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Abstract. We present high-order symplectic schemes for stochastic
Hamiltonian systems preserving Hamiltonian functions. The approach
is based on the generating function method, and we show that for the
stochastic Hamiltonian systems, the coefficients of the generating func-
tion are invariant under permutations. As a consequence, the high-order
symplectic schemes have a simpler form than the explicit Taylor expan-
sion schemes with the same order. Moreover, we demonstrate numerically
that the symplectic schemes are effective for long time simulations.
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1 Introduction

We consider the autonomous stochastic differential equations (SDEs) in the sense
of Stratonovich:

dPi = −∂H(0)(P,Q)

∂Qi
dt−

m∑

r=1

∂H(r)(P,Q)

∂Qi
◦ dwr

t , P (t0) = p

dQi =
∂H(0)(P,Q)

∂Pi
dt+

m∑

r=1

∂H(r)(P,Q)

∂Pi
◦ dwr

t , Q(t0) = q,

(1)

where P , Q, p, q are n-dimensional vectors with the components P i, Qi, pi, qi,
i = 1, . . . , n, and wr

t , r = 1, . . . ,m are independent standard Wiener processes.
The SDEs (1) are called the Stochastic Hamiltonian System (SHS) ([6]).

The stochastic flow (p, q) −→ (P,Q) of the SHS (1) preserves the symplectic
structure (Theorem 2.1 in [6]) as follows:

dP ∧ dQ = dp ∧ dq, (2)

i.e. the sum over the oriented areas of its projections onto the two dimensional
plane (pi, qi) is invariant. Here, we consider the differential 2-form

dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn, (3)
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and differentiation in (1) and (2) have different meanings: in (1) p, q are fixed
parameters and differentiation is done with respect to time t, while in (2) differ-
entiation is carried out with respect to the initial data p, q. We say that a method
based on the one step approximation P̄ = P̄ (t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q)
preserves symplectic structure if dP̄ ∧ dQ̄ = dp ∧ dq.

Milstein et al. [6] [7] introduced the symplectic numerical schemes for SHS,
and they demonstrated the superiority of the symplectic methods for long time
computation. Recently, Wang et al. [4],[8] proposed generating function meth-
ods to construct symplectic schemes for SHS. In the present study, we focus
on SHS that preserve the Hamiltonian function (i.e. SHS for which dH(r) = 0,
r = 0, . . . ,m). We propose higher order symplectic schemes that are computa-
tionally efficient for this special type of SHS .

2 The Generating Function Method and Symplectic
Schemes

Similar with the deterministic case [3], we have the following result [4] relating
the solutions of the Hamilton-Jacobi partial differential equation (HJ PDE) and
the solutions of the SHS (1):

Theorem 1. If S1
ω(P, q) is a solution of the HJ PDE

dS1
ω = H(0)(P, q +

∂S1
ω

∂P
)dt+

m∑

r=1

H(r)(P, q +
∂S1

ω

∂P
) ◦ dwr

t , S1
ω|t=t0 = 0, (4)

and if the matrix ( ∂2Sω

∂Pi∂qj
) is invertible, then the map (p, q) → (P (t, ω), Q(t, ω))

defined by

P = p− ∂S1
ω

∂q
(P, q), Q = q +

∂S1
ω

∂P
(P, q), (5)

is the flow of the SHS (1).

The key idea for deriving high order symplectic schemes via generating func-
tions is to obtain an approximation of the solution of HJ PDE, and then to
construct the symplectic numerical scheme through the relations (5). It is rea-
sonable to assume that the generating function can be expressed by the following
expansion locally [4]

S1
ω(P, q, t) = G(0)(P, q)J(0) +G(1)(P, q)J(1) +G(0,1)(P, q)J(0,1) + · · · =

∑

α

GαJα,

(6)
where α = (j1, j2, . . . , jl), ji ∈ {0, 1, . . . ,m}, i = 1, . . . , l is a multi-index of
length l(α) = l, and, with dw0

s := ds, Jα is the multiple Stratonovich integral

Jα =

∫ t

0

∫ sl

0

. . .

∫ s2

0

◦dwj1
s1 · · · ◦ dwjl−1

sl−1
◦ dwjl

sl
. (7)
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If the multi-index α = (j1, j2, . . . , jl) with l > 1, then α− = (j1, j2, . . . , jl−1).
For any two multi-indexes α = (j1, j2, . . . , jl) and α′ = (j′1, j

′
2, . . . , j

′
l′), we define

the concatenation operation ′∗′ as α ∗ α′ = (j1, j2, . . . , jl, j
′
1, j

′
2, . . . , j

′
l′). The

concatenation of a collection Λ of multi-indexes with the multi-index α gives the
collection Λ ∗ α = {α′ ∗ α}α′∈Λ.

For any multi-index α = (j1, j2, . . . , jl) with no duplicated elements (i.e.,
jm �= jn if m �= n, 1 ≤ m,n ≤ l), we define the set R(α) to be the empty set
R(α) = Φ if l = 1 and R(α) = {(jm, jn)|m < n, 1 ≤ m,n ≤ l} if l ≥ 2. R(α)
defines a partial order on the set formed with the numbers included in the multi-
index α, defined by i ≺ j if and only if (i, j) ∈ R(α). We suppose that there are
no duplicated elements in or between the multi-indexes α = (j1, j2, . . . , jl) and
α′ = (j′1, j

′
2, . . . , j

′
l′), and we define

Λα,α′ = {β ∈ M|R(α) ∪R(α′) ⊆ R(β) and β has no duplicates} (8)

where M = {(ĵ1, ĵ2, . . . , ĵl+l′)|ĵi ∈ {j1, j2, . . . , jl, j′1, j′2, . . . , j′l′}, i = 1, . . . , l+ l′}.
Analogously if there are no duplicated elements in or between any of the multi-

indexes α = (j
(1)
1 , j

(1)
2 , . . . , j

(1)
l1

), . . . , αn = (j
(n)
1 , j

(n)
2 , . . . , j

(n)
ln

), then we define

Λα1,...,αn = {β ∈ M| ∪n
k=1 R(αk) ⊆ R(β) and β has no duplicates}, (9)

where M = {(ĵ1, ĵ2, . . . , ĵl̂)|ĵi ∈ {j(1)1 , j
(1)
2 , . . . , j

(1)
l1

, . . . j
(n)
1 , j

(n)
2 , . . . , j

(n)
ln

}, i =

1, . . . , l̂, l̂ = l1+ · · ·+ ln}. For multi-indexes with duplicated elements, we extend
the previous definitions by assigning a different subscript to each duplicated
element, for example, Λ(2,0),(0,1) = Λ(2,01),(02,1) = {(2, 02, 1, 01), (02, 2, 1, 01),
(02, 1, 2, 01), (02, 2, 01, 1), (2, 01, 02, 1), (2, 02, 01, 1)} = {(2, 0, 1, 0), (0, 2, 1, 0), (0,
1, 2, 0), (0, 2, 0, 1), (2, 0, 0, 1), (2, 0, 0, 1)}.

We can easily verify that Λα,α′ = Λα′,α, and the length of the multi indexes
β ∈ Λα,α′ , is l(β) = l(α) + l(α′).

It can be proved [2] that the multiplication of a finite sequence of multiple-
indexes can be expressed by the following summation:

n∏

i=1

Jαi =
∑

β∈Λα1,...,αn

Jβ. (10)

Inserting (6) into the HJ PDE (4), and using the previous equation, we get

S1
ω =

∫ t

0

H(0)(P, q +
∑

α

∂Gα

∂P
Jα)ds+

m∑

r=1

∫ t

0

H(r)(P, q +
∑

α

∂Gα

∂P
Jα) ◦ dwr

s

=

m∑

r=0

∞∑

i=0

n∑

k1,...,ki=1

∑

α1,...,αi

∑

β∈Λα1,...αi

1

i!

∂iH(r)

∂qk1 . . . ∂qki

∂Gα1

∂Pk1

. . .
∂Gαi

∂Pki

Jβ∗(r) (11)

where (
∑

α
∂Gαi

∂P )ki is the ki-th component of the column vector
∑

α
∂Gαi

∂P .
Equating the coefficients of Jα in (6) and (11), we obtain a recurrence formula
for determining Gα.
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If α = (r), r = 0, . . . ,m then Gα = H(r). If α = (i1, . . . , il−1, r), l > 1,
i1, . . . , il−1, r = 0, . . . ,m has no duplicates then

Gα =

l(α)−1∑

i=1

1

i!

n∑

k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑

l(α1)+···+l(αi)=l(α)−1
α−∈Λα1,...,αi

∂Gα1

∂Pk1

. . .
∂Gαi

∂Pki

. (12)

If the multi-index α contains any duplicates, then we apply formula (12) after
we associate different subscripts to the repeating numbers.

In [2], we prove that the symplectic schemes based on truncations of S1
ω for

multi-indexes α ∈ Ak = {α : l(α) + n(α) ≤ 2k} have mean square order k,
for k = 1, 1.5, 2. Here n(α) is the number of components equal with 0 in the
multi-index α. For example, using the following truncation of S1

ω based on A1,
we can get a scheme with mean square order 1:

S1
ω ≈ G(0)J(0) +

m∑

r=1

(
G(r)J(r) +G(r,r)J(r,r)

)
+

m∑

i,j=1,i�=j

G(i,j)J(i,j). (13)

3 Symplectic Schemes for SHS Preserving the
Hamiltonian Functions

Unlike the deterministic cases, in general the SHS (1) no longer preserves the
Hamiltonian functions Hi, i = 0, . . . , n with respect to time.

Proposition 1. The Hamiltonian functions H(i), i = 0, . . . ,m are invariant for
the flow of the system (1), if and only if {H(i), H(j)} = 0 for i, j = 0, . . . ,m,

where the Poisson bracket is defined as {H(i), H(j)} =
∑n

k=1(
∂H(j)

∂Qk

∂H(i)

∂Pk
−

∂H(i)

∂Qk

∂H(j)

∂Pk
).

Proof. By the chain rule of the Stratonovich stochastic integration, the Hamil-
tonian functions H(i), i = 0, . . . ,m are invariant for the system (1), if and only
if for every i = 0, . . . ,m

dH(i) =

n∑

k=1

(
∂H(i)

∂Pk
dPk +

∂H(i)

∂Qk
dQk) =

n∑

k=1

(−∂H(i)

∂Pk

∂H(0)

∂Qk

+
∂H(i)

∂Qk

∂H(0)

∂Pk
)dt+

m∑

r=1

n∑

k=1

(−∂H(i)

∂Pk

∂H(r)

∂Qk
+

∂H(i)

∂Qk

∂H(r)

∂Pk
) ◦ dwr

t = 0.

(14)

For any permutation on {1, . . . , l}, l ≥ 1 (i.e. for any bijective function π :
{1, . . . , l} → {1, . . . , l}), and for any multi-index α = (i1, . . . , il) with l(α) = l, let
denote by π(α) the multi-index defined as π(α) := (iπ(1), . . . , iπ(l)). For systems
preserving the Hamiltonian functions, the coefficients Gα of S1

ω are invariant
under the permutations on α, when l(α) = 2 because for any r1, r2 = 0, . . . ,m,
we have



170 C. Anton, Y.S. Wong, and J. Deng

G(r1,r2) =
n∑

k=1

∂H(r2)

∂qk

∂H(r1)

∂Pk
=

n∑

k=1

∂H(r1)

∂qk

∂H(r2)

∂Pk
= G(r2,r1). (15)

A simple calculation verifies that Gα are invariant under the permutations on α
when l(α) = 3. By induction we can prove that this invariance also holds in the
general case ([1]).

Proposition 2. For SHS preserving the Hamiltonian functions, the coefficients
Gα are invariants to permutations, i.e Gα = Gπ(α).

The invariance under permutations of Gα makes higher order symplectic
schemes computationally attractive for systems preserving the Hamiltonian func-
tions. For example, for the system (1) with m = 1, since J(0,1)+J(1,0) = J(1)J(0)
and J(0,1,1) + J(1,0,1) + J(1,1,0) = J(1,1)J(0) (see (10)), we get the following
generating function based on the set A2

S1
ω ≈ G(0)h+G(1)

√
hξh +

G(0,0)

2
h2 +

G(1,1)

2
hξ2h +G(1,0)ξhh

3
2

+
G(1,1,1)

6
h

3
2 ξ3h +

G(1,1,0)

2
ξ2hh

2 +
G(1,1,1,1)

24
h2ξ4h.

(16)

Here, we proceed as reported in [7] to construct an implicit scheme based on S1
ω

and ensuring it is well-defined. If the time step h < 1, then when simulating the
stochastic integrals J1, J11, J110, J111 and J1111, we replace the random variable
ξ ∼ N(0, 1) with the bounded random variable ξh:

ξh =

⎧
⎪⎨

⎪⎩

−Ah(2) if ξ < −Ah(2)

ξ if |ξ| ≤ Ah(2)

Ah(2) if ξ > Ah(2),

(17)

where Ah(2) = 2
√
2| lnh|. Using (5) and (16) we construct the following

symplectic scheme:

Pi(k + 1) = Pi(k)−
(
∂G(0)

∂Qi
h+

∂G(1)

∂Qi

√
hξh +

∂G(0,0)

∂Qi

h2

2
+

∂G(1,1)

∂Qi

hξ2h
2

+ 2
∂G(1,0)

∂Qi
ξhh

3
2 +

∂G(1,1,1)

∂Qi

h
3
2 ξ3h
6

+
∂G(1,1,0)

∂Qi

3ξ2hh
2

2
+

∂G(1,1,1,1)

∂Qi

h2ξ4h
24

)

Qi(k + 1) = Qi(k) +

(
∂G(0)

∂Pi
h+

∂G(1)

∂Pi

√
hξh +

∂G(0,0)

∂Pi

h2

2
+

∂G(1,1)

∂Pi

hξ2h
2

+ 2
∂G(1,0)

∂Pi
ξhh

3
2 +

∂G(1,1,1)

∂Pi

h
3
2 ξ3h
6

+
∂G(1,1,0)

∂Pi

3ξ2hh
2

2
+

∂G(1,1,1,1)

∂Pi

h2ξ4h
24

)
,

(18)

where everywhere the arguments are (P (k + 1), Q(k)). From [7] we know that
E(ξ − ξh)

2 ≤ h4 and 0 ≤ E(ξ2 − ξ2h) ≤ 7h7/2, so proceeding as in [2] we can
prove that (18) is a mean square second-order scheme.
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Based on (5) and the truncation (13) we can build the symplectic mean square
first-order scheme:

Pi(k + 1) = Pi(k)−
(
∂G(0)

∂Qi
h+

∂G(1)

∂Qi

√
hζh +

∂G(1,1)

∂Qi

hζ2h
2

)

Qi(k + 1) = Qi(k) +

(
∂G(0)

∂Pi
h+

∂G(1)

∂Pi

√
hζh +

∂G(1,1)

∂Pi

hζ2h
2

)
,

(19)

where everywhere the arguments are (P (k + 1), Q(k)) and ζh is defined as in
(17), but with Ah(2) replaced by Ah(1) = 2

√| lnh|.

4 Numerical Simulations and Conclusions
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Fig. 1. Sample path for (20): (-) exact solution , (- -) numerical solution from (a) the
explicit Milstein scheme and (b) the mean square second-order symplectic scheme

The mathematical model for the Kubo oscillator is given by

dP = −aQdt− σQ ◦ dw1
t , P (0) = p0,

dQ = aPdt+ σP ◦ dw2
t , Q(0) = q0,

(20)

where a and σ are constants. This example has been studied in [7] to demonstrate
the performance of the stochastic symplectic scheme for long time
computation. The linear system with constant coefficients (20) can be solved
analytically (see chapter 4 in [5]) , so we can easily simulate trajectories of the

exact solution. The Hamiltonian functions are H(0)(P (t), Q(t)) = aP (t)2+Q(t)2

2

and H(1)(P (t), Q(t)) = σP (t)2+Q(t)2

2 , and it is easy to verify that they are pre-
served under the phase flow of the systems. As a consequence, the phase tra-
jectory of (20) lies on the circle with the center at the origin and the radius√
p20 + q20 .
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Replacing in (12), we obtain the following coefficients Gα(P, q) of S
1
ω(P, q):

G(0) =
a

2
(P 2 + q2), G(1) =

σ

2
(P 2 + q2), G(0,0) = a2Pq, G(1,1) = σ2Pq,

G(1,0) = G(0,1) = aσPq, G(0,0,0) = a3(P 2 + q2), G(1,1,1) = σ3(P 2 + q2),

G(1,1,0) = G(1,0,1) = G(0,1,1) = aσ2(P 2 + q2), G(1,1,1,1) = 5σ4Pq. (21)

Here, we consider the mean square first-order scheme (19), and the mean square
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Fig. 2. A sample phase trajectory: (a) the Milstein scheme; (b) S1
ω first-order scheme;

(c) S1
ω second-order scheme
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Fig. 3. Convergence rate of different order S1
ω symplectic schemes

second-order scheme given in (18). Fig. 1 displays sample paths computed using
the scheme (18) and the explicit mean square order one Milstein scheme ([5])
for a = 2, σ = 0.3, p0 = 1 and q0 = 0. Comparing with the exact solution we
notice that the explicit scheme gives a divergent solution (see Fig. 1 a), while
the symplectic scheme (18) produce accurate results (see Fig. 1 b).
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Moreover, to validate the performance of symplectic schemes for long term
simulations, in Fig. 2, we display sample phase trajectories of (20) computed
using the explicit order one Milstein scheme given in [5] and the mean square
order one and two symplectic schemes proposed in this paper. The time interval
is 0 ≤ T ≤ 200 and the time step h = 2−8. It is clear that the phase trajectory of
the Milstein non-symplectic scheme deviates from the circle P (t)2 +Q(t)2 = 1,
while the proposed symplectic schemes produce accurate numerical solutions.

In [7], a mean square order 0.5 symplectic scheme is presented. Fig. 3 confirms
the expected convergence rate for the symplectic schemes with the mean square
orders 0.5, 1, 2, where the error is the maximum error of (P,Q) at T = 100.

4.1 Conclusions

We construct high-order symplectic schemes based on the generating functions
for stochastic Hamiltonian systems preserving Hamiltonian functions. Since the
coefficients of the generating function are invariant under permutations, the high-
order implicit symplectic schemes have simpler forms and require less multiple
stochastic integrals than the explicit Taylor expansion schemes. Based on the
numerical simulations presented in this study, we conclude that the symplectic
schemes are very effective for long term computations.
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