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Abstract. The problem of the buckling of a transveral-isotropic cylin-
drical shell under axial compression by means of new non-classical shell
theories is studied. The local approach is used to solve the systems of
differential equations. According to this approach the buckling deflection
is sought in the form of a doubly periodic function of curvilinear coordi-
nates. The well-known solutions obtained by classical shell theories are
compared with the results of non-classical shell theories. For the non-
classical theories of anisotropic shell of moderate thickness the buckling
equations are constructed by the linearization of nonlinear equilibrium
equations. Analytical and numerical results obtained with the use of 3D
theory by the FEM code ANSYS 13 are also compared.

Keywords: Cylindrical Shell, Buckling, Non-Classical Theories of
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1 Introduction

In this paper the problem of the buckling of the transversal-isotropic cylindrical
shell under the axial compression by means of different nonclassical shell theories
is studied. The following non-classical theories are considered: Ambartsumian
(AMB) [1] theory of anisotropic shells, Paliy-Spiro (PS) theory of moderate-
thickness shells and Rodionova-Titaev-Chernykh (RTCH) [2] iteration theory.
The developed buckling equations for the shell theories of PS and RTCH are
constructed by linearization of nonlinear equilibrium equations. The comparison
of new solutions obtained by non-classical shell theories with well-known results
of classical theories - Kirchhoff-Love (KL) and Timoshenko-Reissner (TR) [3]
is done. In conclusion the comparison of the analytical results of shell theories
with numerical results of three–dimensional theory by the FEM code Ansys 13
is given. The main focus is on the case of small cross-section shear modulus. Also
we study the influence of relative thickness and length of the shell on the value
of critical load. Let us denote a polar angle by α, and the length coordinate by β.
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Fig. 1. An element of circular cylindrical shell

The radius of middle surface of the shell is R, the thickness is h, it’s length is
L , Young’s modulus is E, Poisson ratio is ν and tangential shear modulus is
G′. Lame coefficient and curvature coefficient which determine the geometry of
cylindrical shell: A1 = R, A2 = 1, k1 = 1/R, k2 = 0.

We consider buckling equations of the shell which are constructed by the
linearization of non-linear equilibrium equations. This method is very convenient
in estimating of upper critical loading. It is enough to define the condition under
which generalized stiffness of the construction is equal to zero. Using the method
of linearization the solution of the problem is sought by summing of consequently
calculated parameters of strain-stress state of the construction while loads are
gradually increased. Thus at the each stage of the loading the linear shell problem
is being solved.

Fig. 2. The load applied to cylindrical shell

General equations are written down for increments in the components of in-
ner forces, displacements and deformation parameters at this stage of loading.
The components of the loading include parameters which describe the stress-
strain state of the shell at the previous stage. If the change of the components is
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known and fixed, it is connected with the change of one scalar parameter. The
initial state will be an implicit function of this parameter and there appears the
eigenvalue problem.

In the given problem we use the classical hypothesis [3] holding that the basic
stress-strain state of the shell before the loss of stability is membrane. Then one
can take the well-known solution of the membrane shell theory as some function
defining the distribution of force in a membrane shell:

Z = −T20∂β,βw (1)

As a result, in this problem T2
0 magnitude becomes the only one indefinite

scalar parameter the eigenvalue of which should be found. In solving the sys-
tems of differential equations a local approach is used [4], according to which
the bucking deflection is sought in the form of a doubly periodic function of
curvilinear coordinates. The non-zero system solution is sought in the form of:

w(α, β) = w0 cos(nα) sin(mβ), Φ(α, β) = Φ0 cos(nα) sin(mβ)
u(α, β) = u0 sin(nα) sin(mβ), γ1(α, β) = γ1

0 sin(nα) sin(mβ)
v(α, β) = v0 cos(nα) cos(mβ), γ2(α, β) = γ2

0 cos(nα) cos(mβ)
(2)

where u, v, w — displacement vector components of a point of mid-surface of
shell, γ1 and γ2 —angles of normal turn in the planes (α, z), (β, z) respectively,
Φ(α, β) — force function.

2 Kirchhoff-Love Model Solution

Let us consider the well-known solution which is obtained by the classical theory
of shells which is based on the following hypothesis:

1) the straight lines normal to the mid-surface remain straight and normal to
the mid-surface after deformation;

2) the thickness of the shell does not change during a deformation.
Two-dimensional equation system of the shallow shell theory [3] has a form:

−DΔΔw + T 0
2 ∂β,βw +

1

R
∂β,βΦ = 0,

1

Eh
ΔΔΦ+

1

R
∂β,βw = 0 (3)

where Δ - Laplace operator; D = Eh3/(12(1 − ν2)) - cylindrical stiffness; T 0
2 -

desired axial force.
If we substitute the expression (2) into this system (3) for force T 0

2 , we will
obtain:

− T 0
2 = f(m,n) =

D(n2 +m2)2

R2m2
+

Ehm2

(n2 +m2)2
(4)

The critical load value is obtained as a result of minimization by the wave
parameters m and n of the function f(m,n).

T 0
2 = σ0h, σ0 = − E

√
3(1− ν2)

h

R
= σcl (5)
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3 Ambartsumian Model Solution

The solution (5) being constructed by KL model does not allow taking into ac-
count the effect of stiffness on cross-section shear. Let us consider Ambartsumian
[1] theory which is based on the following hypothesis:

1) displacement which is normal to the shell mid-surface does not depend on
the normal coordinate;

2) shear stresses or the corresponding deformations change according to a
quadratic law with respect to the plane thickness;
Let us write down the equations of Ambartsumian model which takes the influ-
ence of cross-section shear into account for a transversally-isotropic shell as:

−ΔΔu− ν

R

∂3w

∂β3
+

1

R

∂3w

∂α2∂β
= 0 −ΔΔv − 2 + ν

R

∂3w

∂α∂β2
− 1

R

∂3w

∂α3
= 0 (6)

−DΔ4w +
Eh

R2
(1− hzΔ)

∂4w

∂β4
− T 0

2 (1− hzΔ)Δ2 ∂
2w

∂β2
= 0 hz =

Eh2

10(1− ν2)G′

The simplified system of differential equations of the shell buckling which
is used in Ambartsumian theory was obtained basing on the equations of the
shallow shell theory.

Using the local approach (2) for solving this system for T 0
2 we obtain:

− T 0
2 = f(m,n) =

D(n2 +m2)2

R2m2(1 + hz(n2 +m2))
+

Ehm2

(n2 +m2)2
(7)

The obtained value for critical load —

σ0 = − E
√
3(1− ν2)

h

R
+

E2

10G′(1− ν2)

(
h

R

)2

= σcl

(

1−
√
3

10
√
(1 − ν2)

E

G′
h

R

)

(8)
agrees completely with the one being obtained by the theory of Timoshenko-

Reissner [3]. It is known [4] that for an isotropic shells and plates the TR theory
being asymptotically inconsistent refines the deflection of a body. But for bod-
ies, which are made of transversal isotropic material ”in case when material
stiffness in tangential directions is much larger than its stiffness in the transver-
sal direction” the TR theory makes the KL theory more precise and gives next
asymptotical approximation of the three-dimensional theory. The bodies ”with
moderately small transverse shear stiffness” are thin-walled bodies for which
small parameter g = G’/E (where E is the Young’s modulus in the tangential
direction, G’ is the shear modulus for plane normal to the surface of isotropy)

satisfies expression (h/R)2 � g � 1.

4 Paliy-Spiro Model Solution

The situation is quite different when the buckling problems are considered with
the use of improved theories. In this case the old representations are not always
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acceptable as there appear problems related to taking into account the change
of the length and the turn of the normal to mid-surface.

The Paliy-Spiro [2] theory of moderate-thickness shells accepts the following
hypothesis:

1) straight fibers of the shell which are perpendicular to its mid-surface before
deformation remain also straight after deformation;

2) cosine of the slope angle of these fibers to the mid-surface of the deformed
shell is equal to the averaged angle of transverse shear.
The mathematical formulation of the accepted hypotheses gives following
equations:

u1 = u+ φ · z, u2 = v + ψ · z,
u3 = w + F (α, β, z),
φ = γ1 + φ0, ψ = γ2 + ψ0,

φ0 = − 1

A1

∂w

∂α
+ k1u, ψ0 = − 1

A2

∂w

∂α
+ k2v,

(9)

where φ and ψ are the angles of rotation of the normal in the planes (α, z) and
(β, z); φ0, ψ0,γ1 γ2 — the angles of rotation of the normal to the medial sur-
face and the angles of displacement in the same planes. The function F (α, β, z)
characterizes the variation of the length of normal to the middle surface.

The shell deformations ε1, ε2, ε13, η1, η2 are expressed by displacement com-
ponents with the following formulas:

ε1 =
∂αu

R
+
w

R
, ε2 = ∂βv, η1 =

∂αφ

R
(10)

η2 = ∂βψ, ω =
∂αv

R
+ ∂βu, τ =

∂αψ

R
+ ∂βφ

Substituting the mentioned dependencies (10) into the constitutive relations
(11), one can obtain the equations of relation between the components of dis-
placement and forces and moments.

ε1 =
T1 − νT2
Eh

, ε2 =
T2 − νT1
Eh

, ω =
S

G′h
, η1 =

12(M1 − νM2)

Eh3
, (11)

η2 =
12(M2 − νM1)

Eh3
, τ =

12H

G′h3
, γ1 =

N1

G′h
, γ2 =

N2 + T2
0 ∗ ψ0

G′h
As one can see (11), PS theory includes the characteristical parameter T2

0 in
the equation of relation between normal slope γ2 and shear force N2.

The obtained equations of relation between components of displacement and
forces and moments are substituted into equilibrium equations:

∂αT1
R

+ ∂βS +
N1

R
= 0,

∂αS

R
+ ∂βT2 = 0,

∂αN1

R
+ ∂βN2 − T1

R
= 0 (12)

∂αM1

R
+ ∂βH −N1 = 0,

∂αH

R
+ ∂βM2 −N2 − T2

0 ∗ ψ0 = 0.
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Resolution matrix in this case will be of [5*5] dimension. Nevertheless the
value of critical load obtained is similar to the value of Ambartsumian theory
(8). This is the factor of the second coefficient of asymptotical expansion by small
parameter h/R that makes the results different. One can see that this numerical
factor reduces the influence of transversal shear.

σ0 = − E
√
3(1− ν2)

h

R
+

E2

12G′(1− ν2)

(
h

R

)2

= σcl

(

1−
√
3

12
√
(1 − ν2)

E

G′
h

R

)

(13)

5 Rodionova-Titaev-Chernykh Model Solution

The use of RTCH shell theory yields more interesting results [2]. This is a lin-
ear theory of non-homogeneous anisotropic shells which takes into account low
transversal shear compliance and deformation towards the normal to the mid-
dle surface. It also takes into account transversal normal strains and supposes
non-linear distribution of displacement vector component over shell thickness.

1) transverse tangential and normal stresses are distributed along the shell
thickness according to quadratic and cubic laws respectively;

2) tangential and normal components of the displacement vector are dis-
tributed along the shell thickness according to quadratic and cubic laws;
The functions which describe shell displacement u1(α, β, z),u2(α, β, z), u3(α, β, z)
according to RTCH theory are supposed to be sought in the form of Legendre
polynomial series P0, P1, P2, P3 from normal coordinate z ∈ [−h

2 ,
h
2

]
.

u1(α, z) = u(α, β)∗P0(z) + γ1(α, β)
∗P1(z) + θ1(α, β)

∗P2(z) + ϕ1(α, β)
∗P3(z),

u2(α, z) = v(α, β)∗P0(z) + γ2(α, β)
∗P1(z) + θ2(α, β)

∗P2(z) + ϕ2(α, β)
∗P3(z),

u3(α, z) = w(α, β)∗P0(z) + γ3(α, β)
∗P1(z) + θ3(α, β)

∗P2(z)
(14)

P0(z) = 1, P1(z) =
2z

h
, P2(z) =

6z2

h2
− 1

2
, P3(z) =

20z3

h3
− 3z

h
(15)

where γ3 and θ3 characterize normal length variation to this surface, magnitudes
θ1 and ϕ1, describe normal curvature in the plane (α, z) of a fiber, θ2 ϕ2,
describe normal curvature in the plane (β, z)which before the deformation were
perpendicular to the medial surface of the shell.

The shell deformations ε1, ε2, ε13, η1, η2 are expressed by displacement
components:

ε1 =
∂αu

R
+
w

R
, ε2 = ∂βv, η1 =

∂αγ1
R

+
γ3
R
, η2 = ∂βγ2, ϑ0 = ∂α,αw (16)

ω =
∂αv

R
+∂βu, τ =

∂αγ2
R

+∂βγ1, ε13 =
∂αw

R
− u

R
+

2γ1
h
, ε23 = ∂βw+

2γ2
h

The characteristical parameter T2
0 is also included into the constitutive

relations.

T1 =
Eh

1− ν2
(ε1 + νε2), T2 =

Eh

1− ν2
(νε1 + ε2), M1 =

Eh2

6 (1− ν2)
(η1 + νη2),
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M2 =
Eh2

6 (1− ν2)
(νη1 + η2), S = G′hω, H = G′h

2

6
τ, N1 =

5hG′

6
ε13, (17)

N2 =
5hG′

6
ε23 +

T2
0ϑ0
6

, γ3 = − ν

1− ν

h

2
(ε1 + ε2),

The equations of relation forces and moments and displacement components
were substituted into equilibrium equations (12).

In minimizing the determinant the following solution was obtained:

σ0 = − E
√
3(1− ν2)

√

1− E2

60G′2(1− ν2)

(
h

R

)2 (
h

R

)
+

E2

15G′(1 − ν2)

(
h

R

)2

(18)
This expansion into a series by a small parameter yields succeedent terms of

expansion:

σ0 = − E
√
3(1− ν2)

h

R
+

E2

15G′(1 − ν2)

(
h

R

)2

+O

[
h

R

]3
(19)

6 The Comparison with Numerical Results

Let us compare the results which are obtained with the use of developed ana-
lytical formulae of shell theory and numerical results for three-dimensional the-
ory. Unfortunately, the formulae for the critical load of the shell theory do not
take into account the tube length. Being applied to the buckling problems the
obtained solutions well agree with medium-length shells. For example, a three-
dimensional model of steel tube under the influence of axial compression was
studied under the following parameters h/R = 2/15, ν = 0.3. The cross-section
shear modulus is equal to G′ = E/(2(1+ν)). For modeling the three-dimensional
problem in package Ansys 13 the finite element Solid186 was used. This is a
higher order 3-D 20-node solid element that exhibits quadratic displacement be-
havior. The element is defined by 20 nodes having three degrees of freedom per
node: translations in the nodal x, y, and z directions. The element supports plas-
ticity, hyperelasticity, creep, stress stiffening, large deflection, and large strain
capabilities. It also has mixed formulation capability for simulating deformations
of nearly incompressible elastoplastic materials, and fully incompressible hypere-
lastic materials. [5] During mesh construction the tube thickness was split for five

Table 1. The comparison of critical load values

h/R 0.025 0.05 0.1 0.133 0.162

KL 0.01532 0.03103 0.0637 0.08069 0.09814

Amb 0.01513 0.03028 0.06054 0.07561 0.09063

PS 0.01516 0.03041 0.06107 0.07646 0.09188

RTCH 0.01519 0.03053 0.06155 0.07722 0.09297

Ansys 0.01445 0.02875 0.055 0.0595 0.0635
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elements. Thus the value of the critical load according to the three-dimensional
theory is smaller than shell theories. The value of a critical load for the consid-
ered tubes with length ranged from 1.5 to 3 diameters of mid-surface does not
change considerably. Table 1 shows dimensionless values of critical load σ0/E
for different ratios of tube thickness to the radius of its middle surface.

7 Conclusions

As one can see in the table, as shell thickness increases, the values of critical load
obtained by shell theories are not consistent with the results of three-dimensional
theory. It can be noticed that error increases as the thickness grows. It is possible
to claim that in spite of improvements of non-classical hypotheses reliable results
can be obtained only for thin shells. However, as it was shown in [2] similar
hypotheses suit well for defining stress-strain state of a shell.
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