanations coincide and
hence would delete more entries from K than necessary.

Confidentiality-Preserving Publishing of EDPs 147

Similar to Proposition 1, the following result follows for skeptical users.

Proposition 2 (Correctness for deletions for skeptical users). A knowl-
edge base Kpub = K \ F preserves confidentiality under the skeptical response
semantics and changes K subset-minimally iff F is obtained by combining update
atoms of the answer sets of the programs P skep

i that are U-minimal among those
satisfying the consistency property (2) for each i.

5.4 Deletions and Literal Insertions for Credulous Users

To obtain a confidentiality-preserving knowledge base, (incorrect) entries may
also be inserted into the knowledge base. To allow for insertions of literals, a
more complex set A of abducibles has to be chosen. We reinforce the point that
the subset A≤K of abducibles that are already contained in the knowledge base
K are those that may be deleted while the subset A \ K of those abducibles
that are not contained in K may be inserted. In general, for literal insertions we
could take the whole set of atoms that can be obtained by considering predicate
symbols from the knowledge base K and the a priori knowledge prior , and then
instantiating them in all possible ways according to the Herbrand universe of K
and prior . By taking all atoms and their negations we obtain a set of literals;
all those literals that are not contained in K can be used as abducibles for a
positive explanation E. In other words, they can potentially be inserted into K
to avoid deduction of secrets.

However, we can reduce this number of new abducibles by analyzing which
literals have influence on the policy elements at all. First of all, we assume that
the policy transformation is applied as described in Sect. 5.1. Then, starting
from the atoms in policy elements Ci, we trace back all rules in K ∪ prior
that influence these policy atoms and collect all atoms in the bodies as well as
heads of these rules. In other words, we construct a dependency graph (similar
to [17]). However, in contrast to the traditional dependency graph, (as EDPs
allow disjunction in rule heads) we do not only consider body atoms but also
the head atoms as well as all their negations. More formally, let P0 be the set of
literals that can be obtained from atoms that appear in the policy:

P0 = {A,¬A | A is an atom in a literal or NAF-literal in a policy element}
Next we iterate and collect all the literals that the P0 literals depend on:

Pj+1 = {A,¬A | A is an atom in a literal or NAF-literal in the head or body of
a rule R where R ← K ∪ prior and head(R) ≤ Pj ∨= ∈}

and combine all these literals in a set P = (
⋃∞

j=0 Pj).
As we also want to have the option to delete rules from K (not only the

literals in P), we define the set of abducibles as the set P plus all those rules in
K whose head depends on literals in P:

A = P ∪ {R | R ← K and head(R) ≤ P ∨= ∈}

148 K. Inoue et al.

Fig. 2. Dependency graph for literals in policy wrt. K ∪ prior

Example 11. For the example K ∪ prior ∪ PTRcred , the dependency graph on
atoms is shown in Fig. 2. We note that the policy atom Ill(x,Aids) directly
depends on the atoms Ill(x,Flu), Treat(x,Medi1) and Treat(x,Medi2); the pol-
icy atom AbleToWork(x) directly depends on the atom Ill(x,Flu) which again
depends on Ill(x,Aids), Treat(x,Medi1) and Treat(x,Medi2). In the end, consider-
ing negations of these atoms P = {(¬)Ill(x,Aids), (¬)AbleToWork(x), (¬)Ill(x,Flu),
(¬)Treat(x,Medi1), (¬)Treat(x,Medi2)} is obtained. Lastly, we also have to add
the rule R from K to A because literals in its head are contained in P.

We obtain the normal form and then the update program UP for K and the
new set of abducibles A. The process of finding a skeptical explanation (for the
new positive observation O+) proceeds with finding an answer set of program
P cred as in Sect. 5.2 where additionally the positive explanation E is obtained
as E = {L | +L ← S} and S is U-minimal among those satisfying

(K \ F) ∪ E ∪ prior ∪ PTRcred ∪ {→ O+.} is inconsistent. (3)

Example 12. For UP from Example 9 the new set of abducibles leads to new
insertion rules. The insertion rules for the new abducibles Treat(Pete,Medi2),
¬Ill(x,Aids) and Ill(x,Flu) are +Treat(Pete,Medi2) → Treat(Pete,Medi2), as well
as +¬Ill(x,Aids) → ¬Ill(x,Aids) and +Ill(x,Flu) → Ill(x,Flu). With these new
rules included in UP , we also obtain the solutions of Example 5 where the appro-
priate facts are inserted into K (together with deletion of Ill(Mary,Aids)).

Proposition 3 (Correctness for deletions and literal insertions for cred-
ulous users). A knowledge base Kpub = (K\F)∪E preserves confidentiality and
changes K subset-minimally iff (E,F) is obtained by an answer set of program
P cred that is U-minimal among those satisfying inconsistency property (3).

5.5 Deletions and Literal Insertions for Skeptical Users

For skeptical users, we have to obtain the same new set of abducibles as for
credulous users by tracing back all dependencies. But in the skeptical case we
again have to find an anti-explanation for each policy element individually to
avoid changing the knowledge base K more than necessary. Hence, we obtain the
update programs UP based on the new set of abducibles and compute U-minimal
answer sets of the following individual programs:

P skep
i = UP ∪ prior ∪ PTRskep

i ∪ GR.

Confidentiality-Preserving Publishing of EDPs 149

These answer sets may now contain positive explanations Ei as well as negative
explanations Fi. If Si is one of these answer sets, Fi is obtained from the negative
update atoms contained in Si: Fi = {L | −L ← Si} whereas Ei is Ei = {L | +L ←
Si}. We collect these explanations of P skep

i in the set Expi:

Expi = {(Ei, Fi) | (Ei, Fi) is obtained from a U-minimal answer set of P skep
i }

Similar to the deletion only case, we combine the individual explanations
(Ei, Fi) ← Expi in every possible way – and take the subset-minimal ones; that
is, we obtain

Exp = {(E,F) | F = F1 ∪ . . . ∪ Fk, E = E1 ∪ . . . ∪ Ek, (Ei, Fi) ← Expi

and there is no F ∼ = F ∼
1 ∪ . . . ∪ F ∼

k and no E∼ = E∼
1 ∪ . . . ∪ E∼

k

(for (E∼
i, F

∼
i) ← Expi) such that F ∼ ∪ E∼ ∃ F ∪ E}

We choose those sets (E,F) from Exp that satisfy the following consistency
check: the resulting knowledge base must be consistent with the negation of each
of the policy entries. More formally, we check whether

(K\F)∪E∪prior ∪PTRskep
i ∪ {→ O−

i .} is consistent for each i = 1, . . . , k. (4)

That is, we again verify that the combined explanation (E,F) preserves con-
fidentiality of each single policy element, and hence no policy element can be
deduced skeptically from Kpub = (K\F)∪E together with the given background
knowledge prior .

Example 13. To give an example for literal insertions for skeptical users, we
consider the given example K and policy as well as a new a priori knowledge
prior ∼ = {¬Ill(Pete,Flu)}. In this case, from K∪prior ∼ the secrets Ill(Mary,Aids)
and Ill(Pete,Aids) can both be deduced skeptically. There is only one policy ele-
ment and hence only one program PTRskep

1 . This program has two U-minimal
answer sets; one containing −¬Ill(Mary,Aids) and −Treat(Pete,Medi1) and a sec-
ond one containing −¬Ill(Mary,Aids) and +Treat(Pete,Medi2). Hence we now
also have the option to insert Treat(Pete,Medi2) in order protect the secret
Ill(Pete,Aids).

Proposition 4 (Correctness for deletions and literal insertions for skep-
tical users). A knowledge base Kpub = (K \F)∪E preserves confidentiality and
changes K subset-minimally iff (E,F) is obtained by combining update atoms of
the answer sets of the programs P skep

i that are U-minimal among those satisfying
the consistency property (4) for each i.

6 Discussion and Conclusion

This article showed that when publishing an extended disjunctive logic program,
confidentiality-preservation can be ensured by extended abduction; more pre-
cisely, we showed that under the credulous and skeptical query response seman-
tics it reduces to finding anti-explanations with update programs. This is an

150 K. Inoue et al.

application of data modification, because a user can be misled by the published
knowledge base to believe incorrect information; we hence apply dishonesties
[12] as a security mechanism. This is in contrast to [17] whose aim is to avoid
incorrect deductions while enforcing access control on a knowledge base. Another
difference to [17] is that they do not allow disjunctions in rule heads; hence, to the
best of our knowledge this article is the first one to handle a confidentiality prob-
lem for EDPs. In [3] the authors study databases that may provide users with
incorrect answers to preserve security in a multi-user environment. Differently
from our approach, they consider a database as a set of formulas of propositional
logic and formulate the problem using modal logic. Future work might handle
insertion of non-literal rules. Moreover, the whole system could be extended by
preferences among the possible solutions. Generally, we can consider preferences
such that deleting facts is preferred to deleting rules, or inserting facts with
non-confidential predicates is preferred to inserting facts with confidential ones.

References

1. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms
and complexity. ICDT 2009. ACM International Conference Proceeding Series,
vol. 361, pp. 31–41. ACM, New York (2009)

2. Biskup, J.: Usability confinement of server reactions: maintaining inference-proof
client views by controlled interaction execution. In: Kikuchi, S., Sachdeva, S.,
Bhalla, S. (eds.) DNIS 2010. LNCS, vol. 5999, pp. 80–106. Springer, Heidelberg
(2010)

3. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive
databases. IEEE Trans. Knowl. Data Eng. 7(3), 406–422 (1995)

4. Calimeri, F., et al.: The third answer set programming competition: preliminary
report of the system competition track. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

5. Dix, J., Faber, W., Subrahmanian, V.S.: The relationship between reasoning about
privacy and default logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 637–650. Springer, Heidelberg (2005)

6. Farkas, C., Jajodia, S.: The inference problem: a survey. SIGKDD Explor. 4(2),
6–11 (2002)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gen. Comput. 9(3/4), 365–386 (1991)

8. Grau, B.C., Horrocks, I.: Privacy-preserving query answering in logic-based infor-
mation systems. In: ECAI 2008. Frontiers in Artificial Intelligence and Applica-
tions, vol. 178, pp. 40–44. IOS Press (2008)

9. Inoue, K., Sakama, C.: Abductive framework for nonmonotonic theory change. In:
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 95),
vol. 1, pp. 204–210. Morgan Kaufmann (1995)

10. Inoue, K., Sakama, C., Wiese, L.: Confidentiality-preserving data publishing for
credulous users by extended abduction. Paper appears in the Proceedings of the
19th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2011), arXiv:1108.5825 (2011)

11. Ma, J., Russo, A., Broda, K., Lupu, E.: Multi-agent confidential abductive reason-
ing. In: ICLP (Technical Communications). LIPIcs, vol. 11, pp. 175–186. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2011)

Confidentiality-Preserving Publishing of EDPs 151

12. Sakama, C.: Dishonest reasoning by abduction. In: 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI 2011), pp. 1063–1064. IJCAI/AAAI (2011)

13. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base
updates. Theor. Pract. Logic Program. 3(6), 671–713 (2003)

14. Stouppa, P., Studer, T.: Data privacy for ALC knowledge bases. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 409–421. Springer, Heidelberg
(2008)

15. Toland, T.S., Farkas, C., Eastman, C.M.: The inference problem: Maintaining max-
imal availability in the presence of database updates. Comput. Secur. 29(1), 88–103
(2010)

16. Wiese, L.: Horizontal fragmentation for data outsourcing with formula-based confi-
dentiality constraints. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010.
LNCS, vol. 6434, pp. 101–116. Springer, Heidelberg (2010)

17. Zhao, L., Qian, J., Chang, L., Cai, G.: Using ASP for knowledge management with
user authorization. Data Knowl. Eng. 69(8), 737–762 (2010)

INAP Technical Papers III:
Semantics

Every Formula-Based Logic Program
Has a Least Infinite-Valued Model

Rainer Lüdecke(B)

Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13,
72076 Tübingen, Germany

luedecke@informatik.uni-tuebingen.de

Abstract. Every definite logic program has as its meaning a least Her-
brand model with respect to the program-independent ordering ⊆. In
the case of normal logic programs there do not exist least models in
general. However, according to a recent approach by Rondogiannis and
Wadge, who consider infinite-valued models, every normal logic program
does have a least model with respect to a program-independent ordering.
We show that this approach can be extended to formula-based logic pro-
grams (i.e., finite sets of rules of the form A ← φ where A is an atom and
φ an arbitrary first-order formula). We construct for a given program P
an interpretation MP and show that it is the least of all models of P .

Keywords: Logic programming · Semantics of programs · Negation-as-
failure · Infinite-valued logics · Set theory

1 Introduction

It is well-known that every definite logic program P has a Herbrand model and
the intersection of all its Herbrand models is also a model of P . We call it the
least Herbrand model or the canonical model of P and constitute that it is
the intended meaning of the program. If we consider a normal logic program P
it is more complicated to state the intended meaning of the program because
the intersection of all its models is not necessarily a model. There are many
approaches to overcome that problem. The existing approaches are not purely
model-theoretic (i.e., there are normal logic programs that have the same mod-
els but different intended meanings). However, there is a recent purely model-
theoretic approach of P. Rondogiannis and W. Wadge [3]. They prove that every
normal logic program has a least infinite-valued model. Their work is based on
an infinite set of truth values, ordered as follows:

F0 < F1 < · · · < Fα < · · · < 0 < · · · < Tα < · · · < T1 < T0

Intuitively, F0 and T0 are the classical truth values False and True, 0 is the truth
value Undefined and α is an arbitrary countable ordinal. The considered ordering
of the interpretations is a program-independent ordering on the infinite-valued
interpretations and generalizes the classical ordering on the Herbrand interpre-
tations. The intended meaning of a normal logic program is, as in the classical

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 155–172, 2013.
DOI: 10.1007/978-3-642-41524-1 9, c© Springer-Verlag Berlin Heidelberg 2013

156 R. Lüdecke

case, stated as the unique minimal infinite-valued model of P . Furthermore, they
show that the 3-valued interpretation that results from the least infinite-valued
model of P by collapsing all true values to True and all false values to False
coincides with the well-founded model of P introduced in [2].

Inspired by [4] we consider in this paper formula-based logic programs. A
formula-based logic program is a finite set of rules of the form A → φ, where A
is an atomic formula and φ is an arbitrary first-order formula. We show that the
construction methods to obtain the least infinite-valued model of a normal logic
program P given in [3] can be adapted to formula-based logic programs. The
initial step to carry out this adaption is the proof of two extension theorems.
Informally speaking, these theorems state that a complex formula shows the same
behavior as an atomic formula. While Rondogiannis and Wadge [3] make use of
the fact that the bodies of normal program rules are conjunctions of negative or
positive atoms, we instead make use of one of the extension theorems. The second
step to achieve the adaption is the set-theoretical fact that the least uncountable
cardinal ℵ1 is regular (i.e., the limit of a countable sequence of countable ordinals
is in ℵ1). Contrary to the bodies of normal program rules, the bodies of formula-
based program rules can refer a ground atom to a countably infinite set of ground
atoms. This is the reason why we must use in our approach ℵ1 many iteration
steps in the construction of the least model of a given program P in conjunction
with the regularity of ℵ1. In [3] ω many iteration steps in conjunction with
the fact that the limit of a finite sequence of natural numbers is once again a
natural number is sufficient to construct the least model. Towards the end of
the paper, we use again the regularity of ℵ1 to show that there is a countable
ordinal δmax with the property that every least model of a formula-based logic-
program refers only to truth values of the form Tα or Fα or 0, where α < δmax.
This implies that we only need a very small fragment of the truth values if we
consider the meaning of a formula-based logic program. Finally, we show that
the 3-valued interpretation that results from the least infinite-valued model of
a given formula-based logic program by collapsing all true values to True and
all false values to False, is a model of P in the sense of [2]. But compared to
the case of normal logic programs, the collapsed least infinite-valued model of a
formula-based logic program is not a minimal 3-valued model of P in general.
However, there is a simple restriction for the class of formula-based programs
such that the collapsed model is minimal in general.

At this point we would like to mention that we did not develop the theory
presented in this paper with respect to applied logic. We have a predominantly
theoretical interest in extending the notion of inductive definition to a wider
class of rules.

We make heavy use of ordinal numbers in this paper. Therefore, we included
an appendix with a short introduction to ordinal numbers for those readers who
are not familiar with this part of set theory. Moreover, one can find the omitted
proofs and a detailed discussion of an example within the appendix. It is down-
loadable at: http://www-ls.informatik.uni-tuebingen.de/luedecke/luedecke.html

http://www-ls.informatik.uni-tuebingen.de/luedecke/luedecke.html

Every Program Has a Least Infinite-Valued Model 157

2 Infinite-Valued Models

We are interested in logic programs based on a first-order Language L with
finitely many predicate symbols, function symbols, and constants.

Definition 1. The alphabet of L consists of the following symbols, where the
numbers n, m, l, s1,...,sn, r1,...,rm are natural numbers such that n, l, ri ∼ 1
and m, si ∼ 0 hold:

1. Predicate symbols: P1, ..., Pn with assigned arity s1, ..., sn

2. Function symbols: f1, ..., fm with assigned arity r1, ..., rm

3. Constants (abbr.: Con): c1, ..., cl

4. Variables (abbr.: Var): xk provided that k ← N

5. Connectives: ≤,∈,¬,⊆,∪,∃,∧
6. Punctuation symbols: ’(’, ’)’ and ’,’

The natural numbers n,m, l, s1, ..., sn, r1, ..., rm ← N are fixed and the language L
only depends on these numbers. If we consider different languages of this type,
we will write Ln,m,l,(si),(ri) instead of L to prevent confusion. The following
definitions depend on L. However, to improve readability, we will not mention
this again.

Definition 2. The set of terms Term is the smallest one satisfying:

1. Constants and variables are in Term.
2. If t1, ..., tri

← Term, then fi(t1, ..., tri
) ← Term.

Definition 3. The Herbrand universe HU is the set of ground terms (i.e., terms
that contain no variables).

Definition 4. The set of formulas Form is the smallest one satisfying:

1. ∃ and ∧ are elements of Form.
2. If t1, ..., tsk

← Term, then Pk(t1, ..., tsk
) ← Form.

3. If φ, ψ ← Form and v ← Var, then (¬φ), (φ ≤ ψ), (φ ∈ ψ), (⊆vφ), (∪vφ) ←
Form.

An atom is a formula only constructed by means of (1.) or (2.) and a ground
atom is an atom that contains no variables.

Definition 5. The Herbrand base HB is the set of all ground atoms, except ∃
and ∧.

Definition 6. A (formula-based) rule is of the form A → φ where φ is an
arbitrary formula and A is an arbitrary atom provided that A �= ∧ and A �=∃.

A (formula-based) logic program is a finite set of (formula-based) rules. Notice
that we write A → instead of A → ∧. Remember A → φ is called a normal rule
(resp. definite rule) if φ is a conjunction of literals (resp. positive literals). A
finite set of normal (resp. definite) rules is a normal (resp. definite) program.

158 R. Lüdecke

Definition 7. The set of truth values W is given by

W := {∨0, n∇ ; n ← ℵ1} ∅ {0} ∅ {∨1, n∇ ; n ← ℵ1} .

Additionally, we define a strict linear ordering < on W as follows:

1. ∨0, n∇ < 0 and 0 < ∨1, n∇ for all n ← ℵ1

2. ∨w, x∇ < ∨y, z∇ iff
(w = 0 = y and x ← z) or (w = 1 = y and z ← x) or (w = 0 and y = 1)

We define Fi := ∨0, i∇ and Ti := ∨1, i∇ for all i ← ℵ1. Fi is said to be a false value
and Ti is called a true value. The value 0 is the undefined value. The following
summarizes the situation (i ← ℵ1):

F0 < F1 < F2 < · · · < Fi < · · · < 0 < · · · < Ti < · · · < T2 < T1 < T0

Definition 8. The degree (abbr.: deg) of a truth value is given by deg(0) := ⊂,
deg(Fα) := α, and deg(Tα) := α for all α ← ℵ1.

Definition 9. An (infinite-valued Herbrand) interpretation I is a function from
the Herbrand base HB to the set of truth values W . A variable assignment h is
a mapping from Var to HU .

Definition 10. Let I be an interpretation and w ← W be a truth value, then
I↔w is defined as the inverse image of w under I (i.e., I↔w = {A ← HB ; I(A) =
w}).

Definition 11. Let I and J be interpretations and α ← ℵ1. We write I =α J, if
for all β ≥ α, I↔Fβ = J↔Fβ and I↔Tβ = J↔Tβ .

Definition 12. Let I and J be interpretations and α ← ℵ1. We write I ⇔α J , if
for all β < α, I =β J and furthermore J↔Fα ∞ I↔Fα & I↔Tα ∞ J↔Tα. We write
I �α J , if I ⇔α J and I �=α J .

Now we define a partial ordering ⇔∼ on the set of all interpretations. It is easy
to see that this ordering generalizes the classical partial ordering ∞ on the set
of 2-valued Herbrand interpretations.

Definition 13. Let I and J be interpretations. We write I �∼ J , if there exists
an α ← ℵ1 such that I �α J . We write I ⇔∼ J , if I �∼ J or I = J .

Remark 1. To motivate these definitions let us briefly recall the classical 2-valued
situation. Therefore, let us pick two (2-valued) Herbrand interpretations I, J ∞
HB . Considering these, it becomes apparent that I ∞ J holds if and only if the
set of ground atoms that are false w.r.t. J is a subset of the set of ground atoms
that are false w.r.t. I and the set of ground atoms that are true w.r.t. I is a
subset of the set of ground atoms that are true w.r.t. J .

Definition 14. Let h be a variable assignment. The semantics of terms is given
by (with respect to h):

Every Program Has a Least Infinite-Valued Model 159

1. [[c]]h = c if c is a constant.
2. [[v]]h = h(v) if v is a variable.
3. [[fi(t1, ..., tri

)]]h = fi([[t1]]h, ..., [[tri
]]h) if 1 ≥ i ≥ m and t1, ..., tri

← Term.

Before we start to talk about the semantics of formulas, we have to show that
every subset of W has a least upper bound (abbr: sup) and a greatest lower bound
(abbr: inf). The proof of the following lemma is left to the reader. The proof is
using the fact that every nonempty subset of ℵ1 has a least element.

Lemma 1. For every subset M ∞ W the least upper bound supM and the
greatest lower bound infM exist in W . Moreover, supM ← {Tα; α ← ℵ1} implies
that supM ← M and on the other hand infM ← {Fα; α ← ℵ1} implies that
infM ← M .

Definition 15. Let I be an interpretation and h be a variable assignment. The
semantics of formulas is given by (with respect to I and h):

1. If t1, ..., tsk
← Term, then [[Pk(t1, ..., tsk

)]]Ih = I (Pk([[t1]]h, ..., [[tsk
]]h)). Addi-

tionally, the semantics of ∧ and ∃ is given by [[∧]]Ih = T0 and [[∃]]Ih = F0.
2. If φ, ψ ← Form and v an arbitrary variable, then [[φ ≤ ψ]]Ih = min{[[φ]]Ih, [[ψ]]Ih},

[[φ ∈ ψ]]Ih = max{ [[φ]]Ih , [[ψ]]Ih }, [[∪v(φ)]]Ih = sup{[[φ]]Ih[v ∈∞u]; u ← HU},

[[⊆v(φ)]]Ih = inf{[[φ]]Ih[v ∈∞u]; u ← HU} and [[¬(φ)]]Ih =

⎧

⎪

Tα+1, if [[φ]]Ih = Fα

Fα+1, if [[φ]]Ih = Tα

0, otherwise
.

Definition 16. Let A → φ be a rule, P a program and I an interpretation.
Then I satisfies A → φ if for all variable assignment h the property [[A]]Ih ∼ [[φ]]Ih
holds. Furthermore, I is a model of P if I satisfies all rules of P .

Definition 17. Let A → φ be a rule and σ be a variable substitution (i.e., a
function from Var to Term with finite support). Then, Aσ → φσ is a ground
instance of the rule A → φ if Aσ ← HB and all variables in φσ are in the
scope of a quantifier. It is easy to see that [[Aσ]]Ih and [[φσ]]Ih (with respect to an
interpretation I and a variable assignment h) depend only on I. That is why
we write also [[Aσ]]I and [[φσ]]I . We denote the set of all ground instances of a
program P with PG.

Example 1. Consider the formula-based program P given by the set of rules
{P (c) →, R(x) → ¬P (x), P (Sx) → ¬R(x), Q → ⊆x P (x)}. Then it is easy
to prove that the Herbrand interpretation I = {P (Snc) ∗→ T2n; n ← N} ∅
{R(Snc) ∗→ F2n+1; n ← N} ∅ {Q ∗→ Tω} is a model of P . Moreover, using the
results of this paper one can show that it is also the least Herbrand model of P .

Remark 2. Before we proceed we want to give a short informal but intuitive
description of the semantics given above. Let us consider two rabbits named
Bugs Bunny and Roger Rabbit. We know about them, that Bugs Bunny is a

160 R. Lüdecke

grey rabbit and if Roger Rabbit is not a grey rabbit, then he is a white one. This
information can be understood as a normal logic program:

grey(Bugs Bunny) ⇐
white(Roger Rabbit) ⇐ notgrey(Roger Rabbit)

There is no doubt that Bugs Bunny is grey is true because it is a fact. There is
also no doubt that every try to prove that Roger Rabbit is grey will fail. Hence,
using the negation-as-failure rule, we can infer that Roger Rabbit is white is also
true. But everybody would agree that there is a difference of quality between
the two statements because negation-as-failure is not a sound inference rule. The
approach of [3] suggests that the ground atom grey(Bugs Bunny) receives the
best possible truth value named T0 because it is a fact of the program. The atom
grey(Roger Rabbit) receives the worst possible truth value named F0 because of
the negation-as-failure approach. Hence, using the above semantics for negation,
white(Roger Rabbit) receives only the second best truth value T1.

3 The Immediate Consequence Operator

Definition 18. Let P be a program, then the immediate consequence operator
TP for the program P is a mapping from and into {I; I is an interpretation},
where TP (I) maps an A ← HB to TP (I)(A) := sup{[[φ]]I ;A → φ ← PG}. (Notice
that PG can be infinite and hence we cannot use max instead of sup.)

Definition 19. Let α be an arbitrary countable ordinal. A function T from and
into the set of interpretations is called α-monotonic iff for all interpretations I
and J the property I ⇔α J ⊥ T (I) ⇔α T (J) holds.

We will show that TP is α-monotonic. Before we will give the proof of this
property, we have to prove the first extension theorem.

Theorem 1 (Extension Theorem I). Let α be an arbitrary countable ordinal
and I, J two interpretations provided that I ⇔α J . The following properties hold
for every formula φ:

1. If F0 ≥ w ≥ Fα and h an assignment, then [[φ]]Jh = w ⊥ [[φ]]Ih = w.
2. If Tα ≥ w ≥ T0 and h an assignment, then [[φ]]Ih = w ⊥ [[φ]]Jh = w.
3. If deg(w) < α and h an assignment, then [[φ]]Ih = w ⇔ [[φ]]Jh = w.

Proof. We show these statements by induction on φ. Let IH(X) be an abbrevi-
ation for 1. and 2. and 3., where φ is replaced by X (induction hypothesis).

Case 1 : φ = ∧ or φ =∃. In this case 1., 2., and 3. are obviously true.
Case 2 : φ = Pk(t1, ..., tsk

). 1., 2., and 3. follow directly from I ⇔α J .
Case 3 : φ = ¬A. We assume that IH(A). We show simultaneously that 1., 2. and
3. also hold. Therefore, we choose an assignment h and a truth value w such that
F0 ≥ w ≥ Fα resp. Tα ≥ w ≥ T0 resp. deg(w) < α. Assume that [[φ]]Jh = w resp.

Every Program Has a Least Infinite-Valued Model 161

[[φ]]Ih = w resp. [[φ]]K1
h = w (where K1 = I and K2 = J or K1 = J and K2 = I).

Using Definition 15 we get that Tα−1 ≥ [[A]]Jh ≥ T0 resp. F0 ≥ [[A]]Ih ≥ Fα−1

resp. deg([[A]]K1
h) < α − 1. Thus, using the third part of IH(A), [[A]]Jh = [[A]]Ih

resp. [[A]]Ih = [[A]]Jh resp. [[A]]K1
h = [[A]]K2

h . Finally, using Definition 15, we get that
[[φ]]Ih = w resp. [[φ]]Jh = w resp. [[φ]]K2

h = w.

Before we can go on with the next case, we must prove the following technical
lemma.

Lemma 2. We use the same assumptions as in Theorem 1. Let I be a set of
indices, Ai (i ← I) a formula provided that IH(Ai) and hi (i ← I) an assignment.
We define infK := inf{[[Ai]]Khi

; i ← I} and supK := sup{[[Ai]]Khi
; i ← I} (where

K = I, J). Then the following holds:

1. infJ = Fγ ⊥ infI = Fγ (for all γ ≥ α)
2. infI = Tγ ⊥ infJ = Tγ (for all γ ≥ α)
3. infI = w ⇔ infJ = w (for all w provided that deg(w) < α)
4. supJ = Fγ ⊥ supI = Fγ (for all γ ≥ α)
5. supI = Tγ ⊥ supJ = Tγ (for all γ ≥ α)
6. supI = w ⇔ supJ = w (for all w provided that deg(w) < α)

Proof. 1.: Assume that infJ = Fγ . Using Lemma 1 we get that there exists an
i0 such that [[Ai0]]

J
hi0

= Fγ . Thus, from the first part of IH(Ai0), [[Ai0]]
I
hi0

= Fγ .
This implies that [[Ai0]]

I
hi0

≥ [[Ai]]Ihi
for all i ← I. (Since otherwise we had that

there exists a j0 ← I such that [[Aj0]]
I
hj0

< Fγ . Hence, using the third part
of IH(Aj0), we would get [[Aj0]]

J
hj0

< Fγ . But this contradicts our assumption
infJ = Fγ .) Finally, we get that infI = Fγ must hold true.
2.: Assume now, that infI = Tγ . Then, for all i ← I, Tγ ≥ [[Ai]]Ihi

. Using part two
of IH(Ai), we get that [[Ai]]Ihi

= [[Ai]]Jhi
for all i. This implies infJ = Tγ .

3.: Due to 1. and 2., it only remains to show (infJ = Tγ ⊥ infI = Tγ) and
(infI = Fγ ⊥ infJ = Fγ) for γ < α. Assume that infJ = Tγ (where γ < α).
Then, for all i ← I, Tγ ≥ [[Ai]]Jhi

and this implies, using the third part of IH(Ai),
[[Ai]]Jhi

= [[Ai]]Ihi
for all i. Finally, we get that infI = Tγ .

For the latter case assume that infI = Fγ (γ < α). Then there exists an i0 such
that [[Ai0]]

I
hi0

= Fγ (Lemma 1). Thus, using the third part of IH(Ai0), we get
that [[Ai0]]

J
hi0

= Fγ . This implies that [[Ai0]]
J
hi0

≥ [[Ai]]Jhi
for all i ← I. (Since

otherwise we had that there exists a j0 ← I such that [[Aj0]]
I
hj0

< Fγ , see proof
of statement 1.) Finally, we get that infJ = Fγ .
We will not give the proofs of 4., 5., and 6. here, because they are similar to 1.,
2., and 3.. ��
Case 4: φ = A≤B. Assume that IH(A) and IH(B). Let h be an arbitrary assump-
tion. We define I := {1, 2}, h1 := h, h2 := h, A1 := A and A2 := B. Then IH(Ai)
for i = 1, 2, [[φ]]Jh = min{[[A]]Jh , [[B]]Jh} = infJ and [[φ]]Ih = min{[[A]]Ih, [[B]]Ih} = infI .
Thus, using 1., 2. and 3. of Lemma 2, we get that 1., 2. and 3. of Theorem 1
hold.

162 R. Lüdecke

Case 5: φ = A ∈ B. Replace min by max and inf by sup in the proof above and
use 4., 5. and 6. of Lemma 2 instead of 1., 2. and 3..
Case 6: φ = ⊆v A. Assume that IH(A) and let h be an arbitrary assumption.

We define I := {u; u ← HU}, hu := h[v ∗→ u] and Au := A for all u ← HU .
Then IH(Au) for all u ← I, [[φ]]Jh = inf{[[A]]Jh[v ∈∞u]; u ← HU} = infJ , and [[φ]]Ih =
inf{[[A]]Ih[v ∈∞u]; u ← HU} = infI . Thus, using 1., 2. and 3. of Lemma 2, we get
that 1., 2. and 3. of Theorem 1 hold.

Case 7: φ = ∪v A. Replace inf by sup in the proof above and use 4., 5. and 6. of
Lemma 2 instead of 1., 2. and 3.. ��
Lemma 3. The immediate consequence operator TP of a given program P is
α-monotonic for all countable ordinals α.

Proof. The proof is by transfinite induction on α. Assume the lemma holds for all
β < α (induction hypothesis). We demonstrate that it also holds for α. Let I, J
be two interpretations such that I ⇔α J . Thus, using the induction hypothesis,
we get that

TP (I) =β TP (J) for all β < α. (1)

It remains to show that TP (I) ↔ Tα ∞ TP (J) ↔ Tα and that TP (J) ↔ Fα ∞
TP (I) ↔ Fα. For the first statement assume that TP (I)(A) = Tα for some A ←
HB . Hence, using Lemma 1, there exists a ground instance A → φ of P such that
[[φ]]I = Tα. But then, by Theorem 1, [[φ]]J = Tα. This implies Tα ≥ TP (J)(A).
But this implies Tα = TP (J)(A). (Since Tα < TP (J)(A), using (1), would imply
Tα < TP (I)(A).) For the latter statement assume that TP (J)(A) = Fα for some
A ← HB . This implies that [[φ]]J ≥ Fα for every ground instance A → φ of P .
But then, using again Theorem 1, we get that [[φ]]I = [[φ]]J for every ground
instance A → φ of P . Finally, this implies also TP (I)(A) = Fα. ��
Remark 3. The immediate consequence operator TP is not monotonic with
respect to ⇔∼. Consider the program P = {A → ¬A} and the interpretations
I1 and I2 given by I1 := {A ∗→ F0} and I2 := {A ∗→ 0}. Obviously, I1 �0 I2 and
hence I1 ⇔∼ I2. Using Definition 18, we get that TP (I1) = sup{[[¬A]]I1} = T1

and TP (I2) = sup{[[¬A]]I2} = 0. This implies TP (I2) �1 TP (I1) (i.e., TP (I1) ⇔∼
TP (I2) does not hold).

4 Construction of the Least Model

In this section we show how to construct the interpretation MP of a given
formula-based logic program P . We will give the proof that MP is a model
of P and that it is the least of all models of P in the next section. In [3] the
authors give a clear informal description of the following construction:

“As a first approximation to MP , we start (...) iterating the TP on ∅ until
both the set of atoms that have a F0 value and the set of atoms having T0 value,
stabilize. We keep all these atoms whose values have stabilized and reset the
values of all remaining atoms to the next false value (namely F1). The procedure

Every Program Has a Least Infinite-Valued Model 163

is repeated until the F1 and T1 values stabilize, and we reset the remaining atoms
to a value equal to F2, and so on. Since the Herbrand Base of P is countable,
there exists a countable ordinal δ for which this process will not produce any
new atoms having Fδ or Tδ values. At this point we stop iteration and reset all
remaining atoms to the value 0.”

Definition 20. Let P be a program, I an interpretation, and α ← ℵ1 such that
I ⇔α TP (I). We define by recursion on the ordinal β ← Ω the interpretation
T β

P,α(I) as follows:
T 0

P,α(I) := I and if β is a successor ordinal, then T β
P,α := TP (T β−1

P,α). If 0 < β is
a limit ordinal and A ← HB , then

T β
P,α(I)(A) :=

⎧

⎪

I(A), if deg(I(A)) < α

Tα, if A ← ⎨
γ∗β T γ

P,α(I)↔Tα

Fα, if A ← ⎩
γ∗β T γ

P,α(I)↔Fα

Fα+1, otherwise

.

Lemma 4. Let P be a program, I an interpretation and α ← ℵ1 such that I ⇔α

TP (I). Then the following statements hold:

1. For all limit ordinals 0 < γ ← Ω and all interpretations M the condition
⊆β < γ : T β

P,α(I) ⇔α M implies T γ
P,α(I) ⇔α M .

2. For all β ≥ γ ← Ω the property T β
P,α(I) ⇔α T γ

P,α(I) holds.

Proof. 1.: The proof follows directly from the above definition.
2.: One can prove the second statement with induction, using the assumption
I ⇔α TP (I), the fact that TP is α-monotonic, the fact that ⇔α is transitive and
at limit stage the first statement of this lemma. ��
At this point, we have to consider a theorem of Zermelo-Fraenkel axiomatic set
theory with the Axiom of Choice (ZFC). In the case of normal logic programs
this theorem is not necessary, because in the bodies of normal logic programs do
not appear “⊆” or “∪”. One can find the proof of the theorem in [1].

Definition 21. Let α > 0 be a limit ordinal. We say that an increasing β-
sequence (αζ)ζ<β , β limit ordinal, is cofinal in α if sup{αζ ; ζ < β} = α. Similarly,
A ∞ α is cofinal in α if supA = α. If α is an infinite limit ordinal, the cofinality
of α is cf(α) = “the least limit ordinal β such that there is an increasing β-
sequence (αζ)ζ<β with sup{αζ ; ζ < β} = α”. An infinite cardinal ℵα is regular
if cf(ℵα) = ℵα.

Theorem 2. Every cardinal of the form ℵα+1 is regular. Particularly, ℵ1 is
regular.

Theorem 3 (Extension Theorem II). Let P be a program, I an interpreta-
tion, and α ← ℵ1 such that I ⇔α TP (I). Then for every formuöla φ ← Form and
every assignment h the following hold:

164 R. Lüdecke

1. [[φ]]
T

ℵ1
P,α(I)

h = [[φ]]Ih, ifdeg([[φ]]Ih) < α (C1)

2. [[φ]]
T

ℵ1
P,α(I)

h = Tα, if [[φ]]
T i

P,α(I)

h = Tα for some i ← ℵ1 (C2)

3. [[φ]]
T

ℵ1
P,α(I)

h = Fα, if [[φ]]
T i

P,α(I)

h = Fα for all i ← ℵ1 (C3)

4. Fα < [[φ]]
T

ℵ1
P,α(I)

h < Tα ⇔ not (C1) and not (C2) and not (C3)

Proof. 1. and 2.: We get this using Lemma 4 and Theorem 1.
3.: We show this by induction on φ. We define Ii := T i

P,α(I) and I∼ := Tℵ1
P,α(I).

Moreover, we use IH(X) as an abbreviation for

“for all assignments g the property ⊆i ← ℵ1([[X]]Ii
g = Fα) ⊥ [[X]]I∗

g = Fα

holds′′.

Case 1: φ = Pk(t1, ..., tsk
) or = ∧,∃. This follows directly from Definition 20

respectively from Definition 15.
Case 2: φ = ¬A. Assuming ⊆i ← ℵ1: [[φ]]Ii

h = Fα we conclude ⊆i ← ℵ1 : [[A]]Ii

h =
Tα−1. Thus, by Theorem 1, we get [[A]]I∗

h = Tα−1 and this implies [[φ]]I∗
h = Fα.

Case 3: φ = A≤B or φ = A∈B. The following cases are more general than this
case. Therefore, we will not give a proof here.
Case 4: φ = ∪v A. We assume that IH(A) and for every i ← ℵ1 we assume
that [[φ]]Ii

h = Fα. This implies sup{[[A]]Ih[v ∈∞u]; u ← HU} = Fα as well as ⊆i ←
ℵ1⊆u ← HU : [[A]]Ii

h[v ∈∞u] ≥ Fα. Now we show by case distinction that ⊆u ← HU :

[[A]]I∗
h[v ∈∞u] = [[A]]Ih[v ∈∞u] and this obviously implies [[φ]]I∗

h = Fα. First we consider
the case [[A]]Ih[v ∈∞u] < Fα. Hence, using Lemma 4 and Theorem 1, we get that
[[A]]I∗

h[v ∈∞u] = [[A]]Ih[v ∈∞u]. At least, we consider the other case [[A]]Ih[v ∈∞u] = Fα. We

know that ⊆i ← ℵ1 : [[A]]Ii

h[v ∈∞u] ≥ Fα. But this implies ⊆i ← ℵ1 : [[A]]Ii

h[v ∈∞u] = Fα,

since ∪i ← ℵ1 : [[A]]Ii

h[v ∈∞u] < Fα would imply (using Lemma 4 and Theorem
1) [[A]]Ih[v ∈∞u] < Fα, which is a contradiction. Finally, we get, by IH(A), that
[[A]]I∗

h = Fα = [[A]]Ih[v ∈∞u].
Case 5: φ = ⊆v A. We assume that IH(A) and for every i ← ℵ1 we assume that
[[φ]]Ii

h = Fα. Then ⊆i ← ℵ1 : inf{[[A]]Ii

h[v ∈∞u]; u ← HU} = Fα. This implies, using

Lemma 1, ⊆i ← ℵ1∪u ← HU : [[A]]Ii

h[v ∈∞u] = Fα. Next we choose for every i ← ℵ1

a term ui ← HU with [[A]]Ii

h[v ∈∞ui]
= Fα (Remark: We do not need the Axiom

of Choice because HU is countable). Thus, using Lemma 4 and Theorem 1,
⊆i ← ℵ1⊆j ≥ i ← ℵ1 : [[A]]Ij

h[v ∈∞ui]
= Fα . This implies that the mapping

ζ : {ui; i ← ℵ1} → ℵ1∅{ℵ1} : u ∗→
⎫

min{j ← ℵ1; [[A]]Ij

h[v ∈∞u] �= Fα}, if min exists

ℵ1, otherwise

has the properties ⊆i ← ℵ1 : ζ(ui) > i and sup{ζ(ui); i ← ℵ1} = ℵ1. We assume
now that ⊆u ← HU∪j ← ℵ1 : [[A]]Ij

h[v ∈∞u] �= Fα. Then ζ({ui; i ← ℵ1}) is a countable
subset of ℵ1 and moreover cofinal in ℵ1. But this is a contradiction to Theorem 2.

Every Program Has a Least Infinite-Valued Model 165

Therefore we know that there exists an atom u∗ ← HU such that ⊆i ← ℵ1 :
[[A]]Ii

h[v ∈∞u∗] = Fα. Thus, using IH(A), we get that [[A]]I∗
h[v ∈∞u∗] = Fα. This implies

[[φ]]I∗
h ≥ Fα and finally, using [[φ]]Ih = Fα, Lemma 4 and Theorem 1, we get that

[[φ]]I∗
h = Fα.

4.:“⊥”: We prove this by the method of contrapositive. We assume that (C1)
or (C2) or (C3). Hence, using 1., 2., and 3., we get that not(Fα < [[φ]]I∗

h < Tα)
holds.
“⇐”: We shall first consider the following Lemma.

Lemma 5. Under the same conditions as in Theorem 3 for every formula φ ←
Form and every assignment h the following must hold true:

[[φ]]I∗
h = Tα ⊥ [[φ]]Ii

h = Tα for some i ← ℵ1

Proof. This proof is similar to the proof of Theorem 3 statement 3 (see
Appendix). ��
We prove “⇐” also by the method of contrapositive. We assume that Fα <
[[φ]]I∗

h < Tα does not hold. We consider the three possible cases deg([[φ]]I∗
h) < α,

[[φ]]I∗
h = Fα, and [[φ]]I∗

h = Tα. Let us consider the first case (resp. the second
case). Then, using Lemma 4 and Theorem 1, (C1) (resp. (C3)) holds. Now, we
consider the latter case. Using Lemma 5 we get that (C2) holds. Finally, in every
case (C1) or (C2) or (C3) holds. ��
Definition 22. Let α be a countable ordinal and for every γ < α let Iγ be an
interpretation such that ⊆ζ ≥ γ : Iζ =ζ Iγ . Then the union of the interpretations
Iγ (γ < α) is a well-defined interpretation and given by the following definition:

⎬

γ<α

Iγ (A) :=

⎧

⎪

Fζ , if ζ < α & Iζ(A) = Fζ

Tζ , if ζ < α & Iζ(A) = Tζ

Fα, otherwise
(A ← HB)

Remark 4. Using ⊆ζ ≥ γ : Iζ =ζ Iγ it is easy to prove that the union
⎭

γ<α Iγ

is a well-defined interpretation. Particularly if α = 0, then the union is equal
to the interpretation that maps all atoms of HB to the truth value F0. This
interpretation is sometimes denoted by ∅.

Lemma 6. Let P be a program, α be a countable ordinal and for all γ < α an
interpretation Iγ is given such that ⊆ζ < γ : Iζ =ζ Iγ . Then the following holds:

⊆γ < α (Iγ ⇔γ+1 TP (Iγ)) ⊥
⎬

γ<α

Iγ ⇔α TP (
⎬

γ<α

Iγ)

Proof. The proof is left to the reader (see appendix). ��
Lemma 7. Let P be a program, α a countable ordinal, and I an interpretation.
Then the following holds:

I ⇔α TP (I) ⊥ Tℵ1
P,α(I) ⇔α+1 TP (Tℵ1

P,α(I))

166 R. Lüdecke

Proof. The proof is left to the reader (see appendix). ��
Definition 23. Let P be a program. We define by recursion on the countable
ordinal α the approximant Mα of P as follows:

Mα :=

⎧

⎪

Tℵ1
P,α(

⎭
γ<α Mγ), if

⊆γ < α⊆ζ < γ (Mζ =ζ Mγ) &
⎭

γ<α Mγ ⇔α TP (
⎭

γ<α Mγ)
∅, otherwise

Theorem 4. Let P be a program, then for all α ← ℵ1 the following holds:

1. ⊆γ < α (Mγ =γ Mα)
2.

⎭
γ<α Mγ ⇔α TP (

⎭
γ<α Mγ)

3. Mα = Tℵ1
P,α(

⎭
γ<α Mγ)

4. Mα ⇔α+1 TP (Mα)

Proof. We prove this by induction on α. We assume that the theorem holds for
all β < α (induction hypothesis). We prove that it holds also for α. Using the
induction hypothesis, we get that for every β < α the following properties hold
⊆γ < β : Mγ =γ Mβ as well as Mβ ⇔β+1 TP (Mβ). Hence, using Lemma 6,
we get that

⎭
γ<α Mγ ⇔α TP (

⎭
γ<α Mγ) (this is 2.). This together with the

above definition imply Mα = Tℵ1
P,α(

⎭
γ<α Mγ) (this is 3.). Thus, using 2. and

3. and Lemma 7, we get that Mα ⇔α+1 TP (Mα) (this is 4.). It remains to
prove the first statement. We know that for all γ < α the property Mγ =γ⎭

γ′<α Mγ′⇔α
(Lemma 4 & 2.)Tℵ1

P,α(
⎭

γ′<α Mγ′) =3. Mα holds. Hence, using that
⇔α is stronger than =γ , we get that 1. also holds. ��
Lemma 8. Let P be a program. Then there exists an ordinal δ ← ℵ1 such that

⊆γ ∼ δ : Mγ↔Fγ = ∅ and Mγ↔Tγ = ∅. (2)

Proof. We define the subset H∗
B of the Herbrand base HB by H∗

B := {A ←
HB ; ∪γ ← ℵ1 : Mγ(A) ← {Fγ , Tγ}}. Thus, using part one of Theorem 4, we know
that for every A ← H∗

B there is exactly one γA such that MγA
(A) ← {FγA

, TγA
}.

Now let us define the function ζ by ζ : H∗
B → ℵ1 : A ∗→ γA. We know that H∗

B is
countable. This implies that ζ(H∗

B) is also countable. Hence, using Theorem 2,
we know that ζ(H∗

B) is not cofinaöl in ℵ1. This obviously implies that there is an
ordinal δ ← ℵ1 such that ⊆A ← H∗

B : ζ(A) < δ. Finally, this ordinal δ satisfies the
property (2). ��
Definition 24. Let P be a program. The lemma above justifies the definition
δP := min{δ; ⊆γ ∼ δ : Mγ↔Fγ = ∅ and Mγ↔Tγ = ∅} ← ℵ1. This ordinal δP is
called the depth of the program P .

Definition 25. We define the interpretation MP of a given formula-based logic
program P by

MP (A) :=

⎫
MδP

(A), if deg(MδP
(A)) < δP

0, otherwise
.

Every Program Has a Least Infinite-Valued Model 167

5 Properties of the Interpretation MP

Proposition 1. Let P be a program. The interpretation MP is a fixed point of
TP (i.e., TP (MP) = MP).

Proof. See Theorem 7.1 in [3]. ��
Theorem 5. Let P be a program. The interpretation MP is a model of P .

Proof. See Theorem 7.2 in [3]. ��
Proposition 2. Let P be a program, α a countable ordinal and M an arbitrary
model of P . Then the following holds:

⊆β < α (Mβ =β M) ⊥ Mα ⇔α M

Proof. We assume that ⊆β < α (Mβ =β M). Definition 22 implies that
⎬

β<α

Mβ ⇔α M . (3)

Now we prove that the following holds:

TP (M) ⇔α M (4)

Therefore, using Lemma 3 and the assumption above, we get that the equation
⊆β < α (TP (Mβ) =β TP (M)) holds true. This the assumption above and the
fourth part of Theorem 4 imply that ⊆β < α : M =β TP (M). But this, together
with the fact that M is a model (i.e., M(A) ∼ TP (M)(A) holds for all atoms
A ← HU), implies that (4) holds.

We finish the proof by induction on the ordinal γ ← Ω. Using Lemma 3
and (4), we get that T γ

P,α(
⎭

β<α Mβ) ⇔α M implies T γ+1
P,α (

⎭
β<α Mβ) ⇔α M .

Using the first part of Lemma 4, we get (for all limit ordinal γ) that ⊆β <

γ : T β
P,α(

⎭
β<α Mβ) ⇔α M implies T γ

P,α(
⎭

β<α Mβ) ⇔α M . Thus, using (3) and
statement 3. of Theorem 4, Mα = Tℵ1

P,α(
⎭

β<α Mβ) ⇔α M must hold true. ��
Theorem 6. The interpretation MP of a given program P is the least of all
models of P (i.e., for all models M of P the property MP ⇔∼ M holds).

Proof. Let M be an arbitrary model of P . Without loss of generality, we assume
that M �= MP . Then let α be the least ordinal such that MP �=α M . This implies
⊆β < α (Mβ =β M). Hence, using Proposition 2, MP =α Mα ⇔α M . The choice
of α ensures that MP �=α M . Therefore we get that MP �α M and this finally
implies MP ⇔∼ M . ��
Corollary 1. Let P be a program. The interpretation MP is the least of all fixed
points of TP .

Proof. It is easy to prove that every fixed point of TP is also a model of P . This
together with Proposition 1 and Theorem 6 imply Corollary 1 ��

168 R. Lüdecke

Proposition 3. There is a countable ordinal δ ← ℵ1 such that for all programs
P of an arbitrary language Ln,m,l,(si),(ri) the property δP < δ holds. Let δmax be
the least ordinal such that the above property holds.

Proof. We know that the set of all signatures ∨n,m, l, (si)1≤i≤n, (ri)1≤i≤m∇ is
countable. Additionally, we know that the set of all programs of a fixed signature
is also countable (Remember that a program is a finite set of rules.). This implies
that the set of all programs is countable. Hence we get that the image of the
function from the set of all programs to ℵ1 given by P ∗→ δP is countable. Thus,
using Theorem 2, the image of δ(·) is not cofinal in ℵ1 (i.e., there exists an ordinal
δ ← ℵ1 such that for all programs P the property δP < δ holds). ��
Proposition 4. The ordinal δmax is at least ωω.

Proof. Let n > 0 be a natural number. We consider the program Pn consisting
of the following rules (where G,H are predicate symbols, f is a function symbol
and c is a constant):

G(x1, ..., xn−1, f(xn)) → ¬¬G(x1, ..., xn−1, xn)
For all k provided that 1 ≥ k ≥ n − 1 the rule:
G(x1, ..., xk−1, f(xk), c, ..., c) → ∪xk+1, ..., xnG(x1, ..., xk−1, xk, xk+1, ..., xn)
H → ∪x1, ..., xnG(x1, ..., xn)

This implies that MPn
maps G

(
fk1(c), ..., fkn(c)

)
to F∑n−1

m=1 ωn−m•km+2•kn
and

H to Fωn . ��
At the end of this paper we will prove that the 3-valued interpretation MP,3 that
results from the infinite-valued model MP by collapsing all true values to True
(abbr. T) and all false values to False (abbr. F) is also a model in the sense of
the following semantics:

Definition 26. The semantics of formulas with respect to 3-valued interpreta-
tions is defined as in Definition 15 except that [[∧]]Ih = T , [[∃]]Ih = F and

[[¬(φ)]]Ih =

⎧

⎪

T , if [[φ]]Ih = F
F , if [[φ]]Ih = T
0, otherwise

.

The Definition 16 is also suitable in the case of 3-valued interpretations. The
truth values are ordered as follows: F < 0 < T
Proposition 5. Let P be a program and let collapse(·) be the function from W
to the set {F , 0, T } given by Fi ∗→ F , 0 ∗→ 0 and Ti ∗→ T . Moreover, let I be an
arbitrary interpretation and let collapse(I) be the 3-valued interpretation given
by collapse(I)(A) := collapse(I(A)) (for all A ← HB). Then for all formulas φ
and all assignments h the following holds:

collapse([[φ]]Ih) = [[φ]]collapse(I)h

Every Program Has a Least Infinite-Valued Model 169

Proof. The proof is by induction on φ (see appendix). ��
Proposition 6. Let P be a formula-based logic program. Then the 3-valued
interpretation MP,3 is a 3-valued model of P .

Proof. We assume that A → φ is a rule of P . Thus, for every assignment h, we get

that [[φ]]MP,3
h

Proposition 5
= collapse([[φ]]MP

h)
Theorem 6≥ collapse([[A]]MP

h) = [[A]]MP,3
h

holds. ��
Remark 5. The 3-valued model MP,3 is not a minimal model in general. Con-
sider the logic program P = {P1 → ¬¬P1}. Thus the infinite-valued model MP

maps P1 to 0 and this implies MP,3(P1) = 0. But the (2-valued) interpretation
{∨P1,F∇} is a model of P and it is less than MP,3. The ordering on the 3-valued
interpretations is introduced in [2] page 5.

However, Rondogiannis and Wadge prove in [3] that the 3-valued model MP,3 of
a given normal program P is equal to the 3-valued well-founded model of P and
hence, using a result of Przymusinski (Theorem 3.1 of [2]), it is a minimal model
of P . In the context of formula-based logic programs we can prove Theorem 7.
Before we start with the proof we have to consider the following definition and
a lemma that plays an important role in the proof of the theorem.

Definition 27. The negation degree deg¬(φ) of a formula φ is defined recur-
sively on the structure of φ as follows:

1. If φ is an atom, then deg¬(φ) := 0.
2. If φ = ψ1 ◦ ψ2, then deg¬(φ) := max{deg¬(ψ1),deg¬(ψ2)}. (◦ ← {∈,≤})
3. If φ = ¬ψ, then deg¬(φ) := deg¬(ψ) + 1.
4. If φ = �x(ψ), then deg¬(φ) := deg¬(ψ). (� ← {∪,⊆})

Lemma 9. Let I be an interpretation and γ, ζ ← ℵ1 such that for all A ← HB

the following holds:
I(A) ← [F0,Fγ] ∅ {0} ∅ [Tζ , T0]

Then for all formulas φ such that deg¬(φ) ≥ 1 and all variable assignments h
the following holds:

[[φ]]Ih ←
{

[F0,Fγ]∅{0}∅[Tζ , T0], if deg¬(φ) = 0
[F0,Fmax{γ,ζ+1}]∅{0}∅[Tmax{γ+1,ζ}, T0], otherwise

Proof. The proof can be found in the appendix. ��
Theorem 7. Let P be a formula-based program such that for every rule A → φ
in P the property deg¬(φ) ≥ 1 holds. Then, the 3-valued model MP,3 of the
program P is a minimal 3-valued model.

Proof. Let N3 be an arbitrary 3-valued model of the program P , such that N3

is smaller or equal to MP,3. This is equivalent to

MP,3↔F ∞ N3↔F and N3↔T ∞ MP,3↔T . (5)

170 R. Lüdecke

Now we have to prove that N3 is equal to MP,3. Note that this holds if and only
if both equations MP,3↔F = N3↔F and N3↔T = MP,3↔T hold.

Firstly, we prove that N3↔T = MP,3↔T by contradiction. We assume that

MP,3↔T \ N3↔T �= ∅. (6)

We know that MP,3↔T =
⎨

α∗ℵ1
MP ↔Tα and hence, using (6), there must be

at least one ordinal α ← ℵ1 such that MP ↔Tα \ N3↔T �= ∅. This justifies
the definition αmin := min{α ← ℵ1; MP ↔Tα \ N3↔T �= ∅}. Using Theorem 4
we get that Mαmin = Tℵ1

P,αmin
(
⎭

β<αmin
Mβ). To improve readability we define

J :=
⎭

β<αmin
Mβ . It is obviously that αmin < δP , and hence Definition 25,

Theorem 4, and Definition 20 imply MP ↔Tαmin = MδP
↔Tαmin = Mαmin↔Tαmin =⎨

γ∗ℵ1
T γ

P,αmin
(J)↔Tαmin . This and the definition of αmin justify the definition

γmin := min{γ ← ℵ1; T γ
P,αmin

(J)↔Tαmin \ N3↔T �= ∅}. From Definition 22 and
Definition 20 we infer that 0 < γmin and γmin is not an infinite limit ordinal
and hence γmin is a successor ordinal. We assume that γmin = γ−

min + 1. Thus,
using the definition of αmin and γmin, we get that T γmin−1

P,αmin
(J)↔Tζ ∞ N3↔T for

all ζ ≥ αmin. Using statement (5) we infer that T γmin−1
P,αmin

(J)↔Fζ ∞ N3↔F for all
ζ < αmin. Hence, the following definition of the infinite-valued interpretation N
is well-defined: (A ← HB)

N(A) :=

⎧

⎪

Fζ , if ζ < αmin & A ← T γmin−1
P,αmin

(J)↔Fζ

Fαmin , if A ← T γmin−1
P,αmin

(J)↔Fαmin ∩ N3↔F
Fαmin+1, if A ← N3↔F \ ⎨

ζ≤αmin

T γmin−1
P,αmin

(J)↔Fζ

Tζ , if ζ ≥ αmin & A ← T γmin−1
P,αmin

(J)↔Tζ

Tαmin+1, if A ← N3↔T \ ⎨

ζ≤αmin

T γmin−1
P,αmin

(J)↔Tζ

0, otherwise

It is easy to see that

T γmin−1
P,αmin

(J) ⇔αmin N and that N3 = collapse(N). (7)

Since T γmin
P,αmin

(J)↔Tαmin \N3↔T is not empty, we can pick an A that is contained in
this set. Thus, together with Definition 18, we get that Tαmin = T γmin

P,αmin
(J)(A) =

TP (T γmin−1
P,αmin

(J))(A) = sup{[[φ]]I ; A → φ ← PG}, where I := T γmin−1
P,αmin

(J). Hence,
using Lemma 1, we can pick a rule A → φ ← PG such that [[φ]]I = Tαmin . Thus,
using statement (7), Theorem 1, and Proposition 5, we get that [[φ]]N = Tαmin

and [[φ]]N3 = [[φ]]collapse(N) = collapse([[φ]]N) = T . Lastly, the fact that N3 is a
model and A → φ is a ground instance of P imply that N3(A) = T . But this is
a contradiction because we have chosen A to be not contained in N3↔T . Hence,
statement (6) must be wrong (i.e., MP,3↔T = N3↔T).

Secondly, we show that MP,3↔F =N3↔F . Definition 25 implies that MP,3↔F =⎨
ζ<δP

MδP
↔Fζ and MP,3↔T =

⎨
ζ<δP

MδP
↔Tζ . Thus, using (5) and the result

of the first part of this proof, we get that
⎨

ζ<δP
MδP

↔Fζ ∞ N3↔F and⎨
ζ<δP

MδP
↔Tζ = N3↔T . Hence, the following definition of the infinite-valued

interpretation N is well-defined and N3 = collapse(N).

Every Program Has a Least Infinite-Valued Model 171

N(A) :=

⎧

⎪

Fζ , if ζ < δP & A ← MδP
↔Fζ

FδP +1, if A ← N3↔F \ MP,3↔F
Tζ , if ζ < δP & A ← MδP

↔Tζ

0, otherwise

(for all A ← HB)

Now we are going to prove by transfinite induction on ζ ← ℵ1 that T ζ
P,δP +1(MδP

)
⇔δP +1 N . Obviously, T ζ

P,δP +1(MδP
) =δP

N for all ζ ← ℵ1. The Definition of N ,
Definition 24, and Theorem 4 imply that N↔TδP +1 = ∅ = MδP +1↔Tδp+1 =
Tℵ1

P,δP +1(MδP
)↔TδP +1 =

⎨
γ<ℵ1

T γ
P,δP +1(MδP

)↔TδP +1 and hence we get that for
all ζ ← ℵ1 the relation T ζ

P,δP +1(MδP
)↔TδP +1 ∞ N↔TδP +1 must hold. It remains

to show that N↔FδP +1 ∞ T ζ
P,δP +1(MδP

)↔FδP +1 for all ζ ← ℵ1.
Case 1: ζ = 0. It is easy to prove (using Theorem 4, the result of the first part
of this proof, and N3↔F ∩ N3↔T = ∅) that MδP

↔FδP +1 = HB \ (MP,3↔F ∅
MP,3↔T) ⊇ N3↔F \ MP,3↔F = N↔FδP +1.
Case 2: ζ is a successor ordinal and T ζ−1

P,δP +1(MδP
) ⇔δP +1 N . Hence, using Defi-

nition 20 and Lemma 4, we get that

TP (T ζ−1
P,δP +1(MδP

)) = T ζ
P,δP +1(MδP

) (8)

and
T ζ

P,δP +1(MδP
)↔Fδp+1 ∞ T ζ−1

P,δP +1(MδP
)↔FδP +1. (9)

We will prove that T ζ−1
P,δP +1(MδP

)↔FδP +1 \ T ζ
P,δP +1(MδP

)↔Fδp+1 and N↔FδP +1

are disjoint. This, together with T ζ−1
P,δP +1(MδP

) ⇔δP +1 N and statement (9),
implies that N↔FδP +1 ∞ T ζ

P,δP +1(MδP
)↔FδP +1 and we have proven this case.

Now we choose an arbitrary A ← T ζ−1
P,δP +1(MδP

)↔FδP +1 \ T ζ
P,δP +1(MδP

)↔Fδp+1.
Hence, using Lemma 4, we get that FδP +1 < T ζ

P,δP +1(MδP
)(A). This, together

with (8) and Definition 18, implies that there must be a rule A → φ ← PG such
that FδP +1 < [[φ]]I , where I is given by I := T ζ−1

P,δP +1(MδP
). Thus, using the

assumption I ⇔δP +1 N and Theorem 1, we get that FδP +1 < [[φ]]N . We know
that for all atoms C ← HB the image N(C) is an element of [F0, FδP +1] ∅ {0} ∅
[TδP

, T0]. But then Lemma 9 and the fact that deg¬(φ) ≥ 1 imply 0 ≥ [[φ]]N .
Hence, using Proposition 5, N3 = collapse(N) and N3 is a model of P , we get
that 0 ≥ [[φ]]N3 ≥ N3(A). Finally, this implies A /← N3↔F ⊇ N3↔F \ MP,3↔F =
N↔Fδp+1.
Case 3: ζ > 0 is a limit ordinal and T γ

P,δP +1(MδP
) ⇔δP +1 N for all γ < ζ.

This implies N↔FδP +1 ∞ T γ
P,δP +1(MδP

)↔FδP +1 for all γ < ζ. Hence, using Def-
inition 20, we get that T ζ

P,δP +1(MδP
)↔FδP +1 =

⎩
γ∗ζ T γ

P,δP +1(MδP
)↔FδP +1 ⊇

N↔FδP +1.
The above induction proves that N↔FδP +1 ∞ ⎩

ζ∗ℵ1
T ζ

P,δP +1(MδP
)↔FδP +1 holds

true. Thus, using that both the equation MδP +1↔FδP +1 = ∅ and MδP +1↔FδP +1 =
=

⎩
ζ∗ℵ1

T ζ
P,δP +1(MδP

)↔FδP +1, we get that ∅ = N↔FδP +1 = N3↔F \ MP,3↔F
(see definition of N above). Last of all, using the assumption (5), we get that
MP,3↔F = N3↔F . ��

172 R. Lüdecke

Corollary 2. If P is a saturated formula-based program (i.e., MP (A) �= 0 for
all A ← HB), then MP,3 is a minimal model of P .

Proof. A simple conclusion of the first part of the above proof. ��

6 Summary and Future Work

We have shown that every formula-based logic program P has a least infinite-
valued model MP with respect to the ordering ⇔∼ given on the set of all infinite-
valued interpretations. We have presented how to construct the model MP with
the help of the immediate consequence operator TP and have shown that MP

is also the least of all fixed points of the operator TP . Moreover, we have con-
sidered the 3-valued interpretation MP,3 and have proven that it is a 3-valued
model of the program P . Furthermore, we have observed a restricted class of
formula-based programs such that the associated 3-valued models are even min-
imal models. There are some aspects of this paper that we feel should be further
investigated. Firstly, we believe that the main results of this work also hold in
Zermelo-Fraenkel axiomatic set theory without the Axiom of Choice (ZF). For
instance, we could use the class of all ordinals Ω instead of the cardinal ℵ1 in
Theorem 3. Secondly, we have proven that the ordinal δmax is at least ωω, but on
the other hand we do not know a program P such that ωω < δP . So, one could
assume that δmax = ωω. Lastly, the negation-as-failure rule is sound for MP

(respectively, MP,3) when we are dealing with a normal program P . Within the
context of formula-based programs we think it would be fruitful to investigate
the rule of definitional reflection presented in [4] instead of negation-as-failure.

Acknowledgements. This work has been financed through a grant made available by
the Carl Zeiss Foundation. The author is grateful to Prof. Dr. Peter Schroeder-Heister,
Hans-Joerg Ant, M. Comp. Sc., and three anonymous reviewers for helpful comments
and suggestions.

References

1. Jech, T.: Set Theory. The Third Millennium Edition, Revised and Expanded.
Springer, Heidelberg (2002)

2. Przymusinski, T.: Every logic program has a natural stratification and an iterated
least fixed point model. In: Eighth ACM Symposium on Principles of Database
Systems, pp. 11–21 (1989)

3. Rondogiannis, P., Wadge, W.: Minimum model semantics for logic programs with
negation-as-failure. ACM Trans. Comput. Logic 6(2), 441–467 (2005)

4. Schroeder-Heister, P.: Rules of definitional reflection. In: Proceedings of the 8th
Annual IEEE Symposium on Logic in Computer Science (Montreal 1993), Los
Alamitos, pp. 222–232 (1993)

WLP Technical Papers I:
Constraints and Logic

Programming

A Declarative Approach for Computing Ordinal
Conditional Functions Using Constraint Logic

Programming

Christoph Beierle1(B), Gabriele Kern-Isberner2, and Karl Södler1

1 Department of Computer Science, FernUniversität in Hagen,
58084 Hagen, Germany

christoph.beierle@fernuni-hagen.de
2 Department of Computer Science, TU Dortmund, 44221 Dortmund, Germany

Abstract. In order to give appropriate semantics to qualitative condi-
tionals of the form if A then normally B, ordinal conditional functions
(OCFs) ranking the possible worlds according to their degree of plau-
sibility can be used. An OCF accepting all conditionals of a knowledge
base R can be characterized as the solution of a constraint satisfaction
problem. We present a high-level, declarative approach using constraint
logic programming (CLP) techniques for solving this constraint satisfac-
tion problem. In particular, the approach developed here supports the
generation of all minimal solutions; this also holds for different notions of
minimality which we discuss and implement in CLP. Minimal solutions
are of special interest as they provide a basis for model-based inference
from R.

1 Introduction

In knowledge representation, rules play a prominent role. Default rules of the
form If A then normally B are being investigated in nonmonotonic reasoning,
and various semantical approaches have been proposed for such rules. Since it
is not possible to assign a simple Boolean truth value to such default rules, a
semantical approach is to define when a rational agent accepts such a rule. We
could say that an agent accepts the rule Birds normally fly if she considers a
world with a flying bird to be less surprising than a world with a nonflying bird.
At the same time, the agent can also accept the rule Penguin birds normally do
not fly ; this is the case if she considers a world with a nonflying penguin bird to
be less surprising than a world with a flying penguin bird.

The informal notions just used can be made precise by formalizing the under-
lying concepts like default rules, epistemic state of an agent, and the acceptance
relation between epistemic states and default rules. In the following, we deal with
qualitative default rules and a corresponding semantics modelling the epistemic
state of an agent. While a full epistemic state could compare possible worlds

The research reported here was partially supported by the Deutsche Forschungsge-
meinschaft – DFG (grants BE 1700/7-2 and KE 1413/2-2).

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 175–192, 2013.
DOI: 10.1007/978-3-642-41524-1 10, c© Springer-Verlag Berlin Heidelberg 2013

176 C. Beierle et al.

according to their possibility, their probability, their degree of plausibility, etc.
(cf. [9,10,18]), we will use ordinal conditional functions (OCFs), which are also
called ranking functions [18]. To each possible world Σ, an OCF α assigns a nat-
ural number α(Σ) indicating its degree of surprise: The higher α(Σ), the greater
is the surprise for observing Σ.

In [12,13] a criterion when a ranking function respects the conditional struc-
ture of a set R of conditionals is defined, leading to the notion of c-representation
for R, and it is argued that ranking functions defined by c-representations are
of particular interest for model-based inference. In [3] a system that computes
a c-representation for any such R that is consistent is described, but this c-
representation may not be minimal. An algorithm for computing a minimal
ranking function is given in [5], but this algorithm fails to find all minimal
ranking functions if there is more than one minimal one. In [15] an extension
of that algorithm being able to compute all minimal c-representations for R
is presented. The algorithm developed in [15] uses a non-declarative approach
and is implemented in an imperative programming language. While the problem
of specifying all c-representations for R is formalized as an abstract, problem-
oriented constraint satisfaction problem CR(R) in [2], no solving method is given
there.

In this paper, we present a high-level, declarative approach using constraint
logic programming techniques for solving the constraint satisfaction problem
CR(R) for any consistent R. In particular, the approach developed here supports
the generation of all minimal solutions; these minimal solutions are of special
interest as they provide a preferred basis for model-based inference from R.
Moreover, we investigate different notions of minimality and demonstrate the
flexibility of our approach by showing how alternative minimality concepts can
be taken into account by slight modifications of the CLP implementation.

The rest of this paper is organized as follows: After recalling the formal back-
ground of conditional logics as it is given in [1] and as far as it is needed here
(Sect. 2), we elaborate the birds-penguins scenario sketched above as an illustra-
tion for a conditional knowledge base and its semantics in Sect. 3. The definition
of the constraint satisfaction problem CR(R) and its solution set denoting all c-
representations for R is given in Sect. 4. In Sect. 5, a declarative, high-level CLP
program GenOCF solving CR(R) is developed, observing the objective of being
as close as possible to CR(R). Its realization in Prolog is described in detail, as
well as the modifications needed for alternative notions of minimality. In Sect. 6,
GenOCF is evaluated with respect to a series of some first example applications.
Section 7 concludes the paper and points out further work.

2 Background

We start with a propositional language L, generated by a finite set β of
atoms a, b, c, The formulas of L will be denoted by uppercase Roman letters
A,B,C, For conciseness of notation, we will omit the logical and -connective,
writing AB instead of A → B, and overlining formulas will indicate negation, i.e.

A Declarative Approach for Computing Ordinal Conditional Functions 177

A means ¬A. Let ω denote the set of possible worlds over L; ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over β. For Σ ℵ ω, Σ |= A
means that the propositional formula A ℵ L holds in the possible world Σ.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) |
A,B ℵ L} of conditionals over L. (B|A) formalizes “if A then (normally) B” and
establishes a plausible, probable, possible etc. connection between the antecedent
A and the consequence B. Here, conditionals are supposed not to be nested, that
is, antecedent and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the
set of worlds ω in three parts: those worlds satisfying AB, thus verifying the
conditional, those worlds satisfying AB, thus falsifying the conditional, and those
worlds not fulfilling the premise A and so which the conditional may not be
applied to at all. This allows us to represent (B|A) as a generalized indicator
function going back to [7] (where u stands for unknown or indeterminate):

(B|A)(Σ) =

⎧

1 if Σ |= AB
0 if Σ |= AB
u if Σ |= A

(1)

To give appropriate semantics to conditionals, they are usually considered within
richer structures such as epistemic states. Besides certain (logical) knowledge,
epistemic states also allow the representation of preferences, beliefs, assumptions
of an intelligent agent. Basically, an epistemic state allows one to compare for-
mulas or worlds with respect to plausibility, possibility, necessity, probability,
etc.

Well-known qualitative, ordinal approaches to represent epistemic states are
Spohn’s ordinal conditional functions, OCFs, (also called ranking functions) [18],
and possibility distributions [4], assigning degrees of plausibility, or of possibility,
respectively, to formulas and possible worlds. In such qualitative frameworks, a
conditional (B|A) is valid (or accepted), if its confirmation, AB, is more plausible,
possible, etc. than its refutation, AB; a suitable degree of acceptance is calculated
from the degrees associated with AB and AB.

In this paper, we consider Spohn’s OCFs [18]. An OCF is a function

α : ω ∼ N

expressing degrees of plausibility of propositional formulas where a higher degree
denotes “less plausible” or “more suprising”. At least one world must be regarded
as being normal; therefore, α(Σ) = 0 for at least one Σ ℵ ω. Each such rank-
ing function can be taken as the representation of a full epistemic state of an
agent. Each such α uniquely extends to a function (also denoted by α) mapping
sentences and rules to N ← {≤} and being defined by

α(A) =

⎪
min{α(Σ) | Σ |= A} if A is satisfiable
≤ otherwise

(2)

178 C. Beierle et al.

for sentences A ℵ L and by

α((B|A)) =

⎪
α(AB) − α(A) if α(A) ∈= ≤
≤ otherwise

(3)

for conditionals (B|A) ℵ (L | L). Note that α((B|A)) � 0 since any Σ satisfying
AB also satisfies A and therefore α(AB) � α(A).

The belief of an agent being in epistemic state α with respect to a default
rule (B|A) is determined by the satisfaction relation |=O defined by:

α |=O (B|A) iff α(AB) < α(AB) (4)

Thus, (B|A) is believed in α iff the rank of AB (verifying the conditional) is
strictly smaller than the rank of AB (falsifying the conditional). We say that α
accepts the conditional (B|A) iff α |=O (B|A).

3 Example

In order to illustrate the concepts presented in the previous section, we will
use a scenario involving a set of some default rules representing common-sense
knowledge.

Example 1. Suppose we have the propositional atoms
f - flying, b - birds, p - penguins, w - winged animals, k - kiwis.
Let the set R consist of the following conditionals:

R r1: (f |b) birds fly
r2: (b|p) penguins are birds
r3: (f |p) penguins do not fly
r4: (w|b) birds have wings
r5: (b|k) kiwis are birds

Figure 1 shows a ranking function α that accepts all conditionals given in R.
Thus, for any i ℵ {1, 2, 3, 4, 5} it holds that α |=O Ri.

For the conditional (f |p) (“Do penguins fly?”) that is not contained in R,
we get α(pf) = 2and α(pf) = 1 and therefore

α /|=O (f |p)

so that the conditional (f |p) is not accepted by α. This is in accordance with
the behaviour of a rational agent believing R since the knowledge base R used
for building up α explicitly contains the opposite rule (f |p).

On the other hand, for the conditional (w|k) (“Do kiwis have wings?”) that
is also not contained in R, we get α(kw) = 0 and α(kw) = 1 and therefore

α |=O (w|k)

i.e., the conditional (w|k) is accepted by α. Thus, from their superclass birds,
kiwis inherit the property of having wings.

A Declarative Approach for Computing Ordinal Conditional Functions 179

pbfwk 2 pbfwk 5 pbfwk 0 pbfwk 1
pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0
pbf wk 3 pbf wk 5 pbf wk 1 pbf wk 1
pbf wk 3 pbf wk 4 pbf wk 1 pbf wk 0

pbfwk 1 pbfwk 3 pbfwk 1 pbfwk 1
pbfwk 1 pbfwk 2 pbfwk 1 pbfwk 0
pbf wk 2 pbf wk 3 pbf wk 2 pbf wk 1
pbf wk 2 pbf wk 2 pbf wk 2 pbf wk 0

Fig. 1. Ranking function κ accepting the rule set R given in Example 1.

4 Specification of Ranking Functions as Solutions
of a Constraint Satisfaction Problem

Given a set R = {R1, . . . , Rn} of conditionals, a ranking function α that accepts
every Ri represents an epistemic state of an agent accepting R. If there is no
α that accepts every Ri then R is inconsistent. For the rest of this paper, we
assume that R is consistent.

For any consistent R there may be many different α accepting R, each rep-
resenting a complete set of beliefs with respect to every possible formula A
and every conditional (B|A). Thus, every such α inductively completes the
knowledge given by R, and it is a vital question whether some α∼ is to be
preferred to some other α∼∼, or whether there is a unique “best” α. Differ-
ent ways of determining a ranking function are given by system Z [9,10] or
its more sophisticated extension system Z∈ [9], see also [6]; for an approach
using rational world rankings see [19]. For quantitative knowledge bases of the
form Rx = {(B1|A1)[x1], . . . , (Bn|An)[xn]} with probability values xi and with
models being probability distributions P satisfying a probabilistic conditional
(Bi|Ai)[xi] iff P (Bi|Ai) = xi, a unique model can be choosen by employing the
principle of maximum entropy [11,16,17]; the maximum entropy model is a best
model in the sense that it is the most unbiased one among all models satisfying
Rx.

Using the maximum entropy idea, in [13] a generalization of system Z∈ is
suggested. Based on an algebraic treatment of conditionals, the notion of condi-
tional indifference of α with respect to R is defined and the following criterion
for conditional indifference is given: An OCF α is indifferent with respect to
R = {(B1|A1), . . . , (Bn|An)} iff α(Ai) < ≤ for all i ℵ {1, . . . , n} and there are
rational numbers α0, α

+
i , α−

i ℵ Q, 1 � i � n, such that for all Σ ℵ ω,

α(Σ) = α0 +
⎨

1�i�n
ω|=AiBi

α+
i +

⎨

1�i�n

ω|=AiBi

α−
i . (5)

When starting with an epistemic state of complete ignorance (i.e., each world
Σ has rank 0), for each rule (Bi|Ai) the values α+

i , α−
i determine how the rank

180 C. Beierle et al.

of each satisfying world and of each falsifying world, respectively, should be
changed:

– If the world Σ verifies the conditional (Bi|Ai), – i.e., Σ |= AiBi –, then
α+

i is used in the summation to obtain the value α(Σ).
– Likewise, if Σ falsifies the conditional (Bi|Ai), – i.e., Σ |= AiBi –, then

α−
i is used in the summation instead.

– If the conditional (Bi|Ai) is not applicable in Σ, – i.e., Σ |= Ai –, then
this conditional does not influence the value α(Σ).

α0 is a normalization constant ensuring that there is a smallest world rank
0. Employing the postulate that the ranks of a satisfying world should not be
changed and requiring that changing the rank of a falsifying world may not result
in an increase of the world’s plausibility leads to the concept of a c-representation
[12,13]:

Definition 1. Let R = {(B1|A1), . . . , (Bn|An)}. Any ranking function α satis-
fying the conditional indifference condition (5) and α+

i = 0, α−
i � 0 (and thus

also α0 = 0 since R is assumed to be consistent) as well as

α(AiBi) < α(AiBi) (6)

for all i ℵ {1, . . . , n} is called a (special) c-representation of R.

Note that for i ℵ {1, . . . , n}, condition (6) expresses that α accepts the condi-
tional Ri = (Bi|Ai) ℵ R (cf. the definition of the satisfaction relation in (4))
and that this also implies α(Ai) < ≤.

Thus, finding a c-representation for R amounts to choosing appropriate val-
ues α−

1 , . . . , α−
n . In [2] this situation is formulated as a constraint satisfaction

problem CR(R) whose solutions are vectors of the form (α−
1 , . . . , α−

n) determin-
ing c-representations of R. The development of CR(R) exploits (2) and (5) to
reformulate (6) and requires that the α−

i are natural numbers (and not just
rational numbers). In the following, we set min(⊆) = ≤.

Definition 2. [CR(R)] Let R = {(B1|A1), . . . , (Bn|An)}. The constraint satis-
faction problem for c-representations of R, denoted by CR(R), is given by the
conjunction of the constraints

α−
i � 0 (7)

α−
i > min

Δ|=AiBi

⎨

j ℵ=i

ω|=AjBj

α−
j − min

Δ|=AiBi

⎨

j ℵ=i

ω|=AjBj

α−
j (8)

for all i ℵ {1, . . . , n}.
A solution of CR(R) is an n-tuple (α−

1 , . . . , α−
n) of natural numbers, and with

SolCR(R) we denote the set of all solutions of CR(R).

A Declarative Approach for Computing Ordinal Conditional Functions 181

Proposition 1. For R = {(B1|A1), . . . , (Bn|An)} let θα = (α−
1 , . . . , α−

n) ℵ
SolCR(R). Then the function α defined by

α(Σ) =
⎨

1�i�n

ω|=AiBi

α−
i (9)

in the following denoted by ατΠ, is an OCF that accepts R.

All c-representations built from (7), (8), and (9) provide an excellent basis
for model-based inference [12,13]. However, from the point of view of minimal
specificity (see e.g. [4]), those c-representations with minimal α−

i yielding mini-
mal degrees of implausibility are most interesting.

While different orderings on SolCR(R) can be defined, leading to differ-
ent minimality notions, in the following we will first focus on the ordering on
SolCR(R) induced by taking the sum of the α−

i , i.e.

(α−
1 , . . . , α−

n) �+ (α∼−
1 , . . . , α∼−

n) iff
⎨

1�i�n

α−
i �

⎨

1�i�n

α∼−
i . (10)

A vector θα is sum-minimal (just called minimal in the following) iff there is no
vector θα∼ such that θα∼ ∪+ θα where ∪+ is the irreflexive subrelation of �+. As
we are interested in minimal α−

i -vectors, an important question is whether there
is always a unique minimal solution. This is not the case; the following example
that is also discussed in [15] illustrates that SolCR(R) may have more than one
minimal element.

Example 2. Let Rbirds = {R1, R2, R3} be the following set of conditionals:

R1 : (f |b) birds fly
R2 : (a|b) birds are animals
R3 : (a|fb) flying birds are animals

From (8) we get
α−
1 > 0

α−
2 > 0 − min{α−

1 , α−
3 }

α−
3 > 0 − α−

2

and since α−
i � 0 according to (7), the two vectors

sol1 = (α−
1 , α−

2 , α−
3) = (1, 1, 0)

sol2 = (α−
1 , α−

2 , α−
3) = (1, 0, 1)

are two different solutions of CR(Rbirds) with
⎩

1�i�n α−
i = 2 that are both

minimal in SolCR(Rbirds) with respect to �+.

182 C. Beierle et al.

5 A Declarative CLP Program for CR(R)

In this section, we will develop a CLP program GenOCF solving CR(R). Our
main objective is to obtain a declarative program that is as close as possible to
the abstract formulation of CR(R) while exploiting the concepts of constraint
logic programming. We will employ finite domain constraints, and from (7) we
immediately get a lower bound for α−

i . Considering that we are interested mainly
in minimal solutions, due to (8) we can safely restrict ourselves to n as an upper
bound for α−

i , yielding
0 � α−

i � n (11)

for all i ℵ {1, . . . , n} with n being the number of conditionals in R.

5.1 Input Format and Preliminaries

Since we want to focus on the constraint solving part, we do not consider reading
and parsing a knowledge base R = {(B1|A1), . . . , (Bn|An)}. Instead, we assume
that R is already given as a Prolog code file providing the following predicates
variables/1, conditional/3 and indices/1:

variables([a1, . . . , am]) % list of atoms in β
conditional(i, ∃Ai∧, ∃Bi∧) % representation of ith conditional (Bi|Ai)
indices([1, ...,n]) % list of indices {1, . . . , n}

If β = {a1, . . . , am} is the set of atoms, we assume a fixed ordering a1 < a2 <
. . . < am on β given by the predicate variables([a1,. . . ,am]). The fixed index
ordering gven by indices([1,...,n]) ensures that the conditionals are ordered con-
secutively from 1 to n. Thus, the i-th conditional can be accessed by
conditional(i, A,B), and in a solution vector [K1,...,Kn], the i-th component
Ki is the α−-value for the i-th conditional.

In the representation of a conditional, a propositional formula A, constituting
the antecedent or the consequence of the conditional, is represented by ∃A∧ where
∃A∧ is a Prolog list [∃D1∧,. . . ,∃Dl∧]. Each ∃Di∧ represents a conjunction of literals
such that D1 ∨ . . . ∨ Dl is a disjunctive normal form of A.

Each ∃D∧, representing a conjunction of literals, is a Prolog list [b1,. . . ,bm]
of fixed length m where m is the number of atoms in Σ and with bk ℵ {0, 1, }.
Such a list [b1,. . . ,bm] represents the conjunctions of atoms obtained from ȧ1 →
ȧ2 → . . . → ȧm by eliminating all occurrences of ∨, where

ȧk =

⎫

⎫⎧

ak if bk = 1
ak if bk = 0
∨ if bk =

Example 3. The internal representation of the knowledge base presented in
Example 1. is shown in Fig. 2.

A Declarative Approach for Computing Ordinal Conditional Functions 183

Fig. 2. Internal representation of the knowledge base from Example 1.

As further preliminaries, using conditional/3 and indices/1, we have imple-
mented the predicates worlds/1, verifying worlds/2, falsifying worlds/2,
and falsify/2, realising the evaluation of the indicator function (1) given in
Sect. 2:

worlds(Ws) % Ws list of possible worlds
verifying worlds(i,Ws) % Ws list of worlds verifying ith conditional
falsifying worlds(i,Ws) % Ws list of worlds falsifying ith conditional
falsify(i,W) % world W falsifies ith conditional

where worlds are represented as complete conjunctions of literals over β, using
the representation described above.

Using these predicates, in the following subsections we will present the com-
plete source code of the constraint logic program GenOCF solving CR(R).

5.2 Generation of Constraints

The particular program code given here uses the SICStus Prolog system1 and its
clp(fd) library implementing constraint logic programming over finite domains
[14].

The main predicate kappa/2 expecting a knowledge base KB of conditionals
and yielding a vector K of α−

i values as specified by (8) is presented in Fig. 3.
After reading in the knowledge base, the constraints for K are generated. In

constraints/1, after getting the list of indices, a list K of free constraint vari-
ables, one for each conditional, is generated; in the two subsequent subgoals,
the constraints corresponding to the formulas (11) and (8) are generated, con-
straining the elements of K accordingly. Finally, labeling([], K) yields a list
of α−

i values. Upon backtracking, this will enumerate all possible solutions with
an upper bound of n as in (11) for each α−

i . Later on, we will demonstrate how
to modify kappa/2 in order to take minimality into account (Sect. 5.3).

How the subgoal constrain K(Is, K) in kappa/2 generates a constraint for
each index i ℵ {1, . . . , n} according to (8) is defined in Fig. 4.

1 http://www.sics.se/isl/sicstuswww/site/index.html

http://www.sics.se/isl/sicstuswww/site/index.html

184 C. Beierle et al.

Fig. 3. Main predicate kappa/2

Fig. 4. Constraining the vector K representing κ−
1 , . . . , κ−

n as in (8)

Given an index I, constrain Ki(I,K) (cf. Fig. 4) determines all worlds ver-
ifying and falsifying the I-th conditional; over these two sets of worlds the two
min expressions in (8) are defined. Two lists VS and FS of sums corresponding
exactly to the first and the second sum, repectively, in (8) are generated (how
this is done is defined in Fig. 5 and will be explained below). With the constraint
variables Vmin and Fmin denoting the minimum of these two lists, the constraint

Ki #> Vmin − Fmin

given in the last line of Fig. 4 reflects precisely the restriction on α−
i given by (8).

For an index I, a kappa vector K, and a list of worlds Ws, the goal
list of sums(I, K, Ws, Ss) (cf. Fig. 5) yields a list Ss of sums such that for
each world W in Ws, there is a sum S in Ss that is generated by sum kappa j(Js,
I, K, W, S) where Js is the list of indices {1, . . . , n}. In the goal sum kappa j
(Js, I, K, W, S), S corresponds exactly to the respective sum expression in
(8), i.e., it is the sum of all Kj such that J ∈= I and W falsifies the j-th conditional.

A Declarative Approach for Computing Ordinal Conditional Functions 185

Fig. 5. Generating list of sums of κ−
i as in (8)

Example 4. Suppose that kb birds.pl is a file containing the conditionals of
the knowledge base Rbirds given in Example 2.. Then the first five solutions
generated by the program given in Figs. 3, 4, 5 are:

| ?- kappa(’kb_birds.pl’, K).
K = [0,1,1] ? ;
K = [1,0,2] ? ;
K = [1,0,3] ? ;
K = [1,1,0] ? ;
K = [1,1,1] ?

Note that the first and the fourth solution are the minimal solutions.

Example 5. If kb penguins.pl is a file containing the conditionals of the knowl-
edge base R given in Example 1., the first six solutions generated by kappa/2
are:

| ?- kappa(’kb_penguins.pl’, K).
K = [1,2,2,1,1] ? ;
K = [1,2,2,1,2] ? ;
K = [1,2,2,1,3] ? ;

186 C. Beierle et al.

Fig. 6. Predicate kappa min sum/2 generating a minimal solution

Fig. 7. Predicate kappa min all/2 generating exactly all minimal solutions

K = [1,2,2,1,4] ? ;
K = [1,2,2,1,5] ? ;
K = [1,2,2,2,1] ?

5.3 Generation of Minimal Solutions

The enumeration predicate labeling/2 of SICStus Prolog allows for an option
that minimizes the value of a cost variable. Since we are aiming at minimizing the
sum of all α−

i , the constraint sum(K, #=, S) introduces such a cost variable S.
Thus, exploiting the SICStus Prolog minimization feature, we can easily modify
kappa/2 to generate a minimal solution: We just have to replace the last subgoal
labeling([], K) in Fig. 3 by the two subgoals given in Fig. 6.

With this modification, the obtained predicate kappa min sum/2 returns
a single minimal solution (and fails on backtracking). Hence calling
?- kappa min sum(’kb birds.pl’, K). similar as in Example 4. yields the
minimal solution K = [0,1,1].

However, as pointed out in Sect. 4, there are good reasons for considering
not just a single minimal solution, but all minimal solutions. We can achieve the
computation of all minimal solutions by another slight modification of kappa/2.
This time, the enumeration subgoal labeling([], K) in Fig. 3 is preceded by
two new subgoals as in kappa min sum all/2 in Fig. 7.

The first new subgoal sum(K, #=, S) introduces a constraint variable S
just as in kappa min sum/2. In the subgoal min sum kappas(K, S), this vari-
able S is constrained to the sum of a minimal solution as determined by
min sum kappas(K, Min). These two new subgoals ensure that in the generation
caused by the final subgoal labeling([], K), exactly all minimal solutions are
enumerated.

A Declarative Approach for Computing Ordinal Conditional Functions 187

Fig. 8. Predicate rank/3 determining the rank of a world for given

Example 6. Continuing Example 4., calling

| ?- kappa_min_sum_all(’kb_birds.pl’, K).
K = [0,1,1] ? ;
K = [1,1,0] ? ;
no

yields the two minimal solutions for Rbirds .

Example 7. For the situation in Example 5., kappa min sum all/2 reveals that
there is a unique minimal solution:

| ?- kappa_min_sum_all(’kb_penguins.pl’, K).
K = [1,2,2,1,1] ? ;
no

The predicate rank/3 given in Fig. 8 can be used for determining the OCF ατΠ

induced by the vector θα = (α−
1 , α−

2 , α−
3 , α−

4 , α−
5) = (1, 2, 2, 1, 1) according to (9),

yielding the ranking function given in Fig. 1.

5.4 Alternative Notions of Minimality

In general, it is still an open problem how to strengthen the requirements defining
a c-representation so that a unique minimal solution is guaranteed to exist. Such
a strengthening could use alternative minimality criteria. In this subsection, we
illustrate the realization of an alternative minimality criterion in our constraint
logic programming approach.

Instead of ordering the vectors θα by the sum of their components as done by
�+ in (10), we could consider a componentwise ordering �cw

(α−
1 , . . . , α−

n) �cw (α∼−
1 , . . . , α∼−

n) iff α−
i � α∼−

i for all i ℵ {1, . . . , n} (12)

yielding a partial order �cw on SolCR(R).
Let ∪cw denote the irreflexive subrelations of �cw , respectively. A vector θα is

componentwise minimal (or cw-minimal) iff there is no vector θα∼ with θα∼ ∪cw θα.
In order to demonstrate the flexibility of the high-level CLP implementation

188 C. Beierle et al.

Fig. 9. Predicate kappa min cw all computing all componentwise minimal solutions

realized in GenOCF, we will show how slight modifications of the program realize
these alternative notions of minimality.

The predicate kappa min cw all/2 as given in Fig. 9 computes all compo-
nentwise minimal solution for a knowledge base. After consulting the knowl-
edge base KB, the subgoal kappa(KB, K) says that K is a solution for KB, while
minimal cw(K) ensures that K is cw-minimal. The predicate minimal cw/1
enforces that there is no solution vector K2 for the given knowledge base that is
strictly less than K: If constraints(K2) succeeds where constraints/1 is given
as in Fig. 3, then there is no labeling for K2 under the constraint lt cw(K2,K).
The predicate lt cw/2 takes two vectors of the same length and succeeds if there
is at least one position where the component at that position in the first vector is
strictly less than the corresponding component in the second vector (ensured by
the constraint with #< in lt cw/2 in Fig. 9), and all other corresponding vector
components are less or equal (ensured by the constraints with #= in lt cw/2 and
with #=< in leq cw/2).

Example 8. Continuing Example 6., calling

| ?- kappa_min_cw_all(’kb_birds.pl’, K).
K = [1,0,1] ? ;
K = [1,1,0] ? ;
no

reveals that in this simple example the set of sum-minimal solutions coincides
with the set of cw-minimal solutions.

In our further invstigations, we will extend GenOCF to be able to take into
account more alternative minimality criteria. For instance, as illustrated in the

A Declarative Approach for Computing Ordinal Conditional Functions 189

previous example, GenOCF determines that both α1 = [1, 0, 1] and α2 = [1, 1, 0]
are minimal with respect to �+ and also with respect to �cw for Rbirds . However,
we could also compare the full OCFs induced by α1 and α2 according to (9).
These induced OCFs are given by the following table:

Note that under α1, the world fba has a smaller rank than under α2, while
all other worlds have the same rank under both OCFs. Further theoretical and
experimental studies are needed for this and still other minimality criteria.

6 Example Applications and First Evaluation

Although the objective in developing GenOCF was on being as close as possible to
the abstract formulation of the constraint satisfaction problem CR(R), we will
present the results of some first example applications we have carried out.

For n � 1, we generated synthetic knowledge bases kb synth<n> c<2n −
1>.pl according to the following schema: Using the variables {f} ← {a1, . . . , an},
kb synth<n> c<2n − 1>.pl contains the 2 ∇ n − 1 conditionals given by::

(f |ai) if i is odd, i ℵ {1, . . . , n}
(f |ai) if i is even, i ℵ {1, . . . , n}
(ai|ai+1) if i ℵ {1, . . . , n − 1}

For instance, kb synth4 c7.pl uses the five variables {f, a1, a2, a3, a4} and con-
tains the seven conditionals:

(f |a1)
(f |a2)
(f |a3)
(f |a4)
(a1|a2)
(a2|a3)
(a3|a4)

The basic idea underlying the construction of these synthetic knowledge bases
kb synth<n> c<2n−1>.pl is to establish a kind of subclass relationship between
ai+1 and ai for each i ℵ {1, . . . , n − 1} on the one hand, and to state that every
ai+1 is exceptional to ai with respect to its behaviour regarding f , again for
each i ℵ {1, . . . , n−1}. This sequence of pairwise exceptional elements will force
any minimal solution of CR(kb synth<n> c<2n−1>.pl) to have at least one α−

i

value of size greater or equal to n.

190 C. Beierle et al.

2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

number of conditionals

8 var.
9 var.

10 var.
11 var.
12 var.
13 var.

Fig. 10. Execution times (given in seconds) of GenOCF under SICStus Prolog for com-
puting all sum-minimal solutions for various synthesized knowledge bases

From kb synth<n> c<m>.pl, the knowledge bases kb synth<n> c<m−j>.pl
are generated for j ℵ {1, . . . , m − 1} by removing the last j conditionals. For
instance, kb synth4 c5.pl is obtained from kb synth4 c7.pl by removing the
two conditionals {(a2|a3), (a3|a4)}.

Figure 10 shows the time needed by GenOCF for computing all sum-minimal
solutions for some of these synthesized knowledge bases with different numbers
of variables and conditionals. Execution times are given in seconds for measure-
ments taken in the following environment: SICStus 4.0.8 (x86-linux-glibc2.3),
Intel Core 2 Duo E6850 3.00GHz.

Of course, these knowledge bases are by no means representative, and further
evaluation is needed. In particular, investigating the complexity depending on the
number of variables and conditionals and determining an upper bound for worst-
case complexity has still to be done; the graphical illustration in Fig. 10 clearly
indicates an exponential increase. However, it should be noted that the high-
level, declarative approach taken here provides many opportunities for improving
run-time efficiency. For instance, it suffices to compute the verifying and the
falsifying worlds for each conditional only once instead of multiple times when
generating the constraints for a solution vector K as done in Fig. 4. Furthermore,
while the code for GenOCF given above uses SICStus Prolog, we also have a variant
of GenOCF for the SWI Prolog system2 [20]. In our further investigations, we want
to evaluate GenOCF also using SWI Prolog, to elaborate the changes required
and the options provided when moving between SICStus and SWI Prolog, and
to study whether there are any significant differences in execution that might
depend on the two different Prolog systems and their options.

2 http://www.swi-prolog.org/index.html

http://www.swi-prolog.org/index.html

A Declarative Approach for Computing Ordinal Conditional Functions 191

7 Conclusions and Further Work

While for a set of probabilistic conditionals (Bi|Ai)[xi] the principle of maximum
entropy yields a unique model, for a set R of qualitative default rules (Bi|Ai)
there may be several minimal ranking functions. In this paper, we developed a
CLP approach for solving CR(R), realized in the Prolog program GenOCF. The
solutions of the constraint satisfaction problem CR(R) are vectors of natural
numbers θα = (α−

1 , . . . , α−
n) that uniquely determine an OCF ατΠ accepting all

conditionals in R. GenOCF is also able to generate exactly all minimal solutions
of CR(R) for different notions of minimality. Minimal solutions of CR(R) are of
special interest for model-based inference.

In general, it is an open problem how to strengthen the requirements defining
a c-representation so that a unique solution is guaranteed to exist. The declara-
tive nature of constraint logic programming supports easy constraint modifica-
tion, enabling the experimentation and practical evaluation of different notions of
minimality for SolCR(R) and of additional requirements that might be imposed
on a ranking function. Furthermore, in [8] the framework of default rules con-
cidered here is extended by allowing not only default rules in the knowledge
base R, but also strict knowledge, rendering some worlds completely impossibe.
This can yield a reduction of the problem’s complexity, and it will be interesting
to see which effects the incorporation of strict knowledge will have on the CLP
approach presented here.

References

1. Beierle, C., Kern-Isberner, G.: A verified AsmL implementation of belief revision.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol.
5238, pp. 98–111. Springer, Heidelberg (2008)

2. Beierle, C., Kern-Isberner, G.: On the computation of ranking functions for default
rules - a challenge for constraint programming. In: Heiß, H.-U., Pepper, P.,
Schlingloff, H., Schneider, J. (eds.) Informatik 2011: Informatik schafft Commu-
nities, Beiträge der 41. Jahrestagung der Gesellschaft für Informatik e.V. (GI),
4.-7.10.2011, Berlin (Abstract Proceedings), volume P-192 of LNI. GI (2011)

3. Beierle, C., Kern-Isberner, G., Koch, N.: A high-level implementation of a system
for automated reasoning with default rules (system description). In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
147–153. Springer, Heidelberg (2008)

4. Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic
logic. In: Proceedings 3th International Conference on Principles of Knowledge
Representation and Reasoning KR’92, pp. 673–684 (1992)

5. Bourne, R.A.: Default reasoning using maximum entropy and variable strength
defaults. Ph.D. thesis, Univ. of London (1999)

6. Bourne, R.A., Parsons, S.: Maximum entropy and variable strength defaults. In:
Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence, IJCAI’99, pp. 50–55 (1999)

7. DeFinetti, B.: Theory of Probability, vol. 1,2. Wiley, New York (1974)
8. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artif.

Intell. 142(1), 53–89 (2002)

192 C. Beierle et al.

9. Goldszmidt, M., Morris, P., Pearl, J.: A maximum entropy approach to non-
monotonic reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 15(3), 220–232
(1993)

10. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

11. Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within
a conditional-logical framework. Artif. Intell. 98, 169–208 (1998)

12. Kern-Isberner, G.: Conditionals in nonmonotonic reasoning and belief revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

13. Kern-Isberner, G.: Handling conditionals adequately in uncertain reasoning and
belief revision. J. Appl. Non-Class. Logics 12(2), 215–237 (2002)

14. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol.
1292, pp. 191–206. Springer, Heidelberg (1997)

15. Müller, C.: Implementing default rules by optimal conditional ranking functions.
B.Sc. Thesis, Department of Computer Science, FernUniversität in Hagen, Ger-
many (2004) (in German)

16. Paris, J.B.: The uncertain reasoner’s companion - A mathematical perspective.
Cambridge University Press, Cambridge (1994)

17. Paris, J.B., Vencovska, A.: In defence of the maximum entropy inference process.
Int. J. Approximate Reasoning 17(1), 77–103 (1997)

18. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states.
In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and
Statistics, vol. II, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)

19. Weydert, E.: System JZ - How to build a canonical ranking model of a default
knowledge base. In: Proceedings KR’98. Morgan Kaufmann, San Mateo (1998)

20. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. CoRR,
abs/1011.5332, (2010) (to appear in Theory and Practice of Logic Programming)

WLP Technical Papers II:
Answer-Set Programming

and Model Expansion

A Descriptive Approach to Preferred
Answer Sets

Ján Šefránek(B) and Alexander Šimko

Comenius University, Bratislava, Slovakia
{sefranek, simko}@fmph.uniba.sk

Abstract. We are aiming at a semantics of logic programs with pref-
erences defined on rules, which always selects a preferred answer set, if
there is a non-empty set of (standard) answer sets of the given program.

It is shown in a seminal paper by Brewka and Eiter that the goal
mentioned above is incompatible with their second principle and it is
not satisfied in their semantics of prioritized logic programs. Similarly,
also according to other established semantics, based on a prescriptive
approach, there are programs with standard answer sets, but without
preferred answer sets.

According to the standard prescriptive approach no rule can be fired
before a more preferred rule, unless the more preferred rule is blocked.
This is a rather imperative approach, in its spirit. According to our back-
ground intuition, rules can be blocked by more preferred rules, but the
rules which are not blocked are handled in a more declarative style, in-
dependent on the given preference relation on the rules.

An argumentation framework (different from Dung’s framework) is
proposed in this paper. Some argumentation structures are assigned to
the rules of a given program. Other argumentation structures are de-
rived using a set of derivation rules. Some of the derived argumentation
structures correspond to answer sets. An attack relation on derivations
of argumentation structures is defined. Preferred answer sets correspond
to complete argumentation structures, which are not blocked by other
complete argumentation structures.

Keywords: Extended logic program · Answer set · Preference · Pre-
ferred answer set · Argumentation structure

1 Introduction

The meaning of a nonmonotonic theory is often characterized by a set of (alter-
native) belief sets. It is appropriate to select sometimes some of the belief sets
as more preferred.

We are focused in this paper on extended logic programs with a preference
relation on rules, see, e.g., [1,2,10,18]. Such programs are denoted by the term
prioritized logic programs in this paper.

It is suitable to require that some preferred answer sets can be selected from
a non-empty set of the standard answer sets of a (prioritized) logic program.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 195–214, 2013.
DOI: 10.1007/978-3-642-41524-1 11, c© Springer-Verlag Berlin Heidelberg 2013

196 J. Šefránek and A. Šimko

Unfortunately, there are prioritized logic programs with standard answer
sets, but without preferred answer sets according to the semantics of [1] and
also of [2] or [18]. This feature is a consequence of the prescriptive approach to
preference handling [4]. According to that approach no rule can be fired before
a more preferred rule, unless the more preferred rule is blocked. This is a rather
imperative approach, in its spirit.

An investigation of basic principles which should be satisfied by any system
containing a preference relation on defeasible rules is of fundamental importance.
This type of research has been initialized in the seminal paper [1]. Two basic
principles are accepted in the paper.

The second of the principles is violated, if a function is assumed which always
selects a non-empty subset of preferred answer sets from a non-empty set of all
standard answer sets of a prioritized logic program.

We believe that the possibility to select always a preferred answer set from
a non-empty set of standard answer sets is of critical importance. This goal
requires to accept a descriptive approach to preference handling. The approach
is characterized in [3,4] as follows: The order in which rules are applied, reflects
their “desirability” – it is desirable to apply the most preferred rules.

Our basic intuition is that rules can be blocked by more preferred rules, but
the rules which are not blocked are handled in a more declarative style. If we
express this in terms of desirability, it is desirable to apply all (applicable) rules
which are not blocked by a more preferred rule. The execution of non-blocked
rules does not depend on their order. Dependencies of more preferred rules on less
preferred rules do not prevent the execution of non-blocked rules. However, this
approach is computationally more demanding than the prescriptive approach.

A formal elaboration of this intuition resulted in our approach into attack
and blocking relations between sets of generating rules (expressed in terms of
derivations of complete argumentation structures).

Our goal is:

– to modify the principles proposed by Brewka and Eiter in [1] in such a way
that they do not contradict a selection of a non-empty set of preferred answer
sets from the underlying non-empty set of standard answer sets, and

– to introduce a notion of preferred answer sets that satisfies the above men-
tioned modification.

The proposed method is inspired by [8]. While there defeasible rules are
treated as (defeasible) arguments, here (defeasible) assumptions, sets of default
negations, are considered as arguments. Reasoning about preferences in a logic
program is here understood as a kind of argumentation. Sets of default literals
can be viewed as defeasible arguments, which may be contradicted by conse-
quences of some applicable rules. The preference relation on rules is used in
order to ignore the attacks of less preferred arguments against more preferred

A Descriptive Approach to Preferred Answer Sets 197

arguments. The core problem is to transfer the preference relation defined on
rules to a blocking relation between answer sets.1

The basic argumentation structures correspond to the rules of a given pro-
gram. Derivation rules, which enable derivation of argumentation structures from
the basic ones are defined. That derivation leads from the basic argumentation
structures to argumentation structures corresponding to answer sets of the given
program (we use a method of [5]). The argumentation structures, which corre-
spond to answer sets, are called complete in this paper.

Derivations of complete argumentation structures play a crucial role in our
approach. Attacks of more preferred rules against the less preferred rules are
transferred to attacks between derivations of complete argumentation structures.
Preferred answer sets are defined over that background. They correspond to
complete and non-blocked (warranted) argumentation structures.

The contributions of this paper are summarized as follows. A modified set of
principles for preferred answer set specification is proposed. A new type of argu-
mentation framework is constructed, which enables a selection of preferred an-
swer sets. There are basic arguments (argumentation structures) and attacks in
the framework. Rules for derivation of argumentation structures are introduced.
After that attacks between derivations of complete argumentation structures, ac-
ceptable derivations and, finally, warranted and blocked complete argumentation
structures are defined. Preferred answer sets are defined in terms of complete
and non-blocked (warranted) argumentation structures. Each program with a
non-empty set of answer sets has a preferred answer set in our approach.

A preliminary version of the presented research has been published in [12].
This is more than an extended version of [13]. The main differences between the
versions are summarized in the Conclusions.

2 Preliminaries

The language of extended logic programs is used in this paper.
Let At be a set of atoms. The set of objective literals is defined as Obj =

At → {¬ A : A ℵ At}. If L is an objective literal then an expression of the form
not L is called default literal. Notation: Def = {not L | L ℵ Obj}. The set of
literals Lit is defined as Obj → Def .

A convention: ¬¬A = A, where A ℵ At . If X is a set of objective literals,
then not X = {not L | L ℵ X}.

A rule is each expression of the form L ∼ L1, . . . , Lk, where k ← 0, L ℵ Obj
and Li ℵ Lit . If r is a rule of the form as above, then L is denoted by head(r) and
{L1, . . . , Lk} by body(r). If R is a set of rules, then head(R) = {head(r) | r ℵ R}
and body(R) = {body(r) | r ℵ R}. A finite set of rules is called extended logic
program (program hereafter).

1 Our intuitions connected to the notion of argumentation structure and also the used
constructions are different from Dung’s arguments or from arguments of [8]. This
paper does not present a contribution to argumentation theory.

198 J. Šefránek and A. Šimko

The set of conflicting literals is defined as CON = {(L1, L2) | L1 =
not L2 ≤ L1 = ¬L2}. A set of literals S is consistent if (S × S) ∈ CON = ⊆.
An interpretation is a consistent set of literals. A total interpretation is an inter-
pretation I such that for each objective literal L either L ℵ I or not L ℵ I. A
literal L is satisfied in an interpretation I iff L ℵ I (notation: I |= L). A set of
literals S is satisfied in I iff S ∪ I (notation: I |= S). A rule r is satisfied in I
iff I |= head(r) whenever I |= body(r), notation I |= r. An interpretation I is a
model of a program P , notation I |= P , if for each r ℵ P holds I |= r.

If S is a set of literals, then we denote S ∈ Obj by S+ and S ∈ Def by S−.
Symbols (body(r))− and (body(r))+ are used here in that sense (notice that the
usual meaning of body−(r) is different). If X ∪ Def then pos(X) = {L ℵ Obj |
not L ℵ X}. Hence, not pos((body(r))−) = (body(r))−. If r is a rule, then the
rule head(r) ∼ (body(r))+ is denoted by r+.

An answer set of a program can be defined as follows (only consistent answer
sets are defined).

A total interpretation S is an answer set of a program P iff S+ is the least
model2 of the program P+ = {r+ | S |= (body(r))−}. Note that an answer set
S is usually represented by S+ (this convention is sometimes used also in this
paper).

The set of all answer sets of a program P is denoted by AS (P). A program
is called coherent iff it has an answer set.

A strict partial order is a binary relation, which is irreflexive, transitive and,
consequently, asymmetric.

A prioritized logic program is defined in this paper as a pair (P,∃), where
P is a program and ∃ a strict partial order on rules of P . Let be r1, r2 ℵ P . If
r1 ∃ r2 it is said that r2 is more preferred than r1.

3 Argumentation Structures

Our aim is to transfer a preference relation defined on rules to a preference rela-
tion on answer sets and, finally, to a notion of preferred answer sets. To that end
argumentation structures are introduced. The basic argumentation structures
correspond to rules. Some more general types of argumentation structures are
derived from the basic argumentation structures. A special type of argumenta-
tion structures corresponds to answer sets.

Definition 1 (∧P , [11]). An objective literal L depends on a set of default
literals W ∪ Def with respect to a program P (L ∧P W) iff there is a sequence
of rules 〈r1, . . . , rk∨, k ← 1, ri ℵ P such that

– head(rk) = L,
– W |= body(r1),
– for each i, 1 ∇ i < k, W → {head(r1), . . . , head(ri)} |= body(ri+1).

The set {L ℵ Lit | L ∧P W} → W is denoted by Cn∼P
(W).3

2 P+ is treated as definite logic program, i.e., each objective literal of the form ¬A,
where A ← At , is considered as a new atom.

3 Cn�P (W) could be defined as T ω
P (W) and L ∪P W as L ← T ω

P (W).

A Descriptive Approach to Preferred Answer Sets 199

W ∪ Def is self-consistent w.r.t. a program P iff Cn∼P
(W) is consistent. �

If Z ∪ Obj , we will sometimes use the notation Cn∼P∪Z
(W), assuming that

the program P is extended by the set of facts Z.

Definition 2 (Dependency structure). Let P be a program.
A self-consistent set X ∪ Def is called an argument w.r.t. P for a consistent

set of objective literals Y , given a set of objective literals Z iff

1. pos(X) ∈ Z = ⊆,
2. Y ∪ Cn∼P∪Z

(X).

We will use the notation 〈Y ∼Σ X;Z∨ and the triple denoted by it is called a
dependency structure (w.r.t. P).4 �

If Z = ⊆ also a shortened notation 〈Y ∼Σ X∨ can be used. We will sometimes
omit the phrase “w.r.t. P” and speak simply about dependency structures and
arguments, if the corresponding program is clear from the context.

We are going to define basic argumentation structures, while using the same
notation as for dependency structures. It is justified by Proposition 1., saying
that basic argumentation structures comply with Definition 2 of dependency
structures, if some conditions are satisfied.

Definition 3 (Basic argumentation structure). Let r ℵ P be a rule such
that

– (body(r))− is self-consistent and
– pos((body(r))−) ∈ (body(r))+ = ⊆.

Then A = 〈{head(r)} ∼Σ (body(r))−; (body(r))+∨ is called a basic argumentation
structure. �

Proposition 1. Each basic argumentation structure is a dependency structure.

Proof. Let A = 〈{head(r)} ∼Σ (body(r))−; (body(r))+∨ be a basic argumentation
structure for a rule r ℵ P . We show that{head(r)} ∪ Cn∼P∪(body(r))+

((body(r))−).
Assume the program P → (body(r))+. Let (body(r))+ = {L1, . . . , Lk}. We

introduce a new rule rLi
= Li ∼ for every Li ℵ (body(r))+. Then we create a

sequence of rules 〈r1, r2, . . . , rn∨ such that

– n = |(body(r))+| + 1,
– rn = r,
– ri = rLi

where Li ℵ (body(r))+, for 1 ∇ i < n,
– ri ∅= rj for 1 ∇ i, j < n and i ∅= j.

4 This notation does not refer to P explicitly, but the condition Y ∃ Cn�P∪Z (X)
relates a dependency structure to P . Moreover, we will use only a kind of dependency
structures, called argumentation structures, derived from a given program P .

200 J. Šefránek and A. Šimko

This sequence satisfies conditions from Definition 1 for assumption (body(r))−,
hence head(r) ℵ Cn∼P∪(body(r))+

((body(r))−). That is, we have that A is a de-
pendency structure. �

We emphasize that only self-consistent arguments for consistent sets of ob-
jective literals are considered in this paper. Hence, programs as P = {p ∼ not p}
or Q = {p ∼ not q;¬p ∼ not q} are irrelevant for our constructions.

Some dependency structures can be derived from the basic argumentation
structures. Only the dependency structures derived from the basic argumenta-
tion structures using derivation rules from Definition 4 are of interest in the
rest of this paper. We will use the term argumentation structure for dependency
structures derived from basic argumentation structures using derivation rules.

Derivation rules are motivated later in Example 1.

Definition 4 (Derivation rules and argumentation structures). Let P be
a program. An argumentation structure is inductively defined as follows. Each
basic argumentation structure is an argumentation structure.

Other argumentation structures are obtained using derivation rules R1, R2,
and R3:

R1 (Unfolding) Let r1, r2 ℵ P , A1 = 〈{head(r1)} ∼Σ X1;Z1∨ and
A2 = 〈{head(r2)} ∼Σ (body(r2))−; (body(r2))+∨ be argumentation structures,
head(r2) ℵ Z1, X1→(body(r2))−→Z1→(body(r2))+→{head(r1)} be consistent
and X1 → (body(r2))− be self-consistent. Then also A3 = 〈head(r1) ∼Σ X1 →
(body(r2))−; (Z1 \{head(r2)})→ (body(r2))+∨ is an argumentation structure.
We also write A3 = u(A1,A2).

R2 Let A1 = 〈Y1 ∼Σ X1∨ and A2 = 〈Y2 ∼Σ X2∨ be argumentation structures
and X1 → X2 be self-consistent. Then A3 = 〈Y1 → Y2 ∼Σ X1 → X2∨ is an
argumentation structure. We also write A3 = A1 → A2.

R3 Let A1 = 〈Y1 ∼Σ X1∨ be an argumentation structure and W ∪ Def . If
X1 → W is self-consistent, then A2 = 〈Y1 ∼Σ X1 → W ∨ is an argumentation
structure. We also write A2 = A1 → W .�

Example 1 ([1]). Let the following program P be given as follows (P is used as
a running example in this paper):

r1 b ∼ a,not ¬b
r2 ¬b ∼ not b
r3 a ∼ not ¬a.

Suppose that ∃= {(r2, r1)}.
Consider the rule r2. The default negation not b plays the role of a defeasible

argument. If the argument can be consistently evaluated as true with respect to
a program containing r2, then also ¬b can (and must) be evaluated as true.

As regards the rule r1, default negation not ¬b can be treated as an argument
for b, if a is true, it is an example of a “conditional argument”.

A Descriptive Approach to Preferred Answer Sets 201

The following basic argumentation structures correspond to the rules of P :
〈{b} ∼Σ {not ¬b}; {a}∨,〈{¬b} ∼Σ {not b}∨, 〈{a} ∼Σ {not ¬a}∨. Let us denote
them by A1,A2,A3, respectively.

An example of a derived argumentation structure: A3 enables to “unfold”
the condition a in A1, the resulting argumentation structure can be expressed
as A4 = u(A1,A3) = 〈{b} ∼Σ {not ¬b,not ¬a}∨.

Similarly, A5 = A3 → A4 = 〈{a, b} ∼Σ {not ¬b,not ¬a}∨ can be derived from
A3 and A4 using the rule R2.

Observe that some argumentation structures correspond to the answer sets.
A5 corresponds to the answer set {a, b} and A6 = 〈{a,¬b} ∼Σ {not b,not ¬a}∨
to {a,¬b}. Notice that A6 = A2 → A3. The attack relation enables to select the
preferred answer set. This will be discussed later. �

Proposition 2. Each argumentation structure is a dependency structure.

Proof. We have to show that an application of R1, R2 and R3 preserves the
properties of dependency structures.

R1 Since S1 = X1 → (body(r2))− → Z1 → (body(r2))+ → {head(r1)} is consistent
then S2 = X1 → (body(r2))− → (Z1 \ {head(r2)}) → (body(r2))+ ∪ S1 is also
consistent. This means that pos(X1 → (body(r2))−) ∈ ((Z1 \ {head(r2)}) →
(body(r2))+) = ⊆.
Let Q = P → (Z1 \ {head(r2)}) → (body(r2))+ and w = head(r2) ∼.
From head(r2) ℵ Cn∼P∪(body(r2))+

((body(r2))−) we have a sequence R2 of
rules, where R2 = 〈q1, q2, . . . , qm∨, m > 0 and qm = r2.
From head(r1) ℵ Cn∼P∪Z1

(X1) we have the sequence R1 = 〈p1, p2, . . . , pn∨
where n > 0 and pn = r1. We assume there is at most one occurrence of w
in R1. Otherwise we can remove all but the leftmost one. Note that since
r2 ℵ P there is a possibility to satisfy body(r1) in a different way from using
w.
If w ℵ R1 then we have pi = w for some 1 ∇ i < n. We construct the
sequence R3 = 〈q1, q2, . . . , qm, p1, p2, . . . , pi−1, pi+1, . . . , pn∨. If w ∅ℵ R1 we
construct the sequence R3 = 〈q1, q2, . . . , qm, p1, p2, . . . , pn∨. In both cases R3

satisfy the conditions from Definition 1 for the assumption X1→(body(r2))−.
R2 The condition pos(X) ∈ Z = ⊆ is satisfied both for R2 and R3, because

Z = ⊆.
It is supposed that Y1 ∼Σ X1 and Y2 ∼Σ X2 are argumentation struc-
tures and X1 → X2 is self-consistent. We have to show that Y1 → Y2 ∪
CnP (X1→X2). Let L ℵ Y1→Y2. Then L ℵ CnP (X1) or L ℵ CnP (X2), hence
L ℵ CnP (X1 → X2).

R3 Now, we assume that Y ∼Σ X is an argumentation structure, i.e., Y ∪
CnP (X) and X → W is self-consistent. Clearly, CnP (X) ∪ CnP (X → W),
hence Y ∪ CnP (X → W).

Definition 5 (Derivations). A derivation of an argumentation structure A
(w.r.t. P) is a minimal sequence 〈A1,A2, . . . ,Ak∨ of argumentation structures
(w.r.t. P) such that A1 is a basic argumentation structure, A = Ak, and each

202 J. Šefránek and A. Šimko

Ai, 1 < i ∇ k, is either a basic argumentation structure or it is obtained by R1
or R2 or R3 from preceding argumentation structures.

An extraordinary attention is devoted to derivations of complete argumen-
tation structures – they correspond to answer sets.

Definition 6 (Complete argumentation structures). An argumentation
structure 〈Y ∼Σ X∨ is called complete iff for each literal L ℵ Obj it holds that
L ℵ Y or not L ℵ X. �

A set of basic argumentation structures is assigned to an arbitrary program
P .

Proposition 3. A complete argumentation structure 〈Y ∼Σ X∨ is derived from
a set of basic argumentation structures assigned to a program P iff X → Y is an
answer set of P .

A proof is based on the method of [5] and on a correspondence between deriva-
tions of argumentation structures and Cn∼P

(X).
We are interested in attacks against derivations of complete argumentation

structures.

4 Attacks and Warranted Derivations

Our approach to preferred answer sets is based on a solution of conflicts between
complete argumentation structures. We distinguish three steps towards that goal.

Contradictions between argumentation structures represent the elementary
step.

Rule preference and contradictions between basic argumentation structures
are used to form an attack relation on basic argumentation structures. Con-
sider two basic argumentation structures A1 and A2. If A1 contradicts A2 and
corresponds to a more preferred rule, then it attacks A2.

Attacks between derived argumentation structures depend on how argumen-
tation structures are derived, see Example 3 below. Hence, we will introduce an
attack relation on derivations. The notion of warranted and blocked complete
argumentation structures and of preferred answer set is based on this basis.

Definition 7. Consider the argumentation structures A = 〈Y1 ∼Σ X1;Z1∨ and
B = 〈Y2 ∼Σ X2;Z2∨.

If there is a literal L ℵ Y1 such that not L ℵ X2, it is said that the argument
X1 contradicts the argument X2 and the argumentation structure A contradicts
the argumentation structure B.

It is said that X1 is a counterargument to X2. �

The basic argumentation structures corresponding to the facts of the given
program are not contradicted.

Let r1 = a ∼ be a fact and not a ℵ (body(r2))−. Then any W ∪ Def s.t.
(body(r2))− ∪ W is not self-consistent and, therefore, it is not an argument.

A Descriptive Approach to Preferred Answer Sets 203

Example 2 . In Example 1, A1 contradicts A2 and A2 contradicts A1.
Only some counterarguments are interesting: the rule r1 is more preferred

than the rule r2, therefore the counterargument of A2 against A1 should not
be “effectual”. We are going to introduce a notion of attack in order to denote
“effectual” counterarguments. �

Similarly as for the case of argumentation structures, the basic attacks are
defined first. A terminological convention: if A1 attacks A2, it is said that the
pair (A1,A2) is an attack.

Definition 8. Let r1, r2 be rules, and A1 = 〈{head(r1)} ∼Σ (body(r1))−;
(body(r1))+∨ and A2 = 〈{head(r2)} ∼Σ (body(r2))−; (body(r2))+∨ be basic
argumentation structures such that r2 ∃ r1 and A1 contradicts A2.

Then A1 attacks A2 and it is said that this attack is basic. �

Next step could be to transfer basic attacks to attacks between derived ar-
gumentation structures. However, it is not a straightforward task. Example 3
shows our intuitions. An argumentation structure B attacks another argumen-
tation structure A w.r.t. a derivation, but not w.r.t. another derivation.

Example 3 . Let P be

r1 a ∼ not b r3 a ∼ not c
r2 b ∼ not a r4 c ∼ b.

∃= {(r1, r2)}.
There are two answer sets of P : S1 = {a} and S2 = {b, c}. The corresponding

argumentation structures are A = 〈{a} ∼Σ {not b,not c}∨ and B = 〈{b, c} ∼Σ
{not a}∨, respectively.

Let A1 be 〈{a} ∼Σ {not b}∨, A2 = 〈{b} ∼Σ {not a}∨, A3 = 〈{a} ∼Σ {not c}∨,
A4 = 〈{c} ∼Σ ⊆; {b}}∨.

There are two derivations of A: the sequences α1 = 〈A1,A∨ and α2 = 〈A3,A∨
(remind the minimality condition). They start from a basic argumentation struc-
ture and R3 is used.

On the other hand, there is only one5 derivation of B: β = 〈A2,A4,B∨.
The only basic attack is (A2,A1) (A2 attacks A1). Hence, it is intuitive to

accept that β attacks α1. However, there is no reason to consider α2 as attacked.
A rather credulous approach is accepted in this paper: if there is a derivation

of a complete argumentation structure, which is not attacked, then the complete
argumentation structure is preferred. However, this is only a rough idea, a more
subtle solution is presented below. �

We are going to define attacks between derivations. It is a simple task, but
not sufficient for our goals.
5 If we abstract from the order of argumentation structures in the derivation. This

does not influence the attack relation between derivations.

204 J. Šefránek and A. Šimko

Definition 9. Let α be a derivation of an argumentation structure A and β a
derivation of an argumentation structure B. Suppose that a basic argumentation
structure A1 belongs to α and a basic argumentation structure B1 belongs to β .

It is said that α attacks β , if (A1,B1) is a basic attack.

It is obvious that a derivation α may attack a derivation β and β may attack
α, i.e. mutual attacks are possible. Similarly cyclic attacks are possible.

We intend to define preferred answer sets in terms of preferred complete argu-
mentation structures. A first approximation is to select complete argumentation
structures with non-attacked derivations. However, we need to handle the case
of mutual or cyclic attacks (i.e., to consider a kind of reinstatement). To this
end we borrow a technique from abstract argumentation frameworks [6].

Definition 10. Consider an argumentation framework (A,ω), where A, the set
of arguments, is the set of all derivations of all complete argumentation struc-
tures and ω is the attack relation defined in Definition 9.

A derivation α of a complete argumentation structure A is acceptable w.r.t.
a set S ∪ A iff for each β ℵ A s.t. (β, α) ℵ ω there is some α∈ ℵ S s.t. (α∈, β) ℵ ω.
�

Notice that acceptable derivations may be attacked by derivations of non-
complete argumentation structures.
Fact
If there is a derivation α of a complete A, which is not attacked, then α is
acceptable w.r.t. the empty set of derivations.

Example 4 . Let P be {r1 : a ∼ not b; r2 : b ∼ not a}. If ∃= ⊆ then both
the derivation of 〈{a} ∼Σ {not b}∨ and the derivation of 〈{b} ∼Σ {not a}∨ are
acceptable w.r.t. the empty set of derivations.

Suppose that r1 ∃ r2. Then 〈{b} ∼Σ {not a}∨ is acceptable w.r.t. the empty
set of derivations, but there is no set S of derivations s.t. 〈{a} ∼Σ {not b}∨ is
acceptable w.r.t. S.

Let R be P →{r3 : c ∼ a; r4 : d ∼ b}, r1 ∃ r2, r4 ∃ r3. Then each derivation
α of 〈{a, c} ∼Σ {not b,not d}∨ is acceptable w.r.t. S = {α} and each derivation
β of 〈{b, d} ∼Σ {not a,not c}∨ is acceptable w.r.t. S = {β}.

Example 5 . Consider a program P :
r1 a1 ∼ not a3,not d2
r2 d1 ∼ not a3,not d2
r3 a2 ∼ not a1,not d3
r4 d2 ∼ not a1,not d3
r5 a3 ∼ not a2,not d1
r6 d3 ∼ not a2,not d1

∃= {(r1, r4), (r3, r5), (r6, r2)}.
We have three complete argumentation structures:

A1 = 〈{a1, d1} ∼Σ {not a3,not d2}∨, A2 = 〈{a2, d2} ∼Σ {not a1,not d3}∨,
A3 = 〈{a3, d3} ∼Σ {not a2,not d1}∨.

A Descriptive Approach to Preferred Answer Sets 205

We have a cycle of attacks. Each derivation of A2 attacks each derivation of
A1, each derivation of A3 attacks each derivation of A2, each derivation of A1

attacks each derivation of A3.
Let α1, α2, α3 be derivations of A1,A2,A3, respectively. It holds that α1 is

acceptable w.r.t. {α3}, α2 is acceptable w.r.t. {α1}, and α3 is acceptable w.r.t.
{α2}. �

Definition 11 (Warranted and blocked argumentation structures). Let
A be a complete argumentation structure. If there is an acceptable derivation of
A w.r.t. a set S of some derivations of some complete argumentation structures,
then A is called warranted, otherwise it is called blocked. �

5 Preferred Answer Sets

Definition 12 (Preferred answer set). A complete argumentation structure
is preferred iff it is warranted.

Y → X is a preferred answer set iff 〈Y ∼Σ X∨ is a preferred argumentation
structure. �

Notice that our notion of preferred answer set is rather a credulous one.

Example 6 . Consider our running Example 1, where we have complete argumen-
tation structures A5 = 〈{b, a} ∼Σ {not ¬b,not ¬a}∨,A6 = 〈{¬b, a} ∼Σ {not ¬a,
not b}∨ and basic argumentation structures A1 = 〈{b} ∼Σ {not ¬b}; {a}∨, A2 =
〈{¬b} ∼Σ {not b}∨, A3 = 〈{a} ∼Σ {not ¬a}∨.

The only basic attack is (A1,A2), A1 attacks A2. Therefore, the derivation
α = 〈A1,A3,A4 = 〈{b} ∼Σ {not ¬b,not ¬a}∨,A5∨ attacks β = 〈A2,A3,A6∨.

There is no derivation of A6 which is not attacked by α and no derivation
of A6 counterattacks the derivation α. A6 is blocked, on the other hand, A5 is
warranted. Hence, we prefer A5 over A6.

Consequently, {a, b} is a preferred answer set of the given prioritized logic
program. �

The following example shows that the argumentation structure corresponding
to the only answer set of a program is preferred, even if each its derivation is
attacked by a derivation of an argumentation structure which is not complete.
The example demonstrates also that attacks between derivations can not be
implemented via conventional attacks on arguments. Anyway, a goal of our future
research is to find a method how to minimize comparisons of derivations.

Example 7 . Consider the program

r1 b ∼ not a r3 c ∼ a
r2 a ∼ not b r4 c ∼ not c

∃= {(r2, r1)}.
Let the basic argumentation structures be denoted by Ai, i = 1, . . . , 4.

(A1,A2) is the only basic attack.

206 J. Šefránek and A. Šimko

The derivation 〈A1∨ attacks the derivation α = 〈A2,A3,A5,A6∨, where A5 =
〈{c} ∼Σ {not b}∨ and A6 = 〈{c, a} ∼Σ {not b}∨.

However, A1 is not a member of a derivation of a complete argumentation
structure. Hence, α is acceptable w..r.t. the empty set according to Definition
10. Therefore, the complete argumentation structure A6 is warranted and, con-
sequently, it is the preferred argumentation structure. �

We distinguish between attacking and blocking. If an argumentation struc-
ture is blocked then there is no its derivation which counterattacks the attacks
of derivations of other complete argumentation structures.

Theorem 1. If S is a preferred answer set of (P,∃), then S is an answer set
of P .

Proof. If S is a preferred answer set then there is a preferred complete argu-
mentation structure A = 〈S+ ∼Σ S−∨. Hence, S is total. We have to show that
S+ = Cn∼P

(S−) ∈ Obj using a result of [5].
Clearly, S+ ∪ Cn∼P

(S−) according to the definition of dependency struc-
ture. Let be L ℵ Obj and L ℵ Cn∼P

(S−). It holds that S− is self-consistent
and S is total. Hence, not L ∅ℵ S− and L ℵ S+. �

Our next goal is to evaluate the presented approach to preferred answer sets
selection. To this end some principles and their (un)satisfaction are discussed in
the next section.

6 Evaluation

We start with a discussion of principles proposed by [1]. A new principle requiring
selection of a preferred answer set from the non-empty set of standard answer
sets is added. After that it is proved that the new principle is satisfied by our
approach. Finally, an informal and tentative proposal of some new principles,
characterizing the descriptive approach to selection of preferred answer sets is
presented.

6.1 Principles

The principles (partially) specify what it means that an order on answer sets
corresponds to the given order on rules. Let us start with principles proposed in
[1] for arbitrary prioritized theories.

Principle I.
Let B1 and B2 be two belief sets of a prioritized propositional theory (T ;∃)
generated by the rules R → {d1} and R → {d2}, where d1, d2 ∅ℵ R, respectively. If
d1 is preferred over d2, then B2 is not a (maximally) preferred belief set of T . �

A Descriptive Approach to Preferred Answer Sets 207

Principle II.
Let B be a preferred belief set of a prioritized propositional theory (T ;∃) and r
a rule such that at least one prerequisite of r is not in B. Then B is a preferred
belief set of (T → {r};∃∈) whenever ∃∈ agrees with ∃ on priorities among rules
in T . �

We believe that the possibility to select always a preferred answer set from
a non-empty set of standard answer sets is of critical importance. Principle III,
accepted in this paper, reproduces the idea of Proposition 6.1 from [1].

Principle III.
Let B ∅= ⊆ be the set of all belief sets of a prioritized theory (T,∃). Then there
is a selection function Σ s.t. Σ(B) is the set of all preferred belief sets of (T,∃),
where ⊆ ∅= Σ(B) ∪ B. �

We consider and discuss below only a specific case of prioritized theories,
prioritized logic programs. Principle I specifies an attack of a belief set B1 against
a belief set B2. The attack is based on the preference of the rule d1 over the rule
d2 (they cannot be applied together for generating a preferred answer set). But
Principle I is not appropriate for an approach which considers mutual attacks of
preferred answer sets and its main goal is to select at least one preferred answer
set – existence of an attack against a candidate for a preferred answer set is
not sufficient for its elimination. The attacked answer set can be defended by a
counterattack of another answer set. In order to summarize, Principle I is not
appropriate for an approach which distinguishes between attacking and blocking.

It was shown in [1], Proposition 6.1, that Principle II is incompatible with
the existence of a function which selects a non-empty set of preferred answer sets
from a non-empty set of standard answer sets of a given logic program, if the
notion of preferred answer set from [1] is accepted. Moreover, we have a basic
problem with this principle. First an example.

Example 8 ([1]). Suppose that we accept both Principle II and Principle III.
Consider program P , whose single standard answer set is S = {b} and the

rule (1) is preferred over the rule (2).

c ∼ not b (1)

b ∼ not a (2)

S is not a preferred answer set in the framework of [1].
Assume that S, the only standard answer set of P , is selected – according to

Principle III – as the preferred answer set of (P,∃).6 Let P ∈ be P →{a ∼ c} and
a ∼ c be preferred over the both rules (1) and (2). P ∈ has two standard answer
sets, S and T = {a, c}.

Note that {c} ∅∪ S+. Hence, S should be the preferred answer set of P ∈

according to the Principle II . However, in the framework of [1] the only preferred
answer set of (P ∈,∃∈) is T . This selection of preferred answer set satisfies clear
6 Observe that the only derived complete argumentation structure is ≡{b} ←π

{not a,not c}∧. Hence, {b} is a preferred answer set in our framework.

208 J. Šefránek and A. Šimko

intuitions – T is generated by the two most preferred rules. A consequence,
accepted in]1] is that Principle III is refused.

In our approach the complete argumentation structure 〈{a, c} ∼Σ {not b}∨ is
preferred and {a, c} is the preferred answer set of P ∈.

Principle III is of crucial value according to our view, therefore we do not
accept Principle II. This example is not the only reason for it. A more funda-
mental reason is expressed in Sect. 6.2 as a principle called Nonmonotonicity of
selection constraints. We selected in this example preferred answer sets of P ∈

from a broader variety of possibilities. Consequently, a selection of a preferred
answer set from the extended set of possibilities should not be limited to a subset
of those possibilities.

A more detailed justification of our decision not to accept Principle II is
presented in [12]. �

Principle II is not accepted also in [9]. According to [4] descriptive approaches
do not satisfy this principle in general.

In the rest of this subsection satisfaction of the Principle III (more precisely,
its specialization for prioritized logic programs) is proved.

Lemma 1. The attack relation between derivations of complete argumentation
structures is irreflexive. �

Proof. Let α = 〈A1, . . . ,Ak∨ be a derivation of a complete argumentation struc-
ture Ak. Suppose to the contrary that α attacks itself, i.e., there are basic ar-
gumentation structures Ai,Aj s.t. Ai = 〈{head(r)} ∼Σ {body−(r)}; {body+(r)}∨
attacks Aj = 〈{head(q)} ∼Σ {body−(q)}; {body+(q)}∨, where r, q are rules. It
follows that not head(r) ℵ body−q. Contradiction: Ak is consistent and α is a
minimal sequence with the last member Ak. �

Theorem 2. Principle III is satisfied.
Let P = (P,∃) be a prioritized logic program and AS (P) ∅= ⊆. Then there is

a preferred answer set of P in our approach.

Proof. Case 1 Assume that P has only one answer set S. if there is only one
derivation of A = 〈S+ ∼Σ S−∨, then no complete argumentation structure blocks
it (from Lemma 1.). If there are more derivations of 〈S+ ∼Σ S−∨, then the argu-
ment from the proof of the lemma is applied: A is consistent and all derivations
are minimal sequences with the last member A.

Case 2 Suppose that P has only two answer sets S1 and S2. Let the cor-
responding complete argumentation structures be A1 = 〈S+

1 ∼Σ S−
1 ∨ and A2 =

〈S+
2 ∼Σ S−

2 ∨, respectively.
Without loss of generality assume that there is a derivation of A1 which is

not attacked by a derivation of A2. Then P has at least one preferred answer
set.

Suppose now that each derivation of A1 is attacked by a derivation of A2

and vice versa. Consider a derivation α of A1. Let {β1, . . . , βk} be the set of all
derivations of A2 attacking α. Recall that each βi is attacked by a derivation of

A Descriptive Approach to Preferred Answer Sets 209

A1. Let S be the set of all derivations of A1 attacking at least one βi. It holds
that α is acceptable w.r.t. S, hence A1 is warranted.

Case 3 Let be AS (P) = {S1, . . . , Sk}, k ← 3. Assume that the corresponding
complete argumentation structures are Ai, i = 1, . . . , k.

If there is a derivation of some Ai, which is not attacked, then the corre-
sponding answer set is preferred.

Otherwise, all derivations of all complete argumentation structures are
attacked by a derivation of a complete argumentation structure. By a general-
ization of the argument of Case 2 we have that each derivation of each complete
argumentation structure is defended by a set of derivations. �

6.2 Discussion – Descriptive Approach

Finally, a discussion of a tentative proposal of some possible principles appro-
priate for a descriptive approach to preferred answer sets selection is presented.
The principles are expressed in a more or less informal way and represent a very
preliminary attempt. All the principles are inspired by our definitions and con-
structions, but they are not intended solely for the framework presented in this
paper. A general and more detailed discussion of the postulates is postponed for
a future paper.

The following principle represents a more careful, but less deep version of
Principle I:

Principle – Defeated answer sets.
Let S1, S2 be answer sets of a program P , and let S2 be not defeated. If S1 is
defeated by S2, then S1 cannot be a preferred answer set.7 �

The principle above and the following one can be considered as expressing a
little bit more accurately the main intuitive idea of our stance w.r.t. descriptive
approach to preferred answer sets selection: it is desirable to apply all rules of
an undefeated set of generating rules. There is a difference between attacking
and blocking (defeating).

Below is the other side of this intuitive idea: rules can be blocked by more
preferred rules but other rules are handled in a declarative style.

Principle of blocking.
If a standard answer set A is generated by a set R of rules, where no rule is
attacked by a more preferred rule then A is a preferred answer set. �

Next principle is inspired by the problem of Example 8. The problem was
as follows: a program P with a set S of answer sets was given together with a
program R s.t. P ⊂ R. M ∅= S is the set of all answer sets of R. According
to our view conditions expressed for a selection of preferred members of S may
not constrain a selection of preferred members of the different M. If we select
7 Of course, there are different possible ways how to specify the notion of defeat. A

definition of defeated generating sets of rules can be obtained in a straightforward
way from the notion of defeat presented in this paper.

210 J. Šefránek and A. Šimko

a preferred answer set from M then we can not limit (constrain) the selection
to S.

Principle – Nonmonotonicity of selection constraints.
If P ⊂ R are programs, then a selection of preferred answer sets of R should not
be limited to the set of preferred answer sets of P . �

Attacks of rules, which do not contribute to a generation of a standard answer
set, are irrelevant w.r.t. a selection of preferred answer sets:

Principle – Irrelevant attacks.
Let r1, r2 ℵ P , r1 attacks r2, but r1 is not a member of a set of generating rules
of a standard answer set and r2 ℵ R, where R is a set of rules generating a
standard answer set A.

If there is no other attack against rules of R, then A is a preferred answer
set. �

As regards a choice of principles, we accept the position of [1]: even if some-
body does not accept a set of principles for preferential reasoning, those (and
similar) principles are still of interest as they may be used for classifying different
patterns of reasoning.

Of course, some of principles proposed in this subsection may be refused, or
some new may be suggested. Different sets of such principles provide different
conceptions of a descriptive approach to preferred answer sets selection.

Finally, notice that our descriptive approach can be expressed without argu-
mentation structures using a translation to generating sets of rules.

7 Related Work

D-preference [2], W-preference [18], and B-preference [1]. D/W/B-
preferences are representatives of prescriptive approaches. They are based on
the view that preference specifies the order in which rules have to be applied. A
preferred rule is forced to be applied first. If a more preferred rule has in its body
a literal, which is the head of a less preferred rule, then the more preferred rule
is not applicable. As a consequence, there are programs with standard answer
sets, but without preferred answer sets (hence, Principle III is not satisfied in
those approaches).

Our approach enables to select at least one preferred answer set from the
non-empty set of standard answer sets of a program. Not all preferences are
effective, i.e. not all preferences are transformed to attacks between derivations
of argumentation structures.

Therefore D/W/B-preferences are not in direct hierarchic (subset) relation
to our semantics.

A fundamental difference between our approach and D/W/B-preference is
that testing D/W/B-preference is local. When testing whether an answer set
X is preferred, it is not needed to know other answer sets. The computational
complexity of those approaches remains within NP. On the other hand, in our
approach, all the attacks between derivations of all complete argumentation

A Descriptive Approach to Preferred Answer Sets 211

structures (they correspond to answer sets) are considered. Hence, our conjec-
ture is that the decision problem, whether a complete argumentation structure
(an answer set) is a preferred one, is in our approach beyond the class NP.

Sakama and Inoue [9]. Sakama and Inoue have defined an approach that
selects preferred answer sets given the preference on literals. A preference relation
on literals is transferred to a preference relation on sets of literals. Preferred
answer sets are then the maximal (with respect to a preference relation) answer
sets. They also provide a way to transform preference on rules to preference on
literals. However, structure of the rules, i.e. which rule is blocked by which rule,
is not considered during the transformation.

Wakaki [17]. Wakaki has extended Dung’s abstract argumentation framework
in order to work with preferences. She has introduced preference relation on argu-
ments. Selection of a preferred extension (in a sense of preference on arguments)
is done in a similar manner that Sakama and Inoue use to select preferred answer
sets. Wakaki then defines a non-abstract logic programming based argumentation
framework. Rules of a logic program are transformed to arguments. Preference
on literals is transferred to preference on arguments via heads of rules. Wakaki’s
and our argumentation framework are principally different. Wakaki’s goal is to
extend Dung’s abstract argumentation framework. When selecting a preferred
extension in an abstract framework, there is no information about the structure
of arguments. On the other hand, approaches for preference handling that work
with preference on rules depend on the structure of the rules. The non-abstract
argumentation framework proposed by Wakaki deals with preference on literals,
which we do not address by our framework. Just to note, Wakaki’s non-abstract
framework is equivalent with Sakama and Inoue’s approach to preference on
literals.

Gabaldon [7]. Gabaldon works with extended logic programs and preference
(called priority) on rules. His goal it to develop a semantics that always selects
(i) a preferred answer set when a standard one exists, and (ii) the only preferred
answer set for fully prioritized programs when a standard one exists. The se-
mantics is defined in three steps. First, a partially prioritized program is fully
prioritized. Second, a program is transformed to a prerequisite-free program us-
ing the unfolding operator. Third, a test is defined to test whether an answer
set is preferred. The rules of a program are applied one at the time. A rule is
applicable if all its prerequisites were already derived. The order, in which rules
are applied, does not have to correspond to priorities. Priorities are used when
there are rules with satisfied prerequisites that block each other via default as-
sumptions. Then the preferred rule is used. An answer set is preferred if it can
be generated in the aforementioned way.

The main difference between Gabaldon’s and our approach is that Gabaldon’s
semantics does not satisfy Principle III. It guarantees existence of a preferred

212 J. Šefránek and A. Šimko

answer set when a standard one exists only for a subclass of programs (head-
cycle-free and head-consistent). We guarantee it for every logic program. The
considered subclass comprises the programs without integrity constraints that
are encoded as rules that form a negative odd cycle. Gabaldon motivates this
focus by complexity concerns. If integrity constraints are allowed we need to
know whether there are other preferred answer sets when testing whether an
answer set is a preferred one. An answer set that should be preferred from the
view of preference can be ruled out by an integrity constraint. A deeper analysis
of the relation between our and Gabaldon’s semantics is a subject of our future
mutual cooperation.

8 Conclusions

An argumentation framework has been constructed, which enables transferring
attacks of rules to attacks between derivations of argumentation structures and,
consequently, to warranted complete argumentation structures. Preferred answer
sets correspond to warranted complete argumentation structures. This construc-
tion enables a selection of a preferred answer set whenever there is a non-empty
set of standard answer sets of a program. This feature is paid by an increasing
computational complexity. The representative approaches based on the prescrip-
tive approach remain in the class NP, but our approach is beyond that class.

We did not accept the second principle from [1] and we needed to modify
their first principle.

Among goals for our future research are a development of the set of principles,
characterizing a descriptive approach and a continuation of our approach without
the transfer to argumentation structures. A consideration of attacks between
generating sets of rules represents a natural solution. Preliminary results of this
research are published in [14,15] and also in [16]. A more detailed comparison of
our approach(es) to other approaches is needed. Also approaches not referenced
in this paper are of interest.

Finally, we have to mention the main differences between the preliminary
version [12], the version presented at WLP 2011 [13], and this paper.

Both in [12,13] were used attack derivation rules. They were proposed in
order to derive attacks between argumentation structures from the basic at-
tacks. However, we did not find a proper version of the rules. The rules of [12]
were too liberal, they did not derive all intuitive attacks and, consequently, the
set of preferred answer sets was too broad. Moreover, a dependency of attacks
against argumentation structures on derivations of argumentation structures was
not explicitly stated. As regards attack derivation in [13], a more subtle set of
derivation rules is introduced, a superset of attacks was derivable and attacks
of argumentation structures were explicitly relativized to derivations of argu-
mentation structures. However, derivation rules Q2 and Q3 were sensitive to
arbitrary attacks and, as a consequence, they did not ignore irrelevant attacks
(in the sense of a Principle in Sect. 6.2).

A Descriptive Approach to Preferred Answer Sets 213

A claim that Principle I holds, was in both papers, the proof in [13] was not
correct. Principle I does not hold in the current paper and we consider this as
an important feature of our descriptive approach.

Attack derivation rules are omitted in this paper. Attacks between derivations
of argumentation structures were defined directly. An important new notion is
an acceptable derivation. The notion enables a correct handling of mutual and
cyclic attacks and a clear characterization of a difference between attacking and
blocking. Omitting of attack derivation rules simplifies our approach, enables a
more clear, more transparent exposition of our semantics and a more reliable
characterizations of its properties.

Acknowledgements. We are grateful to anonymous referees for careful reading, for
very valuable, detailed and helpful comments and proposals. This paper was supported
by the grants 1/0689/10 and 1/1333/12 of VEGA.

References

1. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif.
Intell. 109(1–2), 297–356 (1999)

2. Delgrande, J., Schaub, T., Tompits, H.: A framework for compiling preferences in
logic programs. Theory Pract. Logic Program. 3(2), 129–187 (2003)

3. Delgrande, J., Schaub, T.: Expressing preferences in default logic. Artif. Intell.
123(1–2), 41–87 (2000)

4. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2),
308–334 (2004)

5. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theoret. Comput. Sci. 170(1–2), 209–244 (1996)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

7. Gabaldon, A.: A selective semantics for logic programs with preferences. In: Pro-
ceedings of the International Workshop on Nonmonotonic Reasoning, Action and
Change (NRAC 11), Barcelona, Spain (2011)

8. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative
approach. Theory Pract. Logic Program. 4(1–2), 95–138 (2004)

9. Sakama, C., Inoue, K.: Prioritized logic programming and its application to com-
monsense reasoning. Artif. Intell. 3(1–2), 185–222 (2000)

10. Schaub, T., Wang, K.: A comparative study of logic programs with preference. In:
IJCAI 2001, pp. 597–602 (2001)

11. Šefránek, J.: Rethinking semantics of dynamic logic programs. In: Proceedings of
the Workshop NMR (2006)

12. Šefránek, J.: Preferred answer sets supported by arguments. In: Proceedings of the
Workshop NMR (2008)

13. Šefránek, J., Šimko, A.: Warranted derivation of preferred answer sets. In: Pro-
ceedings of WLP (2011)

14. Šimko, A.: Preferred answer sets - banned generating set. In: Proceedings of the
Student Conference, Bratislava 2011, Faculty of Mathematics, Physics and Infor-
matics, Comenius University, pp. 326–333 (2011)

214 J. Šefránek and A. Šimko

15. Šimko, A.: Selection of a preferred answer sets as a decision between generat-
ing sets. In: 6th Workshop on Intelligent and Knowledge Oriented Technologies,
pp. 51–56 (2011)

16. Šimko, A.: Accepting the natural order of rules in a logic program with preferences.
In: Proceedings of the Doctoral Consortium at ICLP 2011 (2011)

17. Wakaki, T.: Preference-based argumentation handling dynamic preferences built on
prioritized logic programming. In: Kinny, D., Hsu, J.-I., Governatori, G., Ghose,
A.K. (eds.) PRIMA 2011. LNCS, vol. 7047, pp. 336–348. Springer, Heidelberg
(2011)

18. Wang, K., Zhou, L.-Z., Lin, F.: Alternating fixpoint theory for logic programs
with priority. In: Palamidessi, C., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
p. 164. Springer, Heidelberg (2000)

Solving Modular Model Expansion: Case Studies

Shahab Tasharrofi, Xiongnan (Newman) Wu, and Eugenia Ternovska(B)

Simon Fraser University, Burnaby, Canada
{sta44, xwa33, ter}@cs.sfu.ca

Abstract. Model expansion task is the task of representing the essence
of search problems where we are given an instance of a problem and
are searching for a solution satisfying certain properties. Such tasks are
common in AI planning, scheduling, logistics, supply chain management,
etc., and are inherently modular. Recently, the model expansion frame-
work was extended to deal with multiple modules to represent e.g. the
task of constructing a logistics service provider relying on local service
providers. In the current paper, we study existing systems that operate
in a modular way in order to obtain general principles of solving mod-
ular model expansion tasks. We introduce a general algorithm to solve
model expansion tasks for modular systems. We demonstrate, through
several case studies, that our algorithm closely corresponds to what is
done in practice in different areas such as Satisfiability Modulo Theories
(SMT), Integer Linear Programming (ILP), and Answer Set Program-
ming (ASP). We make our framework language-independent through a
model-theoretic development.

1 Introduction

In [1], the authors formalize search problems as the logical task of model expan-
sion (MX), the task of expanding a given (mathematical) structure with new
relations. They started a research program of finding common underlying prin-
ciples of various approaches to specifying and solving search problems, finding
appropriate mathematical abstractions, and investigating complexity-theoretic
and expressiveness issues. The next step in the development of the MX-based
framework is adding modularity concepts. The following example clarifies our
goals.

Example 1 (Factory). Figure 1 shows a modular representation of a factory. It
consists of an office and a workshop.1 The office takes a list of goods needed by
consumers and the workshop takes a list of raw materials. These two entities, i.e.,
the office and the workshop, can communicate with each other in order to plan
the production of customers’ orders according to both their internal constraints
(such as their maximum throughput) and their external constraints (such as the
cost of raw materials). Modularity is incorporated through representing each part
in the most suitable language. For example, the office is more easily specified in

1 A more realistic example contains many more modules.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 215–236, 2013.
DOI: 10.1007/978-3-642-41524-1 12, c© Springer-Verlag Berlin Heidelberg 2013

216 S. Tasharrofi et al.

Orders

Raw Materials

Plan

Workshop

Office

Factory

O R’

R

Fig. 1. Modular representation of a factory

extended first-order logic, while the complex operation of the workshop module
is perhaps most easily specified using ASP (answer set programming) in order
to handle exceptions. In this paper, we take initial steps towards solving the
underlying computationally complex task.

In a recent work [2], a subset of the authors extended the MX framework to
represent a modular system. Under a model-theoretic view, an MX module can
be viewed as a set (or class) of structures satisfying some axioms. An abstract
algebra on MX modules was developed, and it allows one to combine modules
on abstract model-theoretic level, independently from the languages used for
describing them. Perhaps the most important operation in the algebra is the
loop (or feedback) operation, since iteration underlies many solving methods.
The authors show that the power of the loop operator is such that the combined
modular system can capture all of the complexity class NP even when each
module is deterministic and polytime. In general, adding loops gives a jump
in the polynomial time hierarchy, one step from the highest complexity of the
components.

To develop the framework further, we need a method for “solving” modular
MX systems, i.e., finding structures which are in the modular system, where the
system is viewed as a function of individual modules. Our goal is to come up
with a general algorithm which takes a modular system as its input and gener-
ates its solutions. The main challenge is to come up with an appropriate math-
ematical abstraction of “combined” solving. Since we aim at developing the
foundations of a language-independent problem solving, we tackle the problem
model-theoretically.

We take our inspiration in how “combined” solvers are constructed in the
general field of declarative problem solving. The field consists of many areas
such as Integer Linear Programming (ILP), Answer Set Programming (ASP),
Satisfiability Modulo Theories (SMT), Satisfiability (SAT), and Constraint Pro-
gramming (CP), and each of these areas has developed multitudes of solvers,
including “combined” solvers such as SMT solvers. Moreover, SMT-like tech-
niques are needed in the ASP community [3]. These “combined” solvers are very

Solving Modular Model Expansion: Case Studies 217

powerful, but are not general enough to find solutions to arbitrary modular sys-
tems. On the other hand, we aim at solving systems with arbitrary modules,
in particular those representing NP-complete problems. For example, Travel-
ling Salesman and Knapsack modules may both be used by a logistics service
provider to construct plans of how to pack shipments and deliver them to their
destinations2; and the two modules may interact with each other during solving
just as SAT and theory modules interact within an SMT solver. Thus, our goal
is not to compete with existing systems, and not to replace them, but to develop
a new approach for finding solutions to modular systems. In order to active this
general goal, we study existing “combined” solvers. Our contributions are as
follows.

1. We formalize common principles of “combined” solving in different commu-
nities in the context of modular model expansion. The main novelty of our
formalization (and thus of our analysis of existing systems) is in clear sepa-
ration of problem instance and problem specification. Instances are viewed
as first-order structures, and expansions of those structures (i.e., solutions)
are constructed during solving. 3 Just as in [2], we use a combination of a
model-theoretic, algebraic and operational view of modular systems.

2. We design an abstract algorithm that given a modular system, computes
the models of that modular system iteratively, and we formulate conditions
on languages of individual modules to participate in the iterative solving.
Correctness of our algorithm is proven model-theoretically.

3. We introduce abstractions for many ideas in practical systems such as the
concept of a valid acceptance procedure that abstractly represents unit prop-
agation in SAT, well-founded model computation in ASP, arc-consistency
checking in CP, etc.

4. Using the proposed framework, we perform several case studies of exist-
ing systems from different communities. For each system with a problem
specification, we design a compound modular system which takes a problem
instance as input, and outputs the solution, such that the set of structures in
the modular system corresponds to the set of solutions for the given problem
specification.
We show that, for the task of model expansion, our algorithm generalizes
the work of those systems in a unifying and abstract way. In particular, we
show that DPLL(T) framework [4], branch-and-cut based ILP solver [5] and
the state-of-the-art combination of ASP and CP [6] are all specializations
of our algorithm. In this way, we show the feasibility of our algorithm for
solving arbitrary modular systems.

5. We show how solving modular systems can benefit from the techniques used
in practical solver constructions. For example, we show how unit propagation
techniques in ASP and constraint propagation techniques in CP can be used

2 We are equally interested in representing multi-module processes that do not require
more than a polynomial number of steps to solve, as is common in some business
processes such as signing a document.

3 This view follows the research program started in [1].

218 S. Tasharrofi et al.

to speed up solving of modular systems described in a combination of the
two languages.

2 Background

2.1 Model Expansion

In [1], the authors formalize combinatorial search problems as the task of model
expansion (MX), the logical task of expanding a given (mathematical) structure
with new relations. Formally, the user axiomatizes the problem in some logic
L. This axiomatization relates an instance of the problem (a finite structure,
i.e., a universe together with some relations and functions), and its solutions
(certain expansions of that structure with new relations or functions). Logic L
corresponds to a specification/modelling language. It could be an extension of
first-order logic such as FO(ID), or an ASP language, or a modelling language
from the CP community such as ESSENCE [7].

Recall that a vocabulary is a set of non-logical (predicate and function) sym-
bols. An interpretation for a vocabulary is provided by a structure, which consists
of a set, called the domain or universe and denoted by dom(.), together with a
collection of relations and (total) functions over the universe. A structure can
be viewed as an assignment to the elements of the vocabulary. An expansion of
a structure A is a structure B with the same universe, and which has all the
relations and functions of A, plus some additional relations or functions.

The task of model expansion for an arbitrary logic L (abbreviated L-MX), is:

Model Expansion for logic L
Given: 1. An L-formula φ with vocabulary σ → ε

2. A structure A for σ
Find: an expansion of A, to σ → ε, that satisfies φ.

Thus, we expand the structure A with relations and functions to interpret ε,
obtaining a model B of φ. We call σ, the vocabulary of A, the instance vocabulary,
and ε := vocab(φ) \ σ the expansion vocabulary.4

Example 2 . The following logic program φ constitutes an MX specification for
Graph 3-colouring:

1{R(x), B(x), G(x)}1 ← V (x).
∪ ← R(x), R(y), E(x, y).
∪ ← B(x), B(y), E(x, y).
∪ ← G(x), G(y), E(x, y).

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G =
(V ;E). The task is to find an interpretation for the symbols of the expansion
vocabulary ε = {R,B,G} such that the expansion of A with these is a model of
φ:

4 By “:=” we mean “is by definition” or “denotes”.

Solving Modular Model Expansion: Case Studies 219

A
︷ ︸︸ ︷

(V ; EA, RB, BB, GB)
︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper
3-colourings of G.

Example 3 (Factory as Model Expansion). In Fig. 1, both the office box and the
workshop box can be viewed as model expansion tasks. For example, the box
labeled with “Workshop” can be abstractly viewed as an MX task with instance
vocabulary σ = {RawMaterials} and expansion vocabulary ε = {R}.

Moreover, in Fig. 1, the bigger box with dashed borders can also be viewed
as an MX task with instance vocabulary σ∼ = {Orders,RawMaterials} and
expansion vocabulary ε∼ = {Plan}. This task is a compound MX task whose
result depends on the internal work of the office and the workshop.

Given a specification, we can talk about a set of σ → ε-structures which
satisfy the specification. Alternatively, we can simply talk about a given set of
σ→ε-structures as an MX-task, without mentioning a particular specification the
structures satisfy. This abstract view makes our study of modularity language-
independent.

2.2 Modular Systems

This section reviews the concept of a modular system defined in [2] based on the
initial development in [8]. As in [2], each modular system abstractly represents
an MX task, i.e., a set (or class) of structures over some instance and expansion
vocabulary. A modular system is formally described as a set of primitive modules
(individual MX tasks) combined using the operations of:

1. Projection (πτ (M)) which restricts the vocabulary of a module,
2. Composition (M1 � M2) which connects outputs of M1 to inputs of M2,
3. Union (M1 → M2),
4. Feedback (M [R = S]) which connects output S of M to its inputs R and,
5. Intersection (M1 ℵ M2).

Formal definitions of these operations are not essential for understanding this
paper, thus, we refer the reader to [2] for details. We illustrate these operations by
giving the following algebraic specification for the modular system in Example 1.

Factory := π{Goods,RawMaterials,Plan}(Office � Workshop)[R∼ = R]). (1)

Considering Fig. 1, symbol “Factory” refers to the whole modular system
denoted by the box with dotted borders. The only important vocabulary symbols
outside this box are “Goods”, “RawMaterials” and “Plan”. All other symbols
are projected out. There is also a feedback from R to R∼. In this paper, we only
consider modular systems which do not use the union operator.

220 S. Tasharrofi et al.

A description of a modular system (1) looks like a formula in some logic. One
can define a satisfaction relation for that logic, however it is not needed here.
Still, since each modular system is a set of structures, we call the structures in a
modular system models of that system. We are looking for models of a modular
system M which expand a given instance structure A. We call them solutions of
M for A.

3 Computing Models of Modular Systems

This section gives an algorithm which takes a modular system M and a structure
A and expands A to B ∼ M . The algorithm uses a tool external to the modular
system (a solver) and the modules of a modular system (to “assist” the solver
in finding a model if one exists). The algorithm gradually extends the current
structure by interacting with the modules of the given modular system until
either an expansion B of A is found in M or it concludes that no such B exists.

3.1 Partial Structures

Recall that a structure is a domain together with an interpretation of a vocab-
ulary. A partial structure, however, may contain unknown values. Partial struc-
tures deal with gradual accumulation of knowledge.

Definition 1 (Partial Structure). We say B is a τp-partial structure over
vocabulary τ if: 1. τp ← τ , 2. B gives a total interpretation to symbols in τ\τp

and, 3. for each n-ary symbol R in τp, B interprets R using two sets R+ and R−

such that R+ℵR− = ≤, and R+→R− ∈= (dom(B))n. We say that τp is the partial
vocabulary of B. If τp = ≤, then we say B is total. For two partial structures B
and B∼ over the same vocabulary and domain, we say that B∼ extends B if all
unknowns in B∼ are also unknowns in B.

Example 4 . Consider a structure B with domain {0, 1, 2} for vocabulary {I,R},
where I and R are unary relations, and IB = {⊆0∪, ⊆1∪}, ⊆0∪ ∼ RB, and ⊆1∪ ∈∼ RB,
but it is unknown whether ⊆2∪ ∼ RB or ⊆2∪ ∈∼ RB. Then B is a {R}-partial
structure over vocabulary {I,R} where R+B = {⊆0∪} and R−B = {⊆1∪}.

A τp-partial structure B (over σ → ε may have enough information to satisfy
a formula φ (B |= φ) or falsify it (B |= ¬φ). Note that B may also neither
satisfy nor falsify φ. B is called the empty expansion of σ-structure A if B and
A agree over σ, R+B

= R−B
= ≤ for all R ∼ ε, and ε = τp. Here, a structure

is always means a total structure. We also talk about “bad” partial structures
which, informally, are the ones without a total extension in M . Furthermore, we
always assume that τp ← ε.

Total structures are partial structures with no unknown values. Thus, in
the algorithmic sense, total structures need no further guessing and should only
be checked against the modular system. A good algorithm rejects “bad” partial

Solving Modular Model Expansion: Case Studies 221

structures sooner, i.e., the sooner a “bad” partial structure is detected, the faster
the algorithm is.

Up to now, we defined partial and total structures and talked about modules
rejecting “bad” partial structures. However, modules are sets of structures (in
contrast with sets of partial structures). Thus, acceptance of a partial structure
has to be defined properly. Towards this goal, we first formalize the informal
concept of “good” partial structures. The actual acceptance procedure for partial
structures is defined later in the section.

Definition 2 (Good Partial Structures). For a set of structures S and par-
tial structure B, we say B is a good partial structure wrt S if there is B∼ ∼ S
which extends B.

3.2 Requirements on the Modules

As expressed in the introduction, there is practical urge to solve complex compu-
tational tasks in a modular way so that full access to a complete axiomatization
of the module is not assumed, i.e., the module is treated as a black box and
accessed via controlled methods. However, clearly, as the solver has no informa-
tion about internals of the modules, modules have to assist it. Therefore, the
question is “how can the modules assist the solver in its search for a solution?”
Intuitively, modules should be able to tell if the solver is on the “right” path or
not, i.e., decide if the current partial structure is bad, and if so, tell the solver
not to develop in this direction any further. We accomplish this goal by letting
a module accept or reject a partial structure. Moreover, in the case of rejection,
modules provide a “reason” which prevents the solver from producing the same
model over and over. Furthermore, a module may “know” some extra informa-
tion, and thus, they may pass hints about the right “path” to the solver. Our
algorithm models such hints using “advices” to the solver.

Definition 3 (Advice). Let Pre and Post be formulas in a language L. For-
mula φ := Pre ∃ Post is an advice wrt a partial structure B and a set of
structures M if: 1. B |= Pre, 2. B � Post and, 3. for every total structure B∼ in
M , we have B∼ |= φ.

The role of an advice is to prune the search and to accelerate extending a partial
structure B by giving a formula that is not yet satisfied by B, but is always
satisfied by any total extensions of B in M . Pre corresponds to the part that is
satisfied by B and Post corresponds to the unknown part that is not yet satisfied
by B.

Note that in order to pass an advice to a solver, there should be a common
language that the solver and the modules understand (although it may be differ-
ent from all internal languages of the modules). Such a language should satisfy
the following properties:

Definition 4 (Solver Language). Language L is a solver language if (1–6)
below hold:

222 S. Tasharrofi et al.

1. All first-order atomic sentences (i.e., R(t1, · · · , tn) with t1, · · · , tn variable-
free terms) are in L. Also, if φ1, φ2 ∼ L then ¬φ1 ∼ L and (φ1 ∃ φ2) ∼ L.

2. L has a decidable satisfiability relation, i.e., given partial str. B and φ ∼ L,
it can be decided if (1) B |=L φ, (2) B |=L ¬φ, or (3) B neither satisfies nor
falsifies φ.

3. L’s satisfiability relation respects partial structures extension, i.e., for partial
str. B and B∼, if B ∧ B∼ and B |=L φ then B∼ |=L φ.

4. Semantics of L for connectives ¬ (negation) and ∃ (implication) is classical.
5. L is monotone, i.e., for sets of axioms Γ, Γ ∼: Γ ← Γ ∼ ⇒ ConL(Γ) ←

ConL(Γ ∼).
6. L has resolution and deduction theorems, i.e., Γ |=L A ∃ B iff Γ → {A} |=L

B.

The presence of the resolution theorem in Definition 4 guarantees that, once
an advice of form Pre ∃ Post is added to the solver, and when the solver
has deduced Pre under some assumptions, it can also deduce Post under the
same assumptions. From now on, we assume that our advices and reasons are
expressed in a language as above, i.e., a solver language.

We talked about modules assisting the solver, but a module is a set of struc-
tures and has no computational power. Instead, we associate each module with
an “oracle” to accept/reject a partial structure and give “reasons” and “advices”
accordingly. Note that it is unreasonable to require a strong acceptance condi-
tion from oracles because, for example, assuming access to oracles which accept
a partial structure iff it is a good partial structure, one can always find a total
model by polynomially many queries to such oracles. While theoretically possi-
ble, in practice, access to such oracles is usually not provided, and most practical
solvers apply propagations through more efficient and simple local consistancy
checkings. Thus, we have to (carefully) relax our assumptions for a weaker pro-
cedure (what we call a Valid Acceptance Procedure).

Definition 5 (Valid Acceptance Procedure). Let S be a set of τ -structures.
We say that P is a valid acceptance procedure for S if for all τp-partial structures
B, we have:

– If B is total, then (1) P accepts B if B ∼ S, and (2) P rejects B if B ∈∼ S.
– If B is not total but B is good wrt S, then P accepts B.
– If B is neither total nor good wrt B, then P is free to either accept or reject

B.

The procedure above is called valid as it never rejects any good partial struc-
tures. However, it is a weak acceptance procedure because it may accept some
bad partial structures. This kind of weak acceptance procedures are abundant
in practice, e.g., Unit Propagation in SAT, Arc-Consistency Checks in CP, and
computation of Founded and Unfounded Sets in ASP. As these examples show,
such weak notions of acceptance can usually be implemented efficiently as they
only look for local inconsistencies. Informally, oracles accept/reject a partial
structure through a valid acceptance procedure for a set containing all possible

Solving Modular Model Expansion: Case Studies 223

instances of a problem and their solutions. We call this set a Certificate Set.
Before giving its formal definition, we should however point out one difference
to the readers who are not accustomed to the logical approach to complexity:
In theoretical computer science, a problem is a subset of {0, 1}∈. However, in
descriptive complexity, the equivalent definition of a problem being a set of
structures is adopted. Now, we give the formal definition of the Certificate Set.

Definition 6 (Certificate Set). Let σ and ε be instance and expansion vocab-
ularies. Let P be a problem, i.e., a set of σ-structures, and C be a set of (σ → ε)-
structures. Then, C is a (σ → ε)-certificate set for P if for all σ-structures A:
A ∼ P iff there is a structure B ∼ C that expands A.

Example 5 (Graph 3-colouring: Certificates). Consider Example 2 of graph 3-
colouring. There, σ = {E} and ε = {R,G,B}. The problem P is the set of
graphs G = (V G ;EG) which are 3-colorable. A certificate set C for problem P
of graph 3-colouring is, as one might expect, the same as 3-colouring certificates
in complexity theory, i.e., a partitioning of vertices into three sets R, G and B
such that no edge of the graph connects vertices of the same color together. The
certificate set C, as expected, should be so that A ∼ P (i.e., A is 3-colorable) iff
C has at least one 3-colouring for A (i.e., there is at least one expansion B of A
in C which interprets R, G and B correctly).

Recall that each module is associated with an oracle to accept/reject a par-
tial structure and give reasons and advices accordingly. Oracles are the interfaces
between our algorithm and our modules. Next, we present conditions that ora-
cles should satisfy so that their corresponding modules can contribute to our
algorithm.

Definition 7 (Oracle Properties). Let L be a solver language. Let P be a
problem, and let O be an oracle. We say that O is:

– Complete and Constructive (CC) wrt L if O returns a reason ψB in L for
each partial structure B that it rejects such that: (1) B |= ¬ψB and, (2) all
total structures accepted by O satisfy ψB.

– Advising (A) wrt L if O gives a set of advices in L wrt B for all partial str.
B.

– Verifying (V) if O is a valid acceptance procedure for some certificate set C
for P .

Oracle O differs from the usual oracles in the sense that it does not only give
yes/no answers, but also provides the reason for its “no” answers. It is complete
wrt L because it ensures the existence of such a reason and constructive because
it provides such a reason. Also, it is advising because it provides some facts that
were previously unknown to guide the search. Finally, it is verifying because it
guides the partial structure to a solution through a valid acceptance procedure.
Although the procedure can be weak as described above, good partial structures
are never rejected and O always accepts or rejects total structures correctly.
This property guarantees the convergence to a total model. In the following

224 S. Tasharrofi et al.

sections, we use the term CCAV oracle to denote an oracle which is complete,
constructive, advising, and verifying. Properties of CCAV oracles are later used
in Proposition 1 to prove the correctness of our algorithm.

Example 6 (Graph 3-colouring: Reasons and Advices). Consider the graph 3-
colouring example of Example 2. We want to describe some possible scenar-
ios for an oracle O of graph 3-colouring. Consider graph G = (V G ;EG) with
V G = {a, b, c, d} and EG = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a), (c, d), (d, c)}.
Also consider a partial expansion B = (V G ;EG , RB, BB, GB) of G to {R,B,G}
which assigns color red to vertices a and b, color green to vertex c and (yet)
no color to vertex d. Obviously, B is a bad partial 3-colouring and no matter
what color we assign to d, we will not obtain a valid 3-colouring. Therefore, one
scenario for oracle O is to reject this partial colouring and give a reason like:
¬(R(a) ∨ R(b)).

However, not always do oracles recognize a bad partial structure right away
(recall that although oracles are valid acceptance procedures, they can be weak).
Therefore, another scenario for O is to accept B but still help the solver by giving
the advice ψ := (R(a) ∨ G(c)) ∃ B(d). Formula ψ helps the solver to infer that
B cannot be extended to a valid 3-colouring by checking only one of B’s three
possible extensions. The worst scenario, however, is that O accepts B and does
not give any advice. In this case, the solver has to check all colors for d before
inferring that B is a bad partial structure.

Implementation of Oracles. When modules are described using some well
studied languages, we often have existing efficient Valid Acceptance Procedures
used in solver constructions, e.g., Well-Founded Model computation for ASP,
Arc-Consistency checking for CP, Theory Propagation for various SMT theo-
ries, a lifted version of Unit Propagation [9] for FO, etc. In these cases, corre-
sponding techniques can be used to implement oracles to accept/reject partial
structures and to provide reasons and advices accordingly. More examples of
Valid Acceptance Procedures used in practice are given in Sect. 4.

3.3 Requirements on the Solver

In this section, we discuss properties that a solver has to satisfy. Although the
solver can be realized by many practical systems, for them to work in an orderly
fashion and for algorithm to converge to a solution fast, it has to satisfy certain
properties. First, the solver has to be online since the oracles keep adding reasons
and advices to it. Furthermore, to guarantee termination, the solver has to guar-
antee progress, which means it either reports a proper extension of the previous
partial structure or, if not, the solver is guaranteed to never return any extension
of that previous partial structure later on. Now, we give the requirements on the
solver formally.

Definition 8 (Complete Online Solver). A solver S is complete and online
if the following conditions are satisfied by S:

Solving Modular Model Expansion: Case Studies 225

– S supports the actions of initialization, adding sentences (reasons and advices
from oracles), and reporting its state as either ⊆UNSAT ∪ or ⊆SAT,B∪.

– If S reports ⊆UNSAT ∪ then the set of sentences added to S are unsatisfiable,
– If S reports ⊆SAT,B∪ then B does not falsify any of the sentences added to

S,
– If S has reported ⊆SAT,B1∪, · · · , ⊆SAT,Bn∪ and 1 ∇ i < j ∇ n, then either

Bj is a proper extension of Bi or, for all k ∅ j, Bk does not extend Bi.

A solver as above is (1) Sound: it returns partial structures that at least do not
falsify any of the constraints, and (2) Complete: it reports unsatisfiability only
when unsatisfiability is detected and not when, for example, some heuristic has
failed to find an answer or some time limit is reached. Also, for finite structures,
such a solver guarantees that our algorithm either reports unsatisfiability or finds
a solution to modular system M and instance structure A. Proposition 1 gives
the exact correspondence in this regard.

3.4 Lazy Model Expansion Algorithm

In this section, we present an iterative algorithm to solve model expansion tasks
for modular systems. Algorithm 1 takes an instance structure and a modular
system (and its CCAV oracles) and integrates them with a complete online solver
to solve a model expansion task in an iterative fashion. The algorithm works by
accumulating reasons and advices from oracles and gradually converging to a
solution to the problem.

The role of the reasons is to prevent some bad structures and their extensions
from being proposed more than once, i.e., when a model is deducted to be bad
by an oracle, a new reason is provided by the oracle and added to the solver such
that all models of the system satisfy that reason but the “bad” structure does
not. The role of an advice is to provide useful information to the solver (satisfied
by all models) but not yet satisfied by partial structure B. Informally, an advice
is in form “if Pre then Post”, where “Pre” corresponds to something already
satisfied by current partial structure B and “Post” is something that is always
satisfied by all models of the modular system satisfying the “Pre” part, but not
yet satisfied by the partial structure B. It essentially tells the solver that “Post”
part is satisfied by all intended structures (models of the system) extending B,
thus helping the solver to accelerate its computation in its current direction.

The role of the solver is to provide a possibly good partial structure to the
oracles, and if none of the oracles reject the partial structure, keep extending
it until we find a solution or conclude none exists. If the partial structure is
rejected by some oracle, the solver gets a reason from that oracle for rejection
and tries some other partial structure. The solver also gets advices from oracles
to accelerate the search.

Proposition 1 (Correctness). Algorithm 1 is sound and complete for finite
structures, i.e., given a modular system M with CCAV oracles, a complete online
solver S and a finite instance structure A:

226 S. Tasharrofi et al.

Data: Modular System M with each module Mi associated with a CCAV oracle
Oi, input structure A and complete online solver S

Result: Structure B that expands A and is in M
begin

Initialize the solver S using the empty expansion of A ;
while TRUE do

Let R be the state of S ;
if R = ∃UNSAT ≡ then return Unsatisfiable ;
else if R = ∃SAT, B≡ then

Add the set of advices from oracles wrt B to S ;
if M does not accept B then

Find a module Mi in M such that Mi does not accept
B|vocab(Mi) ;
Add the reason given by oracle Oi to S ;

else if B is total then return B ;

end

Algorithm 1: Lazy Model Expansion Algorithm

1. If Algorithm 1 returns B, then B ∼ M ,
2. If Algorithm 1 returns “Unsatisfiable” then none of structures B ∼ M expands

A.
3. Algorithm 1 always terminates.

4 Case Studies: Existing Frameworks

In this section, we describe algorithms from three different areas and show that
they can be effectively modelled by our proposed algorithm in the context of
model expansion. We show that our algorithm acts similar to the state-of-the-
art algorithms when the right components are provided.

Notation 1 We sometimes use a τ -structure B (which gives an interpretation
to vocabulary τ) as the set of atoms of τ which are assigned by B to be true. For
example, when τ = {R,S} and RB = {(1, 2)} and SB = {(1, 1), (2, 2)}, then we
may use B to represent the following set of atoms:

B = {R(1, 2), S(1, 1), S(2, 2)}.

We may also use a partial interpretation as a set of true atoms in a similar
fashion. Sometimes, we also use B to represent a formula, i.e., the conjunction
of the atoms in above set. The complement of a set is defined as usual, e.g.,
RBc = dom(B)2 \ RB. Negation of a set S of literals is also defined such that
l ∼ S if and only if ¬l ∼ ¬S.

4.1 Modelling DPLL(T)

DPLL(T) [4] system is an abstract framework to model the lazy SMT approach.
It is based on a general DPLL(X) engine, where X can be instantiated with a

Solving Modular Model Expansion: Case Studies 227

M Tψ

M PΦ

TOTAL

1E +
1E −

E + E −

2E+
2E−

I

E

Fig. 2. Modular System Representing the DPLL(T) System on Input Formula φ ∧ ψ

theory T solver. DPLL(T) engine extends the Decide, UnitPropagate, Backjump,
Fail and Restart actions of the classic DPLL framework with three new actions:
(1) TheoryPropagate gives literals that are T -consequences of current partial
assignment, (2) T -Learn learns T -consistent clauses, and (3) T -Forget forgets
some previous lemmas of theory solver.

To participate in the DPLL(T) solving architecture, a theory solver provides
three operations: (1) taking literals that have been set true, (2) checking if setting
these literals true is T -consistent and, if not, providing a subset of them that
causes inconsistency, (3) identifying some currently undefined literals that are
T -consequences of current partial assignment and providing a justification for
each. More details can be found in [4].

The modular system representing the DPLL(T) system on the input formula
φ∨ψ is shown in Fig. 2, where σ = I, ε = E, and E+ →E− →E+

1 →E−
1 →E+

2 →E−
2

is the internal vocabulary of the module. Also, there are feedbacks from E+
1 to

E+
2 and from E−

1 to E−
2 . The set of symbols in E+ and E− (same for E+

1 and
E−

1 , E+
2 and E−

2) semantically represents a partial interpretation of the symbols
in the expansion vocabulary, i.e., E+ (resp. E−) represents the positive (resp.
negative) part of the partial interpretation.

There are three MX modules in DPLL(T)φ∞ψ. The modules MPφ
and MTψ

work on different parts of the specification. The formula φ in MPφ
is CNF repre-

sentation of the problem specification with all non-propositional literals replaced
by propositional ones, and the formula ψ in MTψ

is the formula
∧

i di ⊂ li where
li and di are, respectively, an atomic formula in theory T and its associated
propositional literal used in MPφ

. The module MPφ
is the set of structures B

such that:

(E+
1

B
, E−

1

B
) =

⎧

⎪

(D,D) if R+ ℵ R− ∈= ≤
(R+, R+c) if R+ ℵ R− = ≤, IB → ¬IBc → R+ → ¬R− |= φ

(R+, R−) if R+ ℵ R− = ≤, IB → ¬IBc → R+ → ¬R− ∈|= φ
,

where D = [dom(B)]n, n is the arity of E+, and (R+, R−) is the result of Unit
Propagation on φ under IB → ¬IBc → E+B → ¬E−B.

228 S. Tasharrofi et al.

Similarly, the module MTψ
is defined as the set of structures B such that:

(E+B
, E−B) =

⎨⎨⎧

⎨⎨⎪

(D,D) if R+ ℵ R− ∈= ≤
(D,D) if R+ ℵ R− = ≤, IB → ¬IBc → R+ → ¬R−|=T ¬ψ

(R+, R+c) if R+ ℵ R− = ≤, IB → ¬IBc → R+ → ¬R−|=T ψ
(R+, R−) if R+ ℵ R− = ≤,T-satisfiability unknown

,

where D is as before and (R+, R−) is the result of Theory Propagation on ψ

under IB →¬IBc→E+
2

B →¬E−
2

B
, and R|=T ψ denotes that ψ is T -satisfiable under

the set of facts R. Note that the satisfiability test is not necessarily complete.
It can be done in different degrees depending on the complexity of different
theories.

The module TOTAL is the set of structures B such that E+
1

B ℵ E−
1

B
= ≤,

E+
1

B → E−
1

B
= D, and E+

1

B
= EB.

We define the modular system DPLL(T)φ∞ψ as:

DPLL(T)φ∞ψ := π{I,E}(((MTψ
�MPφ

)[E+
1 = E+

2][E−
1 = E−

2])�TOTAL). (2)

To show that the combined module DPLL(T)φ∞ψ is correct, consider any
model of the modular system. Note that for both modules MPφ

and MTψ
, the

outputs always contain all the information that the inputs have, i.e., for any
structure B in the module MPφ

, we have E+
1

B ↔ E+B and E−
1

B ↔ E−B, and for

any structure B in MTψ
, we have E+B ↔ E+

2

B
and E−B ↔ E−

2

B
. Furthermore,

from the semantics of the feedback operator, we know that E+
1

B
= E+

2

B
and

E−
1

B
= E−

2

B
. Thus, we have E+B = E+

1

B
= E+

2

B
and E−B = E−

1

B
= E−

2

B
.

Moreover, from the definition of module TOTAL, we know that (E+
1

B
, E−

1

B
)

represents a total interpretation of the symbols in E and EB = E+
1

B
. Finally,

from the definitions of MPφ
and MTψ

on encodings of total interpretations, we
can conclude that B |= φ and B|=T ψ. On the other hand, it is easy to see that
for any structure B such that B |= φ and B|=T ψ, B is in DPLL(T)φ∞ψ.

So, there is a one-to-one correspondence between models of DPLL(T)φ∞ψ

and the propositional part of the solutions to the DPLL(T) system on input
formula φ ∨ ψ. To find a solution, one can compute a model of this modular
system.

To solve DPLL(T)φ∞ψ, we introduce a solver S to be any DPLL-based online
SAT solver, so that it performs the basic actions of Decide, UnitPropagate, Fail,
Restart, and also Backjump when the backjumping clause is added to the solver.
The three modules TOTAL, MTψ

and MPφ
are attached with oracles OTOTAL,

OT and OP respectively. They accept a partial structure B iff their respective
module constraints are not falsified by B. As the constructions of modules OT

and OP are similar to each other, we only give constructions for the solver S,
oracle OTOTAL, and oracle OT :

Solver S is a DPLL-based online SAT solver (clearly complete and online).
Oracle OTOTAL accepts a partial structure B iff E+

1

B ℵ E−
1

B
= ≤, E+

1

B →
E−

1

B
= D, and EB = E+B. If B is rejected, OTOTAL returns

∧
ω∗Ωℵ ω as the

Solving Modular Model Expansion: Case Studies 229

reason, where Ω∼ is any non-empty subset of the set Ω = {E+
1 (d) ⊂ ¬E−

1 (d) | d ∼
D,B ∈|= E+

1 (d) ⊂ ¬E−
1 (d)} → {E(d) ⊂ E+

1 (d) | d ∼ D,B ∈|= E(d) ⊂ E+
1 (d)}.

OTOTAL returns the set Ω as the set of advices when B is the empty expansion
of the instance structure, and the empty set otherwise.5 Clearly, OTOTAL is a
CCAV oracle.

Oracle OT accepts a partial structure B iff it does not falsify the constraints
described above for module MTψ

on I, E+, E−, E+
2 , and E−

2 . Let (R+, R−)

denote the result of the Theory Propagation on ψ under IB→¬IBc→E+
2

B→¬E−
2

B
.

Then, if B is rejected,

1. If R+ℵR− ∈= ≤ or ψ is T -unsatisfiable under IB→¬IBc→R+→¬R−, OT returns
a reason ω of the form

∧
d∗D1

E+
2 (d)∨∧

d∗D2
E−

2 (d) ∃ ∧
d∗D3

(E+(d)∨E−(d))
with D1 ← D,D2 ← D, ≤ � D3 ← D,T |= ⎩

d∗D1
¬l(d)≥⎩

d∗D2
l(d),B |= ¬ω,

where l(d) denotes the atomic formula l in ψ whose associated propositional
atom is d. Note that from the advices and reasons from oracles, the solver
can understand that right hand side of the implication is inconsistent, and
thus the reason corresponds to the set of T -inconsistent literals from the
theory solver in the DPLL(T) system.

2. Else if ψ is T -satisfiable under IB →¬IBc →R+ →¬R−, OT returns a reason ω
of the form

∧
d∗D1

E+
2 (d) ∨ ∧

d∗D2
E−

2 (d) ∃ ∧
d∗R+ E+(d) ∨ ∧

d∗R+c E−(d),
where D1 ← D,D2 ← D,B |= ¬ω.

3. Else, OT returns a reason similar to the second case except that it uses R−

instead of R+c.

By the definition of MTψ
, we know that B falsifies the reason and all models

of MTψ
satisfy the reason. Thus, OT is complete and constructive. OT may

also return some advices in the same form as any ω above such that B satisfies
the left hand side of the implication, but not the right hand side. Also, since
the outputs of MTψ

always subsume the inputs, OT may also return the set
{E+

2 (d) ∃ E+(d) | d ∼ D,B |= E+
2 (d),B ∈|= E+(d)} → {E−

2 (d) ∃ E−(d) | d ∼
D,B |= E−

2 (d),B ∈|= E−(d)} as the set of advices.6 Clearly, all the structures
in MTψ

satisfy all sets of advices. Hence, OT is an advising oracle. Finally, OT

always makes the correct decision for a total structure and rejects a partial
structure only when it falsifies the constraints for MTψ

. OT never rejects any
good partial structure B (although it may accept some bad non-total structures).
Therefore, OT is a verifying oracle.

Proposition 2. 1. Modular system DPLL(T)φ∞ψ is the set of structures B
such that B |= φ and B|=T ψ.

2. Solver S is complete and online.
3. OP , OT , and OTOTAL are CCAV oracles.
4. Algorithm 1 on modular system DPLL(T)φ∞ψ associated with oracles OP ,

OT , OTOTAL, and the solver S models the solving procedure of the DPLL(T)
system on input formula φ ∨ ψ.

5 This makes sure that Ω is returned only once at the beginning.
6 Again OT only returns this set when B is the empty expansion of the instance

structure.

230 S. Tasharrofi et al.

P

LPΦ

CΦ

F
SC3

F1 F2

SC2 B

SC1

Fig. 3. Modular System Representing an ILP Solver

DPLL(T) architecture is known to be very efficient and many solvers are
designed to use it, including most SMT solvers [10]. The DPLL(Agg) module
[11] is suitable for all DPLL-based SAT, SMT and ASP solvers to check sat-
isfiability of aggregate expressions in DPLL(T) contexts. All these systems are
representable in our modular framework.

4.2 Modelling ILP Solvers

Integer Linear Programming solvers solve optimization problems. In this paper,
we model ILP solvers which use general branch-and-cut method to solve search
problems instead, i.e., when the target function is constant. We show that Algo-
rithm 1 models such ILP solvers. ILP solvers with other methods and Mixed
Integer Linear Programming solvers use similar architectures and, thus, can be
modelled similarly.

The search version of general branch-and-cut algorithm [5] is as follows:

1. Initialization: S = {ILP0} with ILP0 the initial problem.
2. Termination: If S = ≤, return UNSAT.
3. Problem Select: Select and remove problem ILPi from S.
4. Relaxation: Solve LP relaxation of ILPi (as a search problem). If infeasible,

go to step 2. Otherwise, if solution XiR of LP relaxation is integral, return
solution XiR.

5. Add Cutting Planes: Add a cutting plane violating XiR to relaxation and
go to 4.

6. Partitioning: Find partition {Cij}j=k
j=1 of constraint set Ci of problem ILPi.

Create k subproblems ILPij for j = 1, · · · , k, by restricting the feasible region
of subproblem ILP ij to Cij . Add those k problems to S and go to step 2.
Often, in practice, finding a partition is simplified by picking a variable
xi with non-integral value vi in XiR and returning partition {Ci → {xi ∇
⇔vi∞}, Ci → {xi ∅ ∗vi�}}.

We use the modular system shown in Fig. 3 to represent the ILP solver.
The module Cφ takes a set of variable assignments F1 and a set of cutting

Solving Modular Model Expansion: Case Studies 231

planes SC1 as inputs and returns another set of cutting planes SC2. When all
the assignments in F1 are integral, SC2 is equal to SC1, and if not, SC2 is
the union of SC1 and a cutting plane violated by F1 w.r.t. the set of linear
constraints SC1 → φ. The module P takes a set of assignments F2 as input and
outputs a set of range constraints B = {Bx | F2(x) ∈∼ Z}, where Bx is non-
deterministically chosen from the set {x ∇ ⇔F2(x)∞, x ∅ ∗F2(x)�}. The module
LPφ takes the set of cutting planes SC2 and the set of range constraints B as
inputs and outputs the set of cuttings planes SC3 and the set of assignments
F in a deterministic way such that SC3 is the union of SC2 and B, and F is a
total assignment satisfying SC2 → B → φ. LPφ is undefined when SC2 → B → φ is
inconsistent. We define the compound module ILPφ to be:

ILPφ := π{F}(((Cφ ℵ P) � LPφ)[SC3 = SC1][F = F1][F = F2]).

To show that the combined module ILPφ is correct, consider any model
of the modular system. By the definition of LPφ, we know that F satisfies φ.
Furthermore, the set B is empty in the model because F satisfies all the linear
constraints in B, but F2 (which is equal to F by the semantics of feedback
operator) falsifies those constraints. Thus by the definition of the module P , we
know that F2 (also F) is integral. Thus F is an integral solution to φ. On the
other hand, for any integral solution S to φ, consider a structure B such that
FB = FB

1 = FB
2 = S, BB = ≤, and SCB

1 = SCB
2 = SCB

3 =
⎫

x{x ∇ F (x), x ∅
F (x)}. Then clearly, B is in the module ILPφ, i.e., B is the model of the module
ILPφ.

So there is one-to-one correspondence between the solutions of the ILP prob-
lem with input φ, and the models of the modular system ILPφ. We compute a
model of this modular system by associating modules with oracles (Oc, Op and
Olp) and introducing a solver S that interacts with those oracles. Each oracle
rejects a partial structure B if it contradicts the corresponding module definition
and in this case, the reason for the rejection is provided. For example, when FB

2 is
non-integral, Op rejects B and gives the reason ⇔F2(x)B∞ < F2(x) < ∗F2(x)B� ∃
B(“F2(x) ∇ ⇔F2(x)B∞”) ≥ B(“F2(x) ∅ ∗F2(x)B�”), for some non-integral vari-
able x, and Oc rejects B with the reason (

∧
l∗L SC1(l))∨ (

∧
x F1(x) = F1(x)B) ∃

SC2(c), where c is the cutting plane that violates F1, and L is a subset of SC1

such that F1 is the intersection of some constraints in L → φ. Full details of the
oracles are omitted due to space consideration. The solver S accepts the full
propositional language with atomic formulas being either boolean variables or
range constraints. In addition, S can assign numerical values (for F) according
to the set of derived range constraints.

Proposition 3. 1. Modular system ILPφ is the set of structures representing
the sets of integral solutions of φ.

2. S is complete and online.
3. Oc, Op and Olp are CCAV oracles.
4. Algorithm 1 on modular system ILPφ, associated with oracles Oc, Op, Olp,

and the solver S models the branch-and-cut-based ILP solver on input for-
mula φ.

232 S. Tasharrofi et al.

There are many other solvers in the ILP community that use some ILP or
MILP solver as their low-level solver. It is not hard to observe that most of them
also have similar architectures that can be closely mapped to our algorithm.

4.3 Modelling Constraint Answer Set Solvers

The Answer Set Programming (ASP) community puts a lot of effort into opti-
mizing their solvers. One such effort addresses ASP programs with variables
ranging over huge domains (for which, ASP solvers alone perform poorly due to
the huge memory needed). However, embedding Constraint Programming (CP)
techniques into ASP solving is proved useful because complete grounding can be
avoided.

In [12], the authors extend the language of ASP and its reasoning method
to avoid grounding of variables with large domains by using constraint solving
techniques. The algorithm uses ASP and CP solvers as black boxes and non-
deterministically extends a partial solution to the ASP part and checks it with
the CP solver. Paper [13] presents another integration of answer set generation
and constraint solving in which a traditional DPLL-like backtracking algorithm
is used to embed the CP solver into the ASP solving.

Recently, the authors of [6] developed an improved hybrid solver which sup-
ports advanced backjumping and conflict-driven nogood learning (CDNL) tech-
niques. They show that their solver’s performance is comparable to state-of-the-
art SMT solvers. Paper [6] applies a partial grounding before running its algo-
rithm, thus, it uses an algorithm on propositional level. A brief description of this
algorithm follows: Starting from an empty set of assignments and nogoods, the
algorithm gradually extends the partial assignments by both unit propagation
in ASP and constraint propagation in CP. If a conflict occurs (during either unit
propagation or constraint propagation), a nogood containing the corresponding
unique implication point (UIP) is learnt and the algorithm backjumps to the
decision level of the UIP. Otherwise, the algorithm decides on the truth value of
one of the currently unassigned atoms and continues to apply the propagation.
If the assignment becomes total, the CP oracle queries to check whether this is
indeed a solution for the corresponding constraint satisfaction problem (CSP).
This step is necessary because simply performing constraint propagation on the
set of constraints, i.e., arc-consistency checking, is not sufficient to decide the
feasibility of constraints.

The modular model of this solver is very similar to the one in Fig. 2, except
that we have module ASPφ instead of SATφ and CPψ instead of ILPψ. The
compound module CASPφ∞ψ is defined as:

CASPφ∞ψ := π{I,E}(((CPψ � ASPφ)[E+
1 = E+

2][E−
1 = E−

2]) � TOTAL).

As a CDNL-like technique is also used in SMT solvers, the above algorithm
is modelled similarly to Sect. 4.1. We define a solver S to be a CDNL-based
ASP solver. We also define modules ASPφ and CPψ to deal with the ASP part
and the CP part. They are both associated oracles similar to those described in

Solving Modular Model Expansion: Case Studies 233

Sect. 4.1. We do not include the details here as they are similar to the ones in
Sect. 4.1.

Note that one can add reasons and advices to an ASP solver safely in the
form of conflict rules because stable model semantics is monotonic with respect
to such rules. Also, practical CP solvers do not provide reasons for rejecting
partial structures. This issue is dealt with in [6] by wrapping CP solvers with a
conflict analysis mechanism to compute nogoods based on the first UIP scheme.

5 Related Work and Conclusion

There are many papers on modularity in declarative programming, we only
review the most relevant ones. The authors of [8] proposed a multi-language
framework for constraint modelling. That work was the initial inspiration of [2],
but the authors extended the ideas significantly by developing a model-theoretic
framework and introducing a feedback operator that adds a significant expressive
power.

An early work on adding modularity to logic programs is [14]. The authors
derive a semantics for modular logic programs by viewing a logic program as a
generalized quantifier. The ideas are further generalized in [15] by considering
the concept of modules in declarative programming and introducing modular
equivalence in normal logic programs under the stable model semantics. This line
of work is continued in [16] to define modularity for disjunctive logic programs.
These ideas are further generalized in [17] to allow (mutually) recursive calls
between modules. There are also other approaches to adding modularity to ASP
languages and ID-Logic as described in [18–20].

The works mentioned earlier focus on the theory of modularity in declarative
languages. However, there are also papers that focus on the practice of mod-
ular declarative programming and, in particular, solving. These generally fall
into one of the two following categories. The first category consists of practical
modelling languages which incorporate other modelling languages. For example,
X-ASP [21] and ASP-PROLOG [22] extend Prolog with ASP, CP techniques are
incorporated into ASP solving in [12,13] and [6]. Also, ESSENCE [7] and Zinc
[23] are CP languages extended with features from other languages. However,
these approaches give priority to the host language while our modular setting
gives equal weight to all modelling languages that are involved. It is important
to note that, even in the presence of this distinction, such works have been very
important in the development of this paper because they provide guidelines on
how a practical solver deals with efficiency issues. The second category is related
to multi-context systems. In [24], the authors introduce non-monotonic bridge
rules to the contextual reasoning and originated an interesting and active line of
research followed by many others for solving or explaining inconsistencies in non-
monotonic multi-context systems [25–27]. However, these papers do not consider
the model expansion task. Moreover, the motivations of these works originate
from distributed or partial knowledge, e.g., when agents interact or when trust

234 S. Tasharrofi et al.

or privacy issues are important. Despite these differences, the field of multi-
context systems is very relevant to our research. Investigating this connection is
an important future research direction.

Conclusion. We took a language-independent view towards modular problem
solving and designed an algorithm to solve search problems described as modular
systems. Our model-theoretic approach allows us to abstract away from particu-
lar languages of the modules. We performed several case studies of our algorithm
in relation to existing systems such as DPLL(T), ILP and ASP+CP. We demon-
strated that, for the task of model expansion, our algorithm generalizes the work
of these solvers. We also demonstrated how Valid Acceptance Procedures from
different communities could be used to implement oracles for modules to achieve
efficient solving. For example, the procedures of Well-Founded Model compu-
tation and Arc-Consistency checking can be used to implement oracles for the
ASP and CP languages to construct an efficient combined solver (corresponding
to the state-of-the-art combination of ASP and CP [6]).

Our general approach for solving modular systems is applicable to systems
such as Business Process Planners and their variants including Logistics Service
Provider, Manufacturer Supply Chain Management, and Mid-size Businesses
Relying on External Web Services and Cloud Computing. With the increasing
use of service-oriented architecture, such modular systems will become increas-
ingly more applicable. We believe we are taking important initial steps addressing
the core aspect of this complex multi-dimensional problem. As a future direction,
we plan to develop a prototype implementation of our algorithms.

References

1. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search
problems. In: Proceedings of AAAI, pp. 430–435 (2005)

2. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language
modelling of search problems. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.)
FroCoS 2011. LNCS, vol. 6989, pp. 259–274. Springer, Heidelberg (2011)

3. Niemelä, I.: Integrating answer set programming and satisfiability modulo theories.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, p. 3.
Springer, Heidelberg (2009)

4. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

5. Pardalos, P., Resende, M.: Handbook of applied optimization, vol. 126. Oxford
University Press, New York (2002)

6. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009)

7. Frisch, A.M., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13, 268–306 (2008)

Solving Modular Model Expansion: Case Studies 235

8. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework
for multi-language constraint modeling. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 155–168. Springer, Heidelberg (2009)

9. Vaezipoor, P., Mitchell, D., Mariën, M.: Lifted unit propagation for effective
grounding. In: 19th International Conference on Applications of Declarative Pro-
gramming and Knowledge Management (2011). CoRR abs/1109.1317

10. Sebastiani, R.: Lazy satisfiability modulo theories. JSAT 3, 141–224 (2007)
11. De Cat, B., Denecker, M.: DPLL(Agg): An efficient SMT module for aggregates.

In: LaSh 2010 Workshop (2010)
12. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer

set and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005.
LNCS, vol. 3668, pp. 52–66. Springer, Heidelberg (2005)

13. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Ann. Math. Artif. Intell. 53, 251–287 (2008)

14. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quan-
tifiers. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265,
pp. 290–309. Springer, Heidelberg (1997)

15. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In:
The Proceedings of NMR 2006, pp. 10–18 (2006)

16. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 175–187. Springer, Heidelberg (2007)

17. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic
programming revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol.
5649, pp. 145–159. Springer, Heidelberg (2009)

18. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles
in modular answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP
2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006)

19. Balduccini, M.: Modules and signature declarations for a-prolog: Progress report.
In: SEA, pp. 41–55 (2007)

20. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. Trans.
Comput. Logic 9(2), 1–51 (2008)

21. Swift, T., Warren, D.S.: The XSB System (2009)
22. Elkhatib, O., Pontelli, E., Son, T.C.: ASP − PROLOG: a system for reasoning

about answer set programs in prolog. In: Jayaraman, B. (ed.) PADL 2004. LNCS,
vol. 3057, pp. 148–162. Springer, Heidelberg (2004)

23. Garcia de la Banda, M., Marriott, M., Rafeh, R., Wallace, M.: The modelling
language zinc. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 700–705.
Springer, Heidelberg (2006)

24. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. Proceedings of the 22nd AAAI Conference on Artificial Intelligence, vol.
1, pp. 385–390. AAAI Press, Vancouver (2007)

25. Bairakdar, S.-D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: The DMCS
solver for distributed nonmonotonic multi-context systems. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 352–355. Springer, Heidel-
berg (2010)

236 S. Tasharrofi et al.

26. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in multi-context systems. In: Lin, F., Sattler, U., Truszczynski, M. (eds.),
Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference (KR 2010), Toronto, Ontario, Canada, 9–13 May 2010.
AAAI Press (2010)

27. Eiter, T., Fink, M., Schüller, P.: Approximations for explanations of inconsistency
in partially known multi-context systems. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 107–119. Springer, Heidelberg (2011)

INAP Application Papers

FdConfig : A Constraint-Based
Interactive Product Configurator

Denny Schneeweiss1(B) and Petra Hofstedt2

1 Berlin Institute of Technology, Berlin, Germany
dschneeweiss@mailbox.tu-berlin.de

2 Brandenburg University of Technology, Cottbus, Germany
hofstedt@informatik.tu-cottbus.de

Abstract. We present a constraint-based approach to interactive prod-
uct configuration with arithmetic constraints and support for optimiza-
tion. Our configurator tool FdConfig is based on feature models (from
software product line engineering) for the representation of the valid
product variants. Such models can be directly mapped into constraint
satisfaction problems and dealt with by appropriate constraint solvers.
During the interactive configuration process the user generates new con-
straints as a result of his configuration decisions and even may retract
constraints posted earlier. We discuss the configuration process, explain
the underlying techniques and show optimizations.

1 Introduction

Product lines for mass customization [26] allow to fulfill the needs and require-
ments of the individual consumer while keeping the production cost low. They
enhance extensibility and maintenance by re-using the common core of the set
of all products.

Product configuration describes the process of specifying a product according
to user-specific needs based on the description of all possible (valid) products
(the search space). When done interactively, the user specifies the features of the
product step-by-step according to his requirements, thus, gradually shrinking the
search space of the configuration problem. This interactive configuration process
is supported by a software tool, the configurator.

In this paper we present an approach to interactive product configuration
based on constraint programming techniques. Building on constraints enables us
to equip our interactive product configurator FdConfig with functionality and
expressiveness exceeding traditional approaches [1,7,8,12,13,21,23,24]. These
either support only Boolean constraints or a very restricted form of arithmetic
constraints or do not take an interactive configuration process into considera-
tion or both (for a discussion see Sect. 2). Providing an extended functionality
and supporting interactive configuration, however, comes with the cost of per-
formance penalty which must be dealt with in turn.

The paper is structured as follows: In Sect. 2 we briefly review the area of
interactive configuration methods and discuss related work. Section 3 introduces

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 239–255, 2013.
DOI: 10.1007/978-3-642-41524-1 13, c© Springer-Verlag Berlin Heidelberg 2013

240 D. Schneeweiss and P. Hofstedt

important notions from the constraint paradigm as needed for the discussion
of our approach. We present the constraint-based interactive product configu-
rator FdConfig in Sect. 4. There, we introduce FdFeatures, a language for the
definition of feature models, it’s transformation into constraint problems, and
the configuration process using FdConfig . Furthermore, we discuss optimizations
and improvements by analyses and multithreading. Section 5 draws a conclusion
and points out directions of future research.

2 Interactive Configuration Methods

An interactive product configurator is a tool which allows the user to specify a
product according to his specific needs based on the common core of the set of
all products of a product line. This process can be done interactively, i.e. in a
step-wise fashion, thus gradually shrinking the search space of the configuration
problem.

For the sake of applicability and user-friendliness, a configurator requires a
number of properties like backtrack-freeness, completeness, order-independent
retraction of decisions, short response times and others. These strongly depend
on the method1 underlying the configurator system. Cost optimization and arith-
metic constraints are a desired functionality too, but these are seldom supported
or only provided in a very restricted form.

While completeness ensures that no solutions are lost, backtrack-freeness [7,
23] guarantees that the configurator only offers decision alternatives for which
solutions remain. Thus, the user can always generate a valid solution from the
current configuration state and does not need to unwind a decision (i.e. he, the
user, does not need to backtrack his decisions during the configuration process).
The Calculate Valid Domains (CVD) function [7] of a configurator realizes this
latter property.

Feature models are particularly used in the context of software product line engi-
neering to support the reuse when building software-intensive products. However,
they are of course applicable to many other product line domains. They stem
from the feature oriented domain analysis methodology (FODA) [14].

A feature model describes a product domain by a combination of features, i.e.
specific aspects of the product which the user can configure by instantiation and
further constraints. A product line is given by the set of possible combinations
of feature alternatives.

The semantics of feature models is typically mapped to propositional logics
[11] and can accordingly be mapped onto a restricted class of constraint satis-
faction problems (cf. Sect. 3), namely constraints of the Boolean domain. While
many approaches in the literature (e.g. [7,8,12]) only consider constraints of the
Boolean domain (including equality constraints), Benavides et al. [1] discuss the
realization of arithmetic computations and cost optimization in a feature model
(by so-called “extra-functional features”) which can be represented by general
constraint problems.
1 For a discussion of the solutions methods, see below.

FdConfig : A Constraint-Based Interactive Product Configurator 241

Solution techniques applied to the interactive configuration problem have been
compared by Hadzic et al. [7,8] and Benavides et al. [2]. They mainly distin-
guish approaches based on propositional logic on the one hand and on constraint
programming on the other hand.

When using propositional logic based approaches, configuration problems are
restricted to logic connectives and equality constraints (see e.g. [7,24]). Note that
arithmetic expressions are excluded because of the underlying solution methods.
These approaches perform in two steps. First, the feature model is translated
into a propositional formula. In the second step the formula is solved (satisfiabil-
ity checking, computation of solutions) by appropriate solvers, in particular SAT
solvers (as in [12]) and BDD-based solvers (see e.g. [8,23]). BDD-based solvers
translate the propositional formula into a compact representation, the binary
decision diagram (BDD). While many operations on BDDs can be implemented
efficiently, the structure of the BDD is crucial as a bad variable ordering may
result in exponential size and, thus, in memory blow up. Therefore the compila-
tion of the BDD is done in an offline phase, so a suitable variable ordering can
be found and the BDD’s size becomes reasonably small.

Feature models can be naturally mapped into constraint systems, in partic-
ular into CSPs. There are some approaches [1,24] using this correspondence to
deal with interactive configuration problems. These typically work as follows:
The feature model is translated into a constraint satisfaction problem (CSP,
see Definition 1 below) and afterwards analysed by a CSP solver. Using this ap-
proach, no pre-compilation is necessary. In general it is possible to use predicate
logic expressions and arithmetics in the feature definitions, even if this is not
realized in the above mentioned approaches.

The system of [13] supports a restricted class of arithmetic constraints but
is not intended to be used interactively. Feature model analysis is the focus of
the FAMA-framework [25] which incooperates SAT- and BSD-based techniques
as well as CSP solvers. The web-based SPLOT-tool described in [18] supports
interactive, backtracking-free configuration of Boolean feature models. SPLOT
uses a SAT solver for the configuration but also employs a BSD-based solver for
feature models analysis.

Soininen and Niemelä [21,22] present an approach to configuration based
on answer set programming and discuss its relationship to (C)LP as well as
complexity issues. In general their approach is suitable for interactive scenarios,
but supports only Boolean constraints.

Transformations of feature models into programs of CLP languages (i.e. Pro-
log systems with constraints) have been shown recently in [15,17]. However,
beside the transformation target being different from ours, these approaches do
not focus on using these methods for configuration done interactively.

Since our FdConfig tool aims primarily at the software engineering com-
munity as the main users of feature models, we decided in favour of a Java-
implementation (facilitating the Java-based Choco-library), which would make
later integration with common software development infrastructure like Eclipse
easier.

242 D. Schneeweiss and P. Hofstedt

Benavides et al. [2] elaborately compare the approaches sketched above, par-
ticularly with respect to performance and expressiveness or supported operations,
resp. They point out that CSP-based approaches, in contrast to others, can allow
extra functional features [1,14] and, in addition, arithmetic and optimization.
Furthermore, they state that “the available results suggest” that constraint-
based and propositional logic-based approaches “provide similar performance”,
except for the BDD-approach which “seems to be an exception as it provides
much faster execution times”, but with the major drawback of BDDs having
worst-case exponential size.

Extended feature models with numerical attributes, arithmetic, and opti-
mization are denominated as an important challenge in interactive configura-
tion by Benavides et al. [2]. Our approach aims at this challenge. We realize
an interactive configuration approach with extended features like arithmetics on
product attributes and support for optimizations. The main idea is to follow the
constraint-based approach while using the combination of different constraint
methods and concurrency to deal with the computational cost. At this, a major
challenge is to support the user when making and withdrawing decisions in an
interactive process.

3 Constraint Programming

Feature models can directly be mapped into corresponding constraint problems.
We will discuss this approach more detailed in Sect. 4.1 but introduce the nec-
essary notions from the constraint paradigm here.

Constraints are predicate logic formulae which express relations between the
elements or objects of the problem. They are classified into constraint domains
(see [9,19]), e.g. linear arithmetic constraints on reals, Boolean constraints and
finite domain constraints. This partitioning is due to the different applicable
constraint solution algorithms implemented in so-called constraint solvers (see
below).

Considering feature models as constraint problems, the domains of the involved
variables are a priori finite.2 Thus, we consider a particular class of constraints: fi-
nite domain constraints. Finite domain constraint problems are given by means of
constraint satisfaction problems.

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) is a triple P =
(X,D,C), where X = {x1, . . . , xn} is a finite set of variables, D = (D1, . . . , Dn)
is an n-tuple of their respective finite domains, and C is a conjunction of con-
straints over X.

Definition 2 (solution). A solution of a CSP P is a valuation ς : X →⋃
i∼{1,...,n} Di with ς(xi) ∈ Di which satisfies the constraint conjunction C.

A CSP can have one solution or a number of solutions, or it can be unsatisfi-
able. Optimization functions may also be given which specify optimal solutions.
2 An extension to infinite domains would be possible, in general.

FdConfig : A Constraint-Based Interactive Product Configurator 243

Example 1 . Consider a CSP P = (X,D,C) with the set X of variables with X =
{Cost, Color,Band} and their respective domains D = (DCost,DColor,DBand)
with DColor = {Red,Gold,Black,Blue}, DCost = {0, ..., 1500}, and DBand =
{700, 900, 1000}.

C = (Band = 700 → Color = Blue) ∧ (Cost = Band + 500) is a conjunction
of constraints over the variables from X.

Solutions of the CSP P are, e.g. ς1 with ς1(Cost) = 1200, ς1(Color) = Blue,
and ς1(Band) = 700, also denoted by ς1 = {Cost/1200, Color/Blue,Band/700},
and ς2 = {Cost/1400, Color/Red,Band/900}.

Constraint solvers are algorithms, which are able to check the satisfiability
of constraints and to compute solutions and implications of constraints.

CSPs are typically solved by narrowing the variable’s domains using search
nested with consistency techniques (e.g. node, arc, and path consistency). Given
a CSP, in the first step consistency techniques are applied. Such consistency
checking algorithms work on n-ary constraints and try to remove values from
the variables domains which cannot be elements of solutions. Afterwards, search
is initiated, e.g. using backtracking, where we assign domain values to variables
and perform consistency techniques to narrow the other variable’s domains again.
This search process is controlled by heuristics on variable and value ordering (for
the complete process, see [19]).

There are some finite domain constraint solver libraries available, for exam-
ple the Java-libraries Choco [3] and JaCoP [10] as well as the C++-library
Gecode [6]. We decided in favour of the Choco library, as it is under con-
tinuous development and available under BSD-license. Moreover, it’s pure Java
nature fitted our purposes best (see above).

Additionally, we need the notions of global consistency and of valid domains.

Definition 3 (global consistency, see [19]). A CSP is i-consistent iff given
any consistent instantiation of i − 1 variables, there exists an instantiation of
any ith variable such that the i values taken together satisfy all of the constraints
among the i variables. A CSP P = (X,D,C) is globally consistent, if it is i-
consistent for every i, 1 ≤ i ≤ n, where n is the number of variables of C.

Definition 4 (valid domains). Given a CSP P , the valid domains of P is an
n-tuple Dvd = (Dvd,1, . . . , Dvd,n) such that each Dvd,i ⊆ Di contains exactly the
values which are elements of solutions of P .

So, if a CSP is globally consistent, then its domains are valid domains.

Example 2 . (continuation of Example 1) The valid domains of the CSP P is
Dvd = ({1200, 1400},DColor, {700, 900}).

4 The Interactive Configurator FdConfig

Our approach on interactive configuration consists of two phases: In the first
phase a feature model is analysed and then transformed into a CSP and passed
to the Choco solver. Afterwards the interactive configuration phase follows.

244 D. Schneeweiss and P. Hofstedt

Figure 1 illustrates the analysis and transformation phase. FdConfig uses Fd-
Features files as input. FdFeatures is a textual domain specific language for ex-
tended feature models which supports integer feature attributes and arithmetic
constraints. An FdFeatures parser reads the input-file and creates the feature
model which is transformed into a Choco CSP. Section 4.1 describes the lan-
guage FdFeatures and the transformations in greater detail. Additionally, a quick
pre-calculation of the variable’s domains is performed. It generates redundant
constraints which, nevertheless, help to improve the solver’s performance. In
constraint programming, the generation of redundant constraints from a given
constraint problem is a frequently used method which helps to speed up the
solver (see [19], Sect. 12.4.5).3 This domain analysis is covered in Sect. 4.2.

FdFeatures
Text

FdFeatures
Model

CHOCO

CSP Model

Domain Narrowing
Constraints

CHOCO Solver
Model

FdFeatures
Parser

FdFeatures-CSP
Transformation

Model Reading

[see 4.2]

[see 4.1]

Domain
Analysis

[see 4.1]

Fig. 1. Transformations performed before the user can start configuring

In the second phase, the generated CSP is passed to the Choco solver which
reads the model and creates an internal representation from it: the solver model.
Then the solver is started to perform an initial calculation of consequence deci-
sions that yield from the constraints in the FdFeatures model. Afterwards, the
user can start with the interactive configuration. The implementation of this
process is explained in Sect. 4.3. Section 4.4 describes the reduction of response
times by using multithreading.

4.1 FdFeatures Models and CSPs

FdConfig provides FdFeatures as a language for the definition of feature models
based on the approach of [5]. FdFeatures borrows from the Textual Variabil-
ity Language (TVL, [4]) but was adapted for our needs (e.g. including support
for the realization of the user interface, certain detailed language elements and
syntactic sugar). FdFeatures has been implemented using Xtext [27].
3 Note that the elimination of verification-irrelevant features and constraints (i.e.

“redundant relationships”, [28]) from feature models with the aim of reducing the
problem size is a completely different concept.

FdConfig : A Constraint-Based Interactive Product Configurator 245

An FdFeatures feature model in general has a tree structure, i.e. there is
a distinguished root feature which stands for the item to be configured, but
apart from this behaves like any other feature. The model may have additional
constraints between (sub-)features and their attributes which, in fact, makes the
tree a general graph. Nevertheless, the tree structure is dominant.

A feature may consist of sub-features and attributes (both in general optional),
where, following the approach of [5], the sub-features can be organized in feature
groups. A feature group allows to describe whether one, some, or all of the sub-
features must be included in the configured product.

With similar effects, features can be specified to be mandatory or optional.
Furthermore, features may exclude or require other features.

Example 3 . Consider the cut-out of a feature model of events organized by an
event agency in Listing 4.1.4 For an event (the root feature) we can optionally
order a band and a stage, but we must order a carpet (e.g. for a film premiere or a
wedding) and colored balloons. These are all modeled as sub-features (which are
not organized in a feature group here). Ordering a band makes a stage necessary,
expressed by the requires-statement in Line 11.

FdFeatures supports three kinds of feature attributes: integers, enumerations,
and Boolean values.

Example 4 . (continuation of Example 3) The feature Carpet is determined by
several attributes, including an enumeration attribute Color, whose domain
elements must be given explicitly and a Boolean attribute SlipResistance.5

Length and Breadth are integer attributes. While Breadth is specified by an
interval, Length is unbounded. As we can see by the attributes of ColoredBal-
loons, the domain of an integer attribute can also be specified by a finite set
(Amount, Line 20) or even by an arithmetic formula (Cost, Line 25). The defin-
ition of Boolean attributes is also possible using Boolean expressions (but is left
out in our example).

The domain definition of PriceReduction.Coupon (Lines 22, 23) uses Guards
to define the attribute domain depending on the configuration state (ifIn and
ifOut correspond to selected and deleted, resp.) of the feature (here PriceReduc-
tion). Furthermore, it is possible to define constraints on attributes and features,
also accessing the configuration state of a feature as shown in Line 15. This con-
straint makes sure that the Blues-band plays in an adequate ambiance.

The transformation into a Choco CSP is straightforward, for details see
[20]. In general, our transformation is similar to these of [15,17]. Differences
come from the fact that the transformation target of these approaches are CLP

4 The description of certain features and attributes, which are not necessary for the
understanding of this example and the concepts behind, is left out and represented
by “...” in the program.

5 Note that domain elements of an enumeration can optionally be assigned explicit
integer values as e.g. done for the attribute Band.Type in Line 12.

246 D. Schneeweiss and P. Hofstedt

Listing 4.1 Feature model of an event organized by an event agency (cut-out)

1 root feature Event {
2 enum Discount in {Gold = 8 , S t a f f = 3 , None = 0} ;

3 feature Carpet {
4 int Length ;
5 int Breadth in [5 0 . . 3 0 0] ;
6 enum Color in {Red , Gold , Black , Blue } ;
7 bool S l i pRe s i s t anc e ;
8 int Cost i s . . .
9 }

10 feature Band : optional {
11 requires Stage ;
12 enum Type in {Cla s s i c = 1000 , Blues=700 , Rock=900};
13 }
14 feature Stage : optional { . . . }
15 constraint BluesOnBlueCarpet
16 Band i s selected and Band . Type = Blues →
17 Carpet . Color = Blue
18 }
19 feature ColoredBal loons {
20 int Amount in {500 , 1000 , 2500 , 5000 , 10000} ;

21 feature PriceReduct ion {
22 int Coupon i f In : i s 1000
23 ifOut : i s 0 ;
24 }
25 int Cost i s Amount ∗ 3 − PriceReduct ion .Coupon ;
26 }
27 int Overa l lCos t i s Carpet . Cost + Band . Type + . . . +
28 (ColoredBal loons . Cost /100 + . . .) ∗ (100−Discount) /100 ;
29 }

languages and they aim at feature model analysis in contrast to interactive con-
figuration, as does FdConfig . We show an example of the generated CSP in a
mathematical notation and leave out the Choco constraint syntax for reasons
of space limitations.

Example 5 . The following CSP is generated from Listing 4.1 (where CBal stands
for ColoredBalloons, PRed for PriceReduction, and SRes for SlipResistance
resp.). Note that we do not enumerate the set of variables X explicitly and give
the domains D by means of element constraints CDomains.

FdConfig : A Constraint-Based Interactive Product Configurator 247

CSP = CDomains ∧ C with

CDomains = Event, Carpet,Band, Stage, CBal ∈ {False, T rue} ∧
CBal.PRed,Carpet.SRes ∈ {False, T rue} ∧
Discount ∈ {0, 3, 8} ∧ Band.Type ∈ {700, 900, 1000} ∧
Carpet.Length ∈ [−231, 231 − 1] ∧ Carpet.Breadth ∈ [50, 300] ∧
Carpet.Color ∈ [0, 3] ∧ Carpet.Cost = ... ∧
CBal.Amount ∈ {500, 1000, 2500, 5000, 10000} ∧
CBal.Cost ∈ [−231, 231 − 1] ∧
CBal.PRed.Coupon ∈ [−231, 231 − 1] ∧
OverallCost ∈ [−231, 231 − 1] and

C = (Carpet ∨ Band ∨ Stage ∨ CBal → Event) ∧
(CBal.PRed → CBal) ∧ (Band → Stage) ∧
((Band ∧ Band.Type = 700) → Carpet.Color = 3) ∧
(CBal.PRed → CBal.PRed.Coupon = 1000) ∧
(¬ CBal.PRed → CBal.PRed.Coupon = 0) ∧
(CBal.Cost = CBal.Amount ∗ 3 − CBal.PRed.Coupon) ∧ . . .

4.2 Domain Analysis

In FdFeatures the specification of an attribute’s base domain is optional. If no
domain is given by the user, as e.g. for Carpet.Length or ColoredBalloons.Cost
in Listing 4.1, it is set by default to the maximal possible domain of the corre-
sponding attribute type. For example, for integer attributes the maximal domain
is [−231, 231 − 1] which we denote by MAXDOM in the following.

When the Choco solver computes the valid domains of the CSP in the
second phase of our approach (cf. Sect. 4.3), this may become time consum-
ing. The solver must establish global consistency. Thus, up to 4.3 ∗ 109 values
must be checked for every attribute (or its corresponding variable, resp.) with
MAXDOM . Of course, we cannot require the user to specify attribute domains
just big enough to contain all solutions, in particular, because a manual estima-
tion of the base domain can be very difficult for complex feature models. Thus,
we apply an automatic pre-analysis to the feature model which is merged with
the CSP generated from the model.

Our domain analysis aims at an approximate yet quick pre-calculation of the
base domains of variables using knowledge about the feature model’s structure.
We only consider integer attributes, as enumerated attributes will in general
have small domains. The analysis is based on interval arithmetics [16] which
allow a fast approximation of the variable’s minimum and maximum values by
calculating with intervals instead of single domain values.

The domain DOM FM of an attribute in an FdFeatures feature model can
be specified directly by giving a single value or a set or interval, resp. of values.
Additionally, it is possible to specify particular sub-domains depending on the
configuration state, i.e. IN FM and OUTFM in case the attribute is selected or
deleted, resp. Furthermore, arithmetic expressions can be used to specify the
domain or sub-domains. We determine DOM FM , IN FM , and OUTFM in form

248 D. Schneeweiss and P. Hofstedt

of intervals from the attribute expressions, where enumerations are handled as
intervals, too.

Starting from these domains, we calculate the narrowed base domain
BASEDOM , and new sub-domains IN and OUT as follows (where we take
arithmetic expressions into consideration):

BASEDOM = (IN FM ∪ OUTFM) ∩ DOM FM (1)
IN = BASEDOM ∩ IN FM (2)

OUT = BASEDOM ∩ OUTFM (3)

The intervals for the incorporated arithmetic expressions are determined by
traversing their formula tree. The leafs are either elementary expressions or ref-
erences to other attributes, in case of which the domain of the referenced at-
tribute must be calculated first. The analysis of cyclic formulae is interrupted
and MAXDOM is used instead, leaving domain narrowing to the Choco solver,
which uses accurate but time consuming consistency techniques.

Example 6 . Consider the pre-calculation of the base domain BASEDOM of the
attribute ColoredBalloons.Cost (Line 25 of Listing 4.1). Figure 2 illustrates the
calculation.

For the attribute under consideration, only the set DOM FM is specified by
means of an arithmetic expression, while IN FM and OUTFM both default to
MAXDOM . During the analysis, the formula tree of the arithmetic expression
is traversed. Dashed arrows depict the domain analysis of a referenced attribute
which is shown in its own box.

In the beginning the analysis moves to the first leaf: a reference to the
attribute Amount. The determination of the base sets is trivial as only DOM FM

Fig. 2. Domain analysis of BASEDOM of the attribute ColoredBalloons.Cost

FdConfig : A Constraint-Based Interactive Product Configurator 249

is defined as an enumeration of integers which yields an interval [500, 10000] using
Eq. 1. The right operand of the multiplication is a constant value, which is turned
into the point interval [3, 3] resulting in the intermediate result [500, 10000] ∗
[3, 3] = [1500, 30000]. The analysis of the attribute Coupon yields BASEDOM
= [0, 1000] from IN FM = [1000, 1000], OUTFM = [0, 0] and DOM FM

= MAXDOM (again using Eq. 1). Finally, the analysis returns to the root
attribute ColoredBalloons.Cost and performs the subtraction with result
BASEDOM = [1500, 30000] − [0, 1000] = [500, 30000].

From the BASEDOM intervals of the attributes the respective sub-domains
IN and OUT can be inferred by means of the Eqs. 2 and 3 (not shown in the
figure).

Example 7 . (continuation of Examples 5 and 6) The domain analysis yields the
following domain constraints as an update on the generated CSP of our event
feature model.

C ∈
Domains = . . . ∧

CBal.Cost ∈ [500, 30000] ∧
CBal.PRed.Coupon ∈ {0, 1000} ∧ . . .

Note, that for computed intervals we finally build intersections in case the
domain was initially given by enumerations or single values. This yields the
two-element set for CBal.PRed.Coupon.

4.3 The Configuration Phase

The second phase of our approach, i.e. the configuration phase, starts with the
initialization of FdConfig before the user can start with the interactive configu-
ration process.

Model pre-processing. The solver reads the CSP-model and performs a feasibility
check (e.g. by finding the first solution). If successful, the configurator computes
the valid domains as initial model consequences that derive from the CSP. The
calculation of these model consequences is performed in the same way as the
user consequences are calculated later on in the interactive user configuration
phase (see below). However, once the model consequences have been computed,
they are immutable during the interactive configuration as they don’t depend
on the user decisions.

The current, global consistent state of the solver is recorded. To this ground
level state the solver can be reset when, after a retraction of user constraints, a
re-computation of the valid domains becomes necessary.

User configuration. The user starts a configuration step by executing a configu-
ration action. This is either a configuration decision, i.e. limiting the domain of a
feature- or attribute variable which manifests as a user constraint or the retrac-
tion of a decision made earlier. In this case the corresponding user constraint is
removed from the constraint system. User decisions are posted by FdConfig to
the solver as user constraints.

250 D. Schneeweiss and P. Hofstedt

Now, the solver is activated to establish global consistency and to find all so-
lutions of the constraint system. These are evaluated to derive the valid domains.
Since the valid domains define the configuration options available to the user in
the next configuration step, the constraint system always remains feasible after
a user decision (cf. Sect. 2, backtrack-freeness).

After the user consequences have been computed, the user interface is updated
accordingly and the user can perform the next configuration action.

In the usual modus operandi for FD solvers, a CSP is once declared and
then read by the solver which computes and returns solutions. In contrast, for
interactive configuration we need to re-calculate sets of solutions again and again
because a sub-set of the constraints (the user constraints) keeps changing over
time as a result of the user making configuration decisions.

As the solver maintains a heavyweight internal representation of the con-
straint system and reading the CSP-model as well as establishing consistency
are time consuming, the option of re-creating the model for every user decision
is inapplicable. Therefore we control the solver from outside by utilizing its back-
tracking infrastructure and reset the solver into the aforementioned ground level
state in case a user decision has been retracted. This works for the general case,
but is not optimal if the user wants to undo his very last decisions, because the
solver starts over from the ground level state. Instead, we only let it backtrack
to the state before the user constraints to be undone have been posted.

Optimization. In case the user wants to find an optimal configuration, i.e. con-
figure an event with the lowest overall cost as in Example 3, he can simply select
the respective minimum or maximum value available under the current partial
configuration. If a more complex optimization is needed, he can choose a set of
attributes that become part of a weighted sum, which is then used as an objec-
tive function. After the sum’s coefficients have been entered, the function can be
maximized or minimized under the current partial configuration. If more than
one configuration is optimal, the user can select which one should be applied.

4.4 Improving the User Experience by Multithreading

When computing the valid domains of the variables, the constraint solver must
establish global consistency, and thus, potentially find all solutions of the CSP.
This calculation may be time consuming depending on the size and complexity
of the feature model (and the CSP it was transformed into, resp.). Furthermore,
the GUI would not be updated or process user input during this calculation.
The program would appear to be frozen.

Therefore we introduced multithreading with the solver running in a back-
ground thread, allowing the GUI to be updated and accept user input during a
long running computation. However, as the user would still have to wait for the
calculation to complete before he can enter another configuration decision, the
multithreading structure has been extended as follows:

The elements of the valid domains are collected gradually with the compu-
tation of the set of solutions still in progress. Whenever new elements have been

FdConfig : A Constraint-Based Interactive Product Configurator 251

found, they are immediately displayed in the GUI and made available for con-
figuration decisions. Elements, that did not yet occur in a solution, are greyed
out and disabled for user decisions. If the user makes a decision, the background
calculation is interrupted and restarted with the changed set of user decisions.

In the sequential model the valid domains were calculated in one go and
then evaluated to generate consequence decisions if necessary. If, for example,
the valid domain of a feature A was found to be Dvd,A = {true} this resulted in
a consequence decision forcing the feature to be selected. 6

With multithreading we have to re-evaluate the valid domains whenever new
elements are found during the calculation process. This results in changing con-
sequence decisions while the computation has not finished. For example, the
valid domain of feature A can become Dvd,A = {true} during the computa-
tion process at first, creating the consequence decision that A must be selected.
However, as the result of new solutions the valid domain might later become
Dvd,A = {true, false}, thus making the consequence decision disappear again.
Attributes are handled similarly, as single value domains (interpreted as conse-
quence decisions to select this particular value) may become multi-value domains
later on. The GUI flags these consequence decisions as incomplete, so the user
can see that further configuration options might become available. On the com-
pletion of the computation process, this flag is removed.

Figure 3 illustrates the different states for feature and attribute domains,
resulting from the multithreading approach. Consequence decisions are drawn
in bold typeface. Furthermore Fig. 4 shows a screenshot of the FdConfig tool
during a long running calculation of the valid domains. Incomplete consequence
decisions are visible, i.e. for the attribute ColoredBalloons.Cost, whose valid
domain has exactly one element (14990) at the moment. The other elements were
either eliminated by the user or have not yet occurred in a solution (displayed
in grey).

Fig. 3. Intermediate states of valid domains for features and attributes with multi-
threading

6 Likewise Dvd,A = {false} results in a removed feature and Dvd = {true, false} in
the undecided state, where the user can decide.

252 D. Schneeweiss and P. Hofstedt

Fig. 4. Screenshot of FdConfig during a CVD calculation

First experiments show that this multithreading approach leads to a smoother,
more fluent user experience when performing product configuration. Since reach-
ing the goal of calculating the valid domains in under 250 ms7 is currently not
realistic with the underlying solvers, this enhancement is a good compromise as
configuration options will become available very quickly.

5 Conclusion and Future Work

In this paper we discuss an approach on interactive product configuration with
extended features like arithmetics on product attributes and support for optimiza-
tions based on constraint techniques, which was implemented in our configurator
tool FdConfig . We gave an overview of the product configuration domain, fea-
ture models, and constraint programming in this context and introduced our
approach.

In FdConfig we employ a finite domain constraint solver that enables us
to deal with integer attributes and arithmetic constraints in extended feature
7 A response time of about this duration is considered desirable, as this still gives the

user the impression to work in real time [7].

FdConfig : A Constraint-Based Interactive Product Configurator 253

models. These constraints are usually not supported in traditional approaches
(e.g. SAT, BDDs) or only in very restricted forms. However, this enhanced ex-
pressiveness comes at the cost of performance penalties. We deal with this in two
ways: We apply a preliminary domain analysis in order to relief the solver from
unnecessary computation time for establishing consistency. And, furthermore,
we use a multithreading approach to enhance the user experience. This allows
the user to continue configuring in a limited way, even if the overall computation
has not yet finished.

Future work will include the further development of the multithreading ap-
proach. We plan to incorporate multiple solvers that might concentrate on par-
ticular parts of the computation. For example, the feature model element with
the current GUI focus could be taken into account. This focus-based compu-
tation strategy could additionally improve user friendliness: Domain elements,
that the user might want to configure most likely would become available more
quickly for configuration decisions.

Also a more subtle handling of the non-chronological retraction of constraints
promises improvement but needs further investigation.

In order to improve the overall performance we consider adding support for
compilation-based approaches (i.e. BDDs). These could be integrated with the
solver in the form of custom constraints to speed up the search. If a pre-compiled
version of a feature model is available, the implementation of these constraints
could access the BDD. Otherwise the regular solution methods would be applied.

Transformation-based optimizations should be investigated as well. E.g. [13]
use a clustering optimization to reduce the number of constraint-variables and
constraints. Using feature models may support or even inherently realize a form
of clustering ([13], in contrast to ours, directly use constraints).

Another optimization is presented in [17]. The authors discuss the improve-
ment of efficiency when solving CSPs as transformation results due to a refor-
mulation of particular Boolean constraints into arithmetic constraints. While
this representation is available in our approach too, the examination of similar
optimizations may be worth considering in the future.

In the approach of [17] the structure of feature models is not preserved. This
holds optimization potential as well, but must be done sensitively to retain a
mapping to the feature model to allow an interactive configuration process as
needed in our approach.

References

1. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature
models. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

2. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

3. ChocoSolver. http://www.emn.fr/z-info/choco-solver/. Accessed 3 Feb 2012
4. Classen, A., Boucher, Q., Faber, P., Heymans, P.: The TVL specification. Techni-

cal Report P-CS-TR SPLBT-00000003, PReCISE Research Center, University of
Namur, Namur, Belgium (2010)

http://www.emn.fr/z-info/choco-solver/

254 D. Schneeweiss and P. Hofstedt

5. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, New York (2000)

6. Gecode - Generic Constraint Development Environment. http://www.gecode.org.
Accessed 3 Feb 2012

7. Hadzic, T., Andersen, H.R.: An introduction to solving interactive configuration
problems. Technical Report TR-2004-49, The IT University of Copenhagen (2004)

8. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen, H.R., Møller, J., Hulgaard,
H.: Fast backtrack-free product configuration using a precompiled solution space
representation. In: International Conference on Economic, Technical and Organi-
zational Aspects of Product Configuration Systems (PETO), pp. 131–138 (2004)

9. Hofstedt, P.: Multiparadigm Constraint Programming Languages. Springer,
Heidelberg (2011)

10. JaCoP - Java Constraint Programming solver. http://jacop.osolpro.com/. Accessed
3 Feb 2012

11. Janota, M., Botterweck, G., Grigore, R., Marques-Silva, J.: How to complete an
interactive configuration process? In: van Leeuwen, J., Muscholl, A., Peleg, D.,
Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 528–539.
Springer, Heidelberg (2010)

12. Janota, M.: Do SAT solvers make good configurators?. In: First Workshop on
Analyses of Software Product Lines (ASPL), September 2008

13. John, U., Geske, U.: Constraint-based configuration of large systems. In: Barten-
stein, O., Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS (LNAI),
vol. 2543, pp. 217–234. Springer, Heidelberg (2003)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-
oriented domain analysis (foda). Feasibility study. Technical Report CMU/SEI-
90-TR-21, ESD-90-TR-222, SW Engineering Institute, Carnegie Mellon University
(1990)

15. Karataş, A.S., Oğuztüzün, H., Doğru, A.: Mapping extended feature models to
constraint logic programming over finite domains. In: Bosch, J., Lee, J. (eds.)
SPLC 2010. LNCS, vol. 6287, pp. 286–299. Springer, Heidelberg (2010)

16. Kearfott, R.B.: Interval computations: introduction, uses, and resources. Euromath
Bull. 2, 95–112 (1996)

17. Mazo, R., Salinesi, C., Diaz, D., Lora-Michiels, A.: Transforming attribute and
clone-enabled feature models into constraint programs over finite domains. In:
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).
Springer, Heidelberg (2011)

18. Mendonca, M., Branco, M., Cowan, D.: Splot: software product lines online tools.
In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications, pp. 761–762. ACM,
New York (2009)

19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, Amsterdam (2007)

20. Schneeweiss, D.: Grafische, interaktive Produktkonfiguration mit Finite-Domain-
Constraints. Diploma thesis, Brandenburg University of Technology, Cot-
tbus, September 2011. http://www.denny-schneeweiss.de/academic/publications/
Schneeweiss2011--DiplomaThesis.pdf

21. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications
in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, p. 305.
Springer, Heidelberg (1999)

http://www.gecode.org
http://jacop.osolpro.com/
http://www.denny-schneeweiss.de/academic/publications/Schneeweiss2011--DiplomaThesis.pdf
http://www.denny-schneeweiss.de/academic/publications/Schneeweiss2011--DiplomaThesis.pdf

FdConfig : A Constraint-Based Interactive Product Configurator 255

22. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration
knowledge with weight constraint rules. In: AAAI Symposium on Answer Set Pro-
gramming, pp. 195–201. AAAI Press, March 2001

23. Subbarayan, S.: Integrating CSP decomposition techniques and BDDs for com-
piling configuration problems. In: Barták, R., Milano, M. (eds.) CPAIOR 2005.
LNCS, vol. 3524, pp. 351–365. Springer, Heidelberg (2005)

24. Subbarayan, S., Jensen, R.M., Hadzic, T., Andersen, H.R., Hulgaard, H., Møller, J.:
Comparing two implementations of a complete and backtrack-free interactive con-
figurator. In: Workshop on CSP Techniques with Immediate Application (CSPIA),
pp. 97–111 (2004)

25. Trinidad, P., Benavides, D., Ruiz-Cortés, A., Segura, S., Jimenez, A.: Fama frame-
work. In :12th International Software Product Line Conference (SPLC 2008),
Limerick, Ireland, pp. 359–359. IEEE (2008)

26. Tseng, M.M., Jiao, J.: Mass customization. In: Salvendy, G. (ed.) Handbook of
Industrial Engineering, Technology and Operation Management, 3rd edn. Wiley,
New York (2001)

27. Xtext. Language development framework. http://www.eclipse.org/Xtext/.
Accessed 3 Feb 2012

28. Yan, H., Zhang, W., Zhao, H., Mei, H.: An optimization strategy to feature mod-
els’ verification by eliminating verification-irrelevant features and constraints. In:
Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 65–75.
Springer, Heidelberg (2009)

http://www.eclipse.org/Xtext/

INAP System Descriptions

dynPARTIX - A Dynamic Programming
Reasoner for Abstract Argumentation

Wolfgang Dvořák1(B), Michael Morak2, Clemens Nopp2, and Stefan Woltran2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
wolfgang.dvorak@univie.ac.at

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria

Abstract. The aim of this paper is to announce the release of a novel
system for abstract argumentation which is based on decomposition
and dynamic programming. We provide first experimental evaluations
to show the feasibility of this approach.

1 Introduction

Argumentation has evolved as an important field in AI, with abstract argumen-
tation frameworks (AFs, for short) as introduced by Dung [5] being its most
popular formalization. Several semantics for AFs have been proposed (see e.g.
[2] for an overview), but here we shall focus on the so-called preferred semantics.
Reasoning under this semantics is known to be intractable [6]. An interesting
approach to dealing with intractable problems comes from parameterized com-
plexity theory which suggests to focus on parameters that allow for fast eval-
uations as long as these parameters are kept small. One important parameter
for graphs (and thus for argumentation frameworks) is tree-width, which mea-
sures the “tree-likeness” of a graph. To be more specific, tree-width is defined
via a certain decomposition of graphs, the so-called tree decomposition. Recent
work [7] describes novel algorithms for reasoning in the preferred semantics, such
that the performance mainly depends on the tree-width of the given AF, rather
than on the size of the AF. To put this approach to practice, we shall use the
SHARP framework,1 a C++ environment which includes heuristic methods to
obtain tree decompositions [4], provides an interface to run algorithms on these
decompositions, and offers further useful features, for instance for parsing the
input. For a description of the SHARP framework, see [9].

The main purpose of our work here is to support the theoretical results
from [7] with experimental ones. Therefore we use different classes of AFs and
analyze the performance of our approach compared to an implementation based
on answer-set programming (see [8]). Our prototype system together with the

This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT08-028, by the Austrian Science Fund (FWF): P20704-N18, and
by the Vienna University of Technology program “Innovative Ideas”.

1 http://www.dbai.tuwien.ac.at/research/project/sharp

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 259–268, 2013.
DOI: 10.1007/978-3-642-41524-1 14, c© Springer-Verlag Berlin Heidelberg 2013

http://www.dbai.tuwien.ac.at/research/project/sharp

260 W. Dvořák et al.

used benchmark instances is available as a ready-to-use tool from http://www.
dbai.tuwien.ac.at/research/project/argumentation/dynpartix/.

2 Background

Argumentation Frameworks

An argumentation framework (AF) is a pair F = (A,R) where A is a set of
arguments and R → A × A is the attack relation. If (a, b) ℵ R we say a attacks
b. For S → A and a ℵ A, we write S ♦ a (resp. a ♦ S) iff there exists b ℵ S,
such that b ♦ a (resp. a ♦ b). An a ℵ A is defended by a set S → A iff for each
(b, a) ℵ R, there exists a c ℵ S such that (c, b) ℵ R. An AF can naturally be
represented as a digraph.

Example 1. Consider the AF F = (A,R), with A = {a, b, c, d, e, f, g} and R =
{(a, b), (c, b), (c, d), (d, c), (d, e), (e, g), (f, e), (g, f)}. The graph representation
of F is given as follows:

a b c d e f g

We require the following semantical concepts: Let F = (A,R) be an AF. A
set S → A is (i) conflict-free in F , if there are no a, b ℵ S, such that (a, b) ℵ R;
(ii) admissible in F , if S is conflict-free in F and each a ℵ S is defended by S; (iii)
a preferred extension of F , if S is a →-maximal admissible set in F . in Example
1, we get the admissible sets {}, {a}, {c}, {d}, {d, g}, {a, c}, {a, d}, and {a, d, g}.
Consequently, the preferred extensions of this framework are {a, c}, {a, d, g}.

The typical reasoning problems associated with AFs are the following: (1)
Credulous acceptance asks whether a given argument is contained in at least
one preferred extension of a given AF; (2) skeptical acceptance asks whether a
given argument is contained in all preferred extensions of a given AF. Credulous
acceptance is NP-complete, while skeptical acceptance is even harder, namely
ΠP

2 -complete [6].

Tree Decompositions and Tree-Width

As already outlined, tree decompositions will underlie our implemented algo-
rithms. We briefly recall this concept (which is easily adapted to AFs). A tree
decomposition of an undirected graph G = (V,E) is a pair (T ,X) where T =
(VT , ET) is a tree and X = (Xt)t∼VT is a set of so-called bags, which has to
satisfy the following conditions:

(a)
⋃

t∼VT Xt = V , i.e. X is a cover of V ;
(b) for each v ℵ V , the subgraph of T induced by {t | v ℵ Xt} is connected;
(c) for each {vi, vj} ℵ E, {vi, vj} → Xt for some t ℵ VT .

http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/
http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

dynPARTIX - A Dynamic Programming Reasoner 261

Fig. 1. Illustration of the algorithm for admissible sets.

The width of a tree decomposition is given by max{|Xt| | t ℵ VT } − 1. The
tree-width of G is the minimum width over all tree decompositions of G.

262 W. Dvořák et al.

It can be shown that our example AF has tree-width 2 and we illustrate a
tree decomposition of width 2 in Fig. 1(a).

However for our purposes we shall use so-called normalized decompositions,
that is the tree-decomposition has a root node r with Xr = ∼ and consists only
of nodes of one of the following types. A node t ℵ VT is a:

– Leaf-node if t has no children nodes in T ;
– Branch-node if t has two successors t∈, t∈∈ in T and Xt = Xtℵ = Xtℵℵ

– Insert-node if t has only one successor t∈ and Xt = Xtℵ ← v for some v ℵ V ;
– Removal-node if t has only one successor t∈ and Xt = Xtℵ \v for some v ℵ V .

A normalized version of the first tree-decomposition is presented in Fig. 1(b).
Dynamic programming algorithms traverse such tree decompositions and

compute local solutions for each node in the decomposition. Thus the combi-
natorial explosion is now limited to the size of the bags, that is, to the width of
the given tree decomposition.

3 Dynamic Programming Algorithm

In this section we sketch the dynamic programming algorithm for credulous
acceptance. For more detailed explanations as well as for the dynamic program-
ming algorithm for skeptical acceptance, the interested reader is referred to [7].
In the following we tacitly assume an AF F = (A,R) and a corresponding nor-
malized tree-decomposition (T ,X).

Towards an algorithm for admissible sets we need the following concept: A
set of arguments E is a B-restricted admissible set for F , if E is conflict-free in F
and E defends itself against all a ℵ A≤B. Clearly we have that the A-restricted
admissible sets coincide with the admissible sets. Now the main idea behind the
dynamic programming algorithm is to consider for each node t ℵ T , the AF
F∞t induced by the union of the bags X∞t of the sub-tree of T rooted at t and
computing the X∞t\Xt-restricted admissible sets. As for the root note r, Xr = ∼
and X∞t = A we then have a handle on the admissible sets.

Next we consider how we represent (X∞t\Xt)-restricted admissible sets in a
node t. First let us mention that by the definition of tree-decompositions we have
that the AF F∞t already contains all attacks incident with arguments in X∞t\Xt

and thus we do not need the status of these arguments for the computation in
the ancestor nodes of t. Hence for each node t it suffices to store the status of the
arguments Xt for each X∞t\Xt-restricted admissible set E. This is implemented
by so called vcolorings Ct : Xt ∈⊆ {in, def , att , out} for t with the following
intuition: Ct(a) = in iff a ℵ E; Ct(a) = def iff E ♦ a; Ct(a) = att iff E ∪♦ a
and a ♦ E; Ct(a) = out iff E ∪♦ a and a ∪♦ E. We have that each (X∞t\Xt)-
restricted admissible set corresponds to exactly one vcoloring, but one vcoloring
in general corresponds to several X∞t\Xt-restricted admissible sets.

In the following we discuss how to compute the vcolorings for each node-type.
Starting with leaf-nodes t we are interested in ∼-restricted admissible sets of F∞t,

dynPARTIX - A Dynamic Programming Reasoner 263

which coincide with the conflict-free sets. So we simply compute the conflict-free
sets of F∞t and map them to the corresponding vcolorings.

In a removal-node t with successor t∈ and Xt = Xtℵ \ {a} we consider the
successor’s vcolorings Ctℵ with Ctℵ(a) ∪= att and project them to Xt. We have
that Ctℵ(a) = att corresponds to a violation of admissibility, i.e. a attacks an
argument in E and is not attacked by E, and as a ℵ X∞t \Xt the sets E
corresponding to Ctℵ are not X∞t\Xt-restricted admissible.

Now let us focus on Insert node t with successor t∈ and Xt = Xtℵ ← {a}.
Again we consider vcolorings Ctℵ of t∈. Given a X∞t\Xt restricted admissible set
E and adding a new argument a to the AF there are two ways to update E,
either adding the new argument to E or not. This observation is mirrored by
the following two operations. First we construct the vcoloring C1

t extending Ctℵ

to a such that a is labeled by one of the labels def , att , out , depending on the
attacks between a and the arguments {a ℵ Xtℵ | Ctℵ(a) = in} =: [Ctℵ]. Moreover
if [Ctℵ] ← {a} is conflict-free in F we also generate a vcoloring C2

t extending Ctℵ

such that C2
t (a) = in and faithfully update labels att , out according to attacks

incident with a.
In a branch node t with successors t∈, t∈∈ we union two sub-frameworks

F∞tℵ , F∞tℵℵ that intersect on Xt. Consequently to obtain an (X∞t \Xt)-restricted
admissible set of F∞t we can combine each (X∞tℵ \Xtℵ)-restricted admissible set
of F∞tℵ with each (X∞tℵℵ \ Xtℵℵ)-restricted admissible set of F∞tℵ as long they
coincide on Xt. Thus the vcolorings C of t are computed by combining vcol-
orings C ∈ of t∈ and vcolorings C ∈∈ of t∈∈ such that [C ∈] = [C ∈∈]. The coloring C
computed from C ∈,C ∈∈ is defined as follows. For b ℵ Xt we have: C(b) = in iff
C ∈(b) = C ∈∈(b) = in; C(b) = def iff C ∈(b) = def or C ∈∈(b) = def ; C(b) = out iff
C ∈(b) = out and C ∈∈(b) = out ; and C(b) = att in the remaining cases.

Proposition 1. For node t and a ℵ Xt. There is a vcoloring Ct for t with
Ct(a) = in iff a is contained in an X∞t\Xt-restricted admissible sets of F∞t.

Finally we discuss how credulous acceptance can be decided via vcolorings.
We just mark each vcoloring which assigns the value in to the argument we are
interested in and accordingly pass this mark up to the root. That is we mark
a coloring if it is constructed by using at least one marked coloring. Finally at
the (empty) root node we have that the argument is credulously accepted iff the
vcoloring of the root is marked.

Example 2. Recall our running example, the computation of vcolorings is illus-
trated in Fig. 1(c). For deciding the credulous acceptance of argument d we mark
vcolorings corresponding to at least one set containing d with a �, according to
the above rules. The argument d is introduced two times, in the node n3 and
in the node n11. Thus, we mark their vcolorings C satisfying C(d) = in. Now
consider n8 with the colorings C1(c) = in, C1(d) = def , C2(c) = def , C2(d) = in
and C3(c) = out , C3(d) = out . The child node n9 has colorings C ∈

1(d) = in and
C ∈

2(d) = out , the first marked. As C2 is constructed via C ∈
1 it is also marked and

as C1 and C3 are both constructed via C ∈
2 they are not marked. ♦

264 W. Dvořák et al.

Fig. 2. Architecture of the SHARP framework.

4 Implementation and the SHARP Framework

dynPARTIX implements these dynamic programming algorithms based on tree
decompositions using the SHARP framework [9], which is a purpose-built frame-
work for implementing algorithms that are based on tree decompositions.
Figure 2 shows the typical architecture, that systems working with the SHARP
framework follow. In fact, SHARP provides interfaces and helper methods for
the preprocessing and dynamic algorithm steps as well as ready-to-use implemen-
tations of various tree decomposition heuristics, i.e. Minimum-Fill, Maximum-
Cardinality-Search and Minimum-Degree heuristics (cf. [4]), as well as different
normalization algorithms.

As mentioned before, dynPARTIX builds on normalized tree decompositions
provided by SHARP, which contain the four mentioned types of nodes. To imple-
ment our algorithms we just have to provide data structures storing the vcolor-
ings of a node and the methods for each of these node types.

SHARP handles data-flow management and provides data structures where
the calculated (partial) solutions to the problem under consideration can be
stored. The amount of dedicated code for dynPARTIX comes to around 2700
lines in C++. Together with the SHARP framework (and the used libraries for
the tree-decomposition heuristics), our system roughly comprises of 13000 lines
of C++ code.

5 System Specifics

Currently the implementation is able to calculate the admissible and preferred
extensions of a given argumentation framework and to check if credulous or skep-
tical acceptance holds for a specified argument. The basic usage of dynPARTIX
is as follows:

> ./dynpartix [-f <file>] [-s <semantics>]
[--enum | --count | --cred <arg> | --skept <arg>]

The argument -f <file> specifies the input file, the argument -s <semantics>
selects the semantics to reason with, i.e. either admissible or preferred, and the
remaining arguments choose one of the reasoning modes.

Input file conventions: We borrow the input format from the ASPARTIX sys-
tem [8]. dynPARTIX thus handles text files where an argument a is encoded as

dynPARTIX - A Dynamic Programming Reasoner 265

arg(a) and an attack (a, b) is encoded as att(a,b). For instance, consider the
following encoding of our running example and let us assume that it is stored in
a file inputAF.

arg(a). arg(b). arg(c). arg(d). arg(e). arg(f). arg(g).
att(a,b). att(c,b). att(c,d). att(d,c).
att(d,e). att(e,g). att(f,e). att(g,f).

Enumerating extensions: First of all, dynPARTIX can be used to compute exten-
sions, i.e. admissible sets and preferred extensions. For instance to compute the
admissible sets of our running example one can use the following command:

> ./dynpartix -f inputAF -s admissible

Credulous Reasoning : dynPARTIX decides credulous acceptance using proof
procedures for admissible sets (even if one reasons with preferred semantics)
to avoid unnecessary computational costs. The following statement decides if
the argument d is credulously accepted in our running example.

> ./dynpartix -f inputAF -s preferred --cred d

Indeed the answer would be YES as {a, d, g} is a preferred extension.

Skeptical Reasoning : To decide skeptical acceptance, dynPARTIX uses proof
procedures for preferred extensions which usually results in higher computational
costs (but is unavoidable due to complexity results). To decide if the argument
d is skeptically accepted, the following command is used:

> ./dynpartix -f inputAF -s preferred --skept d

Here the answer would be NO as {a, c} is a preferred extension not containing
d.

Counting Extensions : Recently the problem of counting extensions has gained
some interest [1]. We note that our algorithms allow counting without an explicit
enumeration of all extensions (thanks to the particular nature of dynamic pro-
gramming; see also [10]). Counting preferred extensions with dynPARTIX is
done by

> ./dynpartix -f inputAF -s preferred --count

6 Benchmark Tests

In this section we compare dynPARTIX with ASPARTIX [8], one of the most
efficient reasoning tools for abstract argumentation (for an overview of existing
argumentation systems see [8]). For our benchmarks we used randomly generated
AFs of low tree-width. To ensure that AFs are of a certain tree-width we consid-
ered random grid-structured AFs. In such a grid-structured AF each argument

266 W. Dvořák et al.

is arranged in an n × m grid and attacks are only allowed between neighbours
in the grid (we used an 8-neighborhood here to allow odd-length cycles, which
are crucial for the full complexity of preferred semantics). When generating the
benchmark instances we varied the following parameters: the number of argu-
ments from 25 to 500; the tree-width; and the probability that a possible attack
is actually in the AF.

The benchmark tests were executed on an Intel R∃CoreTM2 CPU
6300@1.86GHz machine running SUSE Linux version 2.6.27.48. We generated
a total of 4800 argumentation frameworks with varying parameters as men-
tioned above. The two graphs on the left-hand side compare the running times
of dynPARTIX and ASPARTIX (using dlv) on instances of small treewidth
(viz. 3 and 5). For the graphs on the right-hand side, we have used instances
of higher width. Results for credulous acceptance are given in the upper graphs
and those for skeptical acceptance in the lower graphs. The y-axis gives the run-
times in logarithmic scale; the x-axis shows the number of arguments. Note that
the upper-left picture has different ranges on the axes compared to the three
other graphs. We remark that the test script stopped a calculation if it was not
finished after 300 s. For these cases we stored the value of 300 s in the database.

Interpretation of the Benchmark Results: We observe that, independent of the
reasoning mode, the runtime of ASPARTIX is only minorly affected by the tree-
width while dynPARTIX strongly benefits from a low tree-width, as expected
by theoretical results [7].

For the credulous acceptance problem we have that our current implementa-
tion is competitive only up to tree-width 5. Considering Fig. 3(a) and (b), there
is to note that for credulous acceptance ASPARTIX decided every instance in
less than 300 s, while dynPARTIX exceeded this value in 4 % of the cases.

Now let us consider the skeptical acceptance problem. As mentioned before,
skeptical acceptance is computationally much harder than credulous acceptance,
which is reflected by the bad runtime behaviour of ASPARTIX. Indeed we have
that for tree-width ∧ 5, dynPARTIX has a significantly better runtime behav-
iour, and that it is competitive on the whole set of test instances. As an additional
comment to Fig. 3(c) and (d), we note that for skeptical acceptance, dynPAR-
TIX was able to decide about 71 % of the test cases within the time limit, while
ASPARTIX only finished 41 %.

Finally let us briefly mention the problem of Counting preferred extensions.
On the one side we have that ASPARTIX has no option for explicitly counting
extensions, so the best thing one can do is enumerating extensions and then
counting them. It can easily be seen that this can be quite inefficient, which is
reflected by the fact that ASPARTIX only finished 21 % of the test instances
in time. On the other hand we have that the dynamic algorithms for counting
preferred extensions and deciding skeptical acceptance are essentially the same
and thus have the same runtime behaviour.

dynPARTIX - A Dynamic Programming Reasoner 267

Fig. 3. Runtime of dynPARTIX for graphs of different tree-width compared to
ASPARTIX.

7 Discussion

In this paper, we have presented a novel system for abstract argumentation which
is based on decomposition and dynamic programming. Experimental evaluations
show that such an approach is able to outperform systems relying on answer-set
programming, at least on certain instances. This indicates that despite the high
sophistication answer-set programming systems have reached nowadays, struc-
tural features of the problem instance are not sufficiently recognized yet by these
systems. As ongoing work we thus focus on a combination of the both paradigms,
i.e. decomposition and making use of declarative programming languages,
see http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/ for further
details.

For future work, we need a more comprehensive empirical evaluation, in par-
ticular on real world instances. To this end, we need more knowledge about the
tree-width typical argumentation instances comprise, i.e. whether it is the case
that such instances have low tree-width. Due to the unavailability of benchmark
libraries for argumentation, so far we had to omit such considerations. we plan to
extend dynPARTIX by additional argumentation semantics mentioned in [2] and
by further reasoning modes, which can be efficiently computed on tree decompo-
sitions. Finally, we plan to further develop dynPARTIX for non-normalized tree
decompositions [3].

http://www.dbai.tuwien.ac.at/research/project/dynasp/dflat/

268 W. Dvořák et al.

References

1. Baroni, P., Dunne, P.E., Giacomin, M.: On extension counting problems in argu-
mentation frameworks. In: Proceedings of the COMMA 2010, pp. 63–74 (2010)

2. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I.,
Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer,
Heidelberg (2009)

3. Charwat, G.: Tree-decomposition based algorithms for abstract argumentation
frameworks. Master’s thesis, TU Wien (2012)

4. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.:
Heuristic methods for hypertree decomposition. In: Gelbukh, A., Morales, E.F.
(eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

6. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif.
Intell. 141(1/2), 187–203 (2002)

7. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms
for abstract argumentation. Artif. Intell. 186, 1–37 (2012)

8. Egly, U., Gaggl, S., Woltran, S.: Answer-set programming encodings for argumen-
tation frameworks. Argument Comput. 1(2), 147–177 (2010)

9. Morak, M.: SHARP - a smart hypertree-decomposition-based algorithm framework
for parameterized problems. TU Wien. http://www.dbai.tuwien.ac.at/research/
project/sharp/sharp.pdf (2010)

10. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

http://www.dbai.tuwien.ac.at/research/project/sharp/sharp.pdf
http://www.dbai.tuwien.ac.at/research/project/sharp/sharp.pdf

HEX-Programs with Nested Program Calls

Thomas Eiter, Thomas Krennwallner, and Christoph Redl(B)

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, tkren, redl}@kr.tuwien.ac.at

Abstract. Answer-Set Programming (ASP) is an established declara-
tive programming paradigm. However, classical ASP lacks subprogram
calls as in procedural programming, and access to external computations
(akin to remote procedure calls) in general. This feature is desired for
increasing modularity and—assuming proper access in place—
(meta-)reasoning over subprogram results. While hex-programs extend
classical ASP with external source access, they do not support calls of
(sub-)programs upfront. We present nested hex-programs, which extend
hex-programs to serve the desired feature in a user-friendly manner.
Notably, the answer sets of called sub-programs can be individually
accessed. This is particularly useful for applications that need to reason
over answer sets like belief set merging, user-defined aggregate functions,
or preferences of answer sets. We will further present a novel method for
rapid prototyping of external sources by the use of nested programs.

1 Introduction

Answer-Set Programming, based on [8], has been established as an important
declarative programming formalism [3]. However, a shortcoming of classical ASP
is the lack of means for modularity, i.e., dividing programs into several interact-
ing components. Even though reasoners such as DLV, clasp, and dlvhex allow
to partition programs into several files, they are still viewed as a single mono-
lithic set of rules.On top of that, passing input to selected (sub-)programs is not
possible upfront.

In procedural programming, the idea of calling subprograms and processing
their output is in permanent use. Also in functional programming such mod-
ularity is popular. This helps reducing development time (e.g., by using third-
party libraries), the length of source code, and, last but not least, makes code
human-readable. Reading, understanding, and debugging a typical size applica-
tion written in a monolithic program is cumbersome. Modular extensions of ASP
have been considered [5,9] with the aim of building an overall answer set from
program modules; however, multiple results of subprograms (as typical for ASP)
are respected, and no reasoning about such results is supported. XASP [11] is an

This research has been supported by the Austrian Science Fund (FWF) project
P20840, P20841, and P24090, and by the Vienna Science and Technology Fund
(WWTF) project ICT 08-020.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 269–278, 2013.
DOI: 10.1007/978-3-642-41524-1 15, c© Springer-Verlag Berlin Heidelberg 2013

270 T. Eiter et al.

smodels interface for XSB-Prolog. This system is related to our work but less
expressive, as it is designed for host programs under well-founded semantics.
Moreover, our system allows the seamless integration of queries over subpro-
grams with other external sources. Both is important for some applications, e.g.,
for the MELD belief set merging system[10], which require on the one hand
choices, which is described in Sect. 4, and on the other hand access to arbitrary
external sources in order to query the data sources to be merged. Adding such
nesting to available approaches is not easy and requires to adapt systems similar
to our approach.

hex-programs [6] extend ASP with higher-order atoms, which allow the use
of predicate variables, and external atoms, through which a bidirectional com-
munication with external sources is enabled. But hex-programs do not sup-
port modularity and meta-reasoning directly. In this context, modularity means
the encapsulation of subprograms which interact through well-defined interfaces
only, and meta-reasoning requires reasoning over sets of answer sets. Moreover,
in hex-programs external sources are realized as procedural C++ functions.
Therefore, as soon as external sources are queried, we leave the declarative for-
malism. However, the generic notion of external atom, which facilitates a bidi-
rectional data flow between the logic program and an external source (viewed as
abstract Boolean function), can be utilized to provide these features.

To this end, we present nested hex-programs, which support (possibly para-
meterized) subprogram calls. It is the nature of nested hex-programs to have
multiple programs which reason over the answer sets of each individual sub-
program. This can be done in a user-friendly way and enables the user to
write purely declarative applications consisting of multiple interacting modules.
Notably, call results and answer sets are objects that can be accessed by identi-
fiers and processed in the calling program. Thus, different from [5,9] and related
formalisms, this enables (meta)-reasoning about the set of answer sets of a pro-
gram. In contrast to [11], both the calling and the called program are in the same
formalism. In particular, the calling program has also a declarative semantics.
As an important difference to [1], nested hex-programs do not require extend-
ing the syntax and semantics of the underlying formalism, which is the hex-
semantics. The integration is, instead, by defining some external atoms (which
is already possible in ordinary hex-programs), making the approach simple and
user-friendly for many applications. Furthermore, as nested hex-programs are
based on hex-programs, they additionally provide access to external sources
other than logic programs. This makes nested hex-programs a powerful formal-
ism, which has been implemented using the dlvhex reasoner for hex-programs;
applications like belief set merging [10] show its potential and usefulness. More-
over, we will show how nested programs can be used for external source simu-
lation. This allows for rapid prototyping without actually implementing plugins
for the reasoner, which is time-consuming.

HEX-Programs with Nested Program Calls 271

2 HEX-Programs

We briefly recall hex-programs, which have been introduced in [6] as a gener-
alization of (disjunctive) extended logic programs under the answer set seman-
tics [8]; for more details and background, we refer to [6]. A hex-program consists
of rules of the form

a1 → · · · → an ℵ b1, . . . , bm,not bm+1, . . . ,not bn , (m,n ∼ 0)

where each ai is a literal, i.e., an atom p(t1, . . . , tΔ) or a negated atom ¬p(t1, . . . , tΔ),
and each bj is either a classical literal or an external atom, and not is negation by
failure (under stable semantics). An external atom is of the form

&g[q1, . . . , qk](t1, . . . , tΔ) ,

where g is an external predicate name, the qi are predicate names or constants,
and the tj are terms. Informally, the semantics of an external g is given by a k+Σ+
1-ary Boolean oracle function f&g. The external atom is true relative to an inter-
pretation I and a grounding substitution α iff f&g(I, q1, . . . , qk, t1α, . . . , tΔα) = 1.
External atoms allow for including arbitrary (computable) functions. E.g., built-
in functions can be realized via external atoms, or library functions such as
string manipulations, sorting routines, etc. As external sources need not be on
the same machine, knowledge access across the Web is possible, e.g., belief set
import. Strictly, [6] omits classical negation ¬ but the extension is routine; fur-
thermore, [6] also allows terms for the qi and variables for predicate names, which
we do not consider.

Example 1. Suppose an external knowledge base consists of an RDF file located
on the web at http://.../data.rdf. Using an external atom &rdf [url](X, Y, Z), we
may access all RDF triples (s, p, o) at the URL specified with url. To form belief
sets of pairs that drop the third argument from RDF triples, we may use the
rule

bel(X,Y) ℵ &rdf [http://.../data.rdf](X,Y,Z) .

The above program has a single answer set which consists of all literal
bel(c1, c2) such some RDF triple (c1, c2, c3) occurs at the respective URL.

We use the dlvhex system from http://www.kr.tuwien.ac.at/research/
systems/dlvhex/as abackend.dlvhex implements (a fragmentof)hex-programs.
It provides a plugin mechanism for external atoms. Besides library atoms, the user
can define her own atoms using C++ methods.

3 Nested HEX-Programs

Limitations of ASP. As a simple example demonstrating the limits of ordinary
ASP, assume a program computing the shortest paths between two (fixed) nodes
in a connected graph. The answer sets of this program then correspond to the
shortest paths. Suppose we are just interested in the number of such paths. In

http://.../data.rdf
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

272 T. Eiter et al.

Main HEX-

program
DLVHEX

Answer

Sets

Subprograms
External

Atoms
Answer Set Cache

Fig. 1. System Architecture of Nested hex (data flow ���, control flow →)

a procedural setting, this is easily computed if the function returns all paths in
an suitable data structure (e.g., an array or a linked list).

In ASP, the solution is non-trivial if the given program must not be modified
(e.g., if it is provided by a third party); above, we must count the answer sets.
Thus, we need to reason on sets of answer sets, which is infeasible inside the
program. Means to call the program at hand and reason about the results of
this “callee” (subprogram) in the “calling program” (host program) would be
useful. Aiming at a logical counterpart to procedural function calls, we define a
framework which allows to input facts to the subprogram prior to its execution.
Host and subprograms are decoupled and interact merely by relational input and
output values. To realize this mechanism, we exploit external atoms, leading to
nested hex-programs.
Architecture. Nested hex-programs are realized as a plugin for the reasoner
dlvhex,1 which consists of a set of external atoms and an answer cache for the
results of subprograms (see Fig. 1). Technically, the implementation is part of
the belief set merging system MELD, which is an application on top of a nested
hex-programs core. This core can be used independently from the rest of the
system.

When a subprogram call (corresponding to the evaluation of a special external
atom) is encountered of the host program, the plugin creates another instance
of the reasoner to evaluate the subprogram. Its result is then stored in the
answer cache and identified with a unique handle, which can later be used to
reference the result and access its components (e.g., predicate names, literals,
arguments) via other special external atoms. For economic memory management,
the implementation may remove answer cache entries dynamically in the style
of a least frequently used heuristics, and reevaluate the corresponding program
again if it is later accessed again.

There are two possible sources for the called subprogram: (1) either it is
directly embedded in the host program, or (2) it is stored in a separate file. In
(1), the rules of the subprogram must be represented within the host program.
To this end, they are encoded as string constants. An embedded program must
not be confused with a subset of the rules of the host program. Even though it is
syntactically part of it, it is logically separated to allow independent evaluation.
In (2) merely the path to the location of the external program in the file system

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html

HEX-Programs with Nested Program Calls 273

is given. Compared to embedded subprograms, code can be reused without the
need to copy, which is clearly advantageous when the subprogram changes. We
now present concrete external atoms &callhexn,&callhexfilen,&answersets,
&predicates, and &arguments which are used to realize nested hex-programs.
External Atoms for Subprogram Handling. We start with two families of
external atoms

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

that allow to execute a subprogram given by a string P respectively in a file FN;
here n is an integer specifying the number of predicate names pi, 1 ← i ← n, used
to define the input facts. When evaluating such an external atom relative to an
interpretation I, the system adds all facts {pi(a1, . . . , ami

) ℵ| pi(a1, . . . , ami
) ≤

I} to the specified program, creates another instance of the reasoner to evaluate
it, and returns a symbolic handle H as result. For convenience, we do not write
n in &callhexn and &callhexfilen as it is understood from the usage.

Example 2. In the following program, we use two predicates p1 and p2 to define
the input to the subprogram sub.hex (n = 2), i.e., all atoms over these predicates
are added to the subprogram prior to evaluation. The call derives a handle H
as result.

p1(x, y) ℵ p2(a) ℵ p2(b) ℵ
handle(H) ℵ &callhexfile[sub.hex, p1, p2](H)

A handle is a unique integer representing a certain program answer cache
entry. In the implementation, handles are consecutive numbers starting with
0. Hence in the example the unique answer set of the program is {handle(0)}
(neglecting facts).

Formally, given an interpretation I, f&callhexfilen
(I,file, p1, . . . , pn, h) = 1 iff

h is the handle to the result of the program in file file, extended by the facts over
predicates p1, . . . , pn that are true in I. The formal notion and use of &callhexn

to call embedded subprograms is analogous to &callhexfilen.

Example 3. Consider the following program:

h1(H) ℵ &callhexfile[sub.hex](H)
h2(H) ℵ &callhexfile[sub.hex](H)
h3(H) ℵ &callhex[a ℵ . b ℵ .](H)

The rules execute the program sub.hex and the embedded program Pe = {a ℵ,
b ℵ}. No facts will be added in this example. The single answer set is {h1(0),
h2(0), h3(1)} resp. {h1(1), h2(1), h3(0)} depending on the order in which the sub-
programs are executed (which is irrelevant). While h1(X) and h2(X) will have
the same value for X,h3(Y) will be such that Y ∈=X. Our implementation real-
izes that the result of the program in sub.hex is referred to twice but executes it
only once; Pe is (possibly) different from sub.hex and thus evaluated separately.

274 T. Eiter et al.

Now we want to determine how many (and subsequently which) answer sets
it has. For this purpose, we define external atom &answersets[PH](AH) which
maps handles PH to call results to sets of respective answer set handles. For-
mally, for an interpretation I, f&answersets(I, hP , hA) = 1 iff hA is a handle to an
answer set of the program with program handle hP .

Example 4. The single rule

ash(PH ,AH) ℵ &callhex[a → b ℵ .](PH),&answersets[PH](AH)

calls the embedded subprogram Pe = {a→b ℵ .} and retrieves pairs (PH ,PA) of
handles to its answer sets. &callhex returns a handle PH = 0 to the result of Pe,
which is passed to &answersets. This atom returns a set of answer set handles
(0 and 1, as Pe has two answer sets, viz. {a} and {b}). The overall program has
thus the single answer set {ash(0, 0), ash(0, 1)}. As for each program the answer
set handles start with 0, only a pair of program and answer set handles uniquely
identifies an answer set.

We now are ready to solve our example of counting shortest paths from above.

Example 5. Suppose paths.hex is the search program and encodes each shortest
path in a separate answer set. Consider the following program:

as(AH) ℵ &callhexfile[paths.hex](PH),&answersets[PH](AH)
number(D) ℵ as(C),D = C + 1,not as(D)

The second rule computes the first free handle D; the latter coincides with the
number of answer sets of paths.hex (assuming that some path between the nodes
exists).

At this point we still treat answer sets of subprograms as black boxes. We
now define an external atom to investigate them.

Given an interpretation I, f&predicates(I, hP , hA, p, a) = 1 iff p occurs as an a-
ary predicate in the answer set identified by hP and hA. Intuitively, the external
atom maps pairs of program and answer set handles to the predicates names
with their associated arities occurring in the accourding answer set.

Example 6. We illustrate the usage of &predicates with the following program:

preds(P,A) ℵ &callhex[node(a). node(b). edge(a, b).](PH),
&answersets[PH](AH),&predicates[PH ,AH](P,A)

It extracts all predicates (and their arities) occurring in the answer of the embed-
ded program Pe, which specifies a graph. The answer set is {preds(node, 1),
preds(edge, 2)} as the answer set of Pe has atoms with predicate node (unary)
and edge (binary).

The final step to gather all information from the answer of a subprogram is
to extract the literals and their parameters occurring in a certain answer set.
This can be done with external atom &arguments, which is best demonstrated
with an example.

HEX-Programs with Nested Program Calls 275

Example 7. Consider the following program:

h(PH ,AH) ← &callhex[node(a). node(b). node(c). edge(a, b).edge(c, a).](PH),

&answersets[PH](AH)

edge(W ,V) ← h(PH ,AH),&arguments[PH ,AH , edge](I , 0,V),

&arguments[PH ,AH , edge](I , 1,W)

node(V) ← h(PH ,AH),&arguments[PH ,AH , node](I , 0,V)

It extracts the directed graph given by the embedded subprogram Pe and
reverses all edges; the answer set is {h(0, 0),node(a),node(b),node(c),
edge(b, a), edge(a, c)}. Indeed, Pe has a single answer set, identified by PH =
0, AH = 0; via &arguments we can access in the second resp. third rule the
facts over edge resp. node in it, which are identified by a unique literal id I; the
second output term of &arguments is the argument position, and the third the
actual value at this position. If the predicates of a subprogram were unknown,
we can determine them using &predicates.

To check the sign of a literal, the external atom &arguments[PH,AH,P]
(I, s,S) supports argument s. When s = 0,&arguments will match the sign of
the I-th positive literal over predicate P into S , and when s = 1 it will match
the corresponding classically negated atom.
External Atoms for External Source Prototyping. Our system provides
another family of external atoms for rapid prototyping of (simple) external
sources directly in ASP. This it, the input-output behavior of hypothetical exter-
nal sources is encoded by ASP rules. This is useful for quick experiments before
a new external source is actually implemented. It comes with less implementa-
tion overhead compared to a native implementation in C++. This gives the user
the possibility to see how the planned external atom will behave in a program
even before it is developed. However, it is clear the possibility of simulating
external sources cannot replace the plugin mechanism of dlvhex as it cannot
access real external sources. Moreover, simulation is less efficient than a native
implementation in C++.

For simulation our system supports the external atom:

&simulatorn,m[F, p1, . . . , pn](X1, . . . Xm)

The simulator atom takes as arguments a filename F , which refers to the
ASP program defining the input-output behavior of the prototypical external
source, and predicate inputs p1, . . . , pn. The output list X1, . . . , Xm is used to
retrieve the tuples from produced by the simulated external source.

When a simulator atom is encountered in the host program, it will evaluate
the ASP-program in F extended by the input parameters defined over p1, . . . , pn.
In particular, the system will add for each input atom pi(a1, . . . , ak) a fact of
form ini(a1, . . . , ak) to F. The renaming of the predicates is necessary in order
to make F independent of the input predicate names in the host program. The
result of F is expected to consist of exactly one answer set, where all atoms of
form out(o1, . . . , om) define the output of the simulated external source.

276 T. Eiter et al.

Example 8. Consider the following program P given by the rules:

dom(a) ℵ dom(b) ℵ dom(c) ℵ
sel(X) ℵ dom(X),&simulator2,1[Q, dom,nsel](X)

nsel(X) ℵ dom(X),&simulator2,1[Q, dom, sel](X)

Let further Q refer to the program:

out(X) ℵ in1 (X),not in2 (X).

Then Q simulates an external source which computes the set difference, where
the extension of the second predicate input in2 is subtracted from the extension
of the first predicate input in1 . The program P computes then the two sets sel
and nsel , corresponding to all partitionings of {a, b, c} into two subsets.

4 Applications

MELD. The MELD system [10] deals with merging multiple collections of belief
sets. Roughly, a belief set is a set of classical ground literals. Practical examples
of belief sets include explanations in abduction problems, encodings of decision
diagrams, and relational data. The merging strategy is defined by tree-shaped
merging plans, whose leaves are the collections of belief sets to be merged, and
whose inner nodes are merging operators (provided by the user). The structure
is akin to syntax trees of terms.

The automatic evaluation of tree-shaped merging plans is based on nested
hex-programs; it proceeds bottom-up, where every step requires inspection of
the subresults, i.e., accessing the answer sets of subprograms. The meta program
at the root node generates then one answer set for each integrated belief set.
For this purpose, guessing rules select an integrated belief set of the top-level
merging operator. The meta program then inherits the conclusions of the chosen
belief set in order to make it visible to the user. Note that XASP [11] is thus
not appropriate for such unstratified host programs, as it can only compute the
well-founded semantics.
Aggregate Functions. Nested programs can also emulate aggregate functions
[7] (e.g., #sum, #count, #max) where the (user-defined) host program computes
the function given the result of a subprogram. This can be generalized to aggre-
gates over multiple answer sets of the subprogram; e.g., to answer set counting,
or to find the minimum/maximum of some predicate over all answer sets (which
may be exploited for global optimization).
Generalized Quantifiers. Nested hex-programs make the implementation of
brave and cautious reasoning for query answering tasks very easy, even if the
backend reasoner only supports answer set enumeration. Furthermore, extended
and user-defined types of query answers (cf. [5]) are definable in a very user-
friendly way, e.g., majority decisions (at least half of the answer sets support a
query), or minimum and/or maximum number based decisions (qualified number
restrictions).

HEX-Programs with Nested Program Calls 277

Preferences. Answer sets as accessible objects can be easily compared wrt. user-
defined preference rules, and used for filtering as well as ranking results (cf. [4]):
a host program selects appropriate candidates produced by a subprogram, using
preference rules. The latter can be elegantly implemented as ordinary integrity
constraints (for filtering), or as rules (possibly involving further external calls) to
derive a rank. A popular application are online shops, where the past consumer
behavior is frequently used to filter or sort search results. Doing the search via
an ASP program which delivers the matches in answer sets, a host program can
reason about them and act as a filter or ranking algorithm.
Nested Programs as a Development Tool for DLVHEX. The further
development of our system dlvhex uses the idea of annotated external sources.
This is, known properties like monotonicity and functionality shall be exploited
for speeding up the reasoning process. Developing appropriate algorithms and
heuristics requires empirical experiments with a variety of external sources. As
it would be cumbersome to implement all of them as real plugins to dlvhex,
simulating them via our &simulatorn,m atom seems to be a good alternative.

5 Conclusion

To overcome limitations of classical ASP regarding subprograms and reasoning
about their possible outcomes, we briefly presented nested hex-programs, which
realize subprogram calls via special external atoms of hex-programs; besides
modularity, a plus for readability and program reusability, they allow for reason-
ing over multiple answer sets (of subprograms). Moreover, nested hex-programs
can also be used as a tool for rapid external source prototyping. An implementa-
tion on top of dlvhex is available. Related to this is the work on macros in [2],
which allow to call macros in logic programs.

The possibility to access answer sets in a host program, in combination with
access to other external computations, makes nested hex-programs a powerful
tool for a number of applications. In particular, libraries and user-defined func-
tions can be incorporated into programs easily. As an interesting aspect is that
dynamic program assembly (using a suitable string library) and execution are
possible, which other approaches to modular ASP programming do not offer.
Exploring this remains for future work.

References

1. Analyti, A., Antoniou, G., Damásio, C.V.: Mweb: a principled framework for mod-
ular web rule bases and its semantics. ACM Trans. Comput. Log. 12(2), 17:1–17:46
(2011)

2. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles
in modular answer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP
2006. LNCS, vol. 4079, pp. 376–390. Springer, Heidelberg (2006)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

278 T. Eiter et al.

4. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2),
308–334 (2004)

5. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quan-
tifiers. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265,
pp. 289–308. Springer, Heidelberg (1997)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer set programming. In: IJCAI’05,
pp. 90–96. Professional Book Center (2005)

7. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive data-
bases. New Generat. Comput. 9, 365–385 (1991)

9. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

10. Redl, C., Eiter, T., Krennwallner, T.: Declarative belief set merging using merging
plans. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 99–
114. Springer, Heidelberg (2011)

11. Swift, T., Warren, D.S.: XSB: Extending prolog with tabled logic programming.
Theor. Pract. Log. Program 12(1–2), 157–187 (2012)

A Prototype of a Knowledge-Based
Programming Environment

Stef De Pooter(B), Johan Wittocx, and Marc Denecker

Department of Computer Science, K.U. Leuven, Leuven, Belgium
{stef.depooter, johan.wittocx, marc.denecker}@cs.kuleuven.be

Abstract. This paper presents a proposal for a knowledge-based progr-
amming environment. Within this environment, declarative background
knowledge, procedures, and concrete data are represented in suitable
languages and combined in a flexible manner, which leads to a highly
declarative programming style. We illustrate our approach with an ex-
ample application and report on our prototype implementation.

1 Context

An obvious requirement for a powerful and flexible programming paradigm seems
to be that within the paradigm different types of information can be expressed
in suitable languages. However, most traditional programming paradigms and
languages do not really have this property. In imperative languages, for example,
non-executable background knowledge cannot be described. The consequences
become clear when we try to solve a scheduling problem in an imperative lan-
guage: the background knowledge – the constraints that need to be satisfied
by the schedule – gets mixed up with the algorithms. This makes adding new
constraints and finding and modifying existing ones cumbersome.

On the other hand, most logic-based declarative programming paradigms
lack the capability to express procedures. Typically, they consist of a logic to-
gether with one specific type of inference. For example, Prolog uses Horn clause
logic and does querying, in Description Logic the studied task is deduction, and
Answer Set Programming and Constraint Programming make use of model gen-
eration. In such paradigms, whenever we try to perform a task that does not
fit the inference mechanism at hand, the declarative aspect of the paradigm is
lost. For example, when we try to solve a scheduling problem (which is a typical
model-generation problem) in Prolog, we need to represent the schedule as a
term, say a list (rather than as a logical structure), and as a result the con-
straints do not really reside in the logic program, but will have to be expressed
by clauses that iterate over a list [5]. Proving that a certain requirement is im-
plied by another, is possible (in theory) for a theorem prover, but not in ASP.
Etc.

To overcome these restrictions of existing paradigms, we propose a para-
digm in which each component can be expressed in an appropriate language. We
distinguish three components: procedures, (non-executable) background knowl-
edge, and concrete data. For the first we need an imperative language, for the

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 279–286, 2013.
DOI: 10.1007/978-3-642-41524-1 16, c© Springer-Verlag Berlin Heidelberg 2013

280 S. De Pooter et al.

second an (expressive) logic, for the third a logical structure (which corresponds
to a database). The connection between these components is realized by various
reasoning tasks, such as theorem proving, model generation, model checking,
model revision, belief revision, constraint propagation, querying, datamining,
visualization, etc.

The idea to support multiple forms of inference for the same logic or even
for the same theories, was argued in [7]. There it is argued that logic has a
more flexible, multifunctional and therefore also more declarative role for prob-
lem solving than provided by many declarative programming paradigms, where
typically one form of inference is central and theories are written to be used for
this form of inference, sometimes even for a specific algorithm implementing this
form of inference (such as Prolog resolution). The framework presented here is
based on this view and goes beyond it in the sense that it offers a programming
environment in which complex tasks can be programmed using multiple forms
of inference and processing tools.

2 Overview of the Language and System

To try out the above mentioned ideas in practice, we built a prototype inter-
preter that supports some basic reasoning tasks and a set of processing tools on
high-level data such as vocabularies, structures and theories. In this section we
will highlight various decisions in the design of our programming language and
interpreter. In the next section we will illustrate the usage of the language with
an example. In the remainder of this text we will call our language declimp,
which is an aggregation of “declarative” and “imperative”.

2.1 Program Structure

A declimp program typically contains several blocks of code. Each block is ei-
ther a procedure, a vocabulary (which is a list of sort, predicate and function
names), a logic theory over a vocabulary (which describes a piece of background
knowledge using the predicate and function names of its vocabulary), or a (pos-
sibly partial) structure over a vocabulary (which represents a database over its
vocabulary). To bring more structure into a program and to be able to work
with multiple files, namespaces and include statements are provided.

Because vocabularies, logic theories and databases are not executable, and a
program needs to be executed, control of a declimp program is always in the
hands of the procedures. Moreover, when a main procedure is available, the run
of the program will start with the execution of this procedure. When there is no
main procedure, the user can run commands in an interactive shell, after parsing
the program.

In the next sections, we will describe the languages for the respective com-
ponents in a declimp program.

A Prototype of a Knowledge-Based Programming Environment 281

2.2 Knowledge Representation Language

For representing background knowledge we use an extended version of classical
logic. A first advantage of using classical logic as the basis of our knowledge
representation language lies in the fact that it is the best-known and most-
studied logic. Also, classical logic has the important property that its informal
semantics corresponds to its formal semantics. In other words, in classical logic
the meaning of expressions1 is intuitively clear. This is an important requirement
in the design of a language that is accessible to a wider audience. Furthermore,
there are already numerous declarative systems that use a language based on
classical logic, or can easily be translated to it. Think of the languages of most
theorem provers [8], various Description logics [2], and the language of model
generators such as IDP [10,22] and Enfragmo [16].

On the other hand, research in the Knowledge Representation and Reasoning
community has clearly shown that pure classical logic is in many ways insuffi-
cient. Aggregates and (recursive) definitions are well-known concepts that are
common in the background knowledge of many applications, and which can gen-
erally not, or not in a concise and intuitively clear manner, be expressed in first-
order logic. Therefore, in declimp we use an order-sorted version of first-order
logic, extended with inductive definitions [6], aggregates [17], (partial) functions
and arithmetic. These extensions make representing knowledge much easier.

2.3 Structures

Structures in declimp are written in a simple language that allows to enumerate
all elements that belong to a sort and all tuples that belong to a relation or
function. As an alternative to enumerating a relation, it is also possible to specify
the relation in a procedural way, namely as all the tuples for which a given
procedure returns ‘true’. Furthermore, the interpretation of a function can be
specified by a procedure, somewhat similar to “external procedures” in DLV [3].

As mentioned before, structures in declimp do not necessarily contain com-
plete information, they are not necessarily two-valued. Three-valued structures
are useful for representing incomplete information (which might be completed
during the run of the program). To enumerate a three-valued relation (or func-
tion), two out of three of the following sets must be provided: tuples that cer-
tainly belong to the relation, tuples that certainly do not belong to the relation,
and tuples for which it is unknown whether they belong to the relation or not.
The third set can always be computed from the two given sets.

2.4 Procedures

The imperative programming language in our prototype system is Lua [11].
The main reason for this choice is the fact that Lua is a lightweight scripting
1 Expressions that occur in practice, not artificially constructed sentences that do not

really have meaning in real life.

282 S. De Pooter et al.

language and also because it has a good C++ API [12]. This facilitates on the
one hand the compilation of programs written in declimp and, on the other
hand, the integration with the components of our declimp interpreter, which
is written in C++. When we do not take those reasons into account, any other
imperative language is candidate.

In procedures, various reasoning methods on theories and structures can
be called. Currently, the most important tasks supported by the declimp-
interpreter are the following:

Finite model expansion: Given a three-valued structure S and a theory T ,
find a completion of S to a two-valued structure that satisfies T . This is
essentially a generalization of the reasoning task performed by ASP solvers,
constraint programming systems, Alloy analyzers, etc. It is suitable for prob-
lems such as scheduling, planning and diagnosis. In our declimp interpreter,
model expansion is implemented by calls to the IDP system [22], which con-
sists of the grounder GidL [23] and solver MinisatID [13].

Finite model checking: Check whether a given two-valued structure is
a model of a theory. This is an instance of model expansion and is im-
plemented as such.

Constraint propagation: Deduce facts that must hold in all models of a given
theory which complete a given three-valued structure. This is a useful mech-
anism in configuration systems [20] and for query answering in incomplete
databases [4]. The propagation algorithm we implemented is described in
[21].

Querying: Given an formula ϕ and a two-valued structure S, find all substitu-
tions for free variables of ϕ that make ϕ true in S. The implementation of
this mechanism makes use of Binary Decision Diagrams as described in [23].

Theorem proving: Given two theories T1 and T2, check whether T1 |= T2.
This is implemented by calling a theorem prover provided by the user. In
principle, any theorem prover that accepts TPTP [18] can be used.

Visualization: Show a visual representation of a given structure. We imple-
ment this by calling IDPDraw, a tool for visualizing finite structures in
which visual output is specified declaratively by definitions in our knowl-
edge representation language or in ASP.

The values returned by the reasoning methods can be used as input for other
reasoning methods and Lua-statements. We will illustrate this with an example
in the next section.

3 Programming in DECLIMP

Say we want to write an application that allows players to solve sudoku puzzles.
Such an application should be able to perform tasks such as generating puzzles,
showing puzzles on the screen, checking whether solutions (player’s choices)
satisfy the sudoku rules, giving hints to the player, etc. In this application
the different components we described before can clearly be distinguished: (1)

A Prototype of a Knowledge-Based Programming Environment 283

the background knowledge consists of a logic theory containing the well-known
sudoku constraints;

∀r∀n∃!c : Sudoku(r, c) = n
∀c∀n∃!r : Sudoku(r, c) = n
∀b∀n∃!r∃!c : InBlock(b, r, c) ∧ Sudoku(r, c) = n
∀b∀r∀c : InBlock(b, r, c) ⇔

b = ((r − 1) − ((r − 1)mod 3)) + ((c − 1) − ((c − 1)mod 3))/3 + 1

(2) the data is stored in logical structures representing puzzles, and (partial
and complete) solutions; and (3) the tasks we want it to perform, can be im-
plemented using well-known inference methods. For example, “given a partial
solution, complete the solution” is a typical model expansion task.

Below we show (a part of) a declimp program. The code shows the use
of an include statement and a namespace, and the declaration of a vocabulary
sudokuVoc and a theory sudokuTheory, where the latter is simply an ASCII
version of the theory shown above. Also note the main procedure at the bottom,
which will automatically be called when the program is passed to the interpreter.

#include "grid.idp"

namespace sudoku {

vocabulary sudokuVoc {

extern vocabulary grid:: simpleGridVoc

type Num isa nat

type Block isa nat

Sudoku(Row ,Col) : Num

InBlock(Block ,Row ,Col)

}

theory sudokuTheory : sudokuVoc {

! r n : ?1 c : Sudoku(r,c) = n.

! c n : ?1 r : Sudoku(r,c) = n.

! b n : ?1 r c : InBlock(b,r,c) & Sudoku(r,c) = n.

! r c b : InBlock(b,r,c) <=>

b = ((r-1)-((r -1)%3)) + ((c-1)-((c -1)%3))/3 + 1.

}

procedure solve(input) {

return modelExpand(sudokuTheory ,input)

}

procedure printSudoku(puzzle) {

-- code for visualizing a sudoku puzzle.

}

procedure createSudoku () {

math.randomseed(os.time ())

284 S. De Pooter et al.

local puzzle = grid:: makeEmptyGrid (9)

-- defined in grid.idp

stdoptions.nrmodels = 2

local currsols = modelExpand(sudokuTheory ,puzzle)

while #currsols > 1 do

repeat

col = math.random (1,9)

row = math.random (1,9)

num = currsols [1][sudokuVoc :: Sudoku](row ,col)

until num ~= currsols [2][sudokuVoc :: Sudoku]

(row ,col)

makeTrue(puzzle[sudokuVoc :: Sudoku].graph ,

{row ,col ,num})

currsols = modelExpand(sudokuTheory ,puzzle)

end

printSudoku(puzzle)

}

}

procedure main() {

sudoku :: createSudoku ()

}

Let us have a closer look at procedure createSudoku for creating sudoku puzzles.
First it initializes an empty puzzle by instantiating a new logical structure. This
is done by calling a procedure makeEmptyGrid which instantiates a structure
with data about a generic grid of a certain size, and then adding domains for
numbers and blocks particular for sudoku grids.

The second part of the procedure adds numbers to the grid until there is only
one solution left for the puzzle. This is realized by performing model expansion
(by calling modelExpand) to find two models of the theory that extend the given
partially filled in puzzle. When two models are found, the algorithm selects a
number that is unique for the first solution (that is, the number at the same
position in the second solution is different) and is not yet present in the puzzle.
When such an entry is found, it is added to the puzzle by making the tuple
{row, col, num} true in the interpretation of the function Sudoku(Row,Col):Num.
Next, the procedure asks for two new models, and the process starts over. When
only one model is found, the iteration stops, and procedure printSudoku is
called to show the result on the screen using the visualization tool mentioned in
the previous section.

4 Related Work

There have been many proposals in the literature to combine procedural and
declarative languages. A frequently occuring combination is that of a procedural
language in which a program can post constraints expressed in an (often ad-
hoc) declarative constraint language, while other primitives allow to call the

A Prototype of a Knowledge-Based Programming Environment 285

constraint-solving process on the constraint store, express heuristics or call other
processes, for example to edit or visualize output. Examples of systems with such
languages are CPLEX [1], Mozart [19] and Comet [15]. These systems differ
from declimp in the sense that they offer only one kind of inference, namely
constraint solving. A similar remark can be made about CLP and Prolog systems
with support for constraint propagation. There the “procedural language” is
the Prolog language under its procedural semantics. In our system high-level
concepts such as vocabularies, theories and structures are treated as first-class
citizens that can be operated upon by arbitrary inference and processing tools,
which offers more flexibility.

For another group of systems, control over execution of programs is in hands
of one inference mechanism – or at least that inference is the main mechanism –
and an integrated procedural language then allows users to stear some aspects
of the inference mechanism, or for example format input and output, but do
not allow to take over control. Examples of such systems are clingo [9] and
Zinc [14]. The procedural languages in these systems have a more limited task
then the one in declimp. In declimp the procedures are in control during
execution, not just one of the inference mechanisms.

5 Conclusion

We have presented a knowledge-based programming environment, providing a
declarative language for expressing background knowledge, an imperative pro-
gramming language for writing procedures, and logical structures for expressing
concrete data. The system also provides state-of-the-art inference tools for per-
forming various reasoning tasks.

We believe that a programming environment like the one proposed here
overcomes some of the limitations of “single-programming-style” paradigms, by
allowing a programmer to express the different types of information in soft-
ware applications in appropriate languages. Making this explicit distinction be-
tween different types of information will increase readability, maintainability and
reusability of programming code.

The prototype presented here has evolved into a new version of the IDP
system. It can be obtained from http://dtai.cs.kuleuven.be/krr/software.

References

1. IBM, ILOG CPLEX optimizer. http://www.ibm.com/software/integration/
optimization/cplex-optimizer

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

3. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory
and implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

http://dtai.cs.kuleuven.be/krr/software
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.ibm.com/software/integration/optimization/cplex-optimizer

286 S. De Pooter et al.

4. Denecker, M., Calabuig, Á.C., Bruynooghe, M., Arieli, O.: Towards a logical re-
construction of a theory for locally closed databases. ACM Trans. Database Syst.
35(3), 22:1–22:60 (2010)

5. Denecker, M., De Schreye, D., Willems, Y.: Terms in Logic programs: a problem
with their semantics and its effect on the programming methodology. CCAI: J.
Integr. Study Artif. Intell., Cogn. Sci. Appl. Epistemology 7(3–4), 363–383 (1990)

6. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Logic (TOCL) 9(2), 14:1–14:52 (2008)

7. Denecker, M., Vennekens, J.: Building a knowledge base system for an integration
of logic programming and classical logic. In: Pontelli, E., Garcia de la Banda, M.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008)

8. Fitting, M.: First-order logic and automated theorem proving, 2nd edn. Springer-
Verlag New York Inc., Secaucus, NJ, USA (1996)

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo. http://downloads.sourceforge.
net/potassco/guide.pdf (2010)

10. The IDP system. http://dtai.cs.kuleuven.be/krr/software (2012)
11. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua - an extensible extension

language. Softw.: Pract. Experience 26(6), 635–652 (1996)
12. Ierusalimschy, R., Henrique de Figueiredo, L., Celes, W.: Passing a language

through the eye of a needle. Queue 9, 20:20–20:29 (2011)
13. Mariën, M., Wittocx, J., Denecker, M., Bruynooghe, M.: SAT(ID): Satisfiability

of propositional logic extended with inductive definitions. In: Büning, H.K., Zhao,
X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)

14. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

15. Michel, L., Van Hentenryck, P.: The comet programming language and system. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 881–881. Springer, Heidelberg
(2005)

16. Mitchell, D.G., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a frame-
work for modelling and solving search problems. Technical Report TR 2006–24,
Simon Fraser University, Canada (2006)

17. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics
of logic programs with aggregates. Theory Pract. Logic Program. (TPLP) 7(3),
301–353 (2007)

18. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

19. Van Roy, P. (ed.): MOZ 2004. LNCS, vol. 3389. Springer, Heidelberg (2005)
20. Vlaeminck, H., Vennekens, J., Denecker, M.: A logical framework for configuration

software. In: Porto, A., Javier López-Fraguas, F. (eds.) PPDP, pp. 141–148. ACM,
New York (2009)

21. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for extended
first-order logic. In: CoRR, abs/1008.2121 (2010)

22. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system
for an extension of classical logic. In: Denecker, M. (ed.) LaSh, pp. 153–165 (2008)

23. Wittocx, J., Mariën, M., Denecker, M.: Grounding FO and FO(ID) with bounds.
J. Artif. Intell. Res. 38, 223–269 (2010)

http://downloads.sourceforge.net/potassco/guide.pdf
http://downloads.sourceforge.net/potassco/guide.pdf
http://dtai.cs.kuleuven.be/krr/software

WLP System Descriptions

Computing with Logic as Operator Elimination:
The ToyElim System

Christoph Wernhard(B)

Technische Universität Dresden, Dresden, Germany
christoph.wernhard@tu-dresden.de

Abstract. A prototype system is described whose core functionality
is, based on propositional logic, the elimination of second-order opera-
tors, such as Boolean quantifiers and operators for projection, forgetting
and circumscription. This approach allows to express many representa-
tional and computational tasks in knowledge representation – for exam-
ple computation of abductive explanations and models with respect to
logic programming semantics – in a uniform operational system, backed
by a uniform classical semantic framework.

1 Computation with Logic as Operator Elimination

We pursue an approach to computation with logic emerging from three theses:
1. Classical first-order logic extended by some second-order
operators suffices to express many techniques of knowledge representation.

Like the standard logic operators, second-order operators can be defined seman-
tically, by specifying the requirements on an interpretation to be a model of
a formula whose principal functor is the operator, depending only on seman-
tic properties of the argument formulas. Neither control structure imposed over
formulas (e.g. Prolog), nor formula transformations depending on a particu-
lar syntactic shape (e.g. Clark’s completion) are involved. Compared to classical
first-order formulas, the second-order operators give additional expressive power.
Circumscription is a prominent knowledge representation technique that can be
expressed with second-order operators, in particular predicate quantifiers [1].

2. Many computational tasks can be expressed as elimination of
second-order operators.

Elimination is a way to computationally process second-order operators, for
example Boolean quantifiers with respect to propositional logic: The input is
a formula which may contain the operator, for example a quantified Boolean
formula such as ∃q ((p ← q)∧(q ← r)). The output is a formula that is equivalent
to the input, but in which the operator does not occur, such as, with respect
to the formula above, the propositional formula p ← r. Let us assume that the
method used to eliminate the Boolean quantifiers returns formulas in which not
just the quantifiers but also the quantified propositional variables do not occur.
This syntactic condition is usually met by elimination procedures. Our method

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 289–296, 2013.
DOI: 10.1007/978-3-642-41524-1 17, c© Springer-Verlag Berlin Heidelberg 2013

290 C. Wernhard

then subsumes a variety of tasks: Computation of uniform interpolants, QBF and
SAT solving, as well as computation of certain forms of abductive explanations,
of propositional circumscription, and of stable models, as will be outlined below.

3. Depending on the application, outputs of computation with logic are
conveniently represented by formulas meeting syntactic criteria.

If results of elimination are formulas characterized just up to semantics, they
may contain redundancies and be in a shape that is difficult to comprehend.
Thus, they should be subjected to simplification and canonization procedures
before passed to humans or to machine clients. The output format depends
on the application problem: What is a CNF of the formula? Are certain facts
consequences of the formula? What are the models of the formula? What are its
minimal models? What are its 3-valued models with respect to some encoding
into 2-valued logics? Corresponding answers can be computed on the basis of
normal form representations of the elimination outputs: CNFs, DNFs, full DNFs,
and prime implicant forms. Of course, transformation into such normal forms
might by itself be an expensive task. Second-order operators allow to counter this
by specifying a small set of application relevant symbols that should be included
in the output, e.g. by Boolean quantification upon the irrelevant atoms.

2 Features of the System

ToyElim1 is a prototype system developed to investigate operator elimination
from a pragmatic point of view with small applications. For simplicity, it is
based on propositional logic, although its characteristic features should transfer
to first-order logic. It supports a set of second-order operators that have been
semantically defined in [11,13,15].

Formula Syntax. As the system is implemented in Prolog, formulas are rep-
resented by Prolog terms, the standard connectives corresponding to true/0,
false/0, ∼/1, ,/2, ;/2, ->/2, <-/2, <->/2. Propositional atoms are represented
by Prolog atoms or compound ground terms. The system supports proposi-
tional expansion with respect to finite domains of formulas containing first-order
quantifiers.

Forgetting. Existential Boolean quantification ∃p F can be expressed as for-
getting [4,11] in formula F about atom p, written forget{p}(F), represented
by forg([p], F ∈) in system syntax, where F ∈ is the system representation
of F . To get an intuition of forgetting, consider the equivalence forget{p}(F) ≡
F [p\true]∨F [p\false], where F [p\true] (F [p\false]) denotes F with all occurrences
of p replaced by true (false). Rewriting with this equivalence constitutes a naive
method for eliminating the forgetting operator. The formula forget{p}(F) can be
said to express the same as F about all other atoms than p, but nothing about p.

Elimination and Pretty Printing of Formulas. The central operation of
the ToyElim system, elimination of second-order operators, is performed by the
1 http://cs.christophwernhard.com/toyelim/, under GNU Public License.

http://cs.christophwernhard.com/toyelim/

Computing with Logic as Operator Elimination 291

predicate elim(F ,G), with input formula F and output formula G. For example,
define as extension of kb1/1 a formula (after [3]) as follows:

kb1(((shoes are wet <- grass is wet),
(grass is wet <- rained last night),
(grass is wet <- sprinkler was on))).

(1)

After consulting this, we can execute the following query on the Prolog toplevel:

?- kb1(F), elim(forg([grass is wet], F), G), ppr(G). (2)

This results in binding G to the output of eliminating the forgetting about
grass is wet. The predicate ppr/1 is one of several provided predicates for
converting formulas into application adequate shapes. It prints its argument as
CNF with clauses written as reverse implications:

((shoes are wet <- rained last night),
(shoes are wet <- sprinkler was on)). (3)

Scopes. So far, the first argument of forgetting has been a singleton set. More
generally, it can be an arbitrary set of atoms, corresponding to nested exis-
tential quantification. Even more generally, also polarity can be considered:
Forgetting can, for example, be applied only to those occurrences of an atom
which have negative polarity in a NNF formula. This can be expressed by liter-
als with explicitly written sign in the first argument of the forgetting operator.
Forgetting about an atom is equivalent to nested forgetting about the positive
and the negative literal with that atom. In accord with this observation, we
technically consider the first argument of forgetting always as a set of liter-
als, and regard an unsigned atom there as a shorthand representing both of
its literals. For example, [+grass is wet, shoes are wet] is a shorthand for
[+grass is wet, +shoes are wet, -shoes are wet]. Not just forgetting, but,
as shown below, also other second-order operators have a set of literals as para-
meter. Hence, we refer to a set of literals in this context by a special name, as
scope.

Projection. In many applications it is useful to make explicit not the scope
that is “forgotten” about, but what is preserved. The projection [11] of for-
mula F onto scope S, which can be defined for scopes S and formulas F as
projectS(F) ≡ forgetALL−S(F), where ALL denotes the set of all literals, serves
this purpose. Vice versa, forgetting could be defined in terms of projection:
forgetS(F) ≡ projectALL−S(F). The call to elim/2 in the query (2) can equiva-
lently be expressed with projection instead of forgetting by

elim(proj([shoes are wet, rained last night, sprinkler was on], F). (4)

User Defined Logic Operators – An Example of Abduction. ToyElim
allows the user to specify macros for use in the input formulas of elim/2. The

292 C. Wernhard

following example extends the system by a logic operator gwsc for a variant of
the weakest sufficient condition [8], characterized in terms of projection:

:- define elim macro(gwsc(S, F, G), ˜proj(complements(S),(F, ˜G))).
(5)

Here complements(S) specifies the set of the literal complements of the mem-
bers of the scope specified by S. The term gwsc(S, F, G) is the system syn-
tax for gwscS(F,G), the globally weakest sufficient condition [15] of formula G
on scope S within formula F , which satisfies the following: A formula H is
equivalent to gwscS(F,G) if and only if it holds that (1.) H ≡ projectS(H);
(2.) F |= H → G; (3.) For all formulas H ∈ such that H ∈ ≡ projectS(H ∈) and
F |= H ∈ → G it holds that H ∈ |= H. With the gwsc operator certain ab-
ductive tasks [3] can be expressed. The following query, for example, yields
abductive explanations for shoes are wet in terms of {rained last night,
sprinkler was on} with respect to the knowledge base (1):

?- kb1(F),
elim(gwsc([rained last night, sprinkler was on], F, shoes are wet),

G),
ppp(G).

(6)
The predicate ppp/1 serves, like ppr/1, to convert formulas to application ade-
quate shape. It writes a prime implicate form of its input in list notation. In the
example the output has two clauses, each representing an alternate explanation:

[[rained last night], [sprinkler was on]]. (7)

Scope-Determined Circumscription. A further second-order operator sup-
ported by ToyElim is scope-determined circumscription [15]. The correspond-
ing functor circ has, like proj and forg, a scope specifier and a formula as
arguments. It allows to express parallel predicate circumscription with varied
predicates [5] (only propositional, since the system is based on propositional
logic). The scope specifier controls the effect of circumscription: Atoms that oc-
cur just in a positive literal in the scope are minimized; symmetrically, atoms
that occur just negatively are maximized; atoms that occur in both polarities
are fixed; and atoms that do not at all occur in the scope are allowed to
vary. For example, the scope specifier, [+abnormal, bird], a shorthand for
[+abnormal, +bird, -bird], expresses that abnormal is minimized, bird is
fixed, and all other predicates are varied.

Predicate Groups and Systematic Renaming. Semantics for knowledge
representation sometimes involve what might be described as handling different
occurrences of a predicate differently – for example depending on whether they
are subject to negation as failure. If such semantics are to be modeled with
classical logic, then these occurrences can be identified by using distinguished
predicates, which are equated with the original ones when required. To this
end, ToyElim supports the handling of predicate groups: The idea is that each

Computing with Logic as Operator Elimination 293

predicate actually is represented by several corresponding predicates p0, . . . , pn,
where the superscripted index is called predicate group. In the system syntax,
the predicate group of an atom is represented within its main functor: If the
group is larger than 0, the main functor is suffixed by the group number; if it is
0, the main functor does not end in a number. For example p(a)0 and p(a)1 are
represented by p(a) and p1(a), respectively. In scope specifiers, a number is used
as shorthand for the set of all literals whose atom is from the indicated group,
and a number in a sign functor for the set of those literals which have that sign
and whose atom is from the indicated group. For example, [+(0), 1] denotes
the union of the set of all positive literals whose atom is from group 0 and of the
set of all literals whose atom is from group 1. Systematic renaming of all atoms
in a formula that have a specific group to their correspondents from another
group can be expressed in terms of forgetting [13]. The ToyElim system provides
the second-order operator rename for this. For example, rename([1-0], F) is
equivalent to F after eliminating second-order operators, followed by replacing
all atoms from group 1 with their correspondents from group 0.

An Example of Modeling a Logic Programming Semantics. Scope-
determined circumscription and predicate groups can be used to express the
characterization of the stable models semantics in terms of circumscription [7]
(described also in [6,13]). Consider the following knowledge base:

kb2(((shoes are wet <- grass is wet),
(grass is wet <- sprinkler was on, ˜sprinkler was abnormal1),

sprinkler was on)).
(8)

Group 1 is used here to indicate atoms that are subject to negation as failure:
All atoms in (8) are from group 0, except for sprinkler was abnormal1, which
is from 1. The user defined operator stable renders the stable models semantics:

:- define elim macro(stable(F), rename([1-0], circ([+(0),1], F))).
(9)

The following query then yields the stable models:

:- kb2(F), elim(stable((F)), G), ppp(G). (10)

The result is displayed with ppp/1, as in query (6). It shows here a DNF with
a single clause, representing a single model. The positive members of the clause
constitute the answer set

[[grass is wet, shoes are wet, ~sprinkler was abnormal,
sprinkler was on]]. (11)

If it is only of interest whether shoes are wet is a consequence of the knowledge
base under stable models semantics, projection can be applied to obtain a smaller
result. The query

:- kb2(F), elim(proj([shoes are wet], stable(F)), G), ppp(G).
(12)

will effect that the DNF [[shoes are wet]] is printed.

294 C. Wernhard

3 Implementation

The ToyElim system is implemented in SWI-Prolog and can invoke external
systems such as SAT and QBF solvers. It runs embedded in the Prolog environ-
ment, allowing for example to pass intermediate results between its components
through Prolog variables, as exemplified by the queries shown above.

The implementation of the core predicate elim/2 maintains a formula which
is gradually rewritten until it contains no more second-order operators. It is
initialized with the input formula, preprocessed such that only two primitively
supported second-order operators remain: forgetting and renaming. It then pro-
ceeds in a loop where alternately equivalence preserving simplifying rewritings
are applied, and a subformula is picked and handed over for elimination to a
specialized procedure. The simplifying rewritings include distribution of forget-
ting over subformulas and elimination steps that can be performed with low
cost [12]. Rewriting of subformulas with the Shannon expansion enables low-
cost elimination steps. It is performed at this stage if the expansion, combined
with low-cost elimination steps and simplifications, does not lead to an increase
of the formula size. The subformula for handing over to a specialized method is
picked with the following priority: First, an application of forgetting upon the
whole signature of a propositional argument, which can be reduced by a SAT
solver to either true or false, is searched. Second, a subformula that can be re-
duced analogously by a QBF solver, and finally a subformula which properly
requires elimination of forgetting. For the latter, ToyElim schedules a portfolio
of different methods, where currently two algorithmic approaches are supported:
Resolvent generation (SCAN, Davis-Putnam method) and rewriting of subfor-
mulas with the Shannon expansion [10,12]. Recent SAT preprocessors partially
perform variable elimination by resolvent generation. Coprocessor [9] is such a
preprocessor that is configurable such that it can be invoked by ToyElim for the
purpose of performing the elimination of forgetting.

4 Conclusion

We have seen a prototype system for computation with logic as elimination of
second-order operators. The system helped to concretize requirements on sys-
tems following this approach, concerning the user interface and the processing
methods. In the long run, such a system should be based on more expressive
logics than propositional logic. ToyElim is just a first pragmatic attempt, taking
advantage of recent advances in SAT solving. A major difference in a first-order
setting is that computations of elimination tasks then inherently do not termi-
nate for all inputs.

Research on the improvement of elimination methods includes further con-
sideration of techniques from SAT preprocessors, investigation of tableau and
DPLL-like techniques [2,12], and, in the context of first-order logic, the so called
direct methods [1]. In addition, it seems worth to investigate further types of out-
put: incremental construction, like enumeration of model representations, and
representations of proofs.

Computing with Logic as Operator Elimination 295

So far, the system has been applied in teaching and to investigate logic pro-
gramming semantics. Some application examples are provided on its Web page.
One of them shows generalizations of several logic programming semantics that
allow to exempt specified predicates from the closed world assumption [14], an-
other one shows how skeptical abduction with respect to the stable models se-
mantics and to the three-valued partial stable models semantics can be expressed
and implemented on the basis of the globally weakest sufficient condition. A third
example includes a small toy knowledge base about a touristic real-world scenario
to illustrate a range of further applications in a rudimentary way: Extraction of
knowledge concerning a given signature and of knowledge at a particular level of
abstraction, as well as certain forms of schema mapping, abduction, intensional
answers, knowledge base modularization and data protection.

The approach of computation with logic by elimination leads to a system
that provides a uniform user interface covering many tasks, like satisfiability
checking, computation of abductive explanations and computation of models for
various logic programming semantics. Variants of established concepts can be
easily expressed on a clean semantic basis and made operational. The approach
supports the co-existence of different knowledge representation techniques in a
single system, backed by a single classical semantic framework. This seems a nec-
essary precondition for logic libraries that accumulate knowledge independently
of some particular application.

References

1. Gabbay, D.M., Schmidt, R.A., Szafflas, A.: Second-Order Quantifier Elimina-
tion: Foundations, Computational Aspects and Applications. College Publications,
London (2008)

2. Huang, J., Darwiche, A.: DPLL with a trace: from SAT to knowledge compilation.
In: IJCAI-05, pp. 156–162. Morgan Kaufmann (2005)

3. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Logic
Comput. 2(6), 719–770 (1993)

4. Lang, J., Liberatore, P., Marquis, P.: Propositional independence - formula-variable
independence and forgetting. J. Artif. Intell. Res. 18, 391–443 (2003)

5. Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A.
(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming,
pp. 298–352. Oxford University Press, Oxford (1994)

6. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,
Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg
(2008)

7. Lin, F.: A study of nonmonotonic reasoning. Ph.D. thesis, Stanford University
(1991)

8. Lin, F.: On strongest necessary and weakest suΠcient conditions. Artif. Intell. 128,
143–159 (2001)

9. Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

296 C. Wernhard

10. Murray, N.V., Rosenthal, E.: Tableaux, path dissolution and decomposable nega-
tion normal form for knowledge compilation. In: Mayer, M.C., Pirri, F. (eds.)
TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 165–180. Springer, Heidelberg
(2003)

11. Wernhard, C.: Literal projection for first-order logic. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389–402. Springer,
Heidelberg (2008)

12. Wernhard, C.: Tableaux for projection computation and knowledge compilation.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 325–340.
Springer, Heidelberg (2009)

13. Wernhard, C.: Circumscription and projection as primitives of logic programming.
In: Technical Communications of the ICLP 2010. LIPIcs, vol. 7, pp. 202–211 (2010)

14. Wernhard, C.: Forward human reasoning modeled by logic programming modeled
by classical logic with circumscription and projection. Technical Report Knowledge
Representation and Reasoning 11-07, Technische Universität Dresden (2011)

15. Wernhard, C.: Projection and scope-determined circumscription. J. Symb. Com-
put. 47, 1089–1108 (2012)

Coprocessor – a Standalone SAT Preprocessor

Norbert Manthey(B)

Knowledge Representation and Reasoning Group,
Technische Universität Dresden, 01062 Dresden, Germany

norbert@janeway.inf.tu-dresden.de

Abstract. In this work a stand-alone preprocessor for SAT is presented
that is able to perform most of the known preprocessing techniques. Pre-
processing a formula in SAT is important for performance since redun-
dancy can be removed. The preprocessor is part of the SAT solver riss [9]
and is called Coprocessor. Not only riss, but also MiniSat 2.2 [11] benefit
from it, because the SatELite preprocessor of MiniSat does not imple-
ment recent techniques. By using more advanced techniques, Coprocessor
is able to reduce the redundancy in a formula further and improves the
overall solving performance.

1 Introduction

In theory SAT problems with n variables have a worst case execution time of
O(2n) [2]. Reducing the number of variables results in a theoretically faster
search. However, in practice the number of variables does not correlate with
the runtime. The number of clauses highly influences the performance of unit
propagation, which consumes almost 90 percent of the search time of modern
CDCL solvers. Preprocessing helps to reduce the size of the formula by removing
variables and clauses that are redundant.

During the last years many preprocessing techniques have been invented
and implemented in separate tools or only within a solver itself. Coprocessor
tries to make these techniques available without being shipped with a solver.1

Preprocessing techniques can be classified into two categories: Techniques, which
change a formula so that a model for the preprocessed formula is not a model
for the original formula, are called satisfiability-preserving techniques. For these
techniques undo information has to be stored. For the second category, which is
called equivalence-preserving techniques, this information is not required, because
the preprocessed and original formula are equivalent.

This paper is structured in the following way. An overview of the implemented
techniques is given in Sect. 2. Details on Coprocessor, a format for storing the
undo information and a comparison to SatELite, one of the currently mostly
used preprocessors, is given in Sect. 3. Finally, a conclusion is given in Sect. 4.
1 The tool is available at http://tools.computational-logic.org.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 297–304, 2013.
DOI: 10.1007/978-3-642-41524-1 18, c© Springer-Verlag Berlin Heidelberg 2013

http://tools.computational-logic.org

298 N. Manthey

2 Preprocessor Techniques

The notation used to describe the preprocessor is the following: variables are
numbers and literals are positive or negated variables, e.g. 2 and ¬2. A clause C is
a disjunction of a set of literals, denoted by [l1, . . . , ln]. A formula is a conjunction
of clauses. The original formula will be referred to as F , the preprocessed formula
is called F ∼. Unit propagation on F is denoted by BCP(l), where l is the literal
that is assigned to true.

2.1 Basic Preprocessing Rules

Techniques as Boolean Constraint Propagation, Subsumption and Resolution are
considered basic techniques. All of them preserve the equvalence of the formula.
Given a formula F , where a unit clause [l] ∈ F is found. Hence, to safisfy F
the literal l has to be assigned true. Next, the formula F can be simplified
accordingly: all satisfied clauses are removed and from all the remaining clauses
all occurrences of ¬l are removed.

Subsumption can be applied to two clauses C and D of the formula, if the
following property holds: all literals of C also appear in D. In this case, the D
is always satisfied when C is satisfied. Therefore, the clause D can be removed
from the formula.

A special form of resolution is self-subsuming resolution, which is also called
strengthening. In general, if there are two clauses C = [l, c1, . . . , cn] and D =
[¬l, d1, . . . , dm] the resolvent E = C ⊗ D is defined as follows:

D = [c1, dots, cn, d1, . . . , dm].

A property of this resolvent is that whenever both C and D are satisfied, also
E is satisfied. Thus, adding resolvents to a formula preserves equvalence. The
special case of self-subsuming resolution is the following: C and D are resolved
to produce E. Next, E is added to the formula and afterwards it either C or D
can be removed because they are subsumed by E. Usually, E is only added to
the formula if it subsumes on of the other two clauses.

2.2 Satisfiability-Preserving Techniques

The following techniques change F in a way, that models of F ∼ are no model
for F . Therefore, undo information is required. Undoing of these methods has
to be done carefully, because the order influences the resulting assignment. All
the elimination steps have to be undone in the opposite order they have been
applied before [6].
Variable Elimination (VE) [3] is a technique to remove variables from the formula
by resolving the according clauses in which the variable occurs. Given two sets
of clauses: Cx with the literal x and Cx with x. Let G be the union of these
two sets G ≡ Cx ∪ Cx. Resolving Cx and Cx results in a new set of clauses G∼,
where tautologies are not included. It is shown in [3] that G can be replaced

Coprocessor – a Standalone SAT Preprocessor 299

by G∼ without changing the satisfiability of the formula. If a model is needed
for F , then the partial model can be extended using the original clauses F to
assign variable x. Usually, applying VE to a variable results in a larger number
of clauses. In state-of-the-art preprocessors VE is only applied to a variable if
the number of clauses decreases. The resulting formula depends on the order of
the eliminated variables. Pure literal elimination is a special case of VE.
Blocked Clause Elimination (BCE) [7] removes redundant blocked clauses. A
clause C is blocked if it contains a blocking literal l. A literal l is a blocking
literal, if l is part of C, and for each clause C ∼ ∈ F with l ∈ C ∼ the resolvent
C ⊗l C

∼ is a tautology [4,7]. Removing a blocked clause from F changes the
satisfying assignments [4]. BCE is confluent [7].
Equivalence Elimination (EE) [5] removes a literal l if it is equivalent to another
literal l∼. Only one literal per equivalence class is kept. Equivalent literals can be
found by finding strongly connected components in the binary implication graph
(BIG). The BIG represents all implications in the formula by directed edges
l → l∼ between literals that occur in a clause [l, l∼]. If a cycle a → b → c → a is
found, there is also a cycle a → b → c → a and therefore a ≡ b ≡ c can be shown
and applied to F by replacing b, and c by a. Finally, double literal occurrences
and tautologies are removed.

2.3 Equivalence-Preserving Techniques

Equivalence-preserving techniques can be applied in any order, because the pre-
processed formula is equivalent to the original one. By combining the following
techniques with satisfiability-preserving techniques the order of the applied tech-
niques has to be stored, to be able to undo all changes correctly.
Hidden Tautology Elimination (HTE) [4] is based on the clause extension hidden
literal addition (HLA). After the clause C is extended by HLA, C is removed if
it is tautology. The HLA of a clause C with respect to a formula F is computed
as follows: Let l be a literal of C and [l∼, l] ∈ F \ {C}. If such a literal l∼ can be
found, C is extended by C := C ∪ l∼. This extension is applied until fix point.
HLA can be regarded as the opposite operation of self subsuming resolution.
The algorithm is linear time in the number of variables [4].
Probing [8] is a technique to simplify the formula by propagating variables in
both polarities l and l separately and comparing their implications or by prop-
agating all literals of a clause C = [l1, . . . , ln], because it is known that one of
the candidates has to be satisfied.

Probing a single variable can find a conflict and thus finds a new unit. The
following example illustrates the other cases:

BCP (1) ⇒ 2, 3, 4,¬5,¬ 7
BCP (1) ⇒ 2,¬ 4, 6, 7

To create a complete assignment, variable 1 has to be assigned and both possible
assignments imply 2, so that 2 can be set to true immediately. Furthermore, the

300 N. Manthey

equivalences 4 ≡ 1 and 7 ≡ 1 can be found. These equivalences can also be
eliminated. Probing all literals of a clause can find only new units.
Vivification (also called Asymmetric Branching) [12] reduces the length of a
clause by propagating the negated literals of a clause C = [l1, . . . , ln] iteratively
until one of the following three cases occurs:

1. BCP({l1, . . . , li}) results in an empty clause for i < n.
2. BCP({l1, . . . , li}) implies another literal lj of the C with i < j < n
3. BCP({l1, . . . , li}) implies another negated literal lj of the C with i < j ≤ n

In the first case, the unsatisfying partial assignment is disallowed by adding a
clause C ∼ = [l1, . . . , li]. The clause C ∼ subsumes C. The implication l1∧· · ·∧ li →
lj in the second case results in the clause C ∼ = [l1, . . . , li, lj] that also subsumes
C. Formulating the third case into a clause C ∼ = [l1, . . . , li, lj] subsumes C by
applying self subsumption to C ∼∼ = C ⊗lj C

∼ = [l1, . . . , lj−1, lj+1, . . . , ln].
Extended Resolution (ER) [1] introduces a new variables v to a formula that is
equivalent to a disjunction of literals v ≡ l ∨ l∼. All clauses in F are updated
by removing the pair and adding the new variable instead. It has been shown,
that ER is good for shrinking the proof size for unsatisfiable formulas. Applying
ER during search as in [1] resulted in a lower performance of riss, so that this
technique has been put into the preprocessor and replaces the most frequent
literal pairs. Still, no deep performance analysis has been done on this technique.

3 Coprocessor

The preprocessor of riss, Coprocessor, implements all the techniques presented
in Sect. 2 and introduces many algorithm parameters. A description of these
parameters can be found in the help of Coprocessor.2 The techniques are executed
in a loop on F , so that for example the result of HTE can be processed with VE
and afterwards HTE tries to eliminate clauses again.

Coprocessor provides a black-list and a white-list of variables. Variables on
the white-list are tabooed for any non-model-preserving techniques, thus their
semantic is the same in F ∼. Variables on the blacklist are always removed by
VE. Furthermore, the resulting formula can be compressed. Due to assigned
and removed variables, the variables of the reduct of F ∼ are usually not dense
any more, resulting in unnecessary memory overhead. To overcome this weak-
ness, Coprocessor fills these gaps with present variables and stores the already
assigned variables for postprocessing the model. The compression cannot be com-
bined with the white-list. Another transformation can be performed, namely the
conversion from encoded CSP domains from the direct encoding to the regular
encoding as described in [10].

2 The source code can be found at http://www.ki.inf.tu-dresden.de/∼norbert.

http://www.ki.inf.tu-dresden.de/~norbert

Coprocessor – a Standalone SAT Preprocessor 301

3.1 The Map File Format

A map file is used to store the undo information for postprocessing a model of
F ∼ such that it becomes a model for F again. The map file and the model for F ∼

can be used to restore the model for F by giving this information to Coprocessor.
The following information has to be stored:

Once Per elimination step

Compression table Variable elimination
Equivalence classes Blocked clause elimination

Equivalence elimination step

The map file is divided into two parts. A partial example file for illustration
is given in Table 1. The format is described based on this example file. Each
occurring case is also covered in the description. The first line has to state
“original variables” (line 1). This number is specified in the next line (line 2).
Next, the compression information is given by beginning with either “compress
table” (line 3), if there is a table, or “no table”, if there is no compression.
Afterwards, the tables are given where each starts with a line “table k v” and
k represents the number of the table and v is the number of variables before
the applied compression (line 4). The next line gives the compression by simply
giving a mapping that depends on the order: the ith number in the line is the
variable that is represented by variable i in the compressed formula (line 5). The
line is closed by a 0, so that a standard clause parser can be used. The next line
introduces the assignments in the original formula by saying “units k” (line 6).
The following 0-terminated line lists all the literals that have been assigned true
in the original formula (line 7). The compression is completed with a line stating
“end table” (line 8).

At the moment, only a single compression is supported, and thus, k is always
0. The compression is applied after all other techniques and therefore the follow-
ing details are given with respect to the decompressed preprocessed formula F ∼.
The next static information is the literals of the EE classes. They are introduced
by a line “ee table” (line 9). The following lines represent the classes where the
first element is the representative of the class that is in F ∼(line 10-12). Each
class is ordered ascending, so that the EE information can be stored as a tree.

Table 1. Example map file

1 original variables 9 ee table 17 bce 10623
2 30867 10 1 -19 0 18 -10429 10623 -30296 0
3 compress tables 11 2 -20 0 19 ...
4 table 0 30867 12 ... 20 ve 812 1
5 1 2 3 5 6 7 9 10 11 ... 0 13 postprocess stack 21 -812 -74 0
6 units 0 14 ee 22 ve 6587 4
7 -31 32 ... -30666 -30822 0 15 bce 523 23 6587 6615 0
8 end table 16 -81 523 -6716 0 24 ...

302 N. Manthey

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

re
du

ct
io

n
of

 c
la

us
es

 in
 p

er
ce

nt

instances

Original
Coprocessor

SatELite

Fig. 1. Comparing the relative clause reduction of the preprocessors

Again, each class is terminated by a 0. Finally, the postprocess stack is given
and preluded with a line “postprocess stack” (line 13). Afterwards the elimina-
tions of BCE and VE are stored in the order they have been performed. BCE
is prefaced with a line “bce l” where l is the blocking literal (line 15,17). The
next line gives the according blocked clause (line 16,18). For VE the first line
is “ve v n” where v is the eliminated variable and n is the number of clauses
that have been replaced (line 20,22). The following n lines give the according
clauses (line 21,23-26). Finally, for EE it is only stated that EE has been applied
by writing a line “ee”, because postprocessing EE depends also on the variables
that are present at the moment (line 14). Some of the variables might already
be removed at the point EE has been run, so that it is mandatory to store this
information.

3.2 Preprocessor Comparison

A comparison of the relative formula reductions of Coprocessor and the current
standard preprocessor SatELite [3] is given in Fig. 1 and has been performed on
1155 industrial and crafted instances from recent SAT Competitions and SAT
Races3. Due to extended resolution, Coprocessor can increase the number of
clauses, whereby the average length is still reduced. Coprocessor is also able to
reduce the number of clauses more than SatELite. The instances are ordered by
the reduction of SatELite so that the plot for Coprocessor produces peaks.

Since SatELite and MiniSAT [11] have been developed by the same authors,
the run times of MiniSAT with the two preprocessors are compared in Fig. 2.
Comparing these run times of MiniSAT (MS) combined with the preprocessors,
it can be seen that by using a preprocessor the performance of the solver is much
3 For more details see http://www.ki.inf.tu-dresden.de/∼norbert/paperdata/

WLP2011.html.

http://www.ki.inf.tu-dresden.de/~norbert/paperdata/WLP2011.html
http://www.ki.inf.tu-dresden.de/~norbert/paperdata/WLP2011.html

Coprocessor – a Standalone SAT Preprocessor 303

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 200 300 400 500 600 700

tim
e

in
 s

ec
on

ds

solved instances

MS
MS+S

MS+Co

Fig. 2. Runtime comparison of MiniSAT and the preprocessors SatELite and
Coprocessor

higher. Furthermore, the combination with Coprocessor (MS+Co) solves more
instances than SatELite (MS+S) for most of the timeouts.

4 Conclusion and Future Work

This work introduces the SAT preprocessor Coprocessor that implements almost
all known preprocessing techniques and additional features. Experiments showed
that the default configuration of Coprocessor performs better than SatELite
when combined with MiniSAT 2.2. Coprocessor provides many parameters for
all its techniques that can be optimized for special use cases. Additionally, a
map file format is presented that can be used to store the preprocessing infor-
mation and to re-construct the model for the original formula if the model for the
preprocessed formula is given. Future development of this preprocessor includes
adding the latest techniques such as HLE and HLA [4,5] and to parallelize it to
be able to use multi-core architectures.

Acknowledgment. The author would like to thank Marijn Heule for providing an
implementation of HTE and discussing the dependencies of the algorithms.

References

1. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for
clause learning sat solvers. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

2. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing (1971)

3. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 61–75. Springer, Heidelberg (2005)

304 N. Manthey

4. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397,
pp. 357–371. Springer, Heidelberg (2010)

5. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on
binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

6. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345.
Springer, Heidelberg (2010)

7. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

8. Lynce, I., Marques-Silva, J.: Probing-based preprocessing techniques for proposi-
tional satisfiability. In: ICTAI, pp. 105–110. IEEE Computer Society (2003)

9. Manthey, N.: Solver Submission of riss 1.0 to the SAT Competition 2011. Tech.
Rep. 1, Knowledge Representation and Reasoning Group, TU Dresden, Dresden,
Germany (2011)

10. Manthey, N., Steinke, P.: Quadratic Direct Encoding vs. Linear Order Encoding.
Tech. rep, Knowledge Representation and Reasoning Group, TU Dresden, Dresden,
Germany (2011)

11. Sörensson, N.: Minisat 2.2 and minisat++ 1.1. http://baldur.iti.uka.de/
sat-race-2010/descriptions/solver 25+26.pdf (2010)

12. Piette, C., Hamadi, Y., Säıs, L.: Vivifying propositional clausal formulae. In: ECAI,
pp. 525–529. IOS Press (2008)

http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf

The SeaLion has Landed:
An IDE for Answer-Set

Programming—Preliminary Report

Johannes Oetsch, Jörg Pührer1(B), and Hans Tompits

Institut für Informationssysteme 184/3,
Technische Universität Wien,

Favoritenstraße 9-11, 1040 Vienna, Austria
{oetsch, puehrer, tompits}@kr.tuwien.ac.at

Abstract. We report about the current state and designated features of
the tool SeaLion, aimed to serve as an integrated development environ-
ment (IDE) for answer-set programming (ASP). A main goal of SeaLion
is to provide a user-friendly environment for supporting a developer to
write, evaluate, debug, and test answer-set programs. To this end, new
support techniques have to be developed that suit the requirements of
the answer-set semantics and meet the constraints of practical applica-
bility. In this respect, SeaLion benefits from the research results of a
project on methods and methodologies for answer-set program develop-
ment in whose context SeaLion is realised. Currently, the tool provides
source-code editors for the languages of Gringo and DLV that offer syn-
tax highlighting, syntax checking, refactoring functionality, and a visual
program outline. Further implemented features are a documentation gen-
erator, support for external solvers, and visualisation as well as visual
editing of answer sets. SeaLion comes as a plugin of the popular Eclipse
platform and provides itself interfaces for future extensions of the IDE.

1 Introduction

Answer-set programming (ASP) is a well-known and fully declarative problem-
solving paradigm based on the idea that solutions to computational problems
are represented in terms of logic programs such that the models of the latter,
referred to as their answer sets, provide the solutions of a problem instance (for
an overview about ASP, we refer to a survey article by Gelfond and Leone [1]
or to the well-known textbook by Baral [2]). In recent years, the expressibility
of languages supported by answer-set solvers increased significantly [3]. As well,
ASP solvers have become much more efficient; e.g., the solver Clasp proved to
be competitive with state-of-the-art SAT solvers [4].

Despite these improvements in solver technology, a lack of suitable engi-
neering tools for developing programs is still a handicap for ASP towards gain-
ing widespread popularity as a problem-solving paradigm. This issue is clearly

This work was partially supported by the Austrian Science Fund (FWF) under
project P21698.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 305–324, 2013.
DOI: 10.1007/978-3-642-41524-1 19, c© Springer-Verlag Berlin Heidelberg 2013

306 J. Oetsch et al.

recognised in the ASP community, and work to fill this gap has started recently,
addressing issues like debugging, testing, and the modularity of programs
[5–13]. Additionally, in order to facilitate tool support as known for other pro-
gramming languages, attempts to provide integrated development environments
(IDEs) have been put forth. Work in this direction includes the systems APE [14],
ASPIDE [15], and iGROM [16].

Following this endeavour, in this paper, we describe the current status and
designated features of a further IDE, SeaLion, developed as part of an ongo-
ing research project on methods and methodologies for developing answer-set
programs [17].

SeaLion is designed as an Eclipse plugin, providing useful and intuitive
features for ASP. Besides experts, the target audience for SeaLion are soft-
ware developers new to ASP yet who are familiar with support tools as used
in procedural and object-oriented programming. Our goal is to fully support
the languages of the current state-of-the-art solvers Clasp (in conjunction with
Gringo) [3,18] and DLV [19], which distinguishes SeaLion from the other IDEs
mentioned above which support only a single solver. Indeed, APE [14], which is
also an Eclipse plugin, supports only the language of Lparse [20] that is a subset
of the language of Gringo, whilst ASPIDE [15], a recently developed standalone
IDE, offers support for DLV programs only. Although iGROM provides basic func-
tionality for the languages of both Lparse and DLV [16], it currently does not
support the latest version of DLV or the full syntax of Gringo.

At present, SeaLion is in a beta version that implements important core
functionality and some advanced features. In particular, the languages of DLV
and Gringo are supported to a large extent. The individual parsers translate
programs and answer sets to data structures that are part of a rich and flex-
ible framework for internally representing program elements. Based on these
structures, the editor provides syntax highlighting, syntax checks, error report-
ing, error highlighting, and automatic generation of a program outline. A handy
implemented refactoring feature allows for uniform and safe renaming of predi-
cates and terms throughout a program and even across multiple files. There is
functionality to manage external tools such as answer-set solvers and to define
arbitrary pipes between them (as needed when using separate grounders and
solvers). Moreover, in order to run an answer-set solver on the created programs,
launch configurations can be created in which the user can choose input files, a
solver configuration, command line arguments for the solver, as well as output-
processing strategies. Answer sets resulting from a launch can either be parsed
and stored in a view for interpretations, or the solver output can be displayed
unmodified in Eclipse’s built-in console view.

Another key feature of SeaLion is the capability for the visualisation and
visual editing of interpretations. This follows ideas from the visualisation tools
ASPVIZ [21] and IDPDraw [22], where a visualisation program ΠV (itself being an
answer-set program) is joined with an interpretation I that shall be visualised.
Subsequently, the overall program is evaluated using an answer-set solver, and
the visualisation is generated from a resulting answer set. However, the editing

The SeaLion has Landed: An IDE for Answer-Set Programming 307

feature of SeaLion allows also to graphically manipulate the interpretations
under consideration which is neither supported by ASPVIZ nor by IDPDraw. The
visualisation functionality of SeaLion is itself represented as an Eclipse plugin,
called Kara.1 In this paper, however, we describe only the basic functionality of
Kara; a full description is given in a companion paper [23].

SeaLion integrates the documentation generator ASPDoc for ASP that is
based on Lana (Language for ANnotating Answer-set programs), an annotation
language for structuring, documenting, and testing answer-set programs [24].

The remainder of the paper is outlined as follows. In the next section, we
shortly review the ASP solver languages supported by SeaLion. We discuss the
general structure of the IDE, design choices regarding the implementation, as
well as how to obtain SeaLion in Sect. 3. Section 4 gives an overview about
features that are already functional in SeaLion, whereas Sect. 5 provides an
outlook over functionality that is planned to be integrated in the future. In
Sect. 6, we discuss other systems related to SeaLion, and we conclude in Sect. 7.

2 Supported ASP Languages

As we focus on supporting ASP developers, we deal with concrete solver lan-
guages and refer the reader to the textbook by Baral [2] for a formal introduction
to ASP.

SeaLion offers support for the two major ASP solver language families, viz.
the input language of the grounding tool Gringo that extends the one of the
Lparse grounder and the language of the DLV solver. Both share a common
basic Prolog-style rule syntax. In brief, an answer-set program consists of rules
of the form

a1 | · · · | al :− al+1, . . . , am, not am+1, . . . , not an,

where n ≥ m ≥ l ≥ 0, “not” denotes default negation, all ai are first-order
literals (i.e., atoms possibly preceded by the strong negation symbol “−”), and
“|” is the disjunction symbol (DLV additionally allows for denoting disjunction
by the letter “v”). For a rule r as above, the expression left to the symbol “:−”
is the head of r and the expression to the right of “:−” is the body of r. If n = l,
r is a fact ; if r contains no disjunction, r is normal ; and if l = 0 and n > 0, r is
a constraint. For facts, the symbol “:− ” is usually omitted.

Despite the common basic rule syntax, the languages of Gringo and DLV differ
substantially when it comes to extended features. For one thing, aggregation in
Gringo is realised by weight constraint literals that assign weights to literals
such that the sum of the weights of true literals must lie between given bounds.
For example, consider the weight literal

2 [a=1, b=1, c=3] 4,

1 The name derives, with all due respect, from “Kara Zor-El”, the native Kryptonian
name of Supergirl, given that Kryptonians have visual superpowers on Earth.

308 J. Oetsch et al.

assigning atoms a and b weight 1 and atom c weight 3. The weight literal is true
when the sum of the weights of true atoms is between 2 and 4, i.e., when a and
b are true but c is not, or if c and at most one of a and b are true. Aggregates
in DLV, on the other side, are based on functions over so-called symbolic sets
that are pairs of (a list of) variables and a conjunction of literals in which these
variables appear. For example, the aggregate

2 <= #sum {X : a(X) } <= 4

is true if the sum of all (integer) constants c such that a(c) is true is between
2 and 4. Hence, the aggregate is, e.g., true if a(1) and a(3) but no other
atom of predicate a is true. As can be seen from the example, DLV aggre-
gates require the use of variables but Gringo weight constraint literals assign
weights to ground literals. Variables in weight constraints are handled using
so-called conditions that can also be used for ordinary literals in Gringo but
are not available in DLV. For example, during grounding, the literal
redEdge(X,Y):edge(X,Y):red(X):red(Y) in the body of a rule is replaced
by the list of all literals redEdge(n1,n2), where edge(n1,n2), red(n1), and
red(n2) can be derived.

Further syntactic differences between the languages of Gringo and DLV are
related to finding optimal answer sets. DLV uses special rules, called weak con-
straints, for optimisation, while Gringo uses minimise and maximise statements.
While filtering atoms in the output can be done by hide and show statements in
the case of Gringo, command-line arguments are needed in the case of DLV. For
a more detailed description of the solver languages, we refer to the respective
user manuals [25,26].

3 Implementation Principles, Architecture,
and Availability

A key aspect in the design of SeaLion is extensibility. That is, on the one hand,
we want to have enough flexibility to handle further ASP languages such that
previous features can deal with them with no or only little adaption. On the
other hand, we want to provide a powerful API framework that can be used by
future features. To this end, we defined a hierarchy of classes and interfaces that
represent program elements, i.e., fragments of ASP languages. This is done in
a way such that we can use common interfaces and base classes for represent-
ing similar program elements of different ASP languages. For instance, we have
different classes for representing literals of the Gringo language and literals of
the DLV language in order to be able to handle subtle differences. For example,
as DLV is unaware of conditions, an object of class DLVStandardLiteral has
no support for them, whereas a GringoStandardLiteral object keeps a list of
condition literals. Substantial differences in other language features, like aggre-
gates, optimisation, and filtering support, are also reflected by different classes
for Gringo and DLV, respectively. However, whenever possible, these classes are

The SeaLion has Landed: An IDE for Answer-Set Programming 309

Fig. 1. Technology stack of SeaLion. An arrow indicates that a module is required by
another.

derived from a common base class or share common interfaces. Therefore, plu-
gins can, for example, use a general interface for aggregate literals to refer to
aggregates of both languages. Hence, current and future feature implementations
can make use of high-level interfaces and stay independent of the concrete ASP
language to a large extent.

Also, within the SeaLion implementation, the aim is to have independent
modules for different features, in form of Eclipse plugins, that ensure a well-
structured code. Currently, there are the following plugins: the main plugin, a
plugin that adapts the ANTLR parsing framework [27] to our needs, two solver
plugins, one for supporting Gringo/Clasp and one for DLV, and the Kara plugin
for answer-set visualisation and visual editing. Figure 1 depicts the technology
stack of SeaLion, illustrating the embedding in Eclipse and the Java Runtime
Environment (JRE), the aforementioned plugins, as well as the use of answer-set
solvers as external applications.

It is a key aim to smoothly integrate SeaLion in the Eclipse platform and to
make use of functionality the latter provides wherever suitable. The motivation
is to exploit the rich platform as well as to ensure compatibility with upcoming
versions of Eclipse.

The decision to build on Eclipse, rather than writing a stand-alone applica-
tion from scratch, has many benefits. For one, we profit from software reuse as we
can make use of the general GUI of Eclipse and just have to adapt existing func-
tionality to our needs. Examples include the text editor framework, source-code
annotations, problem reporting and quick fixes, project management, the undo-
redo mechanism, the console view, the refactoring and the navigation framework
(Outline, Project Explorer), and launch configurations. Moreover, much func-
tionality of Eclipse can be used without any adaptions, e.g., workspace man-
agement, the possibility to define working sets, i.e., grouping arbitrary files and
resources together, software versioning and revision control (e.g., based on SVN
or CVS), and task management. Another clear benefit is the popularity of Eclipse
among software developers, as it is a widely used standard tool for developing
Java applications. Arguably, people who are familiar with Eclipse and basic ASP
skills will easily adapt to SeaLion. Finally, choosing Eclipse for an IDE for ASP
offers a chance for integration of development tools for hybrid languages, i.e.,
combinations of ASP and procedural languages. For instance, Gringo supports

310 J. Oetsch et al.

the use of functions written in the LUA scripting language [28]. As there is a LUA
plugin for Eclipse available, one can at least use that in parallel with SeaLion.
However, there is also potential for a tighter integration of the two plugins.

SeaLion is free software published under the GNU General Public License
version 3. For more information on SeaLion and installation instructions we
refer to the project web site

http://www.sealion.at.

4 Current Features

In this section, we describe the features that are already operational in SeaLion,
including technical details on the implementation.

4.1 Source-Code Editor

The central element in SeaLion is the source-code editor for logic programs. For
now, it comes in two variations, one for DLV and one for Gringo. A screenshot
of a Gringo source file in SeaLion’s editor is given in Fig. 2. By default, files

Fig. 2. A screenshot of SeaLion’s editor, the program outline, and the interpretation
view.

http://www.sealion.at

The SeaLion has Landed: An IDE for Answer-Set Programming 311

with names ending in “.lp”, “.lparse”, “.gr”, or “.gringo” are opened in the
Gringo editor, whereas files with extensions “.dlv” or “.dl” are opened in the
DLV editor. Nevertheless, any file can be opened in either editor if required.

The editors provide syntax highlighting, which is computed in two phases.
Initially, a fast syntactic check provides initial colouring and styling for comments
and common tokens like dots concluding rules and the rule implication symbol.
While editing the source code, after a few moments of user inactivity, the source
code is parsed and data structures representing the program are computed and
stored for various purposes. The second phase of syntax highlighting is already
based on this program representation and allows for fine-grained highlighting
depending not only on the type of the program element but also on its role. For
instance, a literal that is used in the condition of another literal is highlighted
in a different way than stand-alone literals.

The parsers used are based on the ANTLR framework [27] and are in some
respect more lenient than the respective solver parsers. For one thing, they are
more tolerant towards syntax errors. For instance, in many cases they accept
terms of various types (constants, variables, aggregate terms) where a solver
requires a particular type, like a variable. The errors will still be noticed, during
building the program representation or afterwards, by means of explicit checks.
This tolerance allows for more specific warning and error reporting than provided
by the solvers. For example, the system can warn a user that a constant was used
on the left-hand side of an assignment where only a variable is allowed. Another
parsing difference is the handling of comments. The parser does not throw them
away but collects them and associates them to the program elements in their
immediate neighbourhood. One benefit is that the information contained in com-
ments can be kept when performing automatic transformations on the program,
like rule reorderings or translations to other logic programming dialects. Another
advantage is that we can make use of comments for enriching the language with
our own meta statements that do not interfere with the solver when running the
file. We reserved the token “\%!” for initiating single-line meta commands and
“\%*!” and “*\%” for the start and end of block meta commands in the Gringo
editor, respectively. Currently, meta commands are used for assigning properties
to program elements.

Example 1. In the following source code, a meta statement assigns the name
“r1” to the rule it precedes.

%! name = r1;
a(X) :- c(X).

These names are currently used in an ancillary application of SeaLion for reifying
disjunctive non-ground programs as used in a previous debugging approach [10].
Moreover, names assigned to program elements as above can be seen in Eclipse’s
Outline View. SeaLion uses this view to give an overview of the edited program in
a tree-shaped graphical representation. The rules of the programs are represented
by nodes of this tree. By expanding the descendant nodes of an individual rule
node, one can see its elements, i.e., head, body, literals, predicates, terms, etc.

312 J. Oetsch et al.

(cf. Fig. 2). Clicking on such an element selects the corresponding program code
in the editor, and the programmer can proceed editing there. A similar outline
is also available in Eclipse’s “Project Explorer” as subtree under the program’s
source file.

Another feature of the editor is the support for Eclipse annotations. These are
means to temporarily highlight parts of the source code. For instance, SeaLion
annotates occurrences of the program element under the text cursor. If the cursor
is positioned over a literal, all literals of the same predicate are highlighted in the
text and in a bar next to the vertical scrollbar that indicates the positions of all
occurrences in the overall document. Likewise, when a constant or a variable in
a rule is on the cursor position, their occurrences are detected within the whole
source code or within the rule, respectively.

A particular application of Eclipse annotations is problem reporting. Syn-
tax errors and warnings are displayed in two ways. First, they are marked in
the source code with a zig-zag styled underline. Second, they are displayed in
Eclipse’s “Problem View” that collects various kinds of problems and allows for
directly jumping to the problematic source code region upon a mouse click.

SeaLion offers initial functionality for refactoring answer-set programs.
Refactoring is the process of improving the source code of a program, e.g., by
enhancing its structure, reusability, or readability, without changing its exter-
nal behaviour. In particular, we implemented functionality for uniform and safe
renaming of predicates, constants, function symbols, and variables throughout
a user-defined set of files containing answer-set programs. To initiate renaming,
the user can either select the targeted program element in the Outline View or
place the cursor on it within the editor and use the menu or a keyboard shortcut
to open the renaming dialog. On the dialog’s first page, the user can specify
the new name for the program element and select the files in which renaming
should take place. When renaming variables, however, the latter choice is not
available because variables are only renamed within a rule and therefore within
the same file in which the chosen variable appears. The motivation is that two
variables with the same identifier in different rules often have a different mean-
ing. The renaming dialog warns the user if the new name of the program element
is already in use anywhere else in the selected programs. As such a renaming still
could be intended, it is possible to perform renaming, nevertheless. Once the new
name is chosen, the user has the possibility to directly apply the changes implied
by renaming or revise them on a preview page. Here, one can inspect the effects
file by file where the original as well as the new source code are displayed next
to each other and all hypothetical changes are highlighted as depicted in Fig. 3.

4.2 Documentation Feature

SeaLion allows for automatically generating source code documentation for
answer-set programs, similar as tools like JavaDoc or Doxygen do for other
programming languages. For this purpose, the IDE incorporates the ASPDoc doc-
umentation generator, a recently developed tool that takes annotated ASP code
as input and produces HTML files as output, based on the Lana annotation

The SeaLion has Landed: An IDE for Answer-Set Programming 313

Fig. 3. Reviewing file changes implied by renaming predicate col/2 to column/2.

language [24]. Lana is designed to support the development of answer-set pro-
grams even beyond documentation, allowing to group rules into coherent blocks
and to specify language signatures, types, pre- and postconditions, as well as unit
tests for such blocks. Similar to meta commands in SeaLion, these annotations
are invisible to an ASP solver since they have the form of program comments,
but they can be interpreted by specialised support tools, e.g., for testing and
verification purposes or for eliminating sources of common programmer errors
by realising syntax checking or code-completion features. The following example
code demonstrates Lana annotations for grouping ASP code into blocks and
describing predicates and their arguments using @atom and @term tags of Lana:

%* @block maze {

%* This is the main block of the maze generation program.

%* @atom entrance(R,C) gives the position of the maze entrance

%* @term R is a row index

%* @with 0 < R, R < 20

%* @term C is a column index

%* @with 0 < R, R < 20

%* ...

empty(R,C) | wall(R,C) :- row(R),col(C).

...

%* }

ASP documentation generation can be accessed through Eclipse’s export
menu. After selecting the ASP programs that should be documented and a tar-
get directory, different HTML files are created with index.html as the entry
point as usual. The documentation contains descriptions of all blocks of the

314 J. Oetsch et al.

answer-set program, where sub-blocks are indented with respect to their parent
blocks. Also, a summary of the block structure of the entire answer-set program
is presented at the beginning of the documentation to provide an overview. For
each block, descriptions of the used atoms and types of involved terms, as well
as for pre- and postconditions are given. By default, hidden atoms, i.e., atoms
never mentioned in a blocks input nor in its output signature, are displayed if the
user does not decide otherwise. The documentation also includes HTML versions
of the programs’ source code, which can be particularly useful for sharing ASP
code online. There are links from the documentation to the source code and vice
versa. Likewise, rules for defining pre- and postconditions can be inspected by
using respective links.

SeaLion can already parse ASP code annotated by the full Lana language.
Besides the already implemented documentation functionality, it is planned to
integrate further features based on Lana annotations as described in Sect. 5.

4.3 Support for External Tools

In order to interact with solvers and grounders from SeaLion, we implemented
a mechanism for handling external tools. One can define external tool configu-
rations that specify the path to an executable as well as default command-line

Fig. 4. Selecting two source files for ASP solving in Eclipse’s launch configuration
dialog.

The SeaLion has Landed: An IDE for Answer-Set Programming 315

parameters. Arbitrary command-line tools are supported; however, there are spe-
cial configuration types for some programs such as Gringo, Clasp, and DLV. For
these, it is planned to have a specialised GUI that allows for a more convenient
modification of command-line parameters. In addition to external command-line
tools, one can also define tool configurations that represent pipes between exter-
nal tools. This is needed when grounding and solving are provided by separate
executables. For instance, one can define two separate tool configurations for
Gringo and Clasp and define a piped tool configuration for using the two tools
in a pipe. Pipes of arbitrary length are supported such that arbitrary pre- and
post-processing can be done when needed. Default solvers for different languages
can be set in the preference menu of SeaLion depending on file content types in
the “Content Type Preferences” section.

For executing answer-set solvers, we make use of Eclipse’s launch configura-
tion framework. In our setting, a launch configuration defines which programs
should be executed using which solver. Figure 4 shows the page of the launch
configuration editor on which input files for a solver invocation can be selected.

Besides using the standard command-line parameters from the tool configura-
tions, also customised parameters can be set for the individual program launches.
Moreover, a launch configuration contains information how the output of the
solver should be treated. One option is to print the solver output as it is in
Eclipse’s console view. The other option is to parse the resulting answer sets for
further use in SeaLion. In this case, the user can specify the format in which
the answer sets are expected from the solver (as there is no standardised form
for displaying answer sets). Here, default strategies are preselected, depending
on the chosen solver configuration.

Besides defining launch configurations, SeaLion also offers the possibility to
invoke a solver right away on a selection of files in the workspace using the
default settings of an external tool configuration. This is realised using the so-
called Launch Shortcuts mechanism of Eclipse. The user selects the files that
should be evaluated in the project explorer and select the SeaLion entry of
their “Run As” context menu. The entry is available as soon as an external tool
configuration is set as default solver for the selected file content type.

4.4 Interpretation Views

When the user decides to parse answer sets obtained from the solvers, they are
stored in SeaLion’s interpretation view as well as the interpretation compare
view that is depicted in Fig. 5. In both, interpretations are visualised as expand-
able trees of depth 3. The root node is the interpretation (marked by an “I”)
and its children are the predicates (marked by a “p”) appearing in the interpre-
tation. Finally, each of these predicates is the parent node of the literals over the
predicate that are contained in the interpretation (marked by an “L”). Com-
pared to a standard textual representation, this way of visualising answer sets
provides a well-arranged overview of the individual interpretations. We find it
also more appealing than a tabular representation where only entries for a single
predicate are visible at once. While the interpretation view lists interpretations

316 J. Oetsch et al.

Fig. 5. SeaLion’s interpretation compare view.

in rows, the interpretation compare view places them in columns. By horizon-
tally arranging trees for different interpretations next to each other, it is easy to
compare two or more interpretations.

The two interpretation views are not only meant to provide a good visu-
alisation of results but also serve as a starting point for ASP developing tools
that depend on interpretations. One convenient feature is dragging interpreta-
tions or individual literals from the interpretation views and dropping them on
the source-code editor. When released, these are transformed into facts of the
respective ASP language.

4.5 Visualisation and Visual Editing

The plugin Kara [23] is a tool for the graphical visualisation and editing of inter-
pretations. It is started from the interpretation view. One can select an inter-
pretation for visualisation by right-clicking it in the view and choosing between
a generic visualisation or a customised visualisation. The latter is specified by
the user by means of a visualisation answer-set program. The former represents
the interpretation as a labelled hypergraph.

In the generic visualisation, the nodes of the hypergraph are the individuals
appearing in the interpretation. Each edge represents a literal in the interpreta-
tion, connecting the individuals appearing in the respective literal. Integer labels
on the endings of an edge are used for expressing the argument position of the
individual. In order to distinguish between different predicates, each edge has an
additional label stating the predicate name. Moreover, edges of the same predi-
cate are of the same colour. An example of a generic visualisation of a spanning

The SeaLion has Landed: An IDE for Answer-Set Programming 317

Fig. 6. A screenshot of SeaLion’s visual interpretation editor.

tree interpretation is shown in Fig. 6 (the layout of the graph has been manually
optimised in the editor).

The customised visualisation feature allows for specifying how the interpre-
tation should be illustrated by means of an answer-set program that uses a
powerful pre-defined visualisation vocabulary. The approach follows the ideas
of ASPVIZ [21] and IDPDraw [22]: a visualisation program ΠV is joined with
the interpretation I to be visualised (technically, I is considered to be a set of
facts) and evaluated using an answer-set solver. One of the resulting answer sets
is then interpreted by SeaLion for building the graphical representation of I.
The vocabulary allows for using and positioning basic graphical elements such
as lines, rectangles, polygons, labels, and images, as well as graphs and grids
composed of such elements.

The resulting visual representation of an interpretation is shown in a graph-
ical editor that also allows for manipulating the visualisation in many ways.
Properties such as colours, IDs, and labels can be manipulated and graphical
elements can be repositioned, deleted, or even created. Such manipulations are
useful for two different purposes. First, for fine-tuning the visualisation before
saving it as a scalable vector graphic (SVG) by means of our SVG export

318 J. Oetsch et al.

Fig. 7. A customised visualisation of an 8-queens instance.

functionality. Second, modifying the visualisation can be used to obtain a modi-
fied version I ′ of the visualised interpretation I by abductive reasoning. In fact,
we implemented a feature that allows for abducing an interpretation that would
result in the modified visualisation. Modifications in the visual editor are auto-
matically reflected in an adapted version I ′

V of the answer set IV representing
the visualisation. We then construct an answer-set program λ(I ′

V ,ΠV), depend-
ing on the modified visualisation answer set I ′

V and the visualisation program
ΠV , for obtaining the modified interpretation I ′ as a projected answer set of
λ(I ′

V ,ΠV). For more details, we refer to a companion paper [23]. An example
for a customised visualisation for a solution to the 8-queens problem is given in
Fig. 7.

5 Projected Features

In the following, we give an overview of further functionality that we plan to
incorporate into SeaLion in the near future.

One core feature that is already under development is the support for
stepping-based debugging of answer-set programs as introduced in recent work

The SeaLion has Landed: An IDE for Answer-Set Programming 319

[29]. Here, we aim for an intuitive and easy-to-handle user interface, which is
clearly a challenge to achieve for reasons intrinsic to ASP. In particular, the dis-
crepancy between developing programs at the non-ground level and obtaining
solutions based on their groundings makes the realisation of practical debugging
tools for ASP non-trivial.

As mentioned earlier, our goal is to develop more SeaLion features, besides
the already implemented documentation generator, exploiting Lana annotations
in answer-set programs. Here, one point is that we want to enrich SeaLion with
support for typed predicates which can be specified using Lana. That is, the
user can define the domain for a predicate. For instance, consider the predicate
age/2 stating the age of a person. Then, with typing, we can express that for
every atom age(p,a), the term p represents an element from a set of persons,
whereas a represents an integer value. Two types of domain specifications will be
supported, viz. direct ones, which explicitly state the names of the individuals
of the domain, and indirect ones that allow for specifications in terms of the
domain of other predicates. We expect multiple benefits from having this kind
of information available. First, it is useful as a documentation of the source code.
A programmer can clearly specify the intended meaning of a predicate and look
it up in the type specifications. Moreover, type violations in the source code
of the program can be automatically detected as illustrated by the following
example.

Example 2. Assume we want to define a rule deriving atoms with predicate sym-
bol serves/3, where serves(R,D,P) expresses that restaurant R serves dish D at
price P. Furthermore, the two predicates dishAvailable/2 and price/3 state
which dishes are currently available in which restaurants and the price of a dish
in a restaurant, respectively. Moreover, assume we have type specifications stat-
ing that for serves(R,D,P) and dishAvailable(D,R), R is of type restaurant
and D is of type dish. Then, a potential type violation in the rule

serves(R,D,P) :- dishAvailable(R,D),price(R,D,P)

could be detected. This way, the programmer would notice that the order of
variables in dishAvailable(R,D) was mixed up.

In order to avoid problems like in the above example in the first place, auto-
completion functionality could be implemented such that variables and constants
of correct types are suggested when writing the arguments of a literal in a rule.

The annotation language Lana allows for combining the typing system with
functionality that allows for defining program signatures. One application of such
signatures is for specifying the predicates and terms used for abducing a modified
interpretation I ′ in our plugin for graphically editing interpretations. Moreover,
input and output signatures can be defined for uniform problem encodings, i.e.,
answer-set programs that expect a set of facts representing a problem instance
as input such that its answer sets correspond to the solutions for this instance.
Then, such signatures can be used in our planned support for assertions that will
allow for automatically checking pre- and postconditions of answer-set programs

320 J. Oetsch et al.

that are defined in Lana. Having a full specification for the input of a program,
i.e., a typed signature and input constraints in the form of preconditions, one can
automatically generate input instances for the program and use them, e.g., for
random testing [12,30]. Also, more advanced testing and verification functional-
ity can be realised, like the automatic generation of valid input (with respect to
the preconditions) that violates a postcondition.

In order to reduce the amount of time a programmer has to spend for writ-
ing type and signature definitions, we want to explore methods for partially
extracting them from the source code or from interpretations.

Besides assertions, it is also planned to offer further testing techniques. In
particular, we aim at a unit testing system by integrating the recently developed
command-line testing tool ASPUnit [24]. The idea is to formulate test cases in the
form of ASP programs with Lana annotations that contain information about
the expected results under a given reasoning mode when the test-case program
is joined with the units under test. Here, units are understood as blocks of ASP
rules that are defined using Lana. Multiple test cases can be combined to test
suites according to the user’s needs. When a test suite is evaluated, SeaLion
shall give information about what conditions in which test cases failed and, if
possible, provide information why.

Other projected features include typical amenities of Eclipse editors like auto-
completion, pretty-printing, further means for refactoring, and providing quick-
fixes for typical problems in the source code. Also, checks for errors and warnings
that are not already done by the parser, e.g., detection of unsafe variables, need
still to be implemented.

We also want to provide different kinds of program translations in SeaLion.
To this end, we already implemented a flexible framework for transforming pro-
gram elements to string representations following different strategies. In particu-
lar, we aim at translations between different solver languages at the non-ground
level. Here, we first have to investigate strategies when and how transformations
of, e.g., aggregates, can be applied such that a corresponding overall semantics
can be achieved. Other specific program translations that we consider for imple-
mentation would be necessary for realising the import and export of rules in
the Rule Interchange Format (RIF) [31], which is a W3C recommendation for
exchanging rules in the context of the Semantic Web. Notably, a RIF dialect for
ASP, called RIF-CASPD, has been proposed [32].

Further convenience improvements for using external tools in SeaLion include
a specialised GUI for choosing the command-line parameters. For launch con-
figurations, we want to add the possibility to directly write the output of a
tool invocation into a file and to allow for exporting the launch configuration as
native stand-alone scripts.

Finally, there are many possible ways to enhance the GUI of SeaLion. We
want to extend the support for drag-and-drop operations such that, e.g., pro-
gram elements in the outline can be dragged into the editor. Moreover, we plan
to realise sorting and filtering features for the outline and interpretation view.

The SeaLion has Landed: An IDE for Answer-Set Programming 321

Regarding interpretations, we aim for supporting textual editing of interpreta-
tions directly in the view, besides visual editing, and a feature for comparing
multiple interpretations by highlighting their differences.

6 Related Work

We next give a short overview of existing IDEs for core ASP languages. To
begin with, the tool APE [14], developed at the University of Bath, is also based
on Eclipse. It supports the language of Lparse and provides syntax highlighting,
syntax checking, program outline, and launch configuration. Additionally, APE
has a feature to display the predicate dependency graph of a program.

ASPIDE, a recent IDE for DLV programs [15], is a standalone tool that already
offers many features as it builds on previous tools [33–35]. Some functionality we
want to incorporate in SeaLion is already supported by ASPIDE, e.g., code com-
pletion, unit tests [36], and quick fixes. Further features of ASPIDE are support
for code templates and a visual program editor. We do not aim for comprehen-
sive visual source-code editing in SeaLion but consider the use of program tem-
plates that allow for expressing common programming patterns. In their current
releases, neither APE nor ASPIDE support graphical visualisation or visual editing
of answer sets as available in SeaLion. ASPIDE allows for displaying answer sets
in a tabular form. This is an improvement compared to the standard textual rep-
resentation but comes with the drawback that only entries for a single predicate
are visible at once. Besides the graphical representation, SeaLion can display
interpretations in a dedicated view that gives a good overview of the individual
interpretations and allows also to compare different interpretations.

Concerning supported ASP languages, SeaLion is the first IDE to support
the language of Gringo rather than its Lparse subset. Moreover, other proposed
IDEs for ASP do only consider the language of either DLV or Lparse, with
the exception of iGROM [16] that provides basic syntax highlighting and syntax
checking for the languages of both, Lparse and DLV. Note that iGROM has been
developed at our department independently from SeaLion as a student project.
A speciality of iGROM is the support for the front-end languages for planning and
diagnosis of DLV. There also exist proprietary IDEs for ASP related languages
with support for object-oriented features, OntoStudio and OntoDLV [37,38].

Compared to the other visualisation tools, ASPVIZ [21] and IDPDraw [22], our
plugin Kara [23] allows not only for visualisation of an interpretation but also for
visually editing the graphical representation such that changes are reflected in
the visualised interpretation. Moreover, Kara offers support for generic visuali-
sations, special support for grids, and automatic layout of graph structures. The
latter is also the goal of Lonsdaleite, a recent tool for visualising graph struc-
tures encoded in answer-sets [39]. It is realised as a lightweight Python script
that maps the atoms in an answer set to the input format of the Graphviz
utilities [40].

322 J. Oetsch et al.

7 Conclusion

In this paper, we presented the current status of SeaLion, an IDE for ASP
languages that is currently under development. We discussed general principles
that we follow in our implementation and gave an overview of current features.
SeaLion is an Eclipse plugin and is designed to be the first comprehensive IDE
that supports the languages of both Gringo and DLV, which can currently be
considered as the two most prominent implemented ASP languages.

As this is an intermediate report, we also discussed which features we plan
to incorporate in future work. The most important step in the advancement of
the IDE is the integration of an easy-to-use debugging system that is currently
under development. Moreover, we want to implement features for defining types,
signatures, pre- and postconditions, and unit tests based on the Lana annotation
language into SeaLion. One advantage of using Lana is that, in addition to
the graphical tools of the IDE, development support can also be provided by
respective command-line tools supporting Lana.

References

1. Gelfond, M., Leone, N.: Logic programming and knowledge representation - The
A-Prolog perspective. Artif. Intell. 138(1–2), 3–38 (2002)

2. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003)

3. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp:
Progress report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

4. SAT 2011 competition. http://www.satcompetition.org
5. Brain, M., De Vos, M.: Debugging logic programs under the answer-set semantics.

In: Proceedings of ASP 2005. http://CEUR-WS.org (2005)
6. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under

answer set semantics. Theor. Pract. Logic Program. 9(1), 1–56 (2009)
7. Syrjänen, T.: Debugging inconsistent answer-set programs. In: Proceedings of NMR

2006, pp. 77–83. Technische Universität Clausthal (2006)
8. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging

ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

9. Wittocx, J., Vlaeminck, H., Denecker, M.: Debugging for model expansion. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 296–311. Springer,
Heidelberg (2009)

10. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: on debugging non-
ground answer-set programs. Theor. Pract. Logic Program. 10(4–5), 513–529
(2010)

11. Niemelä, I., Janhunen, T., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-
set programs. In: Proceedings of ECAI 2010, pp. 951–956. IOS Press (2010)

12. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: Random vs.
structure-based testing of answer-set programs: An experimental comparison. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 242–247.
Springer, Heidelberg (2011)

http://www.satcompetition.org
http://CEUR-WS.org

The SeaLion has Landed: An IDE for Answer-Set Programming 323

13. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

14. Sureshkumar, A., De Vos, M., Brain, M., Fitch, J.: APE: An AnsProlog* environ-
ment. In: Proceedings of SEA 2007, pp. 71–85 (2007)

15. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS, vol. 6645, pp. 317–330. Springer, Heidelberg (2011)

16. iGROM. http://igrom.sourceforge.net/
17. Oetsch, J., Pührer, J., Tompits, H.: Methods and methodologies for developing

answer-set Programs—Project description. In: Technical Communications of ICLP
2010, pp. 154–161. Leibniz-Zentrum für Informatik (2010)

18. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set program-
ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

20. Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/
lparse.ps.gz

21. Cliffe, O., De Vos, M., Brain, M., Padget, J.: ASPVIZ: Declarative visualisation
and animation using answer set programming. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 724–728. Springer, Heidelberg (2008)

22. Wittocx, J.: KRR Software: IDPDraw. https://dtai.cs.kuleuven.be/krr/software/
visualisation

23. Kloimüllner, C., Oetsch, J., Pührer, J., Tompits, H.: Kara: A system for visu-
alising and visual editing of interpretations for answer-set programs. In: Tom-
pits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP 2011. LNCS, vol. 7773, pp. 325–344. Springer, Heidelberg (2013)

24. De Vos, M., Kısa, D.G., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set
programs in LANA. Theor. Pract. Logic Program. 12(4–5), 619–637 (2012)

25. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A
user’s guide to gringo, clasp, clingo, and iclingo. http://sourceforge.net/projects/
potassco/files/potassco guide

26. Bihlmeyer, R., Faber, W., Ielpa, G., Lio, V., Pfeifer, G.: DLV user manual. http://
www.dlvsystem.com/dlvsystem/html/DLV User Manual.html

27. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, Frisco (2007)

28. Ierusalimschy, R.: Programming in Lua, 2nd edn. Lua.Org (2006)
29. Oetsch, J., Pührer, J., Tompits, H.: Stepping through an answer-set program. In:

Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 134–147.
Springer, Heidelberg (2011)

30. Oetsch, J., Prischink, M., Pührer, J., Schwengerer, M., Tompits, H.: On the small-
scope hypothesis for testing answer-set programs. In: Proceedings of KR 2012, pp.
43–53. AAAI Press (2012)

31. Boley, H., Kifer, M. (eds.): RIF framework for logic dialects. W3C (2010) W3C
Recommendation 22 June 2010

32. Kifer, M., Heymans, S.: RIF core answer set programming dialect. http://ruleml.
org/rif/RIF-CASPD.html (2009)

33. Febbraro, O., Reale, K., Ricca, F.: A visual interface for drawing ASP programs.
In: Proceedings of CILC 2010 (2010)

http://igrom.sourceforge.net/
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
https://dtai.cs.kuleuven.be/krr/software/visualisation
https://dtai.cs.kuleuven.be/krr/software/visualisation
http://sourceforge.net/projects/potassco/files/potassco_guide
http://sourceforge.net/projects/potassco/files/potassco_guide
http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html
http://www.dlvsystem.com/dlvsystem/html/DLV_User_Manual.html
http://ruleml.org/rif/RIF-CASPD.html
http://ruleml.org/rif/RIF-CASPD.html

324 J. Oetsch et al.

34. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Proceed-
ings of SEA 2009 (2009)

35. Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: spock: A debugging
support tool for logic programs under the answer-set semantics. In: Seipel, D.,
Hanus, M., Wolf, A. (eds.) INAP 2007. LNCS, vol. 5437, pp. 247–252. Springer,
Heidelberg (2009)

36. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in ASPIDE. In: Tom-
pits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP 2011. LNCS, vol. 7773, pp. 345–364. Springer, Heidelberg (2013)

37. ontoprise GmbH: OntoStudio 3.0. http://help.ontoprise.de/ (2010)
38. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.:

OntoDLV: An ASP-based system for enterprise ontologies. J. Logic Comput. 19(4),
643–670 (2008)

39. Smith, A.: Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite (2011)
40. AT&T Labs Research and Contributors: Graphviz. http://www.graphviz.org/

http://help.ontoprise.de/
https://github.com/rndmcnlly/Lonsdaleite
http://www.graphviz.org/

Kara: A System for Visualising
and Visual Editing of Interpretations

for Answer-Set Programs

Christian Kloimüllner1, Johannes Oetsch2, Jörg Pührer2(B), and Hans Tompits2

1 Forschungsgruppe für Industrielle Software (INSO),
Technische Universität Wien,

Favoritenstraße 9-11, 1040 Vienna, Austria
christian.kloimuellner@inso.tuwien.ac.at

2 Institut für Informationssysteme 184/3,
Technische Universität Wien,

Favoritenstraße 9-11, 1040 Vienna, Austria
{oetsch, puehrer, tompits}@kr.tuwien.ac.at

Abstract. In answer-set programming (ASP), the solutions of a prob-
lem are encoded in dedicated models, called answer sets, of a logical
theory. These answer sets are computed from the program that repre-
sents the theory by means of an ASP solver and returned to the user
as sets of ground first-order literals. As this type of representation is of-
ten cumbersome for the user to interpret, tools like ASPVIZ and IDPDraw

were developed that allow for visualising answer sets. The tool Kara,
introduced in this paper, follows these approaches, using ASP itself as
a language for defining visualisations of interpretations. Unlike exist-
ing tools that position graphic primitives according to static coordinates
only, Kara allows for more high-level specifications, supporting graph
structures, grids, and relative positioning of graphical elements. More-
over, generalising the functionality of previous tools, Kara provides mod-
ifiable visualisations such that interpretations can be manipulated by
graphically editing their visualisations. This is realised by resorting to
abductive reasoning techniques using ASP itself. Kara is part of SeaLion,
an integrated development environment (IDE) for ASP.

1 Introduction

Answer-set programming (ASP) [1] is a well-known paradigm for declarative
problem solving. Its key idea is that a problem is encoded in terms of a logic
program such that dedicated models of it, called answer sets, correspond to the
solutions of the problem. Answer sets are interpretations, usually represented by
sets of ground first-order literals.

A problem often faced when developing answer-set programs is that inter-
pretations returned by an ASP solver are cumbersome to read—in particular, in

This work was partially supported by the Austrian Science Fund (FWF) under
project P21698.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 325–344, 2013.
DOI: 10.1007/978-3-642-41524-1 20, c© Springer-Verlag Berlin Heidelberg 2013

326 C. Kloimüllner et al.

case of large interpretations which are spread over several lines on the screen or
the output file. Hence, a user may have difficulties extracting the relevant infor-
mation from the textual representation of an answer set. Related to this issue,
there is one even harder practical problem: editing or writing interpretations by
hand.

Although the general goal of ASP is to have answer sets computed auto-
matically, we identify different situations during the development of answer-set
programs in which it would be helpful to have adequate means to manipulate
interpretations. First, in declarative debugging [2], the user has to specify the
expected semantics in order for the debugging system to identify the causes for a
mismatch with the actual semantics. In previous work [3], a debugging approach
has been introduced that takes a program P and an interpretation I that is
expected to be an answer set of P and returns reasons why I is not an answer
set of P . Manually producing such an intended interpretation ahead of computa-
tion is a time-consuming task, however. Another situation in which the creation
of an interpretation can be useful is testing post-processing tools. Typically, if
answer-set solvers are used within other applications, they are embedded as a
module in a larger context. The overall application delegates a problem to the
solver by transforming it to a respective answer-set program, and the outcome
of the solver is then processed further as needed by the application. In order
to test post-processing components, which may be written by programmers un-
aware of ASP, it would be beneficial to have means to create mock answer sets
as test inputs. Third, the same idea of providing test input applies to modular
answer-set programming [4], when a module B that depends on another module
A is developed before or separately from A. To test B, B can be joined with
interpretations mocking answer sets from A.

In this paper, we describe the system Kara which allows for both visualising
interpretations and editing them by manipulating their visualisations.1 The visu-
alisation functionality of Kara has been inspired by the existing tools ASPVIZ [5]
and IDPDraw [6] for visualising answer sets. The key idea is to use ASP itself
as a language for specifying how to visualise an interpretation. To this end,
the user takes a dedicated answer-set program V —which we call a visualisation
program—that specifies how the visualisation of an interpretation I should look
like. That is, V defines how different graphical elements, such as rectangles,
polygons, images, graphs, etc., should be arranged and configured to visually
represent I.

Kara offers a rich visualisation language that allows for defining a super-
set of the graphical elements available in ASPVIZ and IDPDraw, e.g., providing
support for automatically layouting graph structures, relative and absolute po-
sitioning, and support for grids of graphical elements. Moreover, Kara also offers
a generic mode of visualisation, not available in previous tools, that does not
require a domain-specific visualisation program, and visualises an answer set as

1 The name “Kara” derives, with all due respect, from “Kara Zor-El”, the native
Kryptonian name of Supergirl, given that Kryptonians have visual superpowers on
Earth.

Kara: A System for Visualising and Visual Editing of Interpretations 327

I
Interpretation I → V

V

Visualisation Program

Solver Iv
Graphical

Representation

Modified
Graphical

Representation
Ivλ(Iv, V)

Abduction Program

SolverI
Modified Interpretation

Fig. 1. Overview of the workflow (visualisation and abduction process).

a hypergraph whose set of nodes corresponds to the individuals occurring in the
interpretation. A detailed overview of the differences concerning the visualisa-
tion capabilities of Kara with other tools is given in Sect. 5. A general difference
to previous tools is that Kara does not just produce image files right away but
presents the visualisation in form of modifiable graphical elements in a visual
editor. The user can manipulate the visualisation in various ways, e.g., change
size, position, or other properties of graphical elements, as well as copy, delete,
and insert new ones. Notably, the created visualisations can also be used outside
our editing framework as Kara offers an SVG export function that allows to save
the possibly modified visualisation as a vector graphic. Besides fine-tuning ex-
ported SVG files, manipulation of the visualisation of an interpretation I can be
done for obtaining a modified version I ∼ of I by means of ASP-based abductive
reasoning [7]. This gives the possibility to visually edit interpretations which is
useful for debugging and testing purposes as described above. We will present a
number of examples to illustrate the functionality of Kara and the ease of coping
with a visualised answer set compared to interpreting its textual representation.

Kara is designed as a plugin of SeaLion, an Eclipse-based integrated devel-
opment environment (IDE) for ASP [8] that is currently developed as part of a
project on programming-support methods for ASP [9].

2 System Overview

We assume familiarity with the basic concepts of ASP (for a thorough introduc-
tion to the subject, cf. Baral [1]). In brief, an answer-set program consists of
rules of the form

a1 ℵ · · · ℵ al :− al+1, . . . , am,not am+1, . . . ,not an,

where n ∼ m ∼ l ∼ 0, “not” denotes default negation, and all ai are first-order
literals (i.e., atoms possibly preceded by the strong negation symbol ¬). For a
rule r as above, we define the head of r as H(r) = {a1, . . . , al} and the body as
B(r) = {al+1, . . . , am,not am+1, . . . ,not an}. We will also refer to the positive
body, given as B+(r) = {al+1, . . . , am}. If n = l = 1, r is a fact, and if l = 0, r is a

328 C. Kloimüllner et al.

constraint. For facts, we will usually omit the symbol “:−”. The grounding of a
program P relative to its Herbrand universe is defined as usual. An interpretation
I is a finite and consistent set of ground literals, where consistency means that
{a,¬a} ←≤ I, for any atom a. An interpretation I is an answer set of a program
P if it is a subset-minimal model of the grounding of the reduct of P relative to
I (see Baral [1] for details).

The overall workflow of Kara is depicted in Fig. 1, illustrating how an inter-
pretation I can be visualised in the upper row and how changing the visualisation
can be reflected back to I such that we obtain a modified version I ∼ of I in the
lower row. In the following, we call programs that encode problems for which I
and I ∼ represent solution candidates domain programs.

2.1 Visualisation of Interpretations

As discussed in the introduction, we use ASP itself as a language for specifying
how to visualise an interpretation. In doing so, we follow a similar approach
as the tools ASPVIZ [5] and IDPDraw [6]. We next describe this method on an
abstract level.

Assume we want to visualise an interpretation I that is defined over a first-
order alphabet A. We join I, interpreted as a set of facts, with a visualisation
program V that is defined over A∼ ∈ A, where A∼ may contain auxiliary predi-
cates and function symbols, as well as predicates from a fixed set Pv of reserved
visualisation predicates that vary for the three tools.2

The rules in V are used to derive different atoms with predicates from Pv,
depending on I, that control the individual graphical elements of the resulting
visualisation including their presence or absence, position, and all other proper-
ties. An actual visualisation is obtained by post-processing an answer set Iv of
V → I that is projected to the predicates in Pv. We refer to Iv as a visualisation
answer set for I. Note that since V is an arbitrary answer-set program it might
be non-deterministic in the sense that multiple visualisation answer sets may ex-
ist. In the current implementation only one of them is used for visualisation. The
process is depicted in the upper row of Fig. 1. An exhaustive list of visualisation
predicates available in Kara is given in Appendix A.

Example 1 . Assume we deal with a domain program whose answer sets corre-
spond to arrangements of items on two shelves. Consider the interpretation

I = {book(s1, 1), book(s1, 3), book(s2, 1), globe(s2, 2)}

stating that two books are located on shelf s1 in positions 1 and 3 and that there
is another book and a globe on shelf s2 in positions 1 and 2, respectively. The goal
is to create a simple graphical representation of this and similar interpretations,

2 Technically, in ASPVIZ, V is not joined with I but with a domain program P such
that I is an answer set of P .

Kara: A System for Visualising and Visual Editing of Interpretations 329

Fig. 2. The visualisation of interpretation I from Example 1.

depicting the two shelves as two lines, each book as a rectangle, and globes as
circles. Consider the following visualisation program:

visline(shelf 1, 10, 40, 80, 40, 0), (1)
visline(shelf 2, 10, 80, 80, 80, 0), (2)
visrect(f(X,Y), 20, 8) :− book(X,Y), (3)
visposition(f(s1, Y), 20 ⊆ Y, 20, 0) :− book(s1, Y), (4)
visposition(f(s2, Y), 20 ⊆ Y, 60, 0) :− book(s2, Y), (5)
visellipse(f(X,Y), 20, 20) :− globe(X,Y), (6)
visposition(f(s1, Y), 20 ⊆ Y, 20, 0) :− globe(s1, Y), (7)
visposition(f(s2, Y), 20 ⊆ Y, 60, 0) :− globe(s2, Y). (8)

Rules (1) and (2) create two lines with the identifiers shelf 1 and shelf 2, rep-
resenting the top and bottom shelf. The second to fifth arguments of visline/6
represent the origin and the target coordinates of the line.3 The last argument of
visline/6 is a z-coordinate determining which graphical element is visible in case
two or more overlap. Rule (3) generates the rectangles representing books, and
Rules (4) and (5) determine their position depending on the shelf and the posi-
tion given in the interpretation. Likewise, Rules (6) to (8) generate and position
globes. The resulting visualisation of I is depicted in Fig. 2. ∪∃

Note that the first argument of each visualisation predicate is a unique iden-
tifier for the respective graphical element. By making use of function symbols
with variables, like f(X,Y) in Rule (3) above, these labels are not limited to con-
stants in the visualisation program but can be generated on the fly, depending on
the interpretation to visualise. While some visualisation predicates, like visline,
visrect , and visellipse, define graphical elements, others, e.g., visposition, are
used to change properties of the elements, referring to them by their respective
identifiers.

Kara also offers a generic visualisation that visualises an arbitrary interpre-
tation without the need for defining a visualisation program. In such a case,
the interpretation is represented as a labelled hypergraph. Its nodes are the

3 The origin of the coordinate system is at the top-left corner of the illustration window
with the x-axis pointing to the right and the y-axis pointing down.

330 C. Kloimüllner et al.

individuals appearing in the interpretation and the edges represent the literals in
the interpretation, connecting the individuals appearing in the respective literal.
Integer labels on the endings of the edge are used for expressing the term position
of the individual. To distinguish between different predicates, each edge has an
additional label stating the predicate. Edges of the same predicate are of the
same colour. A generic visualisation is presented in Example 4 in Sect. 4.

2.2 Editing of Interpretations

We next describe how we can obtain a modified version I ∼ of an interpreta-
tion I corresponding to a manipulation of the visualisation of I. We follow the
steps depicted in the lower row of Fig. 1, using abductive reasoning. Recall that
abduction is the process of finding hypotheses that explain given observations
in the context of a theory. Intuitively, in our case, the theory is the visualisa-
tion program, the observation is the modified visualisation of I, and the desired
hypothesis is I ∼.

In Kara, the visualisation of I is created using the Graphical Editing Frame-
work (GEF) [10] of Eclipse. It is displayed in a graphical editor which allows for
various kinds of manipulation actions such as moving, resizing, adding or delet-
ing graphical elements, adding or removing edges between them, editing their
properties, or changing grid values. Each change in the visual editor of Kara
is internally reflected by a modification to the underlying visualisation answer
set Iv. We denote the visualisation interpretation that results from editing Iv as
I ∼
v. From that and the visualisation program V , we construct a logic program

λ(I ∼
v, V) such that the visualisation of any answer set I ∼ of λ(I ∼

v, V) using V
corresponds to the modified one.

The idea is that λ(I ∼
v, V), which we refer to as the abduction program for I ∼

v

and V , guesses a set of abducible atoms. On top of these atoms, the rules of V
are used in λ(I ∼

v, V) to derive a hypothetical visualisation answer set I ∼∼
v for I ∼.

Finally, constraints in the abduction program ensure that I ∼∼
v coincides with the

targeted visualisation interpretation I ∼
v on a set Pi of selected predicates from

Pv, which we call integrity predicates. Hence, a modified interpretation I ∼ can
be obtained by computing an answer set of λ(I ∼

v, V) and projecting it to the
guessed atoms. To summarise, the abduction problem underlying the described
process can be stated as follows:

(⊆) Given the interpretation I ∼
v, determine an interpretation I ∼ such that I ∼

v

coincides with each answer set of V → I ∼ on Pi.

Naturally, depending on V and I ∼
v it is possible that no such solution I ∼ exists.

Visualisation programs must be written in a way such that manipulated visuali-
sation interpretations could indeed be the outcome of the visualisation program
for some input. This is not the case for arbitrary visualisation programs, but
usually it is easy to write an appropriate visualisation program that allows for
abducing interpretations.

Kara: A System for Visualising and Visual Editing of Interpretations 331

Fig. 3. Elements of the abduction program λ(I ′
v, V).

The following problems have to be addressed for realising the sketched
approach:

– determining the predicates and domains of the abducible atoms, and
– choosing the integrity predicates among the visualisation predicates.

For solving these issues, we rely on pragmatic choices that seem useful in practice.
We obtain the set Pa of predicates of the abducible atoms from the visualisation
program V . The idea is that every predicate that is relevant to the solution of a
problem encoded in an answer set has to occur in the visualisation program if the
latter is meant to provide a complete graphical representation of the solution.
Moreover, we restrict Pa to those non-visualisation predicates in V that occur
in the body of a rule but not in any head atom in V . The assumption is that
atoms defined in V are most likely of auxiliary nature and not contained in a
domain program.

An easy approach for generating a domain Da of the abducible atoms would
be to extract the terms occurring in I ∼

v. We follow, however, a more fine-grained
approach that takes the introduction and deletion of function symbols in the
rules in V into account. Assume V contains the rules

visrect(f(Street ,Num), 9, 10) :− house(Street ,Num) and
visellipse(sun,Width,Height) :− property(sun, size(Width,Height)),

and I ∼
v contains visrect(f(bakerstreet , 221b), 9, 10) and visellipse(sun, 10, 11).

Then, when extracting the terms in I ∼
v, the domain includes f(bakerstreet , 221b),

bakerstreet , 221b, 9, 10, sun, and 11 for the two rules. However, the functor f is
solely an auxiliary concept in V and not meant to be part of domain programs.

332 C. Kloimüllner et al.

Moreover, the term 9 is introduced in V and is not needed in the domain for I ∼.
Also, the terms 10 and 11 as standalone terms and sun are not needed in I ∼ to
derive I ∼

v. Even worse, the term size(10, 11), that has to be contained in I ∼ such
that I ∼

v can be a visualisation answer set for I ∼, is missing in the domain. Hence,
we derive Da in λ(I ∼

v, V) not only from I ∼
v but also consider the rules in V . Using

our translation detailed below, we obtain bakerstreet , 221b, and size(10, 12) as
domain terms from the rules above.

For the choice of Pi, i.e., of the predicates on which I ∼
v and the actual visu-

alisation answer sets of I ∼ need to coincide, we exclude visualisation predicates
that require a high preciseness in visual editing by the user in order to match
exactly a value that could result from the visualisation program. For example,
we do not include predicates determining position and size of graphical elements,
since in general it is hard to position and scale an element precisely such that
an interpretation I ∼ exists with a matching visualisation. Note that this is not a
major restriction, as in general it is easy to write a visualisation program such
that aspects that the user wants to be modifiable are represented by graphical
elements that can be elegantly modified visually. For example, instead of rep-
resenting a Sudoku puzzle by labels whose exact position is calculated in the
visualisation program, the language of Kara allows for using a logical grid such
that the value of each cell can be easily changed in the visual editor.

We next give the details of the abduction program.

Definition 1. Let I ∼
v be an interpretation over predicates in Pv, V a (visual-

isation) program, and Pi ≤ Pv the fixed set of integrity predicates. Moreover,
let VAR(T) denote the variables occurring in T , where T is a term or a list of
terms. Then, the abduction program λ(I ∼

v, V) with respect to I ∼
v and V is given

by
λ(I ∼

v, V) = dom(I ∼
v, V) → guess(V) → V → check(I ∼

v),

where dom(I ∼
v, V), guess(V), and check(I ∼

v) are given in Fig. 3, and
nonRecDom/1, dom/1, and v∼/n, for all v/n ∧ Pi, are fresh predicates.

The idea of dom(I ∼
v, V) is to consider non-ground terms t contained in the body

of a visualisation rule that share variables with a visualisation atom in the head
of the rule and to derive instances of these terms when the corresponding visu-
alisation atom is contained in I ∼

v. In case less variables occur in the visualisation
atom than in t, we avoid safety problems by restricting their scope to parts of the
derived domain. Here, the distinction between predicates dom and nonRecDom
is necessary to prevent infinite groundings of the abduction program. The next
part of the abduction program is guess(V), where the atoms of the domain pro-
gram P are guessed, i.e., the abducible atoms. The output of the guessing part
is I ∼. Finally, check(I ∼

v) contains all constraints and auxiliary facts.
Note that in general it is not guaranteed that the domain we derive con-

tains all necessary elements for abducing an appropriate interpretation I ∼. For
instance, consider the case that the visualisation program contains a rule

visrect(id , 5, 5) :− foo(X),

Kara: A System for Visualising and Visual Editing of Interpretations 333

and V , together with the constraints in check(I ∼
v), require that for every term t

of a domain that can be obtained from I ∼
v and V , foo(t) must not hold. Then,

there is no interpretation that will trigger the rule using this domain, although
an interpretation with a further term t ∼ might exist that results in the desired
visualisation. Hence, we added an editor to Kara that allows for changing and
extending the automatically generated domain as well as the set of abducible
predicates.

The following two results characterise the answer sets of the abduction
program.

Theorem 1. Let I ∼
v be an interpretation with atoms over predicates in Pv, V a

(visualisation) program, and Pi ≤ Pv the fixed set of integrity predicates. Then,
any answer set I ∼∼

v of λ(I ∼
v, V) coincides with I ∼

v on the atoms over predicates
from Pi.

Note that since the stated abduction problem (⊆) requires I ∼
v to coincides with

each answer set of V → I ∼ on Pi, a solution is only given in case the visualisation
program deterministically derives a visualisation, as expressed in Theorem 2.

Theorem 2. Let I ∼
v be an interpretation with atoms over Pv, Pi ≤ Pv the fixed

set of integrity predicates, and V a (visualisation) program such that, for every
I ∼ with atoms over Pd, where

Pd = {a/n | there are terms t1, . . . , tn such that a(t1, . . . , tn) ∈ ⋃

r∈V
B(r) but there

are no terms t∼1, . . . , t∼n such that a(t∼1, . . . , t∼n) ∈ ⋃

r∈V
H(r)} \ Pv,

every two answer sets I1 and I2 of V → I ∼ do not differ on Pi. Then, for any
answer set I ∼∼

v of λ(I ∼
v, V), a solution I ∼ of the abduction problem (⊆) is obtained

by projecting I ∼∼
v to the predicates in Pd.

3 Implementation

Kara is written in Java and integrated in the Eclipse-plugin SeaLion [8] for
developing answer-set programs. SeaLion is an IDE that offers functionality

JRE

Eclipse

SeaLion

GEF

Kara

DLV

Gringo /Clasp

Fig. 4. Technology stack of the Kara system.

334 C. Kloimüllner et al.

Fig. 5. Sample output in the interpretation view of SeaLion.

to execute external ASP solvers on answer-set programs and thus realises the
interface between Kara and ASP solvers. The overall technology stack of Kara
is depicted in Fig. 4. Currently, programs in the languages of Gringo and DLV
are supported.

Next we describe how to use Kara in SeaLion. The ASP developer may invoke
ASP solver calls in SeaLion using Eclipse’s launch-configuration framework in a
similar fashion as Java programs are started from within Eclipse. Answer sets re-
sulting from a solver call can be parsed by the IDE and displayed as expandable
tree structures in a dedicated Eclipse view for interpretations as shown in Fig. 5.
Starting from there, the user can invoke Kara by choosing a pop-up menu entry
of the interpretation that should be visualised. Here, one can select between the
generic mode of visualisation or a mode using a visualisation program created
by the user. In the latter case, a customised run configuration dialog will open
that allows for choosing a file containing the visualisation program and for set-
ting the solver configuration, including selection of the solver and command-line
arguments, to be used by Kara. Then, the visual editor opens with the generated
visualisation. It allows for changing the visualisation in various ways, including
repositioning, rescaling, and renaming of graphical elements, as well as creation,
deletion, and making copies of elements. The current state of the visualisation
can always be exported in an SVG file. Moreover, the process for abducing an
interpretation that reflects the modifications to the visualisation can be started
from a pop-up menu of the visual editor. If a respective interpretation exists, it
will be added to the interpretation view of SeaLion.

Kara and SeaLion can be downloaded and installed from within Eclipse,
using the following update site:

http://sealion.at/update.

For more information and installation instructions, we refer to the project web
site

http://www.sealion.at.

http://sealion.at/update
http://www.sealion.at

Kara: A System for Visualising and Visual Editing of Interpretations 335

Fig. 6. Visualisation program for Example 2.

4 Examples

In this section, we provide examples that give an overview of the functionality
of Kara. We first illustrate the use of logic grids and the visual editing feature.

Example 2 . Maze generation is a benchmark problem from the second ASP com-
petition [11]. The task is to generate a two-dimensional grid, where each cell is

336 C. Kloimüllner et al.

either a wall or empty, that satisfies certain constraints. There are two dedicated
empty cells, being the maze’s entrance and its exit, respectively. The following
facts represent a sample answer set of a maze-generation encoding restricted to
interesting predicates:

col(1..5). row(1..5). maxC (5). maxR(5). wall(1, 1). empty(1, 2). wall(1, 3).
wall(1, 4). wall(1, 5). wall(2, 1). empty(2, 2). empty(2, 3). empty(2, 4).wall(2, 5).
wall(3, 1). wall(3, 2). wall(3, 3). empty(3, 4). wall(3, 5). wall(4, 1). empty(4, 2).

empty(4, 3). empty(4, 4). wall(4, 5). wall(5, 1).wall(5, 2). wall(5, 3). empty(5, 4).
wall(5, 5). entrance(1, 2). exit(5, 4).

Predicates col/1 and row/1 define indices for the rows and columns of the
maze, while maxC/1 and maxR/1 give the maximum column and row index,
respectively. The predicates wall/2, empty/2, entrance/2, and exit/2 determine
the positions of walls, empty cells, the entrance, and the exit in the grid, respec-
tively. One may use the visualisation program from Fig. 6 for maze-generation
interpretations of this kind.

In Fig. 6, Rule (9) defines a logic grid with identifier maze having MR rows
and MC columns. The fourth and fifth parameter define the height and width of
the grid in pixel. Rule (10) is a fact that defines a fixed position for the maze. The
next step is to define the graphical objects to be displayed in the grid. Because
these objects are fixed (i.e., they are used more than once), they can be defined as
facts. A wall is represented by a rectangle with black background and foreground
colour4 (Rules (11) and (12)) whereas an empty cell is rendered as a rectangle
with white background and foreground colour (Rules (13) to (15)). The entrance
and the exit are represented by two images (Rules (16 to (19)). Then, these
graphical elements are assigned to the respective cell of the grid (Rules (20) to
(23)). Rules (24) to (27) render vertical and horizontal lines to better distinguish
between the different cells. Rules (28) to (31) are not needed for visualisation
but define possible values for the grid that we want to be available in the visual
editor.

Once the grid is rendered, the user can replace the value of a cell with a value
defined by using predicate vispossiblegridvalues/2 (e.g., replacing an empty cell

Fig. 7. Visualisation output for the maze-generation program.

4 Black foreground colour is default and need not be set explicitly.

Kara: A System for Visualising and Visual Editing of Interpretations 337

Fig. 8. Abduction steps in the plugin.

with a wall). The visualisation of the sample interpretation using this program
is depicted in Fig. 7. Evidently, the visual representation of the answer set is
more accessible than the textual representation of the answer set given in the
beginning of the example.

Next, we demonstrate how to use the visual editing feature of Kara to obtain a
modified interpretation; the respective steps are illustrated by Fig. 8. Suppose we
want to change the cell (3, 2) from being a wall to an empty cell. The user can se-
lect the respective cell and open a pop-up menu that provides an item for chang-
ing grid-values. A dialog opens that allows for choosing among the values that
have been defined in the visualisation program, using the vispossiblegridvalues/2
predicate. When the user has finished editing the visualisation, the abduction
process for inferring the new interpretation can be started. After an interpreta-
tion is derived, it is added to SeaLion’s interpretation view. ∪∃

Kara supports absolute and relative positioning of graphical elements. If for
any visualisation element the predicate visposition/4 is defined, then fixed po-
sitioning is used. Otherwise, the element is positioned automatically. Then, by
default, the elements are randomly positioned on the graphical editor. However,
the user can define the position of an element relative to another element. This
is done by using the predicates visleft/2, visright/2, visabove/2, visbelow/2, and
visinfrontof /2.

Example 3 . The following visualisation program makes use of relative positioning
for sorting elements according to their label.

visrect(a, 50, 50). (32)
vislabel(a, laba). (33)
vistext(laba, 3). (34)

338 C. Kloimüllner et al.

vispolygon(b, 0, 20, 1). (35)
vispolygon(b, 25, 0, 2). (36)
vispolygon(b, 50, 20, 3). (37)
vislabel(b, labb). (38)
vistext(labb, 10). (39)
visellipse(c, 30, 30). (40)
vislabel(c, labc). (41)
vistext(labc, 5). (42)
element(X) :− visrect(X, ,). (43)
element(X) :− vispolygon(X, , ,). (44)

element(X) :− visellipse(X, ,). (45)
visleft(X,Y) :− element(X), element(Y), vislabel(X,LABX), (46)

vistext(LABX ,XNUM), vislabel(Y,LABY),
vistext(LABY ,YNUM),XNUM < YNUM .

The program defines three graphical objects, a rectangle, a polygon, and
an ellipse. In Rules (32) to (34), the rectangle together with its label, 3, is
generated. The shape of the polygon (Rules (35) to (37)) is defined by a sequence
of points relative to the polygon’s own coordinate system using the vispolygon/4
predicate. The order in which these points are connected with each other is given
by the predicate’s fourth argument. Rules (38) and (39) generate the label for
the polygon and specify its text. Rules (43) to (45) state that every rectangle,
polygon, and ellipse is an element. The relative position of the three elements is
determined by Rule (46). For two elements E1 and E2, E1 has to appear to the
left of E2 whenever the label of E1 is smaller than the one of E1.

The output of this visualisation program is shown in Fig. 9. Note that the
visualisation program does not make reference to predicates from an interpre-
tation to visualise, hence the example illustrates that Kara can also be used for
creating arbitrary graphics. ∪∃

The last example demonstrates the support for graphs in Kara. Moreover,
the generic visualisation feature is illustrated.

Example 4 . Suppose we want to visualise answer sets of an encoding of a graph-
colouring problem. Assume we have the following interpretation that defines
nodes and edges of a graph as well as a colour for each node:

{node(1), node(2), node(3), node(4), node(5), node(6), edge(1, 2), edge(1, 3),
edge(1, 4), edge(2, 4), edge(2, 5), edge(2, 6), edge(3, 1), edge(3, 4), edge(3, 5),
edge(4, 1), edge(4, 2), edge(5, 3), edge(5, 4), edge(5, 6), edge(6, 2), edge(6, 3),
edge(6, 5), colour(1, lightblue), colour(2, yellow), colour(3, yellow),
colour(4, red), colour(5, lightblue), colour(6, red)}.

Kara: A System for Visualising and Visual Editing of Interpretations 339

Fig. 9. Output of the visualisation program in Example 3.

We make use of the following visualisation program:

% Generate a graph.

visgraph(g). (47)
% Generate the nodes of the graph.

visellipse(X, 20, 20) :− node(X). (48)
visisnode(X, g) :− node(X). (49)

% Connect the nodes (edges of the input).
visconnect(f(X,Y),X, Y) :− edge(X,Y). (50)
vistargetdeco(X, arrow) :− visconnect(X, ,). (51)

% Generate labels for the nodes.

vislabel(X, l(X)) :− node(X). (52)
vistext(l(X),X) :− node(X). (53)
visfontstyle(l(X), bold) :− node(X). (54)

% Colour the node according to the solution.

visbackgroundcolor(X,COL) :− node(X), color(X,COL). (55)

In Rule (47), a graph, g, is defined and a circle for every node from the
input interpretation is created (Rule (48)). Rule (49) states that each of these
circles is logically considered a node of graph g. This has the effect that they will
be considered by the algorithm layouting the graph during the creation of the
visualisation. The edges of the graph are defined using the visconnect/3 predicate
(Rule (50)). It can be used to connect arbitrary graphical elements with a line,
also if they are not nodes of some graph. As we deal with a directed graph, an
arrow is set as target decoration for all the connections (Rule (51)). Labels for
the nodes are set in Rules (52) to (54). Finally, Rule (55) sets the colour of the
node according to the interpretation. The resulting visualisation is depicted in
Fig. 10. Moreover, the generic visualisation of the graph colouring interpretation
is given in Fig. 11. ∪∃

5 Related Work

The visualisation method realised in Kara follows the approach of the previ-
ous systems ASPVIZ [5] and IDPDraw [6], which also use ASP for defining how

340 C. Kloimüllner et al.

Fig. 10. Visualisation of a coloured graph.

Fig. 11. SeaLion’s visual interpretation editor showing a generic visualisation of the
graph colouring interpretation of Example 4 (the layout has been manually optimised).

Kara: A System for Visualising and Visual Editing of Interpretations 341

interpretations should be visualised. Besides the features beyond visualisation,
viz. the framework for editing visualisations and the support for multiple ASP
solvers, there are also differences between Kara and these tools regarding visu-
alisation aspects.

Kara allows to write more high-level specifications for positioning the graph-
ical elements of a visualisation. While IDPDraw and ASPVIZ require the use of
absolute coordinates, Kara additionally supports relative positioning and auto-
matic layouting for graph and grid structures. Note that, technically, the for-
mer is realised by using ASP for guessing positions of the individual elements
and adding respective constraints to ensure the correct layout, while the lat-
ter is realised by using a standard graph layouting algorithm which is part of
the Eclipse framework. In Kara, as well as in IDPDraw, each graphical element
has a unique identifier that can be used, e.g., to link elements or to set their
properties (e.g., colour or font style). That way, programs can be written in a
clear and elegant way since not all properties of an element have to be specified
within a single atom. Here, Kara exploits that the latest ASP solvers support
function symbols that allow for generating new identifiers from terms of the in-
terpretation to visualise. IDPDraw does not support function symbols, however.
Instead, for compound identifiers, IDPDraw uses predicates of variable length
(e.g., idp_polygon(id1, id2, ...)). A disadvantage of this approach is that some
solvers, like DLV, do not support predicates of variable length. ASPVIZ does not
support identifiers for graphical objects at all. However, it does allow for defining
named properties used for drawing, e.g., brushes of different colours and sizes
can be assigned to constants that are then needed to be set in the command for
drawing lines.

The support for a z-axis to determine which object should be drawn over
others is available in Kara and IDPDraw but missing in ASPVIZ. However, a new
version of ASPVIZ supports visualisations by 3-dimensional objects. Both Kara
and ASPVIZ support the export of visualisations as vector graphics in the SVG
format, which is not possible with IDPDraw. A feature that is supported by
ASPVIZ and IDPDraw, however, is creating animations which is not possible with
Kara so far. Note that an export feature for animations could be easily integrated
in Kara as well.

Kara and ASPVIZ are written in Java and depend only on a Java Virtual
Machine. IDPDraw, on the other hand, is written in C++ and depends on the
qt libraries. Finally, Kara is embedded in an IDE, whereas ASPVIZ and IDPDraw
are stand-alone tools.

Recently, a further visualisation tool for answer-sets that uses ASP for speci-
fying visualisations has been written [12]. This system, called Lonsdaleite, is a
lightweight Python script for visualising graph structures by mapping the atoms
in an answer set to the input format of the graphviz utilities [13]. Thus, it only
supports rendering a problem in a graph, but not other elements available in
ASPVIZ, IDPDraw, and Kara.

342 C. Kloimüllner et al.

A related approach from software engineering is the Alloy Analyzer, a tool
to support the analysis of declarative software models [14]. Models are formu-
lated in a first-order based specification language. The user may define object
signatures, which can have properties (e.g., relationships to other objects). The
tool can find satisfying instances of a model using translations to SAT. Since
the approach is based on finding models for declarative specifications, it can be
regarded as a form of ASP in a broader sense. The derived model instances are
first-order structures that can be automatically visualised as graphs, where ob-
jects are represented as nodes and their relationships are represented as edges.
Hence, visualisation in Alloy is closely related to the generic visualisation mode
of Kara where also no dedicated visualisation program is needed. Finally, a useful
feature of Alloy is filtering predicates and arguments away of the graph.

6 Conclusion

We presented the tool Kara for visualising and visual editing of interpretations
in ASP. It supports generic as well as customised visualisations. A powerful lan-
guage for defining a visualisation by means of ASP is provided, supporting, e.g.,
graph layouting, grids of graphical elements, and relative positioning. The edit-
ing feature uses abductive reasoning, inferring a new interpretation as hypothesis
to explain a modified visualisation.

In future work, we want to add support for defining input and output signa-
tures for programs in SeaLion. Then, the abduction framework of Kara could
be easily extended such that one can derive inputs for a domain program such
that one of its answer sets corresponds to a modified visualisation. We also
consider adding a feature similar to the filtering mode of Alloy for getting a
clearer generic visualisation. Moreover, we want to investigate model-driven de-
velopment for ASP involving domain models that allow for obtaining generic
visualisations that take structural information into account.

Kara: A System for Visualising and Visual Editing of Interpretations 343

A Predefined Visualisation Predicates in Kara

Atom Intended meaning

visellipse(id ,

height ,width)

Defines an ellipse with specified height and width.

visrect(id ,height ,width) Defines a rectangle with specified height and width.

vispolygon(id ,x,y,ord) Defines a point of a polygon. The ordering defines in which

order the defined points are connected with each other.

visimage(id ,path) Defines an image given in the specified file.

visline(id ,x1,y1,x2,y2,z) Defines a line between the points (x1, y1) and (x2, y2).

visgrid(id ,rows,cols,height ,

width)

Defines a grid with the specified number of rows and columns;

height and width determine the grid size.

visgraph(id) Defines a graph.

vistext(id ,text) Defines a text element.

vislabel(idg ,idt) Sets the text element idt as a label for graphical element idg .

Labels are supported for the following elements:

visellipse/3, visrect/3, vispolygon/4, and visconnect/3.

visisnode(idn ,idg) Adds the graphical element idn as a node to a graph idg for

automatic layouting. The following elements are supported

as nodes: visrect/3, visellipse/3, vispolygon/4, visimage/2.

visscale(id ,height ,weight) Scales an image to the specified height and width.

visposition(id ,x,y,z) Puts an element id on the fixed position (x, y, z).

visfontfamily(id ,ff) Sets the specified font ff for a text element id .

visfontsize(id ,size) Sets the font size size for a text element id .

visfontstyle(id ,style) Sets the font style for a text element id to bold or italics.

viscolor(id ,color) Sets the foreground colour for the element id .

visbackgroundcolor(id ,color) Sets the background colour for the element id .

visfillgrid(idg ,idc ,row ,col) Puts element idc in cell (row , col) of the grid idg .

visconnect(idc ,idg1 ,idg2) Connects two elements, idg1 and idg2 , by a line such that idg1
is the source and idg2 is the target of the connection.

vissourcedeco(id ,deco) Sets the source decoration for a connection.

vistargetdeco(id ,deco) Sets the target decoration for a connection.

visleft(idl ,idr) Ensures that the x-coordinate of idl is less than that of idr .

visright(idr ,idl) Ensures that the x-coordinate of idr is greater than that of

idl .

visabove(idt ,idb) Ensures that the y-coordinate of idt is smaller than that of

idb .

visbelow(idb ,idt) Ensures that the y-coordinate of idb is greater than that of

idt .

visinfrontof (id1 ,id2) Ensures that the z-coordinate of id1 is greater than that of

id2 .

vishide(id) Hides the element id .

visdeletable(id) Defines that the element id can be deleted in the visual

editor.

viscreatable(id) Defines that the element id can be created in the visual

editor.

vischangable(id ,prop) Defines that the property prop can be changed for the

element id in the visual editor.

vispossiblegridvalues(id ,ide) Defines that graphical element ide is available as possible grid

value for a grid id in the visual editor.

344 C. Kloimüllner et al.

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003)

2. Shapiro, E.Y.: Algorithmic program debugging. Ph.D. thesis, Yale University, New
Haven, CT, USA (1982)

3. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: on debugging non-
ground answer-set programs. Theor. Pract. Logic Program. 10(4–5), 513–529
(2010)

4. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J Artif. Intell. Res. 35, 813–857 (2009)

5. Cliffe, O., De Vos, M., Brain, M., Padget, J.: ASPVIZ: declarative visualisation
and animation using answer set programming. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 724–728. Springer, Heidelberg (2008)

6. Wittocx, J.: KRR Software: IDPDraw. https://dtai.cs.kuleuven.be/krr/software/
visualisation

7. Peirce, C.S.: Abduction and induction. In: Buchler, J. (ed.) Philosophical Writings
of C.S Peirce, Chapter 11, pp. 150–156. Dover, New York (1955)

8. Oetsch, J., Pührer, J., Tompits, H.: The SeaLion has landed: An IDE for answer-set
programming–preliminary report. In: Tompits, H., Abreu, S., Oetsch, J., Pührer,
J., Seipel, D., Umeda, M., Wolf, A. (eds.) INAP/WLP 2011. LNCS, vol. 7773,
pp. 305–324. Springer, Heidelberg (2013)

9. Oetsch, J., Pührer, J., Tompits, H.: Methods and methodologies for developing
answer-set programs - Project description. In: Leibniz International Proceedings in
Informatics (LIPIcs) of Technical Communications of the 26th International Con-
ference on Logic Programming (ICLP 2010), Dagstuhl, Germany, Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, vol. 7, pp. 154–161 (2010)

10. The Eclipse Foundation: GEF (Graphical Editing Framework). http://www.
eclipse.org/gef/

11. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

12. Smith, A.: Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite
13. AT&T Labs Research and Contributors: Graphviz. http://www.graphviz.org/
14. Jackson, D.: Software Abstractions–Logic, Language, and Analysis. MIT Press,

Cambridge (2006)

https://dtai.cs.kuleuven.be/krr/software/visualisation
https://dtai.cs.kuleuven.be/krr/software/visualisation
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
https://github.com/rndmcnlly/Lonsdaleite
http://www.graphviz.org/

Unit Testing in ASPIDE

Onofrio Febbraro1, Nicola Leone2, Kristian Reale2(B), and Francesco Ricca2

1 DLVSystem s.r.l. - P.zza Vermicelli, Polo Tecnologico,
87036 Rende, Italy

febbraro@dlvsystem.com
2 Dipartimento di Matematica, Università della Calabria,

87036 Rende, Italy
{leone, reale, ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a declarative logic pro-
gramming formalism, which is employed nowadays in both academic and
industrial real-world applications. Although some tools for supporting
the development of ASP programs have been proposed in the last few
years, the crucial task of testing ASP programs received less attention
and it is an Achilles’ heel of the available programming environments.
In this paper we present a language for specifying and running unit tests
on ASP programs. The testing language was implemented in ASPIDE, a
comprehensive IDE for ASP, which supports the entire life cycle of ASP
development with a collection of user-friendly graphical tools for program
composition, testing, debugging, profiling, solver execution configuration,
and output handling.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative logic programming formalism
proposed in the area of non-monotonic reasoning. The idea of ASP is to represent
a given computational problem by a logic program whose answer sets correspond
to solutions, and then use a solver to find those solutions [2]. The language of
ASP [1] supports a number of modeling constructs including disjunction in rule
heads, nonmonotonic negation [1], (weak and strong) constraints [3], aggregate
functions [4], and more. These features make ASP very expressive [5], and suit-
able for developing advanced real-world applications. ASP is employed in sev-
eral fields, from Artificial Intelligence [6–11] to Information Integration [12], and
Knowledge Management [13,14], Bioinformatics [15], Software Packaging [16],
etc. Interestingly, these applications of ASP recently have stimulated some in-
terest also in industry [14,17,18].

On the one hand, the effective application of ASP in real-world scenarios
was made possible by the availability of efficient ASP systems [6,19,20]. On the

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 345–364, 2013.
DOI: 10.1007/978-3-642-41524-1 21, c© Springer-Verlag Berlin Heidelberg 2013

346 O. Febbraro et al.

other hand, the adoption of ASP can be further boosted by offering effective
programming tools capable of supporting the programmers in managing large
and complex projects [21].

In the last few years, a number of tools for developing ASP programs have
been proposed, including editors and debuggers [22–32]. Among them, ASPIDE
[32], which stands for Answer Set Programming Integrated Development Envi-
ronment, is one of the most complete development tools.1 ASPIDE features a
cutting-edge editing tool (offering dynamic syntax highlighting, on-line syntax
correction, autocompletion, code-templates, quick-fixes, refactoring, etc.) and a
collection of user-friendly graphical tools for program composition, debugging,
profiling, DBMS access, solver execution configuration and output handling. Al-
though so many tools for developing ASP programs have been proposed up to
now, the crucial task of testing ASP programs received less attention [33,34],
and it is an Achilles’ heel of the available programming environments. Indeed,
the majority of available graphic programming environments for ASP does not
provide the user with a testing tool (see [32]), and also the one present in the
first versions of ASPIDE is far from being effective.

In this paper we present a pragmatic solution for testing ASP programs. In
particular, we define the notion of unit test for an ASP program, and present
a new language inspired by the JUnit [35] framework for specifying and run-
ning unit tests on ASP programs. Unit testing is a white-box testing technique
that requires to assess separately subparts of a source code called units to ver-
ify whether they behave as intended. The testing language allows the developer
to specify the rules composing one or several units, specify one or more inputs
and assert a number of conditions on both expected outputs and the expected
behavior of sub-programs. The obtained test case specification can be run by
exploiting an ASP solver, and the assertions are automatically verified by ana-
lyzing the output of the execution. Notably, the test case specification language
herein presented is general and applicable to any variant/dialect of ASP. The
testing language was implemented in ASPIDE, which also provides the user with
some graphic tools that make the development of test cases simpler. The test-
ing tool described in this work extends significantly the one formerly available
in ASPIDE, by: (i) extending the language by more expressive (non-ground)
assertions and the support for weak-constraints, (ii) supporting the notion of
DLP-function [36] in the specification of test-cases, and, (iii) introducing in
ASPIDE a graphical test suite management interface.

As far as related work is concerned, the task of testing ASP programs was
approached for the first time, to the best of our knowledge, in [33,34] where
the notion of structural testing for ground normal ASP programs is defined and
methods for automatically generating tests is introduced. The results presented
in [33,34] are, somehow, orthogonal to the contribution of this paper. Indeed,

1 For an exhaustive feature-wise comparison with existing environments for developing
logic programs we refer the reader to [32].

Unit Testing in ASPIDE 347

no language/implementation is proposed in [33,34] for specifying/automatically-
running the produced test cases. Whereas, the language presented in this paper
can be used for encoding the output of a test case generator based on the methods
proposed in [33]. Finally, it is worth noting that, testing approaches developed
for other logic languages, like PROLOG [37–39], cannot be straightforwardly
ported to ASP because of the differences between the languages.2

This paper is organized as follows: in Sect. 2 we introduce ASP; in Sect. 3 we
introduce the notion of a unit test for ASP programs and we present a language
for specifying unit tests; in Sect. 4 we describe the user interface components of
ASPIDE conceived for creating and running tests; finally, in Sect. 5 we draw the
conclusion.

2 Answer Set Programming

In this section we first present some preliminaries notions concerning ASP [1],
then we recall some relevant modularity properties of ASP programs that are
exploited in the testing language described in the following sections; finally, we
briefly introduce some common language extensions that we use in our examples.

Hereafter, we assume the reader to be familiar with logic programming, and
refer to both [13,40] for complementary introductory material on ASP.

Syntax. A variable or a constant is a term. An atom is of the form p(t1, ..., tn),
where p is a predicate of arity n and t1, ..., tn are terms. A literal is either a
positive literal p or a negative literal not p, where p is an atom. A (disjunctive)
rule r has the following form:

a1 → · · · → an :− b1, · · · , bk , not bk+1, · · · , not bm.

where a1, . . . , an, b1, . . . , bm are atoms. The disjunction a1 → . . . → an is the head
of r, while the conjunction of literals b1, . . . , bk ,not bk+1, . . . ,not bm is the body
of r. We denote by At(r) = {a1, . . . , an, b1, . . . , bm} all the atoms occurring in
r (both in the head and in the body). A rule having precisely one head literal
(i.e., n = 1) is called a normal rule. If the body is empty (i.e., k = m = 0), it
is called a fact, and we usually omit the :− sign. A rule without head literals
(i.e., n = 0) is usually referred to as an integrity constraint. A rule r is safe if
each variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not -free (resp., →-free)
program is called positive (resp., normal). A term, an atom, a literal, a rule, or
a program is ground if no variables appear in it. Given a ground program P and

2 As an example, note that the semantics of a Prolog program changes if we modify
the rule’s order in the program, but this is not true in ASP where rule order is
immaterial. Thus, meaningful unit tests in ASP can be obtained by collecting rules
without taking care of their “position” in the program, the same does not hold for
Prolog.

348 O. Febbraro et al.

a set of atoms A, DefP(A) denotes the set of rules that define A, i.e., all the rules
r ℵ P such that some atom form A occurs in the head of r.

Semantics. Given a program P, the Herbrand Universe UP and the Herbrand
Base BP are defined in the usual way.

An interpretation for a program P is a subset I of BP . A ground positive
literal a is true (resp., false) w.r.t. I if a ℵ I (resp., a ∼ℵ I). A ground negative
literal not a is true w.r.t. I if a is false w.r.t. I, otherwise not a is false w.r.t. I.

Given a program P its ground instantiation Ground(P) is the set of (ground)
rules obtained by applying to each rule r ℵ P all possible substitutions σ from
the variables in r to elements of UP . Given a program P, its answer sets are
defined using Ground(P). Let r be a ground rule, r is satisfied (or true) w.r.t. I if
some atom from the head of r is true in I and all body literals of r are true w.r.t.
I. A model for P is an interpretation M for P such that every rule r ℵ Ground(P)
is true w.r.t. M. A model M for P is minimal if there is no model N for P such
that N is a proper subset of M.

Given a ground program Q and an interpretation I, the (Gelfond-Lifschitz)
reduct of Q w.r.t. I [1] is the positive ground program QI obtained from Q by
(i) deleting all rℵQ whose negative body is false w.r.t. I, and (ii) deleting the
negative body from the remaining rules. An answer set of a program P is a model
I of P such that I is a minimal model of Ground(P)I . The set of all answer sets
for P is denoted by ANS(P).

Example 1. Given the program P = {a→b :− c. , b :− not a,not c. , a→c :− not
b.} and I = {b}, the reduct P I is {a → b :− c., b.}. I is a model for P and is also
a minimal model of P I , and for this reason it is an answer set of P.

Splitting Sets. An important result presented in [41] allows to split an ASP
program P in two modules that have a clear interface.

Definition 1 (Splitting Set). A splitting set [41] of a program P is any subset
U of atoms in P such that, for each rule r ℵ P, if H(r) ← U ∼= ≤ then At(r) ∈ U.

In this case we say that U splits P in two distinct sub-programs Pb and
P t . Pb, called the bottom of P w.r.t. U, consists of all the rules that satisfy the
property of Definition 1, and P t , called the top of P w.r.t. U, is composed of
all the rules contained in P \ Pb. A consequence is the fact that all the atoms
contained in the head of some rule of P t are not contained in U.

Theorem 1 (Splitting Theorem). Let a program P with a splitting set U of
P, let Pb the bottom of P w.r.t. U, and P t the top of P w.r.t. U. A set M of
atoms is a consistent answer set for P if and only if M = X ⊆ Y where X is an
answer set of Pb and Y is an answer set of P t ⊆ X.

In other words, this theorem says that an answer set of P can be found by
calculating an answer set X of Pb and giving X as input to P t for calculating an
answer set of P t .

Unit Testing in ASPIDE 349

The splitting theorem by Lifschitz and Turner [41] was also generalized to the
non-ground case [42] by considering, as splitting sets, predicates of the program
instead of ground atoms and taking in consideration the predicate dependency
graph of the program.

Some Language Extension. The basic ASP language recalled above can be
used to solve complex search problems, but it has been extended with con-
structs for specifying aggregate functions on sets of literals and solving optimiza-
tion problems. These constructs are supported in DLV as well as in other ASP
systems.

Aggregates. An aggregate function in DLV [43] is of the form f (S), where S is
a set term of the form {Vars : Conj}, where Vars is a list of variables and
Conj is a conjunction of standard atoms, and f is an aggregate function sym-
bol. The most common aggregate functions compute the number of terms, the
sum of non-negative integers, and minimum/maximum term in a set. As an ex-
ample, the following rule counts the number of true instances of predicate p:
numP(X) :− #countX : p(X) = X.

Weak constraints [3] allow us to express desiderata, that is, conditions that should
be satisfied. A weak constraint starts by �. The informal meaning of a �B is
“try to falsify B,” or “B should preferably be false.” Intuitively, the semantics
coincides with the answer sets minimizing the number of violated (unsatisfied)
weak constraints.

3 Unit Testing in ASP

In software engineering, the task of testing and validating programs is a crucial
part of the life cycle of the software development process. Software testing [44] is
an activity aimed at evaluating the behavior of a program by verifying whether
it produces the required output for a particular input. The goal of testing is
not to provide means for establishing whether the program is totally correct.
Conversely testing is a pragmatic and cheap way of finding errors by executing
some tests.

One of the most diffused white-box3 testing techniques is unit testing. The
idea of unit testing is to assess an entire software by testing its subparts called
units, which correspond to small testable parts of a program. In a software im-
plemented using imperative object-oriented languages, unit testing corresponds

3 A test conceived for verifying some functionality of an application without knowing
the code internals is said to be a black-box test. A test conceived for verifying the
behavior of a specific part of a program is called a white-box test. White box testing
is an activity usually carried out by developers and it is a key component of agile
software development [44].

350 O. Febbraro et al.

to assessing separately portions of the code like class methods. Our testing
methodology is inspired by the JUnit [35] framework. Given an ASP program
the developer can select the program unit, specify one or more inputs, and as-
sert a number of conditions on the expected output. The obtained test case
specification can be run, and the assertions are automatically verified by calling
an ASP solver and checking its output. We first introduce the notion of a unit
test for a given ASP program, and then we present a language for specifying and
running unit tests.

Definition 2 (Unit Test). Given a program P, a unit test T for P is a triple
T = ∪U , I,A∃ where U ∧ P is the program unit to be tested, I the input pro-
gram, and A is a set of assertions modeling properties that have to be verified
by ANS(U ⊆ I). A test case T passes if all the assertions in A are satisfied, and
fails otherwise.4 A test suite for a program P is a set of test cases.

Basically, a unit test T focuses on a portion of the ASP program to be
tested denoted by U and called program unit. The inputs for U are specified
by an additional program I, which, in the simplest scenario, can be made of
input facts. Since I can be specified by means of an ASP program, ASP itself
can be exploited for modeling different inputs in the same unit test. In order
to specify a significant test case both U and I have to be specified with care.
In particular, the program unit to be tested should “act as a module” so that
its behavior can be effectively tested outside the original program. Moreover,
I should only be exploited for specifying the test inputs for U , and should not
interfere with the usual “behavior” of U . To this end, our framework provides
a way for exploiting the notion of splitting set [41] both for specifying the unit
program and checking that I only provides an input for U and not “interfering”
with its execution. In addition, we also give the possibility to the programmer
to enforce checking whether a test case satisfies the more fine grained notion of
DLP-Function [36], so that more precise modularity of units can be exploited if
needed.5

For example, our testing language that is described in the following allows
to specify the program unit as the bottom program [41] of a given splitting set.

The output of the test case are the answer sets of U ⊆ I, and A contains the
specification of a number of properties that have to be satisfied to pass the test.
For example, one might require that a given ground atom a is contained in all
answer sets U ⊆ I, or that the unit program is expected to have a given number
of answer sets.

4 Note that this definition of test case is more general than the one of [33]. Indeed, all
test cases in [33] are such that: U = P, I is the set of ground inputs, and A contains
the assertions stating that the set of expected outputs is in ANS(U ∪ I).

5 Note that the notion of DLP-Function does not allow to split the program in a
unique deterministic way, thus we pragmatically decided to support this notion only
for checking units.

Unit Testing in ASPIDE 351

Testing Language. Test cases are specified in our framework by means of text
files. A test file can be written according to the following grammar6:

1 : invocation("invocationName" [,"solverPath", "options"]?);
2 : [[input("program");] | [inputFile("file");]]*
3 : [
4 : testCaseName([SELECTED RULES | SPLIT PROGRAM | PROGRAM])
6 : {
7 : [newOptions("options");]?
8 : [[input("program");] | [inputFile("file");]]*
9 : [[excludeInput("program");]
10 : | [excludeInputFile("file");]]*
11 : [
12 : [filter | pfilter | nfilter]
13 : [[(predicateName [,predicateName]*)]
14 : | [SELECTED RULES]] ;
15 :]?
16 : [checkModularity([SPLITTING SET | DLP FUNCTION] [,"atoms"]?);]*
17 : [[selectRule("ruleName");]
18 : | [selectRulesWithPredicateInHead("predicateName");]
19 : | [selectRulesWithPredicateInBody("predicateName");]
20 : | [selectRulesWithPredicateInPositiveBody("predicateName");]
21 : | [selectRulesWithPredicateInNegativeBody("predicateName");]
22 : | [selectRulesWithPredicateInAggregates("predicateName");]
23 :]*
24 : [[assertName([intnumber,]? [["atoms"] | ["constraint"]]?);]
25 : | [assertBestModelCost(intcost [, intlevel]?);]]*
26 : }
27 :]*
28 : [[assertName([intnumber,]? [["atoms"] | ["constraint"]]?);]

29 : | [assertBestModelCost(intcost [, intlevel]?);]]*

A test file might contain a single test or a test suite (a set of tests) including
several test cases for the same program to be tested. Each test case includes one
or more assertions on the results.

The invocation statement (line 1) sets the global invocation settings, that
apply to all tests specified in the same file (name, solver, and execution options).
The invocation name might correspond to an ASPIDE run configuration (see
Sect. 4.1). In this latter case, both the solver path and invocation options are
automatically imported from the corresponding run configuration.

The user can specify the program to be tested by writing one or more input
and inputFile statements (line 2). The first kind of statement allows one for
writing the program to be tested; the second statement indicates a file that
contains some input program in ASP format.

A unit test declaration (line 4 and 5) is composed of a name and an optional
parameter that allows one to choose if the unit program corresponds to the
entire program (option PROGRAM), or is made of exactly the selected rules
(option SELECTED RULES), or if the unit program to consider corresponds
to the splitting set containing the atoms occurring on the selected rules (option
SPLIT PROGRAM). In this last case, the “interface” between two splitting sets
can be tested (e.g., one can assert some expected properties on the candidates
produced by the guessing part of a program by excluding the effect of some
constraints in the checking part). Note that, this feature of the language allows

6 Non-terminals are in bold face, token specifications are omitted for simplicity.

352 O. Febbraro et al.

for specifying in a declarative way which parts of the tested program has to be
considered in a unit test.

The user can specify particular solver options (line 7), as well as certain
inputs (line 8) which are valid in a given unit test. Moreover, global inputs of
the test suite can be excluded by exploiting excludeInput and excludeInputFile
statements (lines 9 and 10). The optional statements filter, pfilter and nfilter
(lines 12, 13, and 14) are used to filter out output predicates from the test
results (i.e., specified predicate names are filtered out from the results when the
assertion is executed).7

The statement checkModularity (line 16) can be added to a unit test to require
to verify that the selected rules compose either a correct DLP-Function [36] or
correspond to splitting set for the tested program. The list of atoms, that can
be specified by the user, represent either the input signature if the rules define
a DLP-Function (that can be joined with the remaining part of the program for
a given choice of input/output) or the splitting set if the rules define a split of
the program.8

The statement selectRule (line 17) allows one for selecting rules among the
ones composing the tested program. A rule r to be selected must be identified
by a name, which is expected to be specified in the input program in a comment
appearing in the row immediately preceding r. Actually, in the implementation
rule names are added automatically as comments. The selection of the rules can
be done also by using predicate names; in particular the statements (lines 18/22)
allow one to select rules where a given predicate appears in the head, in the body,
in the positive body, in the negative body and in some aggregate atom. Note
that, this feature is very useful for selecting in an easy way the rules composing
the definition of a predicate.

The expected output of a test case is expressed in terms of assertion state-
ments (lines 24/29). The assertions supported by the language are:

– assertTrue(“atomList”)/assertCautiouslyTrue(“atomList”). Asserts that all
atoms of the atom list must be true in any answer sets;

– assertBravelyTrue(“atomList”). Asserts that all atoms of the atom list must
be true in at least one answer set;

– assertTrueIn(number, “atomList”). Asserts that all atoms of the atom list
must be true in exactly number answer sets;

– assertTrueInAtLeast(number, “atomList”). Asserts that all atoms of the atom
list must be true in at least number answer sets;

– assertTrueInAtMost(number, “atomList”). Asserts that all atoms of the atom
list must be true in at most number answer sets;

– assertConstraint(“:-constraint.”). Asserts that all answer sets must satisfy
the specified constraint;

7 pfilter excludes the strongly negated ones, while nfilter has opposite behavior.
8 DLP-Functions offer a fine way of decomposing a program in modules that can be

joined together to construct P. The interested reader is referred to [36] for a formal
definition.

Unit Testing in ASPIDE 353

– assertConstraintIn(number, “:-constraint.”). Asserts that exactly number an-
swer sets must satisfy the specified constraint;

– assertConstraintInAtLeast(number, “:-constraint.”). Asserts that at least
number answer sets must satisfy the specified constraint;

– assertConstraintInAtMost(number, “:-constraint.”). Asserts that at most
number answer sets must satisfy the specified constraint;

– assertBestModelCost(intcost) and assertBestModelCost(intcost, intlevel). In
case of execution of programs with weak constraints, they assert that the
cost of the best model with level intlevel must be intcost ;

– assertAnswerSetsNumber(number). Asserts that the tested program is ex-
pected to generate exactly number answer sets.

– assertNoAnswerSet. Asserts that the tests is expected to have no answer set.

together with the corresponding negative assertions: assertFalse, assertCautious-
lyFalse, assertBravelyFalse, assertFalseIn, assertFalseInAtLeast, assertFalseInAt-
Most.

The atomList specifies a list of atoms that can be ground or non-ground;
in the case of non-ground atoms the assertion is true if some ground instance
matches in some/all answer sets. Assertions can be global (line 20-21) or local to
a single test (line 16-17). Note that, the set of supported assertions is redundant;
actually, this is on purpose, indeed having different possibilities for asserting the
same property eases the task of test case specification for the programmer, who
can specify its requirements in the way she prefers.

In the following we report a test case example.

Test case example. The maximum clique is a classical hard problem in graph
theory requiring to find the largest clique (i.e., a complete subgraph of maxi-
mal size) in an undirected graph. Suppose that the graph G is specified by using
facts over predicates node (unary) and edge (binary), then the following program
solves the problem.

% Guess the clique

%@name = r1
inClique(X1) v outClique(X1) :- node(X1).

% Order edges in order to reduce checks

%@name = r2
uedge(X1,X2) :- edge(X1,X2), X1 < X2.

%@name = r3
uedge(X2,X1) :- edge(X1,X2), X2 < X1.

% Ensure property.

%@name = r4
:- inClique(X1), inClique(X2), not uedge(X1,X2), X1 < X2.

%@name = r5

:~ outClique(X2).

The disjunctive rule (r1) guesses a subset S of the nodes to be in the clique,
while the rest of the program checks whether S constitutes a clique, and the
weak constraint (r5) maximizes the size of S (since it prefers interpretations in
which the number of true outClique instances is minimized). Here, an auxiliary

354 O. Febbraro et al.

Fig. 1. Input graphs.

predicate uedge exploits an ordering for reducing the time spent in checking.
Suppose that the encoding is stored in a file named clique.dl and suppose also
that the graph instance, composed of facts { node(1). node(2). node(3). node(4).
node(5). node(6). node(7). edge(1,2). edge(2,3). edge(2,4). edge(1,4). edge(1,5).
edge(4,5). edge(2,5). edge(4,6). edge(5,7). edge(3,7).}, is stored in the file named
graphInstance.dl (the corresponding graph is depicted in Fig. 1a). The following
is a simple test suite specification for the above-reported ASP program:

invocation("MaximalClique", "/usr/bin/dlv", "");

inputFile("clique.dl");

inputFile("graphInstance.dl");

maximalClique() {
assertBestModelCost(3);

}
constraintsOnCliques() {
excludeInput(":~ outClique(X2).");

assertConstraintInAtLeast(1,":- inClique(1),

inClique(4).");

assertConstraintIn(5,":- #count{ X1: inClique(X1) } < 3.");

}
checkNodeOrdering(SELECTED RULES) {
inputFile("graphInstance.dl");

selectRule("r2");

selectRule("r3");

assertFalse("uedge(2,1).");

}
guessClique(SPLIT PROGRAM) {
selectRule("r1");

assertFalseInAtMost(1,"inClique(X).");

assertBravelyTrue("inClique(X).");

}

Here, we first set the invocation parameters by indicating DLV as solver, then
we specify the file to be tested clique.dl and the input file graphInstance.dl, by
exploiting a global input statement. Then, we add the test case maximalClique,
in which we assert that the best model is expected to have a cost (i.e., the number
of weak constraint violations corresponding to the vertexes out of the clique) of 3
(assertBestModelCost(3)). In the second test case, named constraintsOnCliques,

Unit Testing in ASPIDE 355

we require that (i) vertexes 1 and 4 do not belong to at least one clique, and
(ii) for exactly five answer sets the size of the corresponding clique is greater
than 2. (The weak constraint is removed to ensure the computation of all cliques
by DLV.)

In the third test case, named checkNodeOrdering, we select rules r2 and r3,
and we require to test selected rules in isolation, discarding all the other state-
ments of the input. We are still interested in considering ground facts that are
included locally (i.e., we include the file graphInstance.dl). In this case we assert
that uedge(2,1) is false, since edges should be ordered by rules r2 and r3.

Test case guessClique is run in SPLIT PROGRAM modality, which requires
to test the sub-program containing all the rules belonging to the splitting set
corresponding to the selection (i.e., {inClique, outClique, node}). In this test
case the sub-program that we are testing is composed of the disjunctive rule
and by the facts of predicate node only. Here we require that there is at most
one answer set modeling the empty clique, and there is at least one answer set
modeling a non-empty clique.

In a language expressive and concise like ASP also testing small modules
(and even one single rule) in isolation may help the programmer to detect bugs.
Unit test cases may help the programmer in fixing bugs as well as understand-
ing/correcting requirements. It might happen that both test cases and programs
may change if the requirements (i.e., the problem specification) are not well un-
derstood, but, in most cases, buggy rules (referenced by name) can be updated
without the need of updating the corresponding unit tests.

As an example, suppose that the first time we have written the ASP program
of our example we would have introduced a bug, and in particular a typo on the
guessing rule:

%@name = r1
inClique(X1) v outClique(X1) :- nod(X1).

Note that rule r1 has a bug since, in the body, node is written without the
final e. When the test case guessClique is run it fails since the extension of nod
(without e) is empty.

After fixing the rule r1 the test case can be now re-run and will pass. In the
above example, selecting one rule and testing it in isolation helped to fix the
program without the need for updating the test case. Not that, the possibility of
testing parts (i.e., units) of the original program (up to one single rule at time)
helps in detecting by exploiting simple tests which specific part of the program
does not behave as expected.

The test file described in this section can be created and executed in ASPIDE
as described in the next section. The results can be inspected using the results
window that marks the atoms that have participated to the passing/failure of
test cases. Actually, in our IDE test cases can be also created graphically, i.e.,
without the need of writing by hand (textual) test case specifications. This can
be done, starting from the results of an execution, by selecting and marking

356 O. Febbraro et al.

wanted and unwanted results in an intuitive and “by example” test case creation
interface. This is another distinguishing feature of the approach of ASPIDE to
unit testing, which is described in the following.

4 Implementation in ASPIDE

In this section, after overviewing the ASPIDE [32] development environment,
we describe the graphic tools conceived for developing and running test cases.

4.1 ASPIDE

ASPIDE is an Integrated Development Environment (IDE) for ASP, which fea-
tures a rich editing tool with a collection of user-friendly graphical tools for ASP
program development. ASPIDE is inspired by Eclipse, one of the most diffused
programming environments. The main features of ASPIDE are described in the
following.

Workspace management. The system allows one to organize ASP programs
in projects, which are collected in the workspace. Workspace components, such
as projects and files, are graphically represented by a tree structure called
Workspace Explorer.

Advanced text editor. The editing of ASP files is simplified by an advanced
text editor. Currently, the system is able to load and store ASP programs in
the syntax of the ASP system DLV [45], and supports the ASPCore language
profile employed in the ASP System Competition 2011 [46]. ASPIDE can also
manage TYP files specifying a mapping between program predicates and data-
base tables in the DLVDB syntax [47]. Besides the core functionality that basic
text editors offer (like code line numbering, find/replace, undo/redo, copy/paste,
etc.), ASPIDE offers other advanced functionalities, like: Automatic completion,
Dynamic code templates, Quick fix, and Refactoring. Indeed, the system is able
to complete (on request) predicate names, as well as variable names. Predicate
names are both learned while writing, and extracted from the files belonging
to the same project; variables are suggested by taking into account the rule
we are currently writing. When several possible alternatives for completion are
available the system shows a pop-up dialog. Moreover, the writing of repeated
programming patterns (like transitive closure or disjunctive rules for guessing
the search space) is assisted by advanced auto-completion with code templates,
which can generate several rules at once according to a known pattern. Note
that code templates can also be user defined by writing DLT [48] files. The
refactoring tool allows one to modify in a guided way, among others, predicate
names and variables (e.g., variable renaming in a rule is done by considering
bindings of variables, so that variables/predicates/strings occurring in other ex-
pressions remain unchanged). Reported errors or warnings can be automatically
fixed by selecting (on request) one of the system’s suggested quick fixes, which
automatically change the affected part of code.

Unit Testing in ASPIDE 357

Outline navigation. ASPIDE creates an outline view which graphically repre-
sents program elements. Each item in the outline can be used to quickly access
the corresponding line of code (a very useful feature when dealing with long files),
and also provides a graphical support for building rules in the visual editor (see
below).

Dynamic code checking and error highlighting. Syntax errors and rele-
vant conditions (like safety) are checked while typing programs: portions of code
containing errors or warnings are immediately highlighted. Note that the checker
considers the entire project; for example, the system issues a warning if there are
predicates defined with different arity in different files. This condition is usually
revealed only when programs divided in multiple files are run together.

Dependency graph. The system is able to display several variants of the depen-
dency graph associated to a program (e.g., depending on whether both positive
and negative dependencies are considered).

Debugger and profiler. Semantic error detection as well as code optimization
can be done by exploiting graphic tools. In particular, we developed a graphical
user interface for embedding in ASPIDE the debugging tool spock [24] (properly
extended for dealing with the syntax of the DLV system). Regarding the profiler,
we have fully embedded the graphical interface presented in [49].

Unit testing. The user can define unit tests and verify the behavior of program
units. The testing tools are described in detail in the following sections.

Configuration of the execution. This feature allows one to configure and
manage input programs and execution options (called run configurations).

Presentation of results. The output of the program (either answer sets, or
query results) are visualized in a tabular representation or in a text-based con-
sole. The result of the execution can be also saved in text files for subsequent
analysis.

Visual editor. The users can draw logic programs by exploiting a full graphical
environment that offers a QBE-like tool for building logic rules [50]. The user
can switch, every time he needs, from the text editor to the visual one (and
vice-versa) thanks to a reverse-engineering mechanism from text to graphical
format.

Interaction with databases. Interaction with external databases is useful in
several applications (e.g., [12]). ASPIDE provides a fully graphical import/export
tool that automatically generates mappings by following the DLVDB TYP file
specifications [47]. Text editing of TYP mappings is also assisted by syntax col-
oring and auto-completion. Database oriented applications can exploit DLVDB as
solver.

Implementation and availability. ASPIDE is written in Java and runs on the
most diffused operating systems (Microsoft Windows, Linux, and Mac OS) and
can connect to any database supporting Java DataBase Connectivity (JDBC).

358 O. Febbraro et al.

For a more detailed description of ASPIDE, as well as for a complete comparison
with competing tools, we refer the reader to [32] and to the online manual
published in the system web site: http://www.mat.unical.it/ricca/aspide.

4.2 Unit Testing in ASPIDE

We have implemented an extension of ASPIDE that allows the user to create
and execute test suites specified in the language presented in Sect. 3. The user
can both manually edit test case files, as well as he or she can create test cases
by exploiting a number of visual tools. In order to provide a description that
immediately gives an idea about the capabilities of the visual testing interface
of ASPIDE and it is easy to use, we describe step by step how to implement
the example illustrated in the previous section.9 Suppose that we have created
in ASPIDE a project named MaxClique, which contains the files clique.dl and
graphInstance.dl storing the encoding of the maximal clique problem and a graph
instance, respectively. Moreover we assume that both input files are included in
a run configuration named MaximalClique, and we assume that the DLV system
is the solver of choice in this run configuration. Since the file that we want to
test in our example is clique.dl, we select it in the workspace explorer, then we
click the right button of the mouse and select New Test from the popup menu
(Fig. 2a). The system shows the test creation dialog (Fig. 2b), which allows one
for both setting the name of the test file and selecting a previously-defined run
configuration (storing execution options and input files). By clicking on the Fin-
ish button, the new test file is created (see Fig. 2c) where a statement regarding
the selected run configuration is added automatically. We add the first unit test
(called maximalClique) by exploiting the text editor (see Fig. 2d), whereas we
build the remaining ones (working on some selected rules) by exploiting the logic
program editor. After opening the clique.dl file, we select rules r2 and r3 inside
the text editor, we right-click on them and we select Add selected rules in test
case from the menu item Test of the popup menu (Fig. 2e). The system opens
a dialog window where we indicate the test file in which we want to add the
new test case (Fig. 2f). We click on the Create test case button. The system will
ask for the name of the new test case and we write guessClique. After that, on
the window, we select the option execute selected rules and click on the Finish
button. The system will add the test case guessClique filled with the selectRule
statements indicating the selected rules. To add project files as input of the test
case, we select them from the workspace explorer and click on Use file as input in
the menu item Test (Fig. 2g). We complete the test case specification by adding
the assertion, thus the test created up to now is shown in Fig. 2h. Following an
analogous procedure we create the remaining test cases (see Fig. 3a). To execute

9 Space constraints prevent us from providing a complete description of all the us-
age scenarios and commands; rather, we focus on the testing interface presenting a
specific example.

http://www.mat.unical.it/ricca/aspide

Unit Testing in ASPIDE 359

Fig. 2. Test case creation.

our tests, we right-click on the test file and select Execute Test. The Test Execu-
tion Dialog appears and the results are shown to the programmer (see Fig. 3b).
Failing tests are indicated by a red icon, while green icons indicate passing tests.
At this point we add the following additional test:

360 O. Febbraro et al.

Fig. 3. Test case execution and assertion management.

checkNodeOutClique() {
excludeInput("edge(2,4).edge(2,5).");

assertFalse("inClique(2). inClique(5).");

}

Unit Testing in ASPIDE 361

This additional test (purposely) fails, this can be easily seen by looking at
Fig. 1b. The reason for this failure is indicated (see Fig. 3b) in the test execution
dialog. In order to know which literals of the solution do not satisfy the assertion,
we right-click on the failed test and select Manage Asserts from the menu. A
dialog showing the outputs of the test appears where, in particular, predicates
and literals matching correctly the assertions are marked in green, whereas the
ones violating the assertion are marked in red (gray icons may appear to indicate
missing literals which are expected to be in the solution). In our example, the
assertion is assertFalse(”inClique(2). inClique(5).”); however, in our instance,
node 5 is contained in the maximal clique composed of nodes 1, 4, 5 ; this is the
reason for the failing test. Assertions can be modified graphically, and, in this
case, we act directly on the result window (Fig. 3c). We remove the node 5 from
the assertion by selecting it. Moreover we right-click on the instance of inClique
that specifies the node 5 and we select Remove from Assert. The atom node(5)
will be removed from the assertion and the window will be refreshed marking
the test case as passed (see Fig. 3e). The same window can be used to manage
constraint assertions. In particular, by clicking on Manage Constraint Assert of
the popup menu, a window appears that allows the user to set/edit constraints
(see Fig. 3d).

5 Conclusion

This paper presents a pragmatic environment for testing ASP programs. In par-
ticular, we propose a new language, inspired by the JUnit [35] framework, for
specifying and running unit tests on ASP programs. The testing language is
general and suits both the DLV [45] and clasp [51] ASP dialects. The testing
language has been implemented in ASPIDE together with some graphic tools
for easing both the development of tests and the analysis of test execution.

As far as future work is concerned, we plan to extend ASPIDE by improving/
introducing additional dynamic editing instruments, and graphic tools like
VIDEAS [52]. Moreover, we plan to further improve the testing tool by sup-
porting (semi)automatic test case generation based on the structural testing
techniques proposed in [33,34]. We have contacted the authors of [33,34] for
including them in our system. These issues are, indeed, orthogonal to our ap-
proach (unit tests are usually defined by programmers), but since our definition
is more general, this integration requires to implement/adapt the existing a test
case generators in such a way that they produce specifications encoded in our
test case specification language.

Acknowledgments. This work has been partially supported by the Calabrian Region
under PIA (Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project
DLVSYSTEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del
06/05/2009.

362 O. Febbraro et al.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. NGC 9, 365–385 (1991)

2. Lifschitz, V.: Answer set planning. In: ICLP’99, pp. 23–37. MIT Press (1999)
3. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.

IEEE TKDE 12(5), 845–860 (2000)
4. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggre-

gates in answer set programming. AI 175(1), 278–298 (2011). Special Issue: John
McCarthy’s Legacy

5. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM TODS 22(3),
364–418 (1997)

6. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński,
M.: The first answer set programming system competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer,
Heidelberg (2007)

7. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: a case
study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

8. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.)
Logic-Based Artificial Intelligence, pp. 257–279. Kluwer, Dordrecht (2000)

9. Baral, C., Uyan, C.: Declarative specification and solution of combinatorial auc-
tions using logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 186–199. Springer, Heidelberg (2001)

10. Franconi, E., Palma, A.L., Leone, N., Perri, S.: Census data repair: a challenging
application of disjunctive logic programming. In: Nieuwenhuis, R., Voronkov, A.
(eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer, Heidelberg
(2001)

11. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog
decision support system for the space shuttle. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

12. Leone, N., et al.: The INFOMIX system for advanced integration of incomplete
and inconsistent data. In: SIGMOD 2005, pp. 915–917. ACM Press (2005)

13. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

14. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowl-
edge management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 591–597. Springer, Heidelberg (2009)

15. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. TPLP 11(2–3), 323–360 (2011)

16. Gebser, M., Kaminski, R., Schaub, T.: aspcud: a linux package configuration tool
based on answer set programming. In: LoCoCo, pp. 12–25 (2011)

17. Ricca, F., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone, N.:
Logic-based system for e-Tourism. FI 105(1–2), 35–55 (2010)

18. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.:
Team-building with answer set programming in the Gioia-Tauro seaport. TPLP.
http://dx.doi.org/10.1017/S147106841100007X (2011)

19. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

http://dx.doi.org/10.1017/S147106841100007X

Unit Testing in ASPIDE 363

20. Calimeri, F., et al.: The third answer set programming competition: preliminary
report of the system competition track. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 388–403. Springer, Heidelberg (2011)

21. Dovier, A., Erdem, E.: Report on application session @lpnmr09. http://www.cs.
nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/ (2009)

22. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool
for developing and testing DLV programs. In: SEA 07, pp. 86–100 (2007)

23. Sureshkumar, A., Vos, M.D., Brain, M., Fitch, J.: APE: an AnsProlog* environ-
ment. In: SEA 07, pp. 101–115 (2007)

24. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: That
is illogical captain! The debugging support tool spock for answer-set programs:
system description. In: SEA 07, pp. 71–85 (2007)

25. Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics.
In: ASP’05, Bath, UK (2005)

26. El-Khatib, O., Pontelli, E., Son, T.C.: Justification and debugging of answer set
programs in ASP. In: Proceedings of Automated Debugging, California, USA. ACM
(2005)

27. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-
ground answer-set programs. In: Proceedings of the ICLP’10 (2010)

28. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

29. De Vos, M., Schaub, T., (eds.): SEA’07: Software Engineering for Answer Set
Programming, vol. 281. CEUR. http://CEUR-WS.org/Vol-281/ (2007)

30. De Vos, M., Schaub, T., (eds.): SEA’09: Software Engineering for Answer Set
Programming, vol. 546. CEUR. http://CEUR-WS.org/Vol-546/ (2009)

31. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: an ASP-based system for enterprise ontologies. JLC 19(4), 643–670 (2009)

32. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS, vol. 6645, pp. 317–330. Springer, Heidelberg (2011)

33. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-
set programs. In: Proceeding of the conference on ECAI 2010: 19th European
Conference on Artificial Intelligence, pp. 951–956. IOS Press, Amsterdam (2010)

34. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: Random vs.
structure-based testing of answer-set programs: an experimental comparison. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 242–247.
Springer, Heidelberg (2011)

35. JUnit.org community: JUnit, Resources for Test Driven Development. http://www.
junit.org/

36. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)

37. Jack, O.: Software Testing for Conventional and Logic Programming. Walter de
Gruyter & Co., Hawthorne (1996)

38. Wielemaker, J.: Prolog Unit Tests. http://www.swi-prolog.org/pldoc/package/
plunit.html

39. Cancinos, C.: Prolog Development Tools - ProDT. http://prodevtools.sourceforge.
net

40. Gelfond, M., Leone, N.: Logic programming and knowledge representation - the
A-Prolog perspective. AI 138(1–2), 3–38 (2002)

http://www.cs.nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/
http://www.cs.nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/
http://CEUR-WS.org/Vol-281/
http://CEUR-WS.org/Vol-546/
http://www.junit.org/
http://www.junit.org/
http://www.swi-prolog.org/pldoc/package/plunit.html
http://www.swi-prolog.org/pldoc/package/plunit.html
http://prodevtools.sourceforge.net
http://prodevtools.sourceforge.net

364 O. Febbraro et al.

41. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP’94, pp. 23–37. MIT
Press (1994)

42. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. Intell.
172, 1495–1539 (2008)

43. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions
in disjunctive logic programming: semantics, complexity, and implementation in
DLV. In: IJCAI 2003, Acapulco. Mexico, pp. 847–852 (2003)

44. Sommerville, I.: Software Engineering. Addison-Wesley, Harlow (2004)
45. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:

The DLV system for knowledge representation and reasoning. ACM TCL 7(3),
499–562 (2006)

46. Calimeri, F., Ianni, G., Ricca, F.: The third answer set programming system com-
petition. https://www.mat.unical.it/aspcomp2011/ (2011)

47. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8, 129–165 (2008)

48. Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.: Answer set programming with
templates. In: ASP’03, Messina, Italy, pp. 239–252. http://CEUR-WS.org/Vol-78/
(2003)

49. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Proceed-
ings of SEA’09, Potsdam, Germany (2009)

50. Febbraro, O., Reale, K., Ricca, F.: A visual interface for drawing ASP programs.
In: Proceedings of CILC2010, Rende(CS), Italy (2010)

51. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: IJCAI 2007, pp. 386–392 (2007)

52. Oetsch, J., Pührer, J., Seidl, M., Tompits, H., Zwickl, P.: VIDEAS: a development
tool for answer-set programs based on model-driven engineering technology. In:
Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 382–387.
Springer, Heidelberg (2011)

https://www.mat.unical.it/aspcomp2011/
http://CEUR-WS.org/Vol-78/

Author Index

Behrend, Andreas 77
Beierle, Christoph 175
Belohlavek, Radim 58

Denecker, Marc 279
De Pooter, Stef 279
Dvořák, Wolfgang 114, 259

Eiter, Thomas 3, 269

Febbraro, Onofrio 345
Fink, Michael 3

Gaggl, Sarah Alice 114

Hofstedt, Petra 239

Ianni, Giovambattista 3
Inoue, Katsumi 134

Janhunen, Tomi 95

Katamine, Keiichi 41
Kern-Isberner, Gabriele 175
Kloimüllner, Christian 325
Krennwallner, Thomas 269

Leone, Nicola 345
Lüdecke, Rainer 155

Manthey, Norbert 297
Morak, Michael 259

Naruse, Ryoto 41
Nguyen, Mai 95
Niemelä, Ilkka 95
Nopp, Clemens 259

Oetsch, Johannes 305, 325

Pührer, Jörg 305, 325

Reale, Kristian 345
Redl, Christoph 269
Ricca, Francesco 345

Sakama, Chiaki 134
Schneeweiss, Denny 239
Schüller, Peter 3
Šefránek, Ján 195
Šimko, Alexander 195
Sone, Hiroaki 41
Södler, Karl 175
Szeider, Stefan 27

Tasharrofi, Shahab 215
Ternovska, Eugenia 215
Tompits, Hans 305, 325

Umeda, Masanobu 41
Urbanova, Lucie 58

Vychodil, Vilem 58

Wallner, Johannes Peter 114
Wernhard, Christoph 289
Wiese, Lena 134
Wittocx, Johan 279
Woltran, Stefan 114, 259
Wu, Xiongnan (Newman) 215

	Preface
	Organization
	Contents
	Invited Talks
	The IMPL Policy Language for Managing Inconsistency in Multi-Context Systems
	1 Introduction
	2 Preliminaries
	3 Policy Language IMPL
	3.1 Syntax
	3.2 Semantics

	4 Methodologies of Applying IMPL and Realization
	5 Realizing IMPL in acthex
	5.1 Preliminaries on acthex
	5.2 Rewriting IMPL to acthex

	6 Conclusion

	The Parameterized Complexity of Constraint Satisfaction and Reasoning
	1 Introduction
	2 Parameterized Complexity: Basic Concepts and Definitions
	3 How to Parameterize?
	3.1 Backdoors
	3.2 Decompositions
	3.3 Locality
	3.4 Above or Below Guaranteed Bounds

	4 Kernelization: Preprocessing with Guarantee
	5 Breaking Complexity Barriers with FPT-Reductions
	6 Conclusion

	INAP Technical Papers I:Languages
	Translating Nondeterministic Functional Language Based on Attribute Grammars into Java
	1 Introduction
	2 Overview of Knowledge Representation Language DSP
	2.1 Background
	2.2 Syntax and Semantics of DSP
	2.3 Execution Model for DSP

	3 Translation Techniques for Logic Programming Languages
	4 Program Representation in Java and Inference Engine
	4.1 Data Flow Analysis
	4.2 Continuation Unit
	4.3 Variable and Parameter Passing
	4.4 Inference Engine

	5 Implementation and Performance Evaluation
	5.1 Execution Times of Benchmarks
	5.2 Impact of Java Heap Memory Size

	6 Conclusions

	Sensitivity Analysis for Declarative Relational Query Languages with Ordinal Ranks
	1 Introduction
	2 Problem Setting
	3 Preliminaries
	3.1 Complete Residuated Lattices
	3.2 Basic Structures
	3.3 Ranked Data Tables over Domains with Similarities
	3.4 Relational Operations with RDTs

	4 Estimations of Sensitivity of Query Results
	4.1 Rank-Based Similarity of Query Results
	4.2 Illustrative Example
	4.3 Tuple-Based Similarity and Further Topics
	4.4 Unifying Approach to Similarity of RDTs

	5 Conclusion and Future Research

	A Uniform Fixpoint Approach to the Implementation of Inference Methods for Deductive Databases
	1 Introduction
	2 Basic Concepts
	3 Transformation-Based Approaches
	3.1 Query Optimization
	3.2 Update Propagation
	3.3 View Updates

	4 Consequence Operators and Fixpoint Computations
	4.1 Definite Rules
	4.2 Indefinite Rules

	5 A Uniform Fixpoint Approach
	6 Conclusion

	INAP Technical Papers II:Answer-Set Programmingand Abductive Reasoning
	Translating Answer-Set Programs into Bit-Vector Logic
	1 Introduction
	2 Preliminaries
	2.1 Normal Logic Programs
	2.2 Bit-Vector Logic

	3 Translation
	4 Native Support for Extended Rule Types
	5 Experimental Results
	6 Conclusion

	Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems
	1 Introduction
	2 Background
	2.1 Abstract Argumentation
	2.2 Answer-Set Programming

	3 Encodings of AF Semantics
	3.1 Saturation Encodings
	3.2 Meta ASP Encodings
	3.3 Alternative Encodings for Resolution-based Grounded Semantics

	4 Experimental Evaluation
	5 Conclusion

	Confidentiality-Preserving Publishing of EDPs for Credulous and Skeptical Users
	1 Introduction
	2 EDPs and Answer Set Semantics
	3 Confidentiality-Preserving Knowledge Bases
	4 Extended Abduction
	4.1 Extended Abduction and Confidentiality-Preservation
	4.2 Normal Form
	4.3 Update Programs
	4.4 Ground Observations

	5 Confidentiality-Preservation with UPs
	5.1 Policy Transformation for Credulous and Skeptical Users
	5.2 Deletions for Credulous Users
	5.3 Deletions for Skeptical Users
	5.4 Deletions and Literal Insertions for Credulous Users
	5.5 Deletions and Literal Insertions for Skeptical Users

	6 Discussion and Conclusion

	INAP Technical Papers III:Semantics
	Every Formula-Based Logic Program Has a Least Infinite-Valued Model
	1 Introduction
	2 Infinite-Valued Models
	3 The Immediate Consequence Operator
	4 Construction of the Least Model
	5 Properties of the Interpretation MP
	6 Summary and Future Work

	WLP Technical Papers I:Constraints and LogicProgramming
	A Declarative Approach for Computing Ordinal Conditional Functions Using Constraint Logic Programming
	1 Introduction
	2 Background
	3 Example
	4 Specification of Ranking Functions as Solutions of a Constraint Satisfaction Problem
	5 A Declarative CLP Program for CR(R)
	5.1 Input Format and Preliminaries
	5.2 Generation of Constraints
	5.3 Generation of Minimal Solutions
	5.4 Alternative Notions of Minimality

	6 Example Applications and First Evaluation
	7 Conclusions and Further Work

	WLP Technical Papers II:Answer-Set Programmingand Model Expansion
	A Descriptive Approach to Preferred Answer Sets
	1 Introduction
	2 Preliminaries
	3 Argumentation Structures
	4 Attacks and Warranted Derivations
	5 Preferred Answer Sets
	6 Evaluation
	6.1 Principles
	6.2 Discussion -- Descriptive Approach

	7 Related Work
	8 Conclusions

	Solving Modular Model Expansion: Case Studies
	1 Introduction
	2 Background
	2.1 Model Expansion
	2.2 Modular Systems

	3 Computing Models of Modular Systems
	3.1 Partial Structures
	3.2 Requirements on the Modules
	3.3 Requirements on the Solver
	3.4 Lazy Model Expansion Algorithm

	4 Case Studies: Existing Frameworks
	4.1 Modelling DPLL(T)
	4.2 Modelling ILP Solvers
	4.3 Modelling Constraint Answer Set Solvers

	5 Related Work and Conclusion

	INAP Application Papers
	FdConfig: A Constraint-Based Interactive Product Configurator
	1 Introduction
	2 Interactive Configuration Methods
	3 Constraint Programming
	4 The Interactive Configurator FdConfig
	4.1 FdFeatures Models and CSPs
	4.2 Domain Analysis
	4.3 The Configuration Phase
	4.4 Improving the User Experience by Multithreading

	5 Conclusion and Future Work

	INAP System Descriptions
	dynPARTIX - A Dynamic Programming Reasoner for Abstract Argumentation
	1 Introduction
	2 Background
	3 Dynamic Programming Algorithm
	4 Implementation and the SHARP Framework
	5 System Specifics
	6 Benchmark Tests
	7 Discussion

	HEX-Programs with Nested Program Calls
	1 Introduction
	2 HEX-Programs
	3 Nested HEX-Programs
	4 Applications
	5 Conclusion

	A Prototype of a Knowledge-Based Programming Environment
	1 Context
	2 Overview of the Language and System
	2.1 Program Structure
	2.2 Knowledge Representation Language
	2.3 Structures
	2.4 Procedures

	3 Programming in DECLIMP
	4 Related Work
	5 Conclusion

	WLP System Descriptions
	Computing with Logic as Operator Elimination: The ToyElim System
	1 Computation with Logic as Operator Elimination
	2 Features of the System
	3 Implementation
	4 Conclusion

	Coprocessor -- a Standalone SAT Preprocessor
	1 Introduction
	2 Preprocessor Techniques
	2.1 Basic Preprocessing Rules
	2.2 Satisfiability-Preserving Techniques
	2.3 Equivalence-Preserving Techniques

	3 Coprocessor
	3.1 The Map File Format
	3.2 Preprocessor Comparison

	4 Conclusion and Future Work

	The SeaLion has Landed: An IDE for Answer-Set Programming---Preliminary Report
	1 Introduction
	2 Supported ASP Languages
	3 Implementation Principles, Architecture, and Availability
	4 Current Features
	4.1 Source-Code Editor
	4.2 Documentation Feature
	4.3 Support for External Tools
	4.4 Interpretation Views
	4.5 Visualisation and Visual Editing

	5 Projected Features
	6 Related Work
	7 Conclusion

	Kara: A System for Visualising and Visual Editing of Interpretations for Answer-Set Programs
	1 Introduction
	2 System Overview
	2.1 Visualisation of Interpretations
	2.2 Editing of Interpretations

	3 Implementation
	4 Examples
	5 Related Work
	6 Conclusion

	Unit Testing in ASPIDE
	1 Introduction
	2 Answer Set Programming
	3 Unit Testing in ASP
	4 Implementation in ASPIDE
	4.1 ASPIDE
	4.2 Unit Testing in ASPIDE

	5 Conclusion

	Author Index

